

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Northgate Environmental Management, Inc.

Februayr 3, 2010

1100 Quail Street Ste. 102 New Port beach, CA 92660 ATTN: Ms. Cindy Arnold

SUBJECT:

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada, Data

Validation

Dear Ms. Arnold.

Enclosed is the revised data validation report for the fractions listed below. The data validation was performed under Stage 2B & 4 guidelines. Please replace the previously submitted report with the enclosed revised report.

LDC Project # 21768:

SDG#

Fraction

R0904797

Chlorinated Pesticides, Cyanide, Gasoline Range Organics

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation,

Henderson, Nevada

Collection Date:

August 24 through August 26, 2009

LDC Report Date:

February 2, 2010

Matrix:

Soil

Parameters:

Chlorinated Pesticides

Validation Level:

Stage 2B & 4

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0904797

Sample Identification

SA154-0.5B**

SA154-10B**

SA154-33B

RSAS3-0.5B

RSAS3009-0.5B

RSAS3-10B

RSAS3-25B

RSAS3-44B

SA154-0.5BMS

SA154-0.5BMSD

RSAS3-0.5BMS

RSAS3-0.5BMSD

^{**}Indicates sample underwent Stage 4 review.

Introduction

This data review covers 12 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8081A for Chlorinated Pesticides.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination.

 This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of single compounds were performed for the primary (quantitation) column and confirmation column as required by this method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Retention time windows were evaluated and considered technically acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples on which a Stage 2B review was performed.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

Retention time windows were evaluated and considered technically acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples on which a Stage 2B review was performed.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No chlorinated pesticide contaminants were found in the method blanks.

Samples FB072909-SO (from SDG R0904226) and FB080309-SO (from SDG R0904279) were identified as field blanks. No chlorinated pesticide contaminants were found in these blanks with the following exceptions:

Field Blank ID	Sampling Date	Compound	Concentration	Associated Samples
FB072909-SO	7/29/09	alpha-BHC	0.092 ug/L	SA154-0.5B** SA154-10B** SA154-33B

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Column	Surrogate	%R (Limits)	Compound	Flag	A or P
95021MB	Not specified	Tetrachloro-m-xylene	25 (40-140)	All TCL compounds	J- (all detects) UJ (all non-detects)	Р

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Although the MS/MSD percent recoveries (%R) and relative percent differences (RPD) were not within QC limits for several compounds, the MS, MSD, LCS, or LCSD percent recoveries (%R) were within QC limits and no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Although the LCS/LCSD percent recoveries (%R) were not within QC limits for some compounds, the MS percent recovery (%R) was within QC limits and no data were qualified.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

XI. Target Compound Identification

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XII. Project Quantitation Limit

All project quantitation limits were within validation criteria for samples on which a Stage 4 review was performed.

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0904797	All compounds reported below the PQL.	J (all detects)	Α

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples RSAS3-0.5B and RSAS3009-0.5B were identified as field duplicates. No chlorinated pesticides were detected in any of the samples with the following exceptions:

	Concentrat	ion (ug/Kg)	222	D:#		
Compound	RSAS3-0.5B	RSAS3009-0.5B	RPD (Limits)	Difference (Limits)	Flags	A or P
beta-BHC	1.6	2.0	~	0.4 (≤1.8)	-	-

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Chlorinated Pesticides - Data Qualification Summary - SDG R0904797

SDG	Sample	Compound	Flag	A or P	Reason (Code)
R0904797	SA154-0.5B** SA154-10B** SA154-33B RSAS3-0.5B RSAS3009-0.5B RSAS3-10B RSAS3-25B RSAS3-44B	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG R0904797

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG R0904797

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

Stage 2B / 4

LDC #:_	21768F3a	`	VALIDATION (COI
SDG #:	R0904797			
Laborati	ory: Columbi	a Analytical	Services	

Page: 1 of 1
Reviewer: 506
2nd Reviewer: 0

METHOD: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	Å	Sampling dates: 8/24 - 26 /6 9
II.	GC/ECD Instrument Performance Check	A	
III.	Initial calibration	A	2 RSD €20 Z Car/101 = 20 Z
IV.	Continuing calibration/ICV	<u> </u>	Ca/101 = 203
V.	Blanks	A	
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	ZN)	
✓III.	Laboratory control samples	SW	vcs /p
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N_	
XI.	Target compound identification	N	
XII.	Compound quantitation and reported CRQLs	N	
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	71	D = 4,5
XV.	Field blanks	SW	FB = FB072909- SO (R0904226) + FB 086309 - SO (R0904279)

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

#ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

/alidated	Samples:			
1 1 SA	A154-0.5B **	11 RSAS3-0.5BMS	21 / 95021 MB	31
	A154-10B * 本	12 RSAS3-0.5BMSD	22 7 95417	32
	A154-33B	13	23	33
4 7 RS	SAS3-0.5B D	14	24	34
5 / RS	SAS3009-0.5B b	15	25	35
6 1 RS	SAS3-10B	16	26	36
7 1 R	SAS3-25B	17	27	37
8 R	SAS3-44B	18	28	38
9 S/	A154-0.5BMS + 4	19	29	39
10 \ S	A154-0.5BMSD 4+	20	30	40

