

TECHNICAL MEMORANDUM

To:	Nevada Environmental Response Trust
Cc:	Nevada Division of Environmental Protection United States Environmental Protection Agency
From:	Chris Hayes
Date:	March 8, 2022
Subject:	Unit 4 Source Area In-Situ Bioremediation Treatability Study Monthly Progress Report

At the direction of the Nevada Environmental Response Trust (NERT or Trust), Tetra Tech, Inc. (Tetra Tech) has prepared this memorandum to summarize Tetra Tech's progress during January 2022 toward successfully implementing the Unit 4 Source Area In-Situ Bioremediation (ISB) Treatability Study.

Task Progress Update: January 2022

Task M21 - Unit 4 Source Area ISB Treatability Study

- Current Status
 - Phase 2 of the Unit 4 Source Area ISB Treatability Study is ongoing. The following activities were completed as part of the design and implementation:
 - Groundwater sampling of the four newly installed Area 2 pilot wells was completed on November 16, 2021. A layout map and construction details of the Area 2 pilot wells are provided on Figure 1 and Table 1. Groundwater analytical results are provided in Table 2. As expected, Area 2 concentrations are generally lower than the Area 1 concentrations. Perchlorate concentrations ranged from 313 mg/L to 1,260 mg/L and total dissolved solids concentrations ranged from 10,800 mg/L to 22,400 mg/L in groundwater samples collected from the pilot wells.
 - Aquifer testing of the four newly installed pilot wells began in November 2021 to determine baseline hydraulic conditions. Slug tests were completed on November 20, 2021 and the data evaluation was completed in January 2022. The hydraulic conductivity observed in the intermediate zone from 83 to 98 feet below ground surface (bgs) at U4-E-06I and U4-E-10I averaged 0.6 feet/day, which is slightly lower than those observed at intermediate wells in Area 1 during Phase 1 activities (average of 1.4 feet/day). The hydraulic conductivity observed in the deep zone from 103 to 118 feet bgs at U4-E-06D and U4-E-10D averaged 0.2 feet/day, which is consistent with the previous Phase 1 results from Area 1.
 - Step-drawdown pumping tests were completed on newly installed Area 2 pilot wells (namely, U4-E-06I, U4-E-06D, U4-E-10I, and U4-E-10D) on December 4, 2021. Step-rate injection tests were completed on newly installed Area 2 pilot wells (U4-E-06I, U4-E-06D, U4-E-10I, and U4-E-10D) and select wells in Area 1 (U4-E-05I, U4-E-05D, U4-E-04I and

I

Tel 702-854-2295 tetratech.com

U4-E-04D) on December 16, 2021. Results from the pumping and injection tests are being evaluated and will be incorporated into the final injection/extraction system design.

- Drilling activities for the remaining Area 1 and Area 2 injection/extraction and monitoring wells began on January 4, 2022 and are on-going. A final layout map and construction details of all injection/extraction and monitoring wells will be provided in future monthly progress reports upon completion of the drilling effort. As of January 31, 2022, the following has been completed:
 - A geophysical survey of the Area 1 and Area 2 injection/extraction and monitoring wells was completed on January 4, 2022.
 - Concrete coring was completed at 27 injection/extraction and monitoring well locations on January 9, 2022.
 - 27 borings were cleared of subsurface utilities by advancing the boreholes to a depth of approximately 10 feet below ground surface utilizing a hydrovac unit on January 9, 2022.
 - A request for waiver for 48 new wells was approved by the Nevada Division of Water Resources on January 14, 2022.
 - Two sonic drill rigs were mobilized on January 24, 2022. One injection/extraction well was completed during January 2022. A final layout map and construction details of all injection and monitoring wells will be provided in future monthly progress reports upon completion of the drilling effort.
- A fee request letter from the Nevada Division of Water Resources for final review of the Water Appropriation Permit Application package for the Unit 4 Source Area In-Situ Bioremeidation Treatability Study was received on January 14, 2022.

• Schedule and Progress Updates

- Installation of Area 1 and Area 2 injection/extraction and monitoring wells will continue through March 2022.
- A geotechnical evaluation of the truck route from the Unit 4 building to the GWETS Process Tanks formerly used for AP-5 Pond closure is scheduled to be conducted in February 2022. The GWETS Process Tanks will be used to receive extracted groundwater (up to 4x daily) generated through operations associated with the Unit 4 Source Area ISB Treatability Study. This extracted groundwater will subsequently be processed by Envirogen Technologies, Inc, (ETI), operator of the GWETS, consistent with an agreement between ETI and the Trust.
- Well development of completed injection/extraction and monitoring wells is scheduled to begin in February 2022.
- Payment will be made to the Nevada Division of Water Resources for final review of the Water Appropriation Permit Application package for the Unit 4 Source Area In-Situ Bioremeidation Treatability Study in February 2022.

