

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

July 12, 2010

Northgate Environmental Management, Inc. 1100 Quail Street Ste. 102 Newport Beach, CA 92660 ATTN: Ms. Cindy Arnold

SUBJECT: Tronox LLC Facility, PCS, Henderson, Nevada, **Data Validation**

Dear Ms. Arnold,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on June 25, 2010. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 23481:

SDG #

Fraction

280-2216-11, 280-2400-8, 280-2448-16 Semivolatiles, Chlorinated Pesticides, Metals, Perchlorate 280-2836-2, 280-2879-2, 280-3624-4 280-3624-6, 280-3679-4, 280-3955-5

The data validation was performed under Stage 2B/4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Standard Operating Procedures (SOP) 40, Data Review/Validation, BRC 2009
- Quality Assurance Project Plan Tronox LLC Facility, Henderson Nevada, June 2009
- NDEP Guidance, May 2006
- USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June 2008
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

Please feel free to contact us if you have any questions.

Sincerely.

Frlinda T. Rauto **Operations Manager/Senior Chemist**

		S																							T					Ţ		18	
		₹													_				_	-		_	_		_	+	╇		_	+		0	
		S		_	\perp		_		_	_		_	_		_				_	_	_	_	_	_				_	+	+	+		g
		3	_			_	\rightarrow	_	_		_	_	_	_	-	_			_	+		_		_		+	+	+		_	+		ST.wp
		S	_	+	_	\rightarrow			_	_		_	_		_		_		_	\rightarrow			+	_	+	_		+	╉		+-		3481
		3			+	-+	_	\rightarrow	_	_	_	_	+	_	_		_	_	\rightarrow	-		_	\rightarrow	-+	-	+	+	+		_	-		N
		S			_			_		_	_	+	-+			_	-	_		-+	\rightarrow	_	+	+			+	-	┿	+-	+		
		5				_		-	_	_		+	+						+	-+	\rightarrow	_	+					+					
		» >	-	+	+	-+				_		+	╉		\neg	-			-	-+			_	-+	+	\neg	+		+	+		0	
		>	_	-	+		+	-	+	+	-	+	+						\neg			\neg	\neg							╈	-	0	
6		~	-+		_	+		+		╋	+	+	+		-								\neg				╈		╋	+		0	
Ŭ		- S		+	_	-			-	╧	╈	╈	+													T						0	
Ň		3				+	-			╈	╞		1		_																	0	
lon		ω									T																					0	
L)		3									1	T																				0	sq(
N		S																														0	nd Di
on		3																														0	SD, a
ers		S																											_				W/SM
pué		3																											_			<u> </u>	olude
ĽĽ,	4.0	S		'	·	0	-	•	-		-	_															_	_	_	+		-	not in
ate	<u> 3</u> 0	≥	1	'	-'	-	'	'	0	-	-	_							_				_	_	-	_		_	_		_		ts do
thg	Mn 020)	S		'	-	0	•	'	_'	-'	4	_	_											_	_		_	+	+	╋	+-		coun
lor A	9	3	0	'	-	-	1	'	-		-	-+												-		+		-	+		╉		ample
15	Pb 3020)	∾	-			-	'	<u>'</u>	-	<u> </u>	-		_											_		+	+		╋	+	╋	-	lese s
		5	-				-	_		$\frac{1}{1}$	<u> </u>															+			-	_		0	L (c
lon	Co 6020	2			-	- -		-		-	_	+												_			╋			-		-	lidatic
Lo Lo	 	5	_	-		0		1	,		-+	\dashv																			╈	0	2B va
	As (602(3		-,			,	,	•	-	-																					-	Stade
348	<u>ک</u> ن ہے	S		1		0	0	,	'	,	-																					-	s are 5
#	Pes (808	3	'	0	,		-	•	•	·	•																					~	r cells
Image: Construction	₹ŷ	S	,	1	,	١	0	1	'	-	ı																					~	ll othe
	SV((827	≥	,	•	ı	1		0	ı	0	1																	_	_			-	tion (a
	۴ ۳		1/10	1/10	1/10	1/10	1/10	1/10	1/10	1/10	1/10																						/alidat
	D P 3		07/2	07/2	07/2	07/2	07/2	07/2	07/2	07/2	07/2																					_	0e 4 \
	۳ę		9/10	9/10	9/10	9/10	9/10	9/10	9/10	9/10	9/10																						e Sta
	REQ D		06/29	06/2	06/2	06/2	06/2	06/2	06/2	06/2	06/2																-			_	_	_	s indicat
5/29/10	DG#	r/Soil	2216-11	-2400-8	2448-16	-2836-2	-2879-2	-3624-4	-3624-6	-3679-4	-3955-5																					T/LR	Shaded cell
DL 0(Stage	S	Wate	280-	280	280-	280	280	280	280	280	280																						
	<u> </u>	atrix:	\vdash	-			ш	<u> </u>	0							\mathbf{T}		\vdash		\vdash		\vdash		\square								otal	

EDD CHECKLIST

.

LDC #: <u>23481</u> SDG #: <u>280-2216-11, 280-2400-8, 280-2448-16</u> <u>280-2836-2, 280-2879-2, 280-3624-4</u> <u>280-3624-6, 280-3679-4, 280-3955-5</u>

Tronox Northgate Henderson Worksheet

EDD Area	Yes	No	NA	Findings/Comments
I. Completeness				
Is there an EDD for the associated Tronox validation report?	x			
II. EDD Qualifier Population				
Were all qualifiers from the validation report populated into the EDD?	X			
III. EDD Lab Anomalies	-			
Were EDD anomalies identified?		x		
If yes, were they corrected or documented for the client?			x	See EDD_discrepancy_ form LDC23481_071210.doc
IV. EDD Delivery				
Was the final EDD sent to the client?	x			

Tronox LLC Facility, PCS, Henderson, Nevada Data Validation Reports LDC #23481

Semivolatiles

LDC Report# 23481E2a

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date: April 26, 2010

LDC Report Date: July 9, 2010

Matrix: Soil

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2879-2

Sample Identification

EB-04262010-1-RZD

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for Semivolatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within method and validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs) and 25.0% for all other compounds.

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks.

Sample EB-04262010-1-RZD was identified as an equipment blank. No semivolatile contaminants were found in this blank.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-2879-2	All compounds reported below the PQL.	J (all detects)	А

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Data Qualification Summary - SDG 280-2879-2

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-2879-2	EB-04262010-1-RZD	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 280-2879-2

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Equipment Blank Data Qualification Summary - SDG 280-2879-2

No Sample Data Qualified in this SDG

Trone	ox Northgate Hend	lerson
VALIDATION	COMPLETENESS	WORKSHEET

Stage 2B

SDG #: <u>280-2879-2</u> Laboratory: <u>Test America</u>

LDC #: 23481E2a

Date: 7/8/10 Page: 1 of / Reviewer: 3/4 2nd Reviewer: 9

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 4/26 /10
11.	GC/MS Instrument performance check	A	
.	Initial calibration	A	2, RSD r~
IV.	Continuing calibration/ICV	A	Carlar 625 3
V.	Blanks	A	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	arient groc
VIII	Laboratory control samples	A	us 10
IX.	Regional Quality Assurance and Quality Control	N	
<u>X.</u>	Internal standards	A	
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	Ń	
XVII.	Field blanks	ND	Eb = 1

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

Water

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

1	EB-04262010-1-RZD	11	21	31	
2	MB 280-13/34 /-A	12	22	32	
3	/	13	23	33	
4		14	24	34	
5		15	25	35	
6		16	26	36	
7		17	27	37	
8		18	28	38	
9		19	29	39	
10		20	30	40	

LDC Report# 23481F2a

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date: May 17, 2010

LDC Report Date: July 12, 2010

Matrix: Soil

Parameters: Semivolatiles

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-3624-4

Sample Identification

SSAN5-02-4BPC

V:\LOGIN\TRONOXNG\23481F2A.TR4

Introduction

This data review covers one soil sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for Semivolatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within method and validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs) and 25.0% for all other compounds.

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks.

Sample FB-04072010-RZC (from SDG 280-2280-2) was identified as a field blank. No semivolatile contaminants were found in this blank.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Compound	Flag	A or P
SSAN5-02-4BPC	Nitrobenzene-d5 2-Fluorobiphenyl	48 (50-120) 48 (50-120)	All TCL compounds	J- (all detects) UJ (all non-detects)	A

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria..

XII. Project Quantitation Limit

All compound quantitation and CRQLs were within validation criteria.

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-3624-4	All compounds reported below the PQL.	J (all detects)	А

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Data Qualification Summary - SDG 280-3624-4

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-3624-4	SSAN5-02-4BPC	All TCL compounds	J- (all detects) UJ (all non-detects)	А	Surrogate spikes (%R) (s)
280-3624-4	SSAN5-02-4BPC	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

123

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 280-3624-4

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Field Blank Data Qualification Summary - SDG 280-3624-4

No Sample Data Qualified in this SDG

Tronox Nort	hgate Hend	derson
VALIDATION COMP	LETENESS	WORKSHEET

Stage 4

SDG #: 280-3624-4

LDC #: 23481F2a

Laboratory: Test America

Date: 7/09/10
Page:of/
Reviewer: <u></u>
2nd Reviewer:
/`

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments	
	Technical holding times	A	Sampling dates: 5/17/10	
	GC/MS instrument performance check	A		
	Initial calibration	A	2 RSD Y	······································
IV.	Continuing calibration/ICV	A	Car/101 = 253	
V.	Blanks	A		
VI.	Surrogate spikes	SW		
VII.	Matrix spike/Matrix spike duplicates	N	Client Spec	·
VIII.	Laboratory control samples	<u>A</u>	105	
IX.	Regional Quality Assurance and Quality Control	N		- AND
Χ.	Internal standards	A		
XI.	Target compound identification	A		
XII.	Compound quantitation/CRQLs	<u></u>		New York Constraints of the State of the Sta
XIII.	Tentatively identified compounds (TICs)	N		
XIV.	System performance	A		
XV.	Overali assessment of data	Ŕ		
XVI.	Field duplicates	N		
XVII.	Field blanks	ND	FB = FB-04072010-RZC	(280-2280-2)

Note:

: A = Acceptable N = Not provided/applicable SW = See worksheet

Soll

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

+	SSAN5-02-4BPC	11	21	31
2	MA 280-16859/5-A	12	22	32
3	1.112	13	23	33
4		14	24	34
5		15	25	35
6		16	26	36
7		17	27	37
8		18	28	38
9		19	29	39
10		20	30	40

23481 Fra LDC #: SDG #:_ See Cover

Б

VALIDATION FINDINGS CHECKLIST

Page:<u>lof_2</u> Reviewer:<u>NC</u> 2nd Reviewer:<u>f</u>

ь.

