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Deterministic and probabilistic methods were used to 
estimate a range of DCC (Table 1 and Equations 1–4).  

•	The probabilistic approach used a 1-dimensional Monte 
Carlo assessment, with variability and uncertainty treated 
in a combined manner.  

Considerable site-specific exposure inputs were applied:

•	Ingestion absorption efficiency (AEi) estimate of the 
relative oral bioavailability of 23% for PCDDs/Fs from soil 
compared to that in corn oil (Ruby et al. 2002; Budinsky et 
al. 2008) of was derived based on data for swine (Table 2) 

–	TCDD and TEQD/F soil oral relative bioavailability 
estimates from other locations are less than 50% in all 
but two studies (Lucier et al. 1986, McConnell et al. 1984, 
Wendling et al. 1989, Bonacorsi et al. 1984, Umbreit et al.  
1986, Wittsieppe et al. 2007), i.e., data in rat investigations  
from Budinsky et al. (2008) in Midland and data from a rat 
study reported by Shu et al. (1988) 

–	Swine bioavailability data were selected as a better 
model than rats for the human gastrointestinal system 
(U.S. EPA 2006; Casteel et al. 2006; Krishnan et al. 1994; 
Eklund et al. 2004; Weis and LaVelle 1991) and are the 
preferred model for human nutrition (Miller and Ullrey 
1987; Book and Bustad 1974).  

• 	Exposure duration (ED) was estimated from the 
probability of not remaining in Midland calculated for one 
year intervals from ages 0 to 100 (Johnson and Capel 1992)  
and U.S. Census data on moving and death rates of 
Midland Country residents (U.S. Census Bureau 2007a,b; 
Arias 2007) (Figure 1 and Table 1).  

• 	Soil and Dust Ingestion Factor (IRchild/IRadult)  Soil ingestion 
rate data for children from Stanek et al. (2001) were plotted 
on the x-axis (with a logarithmic scale), and the probability 
in the form of a normal ordinate (the inverse normal of the 
probability) on the y-axis (Figure 2)  

–	Data were fitted by a distribution curve consisting of a  
mixture of two lognormal distributions with no upper 
bound on the ingestion rate

–	The standard deviation given by Stanek et al. (2001) 
for each percentile with a positive value was treated 
as giving an independent estimate for the coefficient 
of variance at that percentile, and maximum likelihood 
estimation then used 

–	Soil ingestion rates for adults were derived assuming 
adults ingest half as much soil as children, consistent with  
typical default factors and also consistent with the limited 
data available for adult soil ingestion (Stanek et al. 1997) 
(Table 1).
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Aerial deposition from historical emissions from Dow Chemical  
operations in Midland, Michigan has resulted in residential soil 
polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) 
as 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) toxic 
equivalence (TEQD/F) concentrations that are generally less 
than EPA’s 1 ppb TEQ cleanup level (U.S. EPA 1998) within 
the city of Midland.  In some cases, soil concentrations of 
TEQD/F are greater than the 0.090 ppb default Michigan 
Department of Environmental Quality (MDEQ) direct contact  
criteria (DCC) (MDEQ 2005, CH2M Hill 2007).  While risk 
assessments at contaminated sites are extensively used for 
guiding critical and resource intensive decisions, detailed 
risk assessments that rigorously integrate key exposure 
and toxicity terms are less frequently conducted.  This 
poster represents such an effort, deriving DCC for PCDD/
Fs in residential soil using site-specific information and 

deterministic and probabilistic methods.  In addition, TCDD 
and TEQD/F risk assessment has been the subject of extensive 
scientific and regulatory debate including in-depth comments 
provided by two EPA Science Advisory Boards (SABs) 
and by the National Academy of Sciences (NAS) on the 
proposed EPA Draft Dioxin Risk Assessment.  This risk 
assessment presents toxicity values seeking to address 
the NAS recommendations.  Deterministic DCC estimates 
derived with site-specific exposure variables and toxicity 
values based on key NAS recommendations ranged from 
19 to 250 ppb through application of linear and nonlinear 
means, respectively, to estimate cancer risks.  A wide range 
of possible DCC estimates were calculated using Monte 
Carlo methods, with the 1 ppb cleanup value traditionally 
used by EPA falling below the first percentile of calculated 
DCC estimates.
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Figure 2.  Child soil ingestion rate estimates (Stanek et al. 2001) and fitted distribution
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Table 2.  TEQD/F-weighted overall relative bioavailability (RBA) and absolute 
bioavailability estimates

City of Midland Soil (values as %)

Relative Bioavailability Absolute Bioavailabilitya

Rat – Pilot study 37 30

Rat – Follow-up study Not Measured Not Measured

Swine (ND=1/2 DL) 23 19

Swine (ND=DL) 29 23

In vitro bioaccessibility estimate: 17 Not Measured

Note:	 DL	 –	 detection limit  
	 ND	 –	 not detected
Values (midpoint) applied in these DCC calculations. 
a  Absolute bioavailability estimated assuming 80 percent bioavailability from corn oil vehicle.

