SEEP AREA GROUNDWATER CHARACTERIZATION REPORT

المستحدين المتوجع براجع المناد المتحاد المتحاد

KERR-MCGEE CHEMICAL LLC HENDERSON NEVADA FACILITY

Prepared by Kerr-McGee Chemical LLC 8000 West Lake Mead Drive Henderson, NV 89015

January 18, 2001

ALLEN BIAGGI, Administrator

(775) 687-4670

TDD 687-4678

Administration Facsimile 687-5856

Water Pollution Control Facsimile 687-4684

Mining Regulation and Reclamation *Facsimile* 684-5259 STATE OF NEVADA KENNY C. GUINN Governor

04/30/07 Tank

Waste Management Corrective Actions Federal Facilities

Air Pollution Control Air Quality Planning Water Quality Planning

Facsimile 687-6396

DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES

DIVISION OF ENVIRONMENTAL PROTECTION

333 W. Nye Lane, Room 138Carson City, Nevada89706

April 26, 2002

Susan Crowley Environmental Scientist Kerr McGee Chemical Corp. P.O. Box 55 Henderson, NV 89009

SUBJECT: NPDES Permit NV0023060 Las Vegas Wash Tracer Study

Dear Ms. Crowley:

Your report of the Las Vegas Wash Tracer Study that was required by Condition I.A.16.c of subject permit has been reviewed. We find that it meets said permit condition. We further find that the results of the study clearly establish the boundary of the mixing zone. Therefore, there is no need for a permit modification.

Please call me at (775) 687-4670 ext. 3050 if you have any questions regarding this letter.

Sincerely,

CC:

Jonathan C. Palm, Ph.D., P.E. Permits Branch Supervisor Bureau of Water Pollution Control

> Leo Drozdoff, NDEP Jennifer McMartin, NDEP Doug Zimmerman, NDEP Nadir Sous, NDEP LV Todd Croft, NDEP LV

I:\...Permits\KRMCGEE2\NV0023060

SEEP AREA GROUNDWATER CHARACTERIZATION REPORT

KERR-McGEE CHEMICAL LLC HENDERSON NEVADA FACILITY

Prepared by Kerr-McGee Chemical LLC 8000 West Lake Mead Drive Henderson, NV 89015

January 18, 2001

TABLE OF CONTENTS

Ť

SUMMARY1						
1.0	GENERAL GEOLOGY AND HYDROLOGY2					
2.0	SEEP CHARACTERIZATION STUDY OBJECTIVES					
3.0	FIELD INVESTIGATION PROCEDURES43.1SOIL BORINGS43.2MONITOR WELL INSTALLATION43.3GROUNDWATER SAMPLING53.3.1Soil Borings53.3.2Monitor and Tracer Test Wells53.3.3Las Vegas Wash Seeps and Springs63.4ALLUVIAL PUMP TESTS6					
	3.5TRACER TESTS					
4.0	FIELD INVESTIGATION RESULTS 7 4.1 ALLUVIAL HYDROGEOLOGIC CHARACTERIZATION 8 4.1.1 Groundwater Flow Conditions 8 4.1.2 Alluvial Channel System 10 4.1.3 Well Pump Tests 11 4.1.4 Tracer Tests 11 4.2 GROUNDWATER CHEMICAL CHARACTERIZATION 13					
	 4.2 GROUNDWATER CHEMICAL CHARACTERIZATION					
5.0	ANALYSIS OF SHORT-TERM GROUNDWATER OPTIONS					
6.0	CONCLUSIONS AND RECOMMENDATIONS					
7.0	REFERENCES					

i

LIST OF FIGURES

Figure

- 1. Location Map
- 2. Hydrogeologic Cross Section A A', Lower Ponds Traverse
- 3. Hydrogeologic Cross Section B B', Pittman Lateral Traverse
- 4. PC-101 (Site A) Graph of Water Level Depth
- 5. PC-98 (Site B) Graph of Water Level Depth and Conductivity
- 6. PC-99 (Site C) Graph of Water Level Depth
- 7. PC-87 (400 ft W of PC-99, Site C) Graph of Water Level Depth
- 8. Graph of Seep Flow, Perchlorate Concentration and Mass Flow
- 9. Groundwater Survey for Perchlorate Entering Las Vegas Wash

LIST OF PLATES

Plate

- 1. Potentiometric Surface Map Quaternary Alluvium Aquifer
- 2. Thickness Map of the Quaternary Aquifer
- 3. Structure Map on Top of the Muddy Creek Formation
- 4. Perchlorate in Groundwater Map of the Quaternary Alluvium Aquifer
- 5. Conductivity Map of the Quaternary Alluvium Aquifer

APPENDICES

<u>Appendix</u>

- A. Soil Boring Lithology Logs
- B. Monitor Well Construction Diagrams
- C. Groundwater Level and Laboratory Analytical Data
- D. GPS Survey Data

ATTACHMENTS

<u>Attachment</u>

- 1. Pump Test Report of PC-70
- 2. Montgomery and Associates Tracer Test Report

SUMMARY

Kerr-McGee Chemical LLC (KMCLLC) is committed to developing and implementing a workable remediation technology to capture and destroy perchlorate entering Las Vegas Wash from its industrial plant in Henderson, Nevada. Because implementation of this remediation strategy involves removal and treatment of perchlorate-bearing water from both the Seep and the Pittman Lateral area it is important to understand the hydrogeological conditions operating in this area. Of primary concern is how the City of Henderson-Rapid Infiltration Basin (COH-RIB) affects the groundwater volume and perchlorate concentration in the Seep and the underlying aquifer. Equally important is the concern of whether or not additional significant perchlorate is entering Las Vegas Wash at other locations. The scope of the present investigation was to answer these concerns. The specific objectives were to:

- determine the hydrogeologic regime in the area between the Pittman Lateral and the Seep,
- determine the representative perchlorate concentration in the saturated thickness of the alluvial aquifer near the Seep,
- determine if any additional pathways exist along Las Vegas Wash for other significant perchlorate contribution,
- determine the rate of movement and the residence time for perchlorate and groundwater between the Pittman Lateral and the Seep and,
- determine potential groundwater pumping strategies.

The results of this investigation indicate that:

- The BMI Lower Ponds area, encompassing the Seep, is the only identified area of groundwater discharge containing significant perchlorate entering Las Vegas Wash.
- In the Lower Ponds area the main north-northeast trending alluvial paleochannel coalesces with a second poorly-defined paleochannel entering the area from the southwest, the perchlorate concentration of which has yet to be determined.
- In the Lower Ponds area, where the two paleochannels coalesce, the entire saturated interval of the alluvial aquifer contains perchlorate >10 mg/l over a width of about 2200 feet.

- The COH-RIB facility contributes huge amounts of treated wastewater at random times for random lengths of time and directly contributes to daylighting of groundwater in the Lower Ponds area and to wide fluctuations in both the flow volume and perchlorate content of the Seep.
- The rate of movement for groundwater and perchlorate between the Pittman Lateral and the Seep averages 35 ft/d and the residence time is about 6 months.
- Pumping of groundwater in the Lower Ponds area would only be a short-term solution. It will be more efficient to pump from the Pittman Lateral area.

Based on the results of this investigation it is recommended that KMCLLC continue to design and plan to build a groundwater capture system near the Pittman Lateral to partly feed the planned IX-Catalytic Destruction plant to be built on the KMCLLC plant facility. It is further recommended that additional drilling and monitor well installation be completed to better define the location and groundwater chemistry of the western paleochannel and that annual sampling and mapping be conducted to monitor any changes in the extent and concentration of the perchlorate and conductivity plumes north of Sunset Road and along Las Vegas Wash.

1.0 GENERAL GEOLOGY AND HYDROLOGY

The regional study area is located in the southeast portion of the Las Vegas Valley within the city limits of Henderson, Nevada. The Las Vegas Valley occupies a topographic and structural basin lying within the Basin and Range physiographic province. The valley is wide, flat, and slopes southeasterly from an elevation of about 2,000 feet above sea level at Las Vegas to about 1,200 feet at Lake Mead. Mountains composed of igneous and sedimentary rocks rise steeply along the borders of the valley and coalescing alluvial fans slope gently from the mountains toward the valley floor. The Las Vegas shear zone cuts diagonally northwest-southeast across Las Vegas Wash 2 miles east of the Seep area. Las Vegas Wash, a shallow, narrow stream that flows southeasterly across the valley, drains into Lake Mead.

The study area is underlain by the Miocene Muddy Creek formation. The Muddy Creek is a valley-fill deposit and has a wide range of lithologies including coarse-grained sands and gravels near the mountain fronts along the south portion of the study area and finegrained silts and clays toward Las Vegas Wash. Lacustrine gypsiferous clays and silts have been intersected in drill holes in the vicinity of Las Vegas Wash and crop out in an old gravel pit on the east side of the study area. Not all geologists accept that this finegrained sequence is the Muddy Creek formation and would prefer to equate it to the Pleistocene Chimihuavi formation of the Colorado River valley. Until known interbedded volcanic deposits are age-dated this question will remain unresolved. Younger Quaternary alluvial deposits rest unconformably on the Muddy Creek formation. The lithology of these alluvial sediments is a heterogeneous, well-graded mixture of sand and gravel with lesser amounts of silt, clay and caliche. Boulders and cobbles are common. Generally, the coarsest-grained alluvial sediments thin and pinch out from south to north toward Las Vegas Wash. These deposits fill erosional paleochannels in the Muddy Creek formation and thin laterally over the interfluvial areas. Paleochannels generally trend northeast-southwest and control the movement of shallow alluvial groundwater. Their linearity may be fracture controlled. Depth to water in these alluvial deposits ranges from near-surface close to the Wash to more than 30 feet on the KMCLLC plantsite. Horizontal hydraulic groundwater gradients are in the range of 0.001 feet per foot (ft/ft) to 0.04 ft/ft and average about 0.017 ft/ft. Closer to the Wash, water levels in wells indicate that hydraulic head is higher in the Muddy Creek formation than in the alluvial deposits with vertical gradient directed upward. Chemical composition of the water is generally a sodium chloride-sulfate type and is classified as slightly to moderately saline.

2.0 SEEP CHARACTERIZATION INVESTIGATION OBJECTIVES

In the March 22, 2000 KMCLLC *Work Plan for Seep Area Groundwater Characterization* and in a NDEP letter dated October 9, 2000 (Pohlmann to Crowley) objectives were to:

- Provide additional information about the physical and chemical characterization of the Seep area groundwater,
- Delineate the perchlorate plume and identify where it enters Las Vegas Wash,
- Determine whether any additional sources of perchlorate exist along the Wash, and
- Provide an analysis of potential short-term options for immediate groundwater treatment in the Seep area.

These objectives were accomplished through:

- Installation of a series of nested monitor wells along an east-west traverse between the Seep and the Lower Ponds,
- Sampling groundwater in the Las Vegas Wash from the Silver Bowl stadium, down stream 4 linear miles, to about 0.75 miles west of the upper dam of Lake Las Vegas,
- Regional sampling of groundwater in monitor wells from the KMCLLC plantsite to the Seep and mapping of physical and chemical perameters,

- Completion of a series of tracer tests to determine the residence time of groundwater and perchlorate between the Pittman Lateral and the Seep area,
- Completion of mapping to determine whether additional seeps are contributing to the perchlorate impact in Las Vegas Wash, and
- Evaluation of groundwater pumping strategies.

3.0 FIELD INVESTIGATION PROCEDURES

Fieldwork for this investigation began during the week of March 6, 2000 and continued through several phases of drilling and sampling until completion during the third week of September 2000. Field work included reconnaissance mapping and sampling of groundwater seeps and springs along Las Vegas Wash, drilling soil borings, installing monitor wells, sampling groundwater from monitor wells, installing and monitoring dataloggers at the 3 tracer test sites, conducting pump tests and tracer tests and surveying the drill locations. Borings and monitor wells were drilled and installed by Compliance Drilling of Las Vegas whereas wells used for tracer tests were drilled and installed by Layne Christensen Company of Chandler, Arizona. Groundwater analyses were performed by the KMCLLC Henderson facility and by Montgomery-Watson Laboratory in Pasadena, California. NEL Laboratories, Las Vegas, performed bromide analyses associated with the tracer tests.

3.1 SOIL BORINGS

à.

A total of 27 soil borings were drilled during this investigation. The placement of 20 of them was within 8 groups of 2 to 3 holes each. The boring locations, designated PC-74 through PC-102, are shown on Figure 1 and Plates 1-5. These holes were drilled using either a 10.5- or 8-inch outside diameter hollow stem auger (HSA) for monitor wells or a 9-inch outside diameter duel-wall reverse-air-circulation percussion hammer for tracer test wells. A split barrel sampler, measuring 2-inchs wide by 1.5-feet long was used to collect soil samples at key intervals during drilling activity to accurately log changes in subsurface lithology. Both soil samples from the split spoon sampler and cuttings from the drilling activity were examined for lithologic type and logged in accordance with the Unified Soil Classification System (ASTM D-2488). All field lithologic information was recorded on soil boring log forms, which are included in Appendix A. All boreholes, not completed as permanent monitor wells, were sealed with cement grout. Hole locations were staked and labeled for subsequent surveying.

3.2 MONITOR WELL INSTALLATION

Twenty-one groundwater monitor and 5 tracer test wells were installed during the investigation program. All except 2 wells were constructed using 2-inch diameter screw-

threaded Schedule 40 PVC casing and 0.020-inch factory-slotted screen and installed through the HSA or the percussion hammer assembly. The other 2 wells, used as tracer introduction wells, were constructed using 4-inch PVC and 0.040 screen. The bottom of the well screen section was fitted with a 0.2-foot long bottom plug. The entire annulus surrounding the screen was filled with clean, 8-12 size washed sand to about 3 feet above the top of the screen. An annular seal of bentonite pellets was placed above the filter pack sand to a thickness of 2 to 3 feet. The remaining well annulus from the top of the bentonite seal to the surface was filled with a Portland cement/bentonite grout. After the annular seal was hydrated and allowed to set, the wells were developed with a submersible Grundfos pump until sediment-free water was achieved.

In order to sample discrete intervals of the lower, middle and upper parts of the saturated alluvial aquifer along an east-west traverse in the Lower Ponds area, the wells were placed in 8 groups with 2 to 3 closely-spaced wells each. Horizontal separation of the borings was 10 feet whereas vertical separation of the screened interval was also 10 feet.

Surface completion of all wells was below grade using flush-mounted steel manhole covers set in concrete pads. Locking well caps were utilized for security. Well construction diagrams are included in Appendix B.

3.3 GROUNDWATER SAMPLING

Groundwater samples were collected for laboratory perchlorate analysis during the soil boring phase of the investigation and again following monitor and tracer well installation. All analytical results are included in Appendix C.

3.3.1 Soil Borings

Because most of the soil borings were to be made into nested monitor wells, only 5 groundwater samples were collected from the borings during drilling. These samples were collected through the augers either at the total depth of the boring or at the time the water table was encountered. PVC bailers were used for the sampling and were decontaminated with Alconox and bottled water prior to each use. The samples were analyzed at the KMCLLC facility laboratory for perchlorate and conductivity.

3.3.2 Monitor and Tracer Test Wells

Groundwater samples were collected from 238 existing and new monitor wells and tracer test wells in the regional study area. These samples were analyzed for perchlorate and conductivity at the KMC LLC facility laboratory.

3.3.3 Las Vegas Wash Seeps and Springs

Twenty-two samples of daylighting groundwater from seeps, springs and shallow handdug pits were collected along a 4-mile long traverse from the Silver Bowl stadium to within 0.75 miles of the upper dam of Lake Las Vegas. These samples were analyzed for perchlorate and conductivity at the KMCLLC facility laboratory and/or Montgomery Watson in Pasadena.

3.4 ALLUVIAL PUMP TESTS

In preparation for tracer test studies, Errol L. Montgomery & Associates, Inc., Tucson, Arizona conducted 2 pump tests in August 2000 in the tracer introduction wells at tracer test sites B (City of Henderson-Rapid Infiltration Basin) and C (Lower Ponds). Since tracer test site A was sited at the Pittman Lateral to make use of an existing, previously pump-tested, well (PC-70) as a tracer introduction well, no new pump test was performed.

Construction and development of the new 4-inch tracer introduction wells was by Layne Christensen Company, Chandler, Arizona. The test pump was installed and operated by Compliance Drilling, Las Vegas, Nevada. The constant-discharge pumping tests were preceded by a short pretest and step-discharge test to verify equipment operation and to select an optimal pumping rate for testing. Aquifer tests were planned for 36 hours of pumping followed by 36 hours of water level recovery. Due to a generator failure, duration of pumping was 29.9 hours for well PC-98R (Site B). For Site A, a 48-hour constant-discharge pumping test was conducted in well PC-70 in September 1998 by Kerr-McGee personnel (Kerr-McGee, 1998).

The details of the PC-70 (Site A) pump-test are presented in Attachment 1 whereas the procedures used for the Sites B and C tests are detailed in a December 19, 2000 report by Errol L. Montgomery and Associates which is presented in Attachment 2.

3.5 TRACER TESTS

Since analysis of the rate of groundwater movement can be used to estimate the rate of mass transport of perchlorate in groundwater, Errol L. Montgomery & Associates, Inc. conducted tracer studies at 3 locations between the Pittman Lateral and the Seep shown in Figure 1 and Plates 1-5. Tracer testing, conducted in September 2000, consisted of natural gradient and drift and pumpback methods using deionized water and bromide as the tracers. Deionized water was made at the Kerr-McGee Apex facility and supplied to the test sites via stainless steel tanker truck. Volumes of deionized water used for the tests ranged from 1,800 gallons at Site A to 2,630 gallons at Site C. Specific conductivity of the injected water was 5 microSiemens/cm. At each site, pairs of wells between 30 and 40 feet apart were drilled and constructed for tracer

introduction and downgradient tracer breakthrough observation. Tests lasted for a minimum of 4 hours to a maximum of 1.9 days.

For bromide tracer tests at Sites A and C, bagged solid calcium bromide was mixed in a tanker truck with reverse osmosis water supplied from the Kerr-McGee Henderson facility. The bromide solution was introduced into the wells via a flexible hose which was moved up and down to distribute the solution evenly throughout the well. Immediately following the bromide introduction a conductivity probe was inserted in the well and a vertical conductivity profile was obtained which showed relatively uniform distribution.

At Site A the bromide solution was mixed to yield a concentration of about 3200 mg/l and introduced into well PC-70 containing about 1 mg/l bromide as background. Sampling of groundwater in observation well PC-101R at depths of 23, 32 and 40 feet was conducted using a peristaltic pump and a micro-purge method. In the drift and pumpback test in PC-99R (Site C) a bromide solution similar in strength and composition to the bromide test at Site A was introduced into the well and distributed vertically to get a relatively uniform distribution. Previously determined aquifer parameters were entered into a formula which determined the drift time of the introduced bromide slug, the duration of pumpback time and the frequency for sample collection for bromide analyses. Sampling frequency ranged from 5 minutes per sample during the first part of the test to 15 minutes for the later part. Bromide samples were analyzed at NEL Laboratories, Las Vegas, Nevada.

3.6 COORDINATE AND ELEVATION SURVEY

Ì

All soil borings and wells were surveyed for vertical elevation control and horizontal location using a Trimble 4800 survey-grade Global Positioning System (GPS) unit. The survey used existing HARN points and first order benchmarks in the southern Las Vegas Valley to establish an overall control grid for the study area. Monitor and tracer wells were surveyed for TOC elevation, ground elevation and horizontal control whereas soil borings were surveyed for ground elevation and horizontal control.

Locations of the Las Vegas Wash seep/spring/pit samples were either surveyed for horizontal location by Southern Nevada Water Authority (SNWA) personnel using a Trimble Pro-XRS sub-meter (GPS) unit or by digitizing from a high-quality aerial photograph. All survey data are presented in Appendix D.

4.0 FIELD INVESTIGATION RESULTS

This section details the results of the Las Vegas Wash groundwater sampling, drilling, monitor well sampling and analyses, pump test activities and tracer test studies conducted as part of this investigation.

4.1 ALLUVIAL HYDROGEOLOGIC CHARACTERIZATION

Figure 1, the base map of the regional study area, shows the locations of both historic and newly installed monitor wells. New KMCLLC wells are part of the PC-series starting with PC-74 and are located mostly in the Lower Ponds area south and west of the Seep in sections 31 and 36. With only 1 exception all borings were drilled into the underlying Muddy Creek formation and all wells were screened only in the alluvium. Except for the tracer test wells, which were fully screened, all nested-wells sets were installed with 5 or 10-foot screens in order to incrementally sample the lower, middle and upper parts of the alluvial aquifer. Boreholes within nests are 10 feet apart and screened intervals are also 10 feet apart to insure no cross-communication. Lithologic logs for the new borings are presented in Appendix A and well construction diagrams are presented in Appendix B.

4.1.1 Groundwater Flow Conditions

In May 2000 a cooperative regional groundwater sampling event between KMCLLC and American Pacific Corporation (AMPAC) resulted in the sampling of 238 alluvial groundwater monitor wells for water levels, perchlorate and conductivity concentrations. Plate 1, the Potentiometric Surface Map of the Quaternary Alluvium Aquifer, shows the results of this sampling and the location of Plates 2 through 5. This mapping is an update of mapping completed in July 1998 by KMCLLC (Kerr-McGee Chemical LLC, 1998a). Data points for Plate 1 are listed in Appendix C.

Groundwater in the Quaternary alluvium represents the shallow water table in the central and northern portions of the map area. Water flow is generally north-northeast with minor variations. As was the case with the July 1998 mapping, the average horizontal hydraulic gradient between the KMC LLC facility and Las Vegas Wash remains about 0.017. The gradient from south to north is seen to be fairly uniform except in the major north-northeast alluvial channel beneath the northern part of the industrial site (SW 1 and NE 11, T22S R62E) and beneath the City of Henderson Rapid Infiltration Basin (COH-RIB) in section 36. Here, the infiltration of treated wastewater into the alluvial aquifer from the RIBs has caused a mounding of groundwater with a resultant decrease in the hydraulic gradient in the potentiometric surface.

Continuing long-term monitoring of depth to groundwater since July 2000 is being accomplished at all 3 tracer sites through the use of In-Situ, Inc. "Troll 8000" and "Mini-Troll" dataloggers. Figure 4 shows the results of groundwater monitoring in well PC-101 at Site A, upgradient of the RIBs, between September 9th through November 20th. Pumping in adjacent well PC-70 accounts for the small drawdown events seen on September 12th and October 6th. Water levels are seen to be steady to very slowly rising through about October 14th when several rain events were recorded over a several week period. Discounting the data from October 30th to November 14th as probably invalid due datalogger malfunction, the water level in this area continued to slowly rise to a little less than 16 feet below surface through to November 20th when the datalogger

permanently malfunctioned. The importance of this graph is in its comparison to the water level changes at Site B (COH-RIB) and Site C (Lower Ponds/Seep).

Figure 5, the graph from tracer test Site B, shows the changes in depth to groundwater (DTW) and conductivity for the 5.5-month period from July 7th to December 26th. That the infiltration of COH-RIB wastewater into the shallow aquifer results in wildly erratic water levels is amply illustrated. The small blip on the DTW and conductivity graphs on July 10-11 is from the pump test in adjacent well PC-98R whereas that on September 13th is from the tracer test. The figure shows that a massive recharge event, starting on September 12th raised the groundwater level from about 13.5 feet to 4.5 feet in about 3 weeks. Since about October 27th the water level has been decreasing. It is obvious from this graph that even forewarned by a schedule of flooding events from COH, trying to model groundwater flow and predict perchlorate mass flow to the Seep and the underlying alluvial aquifer would be futile. Unless a capture and treatment system was dramatically oversized versus average flows, it could not predictably capture and treat the constantly changing water and perchlorate volume entering the Wash.

Figure 6, the datalogger depth-to-water graph for well PC-99 at Site C, shows that, starting about August 9th – eight days after the start of infiltration at the RIBs, the water level began to rise dramatically. The level continued to rise until October 6th when it became relatively static. The drawdown event on August 13-14 is the pump test of adjacent well PC-99R. It is interesting to note that the width of the graph line is due to the diurnal effect presumably of salt cedar evapotranspiration or, as seen starting on about September 23rd, simple evaporation. On about October 31st ground flooding at Site C necessitated abandoning the site and moving the datalogger 400 feet to the west to PC-87. Figure 7 shows that the water level in PC-87, which held relatively constant since October 31st, started to increase again on December 15th. It is no coincidence that the slough just north of the Lower Ponds began flowing again in late July-early August and that widespread daylighting of groundwater has been occurring in the adjacent areas since late September-early October when COH started filling the RIBs with wastewater.

As part of the temporary lon Exchange (IX) Plant record keeping, KMC LLC personnel monitor the throughput of the plant and the calculated perchlorate mass flow rate and the Seep stream perchlorate concentration. Figure 8 show that since April 4th these data have fluctuated widely based on a combination of natural and man-made conditions. As seen by comparing this graph with the graph of depth to water in the COH-RIB, Figure 5, most of the increase in stream flow since August 12th, and culminating in a flow of 593 gpm on October 14th, is directly due to water from the RIBs. It is interesting to note that the highest Seep stream perchlorate concentration, 120 mg/l on October 16th, occurred during this high flow and has been decreasing ever since. A possible explanation is that the lower density RIB water temporarily displaced the higher density perchlorate-bearing water and pushed it ahead to the Seep.

As of January 9, 2001 the Seep stream flow and perchlorate concentration were 416 gpm and 49 mg/l, respectively, whereas the perchlorate mass flow rate was 245

lbs/day. Since the temporary IX Plant is rated at about 450 gpm it would be possible to pump groundwater to the plant during the low-flow summer period from about May to October or longer, depending on the amount of water infiltration from the COH-RIBs. In the 280 days since the temporary IX plant began operation, the stream flow has averaged 315 gpm and there has only been 31 days with stream flow over 450 gpm. However, as of now, KMC LLC does not have a permit to discharge treated groundwater. This topic will be revisited in a later section.

4.1.2 Alluvial Channel System

The Quaternary alluvial channel system contains the thicker portions of saturated alluvium in the study area. These channels typically act as preferred pathways for groundwater flow, especially groundwater that contains higher TDS and higher densities. Plate 2 shows the contoured thickness of the shallow alluvial aquifer north of Sunset Road. The trace of the main north-northeast channel is particularly prominent on this map. Also shown is evidence for a poorly-defined sub-parallel western channel, at least 40 feet thick, running diagonally across the central part of section 36. The recently completed nested-wells along the northern boundary of sections 31 and 36 substantially refined the subsurface geology in this area. As shown in Figure 2, a 1"=200' east-west hydrogeologic cross-section, the mouth of the western channel is deeper than the mouth of the main eastern channel. It is here, where the two channels coalesce, that the groundwater perchlorate values exceed 10 mg/l over a width of about 2200 feet. Figure 3, the cross-section across the Pittman Lateral is an update of a cross-section presented in a July 1998 report (Kerr-McGee Chemical LLC, 1998). Its scale is 1"=400', the same scale as Plates 2 through 5, and it shows the highly incised nature of the main alluvial channel as well as recent water level conditions and perchlorate concentrations.

The erosional nature of the alluvial channel system into the underlying lithologic unit is apparent on Plate 3, the structure map on top of the Muddy Creek formation. Mapping shows the deep incision of the channel beneath the Pittman Lateral and the poorly defined sub-parallel channel diagonally crossing the center of section 36.

The cross section (Figure 2) also shows an old Stauffer exploration hole, HSC-2, located in the extreme SW corner of section 30. What is interesting about this hole is the lithologic description of massive beds of gypsum and anhydrite below 100 feet. (structural elevation of about 1458 ft). The closest highly gypsiferous beds are in section 32, 1.5 miles to the southeast which lie at structural elevations 100-200 feet higher. These lacustrine evaporite units are probably equivalent. Two tiny seeps in the gypsum beds in the center of section 32 were found to contain up to 28 mg/l perchlorate. A potentiometric surface map of this area made in 1997 shows that groundwater flow in the fine-grained Muddy Creek formation comes from the south-southeast. Only the extreme eastern end of the Upper Ponds is upgradient of these seeps. However, since recent seep sampling found only perchlorate values up to 2.5 mg/l directly downgradient of the main part of the Upper Ponds, the high concentrations in the tiny seeps are

probably not coming from the ponds. Furthermore, the alluvium directly upgradient from the high perchlorate seeps is dry. Naturally occurring perchlorate is found associated with evaporates in Chile and this occurrence may be of a similar nature. Regardless, there is currently no evidence that this perchlorate is entering Las Vegas Wash.

4.1.3 Well Pump Tests

}

Constant-discharge pumping tests were conducted in August 2000 at tracer test Sites B and C to obtain aquifer properties. A pumping test of PC-70 (Site A) was previously performed in September 1998. Results of these aquifer tests show that transmissivity ranges from 50,000 gallons per day per foot (gpd/ft) for site A (Pittman Lateral) to 160,000 gpd/ft at Site C (Lower Ponds/Seep). Hydraulic conductivity ranges from about 1,700 gallons per day per square foot of aquifer (gpd/ft²) at Site A to 4,600 gpd/ft² at Site C. A summary of the aquifer parameters from these three tests is shown in Table 1 below:

TABLE 1							
Site	Pumping Rate (gpm)	Transmissivity (gpd/ft)	Aquifer Thickness (feet)	Hydraulic Conductivity (gpd/ft2)			
A	45	50,000	30	1,700			
В	52	60,000	25	2,200			
С	65	160,000	32	4,600			

That the transmissivity and hydraulic conductivity is higher in the north end of the area is not surprising given the history of the Lower Ponds. The ponds were constructed in 1943 within highly permeable alluvial sands and gravels. During the next 30 to 40 years the ponds were used as infiltration basins for industrial discharge water. This constant use over such a long period of time guaranteed that whatever fines were originally deposited with the coarse-grained sediments were washed out of the deposits. In the 1970's seepage from the Lower Ponds was reported to be as high as 1500 gpm (Kaufmann, 1978).

4.1.4 Tracer Tests

Rate of groundwater movement provides a good estimate for the rate of mass transport of perchlorate since it is considered a nonreactive ion and should flow at the same rate as the groundwater. Rate of groundwater movement was measured at Site A at the Pittman Lateral, Site B in COH-RIBs and Site C in the Lower Ponds/Seep area. Two methodologies were used – natural gradient and drift and pumpback – with bromide and deionized water used as tracers. Tracer test locations are shown on Figure 1 and Plates 1-5. The procedures used for these tests are detailed in a December 19, 2000 report by Errol L. Montgomery and Associates which is presented in Attachment 2.

The results of tracer testing using deionized water under natural gradient conditions indicated rate of groundwater movement to be about 20 to 25 ft/d at Site A, 45 ft/d at

Site B and 85 ft/d at Site C. Prior to testing it was expected to record tracer breakthrough as the decrease in specific conductivity in the downgradient observation well because, at 5 microSiemens/cm, the deionized water was 3 to 4 orders of magnitude lower than the conductivity of the ambient groundwater. However, tracer breakthrough was seen at Sites A and C as an increase in the conductivity above background, followed by a decrease to pretest levels as the slug of tracer water moved past the observation well. This phenomenon is thought to be the result of changes in the chemistry of the dissolved ions in the groundwater caused by ionic exchange, differences in ionic strength of the solution and differences in pH of the solution due to the addition of the diluting stream. Nevertheless the data could be used to determine groundwater velocities. At Site B the natural gradient test using deionized water yielded a curve that showed a decrease of conductivity as the slug of tracer water went past the observation well. The rapid filling of the nearby RIBs during the test complicated the interpretation of the results.

)

)

Calcium bromide was used as a tracer under natural gradient conditions at Site A and under drift and pumpback conditions at Site C. At Site A, samples were collected from depths of 23, 32 and 40 feet in the observation well 30 feet downgradient, to check for differences in breakthrough times at different depths. The results show that breakthrough in the lower part of the aguifer was slightly faster than breakthrough in the upper part. Assuming symmetrical breakthrough and peak concentration represents the center of mass of the bromide slug, travel time between the introduction and observation well pair ranges from 21.5 to 25.2 hours. Rate of groundwater movement is estimated to be about 30 ft/d. At Site C the 4,200 mg/l bromide brine tracer was injected into PC-99R in a manner similar to PC-70. After injection, a conductivity probe determined that a relatively uniform vertical distribution of bromide was achieved. After 2 hours of drift, pumping began and sampling from the pump discharge continued for the next 4 hours. The results show that the center of mass of the bromide pulse was recovered after about 30 minutes of pumping. Subsequent calculations indicate that the rate of groundwater movement is about 60 ft/d and the effective porosity is about 10 percent.

Based on lithologic data obtained from well installation, aquifer test results and tracer test results, a summation of the rate of groundwater movement is presented in Table 2 below:

TABLE 2							
Site	Natural Gradient - Deionized Water Tracer Tests (ft/d)	Natural Gradient - Bromide Tracer Tests (ft/d)	Drift and Pumpback - Bromide Tracer Test (ft/d)	Natural Gradient - Darcy's Law (ft/d) Porosity = 10%			
A B C	25-30 45 85	30 no test no test	no test no test 60	20 30 65			

Using Darcy's Law and average values for aquifer parameters and groundwater gradient, the minimum estimate of groundwater movement between Site A, Pittman Lateral and Site C, the Lower Ponds/Seep, is 35 ft/d. Based on the distance of 5,700 feet between Pittman Lateral and the Seep the average residence time for perchlorate to move from the Lateral to the Wash is about 6 months.

4.2 GROUNDWATER CHEMICAL CHARACTERIZATION

Groundwater samples were collected as part of this investigation from daylighting seeps, springs and shallow hand-dug pits along Las Vegas Wash and monitor wells between the KMCLLC plant site and the Seep and analyzed for perchlorate and specific conductivity. These analytical results were used to map the extent and concentration of the perchlorate and high conductivity groundwater plumes in the shallow alluvial aquifer and along the banks of Las Vegas Wash. Laboratory analyses of perchlorate and specific conductivity are attached in Appendix C.

4.2.1 Chemical Characterization of Groundwater Along Las Vegas Wash

As part of this investigation reconnaissance mapping and groundwater sampling were conducted along Las Vegas Wash in March and April 2000. Using water samples collected from 22 naturally-occurring seeps, springs and shallow hand-dug pits, the downgradient variation of perchlorate and conductivity was recorded along 4 linear miles of Duck Creek and Las Vegas Wash (LVW) from the Silver Dome eastward.

Results show that even though perchlorate is detected in groundwater throughout the entire length of the survey, the only significant groundwater contribution of perchlorate occurs in the vicinity of the Lower Ponds/Seep area. This is the location where KMCLLC is currently removing perchlorate from surfacing groundwater.

The accompanying color aerial photograph, Figure 9, of a portion of Las Vegas Wash shows the locations of the sample sites used in this survey. Below each sample number is the perchlorate value in ug/l and the field conductivity value in uSm/cm. In the broadest terms the geochemical makeup of the wash can be divided into the following three stretches:

<u>Western Stretch</u>: This zone, between sample KM89 on the west and KM56 on the east, is characterized by low to non-detect perchlorate and moderate to high conductivity. Locations KM68 through KM58, containing between 8000 to 10400 uSm/cm, sampled a plume of highly conductive shallow groundwater flowing into Duck Creek and LVW from the southwest. The low conductivity in sample KM59 may reflect dilution from surface water since it was collected from a dug pit whereas the other three samples are from natural seeps. East of KM58, locations KM57 and KM56 continue to show low perchlorate levels. Conductivity levels also decrease.

<u>Central Stretch</u>: This part of LVW occupies the area between KM71 on the west and KM53 on the east. Samples from the western one-third of this reach contain the highest perchlorate concentrations found anywhere along LVW. Between KM56 and KM55 the perchlorate level in groundwater increases from ND to 57000 ug/l, decreasing again to 4500 ug/l. As shown on the aerial photograph this zone of high perchlorate is directly north and east of the mapped outlet of the north-northeast trending paleochannel and the Lower Ponds/Seep area.

However, because the perchlorate footprint in this part of the wash is so wide it has long been suspected that an additional source of perchlorate is joining the groundwater flow into the wash from the western end of the Lower Ponds. Alluvial thickness mapping indeed found a separate sub-parallel northeast-trending channel coalescing with the main channel just south of the seep. Any perchlorate in this western channel could not have come from the KMCLLC plant site and may have come from the former AMPAC site. However this has yet to be proven.

East of KM55, and continuing all the way to KM53, the photograph shows that both the perchlorate and conductivity levels of groundwater flowing into the wash decrease to the 290 to 400 ug/l and 2500 to 3500 uSm/cm range, respectively. This water quality indicates a cleaner groundwater inflow than found either to the west or the east.

<u>Eastern Stretch</u>: Beginning at KM91, both the perchlorate and conductivity levels increase again to a maximum of 3000 ug/l and 7400 uSm/cm, respectively. These high values occur at sample site KM65, a natural seep located in a fault zone that is part of the Las Vegas Shear Zone. This area has been named the Calico Hills Water Gap (CHWG), the place where Tertiary bedrock is first exposed in the bottom of the Wash. This thinning has the effect of causing the laterally-inflowing groundwater and the subwash groundwater, and their contained perchlorate inventory, to rise to the surface at this location. East of this Water Gap the sediments filling the Las Vegas Wash valley remain relatively thin over the uplifted bedrock.

Because KM65 and KM91 to the west, are samples of the rising sub-wash groundwater, it is important to note that these values (2100 to 3000 ug/l) are probably representative of the average perchlorate concentration in storage between the Seep at the Lower Ponds and the CHWG.

The next two samples east of the CHWG are relatively low in perchlorate whereas the third sample, KM67, increases again to 2100 ug/l. These low perchlorate samples are probably due to dilution with groundwater inflowing from adjacent cleaner sources. The higher perchlorate value in the easternmost sample is probably due to communication with the higher perchlorate in the sub-Wash groundwater in another fault zone.

The results of this groundwater sampling program show that the only significant perchlorate source entering the Wash is the known Seep area north of the Lower Ponds. Slightly elevated perchlorate values found east of the Calico Hills Water Gap are the result of surfacing groundwater from the sub-wash storage and not a new source of perchlorate.

4.2.2 Chemical Characterization of the Alluvial Groundwater in the Seep Area

Plates 4 and 5 show the groundwater perchlorate and conductivity plumes north of Sunset Road, respectively. As shown on Plate 4, perchlorate concentrations up to 490 mg/l occur in the main alluvial channel at Sunset Road. Northward, perchlorate content decreases to about 320 mg/l in the COH-RIB area and 150 mg/l or less near the Seep. The two east-west cross sections along the Pittman Lateral (Figure 3) and the Lower Ponds (Figure 2) show the relationship of channel geometry and water chemistry. At the Pittman Lateral perchlorate values >10 mg/l extend eastward 800 feet from the main channel whereas in the Lower Ponds area high perchlorate values extend westward over a width of about 1800 feet from the main channel. The perchlorate isopach map also shows some evidence that perchlorate-bearing groundwater, thought to be the alluvial plume from the former AMPAC plant, may be entering the Seep area from the western sub-parallel channel. AMPAC's perchlorate plume in the Muddy Creek formation has not as yet been identified entering the Wash. Both the map and cross section show that the highest perchlorate values in the total saturated zone occur in nested wells PC-85, 86 and 87 between the two coalescing channels.

Vertical profiling of wells north of the COH-RIB in January 2000 shows that the treated wastewater from the RIBs does not appreciably mix but floats on the underlying denser groundwater. This is shown in the cross section (Figure 2) and the conductivity map (Plate 5) where relatively lower perchlorate and conductivity values occur in the upper part of the aquifer east of the alluvial channel from PC-56 to PC-97. Comparison of the conductivity map with the perchlorate map shows that the trend of conductivity highs, up to 17170 uSm/cm, lies parallel to and west of the main alluvial channel and highest perchlorate concentrations. A second plume of high conductivity may occupy the western northeast-trending channel but has not yet been proven.

5.0 ANALYSIS OF SHORT-TERM GROUNDWATER OPTIONS

The current long-term remedy calls for the construction of an 825 gpm IX-Catalytic Destruction plant to destroy perchlorate on the KMCLLC plantsite. Flow of 400 gpm and 360 gpm, respectively, will come from a proposed well field at the Pittman Lateral and the Seep stream with the remainder coming from the plantsite. At the present time the KMCLLC discharge permit does not allow treatment and release of groundwater from the Seep or the Pittman Lateral area.

The current temporary IX plant operating at the Seep stream can handle a nominal 450 gpm. The Seep stream has been seen to fluctuate in the last year from about 225 gpm in the summer season to about 640 gpm in the winter season. The flow volume in the Seep stream depends, in large part, on the volume of wastewater dumped into the RIBs by COH and evapotranspiration by the vegetation. Since April 4th the stream flow has averaged 315 gpm and only been above 450 gpm for 31 out of 280 days.

The question has been raised by NDEP regarding the ability of the existing temporary IX system to process more water. The answer depends on the actions taken by COH. As long as the Seep stream flow is below 450 gpm the IX plant is not being fully utilized and groundwater could, in theory, be processed. The answer is equivocal because a method for organics destruction must first be in place, the discharge permit must be modified and the pumping wells and pipeline must first be installed.

Increasing the temporary IX plant capacity would require 4-6 months to install new pumps, piping and resin beds. Considering that the planned 825 gpm system will be online by the end of 2001, it makes little sense to divert resources and manpower away from the major construction effort to install a second temporary system for only a few months use.

Recovering the perchlorate stream at the Pittman Lateral, where the plume is known to be narrower and higher in concentration would ultimately make a more significant contribution to the perchlorate remediation effort. If, as the tracer tests indicate, the residence time between the Pittman Lateral and the Seep is only 6 months, perchlorate groundwater recovery at the Lateral would quickly form a brightline, the movement of which could be readily measured.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the groundwater-sampling program, borehole drilling, lithologic studies, nested-well installation, datalogger monitoring, pump and tracer testing the following data have been added to the body of knowledge regarding the characterization of the perchlorate plume from the KMCLLC plant site to the Wash:

- From the pump and tracer tests it is now known that the rate of movement of groundwater and perchlorate from the Pittman Lateral to the Wash averages about 35 ft/d and the residence time is therefore about 6 months.
- From continuous datalogger monitoring at the three tracer test sites since July it is now known that when the City of Henderson adds millions of gallons of water to the RIBs it has an almost immediate, drastic and unpredictable effect to the water volume, water level and water chemistry in the Lower Ponds/Seep area and the feed to the temporary IX plant.

- From the groundwater sampling program along Las Vegas Wash it is now known that the bulk of perchlorate enters the Wash at the Lower Ponds/Seep area. The 2-3 mg/l of perchlorate sampled at the Calico Hills Water Gap is likely the average concentration of the sub-Wash perchlorate inventory upgradient from the Water Gap.
- From the additional soil borings in the Lower Ponds area, better control of alluvial thickness and Muddy Creek structure shows the existence of a poorly-defined second alluvial channel which adds some unknown quantity of perchlorate, quite possibly from the alluvial plume from the former AMPAC plant, to the Seep area.
- From the nested well installation in the Lower Ponds area it is now known that the entire saturated thickness of the alluvial aquifer is anomalous in perchlorate for a width of about 2200 feet.
- From regional groundwater sampling and updated potentiometric surface, conductivity and perchlorate concentration maps, a better appreciation for the extent and concentration of the perchlorate and conductivity plumes and the hydraulic gradient from the plant to the Wash is now possible.

Based on the results of this investigation the following five recommendations are made:

- Design and build a groundwater capture system near the Pittman Lateral to partly feed the planned IX-Catalytic Destruction plant to be built on the KMCLLC plant facility.
- Drill a series of boreholes in the poorly-defined alluvial channel in the center of section 36 to delineate the channel and incorporate the new alluvial thickness and Muddy Creek structural data into the maps.
- Install wells in some of these holes to monitor for perchlorate and conductivity.
- Annually sample groundwater in all available monitor wells from the KMCLLC plant to the Seep and analyze for perchlorate and conductivity. Construct up-to-date maps of the plumes using these data.
- Annually sample groundwater seep locations along Las Vegas Wash and monitor changes of perchlorate and conductivity concentrations.

7.0 REFERENCES

Kaufmann, R. F., 1978, Land and Water Use Effects on Groundwater Quality in Las Vegas Valley: U. S. Environmental Protection Agency, EPA-600/2-78-179, 215 pp.

Kerr-McGee Chemical LLC, 1998, **Phase II Groundwater Perchlorate Investigation Report:** prepared July 15, 1998.

Kerr-McGee Corporation, 1998, **Preliminary Report on a Hydrologic Investigation of Channel-Fill Alluvium at the Pittman Lateral, Henderson, Nevada:** prepared by Steven R. Lower, Hydrology Services Group, October 19, 1998.

Kerr-McGee Chemical LLC, 2000, **Work Plan for Seep Area Groundwater** Characterization: prepared March 22, 2000.

Errol L. Montgomery & Associates, 2000, Analysis of Rate of Groundwater Movement Based on Results of Tracer and Hydraulic Tests Conducted Between Pittman Lateral and the Seep Area, Henderson, Nevada: prepared December 19, 2000.

Nevada Department of Environmental Protection, 2000, **Workplan and Schedule for Long-Term Remedy for Removal of Perchlorate:** letter from Brenda Pohlmann, NDEP, to Susan Crowley, Kerr-McGee Chemical LLC, February 15, 2000.

Nevada Department of Environmental Protection, 2000, **Hydrogeologic Investigation Report:** letter from Brenda Pohlmann, NDEP, to Susan Crowley, Kerr-McGee Chemical LLC, October 9, 2000.

Figure 1

· · · · · ·

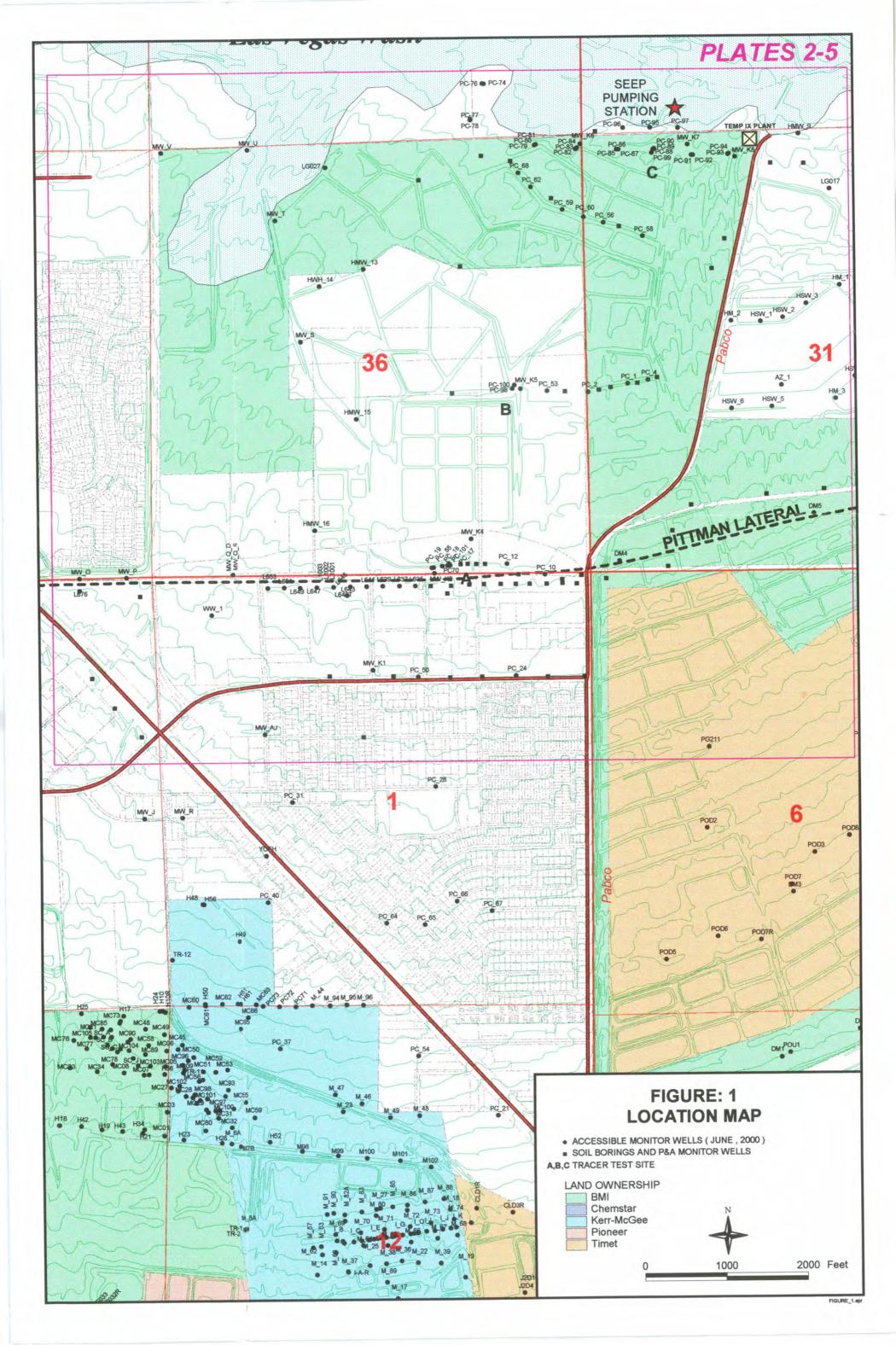
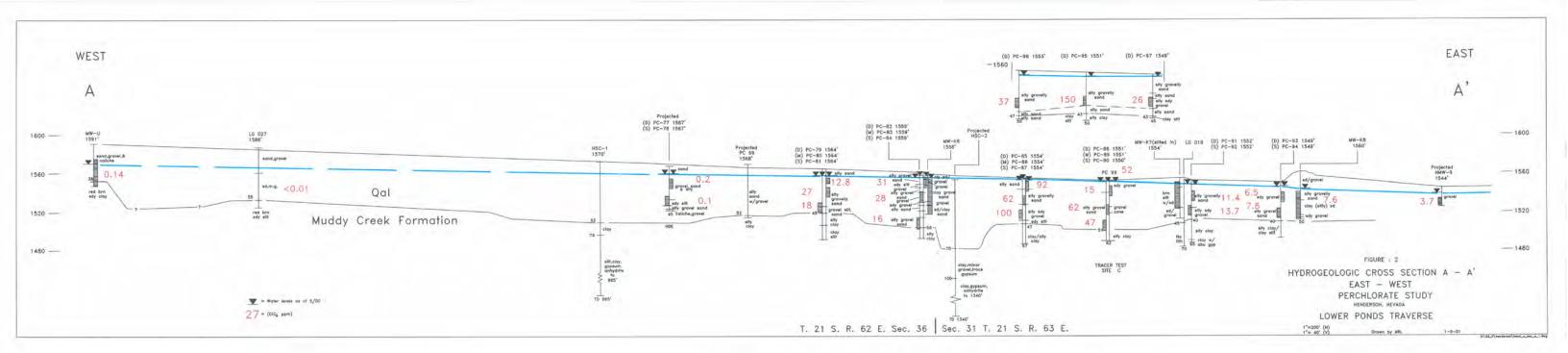
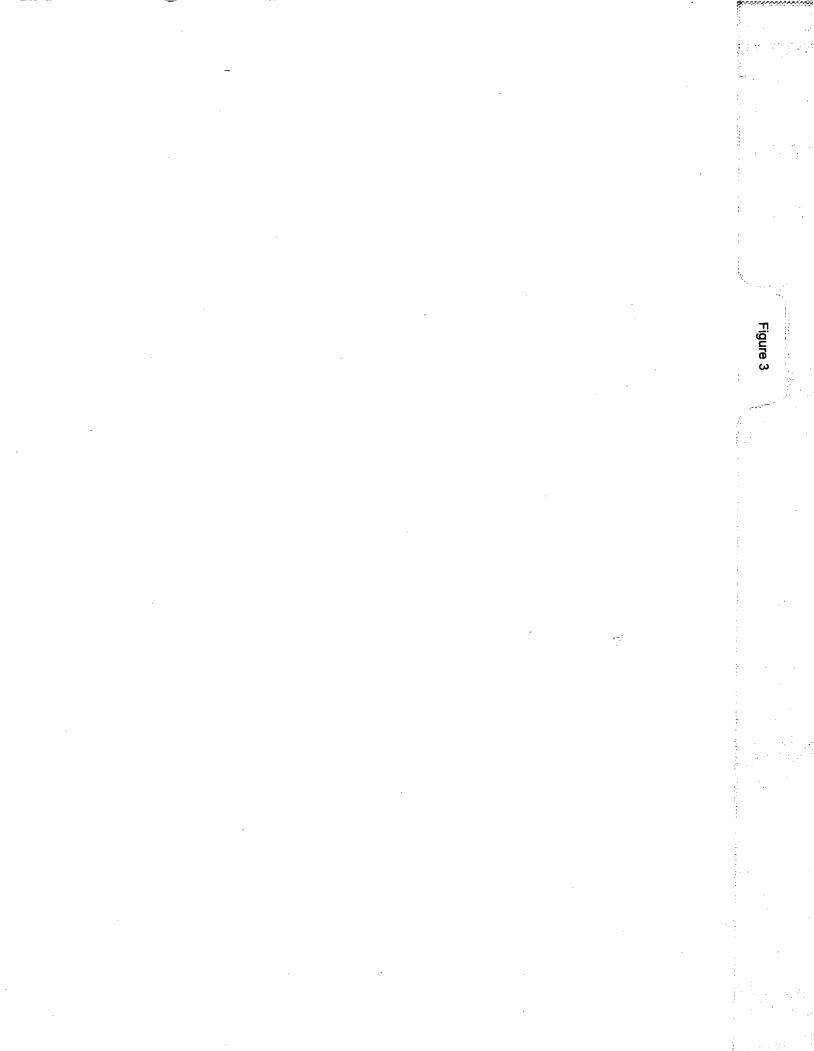




Figure 2 1

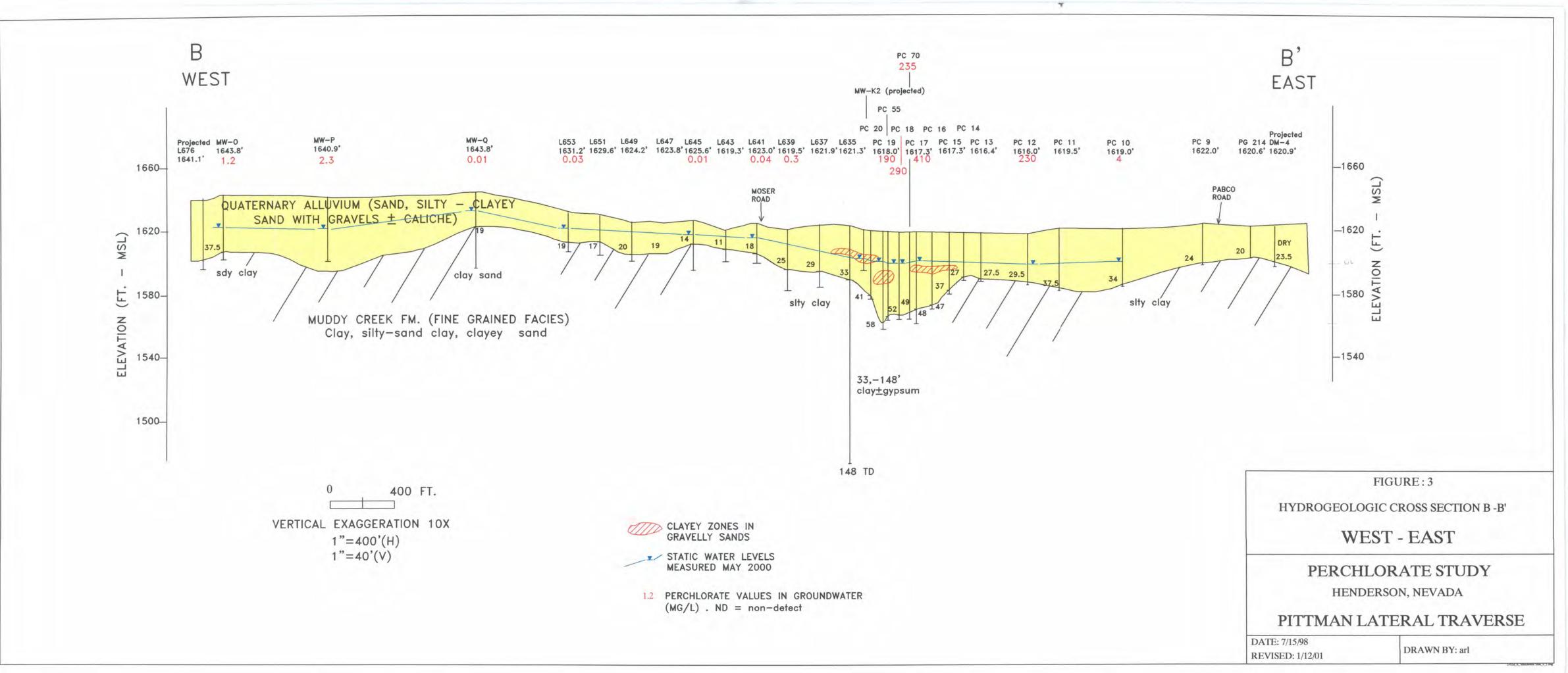


Figure 4

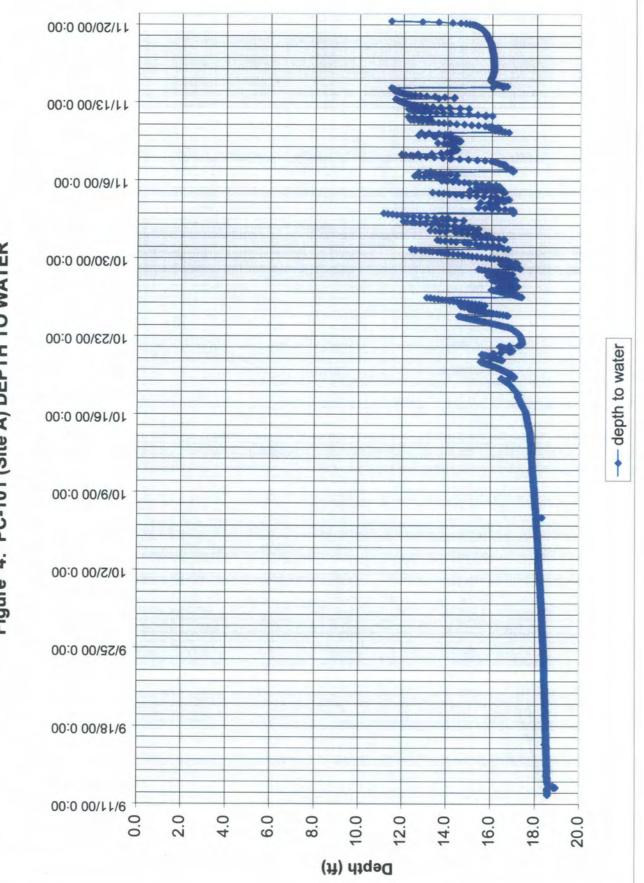
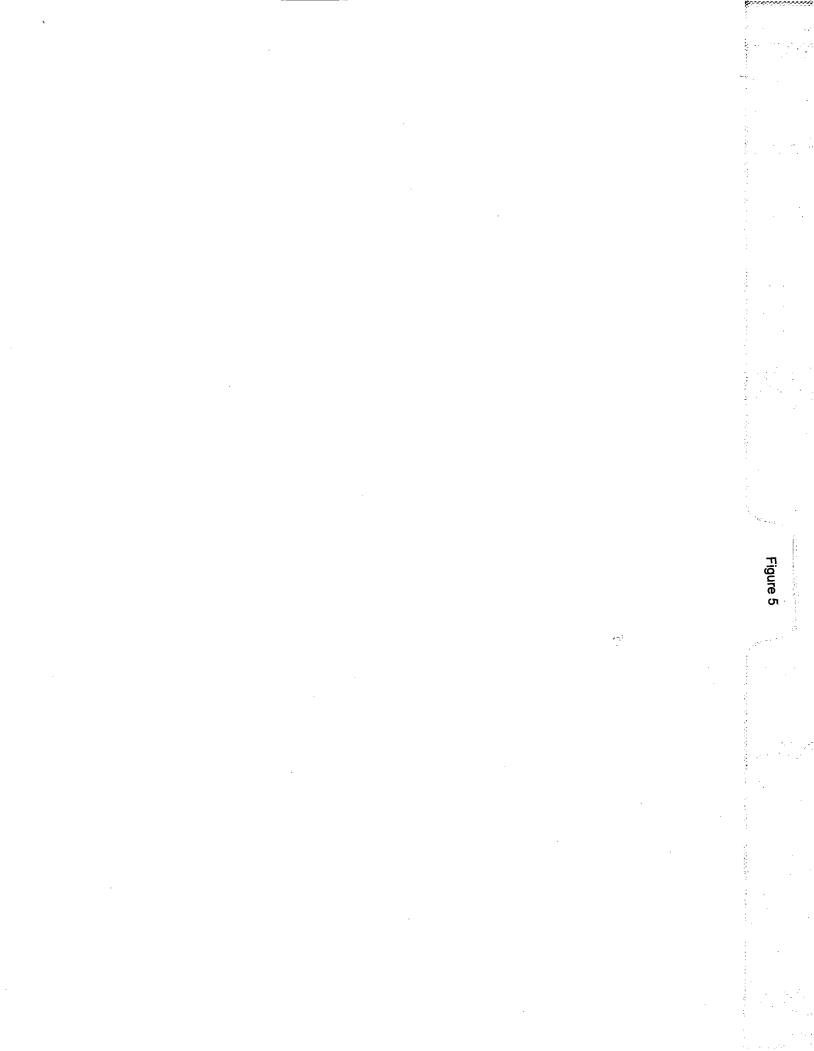
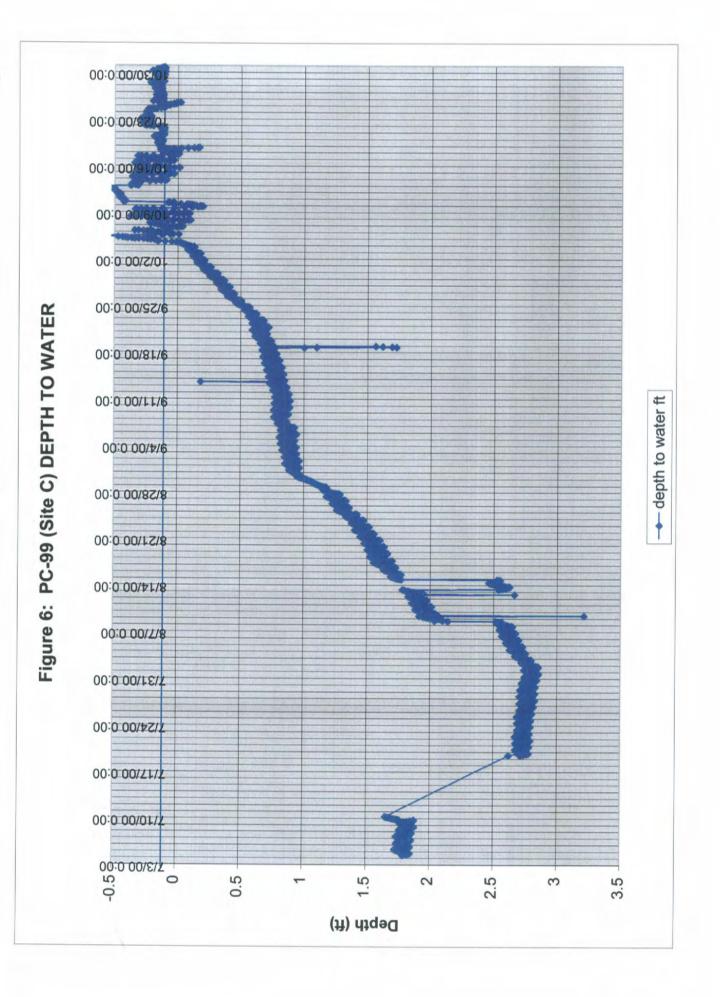




Figure 4: PC-101 (Site A) DEPTH TO WATER

microiSiemens/cm 16000 14000 12000 10000 2000 8000 4000 6000 0 12/25/00 0:00 12/18/00 0:00 Figure 5: PC-98 (Site B) GRAPH OF WATER LEVEL DEPTH AND CONDUCTIVITY 12/11/00 0:00 12/4/00 0:00 11/27/00 0:00 11/20/00 0:00 11/13/00 0:00 00:0 00/9/11 10/30/00 0:00 ---- conductivity 10/23/00 0:00 00:0 00/91/01 00:0 00/6/01 --- Depth to Water ft 10/2/00 0:00 8/25/00 0:00 00:0 00/81/6 00:0 00/11/6 00:0 00/\$/6 8/28/00 0:00 8/21/00 0:00 00:0 00/71/8 00:0 00/2/8 00:0 00/12/2 7/24/00 0:00 00:0 00/21/2 00:0 00/01/7 0 20 2 9 16 18 4 8 10 12 4 Depth (ft)

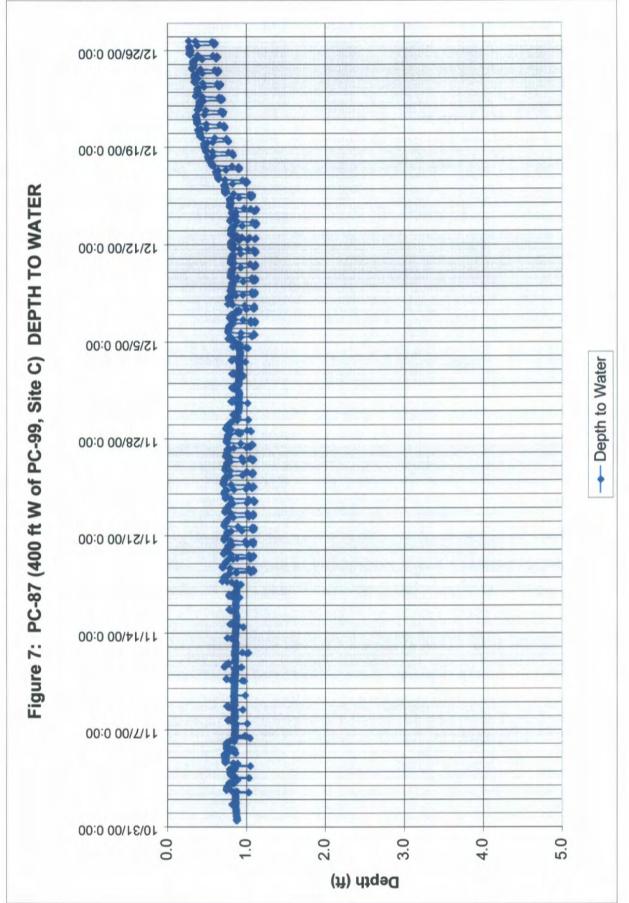
с., Figure 6

.

.

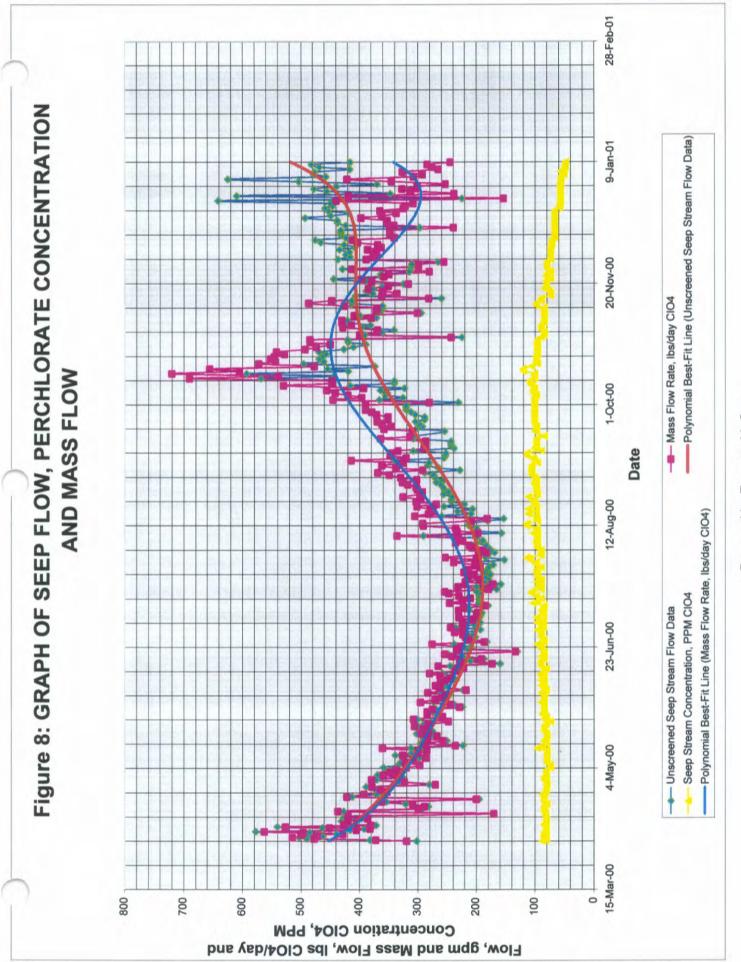
. .

.


- Andrew State (1997)

. .

• •


Figure 7

.

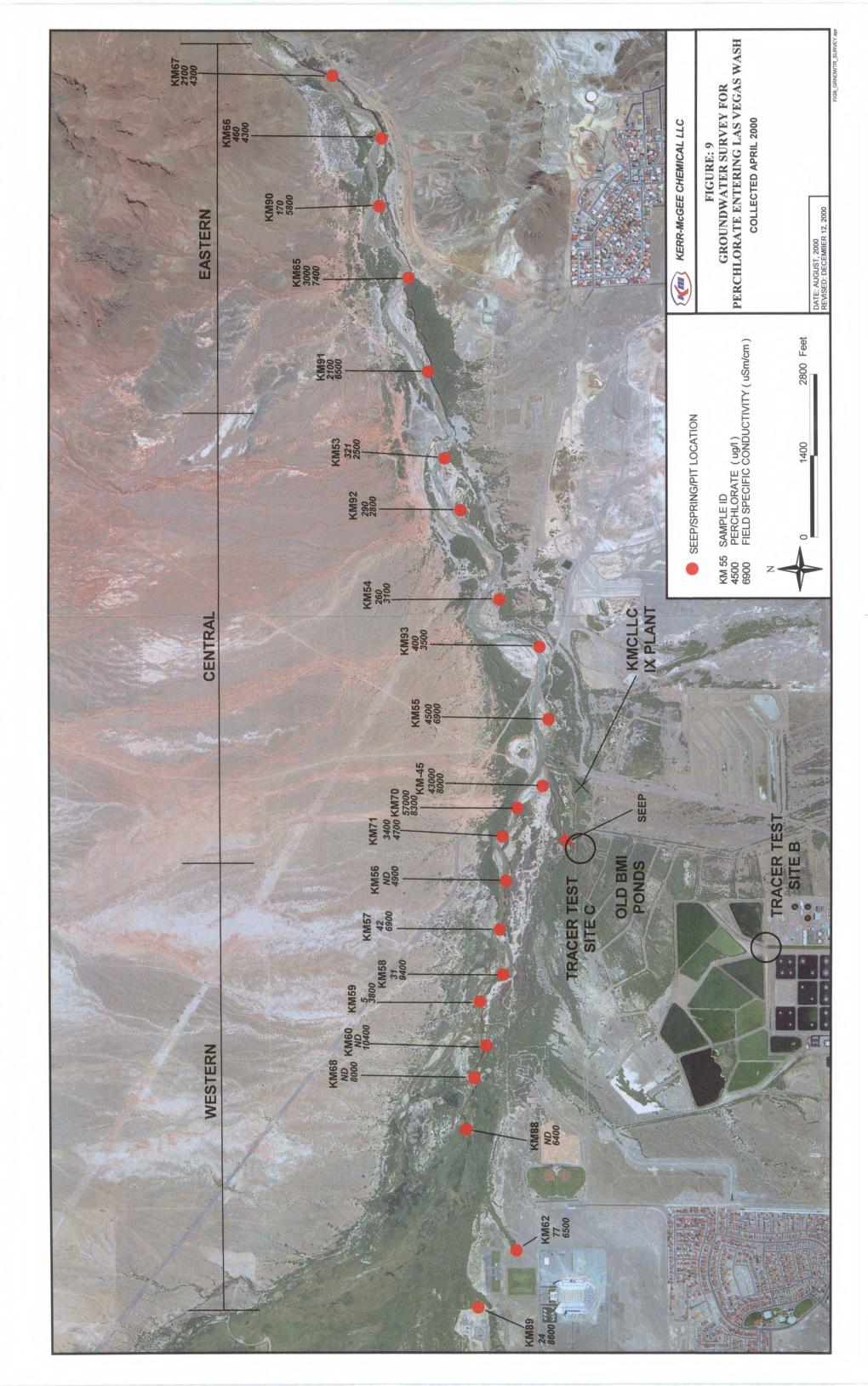

<u>نې</u> :

Figure 8

Prepared by Everette M. Spore

 $\hat{\mathcal{O}}$

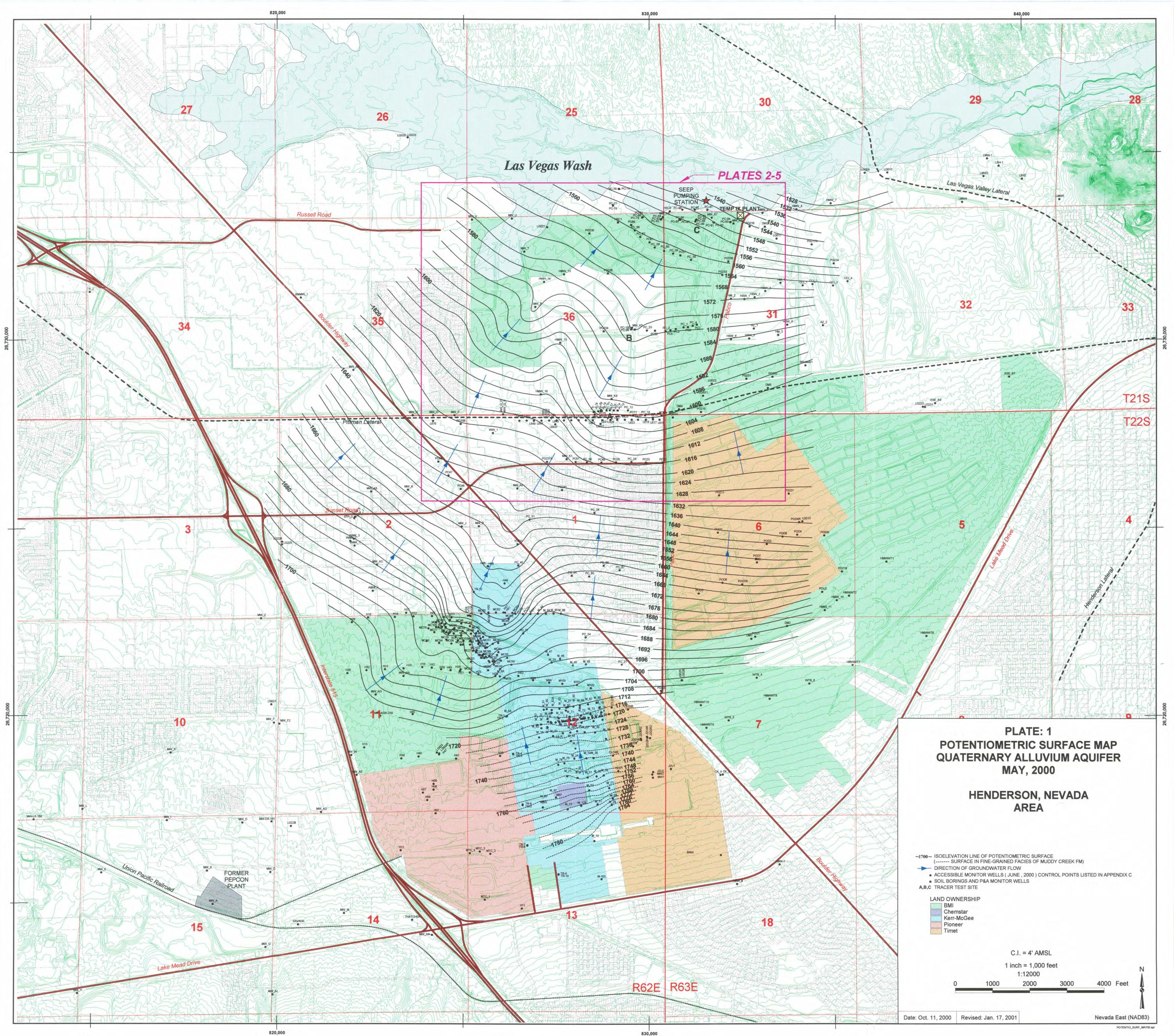


Plate 2

c

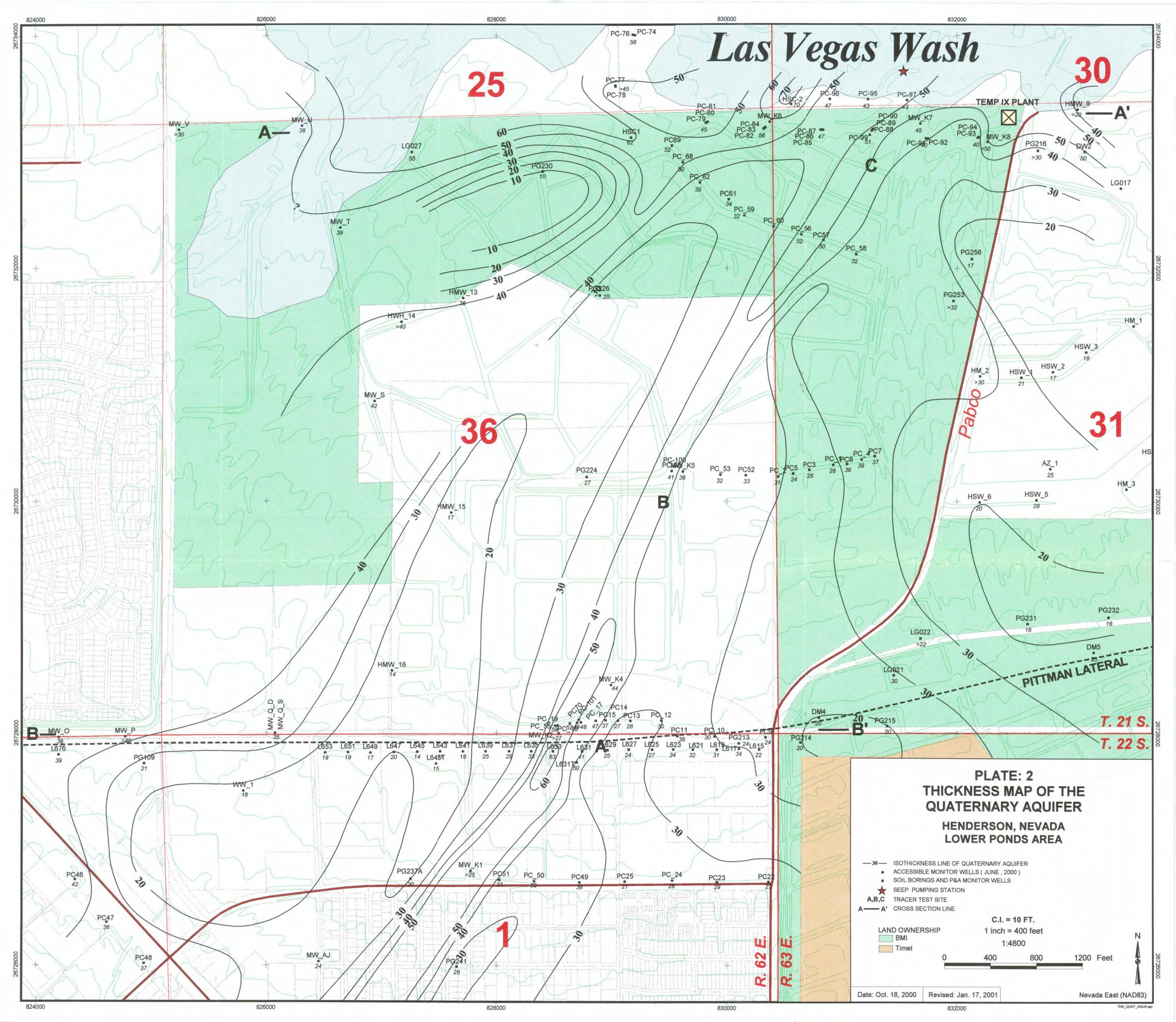


Plate 3

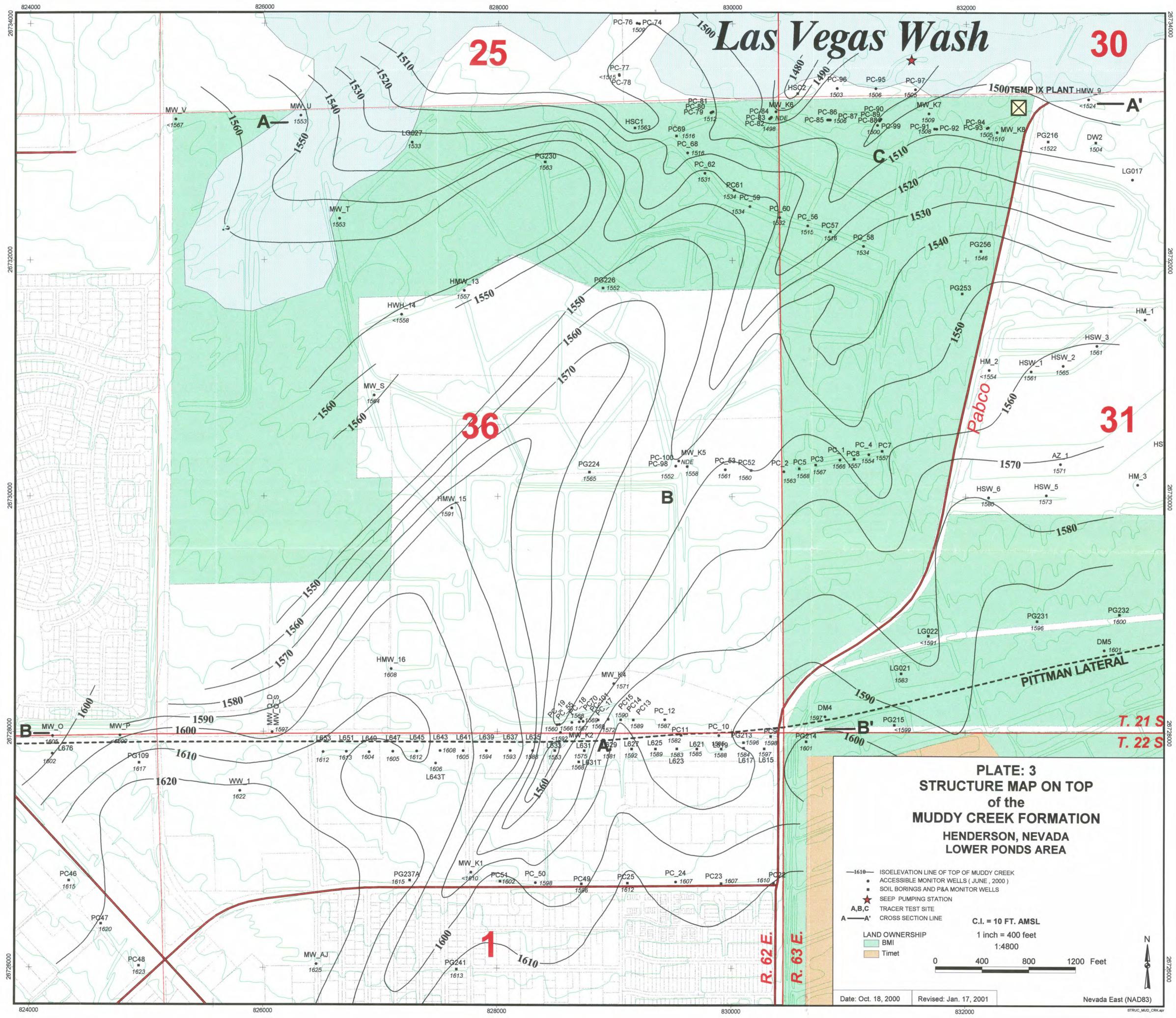


Plate 4

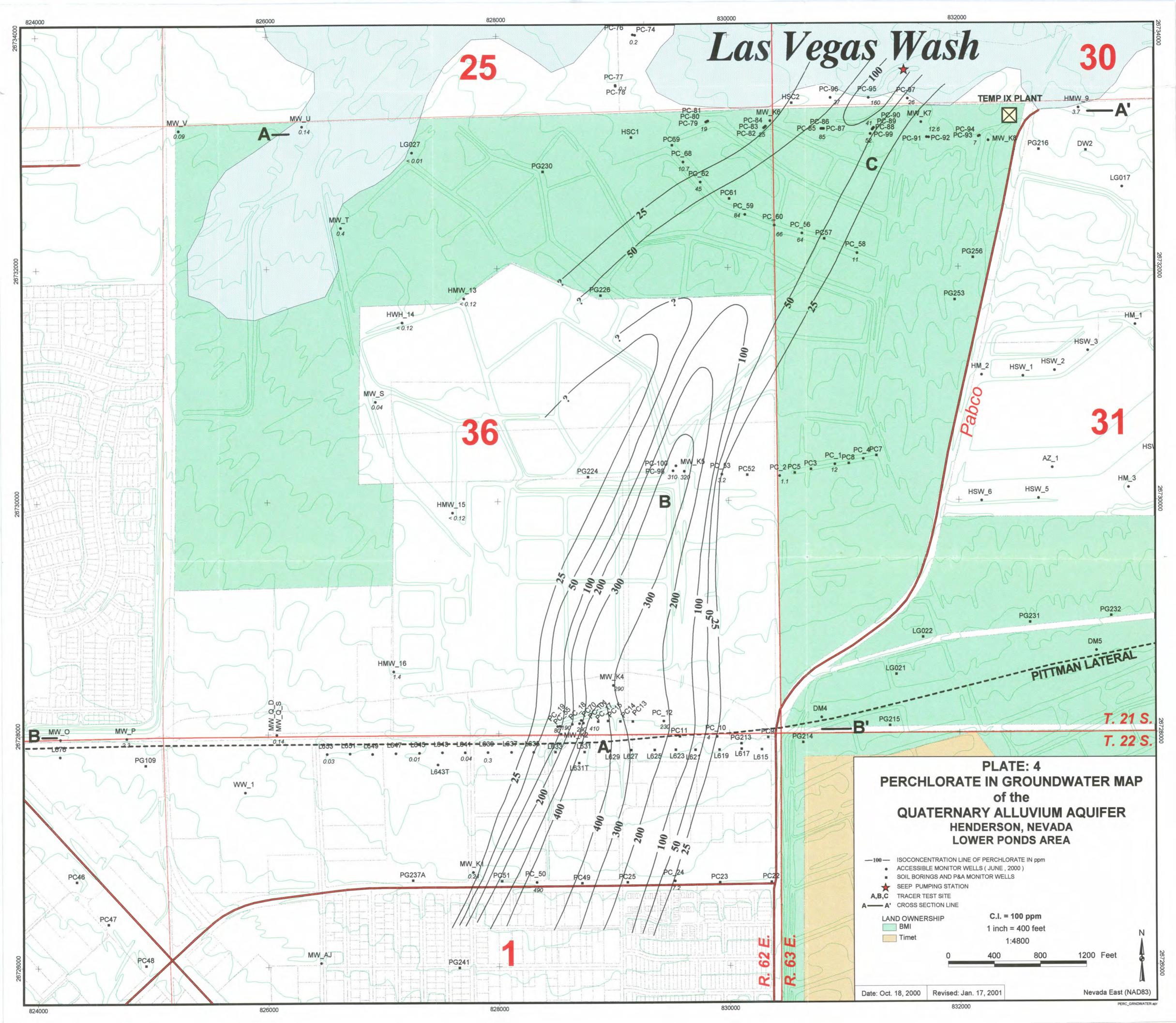
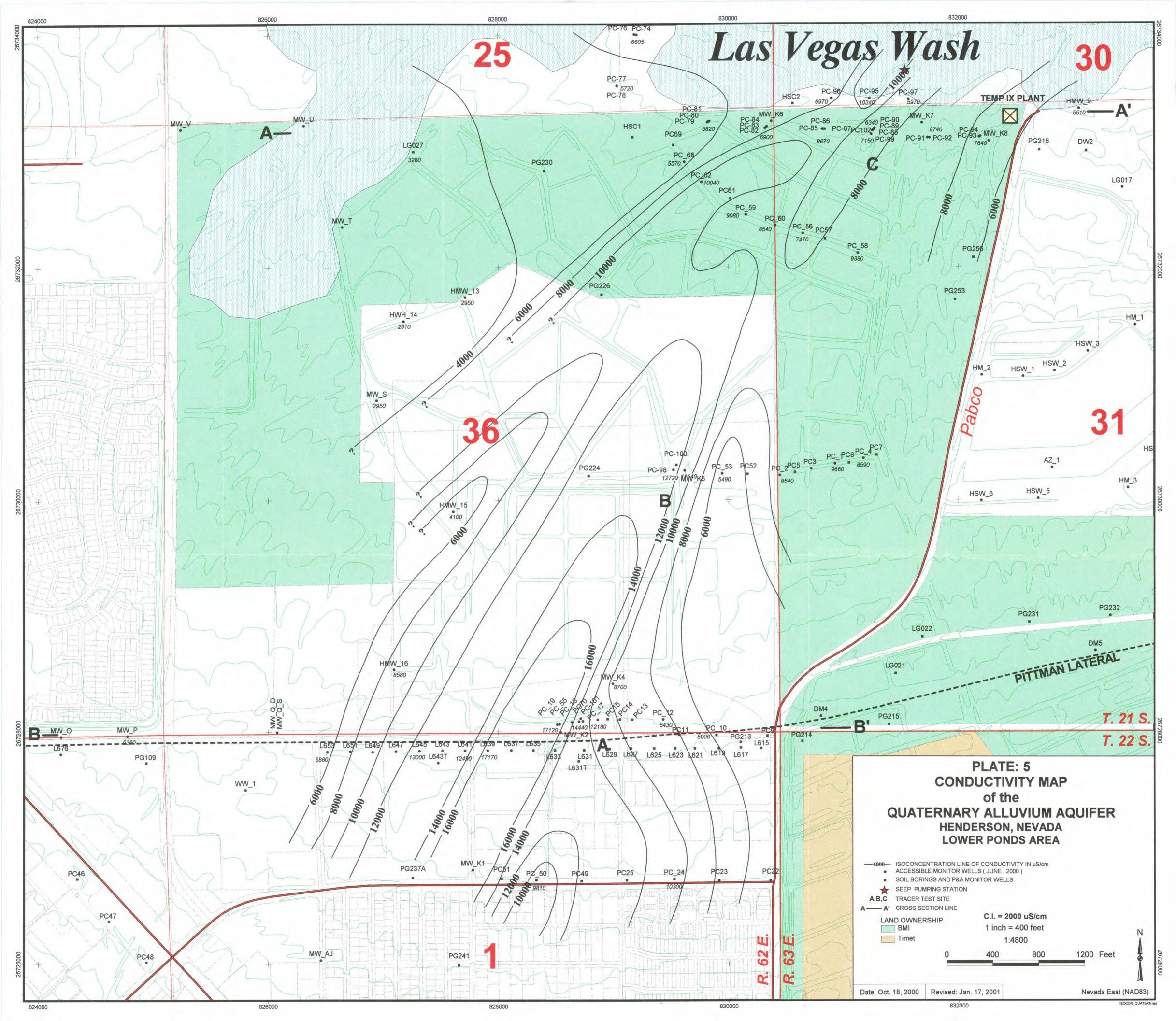



Plate 5

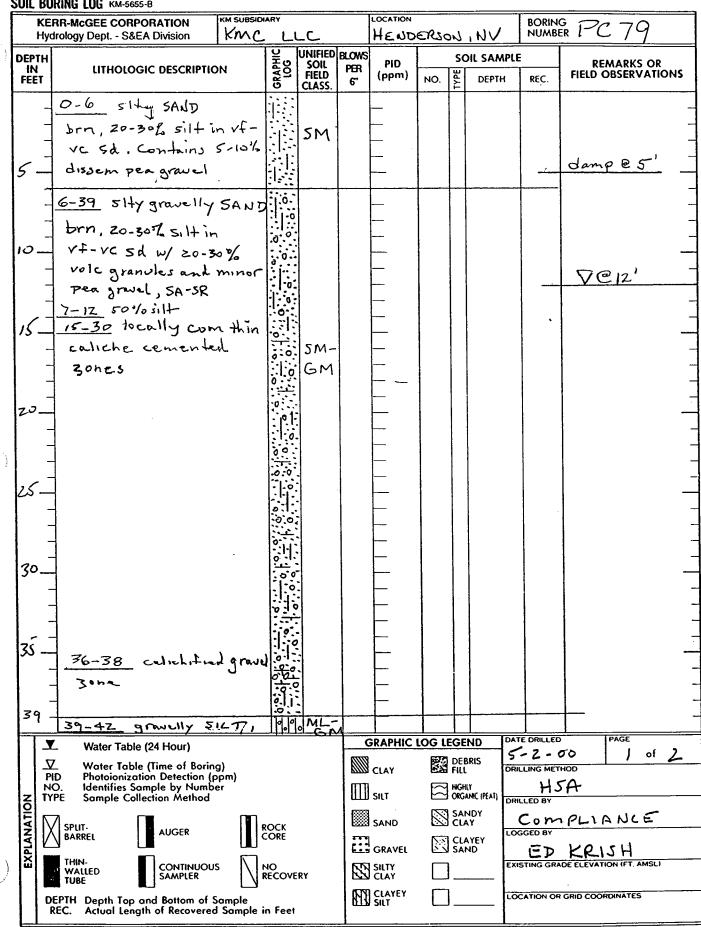
Appendix A

*с*ъ.

