Derivation of Soil Cleanup Levels for 2,3,7,8-Tetrachlorodibenzo-p-dioxin
(TCDD) Toxic Equivalence (TEQ, ) in Soil Through Deterministic and
Probabilistic Risk Assessment of Exposure and Toxicity

Budinsky R.A."; Kirman C.R.2; Yost, L.J.3; Baker, B.F4; Aylward, L.L.5; Zabik, J. M.'; Rowlands J.C."; Long T.F.2 and Simon T.¢

! The Dow Chemical Company, Midland, MI, USA;
? The Sapphire Group, Beachwood, OH, USA;
% Exponent, Saint Paul, MN, USA;

4 Sugar River Consulfing, LL.C., Gladwin, MI, USA;
> Summit Toxicology, Falls Church, Virginia, USA;
¢ Ted Simon, LLC, Winston, Georgia, USA

ABSTRACT

Aerial deposition from historical emissions from Dow Chemical
operations in Midland, Michigan has resulted in residential soil
polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs)

as 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) toxic
equivalence (TEQ,,) concentrations that are generally less
than EPA’s 1 ppb TEQ cleanup level (U.S. EPA 1998) within
the city of Midland. In some cases, soil concentrations of
TEQ, are greater than the 0.090 ppb default Michigan
Department of Environmental Quality (MDEQ) direct contact
criteria (DCC) (MDEQ 2005, CH2M Hill 2007). While risk
assessments at contaminated sites are extensively used for
guiding critical and resource intensive decisions, detailed
risk assessments that rigorously integrate key exposure

and toxicity terms are less frequently conducted. This

poster represents such an effort, deriving DCC for PCDD/

Fs in residential soil using site-specific information and

EXPOSURE ASSESSMENT

deterministic and probabilistic methods. In addition, TCDD
and TEQ,,. risk assessment has been the subject of extensive
scientific and regulatory debate including in-depth comments
provided by two EPA Science Advisory Boards (SABSs)

and by the National Academy of Sciences (NAS) on the
proposed EPA Draft Dioxin Risk Assessment. This risk
assessment presents toxicity values seeking to address

the NAS recommendations. Deterministic DCC estimates
derived with site-specific exposure variables and toxicity
values based on key NAS recommendations ranged from

19 to 250 ppb through application of linear and nonlinear
means, respectively, to estimate cancer risks. A wide range
of possible DCC estimates were calculated using Monte
Carlo methods, with the 1 ppb cleanup value traditionally
used by EPA falling below the first percentile of calculated
DCC estimates.

Deterministic and probabilistic methods were used to
estimate a range of DCC (Table 1 and Equations 1-4).

* The probabilistic approach used a 1-dimensional Monte
Carlo assessment, with variability and uncertainty treated
in a combined manner.

Considerable site-specific exposure inputs were applied:

* Ingestion absorption efficiency (AE)) estimate of the
relative oral bioavailability of 23% for PCDDs/Fs from soil
compared to that in corn oil (Ruby et al. 2002; Budinsky et
al. 2008) of was derived based on data for swine (Table 2)

— TCDD and TEQD/F soil oral relative bioavailability
estimates from other locations are less than 50% in all
but two studies (Lucier et al. 1986, McConnell et al. 1984,
Wendling et al. 1989, Bonacorsi et al. 1984, Umbreit et al.
1986, Wittsieppe et al. 2007), i.e., data in rat investigations
from Budinsky et al. (2008) in Midland and data from a rat
study reported by Shu et al. (1988)

— Swine bioavailability data were selected as a better
model than rats for the human gastrointestinal system
(U.S. EPA 2006; Casteel et al. 2006; Krishnan et al. 1994;
Eklund et al. 2004; Weis and LaVelle 1991) and are the
preferred model for human nutrition (Miller and Ulirey
1987; Book and Bustad 1974).

* Exposure duration (ED) was estimated from the
probability of not remaining in Midland calculated for one
year intervals from ages 0 to 100 (Johnson and Capel 1992)
and U.S. Census data on moving and death rates of
Midland Country residents (U.S. Census Bureau 2007a,b;
Arias 2007) (Figure 1 and Table 1).