LDC #: 21768 F39 SDG #: See Cover

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: 176
2nd Reviewer: 1

Method: Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	/			
Cooler temperature criteria was met.				
II. GC/ECD Instrument performance check				
Was the instrument performance found to be acceptable?				
III. Initial calibration	,			
Did the laboratory perform a 5 point calibration prior to sample analysis?	_			
Was a linear fit used for evaluation? If yes, were all percent relative standard deviations $(\%RSD) \le 20\%$?	/			
Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?		_	_	
Did the initial calibration meet the curve fit acceptance criteria?			_	
Were the RT windows properly established?	/			
Were the required standard concentrations analyzed in the initial calibration?				
IV. Continuing calibration				
What type of continuing calibration calculation was performed?%D or%R				
Were Evaluation mix standards analyzed prior to the initial calibration and sample analysis?		/		
Were endrin and 4,4'-DDT breakdowns <u><</u> أن for individual breakdown in the Evaluation mix standards?	/			
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) ≤ 20% or percent recovieries 80-120%?	/			
Were all the retention times within the acceptance windows?				
V Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?				
Were extract cleanup blanks analyzed with every batch requiring clean-up?	_			
Was there contamination in the method blanks or clean-up blanks? If yes, please see the Blanks validation completeness worksheet.		/		·
VI. Surrogate spikes				
Were all surrogate %R within the QC limits?		/		
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?		/		
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
VII. Matrix spike/Matrix spike duplicates				

LDC #: 21768 \$39 SDG #: Cee Cover

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: 176
2nd Reviewer: ______

Validation Area	Yes	No	NA	Findings/Comments
	Yes	NO	NA	Findings/Comments
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		/		
VIII. Laboratory control samples	,			·
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?		- 14-		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		/		
IX. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Target compound identification				
Were the retention times of reported detects within the RT windows?				
XI. Compound quantitation/CRQLs	ı — —			
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation?				
XII System performance				
System performance was found to be acceptable.		_		
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	_	_		
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.				
XV: Field blanks			······································	
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	t. Dieldrin	Q. Endrin ketone	Y, Aroclor-1242	96.
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Arocior-1248	HH.
C. detta-BHC	K. Endrin	8. alpha-Chlordane	AA, Arocior-1264	H.
D. gamma-BHC	1. Endosultan II	T. gamma-Chlordane	BB. Arcolor-1260	JJ.
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	CC. DB 608	KK.
F. Aldrin	N. Endosulfan sulfate	V. Aroclor-1016	DD. DB 1701	п.
G. Heptachlor epoxide	0. 4,4'-DDT	W. Aroclor-1221	EE. Hexachlorobenzene	MM.
H. Endosulfan I	P. Methoxychior	X. Aroclor-1232	Ŧ.	NN.

Notes:

COMPLST-35.mpd

LDC #: 21768 F31 SDG #:

VALIDATION FINDINGS WORKSHEET Field Blanks

101	36	X
Page:	Reviewer:	2nd Reviewer:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081) Field blanks were identified in this SDG. Y N N/A

Were target compounds detected in the field blanks?

Blank units: Work Associated sample units: Work Associated Sampling date: 729 /69

Field blank type: (circle one) Field Blank / Rinsate	e) Field Blank	c / Rinsate / Other:	Associated Samples:	1-3	(EM)	
Compound	Blank ID		Sample Identification	ation		
	05-10 pc 7007	___\				
A	260.0					
CRal.						

i		
	Other	
le units:	Rinsate /	
Associated sample units:	Blank /	
ssociate	te) Field	
V	(circle or	
ts: date:	k type:	
Blank units: Sampling date:	Field blank type: (circle one) Field Blank / Rinsate / Other.	

The state of the s	יכות ביומוויי / יי	misare / Ourei.	Associated Samples:	ipies:			
Compound	Blank ID			Sample Identification	leation		
CROL							

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U".

LDC#: 247681294 SDG# 54 6

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

V N N/A

Were surrogates spiked into all samples, standards and blanks?

Y N N/A

Did all surrogate percent recoveries (%R) meet the QC limits?