Health and Safety

There were no health and safety incidents related to Task M21 during January 2022.

CERTIFICATION

Unit 4 Source Area In-Situ Bioremediation Treatability Study Monthly Progress Report

Nevada Environmental Response Trust Site (Former Tronox LLC Site) Henderson, Nevada

Nevada Environmental Response Trust (NERT) Representative Certification

I certify that this document and all attachments submitted to the Division were prepared at the request of, or under the direction or supervision of NERT. Based on my own involvement and/or my inquiry of the person or persons who manage the systems(s) or those directly responsible for gathering the information or preparing the document, or the immediate supervisor of such person(s), the information submitted and provided herein is, to the best of my knowledge and belief, true, accurate, and complete in all material respects.

Office of the Nevada Environmental Response Trust

Le Petomane XXVII, not individually, but solely in its representative capacity as the Nevada Environmental Response Trust Trustee

Signature: Not Individually, but Solely as President of the Trustee , not individually, but solely in his representative capacity as President of the Nevada Environmental Response Trust Trustee Name: Jay A. Steinberg, not individually, but solely in his representative capacity as President of the Nevada Environmental Response Trust Trustee
T W 0.11 D 11 1 1 1 1
Title: Solely as President and not individually
Company: Le Petomane XXVII, Inc., not individually, but solely in its representative capacity as the Nevada Environmental Response Trust Trustee
3/8/21
Date:

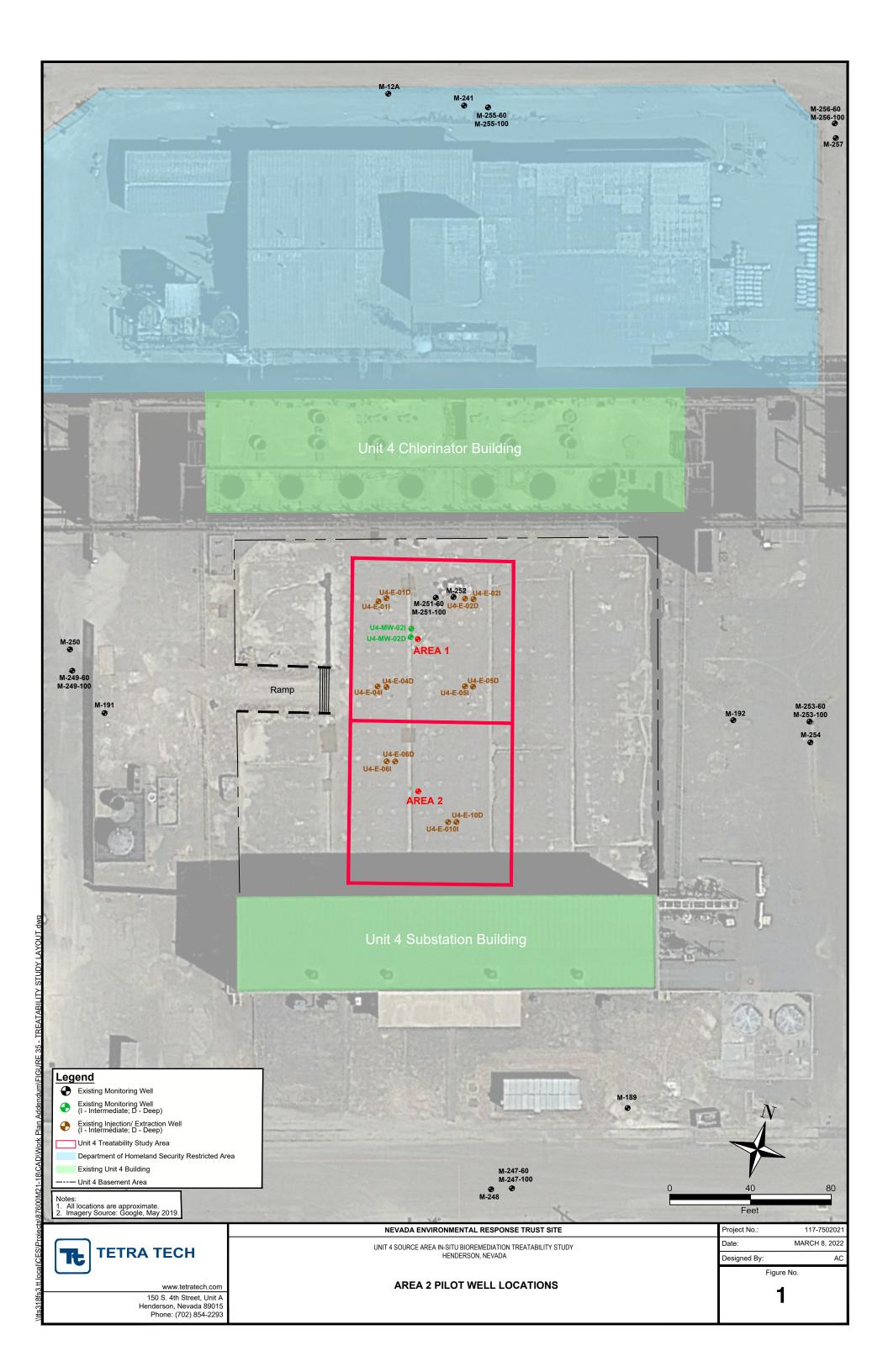
CERTIFICATION

I hereby certify that I am responsible for the services described in this document and for the preparation of this document. The services described in this document have been prepared in a manner consistent with the current standards of the profession, and to the best of my knowledge, comply with all applicable federal, state, and local statutes, regulations, and ordinances. I hereby certify that all laboratory analytical data was generated by a laboratory certified by the NDEP for each constituent and media presented herein.

Description of Services Provided: Prepared Unit 4 Source Area In-Situ Bioremediation Treatability Study Monthly Progress Report.

David S. Wilson, CEM

Principal Engineer Tetra Tech, Inc.


Nevada CEM Certificate Number: 2385

Nevada CEM Expiration Date: September 19, 2022

March 8, 2022

Date

Figures

Tables

Table 1 Well Construction Details

Unit 4 Source Area In-Situ Bioremediation Treatability Study

Well ID	Northing ¹	Easting ¹	Ground Surface Elevation	Top of Casing Elevation	Construction Type	Casing Material	Material Screen Material		Filter Pack Gradation	Borehole Diameter inches	Borehole Total Depth feet bas	Well Diameter inches	Nominal Screen Length	Well Total Depth feet bgs	Bottom of Screen feet bas	Top of Screen
			feet amsl	feet amsl			Discour O D'Is (Wells	inches		inches	reet bgs	inches	ieet	reet bys	reet bgs	feet bgs
	Phase 2 Pilot Wells															
U4-E-06I	26717252.60	828227.99	TBD	TBD	Single	Schedule 80 PVC	Stainless Steel Wire-Wrap	0.010	#2/16	8	92.5	4	15	91	90	75
U4-E-06D	26717253.22	828232.15	TBD	TBD	Single	Schedule 80 PVC	Stainless Steel Wire-Wrap	0.010	#2/16	8	112	4	15	111	110	95
U4-E-10I	2617277.51	828262.60	TBD	TBD	Single	Schedule 80 PVC	Stainless Steel Wire-Wrap	0.010	#2/16	8	92	4	15	91	90	75
U4-E-10D	26717228.09	828266.74	TBD	TBD	Single	Schedule 80 PVC	Stainless Steel Wire-Wrap	0.010	#2/16	8	110	4	15	111	110	95

Notes

amsl - above mean sea level bgs - below ground surface² bTOC - below top of casing TBD - to be determined PVC - polyvinyl chloride

--- Not Applicable

1. Locations are approximate. Pilot wells will be surveyed following completion of Phase 2 drilling and well installation activities.

2. The surface of the basement of the former Unit 4 cell building is approximately 8 feet below the surrounding ground surface. Depths indicated as feet bgs reference the surface of the basement.

Table 2

Groundwater Analytical Results
Unit 4 Source Area In-Situ Bioremediation Treatability Study

