

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

October 30, 2007

ERM 2525 Natomas Park Drive, Suite 350 Sacramento, CA 95833 ATTN: Ms. Maria Barajas-Albalawi

SUBJECT: BRC Parcel 4A/4B Sampling Event, Data Validation

Dear Ms. Barajas-Albalawi

Enclosed are the revised data validation report for the fraction listed below. Please replace the previously submitted report with the enclosed revised reports.

<u>SDG#</u> F7I100142 F7I060284 F7I100142 F7I110258 <u>LDC#</u> 17590C1 17590A21 17590C21 17590D21

<u>Fraction</u> Volatiles Dioxins/Dibenzofurans Dioxins/Dibenzofurans Dioxins/Dibenzofurans

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

LDC Report# 17590C1

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:	BRC Parcel 4A/4B Sampling Event
Collection Date:	September 7, 2007
LDC Report Date:	October 29, 2007
Matrix:	Soil/Water

Parameters: Volatiles

Validation Level: EPA Level III & IV

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): F7I100142

RINSATE 2	TSB-BJ-06-10'**
TRIP BLANK(002)	TSB-BJ-01-0'**
TRIP BLANK(003)	TSB-BJ-01-10'
TRIP BLANK(004)	TSB-BJ-01-10'RE
TRIP BLANK(005)	TSB-BJ-02-0'**
TRIP BLANK(006)	TSB-BJ-02-10'**
TRIP BLANK(007)	TSB-BR-06-0'**
TRIP BLANK(008)	TSB-BR-06-10'**
TRIP BLANK(009)	TSB-AJ-01-10'MS
TSB-AR-06-0'	TSB-AJ-01-10'MSD
TSB-AR-06-0'-Dup	
TSB-AR-06-10'	
TSB-AJ-01-0'**	
TSB-AJ-01-10'**	
TSB-AJ-02-0'**	
TSB-AJ-02-0'-Dup**	
TSB-AJ-02-10'**	

**Indicates sample underwent EPA Level IV review

TSB-AJ-03-0'** TSB-AJ-03-10'** TSB-BJ-06-0'**

Introduction

This data review covers 21 soil samples and 9 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

З

I. Technical Holding Times

Sample	Compound	Total Days From Sample Collection Until Analysis	Required Holding Time (in Days) From Sample Collection Until Analysis	Flag	A or P
TSB-BJ-01-10'RE	All TCL compounds	19	14	J- (all detects) UJ (all non-detects)	A

All technical holding time requirements were met with the following exceptions:

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination (r^2) were greater than or equal to 0.990.

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
9/12/07	Acetonitrile	0.02504 (≥0.05)	All soil samples in SDG F7l100142	J (all detects) UJ (all non-detects)	A

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
8/9/07	Ethanol	0.00236 (≥0.05)	All soil samples in SDG F7l100142	J (all detects) UJ (all non-detects)	A
9/5/07	1,2-Dibromo-3-chloropropane	0.04952 (≥0.05)	All water samples in SDG F7l100142	J (all detects) UJ (all non-detects)	A
9/17/07	Ethanol	0.00640 (≥0.05)	All water samples in SDG F7l100142	J (all detects) UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
9/17/07 (FCAL6596)	Bromomethane Isopropylbenzene n-Butylbenzene	40.02851 27.92578 25.11695	TSB-AR-06-0' TSB-AR-06-0'-Dup TSB-AR-06-10' TSB-AJ-01-0'** 7261455MB	J+ (all detects) J+ (all detects) J+ (all detects)	A
9/17/07 (FCAL6595)	Ethanol 2,4-Dimethylpentane 2-Methylhexane 2,3-Dimethylpentane 3-Ethylpentane 1,3,5-Trichlorobenzene	33.03521 30.95342 27.35427 32.85444 26.97152 34.30185	TSB-AR-06-0' TSB-AR-06-0'-Dup TSB-AR-06-10' TSB-AJ-01-0'** 7261455MB	J+ (all detects) J+ (all detects) J+ (all detects) J+ (all detects) J+ (all detects) J+ (all detects)	A

Date	Compound	%D	Associated Samples	Flag	A or P
9/19/07 (FCAL6679)	Bromomethane	25.67691	TSB-AJ-01-10'** TSB-AJ-02-0'** TSB-AJ-02-0'-Dup** TSB-AJ-02-10'** TSB-AJ-03-10'** TSB-AJ-03-10'** TSB-BJ-06-0'** TSB-BJ-06-0'** TSB-BJ-02-0'** TSB-BJ-02-10'** TSB-BJ-02-10'** TSB-BR-06-10'** TSB-BR-06-10'** TSB-BR-06-10'** TSB-AJ-01-10'MS TSB-AJ-01-10'MSD 7263176MB	J+ (all detects)	A
9/19/07 (FCAL6677)	2,4-Dimethylpentane 3,3-Dimethylpentane 2-Methylhexane 2,3-Dimethylpentane 3-Methylhexane 3-Ethylpentane n-Heptane 1,3,5-Trichlorobenzene	34.80930 26.27782 34.56763 35.92803 30.87411 31.96103 31.12890 36.09992	TSB-AJ-01-10'** TSB-AJ-02-0'** TSB-AJ-02-0'-Dup** TSB-AJ-02-10'** TSB-AJ-03-10'** TSB-BJ-06-0'** TSB-BJ-06-10'** TSB-BJ-01-0'** TSB-BJ-01-0'** TSB-BJ-02-10'** TSB-BJ-02-10'** TSB-BR-06-0'** TSB-BR-06-10'** TSB-AJ-01-10'MS TSB-AJ-01-10'MSD 7263176MB	J+ (all detects) J+ (all detects)	A
9/26/07 (FCAL6868)	Bromomethane	33.18003	TSB-BJ-01-10'RE 7270145MB	J+ (all detects)	A
9/26/07 (FCAL6869)	Ethanol 2,2-Dimethylpentane 2,4-Dimethylpentane 2,2,3-Trimethylbutane 3,3-Dimethylpentane 2-Methylhexane 3-Methylhexane 3-Methylhexane 3-Ethylpentane n-Heptane 1,3,5-Trichlorobenzene	28.17525 38.12606 52.78176 38.94309 42.44628 52.27788 55.60273 49.63469 48.50320 46.15422 36.72640	TSB-BJ-01-10'RE 7270145MB	J+ (all detects) J+ (all detects)	A
9/17/07 (LCAL5900)	Bromomethane Carbon disulfide	67.52117 36.67244	All water samples in SDG F7I100142	J+ (all detects) J+ (all detects)	A

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration RRF values were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
9/17/07 (FCAL6596)	Acetonitrile	0.02645 (≥0.05)	TSB-AR-06-0' TSB-AR-06-0'-Dup TSB-AR-06-10' TSB-AJ-01-0'** 7261455MB	J (all detects) UJ (all non-detects)	Α
9/17/07 (FCAL6595)	Ethanol	0.00314 (≥0.05)	TSB-AR-06-0' TSB-AR-06-0'-Dup TSB-AR-06-10' TSB-AJ-01-0'** 7261455MB	J (all detects) UJ (all non-detects)	A
9/19/07 (FCAL6679)	Acetonitrile	0.02405 (≥0.05)	TSB-AJ-01-10'** TSB-AJ-02-0'** TSB-AJ-02-0'-Dup** TSB-AJ-02-10'** TSB-AJ-03-0'** TSB-BJ-03-10'** TSB-BJ-06-0'** TSB-BJ-01-0'** TSB-BJ-01-10' TSB-BJ-02-10'** TSB-BJ-02-10'** TSB-BR-06-10'** TSB-BR-06-10'** TSB-AJ-01-10'MS TSB-AJ-01-10'MSD 7263176MB	J (all detects) UJ (all non-detects)	A
9/19/07 (FCAL6677)	Ethanol	0.00275 (≥0.05)	TSB-AJ-01-10'** TSB-AJ-02-0'** TSB-AJ-02-0'-Dup** TSB-AJ-02-10'** TSB-AJ-03-10'** TSB-BJ-06-0'** TSB-BJ-06-10'** TSB-BJ-01-10' TSB-BJ-02-10'** TSB-BJ-02-10'** TSB-BR-06-0'** TSB-BR-06-10'** TSB-BR-06-10'** TSB-BR-06-10'** TSB-AJ-01-10'MS TSB-AJ-01-10'MS TSB-AJ-01-10'MSD 7263176MB	J (all detects) UJ (all non-detects)	A
9/26/07 (FCAL6868)	Acetonitrile	0.02781 (≥0.05)	TSB-BJ-01-10'RE 7270145MB	J (all detects) UJ (all non-detects)	A

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
9/26/07 (FCAL6869)	Ethanol	0.00303 (≥0.05)	TSB-BJ-01-10'RE 7270145MB	J (all detects) UJ (all non-detects)	A
9/17/07 (LCAL5900)	1,2-Dibromo-3-chloropropane	0.04545 (≥0.05)	All water samples in SDG F7l100142	J (all detects) UJ (all non-detects)	A
9/17/07 (LCAL5901)	Ethanol	0.00696 (≥0.05)	All water samples in SDG F7l100142	J (all detects) UJ (all non-detects)	A

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
7261455MB	9/17/07	Acetone 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Toluene 1,2,4-Trimethylbenzene	7.2 ug/Kg 0.17 ug/Kg 0.13 ug/Kg 0.21 ug/Kg 0.29 ug/Kg 0.35 ug/Kg	TSB-AR-06-0' TSB-AR-06-0'-Dup TSB-AR-06-10' TSB-AJ-01-0'**
7263176MB	9/19/07	Acetone 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	15 ug/Kg 0.20 ug/Kg 0.19 ug/Kg 0.26 ug/Kg	TSB-AJ-01-10'** TSB-AJ-02-0'** TSB-AJ-02-0'-Dup** TSB-AJ-02-10'** TSB-AJ-03-0'** TSB-AJ-03-10'** TSB-BJ-06-0'** TSB-BJ-06-10'** TSB-BJ-01-10' TSB-BJ-02-0'** TSB-BJ-02-10'** TSB-BJ-02-10'**
7270145MB	9/26/07	1,2,4-Trimethylbenzene	0.22 ug/Kg	TSB-BJ-01-10'RE

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
TSB-AR-06-0'	"SB-AR-06-0" Acetone Toluene 1,2,4-Trimethylbenzene		21U ug/Kg 5.2U ug/Kg 5.2U ug/Kg
TSB-AR-06-0'-Dup	SB-AR-06-0'-Dup Acetone Toluene 1,2,4-Trimethylbenzene		21U ug/Kg 5.2U ug/Kg 5.2U ug/Kg
TSB-AR-06-10'	TSB-AR-06-10' Acetone Toluene 1,2,4-Trimethylbenzene		21U ug/Kg 5.1U ug/Kg 5.1U ug/Kg
TSB-AJ-01-0'**	Acetone 1,2,4-Trimethylbenzene	7.7 ug/Kg 0.34 ug/Kg	20U ug/Kg 5.1U ug/Kg
TSB-AJ-01-10'**	Acetone	11 ug/Kg	21U ug/Kg
TSB-AJ-02-0'**	Acetone 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	6.1 ug/Kg 0.18 ug/Kg 0.19 ug/Kg 0.32 ug/Kg	20U ug/Kg 5.1U ug/Kg 5.1U ug/Kg 5.1U ug/Kg
TSB-AJ-02-0'-Dup**	Acetone	8.5 ug/Kg	20U ug/Kg
TSB-AJ-02-10'**	Acetone	10 ug/Kg	21U ug/Kg
TSB-AJ-03-0'**	Acetone	11 ug/Kg	20U ug/Kg
TSB-AJ-03-10'**	Acetone	9.4 ug/Kg	21U ug/Kg
TSB-BJ-01-0'**	Acetone	10 ug/Kg	20U ug/Kg
TSB-BJ-01-10'	Acetone	30 ug/Kg	30U ug/Kg
TSB-BJ-02-0'**	Acetone	8.0 ug/Kg	20U ug/Kg
TSB-BJ-02-10'**	Acetone	9.4 ug/Kg	22U ug/Kg
TSB-BR-06-0'**	Acetone	6.8 ug/Kg	20U ug/Kg
TSB-BR-06-10'**	Acetone	20 ug/Kg	25U ug/Kg

Samples TRIP BLANK(002), TRIP BLANK(003), TRIP BLANK(004), TRIP BLANK(005), TRIP BLANK(006), TRIP BLANK(007), TRIP BLANK(008), and TRIP BLANK(009) were identified as trip blanks. No volatile contaminants were found in these blanks with the following exceptions:

Trip Blank ID	Sampling Date	Compound	Concentration	Associated Samples
TRIP BLANK(002)	9/7/07	Acetone Toluene	5.3 ug/L 0.18 ug/L	TSB-AR-06-0' TSB-AR-06-0'-Dup TSB-AR-06-10'
TRIP BLANK(003)	9/7/07	Acetone Toluene	4.9 ug/L 0.19 ug/L	TSB-AJ-01-0'** TSB-AJ-01-10'** TSB-AJ-02-0'**
TRIP BLANK(004)	9/7/07	Acetone Toluene	4.5 ug/L 0.25 ug/L	TSB-AJ-02-0'-Dup** TSB-AJ-02-10'** TSB-AJ-03-0'**
TRIP BLANK(005)	9/7/07	Acetone Toluene	6.3 ug/L 0.27 ug/L	TSB-BJ-01-0'** TSB-BJ-01-10' TSB-BJ-02-0'**
TRIP BLANK(006)	9/7/07	Acetone Toluene	4.7 ug/L 0.19 ug/L	TSB-BJ-02-10'** TSB-BR-06-0'** TSB-BR-06-10'**
TRIP BLANK(007)	9/7/07	Acetone	4.9 ug/L	TSB-AJ-03-10'** TSB-BJ-06-0'** TSB-BJ-06-10'**
TRIP BLANK(008)	9/7/07	Acetone	4.4 ug/L	RINSATE 2
TRIP BLANK(009)	9/7/07	Acetone	3.6 ug/L	RINSATE 2

