

Summary of LOUs, Data Tables, and Select Figures from the Conceptual Site Model

Appendix L Summary of LOUs in Chronologic Order from Conceptual Site Model (ENSR 2005)

1.0 Source Characterization

Potential environmental impacts at the Kerr-McGee Henderson facility were identified, assessed and/or characterized in the 1993 ECA (Kleinfelder, 1993), the LOU (NDEP, 1994), the 1996 Written Response (Kerr-McGee, 1996b), the 1997 Phase II ECA, (ENSR, 1997) and the 2001 Supplemental Phase II ECA (ENSR, 2001).

As part of the ECA process, Kerr-McGee worked with NDEP to develop and refine a Site-related chemicals list (Table 4). This list includes Site-related chemicals, products, intermediate and breakdown products, and chemical combinations that may be associated with the current or historic activities at the Site as it exists in the geographic setting within an industrial complex, with industrial manufacturing neighbors. Table 5 presents the list of Site-related chemicals in alphabetical order. In response to an NDEP request in the February 11, 2004 letter, Table 6 summarizes the applicable 2004 EPA Region IX Preliminary Remediation Goals (PRGs) and Federal Maximum Contaminant Levels (MCLs) for drinking water.

1.1 Potential Source Areas

Within each section below, each LOU is discussed. Diagrams of LOU sample locations from previous reports are included in Appendix D. Following the discussion of LOUs additional potential source areas, such as ditches, manufacturing units or landfills, are discussed.

1.1.1 LOU #1 Trade Effluent Settling Ponds

The Trade Effluent (TE) settling pond area is located north of the ammonium perchlorate storage area and west of the existing ponds, WC-East and WC- West (Plate 16). The TE ponds were operated by the U.S. government from the fall of 1942 to fall 1944 as unlined storage impoundments for acid waste neutralized with caustic liquor. As described in Kleinfelder, 1993, the acid liquor was comprised of hydrochloric acid generated from primary and secondary scrubbing towers. The waste caustic solution is presumed to be sodium hydroxide. The waste was apparently evenly distributed in the ponds, with no segregation of materials in different areas. Each TE pond was approximately 20 acres and the average liquid depth was 7.5 feet.

The TE Ponds were investigated in response to LOU #1 (SWMU KMCC-014). After decommissioning, portions of the TE pond area have been utilized for other activities. Kerr-McGee constructed and operated a hazardous waste landfill in the northwestern portion of the TE pond area between 1980 and 1983. The landfill was closed and capped in 1985 in accordance with RCRA interim status requirements and is currently under a post-closure monitoring program. In October 1988, double-lined surface impoundments WC-East and WC-West were constructed in the northeastern portion of the TE pond area. WC-East and WC-West are permitted by the NDEP and are currently in operation.

In 1987, prior to installation of the double-lined surface impoundments, two soil borings were drilled in the vicinity of the closed landfill (Holes 1 and 2), and nine samples were collected and analyzed. Analysis included metals by method 6010, soil pH by EPA Method 9045, pesticides by EPA Method 608, and Silvex Analyses by EPA Method 615 (Table 7). All results were non-detect except for Barium, with results ranging between 0.10 mg/l and 1.0 mg/l

In 1997, soil sampling was conducted in this area consistent with an NDEP approved work plan. Boring locations were selected by a random generation grid placed over the area of historical use and advanced to a total depth of 10 feet bgs. In order to characterize the potential remnants of the neutralized aqueous waste historically conveyed to the ponds, soil samples were collected at depths of 1, 5, and 10 feet bgs. Soil borings SB1-1 and SB1-2 were located in the area of concern due south of the TE ponds (Plate 6). Five soil borings, SB1-3 through SB1-7, were advanced in the area between the closed landfill and surface impoundments. Soil samples collected from the TE settling ponds were analyzed for eight RCRA metals by EPA Method 6010 and for soil pH by SW-846 Method 9045. Analytical results from samples collected at LOU #1 are contained in Table 7. In summary, metal concentrations were below detection limits, with the exception of barium, which was detected at concentrations of less than or equal to 1 mg/l.

Analytical results of soil samples collected from the TE ponds indicate that metal concentrations in soil samples are within the range of the average concentration of these constituents in soils (ASTM, 1995). Confirmation that these average ranges are applicable to the geographic area within which the facility is sited will be an element included in the Background Study Work Plan intended for 2005. The range of soil pH within the boring samples is from 8.2 to 9.8. The expected range of pH for soils in a desert environment is 8 to 9, but it is not unusual for pH to range from 7 to 11 (Boul, S.W.,1973). This will be confirmed during the Background Study to be completed in 2005. Please refer to Table 7 for analytical results and to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.2 LOU #2 Open Area due South of Trade Effluent Settling Ponds

LOU #2 was investigated concurrently with LOU #1, which is discussed above in Section 4.8.1. Soil borings SB1-1 and SB1-2 were located in the area of concern due south of the TE ponds (Plate 6). Analytical results of soil samples collected from the TE ponds indicate that metal concentrations in soil samples were within the range of the average concentration of these constituents in soils (ASTM, 1995). The samples' range of soil pH is from 8.2 to 8.9, which is within the expected range of desert soil. The results of analysis are presented in Tables 8 and 7. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.3 LOU #3 Air Pollution Emissions Associated with Industrial Processes

In 1997, air emissions from the Kerr-McGee facility were analyzed to determine the patterns of dispersion and probable deposition of emissions. Emission estimates were developed as part of the Title V Federal operating permit and were based on source test data as well as EPA approved emission factors (AP-42). The results of air modeling were included in the October 1996 Kerr-McGee report. In summary, the maximum calculated deposition is 17 grams per square meter (g/m²) at a point on the eastern boundary of the plant. This reflects the predominantly southwestern wind direction. At other points along the Kerr-McGee plant boundary, the calculated deposition is significantly less; along over 80 percent of the boundary the deposition is less than 1 g/m². Appendix D includes the figures and text from the air modeling.

1.1.4 LOU #4 Hardesty Chemical Site

Hardesty Chemical Company (Hardesty) leased property in the vicinity of Unit 2 (as well as elsewhere in the BMI complex) in September 1945. In 1947, AMECCO gave notice that it had purchased the Hardesty interest in the BMI complex, and it appears AMEECO ceased operations prior to June 1949. Products listed for proposed production included muriatic acid, synthetic hydrochloric acid, monochlorobenzene, paradicyhlorobenzene, orthodichlorobenzene, DDT, and soda arsenite solution. A portion of the Hardesty area was later leased by J. B. Kelley, Inc.

Drawings of the facility indicate that there were two underground storage tanks (USTs) located to the north of Unit 2, one for kerosene and one for benzene. A tank farm was also located north of Unit 2 on the north side of the tracks. None of these tanks are currently present.

A groundwater monitoring well (M-97) was installed downgradient from the tank farm and former USTs in 1997 (Plate 14). The borehole was advanced to a total depth of 50 feet bgs and samples were collected every five feet for lithologic logging and control. The borehole was converted to a well. Based on the substances historically used at the Hardesty site, the groundwater was sampled and analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), specific conductance, TPH, pH, and arsenic by EPA Methods 8240, 8270, 8015M-diesel, 9045, and 6010/7000 and SW-846 9045, respectively (Table 9).

Analyses indicate that TPH was not detected at the practical quantitation limit (PQL). Arsenic was detected at 0.124 mg/l. Analysis indicates that 7.8 μ g/l of Di-n-butylphthalate is an estimated concentration below the laboratory PQL. The VOC analysis indicated the presence of chloroform (18 μ g/l) and acetone (3.1 μ g/l). The analysis for acetone showed an estimated concentration because it was below laboratory PQL. Acetone was also detected in the laboratory method blank. Groundwater monitoring well M-97 has also been monitored from 1999-2004 for pH, specific conductivity, total chromium, and perchlorate levels (Table 9).

In summary, the site related chemicals were either not detected, were detected at low levels as a result of laboratory procedures. This indicates that the former USTs at the Hardesty site have not impacted groundwater. Please refer to Table 9 for analytical information and Plate 14 for the location of this area relative to other potential TPH source areas.

1.1.5 LOU #5 On-Site Portion of Beta Ditch Including the Small Diversion Ditch

The Beta Ditch could have carried a wide variety of chemicals throughout its history. This ditch was investigated during the 1996 Phase II ECI (ERM, 1996). Soil samples were analyzed for VOCs, SVOCs, pesticides/ polychlorinated biphenyls (PCBs), metals, cyanide, chlorate, pH, asbestos and radionuclides. Table 10 summarizes the analytical results. Of the 41 individual VOCs analyzed under the EPA Method 8260, only four were detected at relatively low concentrations on Site. Of the 66 individual SVOCs analyzed under EPA Method 8270 only four were detected at relatively low concentrations on Site. Of the 28 constitutes analyzed for pesticides/PCBs only four were detected on Site. Please refer to Table 10 for analytical results and Plate 16 for the location of this area relative to other potential miscellaneous source areas. Appendix D contains a figure of the sample locations.

1.1.6 LOU #6 Unnamed Drainage Ditch Segment

This ditch is also referred to as the Northwest Drainage ditch and was used by more than one BMI company. Soil in the area was sampled in 1993. Eight surface soil samples were collected from 0-

1 foot bgs. Three samples were collected in the ditch and the other eight were collected from areas adjacent to the ditch. Three additional samples were collected from the 4-5 foot depth interval. No significant concentrations of contaminants of concern were identified (Table 11). In 1994, two nearby groundwater wells were sampled for VOCs by method 8240, metals by method 6010, and PCBs by method 608, see Table 11 for details. In addition, an extensive series of borings and sampling was conducted along the Warm Springs Road Extension in March 1996. A total of 45 soil samples were obtained. Analyses on numerous samples included metals by EPA Method 6010, chlorinated pesticides and PCBs by method 8080, VOCs by method 8260, SVOCs by method 8270, bulk asbestos, and radionuclides by various analyses. Please refer to Table 11 for analytical data and Plate 16 for the location of this area relative to other potential miscellaneous source areas. Appendix D contains a figure of the sample locations.

1.1.7 LOU #7 and #8 Old P-2 and P-3 Ponds and Associated Conveyance Facilities

The Old P-2 and P-3 ponds were investigated in response to LOUs #7 and #8, the Old P-2 surface impoundment is identified as Solid Waste Management Unit (SWMU) KMCC-010 in the Phase I ECA and the LOU (Kleinfelder, 1993 and NDEP, 1994).

During the Phase II ECA, sampling was conducted in the floor of these ponds consistent with the NDEP-approved work plan. Eight shallow soil borings, SB2-1 through SB2-8, were advanced in P-3 pond and five shallow borings, SB2-9 through SB2-13, were advanced in Old P-2 pond. Samples were collected at depths of 0 to 12 inches bgs and 24 to 36 inches bgs. Sample locations are shown on Plates 6 and 17. Prior to sampling, soil boring and sampling locations were selected using a random generation grid superimposed over the investigation area.

Surface soil samples were collected and analyzed for total chromium and soil pH. The analytical results of soil samples collected from the Old P-2 and P-3 ponds are presented in Table 12. Cross sections illustrating the impacts are presented on Plate 17.

With the exception of SB2-3 and SB2-6, the 0 to 12 inches deep samples in the boreholes contained total chromium above 100 milligrams per kilogram (mg/kg). Also, in several areas (SB2-1, SB2-8, SB2-10, and SB2-11), the chromium concentrations from the 0 to 12 inch depths were above 1,000 mg/kg (Plate 17 and Figure 4). All 24 to 36 inches deep samples, with the exception of SB2-3, SB2-5, and SB2-6, were analyzed for total chromium. Subsequent analysis in P-3 pond of the 24" to 36" deep samples indicated a decrease in total chromium concentration, with the exception of SB2-2 and SB2-8. The total chromium concentration in all samples from Old P-2 decreased with depth.

Based on these results, 10 additional soil borings (SB2-14 through SB2-24) were advanced (Figure 4 and Plate 17). Total chromium concentrations were below 100 mg/kg in samples collected from the borings located along the ponds' perimeters. These results indicated that soils impacted with chromium associated with Old P-2 and P-3 pond activities are primarily limited to the interior areas of the ponds.

For borings within the Old P-2 and P-3 pond interiors (SB2-14 through SB2-17), all of the deepest samples collected at the top of the capillary fringe contained less than 100 mg/kg total chromium, except for SB2-17, which was 100 mg/kg at a total depth of 33 feet bgs. Except for SB2-16, which had no total chromium detections exceeding 100 mg/kg, samples collected from the other three borings within the pond interiors (soil borings SB2-14, SB2-15, and SB2-17) encountered total

chromium concentrations exceeding 100 mg/kg at varying depths. Among the samples collected from SB2-14, SB2-15, and SB2-17, total chromium concentrations in soil ranged up to a maximum of 540 mg/kg. The deepest total chromium detections exceeding 100 mg/kg, in SB2-14, SB2-15, and SB2-17 were 160 mg/kg, 100 mg/kg, and 100 mg/kg at depths of 30 feet, 27 feet, and 33 feet bgs, respectively. The groundwater capillary fringe was encountered at varying depths of 33 to 42.5 feet bgs.

Levels of pH were measured in soil samples from all Old P-2 and P-3 pond soil borings. The pH levels ranged from a low of 7.8 to a high of 10. The pH levels from the four borings within the Old P-2 and P-3 pond interiors ranged from a low of 8.1 to a high of 10.

Please refer to Plate 10 for the location of LOU #7 and #8 relative to chromium concentrations in groundwater and other potential chromium source areas.

1.1.8 LOU #9 New P-2 Pond and Associated Piping

The New P-2 surface impoundment (pond) was initially constructed with two liners: a 30-mil unreinforced polyvinylchloride (PVC) liner and a 36-mil reinforced polyester liner. Approximately 18 months after being constructed, an additional 60-mil high-density polyethylene liner was installed. The pond was regulated under NPDES permit #NV0000078. The New P-2 pond had leak detection which was monitored monthly. Table 13 presents groundwater wells upgradient and downgradient if this location. Kerr-McGee has focused remediation efforts on assessment, containment, and clean-up of the impacted groundwater downgradient from this pond. This pond is upgradient of the on-Site groundwater interception system/groundwater barrier wall. Details regarding the groundwater remediation program progress have been provided in Section 3 of this report and updates are provided quarterly (for perchlorate) and semi-annually (for chromium) to NDEP. Please refer to Plate 12 for the location of LOU #9 relative to groundwater specific conductivity and other potential chlorate and TDS source areas.

1.1.9 LOU #10 On-Site Hazardous Waste Landfill

This landfill was closed consistent with the approved closure and post closure plans. Groundwater analytical data for monitoring wells nearby are shown in Table 14. In a letter dated January 17, 1986 the NDEP approved the landfill closure. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.10 Chlorate LOU #11 Specific Information Regarding Sodium Chlorate Filter Cake Drying Pad area

Prior to the early 1990s the Filter Cake Drying Pad was used to dry particulate material removed from the sodium chlorate process. In the early 1990s a new tank containment system was constructed in the drying pad location. Before construction, the existing pad structure was demolished and the material generated was managed as hazardous waste (due to total chromium content of the upper surface) and appropriately disposed off Site. According to Alan Gaddy, a Kerr McGee employee who observed the demolition, discolored soil was removed and disposed with the concrete (Kerr-McGee, 1996b). Please refer to Plate 12 for the location of LOU #11 relative to groundwater specific conductivity and other potential chlorate and TDS source areas.

1.1.11 LOU #12 Hazardous Waste Storage Area

LOU #12 is located to the northwest of Unit 4 and was the location where waste from the sodium chlorate process was stored in a semi-dump trailer, in preparation for transportation to a commercial

hazardous waste disposal site (TSDF). The waste was initially transferred from the process to the trailer by a front-end loader, but in the later years of operation the material was transferred by dumping from a collection bin into the trailer. The semi-dump trailer was periodically transported off Site to the TSDF. NDEP has indicated that no further action was required for LOU #12. Please refer to Plate 12 for the location of LOU #12 relative to groundwater specific conductivity and other potential chlorate and TDS source areas.

1.1.12 LOU #13 and #14 Ponds S-1 and P-1

S-1 and P-1 ponds were single-lined surface impoundments used by the sodium chlorate process. The S-1 pond footprint was approximately 47,500 ft². The liner was constructed of 20-mil PVC on the bottom and 30-mil cross-linked polyethylene (CPE) on the sides (Kleinfelder, 1993). Pond P-1's footprint and liner were similar to S-1. The ponds were closed in 1983 and final closure was approved by the NDEP on December 5, 1985. During closure, approximately two feet of soil from beneath the floor of each pond was also removed and soils sampled and analyzed to confirm adequate soil removal. Soil samples were analyzed by Extraction Procedure (EP) Toxicity methods and revealed concentrations of total soluble chromium between <0.02 mg/l and 0.11 mg/l (Tables 15 and 16). NDEP has indicated that no further action was required for LOU #13 and #14. Please refer to Plate 12 for the location of LOU #13 and #14 relative to groundwater specific conductivity and other potential chlorate and TDS source areas. Appendix D contains a diagram of the sample locations.

1.1.13 LOU #15 Platinum Drying Unit

The platinum drying unit was a 20 foot by 32 foot concrete-floored and concrete-bermed containment pad. In this area, a sodium perchlorate process byproduct which contained recoverable amounts of platinum was worked and platinum was recovered. In 1993 the pad concrete was sampled for metals using TCLP. The metals were below the method detection limit, with the exception of chromium (Table 17). The area was demolished and the concrete was transported to a hazardous waste TSDF. Soil under the pad was sampled for total chromium in 1994. The three chromium samples were between 17.9 and 50.7 ppm (Table 17). Please refer to Plates 10, 11 and 16 for the location of LOU #15 relative to groundwater impacts and other potential source areas for perchlorate, chromium and miscellaneous chemicals.

1.1.14 LOU #16 and #17 Ponds AP-1, AP-2 and AP-3 and Associated Transfer Lines

As well as being areas where other chemicals were present, ponds AP-1, AP-2 and AP-3 were identified by the NDEP as potential sources of nitrate and chromium. Three existing monitoring wells, M-17, M-89, and M-25, were sampled and analyzed for nitrates. Well M-17 is located immediately upgradient of the ponds, and M-89 and M-25 are situated in the downgradient groundwater flow direction. The samples were analyzed for nitrates by EPA Method 300 (Table 18).

The nitrate analysis was conducted by ion chromatography and the laboratory results were presented in terms of elemental nitrogen. The chromatograph was re-examined and the retention time peaks separated for nitrate/nitrite. Virtually no nitrite was present in the samples; the sample results are presented in terms of equivalent concentration of elemental nitrogen. Please refer to Table 18 for the analytical data and Plate 16 for the location of this area relative to other potential

miscellaneous source areas. Nitrate is removed from treated groundwater in the ongoing remedial activities associated with the Site.

To evaluate potential chromium impacts, data from three existing monitoring wells, M-17, M-25, and M-89, were reviewed. Refer to Table 18 for the analytical results. The soil beneath these ponds was analyzed for chromium in 1993. Table 18 also presents the results of the TCLP analyses. Statistical guidelines were followed to determine the average concentrations of chromium. [The statistical guidance used is from US EPA SW-846 Chapter 9, dated 1986. Specifically Table 9-1, equation 2a was used to calculate the average and a series of equations were used to calculate the confidence interval for the mean: 3a, 4, 5 and 6 using a student's "t" value for a two tailed confidence interval in a probability of 0.20 with 7 degrees of freedom.] The average concentration of chromium in AP-1 was 3.13 mg/kg with a confidence interval of 0.45 mg/l. The average concentration of chromium in AP-2 was 2.80 mg/kg with a confidence interval of 0.88 mg/l (Kerr-McGee, 1996b). These ponds were not identified as a potential source of chromium, and therefore, are not on Plate 10.

1.1.15 LOU #18 Pond AP-4

Surface Impoundment AP-4 was double-lined and had leak detection between the liners. Although no groundwater wells were specifically constructed to monitor groundwater beneath this impoundment, groundwater monitoring occurs upgradient and downgradient in the area (Table 18). Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.16 LOU #19 Pond AP-5

Surface Impoundment AP-5 is double-lined and has leak detection between the liners. Although no groundwater wells were specifically constructed to monitor groundwater beneath this impoundment, the groundwater is monitored upgradient and downgradient in the area (Table 18). Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.17 LOU #20 Pond C-1 and Associated Piping

Pond C-1 was a single-lined surface impoundment. It was constructed with a single 60-mil PVC liner and covered 1.58 acres (69,000 ft²). The pond was used to evaporate non-hazardous process water, primarily from steam production, but at times also from the boron and manganese dioxide processes. Four groundwater monitor wells have been monitored in the vicinity of Pond C-1 (Table 19). A review of groundwater manganese and conductivity records indicates that Pond C-1 does not appear to have impacted groundwater for these constituents (Kerr McGee, 1996b). In addition, C-1 is upgradient of the on-Site groundwater interception system/groundwater barrier wall. Please refer to Plate 12 for the location of Pond C-1 relative to groundwater specific conductivity and other potential chlorate and TDS source areas.

1.1.18 LOU #21 Pond Mn-1 and Associated Piping

Pond Mn-1 is a double-lined surface impoundment and has leak detection between the liners. The top liner is 60-mil high-density polyethylene (HDPE) and the bottom liner is 4 to 6 inches of compacted bentonite clay with a permeability of 10⁻⁶ centimeters per second (Kleinfelder, 1993). Mn-1 has a surface area of 1.22 acres (53,000 ft²). The manganese pond was placed in operation in May 1983 and received non-hazardous process water wastes, including filter wash water and cathode wash water. The pond contents contain manganese as well as high TDS (Kleinfelder,

1993). This pond is upgradient of the on-Site groundwater interception system/groundwater barrier wall. Please refer to Table 19 for analytical information and Plate 12 for the location of pond Mn-1 relative to groundwater specific conductivity and other potential chlorate and TDS source areas.

1.1.19 LOU #22 and #23 Ponds WC-West (WC-1) and WC-East (WC-2) and Associated Piping

Ponds WC-West (WC-1) and WC-East (WC-2) are both double-lined process water surface impoundments. These ponds were constructed within the former Trade Effluent settling pond area. The bottom liner of WC-West is 40-mil HDPE and the upper liner is 60-mil HDPE, with two leak detection wells between the liners. The bottom liner of WC-East is 40-mil HDPE, the middle liner is 60-mil HDPE, and the top liner is 40-mil HDPE. The current top liner was installed as an ultraviolet (UV) protective liner because the original top liner (now the middle liner) did not have sufficient carbon content to meet Kerr-McGee construction specifications. WC-East has two leak detection wells between the middle and bottom liners. WC-West has a surface area of 1.55 acres (67,600 ft2) and WC-East has a surface area of 2.03 acres (88,580 ft²). The soils beneath WC-West and WC-East were sampled for VOCs and eight RCRA metals prior to construction. Each analyte, except barium, was below the detection limit. This data is presented under LOU #1 on Table 7. Barium was detected at concentrations ranging from 0.1 to 1 mg/l (Kleinfelder, 1993). During the Phase I field investigation in 1993, a small spill was noted from the fittings on a Nalco process chemical container placed between the two ponds. An area of soil measuring approximately 5 feet by 10 feet appeared white and crusty (Kleinfelder, 1993). The soil stained with this material, reported to be sodium hypochlorite and other water treatment chemicals, was placed in WC-East (W-2). The NDEP required no further action for LOU #22. Please refer to Plate 12 for the location of ponds WC-West (WC-1) and WC-East (WC-2) relative to groundwater specific conductivity and other potential chlorate and TDS source areas.

1.1.20 LOU #22 and #23 Ponds WC-West and WC-East and Associated Piping

Ponds WC-West (WC-1) and WC-East (WC-2) are both double-lined process water surface impoundments. They were constructed within the former Trade Effluent settling pond area. For WC-West, the bottom liner is composed of 40-mil HDPE and the upper liner is composed of 60-mil HDPE with leak detection between the two liners. For WC-East the bottom liner is composed of 40-mil HDPE, the middle liner is 60-mil HDPE, and the top liner is 40-mil HDPE. The current top liner was installed as a UV protective liner because the original top liner (now the middle liner) did not have sufficient carbon content to meet Kerr-McGee construction specifications. WC-West has a surface area of 1.55 acres (67,600 ft²) and WC-East has a surface area of 2.03 acres (88,580 ft²). The soil beneath WC-West and WC-East was sampled for VOCs and eight RCRA metals prior to construction. A small spill occurred from the fittings on a Nalco container placed adjacent to WC-East. The soil stained with this material, reported to be sodium hypochlorite and other water treatment chemicals, was placed in WC-East pond (WC-2). Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.21 LOU #24 and #34 Leach Beds, Associated Conveyance Facilities and Former Manganese Tailings Area

Prior to 1975, tailings from the beneficiation of manganese dioxide ores were transported as a slurry to unlined surface impoundments/leach beds to the west of the current tailings area. After 1975, filtering of the tailings yielded a semi-dry filter cake. The tailings pile was graded periodically to maintain the desired shape and drainage. Placement of demolition debris into the tailings pile was

allowed by NDEP (Kleinfelder, 1993). The tailings were analyzed by EP toxicity in 1979 and by TCLP in 1990 and 1993, and were determined to be non-hazardous. Please refer to Table 20 for groundwater and TCLP analytical information and Plate 13 for the location of this area relative to manganese concentrations in groundwater and other potential manganese source areas.

1.1.22 LOU #25 Process Hardware Storage Area

The process hardware storage area is located between Units 1 and 2. The area is about 50 feet wide and 200 feet long and was used to store process hardware since 1989. The process hardware stored in this area consisted of scrap metal parts and equipment from decommissioning of the former sodium chlorate and perchlorate processes from Units 4 and 5. Parts, tanks and other equipment destined for this storage area were rinsed or otherwise decontaminated prior to placement on the pad. The NDEP required no further action for LOU #25. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.23 LOU #26 Trash Storage Area

The trash storage area is located north of Units 1 and 2. The area consists of two asphalt- surfaced areas measuring approximately 56 feet by 100 feet and 65 feet by 50 feet. Common trash from the sodium chlorate and sodium perchlorate processes was placed in 55-gallon drums and delivered to this staging area. The area was used from approximately 1990 to closure of the sodium chlorate process. The drums were inspected, sealed, labeled "non-hazardous waste" and shipped to the U.S. Ecology landfill in Beatty, Nevada. The drums were shipped to Beatty as a precautionary measure. The NDEP required no further action for LOU #26. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.24 LOU #27 PCB Storage Area

The PCB storage area is located in the northern portion of Unit 2. The PCB storage area consists of three 12 foot by 15 foot vaults with floors that are 12 inches lower than the surrounding area. The vault walls are concrete that is 8 inches thick and the floors are covered with black 6-mil plastic sheeting. The vault area was reserved as a PCB waste staging areas. The USEPA conducted an inspection of the PCB storage area in 1989 and stated that no problems were noted. The NDEP required no further action for LOU #27. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.25 LOU #28 Hazardous Waste Storage Area

The Hazardous Waste Staging Area was originally located north of Unit 2 and consisted of a 65 foot by 15 foot concrete pad segregated into four areas with concrete curbing. The staging pad area was constructed for compliance with RCRA requirements and used for both hazardous and non-hazardous waste staging, although the types were segregated. The wastes handled consisted of used oil, flammable maintenance parts washing wastes, hexavalent chromium-contaminated material, and miscellaneous compatible wastes. Material placed on these pads was contained in drums. During later construction projects, the staging pad and surrounding soil was removed to a depth of four feet. The soil removed had elevated levels of TPH, as analyzed in October 1994. In November 1994 analysis of a soil composite sample from several locations in the bottom of the excavation was non-detect <10 mg/kg for TPH (Table 21) (Kerr-McGee, 1996b). This area is upgradient of the on-Site groundwater interception system/groundwater barrier wall. Please refer

to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.26 LOU #29 Solid Waste Dumpsters

The solid waste dumpsters were located south of Unit 4 across from Avenue H. They consisted of open metal dumpsters placed on concrete surfaces separated by areas of gravel-covered soil. The area is about 220 feet by 70 feet. Two dumpsters have routinely been in place - one for recyclable steel and the other for common trash. At times other non-ferrous metal recycle dumpsters were staged for recycle of other than steel material. Scrap metal was washed prior to delivery to this area. The area was used since 1980. The NDEP required no further action for LOU #29. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.27 LOU #30 Ammonium Perchlorate Area – Pad 35

Pad 35 is located south of the building known as old D-1. It consists of an "L" shaped concrete pad approximately 30 feet by 12 feet. The base of the "L" measures 6 feet by 10 feet. This area was used for accumulation of drummed common trash potentially contaminated with perchlorate and other industrial wastes, such as cooling tower sludge and iron oxide sludge. Please refer to Plate 11 for the location of this pad (LOU #30) relative to perchlorate concentrations in groundwater and other potential perchlorate source areas. The NDEP required no further action for LOU #30.

1.1.28 LOU #31 Drum Crushing and Recycling Area

The drum crushing area (serving the ammonium perchlorate production) consisted of a drum crusher located on an 18 feet by 18 feet concrete pad located just east of the old D-1 building. Drums destined for disposal were emptied and rinsed prior to delivery to this area. Soils adjacent to the drum crushing area were transported to the AP-4 pond for recovery of the residual perchlorate (Kerr-McGee, 1996b). This area is located up-gradient of the on-Site groundwater interception system/groundwater barrier wall. Please refer to Plate 11 for the location of LOU #31 relative to perchlorate concentrations in groundwater and other potential perchlorate source areas.

1.1.29 LOU #32 Groundwater Remediation Unit

The chromium GWTP groundwater remediation unit occupies an area approximately 1,200 feet by 650 feet. It includes a line of groundwater interceptor wells, the groundwater barrier wall, and two recharge trenches. The groundwater treatment unit is also in the area on a 60-foot by 20-foot concrete pad. Portions of the recharge trenches became plugged and required modifications. At times treated water was discharged to near surface soils due to pipeline plugging (Kerr-McGee, 1996b). System modifications have been implemented and treated water is no longer delivered. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.30 LOU #33 Sodium Perchlorate Platinum By-product Filter

The platinum recovery filter press was located on a 75 foot by 100 foot concrete pad, to the east of the Unit 5 cell floor. The pad was equipped with a sump that collected and contained liquids, including process liquids and wash down water. Cracks in the floor, noted during the Phase I investigation, were coated with a Chevron industrial membrane material that provided a continuous cover over the floor (Kerr-McGee, 1996b). Analysis of groundwater impacts is ongoing. Please

refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.31 LOU #35 Truck Unloading Area

The truck unloading area in LOU #35 was identified by NDEP as requiring additional assessment and characterization of "unknown" waste materials disposed in this area. This area is also identified as SMU KMCC-025. Eight shallow soil borings (SB4-1 through SB4-8) were advanced and shallow samples (-S) were collected from depths of 0 to 12 inches bgs, and deep samples (-D) were collected from depths of 24 to 36 inches bgs. The sampling locations were chosen using a random generation sampling grid superimposed over the investigation area (Plate 6).

Based on information provided by a previous terminal manager, the truck unloading area was used for the unloading of inorganic materials. Sample analysis was conducted for total metals by EPA Method 6010/7000 and pH by SW-846 Method 9045. In addition, in order to assess whether degreasing or truck washing material remained at the site, the samples were analyzed for TPH and VOCs by EPA Methods 8015M-d and 8240, respectively. All samples collected were analyzed (Table 22).

Analytical results indicate that metal concentrations in the soil samples were not elevated compared to the range of the average background concentration of these constituents in Western U.S. soils.

The soil samples from the truck unloading area contained TPH at concentrations below the NDEP established criteria of 100 mg/kg for hydrocarbon-impacted soils. The pH for soils ranged from 8 to 10 (Table 22). With the exception of samples SB4-2-D, SB4-5-D, SB4-6-D, and SB4-8-S, the samples did not contain detectable VOC concentrations above the laboratory PQL. Samples SB4-2-D, SB4-5-D, SB4-6-D, and SB4-8-S contained acetone at concentrations of 11, 6.8, 7.0, and 8.7 μ g/kg, respectively. However, acetone was also detected in a laboratory method blank at 4.4 μ g/l. Samples SB4-6-D, SB4-5-D, and SB4-8-S were qualified as estimated values detected at a level less than the laboratory PQL. Analytical results of soil sample SB4-8-S indicated that the surface soil sample contained 2.4 μ g/kg of trichloroethane (TCA), which was also an estimated value detected at a level less than the laboratory PQL.

Based on the analytical results the truck unloading area has not been adversely impacted. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.32 LOU #36 Former Satellite Accumulation Points

This satellite accumulation point is located at the southwest corner of Unit 3. It includes a parts washer and the adjacent open area where lead acid storage batteries and waste from the parts washer were stored. From 1989 to 1991 a solvent-based washer was used and after 1991 a caustic detergent was used for washing. Waste stored in this area included drums of oil and grease, solvents (mainly 1,1,1-TCA), sludge, caustic detergent and metal parts. NDEP required no further action for LOU #36. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.33 LOU #37 Former Satellite Accumulation Points

This satellite accumulation point is located within the northeast portion of Unit 3. It includes a parts washer and the drum for temporary storage of parts washer waste. From 1989 to 1991 a solvent-based washer was used and after 1991 a caustic detergent was used for washing. Waste stored in this area included drums of oil and grease, solvents (mainly 1,1,1-TCA), sludge, caustic detergent

and metal parts. NDEP required no further action for LOU #37. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.34 LOU #38 Former Satellite Accumulation Points

This satellite accumulation point is located outside the north wall of the laboratory. It was used to store hazardous chemicals used in the on-site laboratory. It consists of three metal chemical storage cabinets used to store partially full containers of flammable liquids. Once the containers were full they were placed in 55-gallon drums packed with vermiculite and shipped off site for appropriate disposal. NDEP required no further action for LOU #38. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.35 LOU #39 A.P. Satellite Accumulation Point – AP Maintenance Shop

Visible stained soil resulting from a minor spill from a used oil drum was observed in the AP satellite accumulation point-AP maintenance shop during a Phase I investigation. This area was investigated in response to LOU #39 (SWMU KMCC-029) Plates 6 and 14).

Visibly affected soil was removed and a surface soil sample, S8-1S was collected and analyzed by TPH fuel fingerprint methods to verify whether the TPH-affected soil had been successfully removed (Table 23). The sample results indicated that 180 mg/kg diesel and 1,500 mg/kg motor oil constituents remained in the soil. TPH as gasoline was not detected above the laboratory PQL of 29 mg/kg.

Additional soil was removed from the area and containerized in a Department of Transportation (DOT) approved drum. A second confirmation sample (S8-1RE) was collected from the bottom of the excavated area. The sample analytical result was non-detect (<31 mg/kg) for TPH in the diesel-range.

In summary, the removal of soil from the AP Satellite Accumulation Point-AP Maintenance area effectively remediated the area and the subsequent sampling analysis confirmed that no diesel-range organics above laboratory detection limits remain in this area. Please refer to Plate 14 for the location of this area relative to other potential TPH source areas.

1.1.36 LOU #40 PCB Transformer Spill

The PCB transformer spill occurred at the south end of Unit 5. On November 26, 1990, approximately 1.75 lbs of PCB-containing fluid was released. The fluid dripped through access holes and collected on the concrete floor of the basement of Unit 5. The fluid was cleaned up with absorbents and portions of the concrete were also removed. The concrete was 8 inches thick. In August 1991, a small amount of soil was removed from beneath the concrete in preparation for replacing the concrete flooring. The soil removed was incidental to the concrete removal and this material was disposed off Site in Beatty, Nevada. NDEP required no further action for LOU #40. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.37 LOU #41 Unit 1 Tenant Stains

Unit 1 Tenant stains were investigated as part of the 1997 Phase II ECA field investigation. Visibly stained soils were removed and transported to Environmental Technologies TSDF in Beatly, Nevada. A surface soil sample, S9-1S, was collected and submitted for TPH fuel fingerprint analysis (Table 24). Analytical results indicated that TPH in the range of motor oil was detected at a concentration of 250 mg/kg. TPH in the diesel range was quantified at 73 mg/kg and TPH in the

gasoline range was not detected above the PQL of 29 mg/kg. Additional soils were removed from the area with the use of a backhoe. The area was re-sampled. A confirmation soil sample (S9-1RE) from the bottom of the excavation contained 100 mg/kg of TPH heavier than diesel, which is at the NDEP action level. Please refer to Plate 14 for the location of this area relative to other potential TPH source areas. Well samples from M-92 and M-93 were also analyzed in 1993 to investigate potential groundwater TPH impacts from these stained areas. Data in Table 24 indicates TPH and benzene, toluene, ethylbenzene and xylenes (BTEX) concentrations were non-detect.

1.1.38 LOU #42 Unit 2 Salt Redler

The Salt Redler was a rubber belt conveyor and was located at the southeast corner of Unit 2. During the period of sodium chlorate production, transfer of salt from storage in Unit 2 to the conveyor feed hopper resulted in some salt spillage to the ground. Spilled salt was swept up and returned to Unit 2. The NDEP required no further action for LOU #42. Please refer to Plate 12 for the location of LOU #42 relative to groundwater specific conductivity and other potential chlorate and TDS source areas.

1.1.39 LOU #43 Unit 4 and 5 Basements

Sodium chlorate was produced in electrolytic cells located in Units 4 and 5. Additionally, these Units were used to produce sodium perchlorate at times. Both of these electrolytic processes contained chlorate and perchlorate as well as sodium dichromate (hexavalent chromium). The basements of Units 4 and 5 were used as sumps to collect spillage and wash water. Operation of the electrolytic cells in Units 4 and 5 was discontinued in the late 1990s, but the buildings and structures remain for future use. Removal of the impacted soil beneath these buildings would likely require destruction of each building. Portions of these buildings actively participate in the manufacturing process. Other portions of the buildings are in good condition and may be utilized for active manufacturing in the future. Some or all of this soil may be impacted with concentrations of perchlorate, chlorate, or chromium. Please refer to Plate 12 for the location of LOU #43 relative to groundwater specific conductivity and other potential chlorate and TDS source areas.

1.1.40 LOU #44 Unit 6 Basement

High-purity, battery-active manganese dioxide has been produced in electrolytic cells in Unit 6. The basement beneath the cells collected process spillage and wash water and was identified as a source of soil and groundwater impact. Several groundwater monitor wells near Unit 6 are used to monitor manganese concentrations; these are M-10, M-29, and M-77, both up- and downgradient from Unit 6. Remediation measures were undertaken in 1986. The basement was cleaned, the concrete floor was removed, and the subsurface soil was re-contoured. The basement was lined with a 100-mil HDPE liner. The integrity of the basement liner system is periodically checked and serviced. Please refer to Table 25 for groundwater analytical information and Plate 13 for the location of this building relative to manganese concentrations in groundwater and other potential manganese source areas.

1.1.41 LOU #45 Diesel Fuel Storage Tank

The former diesel fuel storage above-ground storage tank (AST) located south of old P-2 pond was removed by Kerr-McGee in 1994 (Plates 6 and 14). Samples were collected for analysis from seven soil borings (SB5-1 through SB5-7) and two groundwater monitor wells (M-10, M-21, and SB5-5 a temporary well). The samples were analyzed for diesel components (TPH-d) by EPA

Method 8015M-diesel, BTEX by EPA method 8020, and polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270. The soil and groundwater analytical results are presented in Table 26.

The NDEP has published cleanup standards for hydrocarbon-contaminated soil; the established level for TPH-d is 100 mg/kg. Soil samples from boreholes SB5-1, SB5-2 and SB5-3 contained TPH-d at concentrations greater than 100 mg/kg. Soil samples from the other boreholes did not contain TPH-d at concentrations exceeding 100 mg/kg. In addition, soil samples from borings SB5-4, SB5-5, SB5-6, and SB5-7 encountered no detectable concentrations of BTEX or PAHs (Plate 17 and Table 26).

Two existing monitoring wells were sampled and analyzed for diesel constituents. Well M-21 is located in the regional downgradient direction and M-10 is located upgradient. Analytical results obtained in 1997 indicated that TPH concentrations in both samples were less than the PQL of 1.0 mg/l. In 1999 the groundwater was investigated again. Analytical results indicate that TPH-d concentrations were either at very low levels in a groundwater sample taken from soil boring (converted into a temporary groundwater well) SB5-5 (13 mg/l), or non-detect in groundwater from M-21 approximately 50 feet downgradient. The results of the sample analysis for M-21 conducted during the Supplemental Phase II ECA sampling are consistent with the non-detectable results of groundwater has only been minimally impacted beneath the former diesel fuel storage tank area, and not impacted at all immediately downgradient of this area. Please refer to Plate 14 for the location of this area relative to other potential TPH source areas.

1.1.42 LOU #46 Former Old Main Cooling Tower and Recirculation Lines

The former old Main Cooling Tower was located north of the manganese dioxide process leach plant. It was approximately 50 feet high and 700 feet long. The tower was installed by the US government when the complex was originally constructed. It operated from 1941 to September 1989. Historically the old Main Cooling Tower experienced several recirculation water upsets, which resulted in discharge of high-conductivity water to the Beta ditch. Individual discharges varied from a few hours to several days. The estimated water discharge was reported to the NDEP along with analytical results for pH, conductivity, sodium chloride, zinc and phosphate. Chromium was added as a treatment chemical in the cooling tower. Chromium was added as a treatment chemical in the cooling tower. The NDEP required no further action for LOU #46. This area is upgradient of the on-Site groundwater interception system/groundwater barrier wall. Please refer to Plate 10 for the location of LOU #46 relative to chromium concentrations in groundwater and other potential chromium source areas.

1.1.43 LOU #47 Leach Plant Area Manganese Ore Piles

Manganese ore has been stored and processed at the Site since 1951. Historically manganese ore piles were 10 to 15 feet high and over 300 feet long. The manganese ore was normally crushed with particles varying in size but typically 0.25 inch and smaller. An industrial hygiene program is ongoing and eight-hour time-weighted averages for manganese dust exposures have been developed for workers in different settings within the process. The dust is composed of 55 percent by weight of manganese dioxide. Table 27 presents the analysis of the manganese dioxide ore. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.44 LOU #48, #49, #50, and #51 Leach Plant Process Equipment

A variety of process equipment is used to beneficiate the manganese dioxide ore and produce highquality, battery-grade manganese dioxide. The analyte tanks are housed within a containment berm and are used to hold a manganese sulfate solution, that was used in the Unit 6 electrolytic cells, until the used solution is fortified and returned to the electrolytic cells. The sulfuric acid tank is housed on a containment pad and is used to hold this process chemical until needed by the process. The leaching tanks are housed on containment pads and are used to leach the manganese dioxide ore to gain its manganese value for use in the Unit 6 electrolytic cells. An analysis of the appropriateness of wells in the vicinity of the analyte tanks was completed and the results submitted to NDEP in the October 1996 Response to Letter of Understanding. Analysis of groundwater impacts including manganese concentrations, pH and specific conductivity is ongoing (Table 28). Please refer to Plate 13 for the location of LOUs #48, 49, 50 and 51 relative to manganese concentrations in groundwater and other potential manganese source areas.

1.1.45 LOU #52 AP Plant Area Screening Building, Dryer Building, and Associated Sump

The Dryer and Screening buildings shared a common sump and floor drain system. The sump collected wash-down water and, on rare occasions, overflowed. Secondary containment was installed around the sump and a lined collection ditch was constructed completely around the building. Soil exhibiting white stains was collected and recycled for perchlorate recovery. Please refer to Plate 11 for the location of LOU #52 relative to perchlorate concentrations in groundwater and other potential perchlorate source areas.