	Parameter	Well							
	Faranietei	U4-E-06D	U4-	E-06I	U4-E-10D	U4-E-10I			
Sample ID		U4-E-6D-BL01	U4-E-6I-BL01	U4-E-6I-BL01-FD		U4-E-10I-BL01			
Sample Date			11/16/2021	11/16/2021	11/16/2021	11/16/2021	11/16/2021		
QC Type			N	N	FD	N	N		
USEPA Method 314.0	Perchlorate	μg/L	943,000	313,000	307,000	924,000	1,260,000		
USEPA Method 300.1B	Chlorate	μg/L	12,700,000	5,670,000	5,270,000	7,540,000	8,480,000		
USEPA Method 300.0	Nitrate (as N)	μg/L	28,800 J-	17,200	17,200	19,900	24,400		
USEPA Method SW7199	Chromium, Hexavalent	μg/L	40,000 J-	22,500 J-	23,500 J-	21,600 J-	36,600 J-		
Method SM2540C	Total Dissolved Solids	μg/L	22,400,000	10,800,000	10,800,000	15,600,000	17,900,000		
	1,1,1,2-Tetrachloroethane	μg/L	<0.147	<0.147	<0.147	<0.147	<0.147		
	1,1,1-Trichloroethane	μg/L	<0.149	<0.149	<0.149	<0.149	<0.149		
	1,1,2,2-Tetrachloroethane	μg/L	<0.133	<0.133	<0.133	<0.133	<0.133		
	1,1,2-Trichloro-1,2,2-Trifluoroethane	μg/L	<0.180	<0.180	<0.180	<0.180	<0.180		
	1,1,2-Trichloroethane	μg/L	<0.158	<0.158	<0.158	<0.158	<0.158		
	1,1-Dichloroethane	μg/L	<0.100	<0.100	<0.100	<0.100	<0.100		
	1,1-Dichloroethene	μg/L	0.255 J	0.277 J	0.244 J	<0.188	0.238 J		
	1,1-Dichloropropene 1,2,3-Trichlorobenzene	µg/L	0.160 J <0.230	0.236 J <0.230	0.235 J <0.230	<0.142 <0.230	0.235 J <0.230		
	1,2,3-Trichloropenzene	μg/L μg/L	<0.237	<0.237	<0.237	<0.237	0.316 J		
	1,2,3-Trichloropropane	μg/L μg/L	<0.237 <0.104 UJ	<0.104	<0.237	<0.104	<0.104		
	1,2,4-Trichlorobenzene	μg/L	<0.481	<0.481	<0.481	<0.481	<0.481		
	1,2,4-Trimethylbenzene	µg/L	<0.322	<0.322	<0.322	<0.322	<0.322		
	1,2-Dibromo-3-Chloropropane	µg/L	<0.276	<0.276	<0.276	<0.276	<0.276		
	1,2-Dibromoethane	μg/L	<0.126	<0.126	<0.126	<0.126	<0.126		
	1,2-Dichlorobenzene	μg/L	<0.107	<0.107	<0.107	<0.107	<0.107		
	1,2-Dichloroethane	μg/L	<0.0819	<0.0819	<0.0819	<0.0819	0.112 J		
	1,2-Dichloropropane	μg/L	<0.149	<0.149	<0.149	<0.149	<0.149		
	1,3,5-Trimethylbenzene (Mesitylene)	μg/L	<0.104 UJ	<0.104	<0.104	<0.104	<0.104		
	1,3-Dichlorobenzene	μg/L	<0.110	<0.110	<0.110	<0.110	<0.110		
	1,3-Dichloropropane 1,4-Dichlorobenzene	μg/L μg/L	<0.110 <0.120	<0.110 <0.120	<0.110 <0.120	<0.110 <0.120	<0.110 <0.120		
	2,2-Dichloropropane	μg/L	<0.120	<0.161	<0.120	<0.120	<0.120		
	2-Butanone (MEK)	μg/L	<1.19	<1.19	<1.19	<1.19	<1.19		
	2-Chlorotoluene	µg/L	<0.106	<0.106	<0.106	<0.106	<0.106		
USEPA Method SW8260B	4-Chlorotoluene	μg/L	<0.114	<0.114	<0.114	<0.114	<0.114		
USEFA Wetilou SW6260B	4-Methyl-2-Pentanone	μg/L	<0.478	<0.478	<0.478	<0.478	<0.478		
	Acetone	μg/L	<11.3	<11.3	<11.3	<11.3	<11.3		
	Acrolein	μg/L	<2.54 R	<2.54 R	<2.54 R	<2.54 R	<2.54 R		
	Acrylonitrile	μg/L	<0.671	<0.671	<0.671	<0.671	<0.671		
	Benzene	μg/L	<0.0941 <0.118	<0.0941 <0.118	<0.0941 <0.118	<0.0941 <0.118	<0.0941 <0.118		
	Bromobenzene Bromodichloromethane	μg/L μg/L	1.31	1.49	1.57	0.648 J	1.53		
	Bromoform	μg/L	0.626 J	0.558 J	0.534 J	0.320 J	0.654 J		
	Bromomethane	μg/L	<0.605	<0.605	<0.605	<0.605	<0.605		
	Carbon Tetrachloride	µg/L	0.890 J	1.35	1.07	0.602 J	1.38		
	Chlorobenzene	μg/L	<0.116	<0.116	<0.116	<0.116	<0.116		
	Chloroethane	μg/L	<0.192	<0.192	<0.192	<0.192	<0.192		
	Chloroform	μg/L	3,400	3,080	3,120	1,340	2,530		
	Chloromethane	μg/L	<0.960	<0.960	<0.960	<0.960	<0.960		
	cis-1,2-Dichloroethene	μg/L	<0.126	<0.126	<0.126	<0.126	<0.126		
	cis-1,3-Dichloropropene	µg/L	<0.111	<0.111 UJ	<0.111 UJ	<0.111 UJ	<0.111 UJ		
	Dibromochloromethane Dibromomethane	μg/L μg/L	0.456 J <0.122	0.480 J <0.122	0.495 J <0.122	0.245 J <0.122	0.590 J <0.122		
	Dichlorodifluoromethane	μg/L μg/L	<0.122	<0.122	<0.122	<0.122	<0.122		
	Diisopropyl Ether (DIPE)	μg/L μg/L	<0.374	<0.105	<0.105	<0.105	<0.105		
	Ethylbenzene	μg/L	<0.137	<0.137	<0.137	<0.137	<0.137		
	Hexachlorobutadiene	μg/L	<0.337	<0.337	<0.337	<0.337	<0.337		
	Isopropylbenzene	µg/L	<0.105	<0.105	<0.105	<0.105	<0.105		
	Methylene Chloride	μg/L	<0.430	<0.430	<0.430	<0.430	<0.430		
	Naphthalene	μg/L	<1.00	<1.00	<1.00	<1.00	<1.00		
	n-Butylbenzene	μg/L	<0.157	<0.157	<0.157	<0.157	<0.157		