Method: Semivolatiles (EPA SW 846 Method 8270C)

Validation Area	Vas	No		Eindings/Commonts
I. Technical holding times	1 103		1 100	
All technical holding times were met.		-		
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?	/	-		
Were all samples analyzed within the 12 hour clock criteria?		t		
III. Initial calibration	1999. 			
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	/			
Was a curve fit used for evaluation?	/			
Did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	<			
Were all percent relative standard deviations (%RSD) \leq 30% and relative response factors (RRF) \geq 0.05?		r		
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	/			
Were all percent differences (%D) \leq 25% and relative response factors (RRF) \geq 0.05?				
V. Blanks				
Was a method blank associated with every sample in this SDG?	4			
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	-	7	-	
VI. Surrogate spikes				
Were all surrogate %R within QC limits?		1		
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?)	
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
VII. Matrix spike/Matrix spike duplicates		6.2		
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.			-	
Was a MS/MSD analyzed every 20 samples of each matrix?		\mathbf{F}		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		\square	T	/
VIII. Laboratory control samples	I		<u> </u>	
Was an LCS analyzed for this SDG?	X			

VALIDATION FINDINGS CHECKLIST

	Page:_	2 of 2
	Reviewer:	N
2nd	Reviewer:	A
	-	

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
IX. Regional Quality Assurance and Quality Control	r in			
Were performance evaluation (PE) samples performed?		/		· · · · · · · · · · · · · · · · · · ·
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Internal standards	l () I			制度的保持的现象 全一位 网络非一个人
Were internal standard area counts within -50% or +100% of the associated calibration standard?	/			
Were retention times within + 30 seconds from the associated calibration standard?				
XI. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	<u> </u>			
Were chromatogram peaks verified and accounted for?				
XII. Compound quantitation/CRQLs	1			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	<			
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		/		
XIII. Tentatively identified compounds (TICs)				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?			/	
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?			/	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?				
XIV. System performance	4.15			
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.		-		
XVI Field duplicates		1		and the second
Field duplicate pairs were identified in this SDG.		/		
Target compounds were detected in the field duplicates.				
XVII. Field blanks			-	
Field blanks were identified in this SDG.				· · · · · · · · · · · · · · · · · · ·
Target compounds were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

A. Phenol**	P. Bis(2-chloroethoxy)methane	EE. 2,6-Dinitrotoluene	TT. Pentachlorophenol**	III. Benzo(a)pyrene**
B. Bis (2-chloroethyl) ether	Q. 2,4-Dichlorophenol**	FF. 3-Nitroaniline	UU. Phenanthrene	JJJ. Indeno(1,2,3-cd)pyrene
C. 2-Chlorophenol	R. 1,2,4-Trichlorobenzene	GG. Acenaphthene**	VV. Anthracene	KKK. Dibenz(a,h)anthracene
D. 1,3-Dichlorobenzene	S. Naphthalene	HH. 2,4-Dinitrophenol*	WW. Carbazole	LLL. Benzo(g,h,j)perylene
E. 1,4-Dichlorobenzene**	T. 4-Chloroaniline	ll. 4-Nitrophenol*	XX. Di-n-butyiphthalate	MMM. Bis(2-Chloroisopropyl)ether
F. 1,2-Dichlorobenzene	U. Hexachlorobutadiene**	JJ. Dibenzofuran	YY. Fluoranthene**	NNN. Aniline
G. 2-Methylphenol	V. 4-Chloro-3-methylphenol**	KK. 2,4-Dinitrotoluene	ZZ. Pyrene	000. N-Nitrosodimethylamine
H. 2,2'-Oxybis(1-chloropropane)	W. 2-Methylnaphthalene	LL. Diethylphthalate	AAA. Butylbenzylphthalate	PPP. Benzoic Acid
l. 4-Methylphenol	X. Hexachiorocyclopentadiene*	MM. 4-Chlorophenyl-phenyl ether	BBB. 3,3'-Dichlorobenzidine	QQQ. Benzyl alcohol
J. N-Nitroso-di-n-propylamine*	Y. 2,4,6-Trichlorophenol**	NN. Fluorene	CCC. Benzo(a)anthracene	RRR. Pyridine
K. Hexachloroethane	Z. 2,4,5-Trichlorophenol	00. 4-Nitroaniline	DDD. Chrysene	SSS. Benzidine
L. Nitrobenzene	AA. 2-Chloronaphthalene	PP. 4,6-Dinitro-2-methylphenol	EEE. Bis(2-ethylhexyl)phthalate	
M. Isophorone	BB. 2-Nitroaniline	QQ. N-Nitrosodiphenylamine (1)**	FFF. Di-n-octylphthalate**	nn
N. 2-Nitrophenol**	CC. Dimethylphthalate	RR. 4-Bromophenyl-phenylether	GGG. Benzo(b)fluoranthene	ww.
O. 2,4-Dimethylphenol	DD. Acenaphthylene	SS. Hexachlorobenzene	HHH. Benzo(k)fluoranthene	www.

Notes:* = System performance check compound (SPCC) for RRF; ** = Calibration check compound (CCC) for %RSD.

COMPNDL

1 2 + 8 H	* }		VALIDATION FINDI	NGS WORK Recovery	SHEET		Page: 1 of 1 Reviewer (ML	1
BN/S BN/S BN/S BN/S BN/S BN/S BN/S BN/S	A (EPA SW 846 Metho T below for all question	od 8270C) ns answered "N". Not	applicable questions are	identified as "I	1/A".		2nd Reviewer:	1 1
A If 201 A If 201	r more base neutral or / %R was less than 10	r acid surrogates wer percent, was a rean	e outside QC limits, was alysis performed to confir	a reanalysis pe m %R?	erformed to confirm	%R?		6
Date	Sample ID		surrogate	%R (Lim	its)	Qualif	fications	
			82	48	(071-D)	J-/WJ/A	(auta) (s)	
			EBP	847		,		
) (<u> </u>
					()			
					()			
) (
) ()			
					()			
					()			r
					()			r
					()			1
) (
) (
					()			
) (
					()			_
					()			-
] ()			
					()			
					(
					(
					()			
					()			
are advisory Nitrobenzene-d 2-Fluorobiphen) Terphenyl-d14	C C Limits (Soil) S 23-120 M 30-115 24 1-137 24 1-13	<u>OC Limits (Water)</u> 35-114 43-116 33-141	S5 (2FP)= 2-Fluorophe S6 (TBP) = 2,4,6-Tribr S7 (2CP) = 2,2-Chloroph S8 (TCP) = 2 - 2 Tribrio	anol omophenol tienol-d4	QC Limits (Soil) 25-121 19-122 20-130*	QC Limits (Water) 21-100 10-123 33-110*		
>> >>>>		-0-0-			20-102	>=->		

SUR.2S.wpd

,

LDC #: 23481 Fre

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

of Page: 2nd Reviewer: Reviewer:

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF = (A_x)(C_{is})/(A_{is})(C_x) average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 A_x = Area of Compound C_x = Concentration of compound, S= Standard deviation of the RRFs,

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration		RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (Internal Standard)	(50 std)	(50 std)	(Initial)	(Initial)		
:	I¢.	5/26/2010	1 4-Dioxane (IS1)	0.5027	0.5027	0.5263	0.5263	3.1	3.06
-			Nanhthalane (IS2)	1.0468	1.0468	1.0463	1.0463	3.3	3.31
	A COM		Elinciana (IS3)	1.3121	1.3121	1.3164	1.3164	3.6	3.62
			Lovochlorohenzene (ISA)	0 2331	0.2331	0.2374	0.2374	5.3	5.33
			Christian (185)	1.0301	1.0301	1.0388	1.0389	3.6	3.62
			Citi y Sorie Benzo(a) nurene (IS6)	1.0993	1.0993	1.0967	1.0967	7.1	7.15
		_							
	1								

Area IS	266078	1022206	609236	1011668	1057674	887232
Area cpd	167190	1337516	999226	294751	1361944	1219171
Inc IS/Cpd	40/50	40/50	40/50	40/50	40/50	40/50

Concl	1.4-Dioxane	Naphthalene	Fluorene	Hexachlorob	Chrysene	Benzo(a)py
4 00	0.5549	1.0427	1.2674		1.0923	0.9816
00.01	0.5146	1.0144	1.2648	0.2205	1.0307	1.0205
20.00	0.5157	0.9915	1.2629	0.2208	1.0261	1.0189
50.00	0.5027	1.0468	1.3121	0.2331	1.0301	1.0993
80.00	0.5345	1.1001	1.3820	0.2491	1.0906	1.1725
20.00	0.5242	1.0841	1.3704	0.2478	1.0442	1.1631
	0.5263	1.0499	1.3364	0.2478	1.0176	1.1562
00.00	0.5373	1.0411	1.3352	0.2426	0.9792	1.1613
×	0.5263	1.0463	1.3164	0.2374	1.0389	1.0967
() ()	0.0161	0.0346	0.0477	0.0126	0.0376	0.0784

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC # 23 481 Frog SDG # See Cover

VALIDATION FINDINGS WORSHEET Continuing Calibration Results Verification

Page <u>of</u> Reviewer: <u>007</u> 2nd Reviewer: <u>8</u>

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

e. RRF	
100 * (ave. RRF - RRF)/ave	;)((Ais)(Cx)
% Difference =	RRF = (Ax)(Cis

Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound Ais = A

 Ax = Area of compound
 Ais = Area of associated internal standard

 Cx = Concentration of compound
 Cis = Concentration of internal standard

Recalculated %D	3.5	2.9	4.9	3.8	3.1	5.9				
Reported %D	3.5	2.9	4.9	3.9	3.0	5.9				
Recalculated (CC RRF)	0.5448	1.0762	1.3814	0.2465	1.0705	1.1616				
Reported (CC RRF)	0.5448	1.0762	1.3814	0.2465	1.0705	1.1616				
Average RRF (Initial RRF)	0.5263	1.0463	1.3164	0.2374	1.0388	1.0967				
Compound (Reference IS)	1,4-Dioxane (IS1)	Naphthalene (IS2)	Fluorene (IS3)	Hexachlorobenzene (IS4)	Chrysene (IS5)	Benzo(a)pyrene (IS6)				
Calibration Date	06/01/10									
Standard ID	K4259									
#	-						7			

	Area IS							
	Area Cpd							
CCV2	Area IS		247945	947848	556423	902273	971045	858787
	Area Cpd		270169	2040112	1537267	444880	2079022	1995187
CCV1	Concentration	(IS/Cpd)	40/80	40/80	40/80	40/80	40/80	40/80
	e IS)		(IS1)	(IS2)	(IS3)	(1S4)	(185)	(186)
	Compound (Reference		1,4-Dioxane	Naphthalene	Fluorene	Hexachlorobenzene	Chrysene	Benzo(a)pyrene

.

LDC #: 23 48 | F2a SDG #: Sre Cover

VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	102	47.8	48	48	9
2-Fluorobiphenyl	1	\$7.7	48	48	
Terphenyl-d14		77. Y	77	77	
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl			·		
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fiuorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

1 1 1	ر ر
481	Ŝ
5	#:Sce
LDC #	SDG

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

Page: <u>1</u> of <u>1</u> Reviewer: <u>37</u> 2nd Reviewer: <u>2</u>

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added LCSC = Laboraotry control sample concentration LCSDC = Laboratory control sample duplicate concentration

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: UCS 780 - 14 829 10- A

	ů	2	Ű	ika		ý	3	sn	I CS/I	csn
	PA	ded	Concel	ntration					Ċ	9
Compound	(ms /	1 () H	(H </th <th>let)</th> <th>Percent F</th> <th>ecovery</th> <th>Percent h</th> <th>(ecovery</th> <th>Y</th> <th></th>	let)	Percent F	ecovery	Percent h	(ecovery	Y	
	1 CS		1 CS	U I CSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
Phenol										
N-Nitroso-di-n-propylamine										
4-Chloro-3-methylahenol										
Acenanhthene	2630	K.A.	1800	NA N	68	C K				
Dentachinonic		_								
Pyrene	(r 20	->	18 5 1		14	2-6				
				>						
· · ·										

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 2348 Fra SDG #: Sre Gover

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Were all reported results recalculated and verified for all level IV samples? Y) N N/A Were all recalculated results for detected target compounds agree within 10.0% of the reported results? N N/A Example: Concentration = $(A_{,})(I_{s})(V_{,})(DF)(2.0)$ $(A_{is})(RRF)(V_{o})(V_{i})(\%S)$ Sample I.D. ______ SS : Area of the characteristic ion (EICP) for the compound = A, to be measured Area of the characteristic ion (EICP) for the specific A_{is} = internal standard Conc. = 72801 (40)(1m/)(1m) ((487909)(0.2374)(30.9g)(0.717)() = Amount of internal standard added in nanograms (ng) I, Volume or weight of sample extract in milliliters (ml) or V, = = 487.6 2.490 ng/lg grams (g). Volume of extract injected in microliters (ul) V, = Volume of the concentrated extract in microliters (ul) = V, Df Dilution Factor. Ξ %S = Percent solids, applicable to soil and solid matrices only. 2.0 Factor of 2 to account for GPC cleanup = Reported Calculated Concentration Concentration Qualification Compound # Sample ID

LDC Report# 23481H2a

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date: May 18, 2010

LDC Report Date: July 9, 2010

Matrix: Soil

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-3679-4

Sample Identification

SSAM6-04-2BPC SSAM6-04-2BPCMS SSAM6-04-2BPCMSD

V:\LOGIN\TRONOXNG\23481H2A.TR3

Introduction

This data review covers 3 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for Semivolatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within method and validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs) and 25.0% for all other compounds.