Qualifications	(12) (2)																	
	1-7	())) [))	,	î	ì) ()) ()	<u> </u>	. ()) [
%R (Limits)	(40-148)))))	J)	<u> </u>	J))))
1%	25																	
Surrogate Compound	*																	
Column	Not Spec																	
Sample ID	9 5021 MB																	
Date																,		
*																		

Letter Designation	Surrogate Compound	Recovery QC Limits (Soil)	Recovery QC Limits: (Water)	Comments
¥	Tetrachloro-m-xylene			
B	Decachlorobiphenyl			

SDG#: See Gon LDC# 21768 F34

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

2nd Reviewer: Reviewer:_ Page:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed? Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

	Qualifications	No mee	(either Ms: MSD	r 4(5/pm)																							
erformed? C limits?	Associated Samples																										
matrix in this SUG? nple extraction was p is (RPD) within the Q	RPD (Limits)	1 % KBB6	(+) (+	()	()	()	()	()	()	()	()	()	()	()	(()	()	()	()	(()	()	()	()	()	
Iuplicate (MSD) analyzed for each matrix in this SDG? for each matrix or whenever a sample extraction was performed and the relative percent differences (RPD) within the QC limits?	MSD %R (Limits)	The action		Trace Tracer			()	(()	()	(()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
t spike duplicate (MSI) amples for each matr is (%R) and the relati	MS %R (Limits)	╫╴	N. T. T.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			()	(-			(()	()			^	()	()	(()	()	()	()	()	()
MS) and matrix zed every 20 s rcent recoverie	pullocamo	2100	2 W. B.																								
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? Was a MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed? Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	G Gorion	OI OCM/CM	01/6																								
V N NA V N NA		# Date																									

COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client:

Northgate Environmental

Project:

Tronox LLC Henderson/2027.001

Sample Matrix:

Soil

Service Request: R0904797 Date Collected: 8/24/09

Date Received: 8/25/09 Date Analyzed: 9/8/09

Matrix Spike Summary Organochlorine Pesticides by Gas Chromatography

Sample Name: Lab Code:

SA154-0.5B

R0904797-009

Units: µg/Kg Basis: Dry

Analytical Method: 8081A Prep Method: EPA 3541

	Sample	N R	Aatrix Spike	: 4	Duplic R	ate Matrix Q0908029-0	5	% Rec		RPD
Anglyte Name	•	Result	Amount	% Rec	Result	Amount	% Rec	Limits		
Analyte Name 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate Endrin Endrin Aldehyde Endrin Ketone Heptachlor Heptachlor Epoxide Hexachlorobenzene Methoxychlor	Sample Result ND	Result 6.65 15.3 8.75 5.68 6.11 7.11 7.61 6.29 6.75 5.39 6.18 6.75 7.79 53.7 42.2	Q0908029-0- Amount 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15	4 % Rec 93 214 * 122 79 85 99 106 88 94 75 86 94 109 53 118	Result 9.04		% Rec	* 58 - 121 * 56 - 125 * 9 - 149 15 - 135 25 - 150 * 56 - 119 * 65 - 127 * 37 - 122 28 - 143 18 - 135 * 57 - 123 * 35 - 127 * 61 - 120 * 20 - 150 38 - 149 53 - 130		30 30 30 30 30 30 30 30 30 30 30 30 30 3
alpha-BHC alpha-Chlordane beta-BHC delta-BHC gamma-BHC (Lindane) gamma-Chlordane	ND ND ND ND ND	5.93 5.93 12.1 5.22 5.93 8.90	7.15 7.15 7.15 7.15 7.15 7.15	83 83 170 73 83 124	* 16.3 6.90 8.68 12.2	7.15 7.15 7.15 7.15 7.15 7.15	122 227 96 121 171	27 - 130 * 35 - 142 44 - 119 37 - 124 * 38 - 127	38 * 29 28 38 * 31 *	30 30 30 30 30

Comments:	

VALIDATION FINDINGS WORKSHEET

LDC # 21768 F34

Page: of

2nd Reviewer: Reviewer:

Laboratory Control Samples

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

evel WHO Only

Y N N/A

ır	<u>.{</u>	*	· ·			70	- т	-	- T	- T	70		-		-			-	-	- 1	7	 T	_	Т	T		7
	Qualifications MC	ž																									
rmed?	Associated Samples	1-3 5-8, 95021 MB			٠																						
extraction was perfo	RPD (Limits)	(()	()	()	()	()	(()	()	()	()	()	()	()	()	()	()	()	()		()	()	()	(()	(
each matrix or whenever a sample extraction was performed?	LCSD %R (Limits)	45 50-1m		()	()		()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	
ples for each matrix	LCS %R (Limits)	(m-120) Et	()	()	()		()		())	()	()	()	<u> </u>	()	()	()	()	()	()	()	()	()	(()	()	
d every 20 san	Compound	EE																									
Was a LCS analyzed every 20 samples for	TCS/FCSD ID	\$ 577 1205 P																									
Y N/N/A	# Date	_																									

LDC #:	21748	F 39
SDG #:	Su	Comor

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_	of
Reviewer:	ar
2nd reviewer:	1
-	7

		140 /F	T I
	Concentration	us kgi	
Compound	4	5	RPD
В	1. 6	2,0	0.4(=1.80)
	Concentratio	n()	
0			RPD
Compound			
		<u> </u>	
	Concentration		RPD
Compound			KPU
		 	
	Concentration		1

SDG #: 54 Cm

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 1 of 1
Reviewer: 000
2nd Reviewer: 6

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations:

CF = A/C Where: Average CF = sum of the CF/number of standards %RSD = 100 * (S/X)