Figure 1.  Estimated probability of remaining at residence (exposure duration) as a 
function of age for those initially 1 year old
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EPA’s Exposure and Human Health Reassessment of 
2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related 
Compounds (U.S. EPA 2003) (hereafter the “Reassessment”) 
was the subject of an exhaustive review by an NAS committee 
(NAS 2006), which made several specific findings and 
recommendations to EPA, including:
• Use a nonlinear (threshold) dose-response modeling for 

cancer
• Incorporate the findings of the NTP 2006 cancer bioassay 

for 2,3,7,8-TCDD
• Use probabilistic methods to better characterize uncertainty 

and variability
• Derive noncancer toxicity values
• Improve the application of Toxic Equivalence Factor values.
EPA’s response to the NAS recommendations is ongoing and 
thus this DCC estimate included derivation of toxicity values.

Cancer Endpoint

• A combination of a toxicokinetic model and data-derived 
uncertainty factors were used in deriving the cancer 
potency estimates for TCDD

• The NTP (2006) data for liver cancer adenoma were 
applied based on data analyses conducted by Maruyama 
and Aoki (2006)

• Human equivalent doses were estimated from the unit risk 
values presented by Maruyama and Aoki (2006) using a 
human physiologically-based pharmacokinetic (PBPK) 
model (Maruyama et al. 2002, 2003)

• A conservative point of departure (POD) was selected from 
those data (Table 3)

• The deterministic assessment applied the Maruyama and 
Aoki (2006) result from the Weibull model (P-value = 1.000 
for fit with data)

• The probabilistic assessment applied the dose 
corresponding to a one percent increase in cancer 
incidence (ED01) selected because it corresponds to the 
dose at which the dose-response relationship begins to 
increase, and falls well within the range of observation

30 (1x10x3x1)
1 (toxicokinetics);
10 within human 

population variability;
3 to remain below the 

tumor threshold; 
and 1 because study 

was chronic

Product of
4 uniform 

distributions

NA - not applicable
a Expressed as human equivalent internal dose as derived by Maruyama and Aoki (2006) 

LED01=the approximate 95% lower confidence limit of the dose producing a 1% increase in 
excess risk. ED01= dose corresponding to a 1% increase in cancer incidence.
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TOXICITY ASSESSMENT

EPA’s Exposure and Human Health Reassessment of 
2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related 
Compounds (U.S. EPA 2003) (hereafter the “Reassessment”) 
was the subject of an exhaustive review by an NAS committee 
(NAS 2006), which made several specific findings and 
recommendations to EPA, including: 

•	Use a nonlinear (threshold) dose-response modeling for 
cancer 

•	Incorporate the findings of the NTP 2006 cancer bioassay 
for 2,3,7,8-TCDD

•	Use probabilistic methods to better characterize uncertainty 
and variability

•	Derive noncancer  toxicity values 

•	Improve the application of Toxic Equivalence Factor values.  

EPA’s response to the NAS recommendations is ongoing and  
thus this DCC estimate included derivation of toxicity values.

Cancer Endpoint

•	A combination of a toxicokinetic model and data-derived 
uncertainty factors were used in deriving the cancer 
potency estimates for TCDD    

•	The NTP (2006) data for liver cancer adenoma were 
applied based on data analyses conducted by Maruyama 
and Aoki (2006) 

•	Human equivalent doses were estimated from the unit risk 
values presented by Maruyama and Aoki (2006) using a 
human physiologically-based pharmacokinetic (PBPK) 
model (Maruyama et al. 2002, 2003)

•	A conservative point of departure (POD) was selected from 
those data (Table 3)

• The deterministic assessment applied the Maruyama and 
Aoki (2006) result from the Weibull model (P-value = 1.000 
for fit with data)

•	The probabilistic assessment applied the dose 
corresponding to a one percent increase in cancer 
incidence (ED01) selected because it corresponds to the 
dose at which the dose-response relationship begins to 
increase, and falls well within the range of observation 

Noncancer Risks

This risk assessment relies primarily upon the World Health 
Organization’s Joint Exposure Committee on Food Additive’s 
(JECFA 2001) Tolerable Daily Intake value of 2.3 pg/kg-day, 
which was derived to address both cancer and noncancer 
effects.  