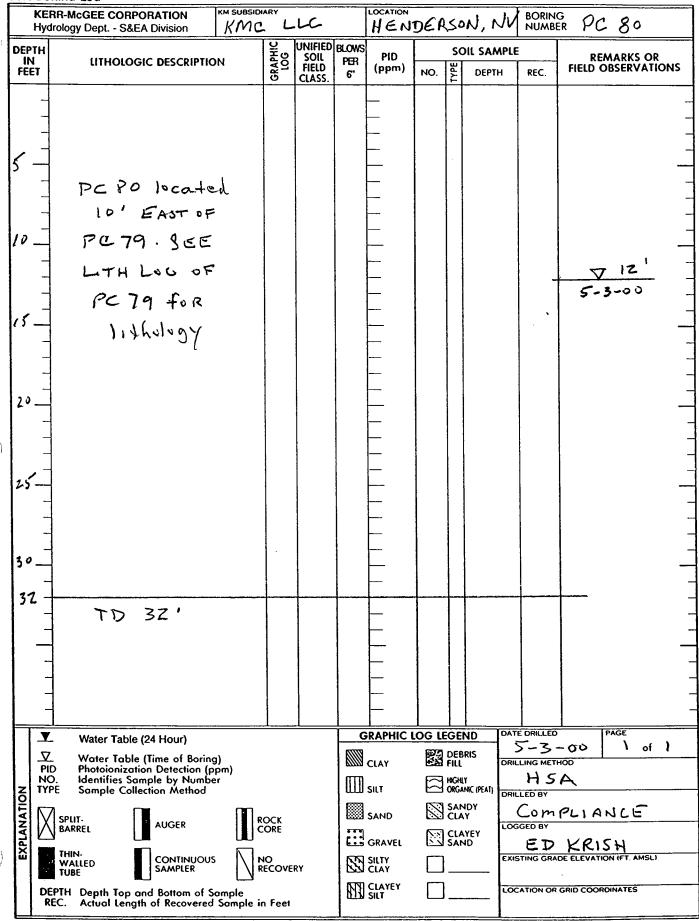
		R-McGEE CORPORATION ology Dept S&EA Division	KM SUBSIDI				Hend	erso	n	NV	BORING	G PC	74	
DEF	1			¥	UNIFIED	BLOWS		<u> </u>		DIL SAMI	PLE			
II FE	N	LITHOLOGIC DESCRIPTIO	И	GRAPHIC LOG	SOIL FIELD CLASS.	PBR 6'	PID (ppm)	NO.	E E	DEPTH	·		ARKS OR SERVATION	IS
5		0-8 GRAVEL W/ Sd, yell orange. 30% gravel+boulde z'diam. volcani 60% vc-vf SA sd 10% silt 8-15 sly SAND u gravel. Inc in silt	rs to cs p/minar to		GW							damp@ P 12.45'		
15		25%, grybrn, so vf-vc, sa-a. Gr up-b z" 1			214/		 					4-29-00		
20		15-21 Sdy GRA W/MINORSIIL. gryb Volcgrav. to Z" L Sd vc-f SA-A mo 10-15-70 silt	~n ~/	0.0.0.0.0.0	GW- GM							(Perd 9-2	6-00	
		grn, se f-ve u	∽/ ·	6.0	. 5C								damp 1' <u>utre</u> zy	- - - v
zs		com (40%) clay 24-51 Pea Gravel rc-f 3d matrix. gry. st. slty	grn									4-2	6-00	
30	-	25% sd 70% pengi Z7-28.5w/ com cobbl boulders	es/		GW									
3		<u>37-48</u> boulder z (thin) scattered " throughout	one 5	0,										
	_	Water Table (24 Hour)					GRAPHIC		_		DATE DRILLED		GE 1 of 2	2
VTION		 Photoionization Detection (p) Identifies Sample by Number Sample Collection Method 	opm) er				CLAY SILT		Hig i Org	ILY ANIC (PEAT)	DRILLING MET	THOD		
EXPLANATION	ΙŇ	SPLIT- BARREL AUGER		ROCK CORE			GRAVEL		сı		LOGGED BY	KRISt		
Ä		THIN- WALLED TUBE	s []	NO RECOVE	RY		SILTY CLAY				EXISTING GR	ADE ELEVATION	(FT. AMSL)	<u> </u>
		PTH Depth Top and Bottom of S EC. Actual Length of Recovered	iample I Sample i	in Feet			CLAYEY SILT				LOCATION OF	GRID COORDI	NATES	·

KM SUBSIDIARY LOCATION BORING PC 74 **KERR-McGEE CORPORATION** KMC LLC Henderson NV Hydrology Dept. - S&EA Division UNIFIED BLOWS DEPTH SOIL SAMPLE GRAPHIC LOG REMARKS OR FIELD OBSERVATIONS PID SOIL IN LITHOLOGIC DESCRIPTION PER FIELD (ppm) ΥPE FEET DEPTH REC. NO. 6" CLASS. 00. SCREENED 40'-50' 00 ő GW 0 9.0 45 WTR SMPL 4-22-00 PH 7.3 TDS 7100 51 51-56 SAND, m-VC, SA-SR, grn gry, hard. SI. SW sity (10%). w/ 10% granules 1: 56 56-70 sily sdy CLAY, Muddy Creek @ 56' grn gry ared brn, mothlet. 60 - Calcarcons, sticky, drills - slow. w/ 5-15% vf-mg CL-ML sand in matrix. Contains 10% c-vc-gran sized caliche nodulas 65dissen. throughout ĸ 70' TD 7-5 PAGE **GRAPHIC LOG LEGEND** DATE DRILLED **T**. Water Table (24 Hour) 4-26-00 of Z Ζ DEBRIS Δ Water Table (Time of Boring) Photoionization Detection (ppm) Identifies Sample by Number DRILLING METHOD PID HSA NO. ORGANIC (PEAT) TYPE Sample Collection Method DRILLED BY ð Compliance SPLIT-ROCK AUGER LOGGED BY BARREL GRAVEL KRISH E THIN-EXISTING GRADE ELEVATION (FT. AMSL) CONTINUOUS NO RECOVERY WALLED SAMPLER TUBE CLAYEY SILT LOCATION OR GRID COORDINATES DEPTH Depth Top and Bottom of Sample REC. Actual Length of Recovered Sample in Feet

	-McGEE CORPORATION logy Dept S&EA Division		<u> </u>			Hend	ers	10 Y	NN NV	BORIN	er PC 75
DEPTH IN FEET	LITHOLOGIC DESCRIPTION	ИС	GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6'	PID (ppm)	NO.	SC M	DIL SAME DEPTH	REC.	REMARKS OR FIELD OBSERVATIONS
-	PC 75 located SW of PC 74 See log of PC for lithology (Soil boring (Soil boring (So	-E wgers						2	ELL	ATE DRILLE	$\frac{\sqrt{16^{1}}}{4 \cdot 27 \cdot 00}$ $\frac{\sqrt{24^{1}}}{\sqrt{24^{1}}}$ $\frac{4 - 27 - 00}{4 - 27 - 00}$
	Water Table (24 Hour) Water Table (Time of Borin Photoionization Detection (Identifies Sample by Numb Sample Collection Method SPLIT- BARREL	ppm) ber	ROCK CORE			CLAY SILT SAND		DEE FILL HIGH ORGJ SAI	BRIS	4 - 27 DRILLING ME HS DRILLED BY COM LOGGED BY	THOD
DEP	THIN- WALLED TUBE TH Depth Top and Bottom of C. Actual Length of Recovere	لا Sample	NO RECOVE n Feet			GRAVEL SILTY CLAY CLAYEY SILT		SĂI]	ND		KRISH ADE ELEVATION (FT. AMSL) R GRID COORDINATES


SOIL BORING LOG KM-5655-B KM SUBSIDIARY LOCATION **KERR-McGEE CORPORATION** BORING NUMBER PC 76 KMC Henderson, NV LLC Hydrology Dept. - S&EA Division UNIFIED BLOWS GRAPHIC LOG DEPTH SOIL SAMPLE REMARKS OR FIELD OBSERVATIONS SOIL PID IN FEET LITHOLOGIC DESCRIPTION PER FIELD (ppm) μ DEPTH REC. NO 6" CLASS. 5. PC 76 located 10' SW of PC75 (20'SW of PC74) 10 . see log of PC74 for lithology SCREEN SET 15'-ZO' 15- ∇ 4-28-00 4-29-00 @16.28' 20. WTR SMPL 4-30-00 PH 7.2 TD ZZ cond. 8600 DATE DRILLED PAGE **GRAPHIC LOG LEGEND _** Water Table (24 Hour) 4-28.00 l ١ of Water Table (Time of Boring) Photoionization Detection (ppm) Identifies Sample by Number Sample Collection Method DEBRIS FILL <u>v</u> DRILLING METHOD PID NO. TYPE HSA ORGANIC (PEAT) **III** รแт EXPLANATION DRILLED BY SANDY CLAY SAND Compliance SPLIT-ROCK CORE UGER BARREL LOGGED BY GRAVEL Εd Krish THIN-EXISTING GRADE ELEVATION (FT. AMSL) CONTINUOUS NO RECOVERY SILTY CLAY WALLED SAMPLER CLAYEY SILT DEPTH Depth Top and Bottom of Sample REC. Actual Length of Recovered Sample in Feet LOCATION OR GRID COORDINATES

	KERN-MCGEE CONPORATION	KM SUBSIDIARY	LLC		LOCATION HEJT	DERS	,0	VN NV	BORING	R PC77
DEP IN FEI	N LITHOLOGIC DESCRIPTIO	Z GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6	PID (ppm)	NO.	SC	DIL SAMPLI DEPTH	E REC.	REMARKS OR FIELD OBSERVATIONS
5		volu	sw sw					4.	<.53'	damp@z' - moist@6' - pH 7.z - nd, 5500 -
15 20	- <u>11-21</u> Sity gravelly - <u>brn</u> , vf-m, sA·sR, silty matrix. 20% + caliche granules+p to 1"	30%								₩17.18' 5.3.00
25 30	- <u>21-34</u> gravely SAN brn gry, 51. sity 10 SR-SA vole and cali <u>ZZ-Z4</u> v. hand calie gravel - <u>29-34</u> dec in grave to 10%. Mostly rf - Sand	- 2 v T , , 00 che h, fied , 0 .0 .0 .0 .0 .0 .0 .0 .0 .0	5W							WTR SMPL 5-2-00 PH 7-8 Cond 6800
39	34-40 Sky SILT 30-40% vfg, SA. San Contains 10-15% m Supported volc gra	, brn, 5	·	•						
	Water Table (24 Hour)				RAPHIC			4	78 - 5	
EXPLANATION	V Water Table (Time of Boring PlD PlD Photoionization Detection (pl NO. NO. Identifies Sample by Number TYPE Sample Collection Method Image: Second Sample				CLAY SILT SAND GRAVEL SILTY CLAY SILT	\boxtimes	HIGH ORG SAI CL/	AYEY NDY AYEY ND AYEY ND EXI	LLING MET	PLIANCE


		RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSIDI		C.		LOCATION HEND	ERSO	<u></u>	. NV		PC77
	тн		·		UNIFIED					DIL SAME		
FE	N ET	LITHOLOGIC DESCRIPTIO	N	GRAPHIC LOG	SOIL FIELD CLASS	PER 6'	(ppm)	NO.	TYPE	DEPTH		REMARKS OR FIELD OBSERVATIONS
FE 44		40-44 sity gravelly brn, f-vc W/ 30-35% and pebbles of volc caliche & minor 16. 44-45 V. hard calic GRAUGL (volc & 15.) TD 45 (too hard to drill	SAND gran. and ified	0. : 0 :	FIELD CLASS. SM-		(ppm)	NO.	TYPE	DEPTH	REC.	FIELD OBSERVATIONS
	- 											
	_	(-	RAPHIC L				ATE DRILLED	1/00 Z of Z
	Р 19 М ТҮ	 Photoionization Detection (p) Identifies Sample by Number 	pm)				CLAY				H S	10D
EXPLANATION		SPLIT. BARREL AUGER		OCK ORE			SAND	\boxtimes	SAN CLA		Comp	LIANCE
EXPL/			110 5	10			GRAVEL SILTY		CLA SAN			KRISH
		TUBE	R	ECOVE	RY	1	SILTY CLAY			—		
	DIR	EPTH Depth Top and Bottom of Se EC. Actual Length of Recovered		n Feet			CLAYEY SILT			[OCATION OR	GRID COORDINATES

	R-McGEE CORPORATION KM SUBS		C	HEND	ERSO	N	NV	BORIN	ER PC 78
DEPTH IN FEET	LITHOLOGIC DESCRIPTION		UNIFIED SOIL FIELD CLASS.		NO.		DIL SAMPI DEPTH	LE REC.	REMARKS OR FIELD OBSERVATION
5^{-}	HOLE LOCATED 10' SOUTH OF PE77. See PC77 for lith log TDZZ'								¥ 6.95 ′ 5-3-00 рн 7.5 Тъ 4800 У С19′ 5-2-00
	Identifies Sample by Number Sample Collection Method	BUCK		CLAY SILT SAND		DEE FILL HIGH ORG/	SRIS LY ANIC (PEAT) DF NDY AY	S-Z- (RILLING MET RILLED BY Con	J of J
	THIN- WALLED TUBE	ROCK CORE NO RECOVE	DY	GRAVEL SILTY CLAY				ED KISTING GRA	KRISH DE ELEVATION (FT. AMSL)

1

	ERR-McGEE CORPORATION	KM SUBSIDI		LC		HEND	ER3.	n		, T	BORING	G R PC	79
DEPTH	· · · · · · · · · · · · · · · · · · ·			UNIFIED					IL SAN			· · · · · · · · · · · · · · · · · · ·	
IN FEET	LITHOLOGIC DESCRIPTIC	N	GRAPHIC LOG	SOIL FIELD CLASS.	PER 6'	PID (ppm)	NO.	17 PE	DEPT		REC.		MARKS OR BSERVATION
_	gen gray, sticky, 1	0-Z0%		ML-									
Z -	dissem matrix supp.	Let a	6 °	GM				$\left - \right $	<u> </u>				
-	Pragravel (to 1") 42-45 sity gravely Si	/	.º.o 	sm- GM							1		
۔ _جـ	42-45 sity gravely Si	ND,	<u></u>	Gr									_
-	1 as above		<u> </u>			_						MC @	45
-	45-58 sity sdy (grngry, dk gry and)+	tan	Ŋ,							ĺ			
-		· · · · · ,	<u>//</u>				l						
. —				CL									
-	(49-50) Calichitized 3	one	K										
-			1/	İ		_							
• • •	·] 		<i>Y</i> .,	ł	1		l						
5-	4		/./	ł									
-			1.1	ł							·		
-			~//	 		·		$\left \right $					
	58-73 Sdy SILT. dy		$\left \frac{1}{2}\right $										
<u>-</u> م	- poile ben w/ minorgi - 10% vf-mgisR-sA sai		iti										
			1.										
-	- matrix. Mirhor gypsu - xtols throughout	~ (Ì						
, 5_	-			ML-		<u> </u>							
o	30ne hard, calich	ified		CL		\Box						ļ	
	gone		<u>```</u>			<u> </u>							
	-	C ')				 						1	
70-	66-73 hard, calich	itied	1.										
•	- z'one		·H		1								
	-		111.			\vdash							
	TO 73'												
_	-					<u> </u>							
	-					<u> </u>							
	L Water Table (24 Hour)		I	1	G	RAPHIC		EGE	ND		DRILLED	1	PAGE Z of Z
	Water Table (Time of Boring	ı)				CLAY		DEB FILL	ris		Z-0		∠ of —
N	PID Photoionization Detection (p IO. Identifies Sample by Number YPE Sample Collection Method	pm) r							Y NIC (PEAT)			HSA	
ēļ,		n in				SAND		SAN		-	ED BY	ะเาลง	<u>م</u>
EXPLANATION	SPLIT- BARREL AUGER	R	OCK ORE		1					LOGO	GED BY		
			~			GRAVEL		CLA SAN	ID			KRIS	M
	WALLED CONTINUOUS TUBE SAMPLER		O ECOVE	RY		SILTY CLAY				EAIS I	GHA DHA		AT IT I. AMOLF
						CLAYEY SILT							

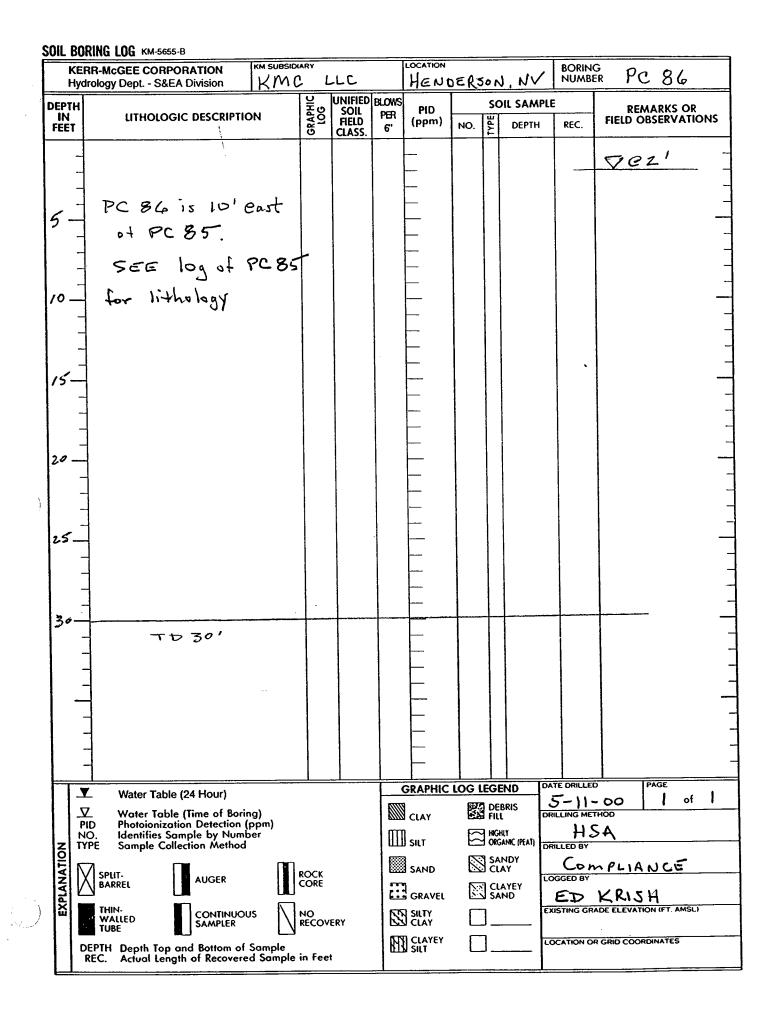
	Irology Dept S&EA Division	KMC LL		BIONE		EKSO		,NV		R PC81
EPTH IN FEET	LITHOLOGIC DESCRIPTIC	Z GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	PER 6"	PID (ppm)	NO.	SC I	DIL SAMP	REC.	REMARKS OR FIELD OBSERVATIONS
-										
	PC 81 locate									
- -	10' EAST of				_					
	PC80 Se	<u>e</u>			 					
ر 	PC80 Se Log of PC70 for lithology	2			<u> </u>					
	Log	1								5-5-00
	for lithology									5-3-00 -
5-					<u> </u>					
8 -					<u> </u>		\square			
	TO 18'				-					
_					 					
_										_
-										
-	4									
_					-					
_										
-					<u> </u>					
						Ì				
-	4									
-					-			ļ		-
- 			<u> </u>		RAPHIC					
	Water Table (Time of Boring	3)			CLAY		DEB FILL		5-3-	00 1 of 1
PI NO	 Photoionization Detection (p Identifies Sample by Number 	pm)					KIGHI	Y	HS	
	71 — —				SAND		SAN	10	Com	PLIANCE
<u>s</u> V	SPLIT- BARREL AUGER	ROCK		1	GRAVEL			.ΥΕΥ 4D	OGGED BY	KR15H
	THIN- WALLED CONTINUOUS TUPE SAMPLER		RY		SILTY CLAY					CK 11 H
	TUBE SAMPLER EPTH Depth Top and Bottom of S REC. Actual Length of Recovered	لاً ample			CLAYEY			[OCATION OR	
				1				I,	<u></u>	

	RR-McGEE CORPORATION			LC		LOCATION HENT	5 EK.5	n ot				, PC	82	
	1		-	UNIFIED	BLOWS	· · · · · · · · · · · · · · · · · · ·			DIL SAM		<u> </u>			=
DEPTH IN FEET	LITHOLOGIC DESCRIPTIC	N	GRAPHIC	SOIL FIELD CLASS.	PER 6'	PID (ppm)	NO.		DEPTH	<u> </u>	REC.		MARKS OR DBSERVATION	s
-	0-3 distorbed 1 material stygrav		0.0	SM- GM								@2'	damp	
5-	<u>3-12</u> sity gravely dk brn, 20% silt, granules & pea gravel	40%	; ;)	sm.	+						-	V e	25'	-
	of vole. 40% vf-v sa-sa	c'sd'		GM										-
		=	0	,										-
-	12-15 sty cly SI	SA · SR ,		ML										-
15 -	vole granules . stic 15-20 sity sdy GRA	ky 1	0.010											
-	dkbrn. SR-SA, ZO% 25 % vf-vcsd, SA-S	silf,		GM										-
2.12-	_ ZO-30 sity gravelly dk brn, zo%silt, Au	% volc	l'I e			_								_
25-	- granules to peagrau - SR; vf-vc, SR-sa si			SM-		 								
			0,0,0											
30-	<u>30-33</u> sdy sity GR - dk brn, 30% sA-SR,	LAVEL, VF-LSA	0.0	GM			1					-		
33	- 20% silt, 50% volc. - 15 gravel to 2-3", 5R	v/ mine		<u>o</u> 2		+								-
- 20	33-39 sity gravell as above @ 38'-39' gravel zone	YSAND		5M-										
	SR up to 3" diam 39-46 sity SAND, b		000					+						-
	Water Table (24 Hour)					GRAPHIC	LOG LE	GE	ND				PAGE	
	Water Table (Time of Borin PID Photoionization Detection (p NO. Identifies Sample by Numb	opm)			1	CLAY		HIGH		DRILL	4 - 02 ING METH		J. of Z	<u>, </u>
EXPLANATION	YPE Sample Collection Method					SAND	\otimes	SAI CL/			Com	PLIA	nce	
EXPLA		s N,	٩O	50V	ł	GRAVEL SILTY CLAY		SAI	ND	EXIST		P KR	ON (FT. AMSL)	.
	TUBE SAMPLER DEPTH Depth Top and Bottom of S REC. Actual Length of Recovered	L_1 Sample	RECOVI			J CLAY] CLAYEY SILT				LOCA	TION OR	GRID COOF	DINATES	
	nee. Actual tengin of Recovered	- equipie i												

ſ		KENT-WICHE CONFORMION		LLC		LOCATION HENDE	0-	 1	<u>.</u>	BORIN	IG FR Pr	82
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					<u>UL</u>
	DEP' IN	LITHOLOGIC DESCRIPTION	GRAPHIC		PER	PID -			SAM			MARKS OR
	FEE	ET	GR	CLASS.	6.	(ppm)	NO.	TYPE	DEPTH	I REC.	FIELD C	DBSERVATIONS
Í		SA, 30% sult in 70%	1] 4-4v									
		- sd w/ minor c.vcgr	ains !!!			 						
		- sticky calcareous		SM		 						-
	45											-
	93		[]	3								
		- 46-50 sity gravely	SAND,	SM-		L						_
		- dk brn, as above	0.	·*•		<u> </u>						-
	~~		10	i GM		<u> </u>						-
	50	50-52 NU SITU SANT	· · · · · · · · · · · · · · · · · · ·	:: SM-	1							
	52	- red brn + arn ary. SA	-se 년	<u> sc</u>	ļ	Į						-
		- 50-52 cly, sity SANT red brn + grn gry. SA vf-fg sd w/ ZoZ cla silt. Com sm calicher nodules, calcareous of 52-56 sity gravelly:	y + 302 1	5M-		<u> </u>				1	1	-
		- silt. Com sm calich		GM		┡—						
	-	- Inodules; calcareous	/ ;;	6.								-
	56	of 52-56 sity gravelly:	SAND, 17	7	1		m	5	Ay C	k @ 56	T	
		f-c SR-SA w/ zoz silt a	no pr			—			1			_
		3012 volc + 15 pebbles to		Δ								-
İ	60	grn yellow, sticky	14	CL		<u>}</u>						
		- grn yellow, sticky	ľ	1]		-						-
}			ľ								ł	-
		_	1			<u> </u>						
	65	´	K									—
		_	ľ			-						-
	67	TD 67'										
		-								1		-
					ł	<u> </u>						<u></u>
		-				 						-
		-				-						-
			1									-
•		_										
		-				<u> </u>						-
	1	-1										-
												-
	[Water Table (24 Hour)				GRAPHIC I			<u></u>	DATE DRILLEI	i	PAGE Z of Z
		PID Photoionization Detection (pp				CLAY		DEB FILL	ris	DRILLING ME		- 0. L_
		NO. Identifies Sample by Number						HIGHL	Y NIC (PEAT)		۶A	
	ğ	TYPE Sample Collection Method							1	DRILLED BY		
	NA1	SPLIT-	ROCK			SAND	\otimes	SAN	Ϋ́ Ι	Comf	LIANC	E
	EXPLANATION	BARREL				GRAVEL	\sim		YEY ID	FD	KRIS	14
)	۱ <u>۳</u>	THIN- WALLED CONTINUOUS	NO		1	SILTY						ON (FT. AMSL)
		TUBE		VERY					—			
		DEPTH Depth Top and Bottom of Sa REC. Actual Length of Recovered		et		CLAYEY SILT			[LOCATION O		DINATES
			southe tu te	ы ————————————————————————————————————								

<u>soil bo</u>	RING LOG KM-5655-B								<u> </u>		····
	RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSIDIARY	L	.C		HEN	DER	నం	N, N		G ER PC83
DEPTH IN FEET					BLOWS PER 6'	*	NO.		DIL SAM	PLE	REMARKS OR FIELD OBSERVATIONS
	PC 83 is 11' A of PC 82. See log for Pi for lithology 37' TD	SOKETTA J									<u><u>v</u> @5' 5-4-00</u>
	• • •	ppm) er I ROC COR				RAPHIC I CLAY SILT SAND GRAVEL SILTY CLAY		DEE FILL HIGH ORGJ SAI	BRIS ILY ANIC (PEAT) NDY AY	DRILLED BY	so 1 of 1
		L Sample			1	CLAY CLAYEY SILT				LOCATION OF	R GRID COORDINATES

	R-McGEE CORPORATION	LL			LOCATION HENDE	RSON	1	2		BORING	r PC	:84	
DEPTH IN FEET	LITHOLOGIC DESCRIPTION	GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6''	PID (ppm)	NO.	SC I	DEPTH	- 1	REC.	RE FIELD C	MARKS OR BSERVATIO	40
	PC84 is 11 NIKTH	1			_								
	1 F PC 83				_						∇	@5'	
5-	SEE log of PC 82 for lithology				_							- 00	
-													
	tor lithology				F								
10													
					—			•					
15-													
		<u> </u>	<u> </u>	 	<u> -</u>	ļ		_					
	TO 17'				 								
-					–								
					<u> </u>								
					\vdash								
					F								
					E								
					-		ł]	Ì				
				1									
-					-								
											<u> </u>		_
	Water Table (24 Hour)				SRAPHIC					DRILLED	.00	PAGE of	}
	Identifies Sample by Number				CLAY SILT		DEB FILL HIGH ORG/	LY INIC (PEAT)		ING METH		۶A	
Ĭ₹IM		ROCK			SAND	\boxtimes	SAN CLA	NDY NY	C	ome	PLIAN	१८९	
	BARREL AUGER	CORE			GRAVEL) CLA SAR	NYEY ND		ED BY	KRIS	H	
	THIN- WALLED TUBE	NO RECOVE	RY		SILTY CLAY]			-		ON (FT. AMSL)	
DEF	TH Depth Top and Bottom of Sample			1	CLAYEY	Γ]		100/	TION OR	GRID COOF	DINATES	
	C. Actual Length of Recovered Sample	in Feet											


	RR-McGEE CORPORATION	KM SUBSIDI	١			LOCATION HENC	DERS	162), NV	BORI	NG BER F	°C 85	-
DEPTH IN FEET	LITHOLOGIC DESCRIPTI	ои	GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6"	PID (ppm)	NO.	SO IYPE	IL SAMP DEPTH	REC.	FIELD	EMARKS O	R 101
	0-10 SI. SILY SAN	iD	<u> </u>	CLASS.							dar	~peol	<u> </u>
_	ary brn(5yR4/2)	-s cp.ca					[
1 -	populy sarahd vfay										<u> 76</u>	<u>z</u> '	
5-				5W									
	gry brn(5YR4/2) poorly sorted Yf-v 10% silt and 10% i granules to 1/4"	1012	1										
	granoles to 14					<u> </u>							
10-													
	10-27 sity gravel SAND. dkyell brn 20-30% silt and 1 volc granules and f	ly	.] 0										
	SAND. dkyell brn	(107R4/2)	0			<u> </u>							
	20-30% silt and 1	0-z.07.	0. j 0				1						
15_	volc granules and j	rebbles	0										
-	to 1/2."		0	sm-		<u> </u>							
			0	GM									
_) 							
Z0 —		:				<u> </u>							
							1						
-						_	}						
						-							
25 -			00			\Box							
-	17 AZ 5144 544	CRANTEL	0.00	•				$\left - \right $	·····				
	27-43 sity say Jkyeli brn (loyr4)		0000	2									
30	akyen orn (10) Kt	(4). 				 							
-	Jkyell brn (107R4) 30% silt, 25% vf- sd and 45% grad pebbles to 112"	V C ,JA-51		•		<u> </u>							
	5 d and 45% gran	nules +	0.										
	peoples to 1/2"		6.00	GM		 	1						
35-	4		0.0			-							
			0.00	2									
	38-43 V. hard dr	illing	0.0	0		<u> </u>							
	colichified growel)	0.0.0.0.000	0		<u> </u>							
Y	Water Table (24 Hour)	· ····			6	RAPHIC					ED - 00	PAGE of	
						CLAY		DEBI FILL	RIS C	5 - 10 RILLING MI	ETHOD		
N	D. Identifies Sample by Number 1	ber				SILT		HIGHLI	NIC (PEAT)	RILLED BY	++	\$A	
	71 –					SAND		SAN	1	-	PLIF	NCE	
	SPLIT- BARREL AUGER	R	OCK			GRAVEL		CLA CLA SAN	1.	OGGED BY			
EXPI			ю		4		لڈے س	SAN				ISH	<u>,</u>
	TUBE		ECOVE	RY	1	SILTY CLAY							
	EPTH Depth Top and Bottom of EC. Actual Length of Recovere	Sample d Sample in	n Feet			CLAYEY SILT			[[†]	OCATION C	OR GRID CO	ORDINATES	
					1				1				

2.

	KERR-McGEE CORPORATION Hydrology Dept S&EA Division		LL			HEND	eks	o N	NN I		ORINC	R P	C	85
DEPT IN FEET	LITHOLOGIC DESCRIPTION	И	G	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6"	PiÐ (ppm)	NO.	SC TYPE	DIL SAMI DEPTH	- 1	REC.			KS OR RVATION
* ~	-	0.00	00.000	ВM										
43	- 43 - 47 sdy shut	, yell !										MC	0	43'
, - 	gry + 1+ brn, 5-10% SR gty grains + 5-10	m-c		ML										
47	- Caliche rudules. Ca					<u></u>						<u>.</u>	<u></u>	
50-	_ 47-67 CLAY and _ CLAY, interbedded	51+y 15-257	Ţ											
	- dissem caliche note - Calcancous. sticl	ules.	X			 								
55-	7			CL										
			K			 								
60.	<u>57-64</u> H grn gry(5	GY 8/1)	1											
	64-67 med gry (Ne	-)	$\left/\right/$											
65.		, ,	1											
	- TD 67'		<u> </u>	1		-								
70			•											
	-					E								
		:				-								
T	✓ Water Table (24 Hour)		<u> </u>	<u></u>		FRAPHIC					RILLED		PAGE	Z of S
	.√ Water Table (Time of Borin PID Photoionization Detection (NO. Identifies Sample by Numb	ppm)				CLAY SILT		DEE FILL	BRIS LY ANIC (PEAT)		NG MET			
EXPLANATION	TYPE Sample Collection Method					SAND	SANDY CLAY			DRILLED BY COMPLIANCE LOGGED BY			•	
EXPLA		IS N	[]			GRAVEL SILTY CLAY	SAND			ED KRISH EXISTING GRADE ELEVATION (FT. AMSLI				
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	لاا Sample				CLAYEY]		LOCAT	ION OR	GRID COOF	DINA	TES

•

.....

KE Hy		KM SUBSIDIARY KMC LLC				HENDERSON, NV					R PC	87	
DEPTH IN FEET	LITHOLOGIC DESCRIPT	ION	GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6'	PID (ppm)	NO.	SO I YPE	DIL SAM	1	REC.	REM FIELD OB	ARKS O SERVAT
_													
_	PC 37 located					-							
5-	10' EAST OF PC	86.											
	SEE LOA of PC	85					ļ						
	10' EAST OF PC SEE Log of PC for lithology												
10-	for lithology					<u> </u>							
-													
-					1								
15-1						[`	<u> </u>	
	TD 15'					- -							
-													
						 							
-						—							
-													
-													
-	-												
-						F							
	-												
-						E							
-						 							
						F							
	-												
-	-					-							
					GRAPHIC LOG LEGEND				DATE DRILLED PAGE 5-11-00 1 of				
	 Water Table (Time of Bori ID Photoionization Detection O. Identifies Sample by Num 	(ppm)			1			HIGH	y I	DRILLI	NG METH	HOD	
	PE Sample Collection Method							ORGA SAN CLA	NIC (PEAT) IDY		D BY		
	SPUIT- BARREL AUGER ROCK CORE					SAND			1	LOGGE	ED BY	IANC	
EXP						GRAVEL SILTY CLAY				ED KRISH EXISTING GRADE ELEVATION (FT. AMSL			
	DEPTH Depth Top and Bottom of Sample REC. Actual Length of Recovered Sample in Feet					CLAYEY				LOCAT	ION OR	GRID COORDI	NATES
					<u> </u>	_							

.

SOIL BORING LOG KM-5655-B												
KERR-MCGEE CORPORATION Hydrology Dept S&EA Division KMCLLC					HEND	ERS	oN	, NV	BORING PC 88			
DEPTH		<u>ک</u>			NIO	SOIL SAM			PLE			
IN FEET	LITHOLOGIC DESCRIPTIO	GRAPHIC LOG	SOIL FIELD CLASS.	PER 6'	PiD (ppm)	NO.	түре	DEPTH	REC.	REMARKS OR FIELD OBSERVATIONS		
	0-12 Say GRAVE	0.0								Jampeo' -		
-	pale brn (SYR5/2)	00								Vez'		
-	silt, 30% sd (SA-SR	001 - IV	1 .		-					_		
	VC) and 60% vol		GW									
ľ -	gravel (SA-SR, up+		1		_					_		
-	diam.	000							-	-		
1 _		000	S									
10-	4	00										
-	-	000								-		
_	12-51 sity gran		:	1						_		
/-			:		-				· ·	-		
15 -	SAND. Paleyell b (10YR 6/2). Var. si	14			<u> </u>							
	20-40%.20-30%		:							-		
-	gravel to 3/4" (vole		:		 							
- Zv	Sand SA-SR vf-		.5M-							-		
	12-21 10-20% sl	+	GM		-					-		
	matrix	0,0								-		
					<u> </u>					-		
25-	- ZI-51 com silt in	n mature			\vdash							
	- 30-403/0									-		
	_		:		 					-		
	27-33 gravel zone (pebbles to 3". Var. cement	ω/ 1.	2		\vdash					-		
30-	pebbles to 3". Var.	calicheijo										
	-32-33 v. hard. slow	dulling			F					-		
	-32-33 v. hard. slow - abu coliche ceme	nt II			┣-					-		
35		01								-		
ŗ.	4		1.		-							
	- 37-51 Var. amts .	4			\vdash							
	gravel (pebbles to	z") o	1									
	up to 50 %	:0:	•						DATE DRILLED			
	Water Table (24 Hour)	.)			GRAPHIC				5-11-	00 1 of Z		
P N	 Water Table (Time of Boring PID Photoionization Detection (p Identifies Sample by Number 	1	CLAY SILT		DEBRIS FILL ORGANIC (PEAT) SANDY CLAY		DRILLING METHOD HSA DRILLED BY COMPLIANCE					
I ION	YPE Sample Collection Method	10000										
EXPLANATION	SPUIT- BARREL AUGER CORE				GRAVEL		CLAYEY SAND		ED KRISH			
Ĕ	THIN- WALLED CONTINUOUS				SILTY					ADE ELEVATION (FT. AMSL)		
	DEPTH Depth Top and Bottom of S		CLAYEY				LOCATION OR GRID COORDINATES					
	REC. Actual Length of Recovered	- Joinpie in ree	•									

	(ERR-MCGEE CORPORATION	KM SUBSIDIARY			LOCATION			BORIN	G 7		
1	Hydrology Dept S&EA Division	KMC L				ERSI	N,NV			- 88	
DEPT		Z GRAPHIC LOG	UNIFIED SOIL	BLOWS PER	PID			PLE	REA	AARKS OR	
FEE		GRA	FIELD CLASS.	6'	(ppm)	NO.	DEPTH	REC.	FIELD O	BSERVATIONS	
			11								
		0			<u> </u>						-
	NOTE -	1.0	; 5M-	ł	┣-						4
45	- Most likely this	unit 1:0	SGM		L					-	
45	13 a series of flovi				L						-
ł	- 13 a series of fluvi - fining - upward ser - from gravels to si	Liment, 0.	?		<u> </u>			-			-
	from arovels to si	141						-			
		0		ł	<u> </u>						4
51			;		+	┼╍╍┼╸	_		me	C 51'	+
1	- 51-62 sty CLAY	, grn	λ							CS I	
1] gry (5648/2) and	yell I			L						_
55	- gry (5678/2) and gry (548/1)		1 CL		-						-
		I.	2		\vdash						4
	4	K	4		 						-
60			A								1
6Z			И						- 		4
	- TD 62'				-						-
					 				1		-
	4				\vdash						4
		-									_
	_				 -						-
	-										
											_
					-						
	-										
											_
	4										
	Water Table (24 Hour)	<u></u>	<u>_</u>		GRAPHIC	LOG LE	GEND			PAGE	
	V Water Table (Time of Bori	ng)					DEBRIS	5-12 DRILLING ME		Z of Z	
Z	PID Photoionization Detection NO. Identifies Sample by Num	(ppm) ber			I SILT			DRILLED BY	HSA	<u></u>	<u></u>
EXPLANATION		ROC	(1			SANDY CLAY	Con LOGGED BY	nplia	NGE	
(PLA			-	1	GRAVEL		CLAYEY SAND	ĒD	KRIS		
Û	THIN- WALLED TUBE		OVERY						•	ION (FT AMSL)	
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	Sample ed Sample in Fe	et		CLAYEY SILT		<u>-</u> _	LOCATION	R GRID COO		

	DRING LOG KM-5655-B ERR-MCGEE CORPORATION rdrology Dept S&EA Division	KM SUBSIDIA		LC		LOCATION	ER	sor	1.NV		BORING	$\sim Pc$	289	
DEPTH IN FEET	LITHOLOGIC DESCRIPTIO	N	GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6"	PID (ppm)	NO.	SO 17PE	DEPTH		REC.		ARKS OR BSERVATIO	ж
-			<u> </u>	CLAJJ.								∇	3 21	
-	PC 89 located													
5-	7' east of Pl	188												
- I	The second P	c 88								-				
	PC 89 located 7' east of Pl See log of P for lithology					_								
10_	for lithology					E								
						F								
	-					<u> </u>	·							
15-	-					—					·			
	4					E								
						<u> </u>								
20 -	-					L								
20-						<u> </u>								
						\vdash								
25-														
	_					-								
30-						\vdash								
												1		
	-					\vdash								
35						F								
	-													
	-					<u> </u>								
39	TD 391			-				1						_
	Y Water Table (24 Hour)					GRAPHIC					DRILLED	-00	PAGE of	
	V. Water Table (Time of Borin PID Photoionization Detection (opm)			1	CLAY				DRIL	LING MET	Hoo HS	<u> </u>	
Z	NO. Identifies Sample by Numb TYPE Sample Collection Method	er			ΙШ	SILT			HLY GANIC (PEAT)	DRIL	LED BY	<u> </u>		
IATIC		ROCK			SAND		SA CL	NDY AY		Om GED BY	PLIAr	ICE _		
EXPLANATION	BARREL DAUGER	CORE		i	GRAVEL		CL آ SA لذ	AYEY	đ	ED	KRI			
۳. ۲	THIN- WALLED TUBE	NO RECOV	ERY		SILTY CLAY]_					ION (FT AMSL)	,	
11		1 67	CLAYEY SILT	ſ			L		GRID COO					

_

	BURING LUG KM-5655-B							1		
	KERR-McGEE CORPORATION lydrology Dept S&EA Division	KM SUBSIDIARY	LC		LOCATION	DER	501	N. NV	BORING	R PC 90
DEPT	н	<u> </u>	UNIFIED	BLOWS	010		sc		LE	
IN FEE	LITHOLOGIC DESCRIPTIO	GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	PBR 6"	PID (ppm)	NO.	TYPE	DEPTH	REC.	REMARKS OR FIELD OBSERVATIONS
	_									Vez'
	- PC 90 located	10								
5 -	east of PC 89.									_
	- SEE log of P	C 88						-		
10 -	- SEE log of P for lithology			ļ						-
/~										_
	-									
15.										
					-					
18	- 70 18'		-							
					—					-
					<u> </u>				ł	
	-									
	_				\vdash					-
	-) ·		
ļ	-				\vdash					-
					Ē					-
	_				E					-
	4				 _		ļ			-
										-
	4				-					-
Π	V. Water Table (24 Hour)	I	<u>anto, 1, 1, 1, 1</u>	Ē	GRAPHIC	LOG L	EGE			
	V. Water Table (Time of Borin PID Photoionization Detection (ig) ppm)			CLAY			ĩ o	5-12 RILLING MET	нор
Z	NO. Identifies Sample by Numb TYPE Sample Collection Method				SILT			1		ISA-
NATIC	SPUT-	ROCK			SAND				Com OGGED BY	PLIANCE
EXPLANATION				1	GRAVEL		I CL I SA	AYEY ND	ED	KRISH
Ű	THIN- WALLED TUBE		ERY				<u>ا ا</u>			
	DEPTH Depth Top and Bottom of S REC. Actual Length of Recovered	Sample d Sample in Fee	t		CLAYEY SILT	L	ا	[¹	OCATION OF	GRID COORDINATES

0000 100

j

)

	ERR-McGEE CORPORATION	KM SUBSIDI		LC		LOCATION HENT	DER	501	J . NV			R P	291]	
DEPTH	1			UNIFIED	BLOWS			:	DIL SAMP			054	44.04/6		-
IN FEET	LITHOLOGIC DESCRIPTIC	N	GRAPHIC LOG	SOIL FIELD CLASS.	PBR 6"	PID (ppm)	NO.	TYPE	DEPTH		EC.	FIELD O	AARKS BSERV/		NS
5 -	0-6 gravelly 5 Mod brn (5YR4/2), sorted, SA-SR. with 10 and 20% JA-SR volc and pebbles to 2"	AND, poorly 1% silt granule		รฟ								_dam	<u>ዮ</u> ሮ7		
10 -	<u>6-31</u> sity grave SAND, mid bin (5YR 4/2), contain sult in matrix and	25%	0,	-						-			@ 10	/	
15 -	Volc granules and p to 1/2" diam. Sand v SA-SR. minor smo caliche nodules		0.000.00	SM GM							``				
20-			0.0.0.0												- - - -
25-			0.												
31	- <u>31-40</u> sity sdy - mod brn (syr 4/z sit, zst, vt-vc s - sd and 50% sr, - 1s granules and sn - to 1" diam.	GRAVE) ZS) A-JR volc 4 N pebbl	000000000000000000000000000000000000000	0.0.0 	~										-
	V. Water Table (24 Hour)		<u></u>	•	亡	GRAPHIC	LOGI	EGI	ND				PAGE	of	
	Water Table (Time of Borin PID Photoionization Detection (NO. Identifies Sample by Numb TYPE Sample Collection Method	ppm)			1	CLAY SILT		Знаса	HLY		ING MET	- 000 15A	<u> </u>	01	<u></u>
EXPLANATION	SPUIT- BARREL AUGER		ROCK CORE			SAND GRAVEL			NDY AY AYEY ND			NRII KR		E	
EXP	THIN- WALLED SAMPLER	us 🗋	NO RECOV	'ERY	1	SILTY CLAY][EXIST		DE ELEVAT	-	MSL1	
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	لاا Sample d Sample				CLAYEY SILT]_		LOCA	TION OF	GRID COO	ROINATES	<u> </u>	

soil Bori	NG LOG	KM-5655-B
-----------	--------	-----------

KEF	RR-MCGEE CORPORATION	KM SUBSIDI	ARY	······		LOCATION				В	ORINO	; n			
	rology Dept S&EA Division	KMC				HEND	ERJ	o N	, NV	۲ ۱	UMBE	r PC	29	1	
DEPTH			GRAPHIC LOG	UNIFIED SOIL	BLOWS PER	I PIO			IL SAMP	LE]			RKS OR	
IN FEET	LITHOLOGIC DESCRIPTION		GRA	FIELD CLASS.	6'	(ppm)	NO.	TYPE	DEPTH	F	REC.	FIELD	OBSI	RVATI	ONS
	40-62 sty ci	-AY	$\langle \rangle$	{								MC	0	40	-
-	sticky w/10% vig	ed .	Y	}											-
-	sticky w/10% vig 9 40-42 Harngry(5GY 8/1	XX,												•
5	42.58 palcolive	(10×6/2)	X	ł											-
	52-62 mod grn gr			1		-									-
-	w/10-zol caliche	7(5G5/1	L/	1 CL						•					-
	a is granules to 1/4		K	1											-
50	a sum les la la		1	1	l	<u> -</u>									
-1			1]			Ì								•
			H												
_				7	}	<u> </u>	1				`.				
5-			H												
-				1											
			H	1		┣─	1								
_ "ა_			T		1										_
U			1	1											
-			1	6				+							
_	62.65 sity CLAY	with mod		CL											
65 <u>-</u>	abu gypsum xtals grngry (5Gs/1) 1" gy	PXtels	1.1	4				+							-
-	TD 651														
-															
_						 			ļ						
	-				ł	<u> </u>									-
-															
-						<u> </u>									
-	4					\vdash				l		1			
-				·								1			
	4					 									
·	-														
											DRILLEO	<u> </u>	PA		
1 1	Water Table (24 Hour)					GRAPHIC					-13-			Z of	2
P	Z Water Table (Time of Bor ND Photoionization Detection	(ppm)			1	CLAY			-		ING MET	HÔD	<u>. </u>		_,,
	IO. Identifies Sample by Num YPE Sample Collection Method	iber J			0	🛛 รแт	5	y Hig y Ork	hly Ganic (peat)	DRILL	ED BY	HSF	+-		
EXPLANATION		n	ROCK								Cor	npl	IAr	145	
NA V	BARREL		CORE		1	GRAVEL			AYEY	LOGG	ED BY	50	20.	511	ı
EXP		ous 🕅	NO	(C D) ((SILTY CLAY	Ē	יג יג. ר		EXIST	ING GR	ADE ELEV		JH IFT AMSL	.)
	TUBE	لال	RECO	/ERY				י _ ר		1000	TION	RID CO	0000	ATES	
	DEPTH Depth Top and Bottom o REC. Actual Length of Recover	f Sample ed Sample	in Fee	et	1 61	CLAYEY SILT	Ľ		<u>_</u> _	1004					
1 1	-				1					•					

	RR-McGEE CORPORATION rology Dept S&EA Division			LC		LOCATION	DERG	onl	NV	BORING	PC 92
DEPTH IN	LITHOLOGIC DESCRIPTIO	<u></u>			PER	PID		SOIL S	AMPLE		REMARKS OR FIELD OBSERVATIONS
	PC 92 located West of PC 91 See log of PC for lithology	1	GRÀ	FIELD CLASS.	6	(ppm)	NO.	D	EPTH -	REC.	damp e 7'
25 - - - - - - - - - - - - - - - - -	TD 30'										
EXPLANATION	L Water Table (24 Hour) Z Water Table (Time of Borin ID Photoionization Detection (O. Identifies Sample by Numb (PE Sample Collection Method SPLIT. BARREL Image: Collection Method SPLIT. BARREL Image: Collection Method THIN. WALLED TUBE Image: Continuou SAMPLER DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	ppm) ser JS	ROCK CORE NO RECOV			GRAPHIC GRAPHIC SILT SAND GRAVEL SILTY CLAYEY SILT		GEND DEBRIS FILL #GHLY XGANC I XGANC I XGANC I XGAND CLAYE SAND	PEAT) DR	ILLING MET NILLED BY GGED BY ET ET	HSA HSA DPLIANCE

SOIL E	BORING LOG KM-5655-B											
	ERR-McGEE CORPORATION Aydrology Dept S&EA Division		LLC		HENT	ERS		J NI		G ER PC	93	
			1	RI MAS	· · · · · · · · · · · · · · · · · · ·			DIL SAMP		<u> </u>		··· <u></u>
DEPTI IN FEET	LITHOLOGIC DESCRIPTIO	GRAPHIC LOG	SOIL FIELD	PER 6'	PID (ppm)	NO.	JY PE	DEPTH	REC.		AARKS OI BSERVAT	
					 		1					
	- 0-15 sly GRAVE - mod brn (5YR 4/2).3	L, 0.			<u> </u>							-
	- vf-ve, SA-SR sand	and 10.0.										-
	- 10 % silt.				<u> </u>							-
5 -		aranulus		1	-				ļ	damp	.e ('	. —
	Gozo SA-SR, vole and peobles to 2"		GW	1								-
		00]								-
	-	00			<u> -</u>					17	@ 10'	-
10 -		00°		}	E							
		0.0										-
1	-	0`0`			-							-
	-	0.0							<u>``</u>			-
15-	- 15-40 sity grav	elly i.º	:	<u> </u>								
	- 15-40 sity grav SAND, mod brn (5	YR 4/2)	5		-							-
	- Zo-25 % silt in mati				-							-
20.	- 20-25 % silt in mat											
	1 70-30 % VOIC SH-31											
	granules and sm - to 1/2-3/4". - 50-60% vf-vc sa				-	1						
	- +0 1/2 - 1/4	0	". SM-									
25		nd o	GM		—							
	-		0									
			0	1								
		0.	i.									
30			0.		┣_							-
	_ 30-40 increase in _ content to 40	101	0		\vdash							
		11	ò									
		۱۱۵ انتا	.0		 							
35	<u>35-40</u> inc. in gr		00		-							-
	<u>- 35-40</u> mc. in gr - size to 1-11/2"di - Mod culiche cem											
	- Mod cattere cem	20-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			<u> </u>							
	-	ė,	E		<u> </u>							
F	✓ Water Table (24 Hour)		<u> </u>		GRAPHIC	LOGI	EG	END	DATE ORILLE		PAGE	. 7
	Water Table (Time of Borin	ng)			CLAY		DE FII	BRIS	5-13		1 0	f Z
	PID Photoionization Detection (NO. Identifies Sample by Numb	ppm)			I SILT	~	а ню	HAY		HSA	4	
NO	TYPE Sample Collection Method									=		-
EXPLANATION	SPLIT-	ROCK		1	SAND					mPLI	Ance	
PLA					GRAVEL	\mathbb{R}		LAYEY AND		KRIS	H	
ŭ	THIN- WALLED CONTINUOL SAMPLER		VERY	ß	SILTY CLAY]_		EXISTING G	RADE ELEVAT	ION (FT AMS	il)
	1085	لايا			CLAYEY	Г Г	່			OR GRID COO	ROINATES	
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	d Sample in Fe	et	101	'n Sill	L	<u>ר</u>					

	RR-McGEE CORPORATION rology Dept S&EA Division	KM SUBSID	LL)ÉRS	٥N	, NV	BORIN	s RPC	93	
DEPTH IN FEET	LITHOLOGIC DESCRIPTI	ON	GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6'	PID (ppm)	NO.	SO IYPE	DEPTH	E REC.		AARKS O BSERVA	
45	40-57 SHY CLAY cly SILT, interbu- pale olive (iDY6/2) It grn gry(5GY8, 45'; mod grn gry(to 50'; pale olive 5-157: dissem vf- coliche moduleg H 5-106 vfg sand dissem matrix	edded -) and /1) to 565/1) to 57' - cg hroughout	174-174-14	CL- ML					-		MCC	40'	
- ۲۶ -	TD 57'												
EXPLANATION		(ppm) ber J pus	ROCK CORE NO RECOV			GRAPHIC CLAY SILT SAND GRAVEL SILTY CLAYEY SILT		DEI FILI ORG SA	BRIS L DF ANK (PEAT) NDY AY AYEY ND EI		-00 HSA PLIA	NCE NSA ON IFT AM	SL)

	ERR-McGEE CORPORATION /drology Dept S&EA Division	KM SUBSIDIA	1	LC		HENE	ERS	01	J.N	BOF NU		PC	94	
DEPTH	LITHOLOGIC DESCRIPTIC	л	GRAPHIC LOG	UNIFIED SOIL FIELD	PER	PID (ppm)	NO		DEPTH	1	-	REA FIELD O	AARKS O BSERVAT	r Ions
FEET 5 10 15 20- 25 -	PC 94 location 10'east of PC See log of PC for lithology TD 251	ed		CLASS.	6"	(ppm)	NO.	14PE	DEPTH	REC		dur	mp € } 2 10 ¹	
	▼ Water Table (24 Hour) ▼ Water Table (1ime of Boring)		<u> </u>	<u></u>		GRAPHIC			BRIS	DATE DRI 5- DRILLING	14-	-00	PAGE 1 O	f
NO	PID Photoionization Detection (NO. Identifies Sample by Num TYPE Sample Collection Method	ber				SILT		HIGI ORG	UY JANIC (PEAT)				5A IANC	
EXPLANATION			ROCK CORE			SAND GRAVEL			NDY AY AYEY ND	LOGGED	BY	> KR		-
Ĕ	THIN- WALLED TUBE	us 🛛	NO RECOV	ERY	1	SILTY SICLAY]		EXISTING			ON IFT AME	5)
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	ت Sample d Sample i	in fee	t	E	CLAYEY SILT	·]_		LOCATIO	NOR	GRID COOF	DINATES	

.

SOIL BORING LOG KM-5655-B

SOIL BORING LOG KM-5655-B

	RING LOG KM-5655-B			0000			<u></u>	1	-		
	RR-McGEE CORPORATION		L			HENT	DERS	501	1.1		R PC95
DEPTH	LITHOLOGIC DESCRIPTIC	A PHIC		NIFIED SOIL HELD	PER	PID (ppm)			IL SAMP		REMARKS OR FIELD OBSERVATIONS
FEET	·······		<u>5 a</u>	LASS.	6'	(PP''')	NO.	TYPE	DEPTH	REC.	
	0-7 BERM MATE	1.	· · · · ·								WETEZ'
	sity gravely SAN		· · : .	5M-							-
5-				ΞM						-	7.65
-		0 1	. 0								-
	7-35 sty grav	elly o	0.								-
10-	SAND, Pale bro										CIO' WTR SMPL
-	(5YR 5/2). 20%	. 1-4	0			\vdash					Field cand 13,000
	matrix. 30% vole to sm pea gravel (granule:				—					рн 7.4 -
15-	to sin per gruver (. to 1" diam.	0	0.01	SM-							-
-	50% SA-SR, VF-VC	g sand		SM		<u> </u>					-
-		ס נ. יי	0								-
-	4		0			-					-
20-			0.0.								
-	- 21-35 com. hari	$\lambda = \frac{1}{2}$	<u>-0-0</u>								
	caliche cement	1 1				-					
25_	ingravelsize to Com 15. pebbles	3.									_
-			000								
		1	0.0								
30_											-
	-	·									
		1	1010								
35-	-35-38 sity	SAND	<u>,</u> 1 ! :					+			
	pale yell brn(10YR 30% silt in matrix			SM							
38		.sand ist	10.0	5M-							
—	Vater Table (24 Hour)	/	.0	GM		GRAPHIC	1 10G I	EG	IND I	DATÉ DRILLE	1 .
	Water Table (Time of Bori	ng)				CLAY			BRIS	5-) L	
1	PID Photoionization Detection (NO. Identifies Sample by Num YPE Sample Collection Method	ber				SILT	í.	- RIGI		DRILLED BY	HSA
A IIO		60				SAND			NDY AY	-	PLIANCE
EXPLANATION	SPLIT- BARREL AUGER		ock Dre			GRAVEL			AYEY	LOGGED BY	D KRISH
EXP			O COVER	Y			Γ]_			RADE ELEVATION (FT. AMSL)
	DEPTH Depth Top and Bottom of	ل Sample		-		CLAYEY SILT]_		LOCATION C	R GRID COORDINATES
	REC. Actual Length of Recovere	ed Sample in	Feet							l	

j

.

	KERR-McGEE CORPORATION Hydrology Dept S&EA Division	KM SUBSIDIAR	Y			LOCATION				BORIN	G er P	C 95	
DEPT			ž.	UNIFIED SOIL		PID		sc	SAMI	PLE	PE	MARKS OR	
IN FEE		ом 9	GRAPHIC LOG	FIELD CLASS.	PER 6'	(ppm)	NO.	TYPE	DEPTH	REC.		BSERVATI	
	_ 38-43 gravelly sl		: <u>,</u> ,,	5M-				-					
	- SAND, paleyellow bi	nand		GM		-							4
43	dusky yell grn (5645/2 silt, 25% grenules and gravel to 1/2.3/4". 40%	.).35%	$\overline{\Lambda}$								nac	@ 43	
45	silt, 25 % granules and	Apra /	17	ML-							///C	E 11	
	SR-SA sand, Colcare	~s 1		CL		 							_
	43-50 cly SILT and CIAY, interbudded. Mac	sty	W			·				-			
	- 4. Harn (SGV(/~) -	1.	11										-
50	Com calcareous	t	11					~					-
	TD 50												
	-					-							
	-					_							
													_
	-					-							_
													-
	-												_
													-
	_					-							-
													-
	_					 							-
	-			1		-							_
	1		•	ļ									_
	4					-							-
	-			Ì			1.						-
													-
						\vdash							
	4		i			-							-
	-					-							-
	▼. Water Table (24 Hour)					GRAPHIC				DATE DRILLEI		PAGE Z of	2
	V Water Table (Time of Borir PID Photoionizotion Detection (CLAY		dei Fili	BRIS L	DRILLING ME			~
z	NO. Identifies Sample by Numb TYPE Sample Collection Method					SILT		higi Org	AANC IDEATL	DRILLED BY			<u> </u>
ATIO			оск			SAND	\boxtimes	SA CL					
EXPLANATION	BARREL AUGER		ORE		1	GRAVEL		CL SA	AYEY ND	LOGGED BY			
<u>س</u>	THIN- WALLED TUBE		COVE	RY		SILTY CLAY				EXISTING GR	ADE ELEVAT	ION (FT AMSL)
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	Sample d Somple in	Feet		RT.	CLAYEY SILT				LOCATION O	R GRID COO	ROINATES	
					1					1			

)

1	ERR-MCGEE CORPORATION	KM SUBSIDI							1	BORIN	IG DA	a (
HH	lydrology Dept S&EA Division	KMO				HENT	JERS		·		<u>т г с</u>	- 96	{
DEPTI	H	N	APHIC	UNIFIED	BLOWS PER	PID			DIL SAMP			MARKS OR	
FEET		-	້ອ	FIELD CLASS.	6'	(ppm)	NO.	TYPE	DEPTH	REC.		BSERVATIO	
	- 0-6 BERM MATERI	AL	0.0.										
	- Gravelly SAND, b	rn	0.0	รพ		<u> </u>					dam	p@3'	-
			0.0	1 200							dam		
								.					
67			ÎTITÎ	OL							<u> </u>		-
7	- 6-7 Organic -ric	<i>۲</i>			<u> </u>								
	- silt, Jkgry												
10-	- 7-44 silty gr	avelly				┣─							
	- SAND, mod yell b - (10 y R 5/2), 20-256												-
	- (10 y K 5/2), 20-25 /			SM-									_
	and is granules and		0		1	<u> </u>							_
15-	10 3" diam.	(0.0	GM	4	-							
	- Sandis rf. vc, SR-	SA .	0.1										1 1
	- w/ minor c-vc disse					 							_
	- coliche nodules		0.0.										_
20.	7.28 aravel is gran	nulus	0										
	- 7-28 gravel is grav - and pea gravel size	2 +->	0	•	·								
	- 1/2" diam, SR-R		ò			<u> </u>					1		_
25	- 28-31 hand zone			-									
25	- Caliche amente	à	ò. • ;	:									-
	-		0			<u> </u>							-
	-		1	-		 							
30	- 31-44 com grav - 2° Jiam w/ minor	el to							1				
	- 2º Jiam w/ minor	r 3 "	4.5										-
	-		0.0.0			-		ł					-
			.0										-
35	-		.0.0	0									_
	-		0.0			-							-
			10.0										-
				-									-
F	V. Water Table (24 Hour)		.º.c	<u>>. </u>	+	GRAPHIC	<u>ו</u> נסק נו	EGE		DATE DRILL] ED	PAGE	
	T					CLAY			BRIS	5-15 DRILLING M) of	2
	Water Table (Time of Borin PID Photoionization Detection (NO. Identifies Sample by Numb	ppm)						HIG	HUY I	URILLING M	ETHOD HSK	+-	
Z	TYPE Sample Collection Method					SILT		ORG	GANIC (PEAT)	DRILLED BY			
IAT			ROCK			SAND			NDY AY		-	Ance	-
EXPLANATION	BARREL		CORE		12	GRAVEL		CL SA	AYEY ND	EOGGEDEN		ILLH	
Ĕ	WALLED CONTINUOL	n si	NO	EDV		SILTY CLAY	<u> </u>]				ION (FT. AMSLI	
	TUBE	لاا	RECOV	6.61	1			י — ו			OR GRID COO	ROINATES	
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovere		in fee	t	1 61	CLAYEY SILT	L_	נ					

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSID	<u> </u>	LC		LOCATION HENT	ERS	٥n	,NV			, R ア(- 91	,
44. $49-47$ situ SAND, $1+ g_{Y} \operatorname{erange}(\operatorname{io} Y, B/A)$, $yt \cdot F_{g}, \operatorname{mod} \operatorname{well started}$, $SA - SE \cdot \operatorname{Minor} \operatorname{mg} w/\operatorname{oze}$, $47 \cdot S_{g}, \operatorname{mod} \operatorname{well started}$, $SP - \operatorname{Winor} \operatorname{mg} w/\operatorname{oze}$, $47 \cdot S_{g}, \operatorname{mod} \operatorname{well started}$, $77 \cdot S_{g}, \operatorname{vig} SA \cdot \operatorname{stark}$, $70 \cdot S_{g}, \operatorname{vig} \operatorname{well started}$, $80 \cdot \operatorname{starte}$, $80 \cdot \operatorname{starte}$, $80 \cdot \operatorname{started}$, $80 \cdot$	DEPTH)N	VPHIC 0G	SOIL		PID			<u> </u>	- 1]	REA	AARKS	OR
44. $4a-47$ situ SAND, 14 gry srange (10 % 8/A) 14 gry srange (10 % 8/A) 14 gry srange (10 % 8/A) 14 gry srange (10 % 8/A) 15 A se Minor ing w/occ. 15 A se Minor ing w/occ. 17 D 50 17 D 50 17 D 50 17 D 50 18 Set Minor ing w/occ. 18 Set Minor ing w/occ. 18 Set Minor ing w/occ. 18 Set Minor ing w/occ. 19 Set Minor ing w/occ. 19 Set Minor ing w/occ. 19 Set Minor ing w/occ. 10 Set Minor in	FEET			es.	CLASS.		(ppm)	NO.	ΤYΡ	DEPTH	F	REC.		BSEKV	
44. $49-47$ site SAND, 14 gry orange (10 % 8/A). 14 gry orange (10 % 8/A). 14 gry orange (10 % 8/A). 14 gry orange (10 % 8/A). 15 A set Minor mg w/occ. 47.50 site source (10 % 6/A). Moder table (24 hour) 27 Water Table (24 hour) 28 Water Table (24 hour) 29 Water Table (24 hour) 20 Water Table (24 hour) 20 Water Table (24 hour) 20 Water Table (24 hour) 20 Water Table (24 hour) 20 Water Table (24 hour) 20 Water Table (24 hour) 20 Water Table (24 hour) 20 Water Table (24 hour) 20 Water Table (24 hour) 20 Water Table (24 hour) 20 Water Table (24 hour) 20 Water Table (24 hour) 21 Water Table (24 hour) 22 Water Table (24 hour) 23 Water Table (24 hour) 24 Water Table (24 hour) 25 Water Table (24 hour) 26 Water Table (24 hour) 27 Water Table (24 hour) 28 Water Table (24 hour) 29 Water Table (24 hour) 20 Water Tabl	_				SM-										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-			0.00											
44-47 Shutp, Shutp	× -			0											
$\frac{47.50}{14} Substitution for the start of the start$	44,-	44-47 51+4 5AN	JD.	1.1											
$\frac{47.50}{14} Substitution for the start of the start$	-	It any orange (10 YR	8/4).		2M										
$\frac{47.50}{14} Substitution for the start of the start$	4-7 -	Vf. for mod well sort	ed, j	1/1	·		<u></u>		┝─┤						-1
$\frac{47.50}{14} Substitution for the start of the start$	-	SA-SR Minor mg w/	occ.		CL								pric	6 4	, t
$\frac{47.50}{14} Substitution for the start of the start$	50-	thin granule beds.	Very	1/1	1	 			$\left - \right $				·		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	Contraction Contra					<u> </u>								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	47.50 sity say	CLAY,												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		mod yell grn (5646	/z)									· .			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		- Matrix contains 20 -	+lie 20	Y			<u> </u>								
Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Some Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele		and 10-20% vfg St	a sand	A			⊢					i			
Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Some Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele	-			1											
Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Some Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele Image: Solution of Somele				1]	<u> </u>								
VWater Table (24 Hour)Superior	_	TD 50					<u>}</u>								
VWater Table (24 Hour)Superior							 								
VWater Table (24 Hour)Superior	·	-													
VWater Table (24 Hour)Superior							· ·								
VWater Table (24 Hour)Superior	-	-				[\vdash			Į					
VWater Table (24 Hour)Superior		-													
VWater Table (24 Hour)Superior															
VWater Table (24 Hour)Superior		-					 								
VWater Table (24 Hour)Superior	-														
VWater Table (24 Hour)Superior		-													
VWater Table (24 Hour)Superior															
VWater Table (24 Hour)Superior							 _						}		
VWater Table (24 Hour)Superior	-						<u> </u>		1						
VWater Table (24 Hour)Superior															
VWater Table (24 Hour)Superior															
VWater Table (24 Hour)Superior		_													
Varier Table (Time of Boring) PID Photoionization Detection (ppm) NO. Identifies Sample by Number TYPE Sample Collection Method Image: Split. Image: Split. BARREL Image: Sample Recovery Image: Split. CONTINUOUS Image: Sample Recovery NO Recovery Start Image: Split. Continuous Image: Sample Recovery NO Recovery Start Image: Split. Continuous Image: Split. Clayer Image: Split. Contron of Grid Coordinates		Water Table (24 Hour)					GRAPHIC	LOGI	EGE	ND			•		
PID Photoionization Detection (ppm) NO. Identifies Sample by Number HIGHY HIGHY NO. Identifies Sample by Number Image: Sample Collection Method	1 1	-	na)				CLAY		DE	BRIS				2	of 7
TYPE Sample Collection Method IIII SILT Sample Collection Method IIII		PID Photoionization Detection ((ppm)											SA	
WALLED TUBE SAMPLER RECOVERY Sample DEPTH Depth Top and Bottom of Sample TO CLAYEY		TYPE Sample Collection Method					_				DRILL	_			
WALLED TUBE SAMPLER RECOVERY Sample DEPTH Depth Top and Bottom of Sample TOP SILT LOCATION OF GRID COORDINATES	Į Į					1				AY	1000		mpli i	nc	<u>د</u>
WALLED TUBE SAMPLER RECOVERY Sample DEPTH Depth Top and Bottom of Sample TO CLAYEY	PLAN			CORE		:	GRAVEL			AYEY ND			Kens	н	
DEPTH Depth Top and Bottom of Sample	ΕX	WALLED CONTINUOU	us 🗋	NO	/ERY]_	<u>.</u>	EXIST	ING GRA	DE ELEVAT	ION (FT	MSL)
REC. Actual Length of Recovered Sample in Feet		TOBE	Samela					[ר		LOCA	TION OF	GRID COO		5
		REC. Actual Length of Recovere	sample ed Sample	in Fee	et		N 2111	L							

.

SOIL BO	RING LOG KM-5655-B											<u> </u>			
1	RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSIDIAR				HENT	DERS	or	I,NV	E		PC	:9-	7	
DEPTH			ຼີ	UNIFIED	BLOWS	PID		sc		PLE	1	DE	MARK		
IN FEET	LITHOLOGIC DESCRIPTIC		GKAPHI LOG	UNIFIED SOIL FIELD CLASS.	PER 6"	(ppm)	NO.	түре	DEPTH		REC.	FIELD			NS
	0-5 BERM materi	àl !	:] : ;			_					1				_
	brn sity gravelly	SAND	0	5W		ļ						d	03	,	_
			00	500		 					ł	damp	-		-
			80			-									_
5	(- 70	<u>.</u>				· · · ·						$\overline{\nabla}$	26'		
	5-20 stygrave	(and)	0							_					
	SAND, pale brn		0	ļ <i>'</i>		<u> </u>									_
- 1	10% silt, 25% vole	-				<u> </u>									_
10 _	granules and sm pa up to 1" Jiam Sand 10 vf-vc, SA	ubbles .		- /		<u> </u>									
1 -	up to 1" Jiam	1		SW		-	ļ								_
	Sand 10 vf. vc, SA	-sr													_
-			í.			L,					``				_
15-		-	<u>, </u>			┣─	ł								
						<u> </u>		ł							
-															_
															-
20-			0	·	ļ			+				-			
-	20-25 SILY SANT	ς ω/ (.	. .		1	<u> </u>									-
-	- minor gravel. po	Ja yell	0.	SM	1	<u> </u>									-
-	brn (10 YR 6/z). S.1	Hupto													-
25-	Z5%, gravel (gran.	+ pen _		·	<u> </u>	<u> </u>						<u> </u>			
	- size up to 20%. Sa	nd as /	0.0		İ	\vdash									-
	abrue vf-vc, SR	- SA .	أمن			\vdash									-
	1	GRAVEL	• • • [1			-
32-	ZS-36 sity sdy pale yell brn (IOVR	6/2)	100									!			
1	The shift and what	16 50-5R	9 a. 1	iGω	'	—									-
	Gravel 5070, SR-5A		00	9		\vdash									
	_ Gravel 50%, 2K-3H	, grenne				<u> </u>									•
	- and publies to 2 d	ham 1	ġġ.	ġ											_
36	- and publies to 2" d - locally com caliche	cement	00	<u>.</u>				_	<u> </u>			4			
1 [°]	- 36-42 silty SA	MD				\vdash									
	- pale yell brn (10 yr	26/2)		[]2M	1	\vdash									
	= bimodal: vf-fg w/	com.													
	Water Table (24 Hour)				1	GRAPHIC	LOG	EG	END		DRILLED		PAGE	of	2
	☑ Water Table (Time of Borig					CLAY) de Fil	BRIS L		- 16 -	HOD		0	-
	PID Photoionization Detection (NO. Identifies Sample by Numb				1	SILT		7 HIG				H	5A		
Z I	YPE Sample Collection Method										ED BY		_		
E I) CK			SAND		3 ci			Om P GED BY	LIAN	CE		
EXPLANATION	BARREL AUGER		ORE			GRAVEL			AYEY			KR15 H			
EX	THIN- WALLED SAMPLER		O ECOV	ERY		SILTY SILTY SI CLAY]_	- 	1	_	ADE ELEVAT		AMSL)	
						CLAYEY	Г	ר ר		LOC		R GRID COO	ROINATE	S	· <u></u>
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	ed Sample in	n Fee	t	1	⊿r วาเเ⊺	<u>ر</u>		<u> </u>						

SOIL	BORING	LOG	KM-5655-8
------	--------	-----	-----------

KERR-McGEE CORPO		MC L	L.C				1		80 N		, R D(297	
Hydrology Dept S&E/	UIVISION KI				HENDE	eksor				T	<u> </u>		· · .
DEPTH IN LITHOLOG FEET	IC DESCRIPTION	GRAPHIC LOG	SOIL FIELD CLASS.	PER 6"	PID (ppm)	NO.	1YPE TYPE	DIL SAM	- 1	EC.		AARKS O BSERVA1	
42 <u>Silt in mar</u> 43 <u>42.43</u> site - Pale yell br 3/4" Jiam m <u>cement, c</u> <u>- 43-45</u> cly - <u>lt grn gry</u> <u>- clay in m</u>	sdy silt (5648/1),10 atrix, 10-207. d. Calcares a. culiche nodu 451	ND 10:91 +0 -207	SM SW ML- CL				EGE			RILLED		PAGE	
PID Photoionizat NO. Identifies Sa	(Time of Boring) ion Detection (ppm) mple by Number ection Method)			CLAY SILT		HIGH ORG	BRIS L ANK (PEAT) NDY	DRILLI		HOD 45	SA	
Z TYPE Sample Coll OLL SPLIT. BARREL					GRAVEL			NDY AY AYEY ND	E	.D k	PLIAI RISH	Ļ	
WALLED TUBE DEPTH Depth Top of	CONTINUOUS SAMPLER		/ERY	1	SILTY CLAY CLAYEY SILT		ן – ו				GRID COOF		
REC. Actual Leng	th of Recovered Sa	imple in Fee	et		R SILI		J	<u> </u>	ļ				

· •

-

	KERR-MCGEE CORPORATION	KM SUBSIDI				LOCATION					BORING	,	0 @	
	Hydrology Dept S&EA Division	KMC				HENDI	ERSON	1	NV	1		R PC	98	
DEPT			HIC	UNIFIED SOIL		PíD		sc	OIL SAM	PLE	ļ	REA	ARKS OR	
IN FEE		NC	GRAPHIC LOG	FIELD	PER 6"	(ppm)	NO.	TYPE	DEPTH		REC.		BSERVATIO	NS
			6	CLASS.				-		+				
	- 0-12 gravelly SA		0			<u> </u>								-
	- mud yell brn (10YR	5/4)				<u> -</u>								-1
	20.25% arenules é	sm												
5.	_ 20.25% granules é pebbles to l'diam	(val)	: :;											
ľ				SP		L								_
1	- sp-mod silt in mat	rix(10-								-				_
Ì	- zoz.). Sand vf-v	c ,SR-5A				 					1			-
	-	•	0.0		ļ	<u> </u>								
10			0											
			0											_
	12-16 sity sty GRAN	VEL	00.0	2		L								-
	- H brn (5yR 5/4), 20	7 sil	0.00	GW							·.	al		
		sand	oido		1	<u> </u>					-	Oan	PEIS	
14	25% VE-VL A-SR	30000	101	<u> </u>		+						<u> </u>		-
	- 50 % volc granules -	to	12-11	·		-								
	The cobbles up to 6"	diam	lio	-										_
7.0	- Mod com caliche +	tronghi	100											
			.0 0			1							0 77 ¹	-
	- 13-16 V. hard, dens. calichi fication	۹										<u> </u>	ezz'	
	- Calichi +. Car 1011		1.0	-										-
	- 16-34 sity grav SAND, mod brn	Eng	101			<u> </u>				1				-
ZS	- SAND, mod brn(57 R4/4	생승	15ω				ļ						
	Zo-25 % Sil+, 20-25											Į		-
	granules and sm pe													-
	- to 1/4". 50% vf-vc	. A-SR		•		<u> </u>								-
30	_ rand .		10.											
	-1			2				1						-
	1			1		F		1						-
3			.0	•										
1,2	- 34-37 SIty SAND	. 1+ye	心已											
	- brn(104R 6/4). vf	-fgw/		il sm	•					1				
3		25-302		;	+			╋				<u> </u>		-
	- silt. Mod com m-	ve enliq	~ ! : `	GC	1									
	- I nodules. Very cale	areons	- <u>+</u> !:•!;	MINI										
Π	✓ Water Table (24 Hour)					GRAPHIC	LOG LE	G	ND		DRILLED		PAGE	7
	V Water Table (Time of Bori					CLAY		de Fili	BRIS		-16		l of	
	PID Photoionization Detection (NO. Identifies Sample by Num	(ppm)				SILT	М	HIGI	HLY				HSA	
Z	TYPE Sample Collection Method								ANIC (PEAT)	DRILL	ED BY			
EXPLANATION		n	ROCK			SAND	\otimes	SA CL	NDY AY			Comf	LIANCE	
AN	BARREL		CORE		- 77	GRAVEL	$[\mathbb{N}]$	ςι	AYEY ND	LOGO	SED BY	100.0		
XP			NO				الات: 1	ЪA		EXIST		KRIS	H	
⁻	WALLED SAMPLER	~ IN	RECOV	ERY		SILTY CLAY								
	DEPTH Depth Top and Bottom of		_		RT.	CLAYEY SILT		_		100/	TION OR	GRID COOF	NINATES	
1	REC. Actual Length of Recovere		in Fee	t								•		

SOIL	BORING	LOG	KM-5655-B
------	--------	-----	-----------

.

			<u> </u>									<u> </u>	
	ERR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSIDE		LC		HENDE	ERSS	J,	NV	BORING	G R PC	98	
DEPTH		<u> </u>	UH0	UNIFIED SOIL		PID		so	IL SAMPI	LE	REA	ARKS OR	
IN FEET	LITHOLOGIC DESCRIPTIC	DN	GRAPHIC	FIELD CLASS.	PER 6'	(ppm)	NO.	17 PE	DEPTH	REC.		BSERVATIO	NS
41 -	37- 41 sdy grav SILT	-/slty	010					_					
-	grav SAND W/ 15 %	dissem	\mathcal{W}			<u> </u>					me	@ 41'	-
-	grav SAND w/ 15 %	, mod	ľΧ	JCL									_
45-	gry orange pink (5)	(R 6/2)	<u> W//</u>	1_ <u>·</u>	ļ	[_					
- ``	- Contains 25-50 % v	f-fså				<u> </u>							-
-	- in silt/clay matrix.1	0-20%							-				_
	volc +1s granules to 1/8												_
-	Very calcareous w/m caliche nodules.	COR C-VC						Į					
-						<u> </u>							
	41-45 SHy CLA	ر د المنا											_
	1+ gmgry (5648/1)~					<u> </u>							-
-	gry (568/1). 25% si					-							
	sized caliche nodules										-	-	_
	- •·]	_, ,	╢			<u> </u>							
	45' 57					 					ł		
	-					<u> </u>							
													-
	-					<u> </u>					ļ		
1	-					<u> </u>							-
-													_
						<u> </u>							-
	-												
	-		·										-
-													-
	4					<u> </u>							
	-					–	1				1		
													•
	_												
	4					\vdash							
												PAGE	
	Water Table (24 Hour)					GRAPHIC				5-16 -	00	Z of	2
	V Water Table (Time of Borin PID Photoionization Detection ((ppm)				CLAY				DRILLING ME	HOD HSA		
1 1 .	NO. Identifies Sample by Numl TYPE Sample Collection Method				[[[SILT		Higt Org	ANIC (PEAT)	DRILLED BY	TIST	<u>۱</u>	
EXPLANATION		n	000			SAND	\boxtimes	SA CL		Com	PLIA	nce	
AN I	SPLIT- BARREL		ROCK CORE			GRAVEL							
EXPL		м м	ю		1		<u>کن</u> ۲۰۰۰	E SA			KRIS	TH	· .
	WALLED SAMPLER		RECOV	ERY		SILTY CLAY	L	I					
	DEPTH Depth Top and Bottom of	Sample	:. E		B	SILT			[LOCATION O	R GRID COO	RDINATES	
	REC. Actual Length of Recovere	a sample	in ree	T									

}

	RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSIDI KM	ICC				der	50	n Nu	BORING	RPC98R
DEPTH IN FEET	LITHOLOGIC DESCRIPTIO	N	SRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6'	019 (۳۹۹)	NO.	SO	DEPTH	rLE REC.	REMARKS OR FIELD OBSERVATIONS
	<u>o-5</u> gravelly s grywhbrn w/10% S		0.00	SP				-			
-	20-30% granules- gravel to \$14". Yf-V	pea c sAsd		35		 					-
5-	5-9 SAND, gry b w/ 10% silt and 5-1			รฟ				-			
- יר פ	volc granules to 1/4'	".f-vc.	000	ธม		 			<u>.</u>		
- 1Z -	9-10 Sdy GRAVE 25-352 +f-VC Sd			5ฟ		_					damp@121
- - - كرر	10-12 SAND, brn 10% silt, 5% granules volc, sa sand										-
-	12-24 Say GRAU	EL , 25%		GW		_					7@18'
- 20_	Cranules to peage A-SA. Vs"-34" w/	avel, miner			6				z 0'-	-	
-	3/4"-2"		0000	, ,	630			X	21.5	· 50%	-
z4 -	Locally caliche cemented. <u>1c-zo'</u> hard. Com c		0.00	SP	25			X	25-20	- 75%	
26 -	<u>24-26</u> SAND. gry b clean, fing w/c-	rn.sR,	00:0	, ,	170						
30_	Z6-34 sdy GRA gry brn, 10-15% si	VEL		GW	22			X	30-	. 80%	
	granule - pea grave	in	0.00	ļ	30	E					
34	29-30 - cobbles u			GM	12		1	X	351-	, 100%	_
	34-40.5 gravelly 5 - 20-30 % silt and 10 vole granules to 14 com. dissem st-siz	1ty SAN 5-15-10 ", brn.		SM	31						
—	V Water Table (24 Hour)	<u>e</u>	0.0	•	<u> </u>	GRAPHIC	1 106 II	GE		DATE DRILLED	
	V. Water Table (Time of Borin PID Photoionization Detection (ppm)				CLAY		DEE	BRIS G	P-P-C DRILLING MET	HOD
	NO. Identifies Sample by Numb YPE Sample Collection Method	വന				SILT		ORG	AND 10CAT	IFER DRILLED BY LA	CUSSION
EXPLANATION	SPLIT- BARREL AUGER		rock Core			GRAVEL					O KRISH
	THIN- WALLED TUBE	\square	NO RECOVI	ERY		SILTY CLAY		 			R GRID COORDINATES
	DEPTH Depth Top and Bottom of REC. Actual Length of Re@vere	Sample d Sample i	in Feet	<u></u>		CLAYEY SILT	لـــا ـــــــــــــــــــــــــــــــــ	l:			

SOIL	BORIN	<u>G LOG</u> км.	5655-B	<u></u>												
			RPORATION S&EA Division	KM SUBSID				HEN	bER	201	U NV	/	BORING	PC	98	R
DEPT	н			<u>. </u>	U F O	UNIFIED SOIL FIELD	BLOWS	PID		sc	OIL SAM				AARKS	
IN FEE	τ	LITHO	LOGIC DESCRIPTIC	М	GRAPHIC LOG	FIELD CLASS.	PER 6"	(mqq)	NO.	TYPE	DEPTH		REC.			ATIONS
40.5			nodules. 1		XX	ÇL										
			-ous, Sand					—	ĺ							
			minor mg,					—					ĺ			
.		0.5-4	1.5 sty CL	AY												_
	4	It grn	, w/ disser	n sm		ļ		—								
	1		n x tals					·				-				
	-	-	D 41.5					_								
•																-
								_								
	4															
																_
								-								
1	-							-								
	_							\vdash								-
																
	-							-								
																-
	4															
	\neg							 								
	-															
	1							E								
	4							-								
								E			ļ					
	_							-								
	-							-								
	1					<u> </u>							DRILLEO	l	PAGE	
	<u>У</u>		able (24 Hour)					GRAPHIC				١٤	3-8-		٢	of Z
	PID NO.	Photoion Identifie	able (Time of Borin izotion Detection (s Sample by Numb	(mqq			1	CLAY					ING METH	·02210	N	
10 1	TYPE	sample	Collection Method	n n				SAND				DRILL	ED BY	AVN		
EXPLANATION		PLIT- JARREL	AUGER		ROCK CORE			SAND GRAVEL			AY AYEY ND	LOGO	GED BY	KR		
EX		'HIN- NALLED 'UBE		ıs 🕅	NO RECOV	ERY		SILTY]_		EXIST		ELEVATI		MSLI
		H Depth T	op and Bottom of ength of Recovere	L_) Sample				CLAYEY]		LOC	ATION OR	GRID COOF	DINATES	5

.....

-	ERR-MCGEE CORPORATION	KM SUBSIDIAR				LOCATION					RING	DA		2	
	lydrology Dept S&EA Division	KMC	_	ΓC		HEND	ERSOI	N.	, NV				29	1	
DEPT			UH0	UNIFIED SOIL		PID			DIL SAMP	LE		REA	ARKS	OR	
IN FEE	LITHOLOGIC DESCRIPTIO	DN	GRAPHIC LOG	FIELD CLASS.	PER 6"	(ppm)	NO.	ΥPE	DEPTH	RE	c.	FIELD O			is
	0-11 Say GRAVE		÷.0'	JLM33.				-		1					
	pale brn (SYR 5/2), cl	—)	0												
	- only 10% silt, 30% SA	inn -	0.0									Ye	3		
1	- vf -vc sd.	-SK , .	0.00	~ ~		—									
5.	60% volc granules	and	0.0	GP	1										_
ł	- sm. pebbles to 2"		0.0-			<u> </u>									-
	-1 '		0.0			<u>. </u>			-						
		- -	20.0								1				
.			0.00			L_									_
11			0.00						<u> </u>			-			-
	- 11-4-8 sity grave	μy [قر ا			\vdash									
1	- SAND, pale yell b	rn F	0	ł											
	[(10 YR 6/2). Var. amt	= of			1						•				_
	- SAND, pale yell bi (10 YR 6/2). Var. amt silt in matrix (20-6	0%).			1	<u> </u>		Ì							
	- ZO-40% volc granu		0 0			<u> </u>									-
	- sm peobles to 3/4 ".	l.				<u> </u>	1								-
170	- Sand is poorly sorte	LA, SA-SR	-[1.				1		, ·						
100	vf-vc							Ì							_
			0	SP											_
	- 11-30 20% silt	in	- 0												-
25		o% sdy	11	-		<u> </u>									-
25	- silt in thin strin	ngers	101	-											
	1		- 0 - 0	·						Ì					-
	<u>30-48</u> inc in silt.	to 30%		'											
	_			2		<u> </u>					1				-
30		hard	9.9 9.9												
	30-36 gravel zone calichified. Volc	- heles	000	5											-
	- Calichitical Voic	70000	10.0	0		E			1						-
ļ	- up fo 3" diam.		19.0	0		 									-
35			:0.0			}									
	-			5	1	-	1								-
	-														-
			0	:											
_		· · · · · · · · · · · · · · · · · · ·		<u>.</u>	<u> </u>		<u> </u>		1			<u> </u>	PAGE		
	Water Table (24 Hour)					GRAPHIC					**LLED • 17 •	-00	1	of Z	,
	V Water Table (Time of Borin PID Photoionization Detection (CLAY		FIL	BRIS L	DRILLIN	•	100	<u> </u>		
	NO. Identifies Sample by Numb				l M	SILT		HIG	CANC INCASE			HS	4		_ • • •
lo 10	TYPE Sample Collection Method	~~ ~									`	PLIA	ASZ -	-	
NAI			OCK ORE		1				ľ						
EXPLANATION		<u>u</u> u~				GRAVEL	È	I sz	AYEY		Ð	KRIS			
۵ ۵	THIN CONTINUOU WALLED SAMPLER		IO ECOV	ERY		SILTY]_		EXISTIN	IG GRAI	DE ELEVAT	ION (FT	AMSL)	
	1082	لا				CLAYEY SILT		1.		LOCATI	ON OR	GRID COOF		5	
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	sample d Sample in	n Fee	t i	01	א אנז אונז	L	יי.ר				-			

		RR-MCGEE CORPORATION	KM SUBSIDIAR		•		LOCATION				B	ORING	Re	. 0.0
$\left[\right]$	Hye	Irology Dept S&EA Division			<u> </u>		HENDE	ERSO	n,	NV	<u>и</u>	UMBE	R PC	- 99
1	DEPTH		CHIC .	100	INIFIED		PID		so	IL SAMP	ιE		REA	ARKS OR
	IN FEET	LITHOLOGIC DESCRIPTIC		2	SOIL FIELD CLASS.	PER 6'	(ppm)	NO.	TYPE	DEPTH	R	EC.	FIELD O	BSERVATIONS
					<u>unss.</u>				-		+			
				0							1			
				0	SP									
			ب		51									
	45-		0											
	-			11										-
				11			.			•				-
	48 -	48-49 SIty SAND,	pale !!	7.11	SM									
	49 -	yell brn (lovR6/2). 3	0-40%		GP		_							
	51 -	yell brn (104R6/2). 3 silt in matrix. Mod Sorted VI-f sand.	well	Ľ	.									
	} -	sorted vf-f sand.	Contains	ł			<u> </u>							-
	-	10% dissem volc gr	anotes											-
	-	1-to 1/8"				ĺ						•		-
		49-51 Sdy GRAVEL well calichifiel.	. hard,									1		
	- 1	well calichitied.					<u> </u>							-
	-	Refusal @ 51'					<u> </u>							-
	-	TO 51'	1	,										-
	-							1						
١														
1	· .						 	1						-
	-													-
	-	-					F							
								1						-
										1				
							<u> </u>							-
	-	-												
							\vdash							-
					1				1					-
							 			l				-
	-					ļ	┣							
		-					\vdash							-
		-												
						<u> </u>					ATE D	RILLED	<u>}</u>	PAGE
	11	Water Table (24 Hour)					GRAPHIC					- 18 -	1	ZofZ
		Water Table (Time of Borin 210 Photoionization Detection (ppm)	•			CLAY		FILL			NG METH	100	
		IO. Identifies Sample by Numb YPE Sample Collection Method	er				SILT		HIGH ORG	LY ANIC (PEAT)		DBY	<u>H</u>	SA-
			n n	~ ~ ~			SAND	\otimes	SAT	1	(~	PLIA	nce
	EXPLANATION	SPLIT- BARREL AUGER	RO	ick Dre		1	GRAVEL			AYEY	LOGGE	ED BY		
}	EXP		ıs No	>				دع – ۲) 1 2 A I				KRI: DE ELEVATI	SH ON (FT AMSL)
1		TUBE	RE	COVE	RY		SILTY CLAY		۱ ۲					
		DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	Sample d Sample in	Feet		₩.	CLAYEY SILT]	[LOCAT	ION OR	GRID COOR	DINATES
								•		1				

KE	RING LUG KM-5655-8 RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSIDIARY KMCC				ders	m	NV	BORING	ER PC 99 R
DEPTH IN FEET	LITHOLOGIC DESCRIPTIO	Z GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6'	PID (ppm)	NO.		DEPTH	LE REC.	REMARKS OR FIELD OBSERVATIONS
۰ ۱	<u>0-6</u> SDY GRAVEL Brn, vf-vc sd mx (40%) w/ vole grave I" w/minor z-3". Spa silt (10%)	+rix 000	GW	7				('		<u>v</u> @3 <u>3'6'</u> perched wrr
- 0(6-20' sty SAN 1+ brn vf-fg, SA 30% silt in matrix Locally com-abu		5M	4-14			X	· · · · · · · · · · · · · · · · · · ·	70 %	<u>6-12'</u> damp partly dry -
	sd size caliche na scattered througho 13-18 abu caliche nodules	~t !!!		678			X	16- 17.5	100%	below 12' wet _
20- - - 24-	ZO-Z4 sity gravel SAND. trown. 20 silt. 10-2070 volc. A. gravel in vf-vc. SA si	5A peallo	GM/	1						
-	Z4-39 Sdy GRAVE brn. 5% silt, 30-4 vf-vc SA sd in vc Peagravel to 1"	5% 0%	GW	5/ 18"			X	26-27	^{.5} 0%	major WTR - zone
30-	30-34 gravely 5A 10-15% vole A.SA pe in m-cg sd w/ minor fvc, 10% sitt	a grave :: f-Vf ::	50			-				
	- 34-42 sdy GRAVE brn. Abu SR-R IS clasts & 11/2" (60% Volc. ZO-ZST SA-SR Sand. Locally calie	15 & 40%	i i i i i i i i i i i i i i i i i i i							WITH LS.
1	Water Table (24 Hour)				GRAPHIC	LOG	EGE	ND	ATE DRILLE	
P N	Water Table (Time of Borin PID Photoionization Detection (r Identifies Sample by Numb YPE	ppm)			CLAY SILT	~	DEI FILI HIGH ORG		8/8/ DRILLING MET PERC	
EXPLANATION				1	SAND GRAVEL					YNE Krish
	THIN. WALLED TUBE	RECO	/ERY		SILTY CLAY CLAYEY SILT]]].	Ì	EXISTING GR	ADE ELEVATION (FT AMSL)
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovered			_] <u>u</u>	ש אנו 		<u>רייר</u>			

Soll	BOR	ING	LOG	KM-5655-8
------	-----	-----	-----	-----------

the second sec

	RR-McGEE CORPORATION Irology Dept S&EA Division		ARY 1CC	,		Hen	Jera	ser	2 NV	BORIN	ER PC 99R
DEPTH IN FEET	LITHOLOGIC DESCRIPTI	ON	GRAPHIC LOG	UNIFIED SOIL FIELD	BLOWS PER 6"	ԲI D (թթm)	NO.	SC	DIL SAM		REMARKS OR FIELD OBSERVATION
			0.0.0	CLASS.				1			
fz -			0.00								
-	42-52 say GRAG bm. Dec in 1s cl to 10-20% w/ inc in	JEL	0.00				P				
_	10-20% w/ inc il	n volc.	0.00	GW		F.					W/OLS.
-	ave size 1/4"-11/2" w	Jminor			30 50/	\vdash		\forall	46 -	50%	
-	ave size 1/4"-11/2" w local 4"-7". 2025	f-vcg	°. H		4"			А	47.5	- 5-24	
						—					
,•	claste present			5.00							
52 -	SA-SR sand <u>42-46</u> Is afor call clasts present <u>46-52</u> volc clast <u>48-50</u> more silty +	s only	影	SM		<u> </u>		 			
_ 54 -	48-50 more silty +		PH-	CL		<u> </u>					MUDDY CK
- די	50-52 Hard, total calichified edy	sea/	-							Ť	@52'
_	Igravels	· 7									
_	52-54 sty clar	1,1+									
_	<u>SZ-54</u> sity clau grn w/ sm gyps xtals throughout	sum				<u> </u>					
	xtals throughout										
_	TD 54'					-					
-											
						<u> </u>	• . •				
-						-					
-											
-			.								
-	4					-					
-	- - -										
-	4					<u> </u>					
	-										
						\vdash					
1	• •					GRAPHIC				DATE DRILLE	00 PAGE of Z
	Z Water Table (Time of Bori 10 Photoionization Detection	ing) (ppm)				CLAY			BRIS	DRILLING ME	ТНОО
<u>м</u>	O. Identifies Sample by Num (PE Sample Collection Method	ber		. · .	10	รแา	ĥ	- HIGH ORG	LY ANIC (PEAT)	DRILLED BY	USSIAM
N N		m	ROCK			SAND		SAI	NDY AY		ne
EXPLANATION	BARREL	Ļ	CORE			GRAVEL			AYEY ND	LOGGED BY	d KRISH
Х.	THIN- WALLED SAMPLER	ius 🕅	NO RECOV	FRY		SILTY	Ē]		EXISTING GR	ADE ELEVATION (FT AMSL)
	DEPTH Depth Top and Bottom of	لات			1	CLAYEY	ے ا	י ק		LOCATION	R GRID COORDINATES
11	REC. Actual Length of Regyer	ed Somple	ia Fee	t	1 000	M 31(1	<u> </u>				

	RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSIDIAR		.LC		HENT	DERS	on in		IG IER PC	100	
DEPTH IN FEET	LITHOLOGIC DESCRIPTIC	DN	GRAPHIC LOG	UNIFIED SOIL FIELD	BLOWS PER 6"	PID (ppm)					ARKS OR SERVATIO) NS
	<u>O-18</u> gravelly SAI mod yell brn (10 y R5/0 silt, 25% volc gran sm pubbles up to 1"	ND,	; .o.	SW	6				-			
15 20	<u>18-29</u> sity sdy Gi It brn (5YR 5/4). 20-2	RAVEL 256 silt;								damp	<u>ا @ د</u>	
25-	14 brn (5985/4). 20-1 20-25% poorly sorted vf-vc sa 50% volc gronule pebbles to 3" Locally hard thin calichified zone	2		s₩							925'	
36	<u>Zq -36</u> sity SANT yell brn (10yR 6/4), w/com m-cg, SR- ZS-30% silt. Very calcareous. Minor size caliche nodu	SA, r m-vc Jes		SM								
	- 36-45 sity grav. - mod yell brn (10% - 25% silt, 25% volc	SAND, R5/4) granule:	0.10	SW								
	 Water Table (24 Hour) Water Table (Time of Borin Photoionization Detection (40. Identifies Sample by Numb YPE Sample Collection Method 	ppm)				GRAPHIC		DEBRIS FILL	DATE DRILLE 5-18 DRILLING ME DRILLED BY	200	AGE 1 of A	2
EXPLANATION	SPLIT- BARREL AUGER THIN- WALLED CONTINUOL SAMPLER	יס ער או∫ ג	OCK ORE O ECOVE	RY		SAND GRAVEL SILTY CLAY		SANDY CLAY CLAYEY SAND		Sm PLI KRIS RADE ELEVATION	н	
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	Sample d Sample in	Feet			CLAYEY SILT		. <u></u>	LOCATION (R GRID COORD	INATES	

Constraints and the second seco

. •

ì

	KERR-McGEE CORPORATION Hydrology Dept S&EA Division	KM SUBSIDIARY	LLC	-	HEND	ERSO	0 N	Vh, L	BORING	R PC	. 100	
			UNIFIED		<u> </u>				_ <u>_</u>			
DEP IN FEE	LITHOLOGIC DESCRIPTIO	GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	PER 6"	PID (ppm)			DEPTH	REC.	REN FIELD O	ARKS OR	NS
	- and sm pebbles: vf-	VC JA									- <u>,</u>	
	- 42-45 sity grav	114 0.0	5W		F							
45	- SAND, gry or an pink				<u> </u>			<u></u>			<u></u>	_
	(5YR 6/2) 10% clay	,20%			<u> </u>					MC	not	_
	- to 1/2 - 1/2" dissem three	granuleg			<u> </u>			-		reac	hed	-
	- to 1/2 - 1/2 dissem three	oughoui										
	- Very calcareous w/mir sm. caliche nodules											
	- TD 45'				-	1 1						-
]								•			
										1		
	_				<u> </u>							4
												-
	_				 							-
	-				-							-1
										1		_
		ĺ										
	4				-							_
					-			ļ				
	-											-
	4				\vdash							_
	-				\vdash							
	4											-
												-
	4				<u> </u>		ļ					-
	-				-					1		-
	-				-							
								<u> </u>		<u> </u>		
	Water Table (24 Hour)				GRAPHIC				DATE DRILLED		PAGE Z of Z	Z
	Vater Table (Time of Boring	a)			CLAY		DE1 FILL	BRIS	DRILLING MET			
z	PID Photoionizatian Detection (p NO. Identifies Sample by Numb TYPE Sample Collection Method			Π] รแт		high Org	AND OCATL	DRILLED BY	HZA		
EXPLANATION		ROCK				\boxtimes		17	Com 1	PLIANC	6	
XPLA					GRAVEL		CL/ SA	ND	ED	KRISH	ON (FT AMSL)	
l u	WALLED TUBE	S NO RECOV	/ERY									
	DEPTH Depth Top and Bottom of S REC. Actual Length of Recovered	Sample I Sample in Fee	:t	RI	CLAYEY SILT		·	[LOCATION OF	GRID COOR	DINATES	_

ſ

SOIL BORING LOG KM-5655-B

	RR-MCGEE CORPORATION drology Dept S&EA Division	KM SUBSIDIARY	. LL	C	Hen O	erse	<u>n</u>	,NV	BORING PC 100 R			
DEPTH			UNIFIED	BLOWS	PID			DIL SAM			BEHARKE OD	
IN FEET		GRAPHI LOG	UNIFIED SOIL FIELD CLASS.	PER 6'	(mgq)	NO.	TYPE	DEPTH	<u>ا</u> ا	REC.	REMARKS OR FIELD OBSERVATION	
1	0-4 gravely SI	AND, 0:0									Start drilling	
_	o-4 gravely si gry brn w/ 10-15%	silt	SW		—						@ 8:30 am	
-	2.0-20% Vac aran	lesto o	.1	ł	┝─				-		finish@9:00	
4 -	20-30% volc gran	SAsd		<u> </u>					-			
	4.7 SAND, gry b		SW	1					Ì			
7 -	10% silt and 5-10	X SM DO	<u> </u>		· · · ·		┞─┤					
	granules to 1/10". +	- 10 - 00	GW		-							
9 -	SA-SR sand.	0:01										
// <u> </u>	7-9 Sdy GRAVEL	brn .	5W									
'' <u> </u>	A-SA to 1". 30-35	% vf - 1000	0	1							dampe121	
_	Ivc sand	00.00	0		╞╴	ļ						
< -	19-11 SAND, brn, w	10%			F	1						
	<u>9-11</u> SAND, brn, w silt + 5-10% v.si F-va, SA sand	n aran loo	0									
_	F-ra, SA sand	0.0.0	GW									
-	11-25 Soly GRAV	EL			<u> </u>						<u>VC18'</u>	
-	brn w/ 5-10% sil-	- + 0.0	ē		}							
20	25-30% vf-vc, SR-	sAsd of	0		<u> </u>							
-	Grav. up to 2" (ave											
	3/4") volc w/mi		0					ĺ				
<u> </u>	- caliche coatings	000		1								
25 ـــ		0.0	•		+		+				-	
	25-27 SAND br	1, mod	SW		-							
- 1 -	sity (15-20%). Cale w/ 10-15% sm vole	areous. 000	5			1			-]	
	vf-vc, SA-SR	ranur-> 000	GU		—			1				
30—	27-30 WW GRA	/EL	ō -					<u> </u>				
-	27-30 sdy GRA	we 3/1 1)	:		<u>}-</u>	1		1				
-	Clean, vf-vc sd		50									
-	30-35 SAND . brv	vf-c	•			1						
У –	w/minorve, SA-SR. 1 silt, calcareous	0-15%	<u> </u>		+	}	┨					
-	silt, calcareous]![SM		H							
- 38 -	35-38 sity SAND/S var ants of silt in	ay shirt i	÷		<u> </u>							
- סכ	-Isa-sr sd	V+-+9 0 Ho.	1 GM	1	1				Π			
			SM	<u> </u>	GRAPHIC I					DRILLED	IPAGE	
										-16	_	
	D Photoionization Detection (ppm)			CLAY		DEB FILL					
	O. Identifies Sample by Numb (PE Sample Collection Method	er			SILT		NGHL ORGA	INF ARCITE	ORILL	KER ED BY	Renzenze	
일 r-	7)	n n			SAND	\otimes	SAN			LA	VALE	
ĮΪ)	BARREL AUGER	ROCK CORE						- F	LOGG			
EXPLANATION				1	GRAVEL	\mathbb{Z}	SAN	40		ED	KRISH	
μ	THIN- WALLED CONTINUOU TUBE SAMPLER		ERY		SILTY			[EXIST	ING GRA	DE ELEVATION (FT. AMSL)	
"				1	CLAYEY			ļ		TION OR	GRID COORDINATES	
1 1 ~	EPTH Depth Top and Bottom of 3			1 1 4 4	C							

· • •

ţ

KE Hy	RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSIDIA	<u>_ L</u>			HEND	CK S	on		BOINU	RING MBER PC 100 R
DEPTH IN FEET	LITHOLOGIC DESCRIPTIO	IN	O I	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6"	019 (mgq)	NO.	TYPE S	DIL SAN DEPTI		REMARKS OR FIELD OBSERVATIONS
	<u>38-40.5</u> gravelly SAND, brn. 20-2 Silt and 10-2070 V Sm granules. SA-SA VC 3d. <u>40.5-41.5</u> H grn CLAY W/ gyp xta TD 41.51	-520 ole RVF -		CL							- MC @ 40.5 '
1 1 1	 Water Table (24 Hour) Water Table (Time of Boring PD Photoionization Detection (p O. Identifies Sample by Number YPE Sample Collection Method 	ipm)				CLAY SILT		DEE FILL HIGH ORG	DRIS LY NNC (PEAT)		6-00 2 of 2 METHOD 2CUSSION
EXPLANATION	SPLIT- BARREL AUGER THIN- WALLED CONTINUOUS TUBE	s Nn	OCK ORE ORE	RY	123	SAND GRAVEL SILTY CLAY			NDY NYEY ND	LOGGEO B	
	DEPTH Depth Top and Bottom of S REC. Actual Length of Recovered	ample Sample in	Feet		813	CLAYEY SILT				LOCATION	OR GRID COORDINATES

Soil Boring	LOG KM-5655-B
-------------	---------------

	ERR-McGEE CORPORATION lydrology Dept S&EA Division	KM SUBSIDIARY	С		LOCATION HENDE	ERS'O	N, NI	1	BORING	R PC	101	
DEPT	1	 	UNIFIED	BLOWS			SOIL SA		E			
IN FEET	LITHOLOGIC DESCRIPTIC	GRAPHIC LOG	SOIL FIELD CLASS.	PER 6"	PID (ppm)	NO.	<u>w</u>	ртн	REC.		ARKS OR	ONS
	- 15 gravelly SA - 14 brn (5YR 5/4).	ND .								30 F-	T N30	E -
	- Hbrn (5YR 5/4).	10%								DEESO		, –
	- silt in sometrix. 5	and io								PC-	10	
5-	- is poorly sorted, A-1 Vf-vc.		SW		<u> </u>						10	_
	- 15-20%, volc gran				—							-
	and sm pubbles to	3/4", :•						-				
	$\begin{bmatrix} A - S \\ A \end{bmatrix}$				 							
10 -	_ Locally com, call _ cement	che lo			<u> </u>							-
			•									
	4	•0	•		 							_
	-	с. 			-							
15-	_ 15-25 SOY GRAV	EL 000										
	- 1+ brn (5YR 5/4) 5	0.00	\$	1	<u> </u>					dame	<u>PIT</u> '	-
20-	to 3", A-SR. local	ly hard love	GM									
	- thin calichified 3	ones,			<u> </u>							-
	- 10-20% silt in sdr				<u> </u>							-
	= pourly sorted, vf-vc	, SA-SR									1	
25.	·	.0.0.				<u> </u>				2C	25	
	- 25-50 sity grave - SAND, mod yell bru	¹ Υ			\vdash							_
	- (10YR 6/4). 10-20%				<u> </u>							1
	- wf-xc sR-SA sdm	atrix			<u> </u>							_
30.	Vf-rc, sR-sA sdm 30% vole granules of pebbles ave. to 1" bi	and sm is in										_
	pebbles ave. to 1" bi	ut w/ ::::	SW									-
	minor publies to 3	и о			\vdash							
25	- Very calcareous. Le	cally !!!!	•		\vdash	1						_
133	- minor pebbles to 3 Very calcareous. Le hard caliche cem * Probably alternat fining upward flu	ented :0.	l:			1						
	- Probably alternat	ing .	· ·		 					ļ		_
	- fining upward flu	vial in			-						I	-
	- sequences (ie grav	> 511+)	0							<u> </u>		
	Y Water Table (24 Hour)				GRAPHIC				TE DRILLEC		PAGE 1 of	Z
	V. Water Table (Time of Borin PID Photoionization Detection (CLAY		DEBRIS FILL		ILLING MET	HOD		
z	NO. Identifies Sample by Numb TYPE Sample Collection Method				SILT		HIGHLY ORGANIC (PE	AT)	HLLED BY	SA-		
ATIO					SAND		SANDY CLAY		Com	PLIAY	いビ	
EXPLANATION	BARREL AUGER	CORE		1	GRAVEL		CLAYEY SAND	LC	GGED BY ET	> KR	15 H	
Т.	WALLED CONTINUOU TUBE		ERY		SILTY CLAY			- Ex			ON (FT AMSLI	<u>., .</u>
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	يت Sample d Sample in Fee	t		CLAYEY SILT		·		CATION OF	GRID COOR	DINATES	
	-	-		1								

)

SOIL BO	DRING LOG KM-5655-B			····								
	RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSIDI		LC		HENE	JER	50	N.N		g er P(2101
DEPTH		1.1.1.2		UNIFIED	BLOWS	· · · · · · · · · · · · · · · · · · ·			DIL SAM			
IN FEET	LITHOLOGIC DESCRIPTIC	ОМ	GRAPHIC LOG	SOIL FIELD CLASS.	PER 6"	PID (ppm)	NO.	TYPE	DEPTH		REI FIELD C	MARKS OR DBSERVATIONS
_												
-				ļ		— —						
				sw								
45-	48-50 hard, calich.	fiel	<u></u>									
-	gravely SANT. (or cecos cement but	n -				<u> </u>						
		11:42	0	·		<u> </u>				-		
_	porons.		0.0			 						
50-	50-52 sity CLAY	(. 1+					+	+				
52 -	grn gry (564 8/1)		X	CL				ļ	ļ		MC	<u>e</u> 50'
- ۲ <i>۲</i>	calcareous stick					 						
-	calcareous. stick dense, dry. Mino gypsum xtals.	1				-						
	gypsum xtals.											
-	52'TY	<u></u>				 						
						\vdash						
				1						Ì		
-	-											
	-											
								ļ				
	-					┣						
	-1											
											1	
-	-					<u> </u>						
	-											
1	-					 			.			
-	-											
	-							İ				
	-					-						
	-					-						
	Water Table (24 Hour)					GRAPHIC	LOGL	EG	END	DATE DRILLE		PAGE Z of Z
	Water Table (Time of Borin PID Photoionization Detection (CLAY '			BRIS L	5-18 DRILLING ME	THOD	
11	NO. Identifies Sample by Numb YPE Sample Collection Method] אונד		} Hig Or(HLY GANIC (PEAT)		ISA	
EXPLANATION			ROCK			SAND	\boxtimes	SA CL	NDY AY	Com	PLIP	INCE
A	BARREL AUGER	L L	CORE		1	GRAVEL			AYEY	LOGGED BY	KRI	HZ
ĒX	THIN- WALLED CONTINUOL TUBE SAMPLER	ıs 🗍	NO RECOV	ERY		SILTY CLAY]_			ADE ELEVAT	ION (FT AMSLI
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	لات Sample d Sample	in Fee		RT.	CLAYEY]		LOCATION O	R GRID COO	ROINATES
	and a second second second second				- E					I		

È

22. Manual Sciences and Sciences Williams for a structure of the second sciences of the sum of the second sciences.

and the second second second second second second second second second second second second second second second

SOIL BORING LOG KM-5655-B

i -T

Ο

	RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSIDIARY	LLC		HEN	DER	501	J, N			RPC 101 R
DEPTH IN FEET	LITHOLOGIC DESCRIPTIO	2 GRAPHIC	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6'	PIO (ppm)	NO.	SC	DIL SAA		EC.	REMARKS OR FIELD OBSERVATIONS
	0-5 Soly GRAVE	L 8	80								start hole @
_	grybrn, volc, 25	-30%	0.00 0.00								1PM, end 1:45
-	sa, vf-vc sd in g				_						
_ ح_	peagrevel to 1/4"				_						
	10-207 silt	1 .									
	5-10 grav. sty 9	AND 0	ill GM/								
	gry brn, zo-zoZsil		5M								
	30% granules/sm pe	· · · · ·									
	gravelin vf-vc,s	Asd	0.0								
_	gravel in vf-vc, s 9-10' calichified	.0	000		 						
-	10-26 Say GRAVE	Q -	000		E	1					damp@14
5-	brn to gry brn, 25		B GW		<u> </u>	Į					
-	vf-vc, SA sand w/	var.	S SW		 						WTR@ZO'
_	amts of thin (2.3")	1	500		<u> </u>						
-	rich layers. Grave	10	0.0								
	vole granule -peag		0		<u> </u>						
-	size up to 7/4", A-5		0		 						
		0	000		-						
-	20-22' 70% f-re:	sd w/ 🖫									
	30% granules	1 4	जेव मेर्ट		<u> </u>						
Z6 -	ZZ-23' Volc cobble	- layre	, 19 		 	ł					
-	23-26' HAED, Calic	.f.alt]			1				
-	Isd and granules][:;	SM		—						
30 —	26-30 SIty SAND	brn i	2.00		 	ļ					
-	20-25% silt in f-va				F						
-	sand w/ 10-15 1/10" g	ranules							ļ		
-	30-38 say GRAVE	ΞL,];	GW		<u> </u>						
-	30-38 sdy GRAVE brn. Coarsens down Sandier (60%)[30'-	ward .	0.0		<u> </u>	}					
-	Sandier (60%) [30'-	34' m	00.		E			}			
38 -	top.,, vf-vc, sr-sAu	granulis	· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u> </u>					
-	grading down to say gravel : 37-38 1-4"	cobbles	0 GM/		<u> </u>			·			
		<u></u> 111		G	RAPHIC		GE	ND	DATE DR		PAGE
<u>-</u> P	Water Table (Time of Boring				CLAY		DEB FILL	RIS	8-	16 - G METI	-00 / of Z
ZIY							HIGHL' DRGAI	Y NK (PEAT)	PÉ	ERC	LUSSION
EXPLANATIO	SPUT-		~~		SAND	\otimes	SAN CLA		1	-Ay	NE
3 V	BARREL	ROC		1	GRAVEL				LOGGED	ABA .	
EX EX						لا <u>ن</u> ا ا	SAN	U		G GRA	KRISH DE ELEVATION (FT. AMSL)
	TUBE		OVERY								
1 1 .	EPTH Depth Top and Bottom of Se	amole		1 [13]	CLAYEY SILT				LOCATIC	NOR	GRID COORDINATES

Ø001

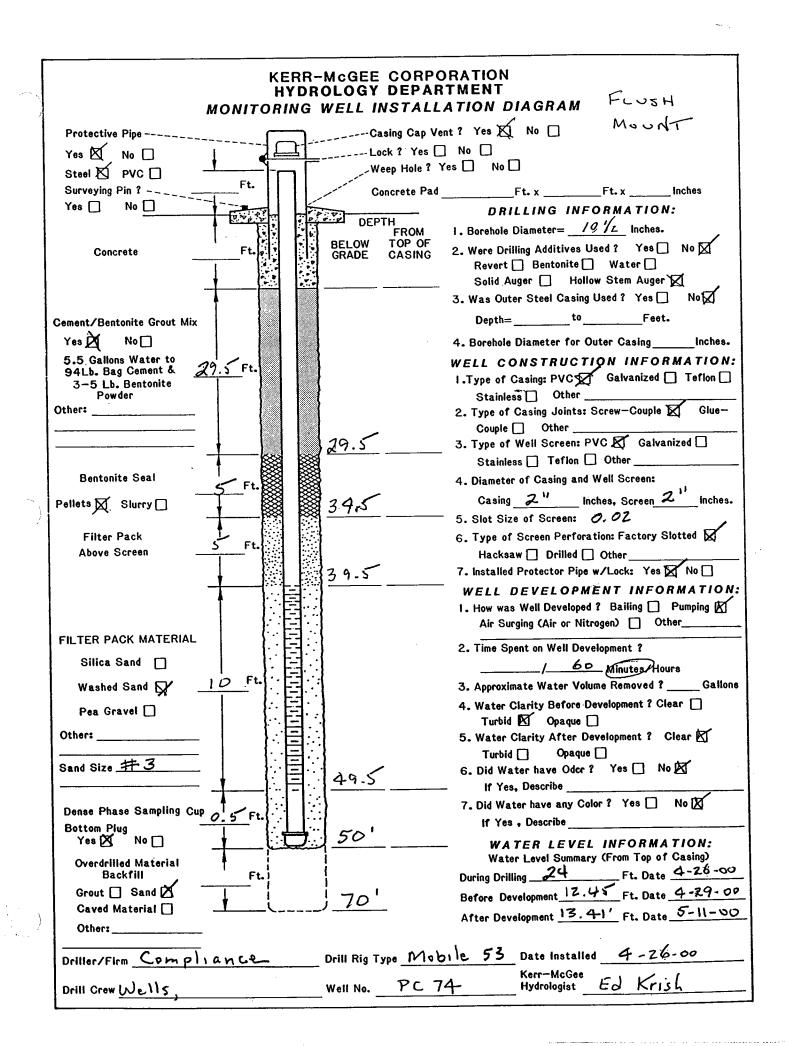
ļ

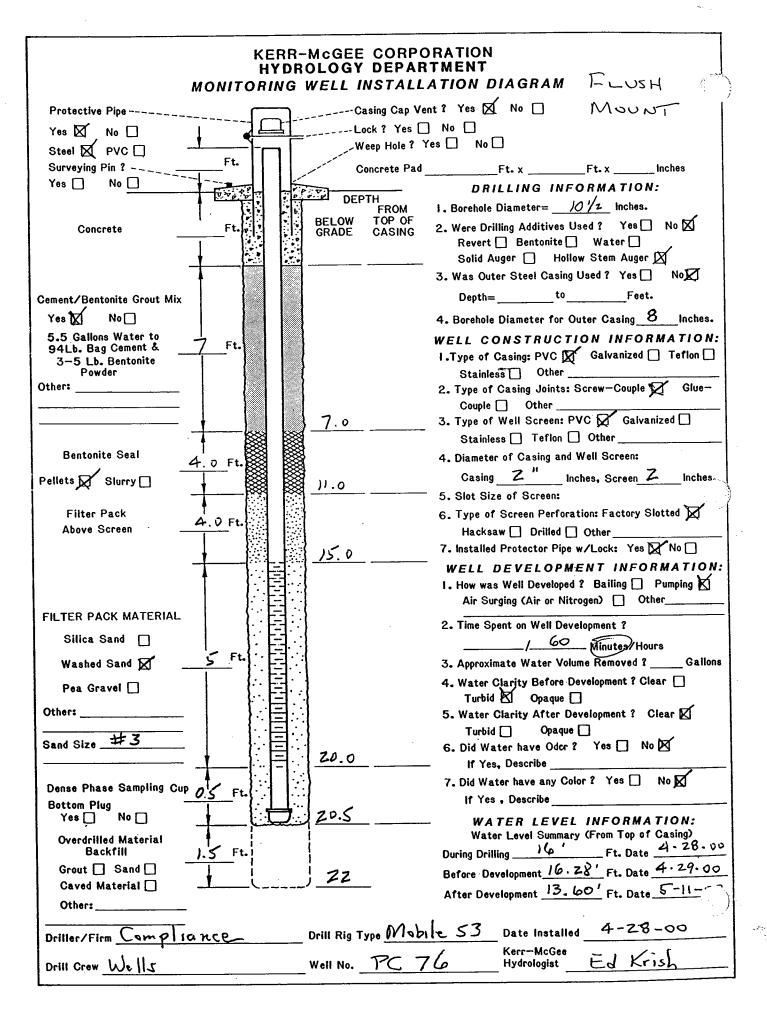
.