A = Area of compound C = Concentration of compound

S = Standard deviation of calibration factors X = Mean of calibration factors

				Keported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	CF ()0 std)	CF () 0 std)	CF (initial)	CF (intial)	%RSD	%RSD
	ICAL	8/20/62	4 STX-CVP)	2.094 07	2,094e7	2.179 67	7. 179 ez	3.59	3.59
		60/80/	(an) 1 1 d			1660	(660	1.67	1.67
			, λ H	5.892	268.5	886.5	5.987	<i>†</i> 1"	1.14
			(M) x X (M)		2. 4303	2 492 42.492	12.992	3.15	3.18
7									
ო									
					:				
4									

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 21 768 F 34 SDG #: 51 Cm

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: of 1
Reviewer: 3v6
2nd Reviewer: ______

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Percent difference (%D) = 100 * (N - C)/N

N = __Initial Calibration Factor or __Nominal Amount (ng)
C = __Calibration Factor from Continuing Calibration Standard or __Calculated Amount (ng)

Where:

								Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date/Time	J	Compound		Average CF/ CCV Conc		CF/Conc CCV	CF/Conc CCV	0%	Q%
1	cev 18A	6/20/6	Ħ	gx crp	70)	21.794 e6	20	22.08/ 06	22.08 26	٠. ٧	6.1
		12/80//	d		1	9.914		9.093	9.673	p C	メン
			#		λ	29.876		67.628	67.63	6.4)	12.95
			А		ک	24.917	→	25.539	x5.33	とん	ング
2	CCN21 A	0 60 14	#)			22. 130	22.13	٦,٠	١. ٢
			þ					9.689	9.689	2,3	6 ′۲
			H	`	۲			64.9/13	64.513	8,4	8.4
			¢	À	7			1 650.30	75,089	0.7	6.7
က											\
4											

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:_	2176	8_F3(
SDG#:_	Su	Com

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	1 of 1
Reviewer:	21/
2nd reviewer:_	G
	ſ

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID:_

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene	STX-CLP7	100	8.607 (10)	86	66	0
Decachlorobiphenyl	1 1		9.628	96	96	
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachioro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Notes:		 -	

LDC #: 21 768 F34 نج SDG #:

Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

Page: | of | Reviewer:_

2nd Reviewer:__

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) and Relative Percent difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

SSC = Spiked sample concentration SA = Spike added Where:

SC = Concentration

RPD = 1 MS - MSD 1 * 2/(MS + MSD)

MS = Matrix spike percent recovery

MSD = Matrix spike duplicate percent recovery

MS/MSD samples:

	ds	ike	Sample	Spiked	Sample	Matri	Matrix Spike	Matrix Spii	Matrix Spike Duplicate	×	MS/MSD
Compound	Ad (ng	Added (No (A)	Concentration (パイ/に)	Conce (MS	Concentration (Mc /Fc)	Percent	Percent Recovery	Percent	Percent Recovery		RPD
	MS	O MSD	0	MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
gamma-BHC	7.15	21.2	9	5.93	878	٤ گ	83	(7)	(1)	38	38
4,4'-DDT	-	\		8.75		127	xx)	167	197	4	47
Aroclor 1260								/	,		/

Comments: Refer ot Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 21768 FX

VALIDATION FINDINGS WORKSHEET

SDG #: ユム Cャーノ Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

Page: of /

Reviewer: X2 2nd Reviewer: X

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Concentration

RPD = ILCS - LCSD I * 2/(LCS + LCSD)

42/0

020

	ds :	ike	Spiked	Sample	TC	SOT	ГС	CCSD	SOT	TCS/TCSD
Compound	(¹ / ₂)	Added (45/k)	Conce (\r	Concentration (VKS //Cc.)	Percent F	Percent Recovery	Percent	Percent Recovery	~	RPD
	SOT	CCSD	SOT	UCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
gamma-BHC	6.67	6.67	318	3.83	7-5	\$5	£7	1,	^	7
4,4'-DDT	→	~ ~>>	6.88	6.70	401	601	101	107	ل م.	λ
Aroclor 1260										

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:_	2176	8 F	34
SDG #:_			

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	
Reviewer:	OVO
2nd reviewer:_	r

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Υ	N	N/A
Y	N	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example: Sample I.D. $\frac{\# \ }{}$ $\frac{\# \ }{}$ $\frac{\# \ }{}$ $\frac{\# \ }{}$ $\frac{\# \ }{}$ Conc. $= \frac{(1219.9 e G) (10ml) (10)}{(0.984e8) (0.933) (309)}$ = 44.29 $\frac{\# \ }{}$ $\frac{\# \$

#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Qualification

Note:	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation,

Henderson, Nevada

Collection Date:

August 24, 2009

LDC Report Date:

February 2, 2010

Matrix:

Soil

Parameters:

Cyanide

Validation Level:

Stage 4

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0904797

Sample Identification

SA154-0.5B

Introduction

This data review covers one soil sample listed on the cover sheet. The analyses were per EPA SW 846 Method 9012A for Cyanide.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section X.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No cyanide was found in the initial, continuing and preparation blanks.