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks.

Sample FB-04072010-RZC (from SDG 280-2280-2) was identified as a field blank. No semivolatile contaminants were found in this blank.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-3679-4	All compounds reported below the PQL.	J (all detects)	A

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Data Qualification Summary - SDG 280-3679-4

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-3679-4	SSAM6-04-2BPC	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 280-3679-4

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Field Blank Data Qualification Summary - SDG 280-3679-4

No Sample Data Qualified in this SDG
Tronox l	Northgate	Hendersol	า
ALIDATION CC	MPLETEN	IESS WOR	KSHEET

Stage 2B

SDG #: 280-3679-**# & 4** Laboratory: Test America

23481H2a

LDC #:__

Date: 7/68/10 Page: lof / Reviewer: 3/4 2nd Reviewer: 4

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 5/8 /10
1.	GC/MS Instrument performance check	A	
111.	Initial calibration	A	2 kgp r
IV.	Continuing calibration/ICV	A	Carlar = 253
V.	Blanks	A	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	A	
VIII.	Laboratory control samples	A	40.8
IX.	Regional Quality Assurance and Quality Control	N	
Χ.	Internal standards	<u>A</u>	
XI.	Target compound identification	<u>N</u>	
XII.	Compound quantitation/CRQLs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	N	
X\/!!	Field blanks	ND	FB = FB-04072010-RZC (280-2280-2)

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

Soil

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

		T THE REPORT OF THE REPORT	T I	T
1	SSAM6-04-2BPC	11	21	31
		10	22	32
2	SSAM6-04-2BPCMS	12		
3	SSAM6-04-2BPCMSD	13	23	33
4	MB 280-16859/5-A	14	24	34
5	,	15	25	35
6		16	26	36
7		17	27	37
8		18	28	38
0		19	29	39
10		20	30	40

Tronox LLC Facility, PCS, Henderson, Nevada Data Validation Reports LDC #23481

Chlorinated Pesticides

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date: April 13, 2010

LDC Report Date: July 9, 2010

Matrix:

Parameters:

Chlorinated Pesticides

Soil

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2400-8

Sample Identification

SSAM3-01-2BPC

**Indicates sample underwent Stage 4 review

Introduction

This data review covers one soil sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8081A for Chlorinated Pesticides.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of single compounds were performed for the primary (quantitation) column and confirmation column as required by this method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

Retention time windows were evaluated and considered technically acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples on which a Stage 2B review was performed.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

Retention times (RT) of all compounds in the calibration standards were within QC limits for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples on which a Stage 2B review was performed.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No chlorinated pesticide contaminants were found in the method blanks.

Sample FB-04132010-RIG2-RZE (from SDG 280-2400-2) was identified as a field blank. No chlorinated pesticide contaminants were found in this blank.

....

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. Surrogate recoveries (%R) were not within QC limits for sample SSAM3-01-2BPC. Since the sample was diluted out, no data were qualified.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

XI. Target Compound Identification

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XII. Project Quantitation Limit

All compound quantitation and CRQLs were within validation criteria for samples on which an Stage 4 review was performed.

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
SSAM3-01-2BPC	Methoxychlor	182.7	J (all detects)	A

ି

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-2400-8	All compounds reported below the PQL.	J (all detects)	A

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Chlorinated Pesticides - Data Qualification Summary - SDG 280-2400-8

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-2400-8	SSAM3-01-2BPC	Methoxychlor	J (all detects)	A	Project Quantitation Limit (RPD) (dc)
280-2400-8	SSAM3-01-2BPC	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS, Henderson, Nevada

Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 280-2400-8

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG 280-2400-8

No Sample Data Qualified in this SDG

Tronox Northgate Henderson	
VALIDATION COMPLETENESS WORKSHEE	T

LDC #: 23481B3a SDG #: 280-2400-8 Laboratory: Test America

Stage 4

Date: 7/09/10 Page: lof) Reviewer: <u>M</u> 2nd Reviewer:

METHOD: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
۔۔۔۔۔ ا.	Technical holding times	A	Sampling dates: 4 /13 /10
11.	GC/ECD Instrument Performance Check	<u> </u>	
111.	Initial calibration	A	⁴ ∕ ₆ RSD r [√]
IV.	Continuing calibration/ICV	A	carrier = 202
V.	Blanks	A	
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	N	client spec
VIII	Laboratory control samples	A	US to
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	X	
XIL	Compound quantitation and reported CRQLs	SW	
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	N	
XV/	Field blanks	hD	FB = FB-04132010-RIG2-RZE (280-2400-2)

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

Valida	ated Samples: (m)				
1	SSAM3-01-2BPC	11	21	31	
2	MB 280-12618/21-A	12	22	32	
3		13	23	33	
4		14	24	34	
5		15	25	35	
6		16	26	36	
7		17	27	37	
8		18	28	38	
a a		19	29	39	
10		20	30	40	

 23 € 81 B7q
 VALIDATION FINDINGS CHECKLIST

 SDG #:
 See Cover

Page: 1 of <u>2</u> Reviewer: <u>JVC</u> 2nd Reviewer: <u></u>____

Method: Pesticides/PCBs (EPA SW 846 Method 8081/8082)					
Validation Area	Yes	No	NA	Findings/Comments	
I. Technical holding times				[
All technical holding times were met.	/				
Cooler temperature criteria was met.					
II. GC/ECD Instrument performance check		r		L	
Was the instrument performance found to be acceptable?					
III. Initial calibration		r	r	r	
Did the laboratory perform a 5 point calibration prior to sample analysis?	<				
Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) \leq 20%?	/				
Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?			ļ		
Did the initial calibration meet the curve fit acceptance criteria?	<				
Were the RT windows properly established?	/		L		
Were the required standard concentrations analyzed in the initial calibration?					
IV. Continuing calibration	ı —	r	<u>т</u>	1	
What type of continuing calibration calculation was performed?%D or%R		ļ			
Were Evaluation mix standards analyzed prior to the initial calibration and sample analysis?	/				
Were endrin and 4,4-DDT breakdowns \leq 15% for individual breakdown in the Evaluation mix standards?	/				
Was a continuing calibration analyzed daily?	/	ļ			
Were all percent differences (%D) \leq 20% or percent recovieries 80-120%?			ļ		
Were all the retention times within the acceptance windows?		1			
V Blanks			.	1	
Was a method blank associated with every sample in this SDG?	\square				
Was a method blank analyzed for each matrix and concentration?			<u> </u>		
Were extract cleanup blanks analyzed with every batch requiring clean-up?	1		ļ		
Was there contamination in the method blanks or clean-up blanks? If yes, please see the Blanks validation completeness worksheet.					
VI. Surrogate spikes		.			
Were all surrogate %R within the QC limits?		/ /	1		
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?	/				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?					
VII. Matrix spike/Matrix spike duplicates					

VALIDATION	FINDINGS	CHECKL	TZ
VALIDATION	LINDING3	UNLONE	

Page:	<u>≁of</u>	2
Reviewer:	JT/	7
2nd Reviewer:	4	
	7	

Validation Area	Yes	No	NA	Findings/Comments
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		/		
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	1
VIII Laboratory control samples				
Was an LCS analyzed for this SDG?	/			
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
IX. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?				· · · · · · · · · · · · · · · · · · ·
Were the performance evaluation (PE) samples within the acceptance limits?				<u> </u>
X. Target compound identification				
Were the retention times of reported detects within the RT windows?				
XI. Compound quantitation/CRQLs				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation?	1			
XII. System performance				
System performance was found to be acceptable.	7			
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XIV Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.				/
XV. Field blanks				
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.		\square		

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	l. Dieldrin	Q. Endrin ketone	Y. Aroclar-1242	GG. Chlordane
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Arocior-1248	HH. Chlordane (Technical)
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Aroclor-1254	H
D. gamma-BHC	L. Endosulfan II	T. gamma-Chlordane	BB. Arocior-1260	JJ.
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	CC. 2,4'-DDD	KK.
F. Aldrin	N. Endosulfan sulfate	V. Arocior-1016	DD. 2,4'-DDE	LL.
G. Heptachlor epoxide	O.4,4'-DDT	W. Aroclor-1221	EE. 2,4'-DDT	MM.
H. Endosulfan i	P. Methoxychlor	X. Aroclor-1232	FF. Hexachlorobenzene	NN.

Notes:

LDC #: 23 431 \$34 SDG #: C

VALIDATION FINDINGS WORKSHEET **Surrogate Spikes**

R Page: 1 of 1 Reviewer:___ 2nd Reviewer:__

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A". <u>V N/V</u> Were surrogates spiked into all samples, standards and blanks? <u>V N/V</u> Did all surrogate percent recoveries (%R) meet the QC limits?

#	Date	Sample ID	Column	Surrogate Compound	%R (Li	mits)	Qualifications
		((XQ01) 1	ct P 1	4	369	(51-15)	No qual,
				В	, q	(63-126)	
						()	
						()	
						()	
						()	
						()	
						()	
						()	
						()	
						()	
						()	
) (
) (
						()	
						()	
						()	
) (
						()	
Ľ	etter Designation	Surrogate Compound	Å.	scovery QC Limits (Soil		ecovery QC Limits (Water	Comments
	A	Tetrachoro-m-xviene					

SUR.wpd

Decachlorobiphenyl

۵

LDC #: 23481 834 SDG #: Se Com

Compound Quantitation and Reported CRQLs VALIDATION FINDINGS WORKSHEET

-1 of -1 Page: 2nd Reviewer: Reviewer:

METHOD: CG HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

evel IV/D Only AN NA

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results? A/N/A

Did the percent difference of detected compounds between two columns./detectors <40%?