			LLC			EKS		I, NV		IER PC IOIR	
DEPTH IN FEET		ON	GRAPHIC	UNIFIED SOIL FIELD	PER 6'	PID (eem)	NO.	sc हि	DEPTH	LE REC.	REMARKS OR FIELD OBSERVATION
	38-40 5114000	10 M . (CLASS.	0			=			
	38-40 slygran SAND, gry brn.	70.769	1.000	GM/							
43 -	shop gry bin.	20-25 k	000	SM							· · · · · · · · · · · ·
	silt and zog volc to 1/4" SA-SR, in	granole	1.10.								
-	SA-SR, in	v+ -vc	0.11	GW							
47 -	SR sund		0.11				}				
	40-43 Sdy GRAVE		10.0	GM/							
- 1	gry brn. 25-306 vf			. 1							
51 -	sd in gran./peagra	v to 1/2"	1110.Y.Y	SM							
1 1	w/minor 1-2"			CL/M	1-						MUDDY Creek
	43-47 sity gravel	ly SAND	,								0 51'
-	brn. 20-25 6 silt, 2	0-254	M			—					
	brn, zo-256 silt, z gran. to 1/4" in vf-v	c SR sd	41		ļ						
-	47-51 SAY GRAVE		21			<u> </u>	ŀ				
	z51vf-vc sR sd in		ł				1			1	
- I	Pengravel, SR-SA,	40 1/2 "	1			L					
-	199-51 hand calichif	ied.				 					
-	177-51 Mark Cantonin					<u> </u>				1	
· ·	51-51.5 Cly SILT/	sty				<u> -</u>					
	CLAY, Harn, m	Inor									
-	CLAY, Harn, m root traces, sp. a	ypsom				 	1				1
	- Xtals	,,,				<u> </u>					
· ·	1		4			-	1				
	51.5'TD										
_	4		1								
	-					<u> </u>					
· ·	-					\vdash					
	1		1					İ.	1		
			·								
			1			<u> </u>					
	-1		1			 - -					
	-					- ·	1				
					<u> </u>		1				
-	L. Water Table (24 Hour)					RAPHIC				TE DRILLES	
	Z Water Table (Time of Borin D Photoionization Detection (ig)				CLAY		DEB FILL	RIS D	RILLING MET	001
	O. Identifies Sample by Numb	et Phul						HIGHL	Y INIC (PEAT)		LUSSION
ĮĮ	IPE Sample Collection Method				4				10	RILLED BY	VIE
¥.			ROCK		1	SAND		SAN		LA DGGED BY	YNE
EXPLANATION		<u> </u>	LUKE			GRAVEL	\mathbb{Z}	CLA SAN	VEY		KRISH
ã	THIN- WALLED CONTINUOU THRE SAMPLER	is 🚺	NO RECOVE	PV	1	SILTY		Ì	E		ADE ELEVATION (FT. AMSU
		ت	nc.046	,n I				' <u></u>			
1 1 6	EPTH Depth Top and Bottom of	Samole			1 1 1 1	CLAYEY SILT	11		Ju	JCATION OF	GRID COORDINATES

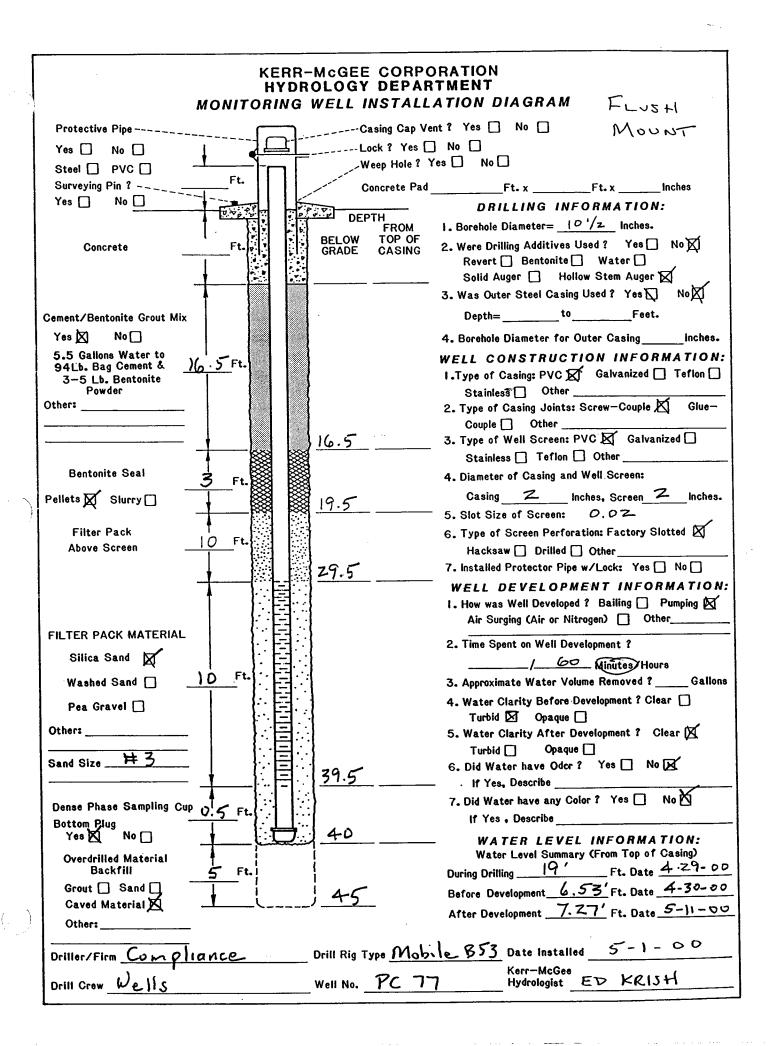
!

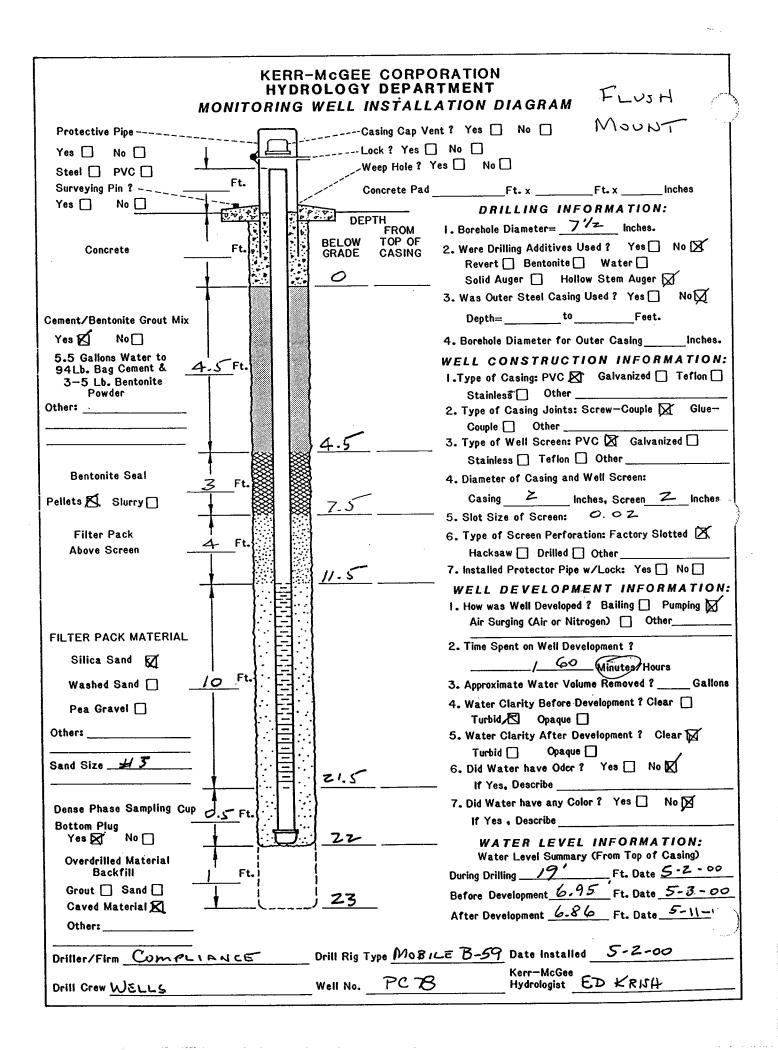
.

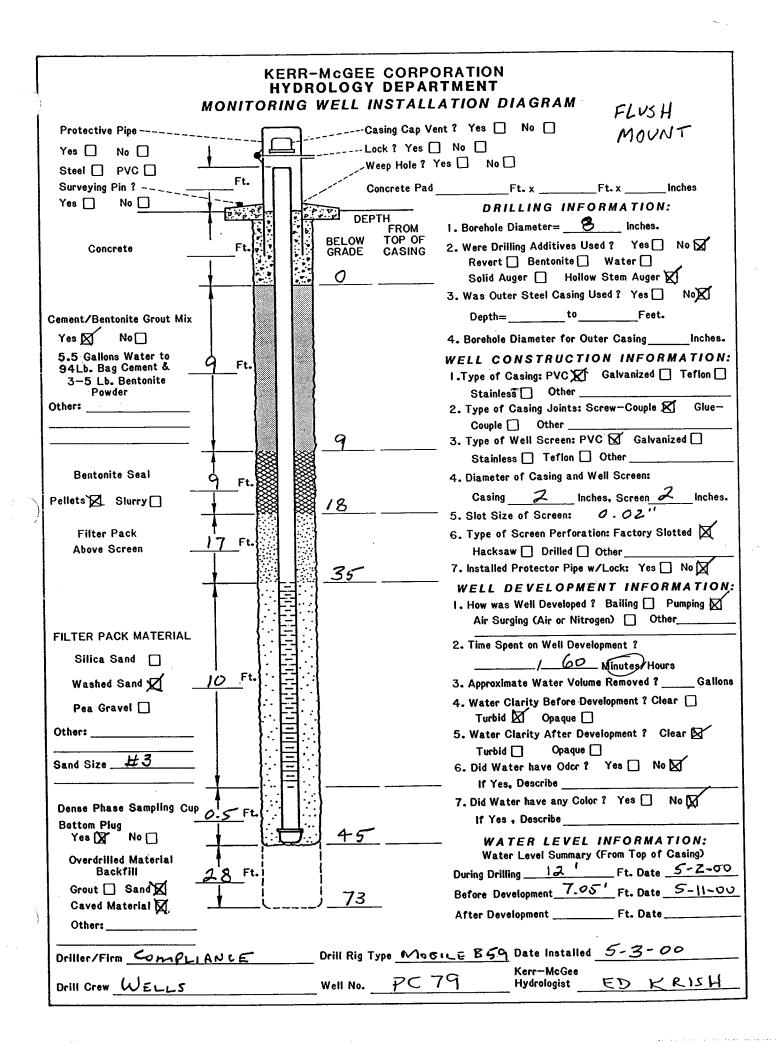

KERR-McGEE CORPORATION KM SUBSIDIA Hydrology Dept S&EA Division KM		KWC			LOCATION HENI	DERSONIN					ig ier PC 102		
DEPTH IN			UNIFIED SOIL SOIL FIELD CLASS		Blows Per	PID			IL SAM	PLE		REM	ARKS OR
FEET			5211	FIELD LASS.	6	(ppm)	NO.	TYPE	DEPTH	(REC.		SERVATIO
-	0-8 GRAVEL . gry	brn, 00	ŝ									start 11	AM
-	51. sdy (10-15) m-v											finish 1	-
-	sl sity (10%). Gr			GP		-				-		wete	
	to 4", ave 1/2"	10		<u> </u>				[]			:		
_			000									WTR@	Z
8 -		101	800										
	8-14 SILY SANDE	situ lio										dry 8.	.9'
	Edy GRAVEL , Intert	behow		5M/								wete	291
-	8-9 brn, sity (40%)	1 1.15	II'' la	SM									- /
14 -	<u>9-11</u> brn sity sdy gra	Vel, 110						 		·			
ľ`-	30% silt, 20% f-c sd,	507.											
-	pengravel to 1"			ML		—							
	11-14 brn, sty vf-f			SM			•						
19 -	14-19 Sdy SILT and	slty											
	SAND, interbedded	, brn	0.0	5W									
22 -	to Harnishbrn. rf	-f sd	0.00	200			}						
_	19-ZZ Sty GRAVEL	gry 1	11	SM								42.90° 0.000000000000000000000000000000000	
z4 -	brn, 30-405% vf-vc,	A-SR SA	<u> </u>										
	In gran./pragravel	, SR-R, 100	0.0	GM/			ĺ						
_	to 1/2 " (vole)			5M									
28 -	22-24 slty SAND, 1 30% silt in vf-fg sd		6011			·	 						
_			0.0			<u> </u>							
	ZA-ZE sity say GR. dec silt from 30% @ Ze		0.00	ดฟ			1						
-	ezs'. brn, f-mw/cg.	se stinio		GW								•	
1 -	pea grav/gran to 1/2-3	5/4 8	523			 							
_	28-36 Say GRAVEL	103	000				1					1	
36 -	brn & whish . Contain		0.0	-									
-	15. gravels. 20-30% f	-veise	000K	sm		 							
39 -	sd in gran/peagrav		0116	SM							4		
	1" w/ up to 6" locall	Y00	0.00	GW			<u> </u>						
						RAPHIC L			<u> </u>		DRILLED		se 1 of Z
	D Photoionization Detection (p	pm)						FILL	" ["]	RILL	ING METH	HOD	1
	Identifies Sample by Number	20				SILT		HIGHLY ORGAN			EKC	N2210V	<u> </u>
EXPLANATION						SAND	\otimes		1			YNE	
IN IN	SPLIT- BARREL AUGER	ROC			1		S	CLAY	rey i	ÖGG	EO BY		
N N		ы Пио			1	GRAVEL	الحظ	SAN	▫	EXIST	ED	KRIS DE ELEVATION	
			OVERY			ailt			1				
	TUBE		OVERI			CLAY	L						

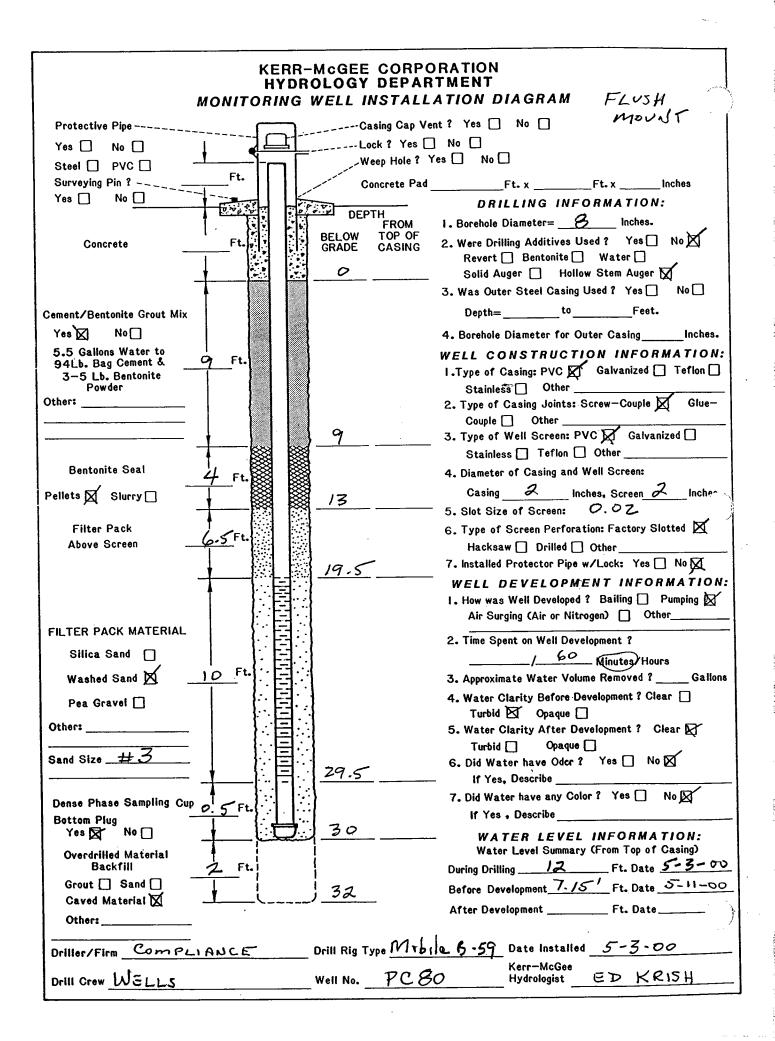

ļ

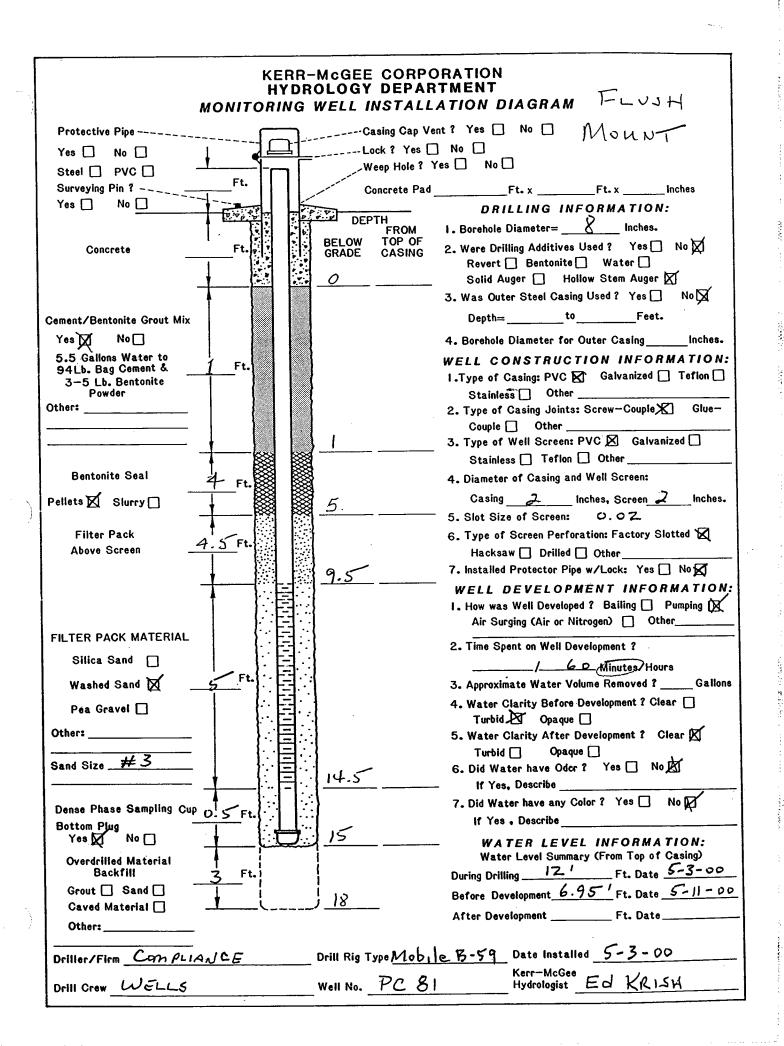
KERR-McGEE CORPORATION Hydrology Dept S&EA Division			LLC			HENT	DER:	501	J'VN	BORIN	ig ier PC 102		
DEPTH				UNIFIED SOIL SOIL FIELD CLASS.		PID			DIL SAMI	PLE	REMARKS OR		
FEET			C C C C	FIELD CLASS.	PER 6	(ppm)	NO.	TYPE	DEPTH	REC.	FIELD OBSER	VATION	
_	28-30 volc, nols	•	00.00										
-	below 30' 50/50		0.0.0				1						
-	\$ 15.		0.00										
45-	@33' cobbles to 4'	lt.	0.00	GM		_	1						
-	@36' cabbles to b'		0.00							1			
_	36-39 sity say GR	AVEI	0.00			—							
	ary bron & which . Co	m 15.	100	GM/		_							
50-	gry brn & which . Co gran/pea gravel a	ontain	0000	SM		·	ļ				<u> </u>		
_	20-3072 silt \$ 20					<u> </u>					Did not		
-	f-rc sk sd								1		reach N	Inddy	
	38-39 volc cobbles	: +0 6"	1		Į	Ē				•	Creek	•	
_	39-50 Sdy GRAV	ΈL,					ł						
_	gry wht + bin, SR, o	gravels	1										
-	of 1s + role to 2-3".		1										
_	30% f-vc, SR sd. L	scally				<u> </u>				1			
	caliche coated.					┣	1			1			
. —	847-49 com silt i	nmath	4			<u> </u>							
	+0 25-30%			1									
-	no hand celiche lik	a in				<u> </u>							
<u></u>	PC 99R]			<u> </u>	{						
-	TD @ 50'												
-						<u> </u>			1				
-						\vdash							
-					ł	<u> </u>							
-						}							
-	j]	E	1						
_									· ·			•	
-					}	—			ł				
-	4					<u>⊢</u> .	ł						
					<u> </u>								
						RAPHIC				ATE DRILLE		of Z	
	D Photoionization Detection ((mqq				CLAY				RILLING ME			
Z	D. Identifies Sample by Number					SILT		HIGHI ORGA		PERCUSSION			
EXPLANATION			ROCK			SAND	\otimes	SAN			YNE		
	BARREL		CORE			GRAVEL	\mathbb{N}		VEY L		DKRIS	н	
Ш.	THIN- WALLED CONTINUOU THEE SAMPLER			RY	1	SILTY	Π		_		ADE ELEVATION (FT.		
	TUBE	- I N '			لاعفار	~			1				
	EPTH Depth Top and Bottom of S	لا مصحاح				CLAYEY SILT		1	-	OCATION O	GRID COORDINATE	5	

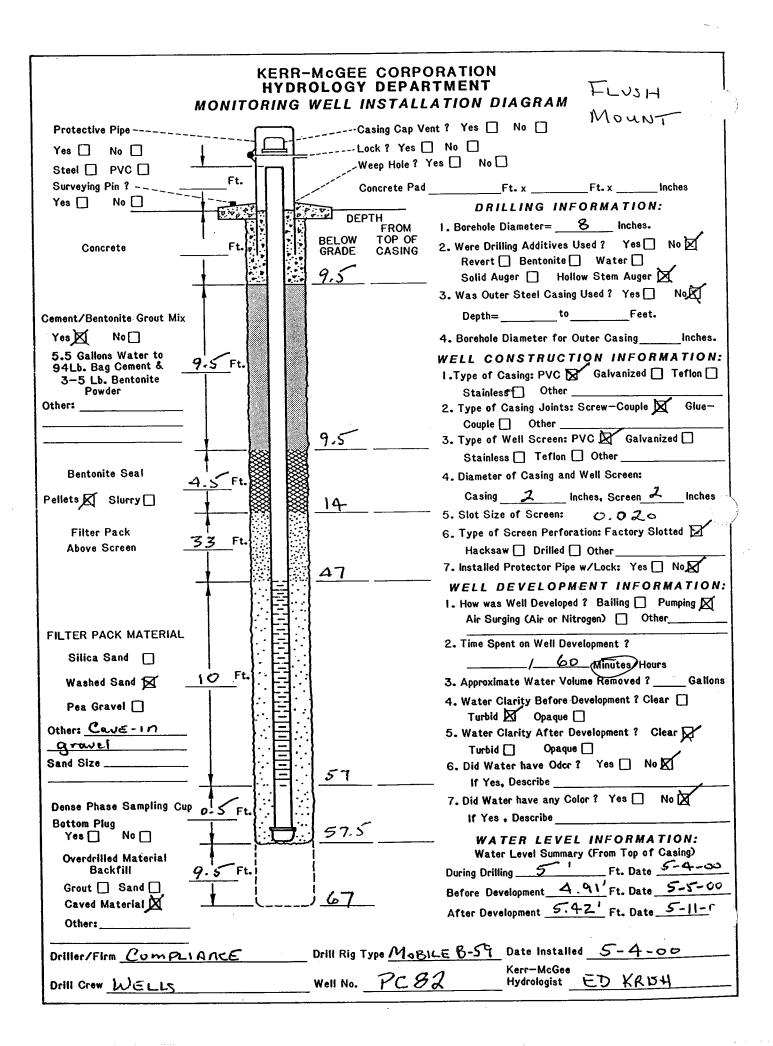

Ø 001

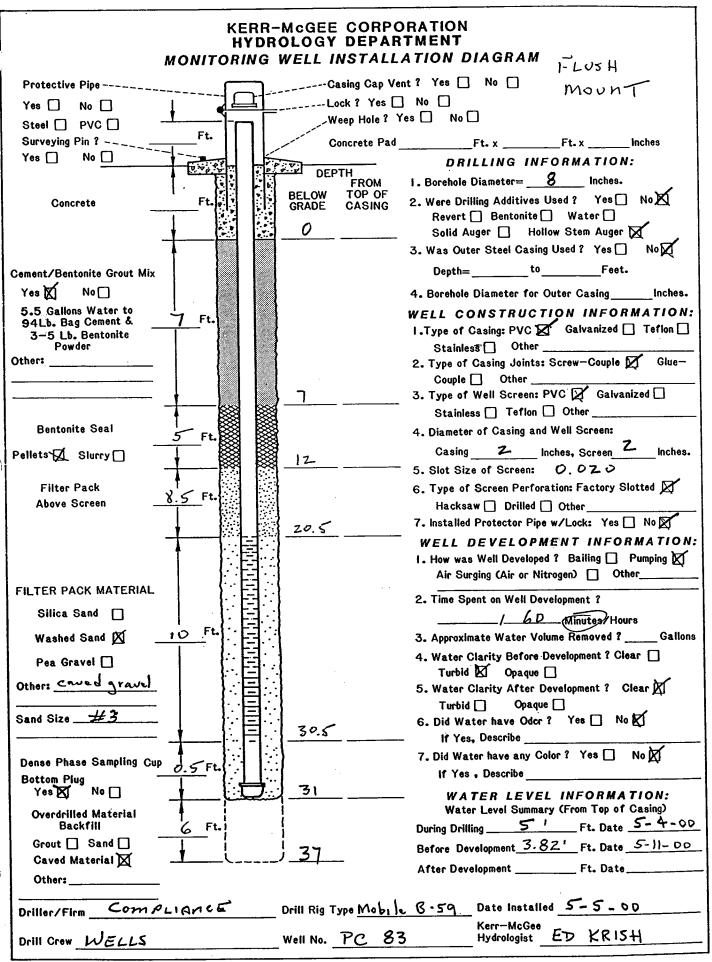

!

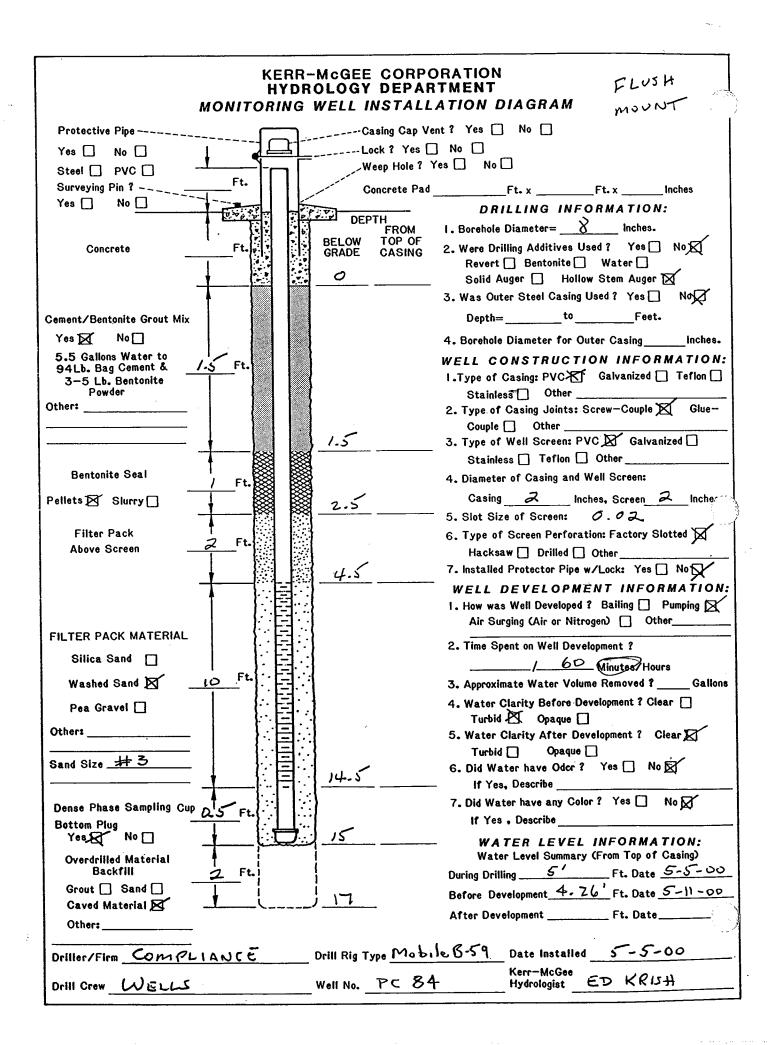


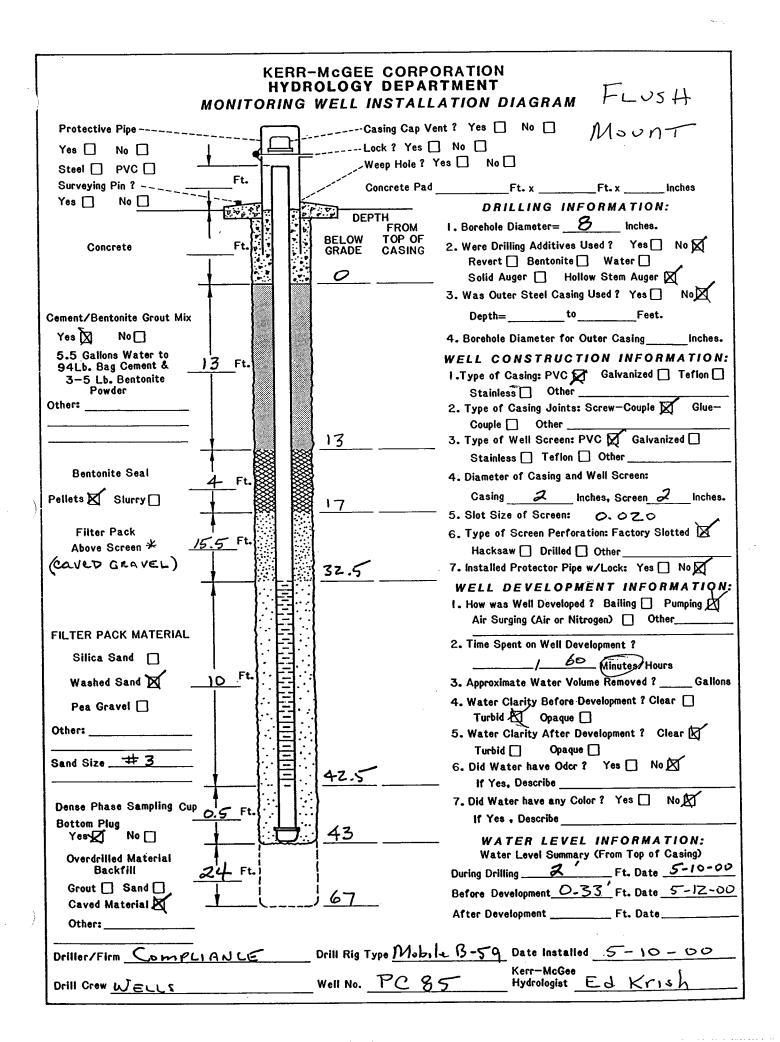


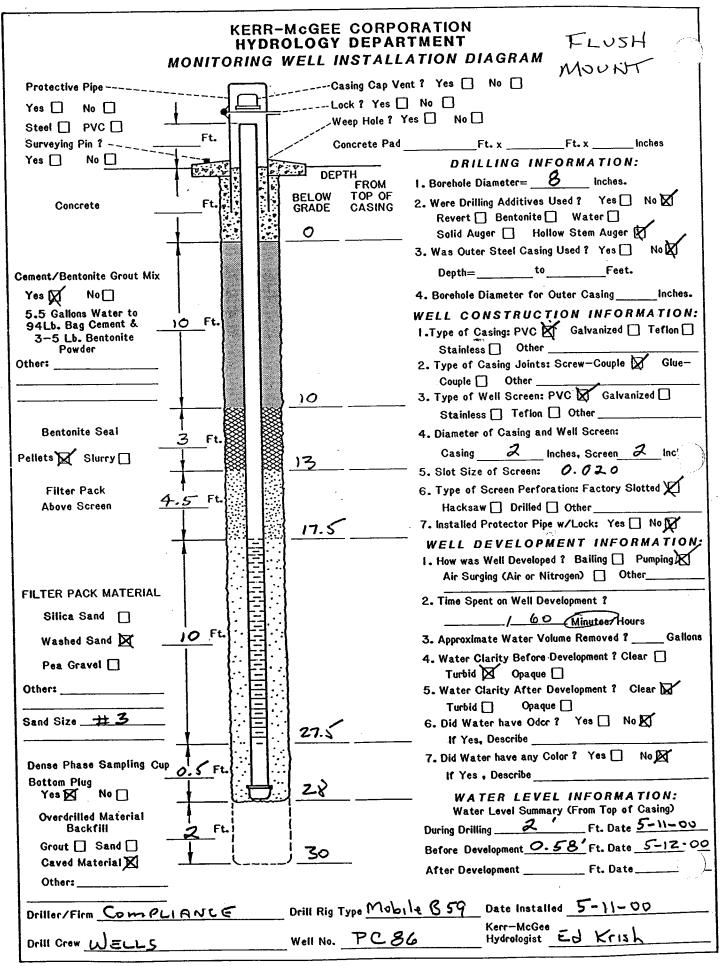

• .

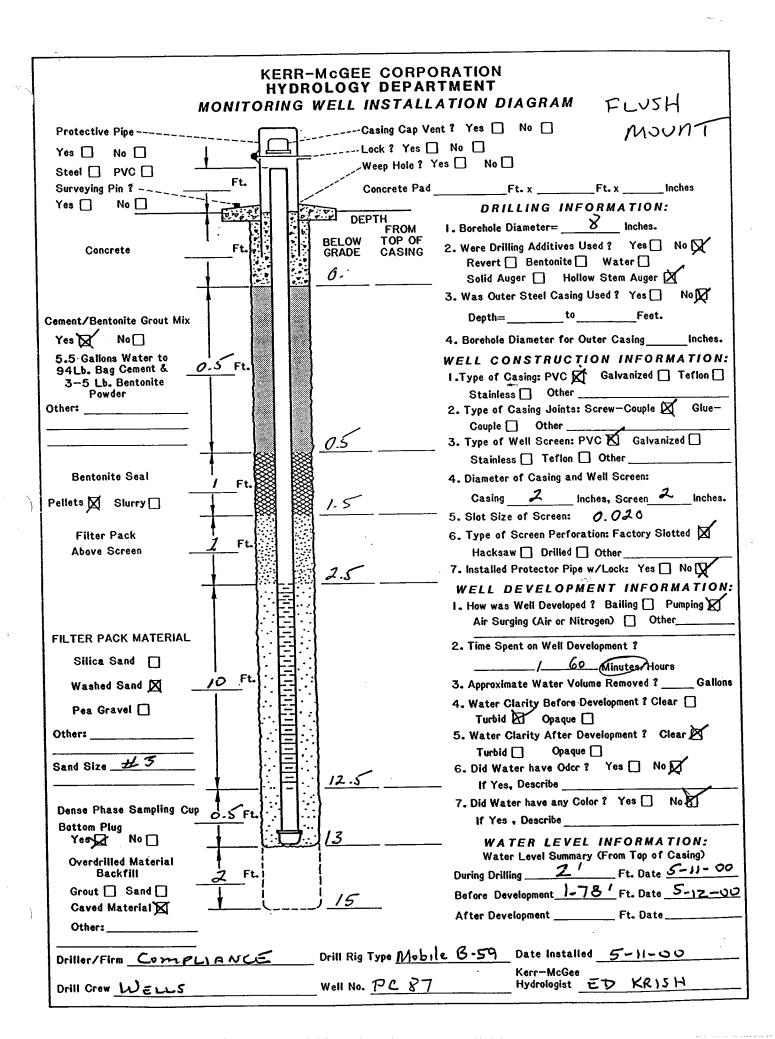


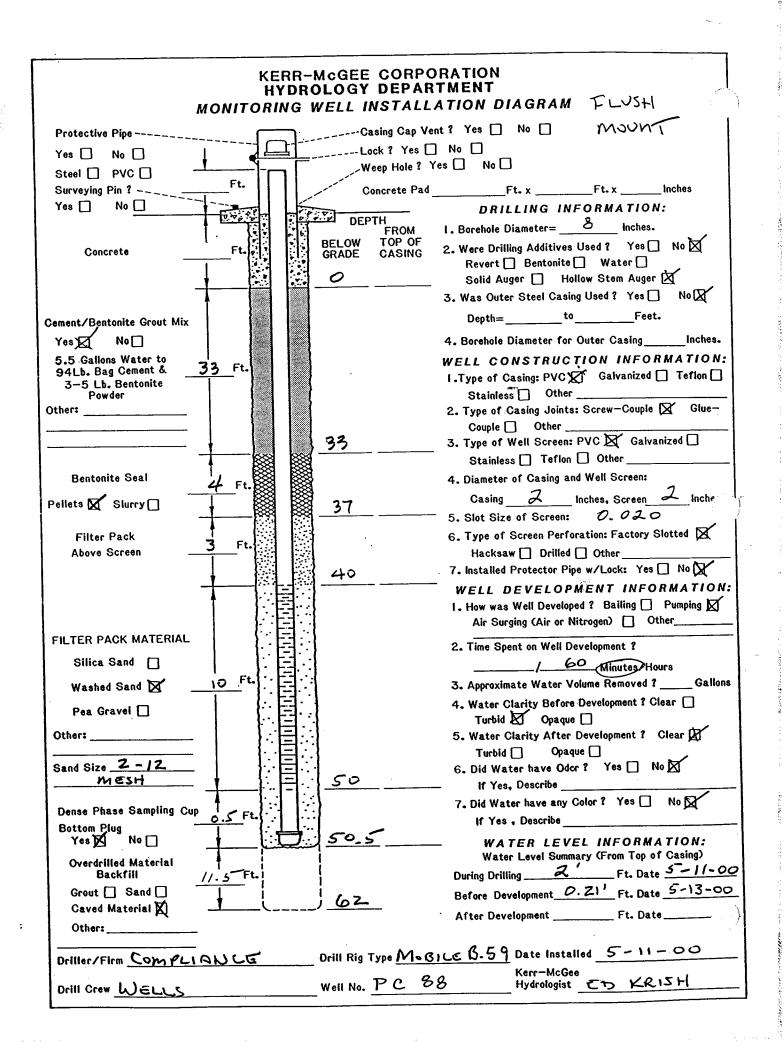


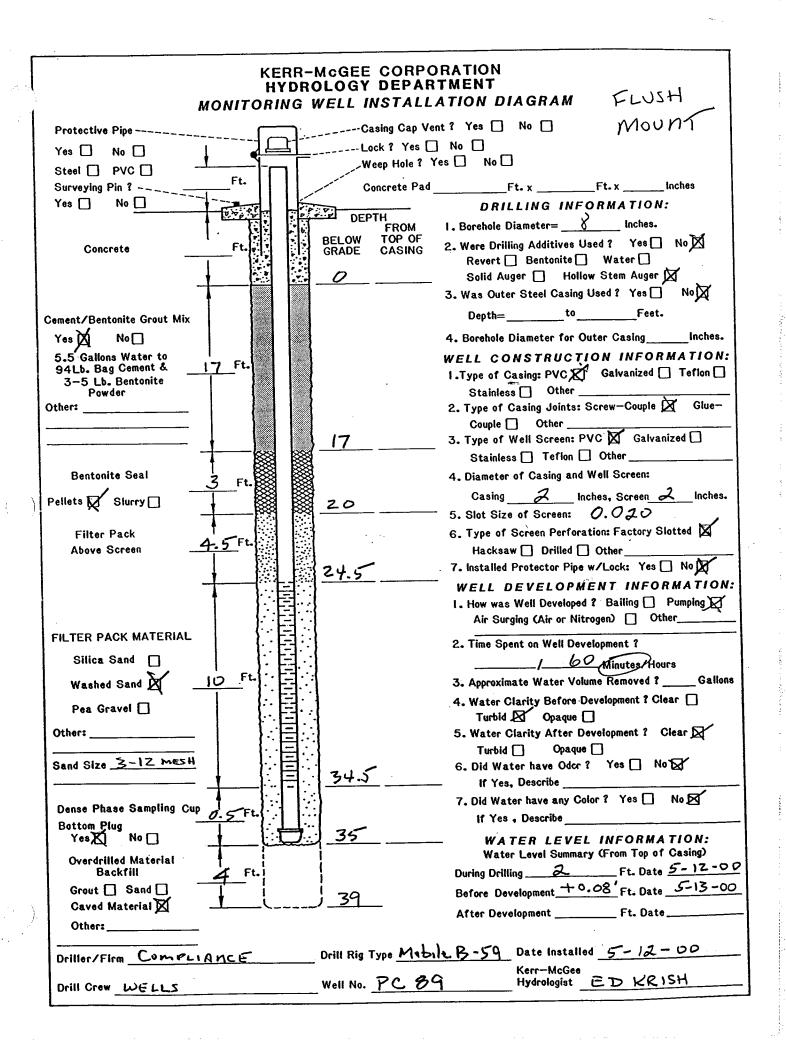


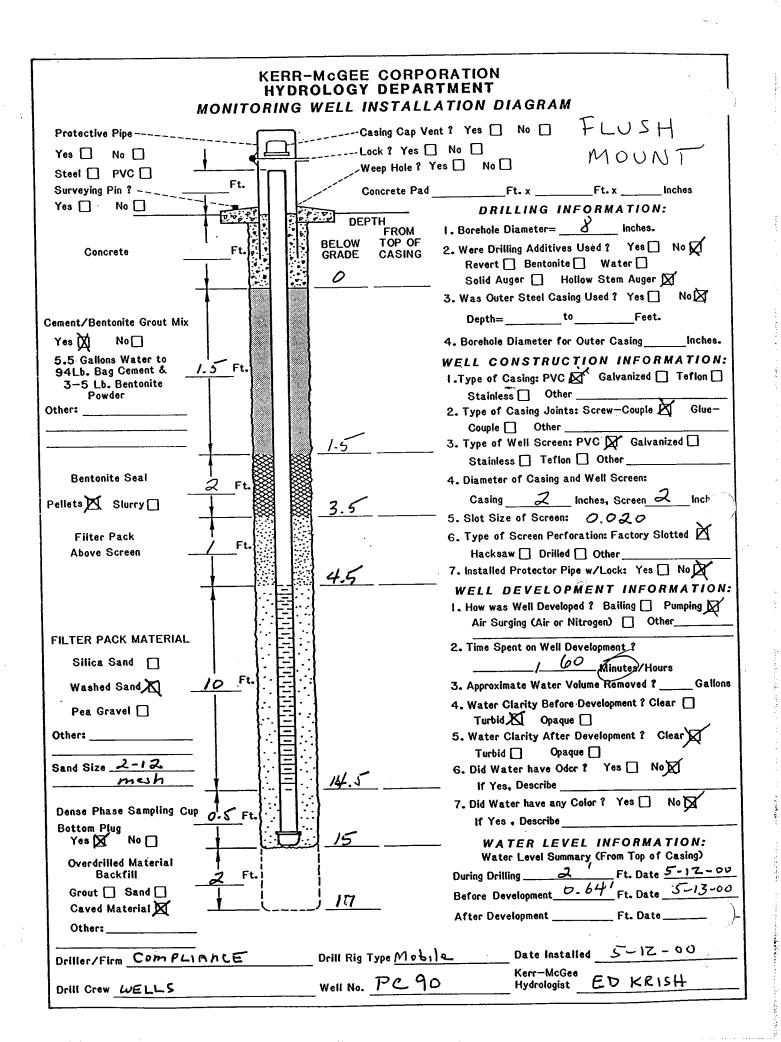


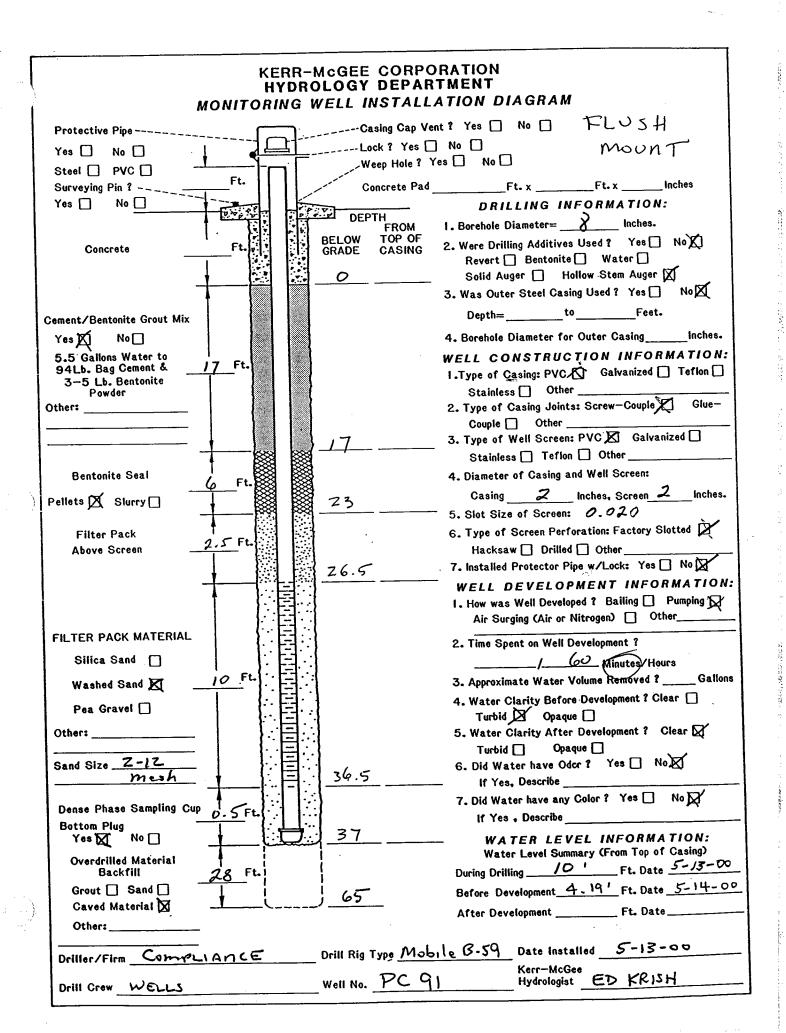


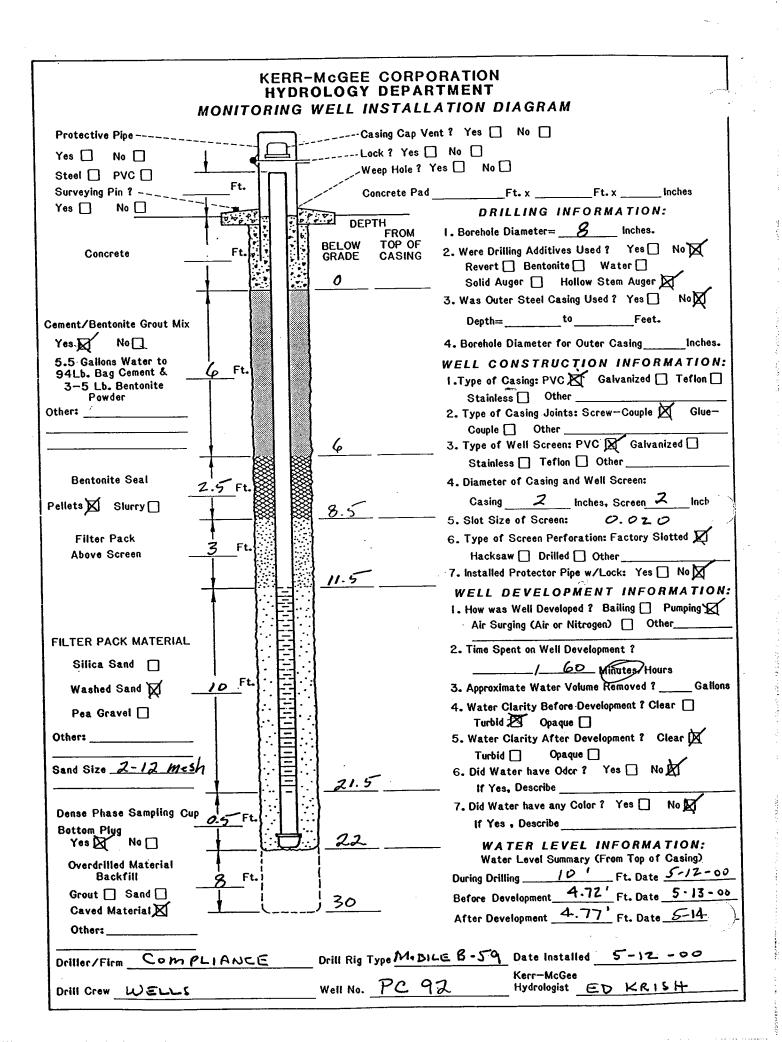


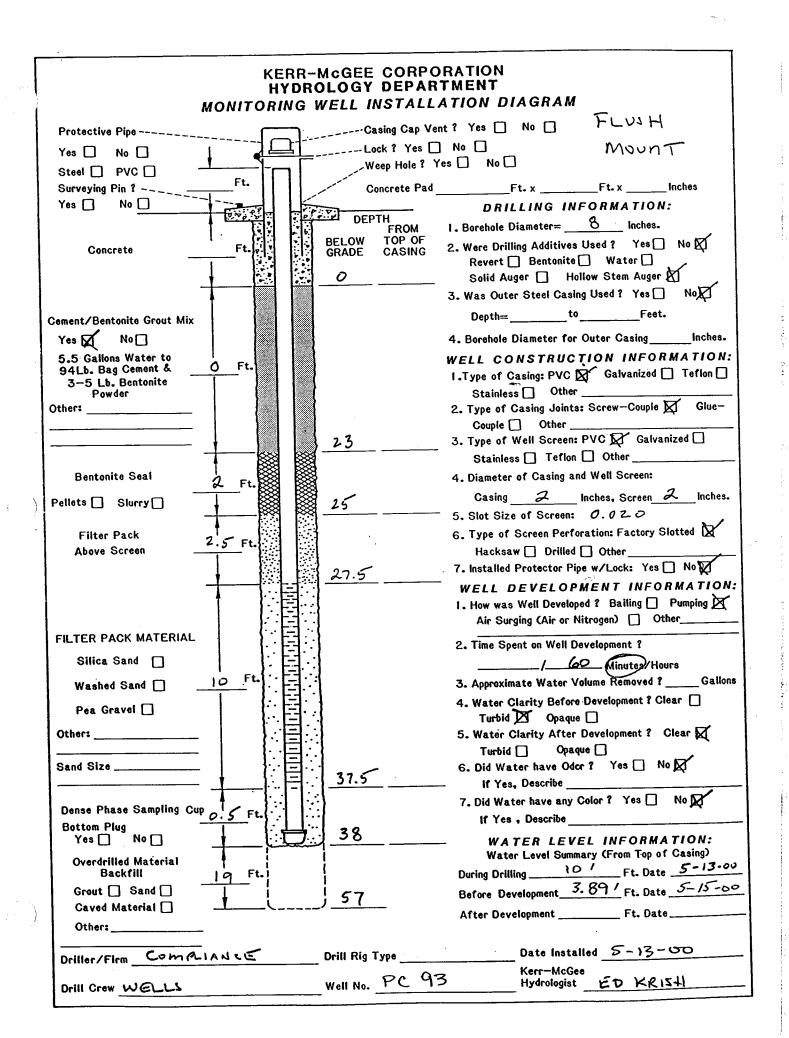


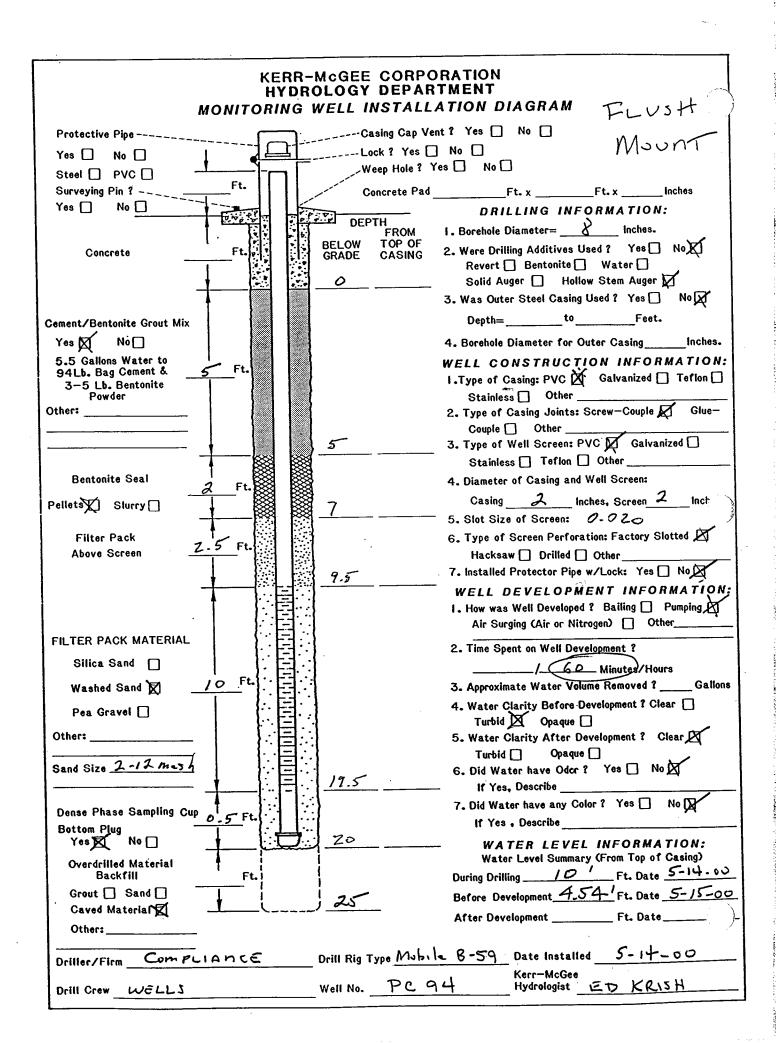


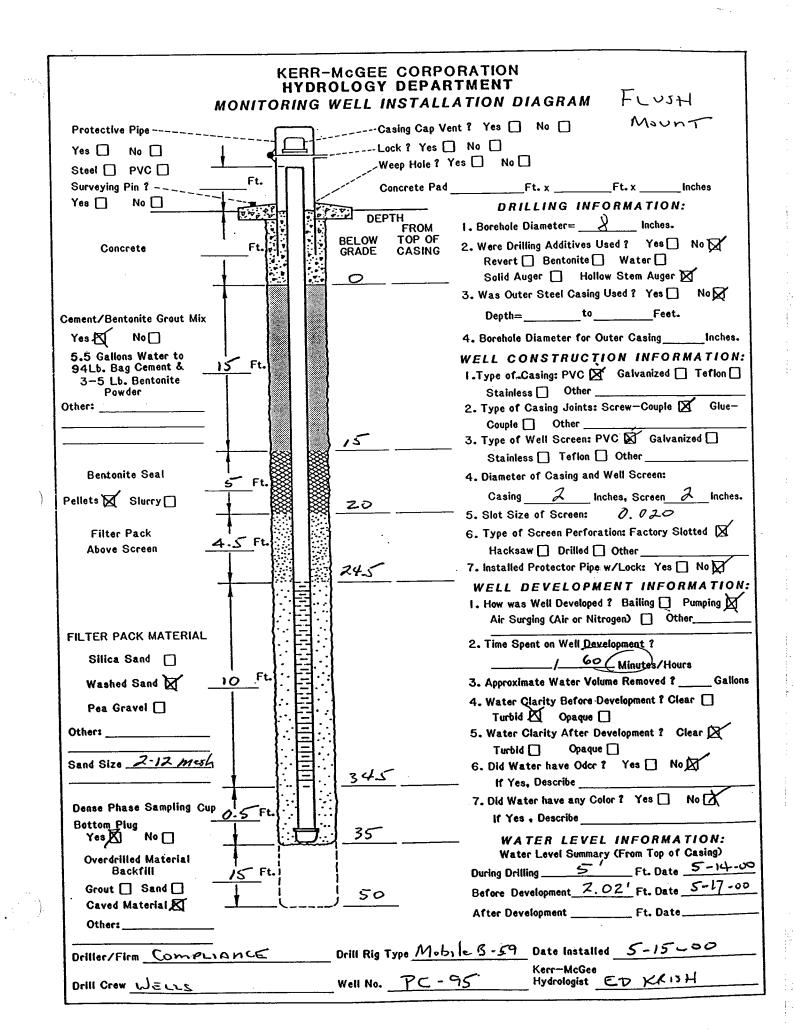


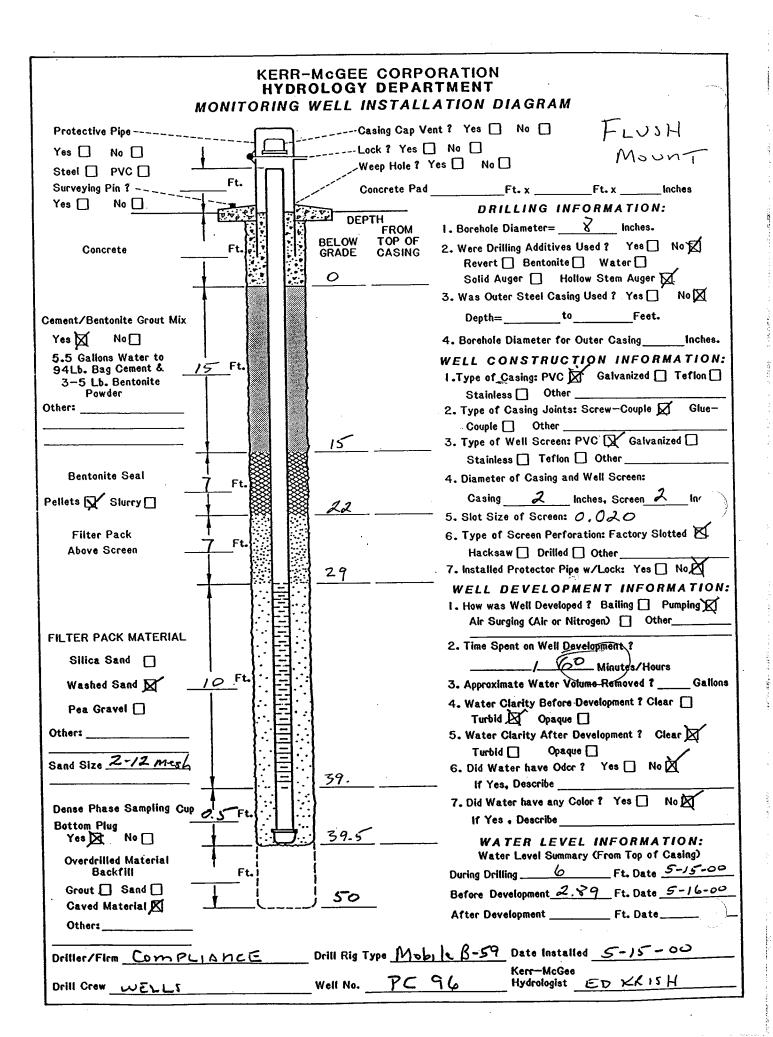


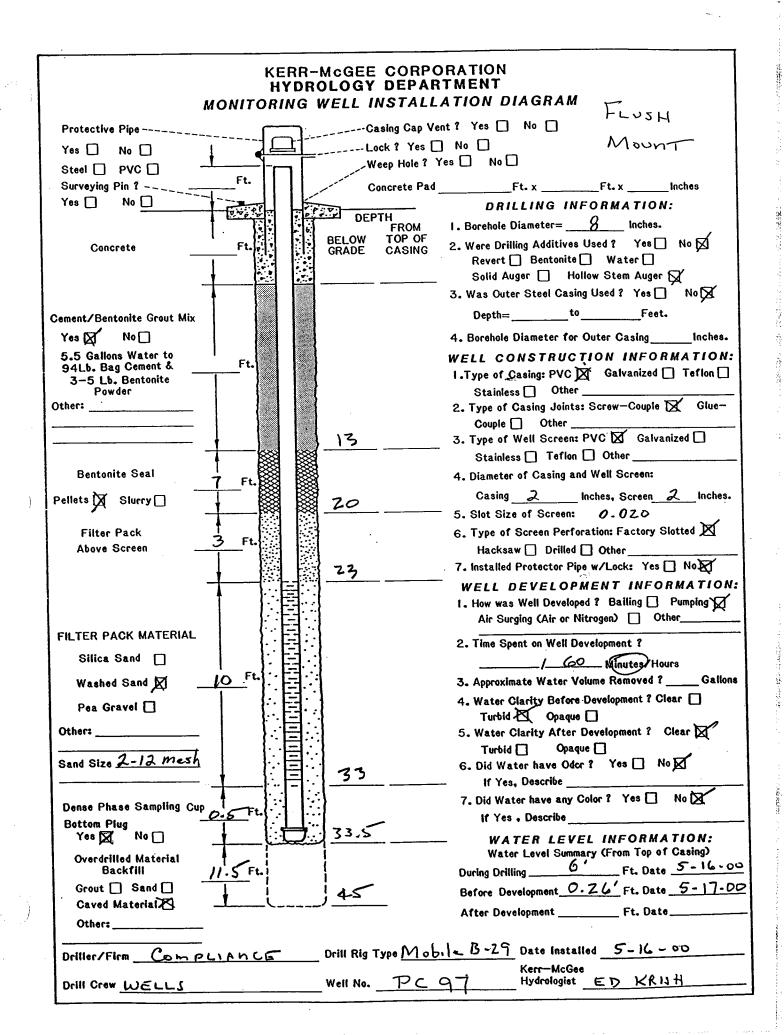


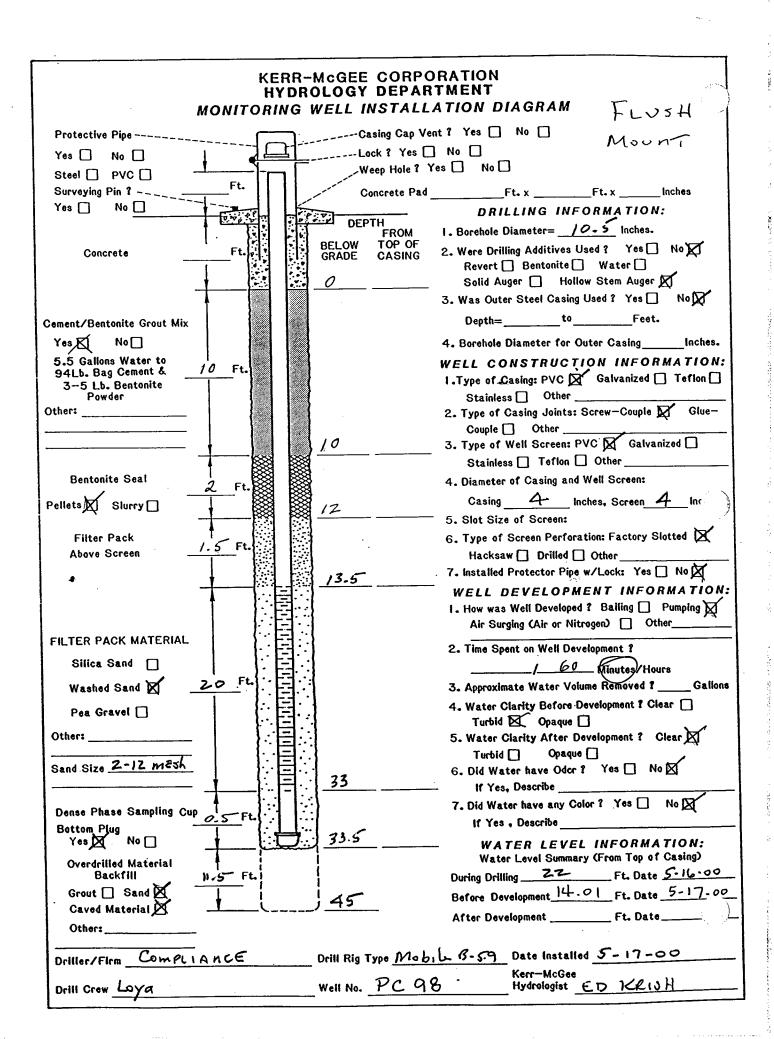


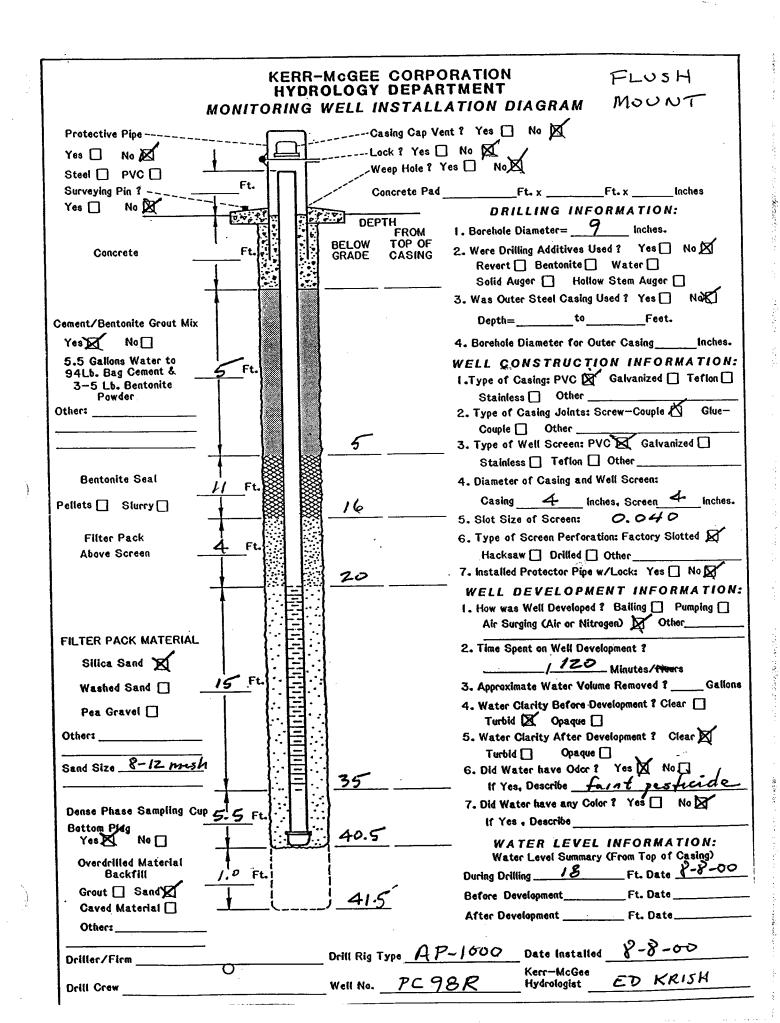


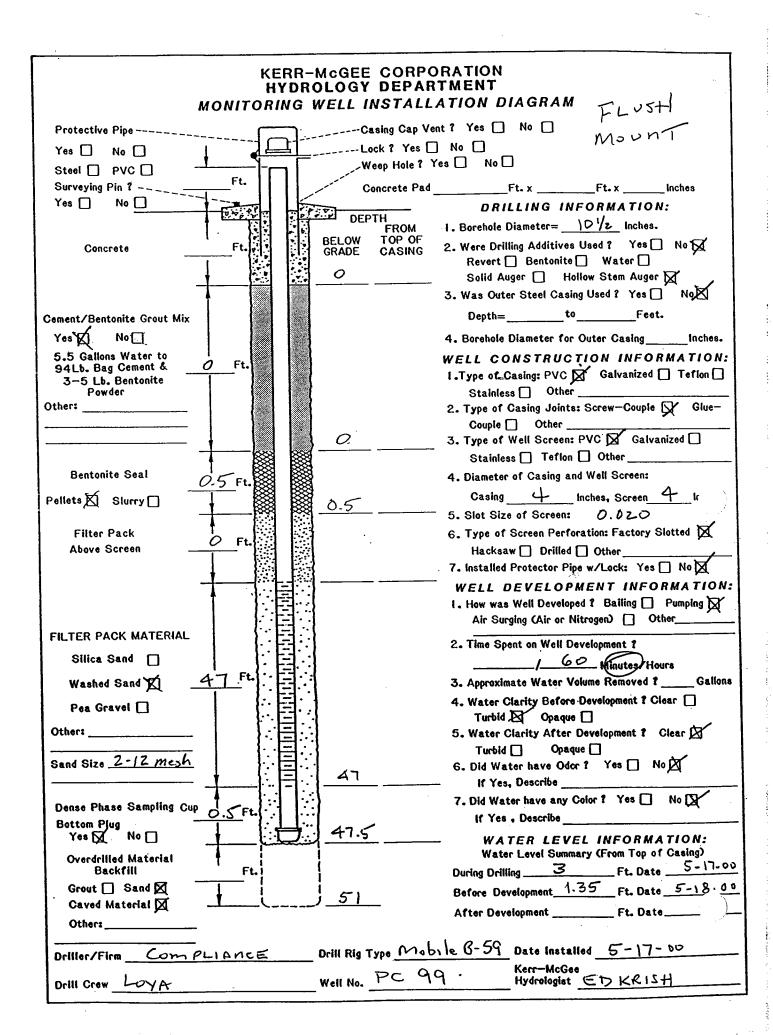


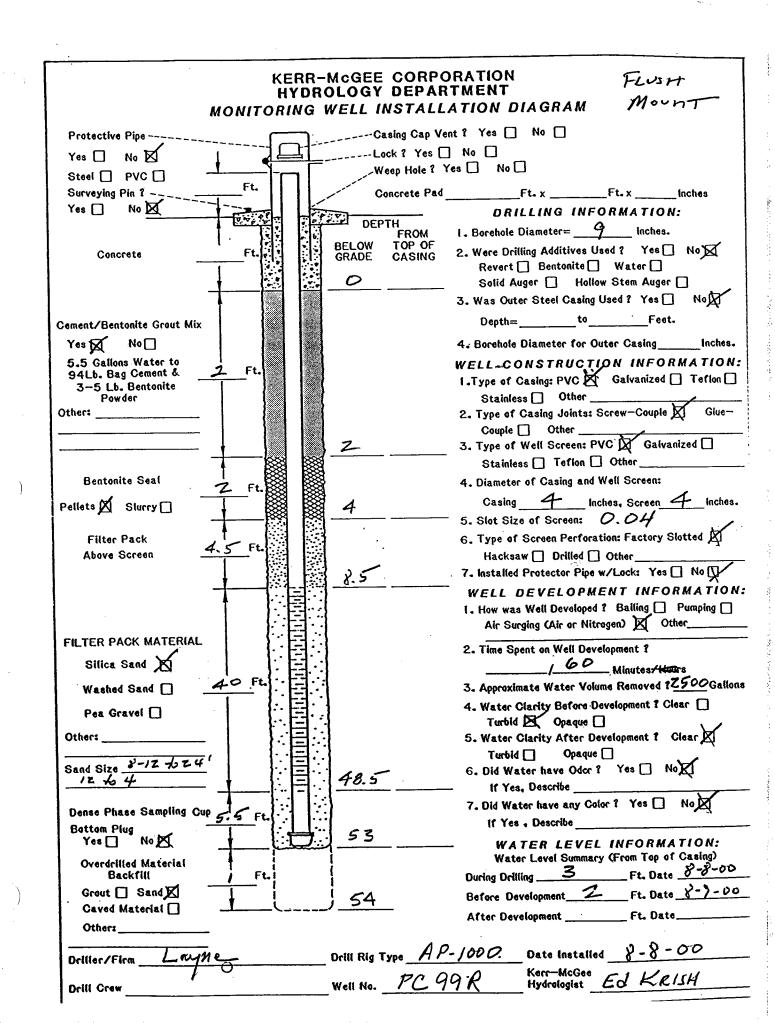


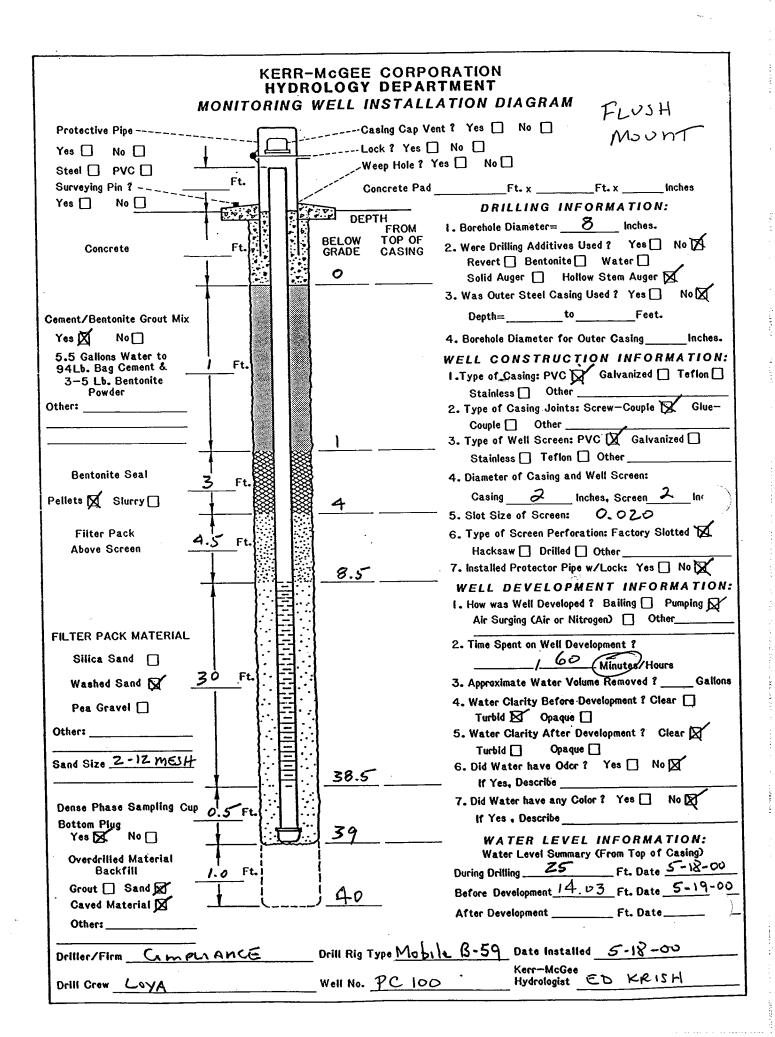


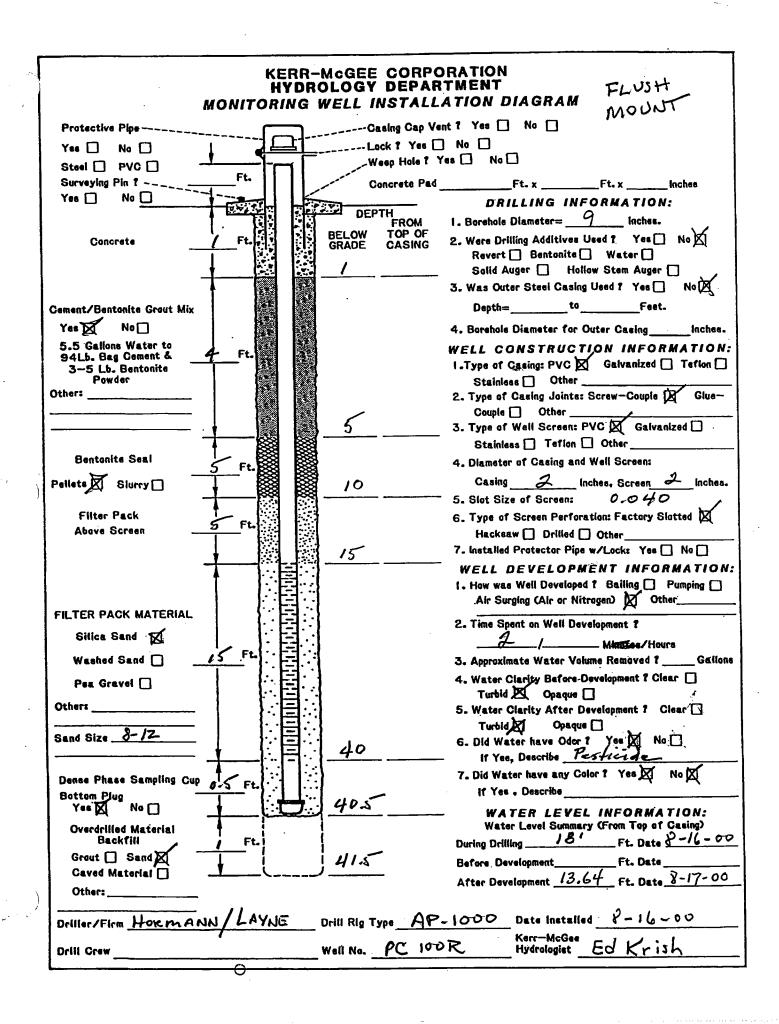


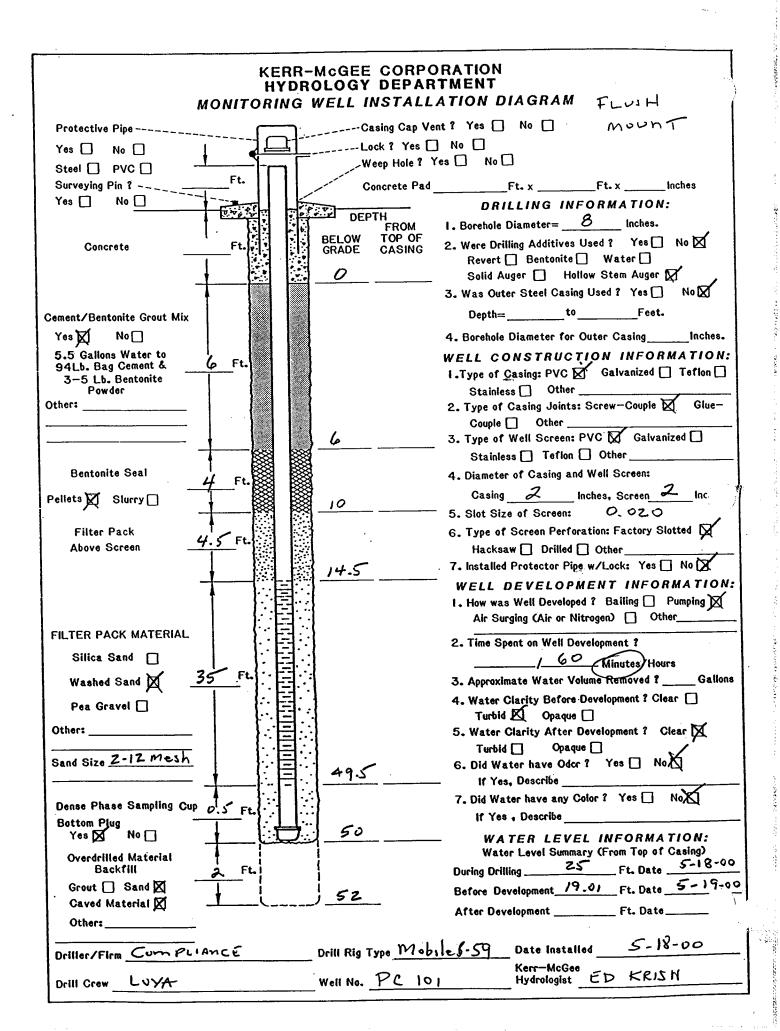


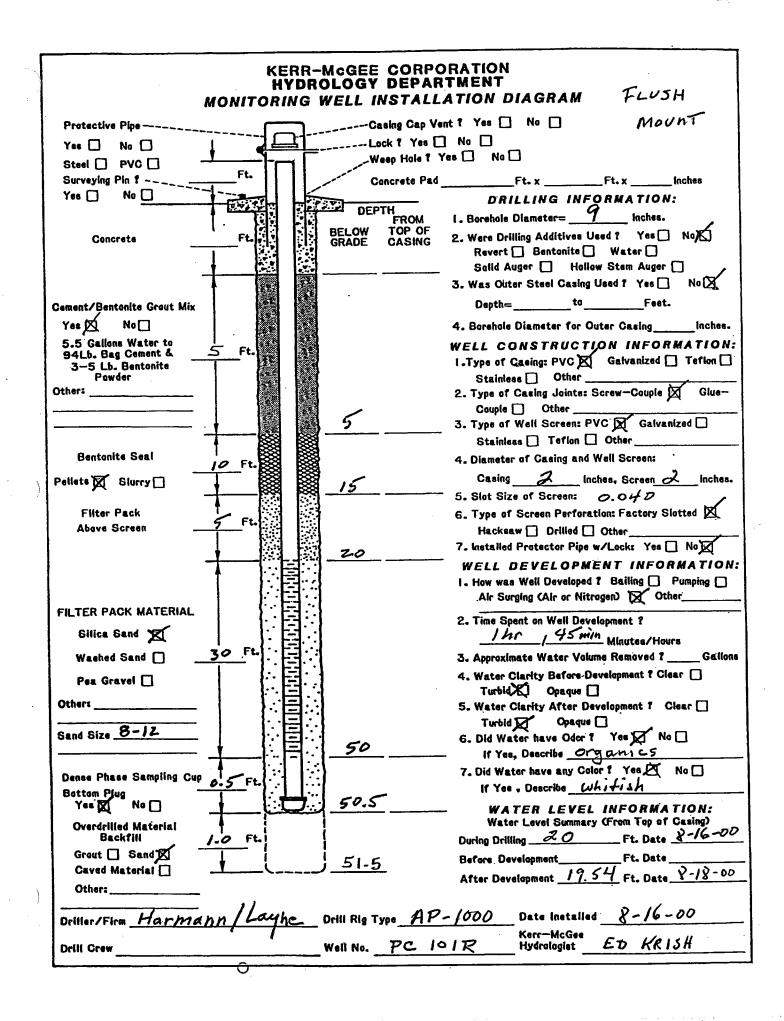


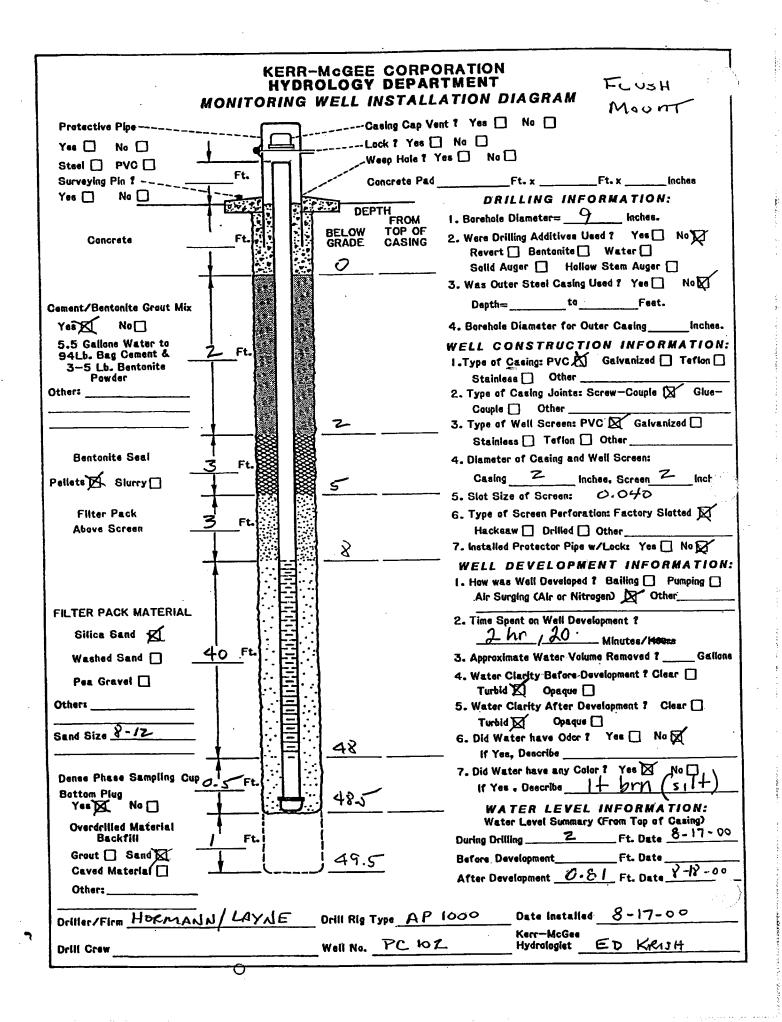












Appendix C

TWP-RANGE	SECTION	DEPTH TO	WATER	PERCHLORATE	SPECIFIC	pН
			ELEVATION	(ug/l)	CONDUCTIVITY	
		TOC (ft)	TOC (ft)		(uS/cm)	
22S-62E	12	25.95	1717.10	3850	25900	7.74
22S-62E	12	30.62	1719.38	4950	13810	7.81
22S-62E	12	28.37	1723.07	6430	16330	7.25
22S-62E	12	29.00	1721.19	4540	11560	7.51
22S-62E	12	37.57	1742.30	4220	12030	7.86
22S-63E	7	39.43	1690.13	243	2830	na
22S-63E	7	40.48	1687.91	12200	4330	na
22S-62E	11	36.97	1671.65	192	9190	na
22S-62E	11	38.17	1695.32	115	1433	na
22S-62E	1	40.92	1690.88	5860	8900	7.76
22S-62E	11	37.07	1693.23	48	4460	na
22S-62E	11	37.50	1693.80	na	na	na
22S-62E	1	31.05	1650.72	470	34900	na
22S-62E	1	37.77	1664.07	29	12950	na
22S-62E	1	37.58	1661.42	4420	12130	na
22S-62E	1	DRY	-	- ns	ns	ns
22S-62E	11	42.99	1709.21	59	5350	na
22S-62E	11	DRY	-	ns	ns	ns
22S-62E	1	36.53	1657.97	22	11850	na
21S-63E	31	21.99	1525.08	1380	5490	na
21S-63E	31	13.06	1532.25	9990	9010	na
21S-63E	31	5.63	1538.00	3660	5510	na
21S-62E	36	17.25	1578.18	34	. 2950	na
21S-62E	36	18.16	1581.69	12	2910	na
21S-62E	36	11.65	1600.32	36	4100	na
21S-62E	36	9.76	1611.67	1370	8580	na
22S-62E	12	43.19	1709.51	1600000	7170	7.19
22S-62E	12	43.62	1709.18	1600000	12170	7.31
22S-62E	12	43.42	1709.28	1100000	12170	6.94
22S-62E	12	34.50	1717.90	1000000	11950	7.27
22S-62E	12	32.81	1716.89	1800000	18520	7.12
22S-62E	12	39.73	1712.77	3100000	16290	7.12
22S-62E	12	34.83	1718.37	2600000	17300	6.92
22S-62E	12	25.92	1719.58	900000	18080	7.28
22S-62E	12	40.70	1709.40	760000	7240	7.33
22S-62E	12	30.23	1715.77	15000	11390	7.47
22S-62E	12	39.68	1712.02	4600000	11670	7.17
22S-62E	12	40.25	1712.65	880000	11960	7.26
22S-62E	12	34.24	1717.16	1300000	13190	7.02
22S-62E	12	32.58	1720.22	2600000	16920	6.96
22S-62E	12	31.83	1719.87	2400000	14990	7.02
22S-62E	12	nm	-	2500000	16590	
22S-62E	12	34.74	1716.66	3200000	8530	7.41
22S-62E	12	38.78	1711.22	2300000	12370	6.93
22S-62E	12	41.58	1710.62	3100000	16710	6.81
						6.94
						7.19
						7.19 na
22S-62E 22S-62E 22S-62E 22S-62E		12 12 12 1	1237.301239.48	1237.301714.901239.481712.62	1237.301714.9025000001239.481712.622600000	1237.301714.902500000159701239.481712.62260000015710

D WATER TOC (1) TOC (1) (US/GN) Curb UC (1) (US/GN) CORD UC (1) (US/GN) L641 228-62E 1 8.17 1615.53 42 12490 m L645 228-62E 1 8.17 1617.38 13 13000 m L6925 228-63E 7 33.13 1705.17 822 11310 m LG025 228-62E 2 18.44 1695.10 96 2330 m LG225 228-62E 2 18.44 1695.10 96 2330 m LG231 218-63E 32 65.9 1594.10 3337 8100 m M-2A 228-62E 12 39.44 1712.36 21400 14400 7.3 M-5A 228-62E 12 36.69 1696.61 13000 8410 7.6 M-12 228-62E 12 42.50 1770.30 1600000 1107.7 M-14 228-62E 12 33.65 1764.88	WELL	TWP-RANGE	SECTION	DEPTHITO	WATER	PERCHLORATE	SPECIFIC	рН
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$								
L641 228-62E 1 7.48 1615.53 42 12480 m L645 228-62E 1 8.17 1617.38 13 13000 m LG025 228-62E 1 10.02 1620.69 30 5560 m LG027 218-62E 36 17.00 1570.00 <9.5 3280 m LG221 218-62E 2 18.44 1695.10 96 2930 m LG231 218-63E 32 65.9 1594.10 357 6100 m 7.3 M-5A 228-62E 12 41.76 1739.42 780000 15350 7.3 M-7B 228-62E 12 40.60 1692.60 106600 8310 7.6 M-10 228-62E 12 43.60 1770.16 72.000 5480 8.6 M-14 228-62E 12 43.65 1708.25 61000 6540 7.1 M-13 228-	E Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Const				TOC (fl)		(uS/cm)	
L653 228-62E 1 10.02 1620.69 30 5580 nu LG025 228-63E 7 33.13 1705.17 822 11310 nu LG027 218-62E 36 17.00 1570.00 <9.5	L641	22S-62E	1			42		na
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L645	22S-62E	1	8.17	1617.38	13	13000	na
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L653	22S-62E	1	10.02	1620.69	30	5580	na
	LG025	22S-63E	7	33.13	1705.17	822	11310	na
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LG027	21S-62E	36	17.00	1570.00	<9.5	3280	na
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LG225	22S-62E	2	18.44	1695.10	96	2930	na
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LG231	21S-63E	32	65.9	1594.10	357	8100	na
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M-2A	22S-62E	12	41.78	1739.42	780000	15350	7.39
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M-5A	22S-62E	12	39.44	1712.36	21400	14400	7.32
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M-6A	22S-62E	12	40.60	1692.60	10600	8310	7.69
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M-7B	22S-62E	12	36.69		13000	8410	7.62
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M-10	22S-62E			1786.26	15000	4570	7.36
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M-11	22S-62E			1770.16	72,000	5480	8.08
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M-12A	22S-62E	12					7.79
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M-13	22S-62E	12			61000		7.12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M-14							7.79
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M-15	· · · ·						7.11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M-17							7.16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M-18							7.79
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M-19	22S-62E	12		1731.76	7360	11190	7.62
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M-21	22S-62E				50000		7.52
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M-22	22S-62E	12	30.36		2800000	16230	7.31
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1-23	22S-62E	12					7.23
M-27 22S-62E 12 DRY - ns ns ns M-29 22S-62E 12 34.14 1779.86 423 6490 6.4 M-31 22S-62E 12 40.00 1748.06 2100000 13960 7.2 M-32 22S-62E 12 49.01 1750.89 1400000 10220 7.0 M-33 22S-62E 12 48.36 1751.94 16000 1939 7.5 M-34 22S-62E 12 37.44 1739.66 1700000 18110 7.2 M-35 22S-62E 12 35.22 1739.79 820000 9030 7.3 M-36 22S-62E 12 31.55 1727.73 9200000 16040 6.9 M-38 22S-62E 12 31.30 1726.64 2200000 21200 7.0 M-44 22S-62E 12 31.70 1727.61 190000 7560 7.5 M-44	-25	22S-62E	12		1724.29	820000		7.16
M-29 22S-62E 12 34.14 1779.86 423 6490 6.4 M-31 22S-62E 12 40.00 1748.06 2100000 13960 7.2 M-32 22S-62E 12 49.01 1750.89 1400000 10220 7.0 M-33 22S-62E 12 48.36 1751.94 16000 1939 7.5 M-34 22S-62E 12 37.44 1739.66 1700000 18110 7.2 M-35 22S-62E 12 35.22 1739.79 820000 9030 7.3 M-36 22S-62E 12 31.55 1727.73 9200000 16040 6.9 M-38 22S-62E 12 31.30 1726.64 2200000 21200 7.0 M-39 22S-62E 12 31.70 1727.61 190000 7560 7.5 M-44 22S-62E 12 21.48 1699.30 390000 9200 7.4 M-50 <td>M-27</td> <td>22S-62E</td> <td>12</td> <td></td> <td>-</td> <td></td> <td></td> <td>ns</td>	M-27	22S-62E	12		-			ns
M-31 22S-62E 12 40.00 1748.06 2100000 13960 7.2 M-32 22S-62E 12 49.01 1750.89 1400000 10220 7.0 M-33 22S-62E 12 48.36 1751.94 16000 1939 7.5 M-34 22S-62E 12 37.44 1739.66 1700000 18110 7.2 M-35 22S-62E 12 35.22 1739.79 820000 9030 7.3 M-36 22S-62E 12 31.55 1727.73 9200000 16040 6.9 M-37 22S-62E 12 31.30 1726.64 2200000 21200 7.0 M-38 22S-62E 12 31.70 1727.61 190000 7560 7.5 M-44 22S-62E 12 14.869 1679.63 2000000 14300 7.4 M-50 22S-62E 12 14.8 1699.30 390000 9200 7.4 M-					1779.86			6.41
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		and the second second second second second second second second second second second second second second second						7.25
M-33 22S-62E 12 48.36 1751.94 16000 1939 7.5 M-34 22S-62E 12 37.44 1739.66 1700000 18110 7.2 M-35 22S-62E 12 35.22 1739.79 820000 9030 7.3 M-36 22S-62E 12 32.29 1725.65 3500000 20000 7.3 M-37 22S-62E 12 31.55 1727.73 9200000 16040 6.9 M-38 22S-62E 12 31.30 1726.64 2200000 21200 7.0 M-39 22S-62E 12 31.70 1727.61 190000 7560 7.5 M-44 22S-62E 12 18.69 1679.63 2000000 14300 7.4 M-50 22S-62E 12 21.48 1699.30 390000 9200 7.4 M-51 22S-62E 12 39.65 1762.25 3100000 16380 7.3 M-	M-32							7.09
M-34 22S-62E 12 37.44 1739.66 170000 18110 7.2 M-35 22S-62E 12 35.22 1739.79 820000 9030 7.3 M-36 22S-62E 12 32.29 1725.65 350000 20000 7.3 M-37 22S-62E 12 31.55 1727.73 9200000 16040 6.9 M-38 22S-62E 12 31.30 1726.64 2200000 21200 7.0 M-39 22S-62E 12 31.70 1727.61 190000 7560 7.5 M-44 22S-62E 12 18.69 1679.63 2000000 14300 7.4 M-48 22S-62E 12 21.48 1699.30 390000 9200 7.2 M-50 22S-62E 12 39.65 1762.25 3100000 16380 7.3 M-54 22S-62E 12 39.26 1719.67 4600000 12390 7.4 M	M-33	22S-62E						7.53
M-35 22S-62E 12 35.22 1739.79 820000 9030 7.3 M-36 22S-62E 12 32.29 1725.65 3500000 20000 7.3 M-37 22S-62E 12 31.55 1727.73 9200000 16040 6.9 M-38 22S-62E 12 31.30 1726.64 2200000 21200 7.0 M-39 22S-62E 12 31.70 1727.61 190000 7560 7.5 M-44 22S-62E 12 21.48 1699.30 390000 9200 7.4 M-48 22S-62E 12 21.48 1699.30 390000 9200 7.2 M-50 22S-62E 12 21.48 1699.30 390000 9200 7.2 M-52 22S-62E 12 39.65 1762.25 3100000 16380 7.3 M-54 22S-62E 12 32.03 1719.67 4600000 12390 7.4 M-5	M-34				1739.66	1700000		7.22
M-36 22S-62E 12 32.29 1725.65 350000 2000 7.3 M-37 22S-62E 12 31.55 1727.73 920000 16040 6.9 M-38 22S-62E 12 31.30 1726.64 2200000 21200 7.0 M-39 22S-62E 12 31.70 1727.61 190000 7560 7.5 M-44 22S-62E 12 31.70 1727.61 190000 74000 M-44 22S-62E 12 18.69 1679.63 2000000 14300 7.4 M-44 22S-62E 12 14.869 1679.63 2000000 14300 7.4 M-48 22S-62E 12 21.48 1699.30 390000 9200 7.4 M-50 22S-62E 12 39.65 1762.25 3100000 16380 7.3 M-52 22S-62E 12 39.26 1719.67 4600000 12390 7.4 M-55 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7.31</td></th<>								7.31
M-37 22S-62E 12 31.55 1727.73 9200000 16040 6.9 M-38 22S-62E 12 31.30 1726.64 2200000 21200 7.0 M-39 22S-62E 12 31.70 1727.61 190000 7560 7.5 M-44 22S-62E 12 31.70 1727.61 190000 7560 7.5 M-44 22S-62E 12 18.69 1679.63 2000000 14300 7.4 M-48 22S-62E 12 21.48 1699.30 390000 9200 7.4 M-50 22S-62E 12 46.66 1747.21 1700000 30200 7.2 M-52 22S-62E 12 39.65 1762.25 3100000 16380 7.3 M-54 22S-62E 12 32.15 1717.20 880000 11830 7.3 M-55 22S-62E 12 32.03 1714.57 2700000 10010 7.0	M-36	22S-62E	12		1725.65	3500000		7.35
M-3822S-62E1231.301726.642200000212007.0M-3922S-62E1231.701727.6119000075607.5M-4422S-62E1218.691679.632000000143007.4M-4822S-62E1221.481699.3039000092007.4M-5022S-62E1246.661747.211700000302007.2M-5222S-62E1239.651762.253100000163807.3M-5422S-62E1229.261719.674600000123907.4M-5522S-62E1232.151717.20880000118307.3M-5622S-62E1232.031714.572700000100107.0M-5722S-62E1230.971718.282700000164007.3M-5822S-62E1230.971718.282700000164007.3M-5922S-62E1223.721719.2924000079707.3	M-37	22S-62E			1727.73	9200000	16040	6.98
M-39 22S-62E 12 31.70 1727.61 190000 7560 7.5 M-44 22S-62E 12 18.69 1679.63 2000000 14300 7.4 M-48 22S-62E 12 21.48 1699.30 390000 9200 7.4 M-50 22S-62E 12 46.66 1747.21 1700000 30200 7.2 M-50 22S-62E 12 39.65 1762.25 3100000 16380 7.3 M-52 22S-62E 12 39.65 1762.25 3100000 16380 7.3 M-54 22S-62E 12 39.26 1719.67 4600000 12390 7.4 M-55 22S-62E 12 32.15 1717.20 880000 11830 7.3 M-56 22S-62E 12 32.03 1714.57 2700000 10010 7.0 M-57 22S-62E 12 31.10 1721.19 13000 3930 7.8 M								7.09
M-44 22S-62E 12 18.69 1679.63 2000000 14300 7.4 M-48 22S-62E 12 21.48 1699.30 390000 9200 7.4 M-50 22S-62E 12 46.66 1747.21 1700000 30200 7.2 M-50 22S-62E 12 46.66 1747.21 1700000 30200 7.2 M-52 22S-62E 12 39.65 1762.25 3100000 16380 7.3 M-54 22S-62E 12 39.65 1762.25 3100000 12390 7.4 M-55 22S-62E 12 32.15 1717.20 880000 11830 7.3 M-56 22S-62E 12 32.03 1714.57 2700000 10010 7.0 M-57 22S-62E 12 31.10 1721.19 13000 3930 7.8 M-58 22S-62E 12 30.97 1718.28 2700000 16400 7.3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7.54</td></th<>								7.54
M-48 22S-62E 12 21.48 1699.30 390000 9200 7.4 M-50 22S-62E 12 46.66 1747.21 1700000 30200 7.2 M-52 22S-62E 12 39.65 1762.25 3100000 16380 7.3 M-54 22S-62E 12 29.26 1719.67 4600000 12390 7.4 M-55 22S-62E 12 32.15 1717.20 880000 11830 7.3 M-56 22S-62E 12 32.03 1714.57 2700000 10010 7.0 M-57 22S-62E 12 31.10 1721.19 13000 3930 7.8 M-58 22S-62E 12 30.97 1718.28 2700000 16400 7.3 M-59 22S-62E 12 23.72 1719.29 240000 7970 7.3								7.48
M-5022S-62E1246.661747.21170000302007.2M-5222S-62E1239.651762.253100000163807.3M-5422S-62E1229.261719.674600000123907.4M-5522S-62E1232.151717.20880000118307.3M-5622S-62E1232.031714.572700000100107.0M-5722S-62E1231.101721.191300039307.8M-5822S-62E1230.971718.282700000164007.3M-5922S-62E1223.721719.2924000079707.3								7.42
M-52 22S-62E 12 39.65 1762.25 3100000 16380 7.3 M-54 22S-62E 12 29.26 1719.67 4600000 12390 7.4 M-55 22S-62E 12 32.15 1717.20 880000 11830 7.3 M-56 22S-62E 12 32.03 1714.57 2700000 10010 7.0 M-57 22S-62E 12 31.10 1721.19 13000 3930 7.8 M-58 22S-62E 12 30.97 1718.28 2700000 16400 7.3 M-59 22S-62E 12 23.72 1719.29 240000 7970 7.3								7.24
M-5422S-62E1229.261719.674600000123907.4M-5522S-62E1232.151717.20880000118307.3M-5622S-62E1232.031714.572700000100107.0M-5722S-62E1231.101721.191300039307.8M-5822S-62E1230.971718.282700000164007.3M-5922S-62E1223.721719.2924000079707.3								7.36
M-5522S-62E1232.151717.20880000118307.3M-5622S-62E1232.031714.572700000100107.0M-5722S-62E1231.101721.191300039307.8M-5822S-62E1230.971718.282700000164007.3M-5922S-62E1223.721719.2924000079707.3								7.47
M-5622S-62E1232.031714.572700000100107.0M-5722S-62E1231.101721.191300039307.8M-5822S-62E1230.971718.282700000164007.3M-5922S-62E1223.721719.2924000079707.3						· · · _ · · · · · · · · · · · · · · · ·		7.33
M-5722S-62E1231.101721.191300039307.8M-5822S-62E1230.971718.282700000164007.3M-5922S-62E1223.721719.2924000079707.3								7.00
M-5822S-62E1230.971718.282700000164007.3M-5922S-62E1223.721719.2924000079707.3								7.81
M-59 22S-62E 12 23.72 1719.29 240000 7970 7.3								7.31
		· · · · · · · · · · · · · · · · · · ·				····		7.35
								7.49
		· · · · · · · · · · · · · · · · · · ·						7.43
	\ 							7.47