Table 2 **Groundwater Analytical Results**

Unit 4 Source Area In-Situ Bioremediation Treatability Study

	Parameter	Well							
r aranietei			U4-E-06D	U4-E	E-06I	U4-E-10D	U4-E-10I		
	n-Propylbenzene	μg/L	< 0.0993	< 0.0993	< 0.0993	<0.0993	< 0.0993		
	p-Cymene (p-Isopropyltoluene)	μg/L	<0.120	<0.120	<0.120	<0.120	<0.120		
	sec-Butylbenzene	μg/L	<0.125	<0.125	<0.125	<0.125	<0.125		
	Styrene	μg/L	<0.118 R	<0.118	<0.118	<0.118	<0.118		
	tert-Butyl Methyl Ether (MTBE)	μg/L	<0.101	<0.101	<0.101	<0.101	<0.101		
	tert-Butylbenzene	μg/L	<0.127	<0.127	<0.127	<0.127	<0.127		
USEPA Method SW8260B	Tetrachloroethene (PCE)	μg/L	<0.300	0.321 J	< 0.300	<0.300	< 0.300		
USEFA Welliou SW0200B	Toluene	μg/L	<0.278	<0.278	<0.278	<0.278	<0.278		
	trans-1,2-Dichloroethene	μg/L	<0.149	<0.149	<0.149	<0.149	<0.149		
	trans-1,3-Dichloropropene	μg/L	<0.118	<0.118	<0.118	<0.118	<0.118		
	Trichloroethene (TCE)	μg/L	0.373 J	0.491 J	0.516 J	0.217 J	0.513 J		
	Trichlorofluoromethane	μg/L	<0.160	<0.160	<0.160	<0.160	<0.160		
	Vinyl Chloride	μg/L	<0.234	<0.234	<0.234	<0.234	<0.234		
	Xylenes, Total	μg/L	<0.174	<0.174	<0.174	<0.174	<0.174		
Field Tests	Conductivity	mS/cm	20.541	11.610		11.514	16.621		
	Dissolved Oxygen	mg/L	1.78	2.84		3.44	2.05		
	Oxidation-Reduction Potential	mV	176.4	173.8		188.9	182.9		
	pH	SU	7.47	7.38		8.04	7.33		
	Temperature	С	23.7	23.2		20.5	23.6		
	Turbidity	NTU	19.2	9.0		9.8	71.2		

Notes:

not tested

micrograms per liter μg/L milligrams per liter mg/L

mS/cm milliSiemens per cmper centimeter

mV millivolts standard units SU mL/min milliliter per minute degrees Celsius С

NTU nephelometric turbidity units

J-The result is an estimated quantity, but the result may be biased low.

The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

J+ The result is an estimated quantity, but the result may be biased high.

The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit. < R

The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be

present in the sample.