If no please see findings hellow AND N

ications	(10)								
Qualifi	J dets /A								
(√aRPD)%D Between Two Columns/Detectors Limit (≤ 40%)	182,7								
Sample ID									
Compound Name	. 4								
#									1

Comments: See sample calculation verification worksheet for recalculations

LDC # 23481 Bre SDG# <u>5. c</u>m

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

d Page: 1 of 4 Reviewer: 316 Reviewer: 1 2nd Reviewer: _____

METHOD: GC EPA SW 846 Method 8081A

Parameter: 4,4'-DDT

Ave RF						
×		100.00	597478.00			
		75.00	443277.00			
		50.00	294636.00			
		25.00	139559.00		GCS_P2	
		10.00	54850.00			
		4.00	22286.00	4,4'-DDT	CLP1	04/26/2010
		Conc	Area	Compound	Column	Date
	X^2	~	×			

5571.50 5485.00 5582.36 5892.72 5910.36 5974.78 5736.12

Regression Output	÷.		Reported	
Constant		0.00000	11 U	0.0000
Std Err of Y Est		4961.04943		
R Squared		0.99953	ت2 =	0.998900
No. of Observations		6.00000		
Degrees of Freedom		5.00000		
			m1 =	5850
X Coefficient(s)	5928.760416	0.444903		
Std Err of Coef.	36.118827	0.11		

22481 830 See com LDC #___ SDG#

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

 \checkmark Page: $\frac{\gamma}{M}$ of $\frac{4}{M}$ Reviewer: $\frac{M}{M}$ Reviewer: <u>1/1</u> 2nd Reviewer:

METHOD: GC EPA SW 846 Method 8081A

Parameter: 4,4'-DDT

 Column	Compound	Area	≺ Conc	X^2
CLP2	4,4'-DDT	26707.00	4.00	16.00
		68045.00	10.00	100.00
 GCS_P2		171312.00	25.00	625.00
		355511.00	50.00	2500.00
		525805.00	75.00	5625.00
		705006.00	100.00	10000.00

6676.75 6804.50 6852.48

Regression Output:			Reported		
Constant		-2800.24293	c =	NR	<u> </u>
Std Err of Y Est		3336.78918			1
R Squared		0.99991	2 =	0.999900	1
No. of Observations		6.00000			1
Degrees of Freedom		3.00000			
			11 11	RN	
X Coefficient(s)	7098.583493	-0.256471	= q	R	
Std Err of Coef.	159.475846	1.53			
					l

940 U

Ave RF

6917.46

7010.73 7050.06

7110.22

LDC # 2391 B 1

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Reviewer: W 2nd Reviewer: Page: <u></u> of 4

METHOD: GC EPA SW 846 Method 8081A

Parameter: Hexachlorobenzene

X^2							
Y Conc	4.00	10.00	25.00	50.00	75.00	100.00	
X Area	39031.00	92016.00	218583.00	438324.00	653554.00	861853.00	
Compound	Hexachiorobenzene						-
Column	CLP1		GCS_P2				
Date	04/26/2010	_					

9757.75 9201.60 8743.32 8766.48 8714.05 8618.53 8966.96

Ave RF

Regression Output:			Reported		
Constant	0	00000'	11 0	0.0000	_
Std Err of Y Est	4707	.31355			
R Squared	0	.99979	12=	0.999900	
No. of Observations	9	00000.0			,
Degrees of Freedom	Q	00000		na any ang na	
			m1 =	8633	_
X Coefficient(s) 86	574.807007 0.4	444903		Note the second s	
Std Err of Coef.	34.271508	0.11			

LDC # 23 481 839 SDG# 24 Core

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

z Page: 4 of 4 Reviewer: <u>)</u> 2nd Reviewer: _____

2.52

METHOD: GC EPA SW 846 Method 8081A

Parameter: Hexachlorobenzene

Ave RF						
	10000.00	100.00	1132166.00			
	5625.00	75.00	879444.00			
	2500.00	50.00	605013.00			
	625.00	25.00	312150.00		GCS_P2	
	100.00	10.00	134526.00			
	16.00	4.00	58418.00	Hexachlorobenzene	CLP2	04/26/2010
		Conc	Area	Compound	Column	Date
	X^2	7	×			

13452.60 12486.00

14604.50

11725.92 11321.66

12100.26

12615.16

Regression Output	t		Reported		1
Constant		8023.22168	ш С	NR	_
Std Err of Y Est		2267.04743			
R Squared		0.99998	r2 =	1.000000	
No. of Observations		6.00000			
Degrees of Freedom		3.00000			
			ii N	NR	
X Coefficient(s)	12623.434031	-13.727283	= q	NR	
Std Err of Coef.	108.349460	1.04			_

LDC # 234 81 834 SDG# <u>Su</u> Conv

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: _____ of ____ Reviewer: ____// 2nd Reviewer: _____

METHOD: GC HPLC

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration percent difference (%D) values were recalculated for the compounds identified below using the following calculation:

Percent difference (%D) = 100 * (N - C)/N

N = Initial Calibration Factor or Nominal Amount

Where:

C = Calibration Factor from Continuing Calibration Standard or Calculated Amount

					Reported	Recalculated	Reported	Recalculated
		Calibration		CCV Conc	Conc	Conc	D %	۵%
#	Standard ID	Date	Compound					
Ţ	005F0501	6/3/2010	Hexachlorobenzene CLP1	50	51.10	51.67	2.3	3.3
			4,4'-DDT CLP1	50	48.80	48.57	2.3	2.9
			Hexachiorobenzene CLP2	50	50.00	49.99	0.0	0.0
			4,4'-DDT CLP2	50	50.00	49.99	0.0	0.0
							r	
7								

				ccV1	CCV2
Compound	g	q	U	Area	Area
HCB CLP1		8633.00		446078	
4,4'-DDT CLP1		5850.00		284109	
HCB CLP2	-13.727283	12623.43	8023.22	604834	
4,4'-DDT CLP2	-0.256471	7098.58	-2800.24293	351341	

State 1

LDC #: 7481 B39 SDG #: 2n Cm

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	of/
Reviewer:	JV.
2nd reviewer:	a
	I

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:	# /
------------	-----

Surrogate Surrogate Percent Percent Percent Column Surrogate Spiked Found Recovery Recovery Difference Reported Recalculated Tetrachloro-m-xylene CUP) 0.20 0.7382) Tetrachloro-m-xylene T 369 369 NĎ Ó l 0 L Decachlorobiphenyl 0 Decachlorobiphenyl

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Notes:

V:\Validation Worksheets\Pesticides\SURRCALC.3S

WETHOP: GC Pesticides/PCBs (EPA SW 846 Method 8091/8082) The percent recoveries (%K) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for compounds identified below using the following calculation: % Recowny = 10° (SSC-SO/SA Wee, SSC = Spike ample concentration % Recowny = 10° (SSC-SO/SA Wee, SSC = Spike ample concentration % Recowny = 10° (SSC-SO/SA Wee, SSC = Spike ample concentration % Recowny = 10° (SSC-SO/SA Wee, SSC = Spike ample concentration % Recowny = 10° (SSC-SO/SA Wee, SSC = Spike ample RPD = 1LCS - LCSD) Wee, SSC = Spike addat RPD = 1LCS - LCSD) LCSLCSD samples:										
The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for compounds (dentified below using the following calculation:	AETHOD: GC Pestic	ides/PCBs ((EPA SW 846	3 Method 808	1/8082)					
% Recover = 100* (SSC-SC)A. Where: SSC = Spleed sample concentration SC = Concentration RP = ILCS - LCSD 1 * 2(LCS + LCSD) LCS = Laboratory control sample percent recovery LCS = Laboratory control sample percent recovery RP = ILCS - LCSD 1 * 2(LCS + LCSD) LCS = Laboratory control sample percent recovery LCS = Laboratory control sample areant recovery CSLCSD Samples:	The percent recoverie compounds identified	ss (%R) and I below usin	Relative Perc g the followin	cent difference g calculation:	e (RPD) of the	laboratory contro	sample and lab	oratory control sa	mple duplicate v	vere recalculated fi
RD = ILGS - LCSD 1 * 2(LCS + LCSD) LCS = Laboratory control sample detent recovery LCS = Laboratory control sample duplicate percent recovery LCS/LCSD samples: V_G > 2% - 12 & I & S / Y = 7 LCS = Laboratory control sample duplicate percent recovery LCS = Laboratory control sample duplicate percent recovery LCS = Laboratory control sample duplicate percent recovery Compound Splite Splite LCS LCS <thls< th=""> LCS <thls< th=""> L</thls<></thls<>	6 Recovery = 100* (SSC-SI	C)/SA		Where: SS(SA	: = Spiked sampl = Spike added	e concentration	Ŏ	C = Concentration		
	לאD = ו LCS - LCSD ו * 2/(ו .CS/LCSD samples:_	ر کلا LCS + LCSD)	81921-08	100 × - 4	i = Laboratory co	ntrol sample percent ræ	:overy LCSD = Lab	oratory control sample	duplicate percent re	covery
Compound Address Constration (13 , Å ₂) Percent Recovery Percent Recovery Percent Recovery germa-BHC $(L_2$ L_CS L_CS L_CS $R_POINT Reported Receit. Reported Receit. germa-BHC (L_1 L_1 L_2 L_CS R_S^{-1} $		Ű	1 	Calbad	Samalo		ų		G	
LcsCspLcsLcsbLcsReportedReals.ReportedReals. $ammaBHC$ $k. \not \phi$ $k. \dot \phi$ $44 \cdot DDT$ L L $k. \dot \phi$ $44 \cdot DDT$ L $k. \dot \phi$ <th>Compound</th> <th>PA (</th> <th>ded</th> <th>Concer (115</th> <th>tration</th> <th>Percent F</th> <th>lecovery</th> <th>Percent</th> <th>Recovery</th> <th>RPD</th>	Compound	PA (ded	Concer (115	tration	Percent F	lecovery	Percent	Recovery	RPD
Jamma-BHC [k.4 hzh [3.7 hzh 85 44:DDT L L J 13.4 V Acidr 1260 L B 87 87 Accidr 1260 L B 87 87 Model 1260 L B 87 87		rcs		LCS	, LCSD	Reported	Recalc.	Reported	Recalc.	Reported Reca
4.4:DDT L 3.4 L 8.7 8.7 8.7 Arcoler 1260	gamma-BHC	16.4	RA K	13.7	¥	۲۶	82			
Arcciot 1250	4,4:-DDT			3.4		8~	87			
	Arocior 1260			_						
	esults do not agree w	vithin 10.0%	of the recalc	culated results						

V:\Validation Worksheets\Pesticides\LCSDCLC.wpd

LDC #: 23481 \$34 SDG #: Sec Corr

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

> Example: Sample 1.D. ± 1 \mp Conc. = (262796 - 5730.14) 8594.6= 22.929 final cone. = (22.92a)(10ml)(10) (30.13)(0.885)= 860.7 ug/kg

#	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
		- 1			
		2			
				l	

Note:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date: April 23, 2010

LDC Report Date: July 9, 2010

Matrix: Water

Parameters: Chlorinated Pesticides

Validation Level: Stage 2B

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2836-2

Sample Identification

EB-04232010-RZE

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8081A for Chlorinated Pesticides.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of single compounds were performed for the primary (quantitation) column and confirmation column as required by this method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No chlorinated pesticide contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
MB 280-13254/1-A	4/29/10	Hexachlorobenzene	0.0162 ug/L	All samples in SDG 280-2836-2

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

Sample EB-04232010-RZE was identified as an equipment blank. No chlorinated pesticide contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Sampling Dat e	Compound	Concentration	Associated Samples
EB-04232010-RZE	4/23/10	4,4'-DDE 4,4'-DDT Dieldrin Hexachlorobenzene	0.17 ug/L 0.11 ug/L 0.015 ug/L 0.086 ug/L	No associated samples in this SDG

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Flag	A or P
LCS/D 280-13254/6-A (All samples in SDG 280-2836-2)	Toxaphene	127 (63-118)	129 (63-118)	-	J+ (all detects)	Ρ

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

XI. Target Compound Identification

Raw data were not reviewed for this SDG.