•	Except for the possibility of deriving a noncancer RfD from 
human data (Aylward et al. 2008), the Bell et al. (2007a,b,c) 
study provides considerable improvement over other 
published rat reproduction studies

•	Initial analysis of the Bell et al. (2007a,b,c) reproductive/
developmental studies for deriving noncancer toxicity 
values by these authors resulted in a noncancer toxicity 
value similar to the tolerable intake from JECFA (i.e., 2.1 
pg/kg-day) applied here.

Table 3.  Basis for cancer slope factors derived from 
NTP (2006) liver adenoma results using linear  
and nonlinear approaches within deterministic  
and probabilistic methods

Nonlinear (Reference dose [RfD]) Linear (Slope Factor)

Deterministic Probabilistic Deterministic Probabilistic

Point of 
departurea 

(units)

LED01 = 3.3 (ng/
kg-day)

Lognormal 
(mean=6.3; 5th 
percentile=3.3)  

(ng/kg-day)

LED01 = 3.3 
(ng/kg-day)

ED01 = 
Lognormal  

(mean = 6.3; 5th 
percentile = 3.3) 

(ng/kg-day)

Uncertainty 
factor

30 (1×10×3×1)   
1 (toxicokinetics); 
10 within human 

population variability; 
3 to remain below the 

tumor threshold;  
and 1 because study 

was chronic 

Product of 
4 uniform 

distributions
NA NA

Cancer value 
(units)

0.11 (ng/kg-day)

Lognormal 
(mean=1,100; 

SD=1,500) (pg/
kg-day)

3,000  
(mg/kg-day)-1

Lognormal 
(mean=1,790; 
SD=648) (mg/

kg-day)-1

NA  –  not applicable
a	 Expressed as human equivalent internal dose as derived by Maruyama and Aoki (2006) 

LED01= the approximate 95% lower confidence limit of the dose producing a 1% increase in  
excess risk.  ED01= dose corresponding to a 1% increase in cancer incidence.

Photo Source:  Jake Novak (2006)

The Tridge, a 3-way bridge crossing the meeting of Chippewa  
and Tittabawassee rivers in downtown Midland, Michigan
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Deterministic and probabilistic calculations were run 
using methods and inputs (Tables 1 and 3) described 
above for the following potential risks: cancer 
(assuming a linear dose-response), cancer (nonlinear 
calculation), and noncancer (nonlinear calculation) 
(Table 4 and Figures 3-5).
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RESULTS AND DISCUSSION

Deterministic and probabilistic calculations were run 
using methods and inputs (Tables 1 and 3) described 
above for the following potential risks:  cancer 
(assuming a linear dose-response), cancer (nonlinear 
calculation), and noncancer (nonlinear calculation) 
(Table 4 and Figures 3−5).  

•	A wide range of possible DCC estimates were 
calculated using Monte Carlo methods, with the 1 ppb 
cleanup value traditionally used by EPA falling below 
the first percentile of calculated DCC estimates for 
both cancer and non-cancer endpoints (Figures 3−5)

•	The impact of using a threshold cancer potency value 
results in residential DCC values at least an order 
of magnitude higher than use of a linear assumption 
(Figure 4)  

•	Using these soil concentration values in a forward 
Monte Carlo risk assessment yielded results 
corresponding to the 95th percentile values for their 
respective distributions indicating that, given the 
assumptions of this assessment, there is only a ~5% 
probability that the target risk/HQ is exceeded using 
the 5th percentile DCC values of 410 and 54 ppb 
(Figure 5) 

Sensitivity Analysis

A sensitivity analysis was conducted for the purpose 
of identifying which parameter values have the largest 
effect on variance in the distributions (Crystal Ball for 
Microsoft Excel, Decisioneering Inc.; Version 7), (Figure 6). 

Figure 3.  DCC estimates calculated probabilistically based on 
linear cancer slope factor
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Figure 4.  DCC estimates calculated probabilistically based on 
nonlinear cancer slope factor
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Figure 5.  DCC estimates calculated probabilistically based on 
noncancer endpoints (JECFA value)
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Table 4.  Direct contact criteria (DCC) estimates for 
TEQD/F in soil in ppb

Estimates Based on  
Cancer Endpoint

Estimates Based 
on Noncancer 

Endpoint

Low-Dose  
Linear

Nonlinear 
Threshold RfD

JECFA (2001)  
RfD

Deterministic 
calculation

19 ppb 250 ppb 5.3 ppb

Probabilistic 
calculation  
50th percentile  
(5th to 95th)

300  
(54–3,500)

4,500  
(410–68,000)

16 (2.9–140)

CANCER (nonlinear)

8%

47%

34%

12%

 
CANCER (linear)

 

 
 

 

9%

53%

24%

14%

CANCER (JECFA)

 53%

23%

24%

Toxicity value Exposure duration Child/adult soil ingestion rate All other parameters

Figure 6.  Sensitivity analysis
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