Page 2

1

WELL	TWP-RANGE	SECTION	DEPTHIO	WATER	PERCHLORATE	SPECIFIC	рн
ID			WATER	ELEVATION	(ug/l)	CONDUCTIVITY	
[TOC (ft)	TOC (fl)		(uS/cm)	
M-65	22S-62E	12	32.87	1720.01	2100000	17080	7.31
M-66	22S-62E	12	31.60	1720.73	2800000	17470	7.16
M-67	22S-62E	12	22.24	1722.64	180000	7760	7.44
M-68	22S-62E	12	24.52	1722.92	14000	10120	7.48
M-69	22S-62E	12	31.31	1717.46	760000	6340	7.90
M-70	22S-62E	12	30.87	1716.09	880000	12340	7.44
M-71	22S-62E	12	31.07	1714.81	1600000	14620	7.30
M-72	22S-62E	12	28.37	1717.12	2700000	16770	7.56
M-73	22S-62E	12	22.17	1717.88	640000	10490	7.67
M-74	22S-62E	12	24.77	1718.65	17000	10290	7.61
M-75	22S-62E	12	42.53	1741.67	180000	8850	7.74
M-76	22S-62E	12	39.56	1740.44	160000	8030	7.80
M-77	22S-62E	12	37.14	1761.86	54000	5170	7.40
M-78	22S-62E	12	35.14	1715.87	1100000	12230	7.16
M-79	22S-62E	12	28.80	1714.13	2800000	11880	7.83
M-80	22S-62E	12	33.60	1712.13	1600000	12600	7.07
M-81A	228-62E	12	30.09	1712.13	2900000	17000	7.14
M-82A	228-62E	12	25.53	1711.33	3400000	12000	7.14
M-83	22S-62E	12	29.18	1712.02	1700000	12800	7.54
M-84	22S-62E	12	29.18	1711.05	1700000	8650	7.40
M-85	22S-62E	12	27.93	1711.78	160000	1340	7.90
M-86	22S-62E	12		1711.78	2700000	15800	7.90
1-87			30.80	1711.93	800000		7.45
-88	22S-62E	12	30.01			11200 7780	7.64
t	22S-62E	12	25.25	1712.74	34000		
M-89	22S-62E	12	33.46	1731.79	1600000	18600	7.92
M-92	22S-62E	12	38.80	1761.28	729	2490	8.03
M-93	22S-62E	12	37.52	1759.64	14000	3770	7.79
M-94	22S-62E	12	10.18	1684.52	200000	14200	7.44
M-95	22S-62E	12	9.4	1684.70	2100000	15470	7.35
M-96	22S-62E	12	9.20	1684.30	1400000	13580	7.46
M-97	22S-62E	12	41.31	1759.49	22000	3460	8.09
M-98	22S-62E	12	31.24	1700.66	180000	9070	7.78
M-99	22S-62E	12	29.57	1701.13	1500000	10000	7.60
M-100	22S-62E	12	27.86	1703.04	1600000	8970	7.47
M-101	22S-62E	12	26.44	1704.36	1900000	13300	7.56
M-102	22S-62E	12	33.51	1706.69	120000	8050	7.62
MC-8	22S-62E	11	29.17	1690.54	122	7220	na
MC-27	22S-62E	12	37.00	1684.40	121	40000	na
MC-45	22S-62E	12	32.44	1678.56	57	27500	na
MC-48	22S-62E	11	31.19	1678.71	536	7970	na
MC-49	22S-62E	11	31.65	1678.55	37	11420	na
MC-53	22S-62E	12	34.36	1680.94	15	10490	na
MC-59	22S-62E	12	DRY	-	ns	ns	ns
MC-60	22S-62E	12	33.07	1670.15	ns	ns	ns
MC-61	22S-62E	12	DRY	-	ns	ns	ns
MC-62	22S-62E	1	37.95	1662.68	383	51500	na
MC-63	22S-62E	1	35.96	1663.33	460000	9550	na
IC-65	22S-62E	12	38.53	1666.94	900000	11400	na

· •

2

WELL	TWP-RANGE	SECTION	DEPTH TO	***************************************	PERCHLORATE	SPECIFIC	рн
. ID			WATER	ELEVATION	(ug/l)	CONDUCTIVITY	
	000.005	10	TOC (ft)	TOC (fi)	700000	(uS/cm)	
MC-66	22S-62E	12	37.48	1664.91	780000	11400	na
MC-71	22S-62E	12	36.41	1674.75	1980	7620	na
MC-81	22S-62E	12	32.26	1692.85	13300	11350	na
MC-85	22S-62E	11	25.21	1688.19	2050	7590	na
MC-89	22S-62E	11	26.72	1688.08	1990	7570	na
MC-92	22S-62E	12	33.57	1680.46	91	23800	na
MC-97	22S-62E	12	39.67	1684.31	7620	8050	na
MW-A	22S-62E	15	66.83	1823.77	10760	na	na
MW-DX-16	22S-62E	15	16.81	1813.27	610710	na	na
MW-AA	21S-62E	35	11.5	1638.22	193	na	na
MW-AB	22S-62E	2	13.49	1662.53	840	na	na
MW-AC	22S-62E	2	14.62	1682.83	14000	4360	na
MW-AE	22S-62E	11	43.44	1740.53	3310	na	na
MW-AGX-9	22S-62E	11	38.27	1718.05	5	na	na
MW-AH	22S-62E	11	41.67	1694.65	4	na	na
MW-AJ	22S-62E	1	11.18	1638.12	- 46	na	na
MW-AL	22S-62E	14	131.05	1820.76	7110	na	na
MW-C	22S-62E	15	34.64	1817.26	318130	na	na
MW-D2D	22S-62E	15	24.32	1812.85	487150	na	na
MW-F2	22S-62E	11	34.72	1747.40	345820	na	na
MW-J	22S-62E	2	18.23	1651.54	1097	na	na
MW-K	22S-62E	2	17.25	1650.78	2496	na	na
`1W-K1	22S-62E	1	9.8	1624.57	241	na	na
/W-K2	21S-62E	36	18.92	1600.35	44790	na	na
MW-K4	21S-62E	36	19.22	1596.10	290000	8770	na
MW-K5	21S-62E	36	19.98	1578.99	320000	11140	na
MW-K6	21S-63E	31	3.76	1554.01	44980	na	na
MW-K8	21S-63E	31	18.63	1541.62	7570	na	na
MW-L	22S-62E	10	52.4	1831.67	ns	ns	ns
MW-N	21S-62E	35	19.24	1648.72	2880	5710	na
MW-O	21S-62E	35	18.71	1643.61	1200	5550	na
MW-P	21S-62E	35	17.7	1640.49	2300	5360	na
MW-QS	21S-62E	36	12.33	1621.13	145	na	na
MW-R	22S-62E	1	18.32	1649.38	14	na	na
MW-S	21S-62E	36	22.72	1583.30	39	na	na
MW-T	21S-62E	36	17.34	1574.68	397	na	na
MW-U	21S-62E	36	20.02	1571.21	89	na	na
MW-V	21S-62E	36	20.4	1577.07	144	na	na
MW-X	22S-62E	10	9.07	1809.46	<3	na	na
PC-1	21S-63E	31	20.29	1578.84	12000	9660	na
PC-2	21S-63E	31	16.63	1580.44	1070	8540	na
PC-4	21S-63E	31	22.56	1577.86	9550	8590	na
PC-10	22S-62E	1	20.20	1598.83	3980	5900	na
PC-12	21S-62E	36	18.76	1597.70	230000	8430	na
PC-17	21S-62E	36	17.75	1599.23	410000	12180	na
PC-18	210-02L 21S-62E	36	19.10	1599.39	290000	14440	na
PC-19	218-62E	36	17.92	1600.34	80000	16220	na
C-24	213-02E 22S-62E	1		1613.68	7180	10220	
<u>0-24</u>	220-025	<u> </u>	19.80	1013.00	/ 180	10300	na

and the second second second second second second second second second second second second second second secon

WELL	TWP-RANGE	SECTION	DEPTH TO	WATER	PERCHLORATE	SPECIFIC	рн
D			WATER	ELEVATION	(ug/l)	CONDUCTIVITY	
1			TOC (ft)	TOC (fl)		(uS/cm)	
PC-28	22S-62E	1	11.78	1639.07	520000	8690	na
PC-31	22S-62E	1	14.21	1643.65	196	13070	na
PC-37	22S-62E	1	24.03	1683.69	160000	8870	7.62
PC-40	22S-62E	1	28.03	1651.20	370000	15140	na
PC-50	22S-62E	1	12.05	1621.41	490000	9810	na
PC-53	21S-62E	36	16.47	1578.56	3220	5490	na
PC-54	22S-62E	12	13.13	1691.30	350000	10180	7.43
PC-55	21S-62E	36	17.52	1600.00	190000	17120	na
PC-56	21S-63E	31	5.87	25.13	64000	7470	na
PC-58	21S-63E	31	6.12	24.88	11000	9380	na
PC-59	21S-63E	31	5.97	25.03	84000	9080	na
PC-60	21S-62E	36	5.81	30.19	66000	8540	na
PC-62	21S-62E	36	8.41	27.59	45000	10040	na
PC-64	22S-62E	1	5.90	1669.39	740000	10870	na
PC-65	22S-62E	1	5.14	1670.07	740000	10280	na
PC-66	22S-62E	1	9.02	1664.51	84000	18080	na
PC-67	22S-62E	1	9.11	1664.71	6370	11850	na
PC-68	21S-62E	36	7.64	1559.33	10700	5570	na
PC-71	22S-62E	12	23.69	1675.01	1400000	13680	7.49
PC-72	22S-62E	12	30.87	1668.53	1100000	11680	7.35
PC-73	22S-62E	12	35.37	1664.13	740000	10110	7.09
PC-74	21S-62E	25	13.41	1551.93	421	6000	na
C-76	21S-62E	25	13.6	1551.50	25	7210	na
C-77	21S-62E	25	7.27	1559.63	110	6100	na
PC-78	21S-62E	25	6.86	1559.86	174	5340	na
PC-79	21S-62E	36	7.05	1557.11	18000	5620	na
PC-80	21S-62E	36	7.15	1557.16	27000	6220	na
PC-81	21S-62E	36	6.65	1557.38	12800	5610	na
PC-82	21S-62E	36	5.42	1553.89	16000	8170	na
PC-83	21S-62E	36	3.82	1555.50	28000	5810	na
PC-84	21S-62E	36	4.26	1554.94	31000	6720	na
PC-85	21S-63E	31	0.33	1553.32	100000	10550	na
PC-86	21S-63E	31	0.58	1553.27	62000	6690	na
PC-87	21S-63E	31	1.78	1552.22	92000	11760	na
PC-88	21S-63E	31	0.21	1550.80	47000	6320	na
PC-89	21S-63E	31	0	1551.10	62000	7190	na
PC-90	21S-63E	31	0.64	1549.82	15000	5510	na
PC-91	21S-63E	31	4.19	1548.14	13700	8480	na
PC-92	21S-63E	31	4.77	1547.28	11400	11000	na
PC-93	21S-63E	31	3.89	1544.87	7550	7510	na
PC-94	218-63E	31	4.54	1544.41	6540	7760	ina
PC-95	218-63E	31	2.02	1548.60	150000	10140	na
PC-96	210-00E	31	2.79	1549.78	37000	6970	na
PC-97	210-03E	31	0.26	1548.27	26000	5970	na
PC-98	210-03E	36	14.03	1579.38	310000	12610	na
PC-99	210-02L 21S-63E	30	1.35	1579.50	52000	7150	na
PC-100	218-63E	36	14.03	1578.80			ns
C-101	21S-62E	36	19.01	1599.08	270000	14140	na
	1 210-02E		19.01	1299.00	270000	14140	Πα

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	TWP-RANGE	SECTION	DEPTHTO	WATER	PERCHLORATE	SPECIFIC	рН
ID			WATER		(ug/l)		
			TOC (ft)	TOC (fl)		(uS/cm)	
PG219	22S-63E	6	DRY	-	ns	ns	ns
PG220	22S-63E	6	DRY	-	ns	ns	ns
POD4	22S-63E	6	56.11	1638.73	242	3480	na
POD7	22S-63E	6	DRY	-	ns	ns	ns
RRUMW1	21S-63E	31	11.86	1602.14	1120	6230	-
na = not an	alyzed						
ns = no sam	ple						
nm = not me	asured			1			

)

APPENDIX C: LABORATORY ANALYTICAL DATA FOR WATER SAMPLES COLLECTED DURING DRILLING

						PERCHLORATE		рн
ID I	DEPTH	RANGE	***************************************	WATER TOC (ft)	ELEVATION TOC (f)	(ug/l)	CONDUCTIVITY (uS/cm)	
PC-74	15	21S-62E	25	-	-	347	6060	na
PC-74	50	21S-62E	25		-	337	6060	na
PC-75	25	21S-62E	25	-	-	390	8230	na
PC-77	10	21S-62E	25	-	-	97	5800	na
PC-95	10	21S-63E	31	-	-	130000	12140	na

1

1

APPENDIX C: LABORATORY ANALYTICAL DATA FOR GROUNDWATER SAMPLES COLLECTED ALONG LAS VEGAS WASH

and the second second

WELL	SAMPLE	PERCHLORATE	SPECIFIC
ID	TYPE	(ug/l)	CONDUCTIVITY
1/8.8.4.5	D	(0000	(uS/cm)
KM45	Dug Pit	43000	8000
KM53	Seep	321	2500
KM54	Dug Pit	280	3100
KM55	Seep	4500	6900
KM56	Seep	ND	4900
KM57	Spring	42	6900
KM58	Seep	31	9400
KM59	Dug Pit	5	3800
KM60	Seep	ND	10400
KM62	Drain	77	6500
KM65	Spring	3000	7400
KM66	Seep	460	4300
KM67	Spring	2100	4300
KM68	Seep	ND	8000
KM70	Seep	57000	8300
KM71	Seep	3400	- 4700
KM88	Seep	ND	6400
KM89	Dug Pit	24	8800
KM90	Seep	170	5800
KM91	Seep	2100	8500
KM92	Dug Pit	290	2800
KM93	Seep	400	3500
ND = non-de	tect		

1/17/01

)

1

MONTGOMERY WATSON LABORATORIES

a Division of Montgomery Watson Americas, Inc. 555 East Walnut Street Pasadena, California 91101 Te1: 626 568 6400 Fax: 626 568 6324 1 800 566 LABS (1 800 566 5227)

CC : Ed Krish

Laboratory Report

for

Kerr McGee Henderson Plant P.O. Box 55

Henderson, NV 89009

Attention: Susan Crowley Fax: (702) 651-2310

MONTGOMERY WATSON LABS. SUBMITTED ON APR 28 2000

ADE Andy Eaton

Report#: 64971 CLO4

MONTGOMERY WATSON LABORATORIES

a Division of Montgomery Watson Americas, Inc. 555 East Walnut Street Pasadena, California 91101 Te1: 626 568 6400 Fax: 626 568 6324 1 800 566 LABS (1 800 566 5227) Laboratory Report #64971

Samples Received 14-apr-2000 09:40:00

Kerr McGee Henderson Plant Susan Crowley P.O. Box 55 Henderson , NV 89009

Analyzed	QC Batch#	Method	Analyte		Result	Units	MRL	Dilution
(2004)	L40201)	Sample	ed on	04/05/00				
04/21/00	114427	(CADHS/EPA314) Perchlo	rate	ND	ug/l	8.0	2
(2004)	L40202)	Sample	ed on	04/05/00	-			
04/18/00	114236	(CADHS/EPA314) Perchlo	rate	77	ug/l	8.0	2
(2004)	L40203)	Sample	ed on	04/05/00				
04/21/00	114427	(CADHS/EPA314) Perchlo	rate	24	ug/l	8.0	2
(2004)	L40204)	Sample	ed on	04/07/00				
04/18/00	114236	(CADHS/EPA314) Perchlo	rate	460	ug/l	80	20
(2004)	L40205)	Sample	ed on	04/07/00				
04/18/00	114236	(CADHS/EPA314) Perchlo	rate	170	ug/l	20	5
(2004)	L40206)	Sample	ed on	04/07/00				
04/18/00	114236	(CADES/EPA314) Perchlo	rate	3000	ug/l	400	100
(2004)	L40207)	Sample	ed on	04/07/00				
04/18/00	114236	-			2100	ug/l	400	100
(2004)	L40208)	Sample	ed on	04/07/00				
04/19/00	114237	-			290	ug/1	40	10
(2004)	L40209)	Sample	ed on	04/07/00				
04/19/00	114237	-			400	ug/1	40	10
	(2004: 04/21/00 (2004: 04/18/00 (2004: 04/18/00 (2004: 04/18/00 (2004: 04/18/00 (2004: 04/18/00 (2004: 04/18/00 (2004: 04/19/00 (2004:	(2004140201) 04/21/00 114427 (2004140202) 04/18/00 114236 (2004140203) 04/21/00 114427 (2004140203) 04/18/00 114236 (2004140205) 04/18/00 114236 (2004140206) 04/18/00 114236 (2004140207) 04/18/00 114237 (2004140208) 04/19/00 114237 (2004140209)	(2004140201) Sample 04/21/00 114427 (CADHS/EPA314 (2004140202) Sample 04/18/00 114236 (CADHS/EPA314 (2004140203) Sample 04/21/00 114236 (CADHS/EPA314 (2004140203) Sample 04/21/00 11427 (CADHS/EPA314 (2004140204) Sample 04/18/00 114236 (CADHS/EPA314 (2004140205) Sample 04/18/00 114236 (CADHS/EPA314 (2004140205) Sample 04/18/00 114236 (CADHS/EPA314 (2004140207) Sample 04/18/00 114236 (CADHS/EPA314 (2004140207) Sample 04/18/00 114236 (CADHS/EPA314 (2004140208) Sample 04/19/00 114237 (CADHS/EPA314 (2004140208) Sample 04/19/00 114237 (CADHS/EPA314	(2004140201) Sampled on 04/21/00 114427 (CADHS/EPA314) Perchlo (2004140202) Sampled on 04/18/00 114236 (CADHS/EPA314) Perchlo (2004140203) Sampled on 04/21/00 114427 (CADHS/EPA314) Perchlo (2004140204) Sampled on 04/18/00 114236 (CADHS/EPA314) Perchlo (2004140205) Sampled on 04/18/00 114236 (CADHS/EPA314) Perchlo (2004140206) Sampled on 04/18/00 114236 (CADHS/EPA314) Perchlo (2004140207) Sampled on 04/18/00 114236 (CADHS/EPA314) Perchlo (2004140207) Sampled on 04/18/00 114236 (CADHS/EPA314) Perchlo (2004140207) Sampled on 04/18/00 114236 (CADHS/EPA314) Perchlo (2004140208) Sampled on 04/19/00 114237 (CADHS/EPA314) Perchlo (2004140209) Sampled on	(2004140201) Sampled on 04/05/00 04/21/00 114427 (CADES/EFA314) Perchlorate (2004140202) Sampled on 04/05/00 04/18/00 114236 (CADES/EFA314) Perchlorate (2004140203) Sampled on 04/05/00 04/21/00 114427 (CADES/EFA314) Perchlorate (2004140204) Sampled on 04/07/00 04/18/00 114236 (CADES/EFA314) Perchlorate (2004140205) Sampled on 04/07/00 04/18/00 114236 (CADES/EFA314) Perchlorate (2004140206) Sampled on 04/07/00 04/18/00 114236 (CADES/EFA314) Perchlorate (2004140207) Sampled on 04/07/00 04/18/00 114236 (CADES/EFA314) Perchlorate (2004140207) Sampled on 04/07/00 04/18/00 114236 (CADES/EFA314) Perchlorate (2004140208) Sampled on 04/07/00 04/18/00 114237 (CADES/EFA314) Perchlorate (2004140209) Sampled on 04/07/00	(2004140201) Sampled on 04/05/00 04/21/00 114427 (CADES/EPA314) Perchlorate ND (2004140202) Sampled on 04/05/00 - 04/18/00 114236 (CADES/EPA314) Perchlorate 77 (2004140203) Sampled on 04/05/00 - 04/21/00 114236 (CADES/EPA314) Perchlorate 24 (2004140204) Sampled on 04/07/00 04/07/00 04/18/00 114236 (CADES/EPA314) Perchlorate 460 (2004140205) Sampled on 04/07/00 - - 04/18/00 114236 (CADES/EPA314) Perchlorate 170 (2004140206) Sampled on 04/07/00 - - 04/18/00 114236 (CADES/EPA314) Perchlorate 3000 (2004140207) Sampled on 04/07/00 - - 04/18/00 114236 (CADES/EPA314) Perchlorate 2100 (2004140208) Sampled on 04/07/00 - - 04/18/00 114237 (CADES/EPA314) Perchlorate 290 (2004140209) Sampled on 04/07/00 - - 04/19/00 114237 <td>(2004140201) Sampled on 04/05/00 04/21/00 114427 (CADES/EFA314) Perchlorate ND ug/1 (2004140202) Sampled on 04/05/00 - 04/18/00 114236 (CADES/EFA314) Perchlorate 77 ug/1 (2004140203) Sampled on 04/05/00 - 04/21/00 114236 (CADES/EFA314) Perchlorate 77 ug/1 (2004140204) Sampled on 04/05/00 - - (2004140204) Sampled on 04/07/00 - - 04/18/00 114236 (CADES/EFA314) Perchlorate 460 ug/1 (2004140205) Sampled on 04/07/00 - - 04/18/00 114236 (CADES/EFA314) Perchlorate 170 ug/1 (2004140206) Sampled on 04/07/00 - - 04/18/00 114236 (CADES/EFA314) Perchlorate 3000 ug/1 (2004140207) Sampled on 04/07/00 - - 04/18/00 114236 (CADES/EFA314) Perchlorate 2100 ug/1 (2004140208) Sampled on 04/07/00 - - 04/19/00 114237 (CADES/EFA314) Perchlorate 290 ug/1</td> <td>(2004140201) Sampled on 04/05/00 04/21/00 114427 (CADES/EPA314) Perchlorate ND ug/1 8.0 (2004140202) Sampled on 04/05/00 - - - - 04/18/00 114236 (CADES/EPA314) Perchlorate 77 ug/1 8.0 (2004140203) Sampled on 04/05/00 - - - - 04/18/00 114237 (CADES/EPA314) Perchlorate 24 ug/1 8.0 (2004140204) Sampled on 04/07/00 - - - - 04/18/00 114236 (CADES/EPA314) Perchlorate 460 ug/1 80 (2004140205) Sampled on 04/07/00 - - - - 04/18/00 114236 (CADES/EPA314) Perchlorate 170 ug/1 20 (2004140206) Sampled on 04/07/00 - - - - - 04/18/00 114236 (CADES/EPA314) Perchlorate 3000 ug/1 400 (2004140207) Sampled on 04/07/00 - - - - - - - <t< td=""></t<></td>	(2004140201) Sampled on 04/05/00 04/21/00 114427 (CADES/EFA314) Perchlorate ND ug/1 (2004140202) Sampled on 04/05/00 - 04/18/00 114236 (CADES/EFA314) Perchlorate 77 ug/1 (2004140203) Sampled on 04/05/00 - 04/21/00 114236 (CADES/EFA314) Perchlorate 77 ug/1 (2004140204) Sampled on 04/05/00 - - (2004140204) Sampled on 04/07/00 - - 04/18/00 114236 (CADES/EFA314) Perchlorate 460 ug/1 (2004140205) Sampled on 04/07/00 - - 04/18/00 114236 (CADES/EFA314) Perchlorate 170 ug/1 (2004140206) Sampled on 04/07/00 - - 04/18/00 114236 (CADES/EFA314) Perchlorate 3000 ug/1 (2004140207) Sampled on 04/07/00 - - 04/18/00 114236 (CADES/EFA314) Perchlorate 2100 ug/1 (2004140208) Sampled on 04/07/00 - - 04/19/00 114237 (CADES/EFA314) Perchlorate 290 ug/1	(2004140201) Sampled on 04/05/00 04/21/00 114427 (CADES/EPA314) Perchlorate ND ug/1 8.0 (2004140202) Sampled on 04/05/00 - - - - 04/18/00 114236 (CADES/EPA314) Perchlorate 77 ug/1 8.0 (2004140203) Sampled on 04/05/00 - - - - 04/18/00 114237 (CADES/EPA314) Perchlorate 24 ug/1 8.0 (2004140204) Sampled on 04/07/00 - - - - 04/18/00 114236 (CADES/EPA314) Perchlorate 460 ug/1 80 (2004140205) Sampled on 04/07/00 - - - - 04/18/00 114236 (CADES/EPA314) Perchlorate 170 ug/1 20 (2004140206) Sampled on 04/07/00 - - - - - 04/18/00 114236 (CADES/EPA314) Perchlorate 3000 ug/1 400 (2004140207) Sampled on 04/07/00 - - - - - - - <t< td=""></t<>

MONTGOMERY WATSON LABORATORIES

Laboratory Report #64971

a Division of Montgomery Watson Americas, Inc. 555 East Walnut Street Pasadena, California 91101 Te1: 626 568 6400 Fax: 626 568 6324 1 800 566 LABS (1 800 566 5227)

Kerr McGee Henderson Plant (continued)

Prepared	Analyzed	QC Batch#	Method	Analyte		Result	Units	MRL	Dilution
KM70LVW	(20041 04/19/00	-	Sample		04/11/00	57000	ug/1	8000	2000
							2.		
KM71LVW	-	-	-		03/23/00				
	04/18/00	114233	(CADHS/EPA314) Perchlon	rate	3400 -	ug/1	400	100
KM67LVW	(20041	40212)	Sample	ed on	04/03/00				
	04/19/00	114237	(CADHS/EPA314) Perchlon	rate	2100	ug/1	400	` 100
KM53LVW	(20041	40213)	Sample	ed on	04/03/00		1		
	04/19/00	-	(CADHS/EPA314			500	ug/l	80	20
K) LVW	(20041	40214)	Sample	ed on	04/03/00	1			
)	04/19/00	114237	(CADHS/EPA314			260	ug/1	40	10
KM55LVW	(20041	40215)	Sample	ed on	04/03/00				
	04/19/00	114237	(CADHS/EPA314			4500	ug/1	800	200
GW-3 (2	0041402	16)	Sampled o	on 04	/03/00				
	04/19/00	-	(CADHS/EPA314	-	-	43000	ug/l	8000	2000
KM68LVW	(20041	40217)	Sample	ed on	04/05/00				
	04/21/00	114427	(CADHS/EPA314			ND	ug/1	8.0	2
KM60LVW	(20041	40218)	Sample	ed on	04/05/00				
	04/21/00	114427	(CADHS/EPA314			D	ug/l	8.0	2
KM59LVW	(20041	40219)	Sample	ed on	04/05/00				
	04/19/00	114237	(CADHS/EPA314			4.9	ug/1	4.0	1

2

1

MONTGOMERY WATSON LABORATORIES a Division of Montgomery Watson Americas, Inc. 555 East Walnut Street Pasadena, California 91101 Tel: 626 568 6400 Fax: 626 568 6324 1 800 566 LABS (1 800 566 5227) Laboratory Report #64971

Kerr McGee Henderson Plant (continued)

Prepared Analyzed QC Batch# M	ethod Analyte	Result	Units	MRL	Dilution
KM58LVW (2004140220) 04/21/00 114427 (Sampled on 04/05/00 CADES/EPA314) Perchlorate	31	ug/l	8.0	2
KM57LVW (2004140221) 04/21/00 114427 (0	Sampled on 04/05/00 CADES/EPA314) Perchlorate	42	ug/l	8.0	2
KM56LVW (2004140222) 04/26/00 114755 (0	Sampled on 04/05/00 CADES/EPA314) Perchlorate	ND	ug/l	20	5

MONTGOMERY WATSON LABORATORIES

a Division of Montgomery Watson Americas, Inc. 555 East Walnut Street Pasadena, California 91101 Tel: 626 568 6400 Fax: 626 568 6324 1 800 566 LABS (1 800 566 5227) Report Comments #64971

(Sample#: 2004140201) Test: Perchlorate SAMPLE WAS DILUTED DUE TO HIGH EC.

(Sample#: 2004140203) Test: Perchlorate SAMPLE WAS DILUTED DUE TO EC.

(Sample#: 2004140217) Test: Perchlorate SAMPLE WAS DILUTED DUE TO HIGH EC.

(Sample#: 2004140218) Test: Perchlorate SAMPLE WAS DILUTED DUE TO HIGH EC.

(Sample#: 2004140220) Test: Perchlorate SAMPLE WAS DILUTED DUE TO HIGH EC.

(Sample#: 2004140221) Test: Perchlorate SAMPLE WAS DILUTED DUE TO HIGH EC.

(Sample#: 2004140222)

Test: Perchlorate SAMPLE WAS TREATED AND ANALYZED ON 4/21/00, BUT THE DATA WAS NOT REPORTABLE DUE TO HIGH EC OF SAMPLE DILUTION WAS MADE

NOT REPORTABLE DUE TO HIGH EC OF SAMPLE. DILUTION WAS MADE ON THIS RUN PER ALI'S INSTRUCTION.

MONTGOMERY WATSON LABORATORIES a Division of Montgomery Watson Americas, Inc.

2 Division of Montgomery Watson Americas, Inc. 555 East Walnut Street Pasedena, California 91101 Tel: 626 568 6400 Fax: 626 568 6324 1 800 566 LABS (1 800 566 5227) Laboratory QC Summary Report #64971