XII. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample		Finding	Flag	A or P
All samples in SDG 280-28	336-2	All compounds reported below the PQL.	J (all detects)	A

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Chlorinated Pesticides - Data Qualification Summary - SDG 280-2836-2

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-2836-2	EB-04232010-RZE	Toxaphene	J+ (all detects)	Ρ	Laboratory control samples (%R) (l)
280-2836-2	EB-04232010-RZE	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 280-2836-2

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada

Chlorinated Pesticides - Equipment Blank Data Qualification Summary - SDG 280-2836-2

No Sample Data Qualified in this SDG

Tronox Northgate Hende	erson
VALIDATION COMPLETENESS V	NORKSHEET

LDC #: <u>23481D3a</u> SDG #: <u>280-2836-2</u> Laboratory: <u>Test America</u>

Stage 2B

	Date:	7/08/10
	Page:_	1 of /
	Reviewer:	<u>M</u>
2nd	Reviewer:	9-

METHOD: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	Ą	Sampling dates: 4 /23/10
11.	GC/ECD Instrument Performance Check	A	
- 111.	Initial calibration	A	2 RSD IV
IV.	Continuing calibration/ICV	A	carrie = 202
V.	Blanks	SW	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	
VIII.	Laboratory control samples	SW	uss
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	N	
XII.	Compound quantitation and reported CRQLs	N	
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	N	
XV.	Field blanks	SW	EB =

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

Water

+	EB-04232010-RZE	11	21	31
2		12	22	32
3		13	23	33
4		14	24	34
5		15	25	35
6		16	26	36
7		17	27	37
8		18	28	38
9		19	29	39
10		20	30	40

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	1. Dieldrin	Q. Endrin ketone	Y. Aroclor-1242	GG. Chlordane
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Aroclor-1248	HH. Chlordane (Technical)
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Aroclor-1254	II.
D. gamma-BHC	L. Endosulfan II	T. gamma-Chlordane	BB. Aroclor-1260	JJ.
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	cc. 2,4'-DDD	KK.
F. Aldrin	N. Endosulfan sulfate	V. Arocior-1016	DD. 2,4'-DDE	LL.
G. Heptachlor epoxide	0.4,4'-DDT	W. Arocior-1221	EE. 2,4'-DDT	MM.
H. Endosulfan I	P. Methoxychlor	X. Aroclor-1232	FF. Hexachiorobenzene	NN.

Notes:

D 34	{
3581	ى تى
-DC #	SDG #:

VALIDATION FINDINGS WORKSHEET

Blanks

Reviewer: 2nd Reviewer:

X \of

Page:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Were all samples associated with a method blank? PN NA

Y/N N/A

If extract clean-up was performed, were extract clean-up blanks analyzed at the proper frequencies? Was a method blank performed for each matrix and whenever a sample extraction was performed? V/ N N/A

 $\frac{1}{10}$ N N/A Was there contamination in the method blanks? If yes, please see the qualifications below. Blank extraction date: $\frac{1}{100}$ Blank analysis date: $\frac{5}{100}$ is the method blanks? If yes, please see the qualifications below.

Conc. units:

			Т	T	T	T
ation						
iple Identific:						
Sam						
		0.086				
	¥					
k D	V prel -	162				
Blar	M6 280	0.0				
pu		FF				
Compon						
		<u>.</u>				
	5	¢ Ø				

Blank analysis date: Blank extraction date: Conc unite.

Associated samples:

Compound	Blank ID	Sample Identification

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

BLANKS.3S

23481 234	See Care
LDC #:	SDG #:_

VALIDATION FINDINGS WORKSHEET **Field Blanks**

ō Page: Reviewer: 2nd Reviewer:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081) Field blanks were identified in this SDG. M N/A

Were target compounds detected in the field blanks? $\frac{100}{100}$ Associated sample units: $\frac{100}{100}$ Y/N N/A

2210 Sampling date: 4 Blank units:

Field blank type: (circle one) Field Blank / Rinsate / Other:

X	
Š	
:0	
ple	
San	
ated	
socia	
Ass	

Compound	Blank ID		Sam	ple Identificat	lon		
Ъ	0.17						
0	0.11						
1	6.015						
#	0.086						
CRQL							

Associated sample units: Blank units:

Sampling date:

Associated Samples: Field blank type: (circle one) Field Blank / Rinsate / Other:

Compound	Blank ID		Sa	mple Identificat	ion		
CRQL							

Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U" CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

FBLKASC.3S

34	
810	3
234	Ş
#	#
БС	SDG

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples

Page: 1 of Reviewer: 2nd Reviewer:

0

_
3082
081/8
od 8
Meth
846
SW
(EPA
CBs
es/P
sticid
D D D D
ö
IHOI
NE

 Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

 V
 N/A

 V
 V

 V
 V

 V
 V

 V
 V

 V
 V

 V
 V

 V
 V

 V
 V

 Vere the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

<u>Y N N/A</u> W

			Common	LCS MR (1 imite)	LCSD %R (I imits)	RPD (Limits)	Associated Samples	Qualifications
*	רמופ	1156 - 281 - 12 X 21 /	× (//	127 (63-118)	129 (242)		AII	5t dets /p CA
		ALL ADA ALCAN	5			()		,
				()	()	-		
))	()		
Γ				()		()		
				()	()	()		
				()	()	()		
Γ)	()	()		
				()	()	()		
				()	()	()		
					()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	(()		
				()	()	()		
				()	()	()		
				· ·	()	()		
				-	()	()		
				()	()	()		
			<i>}</i>	=F = not	spiked)			
	V:/Valid	tation Worksheets\Pesticides\LCS	5.3S					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date: April 26, 2010

LDC Report Date: July 9, 2010

Parameters:

Matrix:

Chlorinated Pesticides

Water

Validation Level: Stage 2B

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2879-2

Sample Identification

EB-04262010-1-RZD
Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8081A for Chlorinated Pesticides.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of single compounds were performed for the primary (quantitation) column and confirmation column as required by this method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No chlorinated pesticide contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
MB 280-13254/1-A	4/29/10	Hexachiorobenzene	0.0162 ug/L	All samples in SDG 280-2879-2

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

Sample EB-04262010-1-RZD was identified as an equipment blank. No chlorinated pesticide contaminants were found in this blank.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Flag	A or P
LCS/D 280-13254/6-A (All samples in SDG 280-2879-2)	Toxaphene	127 (63-118)	129 (63-118)	-	J+ (all detects)	Ρ

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

XI. Target Compound Identification

Raw data were not reviewed for this SDG.

XII. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-2879-2	All compounds reported below the PQL.	J (all detects)	A

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Chlorinated Pesticides - Data Qualification Summary - SDG 280-2879-2

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-2879-2	EB-04262010-1-RZD	Toxaphene	J+ (all detects)	Р	Laboratory control samples (%R) (I)
280-2879-2	EB-04262010-1-RZD	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 280-2879-2

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada

Chlorinated Pesticides - Equipment Blank Data Qualification Summary - SDG 280-2879-2

No Sample Data Qualified in this SDG

Tronox Northgate Henderson	
VALIDATION COMPLETENESS WORKSHEE	Γ

LDC #: <u>23481E3a</u> SDG #: <u>280-2879-2</u>

Laboratory: Test America

Stage 2B

	Date:	7/08/10
	Page:_	lof]
	Reviewer:	NG
2nd	Reviewer:	F
		1

8

METHOD: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
۱.	Technical holding times	A	Sampling dates: 4 /26 /10
<u>и.</u>	GC/ECD Instrument Performance Check	<u>A</u>	1
.	Initial calibration	A	2 RSD 12
IV.	Continuing calibration/ICV	4	CW/W 6202
V.	Blanks	SW	
VI.	Surrogate spikes	F1	
VII.	Matrix spike/Matrix spike duplicates	N	client spec
VIII.	Laboratory control samples	SW	ucs /b
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	N	
XII.	Compound quantitation and reported CRQLs	N	
XIII.	Overall assessment of data	A	
XIV	Field duplicates	N	
XV.	Field blanks	ND	ЕВ = 1

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: WAtc/

1	EB-04262010-1-RZD	11	21	31	
2		12	22	32	2
3		13	23	33	3
4		14	24	34	
5		15	25	35	5
6		16	26	36	3
7		17	27	37	,
8		18	28	38	3
9		19	29	39	
10		20	30	40	

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	ł. Dieldrin	Q. Endrin ketone	Y. Aroclor-1242	GG. Chlordane
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Aroclor-1248	HH. Chlordane (Technical)
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Aroclor-1254	H.
D. gamma-BHC	L. Endosulfan II	T. gamma-Chlordane	BB. Aroclor-1260	JJ.
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	cc. 2,4'-DDD	KK.
F. Aldrin	N. Endosulfan sulfate	V. Aroclor-1016	DD. 2,4'-DDE	LL.
G. Heptachlor epoxide	0.4,4'-DDT	W. Arocior-1221	EE. 2,4'-DDT	MM.
H. Endosulfan I	P. Methoxychlor	X. Aroclor-1232	FF. Hexachiorobenzene	NN.

Notes:__

1E34	(may)
ショ しち	Les
LDC #:	SDG #:

VALIDATION FINDINGS WORKSHEET

Blanks

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Phease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

If extract clean-up was performed, were extract clean-up blanks analyzed at the proper frequencies? Was a method blank performed for each matrix and whenever a sample extraction was performed?

Was there contamination in the method blanks? If yes, please see the qualifications below. te: $\frac{1}{2}$ blank analysis date: $\frac{5}{4}$ fo <u>Υ Ν ΝΑ</u> <u>Υ Ν ΝΑ</u> <u>Υ Ν ΝΑ</u>

9

Blank an	
01/ VT/	•
7.1	_
9	<
ion da	5
extract	units:
Blank	Conc.

Sample Identification					
	- A				
Blank ID	1 psec 1- 086 84	0,0162			
Compound		1 1			

Blank analysis date: Blank extraction date: ŏ

Associated samples:

·	 		 T	-
entification				
Sample Id				
Blank ID				
Compound				

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

Ħ Ž	3
87 80	La Co
LDC #:	SDG #:

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples

Page: \of 1 Reviewer: M 4 2nd Reviewer:

> METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082) La Carr

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? V N N/A

Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

					s,	-	en l			
# C	Date	LCS/LCSD ID	Compound	%R	(Limits)	%R (I	-imits)	RPD (Limits)	Associated Samples	Qualifications
		1cs/ 280-132ct/A	И	127	(63-118)	129	(63-118)) All	J+dots/p (l)
		/		-	()		()		. (
					()		())	(
					(())	(
					((-	(
					()		())	(
					()		())	(
					()		())) (
					()		())	(
					()		())	(
					(()	(
					(())	(
					()		()	(
					()		())	(
					()		())	(
					(())	(
					(())	(
					(())	(
					(()		
					()		())	(
					(· ·)		())	(
					()		())	(
					()		())	(
 					()		())	. (
					()		()		
				(FF	is tru	piked				

V:\Validation Worksheets\Pesticides\LCS.3S

Tronox LLC Facility, PCS, Henderson, Nevada Data Validation Reports LDC #23481

Metals

LDC Report# 23481A4

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date: April 7, 2010

LDC Report Date: July 8, 2010

Matrix: Soil

Parameters: Manganese

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2216-11

Sample Identification

SA137-10BPC

Introduction

This data review covers one soil sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6020 for Manganese.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section IV.