1.1.46 LOU #53 AP Plant Area Tank Farm

The AP tank farm contained a number of vertical open-top and closed-top tanks used for process solution storage. The tank farm was equipped with secondary containment and a sump. Contained spills were reported from the tanks in the past. Please refer to Plate 11 for the location of these tanks relative to perchlorate concentrations in groundwater and other potential perchlorate source areas.

1.1.47 LOU #54 AP Plant Area Change House/Laboratory and Septic Tank

The AP plant change house laboratory is located in the west central portion of the Kerr-McGee facility (Plate 6 and 16). The change house was constructed in the early 1950s and the chemistry laboratory was added in 1980. Wastewater effluent from the change house showers, restrooms, and laboratory sinks discharged to a septic system with an associated leach field.

Laboratory operations included rinsing laboratory equipment, preparing standards, analyzing inorganic samples, preparing analytical solutions, and preparing dilute titrants. Hazardous solutions were collected and shipped to an appropriate disposal facility. Rinse water from the laboratory entered the septic system until August 1992. In August 1992, the use of the septic system was discontinued. The change house showers, restrooms, and laboratory sinks now discharge to a pump station, which transfers the water to the City of Henderson sanitary drains.

Two soil borings were advanced and three soil samples collected from each boring in the area of the former septic system leach field. The samples were analyzed for total metals, soil pH, VOCs, and SVOCs. The total metals and pH results are presented in Table 29. VOCs and SVOCs were below detection limits in the samples analyzed with the exception of sample SB6-1-5, which contained acetone at 9.8 µg/kg. This is an estimated value because it is below the laboratory PQL.

The soils pH ranged between 8 and 10. Based on the results of the sample analysis, the waste chemical disposal via the laboratory septic system has not affected soils in the area of the AP plant area change house/laboratory septic tank former leach field. Please refer to Table 29 for analytical results, Plate 6 for the location of the boreholes and Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.48 LOU #55 Area Affected by July 1990 Fire

On July 18, 1990, a fire occurred in the AP drum storage pad area. The fire burned for approximately 45 minutes. The soil around the fire area was impacted with ammonium perchlorate, which was washed off the concrete pad by the fire suppression water. The impacted soil was collected and returned to the AP process to recover residual perchlorate. The burned asphalt and soil surrounding the area (approximately 30 cubic yards of material) were removed and sent to the US Ecology disposal facility in Beatty, Nevada. Please refer to Plate 11 for the location of LOU #55 relative to perchlorate concentrations in groundwater and other potential perchlorate source areas.

1.1.49 LOU #56 AP Plant Area Old Building D-1 Washdown

During material handling, mixing and blending, small amounts of AP dust fell to the old D-1 building floor. While housekeeping in the area was maintained by dry sweeping, about once every other month, the building was also washed-down after sweeping. The wash-down water contained dissolved AP and drained onto the asphalt pad surrounding the building. Some of the wash water also drained onto the soil adjacent to the asphalt (Kerr-McGee, 1996b). Please refer to Plate 11 for the location of LOU #56 relative to perchlorate concentrations in groundwater and other potential perchlorate source areas.

1.1.50 LOU #57 and #58 AP Plant Area New Building D-1 Wash-down and AP Plant Transfer Lines to Sodium Chlorate Process

The AP process-to-pond transfer lines extended from the AP process to the sodium chlorate ponds or process. The ponds and lines were in service from 1974 to 1995. The transfer lines occasionally released process solution to the ground. The lines were repaired, replaced or serviced on an asneeded basis. Please refer to Plate 11 for the location of LOU #57 and #58 relative to perchlorate concentrations in groundwater and other potential perchlorate source areas. The NDEP required no further action for LOU #57 and #58.

1.1.51 LOU #59 Storm Sewer System

The storm sewer system consists of a network of concrete, clay and tile storm drains, manholes and outfalls. Outfalls occur along Beta Ditch, tributaries to Beta Ditch, and other drainage ditches. Between 1941 and 1976 the storm sewer system conveyed storm water and process effluent. In January 1976 Kerr-McGee achieved "zero discharge" of industrial process wastewater. Kerr-McGee process solutions are controlled in vessels or in lined surface impoundments. The storm sewer is used to convey storm water and non-contact cooling water. The storm drain system is subsurface, ranging from 25 to 45 feet below grade. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.52 LOU #60 Acid Drain System

The acid drain system consists of a network of pipes, manholes and sumps used to collect acid effluent from throughout the BMI complex. The construction included the use of acid resistant materials. The system has a single outfall at the acid effluent neutralization plant. Kerr-McGee

plugged the acid drain system beneath the operating portions of the facility in 1984. Acid drains in the non-operating portions of the facility (Units 1 and 2) have been filled with concrete debris and soil. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.53 LOU #61 Old Sodium Chlorate Plant Decommissioning

The old Sodium Chlorate Plant was located in Units 4 and 5. Production occurred in 1,300 electrolytic cells from 1945 to 1989. The process liquids contained primarily sodium chlorate with sodium dichromate as a process chemical additive. Retention of process liquids in the basements and sump areas of Units 4 and 5 was identified as a potential source of chlorate in groundwater. As the process was decommissioned, the electrolytic cells and associated piping were emptied. Residual materials, including the cell shells and other materials, which were hazardous due the hexavalent chromium concentration, were transferred to a hazardous waste TSDF in Beatty, Nevada. The process equipment, such as tanks, pipes and pumps, was dismantled in 1991 and transported off Site for disposal or recycling. The building area was cleaned and made available for other uses. The NDEP required no further action for LOU #61. Please refer to Plate 12 for the location of LOU #61 relative to groundwater specific conductivity and other potential chlorate and TDS source areas.

1.1.54 LOU #62 State Industries Inc. Site, Including Impoundments and Catch Basin

State Industries leased portions of the Kerr-McGee property for the manufacture and storage of hot water heaters. State Industries operated two surface impoundments between 1974 and 1988. Both surface impoundments have been closed. Prior to closure, analysis of sludge samples indicated that the material was non-hazardous based on EP Toxicity tests. In 1995, seven borings and 24 samples were obtained to investigate soil under the proposed administration/office building. Samples were obtained to asses the engineering properties, sodium and sulfate soil contents, and soil pH (Table 30).

Fourteen soil borings were drilled in 1996 and 17 soil samples were obtained by State Industries, Inc. The samples were analyzed for total metals, corrosivity, and VOCs. Kerr-McGee utilized the CAM metals list for analysis to cover a broad suite of metals. Low levels of lead and molybdenum were present. VOCs were also detected in 7 of the 17 samples (Table 30). Split-samples were obtained by Kerr-McGee during the State Industries sampling event. VOCs analyses were conducted and seven samples were found to have detectable concentrations. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas. Appendix D contains a figure of the sample locations.

1.1.55 LOU #63 J.B. Kelley, Inc. Trucking Site

J.B. Kelley, Inc. leased property from Kerr-McGee immediately south and east of the truck unloading area and operated a trucking operation on site. The company hauled commodities such as lime and soda ash. The area of interest at the J.B. Kelley, Inc. are included a UST that stored diesel (excavated in 1991) and the site included open concrete vaults which formerly served as foundations for storage buildings. This area was formerly the site of Hardesty (Table 31 and Plates 6 and 16).

Concerning the open concrete vaults, because materials could potentially migrate through cracks in the concrete vault floor, in 1997 one shallow boring (SB7-1-1) was advanced through a crack in the

floor and a soil sample was collected immediately beneath the concrete. Samples were also collected of sand that accumulated within each of the eight vaults. From these samples a composite "soil" sample was produced, S7-1-S. The samples were analyzed for total metals by EPA Method 6010/7000, soil pH by SW-846 Method 9045, TPH by EPA Method 8015M-diesel and VOCs by EPA Method 8240. The analytical results are presented on Table 31.

Toluene was detected at 1.1 μ g/kg in sample S7-1-S. Sample SB7-1-1 contained 1.6 μ g/kg of TCA and 13 μ g/kg of acetone. These analyses were qualified by the laboratory. The concentrations of toluene and TCA were estimated since they were below the laboratory PQL. Acetone was detected in a method blank.

The results of total metal analyses indicate that all constituents were detected at concentrations within the range of average background concentrations in Western U.S. soils. Total chromium concentration in the surface soil sample collected by compositing remnant sands from the bottom of each vault was 42.9 mg/kg. While this concentration is slightly elevated, it is still below the range of average background concentrations that chromium is not at concentrations likely to represent an environmental concern.

Both samples were non-detect for TPH at the designated laboratory PQL. Based on the analytical results of the soil samples collected, the former J.B. Kelley, Inc. operation has not affected surface and subsurface soil. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas. Appendix D contains a sketch of the sample locations.

1.1.56 LOU #64 Koch Materials Company Site

Koch Materials Company leased an area west of the diesel storage tank for use as an asphalt emulsion batch plant. Koch TPH issues are discussed under the TPH section of this report. Soil samples collected in this area were analyzed for manganese. They also collected soil samples for VOCs, SVOCs, metals, and confirmatory TPH analysis. Please refer to Table 32 for analytical data and Plate 14 for the location of this area relative to other potential TPH source areas. Appendix D contains a figure of the sample locations.

1.1.57 LOU #65 Nevada Pre-cast Concrete Products, Green Ventures International, Buckles Construction Company, and Ebony Construction Sites

Nevada Pre-Cast Concrete utilized office space near the J.B. Kelley operations from January 1973 to May 1978. Only office activities were conducted by Nevada Pre-cast Concrete (Kleinfelder, 1993). Green Ventures International leased the S-1 change house from August 1980 to September 1981 for use as a marketing office for alfalfa sprouts. Only office activities were conducted by Green Ventures International (Kleinfelder, 1993). Buckles Construction Company leased a portion of Unit 1 from August 1973 to June 1989. Buckles Construction Company activities, including steel fabrication and equipment storage, were conducted in the crane bay located in the northwest corner of Unit 1 in the crane bay. In 1993, groundwater monitoring wells M-92 and M-93 were sampled for TPH and BTEX constituents to investigate possible groundwater impacts resulting from surrounding operations. All results from this analysis were non-detect (Table 22). In the LOU the NDEP asked if the Unit 1 tenant stains were associated with any of these activities. Unit 1 Tenant stains were investigated in response to LOU #41 (above). As part of the 1997 Phase II ECA effort, visibly stained soils were removed and transported to an appropriate disposal facility. A surface soil sample (S9-1S) was collected and submitted for TPH fuel fingerprint analysis (Table 22). Analytical results indicated that TPH in the range of motor oil, was detected at a concentration of 250 mg/kg.

TPH in the diesel range was quantified at 73 mg/kg and TPH in the gasoline range was not detected above the PQL of 29 mg/kg.

Additional soils were removed from the area and the area was re-sampled. A confirmation soil sample (S9-1RE) from the bottom of the excavation contained 100 mg/kg of TPH heavier than diesel, which is at the NDEP action level. Please refer to Plate 14 for the location of these areas relative to other potential TPH source areas.

1.1.58 LOU #66 Above Ground Diesel Storage tank leased by Flintkote

Flintkote Company leased a diesel AST from July 1973 through 1975. The tank was located near the southwest corner of the Chemstar property. The tank has been removed. The NDEP required no further action for LOU #66. Please refer to Plate 14 for the location of this area relative to other potential TPH source areas.

1.1.59 LOU #67 Delbert Madsen and Estate of Delbert Madsen

The leased property was used as a storage and salvage yard. The property was leased from 1976 through 1995 (Kleinfelder, 1993). Kerr-McGee removed the material and trash that was left on-site and disposed of it at the Silver State Landfill in Apex, Nevada (Kerr-McGee, 1996b). Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.60 LOU #68 Southern Nevada Auto Parts Site

The leased property was used to store wrecked, impounded and repossessed vehicles. Operations also included insurance adjustment and auction of vehicles. Stained soil was present in some areas. Kerr-McGee worked with the lessee to implement practices to minimize the potential for impacts to soil or groundwater to occur. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.61 LOU #69 Dillon Potter Site

Dillon Potter leased a 2-acre portion of the Kerr-McGee property. The area was used for livestock management and to store approximately 25 vehicles. The NDEP required no further action for LOU #69. Please refer to Plate 16 for the location of this area relative to other potential miscellaneous source areas.

1.1.62 GW-11 pond

Although not identified as an LOU, the GW-11 pond receives water for treatment. This pond is double-lined with leak detection wells between the liners. The GW-11 pond is located in the area of the former trade effluent ponds (LOU #1). During development of the NPDES permit, an extensive analysis of water discharged to pond GW-11 was completed. The data required to support the impoundment characterization was identified through an evaluation of the historical land use and a review of previous investigations. During the development of the Kerr-McGee Henderson facility NPDES permit for discharges from its groundwater remediation processes, Kerr-McGee worked closely with NDEP to identify and characterize the waste streams that would be placed in GW-11. An extensive sampling suite was jointly developed and applied to the GW-11 characterization. In response to requests from the NDEP Kerr-McGee collected and analyzed additional water samples from GW-11 in August and November 2004. Please refer to Table 33 for analytical data from Pond GW-11.

1.2 Other Potential Source Areas

Areas have been identified as potentially containing residual levels of contaminants that may constitute source areas. These are discussed in the following paragraphs and include sites in five general categories: manufacturing units, surface impoundments, hazardous waste storage areas, ditches, and landfills. Figure 5 presents the land use zoning in the area and Figure 6 presents a conceptual diagram of these potential contaminant source areas.

1.2.1 Manufacturing Units

Based on the historic use of manufacturing units as described above, they are a potential source of contamination. The production of perchlorate was greatly curtailed in 1998 and the last perchlorate was produced in 2002. Although perchlorate is no longer manufactured on-Site, the subsurface may contain residual levels of contaminants that could be leached to groundwater. Other chemicals, including chromium, may also be present in the manufacturing area. Based on the configuration of the perchlorate and chromium plumes, a significant historic source area may be present beneath Units 4 5 and 6 (Plate 6).

1.2.2 Surface Impoundments

Historic use of ponds and surface impoundments throughout the Site were potential sources of the groundwater impacts. The single-lined ponds have been taken out of use and replaced with extensively engineered surface impoundments that are equipped with double liners and leak detection capabilities. The soil within and around Old P-2 and P-3 surface impoundments were studied extensively, as described in Section 4.2. The potential exists for the soil beneath and around surface impoundments to be a source of contamination.

1.2.3 Hazardous Waste Storage Areas

Although the Phase I and II investigations indicated that the hazardous waste storage areas did not exhibit significant impacts from spills, the potential exists for soil impacts to be present beneath or around these areas.

1.2.4 Ditches

The Beta Ditch drains surface runoff from adjacent, upslope properties and crosses the site from east to west. This ditch is suspected of being impacted and may serve as a source of contamination. Other surface water conveyance features may also have impacts sufficient to serve as source areas.

1.2.5 Landfills

A hazardous waste landfill is present on-Site (Plate 6). Based on the closure approved in 1986, the waste is not impacting surrounding soil, surface water or air.

TABLES

Table 1
Areas Identified in the 1994 Letter of Understanding
Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Number **	SWMU*	Areas Identified in the NDEP Letter of Concern **	Action Required**	Action Taken
1	SWMU KMCC-014	Trade Effluent Settling Ponds	Field work by Kerr-McGee	Data collected; Reported in Ph. II ECA (8/ 97). Requested DataChem dat
2		Open Area Due South of "Trade Effluent Disposal Ponds"	Written response requested	provided in Kerr-McGee Response (10/96). Data collected; Reported in Ph. II ECA (8/ 97). Requested DataChem da
3		Air Pollution Emissions Associated with Industrial Processes	• •	provided in Kerr-McGee Response (10/96). Air emissions modeled (10/96)
4		Hardesty Chemical Company Site (prior to J. B. Kelley Operations)		Data collected; Reported in Ph. II ECA (8/ 97). Requested additional data
5	SWMU KMCC-020	On-Site Portion of Beta Ditch, Including "Small Diversion Ditch"	Field work by Steering	provided in Kerr-McGee Response (10/96) To be addressed in "Common Area Work Plan"
		Northwest of Pond C-1	Committee	
6		Unnamed Drainage Ditch Segment (BMI Landfill)	Field work by Steering Committee	To be addressed in "Common Area Work Plan"
7 8	SWMU KMCC-010	Old P-2 Pond and Associated Conveyance Facilities Old P-3 Pond and Associated Conveyance Facilities	Field work by Kerr-McGee Field work by Kerr-McGee	Data collected: Reported in Ph.II ECA (8/97) and Suppl. Ph. II (4/01) Data collected: Reported in Ph.II ECA (8/97) and Suppl. Ph. II (4/01)
9		New P-2 Pond and Associated Piping	Written response requested	Requested specifications/drawings provided in Kerr-McGee Response
10	SWMU KMCC-013	On-Site Hazardous Waste Landfill (Closed)	Written response requested	(10/96) Requested correspondence relation to closure/post closure provided in
11	SWMU KMCC-005	Sodium Chlorate Filter Cake Holding Area	Written response requested	Response letter (10/96) Available data provided in Response letter (10/96) but, due to lack of
	SWIND RIVICC-005			complete data availability, NDEP rescinded request for added date, at this
12	SWMU KMCC-006	Hazardous Waste Storage Area	No Further Action Required	time. Response Letter (10/96) None Required
13	SWMU KMCC-023	Pond S-1	No Further Action Required	None Required
<mark>14</mark> 15	SWMU KMCC-024 SWMU KMCC-007	Pond P-1, and Associated Conveyance Piping Platinum Drying Unit		None Required Requested data provided in Kerr-McGee Response (10/96)
16 17		Ponds AP-1, AP-2, and AP-3 and Associated Transfer Lines	Field work by Kerr-McGee	Data collected; Reported in Ph. II ECA (8/ 97). Requested additional data provided in Kerr-McGee Response (10/96)
18		Pond AP-4	Written response requested	Requested data provided in Kerr-McGee Response (10/96)
19 20	 SWMU KMCC-011	Pond AP-5 Pond C-1 and Associated Piping	Written response requested Written response requested	Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96)
21	SWMU KMCC-012	Mn-1 and Associated Piping	Written response requested	Requested data provided in Kerr-McGee Response (10/96)
22 23	SWMU KMCC-015 SWMU KMCC-016	Pond WC-1 and Associated Piping Pond WC-2 and Associate Piping	No Further Action Required Written response requested	None Required Requested data provided in Kerr-McGee Response (10/96)
24	SWMU KMCC-009	Leach Beds, Associated Conveyance Facilities, and Mn Tailings Area	Written response requested	Requested technical evaluation provided in Kerr-McGee Response (10/96
25 26	SWMU KMCC-001	Process Hardware Storage Area Trash Storage Area	No Further Action Required No Further Action Required	None Required None Required
27 28	SWMU KMCC-003 SWMU KMCC-004	PCB Storage Area	No Further Action Required	None Required
29	SWMU KMCC-008	Hazardous Waste Storage Area Solid Waste Dumpster	No Further Action Required	Requested additional detail provided in Kerr-McGee Response (10/96) None Required None Required
30 31	SWMU KMCC-017 SWMU KMCC-018	AP Area-Pad 35 Drum Recycling Area	No Further Action Required Written response requested	None Required Requested information provided in Kerr-McGee Response (10/96)
32	SWMU KMCC-019	Ground Water Remediation Unit		Discussion of treatment system improvements, modifications provided in Kerr-McGee Response (10/96)
33	SWMU KMCC-021	Sodium Perchlorate Platinum By-Product Filter, Unit 5	Written response requested	Requested information provided in Kerr-McGee Response (10/96)
34 35	SWMU KMCC-022 SWMU KMCC-025	Former Manganese Tailings Area Truck Emptying/Dumping Site	A, Same as Item 24 Field work by Kerr-McGee	Requested data provided in Kerr-McGee Response (10/96) Data collected; Reported in Ph. II ECA (8/97)
36 37	SWMU KMCC-026 SWMU KMCC 027	Former Satellite Accumulation Point, Unit 3, Maintenance Shop Former Satellite Accumulation Point, Unit 6, Maintenance Shop	No Further Action Required	None Required
38	SWMU KMCC -028	Former Satellite Accumulation Point, AP-Laboratory	No Further Action Required No Further Action Required	None Required None Required
39 40	SWMU KMCC-029	Satellite Accumulation Point-AP Maintenance Shop PCB Transformer Spill	Field work by Kerr-McGee No Further Action Required	Data collected; Reported in Ph. II ECA (8/97) None Required
41		Unit 1 Tenant Stains	Field work by Kerr-McGee	Data collected; Reported in Ph. II ECA (8/97)
42 43		Unit 2 Salt Redler Unit 4 and 5 Basements	No Further Action Required Written response requested	None Required
44 45		Unit 6 Basement Diesel Storage Tank		Written response provided in May 1996 Data collected; Reported in Ph. II ECA (8/97) and Suppl. Ph. II (4/01)
46		Former Old Main Cooling Tower and Recirculation Lines	No Further Action Required	None Required
47 48		Leach Plant Area Manganese Ore Piles Leach Plant Analyte Tanks		Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96)
49 50		Leach Plant Area Sulfuric Acid Storage Tanks Leach Plant Area Leach Tanks		Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96)
51		Leach Plant Area Transfer Lines	Written response requested	Requested data provided in Kerr-McGee Response (10/96)
52		AP Plant Area Screening Building, Dryer Building and Associated Sump		Requested data provided in Kerr-McGee Response (10/96)
53		AP Plant Area Tank Farm AP Plant Area Change House/ Laboratory Septic Tank	Written response requested Field work by Kerr-McGee	Requested data provided in Kerr-McGee Response (10/96) Data collected; Reported in Ph. II ECA (8/97)
54				
54 55		Area Affected by July 1990 Fire	Written response requested	Requested data provided in Kerr-McGee Response (10/96)
		Area Affected by July 1990 Fire AP Plant Area Old Building D-1- Washdown AP Plant Area New Building D-1- Washdown and AP Plant Transfer	Written response requested Written response requested No Further Action Required	
55 56 57 58		Area Affected by July 1990 Fire AP Plant Area Old Building D-1- Washdown AP Plant Area New Building D-1- Washdown and AP Plant Transfer Lines to Sodium Chlorate Process, AP Plant SI's and Transfer Lines	Written response requested Written response requested No Further Action Required	Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) None Required
55 56 57		Area Affected by July 1990 Fire AP Plant Area Old Building D-1- Washdown AP Plant Area New Building D-1- Washdown and AP Plant Transfer	Written response requested Written response requested No Further Action Required Written response requested	Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96)
55 56 57 58 59 60 61	 SWMU KMCC-030 SWMU KMCC-031 	Area Affected by July 1990 Fire AP Plant Area Old Building D-1- Washdown AP Plant Area New Building D-1- Washdown and AP Plant Transfer Lines to Sodium Chlorate Process, AP Plant SI's and Transfer Lines Storm Sewer System Acid Drain System Old Sodium Chlorate Plant Decommissioning	Written response requested Written response requested No Further Action Required Written response requested Written response requested No Further Action Required	Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) None Required Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) None Required
55 56 57 58 59 60 61 62 63	 SWMU KMCC-030 SWMU KMCC-031 	Area Affected by July 1990 Fire AP Plant Area Old Building D-1- Washdown AP Plant Area New Building D-1- Washdown and AP Plant Transfer Lines to Sodium Chlorate Process, AP Plant SI's and Transfer Lines Storm Sewer System Acid Drain System Old Sodium Chlorate Plant Decommissioning State Industries, Inc. Site, Including Impoundments and Catch Basin J. B. Kelley, Inc. Trucking Site	Written response requested Written response requested No Further Action Required Written response requested Written response requested No Further Action Required Written response requested Field work by Kerr-McGee	Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) None Required Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) None Required Requested data provided in Kerr-McGee Response (10/96) Data collected; Reported in Ph. II ECA (8/97)
55 56 57 58 59 60 61 62	 SWMU KMCC-030 SWMU KMCC-031 	Area Affected by July 1990 Fire AP Plant Area Old Building D-1- Washdown AP Plant Area New Building D-1- Washdown and AP Plant Transfer Lines to Sodium Chlorate Process, AP Plant SI's and Transfer Lines Storm Sewer System Acid Drain System Old Sodium Chlorate Plant Decommissioning State Industries, Inc. Site, Including Impoundments and Catch Basin	Written response requested Written response requested No Further Action Required Written response requested Written response requested No Further Action Required Written response requested Field work by Kerr-McGee	Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) None Required Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) None Required Requested data provided in Kerr-McGee Response (10/96)
55 56 57 58 59 60 61 62 63 64 65	 SWMU KMCC-030 SWMU KMCC-031 	Area Affected by July 1990 Fire AP Plant Area Old Building D-1- Washdown AP Plant Area New Building D-1- Washdown and AP Plant Transfer Lines to Sodium Chlorate Process, AP Plant SI's and Transfer Lines Storm Sewer System Acid Drain System Old Sodium Chlorate Plant Decommissioning State Industries, Inc. Site, Including Impoundments and Catch Basin J. B. Kelley, Inc. Trucking Site Koch Materials Company Site Nevada Precast Concrete Products, Green Ventures International, Buckles Construction Company and Ebony Construction Sites	Written response requested Written response requested No Further Action Required Written response requested Written response requested No Further Action Required Written response requested Field work by Kerr-McGee Written response requested	Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) None Required Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) None Required Requested data provided in Kerr-McGee Response (10/96) Data collected; Reported in Ph. II ECA (8/97) Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96)
55 56 57 58 59 60 61 62 63 64	 SWMU KMCC-030 SWMU KMCC-031 	Area Affected by July 1990 Fire AP Plant Area Old Building D-1- Washdown AP Plant Area New Building D-1- Washdown and AP Plant Transfer Lines to Sodium Chlorate Process, AP Plant SI's and Transfer Lines Storm Sewer System Acid Drain System Old Sodium Chlorate Plant Decommissioning State Industries, Inc. Site, Including Impoundments and Catch Basin J. B. Kelley, Inc. Trucking Site Koch Materials Company Site Nevada Precast Concrete Products, Green Ventures International, Buckles Construction Company and Ebony Construction Sites Above-Ground Diesel Storage Tank Leased by Flintkote Co.	Written response requested Written response requested No Further Action Required Written response requested Written response requested No Further Action Required Written response requested Field work by Kerr-McGee Written response requested	Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) None Required Requested data provided in Kerr-McGee Response (10/96) Data collected; Reported in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96)
55 56 57 58 59 60 61 62 63 64 65 66	 SWMU KMCC-030 SWMU KMCC-031 	Area Affected by July 1990 Fire AP Plant Area Old Building D-1- Washdown AP Plant Area New Building D-1- Washdown and AP Plant Transfer Lines to Sodium Chlorate Process, AP Plant SI's and Transfer Lines Storm Sewer System Acid Drain System Old Sodium Chlorate Plant Decommissioning State Industries, Inc. Site, Including Impoundments and Catch Basin J. B. Kelley, Inc. Trucking Site Koch Materials Company Site Nevada Precast Concrete Products, Green Ventures International, Buckles Construction Company and Ebony Construction Sites	Written response requested Written response requested No Further Action Required Written response requested Written response requested No Further Action Required Written response requested Field work by Kerr-McGee Written response requested Field work by Kerr-McGee Written response requested Vo Further Action Required Written response requested Output Ko Further Action Required Written response requested Output Korther Action Required	Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) None Required Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) None Required Requested data provided in Kerr-McGee Response (10/96) Data collected; Reported in Ph. II ECA (8/97) Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96)
55 56 57 58 59 60 61 62 63 64 65 66	 SWMU KMCC-030 SWMU KMCC-031 	Area Affected by July 1990 Fire AP Plant Area Old Building D-1- Washdown AP Plant Area New Building D-1- Washdown and AP Plant Transfer Lines to Sodium Chlorate Process, AP Plant SI's and Transfer Lines Storm Sewer System Acid Drain System Old Sodium Chlorate Plant Decommissioning State Industries, Inc. Site, Including Impoundments and Catch Basin J. B. Kelley, Inc. Trucking Site Koch Materials Company Site Nevada Precast Concrete Products, Green Ventures International, Buckles Construction Company and Ebony Construction Sites Above-Ground Diesel Storage Tank Leased by Flintkote Co.	Written response requested Written response requested No Further Action Required Written response requested Written response requested Written response requested Field work by Kerr-McGee Written response requested Written response requested Written response requested documenting Kerr-McGee's efforts to work with tenant Written response requested	Requested data provided in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96) None Required Requested data provided in Kerr-McGee Response (10/96) Data collected; Reported in Kerr-McGee Response (10/96) Requested data provided in Kerr-McGee Response (10/96)
55 56 57 58 59 60 61 62 63 64 65 66 67	 SWMU KMCC-030 SWMU KMCC-031 	Area Affected by July 1990 Fire AP Plant Area Old Building D-1- Washdown AP Plant Area New Building D-1- Washdown and AP Plant Transfer Lines to Sodium Chlorate Process, AP Plant SI's and Transfer Lines Storm Sewer System Acid Drain System Old Sodium Chlorate Plant Decommissioning State Industries, Inc. Site, Including Impoundments and Catch Basin J. B. Kelley, Inc. Trucking Site Koch Materials Company Site Nevada Precast Concrete Products, Green Ventures International, Buckles Construction Company and Ebony Construction Sites Above-Ground Diesel Storage Tank Leased by Flintkote Co. Delbert Madsen and Estate of Delbert Madsen Site	Written response requested Written response requested No Further Action Required Written response requested Written response requested Written response requested Field work by Kerr-McGee Written response requested No Further Action Required Written response requested documenting Kerr-McGee's efforts to work with tenant	Requested data provided in Kerr-McGee Response (10/96) None Required Requested data provided in Kerr-McGee Response (10/96) Data collected; Reported in Ph. II ECA (8/97) Requested data provided in Kerr-McGee Response (10/96) None Required Requested data provided in Kerr-McGee Response (10/96) None Required Requested data provided in Kerr-McGee Response (10/96)

Table 2 Product and Waste Volumes Summary Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Products Waste Materials Estimated Company Years Volume Cu. Amounts Product⁽¹⁾ Process Waste⁽¹⁾ **Disposal Site** Years Comments Produced Produced Ft. S (tons) WECCO WECCO 1945-1955 Chlorates 1945-1955 BMI Ponds Sodium Chlorate 33,153 104.000 Potassium Chlorate 12,599 Potassium Perchlorate 10.402 Ammonium Perchlorate 7,142 1951-1955 Manganese Dioxide 1951-1955 95.000 Company Pond Company Ponds refers to leach beds on the Kerr-McGee site Manganese Dioxide 6.226 1951-1955 Perchlorate Solids 1951-1955 Not BMI Ponds Measureable AP & CC AP & CC Sodium Chlorate 149,419 1956-1967 Chlorates 1956-1967 162.000 BMI Ponds Potassium Chlorate 23,046 1956-1967 Potassium Perchlorate 3.142 1956-1967 Ammonium Perchlorate 83,240 1956-1967 Manganese Dioxide 1956-1967 426.000 Company Ponds Company Ponds refers to leach beds on the Kerr-McGee site Manganese Dioxide 41.432 1956-1967 Perchlorate Solids 1956-1967 Not BMI Ponds Measureable Kerr-McGee Kerr-McGee Sodium Chlorate 374.066 1967 to Chlorate Wastes 1968-1974 BMI Ponds current odium Perchlorate 14,819 1968 to Perchlorate Wastes 1967-1974 BMI Ponds current Potassium Chlorate 5,103 1967-1975 Liquid Wastes 1968-1967 BMI Ponds 1967-1982 BMI Ponds Potassium Perchlorate 8.762 Elemental Boron 1972-1976 Wastes 1967 to Perchlorate Wastes Ammonium Perchlorate 214.776 1975 to Lined Ponds Lined ponds are the single- and double-lined current current surface impoundments constructed on the Ker McGee site Liquid Wastes Manganese Dioxide 219,470 1967 to 1975 to Lined Ponds Lined ponds are the single- and double-lined current current surface impoundments constructed on the Kerr McGee site Magnesium Perchlorate 744 1969-1976 Elemental Boron 1976 to Lined Ponds Lined ponds are the single- and double-lined surface impoundments constructed on the Keri Wastes current McGee site 4,346 1973 to Chlorate Wastes 1975 to BMI Dump Boron Trichloride current 1980 Boron Compounds Boron Tribromide 62 1973 to 1970's BMI Dump current Wastes Elemental Boron 112 1972 to Boron Compounds 1979- to Sanitary Landfill refers to the sanitary landfill Sanitary Landfill current Wastes current operated by Silver State Disposal and /or Republic. Material disposed is nonhazardous solid industrial waste Tumbleaf Defoliant® 3,798 1975-1985 Chlorate Wastes 1980-1983 On-Site H.W. On-site H.W. Landfill refers to the hazardous Landfill wate landfill located on the KMCC site. This landfill was closed in accordance with applicable regulations. Chlorate Wastes 1983 to Commercial Commercial H.W. Landfill refers to the hazardous waste landfill in Beatty. Nevada or 1996 H.W. Landfill the hazardous waste landfill in Grassv Mountain, UT. Manganese Dioxide 1967-1975 On-site Wastes Leachbeds Manganese Dioxide 1975 to On-Site Wastes Present Nonhazardous Pile Chromium Wastes 1987-2004 9 000 lbs Commercial Commercial landfill refers to the industrial Landfill landfill in Apex, NV or the non-haszardous waste landfill in Beatty, NV. Perchlorate Wastes 1998-2004 1401.73 tons Incinerator The perchlorate remediation system has been in operation since 1998 and has removed this volume through October 2004. Resin has been transported to an incinerator for destruction.

(1)= Data complied from Kleinfelder (1993) and Kerr-McGee (2004) For Kerr-McGee product summary, other inorganic chemicals were also produced at various times for a limited time period on an experimental basis. These included bench or pilot tests which produced small quantities of chemicals similar to those used or produced at the facility. WECCO= Western Electrochemical Company

AP&CC= American Potash and Chemical Company

Table 3 LOU Listed by Potential Contaminant Group Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Potential Chemical Contaminant Group	Item Number **	Areas Identified in the NDEP Letter of Concern **	List of Identified Poter Impacts
Perchlorate	15	Platinum Drying Unit	P/ Cr/ Misc
Perchlorate	16 & 17	Ponds AP-1 and AP-2, and Associated Transfer Lines and Ponds AP-3 and Associated Transfer Lines	P/ Misc
Perchlorate	18	Pond AP-4	P/ Misc
Perchlorate	19	Pond AP-5	P/ Misc
Perchlorate Perchlorate	<u>30</u> 31	Ammonium Perchlorate Area-Pad 35 Drum Recycling Area	P P
Perchlorate	31	Ground Water Remediation Unit	P/Cr/Cl/TDS/Misc
Perchlorate	33	Sodium Perchlorate Platinum By-Product filter	P/ Misc
Perchlorate	43	Unit 4 and 5 Basements	Cr/ Cl/ P
Perchlorate	52	AP Plant Area Screening Building, Dryer Building and Associated Sump	Р
Perchlorate	53	AP Plant Area Tank Farm	Р
Perchlorate	55	Area Affected by July 1990 Fire	P
Perchlorate	56	AP Plant Area Old Building D-1- Washdown	P
Perchlorate Chlorate	<u>57 & 58</u> 7	AP Plant Area New Building D-1- Washdown and AP Plant Transfer Lines to Sodium Chlorate Process Old P-2 Pond and Associated Conveyance Facilities	Cr/ Cl
Chlorate	8	P-3 Pond and Associated Conveyance Facilities	Cr/ Cl
Chlorate	9	New P-2 Pond and Associated Piping	Cr/ Cl
Chlorate	11	Sodium Chlorate Filter Cake Holding Area North of Unit 3	Cr/ Cl
Chlorate	12	Hazardous Waste Storage Area	Cr/ Cl
Chlorate	13	Pond S-1	Cr/ Cl
Chlorate	14	Pond P-1, and Associated Conveyance Piping	Cr/ Cl
Chlorate Chlorate	15 32	Platinum Drying Unit Ground Water Remediation Unit	P/ Cr/ Misc P/Cr/Cl/TDS/Misc
Chlorate	43	Unit 4 and 5 Basements	Cr/ Cl/ P
Chlorate	43 61	Old Sodium Chlorate Plant Decommissioning	Cr/ Cl
otal Dissolved Solids	20	Pond C-1 and Associated Piping	TDS/ B
otal Dissolved Solids	21	Mn-1 and Associated Piping	Mn/ TDS
otal Dissolved Solids	22	Pond WC-1 and Associated Piping	TDS/ Misc
otal Dissolved Solids	23	Pond WC-2 and Associate Piping	TDS/ Misc
otal Dissolved Solids	32	Ground Water Remediation Unit	P/Cr/CI/TDS/Misc TDS
otal Dissolved Solids Chromium	42 7	Unit 2 Salt Redler Old P-2 Pond and Associated Conveyance Facilities	Cr/ Cl
Chromium	8	P-3 Pond and Associated Conveyance Facilities	Cr/ Cl
Chromium	9	New P-2 Pond and Associated Piping	Cr/ Cl
Chromium	11	Sodium Chlorate Filter Cake Holding Area North of Unit 3	Cr/ Cl
Chromium	12	Hazardous Waste Storage Area	Cr/ Cl
Chromium	13	Pond S-1	Cr/ Cl
Chromium	14	Pond P-1, and Associated Conveyance Piping	Cr/ Cl
Chromium Chromium	15 28	Platinum Drying Unit Hazardous Waste Storage Area	P/ Cr/ Misc HC / Misc/ Cr
Chromium	32	Ground Water Remediation Unit	P/Cr/Cl/TDS/Misc
Chromium	43	Unit 4 and 5 Basements	Cr/ Cl/ P
Chromium	46	Former Old Main Cooling Tower and Recirculation Lines	Cr
Chromium	61	Old Sodium Chlorate Plant Decommissioning	Cr/ Cl
Manganese	21	Mn-1 and Associated Piping	Mn/ TDS
Manganese	24	Leach Beds, Associated Conveyance Facilities, and Mn Tailings Area	Mn
Manganese	34	Former Manganese Tailings Area	<u>Mn</u> Mn
Manganese Manganese	44 47	Unit 6 Basement Leach Plant Area Manganese Ore Piles	Mn/Misc
Manganese	48	Leach Plant Analyte Tanks	Mn
Manganese	49	Leach Plant Area Sulfuric Acid Storage Tanks	Mn
Manganese	50	Leach Plant Area Leach Tanks	Mn
Manganese	51	Leach Plant Area Transfer Lines	Mn
Boron	20	Pond C-1 and Associated Piping	TDS/ B
Hydrocarbon Hydrocarbon	4 28	Hardesty Chemical Company Site (prior to J. B. Kelley Operations) Hazardous Waste Storage Area	HC HC / Misc/ Cr
Hydrocarbon	39	Satellite Accumulation Point-AP Maintenance Shop	HC
Hydrocarbon	41	Unit 1 Tenant Stains	HC
Hydrocarbon	45	Diesel Storage Tank	HC
Hydrocarbon	63	J. B. Kelley, Inc. Trucking Site	HC/ Misc
Hydrocarbon	64	Koch Materials Company Site	HC
Hydrocarbon	65	Nevada precast concrete products, Green Ventures International, Buckles Construction Company and Ebony Construction Sites	HC
Hydrocarbon	66	Above-Ground Diesel Storage Tank Leased by Flintkote Co.	HC HC/Miss
Hydrocarbon Miscellaneous	68 1	Southern Nevada Auto Parts Site Trade Effluent Settling Ponds	HC/ Misc Misc
Miscellaneous	2	Open Area Due South of "Trade Effluent Disposal Ponds"	Misc
Miscellaneous	3	Air Pollution Emissions Associated with Industrial Processes	Misc
Miscellaneous	5	On-Site Portion of Beta Ditch, Including "Small Diversion Ditch" Northwest of Pond C-1	Misc
Miscellaneous	6	Unnamed Drainage Ditch Segment	Misc
Miscellaneous	10	On-Site Hazardous Waste Landfill	Misc
Miscellaneous Miscellaneous	15 16 & 17	Platinum Drying Unit Ponds AP-1 and AP-2, and Associated Transfer Lines and Ponds AP-3 and Associated Transfer Lines	P/ Cr/ Misc P/ Misc
Miscellaneous	16 & 17	Ponds AP-1 and AP-2, and Associated Transfer Lines and Ponds AP-3 and Associated Transfer Lines Pond AP-4	P/ MISC P/ Misc
Miscellaneous	19	Pond AP-5	P/ Misc
Miscellaneous	22	Pond WC-1 and Associated Piping	TDS/ Misc
Miscellaneous	23	Pond WC-2 and Associate Piping	TDS/ Misc
Miscellaneous	25	Process Hardware Storage Area	Misc
Miscellaneous	26	Trash Storage Area	Misc
Miscellaneous Miscellaneous	27	PCB Storage Area	Misc HC / Misc/ Cr
Miscellaneous Miscellaneous	28 29	Hazardous Waste Storage Area Solid Waste Dumpster	HC / Misc/ Cr Misc
Miscellaneous	32	Ground Waste Dumpster	Cr/ Misc
Miscellaneous	33	Sodium Perchlorate Platinum By-Product filter	P/ Misc
Miscellaneous	35	Truck Emptying/Dumping Site	Misc
Miscellaneous	36	Former Satellite Accumulation Points	Misc
	37	Former Satellite Accumulation Points	Misc
Miscellaneous	38	Former Satellite Accumulation Points	Misc
Miscellaneous			
Miscellaneous Miscellaneous	40	PCB Transformer Spill	Misc
Miscellaneous Miscellaneous Miscellaneous	40 47	Leach Plant Area Manganese Ore Piles	Mn/ Misc
Miscellaneous Miscellaneous	40		

Miscellaneous	60	Acid Drain System	MISC
Miscellaneous	62	State Industries, Inc. Site, Including Impoundments and Catch Basin	Misc
Miscellaneous	63	J. B. Kelley, Inc. Trucking Site	HC/ Misc
Miscellaneous	67	Delbert Madsen and Estate of Delbert Madsen Site	Misc
Miscellaneous	68	Southern Nevada Auto Parts Site	HC/ Misc
Miscellaneous	69	Dillon Potter Site	Misc

Notes: P = Perchlorate Cl = Chlorate TDS = Total Dissolved Solids - Conductivity

Cr = Chlorate

Mn = Mangenese

Mn = Mangenese B = Boron HC = Hydrocarbon Misc = Miscellaneous * Kleinfelder; April 1993, Environmental Conditions Assessment KMCC Chemical Corporation, Henderson, NV; Appendix D. **Division of Environmental Protection; August 1994, Phase II Letter of Understanding Between NDEP And KMCC. No Action Required by NDEP AP: Ammonium Perchlorate PCB: Polychlorinated biphenyls NDEP = Nevada Division of Environmental Protection