Kerr McGee Henderson Plant

QC Batch #114233 - Perchlorate

2004140211 KM71LVW

QC Batch #114236 - Perchlorate

2004140202	KM62LVW
2004140204	KM66LVW
0004440005	
2004140205	KM90LVW
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
2004140206	KM65LVW
~~~~	
2004140207	KM91LVW

QC Batch #114237 - Perchlorate

)

2004140208	KM92LVW
2004140209	KM93LVW
2004140210	KM70LVW
2004140212	KM67LVW
2004140213	KM53LVW
2004140214	KM54LVW
2004140215	KM55LVW
2004140216	GW-3
2004140219	KM59LVW

QC Batch #114427 - Perchlorate

KM88LVW
KM89LVW
KM68LVW
KM60LVW
KM58LVW
KM57LVW

# QC Batch #114755 - Perchlorate

#### 2004140222

KM56LVW

Analysis Date: 04/18/2000

Analysis Date: 04/18/2000

Analysis Date: 04/19/2000

Analysis Date: 04/21/2000

Analysis Date: 04/26/2000



#### **MONTGOMERY WATSON LABORATORIES**

a Division of Montgomery Watson Americas, Inc. 555 East Walnut Street Pasadena, California 91101 Te1: 626 568 6400 Fax: 626 568 6324 1 800 566 LABS (1 800 566 5227) Laboratory QC Report #64971

Kerr McGee Henderson Plant

QC Batch **#114233** 

Perchlorate

QC	Analyte	Spiked	Recovered	Yield (%)	Limits (%)	RPD (%)
MS	Spiked sample	Lab # 20	01410046		( 0.00 - 0.00 )	
LCS1	Perchlorate	25.0	22.6	90.4	( 90.00 - 110.00 )	
LCS2	Perchlorate	25.0	23.0	92.0	( 90.00 - 110.00 )	1.8
MBLK	Perchlorate	ND				
MS	Perchlorate	25.0	24.2	96.8	( 75.00 - 125.00 )	
MSD	Perchlorate	25.0	24.4	97.6	( 75.00 - 125.00 )	0.82

#### QC Batch #114236

#### Perchlorate

0C	Analyte	Spiked	Recovered	Yield (%)	Limits (%)	RPD (%)
MS	Spiked sample	Lab # 20	04140203		( 0.00 - 0.00 )	
LCS1	Perchlorate	25.0	22.6	90.4	( 90.00 - 110.00 )	
LCS2	Perchlorate	25.0	23.9	95.6	( 90.00 - 110.00 )	5.6
MBLK	Perchlorate	ND				

## QC Batch #114237

#### Perchlorate

0C	Analyte	Spiked	Recovered	Yield (%)	Limits (%)	RPD (%)
MS	Spiked sample	Lab # 20	04140203		( 0.00 - 0.00 )	
LCS1	Perchlorate	25.0	23.9	95.6	( 90.00 - 110.00 )	
LCS2	Perchlorate	25.0	22.6	90.4	( 90.00 - 110.00 )	5.6
MBLK	Perchlorate	ND		•		

## QC Batch #114427

#### Perchlorate

0C	Analyte	Spiked	Recovered	Yield (%)	Limits (%)	RPD (%)
MS	Spiked sample	Lab # 20	04140085		( 0.00 - 0.00 )	
LCS1	Perchlorate	25.0	25.0	100.0	( 90.00 - 110.00 )	
LCS2	Perchlorate	100	104	104.0	( 90.00 - 110.00 )	
MBLK	Perchlorate	ND				
MS	Perchlorate	25.0	23.1	92.4	( 75.00 - 125.00 )	
MSD	Perchlorate	25.0	23.8	95.2	( 75.00 - 125.00 )	3.0

1

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining</u>. Criteria for MS and DUP are advisory only and not applicable for ICR monitoring.

Page

1



**MONTGOMERY WATSON LABORATORIES** 

a Division of Montgomery Watson Americas, Inc. 555 East Walnut Street Pasadena, California 91101 Te1: 626 568 6400 Fax: 626 568 6324 1 800 566 LABS (1 800 566 5227) Laboratory QC Report #64971

Kerr McGee Henderson Plant (continued)

#### QC Batch #114755

Perchlorate

QC	Analyte	Spiked	Recovered	Yield (%)	Limits (%)	RPD (%)
MS	Spiked sample	Lab # 20	04210166		( 0.00 - 0.00 )	
LCS1	Perchlorate	25.0	24.0	96.0	( 90.00 - 110.00 )	
LCS2	Perchlorate	100	106	106.0	( 90.00 - 110.00 )	
MBLK	Perchlorate	ND				
MS	Perchlorate	25.0	25.6	102.4	( 75.00 - 125.00 )	
MSD	Perchlorate	25.0	25.4	101.6	( 75.00 - 125.00 )	0.78

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining</u>. Criteria for NS and DUP are advisory only and not applicable for ICR monitoring.

Page

2

Report Summary of positive results, PR64971

15 F -			Result	MDL	UNITS
Analyzed	2004140201	KM88LVW			
Analyzed	2004140202	KM62LVW			
04/18/00	Perchlora	ate	77	8.000	UGL
Analyzed	2004140203	KM89LVW			
04/21/00	Perchlora	ate	24	8.000	UGL
Analyzed	2004140204	KM66LVW			
04/18/00	Perchlora	ate	460	80.000	UGL
Analyzed	2004140205	KM90LVW			
04/18/00	Perchlora	ate	170	20.000	UGL
Analyzed	2004140206	KM65LVW			
04/18/00	Perchlora	ate	3000	*****	UGL
Analyzed	2004140207	KM91LVW			
04,_8/00	Perchlora	ate	2100	*****	UGL
Analyzed	2004140208	KM92LVW			
04/19/00	Perchlora	ate	290	40.000	UGL
Analyzed	2004140209	KM93LVW			
04/19/00	Perchlora	ate	400	40.000	UGL
Analyzed	2004140210	KM70LVW			
<b>04/19/</b> 00	Perchlora	ate	57000	*****	UGL
Analyzed	2004140211	KM71LVW			
04/18/00	Perchlora	ate	3400	*****	UGL
Analyzed	2004140212	KM67LVW			
04/19/00	Perchlora	ate	2100	*****	UGL
Analyzed	2004140213	KM53LVW			
04 /19/00	Perchlora	ate	500	80.000	UGL
Analyzed	2004140214	KM54LVW			
<b>0</b> 4/19/00	Perchlora	ate	260	40.000	UGL
Analyzed	2004140215	KM55LVW			

------

Analyzed 2004140215 KM55LVW

· · · ·						
04/19/00	Perchlora	te		4500	*****	UGL
A yzed	2004140216	GW-3				
04/19/00	Perchlora	te		43000	*****	UGL
Analyzed	2004140217	KM68LVW				
Analyzed	2004140218	KM60LVW				
Analyzed	2004140219	KM59LVW				
04/19/00	Perchlora	te		4.9	4.000	UGL
Analyzed	2004140220	KM58LVW				
04/21/00	Perchlora	te		31	8.000	UGL
Analyzed	2004140221	KM57LVW	-	-		
04/21/00	Perchlora	ite		42	8.000	UGL
Analyzed	2004140222	KM56LVW				

1999 - The State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of S

enter de la companya de la companya de la companya de la companya de la companya de la companya de la companya

)

· _ )

RECEIVED BY:
RELINOUISHED BY:

NTORIES ISS IS ONLY: ISS ISS ISS ISS ISS ISS ISS ISS ISS ISS	COMERY WATSON LABORATORIES CHAIN MALABELER WATSON LABORATORIES CHAIN S55.E. Walnut St., Pasadena, CA 91101 S55.E. Walnut St., Pasadena, CA 9110 S55.E. Walnut St., Pasadena, S5 S56.E. Walnut St., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., Pasadena, S5 S57.M., P
--------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

••

Appendix D

Ċ,

# APPENDIX D: PC-SERIES MONITOR WELLS AND SOIL BORING GPS SURVEYED LOCATIONS (STATE PLANE COORDINATES)

• • • • •

ì

DRILL HOLE	HOLE TYPE	X COORD	Y COORD.	GROUND	TOP OF	CASING
I.D.		(EASTING)	(NORTHING	ELEVATION	CASING	STICKUP
		FTMSL	FT MSL	FT MSL	FT MSL	FT MSL
PC-74	Monitor	829203.52	26734003.52	1564.54	1565.34	0.80
PC-75	Boring	829194.53	26734004.98	1564.48	none	none
PC-76	Monitor	829183.79	26734006.74	1564.51	1565.10	0.59
PC-77	Monitor	829031.63	26733568.07	1566.63	1566.90	0.27
PC-78	Monitor	829033.25	26733560.32	1566.64	1566.72	0.08
PC-79	Monitor	829815.28	26733246.69	1564.33	1564.16	-0.17
PC-80	Monitor	829823.75	26733250.46	1564.07	1564.31	0.24
PC-81	Monitor	829833.37	26733254.71	1564.03	1564.03	0.00
PC-82	Monitor	830317.05	26733194.85	1559.44	1559.31	-0.13
PC-83	Monitor	830325.65	26733201.29	1559.47	1559.32	-0.15
PC-84	Monitor	830332.58	26733208.53	1559.14	1559.20	0.06
PC-85	Monitor	830816.05	26733185.56	1553.70	1553.65	-0.05
PC-86	Monitor	830826.99	26733185.76	1554.08	1553.85	-0.23
PC-87	Monitor	830837.82	26733185.37	1554.09	1554.00	-0.09
PC-88	Monitor	831259.41	26733178.42	1550.91	1551.01	0.10
PC-89	Monitor	831264.70	26733184.33	1550.90	1551.10	0.20
PC-90	Monitor	831271.92	26733192.63	1550.53	1550.46	-0.07
PC-91	Monitor	831729.99	26733110.85	1552.42	1552.33	-0.09
PC-92	Monitor	831749.30	26733109.85	1552.12	1552.05	-0.07
PC-93	Monitor	832179.60	26733117.81	1548.86	1548.76	-0.10
PC-94	Monitor	832189.05	26733122.48	1548.84	1548.95	0.11
PC-95	Monitor	831227.21	26733449.91	1550.61	1550.62	0.01
PC-96	Monitor	830896.56	26733450.83	1552.69	1552.57	-0.12
PC-97	Monitor	831565.69	26733441.54	1548.78	1548.53	-0.25
PC-98	Monitor	829519.86	26730256.09	1593.35	1593.41	0.06
PC-98R	Monitor	unsurveyed				
PC-99	Monitor	831242.35	26733140.18	1551.99	1551.97	-0.02
PC-99R	Monitor	unsurveyed			13 A	
PC-100	Monitor	829544.65	26730298.84	1592.93	1592.83	-0.10
PC-100R	Monitor	unsurveyed				**
PC-101	Monitor	828714.87	26728110.71	1617.86	1618.09	0.23
PC-102	Monitor	unsurveyed		· · · · · · · · · · · · · · · · · · ·		

# APPENDIX D: LOCATIONS OF SAMPLED SEEPS, SPRINGS AND PITS ALONG LAS VEGAS WASH

SAMPLE ID	X COORD.	Y COORD.	COMMENTS
	(EASTING)	(NORTHING	
	FT MSL	FT MSL	
KM45	832386.25	26734058.66	aka GW-3
KM53	837948.75	26735704.49	
KM54	835563.33	26734782.61	
KM55	833443.74	26733871.49	
KM56	830688.33	26734647.20	
KM57	829847.52	26734744.77	
KM58	829059.14	26734665.94	
KM59	828731.66	26735090.45	
KM60	827894.77	26734969.16	
KM62	824322.81	26734477.94	
KM65	841063.33	26736298.24	
KM66	843459.17	26736735.74	
KM67	844636.25	26737652.41	
KM68	827283.22	26735178.34	
KM70	831860.21	26734475.32	
KM71	831427.92	26734699.28	•
KM88	826449.88	26735305.01	
KM89	823369.86	26735145.01	
KM90	842287.29	26736777.41	
KM91	839443.54	26735980.53	
KM92	837068.54	26735397.20	
KM93	834741.53	26734095.88	

 $\dot{\mathbb{C}}$ 

# . . . .

. .

· ·

. . . .

Attachment 1

# PRELIMINARY REPORT ON A HYDROGEOLOGIC INVESTIGATION OF CHANNEL-FILL ALLUVIUM AT THE PITTMAN LATERAL HENDERSON, NEVADA

# **KERR-McGEE CHEMICAL LLC HENDERSON, NEVADA FACILITY**

Prepared by Steven R. Lower Hydrology Services Group Assessment and Remediation Department Kerr-McGee Safety and Environmental Affairs Division

October 19, 1998

# TABLE OF CONTENTS

# **EXECUTIVE SUMMARY**

INTRODUCTION	
	he Pittman Lateral Test Site and Vicinity2
<b>DRILLING AND LOGGI</b>	NG OF THE PC-70 TEST BORING4
Lithology of the Cl	hannel-fill Alluvium at the Pittman Lateral Test Site4
	ution in the Channel-Fill Alluvial Sequence
CONSTRUCTION AND	DEVELOPMENT OF TEST WELL PC-706
	TERAL WELL PC-70
	e Test and Observation Wells10
	ater-Level Fluctuations in the Alluvium
	Pittman Lateral Aquifer Test14
•	of the Calibration Test15
Description	of the Test16
-	AQUIFER TEST DATA
	uifer Coefficients
	mi-Log Straight-Line Analyses of Drawdown Data20
	Log Type Curve Match Analyses of Drawdown Data 20
	g-Log Delayed Drainage Curve Match Analyses
	vn Data
	mi-Log Straight-Line Analyses of Recovery Data
	mi-Log Straight-Line Analyses of
	Prawdown Data
	of Test Well Efficiency from
Distance-D	Prawdown Data22
CONCLUSIONS	23
REFERENCES CITED	
ADDENDA	
ADDENDUM A	Lithologic Logs for Test Well PC-70 and Observation
	Wells PC-17, PC-18, and PC-55
ADDENDUM B	Dames and Moore Report on PC-70 Test Boring
	Grain-Size Analyses

# TABLE OF CONTENTS (continued)

ADDENDA (continued)	
ADDENDUM C	Well Construction Diagrams for Test Well PC-70 and Observation Wells PC-17, PC-18, and PC-55
ADDENDUM D	Tabulations and Graphs of Drawdown and Recovery Data and Calculations of Aquifer Coefficients for Test Well PC-70
ADDENDUM E	Tabulations and Graphs of Drawdown and Recovery Data and Calculations of Aquifer Coefficients for Test Well PC-17
ADDENDUM F	Tabulations and Graphs of Drawdown and Recovery Data and Calculations of Aquifer Coefficients for Test Well PC-18
ADDENDUM G	Tabulations and Graphs of Drawdown and Recovery Data and Calculations of Aquifer Coefficients for Test Well PC-55
ADDENDUM H	Graphs of Distance-Drawdown Analyses and Calculations of Corresponding Aquifer Coefficients
ADDENDUM I	Projection of Well Efficiency for Test Well PC-70

# LIST OF TABLES

# **Tables**

Ì

1.	Grain Size Distribution in the Alluvial Sequence	
	Pittman Lateral Test Well PC-70	7
2.	Pittman Lateral Water Levels	
	Compilation of Pittman Lateral Aquifer Coefficient Data	

# LIST OF FIGURES

# Figure

- 1. Grain Size Gradation Curves for Test Boring Sediment Samples Pittman Lateral Test Well PC-70
- 2. Growth of the Drawdown Cone at 100, 720, 1440, 2160, and 2880 Minutes Constant Discharge Test of Pittman Lateral Test Well PC-70

# TABLE OF CONTENTS (continued)

# LIST OF PHOTOGRAPHS

#### Photograph

- 1. Tan to light-brown, poorly sorted, fine-to-coarse grained sand with small gravel clasts in the depth interval 21-22 feet. Test Well PC-70 exploratory borehole, Pittman Lateral, Henderson, Nevada; 9/8/98
- 2. Alternating sequence of light-brown fine sand and poorly sorted gravel in the depth interval 28.5-30.5 feet. Test Well PC-70 exploratory borehole, Pittman Lateral, Henderson, Nevada; 9/8/98
- 3. Alternating sequence of light-brown fine sand and poorly sorted gravel in the depth interval 35-36.5 feet. Test Well PC-70 exploratory borehole, Pittman Lateral, Henderson, Nevada; 9/8/98
- 4. Close-up view of a portion of core showing the poorly sorted sand and gravel in the depth interval 35-36.5 feet. Test Well PC-70 exploratory borehole, Pittman Lateral, Henderson, Nevada; 9/8/98
- 5. Close-up of disaggregated gravel sample from the 35-36.5 foot interval showing poorly sorted grain-size distribution. Test Well PC-70 exploratory borehole, Pittman Lateral, Henderson, Nevada; 9/8/98
- 6. Alternating sequence of fine-to coarse-grained sand and poorly sorted gravel in the depth interval 40-42 feet. Test Well PC-70 exploratory borehole, Pittman Lateral, Henderson, Nevada; 9/8/98
- 7. Close-up view of the uppermost gravelly clay of the Muddy Creek in the interval 50-51 feet. Test Well PC-70 exploratory borehole, Pittman Lateral, Henderson, Nevada; 9/8/98
- 8. Close-up view of the 20-slot, Bort-Longyear "Circumslot" continuous-wrap PVC screen used in the construction of Test Well PC-70.. Pittman Lateral, Henderson, Nevada; 9/12/98.
- 9. Close-up inside view of the 20-slot, Bort-Longyear "Circumslot" PVC screen to show the internal ribbing that supports the single piece of PVC extrusion, which permits the continuous-wrap, circumferential slotting. Pittman Lateral, Henderson, Nevada; 9/12/98.
- 10. View of the surge block used in the development of Test Well PC-70. Pittman Lateral, Henderson, Nevada; 9/12/98.
- 11. View to the east at Pittman Lateral test site after the peak of the September 11, 1998 flash-flood event. Locations of Test Well PC-70 and Observation Wells PC-18 and PC-55 are shown. Pittman Lateral, Henderson, Nevada; 9/11/98.

# TABLE OF CONTENTS (continued)

# LIST OF PHOTOGRAPHS (continued)

#### <u>Photograph</u>

- 12. View to the west at Pittman Lateral test site after the peak of the September 11, 1998 flash-flood event. Location of Observation Well PC-55 is shown. Pittman Lateral, Henderson, Nevada; 9/11/98.
- 13. View to the east at Pittman Lateral test site after the September 11, 1998 flash-flood event. Location of Observation Well PC-55 is shown. Pittman Lateral, Henderson, Nevada; 9/11/98.
- 14. View of Test Well PC-70 well head showing ball valve, flow meter, and discharge line. Pittman Lateral, Henderson, Nevada; 9/14/98.
- 15. Close-up view of 10 gallon per minute totallizing flow meter used to measure discharge from Test Well PC-70. Pittman Lateral, Henderson, Nevada; 9/15/98.
- 16. View to the east showing the 350-foot run of the discharge line from the Test Well PC-70 well head to the concrete lined portion of the channel. Pittman Lateral, Henderson, Nevada; 9/15/98
- 17. Close-up view of the Test Well PC-70 discharge of clean water to the concrete lined portion of the channel. Pittman Lateral, Henderson, Nevada; 9/15/98.

਼ੇ

# **EXECUTIVE SUMMARY**

Hydrogeologic investigations were conducted in an area referred to as the Pittman Lateral in the southeast portion of the Las Vegas Valley in June and August of 1998. This area is located north of Kerr-McGee's Henderson, Nevada, facility The purpose of the investigations was to determine the hydrogeologic characteristics of channel-fill alluvial sediments that overlie the Muddy Creek Formation at the Pittman Lateral Test Site. The results of these investigations were inconclusive.

To better quantify the hydrogeologic characteristics of the channel-fill alluvium, further hydrogeologic investigations were centered around a new well which was constructed and tested at the Pittman Lateral Test Site in September 1998. The hydrogeologic data resulting from the construction and testing of well PC-70 is the subject of this report.

Based upon the report that follows, the following conclusions can be reached regarding the hydrogeology of the channel-fill alluvium at the Pittman Lateral Test Site:

- The well was completed in Quaternary channel-fill alluvium overlying the Tertiary Muddy Creek Formation.
- The channel-fill alluvium at the Pittman Lateral Test Site was found to consist of an alternating sequence of light-brown, fine-grained sand and fine- to coarse-grained sand and gravel. The top of the Muddy Creek Formation, which was encountered at a depth of about 49 feet, was found to consist of a gravelly clay.
- An aquifer test consisting of a 48-hour constant discharge pumping test followed by 21 hours of recovery was performed at Well PC-70. Water levels were monitored in the pumping well and three observation wells.
- Drawdown and recovery data resulting from the aquifer test were analyzed using several different methodologies. Comparison of aquifer coefficients resulting from the analyses of drawdown data show very good consistency. Recovery data are not considered valid due to the effects of storm event-related recharge.
- The transmissivity of the channel-fill alluvium at the Pittman Lateral Test Site ranges from 39,666 gpd/ft to 66,000 gpd/ft, averaging 50,425 gpd/ft. These values are consistent with sand and gravels containing fine sands and silts.
- Storage coefficients were found to range from 0.03 to 0.11, averaging 0.06, which is consistent with an unconfined aquifer under water-table conditions.

# PRELIMINARY REPORT ON A HYDROGEOLOGIC INVESTIGATION OF CHANNEL-FILL ALLUVIUM AT THE PITTMAN LATERAL HENDERSON, NEVADA

# INTRODUCTION

In June and August of 1998, hydrogeologic investigations were conducted in an area referred to as the Pittman Lateral located north of Kerr-McGee Chemical-LLC's (Kerr-McGee) Henderson, Nevada, facility. The Pittman Lateral Test Site is located in the southeast portion of the Las Vegas Valley within the limits of the City of Henderson. The site is bounded on the north by the Henderson wastewater treatment facility and on the south by Sunset Boulevard.

The purpose of the hydrogeologic investigations was to determine the hydrogeologic characteristics of channel-fill alluvial sediments that overlie the Muddy Creek Formation. The results of those investigations were inconclusive.

To better quantify the hydrogeologic characteristics of the channel-fill alluvium, further hydrogeologic investigations were centered around a new well, PC-70, which was constructed and tested at the Pittman Lateral Test Site in September 1998. Since Test Well PC-70 was to be a groundwater production well rather than a monitor well, every effort was made in the design, construction, and development of the well to make it as efficient as possible. The hydrogeologic data resulting from the construction and testing of well PC-70 is the subject of this report.

## Hydrogeology of the Pittman Lateral Test Site and Vicinity

The Las Vegas Valley occupies a topographic and structural basin which lies within the Basin and Range physiographic province. The valley is bordered by steeply rising mountains composed of igneous and sedimentary rocks. Coalescing alluvial fans slope gently from the mountains toward the valley floor. The valley itself is wide, flat, and drains southeasterly towards Lake Mead and the Colorado River. The Las Vegas Wash, a shallow, narrow stream that flows southeasterly across the valley towards Lake Mead, is the principal surface water feature in the area (Kerr-McGee Chemical LLC, 1998). A tributary of the Las Vegas Wash runs west to east close by, and parallel to, the Test Site.

1.11

The Pittman Lateral Test Site is underlain by the late Tertiary-age Muddy Creek Formation. The Muddy Creek is a valley fill deposit and has a wide range of lithologies. It consists of coarse-grained sands and gravels near the mountain front forming the southern border of the valley, becoming fine grained beneath the valley. At the Test Site itself, the Muddy Creek Formation is composed of sandy clay and silty clay with lesser amounts of clayey sand (Kerr-McGee Chemical LLC, 1998).

Younger, Quaternary-age alluvial sediments resting unconformably on the Muddy Creek Formation, are a heterogeneous, poorly sorted mixture of sand and gravel with lesser amounts of silt and clay. Boulders and cobbles are common in some areas. Due to the mode of deposition of these alluvial fan deposits, no distinct beds or units are continuous over the entire area (Kerr-McGee Chemical LLC, 1998). The sedimentary processes that deposited the Quaternary alluvium eroded the upper surface of the Muddy Creek Formation. These sediments are of greater thickness within erosional paleochannels cut into the underlying Muddy Creek Formation and thin laterally over the interfluvial areas.

A major hydrogeologic feature of the Quaternary alluvial sediments are the sands and gravels that were deposited within channels cut into the surface of the Muddy Creek Formation at a time in the geologic past when the local base level was lower than it is now. These deposits conform to the old channel boundaries, which are characteristically linear and narrow in configuration. The sediments are thickest within the channels, and thin laterally over the interfluvial areas. The paleochannels trend roughly southwest-northeast in the area reflecting past regional drainage patterns (Kerr-McGee Chemical LLC, 1998).

Groundwater in the Las Vegas Valley in general, and at the Pittman Lateral Study Site in particular, occurs mainly in the unconsolidated sediments of the channel-fill alluvium. The hydrologic characteristics of the alluvial aquifer are typical of alluvial fan deposits, exhibiting a wide range of permeabilities over relatively short distances.

~

The greatest concentrations of groundwater flow are expected to be found where the paleochannels cut into the clays of the underlying Muddy Creek Formation clay have been filled with coarser-grained sediments. The importance of these channel-fill deposits is that they control the occurrence and movement of groundwater in portions of

Pittman Lateral Aquifer Test Report/SRL/10-19-98/Page 3

the Las Vegas Valley. These channel-fill sediments are typically very permeable, and can transmit large quantities of groundwater in transient storage. The channel-fill deposits typically exhibit higher permeabilities than do those in the adjacent interfluvial areas (Kerr-McGee Chemical LLC, 1998).

The alluvium is a shallow aquifer, and is generally under water-table conditions. Groundwater flow through the shallow alluvial sediments is generally from south to north, ultimately discharging into the Las Vegas Wash (Kerr-McGee Chemical LLC, 1998).

# DRILLING AND LOGGING OF THE PC-70 TEST BORING

Prior to construction of Test Well PC-70, a test boring was drilled at the site on September 8, 1998. The purpose of the boring was to determine the lithology of the alluvial sediments at the well site as a first step in designing the well. The sediments were sampled continuously from a depth of five feet to the total depth (52 feet) using split spoons. The samples provided a vertical section of the alluvium at the site. Representative samples of the alluvium from the intervals 20-25 feet, 30-35 feet, and 40-45 feet were selected for analysis. These samples were transmitted to Dames and Moore in Las Vegas for grain-size analyses.

# Lithology of the Channel-Fill Alluvium at the Pittman Lateral Test Site

A lithologic log of Test Well PC-70 is included as Addendum A. Color photographs of selected intervals are included as Photographs 1 through 7 at the back of the report.

The Pittman Lateral Test Site extends east-west in a line perpendicular to the trend of a channel cut into the Muddy Creek Formation and filled with channel-fill alluvium. The alluvial sequence was found to consist of channel-fill sands and sand and gravel mixtures. No significant quantities of clay were found in the alluvial sediments. The top of the Muddy Creek Formation, which was encountered at a depth of about 49 feet, was found to consist of a gravelly clay.

The upper part of the channel-fill alluvium underlying the Site to a depth of 15 feet consists of light-brown, silty fine sand with some gravel. In the interval 15 feet to 26 feet the alluvium consists of poorly sorted, reddish-brown, fine- to coarse-grained sand and small gravel (see Photograph 1). The bottom two feet of this sequence is cemented and very hard. The sediments became damp at a depth of about 17 feet.

Below a depth of 26 feet, the channel-fill alluvium to the total depth consisted of an alternating sequence of light-brown, fine-grained sand and fine- to coarse-grained sand and gravel (see Photographs 2 and 3). The interlayering of the fine-grained sand and the sand and gravel appeared to be rather uniform in intervals of one to two feet.

Photographs 4 and 5 show the poorly sorted characteristic of the typical fine- to coarsegrained sand and gravel channel-fill alluvial sequence. As shown in Photograph 6, the interlayered sand and the sand and gravel sequences continued to the bottom of the alluvial sequence. Photograph 7 shows the auger bit thickly covered with the dense gravelly clay of the Muddy Creek Formation.

Pittman Lateral Aquifer Test Report/SRL/10-19-98/Page 5

# Grain Size Distribution in the Channel-Fill Alluvial Sequence

The PC-70 test boring sediment samples were analyzed for grain-size distribution by Dames and Moore (see Addendum B). Dames and Moore also prepared recommendations on well screen slot size and sand pack size based upon the results of the grain-size analyses.

The grain-size distributions for the three samples analyzed by Dames and Moore are summarized in Table 1 below and are plotted on Figure 1 presented at the back of the report. Review of these data show that, while the coarsest gravel clasts are found in the shallow interval 20 to 25 feet, the greatest accumulation of coarse material is found in the depth interval 30 to 35 feet.

# CONSTRUCTION AND DEVELOPMENT OF TEST WELL PC-70

Test Well PC-70 was designed to both promote the efficient production of groundwater for aquifer testing purposes. Results of the aquifer test shows that the design was successful in meeting that criterion.

Test Well PC-70 was constructed on September 12, 1998, by Compliance Drilling Company of Las Vegas, Nevada. A well completion diagram is included in Addendum C. All phases of well design, construction, and development were directly supervised by S. R. Lower of Kerr-McGee's Safety and Environmental Affairs Division.

	PITTM	TABLE 1 TRIBUTION IN THE AN LATERAL TEST HENDERSON, NE Collection Date: Se	VADA	ICE
		Cu	mulative Percent Reta	ained
Grain size (inches)	USGS Classification	Depth Interval 20-25 feet	Depth Interval 30-35 feet	Depth Interval 40-45 feet
0.003	Very Fine Sand	89.4	94.4	95.3 12
0.006	Fine Sand	77.9	88.2	83.8 18
0.010	Medium Sand	61.3	77.4	66.0 21
0.017	Medium Sand	42.9	64.4	44.8 21
0.034	Coarse Sand	26.0	49.4	23.5 22
0.080	Gravel	11.8	23.2	1.9
0.190	Gravel	5.8	7.4	0.3
0.375	Gravel	1.7	1.9	0.0
0.750	Gravel	0.8	0.0	0.0

70.750

Compliance Drilling used a Mobile B-59 drilling rig to drill and complete the well using hollow-stem auger technologies. The well borehole was drilled to a total depth of 50.5 feet below grade using an 8-inch (ID) hollow stem auger with an outside diameter of 12 inches. The top of the Muddy Creek Formation was found at a depth of 49 feet below grade.

Based upon the recommendations presented in the attached Dames and Moore report, the well design called for completion using 6-inch (ID) PVC well screen with a slot opening size of 0.020-inch. To promote well efficiency, the well was completed with Bort-Longyear "Circumslot" continuous-wrap PVC screen. The use of continuous-wrap PVC screen provides 34 square inches (24%) of open area per square foot of 6-inch casing as compared to 13 square inches (9%) of open area per square foot in conventional slotted casing. Close-up views of the continuous-wrap PVC screen are shown in Photographs 8 and 9.

Test Well PC-70 was completed to a depth of 50.5 feet below grade using 6-inch (ID), Schedule 40 PVC screw-coupled blank casing and screen. The casing string consisted of 18 feet of blank casing set in the interval 0.5 foot below grade to 18.5 feet. A total of 30 feet of the Bort-Longyear continuous-wrap PVC screen was set in the interval 18.5 feet to 48.5 feet below grade. A two-foot length of blank casing was set in the interval 48.5 feet to 50.5 feet to provide a sump to collect any fines that may be produced during well development and testing. Since the wellhead was completed below ground surface, the bottom of the casing string is at a depth of 50 feet below the top of the casing.

Following installation of the casing, the well annulus was filled with sand. The annulus between the casing and the borehole was packed with washed and sized 8-12 filter pack material from a depth of 50.5 feet to 15 feet below grade. The remainder of the annular pack and seal were not completed until after initial development had been completed.

The initial development of Test Well PC-70 was performed using a surge block. A picture of the surge block used is shown in Photograph 10.

The surge block method of well development was chosen because of its effectiveness in eliminating damage to the borehole wall that may have been caused by drilling, thus opening the formation to the well. In addition, surge-block development stabilizes the sand in the filter pack, removing any small sand bridges in the process. On the down stroke of surge-block development, water is forced through the well screen and into the annulus, agitating the sand pack. On the up stroke, water is pulled from the formation, through the sand pack and into the well casing. This forces the agitated sand to settle. and pack tightly in the annulus as it is designed to do.

10.000

During the first period of the surge-block development of Test Well PC-70, the top of the sand pack dropped from 15 feet to 20.3 feet as the sand grains packed tightly in the annulus. After the sand was brought back up to 16 feet, more surge-block development was done. The sand level dropped 1 foot, to 17 feet, during the second period of surge-block development.

Following the completion of surge-block development, the sand level was brought up to 15.5 feet. An annular seal consisting of bentonite pellets was placed in the interval 11 feet to 15.5 feet below grade and hydrated in place with clean water. in place. The remainder of the annulus to a depth of about one foot below grade was filled with a cement/bentonite grout.

Further development of Test Well PC-70 was performed on September 14. This development work consisted of pump surging to stimulate the formation.

Pittman Lateral Aquifer Test Report/SRL/10-19-98/Page 9

# **TEST OF PITTMAN LATERAL WELL PC-70**

During the period September 14 through 17, 1998, a test of the channel-fill alluvial aquifer was performed at the Pittman Lateral Test Site. The objective of the test was to determine the hydraulic characteristics (transmissivity, permeability, storage coefficient) of the alluvial sediments that overlies the Muddy Creek Formation at the Test Site.

This aquifer test consisted of a 48-hour constant discharge pumping test of Test Well PC-70 followed by a 21-hour period of recovery. Water-level measurements were taken during the test in PC-70 and in three existing monitor wells. The test was performed by S. R. Lower of Kerr-McGee's Safety and Environmental Affairs Division, with the assistance of Tracy Williams, also with the Kerr-McGee Safety and Environmental Affairs Division, and Mark Porterfield and Shimi Mathew of the Kerr-McGee Henderson Facility.

# **Descriptions of the Test and Observation Wells**

A total of four wells, a pumping well (Test Well PC-70) and three observation wells, were used in this aquifer test. All four wells are location along an east-west line that runs perpendicular to the trend of the alluvial channel cut into the Muddy Creek Formation. Observation Well PC-17 is located about 30 feet east of Test Well PC-70. Observation Well PC-18 is located about 60 feet west of the test well, and Observation Well PC-55 about 160 feet to the west. Lithologic logs for all of the wells are included in Addendum A. Well completion diagrams are included in Addendum C.

As described above, Test Well PC-70 is completed in the channel-fill alluvial aquifer in the interval 15.5 feet to 50.5 feet below grade. Observation Well PC-55, located 160 feet west of Test Well PC-70, is completed in the interval 11 feet to 54 feet below ground surface in channel-fill alluvium. It was constructed using 6-inch (ID) PVC blank and slotted casing set in a 12-inch borehole. A total of 40 feet of 6-inch (ID), 20-slot PVC slotted casing was run in the interval 14 feet to 54 feet below grade.

Observation wells PC-17 and PC-18 were similarly constructed in 8-inch boreholes. Observation well PC-17 is completed in the interval 8 feet to 51 feet, with a total of 40 feet of 2-inch (ID), 20-slot PVC slotted casing set in the interval 10 feet to 50 feet below grade. Observation well PC-18 is completed in the interval 9.5 feet to 52 feet, with a total of 40 feet of 2-inch (ID), 20-slot PVC slotted casing set in the interval 11.5 feet to 51.5 feet below grade.

It should be noted that review of the lithologic log for Observation Well PC-55 (see Addendum A) shows that the lithology of the channel-fill alluvium at this location is substantially different than that at the locations of Test Well PC-70 and Observation Wells PC-17 and PC-18 located to the east. The well is completed through three separate alluvial intervals representing changes in deposition. The upper zone, which consists of sand, gravel, and cobbles, extends to a depth of 25 feet. A unit consisting of clayey sand with small gravel extends to a depth of 33 feet. This unit is underlain by a third zone consisting of silty sands and gravels to the total depth.

## Descriptions of Water-Level Fluctuations in the Alluvium

Water levels were measured at the Pittman Lateral Test Site for several days prior to the start of the aquifer test. These data were compared to recent historical data to establish trends and to detect any unusual water-level fluctuations. What was found was a slowly rising water level in all wells. Adding to this trend was the pronounced impact on the water levels by a storm event, which occurred three days before the pump test.

Table 2 below shows the data resulting from the Pittman Lateral water-level measurements. Between April 8 and September 8, 1998, water levels in Observation Wells PC-17 and PC-18 rose 0.93 foot and 0.31 foot, respectively. Some of this change could be attributed to water-level stabilization following well completion. However, between June 4 and September 8, water levels in Observation Wells PC-18 and PC-55 rose 0.16 foot and 0.20 foot, respectively. These latter data clearly show the effect of a wetter-than-normal summer on the alluvial aquifer at the Pittman Lateral Test Site. Between September 8 and 11, water levels in the three observation wells appear to have stabilized.

The pronounced effect of storm events on an alluvial water-table aquifer was demonstrated following a major precipitation event on the afternoon of September 11, 1998. This precipitation event, which was a flash-flood storm that dropped 0.83-inch of precipitation on the Henderson area in a matter of minutes, flooded major and local roads as well as the Pittman Lateral Test Site. Photographs of the test site showing

TABLE 2         PITTMAN LATERAL WATER LEVELS         Pittman Lateral Test Site         Henderson, Nevada         April through October 1998								
PC-17			PC-18					
	1	Static		Static				
		Water	Rate of	Water	Rate of			
		Level	Rise	Level	Rise			
Date	Time	(ft BTOC)	(ft/hour)	(ft BTOC)	(ft/hour)	Remarks		
4/8/98		19.20		19.90		Well Completion Water Levels		
6/4/98				19.75		June '98 Test Data		
8/25/98		18.36						
9/8/98		18.27		19.59	-			
9/11/98	1645	18.27		19.58		2 hours after 0.83" ppt storm		
9/12/98	0600	18.21	0.004	19.53	0.004			
9/12/98	1800	18.19	0.002	19.50	0.003			
9/13/98	0800	18.15	0.003	19.47	0.002			
9/13/98	1700	18.13	0.002	19.45	0.002			
9/14/98	1100	18.11	0.001	19.42	0.002	Pre-Test Static Water Levels		
10/1/98	1200	17.92	0.0005	19.27	0.0004			

TABLE 2 (continued)         PITTMAN LATERAL WATER LEVELS         Pittman Lateral Test Site         Henderson, Nevada         April through October 1998								
Date	Time	PC-55 Static Water Level	Rate of Rise	PC-70 Static Water Level	Rate of Rise	Remarks		
Dale	Time	(ft BTOC)	(ft/hour)	(ft BTOC)	(ft/hour)	Remarks		
4/8/98						Well Completion Water Levels		
6/4/98		18.25				June '98 Test Data		
8/25/98		18.15						
9/8/98		18.05						
9/11/98	1645	18.05				2 hours after 0.83" ppt storm		
9/12/98	0600	17.98	0.005					
9/12/98	1800	17.96	0.002	18.80				
9/13/98	0800	17.91	0.004	18.77	0.002			
9/13/98	1700	17.90	0.001	18.75	0.002			
9/14/98	1100	17.87	0.002	18.73	0.001	Pre-Test Static Water Levels		
10/1/98	1200	17.74	0.0003	18.57	0.0004			

2Ť

flood waters in a channeled tributary to the Las Vegas Wash that parallels the test site were taken once access to the area was possible following the storm. By that time, the flood level had dropped some, permitting limited access to the site. These pictures are included as Photographs 11, 12, and 13.

Review of the water levels shown on Table 2 shows the impact of this storm event. Water-level measurements taken two hours after the storm had ended showed no effect from the floodwaters. During the three days following the September 11 storm and prior to the start of the test on September 14, water levels at the Pittman Lateral Test Site were rising at a rate ranging up to 0.005 foot per hour. The rate of water-level rise decreased to about 0.001 to 0.002 foot per hour, which amounts to 0.024 to 0.048 foot per day.

The effect of the storm on water levels had a noticeable effect on the results of the aquifer test. Water-level data collected during the recovery part of the test clearly showed the arrival of a recharge front through the alluvial sediments.

### Description of the Pittman Lateral Aguifer Test

The Pittman Lateral aquifer testing program consisted of a 48-hour constant discharge pumping test of Test Well PC-70 followed by a 21-hour period of recovery. Drawdown and recovery water-level data were collected in the pumping well, Test Well PC-70, and the three observation wells PC-17, PC-18, and PC-55. The test was conducted using a 1 horsepower submersible pump powered by a trailer-mounted, diesel-powered 480 volt

generator providing 220 volts at 50 amps to the pump. The intake of the pump was set at a depth of about 45 feet below grade.

Water was delivered to the surface through 2-inch (ID) PVC pipe. Adjustments in the flow rate were made using a ball valve (see Photograph 14). The flow rate was measured using an in-line totallizing flow meter with a 10 gallon per minute (gpm). sweep (see Photographs 14 and 15). The flow rate was periodically confirmed using a two-gallon calibrated bucket and stopwatch. Water levels were monitored during the test using electric lines.

Groundwater was discharged from the well to a two-inch diameter plastic hose. Due to a concern with gravity drainage through the obviously porous alluvium, and thus the possibility of recycling locally-discharged groundwater back to the aquifer, the groundwater was discharged far from the wellhead. As shown on Photograph 16, the blue-colored discharge hose was run 350 feet east from the wellhead to the concretelined portion of the channeled, east-flowing Las Vegas Wash tributary that runs parallel to the Test Site.

<u>Description of the Calibration Test</u> - Following installation of the pump on the morning of September 14, and after pump surge development had been completed, the pump was run at a constant rate to determine a rate the well could sustain for a 48-hour period. With the ball valve fully open, the pump produced 50 gallons per minute (gpm) with less than three feet of drawdown. The valve was closed slightly until the flow meter read a constant pumping rate of 45gpm. The 48-hour pumping test of well PC-70 was thus performed at a constant rate of 45 gallons per minute.

<u>Description of the Test</u> - The constant discharge pumping portion of the PC-70 aquifer test was conducted for a total of 48 hours commencing at 1500 hours (3pm) on September 14, 1998. The pumping rate was maintained at a constant 45 gallons per minute. The discharged groundwater was clear (see Photograph 17).

As shown on Figure 2, drawdown was established in all three of the observation wells soon after pumping started. Review of Figure 2 shows that the shape of the drawdown cone remained the same throughout the length of the 48-hour pumping test, the only change being the increasing drawdown as more water was removed from the aquifer. A total of nearly 130,000 gallons of groundwater were pumped from the aquifer during the 48-hour pumping test.

The recovery portion of the PC-70 aquifer test commenced with the termination of pumping at 1500 hours (3pm) on September 16, 1998. After an initial rapid rise in water level, recovery was slow during the 21-hour recovery test. A notable increase in the rate of recovery near the end of the test showed the possible arrival of the recharge front resulting from the September 11 storm event.

Tabulations and graphs of drawdown and recovery data for Test Well PC-70 are included in Addendum D. From a starting water level of 18.73 feet, drawdown was 2.36

feet to a pumping level of 21.09 feet. The specific capacity in Test Well PC-70 was 19 gallon per minute per foot of drawdown at the end of the 48-hour pumping test.

Tabulations and graphs of drawdown and recovery data for Observation Well PC-17 are included in Addendum E. From a starting water level of 18.1 feet, drawdown was 0.63 feet to a depth of 18.73 feet.

Tabulations and graphs of drawdown and recovery data for Observation Well PC-18 are included in Addendum F. From a starting water level of 19.42 feet, drawdown was 0.42 feet to a depth of 19.84 feet.

Tabulations and graphs of drawdown and recovery data for Observation Well PC-55 are included in Addendum G. From a starting water level of 17.87 feet, drawdown was 0.36 feet to a depth of 18.23 feet.

### ANALYSES OF PC-70 AQUIFER TEST DATA

Data gathered during the constant discharge pumping and recovery tests of Test Well PC-70 were analyzed using the Theis log-log type curve matching, the Boulton log-log delayed drainage curve matching, and the Jacobs semi-log straight line methodologies (Davis and DeWiest, 1966; Johnson UOP, 1975; Lohman, 1972). Analyses of the test data are provided in Addendums D, E, F, G, and H. Analytical results are summarized in Table 3 below.

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	TABLE 3						
COMPILATION OF HENDERSON PC-70 TEST DATA								
Date of Test: September 14-17, 1998								
Well No.	Test Phase	Analysis	Transmissivity (gpd/ft)	Permeability (gpd/ft2)	Hydraulic Conductivity (ft/day)	Storage Coefficient		
PC-70 Saturated Interval = 32 ft	Drawdown Recovery	Jacobs (Semi-Log) Time vs Drawdown Jacobs (Semi-Log) t/ť vs Drawdown	49500 69882	1547 2184	207 292			
PC-17 Saturated Interval = 33 ft	Drawdown Drawdown Drawdown Recovery	Jacobs (Semi-Log) Time vs Drawdown Theis (Log-Log) Type Curve Match Boulton (Log-Log) Delayed Drainage Jacobs (Semi-Log) t/t' vs Residual Drawdown	49500 56048 46877 79200	1500 1698 1421 2400	201 227 190 321	0.08 0.03 0.04		
PC-18 Saturated Interval = 33 ft	Drawdown Drawdown Drawdown Recovery	Jacobs (Semi-Log) Time vs Drawdown Theis (Log-Log) Type Curve Match Boulton (Log-Log) Delayed Drainage Jacobs (Semi-Log) t/t' vs Residual Drawdown	40966 54282 53714 108000	1241 1645 1628 3273	166 220 218 438	0.03 0.08 0.09		
PC-55 Saturated Interval = 37 ft	Drawdown Drawdown Drawdown Recovery	Jacobs (Semi-Log) Time vs Drawdown Theis (Log-Log) Type Curve Match Boulton (Log-Log) Delayed Drainage Jacobs (Semi-Log) t/t vs Residual Drawdown	66000 46877 39666 132000	1748 1267 1072 3568	239 169 143 477	0.11 0.03 0.04		
Distance-Drawdown Graphs for Test Average Saturated Interval = 34 ft	Drawdown Drawdown Drawdown Drawdown Drawdown	Distance-Drawdown at 100 minutes Distance-Drawdown at 720 minutes Distance-Drawdown at 1440 minutes Distance-Drawdown at 2160 minutes Distance-Drawdown at 2880 minutes	51652 49500 48490 51652 51652	1519 1456 1426 1519 1519	203 195 191 203 203	0.04 0.08 0.10 0.08 0.06		

The effects of casing storage during the early part of the test were taken into account during the analyses of these test data. Given the approximately 50 gallons of water residing in the 6-inch (ID) casing and screen in Test Well PC-70, at a pumping rate of 45 gallons per minute the effects of casing storage would be eliminated in less than two minutes. After that time, casing storage became negligible.

ALVER T

Pittman Lateral Aquifer Test Report/SRL/10-19-98/Page 18

### **Calculations of Aquifer Coefficients**

As noted above, data gathered during the constant discharge pumping and recovery tests of Test Well PC-70 were analyzed using the Theis type curve, the Boulton delayed drainage, and the Jacobs methodologies. These methodologies were used to calculate the transmissivity and storage coefficient of the channel-fill alluvial aquifer at the respective well sites. From the transmissivity data permeabilities and hydraulic conductivities of the alluvial aquifer were calculated. It should be noted that, for permeability calculations, Test Well PC-70 and the three observation wells all fully penetrated the entire saturated thickness of the channel-fill alluvian.

Calculations of aquifer coefficients for Test Well PC-70 and Observation Wells PC-17, PC-18, and PC-55 are presented on their respective data plots and on separate tabulations presented in Addendums D, E, F, and G, respectively. The data set for Test Well PC-70 includes tabulations of drawdown and recovery data, an arithmetic plot of drawdown and recovery data, an arithmetic plot of drawdown and recovery data. The respective data sets for the three observation wells include tabulations of drawdown and recovery data, an arithmetic plot of data, an arithmetic plot of drawdown and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, and recovery data, an

<u>Jacobs Modified Semi-Log Straight-Line Analyses of Drawdown Data</u> - As shown in Table 3 above, transmissivities calculated from the Jacobs (semi-log) straight-line analyses of the time versus drawdown data for Test Well PC-70 and the three observation wells range from 40,966 gallons per day per foot (gpd/ft) to 66,000 gpd/ft, averaging 51,492 gpd/ft. Corresponding permeabilities range from 1,241 gallons per day per square foot (gpd/ft²) to 1,547 gpd/ft², averaging 1,509 gpd/ft². Storage coefficients range from 0.03 to 0.11, averaging 0.07.

100000000

<u>Theis Log-Log Type Curve Match Analyses of Drawdown Data</u> - Review of the log-log plots of time versus drawdown data for Observation Wells PC-17 and PC-18 show very good matches with the Theis Type Curve (Lohman Plate 9, 1972) after about the first 100 minutes of the pumping test. The log-log plot of time versus drawdown data for Observation Well PC-55 shows a very good match with the Theis Type Curve after about the first 300 minutes of the pumping test.

As shown in Table 3 above, transmissivities calculated from the Theis (log-log) curvematching analyses of the time versus drawdown data for the three observation wells range from 46,877 gpd/ft to 56,048 gpd/ft, averaging 52,402 gpd/ft. Corresponding permeabilities range from 1,267 gpd/ft² to 1,698 gpd/ft², averaging 1,537 gpd/ft². Storage coefficients range from 0.03 to 0.08, averaging 0.05.

Boulton Log-Log Delayed Drainage Curve Match Analyses of Drawdown Data - Review of the log-log plots of time versus drawdown data for the three observation wells show

good matches with diversions of the early-time data plots from the Theis Type Curve (Lohman Plate 8, 1972) due to the effects of delayed drainage from storage in the unconfined alluvial aquifer. As shown in Table 3 above, transmissivities calculated from the Boulton delayed drainage curve-matching analyses of the time versus drawdown data for the three observation wells range from 39,666 gpd/ft to 53,714 gpd/ft, averaging 46,752 gpd/ft. Corresponding permeabilities range from 1,072 gpd/ft² to 1,628 gpd/ft², averaging 1,374 gpd/ft². Storage coefficients range from 0.04 to 0.09, averaging 0.06.

<u>Jacobs Semi-Log Straight-Line Analyses of Recovery Data</u> - Review of the semi-log plots of t/t' versus residual drawdown recovery data show the effects of both a limited aquifer and unusual recharge derived from the September 11, 1998 storm event. Initial straight-line trends of the t/t' versus residual drawdown plots do not go through the origin, indicating a limited aquifer. The slow recovery of the water levels in Test Well PC-70 and the three observation wells suggest some dewatering of the channel-fill alluvial aquifer.

The upward trend of the late t/t' versus residual drawdown data, however, show the effects of a recharge event. This is believed to reflect the arrival of the recharge front resulting from the flooding in the area during the September 11, 1998 storm event.

Transmissivities calculated from the Jacobs (semi-log) straight-line analyses of the t/t' versus residual drawdown recovery data for Test Well PC-70 and the three observation wells are shown in Table 3 above. However, due to the effects of storm event-related

recharge, these data are not considered accurate and reliable and are not used in this report to represent the channel-fill alluvial aquifer.

<u>Jacobs Semi-Log Straight-Line Analyses of Distance-Drawdown Data</u> - While semi-log plots of time-distance data show the lowering of the water level at any time within the cone of depression, semi-log plots of distance-drawdown data show the shape and position of the cone of depression at any given time (Johnson UOP, 1975). These diagrams can be used to calculate transmissivity and storage coefficient.

i. U

ination de la composi-

100.000

Semi-log plots of distance-drawdown data were generated for time periods 100 minutes, 720 minutes (12 hours), 1,440 minutes (24 hours), 2,160 minutes (36 hours), and 2,880 minutes (48 hours) into the pumping test. As shown in Table 3 above, transmissivities calculated from these analyses are very consistent, ranging from 48,490 gpd/ft to 51,652 gpd/ft, averaging 50,598 gpd/ft. Corresponding permeabilities range from 1,398 gpd/ft² to 1,519 gpd/ft², averaging 1,488 gpd/ft². Storage coefficients range from 0.04 to 0.10, averaging 0.07. Calculations of aquifer coefficients for the five distance-drawdown analyses are presented on their respective data plots and tabulations presented in Addendum H.

#### Estimation of Test Well Efficiency from Distance-Drawdown Data

The efficiency of Test Well PC-70 can be estimated by comparing the theoretical drawdown calculated for the pumping well to the actual drawdown on a plot of distance-drawdown data (Johnson UOP, 1975). This is done by extending the straight distance-

drawdown line to a point where it intercepts the radius of the pumping well on the horizontal scale.

The resulting projection of well efficiency is presented in Addendum I. Comparing a theoretical drawdown of 1.95 feet to the actual drawdown of 2.36 feet after 48 hours of pumping yields a projected well efficiency of 83%.

## CONCLUSIONS

This investigation, which was centered around the construction and testing of Test Well PC-70, was performed to better quantify the hydrogeologic characteristics of the channel-fill alluvial aquifer at the Pittman Lateral. Since PC-70 was to be a groundwater production well rather than a monitor well, every effort was made in the design, construction, and development of the well to make it as efficient as possible. Review of the data resulting from the Pittman Lateral Aquifer Test suggests that the goal of an efficient well was met.

The channel-fill alluvium at the Pittman Lateral Test Site was found to consist of an alternating sequence of light-brown, fine-grained sand and fine- to coarse-grained sand and gravel. No significant quantities of clay were found in the alluvial sediments. The top of the Muddy Creek Formation, which was encountered at a depth of about 49 feet, was found to consist of a gravelly clay.

An aquifer test consisting of a 48-hour constant discharge pumping test followed by 21 hours of recovery was performed at the Pittman Lateral Test Site. The testing program included the pumping of Test Well PC-70 at a constant rate of 45 gallons per minute and the monitoring of water levels in it and three observation wells, PC-17, PC-18, and PC-55.

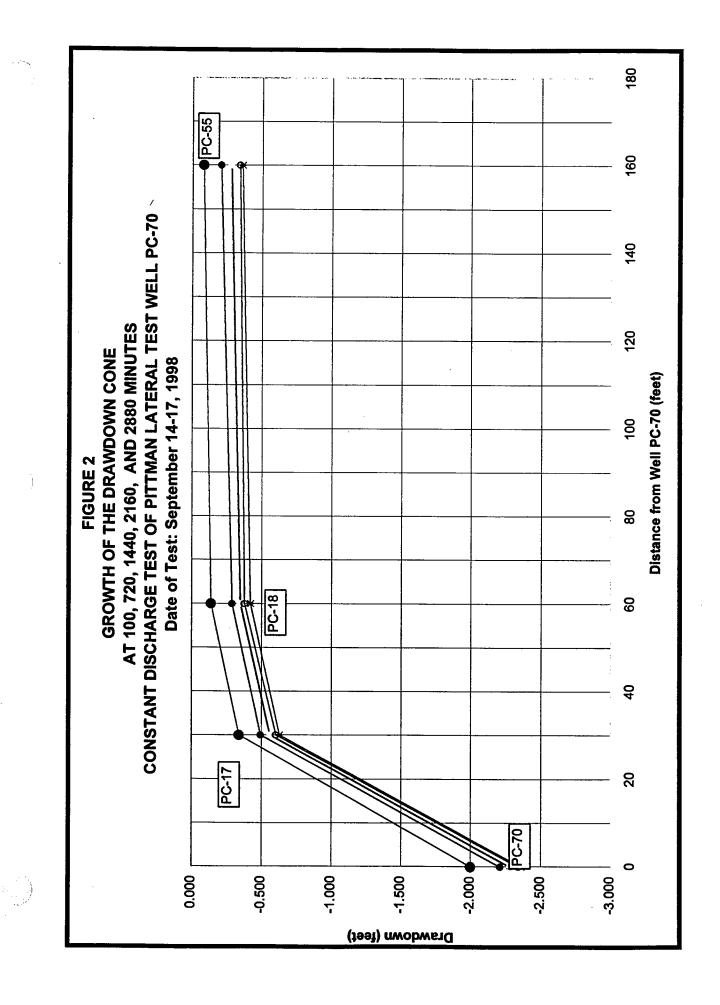
Drawdown and recovery data resulting from the aquifer test were analyzed using the Jacobs semi-log straight-line, the Theis log-log curve matching, the Boulton log-log delayed drainage curve matching, and the Jacobs semi-log distance-drawdown analysis methodologies. Comparison of aquifer coefficients resulting from the analyses of drawdown data from the show excellent consistency. Due to the effects of storm event-related recharge, recovery data are not considered accurate and reliable and were not used in this report to represent the channel-fill alluvial aquifer.

Based upon the results of the Pittman Lateral Aquifer Test, it can be concluded that the transmissivity of the channel-fill alluvium at the test site ranges from 39,666 gpd/ft to 66,000 gpd/ft, averaging 50,425 gpd/ft. Likewise, it can be concluded that corresponding permeabilities range from 1,072 gpd/ft² to 1,698 gpd/ft², averaging 1,393 gpd/ft². These values are consistent with sand and gravels containing fine sands and silts.

Storage coefficients were found to range from 0.03 to 0.11, averaging 0.06, which is consistent with an unconfined aquifer under water-table conditions. A storage coefficient of 0.06 in an unconfined aquifer translates to a specific yield of 6%.

 $\hat{\mathbb{C}}$ 

## **REFERENCES CITED**


Davis, S.N., and R.J.M. DeWiest, 1966, Hydrogeology: John Wiley and Sons, Inc., New York, 463 p.

Johnson, UOP, 1975, Ground Water and Wells: Johnson Division UOP, Inc., 440p.

- Kerr-McGee Chemical LLC, 1998, Phase II Groundwater Perchlorate Investigation Report:: Document, 21 pages.
- Lohman, S. W., 1972, Ground-Water Hydraulics: U.S. Geological Survey Professional Paper 708, 70p.



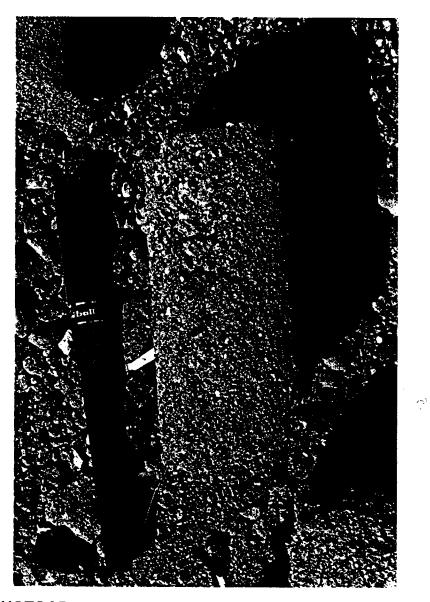
0.800 0.750 0.700 **GRAIN-SIZE GRADATION CURVES FOR TEST BORING SEDIMENT SAMPLES** 0.650 0.600 0.550 Date Samples Collected: September 8, 1998 **PITTMAN LATERAL TEST WELL PC-70** 0.500 0.350 0.400 0.450 Grain Size (inches) FIGURE Depth Interval 20-25 feet 0.300 Depth Interval 40-45 feet Depth Interval 30-35 feet 0.250 0.200 0.150 0.100 0.050 0.000 100.0 60.0 0.0 90.0 80.0 70.0 50.0 40.0 30.0 20.0 10.0 **Cumulative Percent Retained** 



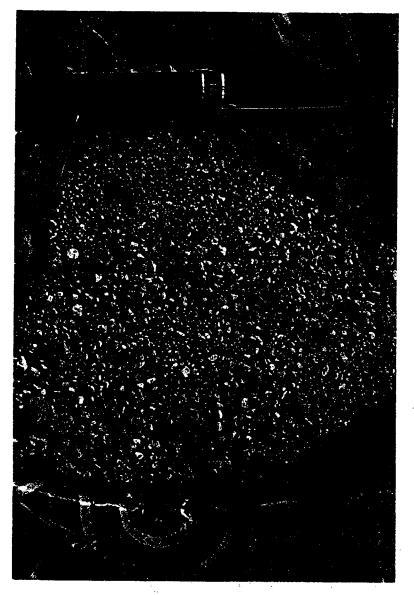
# PHOTOGRAPHS

Ì




**PHOTOGRAPH 1:** Tan to light-brown, poorly sorted, fine-tocoarse grained sand with small gravel clasts in the depth interval 21-22 feet. Test Well PC-70 exploratory borehole, Pittman Lateral, Henderson, Nevada; 9/8/98




**PHOTOGRAPH 2:** Alternating sequence of light-brown fine sand and poorly sorted gravel in the depth interval 28.5-30.5 feet. Test Well PC-70 exploratory borehole, Pittman Lateral, Henderson, Nevada; 9/8/98

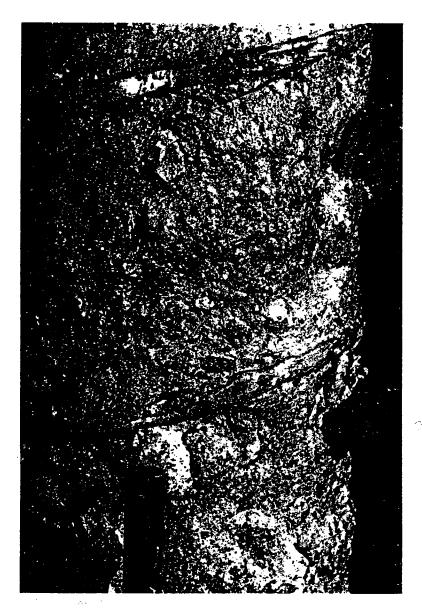


**PHOTOGRAPH 3:** Alternating sequence of light-brown fine sand and poorly sorted gravel in the depth interval 35-36.5 feet. Test Well PC-70 exploratory borehole, Pittman Lateral, Henderson, Nevada; 9/8/98



**PHOTOGRAPH 4:** Close-up view of a portion of core showing the poorly sorted sand and gravel in the depth interval 35-36.5 feet. Test Well PC-70 exploratory borehole, Pittman Lateral, Henderson, Nevada; 9/8/98




**PHOTOGRAPH 5:** Close-up of disaggregated gravel sample from the 35-36.5 foot interval showing poorly sorted grain-size distribution. Test Well PC-70 exploratory borehole, Pittman Lateral, Henderson, Nevada; 9/8/98





PHOTOGRAPH 6: Alternating sequence of fine-to coarsegrained sand and poorly sorted gravel in the depth interval 40-42 feet. Test Well PC-70 exploratory borehole, Pittman Lateral, Henderson, Nevada; 9/8/98

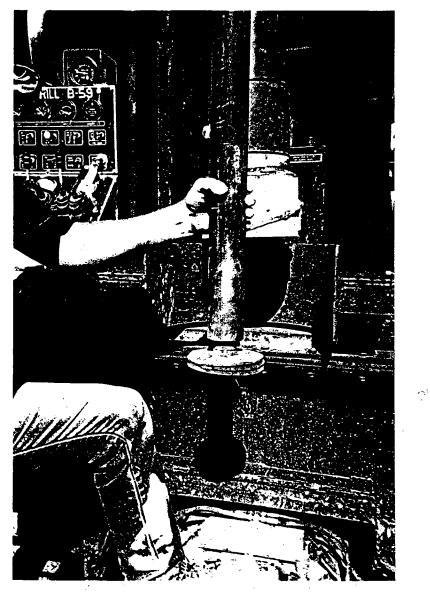
~`



**PHOTOGRAPH 7:** Close-up view of the uppermost gravelly clay of the Muddy Creek in the interval 50-51 feet. Test Well PC-70 exploratory borehole, Pittman Lateral, Henderson, Nevada; 9/8/98

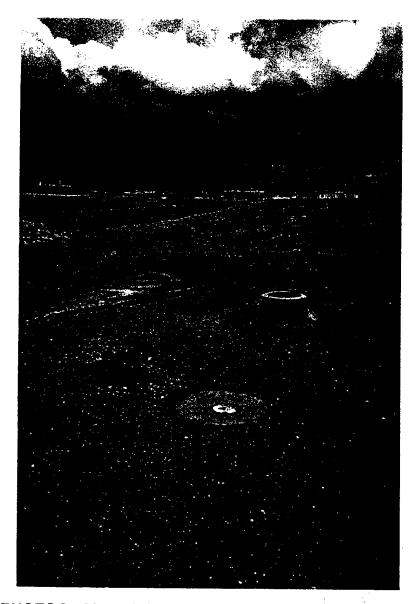
1 States and the second second second second second second second second second second second second second se

 $\sim$ 


)

**PHOTOGRAPH 8:** Close-up view of the 20-slot, Bort-Longyear "Circumslot" continuous-wrap PVC screen used in the construction of Test Well PC-70.. Pittman Lateral, Henderson, Nevada; 9/12/98.

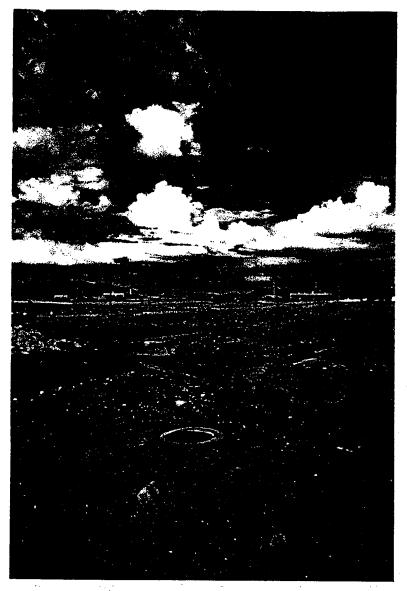



 $\sim$ 

**PHOTOGRAPH 9:** Close-up inside view of the 20-slot, Bort-Longyear "Circumslot" PVC screen to show the internal ribbing that supports the single piece of PVC extrusion, which permits the continuous-wrap, circumferential slotting. Pittman Lateral, Henderson, Nevada; 9/12/98.



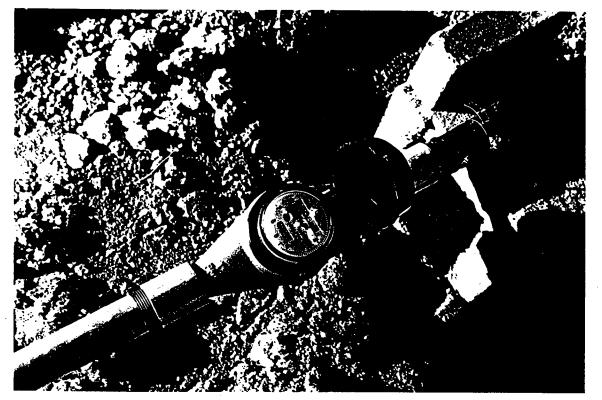
**PHOTOGRAPH 10:** View of the surge block used in the development of Test Well PC-70. Pittman Lateral, Henderson, Nevada; 9/12/98.


. . . )



**PHOTOGRAPH 11:** View to the east at Pittman Lateral test site after the peak of the September 11, 1998 flash-flood event. Locations of Test Well PC-70 and Observation Wells PC-18 and PC-55 are shown. Pittman Lateral, Henderson, Nevada; 9/11/98.




**PHOTOGRAPH 12:** View to the west at Pittman Lateral test site after the peak of the September 11, 1998 flash-flood event. Location of Observation Well PC-55 is shown. Pittman Lateral, Henderson, Nevada; 9/11/98.



**PHOTOGRAPH 13:** View to the east at Pittman Lateral test site after the September 11, 1998 flash-flood event. Location of Observation Well PC-55 is shown. Pittman Lateral, Henderson, Nevada; 9/11/98.




**PHOTOGRAPH 14:** View of Test Well PC-70 well head showing ball valve, flow meter, and discharge line. Pittman Lateral, Henderson, Nevada; 9/14/98.



**PHOTOGRAPH 15:** Close-up view of 10 gallon per minute totallizing flow meter used to measure discharge from Test Well PC-70. Pittman Lateral, Henderson, Nevada; 9/15/98.



**PHOTOGRAPH 16:** View to the east showing the 350-foot run of the discharge line from the Test Well PC-70 well head to the concrete lined portion of the channel. Pittman Lateral, Henderson, Nevada; 9/15/98



)

**PHOTOGRAPH 17:** Close-up view of the Test Well PC-70 discharge of clean water to the concrete lined portion of the channel. Pittman Lateral, Henderson, Nevada; 9/15/98.

## ADDENDUM A

# Lithologic Logs for Test Well PC-70 and Observation Wells PC-17, PC-18, and PC-55

		KM SUBSIDIARY KUL-UL	HEUDERSON NU		BORING R-17	
DEPT				SOIL SAMP	LE	REMARKS OR
IN FEE	LITHOLOGIC DESCRIPTION	N 40 FIELD SOIL SOIL SOIL FIELD CLASS.	6" (ppm)	NO. L DEPTH	REC.	FIELD OBSERVATIONS
	- STUTY SAND RD BRN	<u>, 1</u> ,				
ĺ	- N/ gener LOOSE DRY	GM	-			-
		1.0				
5		0				
Í	-	0.	$\vdash$			_
	-		_			_
	-	ð.	-			-
10		0.00				
		10.	-			
	-	- 5	<u> </u>			
15	<u>_</u>	-0-5				
	- Gilaven sann Ro Ren	ory -yes Gm				
	to she moist stilly	-50.0				Anna inter -
		<u></u>	-			GRAINSWOKER - Saupez _
Ín	- gelovenz sans wi a	64 K				GLLELTEN -
)	- GROY IS IS BRW SU (	1 · · · · · · · · · · · · · · · · · · ·	_			At 19' -
		Cottesive O	-			-
2		· .>			1	
		. 0	-			-
	-	*[ : _0				BUND DATE THE
		<i>v.</i> ]				I are ILEIVIANS
3	2-1	- 0				BELOW Y -
		1.0			Ì	-
	-		-			-
2	2	- 0				
1		<i>.</i>				-
	-	- 0				
		10				
=	Water Table (24 Hour)		GRAPHIC		DATE DRILLE	
	Vater Table (Time of Borin	g)		DEBRIS	4/1 DRILLING ME	
	PID Photoionization Detection (p NO. Identifies Sample by Numb			HIGHLY	HS A	x
NOL	TYPE Sample Collection Method		1	SANDY CLAY	DRILLED BY	Ber
EXPLANATION		ROCK CORE				
XPLA			GRAVEL	SAND		JZALFOIZO
, and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	WALLED CONTINUOU TUBE SAMPLER	S NO RECOVERY	SILTY CLAY		CAISTING OR	
	DEPTH Depth Top and Bottom of S	Sample			LOCATION O	R GRID COORDINATES
	REC. Actual Length of Recovered	a sample in reel				

## SOIL BORING LOG KM-5655-B

たいたい

	RR-MCGEE CORPORATION	KM SUBSIDI				LOCATION		·	r.A	BORING	3.	i
Hy	drology Dept S&EA Division	Kuc-					10610	ion h	101		R PC-17	
DEPTH IN FEET	LITHOLOGIC DESCRIPTIC	м	GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6"	PID (ppm)	NO. 10	SOIL SAN		REC.	REMARKS FIELD OBSERV	OR ATIONS
- - - 445	Sann/gearer		0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.									
- 	SILTY CLAY V. LIGU TO GRAVISH WHITE V. SATURATED BOMY GRAYISH GREE SLI MOIST FIRM	. SOFT	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	CL							-71 WW 307 ( 48'	Ree 2
55-	Firm		7,					Κ			TD 55	
-												
-												
-												- - -
-												-
-   												
									IDATE	DRILLED		
12	7					GRAPHIC				11/9		of2
N	<ul> <li>Water Table (Time of Borin</li> <li>Photoionization Detection (p</li> <li>Identifies Sample by Numb</li> <li>Sample Collection Method</li> </ul>	(mqc				CLAY SILT		PEBRIS ILL IGHLY RGANIC (PEAT)	ORILI	LING METH HSA LED BY		
EXPLANATION	SPLIT- BARREL AUGER		OCK		1	SAND	⊠s ⊠ c	ANDY CLAY CLAYEY			0	
	THIN- WALLED CONTINUOU TUBE SAMPLER	s N	NO	RY	1 .	GRAVEL SILTY CLAY	ة لقظ _		EXIS		RAWFOLD DE ELEVATION IFT. AN	
	EPTH Depth Top and Bottom of S REC. Actual Length of Recovered	i Sample Sample i	n Fect		81	CLAYEY SILT			ιœ	ATION OR	GRID COORDINATES	

	RR-MCGEE CORPORATION Irology Dept S&EA Division	KM SUBSIDIARY			HEN	)ମଣ୍ଡ	GIGON NV			BORING NUMBER PC-18	
DEPTH IN FEET	LITHOLOGIC DESCRIPTIC	C C C C C C C C C C C C C C C C C C C	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6"	PID (ppm)	NO.	SO I YPE	IL SAMP DEPTH	LE REC.	REMARKS OR FIELD OBSERVATIONS	
- - - - - - - - - - - - - - - - - - -	SILLY SAND TEN BRW DRY WELL GRADED GRAVELS Sund Grovel bin bung Morst WELL SAND/GROVEL GRAVE BROWD WELL GRADE SAT SILTY		Sur Gun Di Gun							COLLECT GROUNDWATER SAMPLE AT Z	
	<ul> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li></ul>	ng) ppm)	6		GRAPHIC CLAY SILT		DEI FILI HIGH ORG	BRIS ILY ANIC (PEAT)		2/98 1 of 7 ETHOD SA	
I I	NO. Identifies Sample by Numb YPE Sample Collection Method			1	SAND			ſ	COCCED BY	JEBER	
I	NO. Identifies Sample by Numb YPE Sample Collection Method		VERY					ſ			

ราชขณะที่สีสีข้องเสี้ให้บริติตรรรมการขระมากระจะกระชาชิว<mark>สีสีสร้า</mark>สสีของการแก่สุดีที่จะจะมีกระกรรสระชาชิสีมีสีสีนักเร

SOIL E	BORING LOG KM-5655-B									
	CENT-MODEL CORPORATION	SUBSIDIARY			LOCATION				BORIN	G ER P(-1)
		MC-LL	UNIFIED	RI OUS	HEN	beis				
DEPT IN FEET	LITHOLOGIC DESCRIPTION	GRAPHIC LOG	SOIL FIELD CLASS.	PER 6"	PID (ppm)	NO.		DEPTH		REMARKS OR FIELD OBSERVATIONS
5	- Sand/Growen Ben - Wen groven - Wen groven 	0,0	Gn							SPLIT SPOON AT 42' POOR RETURNS
50- T/m	14" grover wer GRADED	1.1.2	5W CL		  		X			T/MUDDY GZERK
-	- SILTY CLAY 20 BRAN W/ Sm FINE SANN & SMOLL - GULAVELS - SILTY CLAY GREENISH GR	′ /								
-	- W/ TAN to BEOWN VARIA BLOCKLY	·/ 1								Deill TD 53' -
									-	
					GRAPHIC		EGEN	10 1	DATE ORILLEI	
	▼         Water Table (24 Hour)           ▼         Water Table (Time of Boring)				CLAY		DEBR		4/2/9	18 2 of 2_
	PID Photoionization Detection (ppm NO. Identifies Sample by Number TYPE Sample Collection Method	)		1	SILT			C MEAN	HSA	۲
EXPLANATION		ROCK			_	$\boxtimes$	SANI CLAY CLAY	DY '		isin
EX	THIN- WALLED SAMPLER		RY	1			]		-	ADE ELEVATION (FT. AMSL)
	DEPTH Depth Top and Bottom of Sam REC. Actual Length of Recovered Sa	ple		1	CLAYEY SILT		]		LOCATION O	R GRID COORDINATES

j.

### SOIL BORING LOG KM-5655-B

	KERR-McGEE CORPORATION Hydrology Dept S&EA Division	Kuc-uc		LOCATION HENTDERSON NV			JV	BORING R-55			
1	PTH IN LITHOLOGIC DESCRIPTIO EET	Z GRAPHIC LOG	UNIFIED SOIL FIELD	BLOWS PER 6'	PID (ppm)		SOIL SA	- 1	REC.		ARKS OR SERVATIONS
ے بر	SILTY SAND BRN 120 BRN W/ GR WELL GRADED T	2000EL									L B-61 -
2 V										DR1115	
3	- SILTY SAWD W/ 9R BRN-DK BRN WELL GRADED 1										
EXPLANATION	✓       Water Table (24 Hour)         ✓       Water Table (Time of Boring)         PID       Photoionization Detection (pp         NO.       Identifies Sample by Number         TYPE       Sample Collection Method         Ø       SPUT- BARREL       AUGER         THIN- WALLED TUBE       CONTINUOUS SAMPLER         DEPTH       Depth Top and Bottom of Sa REC.	m) ROCK CORE NO RECOVER	£¥.		ILT AND GRAVEL		EBRIS LL GANIC (PEAT)		DESE	OD	of S

Provide a second

SO		RING LOG KM-5655-B										مسالي
		RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSID				LOCATION	<u>দ্</u> বিচা	5	JU	BORIN	IG PC-55
	PTH N	LITHOLOGIC DESCRIPTIO	N	GRAPHIC LOG	UNIFIED SOIL	BLOWS PER	PID			SAMPLI	<u>.                                    </u>	REMARKS OR
F	EET			- <u>c</u>	FIELD CLASS.	6"	(ppm)	NO.	TYPE	EPTH	REC.	FIELD OBSERVATIONS
	_			1.0								-
	-			51	sm/							-
4	5-	SAND GRAY BEN .	sj	0.	GM							
	-	Small SPANEL WELL	-	10								
		GRADED		6								
5	·0											
	-	? MUDDY (REEK?					<u> </u>					-
				- Y			_					POSSIBLE -
5	5			اري ا					<u> </u>			+/ MUDDY GREET
		TD 55										AT SZ' BASED _
							_					UNAIGLE TO -
	_						_					SAMPLE DUZ
												TO BOTTOM PLATE IN BIT. T
	_					ļ	_					
	-		:				_					SYAMINATION -
						ļ	_				~	FLIGHTS
						-	—					INCONCLUSIVE -
	_					ŀ						FOR AWDDY _
						ł						CREEK _
	-					ł	_					-
	-		-			ļ	_					-
						ŀ	_					_
	-					-						
	_1											
	⊥ ⊥	Water Table (24 Hour) Water Table (Time of Boring)					APHIC LO			15		98 2 of 2
Z	PID NO. TYPE	Photoionization Detection (ppr Identifies Sample by Number	n)			c c			LL GANIC (PEA)		ing metho HSP	
EXPLANATION	$\square$	SPLIT- BARREL AUGER	ROCC	ick Dre		5.				Ιı	ERE	R
EXPI		THIN- WALLED CONTINUOUS SAMPLER		) COVER	r		RAVEL ILTY LAY	S \$	AND	EXIST		E ELEVATION (FT. AMSL)
		TH Depth Top and Bottom of San	ہے nple ample in	Feet		<b>111</b> S				LOCA	TION OR G	RID COORDINATES

والوالو ومرومه مواجع المتراجع في الوالي والومية مقتمهم المراجع مراجع المراجع

...

1001

100.45

. .. . . ......

P	DRING LUG AM-5055-B									
		KM SUBSIDIARY CHIMICAL		<u>, , , , , , , , , , , , , , , , , , , </u>		ge un	100	<u>r</u> hr	BORIN	IG ERPC-70
DEPTH			UNIFIED SOIL		PID		sc	DIL SAMPLE	E	REMARKS OR
FEET		GRAPHI LOG	FIELD CLASS.	PBR ଟ	(ppm)	NO.	TYPE	DEPTH	REC.	FIELD OBSERVATIONS
-	Light brown		1		-					
	-									
	Silty Fing				<u> </u>					
5-	Min GAAL	]]								
[ -	some granl	:{+	Sm				γ	5-7	2'	71 mg 1005
	CLADES	. -1					$\forall$	7-8.5	· ·	
	No PA-1					┝┥	K- #		<u> </u>	GIQ
10 —							<b>Z</b>	8.5-105		1000
							X	10,5-11,5	25	
		4					M	11.5-05	2'	675
						<b>├</b> ───┤	$\mathbf{k}$	13.5-14.5	·	1040
5-		<u> </u>	ļ!	<b> </b>		-1		14.5-		1
	poorbj Sorted	17.1			 		X	19	2.5	1045
	fini-stad-st-init	میں اور اور اور اور اور اور اور اور اور اور	GW		 	$\vdash$	X	17-18	11	J185
	Grandi, bute							18-19	1.	סרונ
10-								20-21		no apronay _
	20-25 Grain Size distul				i 1			21-22		1,20 phéto 1,25 photo
ļ	69 % SAND Mg				į	<u>├</u>		22-23	- <del>'</del> ,	1135 1000
) _	11% SILT + CLAY	·~·						13-24	1.	51 40
25-	HARD CAMONTED S END Smarter Scan	محمد المحمد ا المحمد المحمد الم	Sh		<u> </u>					ho ra Gavory _
		£.	╏────┥		<u> </u>	[	X	25-27	い!	doyd acri
	Altronating 1.	h4 . 4					λŧ	6-285	1.5	
-	brown Fing son				⊢ ┥		- <del>1</del> 1	185.205		Mie phot
<b>₹</b> 0 —	and yourly son the	1			!		$\square$			<b>L</b>
	Friend to - mining as	NC19	5m			[	X	30,532	65	mo.
	Sand and Jon 6.		4				X	32-30.5-	1.5	125
	Hard Demented	) S.a. D.54	Gm				Ϋ́	8.5 -35	1.5	1200
32-	30-35 Gramsize	in the second					<del>\</del>	7-265	1 5	1735.1
	30-35 Gransye	ية. مانية				<b>├\$</b>	$\mathbb{A}$	71.5		The phop
	62% SAND	مر ق مر ق					Д	> v5	1.5	
10-	6% SILT & CLAY	1.					X	79-40	0	ME HOALVA
TI	Water Table (24 Hour)	ł		G	RAPHIC LO	OG LEC	GEN			PAGE 1
					'I A Y		EBR			
	). Identifies Sample by Number	n)		s –			IGHLY	H)		Split Space
	E Sample Collection Method				ALT					
	SPLIT- BARREL AUGER	ROCK		s 📖 s	SAND	$\mathbb{Z}$	LAY		SASI	ary Palling
		CORE			GRAVEL	$\mathbb{S}_{s}$		'EY	A. 1	Lower
	THIN- WALLED CONTINUOUS TUBE SAMPLER		Y					EXIST	ING GRAD	ELEVATION (FT AMSL)
1 DE	PTH Depth Top and Bottom of Sam		1	1					TION OR C	GRID COORDINATES
RE	C. Actual Length of Recovered So	iple in Feet	1		461	L_J_	<u> </u>			

rundare its falsei

Contraction of

3

SOIL BORING LOG KM-565

SOIL BORING LOG KM-5655-B

		R-McGEE CORPORATION rology Dept S&EA Division	KM SUBSID		- <b>a</b> l		LOCATION	4.20	~ NI	BOR	ING NBER PC	-70
DE	РТН					BLOWS	PID		OIL SAN		1	<u> </u>
FE	N ET	LITHOLOGIC DESCRIPTIO	N	GRAPHIC LOG	FIELD CLASS.	PER 6'	(ppm)	NO.	DEPT	H REC.		MARKS OR DBSERVATIONS
Ч	0	Mitornioting Light	ocarry	10				X	40-	2.1	- 1300	
	-	sand and poorly		2.0 5 0	2m			<i> </i> ^	42-39	.5 1.5		_
		Jortp & Finit-To 10	anse-	, , , , , , , , ,	Gm				43.5		-	
4.	5-	groine sand and		; ' ; دن					45.5			
	7	gravel 40-45'		, 'O					47	0.7		· _
	-	73 % JAND Mg 5% SILT + CLAY	~	101 (4 2)					48.5	5.0.5	-1 -	_
5	⊶	Gray gravelly					<u> </u>		48.5	-		-
ļ		clay							50-5	2 1.5	1420	<b>&gt;</b> -
		•					<u>ک</u>					-
ຽງ		tonday Creik Formation										-
Γ	-	[0cm&1-0w										_
1							 					-
	-											-
	-											1 
	_											-
							—					_
	_										2	-
	-											-
	_											· _
	-										İ	-
	-						F		Į			-
												-
	_											-
							<u></u>					
	-						<u> </u>					-
F		Water Table (24 Hour)		1	1	G	RAPHIC L			DATE DRILLE		PAGE 2 of 2
	V PID	Water Table (Time of Boring Photoionization Detection (pp	) )				CLAY	DEI FILI	BRIS	9-8-		
Z	NO. TYPE	<ul> <li>Identifies Sample by Number</li> </ul>							ILY ANIC (PEAT)	HJA	w/541	:1 Spoon
EXPLANATION	$\square$	SPLIT- BARREL AUGER	R	OCK ORE			SAND		t t	LOGGED BY	INPLE	Drilling
XPLA							GRAVEL				1 loor	
ľ		WALLED TUBE		io Ecover	RK .				ľ	LXISTING GR	ADE ELEVATIO	N (F1, AMSL) 5-4
	DEP RE	TH Depth Top and Bottom of So C. Actual Length of Recovered	imple Sample in	Feet			CLAYEY SILT		<b> </b>	LOCATION O	r grid Coort	DINATES

TALLA

## ADDENDUM B

)

# Dames and Moore Report on PC-70 Test Boring Grain-Size Analyses

ζ



SEP 1 5 1998

HYDROLOGY 7115 Amigo Street, Suite 110

Las Vegas, Nevada 89119 702 837 1500 Tel 702 837 1600 Fax

DAMES & MOORE

September 10, 1998

Compliance Drilling Corporation P.O. Box 94136 Las Vegas, NV 89193

Attention: Mr. Brian Johnson

#### Subject: Soil Physical Testing and Well Design Assistance Proposed Monitoring Well, Kerr-McGee Chemical Corporation, Henderson, Nevada

Dear Mr. Johnson:

Dames & Moore (D&M) is pleased to provide Compliance Drilling Corporation (Compliance) with this summary of our soil testing and well design recommendations for a proposed groundwater monitoring at Kerr-McGee Chemical Corporation (KMCC). It is our understanding that the proposed well will be 6-inch diameter PVC, have a total depth of about 60 feet below ground surface (bgs), and be screened from slightly above the water table (about 15 feet bgs) to the total depth of the boring. A pilot hole was first drilled in order to log the lithology and to collect soil samples for physical testing.

Four bulk soil samples and a soil boring log were delivered to the D&M Las Vegas office on September 8, 1998. The samples were collected from the intervals of 15-17, 20-25, 30-35, and 40-45 feet bgs. The samples were shipped overnight to D&M's Salt Lake City soils laboratory for grain size analysis. Results of the grain size tests (attached) indicate the soils consist primarily of well graded sands with minor amounts of gravel and fines.

Calculations to determine the optimum screen size and filter pack were performed on the lower three samples. The uppermost sample, 15-17 feet bgs, was not considered because those soils are above the water table according to the boring log. Grain size tests indicate the lower two samples from 30-35 and 40-45 feet bgs are nearly identical, while the sample from 20-25 feet bgs is slightly finer grained. Accordingly, the 20-25 foot sample was determined to be the guiding sample in the screen and filter pack selection.



Compliance Drilling Kerr-McGee Chemical Corporation September 10, 1998 Page 2

Based on the grain size tests and calculations, we recommend a 0.020-inch screen size and a Monterey number 2/12 filter pack or equivalent. We further recommend using a "v"-shaped, continuous wire screen, which should allow for a more thorough development and enhance water yield from the well.

If you have any questions or require additional assistance, please do not hesitate to call.

Sincerely, DAMES & MOORE

Mark H. Allen, R.G., C.E.M. Project Geologist

Attachments: Grain Size Test Results with calculations

cc: Mr. Mark Porterfield, KMCC, via fax, (702) 651-2310 Mr. Steve Lower, KMCC, via fax, (405) 270-4244

C:\OFFICE\WPWIN\WPDOCS\LETTERS\KMCCWEL.LET September 10, 1998

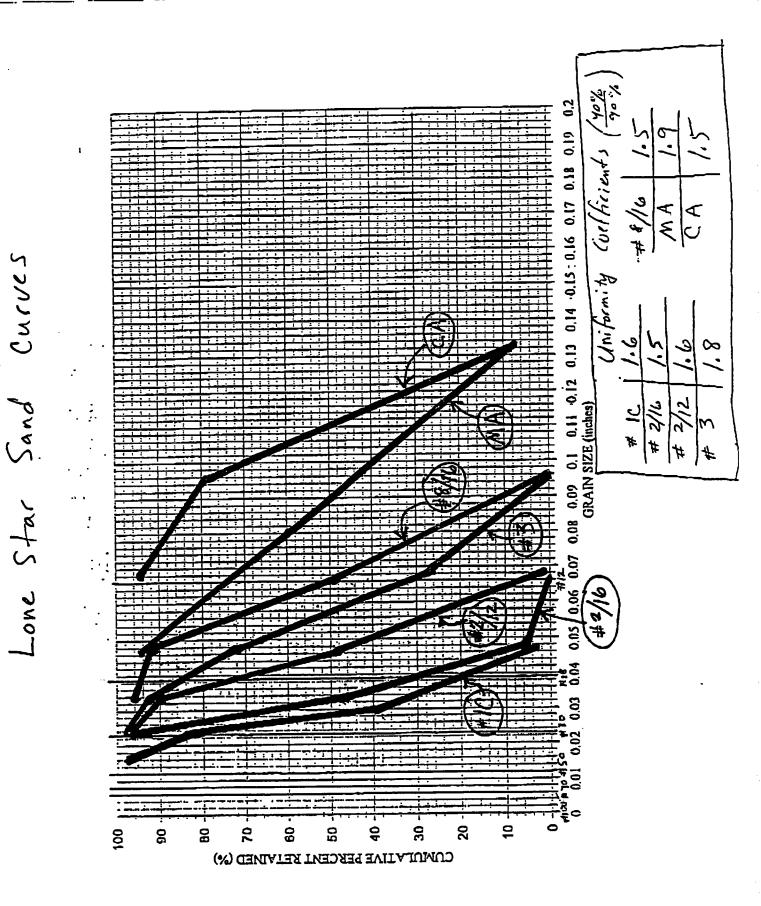
#### 09/09/98 17:04 FAX 909 980 2643

]

]

]

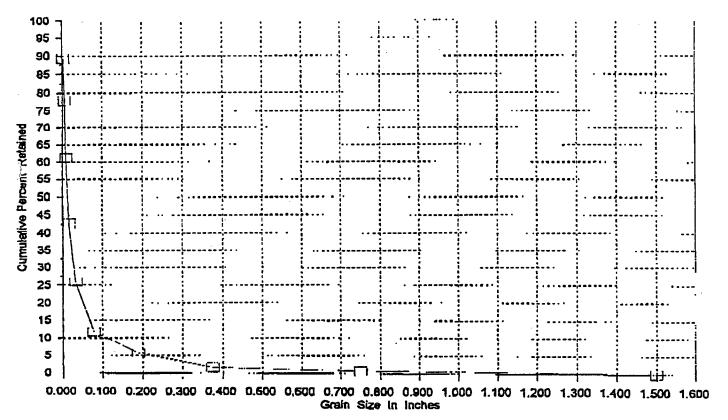
Ι


J

J

11

1


DAMES & MOORE



Ø 002

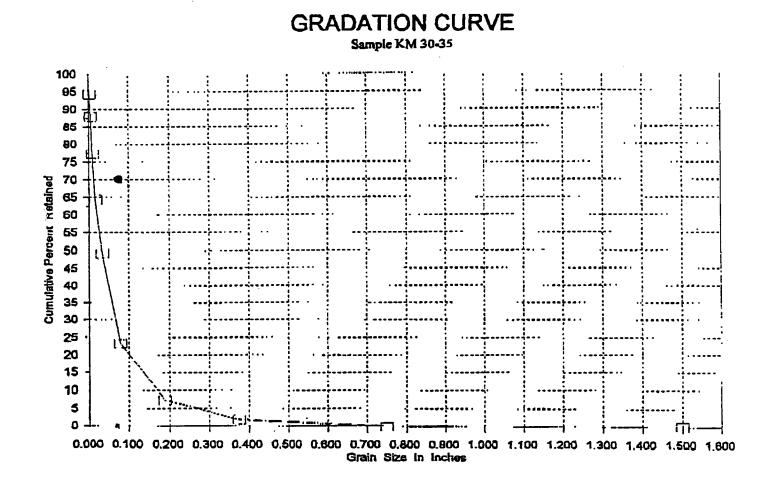
09/09/98 17:04 FAX 909 980 2643	DAMES & MOORE	→ LAS VEGAS	Ø 003
Sep-09-98 05:15P DAMES &	MOORE SOILS LAB	801 521 <u>5013</u>	P.02





<u>09/09/98 1</u> 7:04 FAX 909 980 2643	DAMES & MOORE	→ LAS VEGAS	Ø 004
Sep-09-98 04:52P DAMES & 1	MOORE SOILS LAB	801 521 5013	P-03

Kerr McGee Chemical	Wt soil and dish	88.07
Henderson NV	Dry soil & dish	83.39
	Dish	43.51
Sample KM 20-25	-#4 Total for sieve	160.1
		10001
Moisture Content - 11.7		


Moisture Content --#4 material

SIEVE ANALYSIS as received 1458.5 g Total sample dry 1305.32 g Weight of sample split # 4 143.285 g

	weight		%		
Sieve #	retained	finer	retained	mm	inches
6.0 inch	0	******	0.0	152	6
4.0 inch	0	*****	0.0	100	4
3.0 inch	0	******	0.0	75.0	3
1.5 inch	0	******	0.0	37.5	1.5
3/4 inch	10.35	<del>9</del> 9.21%	0.8	19.0	0.75
3/8 inch	22.24	98.30%	1.7	· 9.5	0.375
# 4	75.08	94.25%	5.8	4.8	0.1895
# 10	9.19	88.20%	11.8	2.0	0.07896
# 20	30.78	74.00%	26.0	0.85	0.03356
# 40	56.47	57.10%	42.9	0.43	0.01698
# 60	84.38	38.75%	61.3	0.25	0.00987
# 100	109.76	22.05%	77.9	0.15	0.00592
# 200	127.16	10.61%	<b>89.4</b> ·	0.075	0.00296

Missin 10.4%

_ 09/09/98 17:04 FAX 909 980 2643	DAMES & MOORE	→ LAS VEGAS	Ø 005
Sep-09-98 05:16P DAMES &	MOORE SOILS LAB	801 521 5013	P.03



$$\frac{90\% \text{ Ret}}{0.0028} \frac{40\% \text{ Ret}}{0.027} \frac{\text{UC}}{9.7} \frac{20\% \text{ Ret}}{0.01} \frac{\text{Factor}}{7} \frac{70\% \text{ Ret}}{0.07} \frac{\text{Factor}}{0.07}$$

$$\frac{8}{9} \frac{0.08}{0.09}$$
MA Lonestar w/ 0.05 slot size, but using finer  $\frac{\pm 2}{12} \frac{\text{W}}{0.02} \frac{\text{slot}}{\text{slot}}$ 

<u>09/09/98 17:0</u> 5 FAX 909 980 2643	DAMES & MOORE	→ LAS VEGAS	Ø 006
Sep-09-98 05:16P DAMES &	MOORE SOILS LAB	801 521 5013	P.04

Kerr McGee Chemical	Wt soil and dish	84.37
Henderson NV	Dry soil & dish	80.5
	Dish	43.79
Sample KM 30-35	-#4 Total for sieve	172.2

Moisture Content = 10.5 -# 4 material

SIEVE ANALYSIS as received 1376.8 g Total sample dry 1245.5 g Weight of sample split # 4 155.778 g

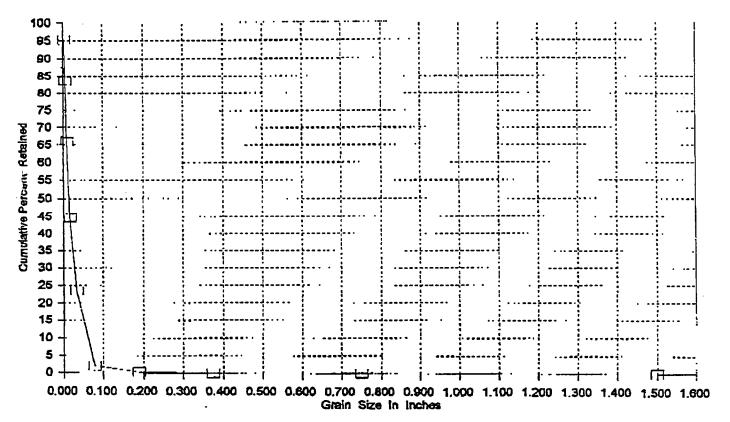
	weight		%		
Sieve #	retained	finer	retained	mm	inches
6.0 inch	0	******	0.0	152	6
4.0 inch	0	******	0.0	100	4
3.0 inch	0	******	0.0	7 <b>5.</b> 0	3
1.5 inch	0	*******	0.0	37.5	1.5
3/4 inch	0	******	0.0	1 <b>9.</b> 0	0.75
3/8 inch	23.94	98.08%	1.9	9.5	0.375
#4	<b>91.8</b> 4	92.63%	7.4	4.8	0.1895
#10	26.7	76.75%	23.2	2.0	0.07896
# 20	70.68	50.60%	49.4	0.85	0.03356
# 40	95.87	35.62%	64.4	0.43	0.01698
# 60	117.72	22.63%	77.4	0.25	0_00987
# 100	135.87	11.84%	88,2	0.15	0.00592
# 200	146.28	5.65%	94.4	0.075	0.00296

09/09/98 17:05 FAX 909 980 2643	DAMES & MOORE	→ LAS VEGAS	Ø 008
Sep-09-98 05:16P DAMES & M	OORE SOILS LAB	801 521 5013	P <u>- 06</u>

Kerr McGee Chemical	Wt soil and dish	108.62
Henderson NV	Dry soil & dish	<b>99.</b> 17
	Dish	43.34
Sample KM 40-45	-#4 Total for sieve	219.7

Moisture Content = 16.9 -# 4 material

SIEVE ANALYSIS as received 1359.9 g Total sample dry 1163.04 g Weight of sample split # 4 187.896 g


	weight		%		
Sieve #	retained	finer	retained	mm	inches
6.0 inch	0	*****	0.0	152	6
4.0 inch	0	******	0.0	100	4
3.0 inch	0	*****	0.0	75.0	3
1.5 inch	0	******	0.0	37.5	1.5
3/4 inch	0	******	0.0	19.0	0.75
3/8 inch	0	*****	0.0	9.5	0.375
#4	3.19	99.73%	0.3	4.8	0.1895
# 10	3.09	98.09%	1.9	2.0	0.07896
# 20	43.8	76.48%	23.5	0.85	0.03356
# 40	83.97	55.16%	44.8	0.43	0.01698
# 60	123.76	34.04%	66.0	0.25	0.00987
# 100	157.45	16.16%	83.8	0.15	0.00592
# 200	178.99	4.73%	95.3	0.075	0.00296

$$\frac{90\% Rt}{0.003} \frac{40\% Rt}{0.019} \frac{UC}{6.3} \frac{78\% Rt}{0.009} \frac{Fuctor}{7} \frac{Fuctor}{0.063} \frac{70\% X}{0.009} \frac{1}{7} \frac{Fuctor}{0.063} \frac{1}{9} \frac{1}{0.072} \frac{1}{9} \frac{1}{0.081} \frac{1}{9} \frac{1}{0.081} \frac{1}{9} \frac{1}{0.081} \frac{1}{9} \frac{1}{0.081} \frac{1}{9} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1$$

# 8/4 Lonestar w/0.05 slot but #2/12 sand \$ 0.02 slot should be fine

09/09/98 17:05 FAX 909 980 2643	DAMES & MOORE	→ LAS VEGAS	Ø 007
Sep-09-98 05:16P DAMES &	MOORE SOILS LAB	801 521 5013	P.05





## ADDENDUM C

NOT CONTRACT OF CONTRACTOR OF STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, ST

11.

18. Mar 16. 2 18 1. 18 18

37 3 7 7

ale and

The second second second second second second second second second second second second second second second s

addaler the fil

- i franki k

States and the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the s

FI dinger commercies

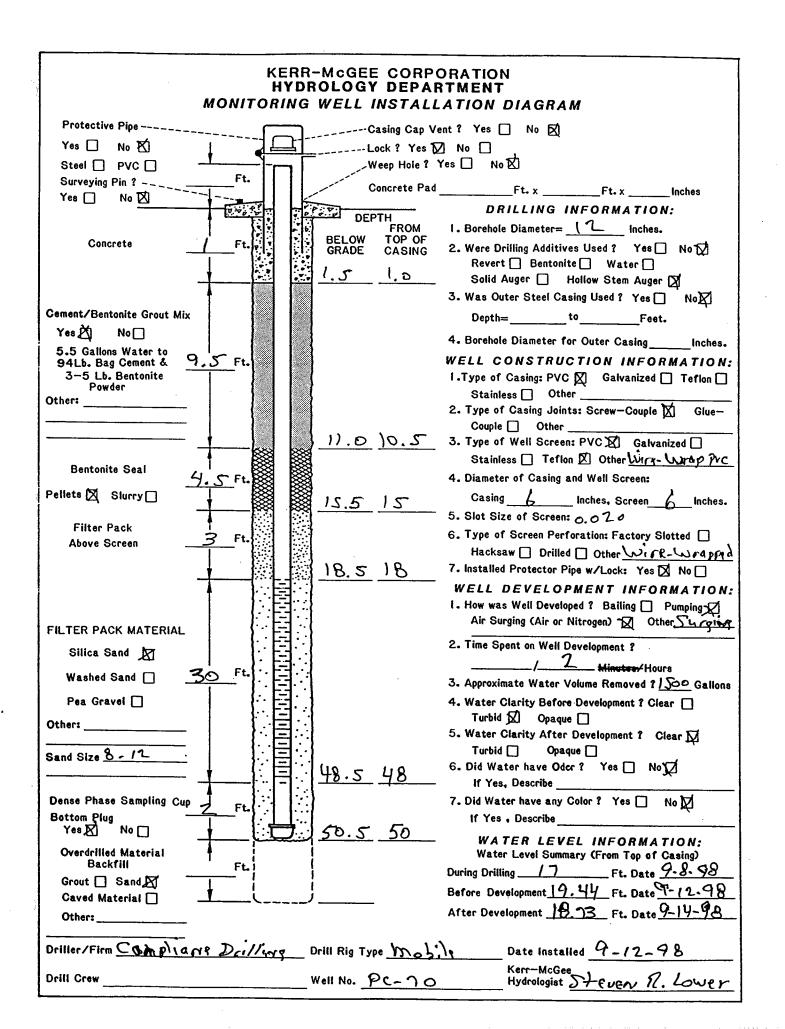
A PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF T

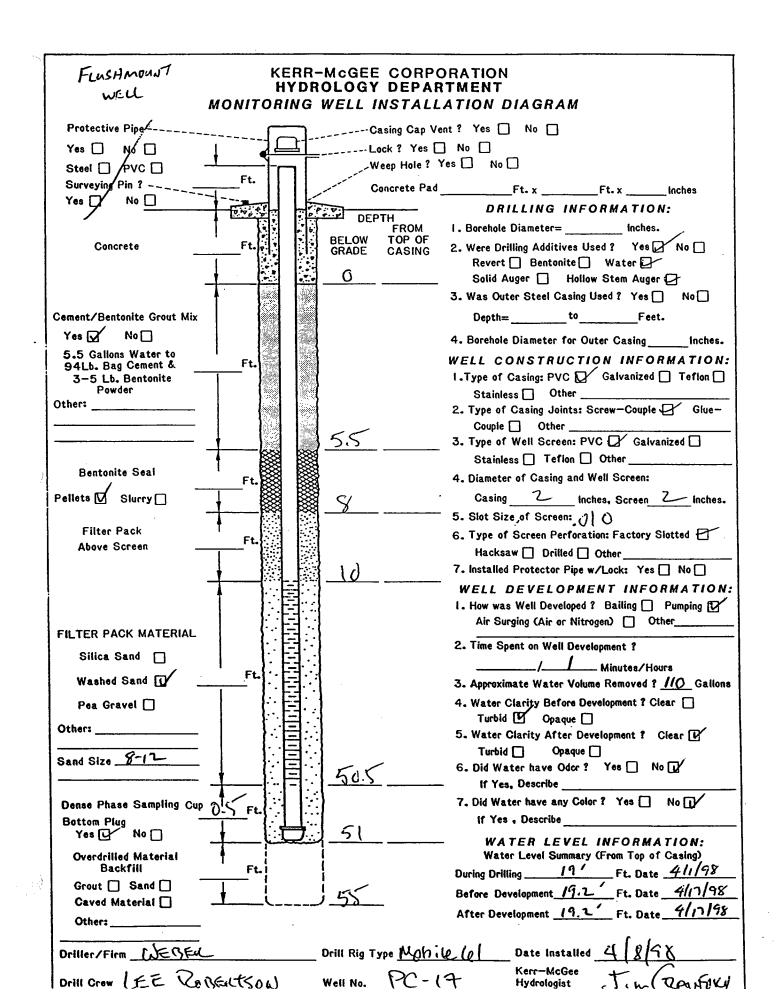
Street with the first of the street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street street stre

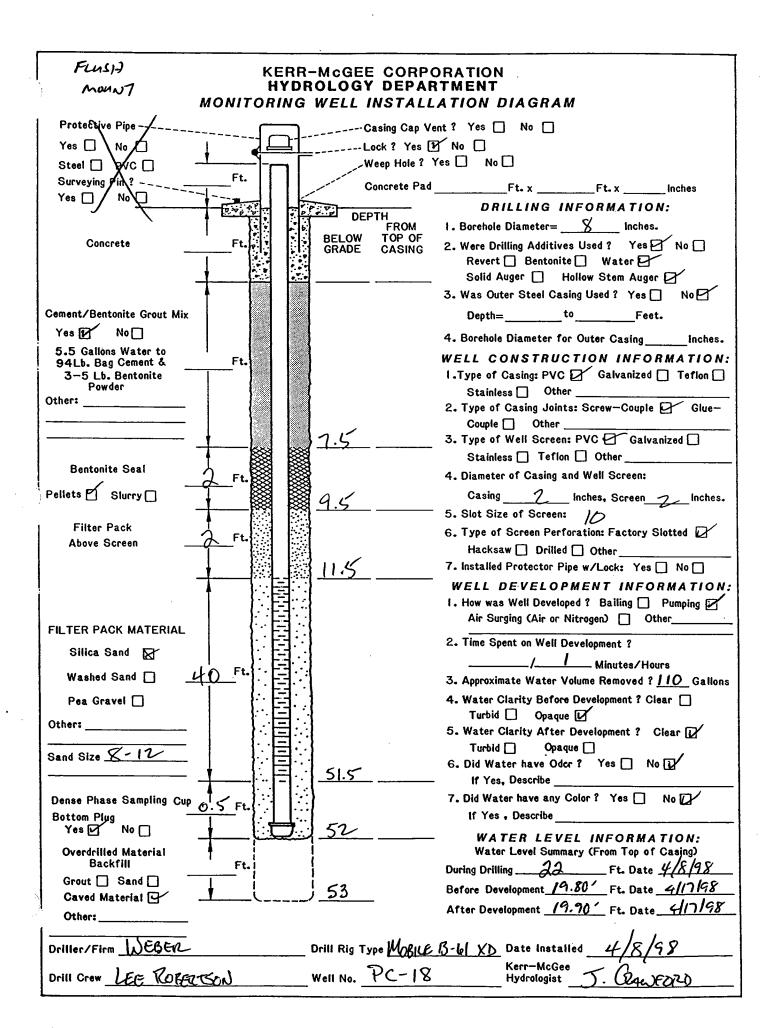
and a second second second second second second second second second second second second second second second

S. M. Mathematica a de la completa de la completa de la completa de la completa de la completa de la completa de la completa de l Completa de la completa de la completa de la completa de la completa de la completa de la completa de la complet

(The second

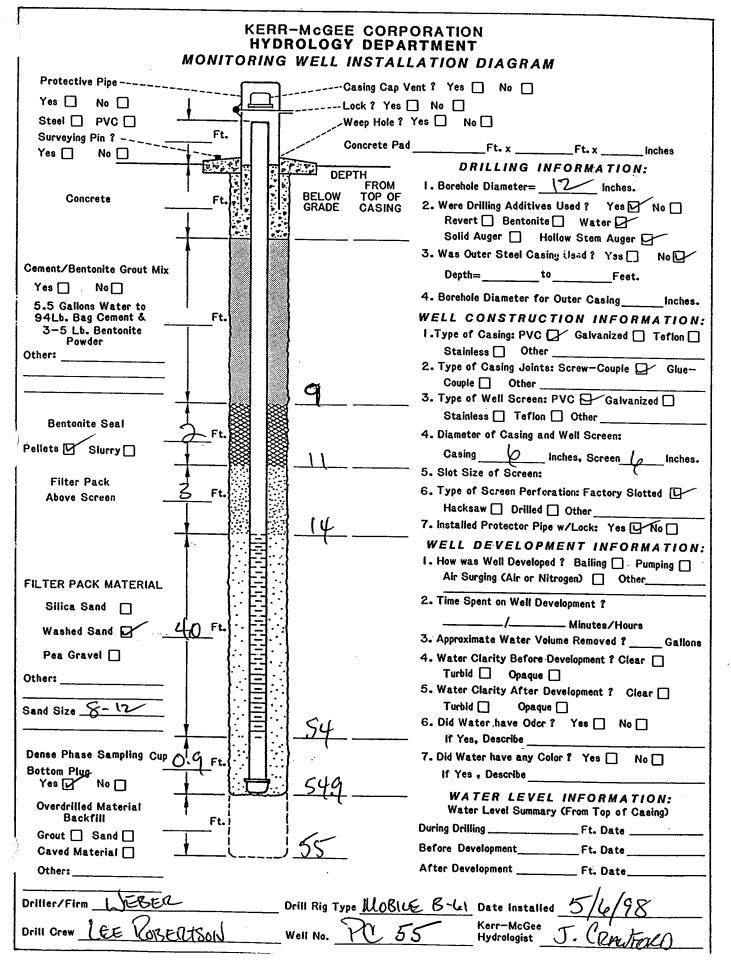

. Na start sa


na la statistication


Sector Maria

ALL STATISTICS

Well Construction Diagrams for Test Well PC-70 and Observation Wells PC-17, PC-18, and PC-55.








3" BLG

a server a server a server a server



# ADDENDUM D

 $M_{\rm eff} \approx 10^{-1}$ 

instra y

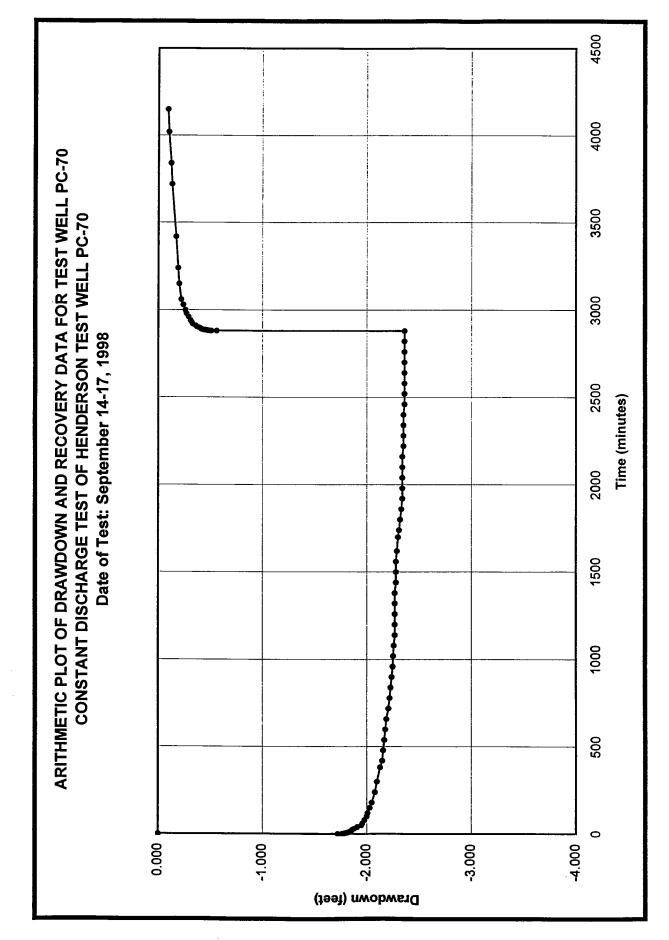
ans.

en produce de la companya de la companya de la companya de la companya de la companya de la companya de la comp Na companya de la companya de la companya de la companya de la companya de la companya de la companya de la comp

an an an Araba an Araba. Ar an Araba an Araba an Araba

Tabulations and Graphs of Drawdown and Recovery Data and Calculations of Aquifer Coefficients for Test Well PC-70

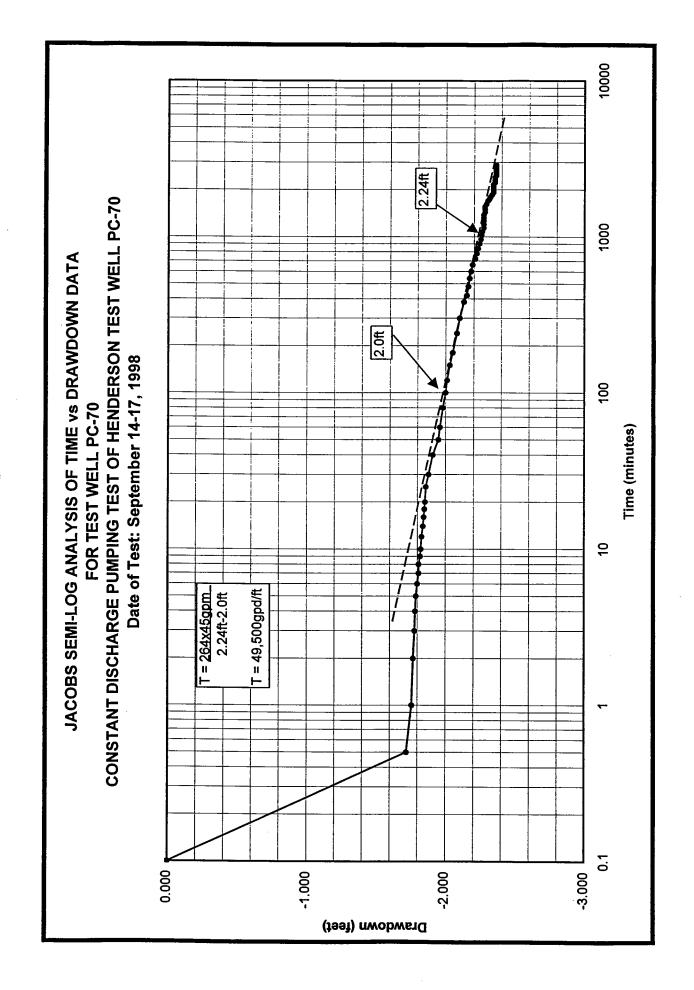
#### Drawdown Data For Pumping Well PC-70 Constant Discharge Test of Henderson Well PC-70 Kerr-McGee Henderson Facility, Henderson, NV Test Date: September 14-17, 1998

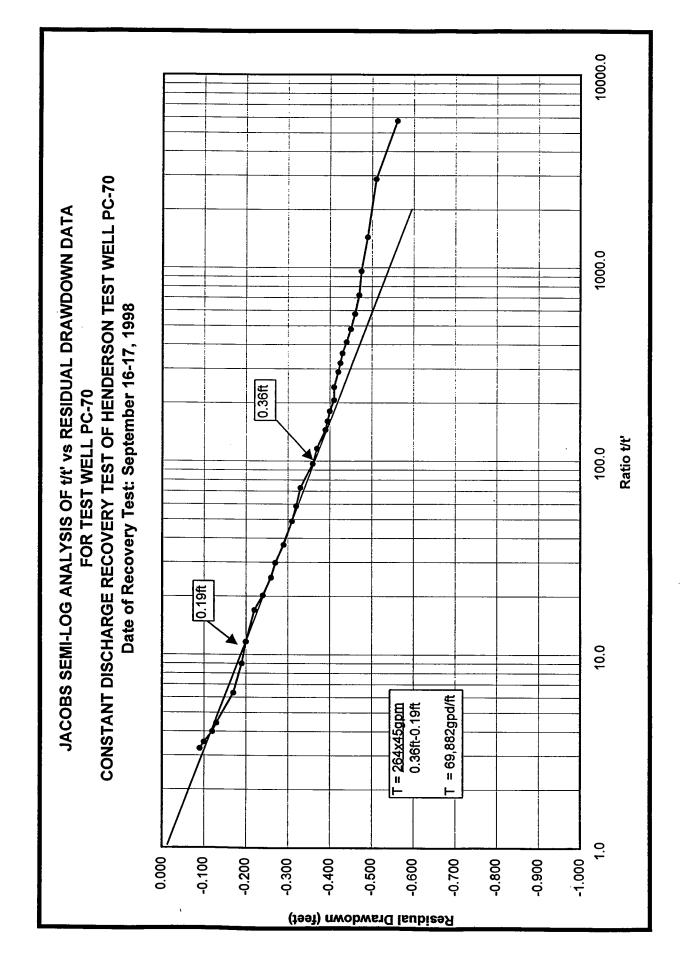

Pre-Test Water Level: 18.73 feet top of casing Pumping Rate: 45gpm

	24 Hour	Elapsed Time Since Test	Depth to		Pumping	
	Clock	Started	Water	Drawdown	Rate	
Date	Time	(minutes)	(feet)	(feet)	(gpm)	Remarks
9/14/98	1500	о	18.730	0.000	0	Static WL
	1500.5	0.5	20.450	1.720	45	
	1501	1	20.490	1.760	45	
	1502 1503	2 3	20.500 20.510	1.770 1.780	45 45	
	1504	4	20.515	1.785	45	
	1505	5	20.520	1.790	45	
	1506	6	20.530	1.800	45	
	1507	7	20.540	1.810	45	
	1508 1509	8 9	20.540 20.550	1.810	45 45	
	1510	10	20.555	1.820 1.825	45	
	1512	12	20,560	1.830	45	
	1514	14	20.570	1.840	45	
	1516	16	20.575	1.845	45	
	1518	18	20.580	1.850	45	
	1520 1525	20 25	20.585 20.590	1.855 1.860	45 45	
	1530	30	20.610	1.880	45	
	1540	40	20.640	1.910	45	
	1550	50	20.680	1.950	45	
	1600	60	20.690	1.960	45	
	1620 1640	80	20.710	1.980	45	
	1700	100 120	20.730 20.740	2.000 2.010	45 45	
	1730	150	20.760	2.010	45	
	1800	180	20.780	2.050	45	
	1900	240	20.810	2.080	45	
	2000	300	20.830	2.100	45	
	2122 2200	382 420	20.860	2.130	45	
	2300	420	20.880 20.890	2.150 2.160	45 45	
9/15/98	2400	540	20.900	2.170	45	
	0100	600	20.910	2.180	45	
	0200	660	20.920	2.190	45	
	0300	720	20.940	2.210	45	
	0400 0500	780 840	20.950 20.960	2.220 2.230	45 45	
	0600	900	20.970	2.230	45 45	
	0700	960	20.980	2.250	45	
	0800	1020	20.985	2.255	45	
	0900	1080	20.990	2.260	45	
	1000 1100	1140 1200	21.000	2.270	45	
	1200	1260	21.000 21.000	2.270 2.270	45 45	
	1300	1320	21.000	2.270	45	
	1400	1380	21.000	2.270	45	
	1500	1440	21.010	2.280	45	
	1600	1500	21.010	2.280	45	
	1700 1800	1560 1620	21.010 21.020	2.280 2.290	45 45	
	1920	1700	21.020	2.290	45 45	
	2000	1740	21.040	2.310	45	
	2100	1800	21.050	2.320	45	
	2200	1860	21.060	2.330	45	
9/16/98	2300	1920	21.070	2.340	45	
10/30	2400 0100	1980 2040	21.070 21.070	2.340 2.340	45 45	
	0200	2100	21.070	2.340	45 45	
	0300	2160	21.070	2.340	45	
	0400	2220	21.080	2.350	45	
	0500	2280	21.080	2.350	45	
	0600 0700	2340	21.080	2.350	45	
	0800	2400 2460	21.080 21.090	2.350 2.360	45 45	
	0900	2520	21.090	2.360	45 45	
	1000	2580	21.090	2.360	45	
	1100	2640	21.090	2.360	45	
	1200	2700	21.090	2.360	45	
	1300	2760	21.090	2.360	45	
	1400 1500	2820 2880	21.090 21.090	2.360 2.360	45 45	Pump Off

Recovery Data for Pumping Well PC-70 Constant Discharge Test of Henderson Well PC-70 Kerr-McGee Henderson Facility, Henderson, NV Test Date: September 14-17, 1998

				-			
Date	24 Hour Clock Time	Time Since Pump Test Started (t, minutes)	Time Since Pump Stopped (t', minutes)	Ratio t/t	Depth to Water (feet)	Residual Drawdown (s', feet)	Remarks
9/16/98	1500	2880.0	0.0	288000.0	21.090	2.360	Pump Off
	1500.5	2880.5	0.5	5761.0	19.290	0.560	i unp on
	1501	2881	1.0	2881.0	19.240	0.510	
	1502	2882	2.0	1441.0	19.220	0.490	
	1503	2883	3.0	961.0	19.205	0.475	
	1504	2884	4.0	721.0	19.200	0.470	
	1505	2885	5.0	577.0	19.190	0.460	
	1506	2886	6.0	481.0	19.180	0.450	
	1507	2887	7.0	412.4	19,170	0.440	
	1508	2888	8.0	361.0	19.160	0.430	
	1509	2889	9.0	321.0	19.155	0.425	
	1510	2890	10.0	289.0	19.150	0.420	
	1512	2892	12.0	241.0	19.140	0.410	
	1514	2894	14.0	206.7	19.140	0.410	
	1516	2896	16.0	181.0	19.130	0.400	
	1518	2898	18.0	161.0	19.125	0.395	
	1520	2900	20.0	145.0	19.120	0.390	
	1525	2905	25.0	116.2	19.100	0.370	
	1530	2910	30.0	97.0	19.090	0.360	
	1540	2920	40.0	73.0	19.060	0.330	
	1550	2930	50.0	58.6	19.050	0.320	
	1600	2940	60.0	49.0	19.040	0.310	
	1620	2960	80.0	37.0	19.020	0.290	
	1640	2980	100.0	29.8	19.000	0.270	
	1700	3000	120.0	25.0	18.990	0.260	
	1730	3030	150.0	20.2	18.970	0.240	
	1800	3060	180.0	17.0	18.950	0.220	
	1930	3150	270.0	11.7	18.930	0.200	
	2100	3240	360.0	9.0	18.920	0.190	
9/17/98	2400	3420	540.0	6.3	18.900	0.170	
	0500	3720	840.0	4.4	18.860	0.130	
	0700	3840	960.0	4.0	18.850	0.120	
	1000	4020	1140.0	<b>3</b> .5	18.830	0.100	
	1210	4150	1270.0	3.3	18.820	0.090	End of Test


Pre-Test Water Level: 18.73 feet below top of casing Pumping Rate: 45gpm




.

.

)





 $\cdot$ 

### CALCULATION OF AQUIFER COEFFICIENTS FOR TEST WELL PC-70 CONSTANT DISCHARGE PUMPING TEST OF PITTMAN LATERAL TEST WELL PC-70

### Jacobs Semi-Log Straight-Line Analysis of Drawdown Data

Transmissivity = 49,500 gallons per day per foot Permeability = 1,547 gallons per day per square foot (49500/32 feet of saturation) Hydraulic Conductivity = 207 feet per day (1547/7.48gallons per cubic foot)

#### Jacobs Semi-Log Straight-Line Analysis of Recovery Data

Transmissivity = 69,882 gallons per day per foot Permeability = 2,184 gallons per day per square foot (69882/32 feet of saturation) Hydraulic Conductivity = 292 feet per day (2184/7.48gallons per cubic foot)

## ADDENDUM E

the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the

**HOWK** 

er Bergar

- Poet

Tabulations and Graphs of Drawdown and Recovery Data and Calculations of Aquifer Coefficients for Test Well PC-17

#### Drawdown Data For Observation Well PC-17 Constant Discharge Test of Henderson Well PC-70 Kerr-McGee Henderson Facility, Henderson, NV Test Date: September 14-17, 1998

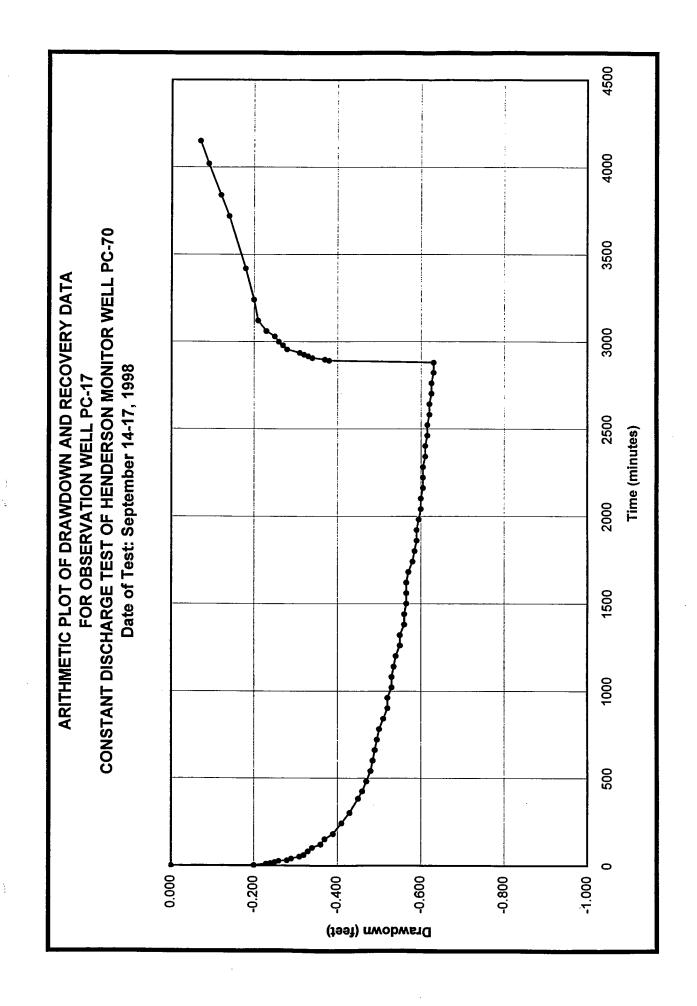