* Soil and Dust Ingestion Factor (IR, /IR,,,) Soil ingestion
rate data for children from Stanek et al. (2001) were plotted
on the x-axis (with a logarithmic scale), and the probability
in the form of a normal ordinate (the inverse normal of the
probability) on the y-axis (Figure 2)

— Data were fitted by a distribution curve consisting of a
mixture of two lognormal distributions with no upper
bound on the ingestion rate

— The standard deviation given by Stanek et al. (2001)
for each percentile with a positive value was treated
as giving an independent estimate for the coefficient
of variance at that percentile, and maximum likelihood
estimation then used

— Soil ingestion rates for adults were derived assuming
adults ingest half as much soil as children, consistent with
typical default factors and also consistent with the limited
data available for adult soil ingestion (Stanek et al. 1997)

(Table 1). ;
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Table 2. TEQ,.-weighted overall relative bioavailability (RBA) and absolute
bioavailability estimates

City of Midland Soil (values as %)
Relative Bioavailability Absolute Bioavailability*
Rat - Pilot study 37 30
Rat — Follow-up study Not Measured Not Measured
Swine (ND=1/2 DL) 23 19
Swine (ND=DL) 29 23
In vitro bioaccessibility estimate: 17 Not Measured

Note: DL - detection limit
ND - not detected
Values (midpoint) applied in these DCC calculations.
2 Absolute bioavailability estimated assuming 80 percent bioavailability from com oil vehicle.

—— Estimated disfribution
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Figure 1. Estimated probability of remaining at residence (exposure duration) as a
function of age for those initially 1 year old
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Figure 2. Child soil ingestion rate estimates (Stanek et al. 2001) and fitted distribution



TOXICITY ASSESSMENT

EPA’s Exposure and Human Health Reassessment of
2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related
Compounds (U.S. EPA 2003) (hereafter the “Reassessment”)
was the subject of an exhaustive review by an NAS committee
(NAS 2006), which made several specific findings and
recommendations to EPA, including:

* Use a nonlinear (threshold) dose-response modeling for
cancer

¢ Incorporate the findings of the NTP 2006 cancer bioassay
for 2,3,7,8-TCDD

* Use probabilistic methods to better characterize uncertainty
and variability

* Derive noncancer toxicity values
* Improve the application of Toxic Equivalence Factor values.

EPA’s response to the NAS recommendations is ongoing and
thus this DCC estimate included derivation of toxicity values.

Cancer Endpoint

* A combination of a toxicokinetic model and data-derived
uncertainty factors were used in deriving the cancer
potency estimates for TCDD

* The NTP (2006) data for liver cancer adenoma were
applied based on data analyses conducted by Maruyama
and Aoki (2006)

¢ Human equivalent doses were estimated from the unit risk
values presented by Maruyama and Aoki (2006) using a
human physiologically-based pharmacokinetic (PBPK)
model (Maruyama et al. 2002, 2003)

* A conservative point of departure (POD) was selected from
those data (Table 3)

* The deterministic assessment applied the Maruyama and
Aoki (2006) result from the Weibull model (P-value = 1.000
for fit with data)

* The probabilistic assessment applied the dose
corresponding to a one percent increase in cancer
incidence (EDO1) selected because it corresponds to the
dose at which the dose-response relationship begins to
increase, and falls well within the range of observation

. The Tridge, a 3-way bridge crossing the meeting of Chippewa
and Tittabawassee rivers in downtown Midland, Michigan

Photo Source: Jake Novak (2006)

Noncancer Risks

This risk assessment relies primarily upon the World Health
Organization’s Joint Exposure Committee on Food Additive’s
(JECFA 2001) Tolerable Daily Intake value of 2.3 pg/kg-day,
which was derived to address both cancer and noncancer
effects.

* Except for the possibility of deriving a noncancer RfD from
human data (Aylward et al. 2008), the Bell et al. (2007a,b,c)
study provides considerable improvement over other
published rat reproduction studies

e |nitial analysis of the Bell et al. (2007a,b,c) reproductive/
developmental studies for deriving noncancer toxicity
values by these authors resulted in a noncancer toxicity
value similar to the tolerable intake from JECFA (i.e., 2.1
pg/kg-day) applied here.