NDEP = Nevada Division of Environmental Protection

ECA = Environmental Conditions Assessment

LOU = Letter of Understanding SWMU - Solid Waste Management Unit KMCC Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Parameters of Interest	Compound List	Synonyms ⁽¹³⁾	CAS	Media ⁽¹⁾	Analytical Method ^(2, 9, 10)		y Detection	Notes
r arameters or interest	Compound List	Synonyms	Number	Media	Analytical Method	Soil (mg/kg)	Water (µg/L)	
Miscellaneous Compounds Chemicals, and Products	ammonia ,	anhydrous ammonia, aqua ammonia, aqueous ammonia	7664-41-7	V,S,A	EPA 350.1 ammonia as N	0.75	30	Historically present in vapor form; Phase I; possibility of sorbing in soil and/or water: LDLs from ATL ⁽¹¹⁾
	ammonium perchlorate	perchloric acid ammonium salt	7790-98-9	S. A	EPA 350.1 ammonia as N	0.75	30	Phase I; LDLs from ATL
	ammonium perchiorate	perchione acid animonium sait	1190-96-9	3, A	EPA 314.0 as perchlorate	0.75	2	LDLs from ATL
					EPA 310.1 as alkalinity	NA ⁽⁸⁾	NA ⁽⁸⁾	NDEP request in 8/5/04 letter
	anti-foam agent	surfactants	NA	A	EPA 425.1 for surfactants	NA	NA 25	NDEP request in 6/21/04 letter
	argon	Sunaciants	7440-37-1	V	EPA 3CM	NA	NA	Historically present in the gas form. NDEP request in 6/21/04 letter
	barium hydroxide	barium dihydroxide	17194-00-2	S, A	EPA 6010B as barium	1.0	3	Phase I; LDLs from ATL
	Sanan nyaroxiae		17 104-00-2	0, 7	EPA 150.1 as pH for water, EPA 9045C as pH for soil		0-14 range	
			1		SM 2320B alkalinity as hydroxide ⁽¹⁰⁾	50	5000	NDEP request in 8/5/04 letter
	barium sulfide	barium sulphide	21109-95-5	S. A	EPA 6010B as barium	1.0	3	Phase I: LDLs from ATL
	Danum Sunde	banum sulphide	21100 00 0	0, //	EPA 376.2 as sulfide, EPA 9030B/9034 for soil	0.5	50	
					EPA 310.1 as alkalinity	NA ⁽⁸⁾	NA ⁽⁸⁾	NDEP request in 8/5/04 letter
	barium sulfate	barite	7727-43-7	S. A	EPA 6010B as barium	1	3	LDLs from ATL
	barram barrato	bante			EPA 300.0 as sulfate	10	1000	
	barite	barium sulfate	7727-43-7		EPA 6010B as barium	1	3	LDLs from ATL
	bante	bandin Sullate	1121-43-1	0, A	EPA 300.0 as sulfate	10	1000	
	boric acid		10043-35-5	S.A	EPA 6010B as boron	10	50	LDLs from ATL
			100-10-00-0	0,71	EPA 150.1 as pH for water, EPA 9045C as pH for soil	0-14 range		
	boron carbide	B4-C; Tetrabor	12069-32-8		EPA 6010B as boron, carbide not analyzed	10	50	Phase I; LDLs from ATL
					EPA 310.1 as alkalinity	NA ⁽⁸⁾	NA ⁽⁸⁾	
					Total Organic Carbon (TOC) by 9060 for carbon ⁽¹⁰⁾	NA ⁽⁸⁾	NA ⁽⁸⁾	
	boron tribromide	boron bromide	10294-33-4	S. A	EPA 6010B as boron	10	50	Phase I; LDLs from ATL
		boron bronnide	10204 00 4	0, //	EPA 300.0 as bromide	0.5	50	
	boron trichloride	trichloroborane, boron chloride	10294-34-5	S, A	EPA 6010B as boron	0.5	50	Phase I; LDLs from ATL
				0,71	EPA 300.0 as chloride	5	500	Fliase I, EDES IIOIII ATE
					EPA 325.3 as chloride	20	2000	
	calcium carbonate		471-34-1	S.A	EPA 6010B as calcium	10	500	Phase I; LDLs from ATL
		calcium salt of carbonic acid	-	- /	EPA 310.1 alkalinity as CaCO ₃	50	5000	
	calcium chloride	scale	10043-52-4	S, A	EPA 6010B as calcium	10	500	NDEP request in 6/21/04 letter; LDLs from ATL
					EPA 300.0 as chloride	5	500	
					EPA 325.3 as chloride	20	2000	
	calcium hypochlorite	losantin, calcium hypochloride,	777-54-3	S, A	EPA 6010B as calcium	10	500	Phase I; LDLs from ATL
		hypochlorous acid calcium salt,			EPA 330.3 as residual chlorine	2	200	
	calcium oxide (lime)	lime, calx, quicklime, calcium monoxide, burnt lime, airlock, calcia, caloxol cp2, calxyl,	1305-78-8	S, A	EPA 6010B as calcium	10	500	LDLs from ATL
		desical P, rhenosorb C		L	EPA 150.1 as pH for water, EPA 9045C as pH for soil		0-14 range	ļ
	calcium sulfate	anhydrous calcium sulfate,	7778-18-1	S, A	EPA 6010B as calcium	10	500	Phase I; LDLs from ATL
		Anhydrous gypsum, Anhydrous	1		EPA 300.0 as sulfate	10	1000	

Parameters of Interest	Compound List	Synonyms ⁽¹³⁾	CAS	Media ⁽¹⁾	Analytical Method ^(2, 9, 10)	Laboratory Detection Limits ⁽¹⁴⁾		Notes	
Tarameters of interest	Compound Liet		Number	Media		Soil (mg/kg)	Water (µg/L)		
Miscellaneous Compounds, Chemicals, and Products	chlorine	molecular chlorine	7782-50-5	A,V	EPA 330.3 as residual chlorine	NA	200	Phase I; vapor contaminant will not be tested; possibility of dissolving in water.	
(continued)	chelant (Nalco 1745)	Nalco 1745, dithiocarbamates	NA	A	None identified for long chain polymers present in dithiocarbamates	NA	NA ⁽⁸⁾	NDEP request in 6/21/04 letter	
	coagulants	ferric sulfide, aluminum sulfate, ferric chloride	various	S, A	Coagulants will be analyzed using the ion and metal analysis identified under the specific chemicals listed and EPA 425.1 for surfactants	varies	varies	NDEP request in 6/21/04 letter	
	coal	carbon, trace metals	7440-44-0	A	Total Organic Carbon (TOC)-ASTM 5997 or EPA 9060, metals 6010B	NA	0.06	NDEP request in 6/21/04 letter	
	coke	carbon, trace metals	NA	A	Total Organic Carbon (TOC)-ASTM 5997 or EPA 9060, metals 6010B	NA	0.06	NDEP request in 6/21/04 letter	
	diatomaceous earth	diatomaceous silica, diatomite, precipitated amorphous silica, silica gel, silicon dioxide	7631-86-9	S,A	6010B as silica				
		(amorphous)			EPA 310.1 as alkalinity	NA ⁽⁸⁾	NA ⁽⁸⁾	NDEP request in 8/5/04 letter	
	filter aid	diatomaceous earth	NA	NA	see diatomaceous earth	NA	NA	NDEP request in 6/21/04 letter	
	flammables		varies		EPA 1010 (flashpoint), ASTM E681-04	varies	varies	NDEP request in 6/21/04 letter; LDLs from ATL	
	flocculents	alum; caustic; ferric chloride; ferric sulfate; ferrous sulfate; lime; sulfides; and polyelectrolytes	varies	S,A	Flocculants will be analyzed using the ion and metal analysis identified under the specific chemical listed, 6010 and 6020 for alum as aluminum, EPA 425.1 for surfactants, and ASTM 5997 TOC analysis for polyelectrolytes.	varies	varies	NDEP request in 6/21/04 letter	
	graphite	carbon	7440-44-0	А	Total Organic Carbon (TOC)-ASTM 5997 or EPA 9060	NA	0.06	NDEP request in 6/21/04 letter	
	hydrogen chloride	anhydrous hydrogen chloride; Aqueous hydrogen chloride (i.e., Hydrochloric acid, Muriatic acid)	7647-01-0	S,A	EPA 300.0 or 325.3 as chloride; Not analyzed as gas.	20	2000	Historically present in gas form, could enter soil or water if absorbed into water; LDLs from ATL	
					EPA 150.1 as pH for water, EPA 9045C as pH for soil	NA	0-14 range		
	hydrogen peroxide	high-strength hydrogen peroxide, Hydrogen dioxide, Hydrogen peroxide (aqueous), Hydroperoxide, Peroxide	7722-84-1	A	EPA 150.1 as pH for water, EPA 9045C as pH for soil	NA		Strong oxidizer; relatively unstable compound that requires stabilization to avoid deterioration over time; no known analysis method	
	hydrogen sulfide	hydrosulfuric acid, sewer gas, sulfuretted hydrogen	7783-06-4	S,A	EPA 376.2 as sulfide, EPA 9030B/9034 for soil , ASTM D5504 (vapor)	0.5	50	Historically present in vapor form; Phase I; LDLs from ATL(soil and water); LDL (vapor) 5 ppb (CAS) ⁽¹²⁾	
	iron oxide	ferric oxide,iron(III) oxide	1332-37-2	S, A	EPA 6010B as iron	10	500	Phase I; LDLs from ATL	
					EPA 150.1 as pH for water, EPA 9045C as pH for soil	0-14 range	0-14 range		
	magnesium carbonate	carbonate magnesium, hydromagnesite, magnesium(II)	7439-95-4	S, A	EPA 6010B as magnesium	10	100	Phase I; LDLs from ATL	
		carbonate			EPA 310.1 alkalinity as CaCO ₃	50	5000		
	magnesium chlorate		NA	S, A	EPA 6010B as magnesium	10	100	Phase I; LDLs from ATL	
			7700.00.0		EPA 300.0 as chlorate	See Note 5	300		
	magnesium chloride	magnesium (II) chloride	7786-30-3	S, A	EPA 6010B as magnesium	10	100	Phase I; LDLs from ATL	
					EPA 300.0 as chloride EPA 325.3 as chloride	5 20	500 2000	4	
	magnesium perchlorate	perchloric acid magnesium salt	10034-81-8	S. A	EPA 325.3 as chloride EPA 6010B as magnesium	20	2000	Phase I; LDLs from ATL	
	magnesium perchiolate	perchione aciu magnesium salt	10034-01-0	э, л	EPA 314.0 as perchlorate	0.04	2	Thase I, LDES HUIT ATE	

Parameters of Interest	Compound List	Svnonvms ⁽¹³⁾	CAS	Media ⁽¹⁾) Analytical Method ^(2, 9, 10)		y Detection its ⁽¹⁴⁾	Notes
		-yy	Number	moulu		Soil (mg/kg)	Water (µg/L)	
Aiscellaneous Compounds,	manganese dioxide	Manganese (IV) Oxide	1313-13-9	S, A	EPA 6010B as manganese	10	500	Phase I; LDLs from ATL
Chemicals, and Products continued)	manganese oxide	manganomanganic oxide, trimanganese tetraoxide,	1344-43-0	S, A	EPA 6010B as manganese	10	500	Phase I; LDLs from ATL
		trimanganese tetroxide			EPA 150.1 as pH for water, EPA 9045C as pH for soil	0-14 range		
	manganese sulfate	manganese (II) sulphate, manganous sulphate, manganese (II) sulfate, manganese (2+) sulfate monohydrate, sulfuric acid	7285-87-7	S, A	EPA 6010B as manganese	10	500	Phase I; LDLs from ATL
		manganese salt			EPA 300.0 as sulfate	10	1000	
	methyl mercury	mercury metal: colloidal mercury, metallic mercury, quicksilver	7439-97-6	S, A	EPA 7470A/7471A as mercury	0.1	0.2	LDLs from ATL
	paints		NA	S,A	EPA 6010B for metals	See Note 4	varies	Phase I
					EPA 8260B VOCs, EPA 8270C SVOCs	varies	varies	
	paraffin wax	paraffin	NA		EPA 8015M (C ₁₃ -C ₂₂ range)	30	0.50	Phase I
	potassium chlorate	chloric acid potassium salt,	3811-04-9	S, A	EPA 6010B as potassium	See Note 4	1000	Phase I; LDLs from ATL
		berthollet salt, chlorate of potash			EPA 7610	25	500	
					EPA 300.0 as chlorate	See Note 5	300	
	potassium chloride	potassium monochloride, potassium muriate, monopotassium chloride, kalitabs, rekawan, slow K, super	7447-40-7	S, A	EPA 6010B as potassium	See Note 4	1000	Phase I; LDLs from ATL
		K, pfiklor, enseal, kaochlor, kaon-			EPA 7610	25	500	
		cl, potavescent			EPA 300.0 as chloride	5	500	
					EPA 325.3 as chloride	20	2000	
	potassium perchlorate	perchloric acid potassium salt	7440-09-7		EPA 6010B as potassium	See Note 4	1000	Phase I; LDLs from ATL
					EPA 7610	25	500	
					EPA 314.0 as perchlorate	0.04	2	
	potassium phosphate	potassium phosphate tribasic,	7758-11-4	S, A	EPA 6010B as potassium	See Note 4	1000	Phase I; LDLs from ATL
		potassium orthophosphate,			EPA 7610	25 0.2	500 20	
		tripotassium phosphate			EPA 365.3 as total phosphate EPA 310.1 alkalinity	0.2 NA ⁽⁸⁾	20	
	silica	diatomaceous earth, diatomaceous silica, diatomite, precipitated amorphous silica, silica gel, silicon dioxide	7631-86-9	S, A	6010B as silica	20	100	Phase I; LDLs from ATL
		(amorphous)			EPA 310.1 alkalinity	NA ⁽⁸⁾	3	NDEP request in 8/5/04 letter
	silicon tetrabromide	silicon (IV) bromide, silicon bromide, tetrabromosilane	7789-66-4		6010B as silica	20	100	Phase I; LDLs from ATL
	silicon tetrachloride	silicon chloride, tetrachlorosilane,	10026-04-7	S, A	6010B as silica	20	100	Phase I; LDLs from ATL
	silicon (IV) chloride			EPA 300.0 as chloride	5	500		
					EPA 325.3 as chloride	20	2000	

Damma fan af heimeri	O	- (13)	CAS	(1)	(2, 9, 10)		/ Detection ts ⁽¹⁴⁾	Notes
Parameters of Interest	Compound List	Synonyms ⁽¹³⁾	Number	Media ⁽¹⁾	Analytical Method ^(2, 9, 10)	Soil (mg/kg)	Water (µg/L)	NOIES
Miscellaneous Compounds Chemicals, and Products (continued)	sodium arsenite	sodium (meta)arsenite, arsenous acid sodium salt, sodium metaarsenite, Atlas A, chem pels C, chem-sen 56, Kill-all, penite, prodalumnol, sodanit, various trade names	7784-46-5	S, A	EPA 6010B as sodium	See Note 4	19	LOU Response; LDLs from ATL
					EPA 6010B as arsenic	1	10	
	sodium alpha olefin sulfonate	sodium tetradecene sulfonate, sodium C14-16 olefin sulfonate;C14-16-alkane hydroxy and C14-16-alkene	68439-57-6	S,A	EPA 6010B as sodium	See Note 4	19	Phase I; LDLs from ATL
	sodium borate	anhydrous borax, borax dehydrated, disodium salt of boric acid, disodium tetraborate, fused borax, sodium borate (anhydrous), sodium tetraborate	1330-43-4	S, A	EPA 6010B as sodium	See Note 4	19	Phase I; LDLs from ATL
					EPA 310.1 alkalinity	NA ⁽⁸⁾	NA ⁽⁸⁾	
	sodium carbonate	soda ash, disodium carbonate, carbonic acid disodium salt	497-19-8	S, A	EPA 6010B as sodium	See Note 4	19	Phase I; LDLs from ATL
					EPA 310.1 alkalinity as CaCO ₃ ⁽¹⁰⁾	50	5000	
	sodium chlorate	agrosan, asex, atlacide, atratol, b herbatox, desolet, drexel defol, evau-super, grain sorghum harvest-aid, granex O, Harvest- aid, hibar C, kusatol, leafex 2, ortho C-1 defoliant & weed killer, oxycil, rasikal, shed-a-leaf, soda chlorate, sodakem, travex, tumbleaf, val-drop	7775-09-9	S, A	EPA 6010B as sodium	See Note 4	19	Phase I; LDLs from ATL
			7047 44 5		EPA 300.0 as chlorate	See Note 5	300	
	sodium chloride	extra fine 200 salt, extra fine 325 salt, H.G. blending, salt, sea salt, table salt, common salt, dendritis, rock salt, top flake, white crystal, saline, halite, purex, USP sodium chloride	1041-14-5	S, A	EPA 6010B as sodium	See Note 4	19	Phase I; LDLs from ATL
					EPA 300.0 as chloride	5	500	
			7700 40 5		EPA 325.3 as chloride	20	2000	
	sodium dichromate	sodium bichromate	7789-12-0	S, A	EPA 6010B as sodium	See Note 4	19	Phase I; LDLs from ATL
					EPA 7196A as hexavalent chromium, EPA 3060A for soil		10	
	a a diu na	matanhaanharia aaid	10101 56 0	<u> </u>	EPA 6010B as chromium	1 Cas Nata 4	3 19	
	sodium hexametaphosphate	metaphosphoric acid hexasodium salt, glassy sodium	10124-56-8	S, A	EPA 6010B as sodium	See Note 4	-	Phase I; LDLs from ATL
		metaphosphate, SHMP			EPA 365.3 as total PO ₄	0.2	20	
1					EPA 310.1 alkalinity	NA ⁽⁸⁾	3	NDEP request in 8/5/04 letter

Parameters of Interest	Compound List	Synonyms ⁽¹³⁾	CAS	Media ⁽¹⁾	Analytical Method ^(2, 9, 10)		y Detection its ⁽¹⁴⁾	Notes	
i arameters of interest	Compound List	Synonyms	Number	Weula	Analytical Method	Soil	Water	Notes	
						(mg/kg)	(µg/L)		
Miscellaneous Compounds Chemicals, and Products (continued)	, sodium hydrosulfide	sodium hydrogen sulphide, sodium hydrogen sulfide, sodium sulfhydrate, sodium bisulphide, sodium hydrosulphide, sodium	16721-80-5	S, A	EPA 6010B as sodium	See Note 4	19	Phase I; LDLs from ATL	
		bisulfide			EPA 376.2 as sulfide, EPA 9030B/9034 for soil	0.5	50		
					EPA 310.1 alkalinity	NA ⁽⁸⁾	NA ⁽⁸⁾		
	sodium hydroxide	caustic soda, lye, soda lye,	1310-73-2	S, A	EPA 6010B as sodium	See Note 4	19	Phase I; LDLs from ATL	
		sodium hydrate			EPA 310.1 alkalinity	NA ⁽⁸⁾	NA ⁽⁸⁾	NDEP request in 8/5/04 letter	
					EPA 150.1 as pH for water, EPA 9045C as pH for soil	0-14 range			
	sodium oxide	disodium monoxide, sodium monoxide, disodium oxide	1313-59-3	S, A	EPA 6010B as sodium	See Note 4	19	Phase I; LDLs from ATL	
					EPA 150.1 as pH for water, EPA 9045C as pH for soil	0-14 range	0-14 range		
	sodium perchlorate	perchloric acid sodium salt	7601-89-0	S, A	EPA 6010B as sodium	See Note 4	19	Phase I; LDLs from ATL	
					EPA 314.0 as perchlorate	0.04	2		
	sodium sulfite	anhydrous sodium sulfite, sodium sulphite, S-WAT, sulftech, sulfurous acid sodium salt, disodium sulfite, exsiccated	7757-83-7	S, A	EPA 6010B as sodium	See Note 4	19	Phase I; LDLs from ATL	
		sodium sulfite			EPA 377.1 as sulfite	NA ⁽⁸⁾	2000		
	strontium carbonate	carbonic acid strontium salt	1633-05-2	S, A	EPA 6010B as strontium	0.5	100	Phase I; LDLs from ATL	
					EPA 310.1 alkalinity as CaCO ₃	NA ⁽⁸⁾	NA ⁽⁸⁾		
	sulfur dioxide	sulfurous acid anhydride, sulfurous oxide, sulfur oxide	7446-09-5	V	NIOSH Method 6004	NA	NA	Historically present in gas form; detection limit 3 µg/sample	
	synthetic detergent	surfactants	NA	A	EPA 425.1 as surfactants	NA	25	NDEP request in 6/21/04 letter	
	tank mud	tank sediment	NA	S, A	EPA 6010B for total metals	See Note 4	varies	NDEP request in 6/21/04 letter	
					EPA 150.1 as pH for water, EPA 9045C as pH for soil	0-14 range	0-14 range		
					EPA 7196A for hexevalent chromium EPA 3060A for soil	0.1	10]	
					Ion analysis (see ions below)	see below	see below		
	tricalcium phosphate	calcium phosphate tribasic; tricalcium diphosphate; bone phosphate; calcium orthophosphate; calcium phosphate; calcium phosphate (3:2); calcium tertiary phosphate;	7758-87-4	S, A	EPA 6010B as calcium	10	500	Phase I; LDLs from ATL	
1		phosphoric acid, calcium salt (2:3)			EPA 365.3 as total phosphate	0.5, 0.2	50, 20		
					EPA 310.1 alkalinity	NA ⁽⁸⁾	3	NDEP request in 8/5/04 letter	
	titanium tetrachloride			S, A	EPA 6010B as titanium	15.0	300		
					EPA 300.0 as chloride	5	500	Phase I; LDLs from ATL	
					EPA 325.3 as chloride	20	2000	Phase I; LDLs from ATL	
	unknowns	not known, not identified, non specific	NA		Various methods would be used as appropriate depending on the data available to refine the analytical suite. Refer to Table 3 or the complete list of analytical	varies	varies	NDEP request in 6/21/04 letter	
	urea	B-I-K, carbamide, carbamide resin, isourea, pseudourea, carbonyldiamine	57-13-6	A	EPA 350.1 ammonia as N	0.75	30.0	Phase I; LDLs from ATL	
	various lab wastes		NA	S, A,.V	Various methods would be used as appropriate. Refer to Table 3 for the complete list of analytical methods.	varies	varies	NDEP request in 6/21/04 and 8/5/04 letters	

Parameters of Interest	Compound List	Synonyms ⁽¹³⁾	CAS	Media ⁽¹⁾	Analytical Method ^(2, 9, 10)	Laboratory Limi	/ Detection ts ⁽¹⁴⁾	Notes	
	Compound List	Synonyms	Number	Meula	Analytical Method	Soil	Water		
						(mg/kg)	(µg/L)		
ons	chlorate		14866-68-3	А	EPA 300.0 as chlorate	See Note 5	300		
	chloride		16887-00-6	S, A	EPA 300.0 as chloride	5	500	NDEP request in 6/21/04 letter;	
								LDLs from ATL	
				S, A	EPA 325.3 as chloride	20	2000	NDEP request in 6/21/04 letter; LDLs from ATL	
	cyanide		57-12-5	S, A	EPA 335.1, EPA 335.2 as total cyanide	0.25	10	Phase I; LDLs from ATL	
	nitrate		14797-55-8	S, A	EPA 300.0 as nitrate	1.0	100		
	perchlorate		7601-90-3	S, A	EPA 314.0 as perchlorate	0.04	2	Phase I; LDLs from ATL	
	phosphate		14265-44-2	S, A	EPA 300.0 as ortho phosphate, EPA 365.1 as total phosphate	0.5	50	Phase I	
					EPA 310.1 alkalinity	NA ⁽⁸⁾	3	NDEP request in 8/5/04 letter	
	sulfate		14808-79-8	S, A	EPA 300.0 as sulfate, EPA 375.4	1.0, 5.0	19, 1000		
	sulfide		18496-25-8	S, A	EPA 376.2 as sulfide, EPA 9030B/9034 for soil	1.0, 0.5	NA ⁽⁸⁾ , 50		
					EPA 310.1 alkalinity	NA ⁽⁸⁾	NA ⁽⁸⁾	NDEP request in 8/5/04 letter	
sbestos	asbestos		1332-21-4	S, A	ISO 10312 TEC	NA	0.2 MFL*	Phase I	
letals	aluminum		7429-90-5	S, A	EPA 6010B as aluminum	10.0	500	LDLs from ATL	
	antimony		7440-36-0	S, A	EPA 6010B as antimony	2.0	5	LDLs from ATL	
	arsenic		7440-38-2	S, A	EPA 6010B as arsenic	1.0	10	LDLs from ATL	
	barium		7440-39-3	S, A	EPA 6010B as barium	1.0	3	Phase I; LDLs from ATL	
	bervllium		7440-41-7	S, A	EPA 6010B as beryllium	1.0	3	LDLs from ATL	
	boron		7440-42-8	S, A	EPA 6010B as boron	10.0	50	Phase I; LDLs from ATL	
	cadmium		7440-43-9	S. A	EPA 6010B as cadmium	1.0	3	LOU Response; LDLs from ATI	
	calcium		7440-70-2	S, A	EPA 6010B as calcium	10.0	500	Phase I; LDLs from ATL	
	chromium (hexavalent)		18540-29-9	S, A	EPA 7196A, EPA 3060A for soil	0.1	10	Phase I; LDLs from ATL	
	chromium (total)		7440-47-3	S, A	EPA 6010B as total chromium	1.0	3	Phase I; LDLs from ATL	
	cobalt		7440-48-4	S, A	EPA 6010B as cobalt	1.0	3	Phase I; LDLs from ATL	
	copper		7440-50-8	S, A	EPA 6010B as copper	2.0	5	Phase I; LDLs from ATL	
	iron		7439-89-6	S, A	EPA 6010B as iron	1.0	500	Phase I; LDLs from ATL	
	lead		7439-92-1	S, A	EPA 6010B as lead	10.0	5	Phase I; LDLs from ATL	
	magnesium		7439-96-5	S,A	EPA 6010B as magnesium	10.0	100	LDLs from ATL	
	manganese		7439-96-4	S, A	EPA 6010B as manganese	1.0	500	Phase I; LDLs from ATL	
	mercury		7439-97-6	S,A	EPA 7470A/7471A as mercury	0.1	200	LDLs from ATL	
	molybdenum		7439-98-7	S, A	EPA 6010B as molybdenum	1.0	5	LOU Response; LDLs from ATL	
	nickel		7440-02-0	S, A	EPA 6010B as nickel	1.0	5	Phase I; LDLs from ATL	
	platinum		7440-06-4	S, A	EPA 6010B as platinum	15.0	300	Phase I; LDLs from ATL	
	phosphorous		7723-14-0	S,A	EPA 200.7	0.5	200	LDLs from ATL	
	potassium		7440-09-7	S, A	EPA 6010B as potassium	25.0	500	Phase I; LDLs from ATL	
	selenium		7782-49-2	S, A	EPA 6010B as selenium	1.0	10	LDLs from ATL	
	silica		7631-86-9	S,A	See Miscellaneous Compounds, Chemicals and Produc				
	silver		744-22-4	S, A	EPA 6010B as silver	1.0	3.0	LOU Response; LDLs from ATI	
	sodium		744-23-5	S, A	EPA 6010B as sodium	See Note 4	19	Phase I; LDLs from ATL	
	strontium		7440-24-6	S,A	EPA 6010B as strontium	0.5	100	LDLs from ATL	
	thallium		7440-28-0	S, A	EPA 6010B as thallium	1.0	15	LDLs from ATL	
	tin		7440-31-5	S, A	EPA 6010B as tin	1.0	300	LDLs from ATL	
	titanium		7440-32-6	S, A	EPA 6010B as titanium	15.0	300	LDLs from ATL	
	tungsten		7440-33-7	S, A	Flame AAS (aqueous), ICP-AES (soil)	NA ⁽⁸⁾	100		
	vanadium		7440-62-2	S, A	EPA 6010B as vanadium	1.0	3	LDLs from ATL	
	zinc		744-66-6	S, A	EPA 6010B as zinc	1.0	10	Phase I; LDLs from ATL	

Parameters of Interest	Compound List	Synonyms ⁽¹³⁾	CAS	Media ⁽¹⁾	Analytical Method ^(2, 9, 10)		y Detection its ⁽¹⁴⁾	Notes
r arameters or interest	Compound List	Synonyms	Number	Media	Analytical Method	Soil (mg/kg)	Water (µg/L)	
Volatile Organic Compounds (VOCs) ⁽⁶⁾	1,1,1-TCA	chlorothene; 1,1,1- trichloroethane; 1,1,1- trichloroethane (stabilized),	71-55-6	S, A	EPA 8260B	0.005	0.5	Phase I; LDLs from ATL
	2-butanone*	ethyl methyl ketone, MEK, methyl acetone, methyl ethyl	78-93-3	S, A	EPA 8260B	0.005	5	LOU Response
	2-hexanone*	methyl n-butyl ketone	591-78-6	S, A	EPA 8260B	0.005	5	
	acetone*	dimethyl ketone, ketone propane 2-propanone	,67-64-1	S, A	EPA 8260B	0.005	5	Phase II ECI
	benzene	benzol, phenyl hydride	71-43-2	S, A	EPA 8260B	0.001	1	Phase II ECI
	chlorobenzol	benzene chloride, chlorobenzol, MCB, monochlorobenzene, phenyl chloride	108-90-7	S, A	EPA 8260B	0.001	1	
	chloroform	methane trichloride, trichloromethane	67-66-3	S, A	EPA 8260B	0.001	1	Phase II ECI
	chlorinated organics		varies	S, A	EPA 8260B	0.001	1	NDEP request in 6/21/04 letter
	chlorinated paraffins		varies	S, A	EPA 8260B	0.001	1	NDEP request in 6/21/04 letter
	ethylbenzene		100-41-4	S,A	EPA 8260B	0.005	0.5	LDLs from ATL
	glycols*	varies	varies	S,A	EPA 8015C or EPA 8260B	200	200,000	LDLs from ATL
	methanol*	carbinol, columbian spirits, methyl alcohol, Pyroligneous spirit, Wood alcohol, Wood naphtha, Wood spirit	67-56-1	S, A	EPA 8260B, EPA 8015C	0.001	1.0	Phase I
	methyl isobutyl ketone*	isobutyl methyl ketone, hexone, 4 methyl 2-pentanone, MIBK	108-10-1	S	EPA 8260B	0.005	NA ⁽⁸⁾	NDEP request in 6/21/04 letter
	methyl tert-butyl ether	MTBE	1634-04-4	S, A	EPA 8260B	0.001	0.05	NDEP request 8/05/04 letter
	monochlorobenzene	benzene chloride, chlorobenzol, MCB,chlorobenzene, phenyl chloride	108-90-7	S, A	EPA 8260B	0.001	1	Phase I
	orthodichlorobenzene	1,2 dichlorobenzene	95-50-1	S, A	EPA 8260B	0.001	1	as 1,2-, 1,3- and 1,4- isomers;
	paradichlorobenzene	1,4-dichlorobenzene, PDB, paracide	106-46-7	S, A	EPA 8260B	0.001	1	as 1,2-, 1,3- and 1,4- isomers; Phase I
	tetrachloroethylene	perchloroethylene, PCE, tetrachloroethene	127-18-4	S, A	EPA 8260B	0.001	1	
	toluene*	methyl benzene, methyl benzol, phenyl methane, toluol	108-88-3	S, A	EPA 8260B	0.001	1	Phase I
	trichloroethylene	trichloroethene, TCE	79-01-6	S, A	EPA 8260B	0.001	1	
	xylene	dimethylbenzene; xylol	1330-20-7	S, A	EPA 8260B as total xylenes	0.001	1	As total xylenes;LOU Response
Inorganic Acids	hydrochloric acid	muriatic acid	7647-01-0	S, A	EPA 325.3 as chloride EPA 150.1 as pH for water, EPA 9045C as pH for soil	20 0-14 range	2,000 0-14 range	Phase I; LDLs from ATL
	sulfuric acid		7664-93-8	S. A	EPA 325.3 as sulfate	5	500	Phase I; LDLs from ATL
				-,	EPA 150.1 as pH for water, EPA 9045C as pH for soil	0-14 range	0-14 range	
Chlorinated Herbicides	tumbleaf defoliant		NA	A	EPA 8151A	NA ⁽⁸⁾	NA ⁽⁸⁾	Phase I
Organophosphorous Pesticides	all	insecticides	varies	S, A	Method 8141A	varies	varies	

Parameters of Interest	Compound List	Svnonvms ⁽¹³⁾	CAS	Media ⁽¹⁾	Analytical Method ^(2, 9, 10)		y Detection ts ⁽¹⁴⁾	Notes
	Compound List	Synonyms	Number	meana	Analytical method	Soil (mg/kg)	Water (µg/L)	
Organochlorine Pesticides	DDT	p,p'-DDT, dichlorodiphenyltrichloroethane	50-29-3	S	EPA 8081A as 4,4-DDT	0.002	0.05	Phase I; LDLs from ATL
	DDE	4,4'-DDE, dichlorodiphenyldichloroethylene	72-55-9	S	EPA 8081A	0.002	0.05	LDLs from ATL
	DDD	4,4'-DDD, dichlorodiphenyldichloroethane	72-54-8	S	EPA 8081A	10	0.01	NDEP Sept 29, 2004 letter
	insecticides		NA	Α	EPA 8081A	0.01	0.6 -0.8	Phase I
	pesticides		NA	S,A	EPA 8081A	0.0017	0.6 -0.8	Phase I
Organic Acids	citric acid		77-92-9	S,A	EPA 150.1 as pH for water, EPA 9045C as pH for soil	0-14 range	0-14 range	
Petroleum Hydrocarbons	ТРН				EPA 8015M full range, BTEX and MTBE by 8260B, lead by 6010B, PAHs by 8270C or 8310			Phase I
	C ₄ -C ₁₂	gasoline		S,A	EPA 8015M	1	200	Phase I; LDLs from ATL
	C ₁₃ -C ₂₂	paraffin wax, diesel		S,A	EPA 8015M	10	200	Phase I; LDLs from ATL
	C ₂₃₊	arease, crude oils		S.A	EPA 8015M	10	200	Phase I: LDLs from ATL
alvablaringtad Binkervia	PCBs	3.1400, 01440 010		0,71	EPA 8082		200	Phase I
Polychlorinated Biphenyls	aroclor 1016		1267-41-12	S,A	EPA 8082 EPA 8082	0.1	0.5	Phase I
PCBs)	aroclor 1221	-	1110-42-82	S,A S.A	EPA 8082	0.1	0.5	Phase I
	aroclor 1221	-	1110-42-62	S,A S,A	EPA 8082	0.2	0.5	Phase I
	aroclor 1232		5346-92-19	S,A S.A	EPA 8082	0.1	0.5	Phase I
	aroclor 1242		1267-22-96	S,A S,A	EPA 8082	0.1	0.5	Phase I
	aroclor 1254		1109-76-91	S,A S.A	EPA 8082	0.1	0.5	Phase I
	aroclor 1260		1109-68-25	S,A S,A	EPA 8082	0.1	0.5	Phase I
Polychlorinated	dioxins/furans		varies	S.A	EPA 1613	varies	varies	1 11230 1
Dibenzodioxins/ Dibenzofurans	dioxinis/rurans		Valles	0,4		Varies	Vanos	
Semivolatile Organic	PAHs				EPA 8270C/8310			Phase I
Compounds (SVOCs) and	acenaphthene		83-32-9	S.A	EPA 8270C/8310	0.01	5	Phase I
Polynuclear Aromatic	acenaphthylene		206-96-8	S,A S,A	EPA 8270C/8310	0.01	5	Filase I
	anthracene		120-12-7	S,A S.A	EPA 8270C/8310	0.01	5	Phase I
lydrocarbons (PAHs)	benz(a)anthracene		56-55-3	S,A S,A	EPA 8270C/8310	0.01	5	Phase I
	benzo(a)pyrene		50-32-8	S,A S,A	EPA 8270C/8310	0.01	5	Phase I
	benzo(b)fluoranthene		205-99-2	S,A S,A	EPA 8270C/8310	0.01	5	Phase I
	benzo(k)fluoranthene	1	207-08-9	S,A S.A	EPA 8270C/8310	0.01	5	Phase I
	benzo(ghi)perylene		191-24-2	S,A	EPA 8270C/8310	0.01	5	
	chrysene		218-01-9	S.A	EPA 8270C/8310	0.01	5	Phase I
	dibenz(a,h)anthracene		53-70-3	S,A	EPA 8270C/8310	0.01	10	Phase I
	fluoranthene		206-44-0	S.A	EPA 8270C/8310	0.01	5	Phase I
	fluorene		89-73-7	S,A	EPA 8270C/8310	0.01	5	Phase I
	hexachlorobenzene		118-74-1	S	EPA 8270C	0.07	0.36	NDEP Sept 29, 2004 letter
	indeno(1,2,3-cd)pyrene		193-39-5	S,A	EPA 8270C/8310	0.01	10	Phase I
	naphthalene		97-20-3	S,A	EPA 8270C/8310	0.01	0.5	Phase I
	nitrobenzene		98-95-3	S, A	EPA 8270C	0.33	10	Phase I
	octachlorostyrene		29082-74-4	S,A	EPA 8270C/625	0.01	5	Phase I
	phenanthrene		85-01-8	S,A	EPA 8270C/8310	0.01	5	
	pyrene		129-00-0	S,A	EPA 8270C/8310	0.01	5	Phase I
	pyridine*		110-86-1	S, A	EPA 8270C or 8260B	1.65	5	Phase I; LDLs from ATL

Parameters of Interest	Compound List	Synonyms ⁽¹³⁾	CAS Number	Media ⁽¹⁾	Analytical Method ^(2; 9, 10)	Laboratory Detection Limits ⁽¹⁴⁾		Notes
						Soil (mg/kg)	Water (µg/L)	
Radionuclides	actinium 228		14331-83-0	S	EML HASL 300	See Note 7	NA	NDEP request 8/05/04 letter
Note: units are picocuries per				A	EPA 900.0(gross alpha/beta), EPA 901.1(gamma)	NA	5, 20	
liter (pCi/L) unless noted	bismuth 212		14913-49-6	S	EML HASL 300	See Note 7	NA	NDEP request 8/05/04 letter
				А	EPA 900.0(gross alpha/beta), EPA 901.1(gamma)	NA	5, 20	
	gross alpha (adjusted) (3)			A	EPA 900.0/SW9310	NA	5	NDEP request 2/11/04 letter
				S	SW9310/EML HASL 300	See Note 7	See Note 7	
	lead (isotopic)	Pb-210	14255-04-0	S	EML HASL 300	See Note 7	NA	NDEP request 8/05/04 letter
				A	EPA 909	NA	0.2	
		Pb-212	15092-94-2	S	EML HASL 300	See Note 7	NA	
				А	EPA 901.1/SW9310	NA	20	
	polonium 210		13981-52-7	S, A	EML HASL 300 Po 02 RC	0.001	0.001	bq/1000 = becquerels per 1000 min
	radium 226		13982-63-3	S	EML HASL 300	See Note 7	NA	NDEP request 2/11/04 letter
				А	EPA 903.1	NA	0.2	
	radium 228		15262-20-1	А	EPA 904.0	NA	2.5	
				S	EML HASL 300	See Note 7	NA	
	radon 222		10043-92-2	A	EPA 913.0	NA	0.4 Bq/L	NDEP request 8/05/04 letter
	thorium (isotopic)	includes Th-228, Th-229, Th- 230, Th-232, Th-234	varies	S,A	EML HASL-300; A-01-R Mod/HASL 300	See Note 7		NDEP request 2/11/04 & 8/05/04 (Th-234) letters
	uranium (isotopic)	includes U-232, U-233/234, U- 235/236, U-238	varies	S,A	EML HASL 300	See Note 7	See Note 7	
	uranium (total)		7440-61-1	А	EPA ASTM D5174	NA	0.05	NDEP request 2/11/04 letter
Water Quality Parameters	TDS	total dissolved solids	NA	А	EPA 160.1 as total dissolved solids	NA	10,000	Phase I
	TSS	total suspended solids	NA	A	EPA 160.2 as total suspended solids	NA	10,000	
	pН		NA	Α	EPA 150.1 as pH for water, EPA 9045C as pH for soil	NA	0-14 range	

Notes:

⁽¹⁾ Abbreviations used: S = soil sample; A = aqueous sample; V = vapor sample

⁽²⁾ Analytical Method may test for ions or indicators, not necessarily the compound listed

⁽³⁾ Adjusted gross alpha is calculated by subtracting the effects of uranium and radon 222 from gross alpha

(4) For metals analyzed per Method 6010B, the method protocol requires soil samples to be digested into solution prior to analysis. Therefore, the Detection Limits are given in units of ug/L.

(6)For EPA Method 300.0 (ion analysis) soil samples are extracted into liquid, therefore the LDLs are given in units of ug/L. These LDLs are method detection limits (MDLs)

(6) For VOCs or SVOCs analyzed per EPA Method 8260B, the method states that Method Detection Limits (MDLs) vary depending on instrument sensitivity and matrix effects. Therefore, the MDLs are estimated by dividing the estimated quantitation limits (EQLS) by a factor of 5, per the method protocol.

⁽⁷⁾For EML Method HASL 300, LDLs are lab specific.

(4) For LDLs marked NA, there were no LDLs listed in the National Environmental Methods Index, and no other references could be found to supply LDLs for this method.

(9)pH testing : chemicals that are not listed for method EPA 150.1 or 9045C pH tests may be tested, if necessary, on a case by case basis in soil or aqueous medium.

(10) alkalinity testing : chemicals that are not listed for method EPA 310.1 may be tested, if necessary, on a case by case basis in soil or aqueous medium.

⁽¹¹⁾ATL (Advanced Technology Laboratories): this lab was consulted for various analytical methods and LDLs.

⁽¹²⁾ CAS (Columbia Analytical Services) : this air lab was consulted for various vapor analyses.

(13) Synonyms from ptcl.chem.ox.ac.uk/msds.

⁽¹⁴⁾ Laboratory Detection limits listed are based on published or laboratory specific information and will vary in individual samples.

General Notes:

* = non-halogenated organics.

mg/L = milligrams per liter.

µg/L = micrograms per liter.

LDL = Laboratory Detection Limit

LOU = Letter of Understanding between Kerr McGee Chemical Corporation (KMCC) and NDEP, August 15, 1994.

NA - not available or not applicable.

NDEP= Nevada Division of Environmental Protection

Phase I = Kleinfelder, Inc. Environmental Conditions Assessment (ECA), KMCC, Henderson Nevada, April 1993. Also known as the ECA Investigation.

Phase II = ENSR Environmental Conditions Assessment at KMCC Henderson Nevada, August 7, 1997.

MFL* = Asbestos, Million fibers per Liter.

PAH's and PCB's are itemized, not all may be present on site.