Pre-Test Water Level: 18.10 feet below top of casing Pumping Rate: 45gpm

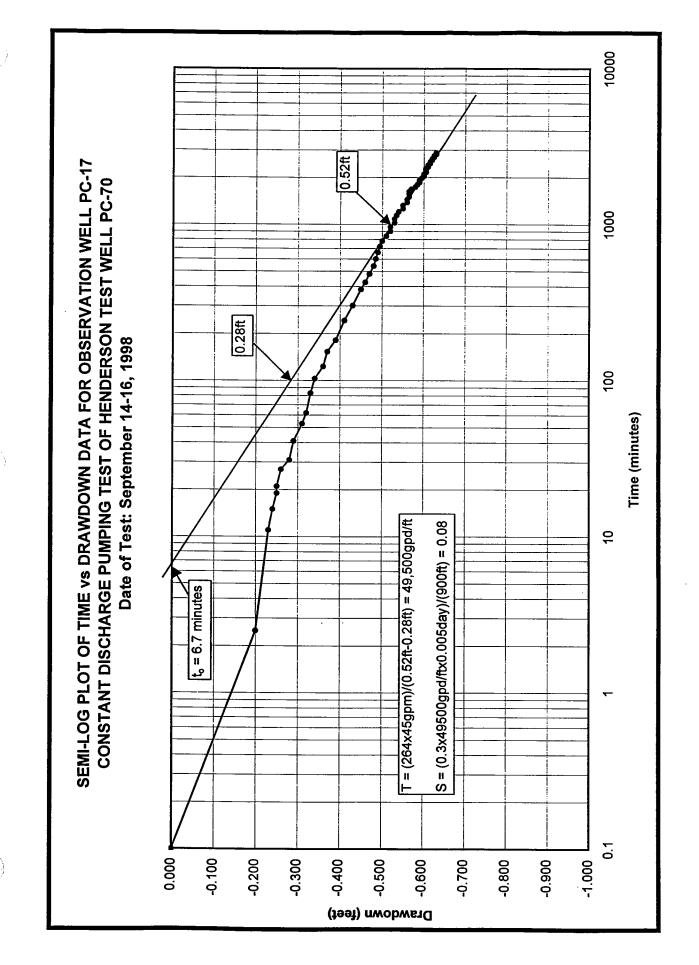
	1	Elapsed Time			r	1
	24 Hour	Since Test	Depth to		Pumping	
Date	Clock Time	Started (minutes)	Water	Drawdown	Rate	D
Dale		(initiales)	(feet)	(feet)	(gpm)	Remarks
9/14/98	1500	0	18.100	0.000	0	Static WL
	1502.5	2.5	18.300	0.200	45	
	1511	11	18.330	0.230	45	
	1515 1519	15 19	18.340 18.350	0.240 0.250	45	
	1521	21	18.350	0.250	45 45	
	1527	27	18.360	0.260	45	
	1531	31	18.380	0.280	45	
	1541	41	18.390	0.290	45	
	1553 1602	53 62	18.410 18.420	0.310	45	
	1623	83	18.430	0.320 0.330	45 45	
	1643	103	18.440	0.340	45	
	1703	123	18.460	0.360	45	
	1732	153	18.470	0.370	45	
	1802	182	18.490	0.390	45	
	1903 2002	243 302	18.510	0.410	45	
	2123	383	18.530 18.550	0.430 0.450	45 45	
	2205	425	18.560	0.460	45	
	2302	482	18.570	0.470	45	
9/15/98	0002	542	18.580	0.480	45	
	0102	602	18.585	0.485	45	
	0302	662 722	18.590 18.595	0.490 0.495	45 45	
	0402	782	18.600	0.495	45	
	0502	842	18.610	0.510	45	
	0602	902	18.620	0.520	45	
	0702	962	18.620	0.520	45	
	0902	1022 1082	18.630 18.630	0.530 0.530	45 45	
	1002	1142	18.635	0.535	45	
	1102	1202	18.640	0.540	45	
	1202	1262	18.650	0.550	45	
	1302	1322	18.650	0.550	45	
	1402 1502	1382 1442	18.660 18.660	0.560 0.560	45 45	
	1602	1502	18.660	0.565	45 45	
	1702	1562	18.665	0.565	45	1
	1802	1622	18.665	0.565	45	
	1902	1682	18.670	0.570	45	
	2002 2102	1742 1802	18.680	0.580	45	
	2202	1862	18.685 18.690	0.585 0.590	45 45	
	2302	1922	18.690	0.590	45	
9/16/98	0002	1982	18.690	0.595	45	
	0102	2042	18.700	0.600	45	
	0202 0302	2102	18.700	0.600	45	
	0302	2162 2222	18.700 18.700	0.605 0.605	45 45	•
	0502	2282	18.700	0.605	45	
	0602	2342	18.710	0.610	45	1
	0702	2402	18.710	0.610	45	
	0802	2462	18.730	0.615	45	
	0902 1002	2522 2582	18.730	0.615	45	1
	1102	2642	18.730 18.730	0.620 0.620	45 45	1
	1202	2702	18.730	0.625	45	
	1302	2762	18.730	0.625	45	
	1402	2822	18.730	0.630	45	
	1500	2880	18.730	0.630	45	Pump Off

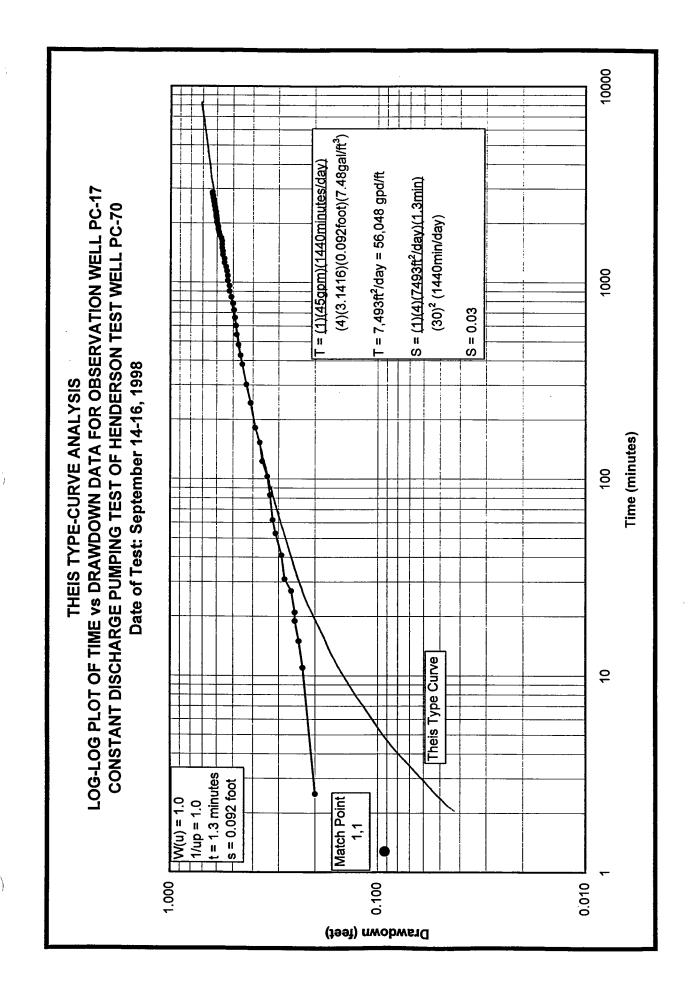
. L.

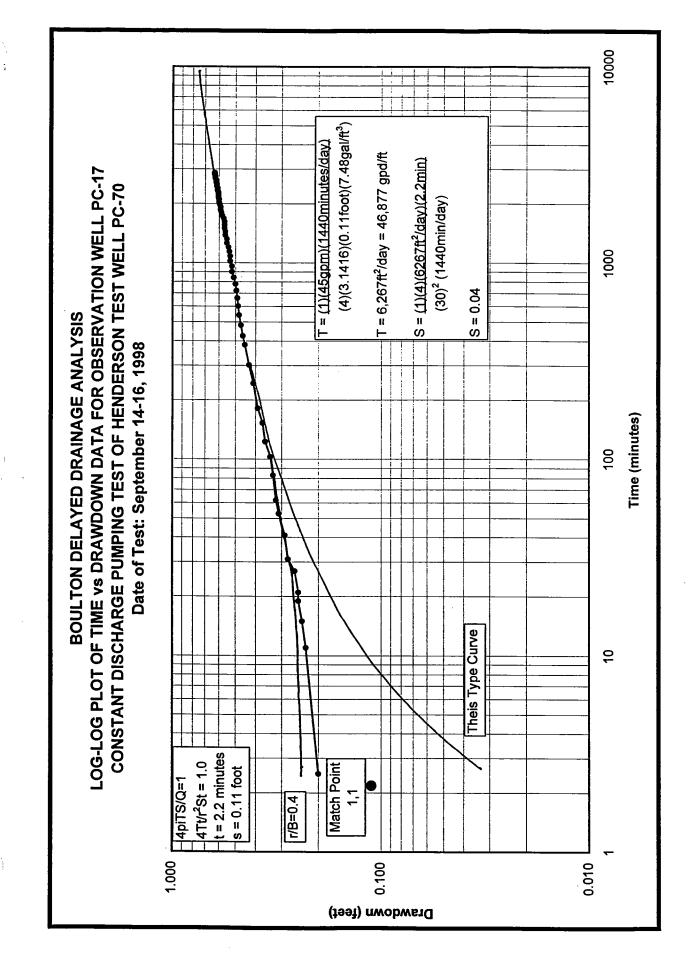
## Recovery Data for Observation Well PC-17 Constant Discharge Test of Henderson Well PC-70 Kerr-McGee Henderson Facility, Henderson, NV Test Date: September 14-17, 1998

			. •	0.			
Date	24 Hour Clock Time	Time Since Pump Test Started (t, minutes)	Time Since Pump Stopped (t', minutes)	Ratio t/ť	Depth to Water (feet)	Residual Drawdown (s', feet)	Remarks
9/16/98	1500 1511 1517 1526 1536 1546 1556 1616 1640 1700 1730 1800 1930 2100	2880 2891 2897 2906 2916 2926 2936 2956 2980 3000 3030 3030 3060 3120 3240	0.0 11.0 17.0 26.0 36.0 46.0 56.0 76.0 100.0 120.0 150.0 180.0 240.0 360.0	288000.0 262.8 170.4 111.8 81.0 63.6 52.4 38.9 29.8 25.0 20.2 17.0 13.0 9.0	18.730 18.480 18.470 18.440 18.430 18.420 18.410 18.380 18.370 18.360 18.350 18.350 18.330 18.310 18.300	0.630 0.380 0.370 0.340 0.330 0.320 0.310 0.280 0.270 0.260 0.250 0.230 0.210 0.200	Pump Off Recovery
9/17/98	2400 0500 0700 1000 1210	3420 3720 3840 4020 4150	540.0 840.0 960.0 1140.0 1270.0	6.3 4.4 4.0 3.5 3.3	18.280 18.240 18.220 18.190 18.170	0.180 0.140 0.120 0.090 0.070	End of Test

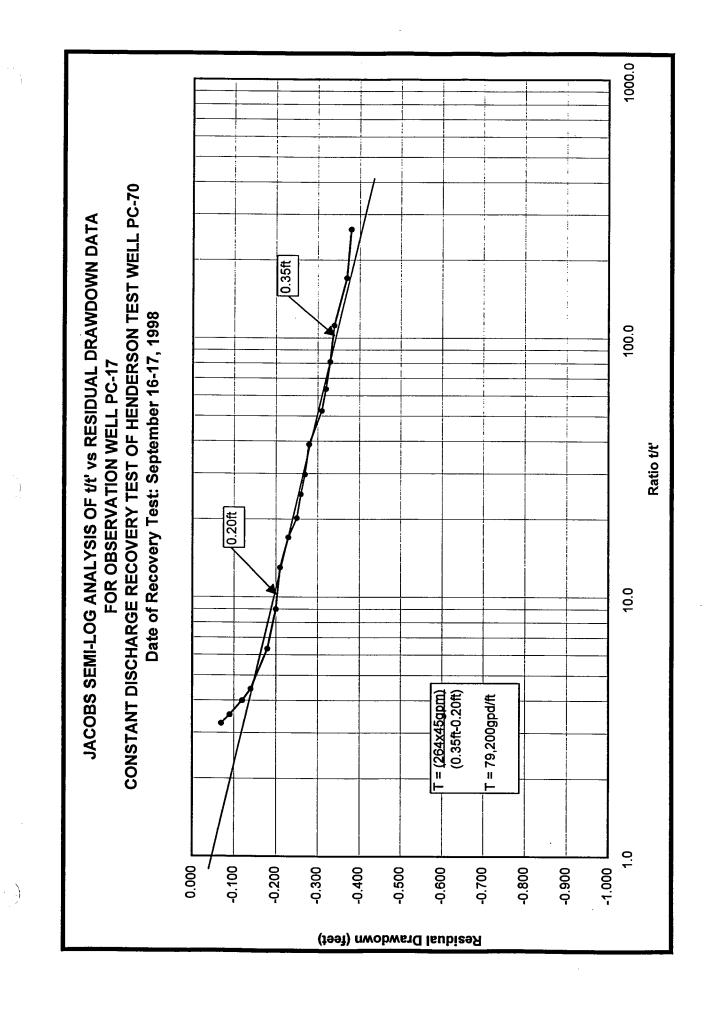

Pre-Test Water Level: 18.10 feet below top of casing Pumping Rate: 45gpm


#### Drawdown Data For Observation Well PC-18 Constant Discharge Test of Henderson Well PC-70 Kerr-McGee Henderson Facility, Henderson, NV Test Date: September 14-17, 1998


Pre-Test Water Level: 19.42 feet top of casing Pumping Rate: 45gpm


	1	Elapsed Time	· · · · · · · · · · · · · · · · · · ·	Γ		· ·
	24 Hour	Since Test	Depth to		Pumping	
0-4-	Clock	Started	Water	Drawdown	Rate	
Date	Time	(minutes)	(feet)	(feet)	(gpm)	Remarks
9/14/98	1500	o	19.420	0.001	0	Static WL
	1513	13	19.490	0.070	45	
	1517	17	19.500	0.080	45	
	1522	22	19.510	0.090	45	
	1528	28	19.510	0.090	45	
	1533 1543	33 43	19.520	0.100	45	
	1545	43 55	19.530 19.540	0.110 0.120	45 45	
	1604	64	19.550	0.120	45 45	
	1625	85	19.560	0.140	45	
	1645	105	19,560	0.140	45	1
	1705	125	19.570	0.150	45	
•	1734	154	19.590	0.170	45	
	1804	184	19.600	0.180	45	
	1905	245	19.620	0.200	45	
	2005	305	19.640	0.220	45	
	2125 2207	385	19.650	0.230	45	
	2304	427 484	19.670 19.670	0.250	45 45	
9/15/98	0004	544	19.690	0.250 0.270	45	
0/10/00	0104	604	19.700	0.280	45	
	0204	664	19.705	0.285	45	
	0304	724	19.710	0.290	45	
	0404	784	19.715	0.295	45	
	0504	844	19.720	0.300	45	
	0604	904	19.730	0.310	45	
	0704	964	19.730	0.310	45	
	0804	1024	19.740	0.320	45	
	0904	1084 1144	19.750	0.330	45	[
	1104	1204	19.760 19.770	0.340 0.350	45 45	
	1204	1264	19.770	0.350	45	[
	1304	1324	19.770	0.350	45	ļ
	1404	1384	19.770	0.350	45	1
	1504	1444	19.770	0.350	45	1
	1604	1504	19.770	0.350	45	1
	1704	1564	19.770	0.350	45	
	1804	1624	19.770	0.350	45	
	1904 2004	1684 1744	19.775	0.355	45	ĺ
	2104	1804	19.775 19.780	0.355 0.360	45 45	
	2204	1864	19.790	0.370	45	1
	2304	1924	19.790	0.370	45	
9/16/98	0004	1984	19.790	0.370	45	
	0104	2044	19.800	0.380	45	
	0204	2104	19.800	0.380	45	
	0304	2164	19.800	0.380	45	
	0404	2224	19.810	0.390	45	
	0504 0604	2284 2344	19.810	0.390	45	1
	0704	2344 2404	19.810 19.820	0.390	45 45	1
	0804	2464	19.820	0.400	45	
	0904	2524	19.830	0.400	45	1
	1004	2584	19.830	0.410	45	
	1104	2644	19.830	0.410	45	1
	1204	2704	19.830	0.410	45	1
	1304	2764	19.835	0.415	45	1
	1404	2824	19.835	0.415	45	
	1500	2880	19.840	0.420	45	Pump Off

ì










. '



1. 1911 - 11

# CALCULATION OF AQUIFER COEFFICIENTS FOR OBSERVATION WELL PC-17 CONSTANT DISCHARGE PUMPING TEST OF PITTMAN LATERAL TEST WELL PC-70

#### Jacobs Semi-Log Straight-Line Analysis of Drawdown Data

Transmissivity = 49,500 gallons per day per foot Permeability = 1,500 gallons per day per square foot (49500/33 feet of saturation) Hydraulic Conductivity = 201 feet per day (1500/7.48gallons per cubic foot) Storage Coefficient = 0.08

#### Theis Log-Log Type Curve Match Analysis of Drawdown Data

Transmissivity = 56,048 gallons per day per foot Permeability = 1,698 gallons per day per square foot (56048/33 feet of saturation) Hydraulic Conductivity = 227 feet per day (1698/7.48gallons per cubic foot) Storage Coefficient = 0.08

# Boulton Log-Log Delayed Drainage Curve Match Analysis of Drawdown Data

Transmissivity = 46,877 gallons per day per foot Permeability = 1,421 gallons per day per square foot (46877/33 feet of saturation) Hydraulic Conductivity = 190 feet per day (1421/7.48gallons per cubic foot) Storage Coefficient = 0.09

### Jacobs Semi-Log Straight-Line Analysis of Recovery Data

Transmissivity = 79,200 gallons per day per foot Permeability = 2,400 gallons per day per square foot (79200/33 feet of saturation) Hydraulic Conductivity = 321 feet per day (2400/7.48gallons per cubic foot)

# ADDENDUM F

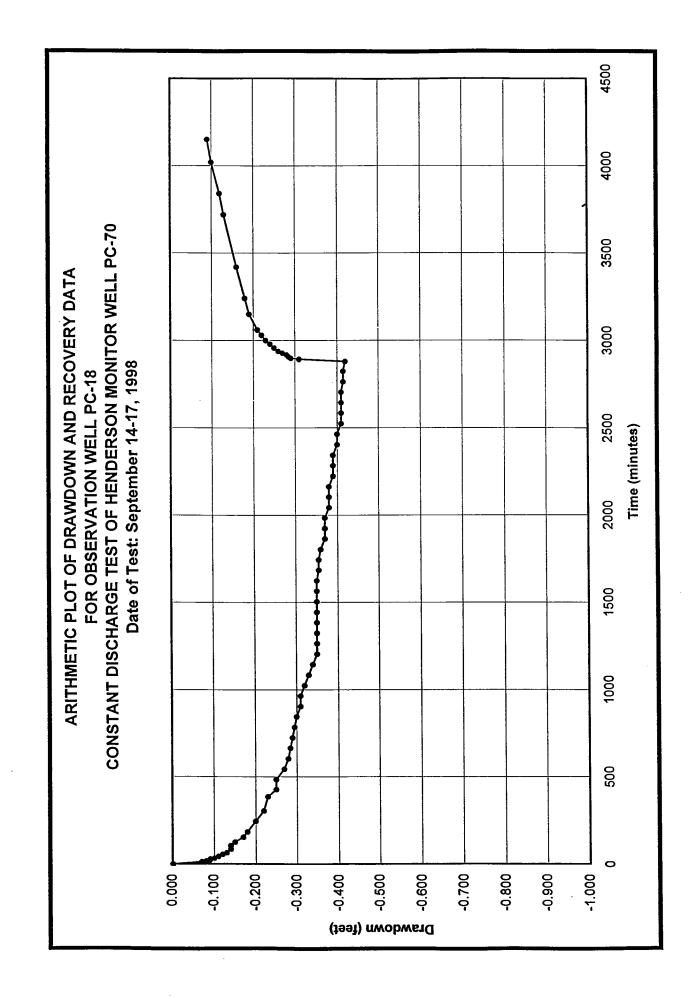
TOWNSON TANK SHOLL SHART A WARRANT PROPERTY AND SHART AND SHART AND SHART AND SHART AND SHART AND SHART AND SHART

A Cartan and the second

> a start and shall 1.1

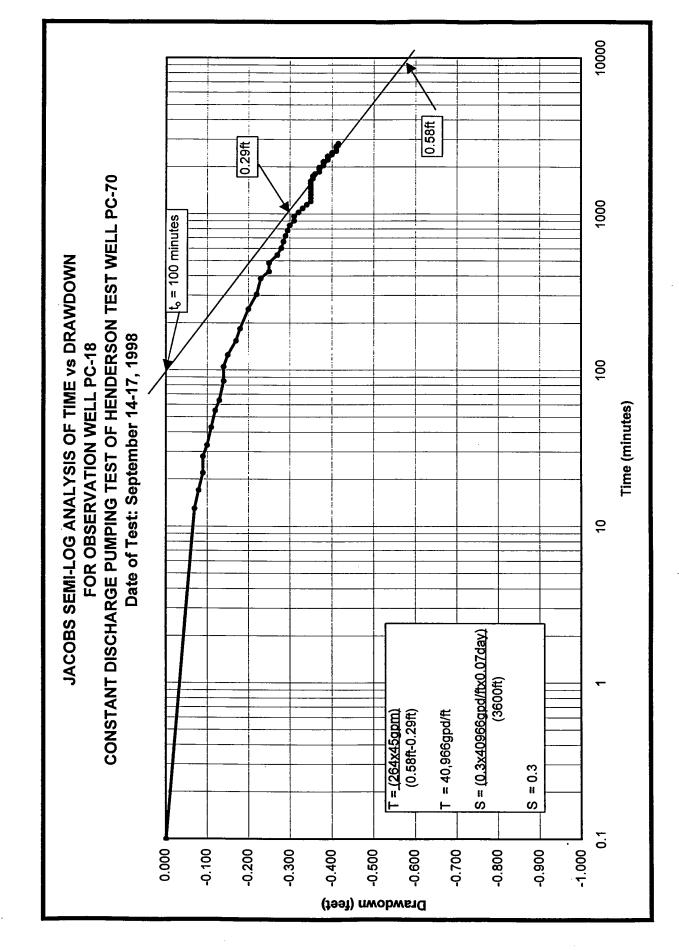
Tabulations and Graphs of Drawdown and Recovery Data and Calculations of Aquifer Coefficients for Test Well PC-18

#### Drawdown Data For Observation Well PC-18 Constant Discharge Test of Henderson Well PC-70 Kerr-McGee Henderson Facility, Henderson, NV Test Date: September 14-17, 1998


Pre-Test Water Level: 19.42 feet top of casing

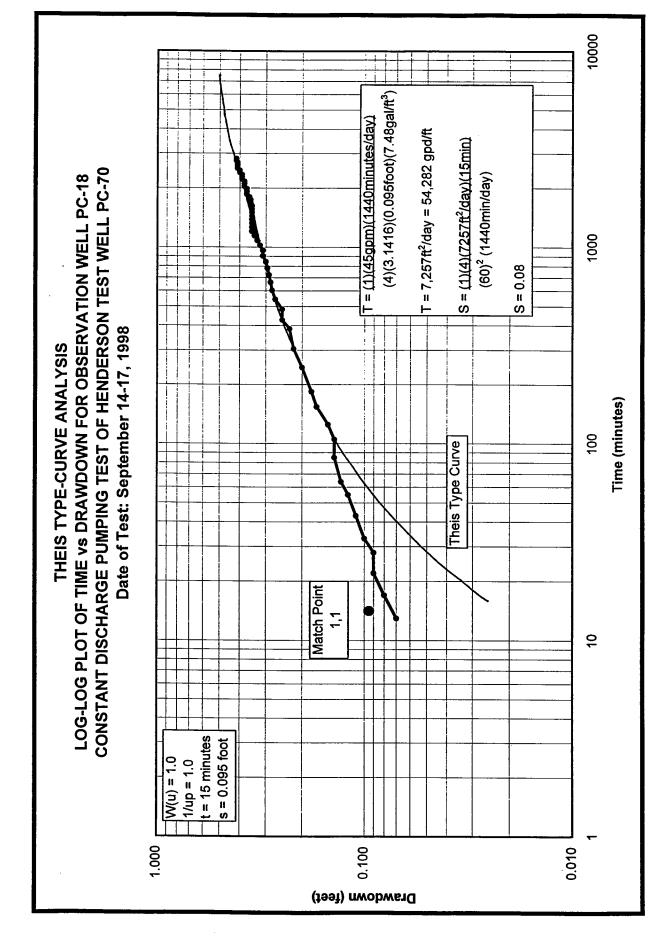
Pumping Rate: 45gpm								
Date	24 Hour Clock Time	Elapsed Time Since Test Started (minutes)	Depth to Water (feet)	Drawdown (feet)	Pumping Rate (gpm)	Remarks		
9/14/98	1500 1513 1517 1522	0 13 17 22	19.420 19.490 19.500 19.510	0.001 0.070 0.080 0.090	0 45 45 45	Static WL		
	1528 1533 1543 1555 1604	28 33 43 55 64	19.510 19.520 19.530 19.540 19.550	0.090 0.100 0.110 0.120 0.130	45 45 45 45 45			
	1625 1645 1705 1734 1804	85 105 125 154 184	19.560 19.560 19.570 19.590 19.600	0.140 0.140 0.150 0.170 0.180	45 45 45 45 45			
	1905 2005 2125 2207	245 305 385 427	19.620 19.640 19.650 19.670	0.200 0.220 0.230 0.250	45 45 45 45 45			
9/15/98	2304 0004 0104 0204 0304	484 544 604 664 724	19.670 19.690 19.700 19.705 19.710	0.250 0.270 0.280 0.285 0.290	45 45 45 45			
	0404 0504 0604 0704 0804	784 844 904 964 1024	19.715 19.720 19.730 19.730 19.740	0.295 0.300 0.310 0.310 0.320	45 45 45 45 45 45			
	0904 1004 1104 1204 1304	1084 1144 1204 1264 1324	19.750 19.760 19.770 19.770	0.330 0.340 0.350 0.350 0.350	45 45 45 45 45			
	1304 1404 1504 1604 1704	1324 1384 1444 1504 1564	19.770 19.770 19.770 19.770 19.770 19.770	0.350 0.350 0.350 0.350 0.350	45 45 45 45			
	1804 1904 2004 2104	1624 1684 1744 1804 1864	19.770 19.775 19.775 19.780	0.350 0.355 0.355 0.360 0.370	45 45 45 45 45 45			
9/16/98	2204 2304 0004 0104 0204	1004 1924 1984 2044 2104	19.790 19.790 19.790 19.800 19.800	0.370 0.370 0.380 0.380	45 45 45 45 45			
	0304 0404 0504 0604	2164 2224 2284 2344	19.800 19.810 19.810 19.810	0.380 0.390 0.390 0.390 0.400	45 45 45 45 45			
	0704 0804 0904 1004 1104	2404 2464 2524 2584 2644	19.820 19.820 19.830 19.830 19.830	0.400 0.400 0.410 0.410 0.410	45 45 45 45			
	1204 1304 1404 1500	2704 2764 2824 2880	19.830 19.835 19.835 19.840	0.410 0.415 0.415 0.420	45 45 45 45	Pump Off		

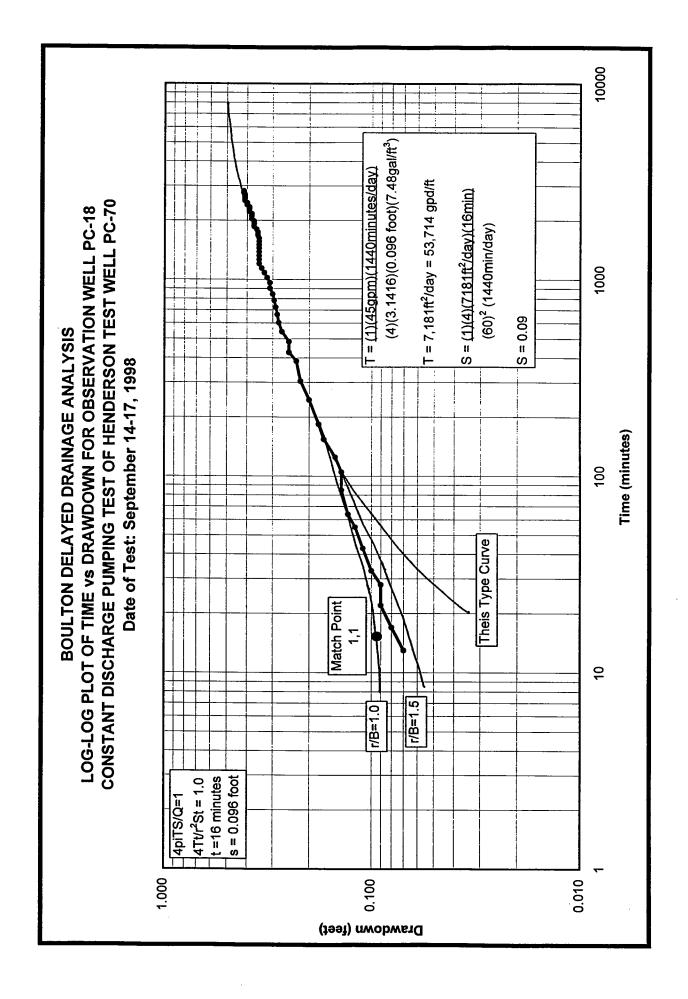
# Recovery Data for Observation Well PC-18 Constant Discharge Test of Henderson Well PC-70 Kerr-McGee Henderson Facility, Henderson, NV Test Date: September 14-17, 1998

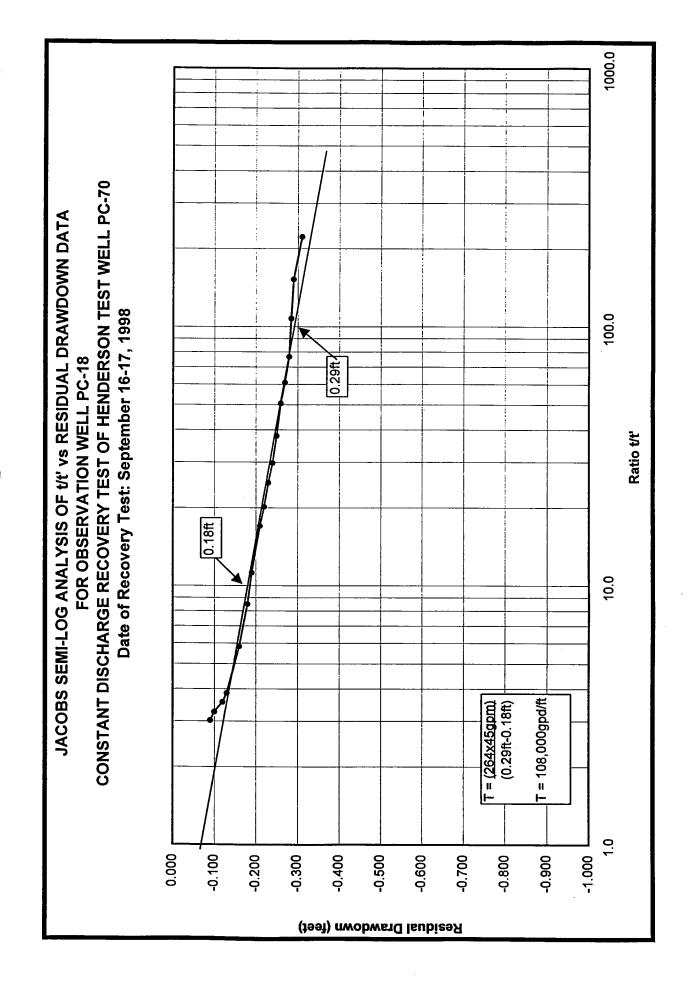

			· · · · · · · · · · · · · · · · · · ·				
Date	24 Hour Clock Time	Time Since Pump Test Started (t, minutes)	Time Since Pump Stopped (t', minutes)	Ratio t/ť	Depth to Water (feet)	Residual Drawdown (s', feet)	Remarks
9/16/98 9/17/98	1500 1513 1519 1527 1538 1548 1558 1618 1640 1700 1730 1730 1800 1930 2100 2400	2880 2893 2899 2907 2918 2928 2938 2938 2958 2980 3000 3030 3030 3050 3150 3150 3240 3420	0.0 13.0 19.0 27.0 38.0 48.0 58.0 78.0 100.0 120.0 150.0 180.0 270.0 360.0 540.0	288000.0 222.5 152.6 107.7 76.8 61.0 50.7 37.9 29.8 25.0 20.2 17.0 11.7 9.0 6.3	19.840 19.730 19.710 19.705 19.700 19.690 19.680 19.670 19.650 19.650 19.640 19.630 19.610 19.600 19.580	0.420 0.310 0.290 0.285 0.280 0.270 0.260 0.250 0.240 0.230 0.230 0.210 0.210 0.190 0.180 0.160	Pump Off Recovery
	0500 0700 1000 1210	3720 3840 4020 4150	840.0 960.0 1140.0 1270.0	4.4 4.0 3.3 3.0	19.550 19.540 19.520 19.510	0.130 0.120 0.100 0.090	End of Test

Pre-Test Water Level: 19.42 feet below top of casing Pumping Rate: 45gpm




1000 C


.




1.1

•







 $\left( \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right)$ 

# CALCULATION OF AQUIFER COEFFICIENTS FOR OBSERVATION WELL PC-18 CONSTANT DISCHARGE PUMPING TEST OF PITTMAN LATERAL TEST WELL PC-70

### Jacobs Semi-Log Straight-Line Analysis of Drawdown Data

Transmissivity = 40,966 gallons per day per foot Permeability = 1,241 gallons per day per square foot (40,966/33 feet of saturation) Hydraulic Conductivity = 166 feet per day (1241/7.48gallons per cubic foot) Storage Coefficient = 0.03

# Theis Log-Log Type Curve Match Analysis of Drawdown Data

Transmissivity = 54,282 gallons per day per foot Permeability = 1,645 gallons per day per square foot (54282/33 feet of saturation) Hydraulic Conductivity = 220 feet per day (1645/7.48gallons per cubic foot) Storage Coefficient = 0.08

# Boulton Log-Log Delayed Drainage Curve Match Analysis of Drawdown Data

Transmissivity = 53,714 gallons per day per foot Permeability = 1,628 gallons per day per square foot (53714/33 feet of saturation) Hydraulic Conductivity = 218 feet per day (1628/7.48gallons per cubic foot) Storage Coefficient = 0.09

#### Jacobs Semi-Log Straight-Line Analysis of Recovery Data

Transmissivity = 108,000 gallons per day per foot Permeability = 3,273 gallons per day per square foot (108000/33 feet of saturation) Hydraulic Conductivity = 438 feet per day (3273/7.48gallons per cubic foot)

# ADDENDUM G

Sec. Sec. Sec. 24

SET HER STATE

Mary Sales

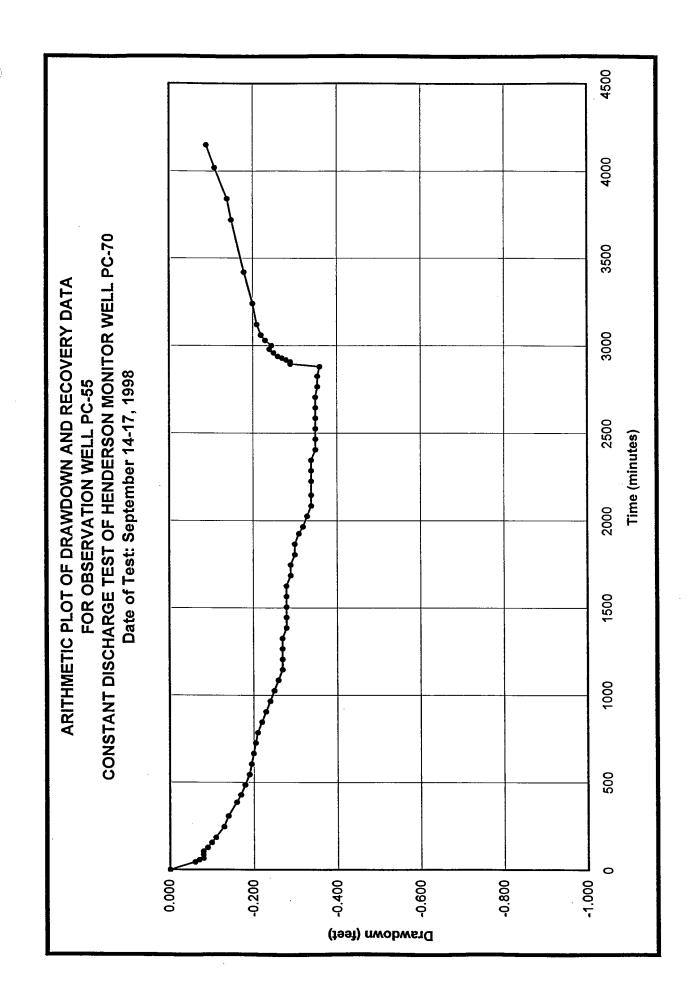
-Terret etc

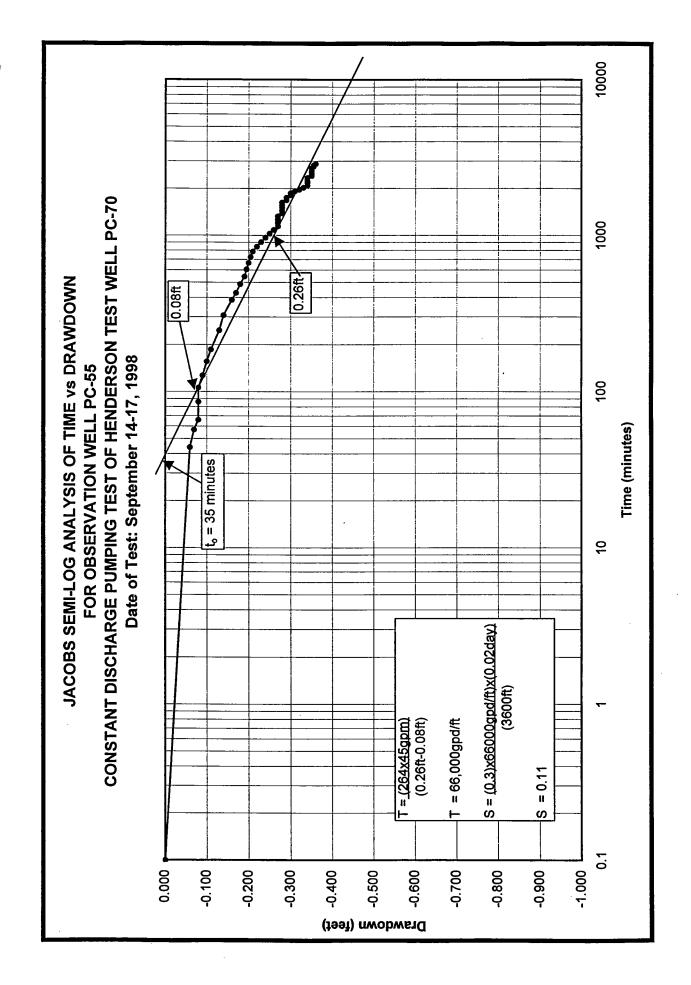
Tabulations and Graphs of Drawdown and Recovery Data and Calculations of Aquifer Coefficients for Test Well PC-55

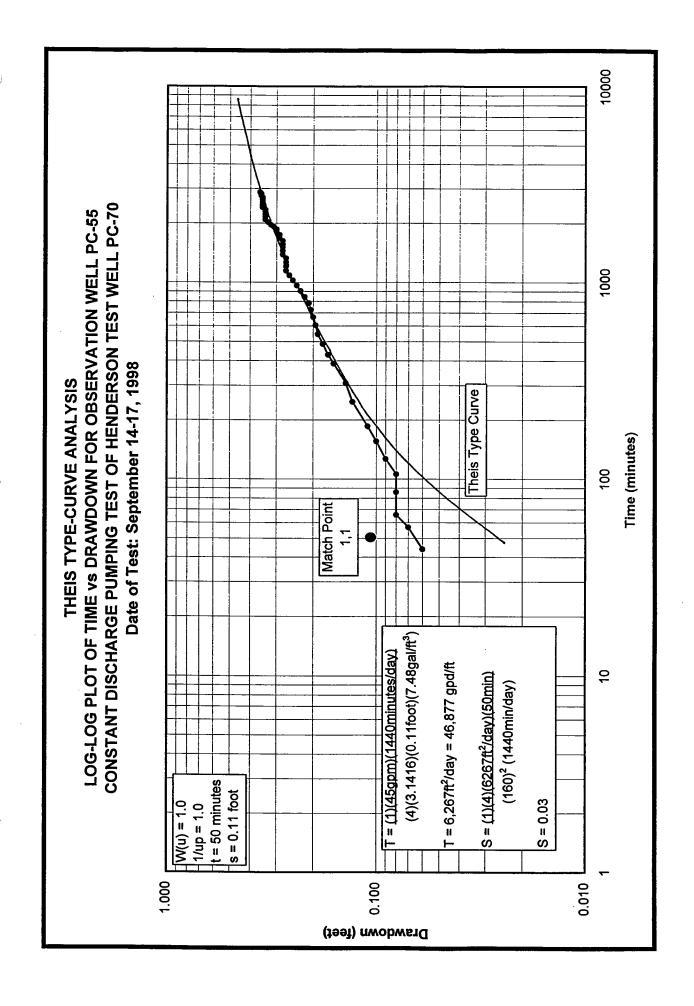
#### Drawdown Data For Observation Well PC-55 Constant Discharge Test of Henderson Well PC-70 Kerr-McGee Henderson Facility, Henderson, NV Test Date: September 14-17, 1998

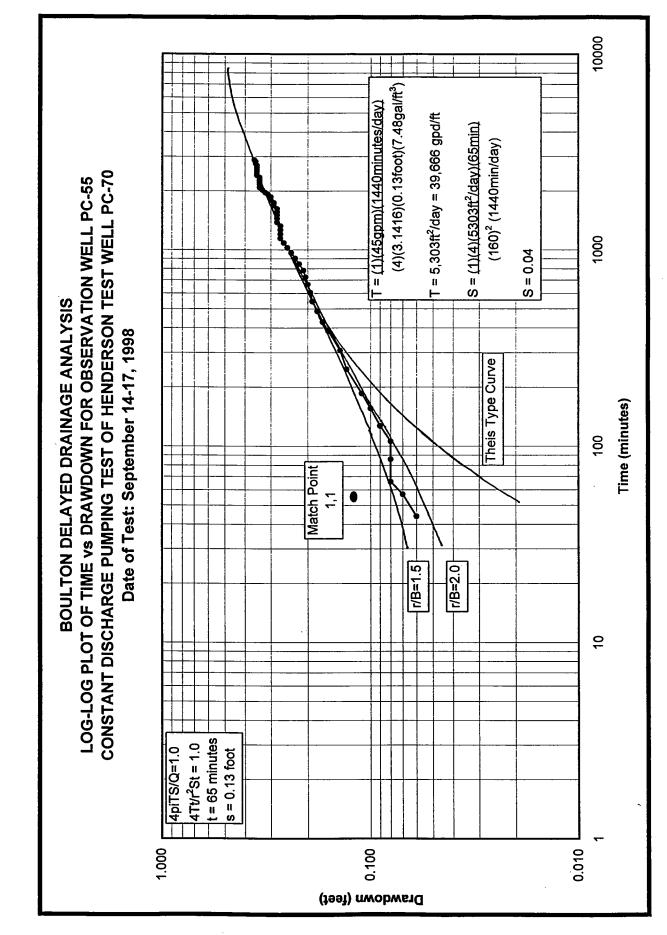
Pre-Test Water Level: 17.87 feet top of casing Pumping Rate: 45gpm

	·····	Lipport Time	· ······	· · · · · · · · · · · · · · · · · · ·	r	
	24 Hour	Elapsed Time Since Test	Depth to		Pumping	
<b>-</b> .	Clock	Started	Water	Drawdown	Rate	
Date	Time	(minutes)	(feet)	(feet)	(gpm)	Remarks
9/14/98	1500	0	17.870	0.000	o	Static WL
	1544	44	17.930	0.060	45	
	1557	57	17.940	0.070	45	1
	1606	66	17.950	0.080	45	ł
	1626 1646	86	17.950	0.080	45	
	1707	106	17.950	0.080	45	
	1736	127 156	17.960 17.970	0.090	45	
	1806	186	17.980	0.100 0.110	45 45	
	1907	247	18.000	0.130	45	
	2008	308	18.010	0.130	45	
	2127	387	18.030	0.160	45	
	2209	429	18.040	0.170	45	
	2307	487	18.050	0.180	45	
9/15/98	0006	546	18.060	0.190	45	}
	0106	606	18.065	0.195	45	
	0206	666	18.070	0.200	45	
	0306	726	18.075	0.205	45	
	0406	786	18.080	0.210	45	
	0506	846	18.090	0.220	45	
	0706	906 966	18.100	0.230	45	
	0806	1026	18.110	0.240	45	
	0906	1026	18.120 18.130	0.250	45 45	
	1006	1146	18.140	0.260 0.270	45 45	
	1106	1206	18.140	0.270	45	
	1206	1266	18.140	0.270	45	
	1306	1326	18.140	0.270	45	
	1406	1386	18,150	0.280	45	
	1506	1446	18.150	0.280	45	
	1606	1506	18.150	0.280	45	
	1706	1566	18.150	0.280	45	
	1806	1626	18.150	0.280	45	
	1906	1686	18.160	0.290	45	
	2006 2106	1746	18.160	0.290	45	
	2106	1806 1866	18.170	0.300	45	
	2306	1926	18.170	0.300	45	
9/16/98	0006	1926	18.180 18.190	0.310 0.320	45 45	
	0106	2026	18.200	0.320	45 45	
	0206	2086	18,210	0.340	45	
	0306	2164	18.210	0.340	45	
	0406	2226	18.210	0.340	45	
	0506	2286	18.210	0.340	45	
	0606	2346	18.210	0.340	45	
	0706	2406	18.220	0.350	45	
	0806	2466	18.220	0.350	45	
	0906	2526	18.220	0.350	45	
	1006	2586	18.220	0.350	45	
	1106	2646	18.220	0.350	45	
	1206 1306	2706 2766	18.220	0.350	45	
	1406	2766	18.225	0.355	45	
	1500	2880	18.225 18.230	0.355 0.360	45 45	Pump Off


)

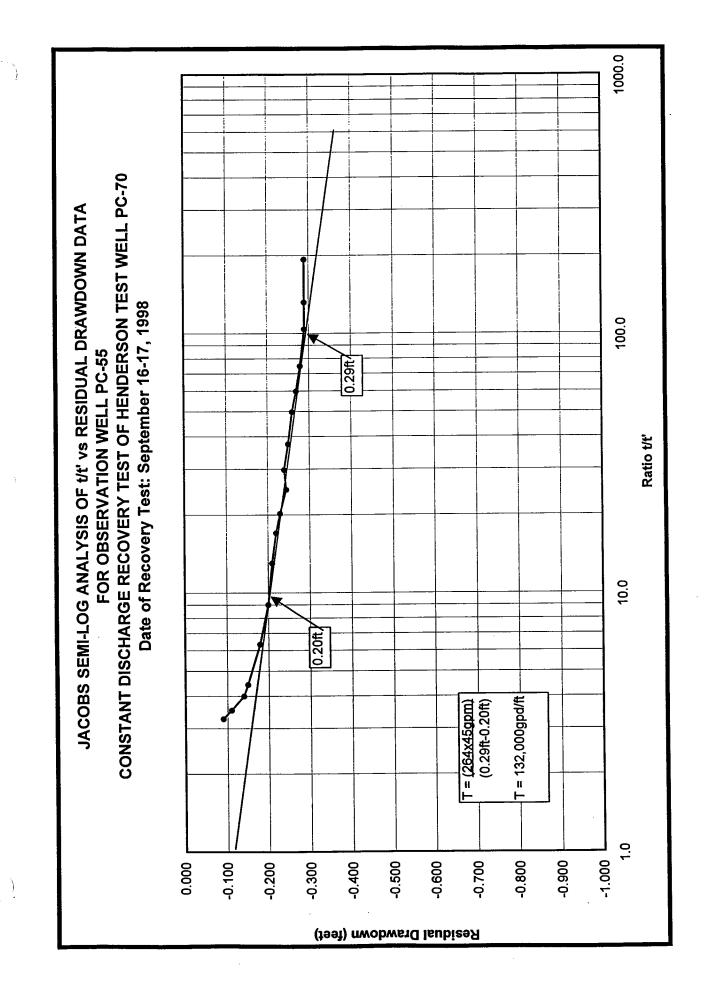

. .)


Recovery Data for Observation Well PC-55 Constant Discharge Test of Henderson Well PC-70 Kerr-McGee Henderson Facility, Henderson, NV Test Date: September 14-17, 1998


Date	24 Hour Clock Time	Time Since Pump Test Started (t, minutes)	Time Since Pump Stopped (t', minutes)	Ratio t/t'	Depth to Water (feet)	Residual Drawdown (s', feet)	Remarks
9/16/98	1500 1515 1522 1528 1539 1549 1559 1619 1640 1700 1730 1800 1930 2100	2880 2895 2902 2908 2919 2929 2939 2959 2980 3000 3030 3030 3060 3120 3240	0.0 15.0 22.0 28.0 39.0 49.0 59.0 79.0 100.0 120.0 150.0 180.0 240.0 360.0	288000.0 193.0 131.9 103.9 74.8 59.8 49.8 37.5 29.8 25.0 20.2 17.0 13.0 9.0	18.230 18.160 18.160 18.150 18.150 18.140 18.130 18.130 18.120 18.110 18.115 18.100 18.090 18.090 18.070	0.360 0.290 0.290 0.280 0.270 0.260 0.250 0.240 0.245 0.230 0.220 0.210 0.200	Pump Off Recovery
9/17/98	2400 0500 0700 1000 1210	3420 3720 3840 4020 4150	540.0 840.0 960.0 1140.0 1270.0	6.3 4.4 4.0 3.5 3.3	18.050 18.020 18.010 17.980 17.960	0.180 0.150 0.140 0.110 0.090	End of Test

Pre-Test Water Level: 17.87 feet below top of casing Pumping Rate: 45gpm










)

)



# CALCULATION OF AQUIFER COEFFICIENTS FOR OBSERVATION WELL PC-55 CONSTANT DISCHARGE PUMPING TEST OF PITTMAN LATERAL TEST WELL PC-70

#### Jacobs Semi-Log Straight-Line Analysis of Drawdown Data

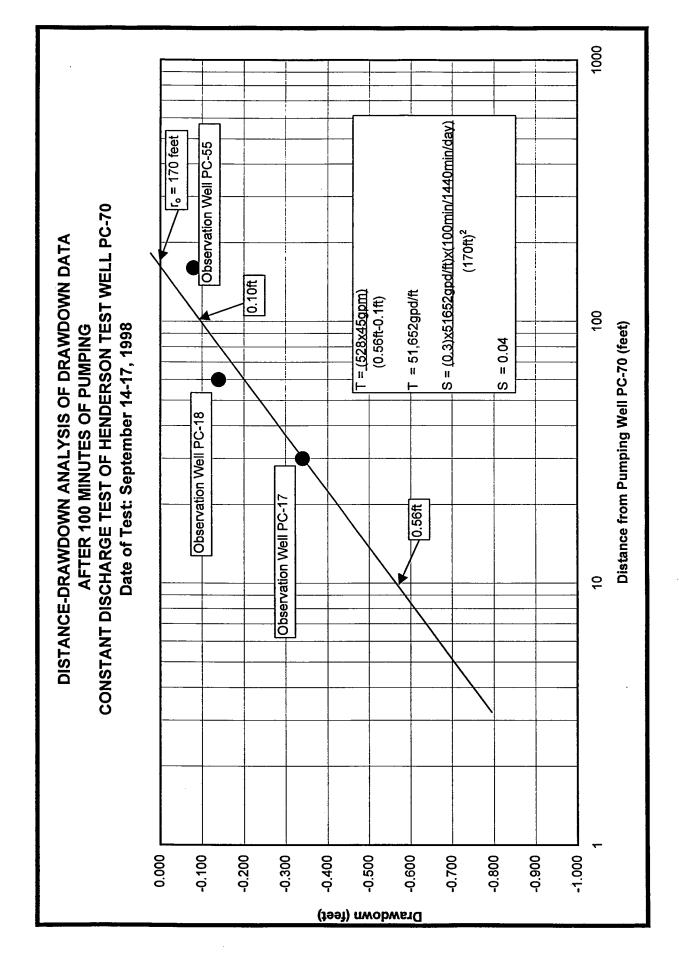
Transmissivity = 66,000 gallons per day per foot Permeability = 1,748 gallons per day per square foot (66,000/33 feet of saturation) Hydraulic Conductivity = 239 feet per day (1748/7.48gallons per cubic foot) Storage Coefficient = 0.11

#### Theis Log-Log Type Curve Match Analysis of Drawdown Data

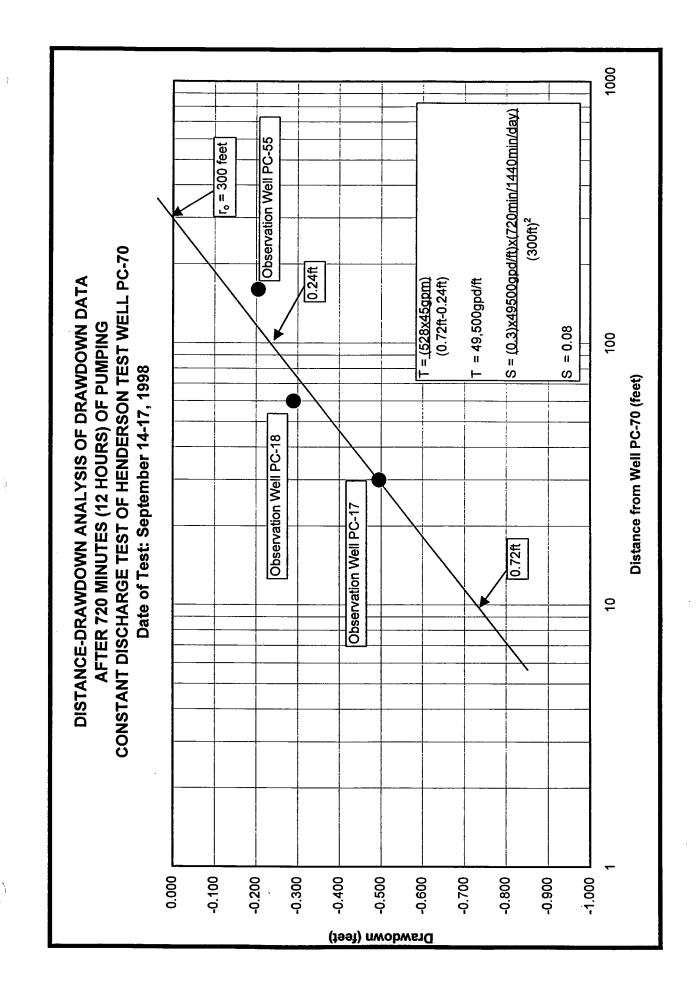
Transmissivity = 46,877 gallons per day per foot Permeability = 1,267 gallons per day per square foot (46877/37 feet of saturation) Hydraulic Conductivity = 169 feet per day (1287/7.48gallons per cubic foot) Storage Coefficient = 0.03

#### Boulton Log-Log Delayed Drainage Curve Match Analysis of Drawdown Data

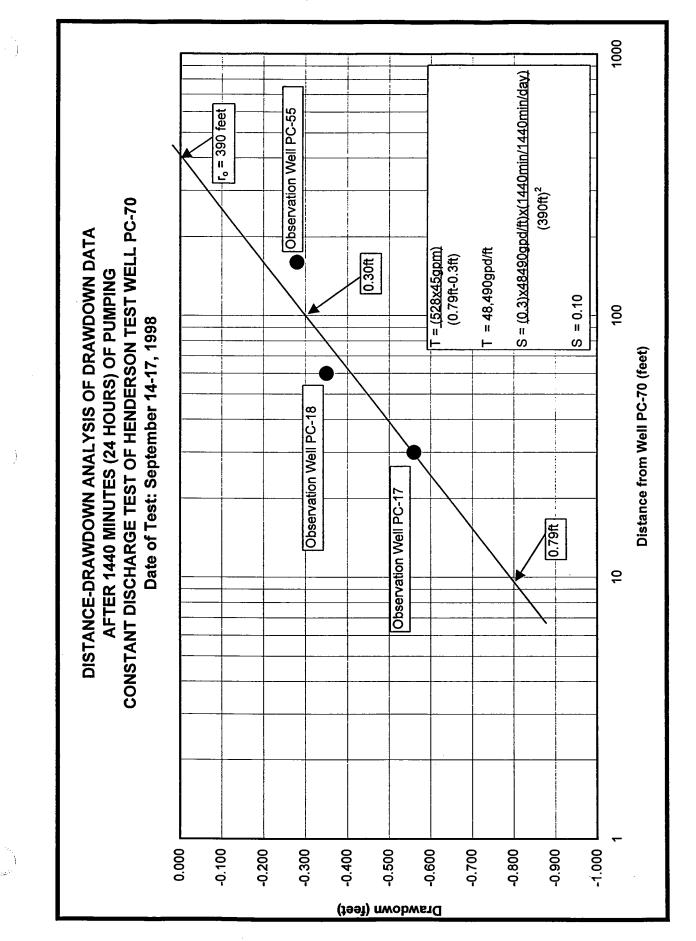
Transmissivity = 39,666 gallons per day per foot Permeability = 1,072 gallons per day per square foot (39666/37 feet of saturation) Hydraulic Conductivity = 143 feet per day (1072/7.48gallons per cubic foot) Storage Coefficient = 0.04


### Jacobs Semi-Log Straight-Line Analysis of Recovery Data

Transmissivity = 132,000 gallons per day per foot Permeability = 3,568 gallons per day per square foot (132000/37 feet of saturation) Hydraulic Conductivity = 477 feet per day (3568/7.48gallons per cubic foot)


# ADDENDUM H

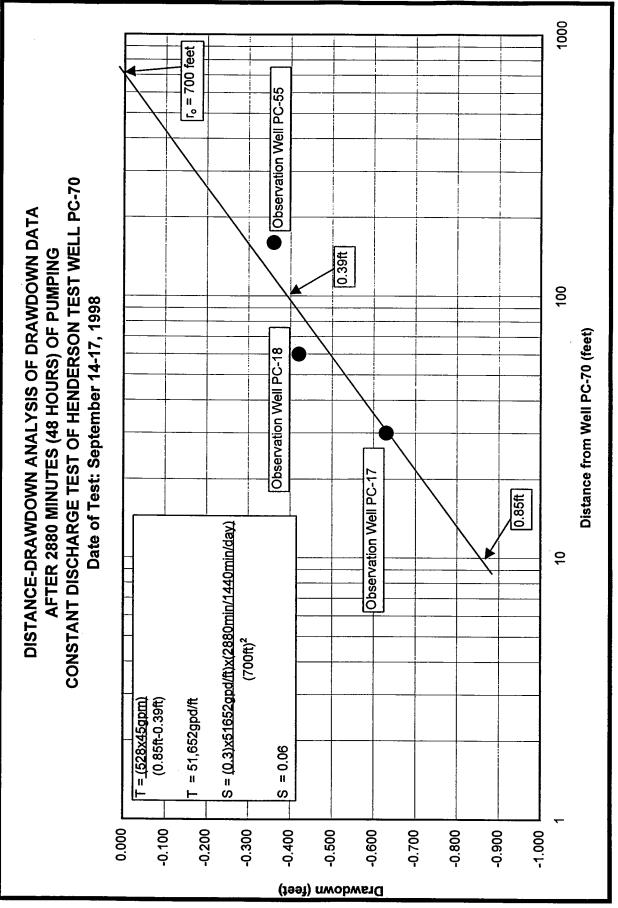
Employee The second


Graphs of Distance-Drawdown Analyses and Calculations of Corresponding Aquifer Coefficients



i




1.1.1.1



فرورت

1000 r_o = 550 feet Observation Well PC-55 CONSTANT DISCHARGE TEST OF HENDERSON TEST WELL PC-70 DISTANCE-DRAWDOWN ANALYSIS OF DRAWDOWN DATA 0.34ft AFTER 2160 MINUTES (36 HOURS) OF PUMPING **Observation Well PC-17** 6 Date of Test: September 14-17, 1998 Distance from Well PC-70 (feet) **Observation Well PC-18** 0.80ft S = (0.3)x51652gpd/ft)x(2160min/1440min/day) 9 (550ft)² (0.80ft-0.34ft) T = 51,652gpd/ft S = 0.08 ł -1.000 0.000 -0.100 -0.200 -0.300 -0.400 -0.500 -0.600 -0.800 -0.700 -0.900 Drawdown (feet)

 $(\cdot,\cdot)$ 



}

# CALCULATION OF AQUIFER COEFFICIENTS FROM DISTANCE DRAWDOWN DATA CONSTANT DISCHARGE PUMPING TEST OF PITTMAN LATERAL TEST WELL PC-70

### Jacobs Semi-Log Straight-Line Analysis of Distance-Drawdown Data at 100 Minutes

Transmissivity = 51,652 gallons per day per foot Permeability = 1,519 gallons per day per square foot (51652/34 feet of average saturation) Hydraulic Conductivity = 203 feet per day (1519/7.48gallons per cubic foot) Storage Coefficient = 0.04

#### Jacobs Semi-Log Straight-Line Analysis of Distance-Drawdown Data at 720 Minutes

Transmissivity = 49,500 gallons per day per foot Permeability = 1,456 gallons per day per square foot (49500/34 feet of average saturation) Hydraulic Conductivity = 195 feet per day (1456/7.48gallons per cubic foot) Storage Coefficient = 0.08

#### Jacobs Semi-Log Straight-Line Analysis of Distance-Drawdown Data at 1440 Minutes

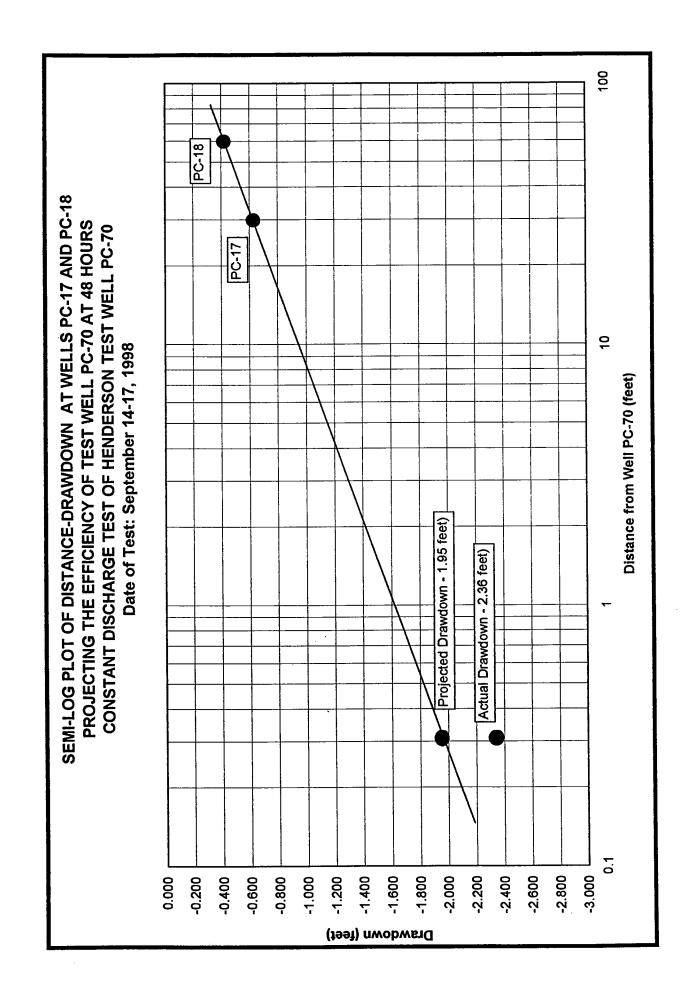
Transmissivity = 48,490 gallons per day per foot Permeability = 1,426 gallons per day per square foot (48490/34 feet of average saturation) Hydraulic Conductivity = 191 feet per day (1426/7.48gallons per cubic foot) Storage Coefficient = 0.10

#### Jacobs Semi-Log Straight-Line Analysis of Distance-Drawdown Data at 2160 Minutes

Transmissivity = 51,652 gallons per day per foot Permeability = 1,519 gallons per day per square foot (51,652/34 feet of average saturation) Hydraulic Conductivity = 203 feet per day (1519/7.48gallons per cubic foot) Storage Coefficient = 0.08

# CALCULATION OF AQUIFER COEFFICIENTS FROM DISTANCE DRAWDOWN DATA CONSTANT DISCHARGE PUMPING TEST OF PITTMAN LATERAL TEST WELL PC-70 (continued)

. }


Jacobs Semi-Log Straight-Line Analysis of Distance-Drawdown Data at 2880 Minutes

Transmissivity = 51,652 gallons per day per foot Permeability = 1,519 gallons per day per square foot (51,652/34 feet of average saturation) Hydraulic Conductivity = 203 feet per day (1519/7.48gallons per cubic foot) Storage Coefficient = 0.08

# ADDENDUM I

h le Brieker Georges s ar

# Projection of Well Efficiency for Test Well PC-70



Attachment 2 Ċ,

ERROL L. MONTGOMERY & ASSOCIATES, INC.



### December 19, 2000 FINAL REPORT

# ANALYSIS OF RATE OF GROUNDWATER MOVEMENT BASED ON RESULTS OF TRACER AND HYDRAULIC TESTS CONDUCTED BETWEEN PITTMAN LATERAL AND SEEP AREA HENDERSON, NEVADA

# Prepared for KERR-McGEE CHEMICAL LLC



ERROL L. MONTGOMERY & ASSOCIATES, INC.

# **CONTENTS**

# Page

WELLS AND PIEZOMETERS	40
HYDROGEOLOGIC CONDITIONS	10
OCCURRENCE AND MOVEMENT OF GROUNDWATER	
AQUIFER PARAMETERS	12
CHEMICAL QUALITY OF GROUNDWATER	
RESULTS OF HYDRAULIC TESTS	
AQUIFER TEST PROCEDURES	
ANALYSIS OF AQUIFER TEST RESULTS	
Aquifer Test, Site B	16
ANALYSIS FOR PUMPED WELL PC-98R	17
ANALYSIS FOR WELL PC-98 AND PIEZOMETER PC-100	17
SUMMARY OF PUMPING TEST RESULTS, SITE B	
Aquifer Test, Site C	18
ANALYSIS FOR PUMPED WELL PC-99R	19
ANALYSIS FOR WELL PC-99 AND PIEZOMETER PC-88	
SUMMARY OF PUMPING TEST RESULTS, SITE C	
RESULTS OF TRACER TESTS TRACER TEST METHODS AND RESULTS	20
TRACER TEST METHODS AND RESULTS	20
Natural Gradient, Deionized Water Tracer Tests (Sites A, B, and C)	22
ANALYSIS FOR SITE A	22
ANALYSIS FOR SITE B	23
ANALYSIS FOR SITE C	24
Natural Gradient, Bromide Tracer Test (Site A)	24
Drift and Pumpback, Bromide Tracer Tests (Site C)	26
ANALYSIS OF RATE OF GROUNDWATER MOVEMENT	27
REFERENCES	



ERROL L. MONTGOMERY & ASSOCIATES, INC.

<u>CONTENTS</u> – continued

#### **TABLES**

#### Table

- 1 SUMMARY OF CONSTRUCTION DETAILS FOR WELLS AND PIEZOMETERS COMPLETED FOR TRACER AND HYDRAULIC TESTING CONDUCTED BETWEEN PITTMAN LATERAL AND SEEP AREA, HENDERSON, NEVADA
- 2 SUMMARY OF LABORATORY CHEMICAL RESULTS FOR COMMON CONSTITUENTS AND ROUTINE PARAMETERS FOR WATER SAMPLES OBTAINED BETWEEN PITTMAN LATERAL AND SEEP AREA, KERR-McGEE CHEMICAL LLC, HENDERSON, NEVADA
- 3 SUMMARY OF HYDROLOGIC DATA FROM CONSTANT-DISCHARGE PUMPING TESTS CONDUCTED AT SITES B AND C, PITTMAN LATERAL AND SEEP AREA, HENDERSON, NEVADA
- 4 SUMMARY OF AQUIFER COEFFICIENTS FROM CONSTANT-DISCHARGE PUMPING TESTS CONDUCTED AT SITES B AND C, PITTMAN LATERAL AND SEEP AREA, HENDERSON, NEVADA
- 5 SUMMARY OF ANALYSIS OF RATE OF GROUNDWATER MOVEMENT BASED ON RESULTS OF HYDRAULIC AND TRACER TESTS CONDUCTED AT SITES A, B, AND C, PITTMAN LATERAL AND SEEP AREA, HENDERSON, NEVADA

#### **ILLUSTRATIONS**

#### Figure

- 1 LOCATION MAP
- 2 WATER LEVEL CONTOURS FOR PITTMAN LATERAL AND SEEP AREA, HENDERSON, NEVADA





# <u>CONTENTS</u> – continued

#### Figure

- 3 BASELINE HYDROGRAPH OF WATER LEVEL AND SPECIFIC CONDUCTANCE HYDROGRAPH FOR <u>WELL PC-98</u>, WATER LEVEL FOR <u>WELL PC-98R</u>, AND WATER LEVEL FOR <u>PIEZOMETER</u> <u>PC-100</u>, SITE B
- 4 BASELINE HYDROGRAPH OF WATER LEVEL FOR <u>WELLS PC-99</u> AND <u>PC-99R</u>, AND PIEZOMETERS <u>PC-88</u>, <u>PC-89</u>, AND <u>PC-90</u>, SITE C
- 5 DRAWDOWN AND RECOVERY GRAPH FOR PUMPED WELL PC-98R DURING CONSTANT-DISCHARGE PUMPING TEST (SITE B)
- 6 DRAWDOWN AND RECOVERY GRAPH FOR OBSERVATION WELL PC-98 DURING CONSTANT-DISCHARGE PUMPING TEST AT WELL PC-98R (SITE B)
- 7 DRAWDOWN AND RECOVERY GRAPH FOR PIEZOMETER PC-100 DURING CONSTANT-DISCHARGE PUMPING TEST AT WELL PC-98R (SITE B)
- 8 DRAWDOWN AND RECOVERY GRAPH FOR PUMPED WELL PC-99R DURING CONSTANT-DISCHARGE PUMPING TEST (SITE C)
- 9 DRAWDOWN AND RECOVERY GRAPH FOR OBSERVATION WELL PC-99 DURING CONSTANT-DISCHARGE PUMPING TEST AT WELL PC-99R (SITE C)
- 10 DRAWDOWN AND RECOVERY GRAPH FOR PIEZOMETER PC-88 DURING CONSTANT-DISCHARGE PUMPING TEST AT WELL PC-99R (SITE C)
- 11 HYDROGRAPH OF SPECIFIC CONDUCTANCE OF GROUND-WATER AT <u>PIEZOMETER PC-101R, SITE A</u> DURING DEIONIZED WATER TRACER TEST



ERROL L. MONTGOMERY & ASSOCIATES, INC.

# <u>CONTENTS</u> – continued

#### Figure

- 12 HYDROGRAPH OF SPECIFIC CONDUCTANCE OF GROUND-WATER AT <u>PIEZOMETER PC-100R, SITE B</u> DURING DEIONIZED WATER TRACER TEST
- 13 SPECIFIC CONDUCTANCE OF GROUNDWATER VERSUS DEPTH AT <u>PIEZOMETER PC-100R</u>, <u>SITE B</u> DURING DEIONIZED WATER TRACER TEST
- 14 HYDROGRAPH OF SPECIFIC CONDUCTANCE OF GROUND-WATER AT <u>PIEZOMETER PC-102, SITE C</u> DURING DEIONIZED WATER TRACER TEST
- 15 SPECIFIC CONDUCTANCE OF GROUNDWATER VERSUS DEPTH AT <u>PIEZOMETER PC-102, SITE C</u> DURING DEIONIZED WATER TRACER TEST
- 16 HYDROGRAPH OF BROMIDE BREAKTHROUGH DURING NATURAL GRADIENT TRACER TEST AT <u>PIEZOMETER PC-101R.</u> <u>SITE A</u>
- 17 HYDROGRAPH OF BROMIDE BREAKTHROUGH DURING DRIFT AND PUMPBACK TRACER TEST AT <u>WELL PC-99R, SITE C</u>

### APPENDICES

#### Appendix

- A NEVADA DEPARTMENT OF ENVIRONMENTAL PROTECTION: AUTHORIZATION FOR TESTING
- B SCHEMATIC DIAGRAMS OF WELL CONSTRUCTION AND GEOLOGIC LOGS FOR WELLS AND PIEZOMETERS
- C AQUIFER TEST DATA
- D TRACER TEST DATA

ERROL L. MONTGOMERY & ASSOCIATES, INC.



December 19, 2000 FINAL REPORT

# ANALYSIS OF RATE OF GROUNDWATER MOVEMENT BASED ON RESULTS OF TRACER AND HYDRAULIC TESTS CONDUCTED BETWEEN PITTMAN LATERAL AND SEEP AREA HENDERSON, NEVADA

Prepared for KERR-McGEE CHEMICAL LLC

# **EXECUTIVE SUMMARY**

Rate of groundwater movement and aquifer parameters are necessary for determining mass transport in aquifers. Analysis of rate of groundwater movement given in this report for the Kerr-McGee Henderson facility have provided useful estimates of groundwater velocities at Sites A, B, and C between Pittman Lateral and the seep area. Rate of groundwater movement provides an estimate for rate of downgradient mass transport of perchlorate in groundwater between Pittman Lateral and the seep area. Perchlorate is considered a nonreactive ion; movement of the center of mass of perchlorate is coincident with average velocity of groundwater.

Analysis of testing results indicate that rates of groundwater movement are in the range of 20 to 30 feet per day (ft/d) at **Site A**, 30 to 45 ft/d at **Site B**, and 60 to 85 ft/d at **Site C**. Summary and conclusions for estimating rate of groundwater movement between Pittman Lateral and the seep area are as follows:



- 1. Groundwater tracer tests and hydraulic tests for the alluvial deposits aquifer were conducted at three sites between the area bounded geographically by Pittman Lateral and the seep on the south margin of Las Vegas wash. This area is located in the southeast part of the Las Vegas Valley, City of Henderson, Clark County, Nevada. Testing results were used to estimate rate of groundwater movement in the aquifer. Tracer testing consisted of natural gradient and drift and pumpback methods. Bromide and deionized water were used as tracers. Hydraulic tests consisted of aquifer tests and measurement of groundwater gradient.
- 2. The project area is shown on Figure 1. The sites investigated are: Site A south of the Pittman Lateral and south from the City of Henderson Rapid Infiltration Basins (COH-RIB), Site B near monitor well MW-K5 within COH-RIB, and Site C north from COH-RIB and south from the seep. Wells and piezometers were constructed at the sites for introducing the tracer and for monitoring tracer breakthrough. Results for analysis of tracer tests, aquifer tests, and groundwater levels indicate that rates of groundwater movement are in the range of 20 to 30 ft/d at Site A, 30 to 45 ft/d at Site B, and 60 to 85 ft/d at Site C.
- 3. Groundwater level measurements in the area were obtained prior to and after the period of tracer testing to determine direction of groundwater movement and magnitude of hydraulic gradient. During the period September 18 to 20, 2000, depth to groundwater ranged from about 20 feet at Site A to about 1 foot at Site C. Groundwater level measurements and contours are shown on Figure 2. Direction of groundwater movement was north-northeast and toward the seep pumping station. Lateral hydraulic gradient, measured as change in head per unit of distance measured in the direction of the steepest change, ranged from about 0.008 feet per foot at Site A to about 0.01 at Site C.

2

CONTRACTOR CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE C



Between **Sites A and C** average lateral hydraulic gradient was about 0.01. Measurements of depth to groundwater obtained at the piezometer nest at **Site C** indicate that vertical hydraulic gradient in the alluvial deposits aquifer was directed upward.

4. Prior to tracer testing, aquifer tests were conducted at the sites to measure hydraulic parameters. Transmissivity ranges from 50,000 gallons per day per foot at 1:1 hydraulic gradient (gpd/ft) for Site A to 160,000 gpd/ft at Site C. Based on thickness of coarse-grained parts of the aquifer penetrated by wells and piezometers at the sites, aquifer thickness ranges from 25 feet at Site B to 35 feet at Site C. Hydraulic conductivity ranges from about 1,700 gallons per day per square foot of aquifer at 1:1 hydraulic gradient (gpd/ft²) at Site A to 4,600 gpd/ ft² at Site C. Aquifer parameters are summarized as follows:

<u></u>	Transmissivity (gpd/ft)	Aquifer Saturated Thickness (feet)	Hydraulic Conductivity (gpd/ft ² )
SITE A	50,000	30	1,700
SITE B	55,000	25	2,200
SITE C	160,000	35	4,600

5. Rates of groundwater movement computed using Darcy's Law and from results of tracer test data are summarized as follows:

		Rate of Gr	oundwater Movement	
	Natural Gradient Deionized Water Tracer Tests (ft/d)	Natural Gradient Bromide Tracer Test (ft/d)	Drift and Pumpback Bromide Tracer Test (ft/d)	Natural Gradient Darcy's Law (ft/d)
SITE A	25 - 30	30		20
SITE B	45			30
SITE C	85		60	60



- 6. Results of tracer testing using deionized water under natural gradient conditions indicated rate of groundwater movement to be approximately 25 to 30 ft/d at Site A, 45 ft/d at Site B, and 85 ft/d at Site C. Rates of groundwater movement at Sites B and C are for lower parts of the aquifer where breakthrough of tracer was more rapid. Because of large concentrations of inorganic ions liberated during the deionized water tracer test at Sites A and C, and transient effects of RIB water recharging the shallow groundwater system at Sites B and C, results of tracer testing using deionized water are approximate.
- 7. Results of tracer testing using bromide under natural gradient conditions at Site A indicated rate of groundwater movement to be approximately 30 ft/d at depths of 23, 32 feet, and 40 feet. Breakthrough in lower parts of the aquifer was faster than breakthrough in upper parts of the aquifer.
- Results of tracer testing using bromide under drift and pumpback conditions at Site C indicated rate of groundwater movement to be approximately 60 ft/d and effective porosity to be approximately 10 percent.
- Using Darcy's Law and parameters obtained from results of tracer and hydraulic testing, average rate of groundwater movement is indicated to be 20 ft/d at Site A, 30 ft/d at Site B, and 60 ft/d at Site C.
- 10. Results of analysis of rate of groundwater movement using different methods indicate close correlation. Larger rates of groundwater movement are estimated using natural gradient method due to observation of breakthrough occurring in lower parts of the aquifer faster than upper parts of the aquifer. Faster breakthrough in lower parts of the aquifer correlates to lithologic



descriptions that indicate lower parts of the aquifer comprise coarser grained sediments.

11. Using Darcy's Law and average values for aquifer parameters and groundwater gradient, average of rate of groundwater movement between Site A and Site C is about 35 ft/d. Distance between Site A and Site C is about 5,700 feet. Average residence time of groundwater between Site A and Site C is estimated to be 170 days or about 6 months.

ERROL L. MONTGOMERY & ASSOCIATES, INC.



# December 19, 2000 FINAL REPORT

# ANALYSIS OF RATE OF GROUNDWATER MOVEMENT BASED ON RESULTS OF TRACER AND HYDRAULIC TESTS CONDUCTED BETWEEN PITTMAN LATERAL AND SEEP AREA HENDERSON, NEVADA

## Prepared for KERR-McGEE CHEMICAL LLC

### INTRODUCTION

Groundwater tracer and hydraulic tests for the shallow alluvial deposits aquifer were implemented at three sites between the area bounded by Pittman Lateral and the seep south from Las Vegas wash, Henderson, Nevada. The work was conducted for KERR-McGEE CHEMICAL LLC (Kerr-McGee) by ERROL L. MONTGOMERY & ASSOCIATES, INC. (Montgomery & Associates) during the period May through September 2000. Tracer tests and hydraulic testing were conducted to estimate rate of groundwater movement in the shallow alluvial deposits aquifer. Analysis of rate of groundwater movement provided in this report can be used to provide preliminary estimates for rate of downgradient mass transport of perchlorate in groundwater.

**Figure 1** is a location map showing the study area and **Sites A, B, and C** where testing was conducted. Tracer testing used both drift and pumpback and natural gradient methodologies. Distances between injection and monitoring



ERROL L. MONTGOMERY & ASSOCIATES, INC.

7

locations for natural gradient tracer tests were on the order of 50 feet. Tracers used were deionized water and bromide. Hydraulic tests consisted of conducting aquifer tests for estimating transmissivity and hydraulic conductivity, and measurements of water levels for determining groundwater gradient. Testing was authorized by the Nevada Division of Environmental Protection (NDEP, 2000). Correspondence providing authorization for testing from NDEP is provided in **Appendix A**. The following sections provide a summary of hydrogeologic conditions, methods and results of testing, and analysis of rate of groundwater movement.



# WELLS AND PIEZOMETERS

Wells and piezometers were installed for tracer and hydraulic testing. Locations of the installations are: **Site A** at the Pittman Lateral south from the City of Henderson – Rapid Infiltration Basins (COH-RIB); **Site B** near monitor well MW-K5 within COH-RIB, and; **Site C** north from COH-RIB and south from the seep (**Figure 1**). Identifiers for wells and piezometers and construction details are given in **Table 1**. Ed Krish, geologist for Kerr-McGee, directed drilling, construction, and sampling operations and prepared lithologic descriptions of drill cuttings samples.

Initial drilling was conducted by Compliance Drilling, Las Vegas, Nevada, using auger methods. Because very loose, coarse-sediments in the middle and lower parts of the aquifer were encountered during drilling, boreholes were unstable and construction of the wells and piezometers was difficult. Auger drilling methods may have also pulled silt and clay from lower parts of the borehole up into more permeable parts of the aquifer resulting in low hydraulic efficiency of the wells.

To obtain more hydraulically efficient wells and piezometers necessary for the tracer tests, an alternate drilling method was used to drill replacement wells and piezometers. Boreholes for replacement wells and piezometers were drilled using the dual-wall reverse-air-circulation percussion drilling method (AP-1000) by Layne Christensen Company, Chandler, Arizona (formerly Layne Environmental Services, Tempe, Arizona). Because the percussion drilling method provides drill cuttings from the depth being drilled without mixing with overlying sediments in the borehole and without use of a rotary bit and drilling fluids, cuttings accurately represent the sediments encountered at specific depths in the borehole, including degree of lithification. During drilling of the boreholes, drill cuttings were continuously observed and samples of drill cuttings were obtained to prepare an accurate and



ERROL L. MONTGOMERY & ASSOCIATES, INC.

continuous lithologic characterization of sediments encountered in the borehole. Schematic diagrams of well construction and lithologic logs are provided in **Appendix B** for replacement wells and piezometers installed at **Sites A, B, and C**.





### HYDROGEOLOGIC CONDITIONS

The study area is located in the southeast part of the Las Vegas Valley, City of Henderson, Clark County, Nevada. The Las Vegas Valley occupies a topographic and structural basin within the Basin and Range Physiographic Province. The principal surface water drainage feature for the study area is Las Vegas wash, a shallow, narrow stream that drains to the southeast, across the valley floor to Lake Mead. The study area is bounded by the Pittman Lateral to the south and the seep area to the north (**Figure 1**). The Henderson wastewater treatment facility lies within the study area. The following description of hydrogeologic conditions is based on data and reports provided by Kerr-McGee.

The late Tertiary Muddy Creek Formation underlies the study area. Wells penetrating the Muddy Creek Formation in the study area indicate lithologies comprising sandy and silty clay to clayey sand. Younger, Quaternary alluvial deposits overlie the Muddy Creek Formation. Alluvial deposits fill erosional paleochannels in the Muddy Creek Formation. Alluvial deposits are thickest within the paleochannels, and thin laterally over the interfluvial areas. Based on lithologic information from boreholes, thickness of the alluvial deposits in the study is on the order of 40 feet within erosional paleochannels. Lithology of the alluvial deposits ranges from silt, to fine to coarse-grained sand, to gravel, and cobbles. Results of previous studies indicate hydraulic conductivity of the overlying alluvial deposits to be substantially larger than the Muddy Creek Formation.

Lithologic descriptions of drill cuttings samples obtained from wells and piezometers completed at Sites A, B, and C indicate coarse grained sand, gravel, and cobbles dominate lower parts of the aquifer (Appendix B). At Sites B and C, silt and clay predominate in the upper part of the aquifer. Silt and clay in upper parts

10

à.

tettor kut

Costiny -



of the aquifer are believed to cause local, semi-perched groundwater conditions to exist during infiltration cycles from the COH-RIB facility.

## OCCURRENCE AND MOVEMENT OF GROUNDWATER

Paleochannels generally trend southwest-northeast and control movement of groundwater in the alluvial deposits. Depth to groundwater in the alluvial deposits ranges from near land surface to 20 feet. Horizontal groundwater level gradients, measured as change in head per unit of distance measured in the direction of the steepest change, are in the range from 0.001 feet per foot (ft/ft) to 0.04 ft/ft. Direction of groundwater movement in the alluvial deposits is north-northeast.

Groundwater level measurements in the area were obtained prior to and after the period of tracer testing to determine direction of groundwater movement and groundwater gradient. Groundwater level contours and direction of groundwater movement for the area are shown on **Figure 2** for the period September 18 to 20, 2000. Depth to groundwater ranged from about 20 feet at **Site A** to about 1 foot at **Site C**. Direction of groundwater movement was to the north-northeast and toward the seep pumping station. Horizontal hydraulic gradient ranged from about 0.008 ft/ft at **Site A** to about 0.01 ft/ft at **Site C**. Average horizontal hydraulic gradient between **Site A and Site C** is estimated to be 0.01 ft/ft.

Analysis of water levels in wells in the vicinity of the study area indicates hydraulic head in the Muddy Creek Formation to be higher than hydraulic head in the alluvial deposits. Groundwater level elevation in the nested piezometer completed in the alluvial deposits aquifer at **Site C** indicates vertical hydraulic gradient is directed upward.



**Figures 3 and 4** show groundwater level trends during the period of testing at **Sites B and C**. Infiltration cycles from COH-RIB facility dramatically impact ground-water levels.

# **AQUIFER PARAMETERS**

Analysis of a 48-hour aquifer test conducted at well PC-70 in September 1998, (Site A, Figure 1) indicates an average transmissivity of 50,000 gallons per day per foot of aquifer at 1:1 hydraulic gradient for the alluvial deposits aquifer. Specific yield was estimated to be on the order of 0.06 (Kerr-McGee, 1998).

## CHEMICAL QUALITY OF GROUNDWATER

**Table 2** summarizes inorganic chemical quality of water in the study area. Sample sources are: seep sump near **Site C**, RIB pond near **Site B**, and well PC-70 near **Site A**. The RIB (Rapid Infiltration Basin) pond is part of the Henderson wastewater treatment facility. Results of sampling indicate total dissolved solids (TDS) ranging from 1,800 to 8,600 milligrams per liter (mg/L). Based on samples obtained in the study area, groundwater in the study area is a sodium chloride-sulfate type and is classified as slightly to moderately saline.

1-1

ERROL L. MONTGOMERY & ASSOCIATES, INC.



# **RESULTS OF HYDRAULIC TESTS**

Aquifer test operations for **Sites B and C** began August 10, 2000, and were completed August 16, 2000. Following construction and development of the 4-inch diameter wells, constant-discharge pumping tests were conducted. The test pump was installed and operated by Compliance Drilling. The constant-discharge pumping tests were preceded by a short pretest and step-discharge test to verify equipment operation and to select an optimal pumping rate for testing. Aquifer tests were planned for 36 hours of pumping followed by 36 hours of water level recovery. Due to generator failure, duration of pumping was 29.9 hours for well PC-98R. A summary of hydrologic data is given in **Table 3**. Aquifer parameters determined from analysis of pumping test data are summarized in **Table 4**.

#### AQUIFER TEST PROCEDURES

The wells were tested using a submersible Grundfos pump and a 5 horsepower electric motor installed with 2-inch galvanized steel column pipe. Geokon vibratingwire pressure transducers and an electric water level sounder were used to measure water levels. Pressure transducers were connected to a Campbell Scientific CR10 datalogger that recorded water level measurements at regular intervals throughout the testing period. A pressure transducer was also used to measure barometric pressure during the testing periods. Pressure transducers used for obtaining water levels measured absolute pressure changes and recorded data was processed to correct for changes in barometric pressure.



During the pumping period, measurements were obtained for: depth to groundwater level below measuring point; pumping rate; wellhead pressure; and sand content, temperature, specific conductance, and pH of pumped water. Sand content was measured using a 1-liter, calibrated Imhoff cone.

Pumping rate was measured using a totalizing inline flowmeter, and a 5-gallon bucket at the end of the discharge pipe. Pumping rate was regulated using a gate valve and pressure gauge. Pumped groundwater was discharged to land surface to a point 100 feet from the wellhead. During each pumping test, drawdown and recovery of water levels were also monitored at nearby piezometers.

# ANALYSIS OF AQUIFER TEST RESULTS

Hydraulic parameters discussed below are derived from analysis of results of the pumping tests, and comprise values for transmissivity, hydraulic conductivity, and storativity. Transmissivity is defined as the rate of groundwater flow through a vertical section of the aquifer 1 foot wide and extending the full saturated height of the aquifer under a unit hydraulic gradient (Theis, 1935). Transmissivity has units of gallons per day per foot width of aquifer. Transmissivity is a measure of the ability of an aquifer to transmit groundwater, and is equal to the product of hydraulic conductivity and saturated thickness of the aquifer.

Hydraulic conductivity is the rate of groundwater flow through a unit area of aquifer under unit hydraulic gradient. Hydraulic conductivity has units of gallons per day per square foot of aquifer (gpd/ft²). Average hydraulic conductivity of aquifer material encountered at **Sites A, B, and C** was computed by dividing the transmissivity computed from analysis of pumping test data by saturated thickness of the aquifer.

Contration and the second

104-51



Storativity is the volume of water that a permeable unit will absorb or expel from storage per unit surface area per unit change in head. Storativity is dimensionless quantity and less than 1. In unconfined aquifers the storativity is generally considered equal to specific yield. Specific yield is the ratio of volume of water saturated sediments release due to gravity drainage to the total volume of sediments. Estimating storativity from aquifer tests requires water level data from one or more observation wells that are in hydraulic communication with the pumped well.

Water level drawdown data obtained during the constant-discharge pumping tests were analyzed for transmissivity using the Cooper-Jacob modified nonequilibrium equation semi-logarithmic graphical method (Cooper and Jacob, 1946). Water level recovery data were analyzed for transmissivity using the Theis recovery method (Theis, 1935). For the Theis recovery method, residual drawdown is plotted versus the ratio t/t', where "t" is time after pumping started and " t' " is time after pumping stopped. Residual drawdown is the drawdown remaining at any time after pumping stopped. Drawdown and recovery graphs for the pumping tests are shown of **Figures 5 through 10**. Because groundwater levels were rising during testing periods (**Figures 3 and 4**), aquifer test data was corrected to subtract for the rising trends. Data obtained during the aquifer tests, corrected for barometric change and groundwater level trend, and results of analyses are given in **Appendix C**.

Drawdown and recovery measurements obtained at the pumped wells were sufficient for determination of aquifer parameters using the semi-logarithmic Cooper-Jacob method and the Theis recovery method. Semi-logarithmic analytical methods were considered valid for observation wells where "u" value (the argument of the well function) was less than 0.05. Driscoll (1986) indicates that only drawdown data for which the numerical value of "u" is less than 0.05 should be used to compute aquifer parameters using the semi-logarithmic graphical procedure. Values for "u" are inversely related to distance from the pumped well and duration of pumping.

Sector Sector



Transmissivity and hydraulic conductivity values determined from analysis of pumping test data are summarized in Table 4. In most cases, recovery water level data are believed to be better for analysis because water level data obtained at the pumped well during pumping are subject to errors as a result of variations in pumping rate, by head loss inside the well casing associated with skin effects in the aquifer adjacent to the borehole, and by additional well development during the pumping period. Transmissivity calculated from water level recovery measurements at the pumped well is generally considered to be more representative of aquifer conditions than transmissivity calculated from water level drawdown measurements. Operative transmissivity is also given in Table 4, and is defined as the most probable correct value of transmissivity in the vicinity of the site based on analysis of recovery data. Hydraulic conductivity was computed as operative transmissivity divided by saturated thickness of aquifer. Saturated thickness of aquifer is based on lithologic logs and interpretation of thickness of saturated sediments contributing groundwater to the open part of the well. Thickness of sediments consisting of predominately silt and clay were excluded from estimates of aquifer thickness.

#### Aquifer Test, Site B

A pretest and step-discharge pumping test were conducted at well PC-98R on August 9, 2000, for well development and for determining pumping rates for the constant-discharge test.

The constant-discharge pumping test was conducted August 10, 2000. Average pumping rate for the 29.9-hour test was 52 gallons per minute (gpm). Maximum water level drawdown at the pumped well near the end of the pumping period was 1.73 feet. Specific capacity after pumping 29.9 hours was 30 gallons per minute per foot of drawdown (gpm/ft).

 $\sim$ 



Range of temperature of the water pumped from well PC-98R was 23 to 24°C; at the end of the pumping period, temperature of the water was 23°C. Range of specific conductance measured in the field was 12,300 to 13,500 microSiemens per centimeter ( $\mu$ Sm/cm); at the end of the pumping period, specific conductance was 13,050  $\mu$ Sm/cm. Specific conductance is defined as the electrical conductance of a cube of water, 1 centimeter on a side, at 25°C and has units of microSiemens per centimeter. Range of pH of the pumped water was 6.90 to 7.70; at the end of the pumping period, pH was 7.31 (Table 3).

Well PC-98 and piezometer PC-100 were used as observation wells during the pumping test at well PC-98R (Figure 1). Drawdown and recovery graphs for pumped well PC-100R and observation wells are shown on Figures 5, 6, and 7.

ANALYSIS FOR PUMPED WELL PC-98R: Figure 5 is a semi-logarithmic drawdown and recovery graph for pumped well PC-98R. Analysis of the trend of drawdown data at the pumped well using the Cooper-Jacob method indicates transmissivity of about 90,000 gpd/ft. Analysis of the trend of water level recovery data indicates transmissivity of about 60,000 gpd/ft. The Cooper-Jacob and Theis recovery method match lines used to compute transmissivity are shown on Figure 5.

ANALYSIS FOR WELL PC-98 AND PIEZOMETER PC-100: During the pumping test at well PC-98R, depth to water was monitored at well PC-98 and piezometer PC-100, located 6 feet and 50 feet from the pumped well (Table 3; Figures 6 and 7). Computation of aquifer parameters for well PC-98 and piezometer PC-100 indicates transmissivity of about 70,000 gpd/ft based on drawdown data and 60,000 gpd/ft based on recovery data. Storativity was computed to be 0.08.

**SUMMARY OF PUMPING TEST RESULTS, SITE B**: Analysis of pumping test results for **Site B** indicates that computed transmissivities range from 60,000 to



90,000 gpd/ft. Operative transmissivity is judged to be about 60,000 gpd/ft based on data obtained during the recovery period. Based on aquifer thickness of 25 feet, average hydraulic conductivity is estimated to be about 2,400 gpd/ft² (Table 4). Computed storativity of 0.08 is considered to be the correct magnitude for specific yield of the aquifer.

## Aquifer Test, Site C

A pretest and step-discharge pumping test were conducted at well PC-99R on August 12, 2000, for well development and for determining pumping rates for the constant-discharge test.

The constant-discharge pumping test was conducted August 13, 2000. Average pumping rate for the 36-hour test was 65 gpm. Maximum water level drawdown at the pumped well near the end of the pumping period was 0.94 feet. Specific capacity after pumping 36 hours was 70 gpm/ft.

Temperature of the water pumped from well PC-98R was 23°C during and at the end of the pumping period. Range of specific conductance measured in the field was 7,150 to 7,530  $\mu$ Sm/cm. Range of pH of the pumped water was 7.35 to 7.60; at the end of the pumping period, pH was 7.55 (Table 3).

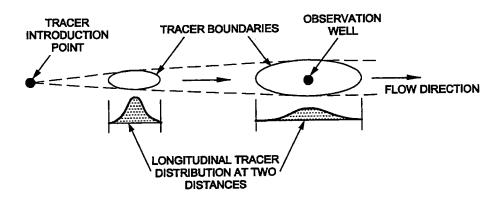
Well PC-99 and piezometer PC-88 were used as observation wells during the pumping test at well PC-99R (Figure 1). Drawdown and recovery graphs for pumped well PC-100R, well PC-99, and piezometer PC-88 are shown on Figures 8, 9, and 10.



<u>ANALYSIS FOR PUMPED WELL PC-99R</u>: Figure 8 is a semi-logarithmic drawdown and recovery graph for pumped well PC-99R. Analysis of the trend of drawdown data at the pumped well using the Cooper-Jacob method indicates transmissivity of about 130,000 gpd/ft. Analysis of the trend of water level recovery data indicates transmissivity of about 170,000 gpd/ft. The Cooper-Jacob and Theis recovery method match lines used to compute transmissivity are shown on Figure 8.

ANALYSIS FOR WELL PC-99 AND PIEZOMETER PC-88: During the pumping test at well PC-99R, depth to water was monitored at well PC-99 and piezometer PC-88, located 4 feet and 43 feet from the pumped well (Table 3; Figures 9 and 10). Computation of aquifer parameters for well PC-99 indicates transmissivity of about 110,000 gpd/ft based on drawdown data and 150,000 gpd/ft based on recovery data (Figure 9). Storativity was computed to be 0.002. Computation of aquifer parameters for well PC-99 indicates transmissivity of about 130,000 gpd/ft based on drawdown data and 160,000 gpd/ft based on recovery data (Figure 10). Storativity could not be computed because of exceedance of "u" criterion.

<u>SUMMARY OF PUMPING TEST RESULTS, SITE C</u>: Analysis of pumping test results for **Site C** indicates that computed transmissivities range from 110,000 to 170,000 gpd/ft. Operative transmissivity is judged to be about 160,000 gpd/ft based on data obtained during the recovery period. Based on aquifer thickness of 32 feet, average hydraulic conductivity is estimated to be about 4,600 gpd/ft² (**Table 4**). Due to the short duration of the pumping test and large transmissivity, computed storativity of 0.002 is considered to be smaller than the actual value.




## **RESULTS OF TRACER TESTS**

Rate of groundwater movement was measured at **Sites A, B, and C** using natural gradient and drift and pumpback groundwater tracer test methodologies. Bromide and deionized water were used as tracers. Results are given in **Table 5** and **Figures 11 through 17.** 

#### TRACER TEST METHODS AND RESULTS

Using the dual-well natural gradient method, the direction and gradient of groundwater flow was measured to determine placement of downgradient piezometers. The observation point was located directly downgradient from the well where tracer was introduced. The illustration below shows the estimate of average groundwater velocity is determined as the center of mass of the tracer passes by the observation well. Bedient and others (1999) describe the natural groundwater gradient tracer test in detail.





The single-well drift and pumpback tracer test used to determine groundwater velocity in the vicinity of a well is described by Leap and Kaplan, 1988, and Hall and others, 1991. The test is conducted by introducing tracer solution in a test well. The tracer is allowed to drift under the influence of the natural groundwater gradient and, after sufficient time has passed, the test well is pumped to recover the tracer. Groundwater velocity is computed using Darcy's Law and effective porosity:

$$V = KI/n \tag{1}$$

where V is average linear groundwater velocity (seepage velocity), K is the horizontal hydraulic conductivity; I is the horizontal hydraulic gradient; and n is effective porosity. For the drift and pumpback test, equation (1) can be rewritten as:

$$V = (Qt/\Pi nb)^{1/2}/d$$
 (2)

where Q is pumping rate during tracer recovery, t is time elapsed from the start of pumping until the center of mass of the tracer is recovered, b is aquifer thickness, and d is time elapsed from start of injection of tracer until the center of mass of the tracer is recovered by pumping. Parameter d is equivalent to drift time plus t. Hall and others (1991) rearrange equations (1) and (2) to yield algebraic expressions for two equations and two unknowns, velocity and effective porosity, that can be obtained from test data:

$$V = Qt/\Pi bd^2 Kl$$
 (3)

and

$$n=\Pi b K^2 l^2 d^2 / Qt \tag{4}$$



Leap and Kaplan (1988) describe equation (2) for confined aquifers, however Hall and others (1991) describe field application with satisfactory results for an unconfined aquifer.

## Natural Gradient, Deionized Water Tracer Tests (Sites A, B, and C)

Natural gradient, deionized water tracer tests were conducted at Sites A, B, and C during the period September 13 through 15, 2000. Deionized water was delivered to the injection wells via stainless steel tanker truck. Deionized water was supplied from the Kerr-McGee Apex facility. Volume of deionized water injected in the wells ranged from 1,800 gallons at Site A to 2,630 gallons at Site C. Specific conductance of injected deionized water was on the order of 5  $\mu$ Sm/cm. Vertical profiles of specific conductance were measured at the injection and downgradient piezometers using Campbell Scientific CS547 specific conductance and temperature probe. Data was recorded using Campbell Scientific CR10 dataloggers. Specific conductance prior to and during tracer tests are given in Table 5 and shown on Figures 11 through 15. Data are tabulated in Appendix D.

<u>ANALYSIS FOR SITE A</u>: Figure 11 is a hydrograph of specific conductance of groundwater at piezometer PC-101R during the deionized tracer test at **Site A**. Piezometer PC-101R is 30 feet down horizontal hydraulic gradient from well PC-70. Before introduction of tracer at well PC-70 (time = 0), specific conductance of groundwater ranged from about 10,000  $\mu$ Sm/cm in the lower part of the aquifer to about 10,500  $\mu$ Sm/cm in the upper part of the aquifer.

After tracer was introduced, specific conductance initially increased at all sampled depth intervals; largest increases in specific conductance occurred in the upper part of the aquifer. The increase in specific conductance is believed to result 4.8.1.2011.0011.0011.0

للموقدة والمراجع المراجع

CLIC CODOCODIN



from mobilization of ions from sediments ahead of the deionized water tracer front. After about 0.25 days, specific conductance decreased at most depth intervals except in the uppermost part of the aquifer. Specific conductance returned to near pretest values after about 1 day in lower parts of the aquifer; in the middle and upper parts of the aquifer decrease in specific conductance occurred after about 1 to 1.2 days. Assuming a symmetrical breakthrough and the lower values of specific conductance representing the center of mass tracer, rate of movement of groundwater is about 30 ft/d in the lower part of the aquifer and about 25 ft/d in the upper part of the aquifer (**Figure 11**). Because the anomalous mobilization of ions ahead of the deionized water tracer front, results of the tracer test are approximate.

<u>ANALYSIS FOR SITE B</u>: Figures 12 and 13 are hydrographs of specific conductance of groundwater at piezometer PC-100R during the deionized tracer test at **Site B**. Figure 12 is a graph of specific conductance versus time from midpoint of injection. Figure 13 is graph of specific conductance versus depth. Piezometer PC-100R is 50 feet downgradient from well PC-98R. Before introduction of tracer at well PC-98R (time = 0), specific conductance of groundwater ranged from about 13,000  $\mu$ Sm/cm in the lower part of the aquifer to about 13,400  $\mu$ Sm/cm in the upper part of the aquifer.

After tracer was introduced, specific conductance substantially decreased in the middle to lower part of the aquifer, at depths from 25 to 35 feet, after about 0.3 to 0.4 days. Specific conductance in the lower part of the aquifer, at depths below 35 feet, decreased after about 0.6 to 0.8 days. Trends in specific conductance in the upper part of the aquifer, at depths above 25 feet could not be determined. Assuming a symmetrical breakthrough and the lower values of specific conductance representing the center of mass tracer at about 1.1 days, rate of movement of groundwater is about 45 ft/d (Figures 12 and 13). Because COH-RIB facility was filling a nearby RIB during



the tracer test and impacted local groundwater levels (Figure 3), results of the tracer test are judged to be approximate.

<u>ANALYSIS FOR SITE C</u>: Figures 14 and 15 are hydrographs of specific conductance of groundwater at piezometer PC-102 during the deionized tracer test at Site C. Figure 14 is a graph of specific conductance versus time from midpoint of injection. Figure 15 is graph of specific conductance versus depth. Piezometer PC-102 is 43 feet downgradient from well PC-99R. Before introduction of tracer at well PC-99R (time = 0), specific conductance of groundwater ranged from about 9,300  $\mu$ Sm/cm in the lower part of the aquifer to about 8,000  $\mu$ Sm/cm in the upper part of the aquifer.

After tracer was introduced, specific conductance decreased in the lower part of the aquifer, at depths below 35 feet, after about 0.2 days. Trends in specific conductance in the middle and upper part of the aquifer, at depths above 35 feet generally increased in conductance. Because of the increase in specific conductance above 35 feet, results above 35 feet are difficult to interpret. At depths below 35 feet, assuming a symmetrical breakthrough and the lower values of specific conductance representing the center of mass tracer at about 0.5 days, rate of movement of ground-water is about 85 ft/d (Figures 14 and 15).

### Natural Gradient, Bromide Tracer Test (Site A)

Natural gradient, bromide tracer test was conducted at **Site A** during the period September 16 through 17, 2000. Well PC-70 was used as the injection well and piezometer PC-101R was used as the downgradient observation point. Bromide solution was mixed in a tanker truck using a ratio of 55 pounds of calcium bromide to approximately 2,000 gallons of water. Water used for the bromide

記載日期時に向



solution was groundwater processed through the reverse osmosis plant at the Kerr-McGee facility. Average bromide injection concentration was 3,600 mg/L. Background concentration of bromide at **Site A** was less than 1 mg/L **(Table 2)**.

Bromide solution was injected into Well PC-70 through a flexible hose inserted into the well. The hose was moved up and down to distribute the bromide solution throughout the well. Average injection flow rate was about 70 gpm. Immediately following the bromide injection, a conductivity probe was inserted in the well and a vertical profile of specific conductance was obtained. The specific conductance profile indicated a relatively uniform distribution of the tracer solution in the well casing.

Sampling of groundwater at PC-101R at depths from 23, 32, and 40 feet were conducted using a peristaltic pump and a micro-purge sampling method. The method minimized disturbance of the natural groundwater gradient that might otherwise occur from purging 3 casing volumes. Bromide samples were analyzed by NEL Laboratories, Las Vegas, Nevada. Tabulation of results of bromide concentration in samples obtained at depths from 23, 32, and 40 feet at piezometer PC-101R and laboratory reports are given in **Appendix D**.

**Figure 16** is a hydrograph of bromide concentration breakthrough at the three depth intervals sampled. Assuming symmetrical breakthrough and peak concentration representing the center of mass of the bromide slug, travel time ranges from about 0.9 days for the 40-foot depth interval to about 1.05 days for the 23-foot and 32-foot depth intervals. Rate of groundwater movement is estimated to be about 30 ft/d (Table 5).



### Drift and Pumpback, Bromide Tracer Tests (Site C)

A drift and pumpback bromide tracer test was conducted at **Site C**, well PC-99R on September 18, 2000. Bromide solution was mixed in a tanker truck using a ratio of 55 pounds of calcium bromide to approximately 2,000 gallons of water. Water used for the bromide injection slurry was groundwater processed through the reverse osmosis plant at the Kerr-McGee facility. Average bromide injection concentration was 4,200 mg/L. Set-up of pumps and discharge lines for pumpback at well PC-70 was similar to procedures described earlier in the report for aquifer testing.

Bromide solution was injected into Well PC-99R through a flexible hose inserted into the well. The hose was moved up and down to distribute the bromide solution throughout the well. Average injection flow rate was about 120 gpm. Immediately following the bromide injection, a conductivity probe was inserted in the well and a vertical profile of specific conductance was obtained. The specific conductance profile indicated a relatively uniform distribution of the tracer solution in the well casing. Bromide samples were collected from the pump discharge. Sampling frequency ranged from 5 minutes per sample during the first part of the test to 15 minutes per sample during the final part of test. Bromide samples were analyzed by NEL Laboratories, Las Vegas, Nevada. Tabulation of results of bromide concentration in samples obtained during the pumpback are given **Appendix D**.

**Figure 17** is a hydrograph of bromide concentration breakthrough during the pumpback. Integrating under the curve, center of mass of the bromide pulse is recovered after about 30 minutes of pumping. Using equation 3 (Page 20) and aquifer parameters derived from hydraulic tests, rate of groundwater movement is estimated to be about 60 ft/d (Table 5). Using equation 4 (Page 20), effective porosity is estimated to be about 10 percent.

1.1.1

2012

Sol Suge



#### ANALYSIS OF RATE OF GROUNDWATER MOVEMENT

Reliable estimates of groundwater velocity and aquifer parameters are critical for determining mass transport in aquifers. For the present work, velocity calculations provide preliminary rates of downgradient mass transport of perchlorate in groundwater. Perchlorate is generally considered a nonreactive ion. Movement of perchlorate is therefore coincident with the average velocity of groundwater.

In addition to rate of groundwater movement estimated from results of tracer tests, Darcy's Law (equation 1, Page 20) provides an estimate for average rate of groundwater movement at Sites A, B, and C as well as for the area between Sites A and C.

Based on lithologic data obtained from installation of wells in the study area (Appendix B), aquifer test results (Table 4), and the groundwater level contour map (Figure 2), analysis of groundwater velocity was conducted using the following parameters:

······································	Site A	Site B	Site C
Transmissivity (gpd/ft)	50,000	60,000	160,000
Aquifer thickness (feet)	30	25	32
Hydraulic Conductivity (gpd/ft ² )	1,700	2,400	5,000
Effective porosity (percent)	10	10	10
Groundwater gradient (ft/ft)	0.0008	0.01	0.01
Groundwater velocity (ft/d)	20	30	65

Using the geometric mean of hydraulic conductivity from Sites A, B, and C and average groundwater gradient between Sites A and C analysis of groundwater velocity was conducted using the following parameters:



	Sites A, B, and C	
Hydraulic Conductivity (gpd/ft ² )	2,700	
Effective porosity (percent)	10	
Groundwater gradient (ft/ft)	0.01	
Groundwater velocity (ft/d)	35	

Groundwater velocity estimates using Darcy's Law are included in **Table 5**. Results of analysis of rate of groundwater movement using different methods indicate close correlation. Larger rates of groundwater movement are estimated using natural gradient tracer test data due to observation of breakthrough occurring in lower parts of the aquifer faster than upper parts of the aquifer. Faster breakthrough in lower parts of the aquifer correlates to lithologic descriptions that indicate lower parts of the aquifer comprise coarser grained sediments through which groundwater would flow faster.

Using Darcy's Law to compute average rate of groundwater movement may provide a lower limit for groundwater velocity between Pittman Lateral and the seep south from Las Vegas wash. Using Darcy's Law and average values for aquifer parameters and groundwater gradient, minimum rate of groundwater of movement between **Site A and Site C** is estimated to be 35 ft/d. Based on distance between **Site A and Site C** of about 5,700 feet, average residence time of groundwater between **Site A and Site C** is estimated to be about 170 days or about 6 months.



### REFERENCES

- Bedient, P.B., Rife, H.S., and Newell, C.J., 1999, Ground Water Contamination Transport and Remediation: Second Edition, Prentice Hall PTR, Upper Saddle River, NJ, 604 p.
- Cooper, H.H., Jr., and Jacob, C.E., 1946, A generalized graphical method for evaluating formation constants and summarizing well-field history: American Geophysical Union Transactions, vol. 27, no. IV, pp. 526-534.
- Driscoll, F.G., 1986, **Groundwater and wells (2nd edition)**, Johnson Division, St. Paul, Minnesota, 1,089 p.
- Hall, S.H., Luttrell, S.P., Cronin, W.E., 1991, A method for estimating effective porosity and ground-water velocity: Ground Water, vol. 29, no. 2, March-April 1991.
- Kerr-McGee, 1998, Preliminary Report on a Hydrogeologic Investigation of Channel-Fill Alluvium at the Pittman Lateral, Henderson Nevada: prepared by Steven R. Lower, Hydrology Services Group, October 19, 1998.
- Leap, D.I., Kaplan, P.G., 1988, A single-well tracing method for estimating regional advective velocity in a confined aquifer: theory and preliminary laboratory verification: Water Resources Research, vol. 23, no. 7, pp. 993-998
- Nevada Department of Environmental Protection, 2000, Authorization to conduct tracer test(s) at the Kerr-McGee Facility, Henderson, Nevada, UIC Permit UNEV94218: letter from Russ Land, NDEP, to Susan Crowley, Kerr-McGee Chemical LLC, July 21, 2000.
- Theis, C.V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage: American Geophysical Union Transaction, vol. 16, pp. 519-524.

AND HYDRAULIC TESTING CONDUCTED BETWEEN PITTMAN LATERAL AND SEEP AREA, HENDERSON, NEVADA TABLE 1. SUMMARY OF CONSTRUCTION DETAILS FOR WELLS AND PIEZOMETERS COMPLETED FOR TRACER

WELL	PIEZOMETER IDENTIFIER	DATE COMPLETED	ALTITUDE OF TOP OF CASING (feet, msl) ^a	BOREHOLE BOREHOLE BORE DIAMETER DEP (inches) (fee	HOLE BOREHOLE DEPTH (feet)	CASING DIAMETER (inches)	CASING CASING DEPTH (feet)	PERFORATED INTERVAL (feet)
<b>SITE A</b> PC-70	PC-101 PC-101R	12Sep1998 18May2000 16Aug2000	1,617.90 1,618.09 1,618.09	5 ø 5	50.5 52 51.5	ю N N	50.5 50 50.5	18.5 - 48.5 14.5 - 49.5 20 - 50
SITE B PC-98 PC-98R	PC-100	17May2000 08Aug2000 18May2000 16Aug2000	1,593.41 1,593.41 1,592.83 1,592.83	10.5 8 10.5	45 41.5 40 41.5	440 0	33.5 40.5 39 40.5	13 - 33 20 - 35 8.5 - 38.5 15 - 40
SITE C PC-99 PC-99R	PC-88 PC-89 PC-90 PC-102	17May2000 08Aug2000 11May2000 12May2000 12May2000 17Aug2000	1,551.97 1,551.97 1,551.01 1,551.10 1,551.01	0.5 8 8 8 0 10 5	55 55 55 50 1 3 50 2 50 2 50 2 50 2 50 2 50 2 50 2 50 2	440000	47.5 53 50.5 35 48.5	1.5 - 47 8.5 - 48.5 40 - 50 24.5 - 34.5 4.5 - 14.5 8 - 48

^a feet, msl = feet above mean sea level; replacement well or piezometer altitudes assumed to be equivalent to original well or piezometer

448/01/FinalRpt/Table1.doc/12Dec2000

ERROL L. MONTGOMERY & ASSOCIATES, INC.



· · · · ·

	: :	LAB	7.3	9.6	7.1			ರ
	RSpH		87	84	35			ES, IN
	METER :	FIELD	0 6.87	0 6.84	0 6.85		in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	ASSOCIATES, INC.
	KOUTINE PARAI ELECTRICAL CONDUCTANCE (µmho/cm) ⁶	LAB	7,300	2,800	9,600	a.	s Celsii ntimete	& ASS
	ROUTINE PARAMETERS ELECTRICAL CONDUCTANCE (µmho/cm)°pH	FIELD	7,835	2,765	11,020	Neved	degree. Per ce	
FOR		TEMP ^b	22.8	24.1	25.0	Bromide analyses were conducted by NEL Laboratories, Las Vegas, Neveda.	^b Temp = Temperature (degrees Celsius) ^c µmho/cm = Micromhos per centimeter	ERROL L. MONTGOMERY
IETERS	:					es, Las	Temper	". MON
PARAM		TDS	5,900	1,800	8,600	oratorie	emp = mho/cm	ROL L
DUTINE		AIK	200	2 140	140	EL Lab		
AND RC EP ARE		B	2.8	0.92	5.3	d by N		E.
JENTS / AND SE ADA	1	'n	<1.0	17 <1.0	1.7	onducte	a B	
NSTITU TERAL /	UENTS ^a (ter)	Ľ.	1.6	0 0.37	1.3	vere co	ed soli	
AON CC AN LAT DERSO	COMMON CONSTITUENTS ^a (milligrams per liter)	NO3	5.5	<20.0	22	alyses	= Total dissolved solids	
COMIN COMIN	MMON C (milligra	SO4	2,000	600	1,600	nide an	= Total	
LTS I ETWEEN ICAL LL	00	ច	2,700	510	1,700		SQT	
LABORATORY CHEMICAL RESULTS ( COMMON CONSTITUENTS AND ROUTINE PARAMETERS FOR WATER SAMPLES OBTAINED BETWEEN PITTMAN LATERAL AND SEEP AREA KERR-MCGEE CHEMICAL LLC, HENDERSON, NEVADA		HCO3	244	171	171	Arizona.		
EMICAL OBTAI McGEE	i	¥	25	54	50			
SUMMARY OF LABORATORY CHEMICAI WATER SAMPLES OBTAI KERR-McGEI		Na	1,300	410	1,600	All samples were analyzed by Turner Laboratories, Incorporated, Tucson,	Sulfate Nitrate (as N) Fluoride Boron Alkalinity (as CaCO ₃ )	
SORATC TER SA		Mg	170	64	310	Icorpor	Sulfate Nitrate (as N) Bromide Boron Alkalinity (as 0	
OF LAE WA		Ca	390	120	670	ories, Ir	Sulfate (s Fluoride Boron Alkalinity	
IMARY						aborato	Nanan Sanan Ak	
	i C	DAIE	11Apr2000	11Apr2000	11Apr2000	urner L	оо́ Хо́	
TABLE 2.	œ	_	-01A	-03A	-02A	d by T	(°C)	00
	ENTIFIE	LAB	0004161-01A	0004161-03A	0004161-02A	analyze	(as HC	13Dec2
	SAMPLE IDENTIFIER	q		QN		s were	Calcium Magnesium Sodium Potassium Bicarbonate (as HCO ₃ ) Chloride	le2.doc/
	SA	FIELD	SEEP SUMP	RIB POND	PC-70	sample	Calcium Magnesi Potassiu Blicarbon Chloride	Rpt/Tabl
	L	RCE F		QNO	~		CHXZAG S CHXZZG CHXZZG	448/01/FinalRpt/Table2.doc/13Dec2000
		SAMPLE	SEEP SUMP	<b>RIB POND</b>	PC-70	NOTE:	° CH×ZGG CH×ZGG	448/(

•

TABLE 3. SUMMARY OF HYDROLOGIC DATA FROM CONSTANT-DISCHARGE PUMPING TESTS CONDUCTED AT SITES B AND C, PITTMAN LATERAL AND SEEP AREA HENDERSON, NEVADA

 $\left( \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1 \end{array} \right)$ 

ED         DISTANCE NELL/ IER         DISTANCE FROM FROM NELL/ IER         DISTANCE FROM PUMPING         DURATION PUMPING         PUMPING PUMPING         PUMPING PUMPING         PUMPING										
R         PC-98         6         10Aug2000         29.9         52         15.45           PC-100         30         PC-100         30         13Aug2000         36         65         19.95           PC-99         4         13Aug2000         36         65         2.19         1.73           PC-99         4         13Aug2000         36         65         2.19         1.73           PC-89         50         4         13Aug2000         36         65         2.19           PC-99         60         13Aug2000         36         65         2.19         1.73           PC-89         50         13Aug2000         36         65         1.73         1.73           PC-90         60         10         36         1.03         1.03         1.03           PC-90         60         1.03         1.03         1.03         1.03         1.03	OBSERVATION WELL / PIEZOMETER IDENTIFIER	DISTANCE FROM PUMPED WELL (feet)	DATE PUMPING TEST STARTED	DURATION OF PUMPING PERIOD (hours)	AVERAGE PUMPING RATE (9pm) ^a	PRE- PUMPING WATER LEVEL (feet, bmp) ^b	PRE- PUMPING WATER LEVEL (feet, msl) ^c	TEMPERATURE OF PUMPED WATER (°C) ^d	SPECIFIC ELECTRICAL CONDUCTANCE (JJSm/cm) ⁶	PH OF PUMPED WATER
PC-100 30 15.61 PC-99 4 13Aug2000 36 65 2.19 PC-89 50 PC-89 50 PC-90 60 1.03 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73	PC-98	Q	10Aug2000	29.9	52	15.45 19.95	1,577.96 1,573.46	23	13,050	7.31
13Aug2000 36 65 2.19 4 1.73 1.09 1.09 1.03 1.08	PC-100	30				15.61	1,577.22			
4 0 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.			13Aug2000	36	65	2.19	1,549.78	23	7,530	7.55
0 0 1.03 1.03 1.03 1.03	PC-99	4				1.73	1,550.24			
0.1.03	PC-88	43				1.09	1,549.92			
1.88	PC-89	50				1.03	1,550.07			
	PC-90	60				1.88	1,548.58			
	^a gpm = gallons p	er minute					^d °C = degre	ees Celsius		
^b feet, bmp = feet above mean sea levet	^b feet, bmp = feet	above mean :	sea levet				e μSm/cm =	^e µSm/cm = microSiemens per centimeter	centimeter	
^c feet, msl = feet below measuring point	^c feet, msl = feet t	oelow measuri	ng point							

448/01/FinalRpt/Table3.doc/13Dec2000

ERROL L. MONTGOMERY & ASSOCIATES, INC.

TABLE 4. SUMMARY OF AQUIFER COEFFICIENTS FROM CONSTANT-DISCHARGE PUMPING TESTS CONDUCTED AT SITES B AND C, PITTMAN LATERAL AND SEEP AREA HENDERSON, NEVADA

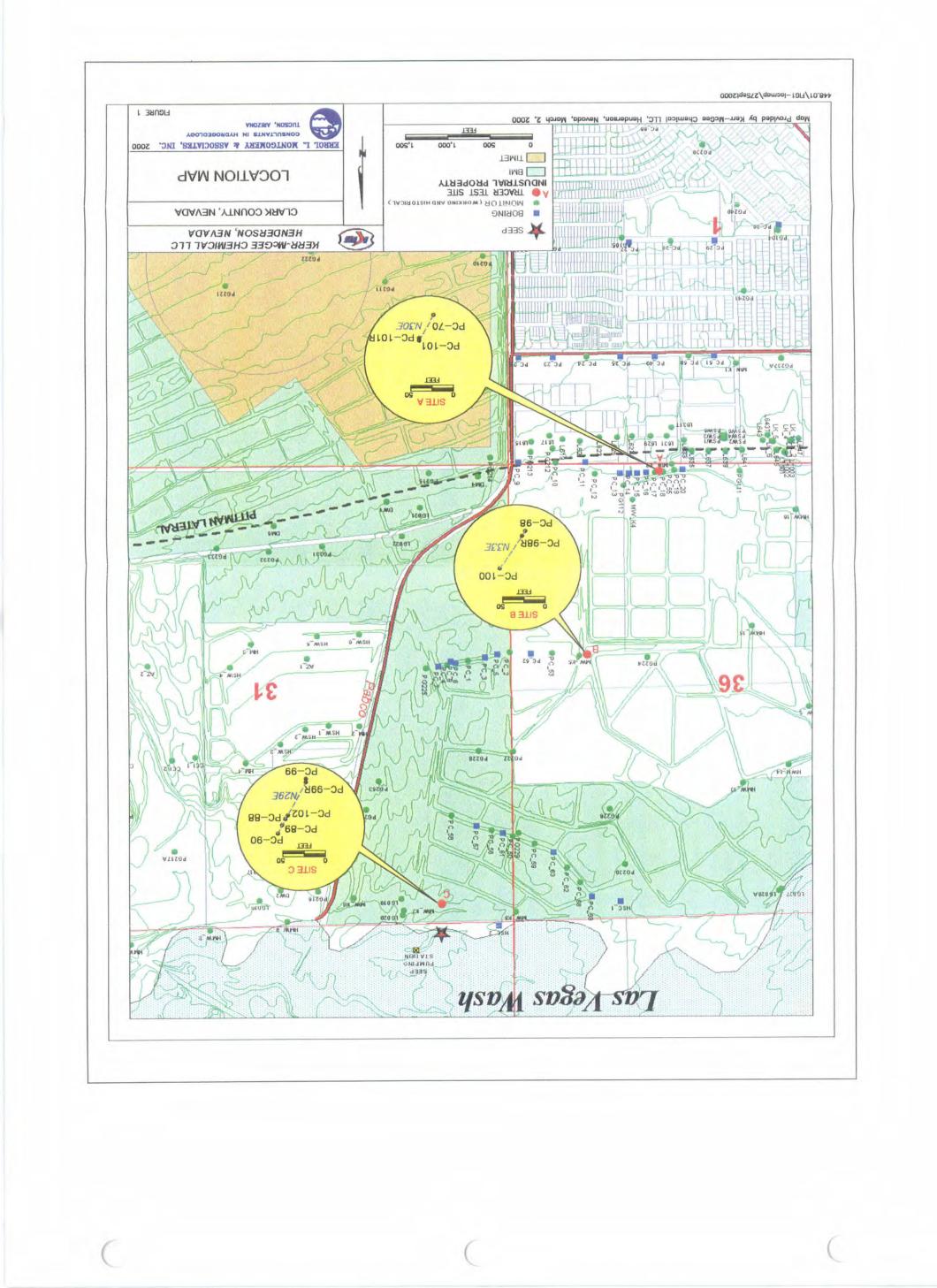
90,000          55,000         55,000         2,200           70,000         0.08         55,000         55,000         1,000           70,000         0.08         55,000         1,000         1,600           130,000          1,50,000         1,60,000         1,60,000           130,000          1,60,000         1,60,000         1,60,000
170,000 160,000 0.002 150,000 160,000

--- = Reliable value could not be determined

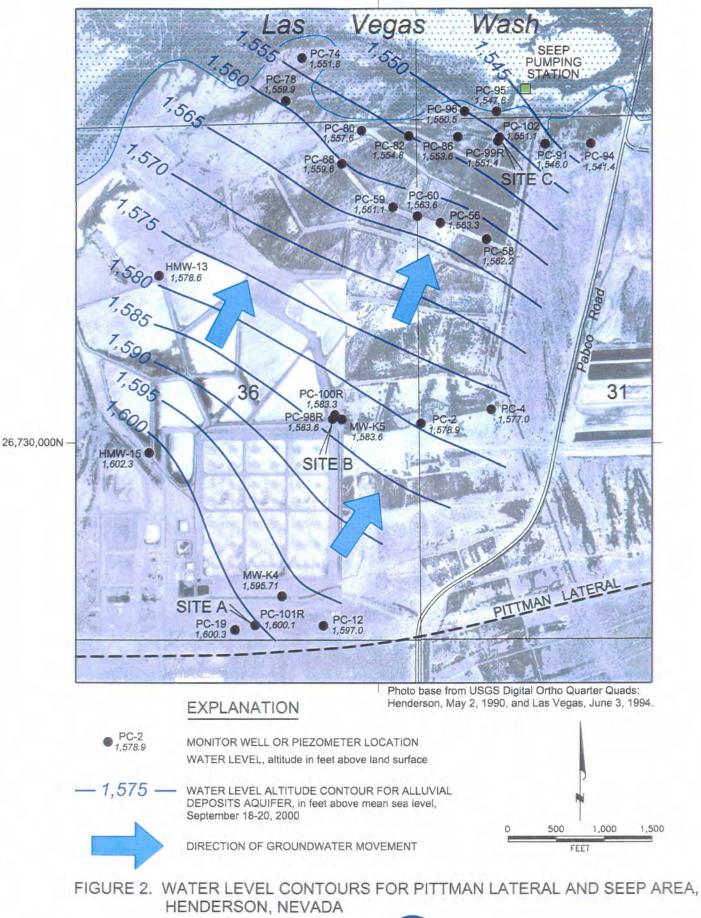
448/01/FinalRpt/Tble4.doc/13Dec2000



ERROL L. MONTGOMERY & ASSOCIATES, INC.


TABLE 5. SUMMARY OF ANALYSIS OF RATE OF GROUNDWATER MOVEMENT BASED ON RESULTS OF HYDRAULIC AND TRACER TESTS CONDUCTED AT SITES A, B, AND C PITTMAN LATERAL AND SEEP AREA HENDERSON, NEVADA

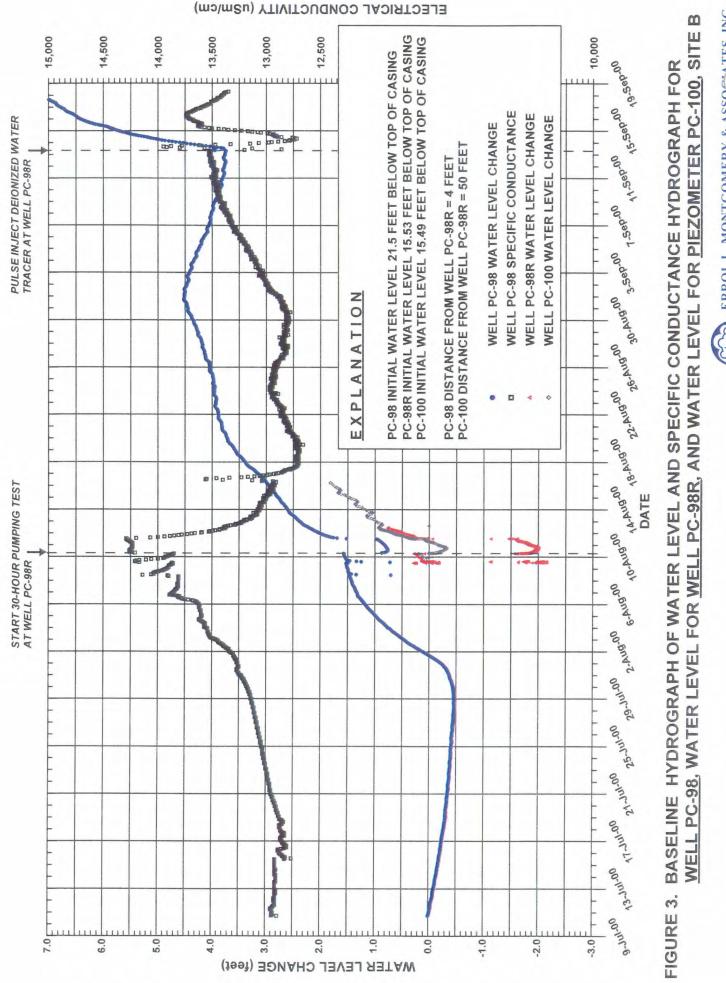
NATURAL GRADIENT DARCY'S LAW (ft/d)	20 30 60
DRIFT AND PUMPBACK BROMIDE TRACER TEST (ft/d)	1   09
NATURAL GRADIENT BROMIDE TRACER TEST (ft/d)	90     1
NATURAL GRADIENT DEIONIZED WATER TRACER TESTS (ft/d) ^a	25 – 30 45 85
	SITE A SITE B SITE C

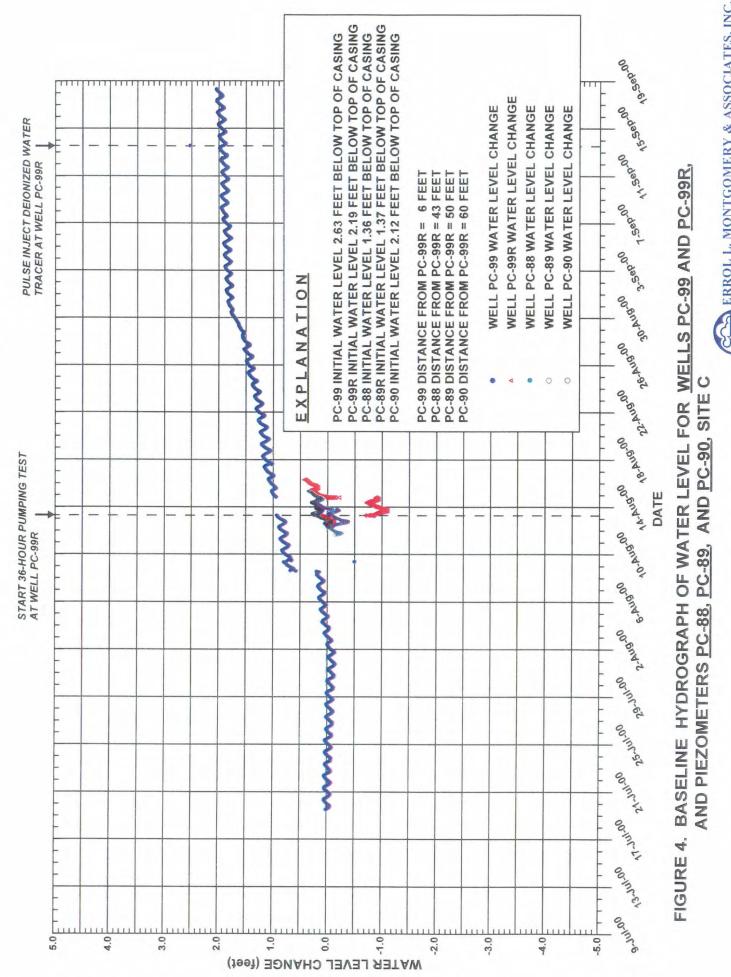

^a ft/d = feet per day

--- = Test not conducted

ERROL L. MONTGOMERY & ASSOCIATES, INC.



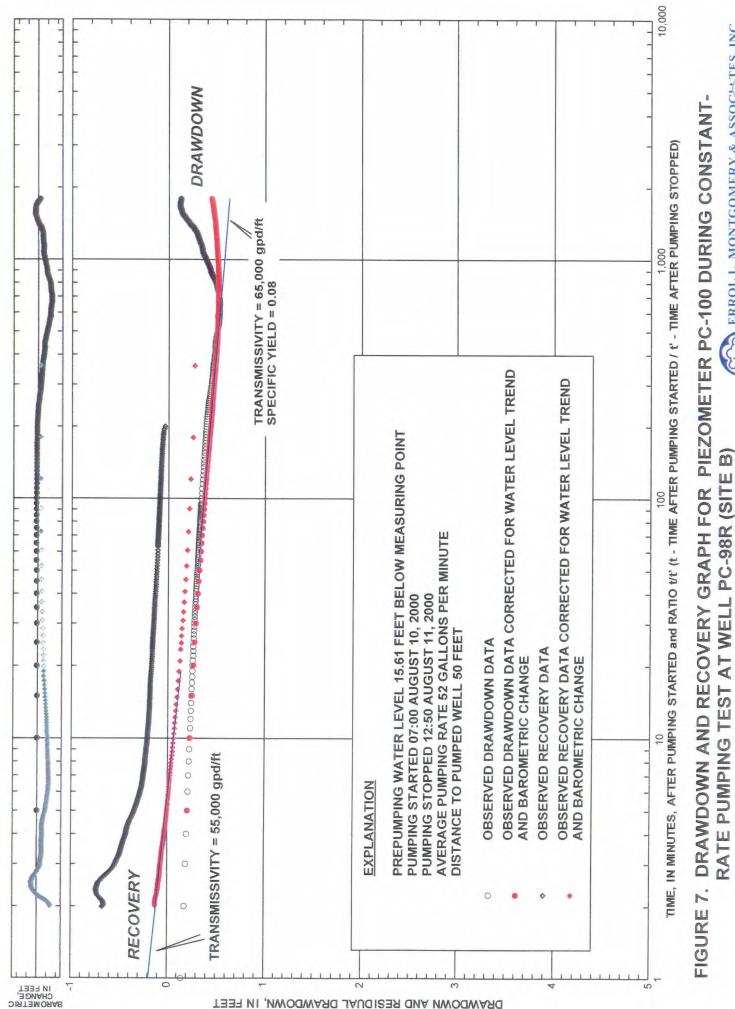

830,000E



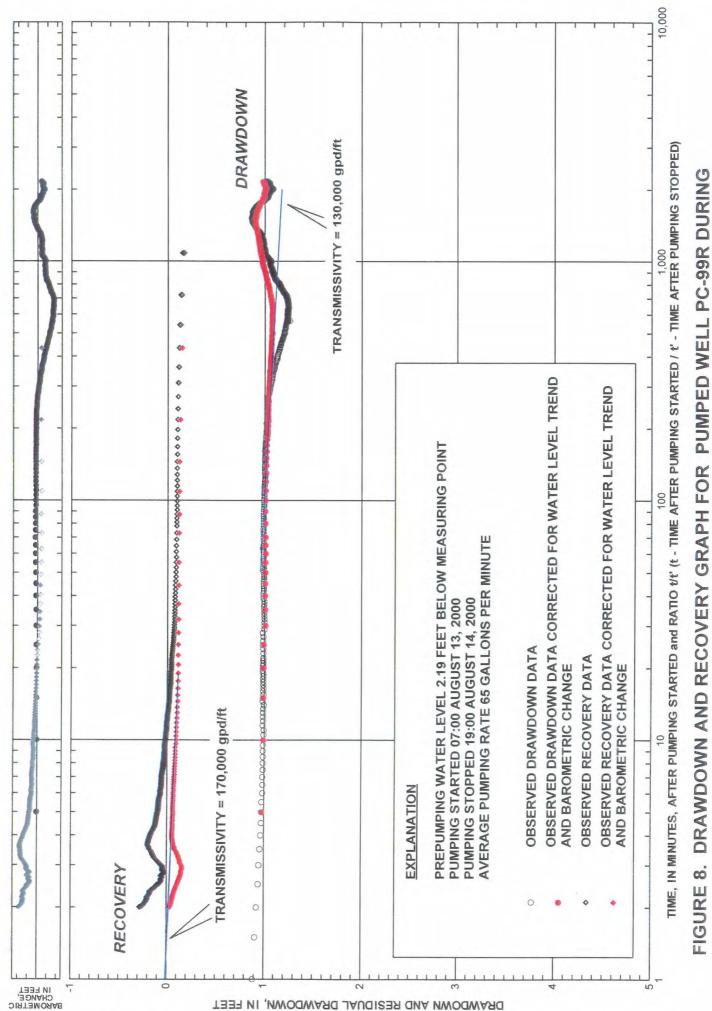

448.01\WLCONT-09-2000-TOP0\12DEC2000



ERROL L. MONTGOMERY & ASSOCIATES, INC.





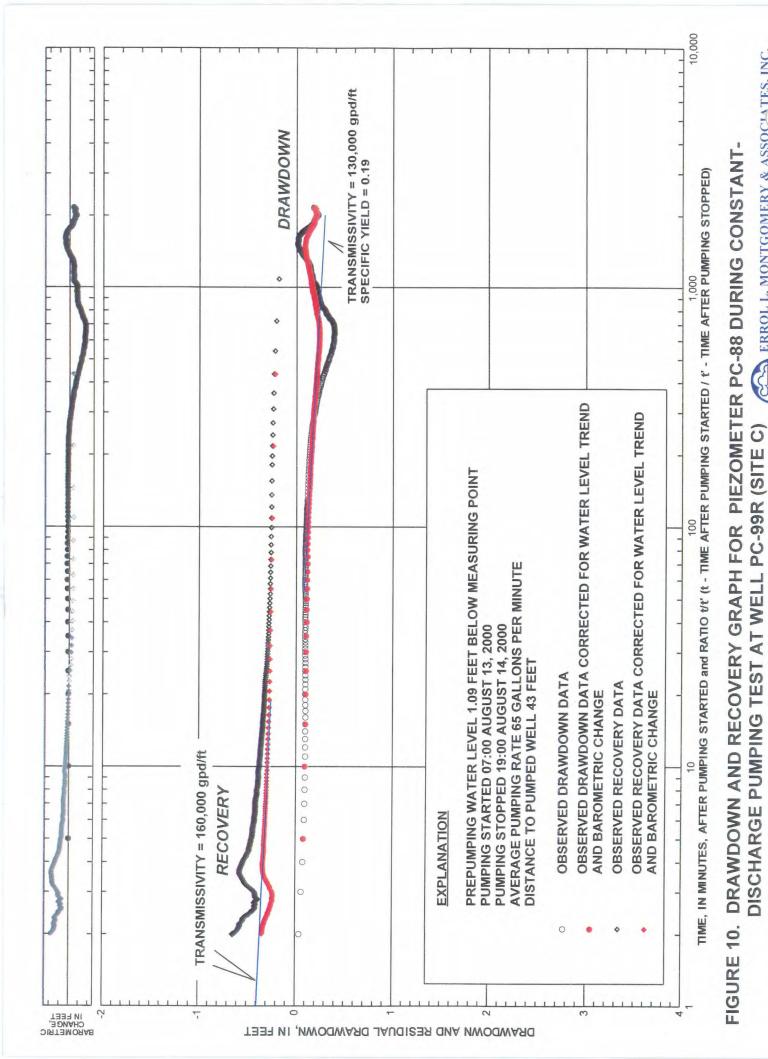


	DRAWDOWN	BELOW MEASURING POINT 000 PER MINUTE	OBSERVED DRAWDOWN DATA OBSERVED DRAWDOWN DATA CORRECTED FOR WATER LEVEL TREND AND BAROMETRIC CHANGE OBSERVED RECOVERY DATA OBSERVED RECOVERY DATA OBSERVED RECOVERY DATA CORRECTED FOR WATER LEVEL TREND AND BAROMETRIC CHANGE
RECOVERY TRANSMISSIVITY = 55,000 gpd/ft	0 0 0 00000000000000000000000000000000	EXPLANATION PREPUMPING WATER LEVEL 15.45 FEET BELOW ME PUMPING STARTED 07:00 AUGUST 10, 2000 PUMPING STOPPED 12:50 AUGUST 11, 2000 AVERAGE PUMPING RATE 52 GALLONS PER MINUTE	<ul> <li>OBSERVED DRAWDOWN DATA</li> <li>OBSERVED DRAWDOWN DATA CO OBSERVED DRAWDOWN DATA CO AND BAROMETRIC CHANGE</li> <li>OBSERVED RECOVERY DATA</li> <li>OBSERVED RECOVERY DATA CO AND BAROMETRIC CHANGE</li> </ul>

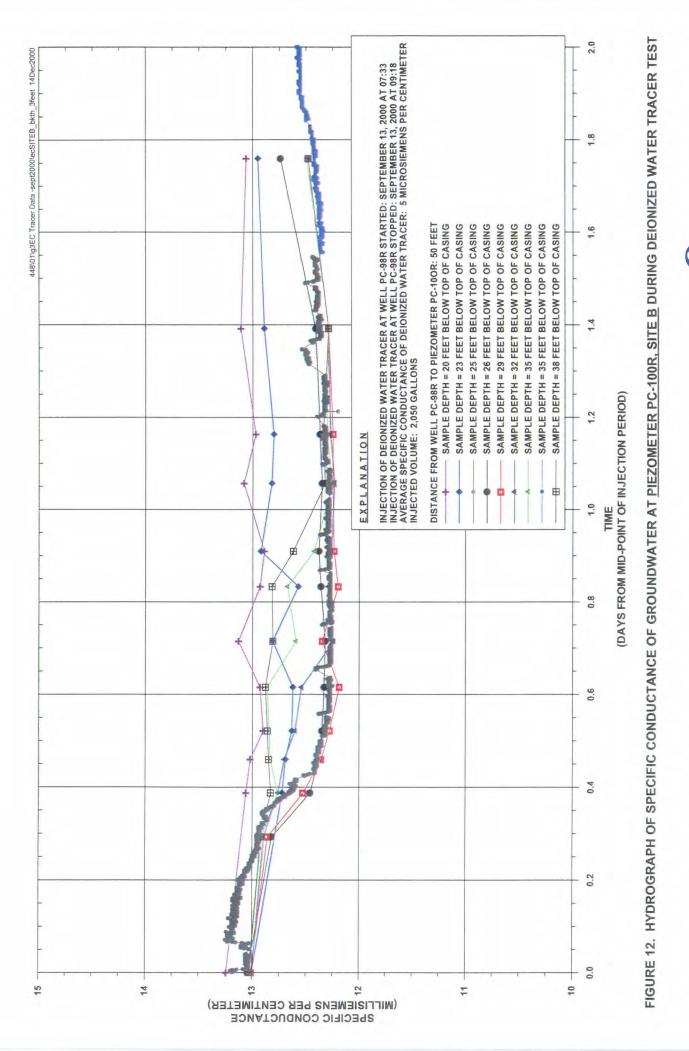
NWOOWAAD JAUDISEA DNA NWOOWAAD NI

TRANSMISSIVITY = 65,000 gpd/ft SPECIFIC VIELD = 0.08	EXPLANATION PREPUMPING WATER LEVEL 19.95 FEET BELOW MEASURING POINT PUMPING STARTED 07:00 AUGUST 10, 2000 PUMPING STOPPED 12:50 AUGUST 11, 2000 AVERAGE PUMPING RATE 52 GALLONS PER MINUTE DISTANCE TO PUMPED WELL 50 FEET	OBSERVED DRAWDOWN DATA OBSERVED DRAWDOWN DATA CORRECTED FOR WATER LEVEL TREND OBSERVED RECOVERY DATA OBSERVED RECOVERY DATA CORRECTED FOR WATER LEVEL TREND	
RECOVERY	EXPLANATION PREPUMPING WATER LEVEL 19.95 FEET BELOW MEA PUMPING STARTED 07:00 AUGUST 10, 2000 PUMPING STOPPED 12:50 AUGUST 11, 2000 AVERAGE PUMPING RATE 52 GALLONS PER MINUTE DISTANCE TO PUMPED WELL 50 FEET	OBSERVED DRAWDOWN DATA OBSERVED DRAWDOWN DATA OBSERVED RECOVERY DATA OBSERVED RECOVERY DATA C	

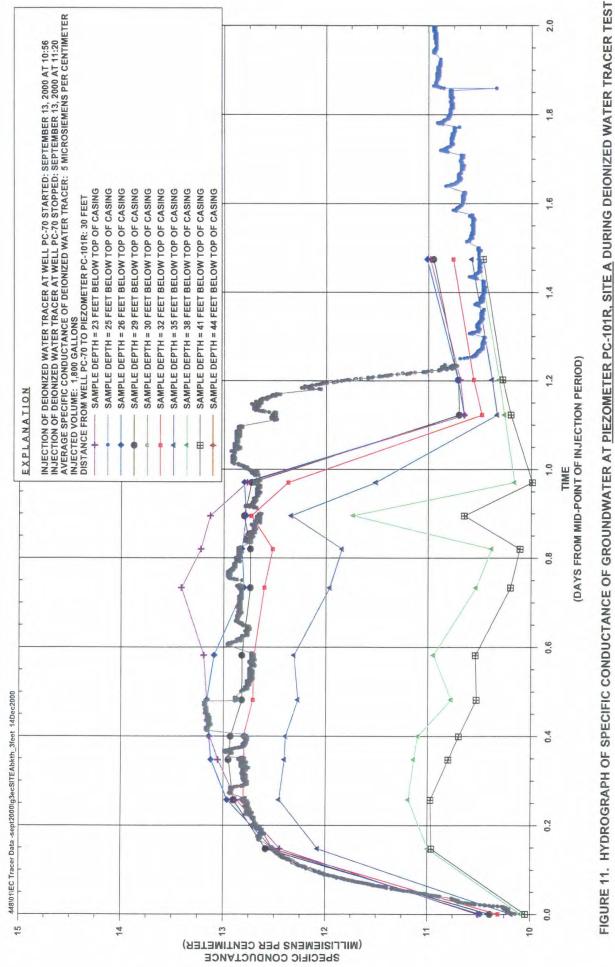


DRAWDOWN AND RESIDUAL DRAWDOWN, IN FEET





DRAWDOWN AND RESIDUAL DRAWDOWN, IN FEET

COMERY & ASSOCIATES, INC.

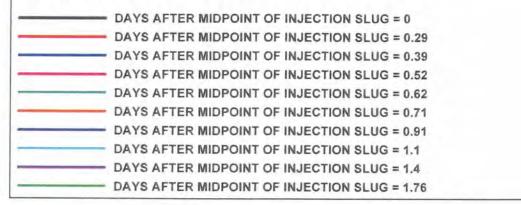

CONSTANT-DISCHARGE PUMPING TEST (SITE C)

	DRAWDOWN	TRANSMISSIVITY = 110,000 gpd/ft SPECIFIC YIELD = 0.002			
			PREPUMPING WATER LEVEL 0.8 FEET BELOW MEASURING POINT PUMPING STARTED 07:00 AUGUST 13, 2000 PUMPING STOPPED 19:00 AUGUST 14, 2000 AVERAGE PUMPING RATE 65 GALLONS PER MINUTE DISTANCE TO PUMPED WELL 4 FEET	DRAWDOWN DATA DRAWDOWN DATA CORRECTED FOR WATER LEVEL TREND RECOVERY DATA RECOVERY DATA CORRECTED FOR WATER LEVEL TREND	
RECOVERY	TRANSMISSIVITY = 150,000 gpd/ft	EXPLANATION	PREPUMPING WATER LEVEL 0.8 FEE PUMPING STARTED 07:00 AUGUST 13 PUMPING STOPPED 19:00 AUGUST 14 AVERAGE PUMPING RATE 65 GALLO DISTANCE TO PUMPED WELL 4 FEET	<ul> <li>OBSERVED DRAWDOWN DATA</li> <li>OBSERVED DRAWDOWN DATA</li> <li>OBSERVED RECOVERY DATA</li> <li>OBSERVED RECOVERY DATA C</li> </ul>	TME IN MINITES ACTED DIMA





ERROL L. MONTGOMERY & ASSOCIATES, INC.




ERROL L. MONTGOMERY & ASSOCIATES, INC.

### EXPLANATION

INJECTION OF DEIONIZED WATER TRACER AT WELL PC-98R STARTED: SEPTEMBER 13, 2000 AT 07:33 INJECTION OF DEIONIZED WATER TRACER AT WELL PC-98R STOPPED: SEPTEMBER 13, 2000 AT 09:18 AVERAGE SPECIFIC CONDUCTANCE OF DEIONIZED WATER TRACER: 5 MICROSIEMENS PER CENTIMETER INJECTED VOLUME: 2,050 GALLONS

DISTANCE FROM WELL PC-98R TO PIEZOMETER PC-100R: 50 FEET



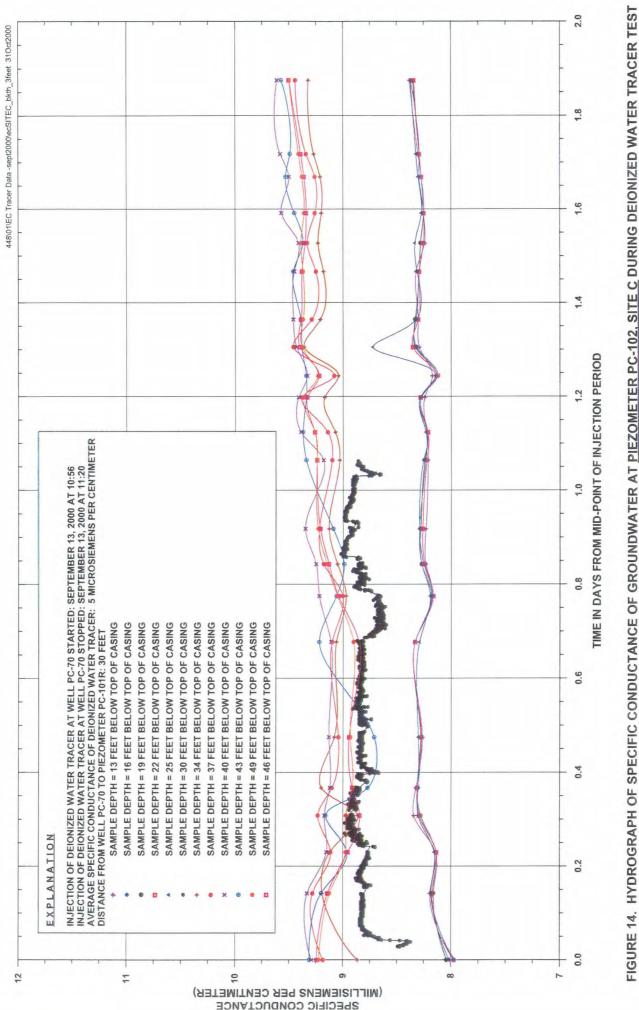




FIGURE 13. SPECIFIC CONDUCTANCE OF GROUNDWATER VERSUS DEPTH AT <u>PIEZOMETER PC-100R, SITE B</u> DURING DEIONIZED WATER TRACER TEST





EROL L. MONTGOMERY & ASSOCIATES, INC.

### EXPLANATION

INJECTION OF DEIONIZED WATER TRACER AT WELL PC-99R STARTED: SEPTEMBER 13, 2000 AT 12:45 INJECTION OF DEIONIZED WATER TRACER AT WELL PC-99R STOPPED: SEPTEMBER 13, 2000 AT 13:27 AVERAGE SPECIFIC CONDUCTANCE OF DEIONIZED WATER TRACER: 5 MICROSIEMENS PER CENTIMETER INJECTED VOLUME: 2,630 GALLONS DISTANCE FROM WELL PC-99R TO PIEZOMETER PC-102: 43 FEET DAYS AFTER MIDPOINT OF INJECTION SLUG = 0 DAYS AFTER MIDPOINT OF INJECTION SLUG = 0.14 DAYS AFTER MIDPOINT OF INJECTION SLUG = 0.23 DAYS AFTER MIDPOINT OF INJECTION SLUG = 0.31 DAYS AFTER MIDPOINT OF INJECTION SLUG = 0.48

- DAYS AFTER MIDPOINT OF INJECTION SLUG = 0.68
- DAYS AFTER MIDPOINT OF INJECTION SLUG = 0.92

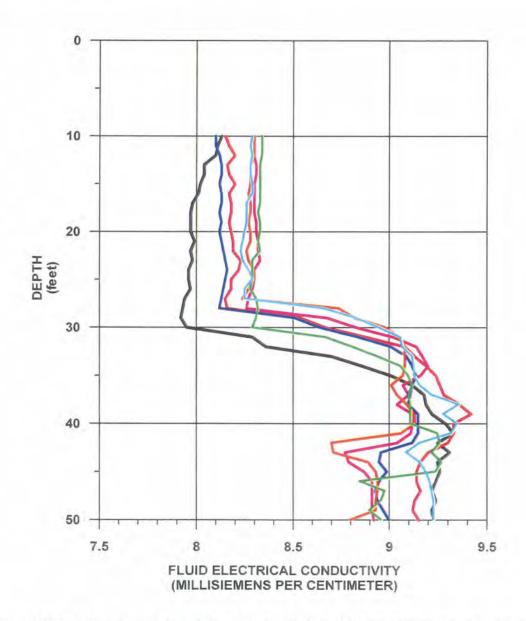
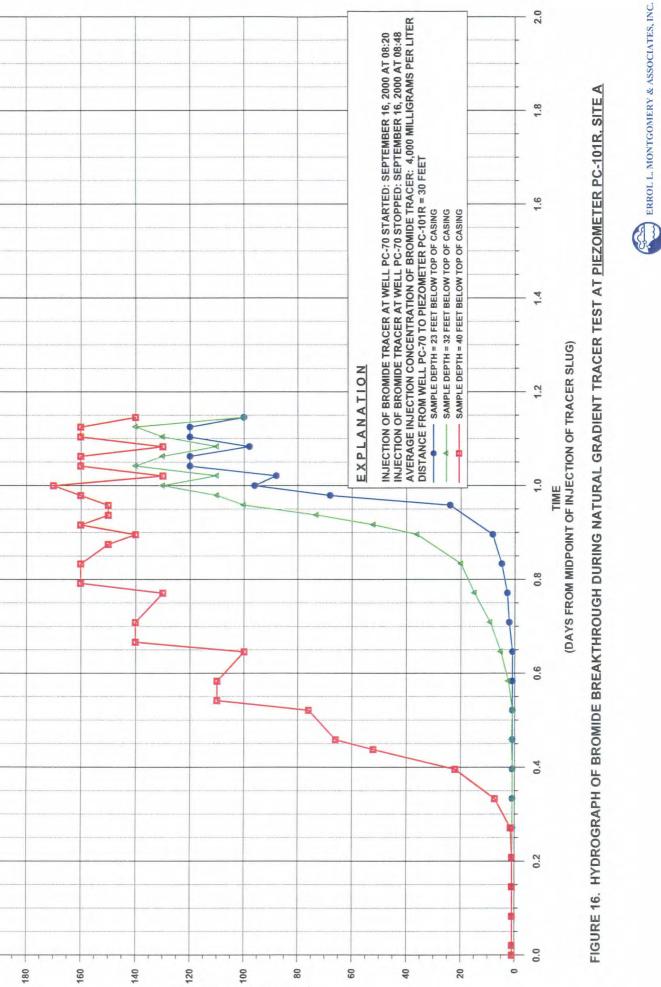
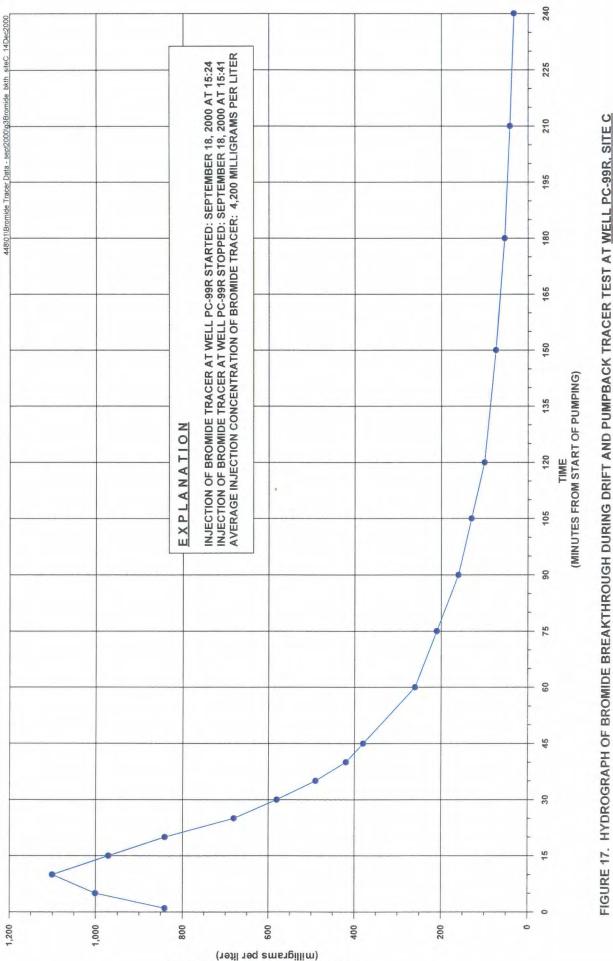




FIGURE 15. SPECIFIC CONDUCTANCE OF GROUNDWATER VERSUS DEPTH AT <u>PIEZOMETER PC-102, SITE C</u> DURING DEIONIZED WATER TRACER TEST








siteA 14Dec2000

448\01\q3Bromide Tracer Data - sept2000\Bromide bkth

200

(МІССІСКАМЗ РЕЯ LITER) SAMPLE BROMIDE CONCENTRATION



SAMPLE BROMIDE CONCENTRATION (milligrams per liter)

ERROL L. MONTGOMERY & ASSOCIATES, INC.

APPENDIX A

## NEVADA DEPARTMENT OF ENVIRONMENTAL PROTECTION: AUTHORIZATION FOR TESTING

PETER G. MORROS. Director

ALLEN BIAGGI, Administrator

(775) 687-4670

687-4678 C

Water Pollution Control Facsimile 687-5855

Mining Regulation and Reclamation Facsimile 684-5259

STATE OF NEVADA KENNY C. GUINN Governor





Waste Management Corrective Actions Federal Facilities

Air Quality Water Quality Planning Facsimile 687-6396

DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES

# DIVISION OF ENVIRONMENTAL PROTECTION

333 W. Nye Lane, Room 138 Carson City, Nevada 89706-0851

July 21, 2000

MONTGOMERY & ASSOC., INC.

RECEIVED

JUL 3 1 2000

Ms. Susan Crowley Kerr McGee Chemical LLC P.O. Box 55 Henderson, NV 89009

# Re: Authorization to Conduct Tracer Test(s) at the Kerr-McGee Facility, Henderson, Nevada. UIC Permit UNEV94218.

Dear Ms. Crowley:

The Nevada Division of Environmental Protection has reviewed your request dated June 15, 2000 to conduct tracer testing between Pittman Lateral and the Seep Area near Las Vegas Wash in Clark County, Nevada.

Based on the information provided, authorization is hereby granted to inject deionized water and calcium bromide into wells located near Sites A, B and C as identified in the submittal referenced above. The Division is not requiring limits on deionized water, however a total mass of 65 pounds of calcium bromide is maximum limit established by this approval. If additional calcium bromide is required, please contact me for approval. The water used for solution preparation is required to be dechlorinated. All future tracer tests must have prior written Division approval.

If bromide tracer is used, the 50' downgradient monitoring well associated with injection at that particular site shall be sampled for bromide concentration. At the completion of the tracer testing, please submit details of the tracer test(s) with the next quarterly report for UIC permit UNEV94218. Report shall include site locations and the volumes/concentrations injected, and all monitoring results collected.

Please feel free to call with any questions you may have regarding this approval at 775-687-4670 ext. 3150.

Sincerely,

Russ Land V UIC Program Bureau of Water Pollution Control

cc: Cathe Pool, NDEP Water Permits Supervisor
 Val King, NDEP UIC Program
 Pat Corbett, Kerr McGee Plant Manager, Kerr McGee Chemical LLC, P.O. Box 55 Henderson, NV 89009
 Daniel S. Weber, Errol L. Montgomery & Associates, Inc., 1550 E Prince Rd, Tucson AZ, 85719
 Nadir Sous, NDEP LV

# ERROL L. MONTGOMERY & ASSOCIATES, INC.



1550 EAST PRINCE ROAD TUCSON, ARIZONA 85719 (520) 881-4912 FAX: (520) 881-1609 w w w.elmontgomery.com E-MAIL: info@elmontgomery.com ERROL L. MONTGOMERY, P.G. WILLIAM R. VICTOR, P.G. RONALD H. DEWITT, P.G. MARK M. CROSS, P.G. DENNIS G. HALL, P.G. TODD KEAY, P.G. JAMES S. DAVIS, P.G. MICHAEL J. ROSKO, P.G. CHARLES F. BARTER (1937-1999) DANIEL S. WEBER, P.G. LESLIE T. KATZ, P.G.

June 15, 2000

Mr. Russ Land NEVADA DEPARTMENT OF ENVIRONMENTAL PROTECTION UIC Program 333 W. Nye Lane Carson City, NV 89706