Field duplicates are summarized in Section XIV.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No manganese was found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Anaiyte	Maximum Concentration	Associated Samples
PB (prep blank)	Manganese	0.0791 mg/Kg	All samples in SDG 280-2216-11

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

Sample FB-04072010-RZC (from SDG 280-2280-2) was identified as a field blank. No manganese was found in this blank.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

The laboratory has indicated that there were no matrix spike (MS) analyses specified for the samples in this SDG, and therefore matrix spike analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-2216-11	All analytes reported below the PQL.	J (all detects)	A

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Data Qualification Summary - SDG 280-2216-11

the second second states and the second

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-2216-11	SA137-10BPC	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Laboratory Blank Data Qualification Summary - SDG 280-2216-11

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Field Blank Data Qualification Summary - SDG 280-2216-11

No Sample Data Qualified in this SDG

Trono	ox Northgate ⊦	lenderson
ALIDATION	COMPLETEN	ESS WORKSHEET

LDC #: 23481A4 **V/** SDG #: 280-2216-11 Laboratory: <u>Test America</u>

Stage 4

Date:/-8-10))
Page: <u>_</u> of <u>\</u>	
Reviewer: CA	
2nd Reviewer:	

METHOD: Mn (EPA SW 846 Method 6020)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Technical holding times	A	Sampling dates: 4/7/10
11.	ICP/MS Tune	A	
111.	Calibration	A	
IV.	Blanks	SW	
V.	ICP Interference Check Sample (ICS) Analysis	A	
VL	Matrix Spike Analysis	N	client specified
VII.	Duplicate Sample Analysis	N	
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	A	
Х.	Furnace Atomic Absorption QC	\sim	NotuEilized
XI.	ICP Serial Dilution	A	
XII.	Sample Result Verification	A	
XIII.	Overall Assessment of Data	A	
XIV.	Field Duplicates	N	
XV	Field Blanks	NO	FB= FB-04072010- RZC (280-2280-2)

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: So

1	SA137-10BPC	11	PBS	21		31	
2		12		22	:	32	
3		13		23		33	
4		14		24		34	
5		15		25	-	35	
6		16		26		36	
7		17		27		37	-
8		18		28		38	
9		19		29		39	
10		20		30		40	

Notes:

VALIDATION FINDINGS CHECKLIST

-6

		_		
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.		\uparrow		
II. ICP/MS Tune				
Were all isotopes in the tuning solution mass resolution within 0.1 amu?	1			
Were %RSD of isotopes in the tuning solution ≤5%?		1		
III. Calibration				
Were all instruments calibrated daily, each set-up time?	/			
Were the proper number of standards used?	/			
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury) QC limits?	/			
Were all initial calibration correlation coefficients > 0.995?	/			
IV. Blanks		/		
Was a method blank associated with every sample in this SDG?	7			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	\setminus	-		
V. ICP Interference Check Sample				
Were ICP interference check samples performed daily?	/	-		
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?	/	-		
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.		1		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			7	
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.			7	
VII. Laboratory control samples				
Nas an LCS anaylzed for this SDG?	\frown			
Nas an LCS analyzed per extraction batch?	\square	\sim		
Nere the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC imits for soils?	1			
		l_		

Method:Metals (EPA SW 846 Method 6010B/7000/6020)

VALIDATION FINDINGS CHECKLIST

~

Validation Area	Yes	No	NA	Findings/Comments		
VIII. Furnace Atomic Absorption QC						
If MSA was performed, was the correlation coefficients > 0.995?			_	, 		
Do all applicable analysies have duplicate injections? (Level IV only)						
For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)			_	n		
Were analytical spike recoveries within the 85-115% QC limits?				r		
IX. ICP Serial Dilution			r			
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?	_					
Were all percent differences (%Ds) < 10%?	/	<u> </u>				
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.		/				
X. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)						
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?	_					
If the %Rs were outside the criteria, was a reanalysis performed?		<u> </u>				
XI. Regional Quality Assurance and Quality Control						
Were performance evaluation (PE) samples performed?			<u> </u>			
Were the performance evaluation (PE) samples within the acceptance limits?				Ľ		
XII. Sample Result Verification			r			
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/					
XIII. Overall assessment of data						
Overail assessment of data was found to be acceptable.	/					
XIV. Field duplicates		r	· · · · · · · ·			
Field duplicate pairs were identified in this SDG.		<	<u> </u>			
Target analytes were detected in the field duplicates.				F		
XV. Field blanks		1				
Field blanks were identified in this SDG.	/					
Target analytes were detected in the field blanks.		/	ſ			

.1	ver	•
3481A4	See Co	F
-DC #:2		

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: mg/Kg

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES Soli brenaration factor annied: 1000 v 5vdi

 _	Ý	1
 Page:	Reviewer:	2nd Reviewer:

ζ

1000

		┣───
	SIS	
	l ⊒i≣	
	La a	
	σ	
8313	<u> </u>	ļ
33	uit o	
	Ling	
	◄ -	l
ediler Biotsc		
	۳	
	202	
	la % xi	
	C G a	
		L
	E I	
	رت " تر ا	
	ja ki	
	-	
	n (j)	
	ĨĘ₽₽₹	179
	a a s	0.0
	Σ	
		ļ
	ا و ا	
	<u> </u>	
	Ana I	
	4	۳
$\mu \lambda \lambda^{1-1}$		

a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element. Note :

Initial and Continuing Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found x 100 True

Where, Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	д %	Acceptable
	ICP (Initial calibration)						(Arr)
	GFAA (Initial calibration)						
	CVAA (Initial calibration)						
	ICP (Continuing calibration)						
	GFAA (Continuing calibration)						
	CVAA (Continuing calibration)						
TCU	ICP/MS (Initial calibration)	S S S	8.0h	0, Oh	107	201)-
CCV	ICP/MS (Continuing calibation)	ー	51,4	50.0	6	103	

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

CALCLC.4SW

DC # 2348H

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

2nd Reviewer: Page: Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

Where, Found = Concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = Concentration of each analyte in the source. %R = Found × 100 True

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 RPD = [S-D]
 x 100
 Where,
 S = Original sample concentration

 (S+D)/2
 D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 $%D = \frac{|-SDR|}{1} \times 100$ Where the second second

Where, i = Initial Sample Result (mg/L) SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

Acceptable (Y/N) %R / RPD / %D Reported Ч Q Γ. 9 %R / RPD / %D **Recalculated** 2 201 0 Harsississis S al True / D / SDR (unity) 1001 Land 0.02 Found 1 S / 1 AS 3799 evelt U LAN 20.3 (SSR-SR) Element Ê È Laboratory control sample **Type of Analysis** ICP interference check ICP serial dilution Matrix spike Duplicate Sample ID ICS PB LC L

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recaiculated results.

TOTCLC.4SW

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	ι	of	
Reviewer:	\mathcal{C}	P	
2nd reviewer:		in	

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Please see qu <u>X N N/A</u> Y N N/A Y N N/A	alificatic Have Are re Are al	ons below for all questions answered "N results been reported and calculated c sults within the calibrated range of the I detection limits below the CRDL?	l". Not applicable question orrectly? instruments and within t	ons are identified as " the linear range of the	N/A". ICP?
Detected analy	yte resu	Its for	$) \cap$	Woro received an	d varified weine the
following equa	tion:			were recalculated and	a venned using the
Concentration =	<u>(RD)(F</u> (In. Vol	<u>V)(Dil)</u> Recale I.)(%S)	culation;		
RD = FV = In. Vol. = Dil = %S =	Raw da Final vo Initial vo Dilution Decimal	ta concentration olume (ml) olume (ml) or weight (G) factor I percent solids	(100m1)(5)(3.7 0.899(1.17	99 mg/L) = 16	538r8/bg
Sample (D	Analyte	Reported Concentration	Calculated Concentration	Acceptable (Y/N)
1		mo	1600	1600	4
		· · · ·		Teau	
				······································	
		· ·			
		· · ·		· · · · · · · · · · · · · · · · · · ·	
[
		······································			
			· · · · · · · · · · · · · · · · · · ·		
			·		
		······································			

RECALC.4S2

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tro	nox LLC Facility, PCS, Henderso	n, Nevada
------------------------	---------------------------------	-----------

Collection Date: April 14, 2010

LDC Report Date: July 8, 2010

Matrix: Soil

Parameters: Manganese

Validation Level: Stage 2B

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2448-16

Sample Identification

SA43-4BPC

Introduction

This data review covers one soil sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6020 for Manganese.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section IV.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No manganese was found in the initial, continuing and preparation blanks.

Samples EB-04142010-RIG1-RZC and EB-04142010-RIG2-RZC (both from SDG 280-2448-2) were identified as equipment blanks. No manganese was found in these blanks with the following exceptions:

Equipment Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
EB-04142010-RIG1-RZC	4/14/10	Manganese	1.6 ug/L	All samples in SDG 280-2448-16
EB-04142010-RIG2-RZC	4/14/10	Manganese	18 ug/L	All samples in SDG 280-2448-16

Sample concentrations were compared to concentrations detected in the equipment blanks as required by the QAPP. No sample data was qualified.

Sample FB-04072010-RZC (from SDG 280-2280-2) was identified as a field blank. No manganese was found in this blank.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

The laboratory has indicated that there were no matrix spike (MS) analyses specified for the samples in this SDG, and therefore matrix spike analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-2448-16	All analytes reported below the PQL.	J (all detects)	А

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Data Qualification Summary - SDG 280-2448-16

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-2448-16	SA43-4BPC	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Laboratory Blank Data Qualification Summary - SDG 280-2448-16

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Equipment Blank Data Qualification Summary - SDG 280-2448-16

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Field Blank Data Qualification Summary - SDG 280-2448-16

No Sample Data Qualified in this SDG

LDC #: 23481C4 SDG #: _____280-2448-16

Laboratory: Test America

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET Stage 2B

Date: 7 870 Page: L of Reviewer: 2nd Reviewer:

METHOD: Mn (EPA SW 846 Method 6020)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 4/14/10
11.	ICP/MS Tune	A	
111.	Calibration	A	
IV.	Blanks	A	
V.	ICP Interference Check Sample (ICS) Analysis	A	
VI.	Matrix Spike Analysis	N	client specified
VII.	Duplicate Sample Analysis	\mathcal{N}	L
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	$\langle \mathcal{A} \rangle$	
Χ.	Furnace Atomic Absorption QC	\mathcal{N}	Norutilized
XI.	ICP Serial Dilution	N	Not preformed
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	A	
XIV.	Field Duplicates	N	
XV	Field Blanks	SV	FB=FB-0407200-RZC, EB=EB-04142010-BIGI-B

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank = EB-04142010- RIGZ- RZC (280-2448-2)

Validated Samples: Soil

1	SA43-4BPC	11	GB5	21		31
2		12		22		32
3		13		23		33
4		14		24		34
5		15		25		35
6		16		26		36
7		17		27		37
8		18		28	3	38
9		19		29	3	39
10		20		30	4	10

Notes:_

23481C4	See Cover
#	#
БС	SDG

VALIDATION FINDINGS WORKSHEET Field Blanks

Page: 1 of 1 Reviewer: 02 2nd Reviewer: 02

N												
	lentification											
n: be All	Sample Id			 								
Reasol Samples:										-		
Associated						 						
FS)		No Qualifiers										
G? field blar <u>3/Kg</u> 100x Other:		Action Level	18									
SW846 6010B/7000) iks identified in this SC allytes detected in the d sample units: <u>m</u> Soil factor applied <u></u> ield Blank / Rinsate / (Blank ID	EB-04142010-RIG2-RZC (SDG#: 280-2448-2)	18									
 D: Trace Metals (EPA : <u>A</u> Were field blan Were target an <u>its: ug/L</u> Associated <u>g date: 4/14/10</u> <u>ink type: (circle one) F</u> 	Blank ID	EB-04142010-RIG1-RZC (SDG#: 280-2448-2)	1.6						-			
METHOI N N/ Blank ur Samplin Field bla	Analyte		Mn									

23481C4.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date: April 23, 2010

LDC Report Date: July 8, 2010

Matrix: Water

Parameters: Metals

Validation Level: Stage 2B

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2836-2

Sample Identification

EB-04232010-RZE EB-04232010-RZEMS EB-04232010-RZEMSD

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6020 for Metals. The metals analyzed were Arsenic, Cobalt, Lead, and Manganese.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section IV.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No metal contaminants were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Analyte Concentration			
ICB/CCB	Cobalt	0.0198 ug/L	All samples in SDG 280-2836-2		