If cell is blank, the compound was not on the referenced regulatory list

1,1,1-TCA	chlorinated paraffins	napthalene	TDS
2-butanone	chlorine	nickel	tetrachloroethylene
2-hexanone	chlorobenzol	nitrate	thallium
acenaphthene	chloroform	nitrobenzene	thorium (isotopic)
acenaphthylene	chromium (hexavalent)	octachlorostyrene	tin
acetone	chromium (total)	orthodichlorobenzene	titanium
actinium 228	chrysene	PAHs	titanium tetrachloride
all organophosphorous pesticides	citric acid	paints	toluene
aluminum	coagulants	paradichlorobenzene	TPH
ammonia	coal	paraffin wax	tricalcium phosphate
ammonium perchlorate	cobalt	PCBs	trichloroethylene
anthracene	coke	perchlorate	TSS
anti-foam agent	copper	pesticides	tumbleaf defoliant
antimony	cyanide	pH	tungsten
argon	DDD	phenanthrene	unknowns
aroclor 1016	DDE	phosphate	uranium (isotopic)
aroclor 1221	DDT	phosphorous	uranium (total)
aroclor 1221 aroclor 1232	diatomaceous earth	platinum	uranium (total)
aroclor 1232	dibenz(a,h)anthracene	polonium 210	vanadium
aroclor 1242 aroclor 1248	dibenz(a,n)anthracene	potassium	variadium various lab wastes
		1	
aroclor 1254	ethylbenzene	potassium chlorate	xylene
aroclor 1260	filter aid	potassium chloride	zinc
arsenic	flammables	potassium perchlorate	
asbestos	flocculants	potassium phosphate	
barite	fluoranthene	pyrene	
barium	fluorene	pyridine	
barium hydroxide	glycols	radium 226	
barium sulfate	graphite	radium 228	
barium sulfide	gross alpha (adjusted)	radon 222	
benz(a)anthracene	hexachlorobenzene	selenium	
benzene	hydrochloric acid	silica	
benzo(a)pyrene	hydrogen chloride	silicon tetrabromide	
benzo(b)fluoranthene	hydrogen peroxide	silicon tetrachloride	
benzo(ghi)perylene	hydrogen sulfide	silver	
benzo(k)fluoranthene	indeno(1,2,3-cd)pyrene	sodium	
beryllium	insecticides	sodium alpha olefin sulfonate	
bismuth 212	iron	sodium arsenite	
boric acid	iron oxide	sodium borate	
boron	lead	sodium carbonate	
boron carbide	lead (isotopic)	sodium chlorate	
boron tribromide	magnesium	sodium chloride	
boron trichloride	magnesium carbonate	sodium dichromate	
C ₁₃ -C ₂₂	magnesium chlorate	sodium hexametaphosphate	
C ₂₃₊	magnesium chloride	sodium hydrosulfide	
C ₄ -C ₁₂	magnesium perchlorate	sodium hydroxide	
cadmium	manganese	sodium oxide	
calcium	manganese dioxide	sodium perchlorate	
calcium carbonate	manganese oxide	sodium sulfite	
calcium chloride	manganese sulfate	strontium	
calcium hypochlorite	mercury	strontium carbonate	
calcium oxide (lime)	methanol	sulfate	
calcium sulfate	methyl isobutyl ketone	sulfide	
chelant (Nalco 1745)	methyl mercury	sulfur dioxide	
chlorate	methyl tert-butyl ether	sulfuric acid	
chloride	molybdenum	synthetic detergent	
chlorinated organics	monochlorobenzene	tank mud	

Table 6 Site Related Chemicals with PRGs, SSLs and MCLs Kerr-McGee Chemical LLC Facility, Henderson, Nevada

	PRG	PRG	SSL	Тар		
KMCC	Residential	Industrial	DAF 1	Water	MCL	Comment
Site Related Chemicals	Soil (mg/kg)	Soil (mg/kg)		(ug/l)	(mg/l)	
acetone	14000	54000	0.80	5,500		
aluminum	76,000	100,000		36,000		
ammonia				,		
antimony	31	410	0.30	150	0.006	Antimony and compounds
arsenic	22	255			0.01	
arsenic (cancer endpoint)	0.39	1.6	1	0.045		
asbestos					7 MFL*	
barium	5,400	67,000	82	2,600	2	Barium and compounds
benzene	0.64	1	0.002	0.35	0.005	
beryllium	150	1,900	3	73	0.004	Beryllium and compounds
boron	16,000	100,000		7,300		
cadmium	37	450	0.40	18	0.005	Cadmium and compounds
chlorine					4	
chloroform	0.22	0.47	0.03	0.17	0.08	
chromium (total)	210	450	2		0.10	1:6 ratio Cr VI: CR III
chromium (VI)	30	64	2	110	0.05	
cobalt	900	1,900		730	0.05	
copper	3,100	41,000		1,500	1.30**	Copper and compounds
cyanide	1,200	12,000		730	0.20	free product
dioxins/furans	0.0000039/2	0.000016/8		0.00000047	/ 0.0000003'	Dioxin (2,3,7,8-TCDD)
DDT	1	7	2	0.00000047	/ 0.00000003	
hydrogen chloride						
hydrogen sulfide				110		
		100.000				
iron lead	23,000 400	100,000 800		11,000	0.015 **	
				880	0.015	
manganese	1,800	19,000		000		Manganese and compounds
mercury (elemental)					0.002	
mercury (methyl)	6	62		3		
methanol	31,000	100,000		18,000		
methyl isobutyl ketone	5,300	47,000		2,000		
molybdenum	390	5,100		180		
monochlorobenzene	4.000		_	700	0.10	
nickel	1,600	2,000	7	730		Nickel (soluble salts)
nitrates				10,000	10	
nitrobenzene	20	100	0.01	3		
orthodichlorobenzene						
Polynuclear aromatic						
hydrocarbons (PAHs)						
Acenaphthene	3,700	29,000	29	370		
Anthracene	22,000	100,000	590	1,800		
Benz[a]anthracene	0.62	2	0.08	0.092		
Benzo[b]fluoranthene	0.62	2	0.20	0.092		
Benzo[k]fluoranthene	6	21	2	0.92		
Benzo[a]pyrene	0.062	0.21	0.40	0.00092	0.0002	
Chrysene	62	210	8	9		
Dibenz[ah]anthracene	0.062	0.21	0.08	0.0092		
Fluoranthene	2,300	22,000	210	1,500		
Fluorene	2,700	26,000	28	240		
Indeno[1,2,3-cd]pyrene	0.62	2.00	0.70	0.092		
Naphthalene	56	190	4	6		
Pyrene	2,300	29,000	210	180		

Table 6 Site Related Chemicals with PRGs, SSLs and MCLs Kerr-McGee Chemical LLC Facility, Henderson, Nevada

KMCC Site Related Chemicals	PRG Residential Soil (mg/kg)	PRG Industrial Soil (mg/kg)	SSL DAF 1 (mg/kg)	Tap Water (ug/l)	MCL (mg/l)	Comment
paradichlorobenzene					0.001	
PCBs	0.22	0.74			0.0005	
Aroclor 1016	3	21		0.96		
Aroclor 1221	0.22	0.74				
Aroclor 1232	0.22	0.74				
Aroclor 1242	0.22	0.74				
Aroclor 1248	0.22	0.74				
Aroclor 1254	0.22	0.74		0.034		
Aroclor 1260	0.22	0.74				
perchlorate	7	100		3		MCL 0.024 mg/l proposed
pyridine	610	620		360		
selenium	390	5,100	0.30	180	0.05	
silver	390	5,100	2	180		Silver and compounds
strontium carbonate	47,000	100,000		22,000		
TDS						
thallium	5	67		2	0.002	Thallium and compounds
titanium	100,000	100,000		150,000		
toluene	520	520	0.60	720	1	
Toxaphene	0.44	1	2	0.061	0.003	
1,1,1-TCA	1,200	1,200	0.10	3,200	0.20	
TCE	0.053	0.11	0.003	0.028		
vanadium	780	1,000	300	36		vanadium and compounds
xylene	270	420	10	210	10	
zinc	23,000	100,000	620	11,000		
coke						coke oven emissions
DDD	2	10	0.80	0.28		
DDE	1	7	3	0.2		
ethylbenzene	400	400	0.70	1,300	0.70	
hexachlorobenzene	0.30	1	0.10	0.042	0.001	
methyl-tert-butyl ether						
(MTBE)	32	70		11		
phosphorous	1	20		0.73		phosphorous white
strontium	47,000	100,000		22,000		
tetrachloroethylene	0.48	1	0.003	0.10	0.005	
tin	47,000	100,000		22,000		
uranium (total)	16	200		7		chemical toxicitiy only

Notes:

-- = Chemical is on the EPA list but there is no Goal or Level Established for the referenced category.

MFL* = Asbestos, Million fibers per Liter

** = Action Level (mg/L), for Copper and Lead

PRG = Preliminary Remediation Goals

SSL = Soil Screening Levels

DAF1 = Dilution Attenuation Factor

MCL = Maximum Contaminant Level

PAH's and PCB's are itemized, not all may be present on site.

PRG and SSL DAF1 data from EPA Region 9 PRG's October 2004 Table

MCL data from EPA 2004 Edition of the Drinking Water Standards and Health Advisories.

If cell is blank, the compound was not on the referenced regulatory list.

Site related chemcials which do not have PRGs and/or MCLs listed are not shown on this list

Table 7Summary of Analytical Data for LOU #16, 17, 18, and 19AP Ponds

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Analysis of water for Nitrates

Well #	Sample Date	Nitrates (mg/l) EPA Method 300	Comments
M-17	1997	509	Nitrate or nitrite as nitrogen
M-25	1997	624	Nitrate or nitrite as nitrogen
M-89	1997	1130	Nitrate or nitrite as nitrogen

Periodic analysis of water from key nearby wells

\A/all#	Sample	Total Depth	Depth to	рΗ	EC	Cr-total	CIO ₄		Leastion
Well #	Date	(ft bgs)	Water	(Lab)	(Lab)	(ppm)	(ppm)	LAB	Location
M-17	1/1/96	43.05	34.72	7.30	10720		40		Upgradient
M-17	2/1/96	43.05	34.92	7.17	13210		50		Upgradient
M-17	3/1/96	43.05	34.82	7.34	10940		50		Upgradient
M-17	8/24/97	43.05					880	KMC	Upgradient
M-17	9/15/97	43.05	34.55	7.34	9410			KMC	Upgradient
M-17	4/27/98	43.05	34.22	7.42	9510		1300	KMC	Upgradient
M-17	5/6/99	43.05	34.63	7.17	19400	39	1550	KMC	Upgradient
M-17	5/5/00	43.05	35.35	7.16	21900	40	2200	KMC	Upgradient
M-17	1/25/01	43.05	35.57	7.10	23100		1700	KMC	Upgradient
M-17	2/20/01	43.05	35.53	7.22	22100		1500	KMC	Upgradient
M-17	3/29/01	43.05	35.30	7.10	22350		1500	KMC	Upgradient
M-17	4/25/01	43.05	35.35	7.19	22400		1600	KMC	Upgradient
M-17	5/15/01	43.05	35.43	7.10	22400		1600	KMC	Upgradient
M-17	6/22/01	43.05	37.05	7.20	22400		1500	KMC	Upgradient
M-17	7/24/01	43.05	35.26	7.20	21700		1600	KMC	Upgradient
M-17A	6/20/03	55.00	32.91		8340		472	KMC	Upgradient
M-17A	5/7/04	55.00		7.20	17260	42	1000	MW	Upgradient
M-17A	8/4/04	55.00		7.40	16370	37	970	MW	Upgradient
M-25	1/1/96	42.15	34.88	7.27	10150		140		Downgradient
M-25	2/1/96	42.15	34.78	7.21	11620		70		Downgradient
M-25	3/1/96	42.15	34.08	7.39	9470		80		Downgradient
M-25	8/24/97	42.15					780	KMC	Downgradient
M-25	9/15/97	42.15	33.45	7.07	11510			KMC	Downgradient
M-25	4/27/98	42.15	33.05	7.15	9500		740	KMC	Downgradient
M-25	5/6/99	42.15	33.33	7.30	11560	13	700	KMC	Downgradient
M-25	5/5/00	42.15	33.53	7.16	11900	12	820	KMC	Downgradient
M-25	1/26/01	42.15	34.38	7.20	11560		650	KMC	Downgradient
M-25	2/20/01	42.15	33.93	7.27	11800		650	KMC	Downgradient
M-25	3/29/01	42.15	33.69	7.20	11540		630	KMC	Downgradient
M-25	4/25/01	42.15	33.58	7.27	11700		580	KMC	Downgradient
M-25	5/4/01	42.15	33.58		11220		650	KMC	Downgradient
M-25	5/15/01	42.15	34.87	7.20	11220		650	KMC	Downgradient
M-25	6/22/01	42.15	34.11	7.20	11250		630	KMC	Downgradient
M-25	7/24/01	42.15	33.89	7.30	11150		610	KMC	Downgradient
M-25	8/27/01	42.15	34.25	7.30	11270			KMC	Downgradient
M-25	1/29/02	42.15		7.4	9990		660	MW	Downgradient
M-25	2/26/02	42.15		7.3	9980		560	MW	Downgradient
M-25	4/29/02	42.15	32.82	7.3	10850	40	570	MW	Downgradient
M-25	12/10/02	42.15	33.07	7.6	10400	11	840	MW	Downgradient
M-25	1/21/03	42.15	33.27	7.2	10940	10		MW	Downgradient

Table 7 Summary of Analytical Data for LOU #16, 17, 18, and 19 AP Ponds

Well #	Sample Date	Total Depth (ft bgs)	Depth to Water	pH (Lab)	EC (Lab)	Cr-total (ppm)	CIO ₄ (ppm)	LAB	Location
M-25	4/30/03	42.15	33.23	(Lab)	11400	(ppiii)	590	MW	Downgradient
M-25	7/9/03	42.15	33.36	7.2	10860	11	550	MW	Downgradient
M-25	11/4/03	42.15	33.76	7.4	11380	12	520	MW	Downgradient
M-25	3/1/04	42.15	33.96	7.4	11040	13	550	MW	Downgradient
M-25	5/6/04	42.15	32.73	7.2	10380	12	580	MW	Downgradient
M-25	8/4/04	42.15		7.5	9660	12	590	MW	Downgradient
M-89	1/1/96	40.00	30.94	7.17	10570		160		
M-89	2/1/96	40.00	30.89	7.09	10470		150		
M-89	3/1/96	40.00	31.34	7.25	9220		140		
M-89	8/24/97	40.00					1200	KMC	
M-89	9/15/97	40.00	32.83	7.08	13970			KMC	
M-89	4/27/98	40.00	32.59	7.22	11080		1300	KMC	
M-89	5/6/99	40.00	32.84	7.20	16200	31	1300	KMC	
M-89	5/5/00	40.00	33.46	7.92	18600	32	1600	KMC	
M-89	1/29/01	40.00	34.07	7.00	18150		1300	KMC	
M-89	2/20/01	40.00	33.71	7.04	19200		1200	KMC	
M-89	3/29/01	40.00	33.41	7.20	18000		1200	KMC	
M-89	4/25/01	40.00	33.47	7.08	19000		1100	KMC	
M-89	5/4/01	40.00	33.47		17240		1200	KMC	
M-89	5/15/01	40.00	34.69	7.10	17240		1200	KMC	Downgradient from
M-89	6/22/01	40.00	34.21	7.10	17300		1200	KMC	LOU 16, 17, & 18 Upgradient from
M-89	7/24/01	40.00	34.51	7.10	16530		1100	KMC	LOU 19
M-89	8/27/01	40.00	32.64	7.30	16750			KMC	
M-89	1/29/02	40.00		7.2	18300		1400		
M-89	2/26/02	40.00		7.1	18380		1300		
M-89	4/29/02	40.00	32.83	7.0	18250	4	1400	MW	
M-89	6/17/02	40.00			19870	29.5	1490	KMC	
M-89	12/10/02	40.00	33.31	7.4	17400	35	3000	MW	
M-89	1/21/03	40.00	33.29	7.0	18740	32	1300	MW	
M-89	5/1/03	40.00	33.37		19190		1200	MW	
M-89	7/9/03	40.00	33.46	7.0	18320	32	1200	MW	
M-89	11/4/03	40.00	33.77	7.2	19140	38	1000	MW	
M-89	2/2/04	40.00	33.99	7.1	18330	40	1000	MW	
M-89	5/7/04	40.00	32.73	7.0	17000	36	1200	MW	
M-89	8/5/04	40.00		7.3	16280	36	990	MW	

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Notes:

mg/l = milligrams per liter

ft bgs = feet below ground surface

EC = Electrical Conductivity

CIO₄: Perchlorate

-- = Either no data was obtained or was not analyzed for the respective constituent.

ppm = parts per million

_abs:	KMC	Kerr-McGee Corporation
-------	-----	------------------------

MW Montgomery Watson

Nitrate and 1996 Well Data from Kerr-McGee, Response to LOU Comments, 1996

Well Data From: Kerr-McGee Chemical LLC Company, Mother-hen Database.

Table 7Summary of Analytical Data for LOU #16, 17, 18, and 19AP PondsKerr-McGee Chemical LLC Facility, Henderson, Nevada

Summary of Analytical Data for LOU # 16 and 17

	tion (Metals), ICAP Analysis of E Chemical LLC, Analytical Chemis	
Sample ID	Date	Chromium TCLP Method 6010 (mg/
	Soil Samples	
AP-1-1	6/7/1993	3.95
AP-1-2	6/7/1993	2.97
AP-1-3	6/7/1993	3.04
AP-1-4	6/7/1993	4.49
AP-1-5	6/7/1993	1.42
AP-1-6	6/7/1993	3.25
AP-1-7	6/7/1993	3.21
AP-1-8	6/7/1993	2.71
AP-2-1	6/7/1993	5.58
AP-2-2	6/7/1993	3.59
AP-2-3	6/7/1993	2.38
AP-2-4	6/7/1993	2.56
AP-2-5	6/7/1993	4.93
AP-2-6	6/7/1993	1.25
AP-2-7	6/7/1993	0.914
AP-2-8	6/7/1993	1.23
AP-4	6/7/1993	0.038
	Water Samples	
AP-1: Liquid	5/21/1993	<0.12
AP-2: Liquid	5/21/1993	<0.12
AP-4: Liquid	5/21/1993	<0.12
AP-5: Liquid	5/21/1993	0.23

<u>Notes:</u> mg/l = milligrams per liter

Data from Kerr-McGee, 1996b, Response to LOU Comments

Boring Number	Sample Date	Sample Depth (ft bgs)	Total Chromium ¹ (mg/kg)	pH ²
		Old P-2 Pond		
SB2-9	Apr-97	0-1.0	493 ⁴	9.5
SB2-9 ³	Apr-97	2-3	141	9.7 ⁴ *
SB2-10	Apr-97	0-1.0	1,560 ⁴	9.8
SB2-10 ³	Apr-97	2-3	679	10.0*
SB2-11	Apr-97	0-1.0	1,130 ⁴	9.6
SB2-11 ³	Apr-97	2-3	107	10*
SB2-12	Apr-97	0-1.0	884 4	9.5
SB2-12 SB2-12	Apr-97 Apr-97	2-3	861	9.5
SB2-12 SB2-13	Apr-97	0-1.0	532 ⁴	9.9
SB2-13		0-1.0-DUP	481 4	9.9
SB2-13 SB2-13 ³	Apr-97			
502-15	Apr-97	2-3	23.5	10.2*
		P-3 Pond		2
SB2-1	Apr-97	0-1.0	1,030	9.7 ³
SB2-1S	Apr-97	Lab Dup	1,030 4	9.7 3
SB2-1	Apr-97	2-3	131	9.9
SB2-2	Apr-97	0-1.0	108 ⁴	9.6
SB2-2 ²	Apr-97	2-3	2,130	9.6*
SB2-2D ³	Apr-97	Lab Dup	1,770	9.60*
SB2-3	Apr-97	0-1.0	92.6 ⁴	10.3
SB2-3	Apr-97	2-3	NA	NA
SB2-4	Apr-97	0-1.0	261 ⁴	10.4
SB2-4 ³	Apr-97	2-3	78.7	10.4*
SB2-5	Apr-97	0-1.0	131	9.7
SB2-5	Apr-97	2-3	NA	NA
SB2-6	Apr-97	0-1.0	24.8 ⁴	9.1
SB2-6	Apr-97	2-3	NA	NA
SB2-7	Apr-97	0-1.0	224 ⁴	9.7
SB2-7 ³	Apr-97	2-3	181	10.5*
SB2-8	Apr-97	0-1.0	1,890 4	10
SB2-8	Apr-97	0-1.0-DUP	1,680 4	9.9
SB2-8 ³	Apr-97	2-3	1,780	9.9*
002.0	Api 57	Old P-2 Pond – Interi	,	5.5
SB2-14-1.5	Mar-99	1.5	59	10
SB2-14-1.5 SB2-14-1.5D	Mar-99 Mar-99	Duplicate-1.5	76	10
SB2-14-1.5D SB2-14-3	Mar-99 Mar-99	3	45	10
SB2-14-3 SB2-14-4.5	Mar-99 Mar-99	4.5	36	10
SB2-14-6	Mar-99	6	54	9.6
SB2-14-7.5	Mar-99	7.5	51	9.5
SB2-14-9	Mar-99	9	40	9.7
SB2-14-10.5	Mar-99	10.5	42	9.7
SB2-14-12	Mar-99	12	82	9.8
SB2-14-13.5	Mar-99	13.5	57	9.6
SB2-14-15	Mar-99	15	92	9.2
SB2-14-16.5	Mar-99	16.5	75	9.5
SB2-14-18	Mar-99	18	140	9.3
SB2-14-19.5	Mar-99	19.5	46	8.5
SB2-14-21	Mar-99	21	110	8.7
SB2-14-22.5	Mar-99	22.5	100	8.5

Boring Number	Sample Date	Sample Depth (ft bgs)	Total Chromium ¹ (mg/kg)	pH ²
SB2-14-24	Mar-99	24	320	8.1
SB2-14-25.5	Mar-99	25.5	250	8.5
SB2-14-27	Mar-99	27	540	8.2
SB2-14-28.5	Mar-99	28.5	280	8.3
SB2-14-30	Mar-99	30	160	8.6
SB2-14-31.5	Mar-99	31.5	99	8.7
SB2-14-33	Mar-99	33	46	8.2
SB2-15-1.5	Mar-99	1.5	98	9.5
SB2-15-3	Mar-99	3	63	9.6
SB2-15-4.5	Mar-99	4.5	150	9.3
SB2-15-6	Mar-99	6	170	9.4
SB2-15-7.5	Mar-99	7.5	230	8.9
SB2-15-9	Mar-99	9	210	9.1
SB2-15-10.5	Mar-99	10.5	200	9.5
SB2-15-12	Mar-99	12	170	9.2
SB2-15-13.5	Mar-99	13.5	190	9.3
SB2-15-15	Mar-99	15	160	9.1
SB2-15-16.5	Mar-99	16.5	18	9.2
SB2-15-18	Mar-99	18	20	9.9
SB2-15-19.5	Mar-99	19.5	27	9.5
SB2-15-21	Mar-99	21	21	9.6
SB2-15-22.5	Mar-99	22.5	31	8.7
SB2-15-24	Mar-99	24	51	8.1
SB2-15-25.5	Mar-99	25.5	61	8.2
SB2-15-27	Mar-99	23.5	100	8.6
SB2-15-28.5	Mar-99	28.5	53	9.2
SB2-15-30	Mar-99	30	23	9.7
SB2-15-31.5	Mar-99	31.5	28	9.2
SB2-15-33	Mar-99	33	26	8.9
002 10 00	11101 55	Old P-3 Pond – Interi		0.0
SB2-16-1.5	Mar-99		22	9.1
SB2-16-1.5 SB2-16-3		1.5 3	19	9.1
SB2-16-3 SB2-16-3D	Mar-99			
SB2-16-3D SB2-16-4.5	Mar-99	Duplicate-3	17	9
	Mar-99	4.5	18	9
SB2-16-6	Mar-99	6	15	8.9
SB2-16-7.5	Mar-99	7.5	20	8.7
SB2-16-9	Mar-99	9	44	8.6
SB2-16-10.5	Mar-99	10.5	23	8.6
SB2-16-12	Mar-99	12	18	8.6
SB2-16-13.5	Mar-99	13.5	17	8.6
SB2-16-15	Mar-99	15	14	8.5
SB2-16-16.5	Mar-99	16.5	12	8.4
SB2-16-18	Mar-99	18	12	8.7
SB2-16-19.5	Mar-99	19.5	11	8.8
SB2-16-21	Mar-99	21	12	8.8
SB2-16-22.5	Mar-99	22.5	11	8.8
SB2-16-24	Mar-99	24	18	8.7
SB2-16-25.5	Mar-99	25.5	16	8.2
SB2-16-27	Mar-99	27	16	8.3
SB2-16-28.5	Mar-99	28.5	51(JI)	8.2
SB2-16-30	Mar-99	30	20	8.3
SB2-16-31.5	Mar-99	31.5	21	8.5

Boring Number	Sample Date	Sample Depth (ft bgs)	Total Chromium ¹ (mg/kg)	pH ²
SB2-16-33	Mar-99	33	23	8.1
SB2-16-34.5	Mar-99	34.5	22	8.1
SB2-17-1.5	Mar-99	1.5	140	10
SB2-17-3	Mar-99	3	38	9.5
SB2-17-4.5	Mar-99	4.5	36	9.6
SB2-17-6	Mar-99	6	32	9.7
SB2-17-7.5	Mar-99	7.5	28	9.8
SB2-17-9	Mar-99	9	32	9.7
SB2-17-10.5	Mar-99	No sample taken		
SB2-17-12	Mar-99	12	47	9.6
SB2-17-13.5	Mar-99	13.5	53	9.3
SB2-17-15	Mar-99	15	130	9.3
SB2-17-16.5	Mar-99	16.5	160	9.2
SB2-17-18	Mar-99	18	190	8.9
SB2-17-19.5	Mar-99	19.5	78	9.1
SB2-17-21	Mar-99	21	87	9.1
SB2-17-22.5	Mar-99	22.5	87	9.1
SB2-17-24	Mar-99	24	85	9.1
SB2-17-25.5	Mar-99	25.5	140	9.2
SB2-17-27	Mar-99	27	130	8.8
SB2-17-28.5	Mar-99	28.5	190	8.2
SB2-17-30	Mar-99	30	48	8.2
SB2-17-31.5	Mar-99	31.5	47	8.4
SB2-17-33	Mar-99	33	100	8.7
		d P-2 Pond – North Per		0
SB2-18-2	Mar-99	2	13	9.1
SB2-18-5D	Mar-99	Duplicate-5	13	8.5
SB2-18-6.5	Mar-99	6.5	14	9.2
SB2-18-8	Mar-99	8	19	8.8
SB2-1 8-9.5	Mar-99	9.5	8.2	8.1
SB2-18-11	Mar-99	11	15	8.2
SB2-18-12.5	Mar-99	12.5	19	8.4
SB2-18-14	Mar-99	14	14	8.3
SB2-18-15.5	Mar-99	15.5	15	8
SB2-18-17	Mar-99	17	14	8.1
SB2-18-18.5	Mar-99	18.5	14	7.9
SB2-18-20	Mar-99	20	21	8.1
SB2-18-21.5	Mar-99	21.5	18	8.1
SB2-18-23	Mar-99	21.5	12	8.1
SB2-18-24.5	Mar-99	24.5	12	8
SB2-18-26	Mar-99	24.5	7.9	7.9
SB2-18-27.5	Mar-99	27.5	10	8.1
SB2-18-29	Mar-99	21.5	10	8.2
SB2-18-30.5	Mar-99	30.5	8.9	8
SB2-18-32	Mar-99	30.5	8.8	7.9
SB2-18-33.5	Mar-99	33.5	9.2	8.3
SB2-18-35	Mar-99 Mar-99	35	14	7.8
SB2-18-36.5	Mar-99	36.5	14	7.9
SB2-18-38	Mar-99 Mar-99	38	39	8.1
SB2-10-30 SB2-18-39.5	Mar-99 Mar-99	39.5	29	8.9
SB2-18-39.5 SB2-18-41		41	44	8.3
502 10 ⁻⁴¹	Mar-99			0.3
	(Old P-2 Pond East Perir	neter	

Table 8Summary of Analytical Data for LOU #7 and #8Old P-2 and P-3 Ponds

Boring Number	Sample Date	Sample Depth (ft bgs)	Total Chromium ¹ (mg/kg)	pH ²
SB2-19-2	Mar-99	2	3.6	9.7
SB2-19-6.5	Mar-99	6.5	3.4	9.9
SB2-19-8	Mar-99	8	12	9.6
SB2-19-9.5	Mar-99	9.5	12	8.7
SB2-19-11	Mar-99	11	10	9.7
SB2-19-12.5	Mar-99	12.5	12	9.2
SB2-19-14	Mar-99	14	11	8.8
SB2-19-15.5	Mar-99	15.5	11	9.6
SB2-19-17	Mar-99	17	14	8.8
SB2-19-18.5	Mar-99	18.5	11	8.7
SB2-19-20	Mar-99	20	10	8.5
SB2-19-21.5	Mar-99	21.5	13	8.8
SB2-19-23	Mar-99	23	10	8.3
SB2-19-24.5	Mar-99	24.5	8.4	8.8
SB2-19-26	Mar-99	26	9.5	8.8
SB2-19-27.5	Mar-99	27.5	8.1	8.4
SB2-19-29	Mar-99	29	7.9	8.6
SB2-19-30.5	Mar-99	30.5	11	8.6
SB2-19-32	Mar-99	32	9.6	8.3
SB2-19-33.5	Mar-99	33.5	11	8.1
SB2-19-35	Mar-99	35	20	8.2
SB2-19-36.5	Mar-99	36.5	30	8.1
SB2-19-38	Mar-99	38	22	8.1
SB2-19-39.5	Mar-99	39.5	23	8.1
SB2-19-41	Mar-99	41	20	8.2
SB2-19-42.5	Mar-99	42.5	27	8.1
		d P-3 Pond – North Per		0.1
SB2-20-6.5	Mar-99	6.5	31	8.3
SB2-20-6.5D	Mar-99	6.5D	31	8.3
SB2-20-7	Mar-99	7	39	8.2
SB2-20-9.5	Mar-99	9.5	49	8.3
SB2-20-11	Mar-99	11	40	8.2
SB2-20-11D	Mar-99	Duplicate-11	42	8.3
SB2-20-12.5	Mar-99	12.5	39	8.4
SB2-20-14	Mar-99	14	44	9
SB2-20-15.5	Mar-99	15.5	54	8.7
SB2-20-17	Mar-99	17	42	8.9
SB2-20-18.5	Mar-99	18.5	36	8.7
SB2-20-20	Mar-99	20	37	8.8
SB2-20-21.5	Mar-99	21.5	39	8.7
SB2-20-23	Mar-99	23	42	8.8
SB2-20-24.5	Mar-99	24.5	39	8.7
SB2-20-24.0	Mar-99	24.5	39	8.7
SB2-20-27.5	Mar-99	27.5	23	9.8
SB2-20-27.5	Mar-99	29	30	9.2
SB2-20-29 SB2-20-30.5	Mar-99	30.5	16	9.7
SB2-20-30.5	Mar-99	30.5	15	9.5
SB2-20-32 SB2-20-33.5	Mar-99	33.5	15	8.9
SB2-20-35.5	Mar-99 Mar-99	35	14	8.8
SB2-20-35 SB2-20-36.5	Mar-99 Mar-99	36.5	53	0.0 9
SB2-20-36.5 SB2-20-38	Mar-99 Mar-99			
SB2-20-38 SB2-20-39.5		38 39.5	<u> </u>	9.3 9.2
002-20-09.0	Mar-99	39.0	19	9.2

Boring Number	Sample Date	Sample Depth (ft bgs)	Total Chromium ¹ (mg/kg)	pH ²
SB2-20-41	Mar-99	41	22	8.8
	0	d P-3 Pond – West Peri	imeter	
SB2-21-6.5	Mar-99	6.5	10	8.4
SB2-21-8	Mar-99	8	13	8.2
SB2-21-8D	Mar-99	Duplicate-8	13	8.5
SB2-21-9.5	Mar-99	9.5	11	8
SB2-21-11	Mar-99	11	12	8
SB2-21-12.5	Mar-99	12.5	12	8.6
SB2-21-14	Mar-99	14	15	8.4
SB2-21-15.5	Mar-99	15.5	12	8.5
SB2-21-17	Mar-99	17	14	8.6
SB2-21-18.5	Mar-99	18.5	14	8.4
SB2-21-20	Mar-99	20	15	8.4
SB2-21-21.5	Mar-99	21.5	13	8.5
SB2-21-23	Mar-99	23	15	8.8
SB2-21-24.5	Mar-99	24.5	13	8.6
SB2-21-26	Mar-99	26	12	8.8
SB2-21-27.5	Mar-99	27.5	11	9
SB2-21-29	Mar-99	29	6.5	9.4
SB2-21-30.5	Mar-99	30.5	13	9.2
SB2-21-32	Mar-99	32	10	9.1
SB2-21-33.5	Mar-99	33.5	24	8.2
SB2-21-35	Mar-99	35	16	8.4
SB2-21-36.5	Mar-99	36.5	18	8.2
SB2-21-38	Mar-99	38	28	8.1
SB2-21-39.5	Mar-99	39.5	23	8.1
SB2-21-41	Mar-99	41	18	8.1
SB2-21-42.5	Mar-99	42.5	21	8.1
		P-3 Pond – Southern P	erimeter	
SB2-22-6.5	Mar-99	6.5	12	8.9
SB2-22-8	Mar-99	8	13	8.6
SB2-22-9.5	Mar-99	9.5	12	8.6
SB2-22-11	Mar-99	11	12	8.5
SB2-22-12.5	Mar-99	12.5	14	8.5
SB2-22B-15.5	Mar-99	15.5	17	8.4
SB2-22B-17	Mar-99	17	17	8.2
SB2-22B-18.5	Mar-99	18.5	15	8.1
SB2-22B-20	Mar-99	20	14	8.2
SB2-22B-21.5	Mar-99	21.5	16	8.4
SB2-22B-23	Mar-99	23	15	8.5
SB2-22B-24.5	Mar-99	24.5	14	7.9
SB2-22B-26	Mar-99	26	12	8.4
SB2-22B-27.5	Mar-99	27.5	10	8.3
SB2-22B-29	Mar-99	29	6	8.5
SB2-22B-30.5	Mar-99	30.5	8	8.4
SB2-22B-32	Mar-99	32	13	8.4
SB2-22B-33.5	Mar-99	33.5	6.6	8.1
SB2-22B-35	Mar-99	35	18	7.8
SB2-22B-36.5	Mar-99	36.5	12	8.4
SB2-22B-38	Mar-99	38	25	8.4
SB2-22B-39.5	Mar-99	39.5	19	8.2
SB2-22B-41	Mar-99	41	21	8.1

Boring Number	Sample Date	Sample Depth (ft bgs)	Total Chromium ¹ (mg/kg)	pH ²
SB2-22B-42.5	Mar-99	42.5	25	8.1
SB2-22B-44	Mar-99	44	19	8.2
	Old F	P-2 Pond – Southwest F	Perimeter	
SB2-23-6.5	Mar-99	6.5	14	8.9
SB2-23-8	Mar-99	8	15	8.9
SB2-23-9.5	Mar-99	9.5	15	9.1
SB2-23-11	Mar-99	11	12	8.8
SB2-23-12.5	Mar-99	12.5	14	8.8
SB2-23-14	Mar-99	14	14	8.7
SB2-23-15.5	Mar-99	15.5	15	8.7
SB2-23-17	Mar-99	17	11	8.8
SB2-23-18.5	Mar-99	18.5	14	8.7
SB2-23-20	Mar-99	20	12	8.6
SB2-23-20D	Mar-99	Duplicate-20	13	8.9
SB2-23-21.5	Mar-99 Mar-99	21.5	14	8.7
SB2-23-21.5 SB2-23-23	Mar-99 Mar-99	21.5	8.9	8.9
SB2-23-23 SB2-23-24.5	Mar-99 Mar-99	23	15	9.1
SB2-23-24.5 SB2-23-26	Mar-99 Mar-99	24.5	7.6	9.1 8.5
SB2-23-20 SB2-23-27.5	Mar-99 Mar-99	27.5	12	8.3
SB2-23-27.5 SB2-23-29	Mar-99 Mar-99	27.5	12	8.3
SB2-23-29 SB2-23-30.5	Mar-99 Mar-99	30.5	12	8.2
SB2-23-30.5 SB2-23-32	Mar-99 Mar-99	30.5	15	8.5
SB2-23-32 SB2-23-33.5				
	Mar-99	33.5 35	47	8.5
SB2-23-35 SB2-23-36.5	Mar-99		16	8.5
	Mar-99	36.5	18	8.4
SB2-23-38	Mar-99	38	23 32	8.3
SB2-23-39.5 SB2-23-41	Mar-99	39.5		8.5
302-23-41	Mar-99	41	20	8.5
		P-2 Pond – Southern P	erimeter	
SB2-24-6.5	Mar-99	6.5	18	8.6
SB2-24-7	Mar-99	7	16	8.4
SB2-24-9.5	Mar-99	9.5	14	8.4
SB2-24-11	Mar-99	11	16	8.8
SB2-24-12.5	Mar-99	12.5	15	9.9
SB2-24-14	Mar-99	14	16	9.7
SB2-24-15.5	Mar-99	15.5	16	9.5
SB2-24-17	Mar-99	17	15	9.3
SB2-24-18.5	Mar-99	18.5	11	9.6
SB2-24-20	Mar-99	20	12	9.2
SB2-24-20D	Mar-99	20	15	9.3
SB2-24-21.5	Mar-99	21.5	13	9.1
SB2-24-23	Mar-99	23	10	8.4
SB2-24-24.5	Mar-99	24.5	11	8.2
SB2-24-26	Mar-99	26	10	8.3
SB2-24-27.5	Mar-99	27.5	6	8.1
SB2-24-29	Mar-99	29	14	8
SB2-24-30.5	Mar-99	30.5	11	8.3
SB2-24-32	Mar-99	32	15	8.5
SB2-24-33.5	Mar-99	33.5	9.3	8.5
SB2-24-35	Mar-99	35	32	8.1
SB2-24-36.5	Mar-99	36.5	42	8.3
SB2-24-38	Mar-99	38	17	8.2

Boring Number	Sample Date	Sample Depth Total Chromium ¹ (ft bgs) (mg/kg)		pH ²
SB2-24-39.5	Mar-99	39.5	99	8.2
SB2-24-41	Mar-99	41	37	8.5
2 = pH analysis user ft bgs = feet below (0-12 = shallow sam 24-36 = deep samp Lab Dup= Laborato -DUP = duplicate sa Duplicate 1.5 = Dup SB2-23-20D = Dupl ND = Not detected NA =not analyzed * = Holding time for 3 = Sample remove Holding time for pH 4 = Relative percent	d Method 9045 ground surface ple (referred to as -S le (referred to as -D ry Duplicate Analysi ample blicate Sample taken at laboratory reportin r soil pH had expired thad already expired t difference (RPD) e through SB2-13 from	at the specific depth (i.e. at specified depth (i.e. 2 ng limit = <0.01 mg/kg d and analyzed after receiv l. xceeded acceptable qua) to 12 inches bgs 4 to 36 inches bgs e. 1.5 feet bgs) 0 feet bgs) ing preliminary shallow samp	

Table 9Summary of Analytical Data for LOU # 9New P-2 Ponds, Nearby Groundwater Analytical DataKerr-McGee Chemical LLC Facility, Henderson, Nevada

WELL #	Sample Date	Total Depth (ft bgs)	Depth to Water	pH (Lab)	EC (Lab)	Cr-total (ppm)	ClO₄ (ppm)	LAB	Location
M-2A	8/24/97						650	KMC	Downgradient
M-2A	9/15/97		41.02	7.31	13000			KMC	Downgradient
M-2A	4/27/98	46.71	41.41	7.28	6180		740	KMC	Downgradient
M-2A	5/6/99	46.71	41.09	7.29	10900	20	800	KMC	Downgradient
M-2A	5/5/00	46.71	41.78	7.39	14400	29	780	KMC	Downgradient
M-2A	5/4/01	46.71	41.85	7.43	11700	25	580	KMC	Downgradient
M-2A	4/30/02		40.55	7.3	12660	24	560	MW	Downgradient
M-2A	4/30/03		41.37		14470		690	MW	Downgradient
M-2A	5/6/04			7.3	13700	29	700	MW	Downgradient
M-21	8/24/97						52	KMC	Upgradient
M-21	9/15/97		41.50	7.35	6000		NS	KMC	Upgradient
M-21	4/27/98	44.63	42.05	7.28	6180		NS	KMC	Upgradient
M-21	5/6/99	44.63	41.10	7.02	6460	4.00	66	KMC	Upgradient
M-21	5/5/00	44.63	41.67	7.52	6410	3.30	50	KMC	Upgradient
M-21	5/4/01	44.63	41.30		6200		49	KMC	Upgradient
M-21	4/30/02		40.00	6.9	5580	3.6	54	MW	Upgradient
M-21	4/30/03		41.09		5720		49	MW	Upgradient
M-21	5/6/04			7.0	2970	0.8	24	MW	Upgradient
M-50	9/15/97	61.77	46.17	7.08	19560			KMC	Upgradient
M-50	4/27/98		46.45	7.17	16050			KMC	Upgradient
M-50	10/21/98		46.50						Upgradient
M-50	5/6/99	61.77	46.32	7.03	27800	59.00	1700	KMC	Upgradient
M-50	5/5/00	61.77	46.66	7.24	30200	66.00	1700	KMC	Upgradient
M-50	5/4/01	61.77	46.54		30500		1800	KMC	Upgradient
M-50	4/30/02		45.50	7.1	26900	92	1700	MW	Upgradient
M-50	12/9/02		46.30	7.2	26400	64	1900	MW	Upgradient
M-50	1/21/03		46.40	7.0	25600	59	1960	MW	Upgradient
M-50	5/1/03		46.08		26800		1500	MW	Upgradient
M-50	7/9/03		46.68	7.2	26200	67	1700	MW	Upgradient
M-50	8/13/03		46.36						Upgradient
M-50	9/8/03		46.42						Upgradient
M-50	10/5/03		46.44						Upgradient
M-50	11/4/03		46.54	7.2	26800	67	1500	MW	Upgradient
M-50	12/8/03		46.61						Upgradient
M-50	1/8/04		46.62						Upgradient
M-50	2/2/04		46.33	7.2	24900	67	1400	MW	Upgradient
M-50	3/1/04		45.54						Upgradient
M-50	4/1/04		45.36						Upgradient
M-50	5/3/04		45.63	7.2	20300	55	1100	MW	Upgradient
M-50	6/10/04		46.33						Upgradient
M-50	8/4/04			7.4	21100	58	1200	MW	Upgradient
M-75	4/27/98		42.51	7.39	5130			KMC	Downgradient
M-75	5/6/99	63.32	42.00	7.50	8610	8.80	160	KMC	Downgradient
M-75	5/5/00	63.32	42.53	7.74	9140	12.00	180	KMC	Downgradient
M-75	5/4/01	63.32	43.00	7.67	8180	11.00	150	KMC	Downgradient
M-75	5/1/02		41.44	7.7	7260	5.1	100	MW	Downgradient
M-75	5/1/03		42.05		7410		24	MW	Downgradient
M-75	5/6/04			7.7	6080	4.8	78	MW	Downgradient
M-76	8/24/97						200	KMC	Downgradient
M-76	9/15/97	54.17	39.79	7.57	8940			KMC	Downgradient
M-76	4/27/98		39.85	7.52	5440		200	KMC	Downgradient
M-76	10/21/98		39.52						Downgradient

04020-023/100/Tables 7-31 with LOU data.xls/ Table 9 LOU #9

Table 9 Summary of Analytical Data for LOU # 9 New P-2 Ponds, Nearby Groundwater Analytical Data

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

WELL #	Sample Date	Total Depth (ft bgs)	Depth to Water	pH (Lab)	EC (Lab)	Cr-total (ppm)	CIO₄ (ppm)	LAB	Location
M-76	5/6/99	54.17	38.32	7.51	8570	14.00	220	KMC	Downgradient
M-76	5/5/00	54.17	39.56	7.80	8000	11.00	160	KMC	Downgradient
M-76	5/4/01	54.17	39.40	7.69	7480	11.00	130	KMC	Downgradient
M-76	4/30/02		37.84	7.6	6360	8	98	MW	Downgradient
M-76	12/10/02		39.33	7.9	6370	6.1		MW	Downgradient
M-76	1/21/03		39.43	7.6	6250	4.8		MW	Downgradient
M-76	5/1/03		38.65		6840		120	MW	Downgradient
M-76	7/9/03		39.56						Downgradient
M-76	8/13/03		39.64						Downgradient
M-76	9/8/03		39.74						Downgradient
M-76	10/5/03		39.81						Downgradient
M-76	11/4/03		39.93						Downgradient
M-76	12/8/03		39.97						Downgradient
M-76	1/8/04		40.02						Downgradient
M-76	2/2/04		40.03						Downgradient
M-76	3/1/04		39.90						Downgradient
M-76	4/1/04		39.76						Downgradient
M-76	5/7/04		39.27	7.7	6190	4.8	100	MW	Downgradient
M-76	6/10/04		39.56						Downgradient

Notes:

ft bgs = feet below ground surface

EC = Electrical Conductivity

Cr-total: Total Chromium

CIO₄: Perchlorate

ppm = parts per million

-- = Either no data was obtained or was not analyzed for the respective constituent.