# SUBJECT: REQUEST FOR AUTHORIZATION TO CONDUCT TRACER TESTS BETWEEN PITTMAN LATERAL AND SEEP AREA, KERR-McGEE CHEMICAL LLC, HENDERSON, NEVADA

Dear Mr. Land:

Pursuant to our telephone conversation on May 11, 2000, we are requesting authorization to conduct tracer tests between Pittman Lateral and seep area (study area), south from Las Vegas wash, Henderson, Nevada. The work will be conducted for KERR-McGEE CHEMICAL LLC (Kerr-McGee) by ERROL L. MONTGOMERY & ASSOCIATES, INC. (Montgomery & Associates). Tracer tests will be conducted to estimate residence time of groundwater in the shallow alluvial deposits aquifer and rate of mass transport of perchlorate between Pittman Lateral and seep area south from Las Vegas wash.

For your reference, I have attached a workplan recently prepared for Kerr-McGee that describes the planned approach and field activities. Figure 1 of the workplan is a location map showing the study area and the three areas (Sites A, B, and C) for the planned tracer tests. Tracer tests will use both drift and pumpback and natural gradient methodologies. Natural gradient tracer tests will be small-scale; monitoring distance from point of tracer introduction will be on the order of 50 feet. Tracers will be deionized water and bromide. The following sections of this letter are provided to summarize hydrogeologic conditions and the methods for planned tracer tests. Analytical modeling for the planned tracer testing indicates small tracer breakthrough concentrations at observation wells and at the seep area, the nearest potential receptor of tracer.

## HYDROGEOLOGIC CONDITIONS

The study area is located in the southeast part of the Las Vegas Valley and within the limits of City of Henderson, Clark County, Nevada. The Las Vegas Valley occupies a topographic and structural basin within the Basin and Range Physiographic Province. The principal surface water drainage feature for the study area is Las Vegas wash, a shallow, narrow stream that drains to the southeast, across the valley floor to Lake Mead. The study area is bounded by the Pittman Lateral to the south and the seep area to the north (Figure 1). The Henderson wastewater treatment facility lies within the study area. ERROL L. MONTGOMERY & ASSOCIATES, INC.



The late Tertiary Muddy Creek Formation underlies the study area. Wells penetrating the Muddy Creek Formation in the study area indicate lithologies comprising sandy and silty clay to clayey sand. Younger, Quaternary alluvial deposits overlie the Muddy Creek Formation. Alluvial deposits fill erosional paleochannels in the Muddy Creek Formation. Alluvial deposits are thickest within the paleochannels, and thin laterally over the interfluvial areas. Based on lithologic information for wells penetrating the alluvial deposits, thickness of the alluvial deposits in the study is on the order of 40 feet within erosional paleochannels. Lithology of the alluvial deposits ranges from silt, fine to coarse grained sand, gravel, and cobbles.

Paleochannels generally trend southwest-northeast and control movement of groundwater in the alluvial deposits. Depth to groundwater in the alluvial deposits is on the order of 20 feet. Horizontal groundwater level gradients, measured as change in head per unit of distance measured in the direction of the steepest change, range from 0.01 feet per foot (ft/ft) to 0.04 ft/ft. Direction of groundwater movement in the alluvial deposits is north-northeast.

Analysis of a 48-hour aquifer test conducted in the vicinity of **Site A (Figure 1)** indicates an average transmissivity of 50,000 gallons per day per foot of aquifer at 1:1 hydraulic gradient (gpd/ft) for the saturated alluvial deposits. Specific yield was determined to be on the order of 0.06.

Based on analysis of an aquifer test in the alluvial deposits and lithology of saturated sediments in the study area, hydraulic conductivity of the overlying alluvial deposits is judged to be substantially larger than the Muddy Creek Formation. Analysis of water levels in wells completed in the Muddy Creek Formation in the vicinity of the study area indicates hydraulic head to be higher than hydraulic head in the alluvial deposits. Because of larger hydraulic conductivity of the alluvial deposits and direction of groundwater movement being generally upward from the Muddy Creek to the alluvial deposits, we anticipate movement of tracer to be restricted to the alluvial deposits.

**Table 1** summarizes chemical quality of water in the study area. Sample sources are: seep sump near **Site C**, RIB pond near **Site B**, and well PC-70 near **Site A**. The RIB (Rapid Infiltration Basin) pond is part of the Henderson wastewater treatment facility. Results of sampling indicate total dissolved solids (TDS) ranging from 1,800 to 8,600 milligrams per liter (mg/L). Based on samples obtained in the study area, groundwater in the study area is a sodium chloride-sulfate type and is classified as slightly to moderately saline.

### TRACER TESTS

Tracer tests will be conducted to estimate residence time of groundwater and rate of mass transport of perchlorate in the shallow alluvial groundwater system between Pittman Lateral and seep area south from Las Vegas wash. Groundwater will be monitored for breakthrough of tracer at an observation well or a series of observation wells directly down groundwater hydraulic gradient from the tracer introduction well. The tracer introduction well will fully penetrate the alluvial deposits. Distance from tracer introduction to observation



wells will be on the order of 50 feet. North from the City of Henderson (COH) RIB at **Site C**, observation wells will be completed in upper, middle, and lower parts of the alluvial deposits for determination of differences in transit time down hydraulic gradient from COH-RIB. In the vicinity of COH-RIB at **Site B** and up hydraulic gradient from COH-RIB at **Site A**, one fully-penetrating observation well will be completed directly down hydraulic gradient from the tracer introduction well.

Tracers proposed for use are deionized water and bromide. Because of large concentration of TDS in groundwater, deionized water will be used in the first set of singlewell drift and pumpback tracer tests. Electrical conductivity of deionized water is estimated to be less than 5 micromhos per centimeter. Electrical conductivity of groundwater is estimated to be on the order of 1,000 times larger than deionized water (Table 1). Drift and pumpback and natural gradient tracer testing will initially be conducted with 1,000 to 1,500 gallons of deionized water. Using 1,000 gallons of deionized water, the tracer solution would occupy approximately 900 cubic feet of sediments, based on an assumed effective porosity of 15 percent. Based on saturated thickness of the alluvial deposits of about 32 feet at Site A, the resulting tracer would have a plan view diameter of about 6 feet assuming a cylindrical volume. Monitoring of tracer introduction and pumpback will be conducted using electrical conductivity sensors placed in the borehole and in a flow cell at land surface.

To assess impact of tracer breakthrough due to density contrasts between the deionized water tracer and groundwater, bromide tracer tests will be conducted. A bromide tracer test, using calcium bromide, is planned for at least two sites for confirmation of deionized water tracer results. Laboratory analysis of background bromide indicates back-ground concentrations ranging from 1.7 mg/L at **Site A** to less than 1.0 mg/L at **Sites B and C** (Table 1). Tracer slug concentration of bromide is planned to be on the order of 5,000 mg/L in a 1,000 gallon water solution. About 31 pounds of calcium bromide will be required for the tracer slug. Tracer tests conducted using bromide will be monitored by sampling groundwater at observation wells using a peristaltic pump. Groundwater sampling at observation wells will be conducted using micro-purge sampling methods to minimize disturbance of the natural groundwater gradient that might otherwise occur from purging 3 casing volumes. Bromide samples will be analyzed by NEL Laboratories, Las Vegas, Nevada.

# PROJECTED CONCENTRATION OF TRACER IN GROUNDWATER

To investigate the projected concentration of bromide downgradient from the introduction well, Montgomery & Associates conducted analytical groundwater modeling using the method described by Hunt, 1983, and provided in a computer program described by Walton, 1989. The method provides a two-dimensional equation governing migration of a conservative solute in uniform one-directional flow from a slug point source without adsorption.

Based on lithologic data obtained from installation of wells in the study area, aquifer test data, a groundwater level contour map, and literature values for dispersivity (Bedient, 1999) modeling was conducted using the following parameters:



ERROL L. MONTGOMERY & ASSOCIATES, INC.

Aquifer thickness: Total porosity: Effective porosity: Longitudinal dispersivity:	30 feet 25 percent 15 percent
Transverse dispersivity:	10 feet for an observation distance of 50 feet; 30 feet for an observation distance of 500 feet 1 foot for an observation distance of 50 feet;
Seepage velocity: Slug concentration load: Observation points:	3 feet for an observation distance of 500 feet 15 feet per day 31 pounds 50 feet and 500 feet

The observation point at 50 feet represents the well installed directly downgradient from the tracer introduction well that will be used to monitor tracer breakthrough. The monitoring point at a distance of 500 feet represents the seep area; the nearest potential intercept of tracer from **Site C**. Largest concentration of bromide is projected to be on the order of 70 mg/L at a distance of 50 feet from tracer introduction. Largest concentration of bromide at a distance of 500 feet is projected to be on the order of 2 mg/L. Analytical modeling for planned tracer testing indicates small tracer breakthrough concentrations at observation wells and at the seep area. Actual concentrations of bromide downgradient from tracer testing activities at **Sites A and B** are projected to be smaller due to contribution of COH-RIB water to the groundwater system.

Thank you for your review and consideration for this request for tracer test authorization. If you have questions or require more information, please contact me.

Very truly yours,

ERROL L. MONTGOMERY & ASSOCIATES, INC.

Daniel S. Weber, P.G. Project Hydrogeologist

Martin L. Barackman Hydrologist

Enclosure

cc: Susan Crowley, w/o encl. Rick Stater, w/o encl. Ed Krish, w/o encl. Bill Ganus, w/o encl.

Tom Reed, w/o encl. Steve Lower, w/o encl. Pat Corbett, w/o encl. Keith Bailey, w/o encl.

SENT VIA FEDERAL EXPRESS

		_		LAB	7.3	9.6	7.1	1		
·	•		рН							INC.
		TERS		FIELD	6.87	6.84	6.85			ATES,
		ROUTINE PARAMETERS.	m)°.	R	7,300	2,800	9,600		eter eter	ASSOCIATES, INC.
, res			ELECTRICAL CONDUCTANCE (µmho/cm) ^c	FIELD	7,835	2,765	11,020	veda.	centim centim	સ
K SAMI			<b>1</b> 8 i					jas, Ne	degi (degi ) tos per	OMER
( WAIE				TEMP ^b	22.8	24.1	25.0	-as Veç	dicromt	DING
101 GR				TDS	5,900	1,800	8,600	tories, 1	^b Temp = Temperature (degrees Celsius) ^c µmho/cm = Micromhos per centimeter	ERROL L. MONTGOMERY
(AME I C				Aik	200	140	140	Labora	c h temp	ERRO
לויטיוו טבוו טאש הטטוווים רמהמוובה רטה עשובה אמוירה אויע הטטווים TERAL AND SEEP AREA HENDERSON, NEVADA		. ·	-	8	2.8	0.92	5.3	oy NEL		
AREA				ß	<1.0	<1.0	1.7	lucted t	spin	
SEEP ,			ENTS"	ш	1.6	0.37	1.3	re cond	lved so	
			COMMON CONSTITUENTS ^a (milligrams per liter)	NO,	24.4	<20.0	97.46	ses wei	Total dissolved solids	
C, HENC			AON COI	so,	2,000	600	1,600	e analy		
BTAINED BETWEEN PITTMA (TERAL AND SEEP ARE KERR-MGGEE CHEMICAL LLC, HENDERSON, NEVADA			COMMON CONSTITUENTS ¹ (milligrams per liter)	ច	2,700	510 (	1,700	Bromide analyses were conducted by NEL Laboratories, Las Vegas, Neveda.	" SQL	
WEEN PITTMA				HCO,	244	171	171	rizona.		
ED BET				×	54	54	50	son, A		
OBTAINED BET KERR-McGE				Na	1,300	410	1,600	All samples were analyzed by Turner Laboratories, Incorporated, Tucson, Arizona.	acO ₁ )	
				Мg	170 1,	64	310 1,	corpora	Sulfate Nitrate (as N) Fluoride Boron Alkalinity (as CaCO ₃ )	
) : :				Ca	390 1	120 6	670 31	ries, Inc	Sulfate Nitrate (as N) Fluoride Boron Alkalinity (as 0	
1 1 1			ш					aborato		
			DAT	SAMPLED	11Apr2000	11Apr2000	11Apr2000	Irner La	Şк ^л да Ак	000
					1-01A	A60-1	I-02A	d by Tu	Ĉ	15June2
			DENTIFIE	LAB	0004161-01A	0004161-03A	0004161-02A	anałyze	(as HC)	2000.17
			SAMPLE IDENTIFIER	٩				s were	Calcium Magnesium Sodium Potassium Bicarbonate (as HCO ₃ ) Chloride	eKMapr
			SA	FIELD	SEEP	<b>RIB POND</b>	PC-70	sample:	Calcium Magnesium Potassium Bicarbonat Chloride	3.01/chemCibaselineKMapr2000.1/15June2000
			IPLE	SOURCE	• •	B POND	~		Ca Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch	/chemC
			NA NA	ğ	JMP	8 P	.70	DTE:	C H X X Q Q	3.01

.

۲

# ERROL L. MONTGOMERY & ASSOCIATES, INC.



1550 EAST PRINCE ROAD TUCSON, ARIZONA 85719 (520) 881-4912 FAX: (520) 881-1609 www.elmontgomery.com E-MAIL: info@elmontgomery.com ERROL L. MONTGOMERY, P.G. WILLIAM R. VICTOR, P.G. RONALD H. DEWITT, P.G. MARK M. CROSS, P.G. DENNIS G. HALL, P.G. TODD KEAY, P.G. JAMES S. DAVIS, P.G. MICHAEL J. ROSKO, P.G. CHARLES F. BARTER (1937-1999) DANIEL S. WEBER, P.G. LESLIE T. KATZ, P.G.

September 7, 2000

Mr. Russ Land NEVADA DEPARTMENT OF ENVIRONMENTAL PROTECTION UIC Program 333 W. Nye Lane Carson City, NV 89706

## SUBJECT: AUTHORIZATION TO INCREASE TOTAL MASS OF CALCIUM BROMIDE DURING CONDUCT OF TRACER TEST(S) AT KERR-MCGEE FACILITY, HENDERSON, NEVADA UIC PERMIT UNEV94218

Dear Mr. Land:

In accordance with our telephone conversation today referring to your authorization letter dated July 21, 2000, for conducting tracer test at Kerr-McGee's Henderson, Nevada facility, we are requesting to increase total mass of calcium bromide from 65 pounds to 110 pounds. Previous estimate of calcium bromide needed for tracer testing stated in our request for authorization letter dated June 15, 2000, was incorrect due to an incorrect value for molecular weight of calcium bromide.

For a 1,000 gallon slurry of 5,000 milligrams per liter (mg/L), calculation of calcium bromide is as follows:

- Molecular weight of calcium bromide (CaBr₂) = 40.08 + 2 (79.9) = 199.88 grams per mole (g/mol)
- 1 gallon (gal) = 3.78 liters (L)
- 1 pound (lb) = 454 g

Using ratio to calculate mass of CaBr₂ needed:

$$\frac{2(Br^{-})}{CaBr_{2}} = \frac{5 \text{ g/L of } Br^{-}}{x \text{ lbs of } CaBr_{2}}$$

rearranging

x lbs of  $CaBr_2 =$ 

[(5 g/L)(199.88 g/mol)/(2 x 79.9 g/mol)]x[(1,000 gal x 3.78 L/gal)]/(454 g/lb) = 52.1 lbs



Calcium bromide is delivered in 55-pound bags; we intend to use 1 bag per 1,000 gallons of water which will provide a slug of bromide on the order of 5,000 mg/L. The bromide slug will be sampled and analyzed using laboratory analytical methods for final estimate of slug concentration of bromide. Current plans are to conduct a maximum of two bromide trace tests which would require use of a total of 110 pounds of calcium bromide.

Thank you for your review of our request and consideration for authorization. If you have questions or need more information, please contact me.

Very truly yours,

ERROL L. MONTGOMERY & ASSOCIATES, INC.

Daniel S. Weber, P.G. Project Hydrogeologist

cc: Susan Crowley Ed Krish Bill Ganus

SENT VIA FACSIMILE



ERROL L. MONTGOMERY & ASSOCIATES, INC.

### **APPENDIX B**

### SCHEMATIC DIAGRAMS OF WELL CONSTRUCTION AND GEOLOGIC LOGS FOR WELLS AND PIEZOMETERS

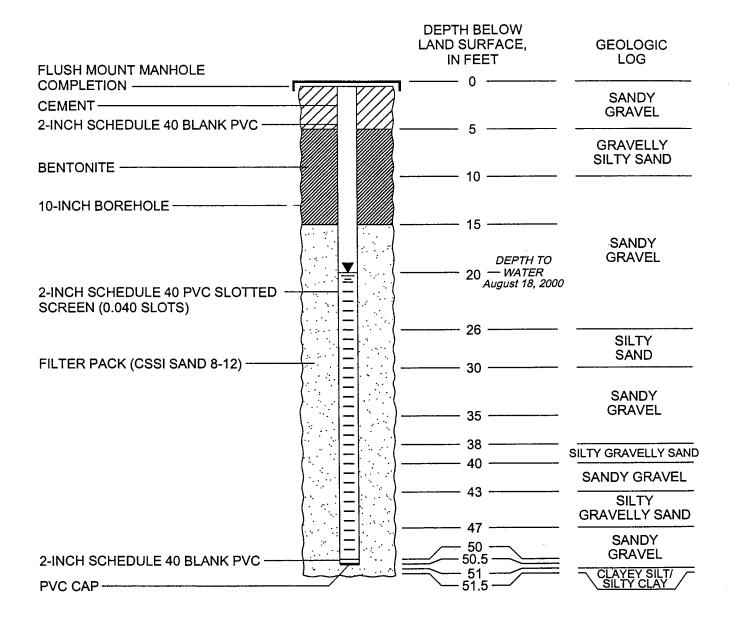
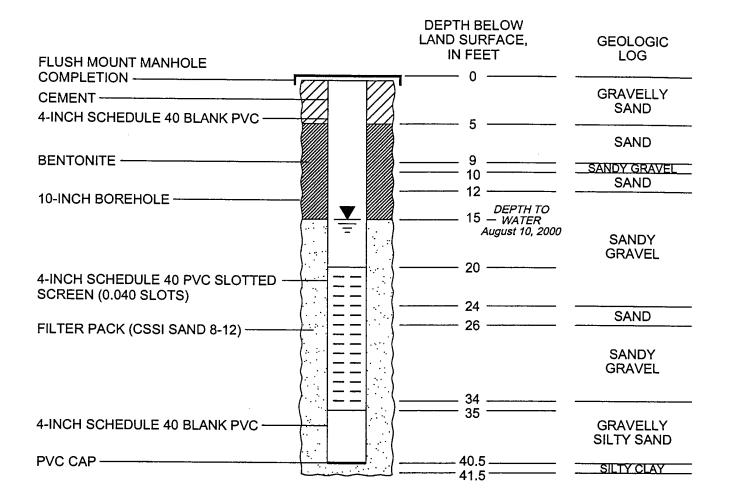
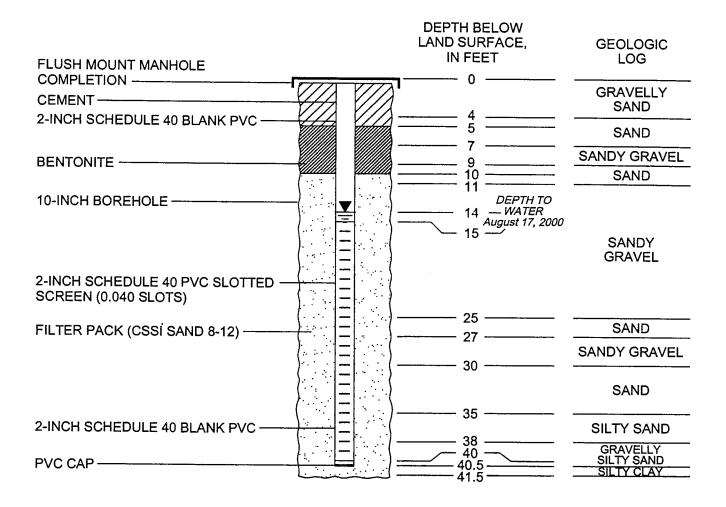




FIGURE B-1. SCHEMATIC DIAGRAM OF CONSTRUCTION AND GEOLOGIC LOG FOR PIEZOMETER PC-101R, SITE A

448.01/PC101R-SITEA-WS/14DEC2000






### FIGURE B-2. SCHEMATIC DIAGRAM OF CONSTRUCTION AND GEOLOGIC LOG FOR MONITOR WELL PC-98R, SITE B

448.01/PC98R-SITEB-WS/14DEC2000





# FIGURE B-3. SCHEMATIC DIAGRAM OF CONSTRUCTION AND GEOLOGIC LOG FOR PIEZOMETER PC-100R, SITE B

448.01/PC100R-SITEB-WS/14DEC2000



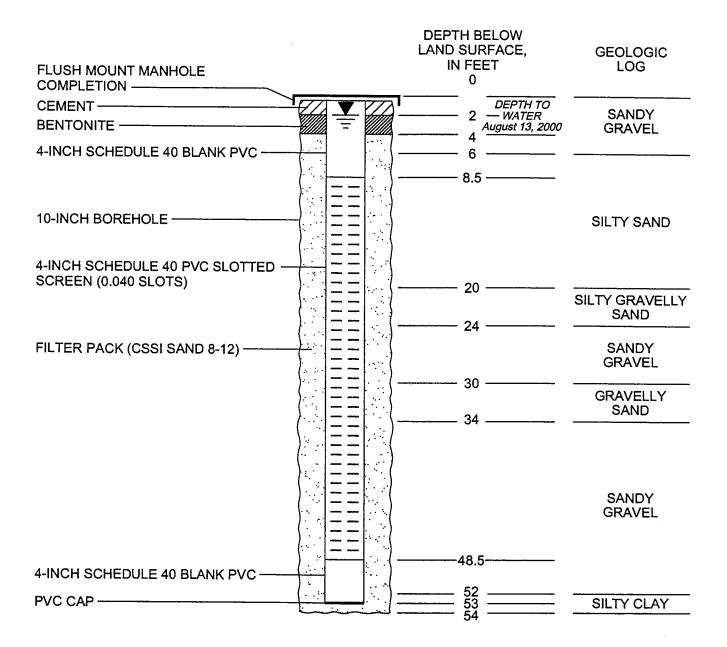



FIGURE B-4. SCHEMATIC DIAGRAM OF CONSTRUCTION AND GEOLOGIC LOG FOR MONITOR WELL PC-99R, SITE C

448.01/PC99R-SITEC-WS/14DEC2000



FLUSH MOUNT MANHOLE		DEPTH BELOW LAND SURFACE, IN FEET	GEOLOGIC LOG
CEMENT		0 	<u> </u>
2-INCH SCHEDULE 40 BLANK PVC		2 August 18, 2000 5	GRAVEL
2-INCIT SCITEDOLE 40 BEANK PVC	]	8	
10-INCH BOREHOLE	(), (), (), (), (), (), (), (), (), (),	14	SILTY SAND AND SILTY SANDY GRAVEL
2-INCH SCHEDULE 40 PVC SLOTTED -		19	SANDY SILT/ SILTY SAND
SCREEN (0.040 SLOTS)			SANDY GRAVEL
	{  =  }-	22	SILTY SAND
FILTER PACK (CSSI SAND 8-12)		24	SILTY SANDY GRAVEL
		20	SANDY GRAVEL
		36 39	SILTY SANDY GRAVEL
			SANDY GRAVEL
2-INCH SCHEDULE 40 BLANK PVC	(·····)_	48	
PVC CAP		50	

# FIGURE B-5. SCHEMATIC DIAGRAM OF CONSTRUCTION AND GEOLOGIC LOG FOR PIEZOMETER PC-102, SITE C

448.01/PC102-SITEC-WS/14DEC2000



Data provided by Kerr-McGee

# APPENDIX C

1

# AQUIFER TEST DATA

### Data Set: S:\Projects\448\01\PC98R pumping test - Site B\pc98Rpc98R-JC-corrected for baro&trend.aqt

### **ROJECT INFORMATION**

Company: ELM&A Client: K-M Project: 448.01 Location: K-M Henderson Test Date: Aug 10, 2000 Test Well: PC-98R

### PUMPING WELL DATA

Number of pumping wells: 1

Pumping Well No. 1: PC-98R

X Location: 0. ft Y Location: 0. ft

### No. of pumping periods: 2

Pumping Period Data								
Time (min)	Rate (gal/min)	Time (min)	Rate (gal/min)					
0.	52.	1790.	0.					

### **OBSERVATION WELL DATA**

Number of observation wells: 1

### Observation Well No. 1: PC98R

X Location: 0. ft

Y Location: 1. ft

o. of observations: 471

					ation Data				
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)				Displacement (ft)
5.	1.798	480.	2.046	955.	2.056	1465.	2.045	2300.	0.0406
10.	1.829	485.	2.06	960.	2.06	1470.	2.02	2310.	0.0349
15.	1.85	490.	2.063	965.	2.048	1475.	2.033	2320.	0.0334
20.	1.88	495.	2.055	970.	2.077	1480.	2.042	2330.	0.0326
25.	1.857	500.	2.052	975.	2.075	1485.	2.015	2340.	0.0327
30.	1.886	505.	2.082	980.	2.079	1490.	2.037	2350.	0.0311
35.	1.915	510.	2.052	985.	2.048	1495.	2.035	2360.	0.0265
40.	1.91	515.	2.055	990.	2.051	1500.	2.031	2370.	0.0258
45.	1.921	520.	2.069	995.	2.073	1505.	2.046	2380.	0.0247
50.	1.931	525.	2.071	1000.	2.071	1510.	2.019	2390.	0.0231
55.	1.954	530.	2.048	1005.	2.05	1520.	2.033	2400.	0.0235
60.	1.95	535.	2.078	1010.	2.043	1530.	2.035	2410.	0.0217
65.	1.932	540.	2.054	1015.	2.069	1540.	2.03	2420.	0.0225
70.	1.942	545.	2.053	1020.	2.093	1550.	2.036	2430.	0.0211
75.	1.966	550.	2.079	1025.	2.08	1560.	2.031	2440.	0.0185
80.	1.95	555.	2.061	1030.	2.049	1570.	2.037	2450.	0.0161
85.	1.946	560.	2.059	1035.	2.076	1580.	2.024	2460.	0.0161
90.	1.972	565.	2.023	1040.	2.072	1590.	2.035	2470.	0.0164
95.	1.994	570.	2.075	1045.	2.053	1600.	2.04	2480.	0.015
100.	1.986	575.	2.046	1050.	2.066	1610.	2.054	2490.	0.0095
105.	1.961	580.	2.069	1055.	2.069	1620.	2.035	2500.	0.0091
110.	1.998	585.	2.039	1060.	2.064	1630.	2.041	2510.	0.0083
115.	1.988	590.	2.067	1065.	2.045	1640.	2.047	2520.	0.0089
120.	1.984	595.	2.059	1070.	2.066	1650.	2.037	2530.	0.0069
125.	1.975	600.	2.062	1075.	2.039	1660.	2.033	2540.	0.0063
130.	2.009	605.	2.044	1080.	2.076	1670.	2.041	2550.	0.0061
135.	1.994	610.	2.077	1085.	2.058	1680.	2.031	2560.	0.0051
140.	1.998	615.	2.064	1090.	2.063	1690.	2.012	2570.	0.0039
) 145.	2.005	620.	2.067	1095.	2.055	1700.	2.027	2580.	-0.0001
150.	2.018	625.	2.076	1100.	2.038	1710.	1.999	2590.	0.0019
155.	1.995	630.	2.06	1105.	2.078	1720.	2.034	2600.	-0.0022
160.	1.994	635.	2.083	1110.	2.065	1730.	2.034	2610.	-0.0002

	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)		Displacement (ft)	Time (min)	
165.	2.007	640.	2.073	1115.	2.062	1740.	2.036	2620.	-0.0028
170.	2.023	645.	2.06	1120.	2.046	1750.	2.014	2630.	-0.0017
175.	1.982	650.	2.056	1125.	2.052	1760.	2.018	2640.	-0.0009
180.	2.015	655.	2.049	1130.	2.07	1770.	2.019	2650,	-0.0064
185.	1.993	660.	2.051	1135.	2.076	1780.	2.015	2660.	-0.0068
190.	2.023	665.	2.056	1140.	2.06	1790.	2.023	2670.	-0.005
195.	2.037	670.	2.067	1145.	2.048	1800.	0.3198	2680.	-0.006
200.	2.024	675.	2.042	1150.	2.079	1805.	0.301	2690.	-0.0055
205.	2.033	680.	2.035	1155.	2.054	1810.	0.254	2700.	-0.0092
210.	2.028	685.	2.035	1160.	2.076	1815.	0.2245	2710.	-0.0089
215.	2.035	690.	2.047	1165.	2.052	1820.	0.1957	2720.	-0.0096
220.	2.022	695.	2.094	1170.	2.068	1825.	0.1827	2730.	-0.0159
225.	2.035	700.	2.067	1175.	2.061	1830.	0.1703	2740.	-0.0176
230.	2.021	705.	2.061	1180.	2.061	1835.	0.1636	2750.	-0.0172
235.	2.031	710.	2.056	1185.	2.055	1840.	0.1591	2760.	-0.0211
240.	2.032	715.	2.065	1190.	2.062	1845.	0.1583	2770.	-0.021
245.	2.038	720.	2.044	1195.	2.055	1850.	0.1525	2780.	-0.019
250.	2.038	725.	2.059	1200.	2.063	1855.	0.1472	2780. 2790.	-0.019
255.	2.031	730.	2.028	1205.	2.065	1860.	0.1454		
260.	2.038	735.	2.028					2800.	-0.0232
260. 265.	2.038			1210.	2.047	1865.	0.1429	2810.	-0.0216
205. 270.	2.05	740. 745.	2.064	1215.	2.039	1870.	0.1304	2820.	-0.0245
270.			2.06	1220.	2.049	1880.	0.1219	2830.	-0.0224
	2.058	750.	2.075	1225.	2.07	1890.	0.1131	2840.	-0.0217
280.	2.05	755.	2.082	1230.	2.034	1900.	0.1024	2850.	-0.0218
285.	2.034	760.	2.082	1235.	2.045	1910.	0.0989	2860.	-0.0218
290.	2.042	765.	2.065	1240.	2.047	1920.	0.0936	2870.	-0.0224
295.	2.037	770.	2.037	1245.	2.052	1930.	0.0965	2880.	-0.0216
300.	2.049	775.	2.073	1250.	2.075	1940.	0.0915	2890.	-0.0224
305.	2.059	780.	2.053	1255.	2.064	1950.	0.0887	2900.	-0.0255
310.	2.046	785.	2.06	1260.	2.067	1960.	0.087	2910.	-0.0252
315.	2.066	790.	2.06	1265.	2.065	1970.	0.0899	2920.	-0.0278
320.	2.054	795.	2.081	1270.	2.042	1980.	0.0874	2930.	-0.0266
325.	2.033	800.	2.082	1275.	2.04	1990.	0.0874	2940.	-0.0265
330.	2.031	805.	2.063	1280.	2.041	2000.	0.087	2950.	-0.0277
335.	2.058	810.	2.057	1285.	2.066	2010.	0.0869	2960.	-0.0308
340.	2.063	815.	2.047	1290.	2.064	2020.	0.081	2970.	-0.0276
345.	2.036	820.	2.078	1295.	2.04	2030.	0.0766	2980.	-0.0302
350.	2.063	825.	2.062	1300.	2.062	2040.	0.0731	2990.	-0.0318
355.	2.033	830.	2.065	1305.	2.052	2050.	0.0671	3000.	-0.0346
360.	2.051	835.	2.064	1310.	2.028	2060.	0.0688	3010.	-0.0382
365.	2.059	840.	2.077	1315.	2.077	2070.	0.0646	3020.	-0.0368
370.	2.063	845.	2.055	1320.	2.041	2080.	0.0651	3030.	-0.0353
375.	2.047	850.	2.055	1325.	2.029	2090.	0.0654	3040.	-0.0344
380.	2.078	855.	2.064	1330.	2.044	2100.	0.0645	3050.	-0.0348
385.	2.052	860.	2.047	1335.	2.066	2110.	0.0639	3060.	-0.0349
390.	2.057	865.	2.067	1340.	2.05	2120.	0.0577	3070	-0.0363
395.	2.038	870.	2.08	1345.	2.055	2130.	0.0605	3080.	-0.0382
400.	2.062	875.	2.061	1350.	2.05	2130.	0.0576	3090.	-0.0381
405.	2.056	880.	2.068	1355.	2.072	2140.	0.0551	3100.	-0.0383
410.	2.069	885.	2.085	1360.	2.066	2150.	0.0536	3110.	-0.0369
415.	2.052	890.	2.041	1365.	2.000	2160.	0.0524	3120.	-0.0366
413.	2.032	890. 895.	2.076						-0.0366
420. 425.	2.048	895. 900.		1370.	2.058	2180.	0.0526	3130.	
425. 430.			2.061	1375.	2.057	2190.	0.0504	3140.	-0.0365
	2.047	905.	2.073	1380.	2.055	2200.	0.0514	3150.	-0.0382
435.	2.04	910. 015	2.035	1385.	2.055	2210.	0.0547	3155.	-0.03705
440.	2.068	915.	2.06	1390.	2.038	2220.	0.0522	3160.	-0.0387
445.	2.07	920.	2.046	1400.	2.05	2230.	0.0503	3165.	-0.04055
450.	2.064	925.	2.083	1410.	2.024	2240.	0.0495	3170.	-0.0407
455.	2.076	930.	2.067	1420.	2.047	2250.	0.0484	3175.	-0.04315
460.	2.08	935.	2.053	1430.	2.053	2260.	0.0466		
465.	2.07	940.	2.057	1440.	2.026	2270.	0.0422		
470.	2.063	945.	2.069	1450.	2.034	2280.	0.0407		
475.	2.066	950.	2.077	1460.	2.057	2290.	0.0411		

SOLUTION

### uifer Model: Confined Jolution Method: Cooper-Jacob

VISUAL ESTIMATION RESULTS

### Estimated Parameters

Parameter	Estimate	
Т	8.799E+04	gal/day/ft
S	4.065E-10	- •

### Data Set: S:\Projects\448\01\PC98R pumping test - Site B\pc98Rpc98R-rec-corrected for baro&trend.aqt

### **OLUTION**

ł

Aquifer Model: Confined Solution Method: Theis (Recovery)

### VISUAL ESTIMATION RESULTS

### **Estimated Parameters**

Parameter	Estimate	
T	5.337E+04	gal/day/ft
S'	3.262	

#### Data Set: S:\Projects\448\01\PC98R pumping test - Site B\pc98Rpc98-JC-corrected for baro&trend.aqt

#### **PROJECT INFORMATION**

Company: ELM&A Client: K-M Project: 448.01 Location: K-M Henderson Test Date: June 12-15, 2000 Test Well: PC-98

#### PUMPING WELL DATA

Number of pumping wells: 1

Pumping Well No. 1: PC-98R

X Location: 0. ft Y Location: 0. ft

No. of pumping periods: 2

Pumping Period Data											
Time (min)	Rate (gal/min)	Time (min)	Rate (gal/min)								
0.	52.	1790.	0.								

#### **OBSERVATION WELL DATA**

#### Number of observation wells: 1

Observation Well No. 1: PC98

X Location: 0. ft Y Location: 6. ft

lo. of observations: 60

Observation Data										
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)		
60.	0.7104	780.	0.9252	1500.	0.952	2220.	0.0638	2940.	-0.0254	
120.	0.7698	840.	0.9366	1560.	0.9514	2280.	0.0552	3000.	-0.032	
180.	0.8112	900.	0.939	1620.	0.9488	2340.	0.0436	3060.	-0.0366	
240.	0.8366	960.	0.9434	1680.	0.9442	2400.	0.032	3120.	-0.0442	
300.	0.862	1020.	0.9458	1740.	0.9376	2460.	0.0224	3180.	-0.0488	
360.	0.8804	1080.	0.9502	1800.	0.393	2520.	0.0148	3240.	-0.0534	
420.	0.8898	1140.	0.9506	1860.	0.2314	2580.	0.0082	3300.	-0.06	
480.	0.8982	1200.	0.948	1920.	0.1758	2640.	-0.0014	3360.	-0.0696	
540.	0.9056	1260.	0.9494	1980.	0.1412	2700.	-0.008	3420.	-0.0742	
600.	0.914	1320.	0.9518	2040.	0.1136	2760.	-0.0156	3480.	-0.0768	
660.	0.9164	1380.	0.9522	2100.	0.095	2820	-0.0182	3540.	-0.0774	
720.	0.9208	1440.	0.9536	2160.	0.0784	2880.	-0.0198	3600.	-0.075	

1

#### SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

#### VISUAL ESTIMATION RESULTS

Parameter	Estimate	
т	6.516E+04	gal/day/ft
S	0.008451	

#### Data Set: S:\Projects\448\01\PC98R pumping test - Site B\pc98Rpc98-rec-corrected for baro&trend.aqt

1

#### OLUTION

. i

Aquifer Model: Confined Solution Method: Theis (Recovery)

#### VISUAL ESTIMATION RESULTS

Parameter	Estimate	
Т	5.359E+04	gal/day/ft
S'	3.848	

#### Data Set: S:\Projects\448\01\PC98R pumping test - Site B\pc98Rpc100-JC-corrected for baro&trend.aqt

#### PROJECT INFORMATION

Company: ELM&A Client: K-M Project: 448.01 Location: K-M Henderson Test Date: Aug 10, 2000 Test Well: PC-98R

#### PUMPING WELL DATA

Number of pumping wells: 1

Pumping Well No. 1: PC-98R

X Location: 0. ft Y Location: 0. ft

#### No. of pumping periods: 2

Pumping Period Data											
Time (min) Rate (gal/min) Time (min) Rate (gal/min)											
0.	52.	1793.	0.								

#### **OBSERVATION WELL DATA**

#### Number of observation wells: 1

#### Observation Well No. 1: PC100

X Location: 0. ft Y Location: 50. ft

No. of observations: 516

				Observ	ation Data				
Time (min)	Displacement (ft)	Time (min)	<b>Displacement (ft)</b>		Displacement (ft)				Displacement (ft)
5.	0.2087	525.	0.506	1045.	0.5052	1565.	0.4668	2300.	-0.0144
10.	0.2334	530.	0.5057	1050.	0.5054	1570.	0.4669	2310.	-0.0171
15.	0.252	535.	0.5061	1055.	0.5037	1575.	0.4698	2320.	-0.0176
20.	0.267	540.	0.5086	1060.	0.5049	1580.	0.4656	2330.	-0.0204
25.	0.2793	545.	0.5087	1065.	0.5054	1585.	0.4679	2340.	-0.0223
30.	0.2897	550.	0.5078	1070.	0.5049	1590.	0.4639	2350.	-0.0249
35.	0.2988	555.	0.5094	1075.	0.5039	1595.	0.4683	2360.	-0.0275
40.	0.3082	560.	0.508	1080.	0.5023	1600.	0.4648	2370.	-0.0292
45.	0.3155	565.	0.5089	1085.	0.5017	1605.	0.4673	2380.	-0.0303
50.	0.3229	570.	0.5095	1090.	0.5006	1610.	0.465	2390.	-0.0319
55.	0.3322	575.	0.5089	1095.	0.5012	1615	0.4662	2400.	-0.0335
60.	0.3369	580.	0.502	1100.	0.5009	1620.	0.4646	2410.	-0.0343
65.	0.3428	585.	0.5087	1105.	0.4999	1625.	0.4662	2420.	-0.0355
70.	0.3486	590.	0.5093	1110.	0.5003	1630.	0.4628	2430.	-0.0369
75.	0.3535	595.	0.5115	1115.	0.5006	1635.	0.4652	2440.	-0.0385
80.	0.3587	600.	0.5112	1120.	0.4997	1640.	0.4608	2450.	-0.0419
85.	0.3629	605.	0.5109	1125.	0.4989	1645.	0.4616	2460.	-0.0429
90.	0.3684	610.	0.511	1130.	0.4985	1650.	0.4612	2470.	-0.0436
95.	0.3729	615.	0.511	1135.	0.4995	1655.	0.4622	2480.	-0.044
100.	0.3758	620.	0.5127	1140.	0.499	1660.	0.4593	2490.	-0.0485
105.	0.3791	625.	0.5125	1145.	0.498	1665.	0.459	2500.	-0.0489
110.	0.3831	630.	0.5111	1150.	0.4973	1670.	0.4599	2510.	-0.0497
115.	0.3865	635.	0.5142	1155.	0.4979	1675.	0.4613	2520.	-0.0511
120.	0.3907	640.	0.5117	1160.	0.4989	1680.	0.4572	2530.	-0.0531
125.	0.3938	645.	0.5132	1165.	0.4985	1685.	0.4588	2540.	-0.0547
130.	0.3978	650.	0.5128	1170.	0.4984	1690.	0.4572	2550.	-0.0559
135.	0.4016	655.	0.5117	1175.	0.4974	1695.	0.4592	2560.	-0.0559
140.	0.4042	660.	0.512	1180.	0.4973	1700.	0.4565	2570.	-0.0561
145.	0.4077	665.	0.5119	1185.	0.4963	1705.	0.4573	2580.	-0.0591
150.	0.4101	670.	0.5128	1190.	0.496	1710.	0.4547	2590.	-0.0571
155.	0.4121	675.	0.515	1195.	0.4956	1715.	0.4575	2600.	-0.0602
160.	0.4163	680.	0.5133	1200.	0.4972	1720.	0.4535	2610.	-0.0592

165.	0.4189	685.	) Displacement (ft) 0.5145	1205.	0.4964	1725.	0.4547	2620.	Displacement (ft) -0.0628
170.	0.4219	690.	0.5132	1210.	0.4955	1730.	0.4544	2630.	-0.0617
175.	0.4229	695.	0.5132	1215.	0.4935	1735.	0.454	2640.	-0.0609
180.	0.4255	700.	0.5139	1220.	0.4925	1740.	0.4502	2650.	~0.0654
185.	0.4291	705.	0.5131	1225.	0.4945	1745.	0.4507	2660.	-0.0648
190.	0.4306	710.	0.5161	1230.	0.4943	1750.	0.4516	2670.	-0.065
195.	0.4334	715.	0.5141	1235.	0.4928	1755.	0.4517	2680.	-0.066
200.	0.4357	720.	0.5168	1240.	0.4932	1760.	0.4495	2690.	-0.0685
205.	0.439	725.	0.5178	1245.	0.4933	1765.	0.4512	2700.	-0.0712
210.	0.4406	730.	0.5178	1250.	0.4922	1770.	0.4475	2710.	-0.0699
215.	0.442	735.	0.5189	1255.	0.4919	1775.	0.4496	2720.	-0.0686
220.	0.4424	740.	0.5176	1260.	0.4916	1780.	0.446	2730.	-0.0709
225.	0.4462	745.	0.5172	1265.	0.4905	1785.	0.4469	2740.	-0.0746
230.	0.4485	750.	0.5178	1270.	0.4899	1790.	0.4462	2750.	-0.0712
235.	0.4496	755.	0.5168	1275.	0.4899	1795.	0.272	2760.	-0.0731
240.	0.452	760.	0.5165	1280.	0.4888	1800.	0.2548	2770.	-0.074
245.	0.4532	765.	0.517	1285.	0.4894	1805.	0.2321	2780.	-0.074
250.	0.4535	770.	0.5159	1290.	0.4888	1810.	0.22	2790.	-0.076
255.	0.4537	775.	0.5162	1295.	0.4895	1815.	0.2085	2800.	-0.0772
260.	0.4566	780.	0.5156	1300.	0.4884	1820.	0.1997	2810.	-0.0756
265.	0.4603	785.	0.5152	1305.	0.4884	1825.	0.1916	2820.	-0.0765
270.	0.4599	790.	0.5168	1310.	0.4877	1830.	0.1833	2830.	-0.0764
275.	0.4623	795.	0.5163	1315.	0.4886	1835.	0.1747	2840.	-0.0757
280.	0.4628	800.	0.5171	1320.	0.4874	1840.	0.1691	2850.	-0.0758
285.	0.4651	805.	0.5161	1325.	0.4865	1845.	0.1623	2860.	-0.0788
290.	0.4662	810.	0.5169	1330.	0.4869	1850.	0.1565	2870.	-0.0794
295.	0.4668	815.	0.5167	1335.	0.4864	1855.	0.1472	2880.	-0.0776
300.	0.4701	820.	0.5182	1340.	0.4853	1860.	0.1424	2890.	-0.0804
305.	0.4688	825.	0.5182	1345.	0.4848	1865.	0.1399	2900.	-0.0825
310.	0.472	830.	0.5178	1350.	0.4857	1870.	0.1344	2910.	-0.0832
315.	0.4738	835.	0.5169	1355.	0.4849	1880.	0.1279	2920.	-0.0848
320.	0.4752	840.	0.5169	1360.	0.4844	1890.	0.1171	2930.	-0.0856
325.	0.4759	845.	0.517	1365.	0.4849	1900.	0.1104	2940.	-0.0835
330.	0.4789	850.	0.5165	1370.	0.4844	1910.	0.1029	2950.	-0.0837
335.	0.4795	855.	0.5165	1375.	0.4865	1920.	0.0966	2960.	-0.0888
340. 245	0.4822	860.	0.516	1380.	0.4866	1930.	0.0895	2970.	-0.0876
345.	0.4818	865.	0.5159	1385.	0.487	1940.	0.0855	2980.	-0.0902
350.	0.4843	870.	0.5159	1390.	0.4858	1950.	0.0787	2990.	-0.0888
355.	0.4832	875.	0.5157	1395.	0.4839	1960.	0.075	3000.	-0.0906
360.	0.4837	880.	0.5146	1400.	0.4841	1970.	0.0709	3010.	-0.0932
365. 270	0.4854	885.	0.5137	1405.	0.4844	1980.	0.0664	3020.	-0.0928
370.	0.4874	890.	0.5138	1410.	0.4832	1990.	0.0614	3030.	-0.0913
375.	0.4895	895.	0.5114	1415.	0.4819	2000.	0.058	3040.	-0.0904
380.	0.4883	900.	0.5122	1420.	0.4821	2010.	0.0539	3050.	-0.0928
385.	0.4908	905.	0.5121	1425.	0.481	2020.	0.052	3060.	-0.0929
390.	0.4888	910. 015	0.5134	1430.	0.4809	2030.	0.0456	3070.	-0.0943
395.	0.4915	915.	0.5127	1435.	0.4809	2040.	0.0421	3080	-0.0942
400.	0.4913	920.	0.5124	1440.	0.4811	2050.	0.0371	3090.	-0.0951
405. 410.	0.4928	925.	0.5121	1445.	0.4805	2060.	0.0368	3100.	-0.0963
410. 415.	0.4946 0.496	930. 935.	0.5124 0.5113	1450.	0.4809	2070.	0.0316	3110.	-0.0959
415.				1455.	0.4814	2080.	0.0301	3120.	-0.0986
	0.4948	940. 045	0.5124	1460.	0.4803	2090.	0.0264	3130.	-0.0991
425.	0.4953	945. 050	0.5113	1465.	0.4779	2100.	0.0235	3140.	-0.0995
430.	0.4923	950.	0.5113	1470.	0.478	2110.	0.0219	3150.	-0.0982
435.	0.4993	955.	0.5127	1475.	0.4774	2120.	0.0177	3180.	-0.1017
440.	0.4991	960.	0.5122	1480.	0.4767	2130.	0.0175	3210.	-0.1034
445.	0.5013	965.	0.51	1485.	0.4764	2140.	0.0156	3240.	-0.1052
450.	0.5	970.	0.51	1490.	0.4759	2150.	0.0131	3270.	-0.1097
455.	0.5002	975.	0.5084	1495.	0.4757	2160.	0.0116	3300.	-0.1136
460.	0.5016	980.	0.5087	1500.	0.4741	2170.	0.0104	3330.	-0.1167
465.	0.5007	985.	0.5105	1505.	0.4743	2180.	0.0076	3360.	-0.1187
470.	0.5023	990.	0.5075	1510.	0.4736	2190.	0.0044	3390.	-0.1186
475.	0.503	995.	0.5085	1515.	0.4738	2200.	0.0044	3420.	-0.1205
480.	0.5009	1000.	0.508	1520.	0.4724	2210.	0.0027	3450.	-0.1207
485.	0.5041	1005.	0.5078	1525.	0.4717	2220.	-0.0008	3480.	-0.124
490.	0.504	1010.	0.5069	1530.	0.4724	2230.	-0.0027	3510.	-0.1215
495.	0.5041	1015.	0.5071	1535.	0.4722	2240.	-0.0045	3540.	-0.1232
500.	0.5039	1020.	0.5062	1540.	0.4697	2250.	-0.0056	3570.	-0.122
		1025	0.5064	1545.	0 4710	2260	-0.0064		
505. 510.	0.5065 0.5043	1025. 1030.	0.5069	1545.	0.4719 0.4681	2260. 2270.	-0.0088		

Time (min	) Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min) Displacement (ft)
515.	0.5062	1035.	0.5078	1555.	0.4678	2280.	-0.0113	
· 520.	0.5064	1040.	0.506	1560.	0.4678	2290.	-0.0119	

•

1

#### SOLUTION

)

 $\left( \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \right)$ 

Aquifer Model: Confined Solution Method: Cooper-Jacob

#### VISUAL ESTIMATION RESULTS

Parameter	Estimate	
<u> </u>	6.742E+04	gal/day/ft
S	0.008075	

### Data Set: S:\Projects\448\01\PC98R pumping test - Site B\pc98Rpc100-rec-corrected for baro&trend.aqt

#### SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

#### VISUAL ESTIMATION RESULTS

Parameter	Estimate	
T	5.332E+04	gal/day/ft
S'	5.435	• •

Data Set: S:\Projects\448\01\PC99R pumping test - Site C\pc99Rpc99R-JC-corrected for baro and trend.aqt Date: 10/30/00 Time: 13:12:22

#### PUMPING WELL DATA

Number of pumping wells: 1

Pumping Well No. 1: PC99R

X Location: 0. ft Y Location: 0. ft

No. of pumping periods: 2

Pumping Period Data											
Time (min)	Time (min) Rate (gal/min) Time (min) Rate (gal/min)										
0.	64.	2160.	0.								

#### **OBSERVATION WELL DATA**

Number of observation wells: 1

#### Observation Well No. 1: PC99R

X Location: 0. ft Y Location: 1. ft

#### No. of observations: 624

· 					vation Data				
	Displacement (ft)								
5.	0.9796	685.	1.087	1310.	0.9671	2005.	1.068	3080.	0.1058
10.	0.9936	690.	1.086	1315.	0.9627	2010.	1.069	3090.	0.1112
15.	0.994	695.	1.091	1320.	0.9643	2015.	1.074	3100.	0.1129
20.	0.9954	700.	1.086	1325.	0.9637	2020.	1.073	3110.	0.1213
25.	0.9977	705.	1.085	1330.	0.963	2025.	1.073	3120.	0.1194
30.	1.014	710.	1.083	1335.	0.961	2030.	1.076	3130.	0.1225
35.	1.01	715.	1.081	1340.	0.9632	2035.	1.072	3140.	0.1263
40.	1.009	720.	1.086	1345.	0.9617	2040.	1.068	3150.	0.1279
45.	1.009	725.	1.08	1350.	0.96	2045.	1.071	3160.	0.1294
50.	1.011	730.	1.08	1355.	0.9618	2050.	1.065	3170.	0.1331
55.	1.013	735.	1.08	1360.	0.9578	2055.	1.065	3180.	0.1348
60.	1.014	740.	1.077	1365.	0.9613	2060.	1.065	3190.	0.1365
65.	1.013	745.	1.076	1370.	0.9592	2065.	1.066	3200.	0.137
70.	1.014	750.	1.074	1375.	0.9599	2070.	1.062	3210.	0.1374
80.	1.012	755.	1.076	1380.	0.9564	2075.	1.062	3220.	0.1449
90.	1.011	760.	1.072	1385.	0.9586	2080.	1.055	3230.	0.1464
100.	1.015	765.	1.072	1390.	0.9588	2085.	1.062	3240	0.1518
110.	1.018	770.	1.071	1395.	0.9544	2090.	1.06	3250.	0.1563
120.	1.017	775.	1.063	1400.	0.957	2095	1.063	3260.	0.1572
130.	1.019	780.	1.072	1410.	0.9522	2100.	1.057	3270.	0.1554
140.	1.022	785.	1.069	1420.	0.9526	2105.	1.056	3280.	0.1578
150.	1.024	790.	1.064	1430.	0.954	2110.	1.058	3290.	0.1595
160.	1.026	795.	1.062	1440.	0.9534	2115.	1.053	3300.	0.16
170.	1.029	800.	1.064	1450.	0.9511	2120.	1.054	3310.	0.1569
180.	1,032	805.	1.064	1455.	0.9506	2125.	1.056	3320.	0.1541
185.	1.034	810.	1.054	1460.	0.952	2130.	1.056	3330.	0.1504
190.	1.038	815.	1.054	1465.	0.9496	2135.	1.05	3340.	0.1504
195.	1.039	820.	1.051	1470.	0.9511	2140.	1.052	3350.	0.1492
200.	1.039	825.	1.053	1475.	0.9494	2145.	1.048	3360.	0.1471
205.	1.043	830.	1.051	1480.	0.9505	2150.	1.049	3370.	0.1491
210.	1.037	835.	1.056	1485.	0.9504	2155.	1.047	3380.	0.1501
215.	1.047	840.	1.041	1490.	0.9531	2165.	0.1477	3390.	0.1469
220.	1.044	845.	1.046	1495.	0.9486	2170.	0.1306	3400.	0.1428
225.	1.046	850.	1.041	1500.	0.9485	2175.	0.122	3410.	0.1473
230.	1.043	855.	1.042	1505.	0.9506	2180.	0.1211	3420.	0.1418
235.	1.046	860.	1.039	1510.	0.9519	2185.	0.1214	3430.	0.1389
240.	1.048	865.	1.039	1515.	0.9512	2190.	0.1195	3440.	0.1393
245.	1.044	870.	1.04	1520.	0.9579	2200.	0.1166	3450.	0.134
250.	1.048	875.	1.037	1525.	0.9576	2210.	0.1162	3460.	0.1327

Ţ	me (min) 255.	Displacement (ft) 1.047	<u>Time (min)</u> 880.	Displacement (ft) 1.037	<u>Time (min)</u> 1530.	) <u>Displacement (ft)</u> 0.9585	Time (min) 2220.	Displacement (ft) 0.1154	<u>Time (min)</u> 3470.	Displacement (ft) 0.1307
	260.	1.051	885.	1.033	1535.	0.9596	2230.	0.1159	3480.	0.1293
	265.	1.047	890.	1.038	1540.	0.9628	2240.	0.1135	3490.	0.1277
	270.	1.046	895.	1.03	1545.	0.9597	2250.	0.114	3500.	0.1249
	275.	1.049	900.	1.031	1550.	0.9633	2260.	0.1124	3510.	0.1234
	280.	1.05	905.	1.027	1560.	0.9615	2270.	0.1132	3520.	0.1225
	285.	1.05	910.	1.031	1570.	0.9648	2280.	0.1111	3530.	0.1184
	290.	1.053	915.	1.026	1580.	0.9673	2290.	0.1109	3540.	0.1187
	295.	1.051	920.	1.023	1590.	0.9676	2300.	0.1101	3550.	0.1168
	300.	1.054	925.	1.023	1600.	0.9663	2310.	0.1074	3560.	0.1122
	305. 310.	1.056 1.057	930. 935.	1.019 1.021	1610. 1620.	0.9676 0.9748	2320. 2330.	0.1087 0.1034	3570. 3580.	0.111 0.1113
	315.	1.056	935. 940.	1.021	1630.	0.9748	2330. 2340.	0.1034	3590.	0.1105
	320.	1.063	945.	1.015	1640.	0.9813	2350.	0.1002	3600.	0.1082
	325.	1.058	950.	1.01	1645.	0.9819	2360.	0.1 0.0963	3610.	0.1094
	330.	1.062	955.	1.012	1650.	0.9813	2370.	0.0953	3620.	0.1047
	335.	1.062	960.	1.017	1655.	0.9846	2380.	0.0949	3630.	0.1021
	340.	1.062	965.	1.011	1660.	0.984	2390.	0.0921	3640.	0.1004
	345.	1.06	970.	1.01	1665.	0.9876	2400	0.0919	3650.	0.0991
	350.	1.063	975.	1.006	1670.	0.9857	2410.	0.0912	3660.	0.0969
	355.	1.069	980.	1.005	1675.	0.9908	2420.	0.0845	3670.	0.0955
	360.	1.072	985.	1.007	1680.	0.9914	2430.	0.0847	3680.	0.0925
	365. 370.	1.068 1.07	990. 995.	1.006 1.014	1685. 1690.	0.9888 0.9946	2440. 2450.	0.0841 0.0835	3690. 3700.	0.0927 0.0931
	370. 375.	1.07	995. 1000.	1.002	1690. 1695.	0.9946	2450. 2460.	0.0835	3700. 3710.	0.0905
	380.	1.07	1005.	1.002	1700.	1.	2400.	0.0806	3720.	0.0905
	385.	1.069	1010.	1.005	1705.	0.9993	2480.	0.0789	3730.	0.0835
	390.	1.075	1015.	1.008	1710.	1.001	2490.	0.0775	3740.	0.0868
	395.	1.072	1020.	1.002	1715.	1.001	2500.	0.0772	3750.	0.0848
	400.	1.076	1025.	1.001	1720.	1.002	2510.	0.076	3760.	0.0827
	405.	1.075	1030.	1.004	1725.	1.003	2520.	0.0722	3770.	0.0815
	410.	1.075	1035.	1.	1730.	1.005	2530.	0.0718	3780.	0.0792
	415.	1.078	1040.	1.004	1735.	1.005	2540.	0.0709	3790.	0.0782
	420.	1.078	1045.	0.9962	1740.	1.01	2550.	0.069	3800.	0.0776 0.075
	425.	1.079 1.079	1050.	1. 1.001	1745.	1.007	2560. 2570.	0.0698 0.0669	3810. 3820.	0.075
	430. 435.	1.082	1055. 1060.	1.	1750. 1755.	1.011 1.007	2570.	0.0697	3830.	0.0737
	440.	1.081	1065.	0.9968	1760.	1.012	2590.	0.0653	3840.	0.0711
	445.	1.081	1070.	0.9968	1765.	1.012	2600.	0.0647	3850.	0.0707
	450.	1.084	1075.	0.9911	1770.	1.017	2610.	0.0662	3860.	0.0689
	455.	1.08	1080.	0.9956	1775.	1.014	2620.	0.0635	3870.	0.0684
	460.	1.083	1085.	0.9892	1780.	1.021	2630.	0.0646	3880.	0.0671
	465.	1.085	1090.	0.9928	1785.	1.02	2640.	0.0628	3890.	0.0672
	470.	1.088	1095.	0.9941	1790.	1.024	2650.	0.0625	3900.	0.0664
	475.	1.085	1100.	0.9915	1795.	1.025	2660.	0.0625	3910.	0.0657
	480.	1.089	1105.	0.9899	1800.	1.033	2670.	0.0615	3920. 2020	0.0643 0.0647
	485. 490.	1.087 1.087	1110.	0.9844 0.9873	1805.	1.03 1.032	2680. 2690.	0.06 0.0604	3930 3940	0.0636
	490. 495.	1.092	1115. 1120.	0.9901	1810. 1815.	1.032	2090.	0.0627	3950.	0.0618
	495. 500.	1.092	1125.	0.9851	1820.	1.033	2700.	0.0615	3960.	0.0611
	505.	1.094	1130.	0.9856	1825.	1.038	2720.	0.0608	3970.	0.0608
	510.	1.088	1135.	0.9859	1830.	1.037	2730.	0.0599	3980.	0.0603
	515.	1.089	1140.	0.9824	1835.	1.034	2740.	0.0587	3990.	0.0579
	520.	1.09	1145.	0.9823	1840.	1.04	2750.	0.0577	4000.	0.0569
	525.	1.091	1150.	0.9849	1845.	1.044	2760.	0.0618	4010.	0.0568
	530.	1.089	1155.	0.9835	1850.	1.043	2770.	0.0571	4020.	0.0558
	535.	1.091	1160.	0.9815	1855.	1.051	2780.	0.0561	4030.	0.0554
	540.	1.092	1165.	0.981	1860.	1.049	2790.	0.0585	4040.	0.0533
	545.	1.091	1170.	0.9831	1865.	1.05	2800. 2810.	0.059 0.0588	4050. 4060.	0.0537 0.0514
	550. 555.	1.094 1.091	1175. 1180.	0.9825 0.9807	1870. 1875.	1.054 1.053	2810.	0.0564	4060. 4070.	0.0502
	555. 560.	1.093	1180.	0.9839	1880.	1.055	2820.	0.0548	4080.	0.0496
	565.	1.098	1190.	0.9762	1885.	1.048	2840.	0.0561	4090.	0.0504
	570.	1.093	1195.	0.9785	1890.	1.05	2850.	0.0553	4100.	0.0495
	575.	1.093	1200.	0.9803	1895.	1.052	2860.	0.0539	4110.	0.0479
	580.	1.095	1205.	0.9761	1900.	1.055	2870.	0.0552	4120.	0.0474
	585.	1.095	1210.	0.9791	1905.	1.05	2880.	0.0526	4130.	0.0465
2	590.	1.092	1215.	0.9752	1910.	1.05	2890.	0.0541	4140.	0.0449
in the	595.	1.097	1220.	0.9728	1915.	1.047	2900.	0.055	4150.	0.0464
	600.	1.095	1225.	0.9782	1920.	1.049	2910.	0.0554	4160.	0.0431

		Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
605.	1.094	1230.	0.9736	1925.	1.051	2920.	0.0564	4170.	0.0436
610.	1.095	1235.	0.9748	1930.	1.053	2930.	0.0597	4180.	0.0436
615.	1.097	1240.	0.9736	1935.	1.053	2940.	0.0596	4190.	0.0429
620.	1.1	1245.	0.9711	1940.	1.055	2950.	0.0605	4200.	0.0419
625.	1.098	1250.	0.9732	1945.	1.054	2960.	0.0668	4210.	0.0414
630.	1.098	1255.	0.9728	1950.	1.057	2970.	0.0628	4220.	0.0392
635.	1.096	1260.	0.9719	1955.	1.059	2980.	0.0671	4230,	0.039
640.	1.096	1265.	0.9686	1960.	1.062	2990.	0.0702	4240.	0.0391
645.	1.1	1270.	0.9704	1965.	1.064	3000.	0.0802	4250.	0.0373
650.	1.096	1275.	0.9689	1970.	1.063	3010.	0.0793	4260.	0.037
655.	1.094	1280.	0.9724	1975.	1.064	3020.	0.0802	4270.	0.0365
660.	1.094	1285.	0.9683	1980.	1.063	3030.	0.0826	4280.	0.037
665.	1.093	1290.	0.968	1985.	1.06	3040.	0.0887	4290.	0.0354
670.	1.093	1295.	0.9661	1990.	1.06	3050.	0.0987	4300.	0.0335
675.	1.092	1300.	0.9673	1995.	1.063	3060.	0.1027	4310.	0.0326
680.	1.091	1305.	0.9655	2000.	1.069	3070.	0.1034		0.0020

#### SOLUTION

#### Aquifer Model: Confined Solution Method: Cooper-Jacob

#### VISUAL ESTIMATION RESULTS

Parameter	Estimate	
Т	1.249E+05	gal/day/ft
S	0.0001041	

Data Set: S:\Projects\448\01\PC99R pumping test - Site C\pc99Rpc99R-REC-corrected for baro and trend.aqt Date: 10/30/00 Time: 13:13:42

1

*

#### SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

#### VISUAL ESTIMATION RESULTS

Parameter T	<u>Estimate</u> 1.738E+05	gal/day/ft	
S'	1.21	• •	

Data Set: S:\Projects\448\01\PC99R pumping test - Site C\pc99Rpc99-JC-corrected for WL baro and trend.aqt Date: 10/30/00 Time: 13:15:48

#### Time: 15,15,46

#### PUMPING WELL DATA

Number of pumping wells: 1

Pumping Well No. 1: PC99R

X Location: 0. ft Y Location: 0. ft

No. of pumping periods: 2

Pumping Period Data									
Time (min)	Rate (gal/min)	Time (min)	Rate (gal/min)						
0.	64.	2160.	0.						

#### **OBSERVATION WELL DATA**

Number of observation wells: 1

#### Observation Well No. 1: PC99

X Location: 0. ft

Y Location: 4. ft

No. of observations: 70

#### **Observation Data** Time (min) Displacement (ft) Time (min) Displacement (ft) Time (min) Displacement (ft) Time (min) Displacement (ft) Time (min) Displacement (ft) 60. 0.7578 900. 0.807 1740. 0.7752 2580. 0.0134 3420. 0.0816 120. 0.7696 960. 0.7928 1800. 0.793 2640. 0.0132 3480. 0.0674 180. 0.7864 1020. 0.7866 1860. 0.8078 2700. 0.002 3540. 0.0622 240. 0.8002 1080. 0.7774 1920. 0.8116 2760. 0.0028 3600. 0.052 300. 0.806 1140. 0.7632 1980. 0.8214 2820. -0.0024 3660. 0.0478 360. 0.8248 1200. 0.757 2040. 0.8332 2880. -0.0066 3720. 0.0376 420. 0.8306 1260. 0.7508 2100. 0.823 2940. 0.0012 3780. 0.0224 480. 0.8444 1320. 0.7376 2160. 0.8098 3000. 0.001 3840. 0.0182 540. 0.8562 1380. 0.7294 2220. 0.0556 3060. 0.0198 3900. 0.012 600. 0.86 1440. 0.7332 2280. 0.0434 3120. 0.0416 3960. 0.0088 660. 0.8638 1500. 0.725 2340. 0.0392 0.0604 3180. 4020. 0.0006 720. 0.8556 1560. 0.7288 2400. 0.031 3240. 0.0802 4080. -0.0016 780. 0.8364 1620. 0.7366 2460. 0.0198 3300. 0.088 4140. -0.0098 840. 0.8222 1680. 0.7564 2520. 0.0176 3360. 4200. 0.0798 -0.01

#### SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

#### VISUAL ESTIMATION RESULTS

#### **Estimated Parameters**

 Parameter
 Estimate

 T
 1.126E+05
 gal/day/ft

 S
 0.001677

Data Set: S:\Projects\448\01\PC99R pumping test - Site C\pc99Rpc99-REC-corrected for baro and WL trend.aqt Date: 10/30/00 Time: 13:16:54

#### AQUIFER DATA

Saturated Thickness: 1. ft Anisotropy Ratio (Kz/Kr): 1.

#### SOLUTION

)

- 1 <u>-</u> 1

Aquifer Model: Confined Solution Method: Theis (Recovery)

#### VISUAL ESTIMATION RESULTS

Parameter	Estimate	
Т	1.483E+05	gal/day/ft
S'	3.997	

Data Set: S:\Projects\448\01\PC99R pumping test - Site C\pc99Rpc88-JC-corrected for baro and trend.aqt Date: 10/30/00 Time: 14:30:01

#### PUMPING WELL DATA

Number of pumping wells: 1

Pumping Well No. 1: PC99R

X Location: 0. ft Y Location: 0. ft

No. of pumping periods: 2

	Pumping Pe	eriod Data	
<u>Time (min)</u>	Rate (gal/min)	Time (min)	Rate (gal/min)
0.	64.	2160.	0.

. . .

#### OBSERVATION WELL DATA

_

Number of observation wells: 1

#### Observation Well No. 1: PC88

X Location: 0. ft

Y Location: 43. ft

No. of observations: 647

	Displacement (ft)	Time o (main)		Obser	vation Data				
<u> </u>	0.08715	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
10.	0.0993	055.	0.2392	1305.	0.1084	1955.	0.1946	3050.	-0.3012
15.	0.1032	660.	0.2383	1310.	0.1081	1960.	0.1976	3060.	-0.2981
20.		665.	0.2382	1315.	0.1055	1965.	0.1968	3070.	-0.2937
20.	0.105	670.	0.2373	1320.	0.1059	1970.	0.1981	3080.	-0.2925
25. 30.	0.1082	675.	0.2369	1325.	0.1038	1975.	0.1964	3090.	-0.2849
30. 35.	0.1071	680.	0.2359	1330.	0.1045	1980.	0.1993	3100.	-0.2821
40.	0.1095	685.	0.2349	1335.	0.1044	1985.	0.1989	3110.	-0.2783
	0.1111	690.	0.2354	1340.	0.1042	1990.	0.2035	3120.	-0.2749
45. 50	0.1118	695.	0.2352	1345.	0.1039	1995.	0.2027	3130.	-0.2704
50.	0.1141	700.	0.2344	1350.	0.1024	2000.	0.2074	3140.	-0.2645
55.	0.1158	705.	0.2326	1355.	0.102	2005.	0.2076	3150.	-0.2602
60.	0.1162	710.	0.2319	1360.	0.101	2010.	0.2098	3160.	-0.2578
65. 70	0.1166	715.	0.2311	1365.	0.1007	2015.	0.2105	3170.	-0.2539
70.	0.1199	720.	0.2299	1370.	0.1001	2020.	0.2117	3180.	-0.2548
75.	0.1198	725.	0.2284	1375.	0.09915	2025.	0.211	3190.	-0.2509
80.	0.1175	730.	0.2269	1380.	0.0989	2030.	0.209	3200.	-0.2466
85.	0.1194	735.	0.2261	1385.	0.09995	2035.	0.2082	3210.	-0.2451
90.	0.1213	740.	0.225	1390.	0.0976	2040.	0.2041	3220.	-0.2361
95.	0.123	745.	0.2221	1395.	0.09595	2045.	0.2091	3230.	-0.2353
100.	0.1256	750.	0.2185	1400.	0.0964	2050.	0.2031	3240.	-0.2321
105.	0.1253	755.	0.2183	1405.	0.09545	2055.	0.2054	3250.	-0.2317
110.	0.127	760.	0.2169	1410.	0.0956	2060.	0.203	3260.	-0.2287
115.	0.1285	765.	0.215	1415.	0.09595	2065.	0.2028	3270.	-0.23
120.	0.1301	770.	0.2139	1420.	0.0941	2070.	0.2009	3280.	-0.2272
125.	0.1334	775.	0.2089	1425.	0.09355	2075.	0.2001	3290.	-0.2258
130.	0.1341	780.	0.2132	1430.	0.0931	2080.	0.1956	3300.	-0.2242
135.	0.1353	785.	0.2091	1435.	0.09455	2085.	0.1994	3310.	-0.2263
140.	0.1374	790.	0.2093	1440.	0.0932	2090.	0.1949	3320.	-0.2261
145.	0.1399	795.	0.2091	1445.	0.09275	2095.	0.1984	3330.	-0.2295
150.	0.1407	800.	0.209	1450.	0.0944	2100.	0.196	3340.	-0.2305
155.	0.1427	805.	0.2052	1455.	0.09285	2105.	0.1951	3350.	-0.2321
160.	0.1435	810.	0.2017	1460.	0.0918	2110.	0.1947	3360.	-0.2309
165.	0.1457	815.	0.2021	1465.	0.09175	2115.	0.1918	3370.	-0.2289
170.	0.1448	820.	0.2	1470.	0.0904	2120.	0.1921	3380.	-0.2289
175.	0.149	825.	0.2013	1475.	0.08935	2125.	0.1918	3390.	-0.2284 -0.2303
180.	0.1473	830.	0.1984	1480.	0.0895	2123.			
185.	0.1508	835.	0.2029	1485.	0.08965	2130. 2135.	0.1924	3400.	-0.2341
190.	0.1514	840.	0.1952	1490.	0.0903	2135. 2140.	0.1853 0.1926	3410. 2420	-0.2317
195.	0.1543	845.	0.1969	1495.	0.08955			3420.	-0.2361
		- · • ·	0.1000	1400.	0.00900	2145.	0.1918	3430.	-0.242

205.         0.1683         855.         0.1938         1505.         0.09015         2165.         0.1906         4240.         0.2422           216.         0.1677         860.         0.1918         1515.         0.09115         2170.         -0.2361         3470.         -0.2424           225.         0.1914         807.         0.12217         1520.         0.0216.         -0.2464         3480.         -0.2444           235.         0.1676         885.         0.1889         1530.         0.0916.         2200.         -0.2682         350.         -0.2884           246.         0.1676         880.         0.1889         1540.         0.0946         2220.         -0.2684         3560.         -0.2884           255.         0.1772         890.         0.1891         1550.         0.0949         2240.         -0.2678         3570.         -0.2678           256.         0.1778         825.         0.1782         10.7678         830.         0.7774         1680.         0.08975         230.         -0.2678         3570.         -0.2678           257.         0.1778         825.         0.1774         1586.         0.08975         230.         -0.2778         3830. <th>200.</th> <th>Displacement (ft) 0.1535</th> <th>850.</th> <th>0.1923</th> <th>1500.</th> <th>0.0902</th> <th>2150.</th> <th>0.1899</th> <th>3440.</th> <th>Displacement (ft) -0.2394</th>	200.	Displacement (ft) 0.1535	850.	0.1923	1500.	0.0902	2150.	0.1899	3440.	Displacement (ft) -0.2394
210         0.1677         860         0.1948         1510         0.0911         2170         0.2261         3470         0.2244           225         0.1676         865         0.1918         1515         0.0915         2170         0.2261         3440         0.2444           225         0.1674         885         0.1826         1535         0.0925         2200         -0.2634         3530         -0.2624           240         0.1677         885         0.1835         1545         0.09445         2230         -0.2634         3530         -0.2524           240         0.1677         8800         0.1819         1555         0.09645         2230         -0.2634         3540         -0.2528           252         0.1772         950         0.1119         1555         0.0964         2280         -0.2649         3580         -0.2844           265         0.1779         920         0.1774         1580         0.0964         2280         -0.2776         3580         -0.2842           270         0.1779         920         0.1774         1580         0.0967         2330         -0.2776         3600         -0.2843           2850         0.1779 <td>205.</td> <td>0.1583</td> <td>855.</td> <td>0.1938</td> <td>1505.</td> <td></td> <td></td> <td>0.1906</td> <td>3450.</td> <td>-0.243</td>	205.	0.1583	855.	0.1938	1505.			0.1906	3450.	-0.243
213         0.1605         885         0.1918         1515         0.09115         2170         -0.2361         3470         -0.2444           223         0.1614         870         0.1237         1525         0.09115         2180         -0.2464         3460         -0.2464           235         0.1676         886         0.1889         1535         0.09125         2210         -0.2682         3530         -0.2844           244         0.1676         880         0.1889         1540         0.0946         2220         -0.2682         3530         -0.2544           255         0.1772         900         0.1891         1560         0.0946         2220         -0.2617         3570         -0.2567           256         0.1772         900         0.1782         1577         0.09905         2280         -0.2773         3560         -0.2626           275         0.1773         935         0.1774         1586         0.09975         2310         -0.2773         3820         -0.2832           286         0.1776         935         0.1774         1586         0.0997         2320         -0.2778         3820         -0.2833           286         0.177		0.1577			1510.	0.0911	2165.	-0.217	3460.	-0.2428
225.         0.1621         875.         0.1936         1525.         0.00215         2200.         0.22647         3500.         0.22647           236.         0.1676         886.         0.1988         1635.         0.00225         2200.         -0.22667         3500.         0.2264           246.         0.1678         886.         0.1989         1640.         0.0046         2220.         -0.22665         3520.         0.2262           246.         0.1679         890.         0.1899         1560.         0.0956         2280.         -0.22679         3570.         -0.2268           255.         0.1739         910.         0.1659         1560.         0.0966         2280.         -0.2879         3570.         -0.2869           270.         0.1778         925.         0.1774         1580.         0.09691         2300.         -0.2776         3830.         -0.2869           270.         0.1778         983.         0.1774         1580.         0.06915         2330.         -0.2719         3870.         -0.2879           280.         0.1778         983.         0.1774         1580.         0.06915         2330.         -0.2863         3860.         -2273		0.1606		0.1918	1515.	0.09115	2170.	-0.2361		-0.2442
220.         0.1644         880.         0.1694         1530.         0.0292         2200.         0.2582         3500.         0.2282           245.         0.1676         886.         0.1889         1540.         0.0946         2220.         0.2582         3520.         0.2582           245.         0.16778         886.         0.1891         1550.         0.0946         2220.         0.2282         3530.         0.2284           256.         0.16778         886.         0.1891         1550.         0.0946         2220.         0.2284         3540.         0.2284           256.         0.1732         916.         0.1611         1566.         0.09565         2270.         0.02847         3550.         0.2284           270         0.1782         916.         0.1782         1575.         0.09805         2290.         0.2774         3560.         0.2282           280.         0.1782         930.         0.1744         1586.         0.09875         2310.         0.2774         3620.         0.2282           280.         0.1782         840.         0.1735         1560.         0.0285         2350.         0.2274         3360.         0.2773           39	220.	0.1613	870.		1520.					-0.2445
235         0.1676         886.         0.1688         1535.         0.09325         2210.         0.2282         3510.         0.2283           240         0.1674         896.         0.1835         1545.         0.09445         2230.         0.02615         3520.         0.224           250.         0.1684         890.         0.1835         1545.         0.09445         2230.         0.22643         3540.         0.2252           255.         0.1722         805.         0.1812         1565         0.09694         2270.         0.22693         3570.         0.2269           265.         0.1772         933.         0.1782         157.         0.0964         2270.         0.22718         3600.         0.2283           265.         0.1773         933.         0.1774         1580.         0.0987         2320.         0.2718         3600.         0.2723           265.         0.1782         945.         0.1667         1600.         0.1018         2340.         0.2283         360.         0.2733           300.         0.1773         950.         0.1674         1605.         0.1018         2340.         0.2283         3660.         0.2773           300.<	225.	0.1621			1525.					-0.2467
246         0.1678         896.         0.1885         1540.         0.06946         2220.         0.2628         3520.         -0.282           245.         0.1678.         990.         0.1891         1550.         0.0949.         2240.         -0.2628.         3530.         -0.2842           255.         0.1722.         905.         0.1811         1565.         0.0956.         2256.         -0.2679.         3570.         0.2589           257.         0.1732.         915.         0.181         1565.         0.0966.         2260.         -0.2716.         3560.         -0.2829           258.         0.1773.         930.         0.1724.         1570.         0.09675.         2210.         -0.2718.         3600.         -0.2829           280.         0.1773.         930.         0.1742.         1585.         0.09975.         2310.         -0.2778.         3600.         -0.2738           305.         0.1782.         945.         0.1742.         1585.         0.09975.         2320.         -0.288.         3660.         -0.2738           305.         0.1863.         977.         1665.         0.1102.         2320.         -0.288.         3660.         -0.2774	230.				1530.		2200.	-0.2547	3500.	-0.2494
245.         0.1678         995.         0.1633         1546         0.06945         2230.         0.2284         3550.         0.2284           250.         0.1698         906.         0.1812         1555.         0.06955         2250.         0.2284         3550.         0.2257           250.         0.1732         916.         0.1811         1565.         0.06956         2270.         0.2269         3570.         0.2269           250.         0.1773         916.         0.184         1566.         0.06956         2270.         0.2769         3570.         0.2268           275.         0.1777         936.         0.1774         1580.         0.06961         2230.         0.2771.         3690.         0.2861           285.         0.1772         945.         0.1744         1580.         0.0697.         2320.         0.02781         3600.         0.2783           305.         0.1667         1600.         0.1111         2340.         0.2283         3660.         0.2743           310.         0.1812         9450.         0.1667         1600.         0.1111         2360.         0.2883         360.         0.2743           310.         0.1814         1	230.	0.1676		0.1868	1535.	0.09325	2210.	-0.2582		-0.2499
226.         0.1698         900.         0.1691         1560.         0.0694         2240.         -02824         3540.         -02825           255.         0.1732         910.         0.1859         1560.         0.0395.         2280.         -0.2847         3550.         -0.2857           260.         0.1732         915.         0.181         1566.         0.0994.         2280.         -0.2869         3560.         -0.2869           270.         0.1782         823.         0.1742         1575.         0.0994.         2280.         -0.2716         3800.         -0.2863           280.         0.1773         830.         0.1742         1575.         0.09915         2310.         -0.2711         3110.         -0.287           290.         0.1783         960.         0.1679         1605.         0.10915         2330.         -0.288         3660.         -0.273           300.         0.1778         960.         0.1679         1605.         0.1025         2350.         -0.288         3660.         -0.2743           310.         0.1863         965.         0.1679         1605.         0.1025         2350.         -0.2883         3660.         -0.2773	240.			0.1889	1540:	0.0946	2220.	-0.2605	3520.	
255.         0.1723         905.         0.1812         1655.         0.09565         2280.         0.2647         3560.         0.2289           260.         0.1733         916.         0.1859         1566.         0.09656         2270.         0.2679         3570.         0.2289           275.         0.1776         920.         0.1776         1575.         0.09805         2290.         0.2774         3860.         0.2283           285.         0.1773         930.         0.1774         1580.         0.0991         2300.         0.2774         3860.         0.2283           286.         0.1773         934.         0.1774         1580.         0.0997         2230.         0.2778         3860.         0.2283           286.         0.1773         840.         0.1778         1580.         0.09976         2330.         -0.288         3800.         0.2773           316.         0.1822         986.         0.1763         1580.         0.1091         2330.         -0.288         3870.         -0.2744           320.         0.1823         976.         0.1634         1626.         0.1004         2330.         -0.2888         3700.         -0.2744	240.			0.1835	1545.		2230.			
280.         0.1733         910.         0.1859         1560.         0.0966         2280.         -0.2659         3570.         -0.2589           270.         0.1782         975.         0.1782         975.         0.0964         2280.         -0.2679         3570.         -0.2689           270.         0.1773         925.         0.1772         1575.         0.09645         2280.         -0.2716         3890.         -0.2812           280.         0.1773         936.         0.1774         1586.         0.0967         2300.         -0.2734         3800.         -0.2823           285.         0.1772         936.         0.1774         1586.         0.09675         2310.         -0.283         3830.         -0.2733           300.         0.1772         936.         0.1657         1600.         0.1018         2240.         -0.285         3860.         -0.2743           310.         0.1622         3250.         0.1637         1600.         0.1018         2240.         -0.2863         3860.         -0.2743           320.         0.1862         975.         0.1644         1650.         0.1063         2380.         -0.2868         3670.         -0.2773	255				1550.	0.0949	2240.	-0.2634		-0.2528
285.         0.1732         915.         0.181         1565.         0.02696         2270.         0.2787         3570.         0.2896           276.         0.1779         925.         0.1782         1575.         0.09805         2280.         0.2776.         3580.         0.2898           286.         0.1773         935.         0.1774.         1585.         0.09875         2310.         0.2776.         3600.         0.2838           286.         0.1777.         935.         0.1742         1585.         0.09875         2330.         0.283         3620.         0.2283           290.         0.1778.         985.         0.1667         1600.         0.1018         2340.         0.2286         3660.         0.2733           305.         0.1802         985.         0.1679         1605.         0.1025         2350.         0.2855         3670.         0.2855           3010.         0.1853         975.         0.1634         1620.         0.1664         2390.         0.22865         3660.         0.2773           325.         0.1835         975.         0.1634         1625.         0.1105         2410.         0.2884         3710.         0.2273 <t< td=""><td>260</td><td>0.1722</td><td></td><td></td><td>1555.</td><td></td><td>2250.</td><td>-0.2647</td><td>3550.</td><td>-0.2557</td></t<>	260	0.1722			1555.		2250.	-0.2647	3550.	-0.2557
270         0.1762         920         0.1762         1570         0.0664         2280         -0.2764         3801         -0.2816           275         0.1773         930         0.1774         1580         0.0991         2300         -0.2761         3800         -0.2812           285         0.1773         935         0.1774         1580         0.0987         2310         -0.2778         3820         -0.2823           290         0.1783         940         0.1762         1580         0.0987         2320         -0.2781         3820         -0.2723           300         0.1772         950         0.1667         1600         0.1018         2340         -0.2833         3860         -0.2743           3015         0.1622         956         0.1679         1600         0.1018         2340         -0.2863         3860         -0.2743           3020         0.1828         966         0.1644         1610         0.1011         2360         -0.2863         3860         -0.2744           3330         0.1828         976         0.1684         1610         2400         -0.2863         3860         -0.2774           3340         0.1828         1675 </td <td>265</td> <td>0.1732</td> <td>910.</td> <td></td> <td>1560.</td> <td></td> <td>2260.</td> <td>-0.2659</td> <td>3560.</td> <td></td>	265	0.1732	910.		1560.		2260.	-0.2659	3560.	
275.         0.1779         926.         0.1774         1560.         0.0991         2300.         0.2716         3560.         0.2833           285.         0.1777         935.         0.1784         1585.         0.0987         2300.         0.2761         3610.         0.2283           285.         0.1762         946.         0.1763         1590.         0.0987         2320.         0.2761         3610.         0.2283           295.         0.1762         946.         0.1667         1600.         0.1018         2340.         0.2832         3650.         0.2733           305.         0.1612         955.         0.1677         1606.         0.1018         2340.         0.2855         3650.         0.2733           310.         0.1816         960.         0.1736         1610.         0.1011         2380.         0.2885         3670.         0.2733           320.         0.1823         975.         0.1635         1635.         0.1064         2380.         0.2888         3700.         0.2733           335.         0.1882         975.         0.1635         1635.         0.1067         2400.         0.288         3700.         0.2733           345. <td></td> <td>0 1762</td> <td></td> <td></td> <td></td> <td>0.09595</td> <td>2270.</td> <td>-0.2079</td> <td>3570.</td> <td></td>		0 1762				0.09595	2270.	-0.2079	3570.	
280.         0.1763         930.         0.1774         1580.         0.09875         2300.         -0.2734         9500.         0.2827           285.         0.1773         940.         0.1753         1590.         0.09875         2310.         -0.2778         9520.         -0.283           295.         0.1778         950.         0.1667         1600.         0.1018         2330.         -0.280         3460.         -0.2733           305.         0.1802         955.         0.1679         1605.         0.1025         2380.         -0.285         3660.         -0.2743           316.         0.1828         965.         0.1649         1615.         0.1038         2370.         -0.2866         3680.         -0.2743           325.         0.1683         975.         0.1634         1625.         0.1003         2380.         -0.2886         3680.         -0.2743           335.         0.1842         980.         0.1635         1635.         0.1106         2440.         -0.2886         3700.         -0.2743           335.         0.1818         995.         0.1655         1645.         0.1192         2440.         -0.2843         3770.         -0.2841				0.1782	1570.		2200.		3580.	
285.         0.1777         936.         0.1783         1900.         0.2781         3810.         0.2281           290.         0.1782         940.         0.1783         1900.         0.278         3820.         0.2781         3820.         0.2783         3820.         0.2783           305.         0.1778         950.         0.1667         1600.         0.1018         2340.         0.2832         3850.         0.2733           316.         0.1828         966.         0.1738         1610.         0.1011         2360.         0.2815         3860.         0.2743           310.         0.1828         966.         0.1634         1620.         0.1064         2380.         0.2865         3870.         0.2773           325.         0.1863         975.         0.1636         1635.         0.1067         2400.         0.288         3700.         0.2733           336.         0.1913         986.         0.1635         1635.         0.1122         240.         0.284         3730.         0.284           340.         0.1912         10000.         0.1679         1665.         0.1182         240.         0.2945         3760.         0.2845           3550.				0.1702			2290.			
290.         0.1793         940.         0.1742         1593.         0.0997         2320.         -0.2778         5520.         0.0273           300.         0.1778         950.         0.1667         1600.         0.0102         2330.         -0.280         3440.         -0.2723           305.         0.1802         955.         0.1679         1605.         0.1025         2330.         -0.286         3660.         0.2743           316.         0.1816         966.         0.1649         1615.         0.1033         2370.         -0.2868         3680.         -0.2743           325.         0.1683         975.         0.1634         1625.         0.1083         230.         -0.288         3700.         -0.2744           335.         0.1832         985.         0.1635         1635.         0.1106         2400.         -0.288         3700.         -0.274           346.         0.1913         995.         0.1655         0.1122         2420.         -0.2843         3700.         -0.284           345.         0.1914         995.         0.1655         0.1122         2430.         -0.2847         3730.         0.2893           355.         0.1914         1		0.1777			1585		2300.			
285.         0.1772         945.         0.1677         1595.         0.0915         2300.         -0.28         3830.         0.2722           305.         0.1878         950.         0.1679         1600.         0.1018         2340.         -0.280.         3850.         -0.2743           316.         0.1816         960.         0.1736         1610.         0.1011         2360.         -0.285.         3670.         -0.2743           315.         0.1828         966.         0.1644         1615.         0.1084         2380.         -0.288         3680.         -0.2773           325.         0.1883         975.         0.1634         1620.         0.1087         2390.         -0.288         3710.         -0.2743           330.         0.1982         980.         0.1635         1635.         0.1162         2410.         -0.288         3710.         -0.2843           340.         0.1918         995.         0.1655         1645.         0.1132         2440.         -0.2943         3740.         -0.2853           355.         0.1991         1005.         0.1601         1655.         0.1182         2460.         -0.2971         3770.         -0.2852		0.1793		0.1753	1590	0.09075	2370.		3610.	
300.         0.1778         950.         0.1667         1600.         0.1018         2340.         0.2866         9840.         0.2728           310.         0.1816         9860.         0.1738         1610.         0.1011         2360.         -0.2863         3660.         0.2743           311.         0.1828         9865.         0.1644         1620.         0.1064         2380.         -0.2863         3660.         0.2773           322.         0.1683         970.         0.1644         1620.         0.1063         2380.         -0.288         3700.         0.2773           333.         0.1882         980.         0.1836         1635.         0.1067         2400.         -0.288         3700.         0.2773           336.         0.1918         995.         0.1807         1645.         0.1122         2420.         -0.2841         3720.         -0.2813           346.         0.1918         995.         0.1607         1645.         0.1182         2460.         -0.2931         3760.         -0.2851           355.         0.1941         1005.         0.1651         1665.         0.1181         2460.         -0.2976         3760.         -0.28262         3800.	295.	0.1762				0.0007	2320	-0.2778	3620.	-0.200
305.         0.1802         985.         0.1799         1605.         0.1025         2350.         0.2832         9850.         0.2743           316.         0.1816         980.         0.1736         1610.         0.1011         2360.         0.2865         9670.         0.2743           320.         0.1683         975.         0.1634         1620.         0.1064         2380.         -0.2868         3660.         0.2773           330.         0.1683         975.         0.1634         1620.         0.1067         2400.         -0.288         3700.         -0.2773           330.         0.1913         985.         0.1635         1630.         0.1067         2400.         -0.2888         3700.         -0.274           340.         0.1918         980.         0.1657         1640.         0.1122         2420.         -0.2841         3770.         -0.2841           350.         0.1912         1000.         0.1579         1656.         0.1181         2440.         -0.2845         3760.         -0.2841         3760.         -0.2841         3760.         -0.2845         3760.         -0.2845         3760.         -0.2845         3760.         -0.2845         3760.         -0.2845		0.1778	950.	0 1667	1600		2340	-0.20	3640	
310.         0.1816         960.         0.1736         1615.         0.1011         2260.         0.285         3870.         0.286         3860.         0.2773           320.         0.1823         970.         0.1644         1620.         0.1064         2380.         -0.2868         3860.         0.2773           330.         0.1882         960.         0.1834         1625.         0.1063         2380.         -0.288         3700.         0.2773           330.         0.1882         960.         0.1836         1635.         0.1067         2400.         -0.288         3700.         0.2273           335.         0.1918         990.         0.1607         1640.         0.1122         2420.         -0.2841         3720.         0.2281           345.         0.1918         995.         0.1607         1640.         0.1122         2440.         -0.2941.         3720.         0.2281           355.         0.1911         1005.         0.1601         1655.         1645.         0.1181         2460.         -0.2911.         3770.         0.2291           366.         0.1994         1015.         0.1674         1675.         0.12212         2460.         -0.2895	305.		955	0.1679	1605		2350	-0 2832		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	310.		960.	0.1736			2360	-0 285		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	315.	0.1828		0.1649	1615.		2370	-0.2855	3670	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	320.	0.1853					2380		3680	-0 2772
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	325.	0.1863	975.		1625.		2390.	-0.289		
335.         0.1913         985.         0.1635         1635.         0.1106         2410.         -0.2848         3710.         -0.2816           3445.         0.1918         995.         0.1665         1645.         0.1139         2430.         -0.2941         3720.         -0.2816           345.         0.1912         1000.         0.1579         1650.         0.1152         2440.         -0.2933         3740.         -0.2876           365.         0.1981         1005.         0.1601         1655.         0.1181         2440.         -0.2971         3760.         -0.2871           366.         0.1985         1010.         0.156         16860.         0.1182         2440.         -0.2971         3770.         -0.2931         3770.         -0.2981         3770.         -0.2981         3770.         -0.2981         3780.         -0.2923         377.         0.1997         1020.         0.1574         1670.         0.1214         2480.         -0.2985         3800.         -0.2983         3810.         -0.2983         3810.         -0.2983         3810.         -0.2989         3810.         -0.2989         3810.         -0.2893         3840.         -0.3018         3840.         -0.3017         3850			980.		1630.		2400.	-0.288		
340.         0.1918         990.         0.1607         1640.         0.1122         2420.         -0.2941         3720.         -0.286           355.         0.1912         1000.         0.1579         1660.         0.1152         2440.         -0.293         3740.         -0.285           355.         0.1985         1010.         0.1661         1665.         0.1181         2440.         -0.2931         3760.         -0.281           365.         0.1984         1015.         0.161         1665.         0.1203         2470.         -0.2971         3770.         -0.2832           3770.         0.1997         1020.         0.1552         1675.         0.1225         2490.         -0.2984         3790.         -0.2883           380.         0.2016         1035.         0.152         1685.         0.1267         2510.         -0.2999         3810.         -0.299           390.         0.2037         1040.         0.1488         1695.         0.1262         2530.         -0.3018         3820.         -0.3012           400.         0.2044         1045.         0.1541         1700.         0.1322         2560.         -0.3043         3840.         -0.3044		0.1913	985.		1635.		2410.			
345.       0.1918       995.       0.1655       1645.       0.1139       2430.       -0.2842       3730.       -0.285         355.       0.1961       1005.       0.1601       1655.       0.1181       2440.       -0.285       3750.       -0.2875         360.       0.1985       1010.       0.1661       1660.       0.1181       2460.       -0.2971       3770.       -0.2932         376.       0.1994       1015.       0.1611       1665.       0.1214       2470.       -0.2976       3780.       -0.2982         380.       0.2016       1030.       0.1537       1680.       0.1212       2480.       -0.2984       3800.       -0.2971         385.       0.2016       1030.       0.1537       1680.       0.1278       2520.       -0.3018       3820.       -0.3017         399.       0.20237       1040.       0.1498       1699.       0.1278       2550.       -0.3045       3860.       -0.3042         400.       0.2064       1050.       0.1547       1700.       0.1318       2560.       -0.3042       3860.       -0.3047         410.       0.2074       1066.       0.1533       1715.       0.1364       2560. <td>340.</td> <td></td> <td></td> <td></td> <td>1640.</td> <td>0.1122</td> <td>2420.</td> <td>-0.2941</td> <td>3720.</td> <td></td>	340.				1640.	0.1122	2420.	-0.2941	3720.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1645.		2430.	-0.2942	3730.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	350.					0.1152	2440.	-0.293	3740.	-0.285
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	355.	0.1961		0.1601	1655.		2450.	-0.2945	3750.	-0.2876
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.156	1660.	0.1182	2460.	-0.2951	3760.	-0.291
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.1994	1015.	0.161		0.1203	2470.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	370.			0.1574	1670.		2480.	-0.2976		-0.2952
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	375.						2490.	-0.2984	3790.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	380.		1030.		1680.	0.1251	2500.	-0.2985	3800.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.152		0.1267	2510.		3810.	-0.299
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							2520.	-0.3018		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							2530.	-0.3051		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							2540.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.1324	2550.	-0.3045	3850.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1710.		2000.	-0.3042		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							2370.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.1515						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	440.									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	445.									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.2163								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.2143	1105.							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1110.	0.1447						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.2167		0.1439	1765.					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.1435	1770.					
480.0.21871130.0.14121780.0.159227000.31540000.3216485.0.21881135.0.13991785.0.160627100.317940100.3228490.0.22071140.0.13911790.0.165127200.318840200.323495.0.22411145.0.13741795.0.165827300.319340300.3245500.0.22561150.0.13721800.0.165327400.320840400.325505.0.22741155.0.13561805.0.167127500.317740500.3266510.0.22441160.0.13451810.0.170227600.315540600.3268510.0.22751170.0.13351820.0.173327800.319240700.3268520.0.22751170.0.13131825.0.176227900.318440900.3275530.0.22831180.0.1321830.0.17628000.318941000.3295535.0.23181185.0.13111835.0.177728100.32141100.3297540.0.23211190.0.12951840.0.179228200.321541200.3309		0.219	1125.	0.1422	1775.					
485.0.21881135.0.13991785.0.160627100.317940100.3228490.0.22071140.0.13911790.0.165127200.318840200.323495.0.22411145.0.13741795.0.165827300.319340300.3245500.0.22561150.0.13721800.0.165327400.320840400.325505.0.22741155.0.13561805.0.167127500.317740500.3264510.0.22441160.0.13451810.0.170227600.315540600.3264515.0.2251165.0.13441815.0.171427700.319240700.3268520.0.22751170.0.13351820.0.173327800.319140800.327525.0.22751175.0.13131825.0.176227900.318440900.3275530.0.22831180.0.1321830.0.17628000.318941000.3295535.0.23181185.0.13111835.0.177728100.32141100.3297540.0.23211190.0.12951840.0.179228200.321541200.3309		0.2187	1130.	0.1412	1780.					
490.0.22071140.0.13911790.0.165127200.318840200.323495.0.22411145.0.13741795.0.165827300.319340300.3245500.0.22561150.0.13721800.0.165327400.320840400.325505.0.22741155.0.13561805.0.167127500.317740500.3264510.0.22441160.0.13451810.0.170227600.315540600.3264515.0.2251165.0.13441815.0.171427700.319240700.3268520.0.22751170.0.13351820.0.173327800.319140800.327525.0.22751175.0.13131825.0.176227900.318440900.3275530.0.22831180.0.1321830.0.17628000.318941000.3295535.0.23181185.0.13111835.0.177728100.32141100.3297540.0.23211190.0.12951840.0.179228200.321541200.3309			1135.			0.1606				-0.3228
495.0.22411145.0.13741795.0.165827300.319340300.3245500.0.22561150.0.13721800.0.165327400.320840400.325505.0.22741155.0.13561805.0.167127500.317740500.3264510.0.22441160.0.13451810.0.170227600.315540600.3264515.0.2251165.0.13441815.0.171427700.319240700.3268520.0.22751170.0.13351820.0.173327800.319140800.327525.0.22751175.0.13131825.0.176227900.318440900.3275530.0.22831180.0.1321830.0.17628000.318941000.3295535.0.23181185.0.13111835.0.177728100.32141100.3297540.0.23211190.0.12951840.0.179228200.321541200.3309							2720.		4020.	-0.323
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							2730.	-0.3193	4030.	-0.3245
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									4040.	
515.         0.225         1165.         0.1344         1815.         0.1714         2770.         -0.3192         4070.         -0.3268           520.         0.2275         1170.         0.1335         1820.         0.1733         2780.         -0.3191         4080.         -0.327           525.         0.2275         1175.         0.1313         1825.         0.1762         2790.         -0.3184         4090.         -0.3275           530.         0.2283         1180.         0.132         1830.         0.176         2800.         -0.3189         4100.         -0.3295           535.         0.2318         1185.         0.1311         1835.         0.1777         2810.         -0.321         4110.         -0.3297           540.         0.2321         1190.         0.1295         1840.         0.1792         2820.         -0.3215         4120.         -0.3309										-0.3256