Table 3. Basis for cancer slope factors derived from
NTP (2006) liver adenoma results using linear
and nonlinear approaches within deterministic
and probabilistic methods

Nonlinear (Reference dose [RfD]) Linear (Slope Factor)
Deterministic Probabilistic Deterministic Probabilistic
EDO1 =
Point of Ll Lognormal
LEDO1 = 3.3 (ng/ (mean=6.3; 5th LEDO1=3.3 i
departure? ) (mean =6.3; 5th
; kg-day) percentile=3.3) (ng/kg-day) '
(units) (ngkg-day) percentile = 3.3)
gkg-ay (ng/kg-day)
30 (1x10x3x1)
1 (toxicokinetics);
10 within human Product of
Uncertainty populanon variability; ANl NA NA
factor 3 to remain below the S
b distributions
tumor threshold;
and 1 because study
was chronic
Lognormal Lognormal
Cancer value 0.1 (ng/kg-day) (mean=1,100; 3,000 (mean=1,790;
(units) 11 {ngrkg-cay SD=1500) (pg/ | (mg/kg-day)’ | SD=648) (mg/
kg-day) kg-day)"

NA - not applicable

@ Expressed as human equivalent internal dose as derived by Maruyama and Aoki (2006)
LEDO1= the approximate 95% lower confidence limit of the dose producing a 1% increase in
excess risk. EDO1= dose corresponding to a 1% increase in cancer incidence.




RESULTS AND DISCUSSION

Deterministic and probabilistic calculations were run
using methods and inputs (Tables 1 and 3) described
above for the following potential risks: cancer
(assuming a linear dose-response), cancer (nonlinear
calculation), and noncancer (nonlinear calculation)
(Table 4 and Figures 3-5).

Table 4. Direct contact criteria (DCC) estimates for

TEQ, in soil in ppb
Estimates Based on Estimates Based
Cancer Endpoint ORI
Endpoint
Low-Dose Nonlinear JECFA (2001)
Linear Threshold RfD RfD

Deterministic
calculation 19 ppb 250 ppb 53 ppb
Probabilistic
calculation 300 4,500
50th percentile (54-3,500) (410-68,000) @ik
(5th to 95th)

* A wide range of possible DCC estimates were
calculated using Monte Carlo methods, with the 1 ppb
cleanup value traditionally used by EPA falling below
the first percentile of calculated DCC estimates for
both cancer and non-cancer endpoints (Figures 3-5)

* The impact of using a threshold cancer potency value
results in residential DCC values at least an order
of magnitude higher than use of a linear assumption
(Figure 4)

* Using these soil concentration values in a forward
Monte Carlo risk assessment yielded results
corresponding to the 95th percentile values for their
respective distributions indicating that, given the
assumptions of this assessment, there is only a ~5%
probability that the target risk/HQ is exceeded using
the 5th percentile DCC values of 410 and 54 ppb
(Figure 5)

Sensitivity Analysis
A sensitivity analysis was conducted for the purpose

of identifying which parameter values have the largest
effect on variance in the distributions (Crystal Ball for

Microsoft Excel, Decisioneering Inc.; Version 7), (Figure 6).
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Consistent with the NAS (2008) review entitled Science and
Decisions: Advancing Risk Assessment, this assessment
applies the available scientific data to fully characterize the
variability and uncertainty in the exposure and toxicity terms
used to estimate risks associated with direct contact with
TEQ,,,. in soil.

* Considerable effort was directed at characterizing key
exposure terms including soil ingestion and site-specific
exposure duration (Figure 7)

D/F

* Site-specific oral bioavailability was also characterized
and accounted for a lower, but important, amount of the
variability in these analyses

* The toxicity assessment offered here addresses the ongoing
data gap in the current EPA draft dioxin reassessment and
applies the NTP (2006) cancer bioassay results for analysis
of carcinogenicity as well as findings on the mode of action
of PCDD/Fs for both cancer and noncancer effects
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