Samples FB072909-SO (from SDG R0904226) was identified as a field blank. No contaminant concentrations were found in this blank.

IV. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) analyses specified for the samples in this SDG, and therefore matrix spike analyses were not performed for this SDG.

V. Duplicates

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable.

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0904797	All analytes reported below the PQL.	J (all detects)	Α

VIII. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Cyanide - Data Qualification Summary - SDG R0904797

SDG	Sample	Analyte	Analyte Flag		Reason (Code)
R0904797	SA154-0.5B	All analytes reported below the PQL.	J (all detects)	А	Sample result verification (sp)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Cyanide - Laboratory Blank Data Qualification Summary - SDG R0904797

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Cyanide - Field Blank Data Qualification Summary - SDG R0904797

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET Stage 4

SDG #: R0904797
Laboratory: Columbia Analytical Services

Date:	<u> </u>
Page:_	Lof
Reviewer:	ca
2nd Reviewer:	

METHOD: (Analyte) Cyanide (EPA SW846 Method 9012A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 8174/09
lla.	Initial calibration	A	
lib.	Calibration verification	A	
III.	Blanks	A	
IV	Surrogate Spikes	\mathcal{N}	Max required
V	Matrix Spike/Matrix Spike Duplicates	N_{\perp}	Mor required Client specified
VI.	Duplicates	\mathcal{N}	\cup
VII.	Laboratory control samples	A	LCS
VIII.	Sample result verification	A	
IX.	Overall assessment of data	A	
X.	Field duplicates	$ \mathcal{N} $	
ΧI	Field blanks	QN	FB=FB072909-SO (506#R0904226)

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

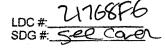
ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank


EB = Equipment blank

Validated Samples:

LDC #: 21768F6 b

	20:11					
1	SA154-0.5B	11	865	21	31	
2		12		22	32	
3		13		23	 33	
4		14		24	34	
5		15		25	35	
6		16		26	36	
7		17		27	37	
8		18		28	38	
9		19		29	39	
10		20		30	40	

Notes:	

VALIDATION FINDINGS CHECKLIST

Page of Z Reviewer: C 2nd Reviewer:

Method: Inorganics (EPA Method Second)

Method:Inorganics (EPA Method Decicoo)			-	
Validation Area	Yes	No	NA	Findings/Comments
E Technical holding times				
All technical holding times were met.				·
Cooler temperature criteria was met.	1			
III. Calibration 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				The second secon
Were all instruments calibrated daily, each set-up time?	1			
Were the proper number of standards used?	1			
Were all initial calibration correlation coefficients > 0.995?	-			
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	~			
Were titrant checks performed as required? (Level IV only)			-	
Were balance checks performed as required? (Level IV only)			_	
MEBBINS AND THE RESERVE OF THE SECOND				
Was a method blank associated with every sample in this SDG?	<u>ا</u>	•		
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
IV. Matrix spike/Matrix spike/diplicates and Driplicates — 512 11 11 11 12 12 12 13 14 17 12 18 18 18 18 18 18				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.				cirent specified
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	·			
Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of ≤ CRDL(≤ 2X CRDL for soil) was used for samples that were ≤ 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL.			1	
V Laboratory country samples:				
Was an LCS anayized for this SDG?	7			
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?	1			
VI. Regional Quality Assurance and Quality Control				
Nere performance evaluation (PE) samples performed?		4		

LDC#: 1168Fb SDG#: See cover

VALIDATION FINDINGS CHECKLIST

Page: Zof Z Reviewer: CCZ 2nd Reviewer: W

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	_	_		
Were detection limits < RL?)			
VIII, Oxerall assessment of data				
Overall assessment of data was found to be acceptable.	<u> </u>			
IX Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target analytes were detected in the field duplicates.				
X Field blecks				
Field blanks were identified in this SDG.				
Target analytes were detected in the field blanks.		/		

100 # 21768 File Spice 2012

Initial and Continuing Calibration Calculation Verification Validatin Findings Worksheet

Page: of | Reviewer: 07 2nd Reviewer:

Method: Inorganics, Method Second

_was recalculated.Calibration date:__ The correlation coefficient (r) for the calibration of \overline{CN} An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found X 100

Found = concentration of each analyte measured in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source Where,

					Recalculated	Reported	Acceptable
Tyne of analysis	Analyte	Standard	Conc. F	(Gspense Area	r or r²	r or r²	(N/X)
Initial calibration		s1	0	0.00824			
		s2	0.01	0.01763	0.999940	0.999940	
		83	0.02	0.02561			•
	>	84	0.05	0.05518			>-
	<u>ک</u>	\$5	0.1	0.10535			
		sę	0.2	0.20435			
		s7	0.5	0.48191			
		88	1	0.95541			
Calibration verification	7	ICV	6.5	50505,0	101		
Calibration verification		CCV		b19640	44		
Calibration verification	\rightarrow	CCV	-	0.51871	101		\

:

SECONER SDG#: LDC#:

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

Page: 2nd Reviewer: Reviewer:

METHOD: Inorganics, Method Pelove

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

Where, %R = Found x 100 True

Found =

concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

True ==

RPD = <u>1S-D|</u> x 100 Where, (S+D)/2

ii ii O

Duplicate sample concentration Original sample concentration

		•	Found / O		Receivulated	Reported	
Sample ID	Type of Analysis	Element	(silun)	irue / U (units)	%R / RPD	GGR/R%	Accaptable (Y/N)
8	Laboratory control sample	CN	ーレ,' 古	5.0	da	hb	7-
					-		
>	Matrix spike semple		(ssr-sr)				
	Dimicate comple						
>						-	

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated

LDC #:	47	68	Fb	,
SDG #:	Sec	200	ie	1

VALIDATION FINDINGS WORKSHEET

Page: of Reviewer: 2nd reviewer:

METHOD: Inorganics, Method Second No. Not applicable questions are identified as "N/A". Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A Have results been reported and calculated correctly? Are results within the calibrated range of the instruments? Y N N/A Are all detection limits below the CRQL? Compound (analyte) results for	sdg #: <u>see(0</u>)	Samp	ole Calculation Verification	Reviewer: 4
Y N N/A	METHOD: Inorganics	s, Method <u>Secca</u>	er_	
recalculated and verified using the following equation:	Y N N/A Have Y N N/A Are r	results been reported and esults within the calibrated	calculated correctly? range of the instruments?	stions are identified as "N/A".
Concentration = Recalculation:	Compound (analyte) recalculated and veri	results for fied using the following equ	ON Justion:	reported with a positive detect were
	Concentration =		Recalculation:	,

Non Detect

#	Sample ID	Analyte	Reported Concentration ()	Calculated Concentration ()	Acceptable (Y/N)
_					
			· · · · · · · · · · · · · · · · · · ·		
\dashv					
-+					
	·				
	· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·		
				,	

			<u></u>	أسيي
Note:_				
More:			 	
_	 			
	 · · · · · · · · · · · · · · · · · · ·	 		
			 	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation,

Henderson, Nevada

Collection Date:

August 24 through August 26, 2009

LDC Report Date:

February 2, 2010

Matrix:

Soil/Water

Parameters:

Gasoline Range Organics

Validation Level:

Stage 2B & 4

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0904797

Sample Identification

SA154-0.5B**

SA154-10B**

SA154-20B**

SA154-33B**

SA200-31B**

SA200009-31B

SA200-10B**

SA200-20B**

SA200-31BMS

SA200-31BMSD

^{**}Indicates sample underwent Stage 4 review.

Introduction

This data review covers 10 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8015B for Gasoline Range Organics.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

Initial calibration of compounds was performed as required by the method.

The percent relative standard deviations (%RSD) of calibration factors for compounds were less than or equal to 20.0% .

b. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 20.0% QC limits.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No gasoline range organic contaminants were found in the method blanks.

Sample FB072909-SO (from SDG R0904226) was identified as a field blank. No gasoline range organic contaminants were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Compound	Concentration	Associated Samples
FB072909-SO	7/29/09	Gasoline range organics	27 ug/L	All samples in SDG R0904797

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified.

IV. Accuracy and Precision Data

a. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

b. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

V. Target Compound Identification

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

VI. Project Quantitation Limit

All project quantitation limits were within validation criteria for samples on which a Stage 4 review was performed.

Sample	Finding	Flag	A or P
All samples in SDG R0904797	All compounds reported below the PQL.	J (all detects)	Α

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

VII. System Performance

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples SA200-31B and SA200009-31B were identified as field duplicates. No gasoline range organics were detected in any of the samples.

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Gasoline Range Organics - Data Qualification Summary - SDG R0904797

SDG	Sample	Compound	Flag	A or P	Reason (Code)
R0904797	SA154-0.5B** SA154-10B** SA154-20B** SA154-33B** SA200-31B** SA20009-31B SA200-10B** SA200-20B**	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG R0904797

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Gasoline Range Organics - Field Blank Data Qualification Summary - SDG R0904797

No Sample Data Qualified in this SDG

Tronox Northgate Henderson

LDC #: 21768F7	VALIDATION COMPLETENESS WORKSHEET	Date: 10/23/01
SDG #: R0904797	Stage 2B /4	Page: <u></u> 1 of <u>/</u>
Laboratory: Columbia Analytic		Reviewer: 3/6
		2nd Reviewer:
METHOD: GC Gasoline Rang	je Organics (EPA SW 846 Method 8015B)	7

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 8/24 - 26/09
lla.	Initial calibration	A	% KSD = 20]
IIb.	Calibration verification/LC-V-	A	Ca ≤ 20 Z
III.	Blanks	A	
IVa.	Surrogate recovery	À	
IVb.	Matrix spike/Matrix spike duplicates	A	
IVc.	Laboratory control samples	Ā	LES
V.	Target compound identification	N	
VI.	Compound Quantitation and CRQLs	N	
VII.	System Performance	N	
VIII.	Overall assessment of data	A	
IX.	Field duplicates	MD	D = 5,6
X.	Field blanks	SW)	Fb = FB072909-50 (R0904226)

N	ote:	
* V	OLE.	