Sample "RINSATE 2" was identified as a rinsate. No volatile contaminants were found in this blank with the following exceptions:

Rinsate ID	Sampling Date	Compound	Concentration	Associated Samples
RINSATE 2	9/7/07	Acetone Chloroform Bromodichloromethane Chloromethane	2.1 ug/L 5.3 ug/L 4.8 ug/L 0.31 ug/L	All soil samples in SDG F7l100142

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
TSB-AR-06-0'	Acetone	6.1 ug/Kg	21U ug/Kg
	Toluene	0.30 ug/Kg	5.2U ug/Kg
TSB-AR-06-0'-Dup	Acetone	5.2 ug/Kg	21U ug/Kg
	Toluene	0.45 ug/Kg	5.2U ug/Kg
TSB-AR-06-10'	Acetone	14 ug/Kg	21U ug/Kg
	Toluene	0.25 ug/Kg	5.1U ug/Kg
TSB-AJ-01-0'**	Acetone	7.7 ug/Kg	20U ug/Kg
TSB-AJ-01-10'**	Acetone	11 ug/Kg	21U ug/Kg
TSB-AJ-02-0'**	Acetone	6.1 ug/Kg	20U ug/Kg
	Toluene	0.62 ug/Kg	5.1U ug/Kg
TSB-AJ-02-0'-Dup**	Acetone	8.5 ug/Kg	20U ug/Kg
	Toluene	0.25 ug/Kg	5.1U ug/Kg
TSB-AJ-02-10'**	Acetone	10 ug/Kg	21U ug/Kg
	Toluene	0.21 ug/Kg	5.1U ug/Kg
TSB-AJ-03-0'**	Acetone	11 ug/Kg	20U ug/Kg
	Toluene	0.82 ug/Kg	5.1U ug/Kg
TSB-AJ-03-10'**	Acetone	9.4 ug/Kg	21U ug/Kg
TSB-BJ-01-0'**	Acetone	10 ug/Kg	20U ug/Kg
	Toluene	0.29 ug/Kg	5.1U ug/Kg
TSB-BJ-02-0'**	Acetone	8.0 ug/Kg	20U ug/Kg
	Toluene	0.67 ug/Kg	5.1U ug/Kg
TSB-BJ-02-10'**	Acetone	9.4 ug/Kg	22U ug/Kg
	Toluene	0.20 ug/Kg	5.4U ug/Kg
TSB-BR-06-0'**	Acetone	6.8 ug/Kg	20U ug/Kg
	Toluene	0.34 ug/Kg	5.1U ug/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
TSB-BR-06-10'**	Acetone Toluene	20 ug/Kg 0.31 ug/Kg	25U ug/Kg 6.3U ug/Kg
RINSATE 2	Acetone	2.1 ug/L	2.1U ug/L

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Compound	Flag	A or P
TSB-BJ-01-10'	Toluene-d8 Bromofluorobenzene	56 (67-150) 54 (57-150)	All TCL compounds	J- (all detects) UJ (all non-detects)	A

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were not within QC limits. Since there were no associated samples, no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Flag	A or P
7270145LCS (TSB-BJ-01-10'RE 7270145MB)	Vinyl chloride Bromomethane	123 (49-121) 156 (53-150)	-	-	J+ (all detects) J+ (all detects)	Р

Although the LCS/LCSD percent recoveries (%R) and relative percent differences (RPD) were not within QC limits for some compounds, the LCS/LCSD and MS/MSD percent recoveries (%R) were within QC limits and no data were qualified.

IX. Regional Quality Assurance and Quality Control

Not applicable.

*X. Internal Standards

All internal standard areas and retention times were within QC limits with the following exceptions:

Sample	Internal Standards	Area (Limits)	Compound	Flag	A or P
TSB-BJ-01-10'	1,4-Dichlorobenzene-d4 Chlorobenzene-d5 Fluorobenzene	139856 (197841-791364) 272304 (410129-1640516) 4242163 (688644-2754574)	All TCL compounds	J (all detects) UJ (all non-detects)	A

*Removed minus sign from the Flag in table above.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of the report if data has been qualified.

XVI. Field Duplicates

Samples TSB-AR-06-0' and TSB-AR-06-0'-Dup and samples TSB-AJ-02-0'** and TSB-AJ-02-0'-Dup** were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

۰۰۰ ۱ ۲

	Concentration (ug/Kg)			Difference		
Compound	TSB-AR-06-0'	TSB-AR-06-0'-Dup	RPD (Limits)	Difference (Limits)	Flags	A or P
Acetone	6.1	5.2	-	0.9 ug/Kg (≤21)	-	-
Toluene	0.30	0.45	-	0.15 ug/Kg (≤5.2)	•	-
1,2,4-Trimethylbenzene	0.39	0.39	-	0 ug/Kg (≤5.2)	•	-

	Concentration (ug/Kg)			D.W.		
Compound	TSB-AJ-02-0'**	TSB-AJ-02-0'-Dup**	RPD (Limits)	Difference (Limits)	Flags	A or P
Acetone	6.1	8.5	-	2.4 ug/Kg (≤20)	-	-
1,2-Dichlorobenzene	0.18	5.1U	-	4.92 ug/Kg (≤5.1)	-	-
1,3-Dichlorobenzene	0.19	5.1U	-	4.91 ug/Kg (≤5.1)		-
1,4-Dichlorobenzene	0.32	5.1U	-	4.78 ug/Kg (≤5.1)	-	-
Toluene	0.62	0.25	-	0.37 ug/Kg (≤5.1)	÷	-
1,2,4-Trimethylbenzene	0.57	0.41	-	0.16 ug/Kg (≤5.1)	-	-

*BRC Parcel 4A/4B Sampling Event Volatiles - Data Qualification Summary - SDG F7I100142

SDG	Sample	Compound	Flag	A or P	Reason
F7I100142	TSB-BJ-01-10'RE	All TCL compounds	J- (all detects) UJ (all non-detects)	A	Technical holding times
F7I100142	TSB-AR-06-0' TSB-AR-06-0'-Dup TSB-AR-06-10' TSB-AJ-01-0'** TSB-AJ-01-10'** TSB-AJ-02-0'-Dup** TSB-AJ-02-10'** TSB-AJ-03-10'** TSB-AJ-03-10'** TSB-BJ-06-10'** TSB-BJ-06-10'** TSB-BJ-01-10' TSB-BJ-01-10'RE TSB-BJ-02-0'** TSB-BJ-02-10'** TSB-BJ-02-10'** TSB-BR-06-0'**	Acetonitrile Ethanol	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A	Initial calibration (RRF)
F7l100142	RINSATE 2 TRIP BLANK(002) TRIP BLANK(003) TRIP BLANK(004) TRIP BLANK(005) TRIP BLANK(006) TRIP BLANK(007) TRIP BLANK(009)	1,2-Dibromo-3-chloropropane Ethanol	J (all detects) UJ (all non-detects)	A	Initial calibration (RRF)
F7l100142	TSB-AR-06-0' TSB-AR-06-0'-Dup TSB-AR-06-10' TSB-AJ-01-0'**	Bromomethane Isopropylbenzene n-Butylbenzene Ethanol 2,4-Dimethylpentane 2-Methylhexane 2,3-Dimethylpentane 3-Ethylpentane 1,3,5-Trichlorobenzene	J+ (all detects) J+ (all detects)	A	Continuing calibration (%D)

SDG	Sample	Compound	Flag	A or P	Reason
F7I100142	TSB-AJ-01-10'** TSB-AJ-02-0'** TSB-AJ-02-0'-Dup** TSB-AJ-02-10'** TSB-AJ-03-0'** TSB-AJ-03-10'** TSB-BJ-06-0'** TSB-BJ-06-10'** TSB-BJ-01-10' TSB-BJ-02-10'** TSB-BJ-02-10'** TSB-BR-06-0'**	Bromomethane 2,4-Dimethylpentane 3,3-Dimethylpentane 2-Methylhexane 2,3-Dimethylpentane 3-Methylhexane 3-Ethylpentane n-Heptane 1,3,5-Trichlorobenzene	J+ (all detects) J+ (all detects)	A	Continuing calibration (%D)
F7l100142	TSB-BJ-01-10'RE	Bromomethane Ethanol 2,2-Dimethylpentane 2,4-Dimethylpentane 2,2,3-Trimethylbutane 3,3-Dimethylpentane 2-Methylhexane 2-Methylhexane 3-Methylhexane 3-Ethylpentane n-Heptane 1,3,5-Trichlorobenzene	$J+ (all detects) \\ J+ (all det$	A	Continuing calibration (%D)
F7I100142	RINSATE 2 TRIP BLANK(002) TRIP BLANK(003) TRIP BLANK(004) TRIP BLANK(005) TRIP BLANK(006) TRIP BLANK(007) TRIP BLANK(009)	Bromomethane Carbon disulfide	J+ (all detects) J+ (all detects)	A	Continuing calibration (%D)
F7l100142	TSB-AR-06-0' TSB-AR-06-0'-Dup TSB-AI-01-0'* TSB-AJ-01-0'** TSB-AJ-02-0'** TSB-AJ-02-0'-Dup** TSB-AJ-02-10'** TSB-AJ-03-10'** TSB-BJ-06-10'** TSB-BJ-06-10'** TSB-BJ-01-10' TSB-BJ-02-10'** TSB-BJ-02-10'** TSB-BJ-02-10'** TSB-BJ-02-10'** TSB-BJ-02-10'** TSB-BR-06-10'** TSB-BR-06-10'**	Acetonitrile Ethanol	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A	Continuing calibration (RRF)

SDG	Sample	Compound	Flag	A or P	Reason
F7l100142	RINSATE 2 TRIP BLANK(002) TRIP BLANK(003) TRIP BLANK(004) TRIP BLANK(005) TRIP BLANK(006) TRIP BLANK(008) TRIP BLANK(009)	1,2-Dibromo-3-chloropropane Ethanol	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A	Continuing calibration (RRF)
F7l100142	TSB-BJ-01-10'	All TCL compounds	J- (all detects) UJ (all non-detects)	A	Surrogate recovery (%R)
*F7I100142	TSB-BJ-01-10'	All TCL compounds	J (all detects) UJ (all non-detects)	А	Internal standards (area)

BRC Parcel 4A/4B Sampling Event Volatiles - Laboratory Blank Data Qualification Summary - SDG F7I100142

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P
F7l100142	TSB-AR-06-0'	Acetone Toluene 1,2,4-Trimethylbenzene	21U ug/Kg 5.2U ug/Kg 5.2U ug/Kg	A
F7l100142	TSB-AR-06-0'-Dup	Acetone Toluene 1,2,4-Trimethylbenzene	21U ug/Kg 5.2U ug/Kg 5.2U ug/Kg	A
F7I100142	TSB-AR-06-10'	Acetone Toluene 1,2,4-Trimethylbenzene	21U ug/Kg 5.1U ug/Kg 5.1U ug/Kg	A
F7l100142	TSB-AJ-01-0'**	Acetone 1,2,4-Trimethylbenzene	20U ug/Kg 5.1U ug/Kg	A
F7l100142	TSB-AJ-01-10'**	Acetone	21U ug/Kg	А
F7l100142	TSB-AJ-02-0'**	Acetone 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	20U ug/Kg 5.1U ug/Kg 5.1U ug/Kg 5.1U ug/Kg	A
F7I100142	TSB-AJ-02-0'-Dup**	Acetone	20U ug/Kg	А
F7l100142	TSB-AJ-02-10'**	Acetone	21U ug/Kg	A

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P
F7l100142	TSB-AJ-03-0'**	Acetone	20U ug/Kg	A
F7I100142	TSB-AJ-03-10'**	Acetone	21U ug/Kg	A
F7 100142	TSB-BJ-01-0'**	Acetone	20U ug/Kg	A
F7 100142	TSB-BJ-01-10'	Acetone	30U ug/Kg	A
F7 100142	TSB-BJ-02-0'**	Acetone	20U ug/Kg	A
F7l100142	TSB-BJ-02-10'**	Acetone	22U ug/Kg	A
F7l100142	TSB-BR-06-0'**	Acetone	20U ug/Kg	A
F7l100142	TSB-BR-06-10'**	Acetone	25U ug/Kg	А

BRC Parcel 4A/4B Sampling Event Volatiles - Field Blank Data Qualification Summary - SDG F7I100142

SDG	Sample	Compound	Modified Final Concentration	A or P
F7l100142	TSB-AR-06-0'	Acetone Toluene	21U ug/Kg 5.2U ug/Kg	A
F7l100142	TSB-AR-06-0'-Dup	Acetone Toluene	21U ug/Kg 5.2U ug/Kg	A
F7l100142	TSB-AR-06-10'	Acetone Toluene	21U ug/Kg 5.1U ug/Kg	A
F7l100142	TSB-AJ-01-0'**	Acetone	20U ug/Kg	A
F7l100142	TSB-AJ-01-10'**	Acetone	21U ug/Kg	A
F7I100142	TSB-AJ-02-0'**	Acetone Toluene	20U ug/Kg 5.1U ug/Kg	A
F7l100142	TSB-AJ-02-0'-Dup**	Acetone Toluene	20U ug/Kg 5.1U ug/Kg	A