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration		
EB-04232010-RZE	Cobalt	0.026 ug/L	1.0U ug/L		

Sample EB-04232010-RZE was identified as an equipment blank. No metal contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Sampling Date	Analyte	Associated Samples				
EB-04232010-RZE	4/23/10	Cobalt Manganese	0.026 ug/L 1.2 ug/L	No associated samples in this SDG			
V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P	
All samples in SDG 280-2836-2	All analytes reported below the PQL.	J (all detects)	A	

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Metals - Data Qualification Summary - SDG 280-2836-2

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-2836-2	EB-04232010-RZE	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Metals - Laboratory Blank Data Qualification Summary - SDG 280-2836-2

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
280-2836-2	EB-04232010-RZE	Cobait	1.0U ug/L	А	ы

Tronox LLC Facility, PCS, Henderson, Nevada Metals - Equipment Blank Data Qualification Summary - SDG 280-2836-2

No Sample Data Qualified in this SDG

Tronox Northgate Henderson
VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: <u>280-2836-2</u> Laboratory: <u>Test America</u>

LDC #: 23481D4

Date: 7-8-10 Page: ___of ___ Reviewer: _____ 2nd Reviewer: _____

METHOD: Metals (EPA SW 846 Method 6020)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
	Technical holding times	A	Sampling dates: 4/23/0
1.	ICP/MS Tune	A	
111.	Calibration	A	
IV.	Blanks	SW	
V.	ICP Interference Check Sample (ICS) Analysis	A	
VI.	Matrix Spike Analysis	A	ms/D
VII.	Duplicate Sample Analysis	\mathcal{N}	
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	A	
Х.	Furnace Atomic Absorption QC	N	Noturitzed
XI.	ICP Serial Dilution	A	
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	A	
XIV.	Field Duplicates	\mathbb{N}	
XV	Field Blanks	SW	EB=1 (no associated samples)

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

1. Dren-

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

·	000(10					
1	EB-04232010-RZE	11	BOSM	21	31	
2	EB-04232010-RZEMS	12		22	32	
3	EB-04232010-RZEMSD	13		23	33	
4		14		24	34	······································
5		15		25	35	
6		16		26	36	
7		17		27	37	
8		18		28	38	
9		19		29	39	
10		20		30	40	

Notes:

LDC #: 2348104 SDG #: 500000

G

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page:	1	of	
Reviewer:	7	P	~
2nd reviewer:		1	\leq

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
		Al, Sb(A), Ba, Be, Cd, Ca, Cr, Co) Cu, Fe, Pb) Mg, Mn) Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN',
GC:23		Al, Sb, (As, Ba, Be, Cd, Ca, Cr, O. Cu, Fe, (Pb) Mg, (Mn) Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN ⁻ ,
		Al. Sb. As. Ba. Be. Cd. Ca. Cr. Co. Cu. Fe. Pb. Mg. Mn. Hg. Ni, K. Se. Ag. Na, Ti, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al. Sb. As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN ⁻ ,
ICP Trace		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
ICP-MS		Al, Sb, 🗛, Ba, Be, Cd, Ca, Cr, 🚱 Cu, Fe 🎒, Mg, 炳 Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN ⁻ ,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
Comments:	Mercur	y by CVAA if performed

ELEMENTS.4

LDC #: 23481D4
SDG #: See Cover
METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000)
Sample Concentration units, unless otherwise noted: ug/L

VALIDATION FINDINGS WORKSHEET <u>PB/ICB/CCB QUALIFIED SAMPLES</u> Soil preparation factor applied: <u>NA</u> Associated Samples: <u>All</u>

NA Reason Code: bl

5

19. sz.)		
	1	
		1
24. C		1
÷		
947 C.		
200 L		
9 (sel		1
88 S. S.		
300 M		1
		1
Sec.		[]
\$3733		
		┝
Name		
		I
		1
\$30)		i
948 di		
		1
$\mathbb{R}^{(2)}$	——————————————————————————————————————	
2.10		1
200 B		I
	i I	
		1
(C) 1		
40 a 1		
S		
2001年 第1日日		
87. C. C.		
		1
802 (A		
800		
1.0		
		1
(\$%) 		
		1
2253		1 2 4
		1 2 1
	-	
66 N		1 2
\$2 m	l I	
8		IOI
	I	
	ا يبع ا	
	<u> </u>	
8	꽃놈	
	∣ă⊣∣	
	E ‰	
	1 37 -	8
	ㅌㅈ네	1 2
	∣ାହୁଛୁହା	Ó
	「 い 王 郎 王 し	IÖ
880)	I ≦ 2	
	1 E	
	i i 🦳	
	E % 4	
	1 3 7 9	
	- e - j	
	IS I	
總統	ı — I	
1993 (A		
	E	
1983) 1983)	<u>1</u> (6)	
100	ឨ៰ ጞ	
	1 5 6 7	
	ጅር ጅ	
	₩ <u>5</u>	
	0	
81 C.	خد ،	
92. S	5	
	ly ^{le}	
165,4273	nalyt	
36 C	Analy	
	Analy	8

a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element. Note :

23481D4	See Cover
#	ŧ
C	Ģ
2	5

VALIDATION FINDINGS WORKSHEET

Page: of Reviewer: C2 2nd Reviewer:

	<u>y</u>									
Code: be		ication								
Reason (ciated Samp	Sample Identif								
	Assc									
lks?	(EB)									
00) s SDG? the field blar <u>mg/Kg</u>	te / Other:									
6 6010B/700 antified in this detected in mple units:	lank / Rinsat									
SW84 nks ide nalytes ted sa l	Field B		Action Level		1.2					
Trace Metals (EPA Were field blar Were target ar : <u>ug/L</u> Associat	type: (circle one)	Blank ID	1	0.026	1.2					
METHOD: <u> VN N/A</u> <u> VN N/A</u> Blank units	Field blank	Analyte		රි	Mn					
	WETHOD: Trace Metals (EPA SW846 6010B/7000) YN N/A Were field blanks identified in this SDG? YN N/A Were target analytes detected in the field blanks? Blank units: ug/L Associated sample units: mg/Kg Sampling date (Alforde V/D-A)(D Soil factor annied 1000	METHOD: Trace Metals (EPA SW846 6010B/7000) Y N N/A Were field blanks identified in this SDG? Y N N/A Were target analytes detected in the field blanks? Y N N/A Were target analytes detected in the field blanks? Blank units: ug/L Associated sample units: mg/Kg Sampling date: 4/16/148 \]23\\0 Soil factor applied 100x Field blank type: (circle one) Field Blank / Rinsate / Other. EB	METHOD: Trace Metals (EPA SW846 6010B/7000) YN N/A Were field blanks identified in this SDG? YN N/A Were target analytes detected in the field blanks? YN N/A Were target analytes detected in the field blanks? Blank units: ug/L Associated sample units: mg/Kq Sampling date: 4446.48 \]23\[V Soil factor applied 100x Field blank type: (circle one) Field Blank / Rinsate / Other. EB Analyte Blank ID	METHOD: Trace Metals (EPA SW846 6010B/7000) YN N/A Were field blanks identified in this SDG? YN N/A Were field blanks identified in this SDG? YN N/A Were target analytes detected in the field blanks? Blank units: ug/L Associated sample units: mg/Kq Sampling date: 4446.48 Y 23 \0 Soil factor applied 100x Field blank type: (circle one) Field Blank / Rinsate / Other. EB Analyte Blank ID 1 Action 1 Action	METHOD: Trace Metals (EPA SW846 6010B/7000) YN N/A Were field blanks identified in this SDG? YN N/A Were target analytes detected in the field blanks? YN N/A Were target analytes detected in the field blanks? YN N/A Were target analytes detected in the field blanks? Blank units: ug/L Associated sample units: mg/Kq Sampling date: 4/16/10 % Motion Field blank type: (circle one) Field Blank / Rinsate / Other: EB Analyte Blank ID Analyte Blank ID Analyte Blank ID Co 0.026	METHOD: Trace Metals (EPA SW846 6010B/7000) YN N/A Were field blanks identified in this SDG? YN N/A Were field blanks identified in this SDG? YN N/A Were target analytes detected in the field blanks? Blank units: ug/L Associated sample units: mg/Kq Sampling date: 4H6449 Y]23)[0 Soil factor applied	METHOD: Trace Metals (EPA SW846 6010B/7000) METHOD: Trace Metals (EPA SW846 6010B/7000) Y N N/A Were field blanks identified in this SDG? Y N N/A Were field blanks identified in this SDG? Ye N N/A Were target analytes detected in the field blanks? Blank units: ug/L Associated sample units: mg/Kg Sampling date: <u>4146149</u> 1/223/10 Soil factor applied 100X Field blank type: (circle one) Field Blank / Rinsate / Other: EB Analyte Blank in 1 Action nailyte Blank in 1 Action 1 Action Min 1.2 1.2 1.2	METHOD: Trace Metals (EPA SW846 6010B/7000) METHOD: Trace Metals (EPA SW846 6010B/7000) YN NA Were field blanks identified in this SDG? YN NA Were field blanks identified in this SDG? YN NA Were target analytes detected in the field blanks? Blank units: ug/L Associated sample units: mg/Kq Sampling date: 4H6H0 1/23\N0 Soil factor applied 100x Field blank type: (circle one) Field Blank / Rinsate / Other: Associated Samples: Analyte Blank ID Analyte 12 Min 12	METHOD: Trace Metals (EPA SW846 60108/7000) YN N/A Were field blanks identified in this SDG? YN N/A Were field blanks identified in this SDG? YN N/A Were field blanks identified in this SDG? YN N/A Were field blanks identified in this SDG? Maixe: ug/L Associated sample units: mg/Kg Sampling date: 4H6H9 Y[25](0 Soil factor applied 100x Field blank type: (circle one) Field Blank / Rinsate / Other: EB Analyte Blank ID Analyte Blank ID Analyte Blank ID Analyte 12 Analyte 12 Min 12	METHOD: Trace Metals (EPA SW846 6010B/7000) YN N/A Were field blanks identified in this SDG? VN N/A Were field blanks identified in this SDG? VN N/A Were target analytes detected in the field blanks? Blank units: ug/L Associated sample units: mg/Kq Sampling date: <u>Hrengo</u> //25/NO Soil factor applied 100x Sampling date: <u>Hrengo</u> //25/NO Soil factor applied 100x Analyte I Associated Samples: More Ield blank type: (circle one) Field Blank / Rinsate / Other: EB Associated Samples: More Image 1 Action 100x Sample Identification Image 1 Action Image Identification Image Identification

cation							-				
ample Identifio											
S											
ļ											
	Action Level		1.2								-
Blank ID	-	0.026	1.2								
Analyte		S	Mn				 				

EB-04232010-RZE.wpd

2007

2

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date: May 26, 2010

LDC Report Date: July 8, 2010

Matrix: Soil

Parameters: Manganese

Validation Level: Stage 2B

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-3955-5

Sample Identification

SA44-3BPC SA44-4BPC SA180-3BPC SA180-4BPC

Introduction

This data review covers 4 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6020 for Manganese.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section IV.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No manganese was found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Manganese	0.280 mg/Kg	All samples in SDG 280-3955-5
ICB/CCB	Manganese	1.37 ug/L	All samples in SDG 280-3955-5

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

Sample FB-04072010-RZC (from SDG 280-2280-2) was identified as a field blank. No manganese was found in this blank.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-3955-5	All analytes reported below the PQL.	J (all detects)	Α.