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected D = Duplicate

R = Rinsate

FB = Field blank

TB = Trip blank EB = Equipment blank

Validated Samples:	1			
1 \ SA154-0.5B **	11 167733 MB	21	31	
	12 Y 16 9 325	22	32	
2 SA154-10B	13	23	33	
4 SA154-33B * *	14	24	34	
5 7 SA200-31B * * D	15	25	35	
6 7 SA200009-31B D	16	26	36	
7 SA200-10B * *	17	27	37	
- 8 γ SA200-20B * ¥	18	28	38	
9 × SA200-31BMS	19	29	39	
10 SA200-31BMSD	20	30	40	

Notes:		

LDC #: 21768 F7 SDG #: 312 Carry

VALIDATION FINDINGS CHECKLIST

Page:__of__2/ Reviewer:____\$\mathcal{L}\$ 2nd Reviewer:____\$\mathcal{L}\$

Method: < GC _____HPLC

Method: < GC HPLC				
Validation Area	Yes	No	NA	Findings/Comments
J. Technical holding times				And the second s
All technical holding times were met.				
Cooler temperature criteria was met.				
III Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation?				
Did the initial calibration meet the curve fit acceptance criteria of > 0.990?				1000000
Were the RT windows properly established?				
IV. Continuing calibration				
Was a continuing calibration analyzed daily?	(
Were all percent differences (%D) ≤ 20%.0 or percent recoveries 80-120%?				
Were all the retention times within the acceptance windows?				
V. Blanks	, 		r	
Was a method blank associated with every sample in this SDG?	/			
Was a method blank analyzed for each matrix and concentration?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Surrogate spikes				
Were all surrogate %R within the QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VII. Matrix spike/Matrix spike duplicates	•	r		A STATE OF THE STA
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			
VIII. Laboratory control samples			•	
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?	/	<u> </u>		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
IX. Regional Quality Assurance and Quality Control	1	ı	I	ľ
Were performance evaluation (PE) samples performed?			[
Were the performance evaluation (PE) samples within the acceptance limits?	<u> </u>			

LDC #: 2768 F7 SDG #: See Con-

VALIDATION FINDINGS CHECKLIST

Page: of Y Reviewer: VV 2nd Reviewer: ____

Validation Area	Yes	No	NA	Findings/Comments
X. Target compound identification	T -			And the state of t
Were the retention times of reported detects within the RT windows?				
XI, Compound quantitation/CRQLs		,,	r	The second secon
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XII, System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data			-	Hereit Commence of the second
Overall assessment of data was found to be acceptable.				
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.	_			
Target compounds were detected in the field duplicates.	<u> </u>	_		
XV. Field blanks				
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				

21768F7 SDG #: 100 # ...

VALIDATION FINDINGS WORKSHEET

Field Blanks

GC ___ HPLC Were field blanks identified in this SDG?

Were target compounds detected in this field blanks?

× N/A METHOD:

Y/N N/A

Rinsate / Equipment Rinsate / Equipment Blank / Source Blank / Other. Blank units: UG /L Associated sample units: US /LS
Sampling date: 7/21/61
Field blank type: (circle one) Eleid Blank / Trip Blank / Atmospheric Blank / Ambient Blank

Associated Samples:

Compound	Blank ID	Blank 10	Sample (dentification	
	FB0729	F8072909-50		
GR0 27	27			
cral				

Associated sample units:_

Blank units: Sampling date:

Field blank type: (circle one) Field Blank / Trip Blank/ Atmospheric Blank/ Ambient Blank / Cther. Rinsate / Equipment Rinsate / Equipment Blank / Source Blank / Other.

Associated Samples:

Compound		Blank ID Blank ID		Semple Ide	Semple identification		
CROL							
TOTAL TO DESCRIPTION OF CARDINA ALL BEST OF COLORS	FOR NOT	ALIEIGN ALI	10 CO				

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
Samples with compound concentrations within five times the associated field biank concentration are listed above, these sample results were qualified as not detected, "U".

LDC # 21768 F7 SDG #: See Cover

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

1 of 1 Page: 2nd Reviewer:_ Reviewer:

> HPLC METHOD: GC

The calibration Factor (CF), average CF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD = 100 $^{\circ}$ (S/X)

A = Area of compound,

C = Concentration of compound, S = Standard deviation of the CF X = Mean of the CFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
31:	Standard ID	Calibration Date	Compound	CF (اهال std)	CF (laran std)	Average CF (initial)	Average CF (initial)	%RSD	%RSD
	li	89 40/2	(eg-7)	!	0.1334	1 1	0.85%	₩	8
П									
2	1621	8 /52 /62		0.2(07 0.207	0. 467	0. 2058	0. 2058	2	4
T	۱ ,	Called			,				
ω									
T									
Τ									
4									
Γ									
Π									