SDG	Sample	Compound	Modified Final Concentration	A or P
F7l100142	TSB-AJ-02-10'**	Acetone Toluene	21U ug/Kg 5.1U ug/Kg	A
F7l100142	TSB-AJ-03-0'**	Acetone Toluene	20U ug/Kg 5.1U ug/Kg	A
F7l100142	TSB-AJ-03-10'**	Acetone	21U ug/Kg	A
F7l100142	TSB-BJ-01-0'**	Acetone Toluene	20U ug/Kg 5.1U ug/Kg	A
F7l100142	TSB-BJ-02-0'**	Acetone Toluene	20U ug/Kg 5.1U ug/Kg	A
F7I100142	TSB-BJ-02-10'**	Acetone Toluene	22U ug/Kg 5.4U ug/Kg	A
F7l100142	TSB-BR-06-0'**	Acetone Toluene	20U ug/Kg 5.1U ug/Kg	A
F7I100142	TSB-BR-06-10'**	Acetone Toluene	25U ug/Kg 6.3U ug/Kg	A
F7l100142	RINSATE 2	Acetone	2.1U ug/L	A

19

VALIDATION COMPLETENESS WORKSHEET

Level III/IV

Date:	10/18/07
Page:_	<u>lof</u>
Reviewer	JVC
2nd Reviewer:	0
	\mathcal{F}

-SDG #:____F7I100142 Laboratory: <u>Test America</u>

LDC #: 17590C1

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	SW	Sampling dates: 9/07/07
11.	GC/MS Instrument performance check	A	
III.	Initial calibration	SW	Torsp r
IV.	Continuing calibration / ICV	su	· ·
V .	Blanks	SW	
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	sW	T\$B-AR-13-0'
VIII.	Laboratory control samples	SW)	LCS /p
IX.	Regional Quality Assurance and Quality Control	N	
X .	Internal standards	SW	
XI.	Target compound identification	A	Not reviewed for Level III validation.
XII.	Compound quantitation/CRQLs	<u>A</u>	Not reviewed for Level III validation.
XIII.	Tentatively identified compounds (TICs)	Ň	Not reviewed for Level III validation.
XIV.	System performance	A	Not reviewed for Level III validation.
XV.	Overall assessment of data	A	
XVI.	Field duplicates	SW	$D_1 = 10, 11$ $D_2 = 15, 16$
XVII.	Field blanks	SW	R = 1 TB = 2-9

Note:

.

. ...

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: ** Indicates sample underwent Level IV validation

+ 1	RINSATE 2	W	ት 11 ን	TSB-AR-06-0'-Dup D,	±13	TSB-BJ-06-10'**	\$	31	726 1126 MB
2	TRIP BLANK(002)		† ₂ γ	TSB-AR-06-10'	22 %	TSB-BJ-01-0'**		+ 32 7	726 14 55 MB
3 1	TRIP BLANK(003)		+ 13 γ	, TSB-AJ-01-0'**	233	TSB-BJ-01-10'		+ 33 3	726 3176 MB
4	TRIP BLANK(004)		+ 143	TSB-AJ-01-10'**	244	TSB-BJ-01-10'RE	Π	34 4	7270145 MB
15 1	TRIP BLANK(005)		t ₁₅ >	тsb-аj-02-0'** Р-⁄	+ 257	TSB-BJ-02-0'**	Γ	35	······································
61	TRIP BLANK(006)		† 16 3	TSB-AJ-02-0'-Dup** 🖉	⁺ 263	TSB-BJ-02-10'**		36	
+ 7	TRIP BLANK(007)		†17 3	TSB-AJ-02-10'**	* 27 3	TSB-BR-06-0'**	Π	37	
81	TRIP BLANK(008)		+ 18 3	TSB-AJ-03-0'**	t ₂₈ 3	TSB-BR-06-10'**		38	
91	TRIP BLANK(009)		* 19	TSB-AJ-03-10'**	293	TSB-AJ-01-10'MS		39	
ייי 10	TSB-AR-06-0' D	Ś	203	TSB-BJ-06-0'**	303	TSB-AJ-01-10'MSD	V	40	

LDC #:	1759001
SDG #:	Cu Cover

the many discussion of the second

a a sha waxan

VALIDATION FINDINGS CHECKLIST

ي الهجاد دار ماجد الارد ا

•••

Page:_	$1 \text{ of } \gamma$
Reviewer:	NG
2nd Reviewer:	
	r

. .

È

والمرجوب والمرجوب والمرجوب والمرجوب والمحمد والمرجوب والمحمد والمرجوب والمرجوب والمرجوب

Method: Volatiles (EPA SW 846 Method 8260B)

. Ne state a transmission of the second second second state at the second second second second second second seco

Validation Area	Yes	No	NA	Findings/Comments
All technical holding times were met.	70	<u>\</u> _	1	
Cooler temperature criteria was met.		1		
Were the BFB performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?				
Did the laboratory perform a 5 point calibration prior to sample analysis?			ļ	
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Was a curve fit used for evaluation?		1	ļ	
Did the initial calibration meet the curve fit acceptance criteria of > 0.990?			<u> </u>	
Were all percent relative standard deviations (%RSD) \leq 30% and relative response factors (RRF) \geq 0.05?			1	
In States of Charles and Ch				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	/			
Were all percent differences (%D) \leq 25% and relative response factors (RRF) \geq 0.05?				
Was a method blank associated with every sample in this SDG?	-/			
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
Were all surrogate %R within QC limits?		/		
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?		-		
MIL MERICASI IKA MERIKA BUGI PERKA				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			-
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VUCTION CONTROLS INTO A STATE OF THE STATE				
Was an LCS analyzed for this SDG?	-			

LDC #: 17590C/ SDG #: See Cover

VALIDATION F

بالشبيب بالاللا ب

S#: <u>See Cover</u> VALIDATION FINDINGS C	HEC	KLIS"	r	Page: Reviewer: 2nd Reviewer:	
Validation Area	Yes	No	NA	Findings/Comments	
Was an LCS analyzed per analytical batch?	-	[1
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?			t	· .	
u votre (and a sully) see the same same (a same)					
Were performance evaluation (PE) samples performed?		/	1		
Were the performance evaluation (PE) samples within the acceptance limits?			-		
Were internal standard area counts within -50% or +100% of the associated calibration standard?	•	/			
Were retention times within + 30 seconds of the associated calibration standard?					
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?					
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/				
Were chromatogram peaks verified and accounted for?		,			
AL CONTRACTOR CONTRACTOR					
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	1				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		-			
UIL SEMEND AVAILUTER CONTRACTORS (ALSO A CARACTER STATE)					
Nere the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?			1		
Vere relative intensities of the major ions within \pm 20% between the sample and the eference spectra?			7		
bid the raw data indicate that the laboratory performed a library search for all equired peaks in the chromatograms (samples and blanks)?		7			

والموجود المراجع والمتعرف والمتعرف والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد

Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/					
Were chromatogram peaks verified and accounted for?		ł				
ALL STUDE DECOMPANIA (COMPANIE)						
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?		1				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		$\left \right $				
Alle Renewers Bernur Bernur Bernur (BES)						
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?			/	ł		
Were relative intensities of the major ions within ± 20% between the sample and the reference spectra?			-	f		
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?		/	ł			
System performance was found to be acceptable.	\square					
Overall assessment of data was found to be acceptable.		1				
NVII FEDIMINEE						
Field duplicate pairs were identified in this SDG.				and an an inclusion of the	and and a share and a share and an	 in de la
Target compounds were detected in the field duplicates.		, ,				
evil), Philippedics		- 191				
Field blanks were identified in this SDG.	1	/				
Target compounds were detected in the field blanks.	7			·····		

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride**	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEE. Acetonitrile
D. Chioroethane	X. Bromoform*	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichiorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	000. 1,3,5-Trichlorobenzene	III. Isobutyl alcohol
H. 1,1-Dichloroethene**	BB. 1,1,2,2-Tetrachioroethane*	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane*	CC. Toluene**	WW. Bromobenzene	QQQ. cis-1,2-Dichioroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene*	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform**	EE. Ethylbenzene**	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chiorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN. Dimethal dicials de
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000. 2- VITO DIODANE
N. 1,1,1-Trichloroethane	HH. Vinyi acetate	BBB. 4-Chiorotoluene	VVV. 4-Ethyltofuene	PPPP. 2 2 Directual centerate
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	aaaa. n-Heortan e
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR. 2 4 Dimethyl pentane
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	ssss. 3 3 - Dinethul Dentame
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	ттт. 2 - Mf th ul kox au e
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	UUUU. 3- INCTANI AFXANO
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Arnyl methyl ether	WW. 3 - Ethyl pentane
				łi –

COMPNDL. 1sb.wpd

Nonend 2.2, - Dinethy Ipentane 2.2, 3- Trimethy buttone

NWWW. XX XX. Y Y YY.

* = System performance check compounds (SPCC) for RRF ; ** = Calibration check compounds (CCC) for %RSD.

LDC #: 17 590 C/ SDG #: See Cover

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page: ___of _/ Reviewer: ____VG 2nd Reviewer: _____/

All circled dates have exceeded the technical holding times. Y N/ N/A Were all cooler temperatures within validation criteria?

METHOD : GC/N	MS VOA (EPA S	W 846 Method	8260B)				
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualifier
24	2	Ň	9/07/07		Analysis date 9 /26 /07	19	J-/45/4
,							
							l
			-				
••••••••••••••••••••••••••••••••••••••							
	L						
	<u> </u>	1			<u> </u>		
				······································			
	L				1		

TECHNICAL HOLDING TIME CRITERIA

Sec. Car

Water unpreserved: Water preserved: Soil:

ويورب والمتعاد فالمتعاد التنابي والمتعام والمتعاد

Aromatic within 7 days, non-aromatic within 14 days of sample collection. Both within 14 days of sample collection. Both within 14 days of sample collection.

See Cover LDC #: 17590CI SDG #:

VALIDATION FINDINGS WORKSHEET **Initial Calibration**

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". O N/A Did the laboratory perform a 5 point calibration prior to sample analysis?

Did the laboratory perform a 5 point calibration prior to sample analysis? Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation? 7 3 30.99 N NIA N NIA V NIA V NIA

Did the initial calibration meet the acceptance criteria?

Associated Samples All suils + 726 3176 726 3176 726 3176 726 3176 726 1126 MB 726 1126 MB	
KSU and 20.05 KKF 7 Finding RRF (Limit: >0.05) 0. 0 2504 0. 0 2504 0. 0 2504 0. 0 2504	
Finding %RSD (Limit:30.0%)	
Were all forces and results within the valuation criteria of 530 %rSU and 20.05 kHr valuation standard ID Einding %RSD Finding %RSD IcAL - F EEEE Icmit: 20.0%) 0.00236 ICAL - F W WW 0.00236 ICAL - F W WW 0.00236 ICAL - F W WW 0.00236	
ти лил и в Саte в Саte	

INICAL. 1SB

1

SDG #: Ste Garey LDC # 17540 CI

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

Page: 1 of 2 2nd Reviewer:_ Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Were percent differences (%D) and relative response factors (RRE) within method criteria for all CCC's Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A

C SUCCE Pue

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? Were all %D and RRFs within the validation criteria of ∠25 %D and ∠0.05 RRF ?	Finding %D Finding RRF Compound (Limit: ≤25.0%) (Limit: ≥0.05) Associated Samples Qualifications	(0-13 7261455MB	27. 9as78	III (+) 25.11695	tett 0.02645 J/us /A	NWW (7) 33.63521 37.404 12		(+)				b (f) 25.67891 14-23 25-30 J+ det /4		MMM (MMM	(+) 34.80930	26. 2778×	(t) 34.	PPPP (F) 35. 92803	UUUU (F) 30.87411	(+)	BBBB (1) 31. 12890	
es (%D) and relative response within the validation criteria of		(t)	(4)	()	tette	Ð)) (Ð	(1)	ઉ			 Ð	FFEF	(MMM)	Ð	Ð	Ð	Ê)	(f)	(+)	ભ	
Were percent differences (%D) and relat Were all %D and RRFs within the validat	Standard ID	FCAL 6596				 FCAL 6595						FCAL 6679		FCAL 66 77								
Y/N/N/A	# Date	9/17 107										9/19/07										

CONCAL. 1SB

See liver LDC #: 17590 CI SDG #:

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

Page: $\chi_{of} \chi$ Reviewer: JUS 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

AN NA

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ?