Labs: KMC Kerr-McGee Corporation

MW Montgomery Watson

Well Data From: Kerr-McGee Chemical LLC Company, Mother-hen Database.

Table 10 Summary of Analytical Data for LOU # 13

Pond S-1 Analytical Data Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Analysis of soil from Pond S-1 for EP Toxicity for Chromium

Sample #	Sample Date	Chromium (mg/l) MDL= 0.02 mg/l	LAB
S-1 NW Corner	3/8/84	0.05	Water Analysis Laboratory, Desert Research Institute
S-1 SW Corner	3/8/84	< 0.02	Water Analysis Laboratory, Desert Research Institute
S-1 W Center	3/8/84	< 0.02	Water Analysis Laboratory, Desert Research Institute
S-1 E Center	3/8/84	0.11	Water Analysis Laboratory, Desert Research Institute
S-1 NE Corner	3/8/84	0.02	Water Analysis Laboratory, Desert Research Institute
S-1 SE Corner	3/8/84	< 0.02	Water Analysis Laboratory, Desert Research Institute
M-1 Background	3/8/84	<0.02	Water Analysis Laboratory, Desert Research Institute
M-21 Background	3/8/84	<0.02	Water Analysis Laboratory, Desert Research Institute
M-4 Background	3/8/84	<0.02	Water Analysis Laboratory, Desert Research Institute
A-1	8/24/84	0.03	Water Analysis Laboratory, Desert Research Institute
A-2	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
A-3	8/24/84	0.02	Water Analysis Laboratory, Desert Research Institute
A-4	8/24/84	0.02	Water Analysis Laboratory, Desert Research Institute
A-5	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
A-6	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
B-1	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
B-2	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
B-3	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
B-4	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
B-5	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
B-6	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
C-1	8/24/84	< 0.02	Water Analysis Laboratory, Desert Research Institute
C-2	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
C-3	8/24/84	< 0.02	Water Analysis Laboratory, Desert Research Institute
C-4	8/24/84	< 0.02	Water Analysis Laboratory, Desert Research Institute
C-5	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
C-6	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
D-1	8/24/84	0.02	Water Analysis Laboratory, Desert Research Institute
D-2	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
D-3	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
D-4	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
D-5	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute
D-6	8/24/84	<0.02	Water Analysis Laboratory, Desert Research Institute

Notes:

MDL = Method Detection Limit

mg/I = milligrams per liter

< = not detected above the designated method detection limit.</p>
Data from Kerr-McGee, 1996b, Response to LOU Comments

Table 11 Summary of Analytical Data for LOU # 14

Pond P-1 Analytical Data Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Analysis of soil from Pond P-1 for EP Toxicity for Chromium

		Chromium	
Sample #	Sample Date	(mg/l)	LAB
		MDL= 0.10 mg/l	
B-1 0 - 0.5'	8/9/85	0.11	Water Analysis Laboratory, Desert Research Institute
B-1 0.5 - 1.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-1 1.5 - 2.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-1 2.5 - 3.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-1 3.5 - 4.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-2 0 - 0.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-2 0.5 - 1.5'	8/9/85	0.41	Water Analysis Laboratory, Desert Research Institute
B-2 1.5 - 2.5'	8/9/85	0.10	Water Analysis Laboratory, Desert Research Institute
B-2 2.5 - 3.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-2 3.5 - 4.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-13 0 - 0.5'	8/9/85	0.27	Water Analysis Laboratory, Desert Research Institute
B-3 0.5 - 1.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-3 1.5 - 2.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-3 2.5 - 3.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-3 3.5 - 4.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-4 0 - 0.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-4 0.5 - 1.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-4 1.5 - 2.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-4 2.5 - 3.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-4 3.5 - 4.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-5 0 - 0.5'	8/9/85	0.21	Water Analysis Laboratory, Desert Research Institute
B-5 0.5 - 1.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-5 1.5 - 2.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-5 2.5 - 3.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-5 3.5 - 4.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-6 0 - 0.5'	8/9/85	0.25	Water Analysis Laboratory, Desert Research Institute
B-6 0.5 - 1.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute
B-6 1.5 - 2.5'	8/9/85	0.10	Water Analysis Laboratory, Desert Research Institute
B-6 2.5 - 3.5'	8/9/85	0.11	Water Analysis Laboratory, Desert Research Institute
B-6 3.5 - 4.5'	8/9/85	<0.10	Water Analysis Laboratory, Desert Research Institute

Notes:

MDL = Method Detection Limit

mg/l = milligrams per liter

< = not detected above the designated method detection limit.</p>
Data from Kerr-McGee, 1996b, Response to LOU Comments

Table 12Summary of Analytical Data for LOU # 15Platinum Drying UnitKerr-McGee Chemical LLC Facility, Henderson, Nevada

Analysis of soil from Platinum Sludge Pit Solids

Comula #	Dete	TCLP Metals Analysis EPA Method 6010 (mg/l)											
Sample #	Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury ¹	Selenium ²	Silver				
Sample # 8	1/15/1993	<1.0	<10	<0.1	1.1	<1.0	<0.02	<0.1	<0.5				
Anal	ysis Method	6010	6010	6010	6010	6010	7471	7740	6010				
Regu	Regulatory Limit		100.0	1.0	5.0	5.0	0.2	1.0	5.0				
Rep	oorting Limit	1.0	10.0	0.1	0.5	1.0	0.02	0.1	0.5				
	hod for Mero hod for Sele	cury was 7 nium was	7740										

< = not detected above the designated method reporting limit.</p>
Data from Kerr-McGee, 1996b, Response to LOU Comments

Analysis of Soil Surrounding the Platinum Drying Pad Area

Sample #	Date	Cr-total (ppm)	Extraction Dilution	Cr-total with Dilution (ppm)	Sample Location
1N	4/7/1994	50.7	NA	NA	an east/west mid-point on the north side of the pad
	4/15/1994	17.8	20	0.9	Beneath the removed pad
2S	4/7/1994	24.7	NA	NA	an east/west mid-point on the south side of the pad
ppm= parts NA = Not ap	•				

Table 13
Summary of Analytical Data for LOU #20 and 21
Pond C-1 & Nearby Groundwater Analytical Data
Kerr-McGee Chemical LLC Facility, Henderson, Nevada

WELL #	Sample Date	Total Depth (ft bgs)	Depth to Water	pH (Lab)	EC (Lab)	Cr-total (ppm)	Mn (ppm)	CIO₄ (ppm)	LAB	Location
M-19	5/6/99	39.54	33.03	7.14	12000	0.62	0.70	13.0	KMC	Adjacent to LOU
M-19	5/5/00	39.54	34.50	7.62	11300	0.71	0.34	7.360	KMC	Adjacent to LOU
M-19	5/4/01	39.54	35.06	7.38	10700	0.88	0.08	0.056	KMC	Adjacent to LOU
M-19	4/29/02	39.54	34.02	7.3	8360	0.45	0.17	6.8	MW	Adjacent to LOU
M-35	5/6/99	42.80	34.27	7.13	9720	4.30	0.85	1000	KMC	Upgradient
M-35	5/5/00	42.80	35.22	7.31	8970	3.40	1.20	820	KMC	Upgradient
M-35	5/4/01	42.80	25.40	7.28	9970	4.60	2.40	1000	KMC	Upgradient
M-35	3/11/02	42.80					0.07			Upgradient
M-35	4/29/02	42.80	34.27	7.2	9370	6.8	0.14	990	MW	Upgradient
M-35	9/9/02	42.80					0.22			Upgradient
M-35	12/9/02	42.80	35.40	7.2	9280	6.8	0.061	590	MW	Upgradient
M-35	4/29/03	42.80					ND<0.15			Upgradient
M-39	5/6/99	42.12	30.59	7.45	8080	2.40	0.44	140	KMC	Downgradient
M-39	5/5/00	42.12	31.70	7.54	7680	2.80	1.60	190	KMC	Downgradient
M-39	5/2/01	42.12	32.10	7.34	7620	3.30	1.80	280	KMC	Downgradient
M-39	3/11/02	42.12					0.06			Downgradient
M-39	4/29/02	42.12	20.60	7.3	7700	13	ND <0.15	450	MW	Downgradient
M-39	9/9/02	42.12					ND <0.15			Downgradient
M-39	12/10/02	42.12					ND <0.15			Downgradient
M-39	5/7/03	42.12					ND<0.15		-	Downgradient
M-67	5/7/03						ND<0.15			Further downgradient

Notes:

ft bgs = feet below ground surface

EC = Electrical Conductivity

Cr-total: Total Chromium

Mn = Manganese

CIO₄: Perchlorate

ppm = parts per million

ND < 0.15 = Non Detect, not detected above the designated method detection limit.

-- = Either no data was obtained or was not analyzed for the respective constituent.

Labs: KMC Kerr-McGee Corporation

MW Montgomery Watson

Well Data From: Kerr-McGee Chemical LLC Company, Mother-hen Database.

Table 14 Summary of Analytical Data for LOU # 28 Hazardous Waste Storage Area

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

10/20/1994						
Soil						
Nevada Environmental La	aboratory, L	.as Vegas				
EPA Method 8015-M	EPA Me	thod 8080				
TPH *	PCBs	Aroclor				
(mg/kg)	(mg/kg)	(mg/kg)				
390 ¹	< 1.0	NA				
540 ¹	< 1.0	NA				
620 ¹	< 1.0	NA				
<10	< 1.0	NA				
10	< 1.0	NA				
	Soil Nevada Environmental La EPA Method 8015-M TPH * (mg/kg) 390 ¹ 540 ¹ 620 ¹ <10	Soil Nevada Environmental Laboratory, L EPA Method 8015-M EPA Method TPH * PCBs (mg/kg) (mg/kg) 390 ¹ < 1.0				

Notes:

TPH * = Total Petroleum Hydrocarbons, Modified for Full Range mg/kg = milligrams per kilogram

¹ = TPH components are in the range of Diesel (C_9 - C_{24}) and Oil (C_{18} - C_{34}).

< = not detected above the designated method reporting limit.

NA = Not Applicable

Data from Kerr-McGee, 1996b, Response to LOU Comments

U-2 Storage Area, Excavation	of P-2 tanks, (Final)
Sample Date:	11/22/1994
Sample Matrix:	Soil
Sample Analysis by:	Nevada Environmental
	Laboratory, Las Vegas
Sample ID	TPH *
Sample ID	(mg/kg)
U2-7	ND
Method Blank	ND
Detection Limit	10
Notes:	
TPH * = Total Petroleum Hydro	carbons, Full Range,
EPA Method 8015-Modified.	
mg/kg = milligrams per kilogram	า
ND= Non Detect	

Data from Kerr-McGee, 1996b, Response to LOU Comment:

04020-023/100/Tables 7-31 with LOU data.xls/ Table 14 LOU #28

Table 15
Manganese in Groundwater Analytical Data
Kerr-McGee Chemical LLC Facility, Henderson, Nevada

	Sample	Total	Depth to	рН	EC	Cr ₊₆	cr-total	Mn	CIO ₄	
WELL #	Date	Depth	Water	(Lab)	(Lab)	(ppm)	(ppm)	(ppm)	(ppm)	LAB
H-11	10/18/98	106.00	77.00	7.40	1,840	<0.01	,	0.07	4.1	NEL/MW
H-11	6/2/00	90.00	76.02	6.71	1,988	<0.01	<0.005	1.5	1.9	NEL/MW
H-28A	9/11/02							0.8		
H-28A	5/7/03							0.78		
H-28A	5/3/04			7.2	9,710		ND<0.05	1.3		MW
L-637	10/16/98	37.50	10.30	7.12	15,780	<0.01	<0.01	1.4	0.016	NEL/MW
L-639	10/16/98	14.25	9.89	7.20	17,260	<0.01	<0.01	0.81	<0.016	NEL/MW
L-639	5/24/00	11.92	9.78	7.05	12,605	<0.01	<0.01	0.41	<0.02	NEL/MW
L-641	10/16/98	21.59	7.67			<0.01	<0.01	0.4	<0.016	NEL/MW
L-641	2/10/99	21.59	7.68	7.10				0.3	<0.006	AP
L-641	6/8/99	21.59	7.80	7.00	14,240			0.3	<0.006	AP
L-641	5/24/00	21.45	7.51			<0.01	0.02	0.21	<0.02	NEL/MW
L-641	3/27/01	21.45	6.99	7.40	11,300			0.2	0.030	AP
L-645	10/17/98	28.60	8.50	7.49	15,000	<0.01	<0.01	0.37	<0.016	NEL/MW
L-645	5/24/00	28.60	8.26	7.31	11,910	<0.01	<0.01	0.28	0.240	NEL/MW
M-5A-1	5/2/03							1.6		
M-5A	5/3/04			7.1	15,350		ND<0.05	1.4		MW
M-6A-1	5/2/03				,			0.076		
M-6A	5/3/04			7.5	9,730		ND<0.02	150		MW
M-7B-1	5/2/03				-,		0.01	0.075		
M-7B	5/3/04			7.5	9,980		ND<0.02	25		MW
M-10	5/6/99	67.99	49.92	7.13	4,210		1.50	0.27	54	KMC
M-10	5/5/00	67.99	48.50	7.36	4,630		0.28	0.32	15	KMC
M-10	5/1/02	67.99	47.88	6.9	3,840		0.022	0.48	2	MW
M-10	12/10/02	67.99	48.79	7.5	4,330		0.022	1.2	11	MW
M-10	11/4/03	67.99	48.28	7.0	4,180		0.52	390	18	MW
M-10	8/4/04	67.99	40.20	7.6	3,980	0.016	0.078	640	16	MW
M-18	4/30/03	07.55		7.0	0,000	0.010	0.070	0.1	10	10100
M-19	5/6/99	39.54	33.03	7.14	12,000		0.62	0.7	13	KMC
M-19	5/5/00	39.54	34.50	7.62	11,300		0.02	0.34	7.4	KMC
M-19	5/4/01	39.54	35.06	7.38	10,700		0.88	0.04	0.056	KMC
M-19	4/29/02	39.54	34.02	7.3	8,360		0.88	0.08	6.8	MW
M-19 M-22A	5/5/00	36.45	34.02	7.31	17,200		21	0.17	2,800	KMC
M-22A	5/4/01	36.45	30.30	7.22	17,800		21	0.54	2,800	KMC
M-22A	4/29/02	36.45	29.18	7.2	18,310		32	0.36	3,000	MW
M-22A	9/9/02	36.45	29.10	1.2	10,310		32	0.30	3,000	10100
M-22A	12/10/02	36.45						0.22		
								0.22 ND<0.15		
M-22A M-25	4/29/03	36.45	22.22	7 20	11 560		10	0.13	700	KMC
	5/6/99	42.15			11,560		13		700	
M-25 M-25	5/5/00 3/11/02	42.15 42.15	33.53	7.16	11,900		12	0.06 ND<0.03	820	KMC
			20.00	70	10.950		40		E70	N //\ A /
M-25	4/29/02	42.15	32.82	7.3	10,850		40	ND<0.15	570	MW
M-25	9/10/02	42.15						ND<0.15		
M-25	12/10/02	42.15						ND<0.15		
M-25	4/29/03	42.15	00.70	7 70	0 740		0.4.4	ND<0.15	7 4	R 41 A /
M-27	12/10/02	44.00	23.72	7.70	3,710	ND	0.14	1.1	7.1	MW
M-29	5/6/99	41.02	33.88	6.29	6,630		0.15	760	<10	KMC
M-29	5/5/00	41.02	34.14	6.41	6,610		0.09	570	0.420	KMC
M-29	5/1/02	41.02	33.90	6.5	5,350		0.18	440	0.150	MW
M-31	5/6/99	44.10	39.28	7.15	16,000		27	0.82	2300	KMC
M-31	5/5/00	44.10	40.00	7.25	14,500		25	1.2	2100	KMC
M-32	5/6/99	57.34	47.42	7.16	7,660		3.3	4.2	960	KMC
M-32	5/5/00	57.34	49.01	7.09	10,500		6.5	5	1400	KMC
M-32	5/2/02	57.34	47.88	7.2	8,420		5.1	13	880	MW
M-33	5/6/99	57.70	46.09	7.53	1,730		ND	3.6	<10	KMC
M-33	5/6/99	57.70						2.1		
M-34	5/6/99	42.39	36.69	7.04	19,500		28	0.8	1,500	KMC

Table 15
Manganese in Groundwater Analytical Data
Kerr-McGee Chemical LLC Facility, Henderson, Nevada

	Sample	Total	Depth to	рН	EC	Cr ₊₆	Cr-total	Mn	CIO ₄	
WELL #	Date	Depth	Water	(Lab)	(Lab)	(ppm)	(ppm)	(ppm)	(ppm)	LAB
M-34	5/5/00	42.39	37.44	7.22	18,900		30	0.83	1,700	KMC
M-34	5/4/01	42.39	37.52	7.21	16,400		33	0.76	2,100	KMC
M-34	4/29/02	42.39	36.38	7.2	14,370		28	0.23	2,000	MW
M-35	5/6/99	42.80	34.27	7.13	9,720		4.3	0.85	1,000	KMC
M-35	5/5/00	42.80	35.22	7.31	8,970		3.4	1.2	820	KMC
M-35	5/4/01	42.80	25.40	7.28	9,970		4.6	2.4	1,000	KMC
M-35	3/11/02	42.80						0.07	,	
M-35	4/29/02	42.80	34.27	7.2	9,370		6.8	0.14	990	MW
M-35	9/9/02	42.80						0.22		
M-35	12/9/02	42.80	35.40	7.2	9,280		6.8	0.061	590	MW
M-35	4/29/03	42.80						ND<0.15		
M-36	5/6/99	37.28	31.48	7.00	18,900	28	29	0.12	3,000	KMC
M-36	5/5/00	37.28	32.29	7.35	20,000	32	29	0.46	3,500	KMC
M-36	9/9/02	37.28						0.22		
M-36	12/10/02	37.28	31.47	7.4	18,500	33.7	33	ND<0.15	2,400	MW
M-36	4/29/03	37.28						0.15	· ·	
M-37	9/10/02							0.18		
M-37	12/10/02		32.04	7.4	11,100	0.055	0.068	0.23	5,800	MW
M-37	12/10/02							0.24		
M-39	5/6/99	42.12	30.59	7.45	8,080		2.4	0.44	140	KMC
M-39	5/5/00	42.12	31.70	7.54	7,680		2.8	1.6	190	KMC
M-39	5/2/01	42.12	32.10	7.34	7,620		3.3	1.8	280	KMC
M-39	3/11/02	42.12						0.06		
M-39	4/29/02	42.12	20.60	7.3	7,700		13	ND <0.15	450	MW
M-39	9/9/02	42.12						ND <0.15		
M-39	12/10/02	42.12						ND <0.15		
M-39	5/7/03	42.12						ND<0.15		
M-44	9/12/02							ND<0.15		
M-44	12/11/02		20.96	7.3	12,900	1.81	1.5	ND<0.15	1700	MW
M-44	5/1/03							ND<0.075		
M-52	5/6/99	47.07	40.16	7.03	27,700		15	0.09	7000	KMC
M-52	5/5/00	47.07	39.65	7.36	17,200		12	2.70	3100	KMC
M-52	3/11/02	47.07						0.84		
M-52	4/30/02	47.07	39.69	7.4	11,600		15	0.52	2000	MW
M-52	9/9/02	47.07						0.58		
M-52	12/9/02	47.07	40.42	7.3	10,400		14	0.81		MW
M-52	4/28/03	47.07		7.6			14	ND<0.15	1800	MW
M-59	5/5/00	41.89	23.72	7.35	8,070		2.9	0.06	240	KMC
M-59	4/30/01	41.89	24.46	7.34	8,500		3.9	0.04	430	KMC
M-67	5/7/03							ND<0.15		
M-68	5/7/03							ND<0.15		
M-77	5/6/99	48.93	36.43	7.28	6,050		0.21	14.00	38	KMC
M-77	5/5/00	48.93	37.14	7.40	5,320		0.04	22.00	54	KMC
M-77	5/2/02		36.41	7.4	4,780		0.54	36	110	MW
M-77	5/7/03							11		
M-84	9/11/02							0.026		
M-84	12/10/02							0.02		
M-84	4/30/03							ND<0.075		
M-94	9/12/02							0.6		
M-94	12/11/02		13.68	7.4	12,500	1.69	1.4	0.68	1790	MW
M-94	5/1/03							0.45		
M-100	12/11/02		29.03	7.5	4,740	1.93	1.8	ND<0.15	340	MW
M-100	5/1/03							ND<0.075		
MW-AJ	12/17/98	28.98	11.72	7.25	9,390	<0.01	<0.01	0.18	0.067	NEL/MW
MW-AJ	5/18/99	28.98	11.80	7	8,720			0.10	0.033	AP
MW-AJ	5/25/00	28.98	11.22	6.99	8,412	<0.01	<0.01	0.21	0.088	NEL/MW
MW-AJ	3/27/01	28.98	11.07	7.2	8,170			0.2	0.060	AP

Table 15
Manganese in Groundwater Analytical Data
Kerr-McGee Chemical LLC Facility, Henderson, Nevada

	Comula						son, Nevada Cr-total		CIO ₄	
WELL #	Sample Date	Total Depth	Depth to Water	pH (Lab)	EC (Lab)	Cr ₊₆ (ppm)	(ppm)	Mn (ppm)	(ppm)	LAB
MW-J	5/18/99	Depth		. ,	(Lab) 8,080	(ppin)	(ppiii)	(ppin) 1		
MW-J	3/27/01		19.50 17.95	6.8 7.2	7,150			0.8	0.220 2.540	AP AP
MW-K1	12/17/98	19.86	9.85	7.18	15,750	<0.01	<0.01	2	12.0	NEL/MW
MW-K1	5/24/00	20.60	9.80	6.9	13,343	<0.01	<0.01	1.5	0.690	NEL/MW
MW-K1	3/24/00	20.60	9.76	7.2	13,500	<0.01	20.01	1.3	0.036	AP
MW-K2	3/27/01	20.00	18.20	7.2	12,500			<0.1	12.3	AP
MW-K4	3/27/01		19.23	7.2	9,160			<0.1	413.0	AP
MW-K5	5/25/00	44.90	19.86	7.01	11,199	<0.01	0.03	0.47	330	NEL/MW
MW-K5	3/27/01	44.90	21.25	7.3	9,460	10.01	0.00	<0.1	272	AP
MW-K6	5/25/00	29.95	4.02	7.04	6,453	<0.01	<0.01	1.6	52	NEL/MW
MW-K6	3/27/01	29.95	2.48	7.3	6,120	10.01	10.01	1.2	37	AP
MW-K8	6/1/00	28.15	19.37	7.21	7,069	0.061	0.04	< 0.005	7.50	NEL/MW
MW-QD	5/18/99		12.90	7.1	3,220			<0.1	0.97	
MW-QS	12/17/98	18.10	13.00	7.3	3,990	0.021	0.02	0.01	0.96	NEL/MW
MW-QS	5/18/99	18.10	12.80	7.4	3,690			<0.1	1.31	AP
MW-QS	5/24/00	18.04	12.37	6.95	4,371	0.03	0.03	<0.01	1.4	NEL/MW
MW-R	12/17/98	35.75	19.40	7.14	7,670	<0.01	<0.01	1.3	0.030	NEL/MW
MW-R	5/18/99	35.75	22.82	6.9	7,320			1.3	0.027	AP
MW-R	5/23/00	35.60	18.57	6.8	6,699	0.023	<0.01	1.3	0.15	NEL/MW
MW-R	3/27/01	35.60	18.01	7.1	7,070			1.3	0.02	AP
MW-S	5/18/99	41.10	23.40	6.9	5,110			<0.1	0.04	AP
MW-S	5/25/00	41.10	23.74	7.1	8,421	0.017	<0.01	0.22	0.3	NEL/MW
MW-S	3/27/01	41.10	20.10	7.3	4,420	0.0.1		<0.1	0.024	AP
PC-2	5/26/00	33.60	15.53	7.2	7,613	0.017	<0.01	<0.01	3.1	NEL/MW
PC-4	6/1/00	44.15	23.35	7.29	8,322	0.1	0.09	<0.01	11	NEL/MW
PC-10	12/16/98	34.73	20.98	7.35	5,020	<0.1	<0.1	<0.01	3.3	NEL/MW
PC-10	5/24/00	34.77	20.44	7.2	5,448	0.061	<0.1	<0.01	3.7	NEL/MW
PC-12	12/16/98	29.70	19.60	7.34	8,470	0.26	0.25	<0.01	210	NEL/MW
PC-12	4/16/99	29.70		7.43		0.21	0.22	<0.01	230	KMC/MW
PC-12	4/19/99	29.70		7.49		0.20	0.22	<0.01	220	KMC/MW
PC-12	4/21/99	29.70		7.19		0.20	0.21	<0.01	230	KMC/MW
PC-12	4/24/99	29.70		7.31		0.17	0.44	2.1	220	KMC/MW
PC-12	5/24/00	28.50	19.05	7.09	8,161	0.29	0.23	<0.01	240	NEL/MW
PC-19	12/16/98	59.30	18.46	7.06	16,320	<0.01	<0.01	1.7	88	NEL/MW
PC-19	5/23/00	59.34	18.14	6.86	15,335	<0.01	<0.01	1.6	81	NEL/MW
PC-24	12/16/98	29.70	19.66	7.38	8,680	0.036	0.03	0.01	6.4	NEL/MW
PC-24	5/25/00	29.43	19.91	7.12	9,796	0.081	0.04	<0.01	7.5	NEL/MW
PC-28	12/17/98	19.58	7.80	7.39	8,170	0.4	3.9	<0.01	500	NEL/MW
PC-28	5/23/00	19.55	11.78	7.2	8,014	0.39	0.38	<0.01	380	NEL/MW
PC-31	12/17/98	47.10	14.75	7.13	15,840	<0.01	<0.01	1.6	<0.016	NEL/MW
PC-31	5/23/00	46.85	14.33	7.0	12,126	<0.01	0.04	1	0.044	NEL/MW
PC-50	12/17/98	42.20	12.20	7.12	9,880	0.13	0.12	1.3	470	NEL/MW
PC-50	5/25/00	42.45	12.12	6.82	11,233	0.23	0.18	1.4	580	NEL/MW
PC-55	4/16/99			7.02		<0.01	<0.01	1.44	220	KMC/MW
PC-55	4/19/99			7.04		<0.01	<0.01	1.44	200	KMC/MW
PC-55	4/21/99			6.91		<0.01	<0.01	1.39	200	KMC/MW
PC-55	4/24/99			7.16		<0.01	<0.01	1.59	210	KMC/MW
PC-64	12/17/98	18.20	5.88	7.51	12,410	1.7	1.60	0.08	1,400	NEL/MW
PC-64	5/23/00	18.21	6.03	7.27	12,142	0.21	2.20	0.08	1,400	NEL/MW
PC-67	12/17/98	36.00	8.45	7.07	23,000	0.19	0.18	0.02	10	NEL/MW
PC-67	5/23/00	36.30	9.23	6.86	34,349	0.22	0.18	<0.01	12	NEL/MW
PC-70	4/16/99	50.50	18.73	7.1		0.13	0.12	1.33	450	KMC/MW
PC-70	4/19/99	50.50		7.1		0.11	0.13	1.39	480	KMC/MW
PC-70	4/21/99	50.50		6.9		0.10	0.12	1.3	440	KMC/MW
PC-70	4/24/99	50.50	· -	7.3	4	0.06	0.09	1.72	340	KMC/MW
TR-1	10/7/99	312.00	+4.5	7.9	1,283			0.05	< 0.004	MW
TR-2	10/7/99	180.00	28.00	7.5	4,080			0.14	<0.004	MW

Table 15
Manganese in Groundwater Analytical Data
Kerr-McGee Chemical LLC Facility, Henderson, Nevada

							son, nevada			
WELL #	Sample	Total	Depth to	рН	EC	Cr₊ ₆	Cr-total	Mn	CIO ₄	
	Date	Depth	Water	(Lab)	(Lab)	(ppm)	(ppm)	(ppm)	(ppm)	LAB
TR-3	10/7/99	251.50	5.40	8.1	1,330			0.5	<0.004	MW
TR-4	10/7/99	147.00	34.00	8.7	1,930			0.2	0.006	MW
TR-5	10/7/99	252.50	12.00	8.1	1,447			0.06	< 0.004	MW
TR-6	10/7/99	80.00	34.75	7.7	8,240			<0.01	0.120	MW
TR-7	10/7/99	292.00	37.10	8.2	1,438			0.05	< 0.004	MW
TR-8	10/7/99	98.00	50.35	8.5	2,340			0.07	0.060	MW
TR-9	10/9/99	250.00	60.50	7.8	1,378			0.04	< 0.004	MW
TR-10	10/9/99	100.00	57.35	7.9	2,190			0.01	1.12	MW
TR-11	10/13/99	252.00	+2.45	8	1,213			0.02	< 0.004	MW
TR-12	10/18/99	293.00	+2.60	8.3	1,103			0.03	< 0.004	MW
EC: Electrical Cor Cr ⁺⁶ : Hexavalent (Cr-total: Total Chr Mn = Manganese ClO ₄ : Perchlorate	Chromium									
		respectiv	e PQL.							
< = not detected above the respective PQL. Labs: AP KMC Kerr-McGee Corporation KMCLLC Kerr-McGee Corporation, LLC KMG Kerr-McGee LAS MW Montgomery Watson NEL Nevada Environmental Laboratory SNWA Southern Nevada Water Authority WECK										
Well Data From:		ee Chem	nical LLC C	Company	∕, Mother	hen Data	abase			

Table 16 Summary of Analytical Data for LOU # 24 and 34 Nearby Groundwater Analytical Data Kerr-McGee Chemical LLC Facility, Henderson, Nevada

					= 0					
WELL #	Sample	Total Depth	Depth to	pH	EC (Lab)	Mn (mmm)	LAB	Location		
M-32	Date 5/6/99	(ft bgs)	Water 47.42	(Lab)	(Lab)	(ppm) 4.2	KMC	Within an adjacent to LOLL		
M-32	5/6/99	57.34 57.34	47.42	7.16 7.09	7660 10500	4.2 5	KMC	Within or adjacent to LOU Within or adjacent to LOU		
M-32	5/2/02	57.34	49.01	7.09	8420	13	MW	Within or adjacent to LOU		
M-32	5/6/99	57.70	46.09	7.53	1730	3.6	KMC	Within or adjacent to LOU		
M-33	5/6/99	57.70		7.55		2.1		Within or adjacent to LOU		
M-34	5/6/99	42.39	36.69	7.04	19500	0.8	KMC	Downgradient		
M-34	5/5/00	42.39	37.44	7.04	18900	0.83	KMC	Downgradient		
M-34	5/4/01	42.39	37.52	7.22	16400	0.85	KMC	Downgradient		
M-34	4/29/02	42.39	36.38	7.2	14370	0.23	MW	Downgradient		
M-35	5/6/99	42.80	34.27	7.13	9720	0.25	KMC	Downgradient		
M-35	5/5/00	42.80	35.22	7.31	8970	1.2	KMC	Downgradient		
M-35	5/4/01	42.80	25.40	7.28	9970	2.4	KMC	Downgradient		
M-35	3/11/02	42.80				0.07		Downgradient		
M-35	4/29/02	42.80	34.27	7.2	9370	0.14	MW	Downgradient		
M-35	9/9/02	42.80				0.22		Downgradient		
M-35	12/9/02	42.80	35.40	7.2	9280	0.061	MW	Downgradient		
M-35	4/29/03	42.80				ND<0.15		Downgradient		
M-77	5/6/99	48.93	36.43	7.28	6050	14	KMC	Upgradient		
M-77	5/5/00	48.93	37.14	7.40	5320	22	KMC	Upgradient		
M-77	5/2/02	48.93	36.41	7.4	4780	36	MW	Upgradient		
M-77	5/7/03	48.93				11		Upgradient		
EC = Electrical Conductivity constituent. Mn = Manganese Labs: KMC Kerr-McGee Corporation ppm = parts per million MW Montgomery Watson Well Data From: Kerr-McGee Chemical LLC Company, Mother-hen Database Tailings Sample Sample Date: 5/2/1990 Sample Analysis by: DataChem Laboratories Sample # TCLP Metals, EPA Method 6010 (mg/l) Sample # As Ba Cd Cr Pb Hg * Se Ag Tailings Sample < 0.3 0.03 0.45 0.14 < 0.3 < 0.09 0.09 Reporting Limit 0.3 0.5 0.05 0.3 0.0002 0.3 0.05 Notes: mg/l = milligrams per liter Cr = Chromium Ag = Silver < = not detected above the designated method reporting limit. Ba = Barium Hg* = Mercury, Analytical Method is 7470. Data from Kerr-McGee, 1996b, Response to LOU Comments Method is 7470. Cd = Cadmium Se = Selenium Se = Selenium Se = Selenium										
	MnO2 Tailings Sample (#4) Sample Date: 1/15/1993 Sample Matrix: Soil Sample Analysis by: Lockheed Analytical Laboratories									
Sample Date: Sample Analysis I	1/15/1993			ale Evi-		·				
Sample Date:	1/15/1993 by: Lockhe	ed Analytical La	TCLP Meta			Method 60)10 (mg/l)	Αα		
Sample Date: Sample Analysis I Sample #	1/15/1993 by: Lockhe As			als Extra Cr <0.5	Pb	Method 60 Hg *	010 (mg/l) Se **	Ag <0.5		
Sample Date: Sample Analysis I	1/15/1993 by: Lockhe As <1.0	ed Analytical La	TCLP Meta Cd	Cr		Method 60)10 (mg/l)			

Table 17 Summary of Analytical Data for LOU # 44 Unit 6 Basement nearby Groundwater Analytical Data

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

WELL #	Sample Date	Total Depth (ft bgs)	Depth to Water	pH (Lab)	EC (Lab)	Cr ₊₆ (ppm)	Cr-total (ppm)	Mn (ppm)	CIO₄ (ppm)	LAB	Location
M-10	5/6/99	67.99	49.92	7.13	4210		1.50	0.27	54	KMC	Upgradient
M-10	5/5/00	67.99	48.50	7.36	4630		0.28	0.32	15	KMC	Upgradient
M-10	5/1/02	67.99	47.88	6.9	3840		0.022	0.48	2	MW	Upgradient
M-10	12/10/02	67.99	48.79	7.5	4330		0.12	1.20	11	MW	Upgradient
M-10	11/4/03	67.99	48.28	7.0	4180		0.52	390	18	MW	Upgradient
M-10	8/4/04	67.99		7.6	3980	0.016	0.078	640	16	MW	Upgradient
M-29	5/6/99	41.02	33.88	6.29	6630		0.15	760	<10	KMC	Downgradient
M-29	5/5/00	41.02	34.14	6.41	6610		0.09	570	0.420	KMC	Downgradient
M-29	5/1/02	41.02	33.90	6.5	5350		0.18	440	0.150	MW	Downgradient
M-77	5/6/99	48.93	36.43	7.28	6050		0.21	14	38	KMC	Further downgradient
M-77	5/5/00	48.93	37.14	7.40	5320		0.04	22	54	KMC	Further downgradient
M-77	5/2/02	48.93	36.41	7.4	4780		0.54	36	110	MW	Further downgradient
M-77	5/7/03	48.93						11			Further downgradient

Notes:

EC: Electrical Conductivity

Cr⁺⁶: Hexavalent Chromium

Cr-total: Total Chromium

Mn = Manganese

CIO₄: Perchlorate

ppm = parts per million

-- = Either no data was obtained or was not analyzed for the respective constituent.

< = not detected above the designated method reporting limit.

Labs: MW Montgomery Watson

KMC Kerr-McGee Corporation

Well Data From: Kerr-McGee Chemical LLC Company, Mother-hen Database

Table 18Summary of Analytical Data for LOUs # 47 and 21Analytical Composition of Manganese Dioxide Ore

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

5.65% 3.77% 4.73% 2.63% 5.14% 0.26% 0.09% 0.07% 0.03% 0.86% 0.24% 0.24% 0.224% 0.02%	Total Manganese Iron (Fe) Phosphorus (P) Titanium (Ti) Vanadium (V) Copper (Cu)	50.73% 3.31% 0.11% 0.14% 0.01% 0.05%
4.73% 2.63% 5.14% 0.26% 0.09% 0.07% 0.03% 0.86% 0.24% 0.24% 0.02% 0.07%	Phosphorus (P) Titanium (Ti) Vanadium (V)	0.11% 0.14% 0.01%
2.63% 5.14% 0.26% 0.09% 0.07% 0.03% 0.86% 0.24% 0.24% 0.02% 0.07%	Phosphorus (P) Titanium (Ti) Vanadium (V)	0.11% 0.14% 0.01%
5.14% 0.26% 0.09% 0.07% 0.03% 0.86% 0.24% 0.24% 0.02% 0.07%	Titanium (Ti) Vanadium (V)	0.14% 0.01%
).26%).09%).07%).03%).86%).24%).24%).02%).02%	Titanium (Ti) Vanadium (V)	0.14% 0.01%
).09%).07%).03%).86%).24%).24%).02%).07%	Titanium (Ti) Vanadium (V)	0.14% 0.01%
).07%).03%).86%).24%).24%).02%).07%	Vanadium (V)	0.01%
).03%).86%).24%).24%).02%).07%	Vanadium (V)	0.01%
).86%).24%).24%).02%).07%	Vanadium (V)	0.01%
).24%).24%).02%).07%	Vanadium (V)	0.01%
).24%).02%).07%	Vanadium (V)	0.01%
).02%).07%	Vanadium (V)	0.01%
0.07%	()	
	Copper (Cu)	
		0.05%
0.00%	Lead (Pb)	0.00%
0.08%	Zinc (Zn)	0.06%
0.14%	Cobalt (Co)	0.10%
0.07%	Nickel (Ni)	0.05%
).01%	Molybdenum (Mo)	0.00%
).01%	Chromium (Cr)	0.01%
).01%	Arsenic (As)	0.01%
e) 0.002%		
e) 0.002%		
1.98%		
).06%		
).06%	Sulphur (S)	0.02%
	0.01% 0.01% 0.01% e) 0.002% e) 0.002% 4.98% 0.06% 0.06%	0.01% Molybdenum (Mo) 0.01% Chromium (Cr) 0.01% Arsenic (As) e) 0.002% 4.98% 0.06% Image: Constraint of the second

Sample weighted at 105°Cl moisture content – 8.56% (as calculated from cargo results). (trace) = Not Detected, less than concentration indicated **Data From** Kleinfelder, 1993, Phase I ECA

Table 19Summary of Analytic Data for LOUs # 48, 49, 50, and 51Leach Plant Analyte TanksKerr-McGee Chemical LLC Facility, Henderson, Nevada

WELL #	Sample Date	Total Depth (ft bgs)	Depth to Water	pH (Lab)	EC (Lab)	Mn (ppm)	LAB	Location
M-11	1/196	56.20	41.34	7.48	14380			Further Upgradient
M-11	2/1/96	56.20	41.24	7.45	12020			Further Upgradient
M-11	3/1/96	56.20	42.39	7.60	10050			Further Upgradient
M-11	8/24/97	56.20					KMC	Further Upgradient
M-11	9/15/97	56.20	41.93	7.69	11620		KMC	Further Upgradient
M-11	4/27/98	56.20	42.00	7.80	8110		KMC	Further Upgradient
M-11	10/14/98		42.45					Further Upgradient
M-11	5/6/99	56.20	43.26	7.72	8000		KMC	Further Upgradient
M-11	5/5/00	56.20	43.30	8.08	5480		KMC	Further Upgradient
M-11	5/4/01	56.20	42.61				KMC	Further Upgradient
M-11	5/1/02		42.10	7.7	10500		MW	Further Upgradient
M-11	12/9/02		46.61	7.8	6970		MW	Further Upgradient
M-11	1/20/03		42.62	7.7	6730		MW	Further Upgradient
M-11	4/30/03		42.72		6500		MW	Further Upgradient
M-11	7/9/03		42.80	7.9	6030		MW	Further Upgradient
M-11	8/13/03		41.74					Further Upgradient
M-11	9/8/03		43.50					Further Upgradient
M-11	10/5/03		43.24					Further Upgradient
M-11	11/4/03		43.33	7.7	5450		MW	Further Upgradient
M-11	12/8/03		43.44					Further Upgradient
M-11	1/8/04		43.41					Further Upgradient
M-11	2/5/04		43.29	8.0	5480		MW	Further Upgradient
M-11	3/1/04		43.06					Further Upgradient
M-11	4/1/04		42.87					Further Upgradient
M-11	5/4/04		42.57	8.0	5100		MW	Further Upgradient
M-11	6/10/04		42.61					Further Upgradient
M-11	8/4/04			8.0	4820		MW	Further Upgradient
M-28	1/196			7.52	6830			
M-28	2/1/96			7.60	6620			
M-28	3/1/96			7.69	5530			
M-31	1/196	44.10	37.64	7.11	11700			Downgradient
M-31	2/1/96	44.10	37.94	7.04	10490			Downgradient
M-31	3/1/96	44.10	37.86	7.09	9280			Downgradient
M-31	4/27/98		39.10	7.13	11610		KMC	Downgradient
M-31	10/21/98		39.85					Downgradient
M-31	5/6/99	44.10	39.28	7.15	16000	0.82	KMC	Downgradient
M-31	5/5/00	44.10	40.00	7.25	14500	1.20	KMC	Downgradient
M-31	5/4/01	44.10					KMC	Downgradient
M-31A	11/4/03							Downgradient
M-31A	5/7/04			7.20	12040		MW	Downgradient
M-31A	8/4/04			7.30	11530		MW	Downgradient
M-32	1/196	57.34	54.61	7.20	7480	5.60		Downgradient
M-32	2/1/96	57.34	55.21	6.98	8120	6.32		Downgradient
M-32	3/1/96	57.34	55.51	7.03	7630	6.00		Downgradient
M-32	8/24/97						KMC	Downgradient

Table 19Summary of Analytic Data for LOUs # 48, 49, 50, and 51Leach Plant Analyte TanksKerr-McGee Chemical LLC Facility, Henderson, Nevada

WELL #	Sample Date	Total Depth (ft bgs)	Depth to Water	pH (Lab)	EC (Lab)	Mn (ppm)	LAB	Location
M-32	9/15/97	57.34	46.85	7.11	6770		KMC	Downgradient
M-32	4/27/98		47.75	7.25	8420		KMC	Downgradient
M-32	10/21/98		48.94					Downgradient
M-32	5/6/99	57.34	47.42	7.16	7660	4.20	KMC	Downgradient
M-32	5/5/00	57.34	49.01	7.09	10500	5.00	KMC	Downgradient
M-32	5/4/01	57.34	49.00		12120		KMC	Downgradient
M-32	5/2/02		47.88	7.2	8420	13	MW	Downgradient
M-32	12/11/02		DRY					Downgradient
M-32	4/28/03		DRY					Downgradient
M-32	2/4/04		DRY					Downgradient

Notes:

ft bgs = feet below ground surface

EC = Electrical Conductivity

Mn = Manganese

ppm = parts per million

-- = Either no data was obtained or was not analyzed for the respective constituent.