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

SDG# Sec Cover LDC # 21768 F7

Continuing Calibration Results Verification VALIDATION FINDINGS WORKSHEET

Page: 2nd Reviewer: Reviewer:

> HPLC METHOD: GC

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF - CF)/ave. CF CF = A/C

Where: ave. CF = initial calibration average CF
CF = continuing calibration CF
A = Area of compound
C = Concentration of compound

0 %	1% 1								
	Ē	Image: section of the property o	THE PARTY OF THE P	THE PARTY OF THE P	THE PARTY OF THE P	EN Y	THE PARTY OF THE P	THE PARTY OF THE P	
	0, 9068	0. 9668	0.9468	0.9668	0.9468	0.9168	0.9468	0.9468	0.9468
	6. 6668								
	0, 8976	0, 8976 0.2050	0, 8976 0.265 3	0, 8476 0.205 Q	0.8476 0.205 9	0, 8476 0.205 0	0, 8976 0.205 0	0, 8976 0.205 0	0. 8976 0.205 0
	Graphin (GGa) 0.	(6.9)	(4.9)	(6.9)	(4-9)	(4-9)	(4.40)	(4.4)	(4-9)
_	8/27/69		6						

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

SDG# 21768F7

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: of / Reviewer: 346 2nd reviewer: 8

METHOD: __GC __ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: 本

Surrogate	ColumpiDetector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
	J			Reported	Recalculated	
3- Fluorochlorobenza	下し	26	56.913	90	06	Q

II olumo

Sample ID:							lī
Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference	ji
				Reported	Recalculated		
							1
							- 1
					-		_

Sample ID:

			$\overline{}$
Percent Difference			
Percent Recovery	Recalculated		
Percent Recovery	Reported		
Surrogate Found			
Surrogate Spiked			
Column/Detector			
Surrogate	,		

LDC #: 2768 F SDG #: 564 (

Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

Page: of 2nd Reviewer:__ Reviewer:_

> HPLC METHOD: CGC

The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC - SC)/SA

Where

SSC = Spiked sample concentration SC = Sample concentration SA = Spike added

MS = Matrix spike MSD = Matrix spike duplicate

RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100

MS/MSD samples:

	Spike	8	Sample	Spike S	ample	Matrix spike	spike	Matrix Spike Duplicate	3 Duplicate	MS/MSD	ISD
Compound	Added /	ر الم	Conc.	Concentration	itration	Percent Recovery	есоvегу	Percent Recovery	ecovery	RPD	D
	MS	MSD	, , , , , , , , , , , , , , , , , , ,	MS	O MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline (8015)	\$1200	2/200	۵	48600	43800	36	98	38	88	2)	0)
Diesel (8015)											
Benzene (8021B)											
Methane (RSK-175)											
2,4-D (8151)											
Dinoseb (8151)											
Naphthalene (8310)											
Anthracene (8310)							-				
HMX (8330)											
2,4,6-Trinitrotoluene (8330)											

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 21768F7 SDG #: See Gover

VALIDATION FINDINGS WORKSHEET

Reviewer: 176 2nd Reviewer:__

Page: lof / Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

GC HPLC METHOD:

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA RPD = I LCS - LCSD I * 2/(LCS + LCSD)

Where: SSC = Spiked sample concentration SA = Spike added LCS = Laboratory control sample percent recovery

SC = Concentration

LCSD = Laboratory control sample duplicate percent recovery

C 1733 #CE 77 31 LCS/LCSD samples:

	S	pike	Spiked	Sample	TC	rcs	GSOT	SD	S) T	CS/LCSD
Compound	(VC	Added (1/5 /(5.)		Concentration (κ_{c} / c)	Percent F	Percent Recovery	Percent Recovery	Recovery	R	RPD
	SOT	CCSD	SOT	CCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline (8015)	ممح	¥∕\	478	N.A.	96	96				
Diesel (8015)										
Benzene (8021B)										
Methane (RSK-175)										
2,4-D (8151)										
Dinoseb (8151)										
Naphthalene (8310)										
Anthracene (8310)										
HMX (8330)										
2,4,6-Trinitrotoluene (8330)										
					-					-

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results

LDC # 20 768 F SDG #: Se∢

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: __of___

HPLC	:
ပ္ပ	
METHOD:	

_	N/A/	N/A/	
	Ž	Z	
	\searrow	>	

% of the reported results? Were all reported results recalculated and verified for all level 1V s

Y N N/A Were all I	recalculated results for dete	Were all recalculated results for detected target compounds within 10%
Concentration= (A)(Fv)(Df) (RF)(Vs or Ws)(%S/100)	(A)(Fv)(Df) or Ws)(%S/100)	Example:
A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor	und to be measured	Sample ID
RF= Average response factor of the compound in the initial calibration	he compound	Concentration =
Ws= Initial weight of the sample %S= Percent Solid		

Compound Name

*	Sample ID	Compound	Reported Concentrations	Recalculated Results Concentrations	Qualifications
		-			
	. 0				
Comments:	ents:				