#	Date	Standard ID Compound Finding %D Finding R (Limit: <25.0%) (Limit: <25.0%)	Compound	Finding %D (Limit: <25.0%)	Finding RRF (Limit: >0.05)	Associated Samules		Ounitionations
	9/26/07	FCAL 6868	B (t)	33.18003		24 7270145	A P	Tt dit /a
			BEEE		1820.0			T/UT A
		FCAL 6869	(M M M)		60630.0			
			CE (MMM	28. 4525				74 14 /4
			CH XXXX	38.12 606				۲
			RRR G)	52.78176				
			(AYY A)	38.94309				
			5555 (A)	42.446 28				
			TTT (F)	52.27788				
				SS. 60273				
			(ниии с)	49.63449				
			VVVV (+)	48, 50 320				
			Q Q Q Q C I	46.15427				
			000 (4)	36.72640				,
								*
	0/-1			1				
	20/21/12	1042400		47. 52117		All water + 73	72611 26 MB	7+1045 14
Γ			(2 (F)	36.67244				
			MAM		0.04545			J/47 &
Γ								41
		LCAL 5901	M MM		0.00696	eroscar		
T								
T								

CONCAL. 1SB

SDG #: Sre Cover LDC #: 17590 C 1

VALIDATION FINDINGS WORKSHEET

Blanks

Page: 1 of 2 Reviewer: JVC Х 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was a method blank associated with every sample in this SDG? Y N N/A

Was a method blank analyzed at least once every 12 hours for each matrix and concentration? Was there contamination in the method blanks? If yes, please see the qualifications below. Y/N N/Y Y N N/A

Sample Identification ~ 1 0.34/5.14 2 HOC) $\underline{\infty}$ Associated Samples: 77 0.30 /5.24 0.45/5.24 0.25/5.14 n Ic, 2 0.33 4 5.2 /21 11 10.30 = 6.1/21 N Q 0.39 7261455M Blank ID 0,35 0.29 <u>ତ</u> ଜ 0,21 0.17 7.2 キナエ aad エトー JJJ у U 5 Compound Methylene chloride Conc. units: Acetone CROI

Blank analysis date: 9 /19 /07 Conc. units: 49 /Ec/

Conc. units: Un /be/			¥	Associated Samples:		14-23,25	\			
Compound	Blank ID					Sample Identification	ation			
	7 26 3176 MB	B 14	5	9	17	[8	19	27	23	25
Methylene chloride										
Acetone	15	11 /21 4 C.1		hoc/ 58	h 12/ 01	11 /20 11	9.4/21 4	h or of	N/08	unc/0.8 N/05 NOC/01 NIC/4. P NOC/11 NIC/01 NOC/28 NOC/
J75	0, 20	<u>_</u>	0,18 /5,1U		_					
FFF	0.19		0.19 /							
##H	77. 0 HHH		0.72/							
CROI										

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were gualified as not detected, "U".

BLANKS2.1SB

See Curer LDC #: 17540CI SDG #:

VALIDATION FINDINGS WORKSHEET Blanks

× 242 Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Ptease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank associated with every sample in this SDG? Was a method blank analyzed at least once every 12 hours for each matrix and concentration?

Was there contamination in the method blanks? If yes, please see the qualifications below. YN/AWas a method blanYN/AWas a method blanVN/AWas there contamiBlank analysis date: 3A1.67

E ş Conc. units:

25-28 14 - 23 Associated Samples:

ation								
Sample Identification								
0								
	28		122/0C 105/8.9					
	27							
	P 26		9.4 /22 M	`				
Blank ID) 7263176 MB 26		2	JJJ 0,20	FFF 0.19	HHH 0.26		
Compound	(1, 1 med from p. 1)	Methylene chloride	le	JUL	₩_ ₩- ₩-	H # H		
	1, trad	Methyl	Acetone				CROI	

Blank analysis date: 9 /24 /07

Sample Identification Can 47 Associated Samples: 7270145M Blank ID 0,22 dad Conc. units: 46 //-Compound Methylene chloride Acetone

All results were qualified using the criteria stated below except those circled.

CRO

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

BLANKS2.1SB

SDG #: See Covel LDC #: 17590 CI

VALIDATION FINDINGS WORKSHEET **Field Blanks**

WETHOD: GC/MS VOA (EPA SW 846 Method 8260B) V N N/V
V N NIV

 Y IN (NVA)
 Were field blanks identified in this SDG?

 Y N N/A
 Were target compounds detected in the field blanks?

 Blank units: W_/L
 Associated sample units: W_2/C3

Field blank type: (circle one) Field Blank (Rinsate)	e one) Field Blank (Rinsate	\sim	Trip Blank / Other:	ler:	Assoc	Associated Samples: All Sov	s: A(I	كانمى		
Compound	Blank ID	Blank ID				Sample Identification	ntification			
Sampling Date	a /67 67		10		4 12	6	+1	5	- 6	17
Methylene chloride										
Acetone	2.]		6.1 /21 U	6.1/21 U 5.2 /21 U 14 /21 U 7.7/20 U 11 /21 U 6.1 /20 8.5/2011 10 /21 U	14 /21 11	7.7 /20 u	11 /21 11	6.1/2011	102/2.8	10 /21 11
Chloroform	5,3				· · · · ·					
Q	4.8									
4	0.31									
cral										
Blank units: Associated sample un	Associated sample units	its	Same	as above	بر)					

n se/ac 3 hoc 27 6,8 N22/ 4.6 50 8,0/204 Sample Identification 202 Associated Samples: 23 શ્રી lo /20 U 22 /21 U Q <u>6</u> 4 ieid blank type: (circle one) Field Blank / Rinsate / Trip Blank / Other: 1 0c/ 2 ----Blank ID 107 107 Blank ID S.S 4.8 0.3 2 G Sampling Date Q 4 Compound Methylene chloride Chloroform Acetone CRQL

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were qualified as not

FBLKASC2.1SB

Sec Cores LDC #: 1759601 SDG #:

VALIDATION FINDINGS WORKSHEET Field Blanks

Page: Yof S Reviewer: JVC 2nd Reviewer:

> Were field blanks identified in this SDG? METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Υ / N /N/A

Were target compounds detected in the field blanks? ∀ N N/A

Å Blank units: 49/L Associated sample units: 49

10 - 1 Sample Identification Associated Samples: 12.5 h IZ/ 25.0 λ 4 15.2 W 214 0.4C 2.2 -Field blank type: (circle one) Field Blank / Rinsate ((frip Blank))Other 524 6 N IC/ 0 30 _ ق à Blank ID Blank ID 2 9 /07 /07 0.18 5.2 Sampling Date SCompound Methylene chloride Chloroform Acetone CRQL

us kg Associated sample units: ^W Blank units: 49 /L Field his

13-15

reid Diank type: (circle one) rield blank / Kinsate //I rip Bla	e) rield blank	/ Kinsate //Ir	ip Blank) Other.	er:	Associ	Associated Samples:	;;;		
Compound	Blank ID 3 Blank ID	Blank ID				Sample Identification	ntification		
Sampling Date	9 107107		2	1	15				
Methylene chloride							-		
Acetone	4.9		7.7/20 U	7.7/20 u 12/11 u 02/7.7	6.1/204				
Chloroform									
3	0.19				0.62/51W			-	
crat									

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disufide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were qualified as not detected, "U".

FBLKASC2.1SB

1759001	See Cover
LDC #:	SDG #:

VALIDATION FINDINGS WORKSHEET Field Blanks

Page: 3 of S Reviewer: JV2 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)	Were field blanks identified in this SDG?	Word force companies to the first of the fir
METHOD: (X N /N/A	V/N N/V

V/N N/A Were target compounds detected in the field blanks? Blank units: 40 /L Associated sample units: 40 /L

-ield blank type: (circle one) Field Blank / Rinsate (Trip Blank) Other:	e) Field Blank	/ Rinsate / Tri	p Blank Othe	er:	Associa	Associated Samples: 16 - / 8	
Compound	Blank ID 4	Blank ID				Sample Identification	
Sampling Date $9 (\delta 7 / \delta 7)$	9 607 67		16	17	[8]		
Methylene chloride							
Acetone	4.5		NO2/ 11 N 12/ 01 02/ 28	h 12/ 01	11 /20 U		
Chloroform							
Ð	0.25		0.25/5.14 0.21 /C.14 0. 82 /5.14	0.21 /2.10	U1.5/ 58.0		
CRQL							
Th			· ·				

X 122 Sample Identification Associated Samples: 0.67/5.14 hoc/0.8 22 Z 33 8 Field blank type: (circle one) Field Blank / Rinsate / Trip Blank/ Other: 12:1 hoz 3 62.0 0 Blank ID 107 Blank ID 5 0.27 5 6.3 5 Sampling Date Ś Compound Methylene chloride Chloroform Acetone CRQL

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were qualified as not

FBLKASC2.1SB

Ś

17590 CI	Cer Cover
LDC #:	SDG #:

VALIDATION FINDINGS WORKSHEET Field Blanks

Page: 4 of S 3712 2nd Reviewer: Reviewer:

Were field blanks identified in this SDG? METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

V N/A Were target compounds detected in the field blanks? Btank units: ⁴⁴9 /L Associated sample units: ⁴⁴9 /ke

26-28 Sample Identification Associated Samples: 0. 34 /5.14 0.3 1/6.34 n se, 28 3 h og 27 1224 6.8 Bfank units: <u>いり / L</u> Associated sample units: いり 化の Field blank type: (circle one) Field Blank / Rinsate (Trip Blank) Other 0.20 /S. 44 20 4 5 Blank ID Blank ID 6 9 607 607 0. 4 4.7 Sampling Date g Compound Methylene chloride Chloroform Acetone CROL

NO / Per Associated sample units: Blank units: ^{US}/L


2 19-Sample Identification Associated Samples: Field blank type: (circle one) Field Blank / Rinsate / Trip Blank / Other 9.4/21W 6 Blank ID 1/07 107 Blank ID 7 4 Sampling Date Compound Methylene chloride Chloroform Acetone CROL

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disuffide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were qualified as not

FBLKASC2.1SB

17590C1	See Cruer
LDC #:	SDG #:

VALIDATION FINDINGS WORKSHEET **Field Blanks**

Were field blanks identified in this SDG? Were target compounds detected in the field blanks? METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Y N /N/A

Y/N N/A

		n de la compañía de l							
	s:	Sample Identification							
	Associated Samples:	Sample Ide							
	Assoc								
	ir:								
29	Trip Blank / Other:				2.1/4	/			
	Field blank type: (circle one) Field Blank / Rinsate / Trip	Blank ID 9	107		3.6				
		Blank ID & Blank ID	9/67		4.4				
its: <u>45 /L</u> Asso	nk type: (circle one,	Compound	Sampling Date	chloride					
Blank uni	Field blar			Methylene chloride	Acetone	Chloroform			CROL

			_				 	 	
		ntification							
	Associated Samples:	Sample Identification							
	Associ								
	r:								
	rip Blank / Other:								
e units:	Rinsate / Trip	Blank ID							
Associated sample units:	Field Blank /	Blank ID							
Asso	e: (circle one)		Sampling Date						
Blank units:	Field blank type: (circle one) Field Blank / Rinsate / T	Compound		Methylene chloride	Acetone	Chloroform			CRQL

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were qualified as not detected, "U".

FBLKASC2.1SB

SDG #: See Carel LDC #: 175 % CI

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

SAL Page: ____of___ Reviewer: 2nd Reviewer:___

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/Á". X N/N/A Were all surrogate %R within QC limits?

A/A

If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of

				T	Τ		Ι					Γ	Π		Γ	\square	Γ		Π	
	Qualifications	J-/45/A																		
	imits)	(67-150)	(251-65)	~ ~		()	· ·	()) ((.)	(()	(()		()	()		
	%Recovery (1 imits)	25	54																	<u>QC Limits (Water)</u> 88-110 86-115 80-120 86-118
	Surrogate	Tat	BFB																	
	Sample JD	23																		<u>OC Limits (Soil)</u> 81-117 he 74-121 -d4 80-120 hane 80-120
criteria ?	Date																			SMC1 (TOL) = Toluene-d8 SMC2 (BFB) = Bromofluorobenzene SMC3 (DCE) = 1,2-Dichloroethane-d4 SMC4 (DFM) = Dibromofluoromethane
	#																			SMC1 (T SMC2 (B SMC3 (D SMC4 (D

SUR. 1SB

SDG #: See (are 1 LDC #: 17590C/

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

3VC f of 9 Page: 2nd Reviewer: Reviewer:

METHOD : GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>Y</u> N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

N/N/ N/N/N

Was a MS/MSD analyzed every 20 samples of each matrix? Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

*	Date	DI QSW/SW	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		TSB-AR-13-0'	HH	2,8 (b-150)	(QS/-0) 0	() Q0E	None	he gual
		(ISM/ SM		()	()	()		
				()	()	()		
				()	()	()		
				())	· · ·		
				(()	()		
						()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
		Compound	pur		QC Limits (Soil)	RPD (Soil)	QC Limits (Water)	RPD (Water)
	Т	1,1-Dichloroethene		59-1	59-172%	≤ 22%	61-145%	< 14%
	S.	Trichloroethene		62-1	62-137%	< 24%	71-120%	< 14%
	۷. ۲	Benzene		66-1	66-142%	< 21%	76-127%	< 11%
	CC.	Toluene		59-1	59-139%	< 21%	76-125%	< 13%
	DD.	Chlorobenzene		60-1	60-133%	< 21%	75-130%	< 13%

MSD.1SB

LDC #. 17590 Cl SDG #: See Cover

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

210 ₽°4 Page:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>Y NN/A</u> Was a LCS requ

Was a LCS required? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

P	(151)	\						(. (4)	man		75	1/10 (11)												
Qualifications	No qual			and the				B Name (MG.)			to surp (Neck	have 1							* J+ 414 10		*			
Associated Samples	All water + 726124 MB				~			10-13 726 14 55 MB			14-23 25-28								24 7270145 MB	 				
RPD (Limits)	85 (20)	()) 25	4	45 ()	25 (/))	()	()	()	()	(()	()	()	()	()	()	()	()	()	()	()	()	()
LCSD %R (Limits)	173 (28-140)	()	()	()	()	()	()	()	()	()	(((()	(()	~	(()	())	(
LCS %R (Limits)	()	()	()	(60 (71-133)	()	()	()	116 (83-15)	()	()	116 (74-115)	(11-02) 021	84-1		126 (76-125)	119 (36-115)	()	()	(121-64) 821	156 (53-150)	()	()	()	()
Compound	£	.14-	NN	Х Х Х	BEEE			ИИ			И	×	FF	٧٧	۲Y	ĤН			১	-4				
LCS/LCSD ID	7261126 405/0							7201455 405			7263176 205								7270145 HS					
# Date																								
					[]								l		

* MS MISD non - client sple

LCSLCSD.1SB

3

SDG #: Sectioner LDC #: 17590 CI

VALIDATION FINDINGS WORKSHEET Internal Standards

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please, see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all internal standard area counts within -50 to +100% of the associated calibration standard? Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard? X N N/A

-						
*	Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications
		23	4 DCB	139 856 (197 841 - 79	1364)	J.M. 145 /A
			CB Z	272 304 (41079 - 16	4051()	
			782	424 163 (688644- 2754594	2754594)	
						
(BCM) (DFB) (CBZ)	(BCM) = Bromochloromethane (DFB) = 1,4-Difluorobenzene (CBZ) = Chlorobenzene-d5		(PFB) = Pentafluorobenzene (4DCB) = 1,4-Dichlorobenzene-d4 (2DCB) = 1,2-Dichlorobenzene-d4	(FBZ) = Fluorobenzene		

INTST.1SB

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: ____of ____ Reviewer: _____77 2nd reviewer: _____

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

YN N/A YN N/A

Were field duplicate pairs identified in this SDG? Were target compounds detected in the field duplicate pairs?

	Concent	ration ()	
Compound	10	<u> </u>	RPD
F	6.1	5,2	0,9 (= 21 Diff)
CC	0,30	0.45	0.15 (45.2 Diff)
D00	0.39	0.39	0
·			

	Concentr	ation (us /bg)	
Compound	15	16	RPD
+	6.1	8.5	2.4 (=20 Diff)
<u>L</u> LL	0.18	5, I U	4.92 (=5,1 Diff)
FFF FFF	0,19		4.91
Ннн	0.32		4.78
00	0.47	0.25	0.37
POD	0,57	0.41	0_16
	Concentra	ation ()	
Compound			RPD

	Concentration ()	-
Compound		RPD

See Cover LDC #: 17 590 CI SDG #:

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

210 0 Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the

RRF = (A_)(C_)/(A_)(C_) average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

A_x = Area of compound, C_x = Concentration of compound, S = Standard deviation of the RRFs

 $A_{\rm k}$ = Area of associated internal standard $C_{\rm k}$ = Concentration of internal standard

X = Mean of the RRFs

Recalculated 7. 5311Y 7.49 204 15.7521 %RSD 7.79 206 15.7499Y 7. 36.037 Reported %RSD Average RRF (initial) Recalculated ~1569.0 2,4068] PC267.0 Average RRF (initial) 0.67499 Reported 0. 77278 2.404.6 Recalculated 49407.a 17 245 M (S) std) 0.66 586 RRF 2.29577 0.665786 (50 std) 0.70494 Reported RRF Compound (Reference Internal Standard) Methylene chieride (1st internal standard) Methylene chloride (1st internal standard) Methylene chloride (1st internal standard) Methylene chloride (1st internal standard) Triphiorettrene (2nd internal standard) Trichlorethene (2nd internal standard) Trichlorethene (2nd internal standard) Trichlorethene (2nd internal standard) Tolbene (3rd internal standard) Toluene (3rd internal standard) Totuene (3rd internal standard) Toluene (3rd Internal standard) Lo/21/6 Callbration Date Standard ID 1041 L SW * N ო 4

Comments: Refer to Initial Calibration findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the

INICLC.1SB

Sec Cures 17590C1 LDC #: SDG #:

Continuing Calibration Results Verification VALIDATION FINDINGS WORKSHEET

ō R Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (A_)(C_)/(A_)(C_)

Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF

 $A_x = Area of compound,$ $C_x = Concentration of compound,$

A_n = Area of associated internal standard O_n = Concentration of internal standard

	· .				Reported	Recalculated	Reported	Receiculated
*	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	0%	۵%
-	北の	9/17/07	Methylene chiende (1st internel standard)	0.77278	0.90927	0.90927	a De J2.61	17.6627
T			Trichlorethene (2nd internal standard)	R. 4068/	2, 6914×	2.6914 Y	Eczc8 . 11.	6-218.11
			Tolueradard Internal standard)	0.67499	0.67940	0.67540	92820.0	0.6525
8	PCAL 6679	4 / a 10-2	Methytefie chloride (1st internel standard)	0, 77278	0.81320	0.82320	68623	6, 5760
			T(chlotettene (2nd internel standard)	2.40681	K11 5 °C	2,5421	4 33769	4 2325
			To luene (S rd internal standard)	0.67499	V. 73157	×3/51.0.	6. 41910	6.4194
			Methylene chloride (1st internal standard)					
			Trichlorethene (2nd Internal standard)					
			Toluene (3rd internal standard)					
4	-		Methylene chloride (1st internal standard)					
			Trichlorethene (2nd internal standard)				:	
			Toluene (3rd Internal standard)				•	

CONCLC.1SB

LDC #: 1759001 SDG #: <u>cee Cover</u>

VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

Page: of Reviewer: 2nd reviewer:

Percent

Difference

Э

97

10-

92

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS • 100 Sample ID: # 13		Where: SF = Surrog SS = Surrog		
	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated
Toluene-d8	50	50.0272	100	100
Bromofluorobenzene		48.4378	97	97

Sample ID:_____

1,2-Dichloroethane-d4

Dibromofluoromethane

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					

51.0516

45.8960

102

92

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					

LDC #: 17 590 Cl SDG #: Sre Cure

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

ō 9 2nd Reviewer: Page: Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

MSDC = Matrix spike duplicate percent recovery

MSC = Matrix spike percent recovery

SC = Sample concentration

% Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SA = Spike added

RPD = I MSC - MSDC I * 2/(MSC + MSDC)

MS/MSD sample: $2a/30 \sqrt{5/30}$

	l's	like	Sample	Spiked Sample	ample	Matrix Spike	Spike	Matrix Spike Duplicate	Duplicate	W	MS/MSD
Compound	PV (W)	Added (Mg Act)	Concentration (μ_{ζ}/f_{η})	Concentration	ration ()	Percent Recovery	BCOVERY	Percent Recovery	acovery	и с	RPD
	WS	0SM	<i>л</i>	SW	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
1,1-Dichloroethene	55,1	3,52	0	42.7	40,1	82	R۲	76	Å∠	C. 1	د. ک
Trichloroethene	-			なべ	39.8	٤۶	رئ	92	76	8,8	8,9
Benzene				44,4	40.4	<u>لاح</u>	85	77	77	9.3	٩. ٢
Toluene				44.7	41.S	8K	٩٢	62	79	4.4	4. 3
Chiorobenzene	~~	¥		44.1	41, X	ولا	محر	28	۶4	8-9	l, q
											1

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

MSDCLC.1SB

11-

17540 CI	See Laver
LDC #:	SDG #:

Laboratory Control Sample Results Verification VALIDATION FINDINGS WORKSHEET

Page: 1 of / 245 2nd Reviewer: Reviewer:____

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

Where: SSC = Spiked sample concentration SA = Spike added % Recovery = 100 • SSC/SA

RPD = ILCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

 Х Х 7261455 LCS ID:

Compound(u_{c}, h_{c})ConcentrationPercent Recovery1.1.Dichloroethene1.CS(u_{c}, h_{c})(u_{c}, h_{c})1.1.Dichloroethene570 $V_{c}K$ S57, q V_{c} 1.1.Dichloroethene570 $V_{c}K$ S71, o $10 \cdot Y$ $10 \cdot Y$ 1.1.Dichloroethene570 $V_{c}K$ S71, o $10 \cdot Y$ $10 \cdot Y$ $10 \cdot Y$ 1.1.Dichloroethene f_{c} f_{c} $10 \cdot Y$ $10 \cdot Y$ $10 \cdot Y$ $10 \cdot Y$ 1.1.Dichloroethene f_{c} f_{c} f_{c} $10 \cdot Y$ $10 \cdot Y$ $10 \cdot Y$ 1.1.Dichloroethene f_{c} f_{c} f_{c} f_{c} $10 \cdot Y$ $10 \cdot Y$ 1.1.Dichloroethene f_{c} f_{c} f_{c} f_{c} f_{c} f_{c} 1.1.Dichloroethene<		Spi	ke	Spiked S.	ample		Cs		G	1 CS/	CS/LCSD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	punodwo	Adi Adi	fed Ar	Concent (Me /	ration حر)	Percent F	čecovery	Percent Recovery	ecovery	R	RPD
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 CS	ر ردی	L CS		Reported	Recalc	Reported	Recalc	Reported	Recalculated
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50	Å	50,9	N.A	10 ×	102				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ne			51.0	-	10×	(ه م				
				51.8		104	اه لا				
				52,4		105	105				-
	ле		^	52,8	_	106	101				

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LCSCLC.1SB

LDC #: 17590 C1 SDG #: See Cover

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	<u> </u>
Reviewer:	JUZ
2nd reviewer:	A
-	

$(\underline{\mathbf{Y}} \mathbf{N} \mathbf{I})$	OD : 0 N/A N/A	Were all repo	A SW 846 Method 8260B) orted results recalculated and alculated results for detected t				ed results?
Conce	ntratior	$n = \frac{(A_x)(I_y)(DF)}{(A_{yy})(RRF)(V_y)}$	<u>%</u> S)	Example			
A,	=		eristic ion (EICP) for the	Sample I	.D. <u># 15</u> ,	<u></u>	
A_{is}	=	Area of the charact internal standard	eristic ion (EICP) for the specific				
۱ _s	=	Amount of internal : (ng)	standard added in nanograms	Conc. = (((13291) (51 906198) (1.20776	$\frac{5}{(4.00)}$	24)
RRF	=	Relative response f	actor of the calibration standard.			~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Vo	=	Volume or weight o or grams (g).	f sample pruged in milliliters (ml)		0.618		
Df	=	Dilution factor.	1	2 ₇ -	0.612 ug/kg		
%S	=	Percent solids, app only.	licable to soils and solid matrices		0		
#		Sample ID	Compound		Reported Concentration ()	Calculated Concentration ()	Qualification
				· · · · · · · · · · · · · · · · · · ·			

	Sample ID	Compound	Concentration	Calculated Concentration	Qual
_					
		•			
		·			

LDC Report# 17590A21

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	BRC Parcel 4A/4B Sampling Event
--------------------	---------------------------------

Collection Date: September 5, 2007

LDC Report Date: October 29, 2007

Matrix: Soil

Parameters: Dioxins/Dibenzofurans

Validation Level: EPA Level III

Laboratory:

Severn Trent Laboratories

Sample Delivery Group (SDG): F7I060284

Sample Identification

TSB-AR-01-0' TSB-AR-02-0' TSB-AR-04-0' TSB-AR-05-0' TSB-AR-07-0' TSB-AR-04-0'MS TSB-AR-04-0'MSD

Introduction

This data review covers 7 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8290 for Polychlorinated Dioxins/Dibenzofurans.

This review follows USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore

qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks.

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Although the MS (%R) was not within QC limits for one compound, the MS percent recoveries (%R) were within QC limits and no data were qualified.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits.

VIII. Regional Quality Assurance and Quality Control

Not applicable.

*IX. Internal Standards

All internal standard recoveries were within QC limits with the following exceptions:

Sample	Internal Standards	%R (Limits)	Compound	Flag	A or P
TSB-AR-02-0'	 ¹³C-2,3,7,8-TCDF ¹³C-2,3,7,8-TCDD ¹³C-1,2,3,7,8-PeCDF ¹³C-1,2,3,7,8-PeCDD ¹³C-1,2,3,4,6,7,8-HpCDF ¹³C-1,2,3,4,6,7,8-HpCDD ¹³C-OCDD 	37 (40-135) 39 (40-135) 31 (40-135) 32 (40-135) 26 (40-135) 25 (40-135) 16 (40-135)	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	J (all detects) UJ (all non-detects)	Ρ

*Removed minus sign from the Flag in table above.

X. Target Compound Identifications

Raw data were not reviewed for this SDG.

XI. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XII. System Performance

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags have been summarized at the end of the report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

*BRC Parcel 4A/4B Sampling Event Dioxins/Dibenzofurans - Data Qualification Summary - SDG F7I060284

SDG	Sample	Compound	Flag	A or P	Reason
*F71060284	TSB-AR-02-0'	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	J (all detects) UJ (all non-detects)	Ρ	Internal standards (%R)

BRC Parcel 4A/4B Sampling Event

Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG F7I060284

No Sample Data Qualified in this SDG

BRC Parcel 4A/4B Sampling Event

Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG F7I060284

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level III

	Date;	10/15/07
	Page:	of
	Reviewer:	<u> </u>
2nd	Reviewer:	

网络马拉斯马拉斯马拉马拉马马马马马拉马马克马拉马马克马克马马马克马克 化丁基苯基乙酰基苯基乙酰基 化二氯化乙酰乙基 法法法法 化离子器 化离子器 化离子器 化分子子 化分子子 化分子子

SDG #: F7I060284 Laboratory: Severn Trent Laboratories, Inc.

LDC #: 17590A21

3. 研究的研究局部 (1) 2. 使用 (1) 3. 用 (1) 3. 使用 (1) 3. 用 (1) 3. 使用 (1) 3. 使用

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area	·		Comments
١.	Technical holding times	A	Sampling dates:	9/5/07
11.	HRGC/HRMS Instrument performance check	A		· · ·
111.	Initial calibration	A		
IV.	Routine calibration	\square		
V.	Blanks	A		
VI.	Matrix spike/Matrix spike duplicates	In		
VII.	Laboratory control samples		103	
VIII.	Regional quality assurance and quality control	N /		
IX.	Internal standards	w		
Х.	Target compound identifications	N		
XI.	Compound quantitation and CRQLs	N		
XII.	System performance	N		
XIII.	Overall assessment of data	A		
XIV.	Field duplicates	N		
XV.	Field blanks	N		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

1	TSB-AR-01-0' 5	11	72563994B	21	31	
2	TSB-AR-02-0'	12		22	32	
3	TSB-AR-04-0'	13		23	 33	
4	TSB-AR-05-0'	14		24	34	
5	TSB-AR-07-0'	15		25	35	
6	TSB-AR-04-0'MS	16		26	36	
7	TSB-AR-04-0'MSD	17		27	37	
8		18		28	38	
9		19		29	 39	
10		20		30	40	

Notes:

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A. 2,3,7,8-1CDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HbCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	a. ocpf	V Total Trine
C. 1,2,3,4,7,8-HXCUD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
C-1,4,9,1,0,3-HXUUU	J. 2,3,4,7,8-PeCDF	0.1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	

Notes:

COMPNDL_21C

100 #:*[776A2_84]* 2016 #:*[77/646_284*

Matrix Spike/Matrix Spike Duplicates VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>X/N N/A</u> Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an

associated MS/MSD. Soil / Water. L'N NA

Was a MS/MSD analyzed every 20 samples of each matrix? Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? (N) N/A

				SN	usn			
*	Date	DI DSW/SW	Compound	%R (Limits)	%R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		617	×	135 (70-124)		· · · ·		
							0	No anal
		-		()	((ver wer)
				~	())		
				(())		
				()	()	()		
				(()	()		
				(()	()		
				()	()	(
				()	()	()		
				(()	~		
				())	(
				(()	(
				(()			
				()	()			
					()	(
				()	((
				()	((
				(()	^		
				()	()	(
				()	()	()		
				()	()	()		
				()	()	(
				· ·	(()		

MSD90.21

SDG #:771 p622 LDC #:/759043

VALIDATION FINDINGS WORKSHEET Internal Standards

2nd Reviewer: Reviewer: Page:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y M N/A Are all internal standard recoveries were within the 40-135% criteria? M N/A Was the S/N ratio all internal standard neaks > 10?

L						
*	Date	Lab ID/Reference	İnternal Standard	% Recovery	% Recovery (Limit: 40-135%)	Qualifications
		2	.¥	37	(40-135-)	1912 / D ++
			·SŢ	39		+
			U	3/	(
			Ð	32	(
	·		Ą	36	(
			÷.H	2.5	(
			$\cdot r$	16		
					()	(X-R F- J 0-R)
					()	
					(
					()	
					()	
					- ()	
)	
					- ()	
					(
					()	
					(
					()	
		Internal Standards	Check Standard Used		Recovery Standards	Check Standard Used
Ä	¹³ C-2,3,7,8-TCDF	10F		K 134-TCDD	TCDD	
ά		DD		+	8.9-HxCDD	
v		PecDF		M.		
ò	_	PecDD		Ň		
шī		3-HxCDF		o.		
ш	¹³ C-1,2,3,6,7,8-HxCDD	3-HxcDD		Ь.		
Ċ	¹³ C-1,2,3,4,6,7,8-HpCDF	7,8-HpCDF		ö		
Ŧ	¹³ C-1,2,3,4,6,7,8-HpCDD	7,8-HpCDD		R.		
_	l "c.ocpn			-		

INTST90.21

LDC Report# 17590C21

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	BRC Parcel 4A/4B Sampling Event
Collection Date:	September 7, 2007
LDC Report Date:	October 29, 2007
Matrix:	Soil
Parameters:	Dioxins/Dibenzofurans
Validation Level:	EPA Level III & IV
Laboratory:	Severn Trent Laboratories

Sample Delivery Group (SDG): F7I100142

Sample Identification

TSB-AR-06-0' TSB-AJ-01-0'** TSB-AJ-02-0'** TSB-AJ-03-0'** TSB-BJ-06-0'** TSB-BJ-01-0'** TSB-BJ-02-0'** TSB-BR-06-0'**

**Indicates sample underwent EPA Level IV review

1

Introduction

This data review covers 9 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8290 for Polychlorinated Dioxins/Dibenzofurans.

This review follows USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Samples indicated by a double asterisk on the front cover underwent EPA Level IV review. EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

3

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The exact mass of 380.9760 of PFK was verified. The static resolving power was at least 10,000 (10% valley definition) for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio for each target compound was greater than or equal to 2.5 and and greater than or equal to 10 for each recovery and internal standard compound for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks.

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits.

VIII. Regional Quality Assurance and Quality Control

Not applicable.

*IX. Internal Standards

All internal standard recoveries were within QC limits with the following exceptions:

Sample	Internal Standards	%R (Limits)	Compound	Flag	A or P
TSB-AJ-01-0'**	¹³ C-OCDD	26 (40-135)	OCDD OCDF	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ
TSB-BJ-01-0'**	¹³ C-OCDD	34 (40-135)	OCDD OCDF	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ
TSB-BJ-02-0'**	¹³ C-1,2,3,4,6,7,8-HpCDF ¹³ C-1,2,3,4,6,7,8-HpCDD ¹³ C-OCDD	24 (40-135) 24 (40-135) 14 (40-135)	1,2,3,4,6,7,8-HpCDD OCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	J (all detects) UJ (all non-detects)	Ρ

*Removed minus sign from the Flag in table above.

X. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XII. System Performance

The system performance was acceptable for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

XIII. Overall Assessment of Data

Data flags have been summarized at the end of the report if data has been qualified.

XIV. Field Duplicates

Samples TSB-AR-06-0' and TSB-AR-06-0'-Dup were identified as field duplicates. No polychlorinated dioxin/dibenzofurans were detected in any of the samples with the following exceptions:

	Concent	ration (pg/g)				
Compound	TSB-AR-06-0'	TSB-AR-06-0'-Dup	RPD (Limits)	Difference (Limits)	Flag	A or P
2,3,7,8-TCDF	1.1	0.43U	-	0.67 (≤0.43)	J (all detects) UJ (all non-detects)	A
1,2,3,4,7,8-HxCDF	3.4	1.4U	-	2 (≤1.4)	J (all detects) UJ (all non-detects)	Α
1,2,3,4,6,7,8-HpCDF	6.9	2.8	85 (≤50)	-	J (all detects)	A
OCDF	19	4.9U	-	14.1 (≤4.9)	J (all detects) UJ (all non-detects)	A

6

*BRC Parcel 4A/4B Sampling Event Dioxins/Dibenzofurans - Data Qualification Summary - SDG F7I100142

SDG	Sample	Compound	Flag	A or P	Reason
*F7l100142	TSB-AJ-01-0'** TSB-BJ-01-0'**	OCDD OCDF	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ	Internal standards (%R)
*F7l100142	TSB-BJ-02-0'**	1,2,3,4,6,7,8-HpCDD OCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	J (all detects) UJ (all non-detects)	Ρ	Internal standards (%R)
F7I100142	TSB-AR-06-0' TSB-AR-06-0'-Dup	2,3,7,8-TCDF 1,2,3,4,7,8-HxCDF OCDF	J (all detects) UJ (all non-detects)	A	Field duplicates (Difference)
F7l100142	TSB-AR-06-0' TSB-AR-06-0'-Dup	1,2,3,4,6,7,8-HpCDF	J (all detects)	A	Field duplicates (RPD)

BRC Parcel 4A/4B Sampling Event

Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG F7I100142

No Sample Data Qualified in this SDG

BRC Parcel 4A/4B Sampling Event Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG F7I100142

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET Level III/IV

SDG #: <u>F7I100142</u> Laboratory: <u>Severn Trent Laboratories</u>, Inc.

17590C21

LDC #:

Date: ////// Page: //of // Reviewer: _____ 2nd Reviewer: _____

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

<u> </u>	Validation Area		Comments	
<u>l.</u>	Technical holding times	A	Sampling dates: 9/7/07]
11.	HRGC/HRMS Instrument performance check	A		
111.	Initial calibration	\mathbf{A}		
IV.	Routine calibration	A		I
v .	Blanks			
VI.	Matrix spike/Matrix spike duplicates	L N	diett stufied	Ĩ
VII.	Laboratory control samples	\mathbf{A}	109	Γ
VIII.	Regional quality assurance and quality control	N		
IX.	Internal standards	TW		
Х.	Target compound identifications	\mathbf{A}	Not reviewed for Level III validation.	
XI.	Compound quantitation and CRQLs	$ -\!\!\! $	Not reviewed for Level III validation.	
XII.	System performance	\mathbf{A}	Not reviewed for Level III validation.	
XIII.	Overall assessment of data	A		
XIV.	Field duplicates	SIN	7=1+2	
xv.	Field blanks	N		

Note: A =

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: ** Indicates sample underwent Level IV validation

11	TSB-AR-06-0'	11	7262319HB	21	31	· · · · · · · · · · · · · · · · · · ·
2	TSB-AR-06-0'-Dup	12		22	32	
3	TSB-AJ-01-0'**	13		23	33	
4	TSB-AJ-02-0'**	14		24	34	
5	TSB-AJ-03-0'**	15		25	35	
6	TSB-BJ-06-0'**	16		26	36	
7	TSB-BJ-01-0'**	17		27	37	
8	TSB-BJ-02-0'**	18		28	38	
9	TSB-BR-06-0'**	19		29	39	
10		20		30	40	

Notes:

LDC #: 1759002 SDG #: F1100142

VALIDATION FINDINGS CHECKLIST

Page: /of 3 Reviewer: 0_____ 2nd Reviewer: _____

.

Method: Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Validation Area	Yes	No	NA	Findings/Comments
L Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.	<u> </u>			
IF. GC/MS Instrument performance check				
Was PFK exact mass 380.9760 verified?				
Were the retention time windows established for all homologues?				
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers \leq 25% ?	/			
Is the static resolving power at least 10,000 (10% valley definition)?	/			
Was the mass resolution adequately check with PFK?	/			
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?				
IIF. Initial calibration				
Was the initial calibration performed at 5 concentration levels?	\angle			
Were all percent relative standard deviations (%RSD) \leq 20% for unlabeled standards and \leq 30% for labeled standards?	\angle			
Did all calibration standards meet the Ion Abundance Ratio criteria?				
Was the signal to noise ratio for each target compound \geq 2.5 and for each recovery and internal standard \geq 10?				
IV. Continuing calibration				
Was a routine calibration performed at the beginning and end of each 12 hour period?				
Were all percent differences (%D) \leq 20% for unlabeled standards and \leq 30% for labeled standards?		·		
Did all routine calibration standards meet the Ion Abundance Ratio criteria?				
V. Blanks				
Was a method blank associated with every sample in this SDG?	\checkmark			
Was a method blank performed for each matrix and concentration?	\checkmark			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet?		/		
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.			-	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			1	
VII. Laboratory control samples				
Was an LCS analyzed for this SDG?		Ī		

DXN-SW90.IV version 1.0

LDC #:<u>17590C-</u> SDG #:<u>01100</u>4

en men samme appenent te en alle and a subset of the transmission of the transmission of the subset of the

VALIDATION FINDINGS CHECKLIST

Page: <u>>of</u> <u>></u> Reviewer: <u>Q</u> 2nd Reviewer: <u>4</u>

. Na na series de la companya de la co

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?	1			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
VIII. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				
IX. Internal standards				
Were internal standard recoveries within the 40-135% criteria?		/		
Was the minimum S/N ratio of all internal standard peaks \geq 10?	/			
X. Target compound identification				
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?		-		
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?		-		
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?		-		
Did compound spectra contain all characteristic ions listed in the table attached?	\land			
Was the Ion Abundance Ratio for the two quantitation ions within criteria?	1			
Was the signal to noise ratio for each target compound and labeled standard \geq 2.5?				
Does the maximum intensity of each specified characteristic ion coincide within \pm 2 seconds (includes labeled standards)?	\land			
For PCDF identification, was any signal (S/N \geq 2.5, at \pm seconds RT) detected in the corresponding PCDPE channel?	\int			
Was an acceptable lock mass recorded and monitored?	1			
XI. Compound quantitation/CRQLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	1			
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	1			
XII. System performance		I	I	
System performance was found to be acceptable.	1			
XIII: Overall assessment of data				
Overall assessment of data was found to be acceptable.	\square			
XIV: Field duplicates		<u> </u>		
Field duplicate pairs were identified in this SDG.		l		

DXN-SW90.IV version 1.0

VALIDATION FINDINGS CHECKLIST

Page:<u>3</u>of<u>3</u> Reviewer:<u>4</u> 2nd Reviewer:<u>4</u>

Validation Area	Yes	No	NA	Findings/Comments
Target compounds were detected in the field duplicates.	/			
XV. Field blanks				
Field blanks were identified in this SDG.				,
Target compounds were detected in the field blanks.				

LDC #:1759002 SDG #:077100142

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A 3376 TOND				
	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	Н. 2,3,7,8-ТСDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,8,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:

LDC #: 1759002

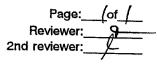
VALIDATION FINDING\$ WORKSHEET Internal Standards

Page: /of/ Reviewer: 0.2nd Reviewer: 2nd Reviewer:

www.www.asarunication.compage.com.wr.w

*	Date	Lab ID/Reference	Internal Standard	- ,	% Recovery (Limit: 40-135%)	nit: 40-135%)	Qualifications
		Ŋ	H	ñ) 	(40-135)	18 A 18 A
] -	
		7	Ч	34	~	<u>^</u>	
					~		
		8	A	Å.)		2 (U1 / P (+ +)
			14	ų	~~~	(/	
			5-5	4	~	$\langle \rangle$	
					~		
)	(
					``	(
					~	(
)	(
					~		
					~~	^	
)	(
)	(
)	^	
)	(
)	(
)	(
		Internal Standards	Check Standard Used		æ	Recovery Standards	Check Standard Used
¥.	¹³ C-2,3,7,8-TCDF	DF		Y	¹³ C-1.2.3.4-TCDD		
ß	¹⁰ C-2,3,7,8-TCDD	DD			¹³ C-1,2,3,7,8,9-HxCDD	CDD	
Ċ	13C-1,2,3,7,8-PeCDF	'eCDF		.W			
ġ	13C-1,2,3,7,8-PeCDD	ecDD		z			
ш	¹³ C-1,2,3,6,7,8-HxCDF	HXCDF		o			
ш	¹³ C-1.2,3,6,7,8-HxCDD	HxCDD		۵.			
Ġ	¹⁰ C-1,2,3,4,6,7,8-HpCDF	.8-HpCDF		ơ			
Í	¹³ C-1,2,3,4,6,7,8-HpCDD	8-HpCDD		æ			
-							

INTST90.21


ار والارامين الرائل و ما الار الا حو

.....

LDC #:175 SDG #:

VALIDATION FINDINGS WORKSHEET Field Duplicates

Contractors was taken as conserva-

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

والمراجع والإركار الرمي والإلار والهلاك والمحاد الراجعية المتعج

YN N/A VN N/A

n waarta a

Were field duplicate pairs identified in this SDG. Were target compounds detected in the field duplicate pairs?

www.www.com.com

Concentration (Compound RPD or > H 0.43U 067 = 0.43 ŵч K 3.4 4 L 0 2.8 6 9 86 50 R 94 9 4

	Concentration ()	
Compound		RPD

	Concentration ()	
Compound		RPD
-		

	Concentration ()	
Compound		RPD

1:# 00s

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the

RRF = (A_)(C__)(A__)(C_) average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

A_x = Area of compound, C_x = Concentration of compound, S = Standard deviation of the RRFs,

 $\label{eq:associated internal standard} \begin{array}{l} A_{k} = A \text{Fea of associated internal standard} \\ C_{k} = Concentration of internal standard \\ X = Mean of the RRFs \end{array}$

ſ 7

7 Т Т Т Т 1 Ţ T זר

Standard ID Calibration	on Compound (Reference Internal Standard) 23.7,8-TCDF (¹³ C-23,7,8-TCDF) 23.7,8-TCDD (¹³ C-23,7,8-TCDP)	Standard)	Reported Average RRF (Initial)	Recalculated Average RRF (initial)	Reported RRF (CS3 std)	Recalculated RRF ()	Reported %RSD 3.6.5	Recalculated %RSD 3.46
	1,2,3,6,7,8+HxCDD (¹³ C-1,2,3,6,7,8+HxCDD) 1,2,3,4,6,7,8+HpCDD (¹³ C-1,2,4,6,7,8,+HpCDD) OCDF (¹³ C-0CDD)	(CDD) HpCDD)	1.00.1 1.1.1 1.1.1	1:001 1:01/ 1:01/	1.07	42.0	2.6 g 3.90 6.58	584 724 899
a/01/		cob)		1-4-2-0	0.08	88.0	<u>a.</u> [2 [4.]	580 4.
	1,23,4,6,7,8-HpCDD ("C-1,2,4,8,7,8,-HpCDD) OCDF ("C-0CDD)	HpCDD)						
	2.3.7.8-TCDF ("C-2.3.7.8-TCDF) 2.3.7.8-TCDD ("C-2.3.7.8-TCDD)							
	1,2,3,6,7,8-HxCDD ("C-1,2,3,6,7,8-HxCDD) 1,2,3,4,6,7,8-HpCDD ("C-1,2,4,6,7,8,-HpCDD)	coo) Hpcoo)						
	OCDF (1°C-OCDD)							

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the

C:\WPDOCS\WRK\DIOXIN90\INICLC90.21

.

LDC #: 175 + SDG + +

Routine Calibration Results Verification VALIDATION FINDINGS WORKSHEET

б 2nd Reviewer: Page: Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Å.)(C.)/(Å.)(C.)

ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Where:

 $A_x = Area of compound,$ $<math>C_x = Concentration of compound,$

 $A_{s} = Area$ of associated internal standard $C_{s} = Concentration of internal standard$

L								
					Reported	Recalculated	Reported	Recalculated
*	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	۵%	, c
-	XILLOZSSE	ar it		1.167	<u>. 3</u>	<u> </u>	x c	ž C
		1.1. 1.	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.254	Nr1	u.	200	200
			1,2,3,6,7,8-HxCDD (¹ *C-1,2,3,6,7,8-HxCDD)	1.007	86.0	0.98	0.6	00
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	1.11	01.1	1.10	0.0	20
			OCDF ("C-OCDD)	3.332	329	3:29		2/1
2	-22-4 100 201472Se		2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	1.167	51.1	- n	с Ф) 0
	-		2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	420.	1:25-	52-	4,0	7 V
			1.2.3.6.7.8-HxCDD ("C-1,2,3,6,7,8-HxCDD)	1.00-1	0.99	0,99	1,0	0.0
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)		1.04	1.04	4	
			OCDF (13C-OCDD)	3.332	818	2	H	6.0
ຕ	28520The	7/28/57	-285207 (12 9/2 8/57 2.3.7.8-TCDF (3C-2,3,7,8-TCDF)	1250	245.0	19/	64	2.0
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)					~
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)					
			OCDF ("c-OCDD)					

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

C:\WPDOCS\WRK\DIOXIN90\CONCLC90.21

	L
	-
CDFs	10
DDs/PC	
of PC	
Analysis	out atou
RMS A	
ions Monitored for HRGC/HRMS Analysis of PCDDs/PCDFs	
d for H	
onitore	Elemental Composition
lons M	tal Com
	Elemen
	┢

...........

Descriptor	ptor Accurate mass ^(a)	lon ID	Elemental Composition	Analyte	Descriptor	Accurate Mass ^(a)	lon ID	Elemental Composition	Analvta
-	303.9016 305.8987 315.9419 317.9389 319.8965 321.8936 321.9368 333.9338 333.9338 375.8364 [354.9792]	M 42 M 42 M 42 M 442 M 44 M 44	C ₁ H ₄ *C10 C ₁ H ₄ *C10 UC ₁ H ₄ *C1,0 UC ₁ H ₄ *C1,0 UC ₁ H ₄ *C1,0 C ₁ H ₄ *C1,02 C ₂ H ₄ *C	TCDF TCDF TCDF (S) TCDD (S) TCDD TCDD (S) HXCDPE PFK	4	407.7818 409.7788 409.7788 413.8250 419.8220 425.7737 425.7737 425.7737 435.8169 435.8169 435.8169 437.8140 (430.9728]			HPCDF HPCDF HPCDF HPCDF HPCDD HPCDD HPCDD HPCDD S(S) NCDPE S(S)
N	339.8597 341.8567 351.9000 353.8970 355.8546 355.8546 357.8516 357.8919 369.9919 369.9794 (354.9792]	M M M M M M M M M M M M M M M M M M M	ငး႕, အငၢ, က(ဂ င်း႕, အငၢ, က(၀ င်း႕, အငၢ, က(၀)	Ресор Ресор Ресор Ресор Ресор Ресор Ресор К Ресор К Ресор (S) (S) (S)	۵	441.7428 443.7339 457.7377 459.7348 459.7780 469.7780 513.6775 [422.9278]	M M M M M M M M M M M M M M M M M M M	င ₁₈ ဆငျ, အငဂ င, အငါ, အငဂ င, အငါ, အငါ င, အငါ, အငါ, တငါ င, ကို	0CDF 0CDF 0CDD 0CDD 0CDD (S) 0CDPE PFK
Ø	373,8208 375,8178 383,8639 385,8610 389,8156 391,8127 401,8559 445,7555 [430,9728]	M 4+2 M 4+2 M+2 M+42 M+42 CCK	C,H.*Cl,*Cl0 C,H.*Cl,*Cl0 C,H.*Cl,*Cl0 ¹⁶ C,H.*Cl,*O ¹⁶ C,H.*Cl,*O C,H.*Cl,*O C,H.*Cl,*Cl0 C,H.*Cl,*Cl0 C,H.*Cl,*Cl0 C,H.*Cl0 16,H.*Cl,*Cl0 C,FT	HXCDF HXCDF HXCDF HXCDD HXCDD HXCDD HXCDD S S S S S S S S S S S S S S S S S S					
(a)	The following nuclidic masses were used:	ses were used:							

H = 1.007825C = 12.000000 13 C = 13.003355F = 18.9984

O = 15.994915³⁵CI = 34.968853³⁷CI = 36.965903

S = internal/recovery standard

2

25	<u>c</u> #12
76521 # OC	sog # ETI be

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCS ID: TZEZZIG LCS

LCSD = Laboratory control sample duplicate percent recovery

	I	7	1	T	T	T	T	T	Т	T	T	1	 1	٦
CS/LCSD	RPD													
	ŭ		15800080											
C.	lecovery		Variation											
1 CSD	Percent Recovery	Denortad												
Cs S	Recovery	Becalc	1	X I	n U	14	d v							
	Percent Recovery	Renorted	11	118	MI	<u>(</u> 2	לכן							
Sample	tration		¥											
Spiked 3	Concentration (PS/S)	1 CS	23.52	113	[]	J	240							
like	Added (PSG)	ICSD	NA											
Sp	₹ Ţ		20	100		\checkmark	200							
	Compound		2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,4,7,8,9-HpCDF	OCDF						-	

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

V:\Validation Worksheets\Dioxin90\LCSCLC90.21

only.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

.....

Page:	_/of_/_
Reviewer:	<u></u>
2nd reviewer:	9

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	ntratior	$m = \frac{(A_{*})(I_{*})(DF)}{(A_{*})(RRF)(V_{*})(\%S)}$
A,	=	Area of the characteristic ion (EICP) for the compound to be measured
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
I <u>,</u>	-	Amount of internal standard added in nanograms (ng)
V.	=	Volume or weight of sample extract in milliliters (ml) or grams (g).
RRF	~	Relative Response Factor (average) from the initial calibration
Df	=	Dilution Factor.
%S	=	Percent solids, applicable to soil and solid matrices

.

Example:

Sample I.D. _______; ______;

Conc. = (1383285(4000)()) (1730878)(2002)(0.02)(0.976) (2002) (2002) (= 9.82 pg/g

Calculated Reported Concentration Concentration # Sample ID Qualification Compound () ()

LDC Report# 17590D21

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	BRC Parcel 4A/4B Sampling Event
Collection Date:	September 10, 2007
LDC Report Date:	October 29, 2007
Matrix:	Soil/Water
Parameters:	Dioxins/Dibenzofurans
Validation Level:	EPA Level III
Laboratory:	Severn Trent Laboratories

Sample Delivery Group (SDG): F7I110258

Sample Identification

TSB-BR-05-0' TSB-BR-04-0' TSB-BR-04-0'(FD) TSB-BJ-03-0' TSB-BJ-03-0'(FD) TSB-BJ-05-0' TSB-BR-01-0' TSB-BR-01-0' TSB-BR-02-0' TSB-BR-02-0' TSB-BR-03-0' RINSATE 3 TSB-BR-05-0'MS TSB-BR-05-0'MSD

Introduction

This data review covers 12 soil samples and one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8290 for Polychlorinated Dioxins/Dibenzofurans.

This review follows USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks.

Sample "RINSATE 3" was identified as a rinsate. No polychlorinated dioxin/dibenzofuran contaminants were found in this blank.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Although the MS/MSD and relative percent differences (RPD) were not within QC limits for some compounds, the MS/MSD and LCS percent recoveries (%R) were within QC limits and no data were qualified.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
7260528LCS	1,2,3,7,8,9-HxCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8,9-HpCDF	207 (70-130) 131 (70-130) 132 (70-130) 132 (70-130) 190 (70-130) 253 (70-130) 236 (70-130)	All water samples in SDG F7I1120258	J+ (all detects) J+ (all detects) J+ (all detects) J+ (all detects) J+ (all detects) J+ (all detects) J+ (all detects)	Ρ

VIII. Regional Quality Assurance and Quality Control

Not applicable.

*IX. Internal Standards

All internal standard recoveries were within QC limits with the following exceptions:

Sample	Internal Standards	%R (Limits)	Compound	Flag	A or P
TSB-BR-04-0'	¹³ C-OCDD	34 (40-135)	OCDD OCDF	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ
RINSATE 3	¹³ C-1,2,3,6,7,8-HxCDD ¹³ C-1,2,3,4,6,7,8-HpCDF ¹³ C-1,2,3,4,7,8-HxCDF	31 (40-135) 29 (40-135) 27 (40-135)	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	J (all detects) UJ (all non-detects)	Ρ

*Removed minus sign from the Flag in table above.

X. Target Compound Identifications

Raw data were not reviewed for this SDG.

XI. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XII. System Performance

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags have been summarized at the end of the report if data has been qualified.

XIV. Field Duplicates

Samples TSB-BR-04-0' and TSB-BR-04-0' (FD) and samples TSB-BJ-03-0' and TSB-BJ-03-0' (FD) were identified as field duplicates. No polychlorinated dioxin/dibenzofurans were detected in any of the samples with the following exceptions:

	Concenti	ation (pg/g)				
Compound	TSB-BR-04-0'	TSB-BR-04-0'(FD)	RPD (Limits)	Difference (Limits)	Flag	A or P
2,3,7,8-TCDD	1.1	0.88	22 (≤50)	-	-	-
1,2,3,6,7,8-HxCDD	2.6	3.5	30 (≤50)	-	-	-
1,2,3,4,6,7,8-HpCDD	6.6	9.4	35 (≤50)	-	-	-
OCDD	6.0	15	86 (≤50)	-	J (all detects)	A
2,3,7,8-TCDF	17	19	11 (≤50)		-	-
1,2,3,7,8-PeCDF	33	36	9 (≤50)	-	-	-
2,3,4,7,8-PeCDF	16	18	12 (≤50)	-	-	-
1,2,3,4,7,8-HxCDF	36	47	27 (≤50)	-	-	-
1,2,3,6,7,8-HxCDF	31	41	28 (≤50)	-	-	-
2,3,4,6,7,8-HxCDF	7.5	9.8	27 (≤50)	-	•	-

*Indicates change as the result of report review. SDG F7I110258

	Concentr	ation (pg/g)				
Compound	TSB-BR-04-0'	TSB-BR-04-0'(FD)	RPD (Limits)	Difference (Limits)	Flag	A or P
1,2,3,7,8,9-HxCDF	4.9	5.2	6 (≤50)	-	-	-
1,2,3,4,6,7,8-HpCDF	60	97	47 (≤50)	-	-	-
1,2,3,4,7,8,9-HpCDF	29	42	37 (≤50)	-	-	-
OCDF	110	200	58 (≤50)	-	-	-
1,2,3,7,8-PeCDD	2.2U	3.2	-	1.0 pg/g (≤2.2)	-	-
1,2,3,7,8,9-HxCDD	1.6U	2.9	-	1.3 pg/g (≤1.6)	-	-

	Concent	ration (pg/g)				
Isotope	TSB-BJ-03-0'	TSB-BJ-03-0'(FD)	RPD (Limits)	Difference (Limits)	Flag	A or P
2,3,7,8-TCDD	1.9	1.9	0 (≤50)	-	-	-
1,2,3,7,8-PeCDD	7.6	7.3	4 (≤50)	-	-	-
1,2,3,4,7,8-HxCDD	4.4	4.0	10 (≤50)	-		-
1,2,3,6,7,8-HxCDD	9.8	8.2	18 (≤50)	-	-	-
1,2,3,7,8,9-HxCDD	6.5	5.6	15 (≤50)	-	-	-
1,2,3,4,6,7,8-HpCDD	27	22	20 (≤50)	-	-	-
OCDD	31	20	43 (≤50)	-	-	-
2,3,7,8-TCDF	56	52	7 (≤50)	-	-	-
1,2,3,7,8-PeCDF	110	96	14 (≤50)	-	-	-
2,3,4,7,8-PeCDF	56	48	15 (≤50)	-	•	-
1,2,3,4,7,8-HxCDF	170	130	27 (≤50)	-	-	-
1,2,3,6,7,8-HxCDF	130	110	17 (≤50)	-	-	-

*Indicates change as the result of report review. SDG F7I110258

	Concent	ration (pg/g)				
Isotope	TSB-BJ-03-0'	TSB-BJ-03-0'(FD)	RPD (Limits)	Difference (Limits)	Flag	A or P
2,3,4,6,7,8-HxCDF	31	26	18 (≤50)	-	-	-
1,2,3,7,8,9-HxCDF	16	14	13 (≤50)	-	-	-
1,2,3,4,6,7,8-HpCDF	350	260	30 (≤50)	-	-	-
1,2,3,4,7,8,9-HpCDF	130	110	17 (≤50)	-	-	-
OCDF	650	500	26 (≤50)	-	-	-

*BRC Parcel 4A/4B Sampling Event Dioxins/Dibenzofurans - Data Qualification Summary - SDG F7I110258

SDG	Sample	Compound	Flag	A or P	Reason
F7 110258	RINSATE 3	1,2,3,7,8,9-HxCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8,9-HpCDF	J+ (all detects) J+ (all detects) J+ (all detects) J+ (all detects) J+ (all detects) J+ (all detects) J+ (all detects)	Ρ	Laboratory control samples (%R)
*F7l110258	TSB-BR-04-0'	OCDD OCDF	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ	Internal standards (%R)
*F7 110258	RINSATE 3	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	J (all detects) UJ (all non-detects)	Ρ	Internal standards (%R)
F7l110258	TSB-BR-04-0' TSB-BR-04-0'(FD)	OCDD	J (all detects)	A	Field duplicates (RPD)

BRC Parcel 4A/4B Sampling Event

Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG F7I110258

No Sample Data Qualified in this SDG

BRC Parcel 4A/4B Sampling Event Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG F7I110258

No Sample Data Qualified in this SDG

LDC #:___17590D21

SDG #: F7I110258

VALIDATION COMPLETENESS WORKSHEET

Level III

Date: <u>#//5/07</u> Page:__/of <u>/___</u> Reviewer:_____ 2nd Reviewer:______

Laboratory: Severn Trent Laboratories, Inc.

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comments	
١.	Technical holding times	A	Sampling dates:	9/10/07	
<u> .</u>	HRGC/HRMS Instrument performance check			. , ,	
111.	Initial calibration	A	· · · · · · · · · · · · · · · · · · ·		-
IV.	Routine calibration	K			
V.	Blanks	A			
VI.	Matrix spike/Matrix spike duplicates	m			
VII.	Laboratory control samples	Tw	100		
VIII.	Regional quality assurance and quality control	N			
IX.	Internal standards	m/			
X.	Target compound identifications	N			
XI.	Compound quantitation and CRQLs	N			
XII.	System performance	N			
XIII.	Overall assessment of data	A			
XIV.	Field duplicates	Tw	7=2+3.	4+5	
XV.	Field blanks	NÞ	7=2+3. R=12		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

51

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

	soils except #		2				
1	TSB-BR-05-0	117	TSB-BR-03-0'	21	OT-605-8MB	31	u/
2	TSB-BR-04-0'			221	72605-BHP	32	
3	TSB-BR-04-0'(FD)	13	TSB-BR-05-0'MS	أ 23	7-67580 MP	33	
4	TSB-BJ-03-0'	14	TSB-BR-05-0'MSD	24		34	
57	TSB-BJ-03-0'(FD)	15		25		35	
<u>م</u>	TSB-BJ-05-0' 2	16		26		36	
7	73B-BJ-05-10 >	17		27		37	
8	TSB-BR-01-0' 2	18		28		38	
92	TSB-BJ-04-0'	19		29		39	
10 ≻	TSB-BR-02-0'	20		30		40	

Notes:

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A. 2,3,7,6-1000	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HoCDD
B 1 2 3 7 8.000				
	G. OCOD	L. 1,2,3,6,7,8-HxCDF	a. ocpf	V. Total TCDF
0.1,2,3,4,4,6,2,1 .0	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W Total Darrie
U. 1,2,3,6,7,8-HXCDD	L. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	
E: 1,2,3,7,8,3-HXCUD	J. 2,3,4,7,8-PeCDF	0. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	V Tabel ULARE

Notes:

COMPNDL 21C

Matrix Spike/Matrix Spike Duplicates VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>N N/A</u> Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. Y N N/A

Was a MS/MSD analyzed every 20 samples of each matrix? Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

	Qualifications		NO UNVER			US NSN - VOL																			
	Associated Samples																								
	RPD (Limits)	30 15 X1		- / · / · S	`	(()	()	()	()	()					-	(()	()	(-		 - · ·	
MSD	%R (Limits))		20 10-120	(4 × (`	•	()	()	()	()	()	(~	-	- -	(()	(((
W	%R (Limits)	((100-00-001		`	()	()	()	()	(· ().	^	~ ~		-	()	()	()	^	()	~		1 /
	Compound	4	4																			-			-
	DI DSW/SW	13/4																							
<u> </u>	# Date																								

MSD90.21

-

トロの	8000
73,	Ę
LDC #:	SDG #:1

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

б Page: 2nd Reviewer: Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A Was a LCS required? N N/A Was a LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed? N N/A Were the LCS percent recovaries /%R) and relative nervent difference (RPDN) within the OC limite.

			T	T	T	T	T	T	Τ	Τ	T		T		Τ	T	Τ	Τ	T	T	Τ	7	T	T	T	T	7
	Oualifications		1 ANTS T						>																		
limits?	Associated Samples		TaLneskur																								
and relative percent difference (HPD) within the QC limits?	RPD (Limits)	· · · · ·				())))	()	()	`	`	(()	()	()	()	()	()	()	()	()	()	()	
ercent anierence (I	LCSD %R (Limits)	~ ~	()))	()	(()	(()	()	()	()	(()	((()	(()	(()	^	~ ~	()	(
	LCS %R (Limits)	at 221202	()))	132()	132()	()061	1)525	236(1)	()	^	()	()	()	^	^ _	()	()	()	()	()	()	()	()	()	()	()	
	Compound	N		Ъ		M	N N		-																		
	Lab ID/Reference	TZEOSZANO																									
	Date																										
L	*																										

LCS90.21

Ň	00
TA	22
901	1110
13	辺
! :#	*
ß	SDG

VALIDATION FINDINGS WORKSHEET Internal Standards

б Reviewer: 2nd Reviewer: Page:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>X/N N/A</u> Are all internal standard recoveries were within the 40-135% criteria? <u>V/N N/A</u> Was the S/N ratio all internal standard peaks <u>></u> 10?

L							
*	Date	Lab ID/Reference	Internal Standard		% Recovery (LImit: 40-135%)	-135%)	Qualifications
		4	H	м 4	Π.	1-125)	10/11 (× 1× 0)
							X - I X - X - X
		И	H	M)		
			4	29	7		
	·		レ	3	~		
					· ·	(
		(45A)	4	ax M		40-130	×10 6. 0
)		No ters as
					,	<u>,</u> (
)) 	
)		
						~ ~	
						~ ~	
					,	 	
						` `	
						~ `	
						~ ~	
		Internal Standards	Chack Standard Head				
ľ	¹³ C-2.3.7.8-TCDF	DF DF				Necuvery Statigards	Check Standard Used
œ		00		<u>4</u> - 	+		
Ö	¹³ C-1,2,3,7,8-PeCDF	PecDF		≤ از			
ò	¹³ C-1,2,3,7,8-PeCDD	ecDD					
ឃ៍	1ºC-1.2.3.57.8	-HxCDF		o			
u:	^{1a} C-1.2.3.6.7,8-HxCDD	HXCDD					
Ö	¹³ C-1,2,3,4,6,7,8-HpCDF	.8-HpCDF		d			
Ξ	¹³ C-1.2,3,4,6,7,8-HpCDD	.8-HpCDD		α			
_							

INTST90.21

LDC#:<u>17590D21</u> SDG#:<u>F7I110258</u>

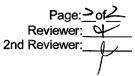
VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: Lof Reviewer: 4 2nd Reviewer: 4

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

YN NA YN NA

more gaune


Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentra	ation (pg/g)		
Compound	2	3	RPD OY D	(≲ 50)
A	1.1	0.88	22	/
D	2.6	3.5	30	
F	6.6	9.4	35	
G	6.0	15	86	Jdets/A
н	17	19	11	
1	33	36	9	
J	16	18	12	
к	36	. 47	27	
L	31	41	28	
м	7.5	9.8	27	
N	4.9	5.2	6	
0	60	97	47	
Ρ	29	42	37	
Q	110	200	58	
В	2.20	3.2	1.0 (< 2.2)	
E	1.6U	2.9	1.3 (< 1.6)	

	Concentra	ation (pg/g)		
Compound	4	5	RPD	(≤50)
A	1.9	1.9	0	
В	7.6	7.3	4	
с	4.4	4.0	10	
D	9.8	8.2	18	
E	6.5	5.6	15	
F	27	22	20	
G	31	20	43	

LDC#:<u>17590D21</u> SDG#: F7I110258

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentration (pg/g)			
Compound	4	5	RPD	
н	56	52	7	
Ι	110	96	14	
J	56	48	15	
к	170	130	27	
L	130	110	17	
М	31	26	18	
Ν	16	14	13	
0	350	260	30	
Ρ	130	. 110	17	
٩	650	500	26	