520.         0.2275         1170.         0.1335         1820.         0.1733         2780.         -0.3191         4080.         -0.327           525.         0.2275         1175.         0.1313         1825.         0.1762         2790.         -0.3184         4090.         -0.3275           530.         0.2283         1180.         0.132         1830.         0.176         2800.         -0.3189         4100.         -0.3295           535.         0.2318         1185.         0.1311         1835.         0.1777         2810.         -0.321         4110.         -0.3297           540.         0.2321         1190.         0.1295         1840.         0.1792         2820.         -0.3215         4120.         -0.3309										-0.3264
525.         0.2275         1175.         0.1313         1825.         0.1762         2790.         -0.3184         4090.         -0.3275           530.         0.2283         1180.         0.132         1830.         0.176         2800.         -0.3184         4090.         -0.3275           535.         0.2318         1185.         0.1311         1835.         0.1777         2810.         -0.321         4110.         -0.3297           540.         0.2321         1190.         0.1295         1840.         0.1792         2820.         -0.3215         4120.         -0.3309										-0.3268
530.         0.2283         1180.         0.132         1830.         0.176         2800.         -0.3189         4100.         -0.3295           535.         0.2318         1185.         0.1311         1835.         0.1777         2810.         -0.321         4110.         -0.3297           540.         0.2321         1190.         0.1295         1840.         0.1792         2820.         -0.3215         4120.         -0.3309										
535.         0.2318         1185.         0.1311         1835.         0.1777         2810.         -0.321         4110.         -0.3297           540.         0.2321         1190.         0.1295         1840.         0.1792         2820.         -0.3215         4120.         -0.3309										
540. 0.2321 1190. 0.1295 1840. 0.1792 28200.3215 41200.3309										-0.3295
0.303 0.2532 1195. 0.1283 1845. 0.1817 28300.3241 41300.3303										
	J4J.	0.2332	1195.	0.1283	1845.	0.1817	2830.	-0.3241	4130.	-0.3303

Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
550.	0.233	1200.	0.1263	1850.	0.1836	2840.	-0.3227	4140.	-0.33
555.	0.2341	1205.	0.1263	1855.	0.1855	2850.	-0.3242	4150.	-0.3307
560.	0.2332	1210.	0.1253	1860.	0.1849	2860.	-0.3252	4160.	-0.3318
565.	0.2367	1215.	0.1239	1865.	0.1868	2870.	-0.3272	4170.	-0.3317
570.	0.2348	1220.	0.1236	1870.	0.1869	2880.	-0.3285	4180.	-0.3316
575.	0.2366	1225.	0.1231	1875.	0.186	2890.	-0.3299	4190.	-0.3326
580.	0.2356	1230.	0.1215	1880.	0.1886	2900.	-0.3299	4200.	-0.3336
585.	0.2349	1235.	0.1211	1885.	0.1883	2910.	-0.329	4210.	-0.333
590.	0.2365	1240.	0.1201	1890.	0.1885	2920.	-0.3297	4220.	-0.3343
595.	0.2389	1245.	0.1198	1895.	0.1865	2930.	-0.328	4230.	-0.3347
600.	0.2393	1250.	0.1167	1900.	0.1876	2940.	-0.3286	4240.	-0.3335
605.	0.2395	1255.	0.1174	1905.	0.1882	2950.	-0.3271	4250.	-0.3342
610.	0.2394	1260.	0.116	1910.	0.1879	2960.	-0.3259	4260.	-0.3339
615.	0.2394	1265.	0.117	1915.	0.1822	2970.	-0.3264	4270.	-0.3349
620.	0.2392	1270.	0.1164	1920.	0.183	2980.	-0.3242	4280.	-0.3332
625.	0.2395	1275.	0.1142	1925.	0.1834	2990.	-0.3228	4290.	-0.3345
630.	0.2384	1280.	0.1133	1930.	0.1839	3000.	-0.322	4300.	-0.3357
635.	0.2387	1285.	0.1121	1935.	0.1875	3010.	-0.3185	4310.	-0.3365
640.	0.2396	1290.	0.1107	1940.	0.1905	3020.	-0.3164		
645.	0.2395	1295.	0.1089	1945.	0.1923	3030.	-0.3148		
 650.	0.238	1300.	0.1081	1950.	0.1912	3040.	-0.3107		

#### SOLUTION

#### Aquifer Model: Confined Solution Method: Cooper-Jacob

#### VISUAL ESTIMATION RESULTS

#### Estimated Parameters

<u>Parameter</u> T S	Estimate 1.251E+05 0.1878	gal/day/ft
----------------------------	---------------------------------	------------

Data Set: S:\Projects\448\01\PC99R pumping test - Site C\pc99Rpc88-rec-corrected for baro and trend.aqt Date: 10/30/00 Time: 14:31:08

1

#### SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

### VISUAL ESTIMATION RESULTS

Parameter	Estimate		
Т	1.564E+05	gal/day/ft	
S'	4477.6	• •	

APPENDIX D

## TRACER TEST DATA

Site Collector PC-101R Specific Conductance Measurements (in MilliSiemens) During Deionized Water Tracer Test, September 2000

depth (feet)>	20	21	22	23	24	25	26	27	28	29	30	31	32	33	26	35	36	37
time (minutes)															;	3	3	5
0	10.54	10.5	10.49	10.51	10.5	10.5	10.48	10.55	10.46	10.39	10.33	10.29	10.31	10.28	10.2	10.18	101	10 11
212	11.9	12.23	12.37	12.44	12.49	12.48	12.51	12.55	12.59	12.58	12.56	12.55	12.51	12.48	12.29	12.07	11.68	11.24
370	11.72	12.57	12.85	12.87	12.91	12.95	12.96	12.9	12.91	12.9	12.88	12.84	12.8	12.75	12.66	12.45	12.19	11.76
500	12.25	12.77	13.01	13.05	13.13	13.13	13.12	13.05	12.99	12.95	12.87	12.81	12.79	12.74	12.65	12.4	12.12	11.5
575	12.71	12.97	13.09	13.13	13.17	13.17	13.14	13.07	13.02	12.93	12.92	12.85	12.8	12.74	12.65	12.39	12.06	11.52
693	12.83	13.02	13.12	13.16	13.17	13.13	13.16	12.96	12.86	12.82	12.78	12.78	12.71	12.64	12.55	12.27	11.9	11.4
837	13.08	13.1	13.17	13.19	13.21	13.17	13.09	12.99	12.88	12.82	12.76	12.73	12.7	12.57	12.49	12.31	11.94	11.44
1056	13.31	13.34	13.37	13.41	13.39	13.27	12.8	12.79	12.75	12.74	12.71	12.64	12.6	12.47	12.28	11.96	11.61	11.08
1181	13.42	13.39	13.36	13.22	12.99	12.83	12.82	12.82	12.77	12.74	12.72	12.67	12.52	12.37	12.15	11.84	11.41	10.92
1289	13.42	13.39	13.38	13.13	13.13	12.83	12.78	12.76	12.77	12.8	12.77	12.74	12.73	12.64	12.55	12.34	12.33	12.08
1397	13.27	13.07	12.81	12.77	12.77	12.78	12.8	12.81	12.78	12.73	12.67	12.56	12.37	12.25	11.94	11.51	11.18	10.59
1617	10.59	10.64	10.65	10.65	10.65	10.65	10.65	10.63	10.66	10.7	10.56	10.51	10.48	10.44	10.38	10.33	10.29	10.27
1731	10.67	10.68	10.69	10.69	10.68	10.69	10.71	10.71	10.72	10.71	10.62	10.57	10.56	10.5	10.46	10.38	10.36	10.34
2123	10.96	10.97	10.98	10.98	10.97	10.99	11.01	11.02	11.02	10.95	10.86	10.79	10.76	10.76	10.67	10.58	10.54	10.53

Site À, Piezometer PC-101R Specific Conductance Measurements (in MilliSiemens) During Deionized Water Tracer Test, September 2000

depth (feet)>	38	39	40	41	42	43	44	45	46	47	48
time (minutes)											
0	10.09	10.07	10.05	10.05	10.05	10.06	10.06	10.07	10.07	10.07	10.07
212	10.99	11.04	10.98	10.96	10.96						
370	11.18	11.07	1	10.97	10.95	10.95	10.94	10.94	10.91	10.88	10.88
500	11.13	10.82	10.82	10.8	10.8	10.77	10.76	10.75	10.76	10.74	10.73
575	11.09	10.78	10.72	10.7	10.69	10.68	10.67	10.67	10.66	10.66	10.65
693	10.77	10.58	10.58	10.53	10.51	10.49	10.48	10.47	10.46	10.45	10.46
837	10.94	10.72	10.61	10.54	10.49	10.41	10.37	10.3	10.28	10.27	10.27
1056	10.53	10.25	10.22	10.2	10.16	10.14	10.12	10.11	10.11	10.11	10.11
1181	10.38	10.2	10.16	10.11	10.08	10.05	10.03	10.04	10.04	10.03	10.02
1289	11.73	11.28	10.68	10.65	10.21	10.11	10.07	10.03	10.01	9	9
1397	10.16	10.03	10.02	9.99	9.97	9.97	9.95	96.6	9.96	9.97	9.96
1617	10.26	10.23	10.25	10.2	10.24	10.23	10.23	10.24	10.24	10.22	10.22
1731	10.31	10.24	10.26	10.28	10.28	10.28	10.28	10.27	10.27	10.28	10.29
2123	10.51	10.48	10.47	10.47	10.47	10.47	10.47	10.47	10.46	10.46	10.46

	er
	rac
	er T
	Vate
	∧ p∈
	ionized Wa
	)eio
	J Ð
	urir
	e) D
	iens
	ien
	illiS
	Eu
	ts (in
	urement
	ren
	ce Meas
	nce
	ctai
	nducti
	Col
	ific
	Dec
	s si
	1001
	ပို့စွ
	er F 20(
	met
	ezo. tem
;	Site b. Jiezometer PC-100R Specific Test, September 2000
	st, :
	Si Te

	depth>	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
13.313.2413.1913.091313.0113.0313.0413.0213.0313.0113.0213.0213.113.0612.8912.8112.8612.8612.8612.8612.8612.8613.113.0612.9912.9712.9912.9712.9512.4712.4612.412.5312.4212.5713.0413.0212.912.9912.9712.9912.9712.9412.3612.3412.3612.3412.3613.0112.9912.8112.7212.5612.3412.3612.3312.3412.3612.3412.3613.0112.9312.8112.7212.6212.4712.4612.3612.3412.3612.3412.3613.0112.9312.8112.7212.6212.4712.3612.3312.3112.3612.3412.3613.0112.9312.8112.6712.3612.3612.3312.3112.2512.9112.3913.0112.9312.8412.7412.3612.3712.3312.3312.3312.3612.2713.0112.9112.9312.9612.7412.3612.3712.3312.3312.3312.3913.0112.9112.9112.9112.9612.3612.3412.3612.2612.2712.9613.0112.9112.9112.9112.9112.9112.9112.9112.9112.91<																;
		13.35	13.3	13.24	13.19	13.09	13	13.01	13.03	13.04	13.02	13.03	13.01	13.02	13.02	13
	~								12.85	12.82	12.85	12.81	12.86	12.86	12.86	12.89
13.02         13.04         13.02         12.96         12.47         12.42         12.36         12.36         12.42         12.36         12.36         12.42         12.36         12.36         12.42         12.36         12.36         12.42         12.36         12.36         12.42         12.36         12.36         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.49         12.41 <t< th=""><th>æ</th><th>13.07</th><th>13.13</th><th>13.06</th><th>12.89</th><th>12.87</th><th>12.72</th><th>12.59</th><th>12.47</th><th>12.46</th><th>12.46</th><th>12.4</th><th>12.53</th><th>12.64</th><th>12.74</th><th>12.76</th></t<>	æ	13.07	13.13	13.06	12.89	12.87	12.72	12.59	12.47	12.46	12.46	12.4	12.53	12.64	12.74	12.76
	0	13.02	13.04	13.02	12.9	12.92	12.69	12.47	12.42	12.38	12.36	12.34	12.36	12.42	12.57	12.7
	Ξ.	12.98	13	12.9	12.86	12.83	12.63	12.45	12.36	12.35	12.36	12.32	12.28	12.34	12.49	12.6
	5	12.96	13.01	12.93	12.81	12.72	12.62	12.42	12.35	12.33	12.31	12.25	12.19	12.21	12.39	12.54
	5	12.93	12.98	13.13	12.83	12.83	12.81	12.6	12.38	12.32	12.32	12.31	12.35	12.27	12.19	12.24
12.97         12.89         12.89         12.96         12.92         12.97         12.38         12.33         12.35         12.24         12.22         12.24           13.02         13.1         13.08         12.94         12.9         12.82         12.71         12.46         12.35         12.33         12.35         12.24         12.23           13.01         13.01         12.97         12.91         12.9         12.82         12.57         12.41         12.35         12.25         12.21         12.23           13.01         13.01         12.97         12.93         12.96         12.81         12.55         12.41         12.35         12.25         12.27         12.23           13.01         13.01         13.06         13.05         12.96         12.87         12.81         12.43         12.23         12.29         12.29         12.29           13.14         13.12         13.06         13.06         13.07         13.09         12.96         12.81         12.74         12.65         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.26 <td< td=""><td>ŝ</td><td>13</td><td>13.03</td><td>12.93</td><td>12.84</td><td>12.73</td><td>12.57</td><td>12.36</td><td>12.36</td><td>12.36</td><td>12.32</td><td>12.21</td><td>12.2</td><td>12.21</td><td>12.26</td><td>12.29</td></td<>	ŝ	13	13.03	12.93	12.84	12.73	12.57	12.36	12.36	12.36	12.32	12.21	12.2	12.21	12.26	12.29
13.02         13.1         13.08         12.94         12.9         12.82         12.71         12.46         12.35         12.3         12.25         12.21         12.23           13.01         13.01         13.01         12.97         12.98         12.8         12.57         12.41         12.35         12.26         12.27         12.27           13.01         13.01         12.97         12.93         12.96         12.89         12.69         12.55         12.24         12.25         12.27         12.27           13.01         13.01         13.01         13.05         12.96         12.89         12.69         12.55         12.24         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.27         12.27         12.27         12.27         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.26         12.27         12.37	6	12.97	12.89	12.89	12.86	12.92	12.92	12.7	12.47	12.38	12.33	12.35	12.24	12.22	12.24	12.26
13.01         13.01         12.97         12.93         12.98         12.81         12.57         12.37         12.35         12.28         12.25         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.27         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.37         12.35         12.35         12.37         12.35         12.37         12.35         12.37         12.35         12.37         12.35         12.37         12.35         12.37         12.35         12.37         12.35         12.37         12.35         12.37         12.35         12.37         12.35         12.35         12.35         12.35         12.35         12.35 <th< td=""><td>57</td><td>13.02</td><td>13.1</td><td>13.08</td><td>12.94</td><td>12.9</td><td>12.82</td><td>12.71</td><td>12.46</td><td>12.35</td><td>12.3</td><td>12.32</td><td>12.25</td><td>12.21</td><td>12.23</td><td>12.23</td></th<>	57	13.02	13.1	13.08	12.94	12.9	12.82	12.71	12.46	12.35	12.3	12.32	12.25	12.21	12.23	12.23
13.11         13.11         13.11         13.05         12.96         12.89         12.69         12.5         12.41         12.43         12.33         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.29         12.46         12.46         12.46         12.46         12.46         12.46         12.46         12.46         12.46         12.46         12.37         12.37         12.37         12.35         12.37         12.37         12.35         12.37         12.35         12.35         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55 <th1< td=""><td>63</td><td>13.01</td><td>13.01</td><td>12.97</td><td>12.93</td><td>12.98</td><td>12.8</td><td>12.57</td><td>12.41</td><td>12.37</td><td>12.35</td><td>12.28</td><td>12.25</td><td>12.27</td><td>12.27</td><td>12.27</td></th1<>	63	13.01	13.01	12.97	12.93	12.98	12.8	12.57	12.41	12.37	12.35	12.28	12.25	12.27	12.27	12.27
13.15         13.26         13.06         13.07         13.09         12.95         12.87         12.8         12.74         12.65         12.48         12.46         12.46         12.46           13.14         13.12         13.06         13.02         12.98         12.89         12.75         12.6         12.42         12.37         12.35         12.37           13.14         13.12         13.06         13.02         12.98         12.89         12.75         12.6         12.42         12.37         12.35         12.37           13.14         13.12         13.12         13.07         13         12.86         12.87         12.67         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.34         12.34         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32	92	13.11	13.11	13.11	13.05	12.96	12.89	12.69	12.5	12.41	12.43	12.33	12.29	12.29	12.29	12.29
13.14         13.12         13.06         13.02         12.98         12.89         12.75         12.6         12.42         12.37         12.35         12.37           13.14         13.19         13.12         13.1         13.07         13         12.86         12.87         12.77         12.6         12.55         12.55         12.52         12.52         12.52         12.52         12.52         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.56         12.56         12.56         12.56         12.56         12.55         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.34         12.34         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32 <td>59</td> <td>13.15</td> <td>13.26</td> <td>13.06</td> <td>13.07</td> <td>13.09</td> <td>12.95</td> <td>12.87</td> <td>12.8</td> <td>12.74</td> <td>12.65</td> <td>12.53</td> <td>12.48</td> <td>12.46</td> <td>12.46</td> <td>12.48</td>	59	13.15	13.26	13.06	13.07	13.09	12.95	12.87	12.8	12.74	12.65	12.53	12.48	12.46	12.46	12.48
13.14         13.19         13.12         13.11         13.07         13         12.86         12.87         12.77         12.6         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.55         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.56         12.55         12.33         12.34         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.32         12.	49	13.14	13.12	13.06	13.02	12.98	12.89	12.75	12.6	12.54	12.42	12.42	12.37	12.35	12.37	12.34
12.9 12.9 12.9 12.89 12.87 12.67 12.58 12.54 12.56 12.58 12.58 12.58 12.56 12.56 12.56 12.56 12.56 12.56 12.91 12.91 12.87 12.89 12.82 12.66 12.55 12.48 12.39 12.33 12.34 12.32 12.32	24	13.14	13.19	13.12	13.1	13.07	13	12.86	12.87	12.77	12.6	12.57	12.55	12.5	12.52	12.54
12.95 12.97 12.91 12.87 12.89 12.82 12.66 12.55 12.48 12.39 12.33 12.34 12.32 12.32	79	12.9	12.9	12.89	12.87	12.67	12.58	12.54	12.56	12.58	12.58	12.58	12.56	12.56	12.56	12.56
	3.269	12.95	12.97	12.91	12.87	12.89	12.82	12.66	12.55	12.48	12.39	12.33	12.34	12.32	12.32	12.32

.

Tracer	
ed Water	
Deionize	
During	
iemens)	
in milliSi	
ments (	
Measure	
ictance	
c Condu	
Specifi	
PC-100R	00
Site B, riezometer PC-100R Specifi	est, September 2000
B, riez	t, Septei
Site	Tes

																•••		÷
41							12.95	12.88		12.91	12.82			12.64	12.73	12.59		
40		13.15	13.07	12.93	12.96	12.92	12.88	12.89	12.92	12.85	12.63	12.73	12.67	12.65	12.64	12.57		12.52
39		13.09	12.96	12.89	12.87	12.86	12.89	12.85	12.86	12.73	12.43	12.39	12.3	12.5	12.37	12.55		12.37
38		13.03	12.92	12.83	12.85	12.86	12.88	12.81	12.82	12.62	12.32	12.34	12.29	12.48	12.37	12.54		12.34
37		13.03	12.92	12.78	12.85	12.86	12.88	12.8	12.71	12.57	12.32	12.32	12.29	12.48	12.36	12.54		12.34
36		13.02	12.9	12.78	12.83	12.85	12.88	12.71	12.69	12.53	12.29	12.3	12.29	12.48	12.35	12.56	12.57	12.34
35		13.02	12.91	12.76	12.83	12.84	12.86	12.59	12.67	12.42	12.25	12.3	12.29	12.49	12.37	12.54	12.57	12.34
34		13.02	12.9	12.74	12.79	12.79	12.82	12.29	12.59	12.32	12.23	12.3	12.29	12.49	12.36	12.54	12.56	12.35
33		13	12.91	12.74	12.76	12.73	12.76	12.27	12.4	12.27	12.23	12.28	12.29	12.5	12.37	12.54	12.56	12.32
depth>	(t) days	0.000	0.293	0.388	0.460	0.521	0.615	0.715	0.833	0.910	1.057	1.163	1.392	1.759	2.549	2.824	2.979	3.269
	(t) minutes	0	422	558	662	750	886	1029	1199	1310	1522	1675	2004	2533	3670	4067	4290	4708

.

•

Site کی براezometer PC-102 Specific Conductance Measurements (in milliSiemens) During Deionized Water Tracer Test, September 2000

Ō	depth>	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24
(t) minutes	(t) days															
0	0.000	8.13	8.11	8.1	8.04	8.04	8.02	8.01	7.98	7.97	7.97	7.97	7.99	7.97	7.98	7.96
205	0.142	8.15	8.17	8.2	8.16	8.17	8.2	8.17	8.18	8.18	8.17	8.18	8.19	8.19	8.23	8.22
331	0.230	8.1	8.1	8,12	8.13	8.13	8.12	8.13	8.13	8.12	8.13	8.12	8.13	8.14	8.15	8.16
444	0.308	8.26	8.27	8.28	8.28	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.34	8.34	8.29	8.3
529	0.367	8.3	8.3	8.3	8.31	8.31	8.3	8.3	8.3	8.3	8.31	8.31	8.32	8.32	8.33	8.3
684	0.475	8.3	8.3	8.3	8.28	8.28	8.28	8.27	8.28	8.28	8.27	8.28	8.28	8.26	8.27	8.3
975	0.677	8.34	8.34	8.34	8.33	8.33	8.33	8.33	8.33	8.32	8.33	8.33	8.32	8.33	8.29	8.29
1116	0.775	8.19	8.19	8.18	8.18	8.18	8.18	8.17	8.18	8.17	8.16	8.17	8.16	8.16	8.16	8.17
1214	0.843	8.29	8.29	8.27	8.27	8.24	8.24	8.25	8.25	8.25	8.24	8.24	8.23	8.23	8.22	8.22
1322	0.918	8.29	8.28	8.29	8.28	8.28	8.29	8.29	8.26	8.26	8.26	8.25	8.24	8.23	8.24	8.27
1533	1.065	8.25	8.25	8.25	8.24	8.24	8.24	8.25	8.25	8.25	8.22	8.22	8.21	8.21	8.22	8.23
1619	1.124	8.26	8.25	8.25	8.22	8.22	8.22	8.21	8.22	8.21	8.21	8.22	8.23	8.22	8.22	8.22
1726	1.199	8.27	8.27	8.26	8.28	8.27	8.27	8.27	8.29	8.28	8.28	8.29	8.28	8.24	8.26	8.3
1792	1.244	8.22	8.14	8.13	8.12	8.13	8.12	8.12	8.12	8.16	8.13	8.14	8.15	8.17	8.14	8.14
1880	1.306	8.3	8.31	8.34	8.32	8.32	8.32	8.33	8.34	8.34	8.35	8.32	8.29	8.29	8.3	8.32
1965	1.365	8.34	8.34	8.35	8.33	8.3	8.29	8.32	8.3	8.29	8.3	8.33	8.3	8.3	8.31	8.35
2112	1.467	8.34	8.32	8.3	8.29	8.32	8.29	8.29	8.29	8.31	8.29	8.28	8.29	8.32	8.29	8.29
2200	1.528	8.26	8.27	8.26	8.28	8.25	8.25	8.25	8.27	8.25	8.25	8.25	8.28	8.24	8.25	8.28
2292	1.592	8.29	8.26	8.26	8.25	8.28	8.25	8.25	8.25	8.26	8.25	8.24	8.23	8.25	8.24	8.26
2403	1.669	8.28	8.27	8.3	8.27	8.27	8.27	8.29	8.26	8.27	8.27	8.28	8.27	8.27	8.27	8.27
2473	1.717	8.31	8.3	8.3	8.29	8.32	8.28	8.29	8.29	8.31	8.29	8.28	8.29	8.3	8.28	8.3
2699	1.874	8.35	8.35	8.36	8.35	8.34	8.35	8.37	8.34	8.35	8.34	8.38	8.36	8.38	8.37	8.39
2881	2.001	9.73	9.6	9.45	9.14	8.53	8.41	8.43	8.41	8.41	8.4	8.43	8.4	8.41	8.4	8.44
3381	2.348	8.25	8.29	8.36	8.34	8.36	8.38	8.46	8.45	8.48	8.45	8.46	8.45	8.45	8.46	8.49
3927	2.727	8.52	8.52	8.55	8.53	8.53	8.53	8.52	8.5	8.5	8.5	8.53	8.5	8.53	8.53	8.57

Site ., Piezometer PC-102 Specific Conductance Measurements (in milliSiemens) During Deionized Water Tracer Test, September 2000

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~	depth>	25	26	27	28	29	30	31	32	33	22	36	26	5	Ċ	2
0         0.000         7.96         7.97         7.94         7.93         7.95         8.29         8.36         8.7         8.86           0         142         8.18         8.15         8.15         8.15         8.15         8.15         8.15         8.15         8.16         8.13         9.13         9.13         9.13         9.13         9.13         9.13         9.13         9.13         9.13         9.13         9.13         9.13         9.13         9.13         9.13         8.23         9.05         9.06         9.06         9.06         9.06         9.06         9.06         9.05         9.05         9.05         9.05         9.05         9.06         9.07         9.17         9.2         9.13         8.25         8.66         8.87         8.90         9.06         9.07         9.17         9.2           0.0775         8.19         8.16         8.71         8.82         8.73         8.83         8.90         9.06         9.05         9.07         9.17         9.2           0.0775         8.19         8.19         8.16         8.73         8.82         8.93         8.90         9.06         9.07         9.17         9.21         8.17	(t) minutes	(t) days							9.58	9.62		5	3	R	ò	50	R
0.142         8.18         8.15         8.16         8.54         8.67         8.88         9.08         9.13         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.19         9.11         9.13         8.13         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.24         9.01         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06 <t< td=""><td>0</td><td>0.000</td><td>7.96</td><td>7.97</td><td>7.94</td><td>7.93</td><td>7.92</td><td>7.95</td><td>8.29</td><td>8.36</td><td>8.7</td><td>8.86</td><td>9.01</td><td>9 12</td><td>0 18</td><td>010</td><td>0 33</td></t<>	0	0.000	7.96	7.97	7.94	7.93	7.92	7.95	8.29	8.36	8.7	8.86	9.01	9 12	0 18	010	0 33
0.230         8.15         8.14         8.13         8.12         8.51         8.54         9.01         9.09         9.12           0.306         8.3         8.29         8.31         8.31         8.31         8.31         8.33         8.99         9.06         9.08         9.08           0.307         8.3         8.29         8.21         8.31         8.31         8.31         8.33         8.99         9.06         9.06         9.08         9.06           0.475         8.3         8.29         8.31         8.31         8.31         8.33         8.05         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06         9.06 <td>205</td> <td>0.142</td> <td>8.18</td> <td>8.18</td> <td>8.15</td> <td>8.16</td> <td>8.54</td> <td>8.67</td> <td>8.88</td> <td>9.08</td> <td>9.13</td> <td>9.19</td> <td>9.24</td> <td>9.26</td> <td>80.0</td> <td>9.19 0.36</td> <td>27.6 CV 0</td>	205	0.142	8.18	8.18	8.15	8.16	8.54	8.67	8.88	9.08	9.13	9.19	9.24	9.26	80.0	9.19 0.36	27.6 CV 0
0.308         8.3         8.29         8.3         8.31         8.31         8.31         8.33         9.02         9.14         9.17         9.2           0.367         8.3         8.29         8.37         8.26         8.68         8.83         9.02         9.14         9.17         9.2           0.475         8.3         8.27         8.24         8.77         8.83         9.05         9.06         9.06         9.06         9.06         9.06         9.06         9.05         9.06         9.05         9.06         9.05         9.06         9.05         9.06         9.05         9.06         9.05         9.06         9.05         9.06         9.05         9.05         9.06         9.05         9.06         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05         9.05 <td>331</td> <td>0.230</td> <td>8.15</td> <td>8.14</td> <td>8.13</td> <td>8.12</td> <td>8.51</td> <td>8.64</td> <td>8.84</td> <td>9.01</td> <td>60.6</td> <td>9.12</td> <td>9 14</td> <td>9 12</td> <td>0.11</td> <td>0.0</td> <td>0.47 0.4 E</td>	331	0.230	8.15	8.14	8.13	8.12	8.51	8.64	8.84	9.01	60.6	9.12	9 14	9 12	0.11	0.0	0.47 0.4 E
0.367         8.3         8.29         8.27         8.26         8.68         8.83         9.05         9.14         9.17         9.2           0.475         8.3         8.27         8.24         8.74         8.88         8.96         9.05         9.06         9.06           0.677         8.29         8.27         8.24         8.74         8.82         8.96         9.05         9.06         9.06           0.677         8.29         8.28         8.31         8.32         8.31         8.32         8.35         9.05         9.06         9.06           0.775         8.19         8.19         8.16         8.17         8.56         8.73         8.82         8.96         9.05         9.07         9.05           0.775         8.19         8.24         8.27         8.26         8.66         8.83         8.95         9.06         9.05         9.07         9.01           1.124         8.23         8.24         8.23         8.27         8.26         8.61         8.91         9.01         9.05         9.01         9.05         9.01         9.01         9.01         9.01         9.01         9.01         9.01         9.01         9.01	444	0.308	8.3	8.29	8.3	8.31	8.31	8.29	8.29	8.3	8 69	8 86	0.07	0 18	0	а С О	9. 10 1
0.475         8.3         8.27         8.24         8.74         8.82         8.99         9.05         9.08         9.08         9.06           0.677         8.19         8.19         8.16         8.17         8.56         8.73         8.81         8.94         9.06           0.677         8.19         8.19         8.16         8.17         8.56         8.73         8.81         8.96         9.06         9.03         8.97         8.97         8.97         8.97         8.97         8.97         8.97         8.97         8.97         8.97         8.97         8.97         8.97         9.05         9.05         9.03         8.97         9.05         9.03         9.05         9.03         9.05         9.03         9.05         9.03         9.05         9.03         9.05         9.03         9.05         9.03         9.05         9.03         9.05         9.03         9.05         9.03         9.05         9.03         9.05         9.05         9.03         9.05         9.03         9.05         9.03         9.05         9.03         9.05         9.03         9.05         9.03         9.05         9.03         9.04         9.05         9.03         9.04         9.0	529	0.367	8.3	8.29	8.27	8.26	8.68	8.83	9.02	9.14	9.17	0.0	9.00	01.0	0 1 0	67'A	9.24
0.677         8.29         8.28         8.31         8.32         8.31         8.29         8.67         8.81         8.94         9.06           0.775         8.19         8.19         8.16         8.17         8.56         8.73         8.82         8.96         8.97         8.97           0.775         8.19         8.19         8.16         8.17         8.56         8.73         8.82         8.96         8.97         9.05           0.843         8.27         8.23         8.21         8.19         8.16         8.19         9.05         9.07         9.17         9.05           0.918         8.29         8.23         8.23         8.23         8.21         8.19         8.96         9.07         9.17         9.17         9.13         9.05         9.01         9.05         9.01         9.05         9.01         9.05         9.01         9.05         9.01         9.05         9.01         9.05         9.01         9.05         9.01         9.05         9.01         9.05         9.01         9.05         9.01         9.05         9.01         9.05         9.01         9.05         9.01         9.05         9.01         9.05         9.01         9.05 </td <td>684</td> <td>0.475</td> <td>8.3</td> <td>8.27</td> <td>8.24</td> <td>8.74</td> <td>8.82</td> <td>8.98</td> <td>9.05</td> <td>9.08</td> <td>9.08</td> <td>80.6</td> <td>20 6</td> <td>0.0 10 0</td> <td>- 20</td> <td></td> <td>9. IZ</td>	684	0.475	8.3	8.27	8.24	8.74	8.82	8.98	9.05	9.08	9.08	80.6	20 6	0.0 10 0	- 20		9. IZ
0.775         8.19         8.16         8.17         8.56         8.73         8.92         8.96         8.97         8.97           0.843         8.27         8.24         8.21         8.66         8.78         8.99         9.05         9.02         9.04         9.05           0.843         8.27         8.24         8.21         8.66         8.83         8.95         9.06         9.07         9.12         9.13           1.065         8.23         8.25         8.66         8.83         8.95         9.06         9.07         9.12         9.13           1.165         8.23         8.23         8.21         8.19         8.19         8.95         9.06         9.07         9.12         9.13           1.124         8.23         8.27         8.26         8.61         8.81         8.84         8.97         9.04           1.124         8.14         8.11         8.14         8.11         8.14         8.11         8.95         9.05         9.07         9.17         9.21           1.244         8.14         8.11         8.14         8.11         8.15         8.86         9.05         9.01         9.16         9.17         9.21	975	0.677	8.29	8.28	8.31	8.32	8.31	8.29	8.67	8.81	8.94	90.6	6.6	9.12	τ. 	80.8 11	0.12 0.13
0.843         8.27         8.24         8.21         8.66         8.78         8.99         9.05         9.02         9.04         9.05           0.918         8.29         8.25         8.25         8.25         8.25         8.66         8.83         8.95         9.06         9.07         9.12         9.13           1.1065         8.23         8.24         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.24         8.11         8.14         8.14         9.15         9.14         9.15         9.14         9.15         9.14         9.35         9.33         9.31         9.33         9.31         9.33         9.31         9.33         9.31         9.35         9.33         9.31         9.35         9.31         9.35         9.31         9.35         9.31         9.35         9.31         9.35         9.31         9.35         9.31         9.35         9.31         9.35         9.33         9.31         9	1116	0.775	8.19	8.19	8.16	8.17	8.56	8.73	8.82	8.96	8.97	8.97	8.99	8.99	- σ	9 Dg	0 18
0.918         8.29         8.25         8.66         8.83         8.95         9.06         9.07         9.12         9.13           1.065         8.23         8.24         8.23         8.23         8.23         8.23         8.23         8.24         8.71         8.86         9.00         9.13           1.124         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         8.23         9.05         9.07         9.12         9.03           1.124         8.23         8.23         8.21         8.19         8.56         8.63         8.63         9.05         9.04         9.17         9.16         9.17         9.31         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36         9.36	1214	0.843	8.27	8.24	8.21	8.66	8.78	8.99	9.05	9.02	9.04	9.05	9.1	9.1	9.18	9.32	9.28
1.065 $8.23$ $8.24$ $8.23$ $8.23$ $8.23$ $8.23$ $8.23$ $8.23$ $8.23$ $8.23$ $8.23$ $8.23$ $8.23$ $8.27$ $8.06$ $8.87$ $9.02$ $9.07$ $1.124$ $8.23$ $8.27$ $8.26$ $8.61$ $8.19$ $8.68$ $8.87$ $9.02$ $9.01$ $1.124$ $8.28$ $8.27$ $8.26$ $8.61$ $8.81$ $8.99$ $9.14$ $9.16$ $9.17$ $1.244$ $8.15$ $8.14$ $8.11$ $8.11$ $8.14$ $8.52$ $8.63$ $8.84$ $8.97$ $9.04$ $1.246$ $8.72$ $8.29$ $8.11$ $8.11$ $8.14$ $8.52$ $8.29$ $9.16$ $9.17$ $9.21$ $1.306$ $8.72$ $8.31$ $8.29$ $8.75$ $8.82$ $8.99$ $9.16$ $9.17$ $9.21$ $1.306$ $8.72$ $8.31$ $8.26$ $8.34$ $8.81$ $8.66$ $8.73$ $8.93$ $9.16$ $1.306$ $8.73$ $8.33$ $8.75$ $8.82$ $8.99$ $9.16$ $9.17$ $9.21$ $1.467$ $8.31$ $8.36$ $8.37$ $8.82$ $8.99$ $9.16$ $9.17$ $9.21$ $1.528$ $8.33$ $8.26$ $8.24$ $8.81$ $8.86$ $8.83$ $8.99$ $9.18$ $1.552$ $8.33$ $8.26$ $8.27$ $8.81$ $8.86$ $8.83$ $9.99$ $9.14$ $9.21$ $1.572$ $8.33$ $8.32$ $8.36$ $8.83$ $8.99$ $9.18$ $9.21$ $9.22$ $1.5$	1322	0.918	8.29	8.25	8.25	8.66	8.83	8.95	9.06	9.07	9.12	9.13	9.13	9.16	9.22	9.36	9.28
1.124       8.23       8.22       8.21       8.19       8.58       8.68       8.87       9.02       9.07         1.199       8.28       8.27       8.22       8.21       8.19       8.58       8.68       8.87       9.02       9.07         1.199       8.28       8.27       8.26       8.61       8.81       8.99       9.14       9.16       9.17       9.19       9.04         1.244       8.14       8.15       8.14       8.11       8.14       8.15       8.63       8.84       8.97       9.04         1.244       8.14       8.15       8.19       9.19       9.22       9.24       9.31       9.31       9.33         1.246       8.31       8.36       8.3       8.3       8.3       8.3       8.99       9.16       9.17       9.21         1.365       8.31       8.36       8.33       8.25       8.81       8.99       9.16       9.17       9.21         1.5528       8.33       8.26       8.28       8.99       9.16       9.17       9.21         1.5528       8.33       8.26       8.28       8.91       8.83       9.09       9.14       9.23         <	1533	1.065	8.23	8.24	8.23	8.23	8.21	8.19	8.54	8.71	8.86	9.03	9.07	9.08	9.1	9.13	9.15
1.199       8.28       8.27       8.26       8.61       8.81       8.99       9.1       9.16       9.17         1.244       8.14       8.15       8.14       8.11       8.14       8.15       8.14       8.11       9.19       9.04         1.244       8.14       8.15       8.14       8.11       8.14       8.15       8.14       8.11       9.19       9.22       9.24       9.3       9.31       9.36         1.306       8.72       8.82       8.96       9.19       9.19       9.22       9.24       9.3       9.31       9.36         1.306       8.72       8.32       8.31       8.26       8.3       8.25       8.25       8.73       8.83       9.19       9.16       9.17       9.21         1.467       8.31       8.26       8.24       8.81       8.86       8.93       9.99       9.18       9.23         1.552       8.33       8.27       8.26       8.23       8.26       8.73       8.83       9.99       9.14       9.21       9.23         1.552       8.33       8.26       8.28       8.93       9.16       8.73       8.83       9.09       9.14       9.21 <t< td=""><td>1619</td><td>1.124</td><td>8.23</td><td>8.23</td><td>8.22</td><td>8.21</td><td>8.19</td><td>8.58</td><td>8.68</td><td>8.87</td><td>9.02</td><td>9.07</td><td>9.09</td><td>9.12</td><td>9.14</td><td>9.16</td><td>9.27</td></t<>	1619	1.124	8.23	8.23	8.22	8.21	8.19	8.58	8.68	8.87	9.02	9.07	9.09	9.12	9.14	9.16	9.27
1.244         8.14         8.11         8.11         8.14         8.11         8.14         8.11         8.14         8.11         8.14         8.17         9.29         9.24         9.3         9.31         9.36         9.36         9.31         9.36         9.31         9.36         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.36         9.31         9.32         9.32         9.33         9.33         8.26         8.32         8.86         8.90         9.14         9.2         9.23         9.36         9.33         9.31         8.32         8.33         8.36         8.33         8.36         9.31         8.36         9.32         9.32         9.23         9.32         9.32         9.32         9.32         9.32         9.32         9.32         9.32	1726	1.199	8.28	8.27	8.26	8.61	8.81	8.99	9.1	9.14	9.16	9.17	9.19	9.23	9.38	9.49	6.9
1.306       8.72       8.82       8.96       9.16       9.19       9.22       9.24       9.3       9.31       9.36         1.365       8.32       8.31       8.29       8.3       8.75       8.82       8.99       9.16       9.17       9.21       9.21         1.467       8.31       8.29       8.3       8.75       8.82       8.99       9.16       9.17       9.21         1.467       8.31       8.36       8.34       8.3       8.29       8.73       8.83       8.99       9.18       9.21         1.528       8.33       8.27       8.34       8.3       8.29       8.93       9.16       9.19       9.2       9.23         1.552       8.27       8.3       8.26       8.26       8.73       8.83       9.09       9.18       9.2         1.569       8.3       8.31       8.26       8.25       8.69       8.83       9.09       9.18       9.2         1.569       8.3       8.36       8.26       8.25       8.69       8.83       9.09       9.14       9.2         1.5717       8.33       8.36       8.75       8.69       8.86       8.83       9.09       9.18<	1792	1.244	8.14	8.15	8.14	8.11	8.14	8.52	8.63	8.84	8.97	9.04	9.04	9.06	9.08	9.14	9.23
1.365       8.32       8.31       8.29       8.75       8.82       8.99       9.16       9.17       9.21         1.467       8.31       8.36       8.34       8.3       8.29       8.73       8.83       8.99       9.16       9.17       9.21         1.467       8.31       8.36       8.34       8.3       8.3       8.3       8.3       8.99       9.16       9.17       9.21         1.528       8.31       8.36       8.34       8.3       8.25       8.81       8.86       8.93       9.15       9.2       9.23         1.528       8.33       8.26       8.25       8.19       8.73       8.8       9.09       9.18       9.2         1.569       8.3       8.31       8.26       8.25       8.69       8.87       9       9.2       9.21         1.717       8.32       8.33       8.26       8.25       8.69       8.87       9       9.18       9.21         1.717       8.32       8.33       8.36       8.76       8.87       9       9.23         1.874       8.33       8.35       8.69       8.86       8.87       9       9.21       9.27 <t< td=""><td>1880</td><td>1.306</td><td>8.72</td><td>8.82</td><td>8.98</td><td>9.18</td><td>9.19</td><td>9.22</td><td>9.24</td><td>9.3</td><td>9.31</td><td>9.36</td><td>9.48</td><td>9.47</td><td>9.46</td><td>9.49</td><td>9.43</td></t<>	1880	1.306	8.72	8.82	8.98	9.18	9.19	9.22	9.24	9.3	9.31	9.36	9.48	9.47	9.46	9.49	9.43
1.467         8.31         8.36         8.34         8.3         8.29         8.25         8.73         8.83         8.99         9.18           1.528         8.33         8.27         8.25         8.24         8.81         8.86         8.93         9.15         9.2         9.23           1.528         8.33         8.27         8.25         8.24         8.81         8.86         8.93         9.15         9.2         9.23           1.592         8.33         8.26         8.22         8.19         8.73         8.8         9.09         9.14         9.2           1.592         8.3         8.31         8.26         8.25         8.69         8.87         9         9.09         9.18         9.21           1.717         8.32         8.34         8.25         8.69         8.87         9         9.08         9.18         9.21           1.874         8.37         8.33         8.26         8.26         8.86         9.69         9.24         9.21           1.874         8.47         8.46         8.47         8.46         8.46         8.46         8.46         8.33           2.013         9.06         9.37         9.49	1965	1.365	8.32	8.31	8.29	8.3	8.75	8.82	8.99	9.16	9.17	9.21	9.24	9.27	9.29	9.37	9.54
1.528         8.33         8.27         8.25         8.24         8.81         8.86         8.93         9.15         9.2         9.23           1.592         8.27         8.3         8.26         8.22         8.19         8.73         8.8         9.09         9.14         9.2           1.592         8.27         8.3         8.26         8.22         8.19         8.73         8.8         9.09         9.14         9.2           1.592         8.3         8.31         8.26         8.22         8.19         8.73         8.8         9.09         9.18         9.21           1.717         8.32         8.34         8.26         8.25         8.69         8.87         9         9.18         9.21           1.717         8.37         8.35         8.25         8.69         8.87         9         9.28         9.27           1.874         8.37         8.33         8.36         8.36         9.38         8.36         9.32         9.32           2.001         8.41         8.47         8.46         8.47         8.46         8.46         8.46         8.46         8.46         8.45           2.727         8.53         8.48 <td>2112</td> <td>1.467</td> <td>8.31</td> <td>8.36</td> <td>8.34</td> <td>8.3</td> <td>8.29</td> <td>8.25</td> <td>8.73</td> <td>8.83</td> <td>8.99</td> <td>9.18</td> <td>9.19</td> <td>9.22</td> <td>9.25</td> <td>9.31</td> <td>934</td>	2112	1.467	8.31	8.36	8.34	8.3	8.29	8.25	8.73	8.83	8.99	9.18	9.19	9.22	9.25	9.31	934
1.592       8.27       8.3       8.26       8.22       8.19       8.73       8.8       9.09       9.14       9.2         1.669       8.3       8.31       8.28       8.26       8.22       8.68       8.83       9.09       9.14       9.2         1.669       8.3       8.31       8.28       8.26       8.25       8.68       8.83       9.08       9.18       9.21         1.717       8.32       8.34       8.3       8.26       8.25       8.69       8.87       9       9.18       9.27         1.717       8.32       8.34       8.3       8.26       8.69       8.87       9       9.18       9.21         1.717       8.37       8.35       8.76       8.86       9.06       9.24       9.29       9.32         2.001       8.41       8.47       8.46       8.46       8.46       8.46       8.46       8.45         2.013       9.53       8.48       8.5       8.47       8.46       8.46       8.46       8.45       8.45       8.45       8.45       8.45       8.46       8.45       8.45       8.45       8.45       8.45       8.45       8.46       8.45       8.45	2200	1.528	8.33	8.27	8.25	8.24	8.81	8.86	8.93	9.15	9.2	9.23	9.25	9.26	9.33	9.45	9.51
1.669         8.3         8.31         8.28         8.26         8.22         8.68         8.83         9.08         9.18         9.21           1.717         8.32         8.34         8.3         8.25         8.69         8.87         9         9.18         9.27           1.717         8.32         8.34         8.3         8.25         8.69         8.87         9         9.18         9.27           1.874         8.37         8.35         8.36         8.76         8.86         9.06         9.24         9.29         9.32           1.874         8.37         8.33         8.36         8.36         8.36         9.32         9.32           2.001         8.41         8.47         8.36         8.36         8.36         8.36         9.32           2.031         8.47         8.46         8.47         8.46         8.45         8.46         8.43           2.727         8.53         8.48         8.5         9.05         9.37         9.49         6.7         6.7	2292	1.592	8.27	8.3	8.26	8.22	8.19	8.73	8.8	9.09	9.14	9.2	9.21	9.25	9.26	9.34	9.47
1.717       8.32       8.34       8.3       8.25       8.69       8.87       9       9.18       9.27         1.874       8.37       8.35       8.33       8.36       8.76       8.86       9.06       9.24       9.29       9.32         1.874       8.37       8.35       8.33       8.36       8.76       8.86       9.06       9.24       9.29       9.32         2.001       8.41       8.37       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.36       8.46       8.43       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45       8.45 <t< td=""><td>2403</td><td>1.669</td><td>8.3</td><td>8.31</td><td>8.28</td><td>8.26</td><td>8.22</td><td>8.68</td><td>8.83</td><td>9.08</td><td>9.18</td><td>9.21</td><td>9.24</td><td>9.26</td><td>9.26</td><td>9.3</td><td>9.33</td></t<>	2403	1.669	8.3	8.31	8.28	8.26	8.22	8.68	8.83	9.08	9.18	9.21	9.24	9.26	9.26	9.3	9.33
1         1.874         8.37         8.35         8.33         8.36         8.76         8.86         9.06         9.24         9.29         9.32           2.001         8.41         8.37         8.39         8.36         8.36         8.37         8.39         8.36           2.001         8.41         8.37         8.39         8.36         8.37         8.39         8.36           2.348         8.47         8.48         8.5         8.47         8.46         8.45         8.45         8.43           2.348         8.47         8.46         8.47         8.46         8.45         8.45         8.43           2.727         8.53         8.48         8.5         9.03         9.06         9.37         9.49         9.7         9.5	2473	1.717	8.32	8.34	8.3	8.25	8.25	8.69	8.87	თ	9.18	9.27	9.27	9.31	9.34	9.4	9.48
2.001 8.41 8.41 8.37 8.39 8.38 8.36 8.37 8.39 8.38 8.36 2.348 8.47 8.47 8.48 8.5 8.47 8.46 8.47 8.49 8.46 8.43 2.727 8.53 8.48 8.49 8.5 9.03 9.06 9.37 9.49 9.52 9.52	2699	1.874	8.37	8.35	8.33	8.36	8.76	8.86	90.6	9.24	9.29	9.32	9.35	9.42	9.44	9.51	9.63
1 2.348 8.47 8.47 8.48 8.5 8.47 8.46 8.47 8.49 8.46 8.43 7 2.727 8.53 8.48 8.49 8.5 9.03 9.06 9.37 9.49 9.52	2881	2.001	8.41	8.41	8.37	8.39	8.38	8.36	8.37	8.39	8.38	8.36	8.37	8.39	8.36	8.36	8.37
/ 2.727 8.53 8.48 8.49 8.5 9.03 9.06 9.37 0.49 0.52 0.52	3381	2.348	8.47	8.47	8.48	8.5	8.47	8.46	8.47	8.49	8.46	8.43	8.92	8.99	9.23	9.37	9.43
	3927	2.727	8.53	8.48	8.49	8.5	9.03	9.06	9.37	9.49	9.52	9.52	9.55	9.62	9.68	9.78	9.84

Site v, Piezometer PC-102 Specific Conductance Measurements (in milliSiemens) During Deionized Water Tracer Test, September 2000

50		9.23	9.15	6	8.97	8.92	8.8	8.96	9.06	9.14	9.23	9.25	9.29		9.25	9.39		9.41	9.4	9.41	9.39	9.44	9.52	9.25	9.63	9 69
49		9.22	9.12	8.97	8.97	8.91	8.93	8.9	9.05	9,15	9.23	9.24	9.26	9.36	9.23	9.38	9.37	9.37	9.39	9.36	9.38	9.41	9.5	9.05	9.67	9.68
48		9.24	9.13	8.94	8.95	8.91	8.93	8.96	9.05	9.16	9.23	9.25	9.26	9.35	9.21	9.42	9.41	9.37	9.35	9.35	9.42	9.4	9.49	8.91	9.8	9.67
47		9.22	9.16	8.93	8.9	8.91	8.94	8.98	9.04	9.15	9.22	9.23	9.28	9.33	9.22	9.4	9.39	9.33	9.35	9.32	9.36	9.4	9.46	8.75	9.77	9.65
46		9.24	9.14	8.95	8.84	8.91	8.94	8.85	9.04	9.13	9.21	9.24	9.26	9.33	9.22	9.4	9.39	9.38	9.35	9.34	9.36	9.39	9.5	8.33	9.73	9.67
45		9.26	9.14	8.99	9.19	8.87	8.93	9.24	8.96	9.1	9.19	9.24	9.27	9.34	9.19	9.39	9.38	9.4	9.34	9.34	9.42	9.4	9.47	8.37	9.76	9.65
44		9.25	9.16	8.95	9.18	8.79	8.89	9.27	8.91	9.03	9.16	9.35	9.31	9.33	9.23	9.41	9.39	9.5	9.36	9.47	9.53	9.49	9.49	8.4	9.75	9.63
43		9.31	9.2	8.96	9.16	8.77	8.71	9.22	90.6	8.99	9.09	9.34	9.37	9.34	9.34	9.38	9.39	9.46	9.37	9.45	9.53	9.49	9.57	8.42	9.59	9.64
42		9.25	9.3	9.12	9.07	9.04	8.7	9.26	9.18	90.6	9.16	9.24	9.35	9.29	9.34	9.4	9.46	9.45	9.49	9.51	9.44	9.55	9.58	8.42	9.57	9.78
41		9.33	9.33	9.15	9.15	9.11	90.6	9.25	9.14	9.28	9.32	9.28	9.3	9.46	9.25	9.39	9.48	9.49	9.49	9.46	9.56	9.46	9.6	8.39	9.53	9.8
40		9.29	9.33	9.15	9.17	9.12	9.13	9.11	9.22	9.25	9.35	9.18	9.39	9.41	9.33	9.43	9.46	9.45	9.41	9.57	9.5	9.58	9.61	8.41	9.52	9.77
depth>	(t) days	0.000	0.142	0.230	0.308	0.367	0.475	0.677	0.775	0.843	0.918	1.065	1.124	1.199	1.244	1.306	1.365	1.467	1.528	1.592	1.669	1.717	1.874	2.001	2.348	2.727
,	(t) minutes	0	205	331	444	529	684	975	1116	1214	1322	1533	1619	1726	1792	1880	1965	2112	2200	2292	2403	2473	2699	2881	3381	3927

## Field paramaters and bromide concentrations in groundwater at depth specific intervals in well PC-101R during bromide tracer test at Site A, September 2000

Sample (Bag) ID	Minutes After Injection		рН			EC		Bro	omide (mg/	L)
		23 feet	32 feet	40 feet	23 feet	32 feet	40 feet	23 feet	32 feet	40 feet
56	0		8.18	8.14	10710	10020	10050	1	1	1
1	30	8.16	8.14	8.21	10690	10930	10630	1	1	1
2	60	8.33	8.40	8.39	11050	11260	10610			
3	90	8.56	8.56	8.52	11350	11530	10760			
4	120	8.41	8.65	8.79	11420	12050	10620	1	1	1
5	150	8.57	8.63	8.74	11830	12000	10780			
6	180	8.44	8.54	8.59	12020	12040	10760			
7	210	8.69	8.72	8.67	11890	12230	10600	1	1	1
8	240	8.57		8.82	12240	12370	10660			·
9	270	8.68	8.75	8.81	12020	12450	10740			
10	300	8.59	8.80	8.90	12190	12380	10560	1	1	1
11	330	8.74	8.88	8.79	11920	12280	10630			
12	360	8.89	8.88	8.95	11900	12240	10660			
13	390	8.95	8.98	9.31	11910	12480	10550	1	1	1.5
14	420	8.97	9.23	9.30	12010	12490	10460			
15	450	9.15	9.31	9.34	12110	12520	10640			
16	480	8.82	9.10	9.19	12100	12430	10580	1	1	7.4
17	510	9.04	9.20	9.20	12170	12550	10710			
18	540	8.78	8.96	9.02	12170	12470	10520			
19	570	8.92	8.97	8.93	12110	12690	10620	1	1	22
20	600	8.66	8.65	8.66	12230	12320	10370			
21	630	8.86	8.66	8.72	12220	12250	10130			52
22	660	8.51	8.64	8.68	12240	12540	10490	1	1.3	66
23	690	8.47	8.53	8.64	12030	12150	10550			
24	720	8.44	8.49	8.52	12370					
25	750		8.47	8.41		12420	10520	1	1	76
26	780	8.30	8.32	8.32	12430	12000	10420			110
27	810	8.23	8.20	8.21	12260	12540	10440			
28	840	8.31	8.26	8.25	12500	12400	10340	1	2.5	110
29	870	8.30	8.25	8.28	12200	12500	10500			
30	900	8.17	8.17	8.20	12600	12200	10750			
31	930	8.24	8.20	8.20	12220	12350	10400	1	5.3	100
32	960	8.24	8.09	8.08	12680	12050	10270			140
33	990	8.10	8.10	8.27	12240	12250	10410			
34	1020	8.27	8.12	8.13	12600	11550	10100	2.2	9.2	140
35	1050	8.15	8.17	8.26	12300	12400	10250			
36	1080	8.30	8.17	8.18	12720	11900	10100			
37	1110	8.14	8.11	8.21	12300	12300	10350	2.9	. 15	130
38	1140	8.20	8.08	8.10	12550	11890	10200			160
39	1170	8.12	8.05	8.25	12550	12240	10350		·	
40	1200	8.27	8.10	8.08	12970	11960	10200	5	20	160
41	1230	8.11	8.07	8.25	12700	12220	10350			
42	1260	8.17	8.08	8.15	12800	11750	10140			150
43	1290	8.08	8.07	8.09	12550	11880	10240	8.3	36	140

# Field paramaters and bromide concentrations in groundwater at depth specific intervals in well PC-101R during bromide tracer test at Site A, September 2000

Sample (Bag) ID	Minutes After Injection		pН			EC		Bro	omide (mg/l	_)
		23 feet	32 feet	40 feet	23 feet	32 feet	40 feet	23 feet	32 feet	40 feet
44	1320	8.05	8.03	8.03	12670	11470	10300		52	160
45	1350	8.10	8.09	8.18	12390	11210	10300		73	150
46	1380	8.14	8.10	8.12	12360	10760	10150	24	100	150
47	1410	8.19	8.17	8.23	11620	10550	10160	68	110	160
48	1440	8.19	8.24	8.27	11080	10410	10000	96	130	170
49	1470	8.65	8.64	8.52	10790	10440	10000	88	110	130
50	1500	8.32	8.35	8.40	10800	10360	10120	120	140	160
51	1530	8.36	8.49	8.42	10690	10420	10100	120	130	160
52	1560	8.24	8.51	8.53	10840	10490	10120	98	110	130
53	1590	8.56	8.61	8.53	10630	10840	10380	120	130	160
54	1620	8.40	8.71	8.79	10690	10560	10280	120	140	160
55	1650	8.75	8.86	8.75	10720	10260	10200	100	100	140
						· · · · · · · · · · · · · · · · · · ·				
57		samples at	0738 and 08	309: Bromi	de slug			3000	and	3600

N	EL LABORATORIES		
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		 ·

PARAMETER	RESULT	_	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	150	Jl	20.	100	EPA 300.0	mg/L	9/25/00

 $\sim$ 

1.0000

R.L. - Reporting Limi F. - Dilution Factor ↓D - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory. 16

## **NEL LABORATORIES**

PROJECT ID:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	100	4.	20	EPA 300.0	mg/L	9/29/00

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

## **NEL LABORATORIES**

CLIENT:	Errol L. Montgomery & Associates, Inc.	CLIENT ID:	
PROJECT ID:	Kerr McGee	DATE SAMPLED:	
PROJECT #:	448.01	NEL SAMPLE ID:	
TEST:	Inorganic Non-Metals		
MATRIX:	Aqueous		

PARAMETER	RESULT	R. L.	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	24	1.	5	EPA 300.0	mg/L	9/24/00

R.L. - Reporting Limi **7.F.** - Dilution Factor

D - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

**R. L.** 

20.

<u>D. F.</u>

100

METHOD

EPA 300.0

UNITS ANALYZED

10/11/00

mg/L

RESULT

150

PARAMETER

Bromide

R.L Reporting Limi	
D.F Dilution Factor	
ND - Not Detected	
This report shall not be reproduced except in full	, without the written approval of the laboratory.
	7

N	EL LABORATORIES		
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		
		· <u> </u>	· · ·

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	73	20.	100	EPA 300.0	mg/L	10/11/00

÷

R.L. - Reporting Limi F. - Dilution Factor

Plution Factor
 Not Detected
 This report shall not be reproduced except in full, without the written approval of the laboratory.
 6

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		 
TEST: MATRIX:	Inorganic Non-Metals Aqueous			

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	160	20.	100	EPA 300.0	mg/L	10/11/00

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory. 5

## **NEL LABORATORIES**

CLIENT:	Errol L. Montgomery & Associates, Inc.	CLIENT ID:	
PROJECT ID:	Kerr McGee	DATE SAMPLED:	
PROJECT #:	448.01	NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

CONTRACTOR -

ŝ 

121212

1.2000 ŝ

100

 $\mathbb{C}^{1}$ 

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	52	20.	100	EPA 300.0	mg/L	10/11/00

R.L. - Reporting Limi F. - Dilution Factor D - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED:		
TEST: MATRIX:	Inorganic Non-Metals Aqueous	NEL SAMPLE ID:	L0009267-30	

PARAMETER	RESULT	R. L.	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	140	4.	20	EPA 300.0	mg/L	9/29/00

NIT

. ••

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory. 13

## **NEL LABORATORIES**

CLIENT:	Errol L. Montgomery & Associates, Inc.	CLIENT ID:	
PROJECT ID:	Kerr McGee	DATE SAMPLED:	
PROJECT #:	448.01	NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	36	1.	5	EPA 300.0	mg/L	9/24/00

R.L. - Reporting Limi

Y - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		
TEST: MATRIX:	Inorganic Non-Metals Aqueous		20009207-28	

, ~

PARAMETER	RESULT	<u>R. L.</u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	8.3	1.	5	EPA 300.0	mg/L	9/24/00

R.L. - Reporting Limi D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

N	EL LABORATORIES			
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		
TEST: MATRIX:	<b>Inorganic Non-Metals</b> Aqueous			
		· · · · · · · · · · · · · · · · · · ·	 	

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	150	20.	100	EPA 300.0	mg/L	10/11/00

N	EL LABORATORIES					
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:				
TEST: MATRIX:	Inorganic Non-Metals Aqueous	······				
PA	RAMETER RESULT	R. L. D. F. N	<b>IETHOD</b>	UNITS	ANALYZED	

<u>D. F.</u>

20

METHOD

EPA 300.0

UNITS

mg/L

ANALYZED

9/29/00

4.

160

Bromide

# R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT: PROJECT ID: PROJECT #:	Ептоl L. Montgomery & Associates, Inc. Кеп McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	R. L.	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	20	1.	5	EPA 300.0	mg/L	9/24/00

R.L. - Reporting Limi F. - Dilution Factor D - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory. 9

and a state of the state of the

ž.

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		 
TEST: MATRIX:	Inorganic Non-Metals Aqueous			

	PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide		5.0	1.	5	EPA 300.0	mg/L	9/24/00

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

8

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	160	20.	100	EPA 300.0	mg/L	10/11/00

TEST. Incomenta New New 1	CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		
MATRIX: Aqueous	TEST: MATRIX:	Inorganic Non-Metals Aqueous			

4.

20

EPA 300.0

mg/L

9/29/00

130

Bromide

CLIENT:	Errol L. Montgomery & Associates, Inc.	CLIENT ID:	
'ROJECT ID:	Kerr McGee	DATE SAMPLED:	
PROJECT #:	448.01	NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

144

100

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	15	1.	5	EPA 300.0	mg/L	<b>9/24/</b> 00

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		, ·,		
TEST: MATRIX:	Inorganic Non-Metals Aqueous					
PA	RAMETER RESULT I	<u>R. L. D. F. N</u>	METHOD	UNITS	ANALYZED	

5

EPA 300.0

mg/L

9/24/00

1.

2.9

E . . . . .

Bromide

IN	EL LABORATORIES		
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u>R. L.</u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	140	4.	20	EPA 300.0	mg/L	9/29/00

Ċ,

and the second second

1012171

NICH

1

PROJECT ID: F	Errol L. Montgomery & Associates, Inc. Kerr McGee 148.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		
	norganic Non-Metals Aqueous			

5

EPA 300.0

mg/L

9/26/00

1.

9.2

Bromide

CLIENT:	Errol L. Montgomery & Associates, Inc.	CLIENT ID:	
PROJECT ID:	Kerr McGee	DATE SAMPLED:	
PROJECT #:	448.01	NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	2.2	1.	5	EPA 300.0	mg/L	9/26/00

5

e-11

R.L. - Reporting Limi

D - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		
TEST: MATRIX:	Inorganic Non-Metals Aqueous		• •	

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	140	20.	100	EPA 300.0	mg/L	10/10/00

	I Montgomore & Associator Inc.		 
PROJECT ID: Kerr M PROJECT #: 448.01	L. Montgomery & Associates, Inc. McGee 1	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: Inorga MATRIX: Aqueo	anic Non-Metals ^{Dus}		

PARAMETER	RESULT	R. L.	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	100	4.	20	EPA 300.0	mg/L	9/28/00

í

100.00

1.1.1

 $\sim$ 

R.L. - Reporting Limi

D - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

Montgomery & Associates, Inc. Gee		Bag 31 32 ft.			
	DATE SAMPLED NEL SAMPLE ID:				
			····-		
ER <u>RESULT</u> 5.3			UNITS mg/L	<u>ANALYZED</u> 9/26/00	
u	nic Non-Metals us 'ER <u>RESULT</u>	ER RESULT R. L. D. F.	TER RESULT R. L. D. F. METHOD	TER RESULT R. L. D. F. METHOD UNITS	TER RESULT R.L. D.F. METHOD UNITS ANALYZED

10

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		
<del></del>		· <u>······</u> ·····························	

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/26/00

1000

and course

R.L. - Reporting Limi D.F. - Dilution Factor

D - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

NE	EL LABORATORIES		
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	<b>Inorganic Non-Metals</b> Aqueous		

~

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	110	4.	20	EPA 300.0	mg/L	9/28/00

CLIENT:	Errol L. Montgomery & Associates, Inc.	CLIENT ID:	
PROJECT ID:	Kerr McGee	DATE SAMPLED:	
PROJECT #:	448.01	NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D.F.</u>	METHOD	UNITS	ANALYZED
Bromide	2.5	1.	5	EPA 300.0	mg/L	9/26/00

2.1.2

the state of the

100

 $\hat{C}^{\dagger}$ 

R.L. - Reporting Limi

.F. - Dilution Factor

D - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:				
TEST: MATRIX:	Inorganic Non-Metals Aqueous					
PA	RAMETER RESULT	R. L. D. F. 1	WETHOD	UNITS	ANALYZED	

1.

5

EPA 300.0

mg/L

9/26/00

ND

Bromide

TEST: Inorganic Non-Metals MATRIX: Aqueous	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		
	Inorganic Non-Metals Aqueous			

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	110	20.	100	EPA 300.0	mg/L	10/10/00

1000

~

R.L. - Reporting Limi F. - Dilution Factor

b - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

N	EL LABORATORIES		
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	:
TEST: MATRIX:	Inorganic Non-Metals Aqueous		
MATRIX:	Aqueous	<u></u>	 <u> </u>

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	76	2.	10	EPA 300.0	mg/L	9/28/00

~

# NEL LABORATORIES CLIENT: Errol L. Montgomery & Associates, Inc. CLIENT ID: Bag 25 32 ft. PROJECT ID: Kerr McGee DATE SAMPLED: 9/16/00 PROJECT #: 448.01 NEL SAMPLE ID: L0009199-74

RESULT

3.3

R. L.

1.

**D. F.** 

5

METHOD

EPA 300.0

UNITS

 $\overline{\gamma}$ 

mg/L

ANALYZED

9/26/00

**Inorganic Non-Metals** 

Aqueous

PARAMETER

ALL MARKET

and the second

111111111111

An De Nesser

S. CAURT ...

Marcaio Marcaio

R.L. - Reporting Limi

D.F. - Dilution Factor

D - Not Detected

TEST:

MATRIX:

Bromide

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:			
TEST: MATRIX:	Inorganic Non-Metals Aqueous				
РА	RAMETER RESULT	R. L. D. F.	METHOD	UNITS	ANALYZED

1.

5

EPA 300.0

mg/L

9/26/00

ND

Bromide

	LE LADONATORIES		
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	R. L	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	66	2.	10	EPA 300.0	mg/L	9/29/00

1000

R.L. - Reporting Limi P.F. - Dilution Factor

) - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

	EL LABORATORIES			
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		:
TEST: MATRIX:	Inorganic Non-Metals Aqueous			
			 ·	-

PARAMETERRESULTR. L.D. F.METHODUNITSANALYZEDBromide1.31.5EPA 300.0mg/L9/26/00

CLIENT: ROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/26/00

02.20

and the second second and

SAME STOR

1) ADDUDD DA

*c*.,

R.L. - Reporting Limi - Dilution Factor Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

23

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	52	20.	100	EPA 300.0	mg/L	10/10/00

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	22	1.	5	EPA 300.0	mg/L	9/26/00

R.L. - Reporting Limi

> - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/26/00

# NEL LABORATORIES CLIENT: Errol L. Montgomery & Associates, Inc. CLIENT ID: Bag 19 23 ft. PROJECT ID: Kerr McGee DATE SAMPLED: 9/16/00 PROJECT #: 448.01 NEL SAMPLE ID: L0009199-55 TEST: Inorganic Non-Metals MATRIX: Aqueous

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/26/00

à

N 1. 64

19. St. 1. 18. 81

- - - HEREN

R.L. - Reporting Limi

F. - Dilution Factor

**D** - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	Errol L. Montgomery & Associates, Inc.	CLIENT ID:	Bag 16 40 ft.	
PROJECT ID:	Ken McGee	DATE SAMPLED:		
PROJECT #:	448.01	NEL SAMPLE ID:		* <u>*</u>
TEST: MATRIX:	Inorganic Non-Metals Aqueous			

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	7.4	1.	5	EPA 300.0	mg/L	9/22/00

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		
·····			

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/22/00

R.L. - Reporting Limi **P.F.** - Dilution Factor

D - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

18

ulony same

Ł

	N	E	L	LA	AB(	DR.	AT	OF	RIES	
_		_		_			_			

.

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		
		<u> </u>	

	THOD UNITS ANA	ALYZED
Bromide ND 1. 5 EPA	A 300.0 mg/L 9	9/22/00

N	EL LABORATORIES		
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		
		<del></del>	

ŧ.

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

読みたら

- 224 - 12000

 $\sim$ 

PARAM Bromide	IETER RESU	<u>JLT R.L.</u>	<u> </u>	METHOD	UNITS	ANALYZED
Biomide	1.	5 1.	5	EPA 300.0	mg/L	9/22/00

R.L. - Reporting Limi D.F. - Dilution Factor

) - Not Detected

A is report shall not be reproduced except in full, without the written approval of the laboratory.

16

N	EL LABORATORIES			
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	•	;
TEST: MATRIX:	Inorganic Non-Metals Aqueous			
			· · · · · · · · · · · · · · · · · · ·	

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS A	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/22/00

;

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/22/00

, ~-

A CONTRACTOR AND

R.L. - Reporting Limi D.F. - Dilution Factor

D - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

<u> </u>	EL LABORATORIES				
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:			
TEST: MATRIX:	Inorganic Non-Metals Aqueous				
PA	RAMETER RESULT	<u>R. L. D. F. N</u>	METHOD	UNITS	ANALYZED

<u>D. F.</u>

5

1.

ND

EPA 300.0

mg/L

9/22/00

Bromide

## NEL LABORATORIES

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous	······	 

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/22/00

R.L. - Reporting Limi F. - Dilution Factor

D - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

jaan oo oo taagee

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	<b>Inorganic Non-Metals</b> Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/22/00

	EL LABORATORIES		
CLIENT: 'ROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/22/00

جم بر ا

A STREET REAL CONTRACTOR OF

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:				
TEST: MATRIX:	Inorganic Non-Metals Aqueous					
РА	RAMETER RESULT F	R. L. D. F. N	ÆTHOD	UNITS	ANALYZED	

<u>D. F.</u>

5

METHOD

EPA 300.0

UNITS

mg/L

ANALYZED

9/22/00

1.

ND

8 I I

Bromide

## NEL LABORATORIES

CLIENT:	Errol L. Montgomery & Associates, Inc.	CLIENT ID:	
PROJECT ID:	Kerr McGee	DATE SAMPLED:	
PROJECT #:	448.01	NEL SAMPLE ID:	
TEST:	Inorganic Non-Metals		
MATRIX:	Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/22/00

No.

R.L. - Reporting Limi D.F. - Dilution Factor

ND - Not Detected

N	EL LABORATORIES			
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		1
TEST: MATRIX:	Inorganic Non-Metals Aqueous		 	-

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/22/00

e-, 1

N	EL LABORATORIES		
CLIENT: \ROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/22/00

R.L. - Reporting Limi . - Dilution Factor - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

6

N	EL LABORATORIES			
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		
TEST: MATRIX:	Inorganic Non-Metals Aqueous			
			,· · · · · · · · · · · · · · · · · ·	<u></u>

PARAMETER	RESULT	<u>R. L.</u>	<u>D.F.</u>	METHOD	UNITS	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/22/00

N	EL LABORATORIES		
CLIENT: ROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		
			 ·····

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/22/00

R.L. - Reporting Limi - Dilution Factor Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory. 4

a februaria andarente

- 12992091

DUMAKANYA

N	EL LABORATORIES			
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		 
TEST: MATRIX:	Inorganic Non-Metals Aqueous			
PA Bromide	RAMETER <u>RESULT</u> <u>ND</u>		METHOD EPA 300.0	 <b>LYZED</b> 22/00

R.L Reporting Limi
D.F Dilution Factor
ND - Not Detected
This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

<u>R. L.</u>

1.

<u>D. F.</u>

5

METHOD

EPA 300.0

UNITS

mg/L

ANALYZED

9/22/00

1.000

the set and the

## NEL LABORATORIES

PARAMETER

Bromide

	- ·	

RESULT

ND

CLIENT:	Errol L. Montgomery & Associates, Inc.	CLIENT ID:	Bag 47 23 ft.	
PROJECT ID:	Kerr McGee	DATE SAMPLED:	9/17/00	
PROJECT #:	448.01	NEL SAMPLE ID:	L0009267-40	
TEST:	Inorganic Non-Metals			
MATRIX:	Aqueous			

PARAMETER	RESULT	<u>R. L.</u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	68	20.	100	EPA 300.0	mg/L	10/11/00

R.L. - Reporting Limi ) - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory. 8

And the second second

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		
TEST: MATRIX:	Inorganic Non-Metals Aqueous			

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	110	20.	100	EPA 300.0	mg/L	10/11/00

N	EL LABORATORIES			
CLIENT: PROJECT ID: PROJECT #: TEST:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01 Inorganic Non-Metals	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		
MATRIX:	Aqueous			

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	160	20.	100	EPA 300.0	mg/L	10/11/00

Ċ,

09 D X

小学校のない

of the second

R.L. - Reporting Limi D.F. - Dilution Factor

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	96	20.	100	EPA 300.0	mg/L	10/11-00

CLIENT:			
PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER Bromide	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bronnae	130	20.	100	EPA 300.0	mg/L	10/11/00

のないので

· witter

3

~

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

۰. .

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	170	20.	100	EPA 300.0	mg/L	10/11/00

 $c^{-1}$ 

INI	=L LABORATORIES		
CLIENT:	Errol L. Montgomery & Associates, Inc.	CLIENT ID:	
PROJECT ID:	Kerr McGee	DATE SAMPLED:	
PROJECT #:	448.01	NEL SAMPLE ID:	
TEST:	Inorganic Non-Metals		
MATRIX:	Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	88	4.	20	EPA 300.0	mg/L	9/25/00

1 • 1

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:				r r
TEST: MATRIX:	Inorganic Non-Metals Aqueous					
PA	RAMETER RESULT F	Ъ. L. D. F. М	ÆTHOD	UNITS	ANALYZED	

4.

20

EPA 300.0

mg/L

ANALYZED

9/25/00

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

110

Bromide

CLIENT: `ROJECT ID: ROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	130	4.	20	EPA 300.0	.mg/L	9/25/00

R.L. - Reporting Limi

This report shall not be reproduced except in full, without the written approval of the laboratory.

NUT OF BUILDING

CLIENT: PROJECT ID: PROJECT #:	EL LABORATORIES Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:				
TEST: MATRIX:	Inorganic Non-Metals Aqueous					
PA	RAMETER RESULT I	<u>R.L. D.F. N</u>	<b>ÆTHOD</b>	UNITS	ANALYZED	

20.

100

EPA 300.0

mg/L

10/11/00

120

Bromide

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		
TEST: MATRIX:	Inorganic Non-Metals Aqueous		2000/20/ 50	

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	<u>UNITS</u>	ANALYZED
Bromide	140	20.	100	EPA 300.0	mg/L	10/11/00

1.1.1

States and

~

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:				 (
TEST: MATRIX:	Inorganic Non-Metals Aqueous	·				×
PA	RAMETER RESULT	R. L. D. F.	METHOD	UNITS	ANALYZED	

EPA 300.0

mg/L

, ~-

10/11/00

20.

160

R.L. - Reporting Limi D.F. - Dilution Factor

Bromide

ND - Not Detected

<u> </u>	EL LABORATORIES		
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	120	20.	100	EPA 300.0	mg/L	10/11/00

 $\sim$ 

10-01-0

Conditional Charges

R.L. - Reporting Limi F. - Dilution Factor

- Not Detected

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:			 _/ * * *
TEST: MATRIX:	Inorganic Non-Metals Aqueous				
DA	RAMETER DESULT			- <u> </u>	

~

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	130	20.	100	EPA 300.0	mg/L	10/11/00

R.L. - Reporting Limi D.F. - Dilution Factor

ND - Not Detected

CLIENT: `ROJECT ID: .ROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u>R. L.</u>	<u>D.F.</u>	METHOD	UNITS	ANALYZED
Bromide	160	20.	100	EPA 300.0	mg/L	10/11/00

 $\hat{\mathbb{C}}$ 

States of the second

Catholic Catholic

valdarissa.

R.L. - Reporting Limi

Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

19

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:			
TEST: MATRIX:	Inorganic Non-Metals Aqueous				
PA	RAMETER RESULT I	R. L. D. F. M	ETHOD	UNITS ANALYZED	

EPA 300.0

mg/L

9/25/00

[.]4.

98

Bromide

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	 
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER Bromide	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	110	4.	20	EPA 300.0	mg/L	9/25/00

R.L. - Reporting Limi

- Dilution Factor - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory. 21

Same Same

0700 C 1440

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	<b>Bag 52 40 ft.</b> 9/17/00 L0009267-57		 (
TEST: MATRIX:	Inorganic Non-Metals Aqueous				
PA	RAMETER RESULT I	R.L. D.F. N	/ETHOD	UNITS ANALYZED	

EPA 300.0

mg/L

9/25/00

10.

130

R.L. - Reporting Limi D.F. - Dilution Factor

Bromide

ND - Not Detected

NI	EL LABORATORIES			
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		·
TEST: MATRIX:	Inorganic Non-Metals Aqueous			

į

~

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	120	20.	100	EPA 300.0	mg/L	10/11/00

CLIENT:	Errol L. Montgomery & Associates, Inc.	CLIENT ID:	Bag 53 32 ft.	
PROJECT ID:	Kerr McGee	DATE SAMPLED:	9/17/00	
PROJECT #:	448.01	NEL SAMPLE ID:	L0009267-59	
TEST:	Inorganic Non-Metals			
MATRIX:	Aqueous			

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	130	20.	100	EPA 300.0	mg/L	10/11/00

~

rrol L. Montgomery & Associates, Inc. еп McGee 48.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
n <b>organic Non-Metals</b> queous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	160	20.	100	EPA 300.0	mg/L	10/11/00

Sector Sector

Constant and

<u> </u>	EL LABORATORIES					
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:				
TEST: MATRIX:	Inorganic Non-Metals Aqueous					`
PA Bromide	RAMETER RESULT		EPA 300.0	<u>UNITS</u> mg/L	<u>ANALYZED</u> 10/11/00	

CLIENT: ROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

1000

A CONTRACTOR STATES

2011

 $\sim$ 

PARAMETER	RESULT	<u> </u>	<u>D.F.</u>	METHOD	UNITS	ANALYZED
Bromide	140	20.	100	EPA 300.0	mg/L	10/11/00

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	 Ţ.
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	160	20.	100	EPA 300.0	mg/L	10/11/00

<u> </u>	EL LABORATORIES		
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	 
TEST: MATRIX:	Inorganic Non-Metals Aqueous	·····	

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	100	4.	20	EPA 300.0	mg/L	9/25/00

Lang they would have the

Determon

an is and the state and and

R.L. - Reporting Limi D.F. - Dilution Factor

- Not Detected - Not Detected - nis report shall not be reproduced except in full, without the written approval of the laboratory. 23

CLIENT:	Email Market Andrew T			
	Errol L. Montgomery & Associates, Inc.	CLIENT ID:	Bag 55 32 ft.	
PROJECT ID:	Ken McGee	DATE SAMPLED:	9/17/00	
PROJECT #:	448.01	NEL SAMPLE ID:	L0009267-65	3
TEST:	Inorganic Non-Metals			
MATRIX:	Aqueous			

P

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	100	4.	20	EPA 300.0	mg/L	9/25/00

R.L. - Reporting Limi D.F. - Dilution Factor

ND - Not Detected

## NEL LABORATORIES CLIENT: Errol L. Montgomery & Associates, Inc. CLIENT ID: Bag 55 40 ft. PROJECT ID: Kerr McGee DATE SAMPLED: 9/17/00 448.01 PROJECT #: NEL SAMPLE ID: L0009267-66 TEST: **Inorganic Non-Metals** MATRIX: Aqueous

PARAMETER	RESULT	<u>R. L.</u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	140	4.	20	EPA 300.0	mg/L	10/23/00

R.L. - Reporting Limit F. - Dilution Factor

D - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

SAN STORES

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		2		:
TEST: MATRIX:	Inorganic Non-Metals Aqueous					
PA	RAMETER RESULT I	R. L. D. F. <u>N</u>	ETHOD	UNITS	ANALYZED	

5

EPA 300.0

mg/L

9/24/00

1.

ND

Bromide

R.L Reporting Limi	
D.F Dilution Factor	
ND - Not Detected	
This report shall not be reproduced except in	full, without the written approval of the laboratory.

N	EL LABORATORIES		
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	ND	1.	5	EPA 300.0	mg/L	9/24/00

Contraction of the second

A state of the second second second second

R.L. - Reporting Limi - Not Detected - rnis report shall not be reproduced except in full, without the written approval of the laboratory.

27

N	EL LABORATORIES					
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Kerr McGee 448.01	DAT	ENT ID: `E SAMPLEI SAMPLE II			 
TEST: MATRIX:	Inorganic Non-Metals Aqueous					
PA Bromide	RAMETER RESULT ND	<u> </u>	<u>D. F.</u> 5	METHOD EPA 300.0	UNITS mg/L	

i

÷.,

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

N	EL LABORATORIES			
CLIENT: PROJECT ID: ROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		
TEST: MATRIX:	Inorganic Non-Metals Aqueous			
PA Bromide	RAMETER <u>RESULT</u> 3000		METHOD UNITS ANALYZEI EPA 300.0 mg/L 9/30/00	<u> </u>

2 1221-10

į

0.127

R.L. - Reporting Limi D.F. - Dilution Factor

- Not Detected

<u> </u>	EL LABORATORIES		
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	3600	200.	1000	EPA 300.0	mg/L	9/30/00

 $(-\gamma)^{i}$ 

R.L. - Reporting Limi D.F. - Dilution Factor D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory. 30

## Bromide concentration in groundwater samples obtained during drift and pumpback test, well PC-99R, September 2000

· · · · · · · · · · · · · · · · · · ·	r <u> </u>	1	
			Bromide
	Clock Time	Minutes after	Concentratio
Sample No.	(HHMM)	Pumping Started	n (mg/L)
1	17:01	1	840
2	17:05	5	1000
3	17:10	10	1100
4	17:15	15	970
5	17:20	20	840
6	17:25	25	680
7	17:30	30	580
8	17:35	35	490
9	17:40	40	420
10	17:45	45	380
11	17:50	50	
12	17:55	55	
13	18:00	60	260
14	18:05	65	
15	18:10	70	
16	18:15	75	210
17	18:20	80	
18	18:25	85	1
19	18:30	90	160
20	18:35	95	1
21	18:40	100	1
22	18:45	105	130
23	18:50	110	
24	18:55	115	
25	19:00	120	100
26	19:10	130	
27	19:20	140	1
28	19:30	150	74
29	19:40	160	1
30	19:50	170	
31	20:00	180	54
32	20:10	190	
33	20:20	200	
34	20:30	210	42
35	20:40	220	†
36	20:50	230	1
37	21:00	240	33

39	8.4	truck w/ RO water
 41	4600	truck full
 42	4200	truck 1/2 full
43	4100	truck 1/4 full
 44	3700	truck empty

~

NEL LABORATORIES		
IENT: Errol L. Montgomery & Associates OJECT ID: Kerr McGee OJECT #: 448.01	Inc. CLIENT ID: Sample #44 DATE SAMPLED: 9/18/00 NEL SAMPLE ID: L0009200-44	
ST: Inorganic Non-Metals		

PARAMETER	RESULT	<b>R. L.</b>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	3700	200.	1000	EPA 300.0	mg/L	9/28/00

- -

30

「「「「「「」」という。

in consider a sur la

R.L. - Reporting Limi

r

		CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT: PROJECT ID: PROJECT #:
 			Inorganic Non-Metals Aqueous	TEST: MATRIX:
	L0009200-43	NEL SAMPLE ID:	Inorganic Non-Metals	TEST:

EPA 300.0

mg/L

9/28/00

200.

4100

R.L. - Reporting Limi D.F. - Dilution Factor

ND - Not Detected

Bromide

	EL LABORATORIES			
CLIENT:	Errol L. Montgomery & Associates, Inc.	CLIENT ID:	Sample #42	
PROJECT ID:	Ken McGee	DATE SAMPLED:	9/18/00	
PROJECT #:	448.01	NEL SAMPLE ID:		
TEST: MATRIX:	Inorganic Non-Metals Aqueous			

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	4200	200.	1000	EPA 300.0	mg/L	9/28/00

ų

10.00 ý

Sides and the

R.L. - Reporting Limi D.F. - Dilution Factor

D.r. - Diffusion Factor D - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory. 17

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	-	 
TEST: MATRIX:	Inorganic Non-Metals Aqueous			

EPA 300.0

200.

9/28/00

mg/L

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

4600

Bromide

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	R. L.	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	8.4	1.	5	EPA 300.0	mg/L	9/28/00

The Table

. **1**0001 ÷,

and show

 $\sim$ 

R.L. - Reporting Limi D.F. - Dilution Factor D - Not Detected

CLIENT:	Errol L. Montgomery & Associates, Inc.	CLIENT ID:	<b>Sample #37</b>	
PROJECT ID:	Kerr McGee	DATE SAMPLED:	9/18/00	
PROJECT #: TEST: MATRIX:	448.01 Inorganic Non-Metals Aqueous	NEL SAMPLE ID:	L0009200-37	

 $\sim$ 

PARAMETER	RESULT	R. L.	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	33	1.	5	EPA 300.0	mg/L	9/28/00

R.L. - Reporting Limi D.F. - Dilution Factor

ND - Not Detected

	EL LABORATORIES		
 CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	42 •	1.	5	EPA 300.0	mg/L	9/28/00

ģ 1.00

and the start of a

- 1010000 -

ra action as i e

Ş

~

R.L. - Reporting Limi D.F. - Dilution Factor

D.F. - Dilution Factor D - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory. 13

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:			
TEST: MATRIX:	Inorganic Non-Metals Aqueous				
PA	RAMETER RESULT	<u>R. L. D. F. N</u>	<u>IETHOD</u>	UNITS ANALYZED	

EPA 300.0

mg/L

 $\sim$ 

9/28/00

STRUE 1981

2.

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

54

Bromide

N	EL LABORATORIES			
CLIENT: PROJECT ID: ROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		
TEST: MATRIX:	Inorganic Non-Metals Aqueous			
PA Bromide	RAMETER <u>RESULT</u> 74		METHOD EPA 300.0	UNITS ANALYZED mg/L 9/28/00

~

100400-100

114622

and the states

Sector Sector

R.L. - Reporting Limi D.F. - Dilution Factor ) Not Detected

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u>R. L.</u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	100	4.	20	EPA 300.0	mg/L	9/28/00

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory. 10

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

人は時間に

1.15 BUGBU

à

and the second second second

Constant of

i de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la comp

100×11×1

 $\sim 3$ 

PARAMETER	RESULT	<u> </u>	<u>D.F.</u>	METHOD	UNITS	ANALYZED
Bromide	130	4.	20	EPA 300.0	mg/L	9/28/00

- -

R.L. - Reporting Limi F. - Dilution Factor D - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory. 9

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	DA	IENT ID: TE SAMPLED: L SAMPLE ID:	Sample #19 9/18/00 L0009200-19			 
TEST: MATRIX:	Inorganic Non-Metals Aqueous			. <u></u>			
PA Bromide	RAMETER RESULT	<u>R. L.</u>		METHOD	UNITS	ANALYZED	

EPA 300.0

mg/L

9/28/00

5.

14. A.

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

160

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:		
TEST: MATRIX:	<b>Inorganic Non-Metals</b> Aqueous		200020010	

語に語

2

A NEW MARKED

Sec. 4

æ.,

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	210	40.	200	EPA 300.0	mg/L	9/28/00

R.L. - Reporting Limi ~F. - Dilution Factor

F. - Dilution Factor ) - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory. 7

<u> </u>	EL LABORATORIES					
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:				
TEST: MATRIX:	Inorganic Non-Metals Aqueous		•			
PA Bromide	RAMETER RESULT 1		VETHOD EPA 300.0	UNITS mg/L	ANALYZED 9/28/00	

ŝ

10

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

••	CLIENT: PROJECT ID: PROJECT #:	EL LABORATORIES Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:			
	TEST: MATRIX:	Inorganic Non-Metals Aqueous				
	PA Bromide	RAMETER <u>RESULT</u> F	8. L. D. F. M	IETHOD	UNITS	ANALYZED

250

EPA 300.0

mg/L

9/28/00

380

14 Distant

2

11 0002 11

1.172

Constant of the second

our forest.

100 1000

ייביי וא*מיינה* ייקריי

R.L. - Reporting Limi D.F. - Dilution Factor

- Not Detected

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:			
TEST: MATRIX:	Inorganic Non-Metals Aqueous				
PA	RAMETER RESULT	<u>R. L. D. F. N</u>	METHOD	UNITS	ANALYZED

100

EPA 300.0

mg/L

~

10/11/00

420

R.L. - Reporting Limi D.F. - Dilution Factor

Bromide

ND - Not Detected

	N	EL LABORATORIES		
· · ·	CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
•	TEST: MATRIX:	Inorganic Non-Metals Aqueous		

Bromide	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Diomac	490	20.	100	EPA 300.0	mg/L	10/10/00

....

R.L. - Reporting Limi P.F. - Dilution Factor ) - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory. 6

いたいないと

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:			
TEST: MATRIX:	Inorganic Non-Metals Aqueous				
РА	RAMETER RESULT	R.L. D.F. 1	TETHOD	UNITS	ANALYZED

500

EPA 300.0

mg/L

9/28/00

580

R.L. - Reporting Limi D.F. - Dilution Factor

ND - Not Detected

Bromide

CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

ないなけ

in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se 5

and the second second

AND STREET STREETS STREETS

r ventrelet.

- White the second of the second states

PARAMETER	RESULT	<u> </u>	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Bromide	680	20.	100	EPA 300.0	mg/L	10/10/00

*D* - Not Detected
 *D* - Not Detected
 *This report shall not be reproduced except in full, without the written approval of the laboratory.* 5

<u> </u>	EL LABORATORIES				
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED NEL SAMPLE ID:			 . *
TEST: MATRIX:	Inorganic Non-Metals Aqueous				
PA Bromide	RAMETER RESULT		METHOD EPA 300.0	UNITS ANALYZED mg/L 10/10/00	

-

÷

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

	EL LABORATORIES		
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	<u> </u>	D. F.	METHOD	UNITS	ANALYZED
Bromide	970	100.	500	EPA 300.0	mg/L	9/28/00

-

ALC: NO MARKED

R.L. - Reporting Limi

<u> </u>	EL LABORATO	RIES						
CLIENT: PROJECT ID: PROJECT #:	Errol L. Montgome Kerr McGee 448.01	ery & Associates, Inc.	DA	IENT ID: .TE SAMPLED: L SAMPLE ID:			· · · · ·	
TEST: MATRIX:	Inorganic Non-Me Aqueous	etals						_
PA	RAMETER	RESULT	<b>R.</b> L.	<b>D.F.</b> <u>1</u>	METHOD	UNITS	ANALYZED	

200

EPA 300.0

mg/L

10/11/00

1100

Bromide

1.1

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

3

N	EL LABORATORIES				
CLIENT: ROJECT ID: ROJECT #:	Errol L. Montgomery & Associates, Inc. Kerr McGee 448.01	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:			
TEST: MATRIX:	Inorganic Non-Metals Aqueous				
PA Bromide			METHOD	UNITS	ANALYZED

200

EPA 300.0

mg/L

10/11/00

1000

R.L. - Reporting Limi

Not Detected

CLIENT: PROJECT ID: PROJECT #:	Епоl L. Montgomery & Associates, In Kerr McGee 448.01	c. CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:				ř,
TEST: MATRIX:	Inorganic Non-Metals Aqueous					
РА	RAMETER RESULT	R. LD. F	METHOD	UNITS	ANALYZED	

840

500

EPA 300.0

mg/L

e.

9/28/00

Bromide

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.