Labs: KMC Kerr-McGee Corporation

MW Montgomery Watson

Well Data From: Kerr-McGee Chemical LLC Company, Mother-hen Database.

Table 20Summary of Analytical Data for LOU # 4Hardesty Chemical Monitoring well MW-97 Analytical Data

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Analysis of water from M-97

Water Date		Conductivity	TPH- diesel		le organic ounds (µg/l)	SVOCs (µg/I)	Arsenic	рH
Sample	Date	(µS/cm)	(mg/l)	Acetone	Chloroform	Di-n- butylphthalate	(µg/l)	рп
M-97	4/9/1997	3690	<1.0	3.1	18	7.8	0.124	7.72
EPA Method:		120.1	8015M		8240	8270	6010 ICP	150.1

Note: All other 1997 Volatile organic compounds and SVOCs = Non-Detect.

Periodic analysis of water from M-97

WELL #	Date	Total Depth (ft bgs)	Depth to Water	pH (Lab)	EC (Lab)	Cr-total (ppm)	CIO₄ (ppm)	LAB
M-97	5/6/99	47.86	40.63	7.6	3290	0.09	11	KMC
M-97	5/5/00	47.86	41.31	8.09	3550	0.10	22	KMC
M-97	5/4/01	47.86	40.53		3980		31	KMC
M-97	5/1/02	47.86	39.00	7.5	4590	0.059	34	MW
M-97	5/7/04	47.86	40.22	7.6	3640	0.076	18	MW

Notes:

TPH = Total Petroleum Hydrocarbons

VOCs = Volatile organic compounds

SVOCs = Semi-volatile organic compounds

ft bgs = feet below ground surface

EC = Electrical Conductivity

Cr-total: Total Chromium

CIO₄: Perchlorate

LOU = Letter of Understanding

 μ S/I = micro Siemen per liter

mg/l = milligrams per liter

 $\mu g/I = micrograms per liter$

ppm = parts per million

-- = Either no data was obtained or was not analyzed for the respective constituent.

Labs: KMC Kerr-McGee Chemical LLC Company

MW Montgomery Watson

Analytic Data for M-97 on 4/9/1997 from ENSR, 1997 Phase II ECA.

Well Data From: Kerr-McGee Chemical LLC Company, Mother-hen Database.

Table 21

Summary of Analytical Data for LOU # 39

AP Satellite Accumulation Point-Ap Maintenance Shop Nevada PrecastConcrete Products

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Sample Analyz Sample Matrix Sample Analys	C	TPH-8015M Soil LAS Laboratories							
SAMPLE #	SAMPLE # Date		Result (mg/kg)	PQL (mg/kg)	Note				
S8-1S	4/8/1997	Diesel*	180	29					
	4/8/1997	Gasoline*	<29	29					
	4/8/1997	Motor Oil	1500 ¹	29	4 Dilutions				
S8-1RE	4/10/1997	Diesel*	<31	31					
<u>Notes:</u> TPH = Total P mg/kg = millig PQL = Practic * =Range Orga	rams per kilog al Quantitation anics	ram							

< = not detected above the designated method reporting limit.

¹ = 4 dilutions were used for this sample analysis. **Data from** ENSR, 1997, Phase II ECA, August 1997

Table 22

Summary of Analytical Data for LOUs # 41 and 65

Soil Analyses, Unit 1 Tenant Stains and

Nevada Precast Concrete Products

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Wells North of Unit 1 Tenant Stains

Sample Analyzed for: TPH-8015 and BTEX 8240 Sample Matrix: Groundwater

Analysis by: Alpha Analytical, Inc., Sparks, Nevada

WELL #	Date	TPH (mg/l)	BTEX (µg/l)
M-92	5/6/1993	<0.5	All < 1.0
M-93	5/6/1993	<0.5	All < 1.0
De	tection Limit	0.5	1

Notes:

mg/l = milligrams per liter µg/I = micrograms per liter TPH = Total Petroleum Hydrocarbons BTEX = Benzene, Toluene, Total Xylenes, Ethylbenzene < = not detected above the method detection limit. Data from ENSR, 1997, Phase II ECA

Unit 1 Tenant Stains, Stained Soil

Sample Analyz Sample Matrix Sample Analys	:	TPH-8015M Soil LAS Laboratorie	es	
SAMPLE #	Date	TPH Constituent	Result (mg/kg)	PQL (mg/kg)
S9-1S	4/8/1997	Diesel*	73	29
	4/8/1997	Gasoline*	<29	29
	4/8/1997	Motor Oil	250	29
S9-1RE	4/10/1997	Diesel*	100	32

Notes:

TPH = Total Petroleum Hydrocarbons

mg/kg = milligrams per kilogram

PQL = Practical Quantitation Limit

* =Range Organics

< = not detected above the designated method reporting limit.

Data from ENSR, 1997, Phase II ECA

Table 23 Summary of Analytical Data for LOU #45 Diesel Fuel Storage Tank Area

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Sample Number	Date	Sample Depth (ft bgs)	TPH ¹ (mg/kg)
Soil Analysis			
SB5-1	4/9/1997	-1	16,000
	4/9/1997	-5	<34
	4/9/1997	-10	<34
SB5-2	4/9/1997	-1	7,500
	4/9/1997	-5	9,100
	4/9/1997	-10	6,700
SB5-3	4/9/1997	-1	4,500
	4/9/1997	-5	1,300
	4/9/1997	-10	520
	4/9/1997	-10-DUP	800
	TPH Rep	orting Limit	34
Water Analysis			
M-21	4/10/1997	WATER	< 1.0
Well Location	Downgradient	(RI	_=1.0 mg/l)
M-10	4/10/1997	WATER	<1.0
Well Location	Upgradient	(RI	_=1.0 mg/l)

Notes:

ft bgs = feet below ground surface

TPH = Total Petroleum Hydrocarbons

mg/kg = milligrams per kilogram

¹ = TPH analysis was EPA Method 8015M-d, diesel range.

-DUP = duplicate sample taken at the indicated depth.

< = not detected above the designated reporting limit.</p>
Data from ENSR, 1997, Phase II ECA.

		Sample	TPH ¹	EP/	A Method	8020 (mg/l	kg)	PAHs ²
Sample Number	e Number Date Depth (mg/kg)		Toluene	Ethyl- benzene	Total Xylenes	(μg/kg) EPA Method 8270		
Soil Analysis								
SB5-4-5	3/29/1999	5	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-4-10	3/29/1999	10	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-4-15	3/29/1999	15	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-4-20	3/29/1999	20	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-4-25	3/29/1999	25	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-4-30	3/29/1999	30	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-4-35	3/29/1999	35	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-4-40	3/29/1999	40	50	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-5-5	3/29/1999	5	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-5-10	3/29/1999	10	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-5-15	3/29/1999	15	25	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-5-20	3/29/1999	20	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)

Table 23Summary of Analytical Data for LOU #45Diesel Fuel Storage Tank AreaKerr-McGee Chemical LLC Facility, Henderson, Nevada

		Sample	TPH ¹	EP/	A Method	8020 (mg/	kg)	PAHs ²
Sample Number	Date	Depth	(mg/kg)			Ethyl-	Total	(µg/kg)
Cumpic Humber	Duto	(ft bgs)	EPA Method	Benzene	Toluene	benzene	Xylenes	EPA Method
			8015M-d					8270
SB5-5-25	3/29/1999	25	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-5-30	3/29/1999	30	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-5-35	3/29/1999	35	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-5-40	3/29/1999	40	90	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-6-5	3/29/1999	5	38	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-6-5D	3/29/1999	5	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-6-10	3/29/1999	10	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-6-15	3/29/1999	15	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-6-20	3/29/1999	20	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-6-25	3/29/1999	25	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-6-30	3/29/1999	30	ND (<10)	ND (<5)	ND (<5)	ND (<5)	ND (<5)	ND (<0.5)
SB5-6-35	3/29/1999	35	ND (<10)	ND (<2)	ND (<2)	ND (<2)	ND (<2)	ND (<0.5)
SB5-6-40	3/29/1999	40	ND (<10)	ND (<2)	ND (<2)	ND (<2)	ND (<2)	ND (<0.5)
SB5-7-5	3/29/1999	5	ND (<10)	ND (<2)	ND (<2)	ND (<2)	ND (<2)	ND (<0.5)
SB5-7-10	3/29/1999	10	ND (<10)	ND (<2)	ND (<2)	ND (<2)	ND (<2)	ND (<0.5)
SB5-7-10D	3/29/1999	10	ND (<10)	ND (<2)	ND (<2)	ND (<2)	ND (<2)	ND (<0.5)
SB5-7-15	3/29/1999	15	ND (<10)	ND (<2)	ND (<2)	ND (<2)	ND (<2)	ND (<0.5)
SB5-7-20	3/29/1999	20	ND (<10)	ND (<2)	ND (<2)	ND (<2)	ND (<2)	ND (<0.5)
SB5-7-25	3/29/1999	25	ND (<10)	ND (<2)	ND (<2)	ND (<2)	ND (<2)	ND (<0.5)
SB5-7-30	3/29/1999	30	ND (<10)	ND (<2)	ND (<2)	ND (<2)	ND (<2)	ND (<0.5)
SB5-7-35	3/29/1999	35	ND (<10)	ND (<2)	ND (<2)	ND (<2)	ND (<2)	ND (<0.5)
SB5-7-40	3/29/1999	40	ND (<10)	ND (<2)	ND (<2)	ND (<2)	ND (<2)	ND (<0.5)
Water Analysis							• • •	
SB5-5	3/29/1999	WATER	13 mg/l	NA	NA	NA	NA	NA
Well Location	Middle of LOU		L=0.5 mg/l)					
M-21	3/29/1999	WATER	ND	NA	NA	NA	NA	NA
Well Location			L=0.5 mg/l)					
	3	, , , , , , , , , , , , , , , , , , ,						
Notes:								
ft bgs = feet below	0							
TPH = Total Petrol	•	ons						
mg/kg = milligrams								
µg/l = micrograms				、				
¹ = TPH analysis u		· ·	diesel range	e).				
2 = PAHs analysis								
-DUP = duplicate s	•		•					
(<34) = Not detected		-						
ND ($<$ 5) = Non-det		• •	• •					
ND (<2) = Non-det		Reporting	Limit of 2 n	ng/kg				
NA = Not analyzed								
RL = Reporting Lim								
Data from ENSR, 2	2001, Suppleme	ental Phase	e II ECA.					

Table 24Summary of Analytical Data for LOU #63J. B. Kelley Trucking

Sample Analy	vzed for:	Total Organic	Carbon (TOC)	& TPH				
Sample Matri	•	•	· · · ·	m existing wel	I H-38, Samp	le #2-25- soil		
Sample Anal	ysis by:		st, Las Vegas,	-	<i>·</i> · · ·			
SAMPLE #	Date	Sample Depth	TOC ¹	8015-M	(mg/l)	Sample Type		
SAWFLE #	Dale	(ft bgs)	(mg/l)	TPH-d	TPH-g	Sample Type		
Sample #1	1/8/1992	GW Elevation	3.3			Water from Well H-38		
Sample #2	1/8/1992	15		<10	<10	Soil		
Sample #3	1/8/1992	25		<10	<10	Soil		
Sample #4	1/8/1992	35		<10	<10	Soil		
Sample #5	1/8/1992	37		<10	<10	Soil		
Sample #6	1/8/1992	15		<10	<10	Soil		
Sample #7	1/8/1992	25		<10	<10	Soil		
Sample #8	1/8/1992	35		<10	<10	Soil		
Sample #9	1/8/1992	37		<10	<10	Soil		
Sample #10	1/8/1992	15		<10	<10	Soil		
Sample #11	1/8/1992	25		<10	<10	Soil		
Sample #12	1/8/1992	35		<10	<10	Soil		
Sample #13	1/8/1992	37		<10	<10	Soil		
Sample #14	1/8/1992	15		<10	<10	Soil		
Sample #15	1/8/1992	25		<10	<10	Soil		
Sample #16	1/8/1992	35		<10	<10	Soil		
Sample #17	1/8/1992	37		<10	<10	Soil		
Sample #18	1/8/1992	15		<10	<10	Soil		
Sample #19	1/8/1992	25		<10	<10	Soil		
Sample #20	1/8/1992	35		<10	<10	Soil		
Sample #21	1/8/1992	37		<10	<10	Soil		
Sample #22	1/8/1992	15		<10	<10	Soil		
Sample #23	1/8/1992	25		<10	<10	Soil		
Sample #24	1/8/1992	35		<10	<10	Soil		
Sample #25	1/8/1992	37		<10	<10	Soil		
Notes:								
mg/l = milligrar mg/kg = milligr	-	ogram		$TPH-d = T$ $(C_4 - C_{10})$	otal Petroleum H	lydrocarbons, diesel range		
	-	-	1 4 1 5 1	(1 10)	= Total Petroleun	n Hydrocarbons, gasoline		
TOC 1 =Total Organic Carbon, EPA Method 415.1TPH-gas = Total Petroleum Hydrocarbons, gasoline range (C_{11} - C_{21})								
8015-M = Mod				• • • •	,			
		e respective PQL				sponse to LOU		
	eu abuve lin	e respective PQL	-	Commer	115, 1990			

Table 24 Summary of Analytical Data for LOU #63 J. B. Kelley Trucking

J. B. Kelley Trucking Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Sample Matri	iv.	Ground	&TPH dwater	(Well S	amnle	5)						
Sample Anal				est, Las			a					
Cample / mai	yolo by.						/604 (mg	n/l)		TPH 801	5-M (mg/l)	
SAMPLE #	Date	Benz		Tolu			Xylene	Et	hyl- zene	TPH-d	TPH-g	
H-38	4/29/1992	0.0	48	<0.0	005	<0.	020		114	<5.0	<10	
-ield Blank	4/29/1992	<0.0	009	<0.0	005	<0.	020	<0.	.010	NA	NA	
Dete	ection Limit	0.0	09	0.0	05	0.0)20	0.0	010	5.0	10.0	
Notes: mg/I = milligrar 8015-M = Mod < = not detect TPH-d = Total range (C ₄ -C ₁₀	ified EPA Me ed above the Petroleum H	e respect	ive PQL		$(C_{11} - C_2)$ $NA = N$	₂₁) ot Applie	cable	-		ns, gasoline omments, <i>f</i>	-	
												-
Sample Anal				le as di	esel & E	BTEX						
Sample Matri		Ground										
Sample Anal	ysis dy:	Alpha A	Analytic			lathad.	<u>co</u> 4/00/	0 /	\ \		0045 M	
SAMPLE #	Date			BIEA		letnoa:	624/824		<u>.</u>	All	8015-M TPH *	
	Date	Benz	zene	Tolu	Toluene Total Xylene Ethyl- All benzene Others					(mg/l)		
M-92	5/6/1993	<1	0	<1	0	<	1.0		<1.0 ND		<0.5	
M-93	5/6/1993	<1		<1			1.0		1.0	ND	<0.5	
	ection Limit	1.		1.			.0		.0	various	0.5	
ug/l = microgra 8015-M = Mod Sample Anal Sample Matri	ified EPA Me	Metals,	TPH, p	oH and ' ple and	Data fro VOCs	m Kerr-M	ed above cGee, 199 e sample	6b, Resp		.OU Comme	nt	
Sample Anal	ysis by:	LAS La	borator	ries, Las	s Vegas	, Nevad	la					
		M	etals E	PA Met	hod 601	10 (mg/	kg)			VOCs E	PA Meth.824	0 (µį
SAMPLE #	Date	As	Ва	Cd	Total- Cr	Pb	All Others	TPH *	рН **	Toluene	Acetone	1, ⁷ T
S7-1-S	4/8/1997	10.5	516 ¹	0.8	42.9	257	ND	<90	9.09	1.1J	<10	<
SB7-1-1	4/8/1997	4.9 ¹	187 ¹	<0.4	19.3	9.9	ND	<30	8.5	<5	13	1
Notes: mg/kg = milligr ug/kg = microg As = Arsenic Ba = Barium Cd = Cadmium Cr = Chromium Pb = Lead	yrams per kile			* = TPH ** = pH -S = sur -1 = soil < = not	analysi by EPA face soil sample detected tive Per	s used E Method sample collecte d above cent Diff	9045 d at one the respe erence (l	od 801 foot bele ective P	ow grour QL.	el range). nd surface te analysis	exceeded	
Hg = Mercury Se = Selenium						-	Phase I					

Table 25 Summary of Analytical Data for LOU # 64 Koch Materials Company

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Sample Analyzed for: VOCs and SVOCs Sample Matrix: Soil Sample Analysis by: GTEL Environmental Laboratories, Inc., Concord, CA <u>Hits Only</u>												
Sample # Date Depth VOCs (µg/kg) EPA Method 8240 SVOCs (µg/kg) EPA Method 8270												
Sample #	Date	(ft)	Methylene Chloride	Acetone	Total Xylenes	Hexachloro- benzene	2, 4, 6- Trichloro- phenol					
DGO-1	11/3/1994	0.5-1	<5	81 ¹	<10	<300	<300					
DGO-2	11/3/1994	1.5-2	9.8 ¹	54 ¹	10	<300	<300					
BG-1	11/3/1994	0.5-1	<5	<50	<10	1200	950					
TS-1	11/3/1994	0.5-1	<5	<50	<10	1700	1000					
	Detection Limit 5 50 10 300 300											

Notes:

VOCs = Volatile organic compounds

SVOCs = Semi-volatile organic compounds

µg/kg = micrograms per kilogram

< = not detected above the respective PQL.

¹ = Methylene chloride and acetone are common laboratory contaminants. Through the use of system blanks the instrument was verified to be free of target contaminants.

Data From: Canonie Environmental, 1995: Phase II Environmental Site Assessment, Koch Material Company, Final Report January 1995 **and from** Western Technology, 1996b: Subsurface Soil Exploration, Former Koch Materials Facility, BMI Industrial Complex, Henderson, Nevada, April 1996.

Sample Analyzed for: Metals

Sample Matrix: Soil

Sample Analysis by: GTEL Environmental Laboratories, Inc., Concord, CA

Sample #	Date	Donth (ft)		TCLF	METALS	6 (mg/kg) EP	A Method	6010			
Sample #	Dale	Depth (ft)	As ^a	Ва	Cd	Cr	Pb	Mn	Hg⁵	Se	Ag
BG-1	11/3/1994	0.5-1	33	43	13	29	30	57	<0.1	32	5
TS-1	11/3/1994	0.5-1	1.3	13	<0.5	<1	5	29	<0.1	<5	<1
LS-1	11/3/1994	0.5-1	1.5	100	<0.5	14	7	410	<0.1	<5	<1
EP-1	11/3/1994	0.5-1	2.1	150	<0.5	18	15	430	<0.1	<5	<1
DGO-1	11/3/1994	0.5-1	32	90	<0.5	17	14	470	<0.1	<5	<1
DGO-2	11/3/1994	1.5-2	5.9	100	<0.5	13	71	1100	<0.1	<5	<1
SD-1	11/3/1994	0.5-1	2.8	120	<0.5	12	7	190	<0.1	<5	<1
SS-1	11/3/1994	0.5-1	2.5	110	<0.5	14	6	350	<0.1	<5	<1
RS-1	11/3/1994	0.5-1	2.8	140	<0.5	17	7	550	<0.1	<5	<1
HO-1	11/3/1994	0.5-1	1.9	140	<0.5	16	8	360	<0.1	<5	<1
GO-1	11/3/1994	0.5-1	2.1	98	<0.5	11	9	350	<0.1	<5	<1
	Detection Limit			1	0.5	1	5	0.5	0.1	5	1

Notes:

mg/kg = milligrams per kilogram

As ^a = Arsenic using EPA Method 7060

Ba = Barium

Cd = Cadmium

Cr = Chromium

Pb = Lead

Data From: Canonie Environmental, 1995: Phase II Environmental Site Assessment, Koch Material Company, Final Report January 1995 and from Western Technology, 1996b: Subsurface Soil Exploration, Former Koch Materials Facility, BMI Industrial Complex, Henderson, Nevada, April 1996. Also from Kerr-McGee, 1996b, Response to LOU Comments.

Mn = Manganese

Se = Selenium

Ag = Silver

Hg^b = Mercury using EPA Method 7471

< = not detected above the respective PQL.

Table 25 Summary of Analytical Data for LOU # 64 Koch Materials Company

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Sample Analyzed for: TPH-8015, 3 Metals, and VOCs			
Sample Matrix: Soil			
Sample Analysis: Nevada Environmental Laboratory, Reno, Nevada			
Sample #	Date	Depth (ft)	TPH (mg/kg) EPA Method 8015
SP-1 ¹	3/18/1996	stockpile ²	9000 ³
KM-1	3/29/1996	1-2	92*
KM-2	3/29/1996	1-2	19*
KM-3-1	3/29/1996	1-2	<10
KM-3-5	3/29/1996	5-6	<10
KM-4-1	3/29/1996	1-2	<10
KM-4-5	3/29/1996	5-6	<10
KM-5	3/29/1996	1-2	<10
KM-6-1	3/29/1996	1-2	<10
KM-6-5	3/29/1996	5-6	<10
KM-7-1	3/29/1996	1-2	25*
KM-7-5	3/29/1996	5-6	<10
KM-8-1	3/29/1996	1-2	<10
KM-8-5	3/29/1996	5-6	18*
KM-9-1	3/29/1996	1-2	190*
KM-9-5	3/29/1996	5-6	<10
KM-10	3/29/1996	1-2	17*
KM-11	3/30/1996	1-2	32*
Detection Limit			10

Notes:

TPH = Total Petroleum Hydrocarbons, in the range of light oil and motor oil.

mg/kg = milligrams per kilogram

* =TPH in the range of light oil and motor oil Detection limit for oil is 50 mg/kg.

 $SP-1^{1} = Non Detect for: Cadmium, Chromium, Lead, (µg/kg) EPA Method 6010A; VOCs, (µg/kg) EPA Method 8260A.$

stockpile 2 = stockpile of oil and asphalt impacted soil removed from site, total of 511.12 tons.

 3 = TPH components are in the range of Oil (C₁₈ - C₂₄). Detection limit for oil is 50 mg/kg.

< = not detected above the respective PQL.

Data From: Canonie Environmental, 1995: Phase II Environmental Site Assessment, Koch Material Company, Final Report January 1995. **and** Western Technology, 1996b: Subsurface Soil Exploration, Former Koch Materials Facility, BMI Industrial Complex, Henderson, Nevada, April 1996; **and** Kerr-McGee, 1996b, Response to LOU Comments.

Table 25 Summary of Analytical Data for LOU # 64 **Koch Materials Company**

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Sample Analyzed for: TPH-8015 Modified (M)-diesel								
Sample Mat	rix: Soil							
Sample Ana	lysis: Alpha Analytical, Inc,	Las Vegas, Nevada						
SAMPLE #	Date	TPH (mg/kg)						
KM-1	3/29/1996	92						
KM-2	3/29/1996	19						
KM-3-1	3/29/1996	<10						
KM-3-5	3/29/1996	<10						
KM-4-1	3/29/1996	<10						
KM-4-5	3/29/1996	<10						
KM-5	3/29/1996	<10						
KM-6-1	3/29/1996	<10						
KM-6-5	3/29/1996	<10						
KM-7-1	3/29/1996	25						
KM-7-5	3/29/1996	<10						
KM-8-1	3/29/1996	<10						
KM-8-5	3/29/1996	18						
KM-9-1	3/29/1996	190						
KM-9-5	3/29/1996	<10						
KM-10	3/29/1996	17						
Detection Limit 10								

Notes:

TPH= Total Petroleum Hydrocarbons

mg/kg = milligrams per kilogram

* = TPH Components are in the range of Oil (C_{8} - C_{24})

= Detection limit for oil is 50 mg/kg

< = not detected above the respective PQL.

From Kerr-McGee, 1996b, Response to LOU Comments.

Sample Mat	rix: Stockpi	led soil sam	etals, & VOCs ple. Analysis for disposa mental Laboratory	l chara	cterization.
SAMPLE #	Date	TPH (mg/kg)	Metals (mg/l) Method 1311/6010A	EPA	VOCs (µg/kg) Method

SAMPLE	# Date	EPA Method	Ivietno	00 1311/6010	JA	8240/8260A
		8015-M	Cadmium	Chromium	Lead	
SP-01	3/18/1996	9000*	<0.010	<0.010	<0.05	No Detects
Method Blank	3/18/1996	<50	<0.010	<0.010	<0.05	No Detects
Detec	tion Limit	50	0.01	0.01	0.05	Varied
	thod 8015 Modifie		mg/l = milligrams μg/kg = microgra * = TPH Compor	ams per kilogra		I (C ₁₈ -C ₂₄)

r = TPH Components are in the range of Oil (C₁₈-C₂₄)

< = not detected above the respective PQL. From Kerr-McGee, 1996b, Response to LOU Comments.

VOCs = Volatile Organic Compounds

mg/kg = milligrams per kilogram

Table 26 Summary of Analytical Data for LOU #1 Trade Effluent Settling Ponds Kerr-McGee Chemical LLC Facility, Henderson, Nevada

				DataChe	m Analy	sis					
EP Toxicity	Metals and p	H Analysis									
Sample	Date	Sample	Meta	Is EPA N	lethod 6)10 (mg/l). Prepai	ation Met	thod 13 [,]	10	рН
Description	Collected	Depth (ft bgs)	As	Ва	Cd	Cr	Pb	Hg *	Se	Ag	(Method 9045)
Hole 1	10-23-87	3-4	<0.3	0.16	<0.05	<0.05	<0.3	< 0.0002	<0.3	<0.1	7.0
Hole 1	10-23-87	5-6	<0.3	0.95	<0.05	<0.05	<0.3	< 0.0002	<0.3	<0.1	8.0
Hole 1	10-23-87	7-8	<0.3	0.48	<0.05	<0.05	<0.3	< 0.0002	<0.3	<0.1	8.2
Hole 1	10-23-87	9-10	<0.3	0.95	<0.05	<0.05	<0.3	< 0.0002	<0.3	<0.1	6.8
Hole 1	10-23-87	11-12	<0.3	0.66	<0.05	<0.05	<0.3	< 0.0002	<0.3	<0.1	6.9
Hole 1	10-23-87	13-14	<0.3	1.00	<0.05	<0.05	<0.3	< 0.0002	<0.3	<0.1	6.8
Hole 1	10-23-87	15-16	<0.3	0.90	<0.05	<0.05	<0.3	< 0.0002	<0.3	<0.1	6.5
Hole 2	10-23-87	1-2	<0.3	0.10	< 0.05	< 0.05	< 0.3	< 0.0002	< 0.3	<0.1	8.4
Hole 2	10-23-87	3-4	<0.3	0.65	<0.05	<0.05	<0.3	<0.0002	<0.3	<0.1	6.8
Pesticide and	d Silvex Ana	lysis									
					EPA N	lethod 60	18 (µg/l)	EPA	Method	615 (µg/l)	
Sample Description	Date Collected	Sample Depth (ft bgs)	Endin	Lind	ane meth	otychol tote	phene 24		Inet		
Hole 1	10-23-87	1-2	<0.01	<0.01	<0.1	<0.1	<0.1	<0.1			
Hole 2	10-23-87	Surface	<0.01	<0.01	<0.1	<0.1	<0.1	<0.1			
Iron Oxide (not associated with the LOU)	10-23-87	Solid	<0.01	<0.01	<0.1	<0.1	<0.1	<0.1			
Notes:LOU = Letter of UnderstandingAg = Silverft bgs = feet below ground surface< = not detected above the designated method detection limit with qualifier U-											

			Anal	ytical Dat	a from A	April 1997					
Boring		Sample		Ν	letals E	PA Metho	d 6010 (r	ng/kg)			рН
Number	Date	Depth (ft bgs)	As	Ва	Cd	Total Cr	Pb	Hg	Se	Ag	Method 9045
SB1-1	4/9/1997	-1	3.2 ¹	173 ¹	<0.4	11.4	8.0	<0.1	<0.8	<0.4	8.9
		-5	4.4 ¹	131 ¹	<0.4	9.9	5.1	<0.1	<0.8	<0.4	8.6
		-10	5.1 ¹	183.0	<0.4	13.6	8.7	<0.1	<0.8	<0.4	8.2
		-10 D	5.2	193.0	<0.4	14.2	8.2	<0.1	<0.8	<0.4	ND
SB1-2	4/9/1997	-1	3.9	180.0	<0.4	11.0	9.7	<0.1	<0.9	<0.4	8.2
		-5	4.1	286.0	<0.4	12.8	9.0	<0.1	<0.9	<0.4	8.3
		-10	5.0	198.0	<0.4	11.8	8.0	<0.1	<0.8	<0.4	8.7
SB1-3	4/9/1997	-1	3.5	182.0	<0.5	10.2	8.4	<0.1	<0.9	<0.5	9.6
		-5	3.4	96.8	<0.5	9.9	6.0	<0.1	<0.9	<0.5	9.5
		-10	5.2	213.0	<0.4	13.4	8.4	<0.1	<0.8	<0.4	9.7
SB1-4	4/9/1997	-1	5.6	72.3	<0.4	5.70 (B)	8.3	<0.1	<0.8	<0.4	9.6
		-5	5.0	328.0	<0.4	12.6	8.5	<0.1	<0.8	<0.4	8.7
		-10	6.3	75.2	<0.4	18.0	7.8	<0.4	<0.9	<0.4	8.6
SB1-5	4/9/1997	-1	8.6	237.0	<0.5	23.8	65.8	0.1	<5	<0.5	9.6

Table 26 Summary of Analytical Data for LOU #1 Trade Effluent Settling Ponds

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

			Analy	tical Dat	a from A	pril 1997					
Boring		Sample			Netals EF	A Metho	d 6010 (r	ng/kg)			рН
Number	Date	Depth (ft bgs)	As	Ва	Cd	Total Cr	Pb	Hg	Se	Ag	Method 9045
SB1-5	4/9/1997	-5	17.4	397.0	2.6	43.5	158.0	<0.4	<5	<0.5	9.0
		-10	4.3	212.0	<0.4	16.1	10.3	<0.5	<0.8	<0.4	9.5
SB1-6	4/10/1997	-1	4.1	245.0	<0.5	15.9	16.0	<0.1	<1	<0.5	9.8
		-5	4.2 ¹	164 ¹	<0.4	15.8	8.9	<0.1	<0.8	<0.4	8.4
		-10	6.7 ¹	197 ¹	<0.4	13.8	7.0	<0.1	<0.8	<0.4	8.6
SB1-7	4/10/1997	-1	6.6 ¹	168 ¹	<0.4	31.3	184.0	<0.1	<0.9	<0.4	9.2
		-5	18.3 ¹	812 ¹	0.428 (B)	37.7	60.6	<0.1	<9	0.6 (B)	8.4
		-10	5.1 ¹	178 ¹	<0.4	14.6	8.9	<0.1	<0.8	<0.4	8.9
		-10D	4.7	134.0	< 0.4	14.3	6.9	<0.4	<0.9	<0.4	8.8
The bgs = feet for a second s	ım um y	sunace									
< =	not detected detected.		0			•				-	
B =	Reported val	it.		·			U		equal to t	ne instrun	nent
' = _	Relative perc	cent difference	ce (RPD) exc	ceeded ac	ceptable	quality co	ntrol limit	s.			

= D =

Duplicate

ND = Not Determined Data from ENSR, 1997, Phase II ECA.

Table 27 Summary of Analytical Data for LOU # 2

Area South of Trade Effluent Settling Ponds

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Boring	Sample Date	Sample	Metals EPA Method 6010 (mg/kg)								
Number		Depth (ft bgs)	As	Ва	Cd	Total Cr	Pb	Hg	Se	Ag	(Method 9045)
SB1-1	4/9/1997	-1	3.2 ¹	173 ¹	<0.4	11.4	8	<0.1	<0.8	<0.4	8.9
		-5	4.4 ¹	131 ¹	<0.4	9.9	5.1	<0.1	<0.8	<0.4	8.6
		-10	5.1 ¹	183	<0.4	13.6	8.7	<0.1	<0.8	<0.4	8.2
		-10 D	5.16	193	<0.4	14.2	8.23	<0.1	<0.8	<0.4	ND
SB1-2	4/9/1997	-1	3.9	180	<0.4	11	9.7	<0.1	<0.9	<0.4	8.2
-		-5	4.1	286	<0.4	12.8	9	<0.1	<0.9	<0.4	8.3
		-10	5	198	<0.4	11.8	8	<0.1	<0.8	< 0.4	8.7

Notes:

ft bgs = feet below ground surface

As = Arsenic

Ba = Barium

Cd = Cadmium

Cr = Chromium

Pb = Lead

Hg = Mercury

Se = Selenium

Ag = Silver

< = not detected above the designated method detection limit

B = Reported value is less than the contract-required detection limit but greater than or equal to the instrument detection limit.

¹ = Relative percent difference (RPD) exceeded acceptable quality control limits.

D = Duplicate

LOU = Letter of Understanding ND = Not Determined

Data from ENSR, 1997, Phase II ECA.

Table 28
Summary of Analytical Data for LOU #5
Beta Ditch

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

				Arsenic	Barium	Chromium	Lead	Mecury	Vanadium	Chlorate		alpha-BHC	beta-BHC	4/4-DDF	4/4 DDT	1,2-Dichloro benzene	1-3- Dichloro benzene	1-4-Dichloro benzene	Hexa chloro benzene	Chlor benze
Site	Date	Depth	Asbestos	(mg/kg)	(mg/kg)	(mg/kg)	(Mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	pН	(mg/kg)	(mg/kg)			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/k
BDB02	04/18/96	1	9	ND	220 B	11 B	150	ND	35 B	0.019 B	10	ND	1.4 J	64	40	0.7	ND	0.48	0.54	-
BDB02	04/18/96	5	ND	ND	270 B	15 B	130	ND	54 B	0.012 B	12	3.12	ND	65	56	770	71	1200	6.4	-
BDB03	04/12/96	1	0.9	83 B	310 B	59	110	0.25	32 B	1.2	8.7	ND	ND	17	12	ND	ND	ND	ND	-
BDB04	04/12/96	1	3	ND	290 B	39	590	ND	28 B	0.13	8.8	ND	ND	420	53	ND	ND	ND	6.8	-
BDB05	04/12/96	1	ND	13 B	300 B	490	240 J	0.53 J	32 J	0.17 B	8.1	ND	ND	0.16	0.53	ND	ND	ND	ND	-
BDB05	04/12/96	1	ND	24	220 B	18 B	110	0.2	43 B	0.14	9.5	ND	ND	ND	ND	ND	ND	ND	-	-
BDB05	04/12/96	5	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	-	-	-	-	-
BDB02	04/18/96	2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	8.1	0.14	10	-	2.7
BDB02	04/18/96	5.5	-	-	-	-	-	-	-	-	-	-	-	-	-	1200	98	2200	-	220
BDB05	04/12/96	2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	-	ND
BDB05	04/12/96	5.5	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND	-	NE

J = estimated value concentration was between the practical quanitation limit and the method detection limit

- analyte was not sampled

ND = Not Detected

Table 29 Summary of Analytical Data for LOU # 6 Unnamed Drainage Ditch Segment

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Well	Date		VOCs (EPA Metho					A Metals A Method)		CB's (µg Method 608	-
Number	Date	Chloroform	Bromo- form	1, 2-Dichloro- benzene	All Others	As *	Ва	Total Cr	Mn	All Others	Aroclo	r-1254	All Others
M-10	4/18/1994	24	<5	<5	ND	<5	15	<10	240	ND	3.	2	ND
M-47	4/18/1994	280	9	8	ND	180	20	1800	44	ND	5.	1	ND
M-48	4/18/1994	340	<5	<5	ND	200	20	1600	94	ND	<'	1	ND
De	tection Limit	5	5	5	various	5	5	10	5	various	1		various
Sample Ma	trix: Soil										-		
Sample		Chlorinated P	esticides & PCB	s(µg/kg) EPA Method	8080	Tota	al Meta	als (mg/	kg) EP	A 6010		os Bulk Co mples by P	
Number	Date	Beta-BHC	4, 4-DDE	4, 4-DDT	All Others	As *	Ва	Total Cr	Pb	All Others	Detected	Asbest	tiform (%)
WSR-1	10/11/1993	27	<16	<16	ND	1.8	99	7	9	ND	No	1	NA
WSR-2	10/11/1993	16	<16	<16	ND	2.2	110	8	9	ND	No	1	NA
WSR-3	10/11/1993	95	38	34	ND	2.9	140	9	20	ND	Yes	Yes Chrysot	
WSR-4	10/11/1993	39	<16	22	ND	2	140	11	10	ND	No	1	NA
WSR-5	10/11/1993	25	<16	26	ND	1.7	150	8	14	ND	No	1	NA
NWD-1a	10/11/1993	29	<16	<16	ND	22	140	13	10	ND	No	1	NA
NWD-1b	10/11/1993	<8	<16	<16	ND	26	120	8	9	ND	No	-	NA
NWD-2a	10/11/1993	140	300	330	ND	2.6	130	11	14	ND	Yes		otile<1%
NWD-2b	10/11/1993	27	26	35	ND	<0.5	100	10	12	ND	No		NA
NWD-3a	10/11/1993	<80	270	270	ND	3.6	170	16	24	ND	Yes		otile<1%
NWD-3b	10/11/1993	<80	<160	260	ND	5	160	16	23	ND	No	1	NA
De	tection Limit	8 (80*)	16 (160*)	16	various	0.5	0.5	1	5	various	NA	1	NA
Sample Ma	trix: Soil		Notes:										
Sample Number	Date	Chlorate (ppm)	$\mu g/l = micrograms$ per liter Total Cr = $\mu g/kg = micrograms$ per kilogram Mn = Mang								nium		
WSR-1	10/11/1993	0.28	mg/kg = mil	lligrams per kilogra	am			Pb = Le	ead				
WSR-2	10/11/1993	<0.1	As * = Arse	nic using EPA Me	thod 7060			VOCs =	= Volat	tile organi	ic compoui	nds	
WSR-3	10/11/1993	<0.1	Ba = Bariur	n				PCB =	Polycł	nlorinated	Biphenyls		
WSR-4	10/11/1993	<0.1	NA = Not A										

10/11/1993

10/11/1993

10/11/1993

0.14

1.53

2.65

WSR-5

NWD-1a

NWD-1b

Table 29 Summary of Analytical Data for LOU # 6 Unnamed Drainage Ditch Segment

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Sample	Date	Chlorate	Notes (Continued):
Number		(ppm)	All VOC, Cyanide, Metal Data = GTEL Environmental Laboratories, Inc., Concord, CA
NWD-2a	10/11/1993	<0.1	Groundwater and Soil PCB Data = Alpha Analytical, Inc., Las Vegas, NV
NWD-2b	10/11/1993	<0.1	Soil Pesticide Data = Alpha Analytical, Inc., Las Vegas, NV
NWD-3a	10/11/1993	<0.1	Chlorate Data = Analysis conducted internally at Kerr-McGee Chemical LLC, Analytical Chemistry
NWD-3b	10/11/1993	0.42	Section, Henderson NV
Det	tection Limit	0.1	Data From: Kerr-McGee, 1994, Internal Correspondence, June 10, 1994.

Phase I Subsurface Soil Evaluation	Warm Springs Road Extension (Western Technologies Inc	April 1996)
Flidse i Subsullace Soli Evaluation	, wanni Spinnys Roau Extension (ADIII 1990)

Boring/ Sample	Date	Sample Depth	Total Metals (mg/kg) EPA Method 6010 (ICP)													
Number		(ft bgs)	Sb	As	Be	Cd	Cr	Cu	Pb	Hg *	Ni	Se	Ag	TI	Zn	Cy *
IB-1-0	3/4/1996	0-1	3	<1.25	0.34	0.086	5.3	14	6.1	0.022	6.1	<2.5	<0.25	<2.5	17	<0.1
IB-1-14	3/4/1996	14	3	3.1	0.25	0.062	7.4	13	2.7	<0.01	3.4	<2.5	<0.25	<2.5	14	<0.1
IBC-1-0	3/4/1996	0-1	3.9	1.5	0.37	0.082	8.5	14	8.8	<0.01	6.3	<2.5	<0.25	<2.5	22	<0.1
IBC-2-0	3/4/1996	0-1	5.3	3.4	0.47	<0.05	11	15	11	0.012	7.9	<2.5	<0.25	<2.5	27	<0.1
IBC-2-D	3/4/1996	0-1	4.2	2	0.43	0.09	8.9	14	9.5	<0.01	6.9	<2.5	<0.25	<2.5	24	<0.1
IBC-3-0	3/4/1996	0-1	4.5	2.4	0.41	0.093	7.6	13	8.7	<0.01	6.6	<2.5	<0.25	<2.5	22	<0.1
IBC-4-0	3/4/1996	0-1	3.8	1.5	0.35	0.087	7.8	13	8.8	<0.01	6.4	<2.5	<0.25	<2.5	22	<0.1
IBC-5-0	3/4/1996	0-1	5	1.8	0.46	0.069	8.4	15	15	0.01	6.5	<2.5	<0.25	<2.5	23	<0.1
IBC-6-0	3/4/1996	0-1	4.4	1.8	0.36	0.095	7.2	13	12	0.011	5.5	<2.5	<0.25	<2.5	19	<0.1
IBC-7-0	3/4/1996	0-1	5.1	3.1	0.44	<0.05	10	13	7.2	<0.01	6.5	<2.5	<0.25	<2.5	26	<0.1
IBC-8-0	3/4/1996	0-1	5.5	1.7	0.47	0.064	10	14	6	0.011	6.7	<2.5	<0.25	<2.5	26	<0.1
IBC-9-0	3/4/1996	0-1	5.6	2.9	0.51	0.1	11	16	6	< 0.01	7.1	<2.5	<0.25	<2.5	28	<0.1

Sample Ma	Sample Matrix: Soil												
Boring/		Asbestos (%) Bulk	Chlo	prinated Pes	sticides A Method 8		ıg/kg)						
Sample Number	Date	Composite Samples by PLM	Alpha- BHC	Beta- BHC	Delta- BHC	Gamma- BHC (lindane)	All Others						
IB-1-0	3/4/1996	NA	<1.7	<1.7	<1.7	<1.7	ND						
IB-1-14	3/4/1996	NA	<1.7	2.8	<1.7	<1.7	ND						
IBC-1-0	3/4/1996	< 1	<1.7	28	<1.7	<1.7	ND						
IBC-2-0	3/4/1996	ND	1.9	30	<1.7	2.2	ND						
IBC-2-D	3/4/1996	NA	<1.7	<1.7	<1.7	<1.7	ND						

Table 29 Summary of Analytical Data for LOU # 6

Unnamed Drainage Ditch Segment

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Boring/		Asbestos (%) Bulk	Chlo	erinated Pes	sticides A Method 8	••	ıg/kg)
Sample Number	Date	Composite Samples by PLM	Alpha- BHC	Beta- BHC	Delta- BHC	Gamma- BHC (lindane)	All Others
IBC-3-0	3/4/1996	< 1	<1.7	100	<1.7	<1.7	ND
IBC-4-0	3/4/1996	< 1	2.3	66	3.6	<1.7	ND
IBC-5-0	3/4/1996	ND	<1.7	61	<1.7	<1.7	ND
IBC-6-0	3/4/1996	ND	<1.7	37	<1.7	<1.7	ND
IBC-7-0	3/4/1996	ND	<1.7	75	<1.7	<1.7	ND
IBC-8-0	3/4/1996	ND	<1.7	43	<1.7	<1.7	ND
IBC-9-0	3/4/1996	ND	<1.7	29	<1.7	<1.7	ND

Notes:

PLM = polarized light microscopy NA = Not Analyzed ND = Non Detect VOCs = Volatile organic compounds SVOCs = Semi-volatile organic compounds **Note:** VOCs & SVOCs were non-detect for all samples **Note =** All 0-1 foot samples = composite samples from 20 feet in the four compass directions around the boring.

Location of Borings:

IB-1 = within the Western Drainage Ditch

IB-2 & IB-3 = located at 100 foot distances to the east from IB-1 and both were placed in related smaller flood channels to the Western Drainage Ditch.

IB-4 & IB-5 = located at 100 foot distances to the west from IB-1. Boring IB-5 was placed in a related flood channel to the Western Drainage Ditch.

IB-6 through IB-9 = located 500 foot distances to the west between boring IB-5 and U.S. Highway 95 overpass.

VOC, SVOC, & Chlorinated Pesticides and PCB Data= Alpha Analytical, Sparks, NV

Metals Data = Chemax Laboratories, Inc., Sparks, Nevada

Asbestos Data = Bulk Soil Samples analyzed by Analytica Solutions, Broomfield, Colorado

Data From: Western Technologies Inc., 1996c: Subsurface Soil Evaluation, Warm Springs Road Extension, Phase J U.S. Highway 95 to Eastgate Road, Henderson, Nevada, Prepared for the City of Henderson, June 24, 1996.

Table 29 Summary of Analytical Data for LOU # 6 Unnamed Drainage Ditch Segment

Unnamed Drainage Ditch Segment Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Sample Ma	trix: Soil					
Boring/		Sample		VOCs (µg/kg) EPA Me	ethod 8260	
Sample Number	Date	Depth (ft bgs)	1, 2, 4, -Trichlorobenzene	1, 2, 3-Trichlorobenzene	Hexachlorobenzene	All Others
IIB-1-1	3/6/1996	0-1	<40	<40	<41	ND
IIB-1-14	3/6/1996	14	310	240	1100	ND
IIBC-2-1	3/6/1996	0-1	<40	<40	<41	ND
IIBC-3-1	3/6/1996	0-1	<40	<40	<41	ND
IIBC-4-1	3/5/1996	0-1	<40	<40	<41	ND
IIBC-5-1	3/5/1996	0-1	<40	<40	<41	ND
IIBC-6-1	3/5/1996	0-1	<40	<40	<41	ND
IIBC-7-1	3/5/1996	0-1	<40	<40	<41	ND
IIBC-8-1	3/5/1996	0-1	<40	<40	4100	ND
IIBC-9-1	3/5/1996	0-1	<40	<40	<41	ND
IIBC-10-1	3/6/1996	0-1	<40	<40	<41	ND
IIBC-11-1	3/6/1996	0-1	<40	<40	<41	ND
IIBC-12-1	3/5/1996	0-1	<40	<40	<41	ND
IIBC-13-1	3/5/1996	0-1	<40	<40	<41	ND
IIBC-14-1	3/5/1996	0-1	<40	<40	<41	ND
IIBC-15-1	3/5/1996	0-1	<40	<40	<41	ND
IIBC-16-1	3/4/1996	0-1	<40	<40	<41	ND
	Detectio	n Limit	40	40	660	various

Sample Ma	trix: Soil													
Boring/ Sample	Date	Sample Depth	SVOCs (μg/k EPA Method 82		Asbestos (%) Bulk Composite Samples by	Chlorinated Pesticides & PCBs (µg/kg) EPA Method 8080								
Number	Date	(ft bgs)	Hexachloro-benzene	All Others	PLM	Alpha- BHC	Beta- BHC	Delta- BHC	Gamma- BHC (lindane)	4, 4-DDE	4, 4-DDT	Arochlor- 1260	All Others	
IIB-1-0	3/6/1996	0-1	<660	ND	<1	<1.7	41	<1.7	<1.7	85	140	<170	ND	
IIB-1-14	3/6/1996	14	<660	ND	NA	3.6	95	130	<1.7	<3.3	<3.3	<170	ND	
IIBC-2-0	3/6/1996	0-1	<660	ND	ND	<1.7	42	<1.7	4.1	16	<3.3	<170	ND	
IIBC-3-0	3/6/1996	0-1	<660	ND	<1	<1.7	72	<1.7	<1.7	35	43	<170	ND	
IIBC-4-0	3/5/1996	0-1	<660	ND	ND	<1.7	75	<1.7	<1.7	31	<3.3	<170	ND	
IIBC-5-0	3/5/1996	0-1	<660	ND	ND	<1.7	69	<1.7	<1.7	12	<3.3	<170	ND	
IIBC-6-0	3/5/1996	0-1	<660	ND	ND	<1.7	130	<1.7	<1.7	37	<3.3	<170	ND	
IIBC-7-0	3/5/1996	0-1	1100	ND	ND	<1.7	97	<1.7	<1.7	180	140	<170	ND	

Table 29 Summary of Analytical Data for LOU # 6

Unnamed Drainage Ditch Segment Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Boring/ Sample	Boring/ Sample Date		SVOCs (µg/kg) EPA Method 8270		Asbestos (%) Bulk Composite Samples by	Chlorinated Pesticides & PCBs (µg/kg) EPA Method 8080									
Number	Date	Depth (ft bgs)	Hexachloro-benzene	All Others	PLM	Alpha- BHC	Beta- BHC	Delta- BHC	Gamma- BHC (lindane)	4, 4-DDE	4, 4-DDT	Arochlor- 1260	All Others		
IIBC-8-0	3/5/1996	0-1	4100	ND	2	<1.7	50	<1.7	<1.7	210	260	<170	ND		
IIBC-9-0	3/5/1996	0-1	<660	ND	<1	<1.7	36	<1.7	<1.7	93	48	<170	ND		
IIBC-10-0	3/6/1996	0-1	<660	ND	ND	<1.7	73	<1.7	<1.7	59	82	<170	ND		
IIBC-11-0	3/6/1996	0-1	<660	ND	ND	<1.7	90	<1.7	<1.7	59	<3.3	<170	ND		
IIBC-12-0	3/5/1996	0-1	<660	ND	ND	<1.7	75	<1.7	<1.7	<3.3	36	<170	ND		
IIBC-13-0	3/5/1996	0-1	<660	ND	ND	37	<1.7	<1.7	<1.7	<3.3	<3.3	3200	ND		
IIBC-14-0	3/5/1996	0-1	<660	ND	ND	<1.7	190	<1.7	<1.7	28	42	<170	ND		
IIBC-15-0	3/5/1996	0-1	<660	ND	ND	<1.7	160	<1.7	<1.7	12	<3.3	<170	ND		
IIBC-16-0	3/4/1996	0-1	<660	ND	ND	<1.7	52	<1.7	<1.7	7	<3.3	<170	ND		
	Detectio	n Limit	660	various	1	1.7	1.7	1.7	1.7	3.3	3.3	170	various		

Boring/		Sample					Total N	/letals (mg/kg) EPA Me	thod 601	10 (ICP)				
Sample Number	Date	Depth (ft bgs)	Sb	As	Be	Cd	Cr	Cu	Pb	Hg *	Ni	Se	Ag	ті	Zn	Cy *
IIB-1-0	3/6/1996	0-1	2.2	3.4	0.41	0.12	19	17	11	0.069	7.4	<2.5	<0.25	<2.5	28	<0.1
IIB-1-14	3/6/1996	14	4	4.8	0.37	<0.05	15	12	3.9	<0.01	6	<2.5	<0.25	<2.5	17	<0.1
IIBC-2-0	3/6/1996	0-1	1.8	<1.25	0.29	0.071	4	7.6	4.8	0.011	4.8	<2.5	<0.25	<2.5	13	<0.1
IIBC-3-0	3/6/1996	0-1	2.7	<1.25	0.37	0.09	8.1	15	10	0.015	6.6	<2.5	<0.25	<2.5	25	<0.1
IIBC-3-0-D	3/6/1996	0-1	2.6	2.1	0.32	0.099	6.3	13	11	0.025	5.6	<2.5	<0.25	<2.5	22	<0.1
IIBC-4-0	3/5/1996	0-1	3.4	<1.25	0.32	0.1	6.4	9.1	7.3	0.011	6.5	<2.5	<0.25	<2.5	18	<0.1
IIBC-5-0	3/5/1996	0-1	2.8	<1.25	0.32	0.055	5.5	9.1	5.1	<0.01	6	<2.5	<0.25	<2.5	16	<0.1
IIBC-6-0	3/5/1996	0-1	3.4	<1.25	0.36	0.081	6	9.8	7.8	0.013	6.5	<2.5	<0.25	<2.5	19	<0.1
IIBC-7-0	3/5/1996	0-1	3.6	2.2	0.39	0.1	7	11	8.4	0.023	6.5	<2.5	<0.25	<2.5	22	<0.1
IIBC-8-0	3/5/1996	0-1	3.8	2.8	0.4	0.072	7.3	12	8.2	0.018	6.5	<2.5	<0.25	<2.5	22	<0.1
IIBC-9-0	3/5/1996	0-1	5	3	0.38	0.28	8.7	20	10	0.022	6.8	<2.5	<0.25	<2.5	150	<0.1
IIBC-10-0	3/6/1996	0-1	4.5	2.5	0.42	0.13	8.4	14	11	0.014	7.8	<2.5	<0.25	<2.5	26	<0.1
IIBC-11-0	3/6/1996	0-1	4.9	3.4	0.43	0.2	7.2	15	19	0.017	8.2	<2.5	<0.25	<2.5	50	<0.1
IIBC-12-0	3/5/1996	0-1	3.6	<1.25	0.37	<0.05	6	8.9	5.9	<0.01	5.3	<2.5	<0.25	<2.5	19	<0.1
IIBC-13-0	3/5/1996	0-1	5	<1.25	0.38	0.19	8.5	18	12	0.064	7.4	<2.5	<0.25	<2.5	43	<0.1
IIBC-14-0	3/5/1996	0-1	4.4	2.2	0.45	0.13	6.6	12	7.7	< 0.04	3.8	<2.5	<0.25	<2.5	27	<0.1
IIBC-15-0	3/5/1996	0-1	3.1	1.8	0.37	0.095	5.5	10	7	0.014	5.5	<2.5	<0.25	<2.5	18	<0.1
IIBC-16-0	3/4/1996	0-1	2.2	<1.25	0.28	<0.05	3.6	8.7	7.3	0.014	4.6	<2.5	<0.25	<2.5	15	<0.1

Table 29 Summary of Analytical Data for LOU # 6

Unnamed Drainage Ditch Segment

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Sample Ma	trix: Soil													
				Radioactive Nuclides (units= PCI/G)										
	Date	Sample Depth		-226/228 by SL 300	by ⁻	Thorium Th-NAS-NS-3	Uranium by U-NAS-NS-3050							
Number		(ft bgs)	Ra-226	Ra-228	Th-232	Th-230	Th-228	U-238	U-235- 236	U-234				
IIB-1-0	3/6/1996	0-1	1.4	2.08	1.24	2.02	1.38	2.38	0.38	3.15				
	Dete	ection Limit	0.09	0.16	0.13	0.14	0.18	0.18	0.21	0.19				

Notes:

ft bgs = feet below ground surface	NI - NICKEI	
µg/kg = micrograms per kilogram	Se = Selenium	
mg/kg = milligrams per kilogram	Ag = Silver	
Sb = Antimony	TI= Thallium	
As = Arsenic	Cy* = Total Cyanide, by EPA Method 9010	
Be = Beryllium	-D = Duplicate sample taken at the indicated depth.	
Cd = Cadmium	PCB = Polychlorinated Biphenyls	
Cr = Chromium	PLM = polarized light microscopy	
Cu = Copper	NA = Not Analyzed	
Pb = Lead	ND = Non Detect	
Hg* = Mercury by EPA Method7471	VOCs = Volatile organic compounds	

NP NP-L-I

SVOCs = Semi-volatile organic compounds < = not detected above the respective PQL. Ra = Radium Th =Thorium U = Uranium

Location of Borings:

Analytical data for the borings were labelled IIB-1 but on the location map in the Appendix the borings were labelled B-1.

Boring IIB-1 located within the Northwest Drainage Ditch

In a large supervised a conference

Boring IIB-2 located east of the ditch along the centerline of the road within 10 feet of the edge of the ditch. This location placed the boring on the earthen berm

Boring IIB-3 located west of the ditch along the centerline of the road within 10 feet of the edge of the ditch.

Borings IIB-4 through IIB-11 located at 500 foot distance to the east between boring IIB-2 and Boulder Highway. Borings IIB-7 and IIB-8 were located within the Northwest Drainage Ditch as the road easement again crossed the ditch to the east of IIB-1

Borings IIB-12 through IIB-16 located at 500 foot distances to the west between the boring IIB-3 and Eastgate Road.

VOC, SVOC, & Chlorinated Pesticides and PCB Data= Alpha Analytical, Sparks, NV

Metals Data = Chemax Laboratories, Inc., Sparks, Nevada

Asbestos Data = Bulk Soil Samples analyzed by Analytica Solutions, Broomfield, Colorado

Radioactive Nuclides = Analysis by Quanterra Environmental Services, Earth City, Missouri through Alpha Analytical Services.

Data From: Western Technologies Inc., 1996d: Phase II Subsurface Soil Evaluation Warm Springs Road Extension, Eastgate Road to Boulder Highway, Henderson, Nevada, Prepared for the City of Henderson, June 24, 1996.

Table 30Summary of Analytical Data for LOU # 10Hazardous Waste Landfill, Nearby Groundwater Analytical Data
Kerr-McGee Chemical LLC Facility, Henderson, Nevada

WELL #	Sample Date	Total Depth (ft bgs)	Depth to Water	pH (Lab)	EC (Lab)	Cr-total (ppm)	Mn (ppm)	CIO₄ (ppm)	LAB	Location
M-5A	8/24/97							<0.7	KMC	Further Upgradient
M-5A	9/15/97	46.79	39.76	6.92	12600				KMC	Further Upgradient
M-5A	4/27/98		39.42	7.14	6050				KMC	Further Upgradient
M-5A	5/3/00				14400			21	KMC	Further Upgradient
M-5A	5/6/99	46.79	37.69	7.11	14200	ND		<2	KMC	Further Upgradient
M-5A	5/5/00	46.79	39.44	7.32	14900	0.05		32	KMC	Further Upgradient
M-5A	5/4/01	46.79	39.11		5860			28	KMC	Further Upgradient
M-5A	5/2/03		39.00	7.0	14500	0.012		31	MW	Further Upgradient
M-5A	12/11/02		38.95						MW	Further Upgradient
M-5A	5/7/03		39.07		15600				MW	Further Upgradient
M-5A	7/9/03			7.2	15350				MW	Further Upgradient
M-5A	5/3/04			7.1	15350	ND<0.05	1.4		MW	Further Upgradient
M-5A	8/3/04			7.0	15120				MW	Further Upgradient
M-6A	8/24/97							<0.7	KMC	Downgradient
M-6A	9/15/97	47.38	40.45	7.35	7790				KMC	Downgradient
M-6A	4/27/98		40.27	7.49	5020				KMC	Downgradient
M-6A	5/6/99	47.38	38.71	7.46	8150	ND		5	KMC	Downgradient
M-6A	5/5/00	47.38	40.60	7.69	8510	0.02		11	KMC	Downgradient
M-6A	5/4/01	47.38	40.15	7.44	8770	0.02		12	KMC	Downgradient
M-6A	4/30/02		39.99	7.5	8940	0.039		24	MW	Downgradient
M-6A	12/11/02		40.07							Downgradient
M-6A	5/2/03		41.02		10180				MW	Downgradient
M-6A	7/9/03			7.3	9940				MW	Downgradient
M-6A	5/3/04			7.5	9730	ND<0.02	150		MW	Downgradient
M-6A	8/3/04			7.5	9810				MW	Downgradient
M-7A	8/24/97							47	KMC	Just downgradient
M-7A	9/15/97		37.15	7.20	8230				KMC	Just downgradient
M-7A	4/27/98	40.47	37.21	7.47	5290				KMC	Just downgradient
M-7B	5/6/99	54.80	33.73	7.51	8410	ND		14	KMC	Just downgradient
M-7B	5/5/00	54.80	36.69	7.62	8570	0.15		13	KMC	Just downgradient
M-7B	5/4/01	54.80	36.87	7.45	8710	0.09		10.6	KMC	Just downgradient
M-7B	4/30/02		36.94	7.4	8520	0.01		12	MW	Just downgradient
M-7B	12/11/02		37.03							Just downgradient
M-7B	5/2/03		37.16		9800				MW	Just downgradient
M-7B	7/9/03			7.4	9880				MW	Just downgradient
M-7B	5/3/04			7.5	9980	ND<0.02	25		MW	Just downgradient
M-7B	8/3/04			7.5	10050				MW	Just downgradient
H-28	4/27/98	42.90		7.63	7020			<10	KMC	Downgradient
H-28	5/6/99	42.90	38.90						KMC	Downgradient
H-28	5/3/00				8900			5.86	KMC	Downgradient
H-28	5/5/00	47.25	40.92	7.76	9020	0.41		9.00	KMC	Downgradient
H-28	5/1/01				8570			2.86	KMC	Downgradient
H-28	5/4/01	47.25	40.76	7.11	8780	0.15			KMC	Downgradient
H-28	5/9/01	41.85	7.20		8540			3.70	KMC	Downgradient
H-28A	12/11/02		40.65							Downgradient
H-28A	5/7/03		40.00		9340				MW	Downgradient

Table 30 Summary of Analytical Data for LOU # 10 Hazardous Waste Landfill, Nearby Groundwater Analytical Data Kerr-McGee Chemical LLC Facility, Henderson, Nevada

WELL #	Sample Date	Total Depth (ft bgs)	Depth to Water	pH (Lab)	EC (Lab)	Cr-total (ppm)	Mn (ppm)	ClO₄ (ppm)	LAB	Location		
H-28A	7/9/03			7.1	9630				MW	Downgradient		
H-28A	5/3/04			7.2	9710	ND<0.05	1.3		MW	Downgradient		
H-28A	8/3/04			7.2	9410				MW	Downgradient		
• • •	cal Conduc otal Chromin ganese hlorate s per million	tivity um n										
Labs:	ppm = parts per million = Either no data was obtained or was not analyzed for the respective constituent. Labs: AP KMC Kerr-McGee Corporation KMCLLC Kerr-McGee Corporation, LLC KMG Kerr-McGee LAS MW Montgomery Watson NEL Nevada Environmental Laboratory SNWA Southern Nevada Water Authority											
Well Data	WECK From: Ker	r-McGee (Chemical	LLC C	ompany	/, Mother-h	en Datab	ase.				

Table 31 Summary of Analytical Data for LOU # 35 Truck Unloading Area Kerr-McGee Chemical LLC Facility, Henderson, Nevada

				Met	als E	PA Method 6010 (mg/kg)							VOCs EPA Method 8240 (µg/kg)			
Boring Number	Sample Depth (ft bgs)	Date	As	Ва	Cd	Total Cr	Pb	Hg	Se	Ag	pH ¹	TPH ² (mg/kg)	Acetone	1, 1, 1- Trichloro- ethane (TCA)	All Others	
SB4-1-S	0-1	4/9/1997	11.4 *	1,010 *	<0.4	21.4	56.4	<0.1	<4	<0.4	9.52	<30	<10	<5	ND	
SB4-1-S-D	0-1-DUP	4/9/1997	24.5	1,450	<0.4	19.1	52.0	<0.1	<4	<0.4	ND	ND	NA	NA	NA	
SB4-1D	2-3	4/9/1997	5.3 *	246 *	<0.4	15.7	18.4	<0.1	<0.8	<0.4	10.3	<30	<10	<5	ND	
SB4-2-S	0-1	4/9/1997	10 *	558 *	< 0.4	18.5	51.8	<0.1	<0.8	<0.4	8.32	<90	<10	<5	ND	
SB4-2-D	2-3	4/9/1997	3.5 *	179 *	< 0.4	14.1	9.8	<0.1	<0.8	<0.4	8.63	<30	11	<5	ND	
SB4-3-S	0-1	4/9/1997	17.4 *	1,360 *	<0.4	23	141	<0.1	<4.0	0.6	8.64	41 (X)	<10	<5	ND	
SB4-3-D	2-3	4/9/1997	3.9 *	161 *	<0.4	13	7.9	<0.1	<0.8	<0.4	9.14	<30	<10	<5	ND	
SB4-4-S	0-1	4/9/1997	5.3 *	175 *	<0.4	13.1	23	<0.1	<0.8	<0.4	8.92	37 (X)	<10	<5	ND	
SB4-4-D	2-3	4/9/1997	4.2	199 *	< 0.3	20.7	9.4	<0.1	<0.7	< 0.3	9.27	<30	<9.8	<5	ND	
SB4-4-D-D	2-3-DUP	4/9/1997	9.3	207 *	<0.4	24.2	29.2	< 0.09	<0.8	<0.4	9.25	<30	<10	<5	ND	
SB4-5-S	0-1	4/9/1997	6.6	190 *	< 0.3	20.1	15.3	0.1	<3	< 0.3	8.14	<89	<10	<5	ND	
SB4-5-D	2-3	4/9/1997	4.4	196	<0.4	15.9	10.9	<0.1	<0.8	<0.4	8.24	<30	6.8 J	<5	ND	
SB4-6-S	0-1	4/9/1997	4.3	200 *	<0.4	17.4	9.4	<0.1	<4	<0.4	9.65	<30	<10	<5	ND	
SB4-6-D	2-3	4/9/1997	5.3	202 *	<0.4	18.1	12.9	< 0.09	<0.8	<0.4	9.07	<30	7.0 J	<5	ND	
SB4-7-S	0-1	4/9/1997	16.6	329 *	< 0.4	21.8	59.9	<0.1	<4	<0.4	9.94	<30	<9.8	<5	ND	
SB4-7-D	2-3	4/9/1997	4.9	245 *	<0.4	17.4	14.3	<0.1	<0.7	<0.4	8.67	<30	<10	<5	ND	
SB4-8-S	0-1	4/9/1997	14.6 *	360 *	<0.4	15.5	83	<0.1	<0.8	<0.4	9.18	79 (X)	8.7 J	2.4 J	ND	
SB4-8-D	2-3	4/9/1997	4.4	227 *	<0.4	14.3	11.5	<0.1	<0.8	<0.4	7.85	<89	<10	<5	ND	
Notes: ft bgs = feet below ground surface mg/kg = milligrams per kilogram 1 = pH analysis used Method 9045 TPH = Total Petroleum Hydrocarbons 2 = TPH analysis used EPA Method 8015M-d in mg/kg. As - Arsenic Ba - Barium Cd - Cadmium							-S= shallow sample (referred to as -S in text) collected from 0 to 12 inches bgs -D = deep sample (referred to as -D in text) collected from 24 to 36 inches bgs -DUP = Duplicate sample < = Not detected above the designated PQL. ND = Not Determined NA = Not Analyzed J = Estimated value, cpmstituent detected at a level less than the practical quantitation limit and greater than the method detection limit.									
Pb - Lead Hg - Mercury Se - Selenium							 * = Relative percent difference (RPD) for duplicate analysis exceeded acceptable quality contribution. (X) = TPH heavier than diesel present. The concentration result was based on the area of the peaks within the retention time window of diesel-range organics. SVOC Data: SVOCs were analyzed on all samples (except SB4-1-S-D). ALL WERE NON- 									

VOCs = Volatile organic compounds

Table 32 Summary of Analytical Data for LOU # 54 Delet Area Change Upward at Sertia Tag

AP Plant Area Change House/Lab Septic Tank Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Boring		Sample		Me	etals EF	A Meth	od 6010) (mg/ŀ	(g)		
Number	Date	Depth (ft bgs)	As	Ва	Cd	Cr	Pb	Hg	Se	Ag	рН *
SB6-1	4/9/1997	-5	3.7	175 ¹	<0.4	15.8	8	<0.1	<0.7	<0.4	8.87
	4/9/1997	-5-DUP	4.09	238 ¹	<0.4	14.0	8.82	<0.1	<0.7	<0.4	9
	4/9/1997	-10	6	327 ¹	<0.4	16.1	8.4	<0.1	<0.8	<0.4	9.14
	4/9/1997	-15	5.6	150 ¹	<0.4	15.2	7.2	<0.1	<0.8	<0.4	10.0
SB6-2	4/9/1997	-5	4	150 ¹	<0.4	13.9	7.9	0.1	<4	1.2	8.47
	4/9/1997	-10	5.8	170 ¹	<0.4	17.6	10.1	<0.1	<4	<0.4	8.37
	4/9/1997	-15	5.1	173 ¹	<0.4	16.4	8.5	<0.1	<4	<0.4	8.73

Notes:

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

As = Arsenic

Ba = Barium

Cd = Cadmium

Cr = Chromium

Pb = Lead

Hg = Mercury

Se = Selenium

Ag = Silver

* = pH by EPA Method 9045

¹ = Relative percent difference (RPD) for duplicate analysis exceeded acceptable quality control limits.

-DUP = Duplicate sample taken at the indicated depth.

Data from ENSR, 1997, Phase II ECA.

Table 33 Summary of Analytical Data for LOU # 62 State Industries, Inc. Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Sample Ma	trix: Soil					
Sample Ana	alysis by: Atla	as Chemical	Testing Lab	oratories, l	₋as Vegas Nevada	
Samples tal	ken from Por	nd Area	-		-	
Boring/		Sample		0	Total Available Water	
Sample	Date	Depth	Sodium	Sulfate	Soluble Sodium Sulfate	pН
Number		(ft bgs)	(%)	(%)	(%)	-
B-1	11/8/1995	2	0.01	0.02	0.03	8.6
	11/8/1995	5	0.02	0.04	0.06	9.2
	11/8/1995	9	0.03	0.04	0.06	8.4
B-2	11/8/1995	3	0.02	0.03	0.05	8.5
	11/8/1995	6	0.03	0.04	0.06	8.9
	11/8/1995	9	0.03	0.03	0.05	8.5
	11/8/1995	14	0.03	0.04	0.06	8.5
B-3	11/8/1995	3	0.08	0.91	0.24	8.48
	11/8/1995	5	0.08	0.88	0.25	6.29
	11/8/1995	4	0.1	0.92	0.31	5.85
	11/8/1995	7	0.07	0.86	0.22	7.28
	11/8/1995	14	0.07	0.93	0.22	7.5
B-4	11/8/1995	2	0.11	1.05	0.33	7.77
	11/8/1995	4	0.09	0.96	0.29	6.49
	11/8/1995	6	0.03	0.12	0.09	8.34
	11/8/1995	9	0.02	0.03	0.05	8.53
	11/8/1995	14	0.02	0.03	0.05	8.84
B-5	11/8/1995	2	0.13	1.39	0.42	7.96
	11/8/1995	5	0.08	1.05	0.25	8.03
	11/8/1995	7	0.03	0.18	0.1	8.41
B-6	11/8/1995	3	0.02	0.05	0.06	8.74
	11/8/1995	7	0.03	0.11	0.08	8.66
B-7	11/8/1995	2	0.03	1.08	0.1	4.35
	11/8/1995	4	0.03	0.84	0.09	5.2
	11/8/1995	6	0.03	0.95	0.08	3.61

Notes:

Water Soluble Salt Analysis in Soil 1:5 (soil:water) Aqueous Extraction, ASTM D 1428, D 516. NOTE: As Indicated on Analysis: The results for each constituent denote the percentage of that analyte, solubl in water at a 1:5 (soil: water) extraction ratio, which is present in the soil. Sodium was determined by flame photometry, sulfate turbidimetrically, and sodium sulfate by calculation.

Data From: ETEC, 1995: Geotechnical Investigation Report, Administration/ Office Building Between Lake Mead Drive and KMCC Plant Henderson, Nevada, November 20, 1995.

Table 33 Summary of Analytical Data for LOU # 62

State Industries, Inc.

Kerr-McGee Chemical LLC Facility, Henderson, Nevada

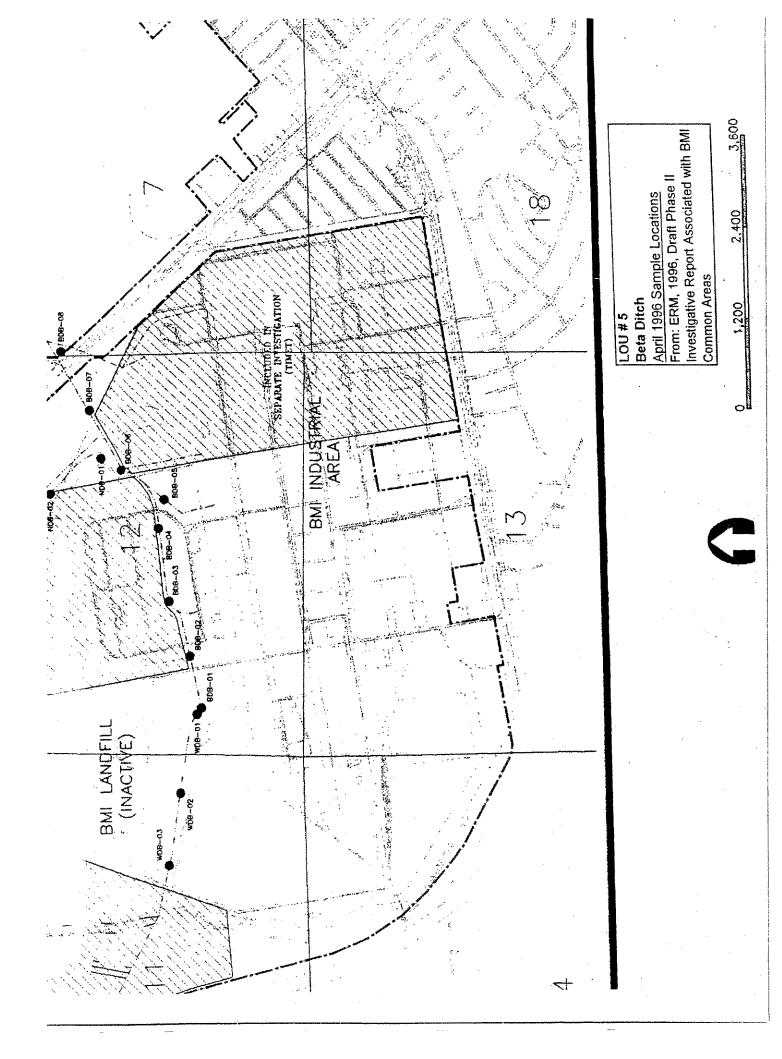
Sample Ma									ed hold	ing tim	nes.					
	alysis by: Nev									00				(
	cen from Rec			ular Ev	vapora									eiy).	васко	round sample ta
Sample	Date	Depth (ft bgs)		-					(mg/kg)						-	pH
Number		(ft bgs)	As*	Ва	Be	Cr	Со	Cu	Pb *	Hg*	Мо	Ni	Ag	V	Zn	EPA Method 150.0
BR-1-4	1/3/1996	4	3.6	170	0.47	11	8.3	11	15		1.8	11		23	26	6.64
BR-2-4	1/3/1996	4	3.4	210		20	13	6.7	15	0.21	7.5	11	<5	10	81	2.79
BR-3-3.5	1/3/1996	3.5	3.2	150	0.28	54	13	13	16		6.8	16		20	83	3.19
BR-4-3.5	1/3/1996	3.5	3.0	120	0.52	10	20	13				18		23	95	3.92
BR-5-3.5	1/3/1996	3.5	4.0	280		18	14		27	0.23	15	11	5.4	8	60	2.57
BR-6-3.5	1/3/1996	3.5	3.7	190	0.43	27	13	14	31	0.16	9.9	<20		24	71	7.03
BR-6-5	1/3/1996	5	2.4	230	0.62	7.4	7.6	12				12		22	26	8.38
BR-7-3.5	1/3/1996	3.5	2.2	140	0.54	6.7	7.4	11				11		20	26	7.92
BR-8-3	1/3/1996	3	2.7	120	0.3	23	11	25	15			12		20	70	3.78
BR-8-4	1/3/1996	4	3.0	30	0.73	8.3	34	11				28		24	100	7.1
BR-9-4	1/3/1996	4	3.3	170	0.38	26	18	12	21		5.9	22		21	66	5.12
BC-1-5	1/3/1996	5	2.4	180	0.57	10	11	14	16		< 0.5	17		22	43	7.97
BC-1-10	1/3/1996	10	4.8	90		37	5.7	25	14		6.2	7.4		21	23	4.45
BC-2-10	1/3/1996	10	3.4	150	0.54	8.2	8.8	11			< 0.5	13		22	26	7.59
BC-3-8.5	1/4/1996	8.5	7.6	63	0.52	110	7.2	29	15			12		36	50	7.01
BC-4-7	1/4/1996	7	4.0	440		20	58	42	21	0.13	2.6	120		19	260	7.67
BB-1-5	1/4/1996	5	2.9	160	0.59	6.7	7.4	12				11		19	26	8.75
	Quanti	itation Limit	1	0.25	0.25	0.5	0.5	5	12.5	0.1	5	2	0.75	2.5	5	NA
	,															
HITS ONLY					-				. = =							
				,	L	V	<u>'UCs (</u>	<u>µg/kg</u>) EPA	Metho)A			
Sample	Data	Depth								/	15	e/_e				

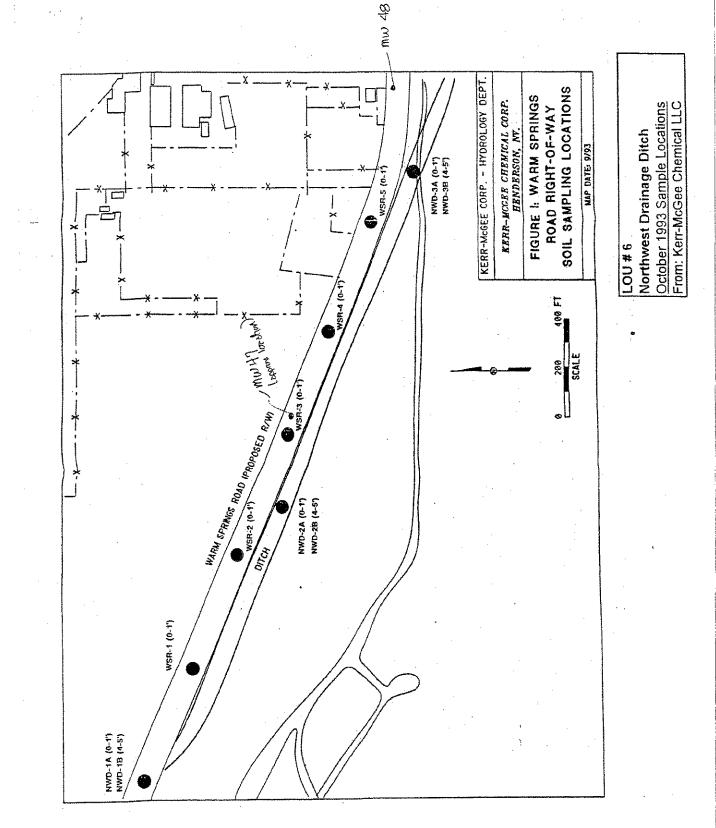
Sample Number	Date	Depth (ft bgs)	AC	store 2.5	outanone	TCA N TCA		etanone PCF	4 10			Prylene Prylene	Nere
BR-1-4	1/3/1996	4						28 J					
BR-2-4	1/3/1996	4	360	30	31	10		130J			27J	20J	
BR-3-3.5	1/3/1996	3.5			17J	5J		130J			6	8	
BR-5-3.5	1/3/1996	3.5			77J	14J		230J	6J		57	32	
BR-6-3.5	1/3/1996	3.5							7J				
BR-8-3	1/3/1996	3		27			44	8J					
BC-4-7	1/4/1996	7						9J					
	Quantitation	n Limit	25	25	5	5	25	5	5	5	5	5	

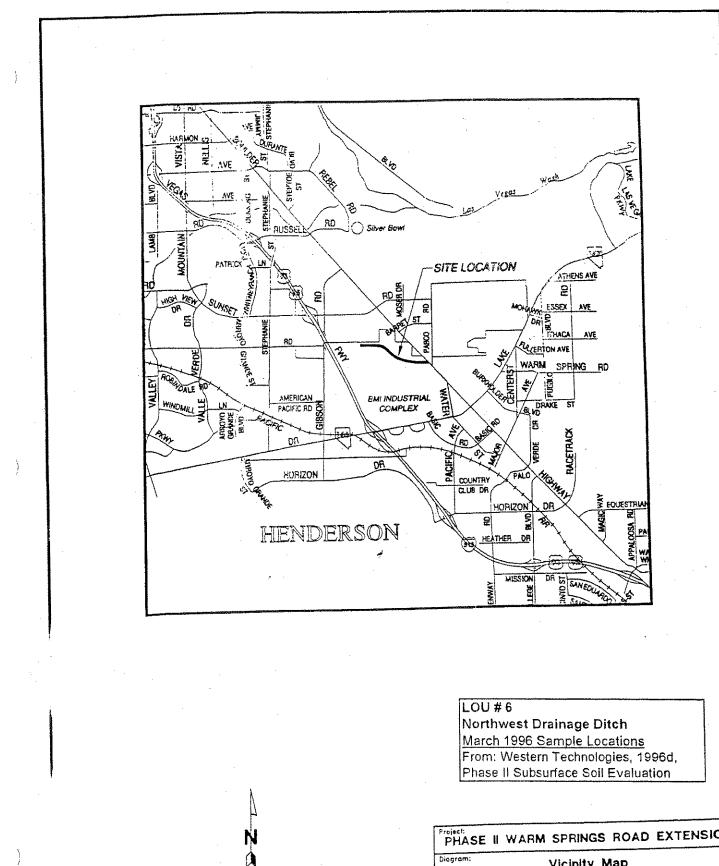
Table 33Summary of Analytical Data for LOU # 62State Industries, Inc.Kerr-McGee Chemical LLC Facility, Henderson, Nevada

Notes:		
As* = Arsenic, EPA Method 7060A	V = Vanadium	VOCs = Volatile organic compounds
Ba = Barium	Zn = Zinc	1, 1, 1-TCA = 1, 1, 1-Trichloroethane (TCA)
Be = Beryllium	= Data was detected below the Reporting limit.	TCE = Trichloroethene (TCE)
Cr = Chromium	J = Estimated quantitation due to a probable matrix effect.	PCE = Tetrachloroethene (PCE)
Co = Cobalt	µg/kg = micrograms per kilogram	Metals analyzed at 1:500 dilution due to matrix
Cu = Copper	mg/kg = milligrams per kilogram	effect (As, Čr, Cu, Mo, Ni, V, Zn)
Hg* = Mercury, EPA Method 7471A	Note: Samples with all non-detect VOC results include: BR-4-3.5,	BR-6-5, BR-7-3.5, BR-8-4, BR9-4, BC-1-5, BC-1-10, BC-2
Pb* = Lead, EPA Method 7420	10, BC-3-8.5, and BB-1-5.	
Mo = Molybdenum	Data From: Western Technologies, 1996a: Subsurface Soil Evalu	uation Former Evaporative Ponds Sites, Former State
Ni - Nickel	Industries Facility, BMI Industrial Complex, Henderson, Nevada; (
Ag = Silver	also presented in Kerr-McGee, 1996b, Response to LOU Comme	-

Sample Ma	Sample Matrix: Soil Samples (taken by KMCC) are splits of samples taken by State Industries (above) with expired holding times.														
	lysis by: Sou	uthwes	•	•		'	•					`	,		0
Samples tak	ken from Por	nd Are	а												
								V	OCs 🛛	(µg/kg)	EPA	Metho	d 824	0	
Boring/ Sample Number	Date	Me	IN PRE CHI	onde .	Dichloros	thene Dichloros	shane ordonn	uterore	Tichoroe Tichoroe	there all there there 2. He	TCE Ter	achino ett	ere pot	When zene	ere total
Volatile # 2	1/3/1996	6 J	130	<7	<7	<7	17	8	54	<14	22	3 J	2 J	15	
Volatile # 3	1/3/1996	8	210	2J	3J	1J	240	120	66	<12	140	3 J	<6	12	
Volatile # 3-D	1/3/1996	5 J	140	1	2	<7	120	62	26	<12	64	2 J	<6	6	
Volatile # 4	1/3/1996	6	48	<6	<6	<6	68	15	52	94	29	2J	<6	4 J	
Volatile # 4-D	1/3/1996	7	34	<6	<6	<6	40	16	48	64	43	3 J	<6	7	
Volatile # 5	1/3/1996	9	92	<7	2 J	<7	<14	71	73	<14	72	5 J	5 J	37	
Volatile # 5-D	1/3/1996	9	89	<7	2 J	<7	<14	66	42	<14	89	5 J	6 J	45	
Quanti	Quantitation Limit 6 12 6 6 6 6 12 14 6 6 12 6														
J = Estimated	< = not detected above the respective PQL.VOCs = Volatile organic compoundsJ = Estimated Value: Concentration below limit of quantitationμg/kg = micrograms per kilogram														
Data from: In	ata from: Internal Correspondence, Kerr-McGee Chemical LLC Facility, Feb-20, 1996.														

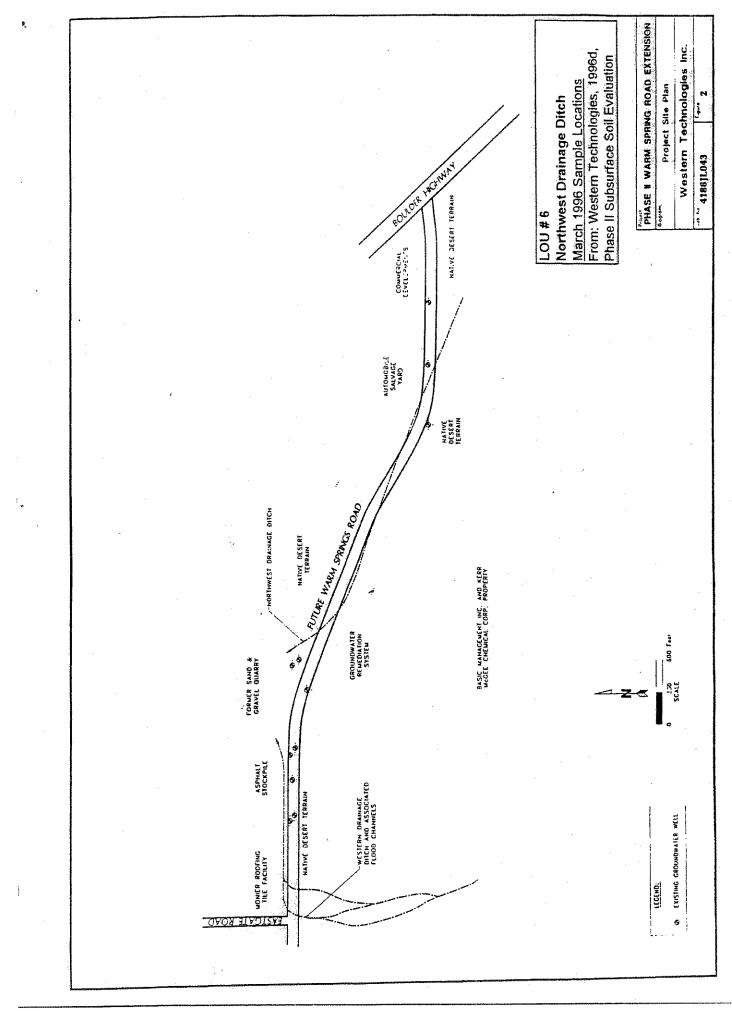

Table 34 Summary of Analytical Data for GW-11 Pond Kerr-McGee Chemical LLC Facility, Henderson, Nevada

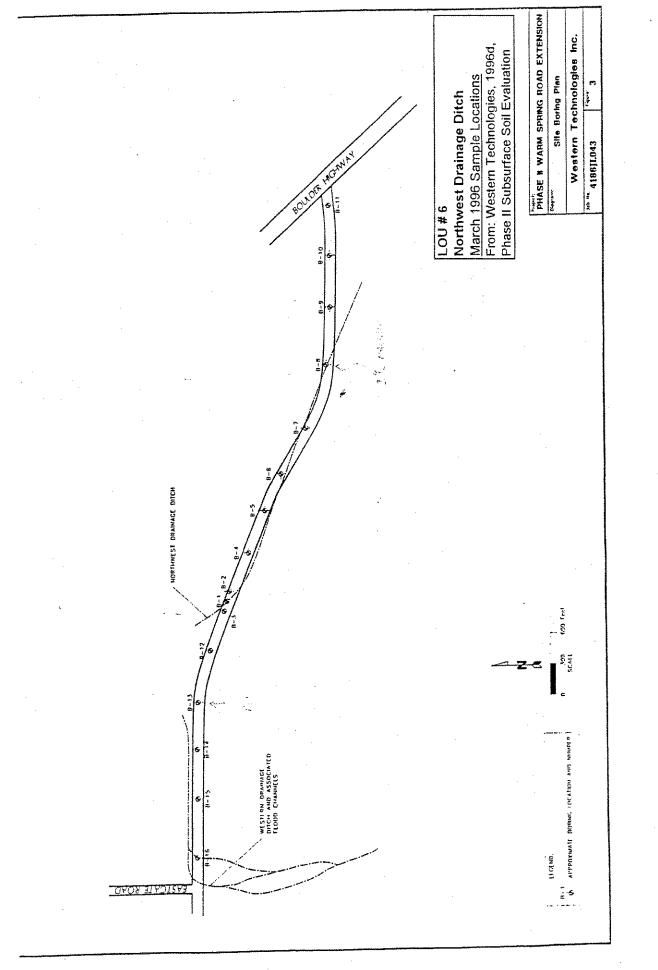

Sample	Sample Date	Pollutant Family	Analyte	Analytical Method	Result	Units
		Miscellaneous Compounds,	Ammonia Nitrogen	EPA 350.1 ammonia as N	6.4	mg/L
	0/0/0004	Chemicals, and Products ⁽¹⁾				
W-11	8/3/2004	-	Percent Unionized Ammonia 25C	CALC-CRC	5.26	%
SW-11	8/3/2004			NII / 0100D		1.01
SW-11	8/3/2004	4	Apparent Color	ML/s2120B	100	ACL
SW-11	8/3/2004	-	Surfactants All Other Miscellaneous Compounds were ND	EPA 425.1 as surfactants NA	7.14 NA	mg/L NA
SW-11	8/3/2004	lons	chlorate	EPA 300.1B as chlorate	7600000	ug/L
GW-11	8/3/2004		chloride	EPA 300.0 as chloride	6900	mg/L
GW-11	8/3/2004		nitrate	EPA 300.0 as nitrate	200	ug/L
GW-11	8/3/2004		perchlorate	EPA 314.0 as perchlorate	2300000	ug/L
GW-11	8/3/2004		sulfate	EPA 300.0	4100	mg/L
			All Other Ions were ND	NA	NA	NA
GW-11	8/3/2004	Metals ⁽²⁾	arsenic III	EPA 200.8	38	ug/L
GW-11	8/3/2004	-	Total arsenic	EPA 200.8	77	ug/L
GW-11 GW-11	8/3/2004	-	Total barium	EPA 200.8	60	ug/L mg/L
GW-11	8/3/2004 8/3/2004	-	Total boron chromium (hexavalent)	EPA 200.7 EPA 7196A	28	mg/L
GW-11	8/3/2004	1	chromium (total)	EPA 7196A EPA 200.8	1900	ug/L
GW-11	8/3/2004	1	Total magnesium	EPA 200.7	1000	mg/L
GW-11	8/3/2004	1	Total manganese	EPA 200.8	110	ug/L
GW-11	8/3/2004		Total molybdenum	EPA 200.8	160	ug/L
GW-11	8/3/2004		Total nickel	EPA 200.8	67	ug/L
GW-11	8/3/2004		Total potassium	EPA 200.7	120	mg/l
GW-11	8/3/2004		Total sodium	EPA 200.7	5000	mg/l
SW-11	8/3/2004		strontium	ML/6010-200.7	45	mg/l
GW-11	11/11/2004		Uranium	EPA 200.8	140	ug/L
GW-11	8/3/2004	-	Total vanadium	EPA 200.8	87	ug/L
			All Other Metals were ND	NA Mu (EDA 004	NA	NA
	0/0/0004	Volatile Organic Compounds	chloroform	ML/EPA 624	0.6	ug/L
GW-11	8/3/2004 8/3/2004	(VOCs) ⁽³⁾	D (
GW-11	8/3/2004	-	Bromoform All Other VOCs were ND	ML/EPA 624 NA	0.7 NA	ug/L NA
GW-11	8/3/2004	Chlorinated Herbicides	Dichlorprop	ML/SW 8151A	1.9	ug/L
JVV-11	0/3/2004	Organophosphorous	No Organophosphorous Pesticides Detected	ML/EPA 608	NA	NA
GW-11	11/11/2004	Pesticides				
GW-11	8/3/2004	Organochlorine Pesticides	No Organochlorine Pesticides Detected	ML/EPA 608	NA	NA
-		Total Petroleum	No Petroleum Hydrocarbons Detected	Method 418.1	NA	NA
GW-11	11/11/2004	Hydrocarbons				
GW-11	8/3/2004	Polychlorinated Biphenyls (PCBs)	No PCBs detected	ML/EPA 608	NA	NA
		Semivolatile Organic	Di (2-Ethylhexly)phthalate	EPA 525.2	1.13	ug/L
		Compounds (SVOCs) and				- 3-
		Polynuclear Aromatic				
GW-11	8/3/2004	Hydrocarbons (PAHs)				
			All Other SVOCs and PAHs were ND	NA	NA	NA
GW-11	8/3/2004	Radionuclides	gross alpha	EPA 900.0	120	pCi/l
SW-11	8/3/2004	4	Alpha, Min Detectable Activity	EPA 900.0	40.5	pCi/l
GW-11	8/3/2004	4	Alpha, Two Sigma Error	EPA 900.0	48	pCi/l
GW-11	11/11/2004	4	gross alpha Alpha, Min Detectable Activity	EPA 900.0	2.42	pCi/
GW-11 GW-11	11/11/2004 11/11/2004	1	Alpha, Min Detectable Activity Alpha, Two Sigma Error	EPA 900.0 EPA 900.0	1.98	pCi/
GW-11	8/3/2004	1	radium 226	ML/EPA 903.1	<0.82	pCi/l
SW-11	8/3/2004	1	radium 226 Minimal Detectable	ML/EPA 903.1	0.82	pCi/l
SW-11	8/3/2004	1	radium 228	ML/EPA 904.0	<1.48	pCi/
GW-11	8/3/2004	1	radium 228 Minimal Detectable	ML/EPA 904.0	1.48	pCi/l
GW-11	11/11/2004]	Uranium	EPA 200.8	93.8	pCi/l
			All Other Radionuclides were ND	NA	NA	NA
GW-11	8/3/2004	Water Quality Parameters	TDS	SM 2540C	30500	mg/l
GW-11	8/3/2004	Parameters	Biochemical Oxygen Demand, Totl	SM5210B 405.1	3.19	mg/l
GW-11	8/3/2004	4	Total Organic Carbon	ML/SM 5310C	5.0	mg/l
GW-11	8/3/2004	4	Total Inorganic Nitrogen-Calc	EPA 300.0	206	mg/l
GW-11	8/3/2004	4	рН	EPA 150.1 as pH for water	8.0	pH Ur
	1	1	All Other Water Quality Parameters were ND	NA	NA	NA

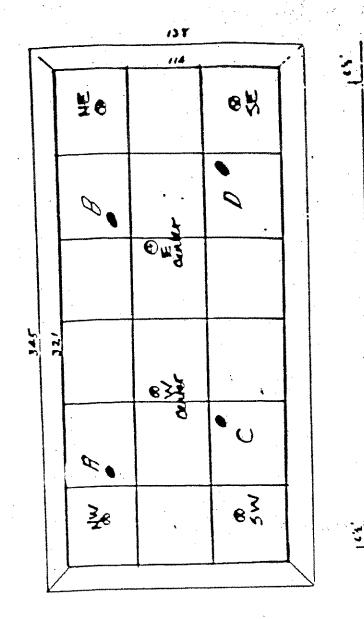

Notes: ⁽¹⁾ Cyanide was sampled on 11/11/04 and run on 11/15/04 ⁽²⁾ Thorium was sampled on 11/11/04 and run on 12/5/04 ⁽³⁾ Octachlorosytrene was sampled on 11/11/04 and run on 11/22/04 **General Notes:** mg/L = milligrams per liter. pCi/L = pico curies per liter. pJ/L = micrograms per liter. ND = non detect NA - not available or not applicable.

Sample Location Maps for:

LOU # 5 Beta Ditch LOU #6 Northwest Drainage Ditch LOU #13 Pond S-1 LOU #14 Pond P-1 LOU #62 State Industries LOU #63 J. B. Kelley Inc. LOU #64 Koch Materials

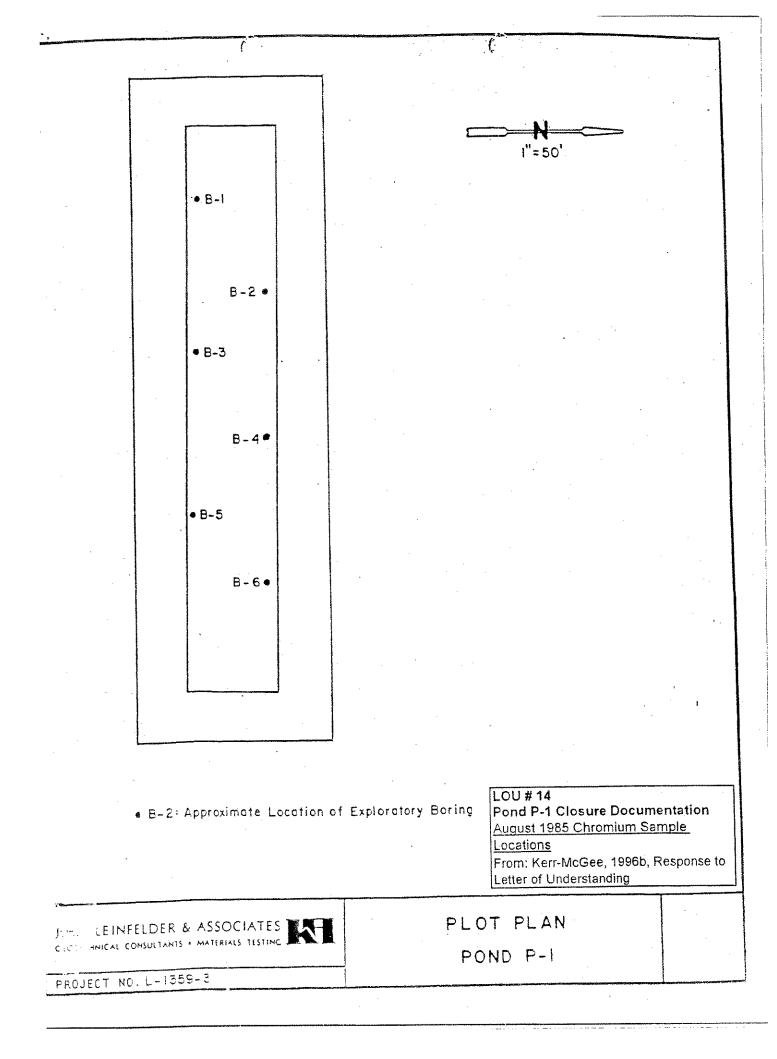


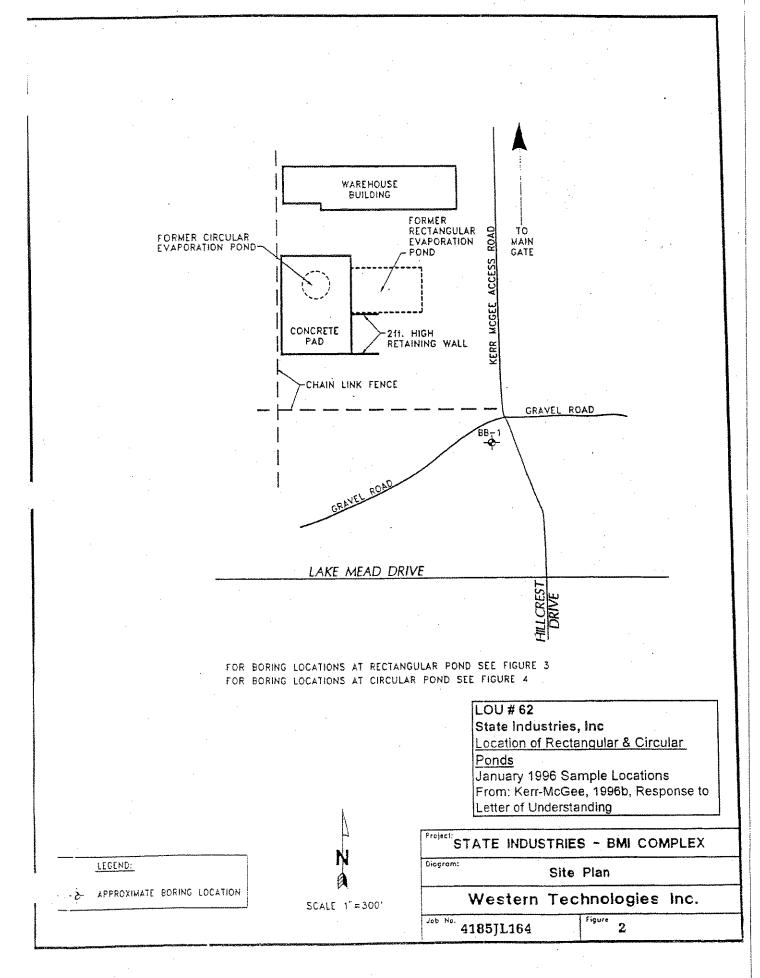



NOT TO SCALE


PHASE II WARM SPRIN	IGS ROAD EXTENSION
Diegram: Vicinit	у Мар
Western Tec	hnologies Inc.
Job No. 4186JL043	Figure 1

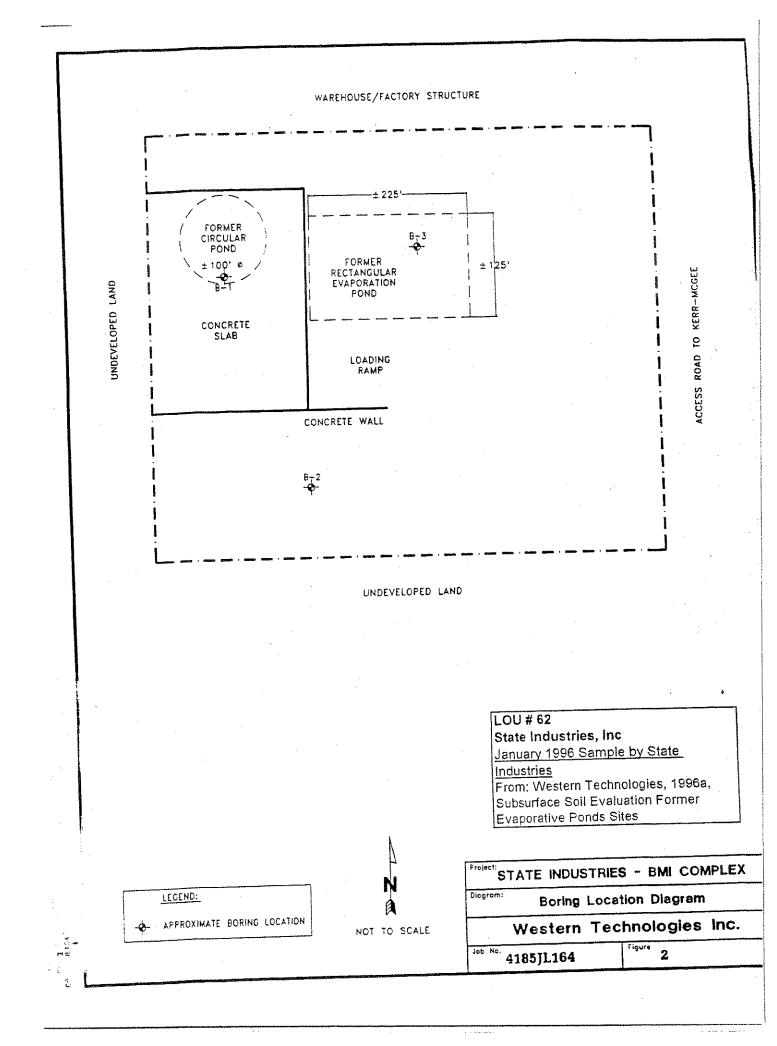
-

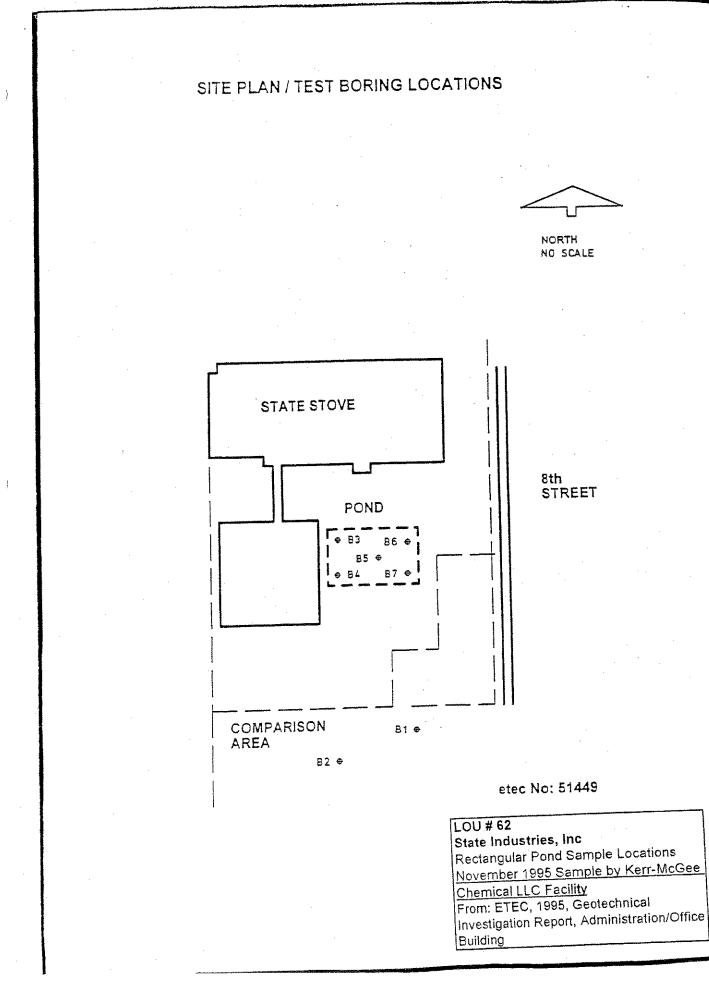




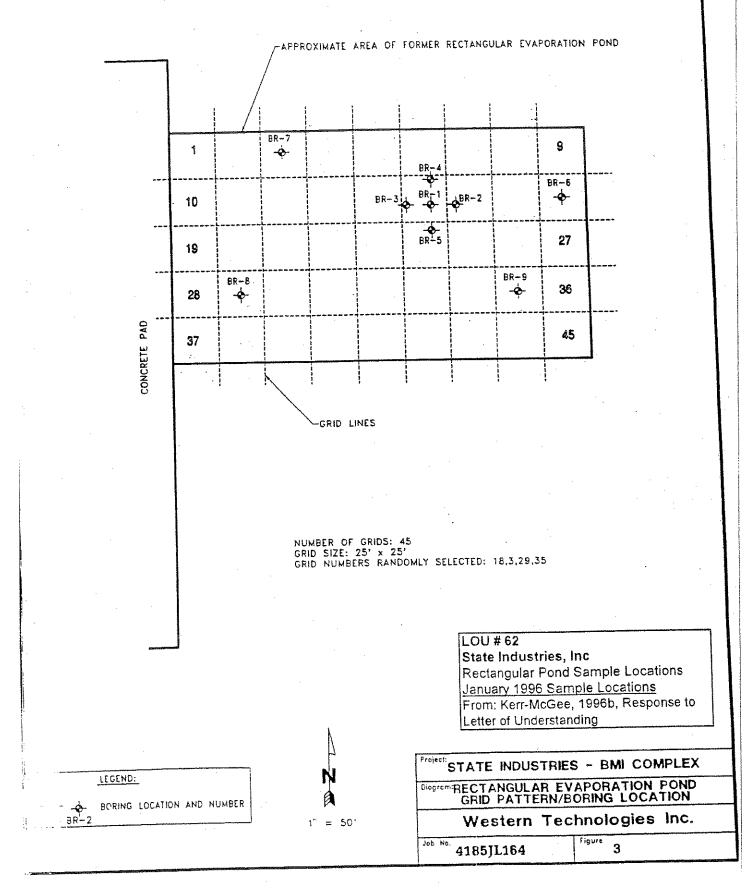
5-1

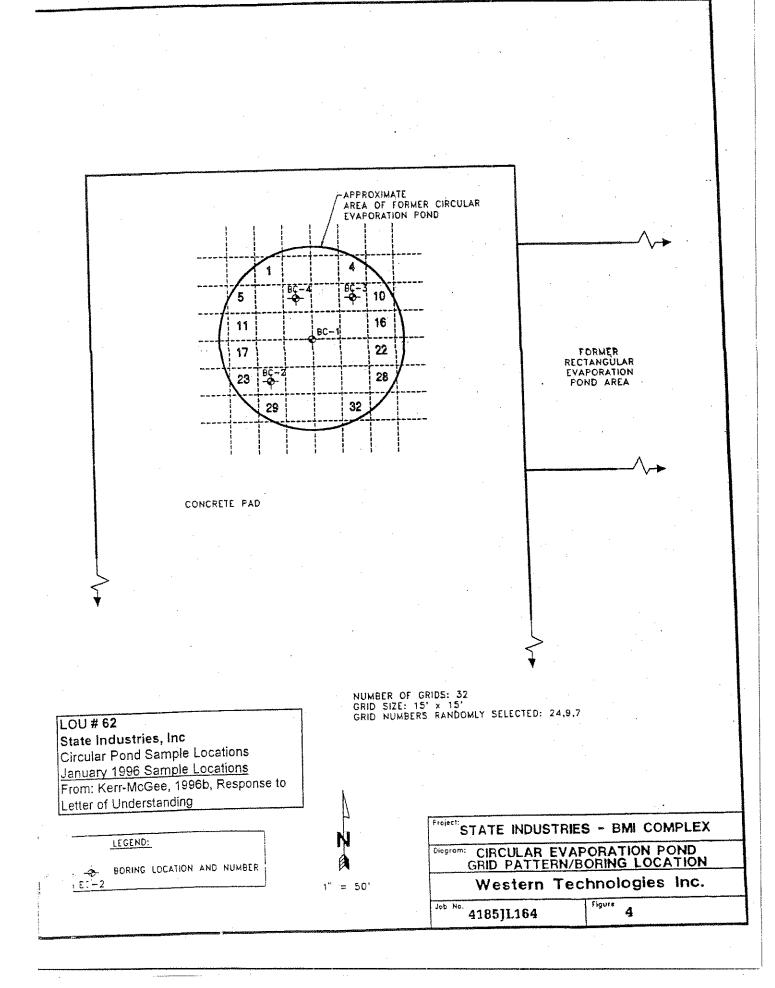
EVAPORATION POND

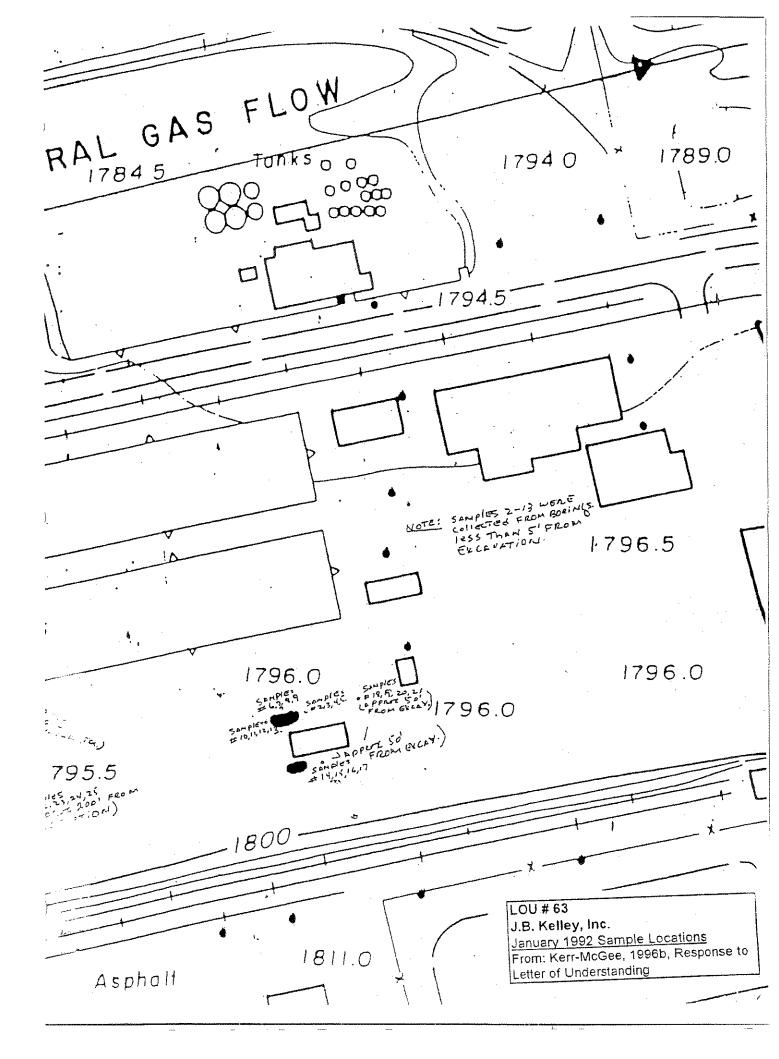

LOU # 13 Pond S-1 Closure Documentation August 1984 Chromium Sample Locations From: Kerr-McGee, 1996b, Response to Letter of Understanding

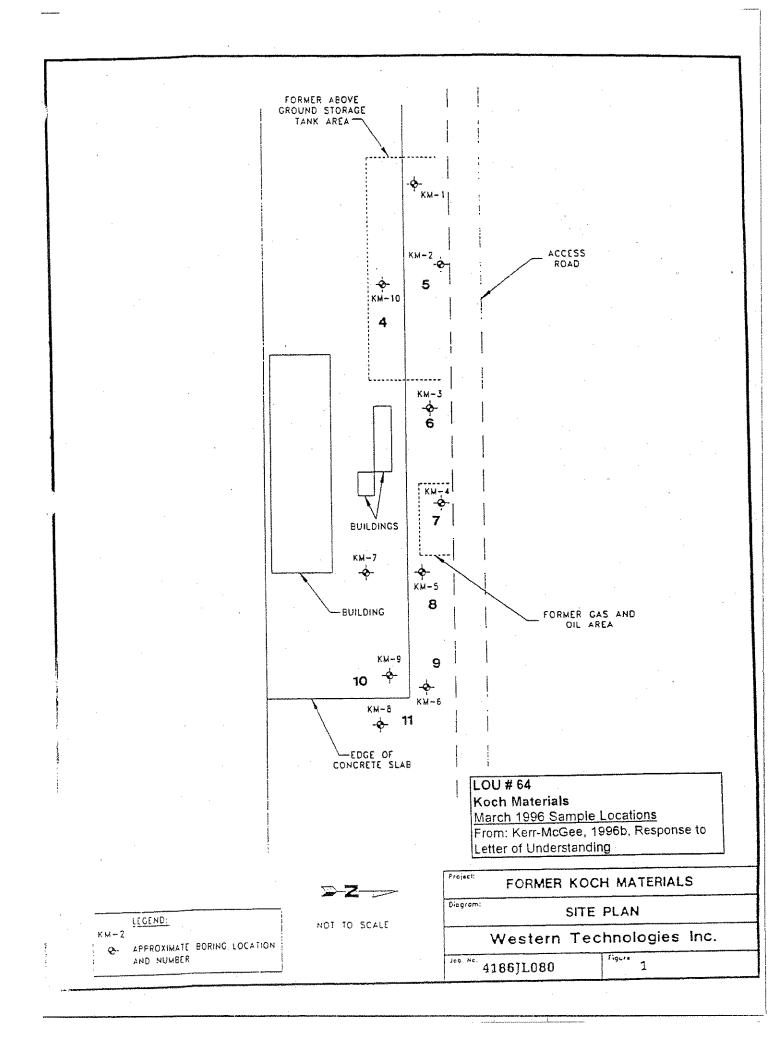


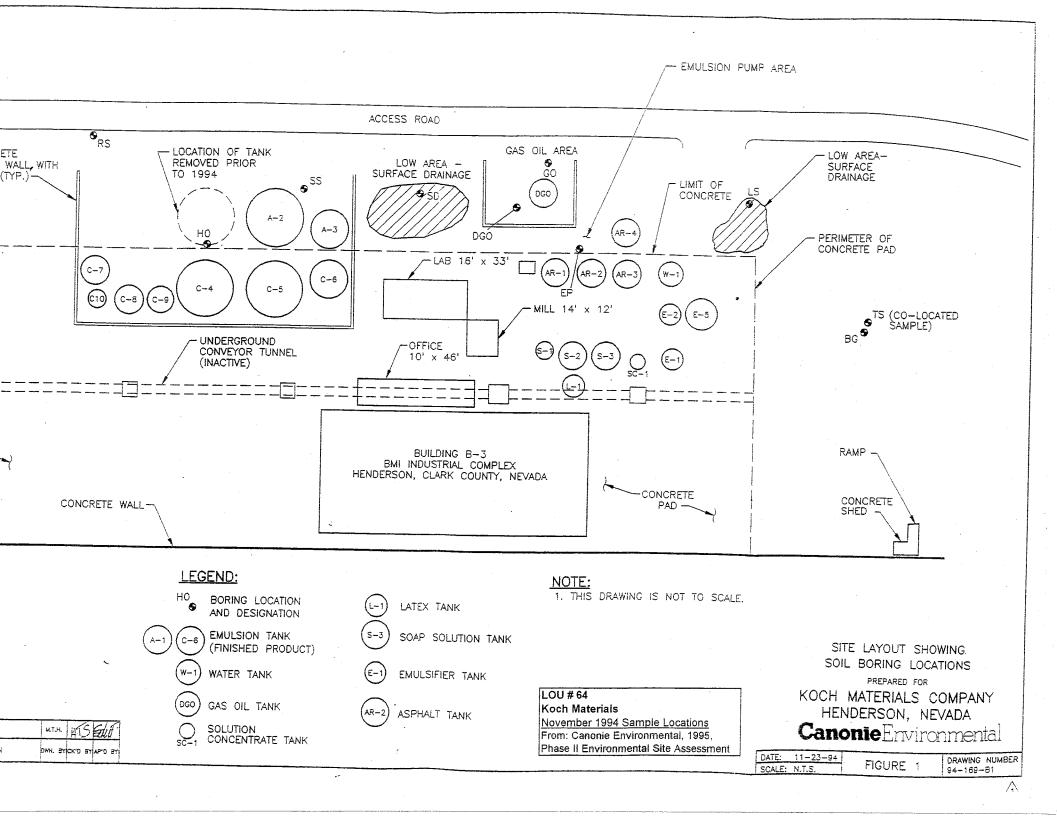
......

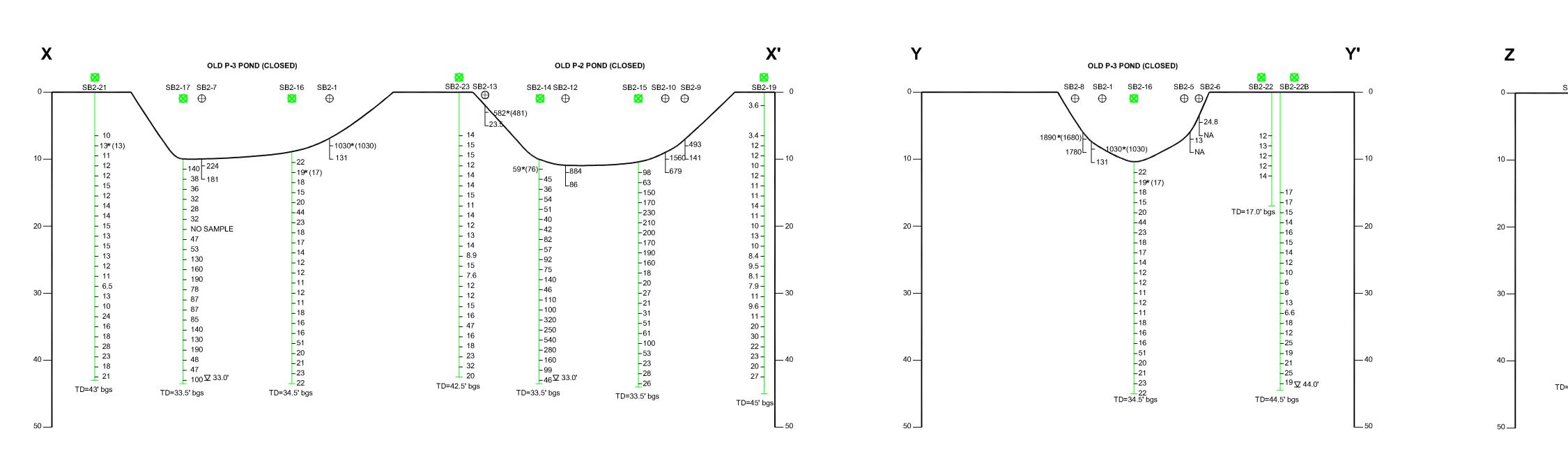


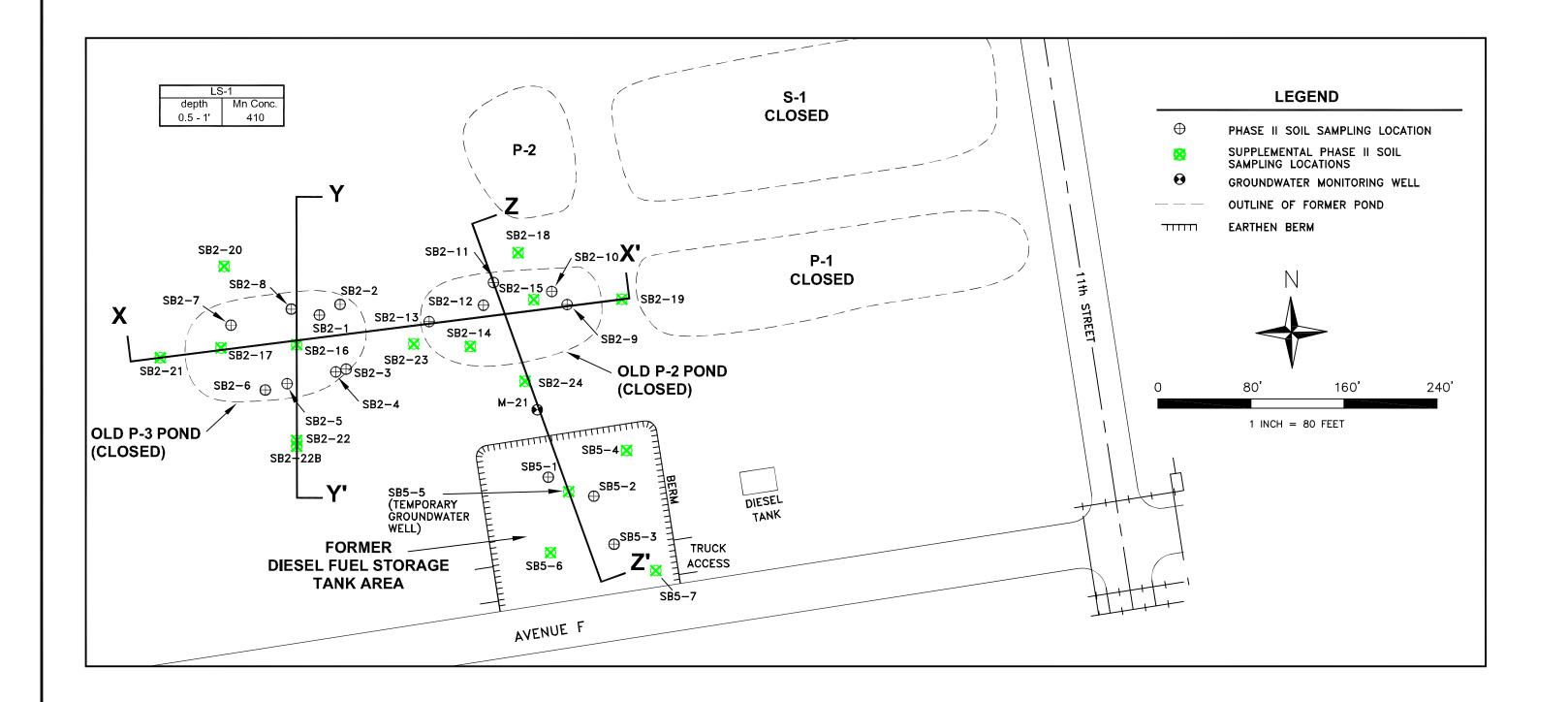


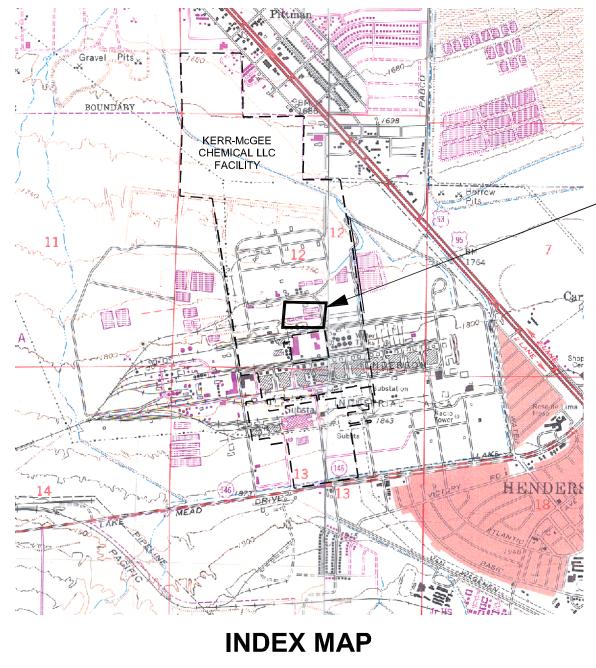


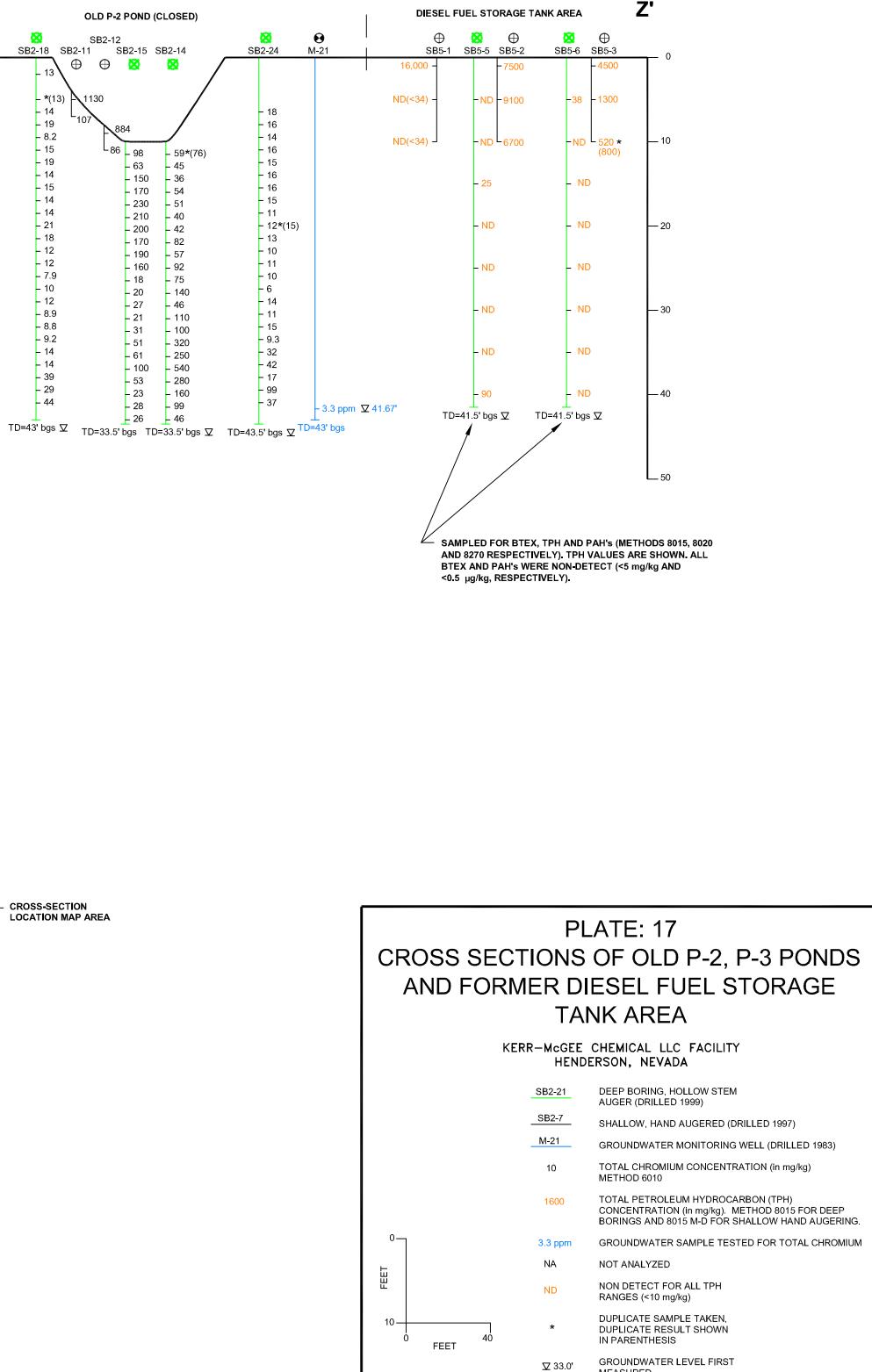

11











1000'2000' 4000 SCALE IN FEET

JANUARY 2005

MEASURED

bgs

BELOW GROUND SURFACE