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Data Qualification Summary - SDG 280-3955-5

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-3955-5	SA44-3BPC SA44-4BPC SA180-3BPC SA180-4BPC	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Laboratory Blank Data Qualification Summary - SDG 280-3955-5

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Field Blank Data Qualification Summary - SDG 280-3955-5

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: 2348114 SDG #: 280-3955-5

Laboratory: Test America

alory. <u>Test America</u>

	Date: 7-8-10
	Page:of
	Reviewer:
2nd	Reviewer:

METHOD: Mn (EPA SW 846 Method 6020)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Technical holding times	A	Sampling dates: 5/26/10
۱۱.	ICP/MS Tune	A	
111.	Calibration	A	
IV.	Blanks	SW	
V.	ICP Interference Check Sample (ICS) Analysis	A	
VI.	Matrix Spike Analysis	A	ms/p (SD6 # 280-2216-10)
VII.	Duplicate Sample Analysis	N	
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	A	
Χ.	Furnace Atomic Absorption QC	N	NOTULITZED
XI.	ICP Serial Dilution	A	(SD6# 280-2216-10)
XII.	Sample Result Verification	N	-
XIII.	Overall Assessment of Data	A	
XIV.	Field Duplicates	N	
xv	Field Blanks	NO	FB= FB-04072010-RZC (280-2280-2)

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

1	SA44-3BPC	11	PBS	21	31	
2	SA44-4BPC	12		22	32	
3	SA180-3BPC	13		23	 33	
4	SA180-4BPC	14		24	 34	
5		15		25	35	
6		16		26	36	
7		17		27	37	
8		18		28	38	
9		19		29	39	
10		20		30	40	

Notes:

LDC #: 2348114 SDC #: Sco Court	METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000)
------------------------------------	--

VALIDATION FINDINGS WORKSHEET <u>PB/ICB/CCB QUALIFIED SAMPLES</u> Soil preparation factor applied: <u>200x x 5xdil</u> Associated Samples: <u>All</u>

mg/Kg

Sample Concentration units, unless otherwise noted:

Reason Code: bl

	ļl	
	┝───┤	
	ļ	
	<u> </u>	
	ers	
	N III	
	ň	
	i ≓ g	<u></u>
	Li Cti	2.
	◄	
	E m _	
	≝Ci	37
	ŭ <u>Ř</u> a	I
	≊ ⊻	
		<u> </u>
	nr 🦳	
	jg/l g/l	
	<u> </u>	
	E ^	
	Kg n	8
	ng/ PB	0.2
	ы м П	
	te	
	aly	
22.5	ļć	

a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element. Note :

Tronox LLC Facility, PCS, Henderson, Nevada Data Validation Reports LDC #23481

Perchlorate

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date: April 23, 2010

LDC Report Date: July 8, 2010

Matrix: Water

Parameters: Perchlorate

Validation Level: Stage 2B

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2836-2

Sample Identification

EB-04232010-RZE

V:\LOGIN\TRONOXNG\23481D6.TR3

Introduction

This data review covers one water sample listed on the cover sheet. The analyses were per EPA Method 314.0 for Perchlorate.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

Sample EB-04232010-RZE was identified as an equipment blank. No perchlorate was found in this blank.

IV. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) analyses specified for the samples in this SDG, and therefore matrix spike analyses were not performed for this SDG.

V. Duplicates

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-2836-2	All analytes reported below the PQL.	J (all detects)	A

Raw data were not reviewed for this SDG.

VIII. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Perchlorate - Data Qualification Summary - SDG 280-2836-2

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-2836-2	EB-04232010-RZE	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Perchlorate - Laboratory Blank Data Qualification Summary - SDG 280-2836-2

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Perchlorate - Equipment Blank Data Qualification Summary - SDG 280-2836-2

No Sample Data Qualified in this SDG

Tronox Northgate	Henderson
VALIDATION COMPLETEN	NESS WORKSHEET

LDC #: 23481D6 SDG #: 280-2836-2 Laboratory: Test America

Stage 2B

Date	1-8-10
Page:_	<u></u>
Reviewer:	<u>(</u> 2
2nd Reviewer:	12

METHOD: (Analyte) Perchlorate (EPA Method 314.0)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
	Technical holding times	A	Sampling dates: 4/23/10
<u> </u>	Initial calibration	A	
116.	Calibration verification	A	
111.	Blanks	R	
IV	Matrix Spike/Matrix Spike Duplicates	N	client specified
V	Duplicates	N	
VI.	Laboratory control samples	A	LCSID
VII.	Sample result verification	N	
VIII.	Overall assessment of data	<u>A</u>	
IX.	Field duplicates	N_	
x	Field blanks	N()	EB=1 (10 apported samples)

Note: A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: ward

1	EB-04232010-RZE	11	PBW	21	31	
		12		22	32	
2		12		23	33	
3		13		24	34	
4		14		24	35	
5		15		25	00	
6		16		26	 30	
7		17		27	37	
8		18		28	38	
9		19		29	 39	
10		20		30	40	

Notes:_____

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date: May 17, 2010

LDC Report Date: July 8, 2010

Matrix: Soil

Parameters: Perchlorate

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-3624-6

Sample Identification

SSAM6-03-9BPC

V:\LOGIN\TRONOXNG\23481G6.TR4

Introduction

This data review covers one soil sample listed on the cover sheet. The analyses were per EPA Method 314.0 for Perchlorate.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

Sample FB-04072010-RZC (from SDG 280-2280-2) was identified as a field blank. No perchlorate was found in this blank.

IV. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) analyses specified for the samples in this SDG, and therefore matrix spike analyses were not performed for this SDG.

V. Duplicates

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable.

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-3624-6	All analytes reported below the PQL.	J (all detects)	A

VIII. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Perchlorate - Data Qualification Summary - SDG 280-3624-6

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-3624-6	SSAM6-03-9BPC	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Perchlorate - Laboratory Blank Data Qualification Summary - SDG 280-3624-6

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Perchlorate - Field Blank Data Qualification Summary - SDG 280-3624-6

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

Stage 4

LDC #:_	23481G6
SDG #:_	280-3624-6

Laboratory: Test America

Date: 1 Page: Reviewer: C 2nd Reviewer:_

METHOD: (Analyte) Perchlorate (EPA Method 314.0)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
		A	Sampling dates: 5/17/10
<u> </u>	Initial calibration	A	
llb	Calibration verification	A	
	Blanks	A	
IV	Matrix Spike/Matrix Spike Duplicates	N.	Client specified
V	Duplicates	Ň	\downarrow
V1.	Laboratory control samples	A	LCS/D
VII.	Sample result verification	A	
VIII.	Overall assessment of data	A	
IX.	Field duplicates	N	
×	Field blanks	NO	FB=FB-04072010-RZC (280-2280-2)

A = Acceptable Note: N = Not provided/applicable SW = See worksheet

 $\leq c_{1}$

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

						T	
1	SSAM6-03-9BPC	11	PPS	21		31	
2		12		22	······································	32	and states a
3		13		23		33	
4		14		24		34	
5		15		25		35	
6	-	16		26		36	
7		17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

Notes:

No

Yes

NA

Findings/Comments

I. Technical holding times All technical holding times were met. Cooler temperature criteria was met. II. Calibration Were all instruments calibrated daily, each set-up time? Were the proper number of standards used? Were all initial calibration correlation coefficients > 0.995? Were all initial and continuing calibration verification %Rs within the 90-110% QC limits? Were titrant checks performed as required? (Level IV only) Were balance checks performed as required? (Level IV only) III. Blanks Was a method blank associated with every sample in this SDG? Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. IV. Matrix spike/Matrix spike duplicates and Duplicates Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and < 35% for soil samples? A control limit of < CRDL(< 2X CRDL for soil) amples that were < 5X the CRDL, including when only one of the

Method: Inorganics (EPA Method See CORL)

Validation Area

duplicate sample values were \leq 5X the CRDL.			
V. Laboratory control samples	-		
Was an LCS anayized for this SDG?			
Was an LCS analyzed per extraction batch?			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?			
VI. Regional Quality Assurance and Quality Control		<u> </u>	
Were performance evaluation (PE) samples performed?			
Were the performance evaluation (PE) samples within the acceptance limits?		/	

VALIDATION FINDINGS CHECKLIST

Ç,

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/	~	1	
Were detection limits < RL?	\square			
VIII. Overall assessment of data	·			
Overall assessment of data was found to be acceptable.				
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target analytes were detected in the field duplicates.				ť
X. Field blanks				
Field blanks were identified in this SDG.	1			
Target analytes were detected in the field blanks.		\Box		

LDC #: <u>734/6166</u> SDG #: <u>See CO</u>VEN

Validatin Findings Worksheet Initial and Continuing Calibration Calculation Verification

Page: ______of ____ Reviewer: ______ 2nd Reviewer: ______

Method: Inorganics, Method 340

The correlation coefficient (r) for the calibration of <u>CUO</u> was recalculated.Calibration date: <u>6/7/10</u>

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found X 100

True

Where,

Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

ble			· · · · · · · · ·		<u></u>							
Accepta	(N/)			2) -					\rightarrow		
Reported	r or r ²		0.999358					((((((((
Recalculated	r or r²		0.999314					95	95	95	95 107	95-10-1
	Area	0.00284	0.0077	0.0154	0.03108	0.06039	0.13055	900 61	9,00,P	19,006 30:547	19,006 30:547	19,006 321.547
	Conc. (ug/l)		2.5	5	10	20	40	70	02	92	02 R	20 R
	Standard	s1	s2	s3	s4	s5	s6	ICU	ICU	ICU CCU	ICU CCU	TCU CCU
	Analyte			-	60							
	Tvne of analvsis	Initial calibration							Calibration verification	Calibration verification	Calibration verification Calibration verification	Calibration verification Calibration verification

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results._ 23/8/62 Seecover SDG #: LDC #:

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

METHOD: Inorganics, Method 22COVC

Percent recoveries (%F) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). concentration of each analyte in the source. Found = True = Where, %R = Found x 100 True

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

Original sample concentration Duplicate sample concentration ່|| || ທ 🗅 RPD = <u>1S-D1</u> × 100 Where, (S+D)/2

Sample ID Type of A		<u> </u>	-		Recalculated	Reported	
Laboratory cont	nalysis	Element	round / 5 (anths) mg/ 15	True / D (units)mg/kg	Ody / 8%	%R / RPD	Acceptable (V/N)
	irol sample	•					
- FC>		c 104	Suppo, O	0, <mark>a</mark> d clo	96	96)—
Matrix spike sar	alan		(SSP_SD)		-		
			- Average				
	-	•					
Duplicate samp	de la				,		
~			· · · · · · · · · · · · · · · · · · ·		-		

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated

TOTCLC.6

LDC #: 23456166 SDG #: < ee

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	Lot	
Reviewer:	C/2	
2nd reviewer:		\Box
		~

METHOD: Inorganics, Method

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Have results been reported and calculated correctly?

Are results within the calibrated range of the instruments? Are all detection limits below the CRQL?

SECOR

Compound (analyte) results for recalculated and verified using the following equation:

Concentration =

Recalculation:

y=0.0032x-0.0004

$\left(\begin{array}{c} (\underline{0.04907+0.0004})\\ (\underline{0.0032}) \end{array}\right)$	20m4)(5000) = 850'8/k
(0,916)(9,99)	lime

reported with a positive detect were

[
#	Sample ID	Analyte	Reported Concentration (MS/KS)	Calculated Concentration (MS (SG)	Acceptable (Y/N)
	1	COY	860	850	
		-			-
				·	
					
 					
					
ļ					
 					
					
 					
ļ					
 					
				·	

Note: