

Prepared for: Nevada Environmental Response Trust Las Vegas, NV Prepared by: AECOM Camarillo, CA February 2019

Data Gap Investigation Technical Memorandum – Phase I Groundwater Quality Assessment

NERT Remedial Investigation – Downgradient Study Area Nevada Environmental Response Trust Site Henderson, Nevada

Data Gap Investigation Technical Memorandum – Phase I Groundwater Quality Assessment, Revision 0

Nevada Environmental Response Trust Remedial Investigation – Downgradient Study Area, Henderson, Nevada

Responsible Certified Environmental Manager (CEM) for this project

I hereby certify that I am responsible for the services described in this document and for the preparation of this document. The services described in this document have been provided in a manner consistent with the current standards of the profession and, to the best of my knowledge, comply with all applicable federal, state and local statutes, regulations and ordinances.

iludean

Sally W. Bilodeau, CEM Date NERT RI, Downgradient Study Area Project Manager

Certified Environmental Manager AECOM CEM Certificate Number: 1953 CEM Expiration Date: September 30, 2019

The following individuals provided input to this document:

Carmen Schnell, PG, CEM 2424 Harry Vandenberg, PE, CEM 2425 Chad Roper, PhD, CEM 2428

Contents

1.0	Introd	uction	1-1
	1.1	Rationale for Phase I Well Installation Locations	1-2
	1.2	Site Background Information	1-2
		1.2.1 Regional Geology	
		1.2.2 Local Geology	1-2
		1.2.3 Local Groundwater Hydrology	1-4
2.0	Well Ir	nstallation and Data Collection	2-1
	2.1	Pre-Field Activities	2-1
	2.2	Field Activities	2-1
		2.2.1 Well Installation and Development	2-1
		2.2.2 Soil Property Testing	2-2
		2.2.3 Groundwater Sampling	2-2
		2.2.4 Water Level Measurements	2-3
		2.2.5 Induction Logging of Bore Holes	2-3
		2.2.6 Transducer Installation	
		2.2.7 Surveying of New Groundwater Well Locations	
		2.2.8 Deviations from DGIP – Phase I Groundwater Monitoring Well Installation	
	2.3	Data Validation	2-4
3.0	Well Ir	nstallation and Groundwater Sampling Results	3-1
	3.1	Lithology	3-1
	3.2	Soil Property Testing	3-1
	3.3	Water Levels and Field Parameters	3-1
	3.4	Induction Logging	3-2
	3.5	Groundwater Sampling Results	
		3.5.1 Perchlorate	
		3.5.2 Chlorate	3-3
		3.5.3 Chloride/Bromide Ratio	3-3
		3.5.4 Chromium	3-3
		3.5.5 Total Dissolved Solids	
	3.6	Investigative Waste Disposal	
4.0	Conce	eptual Site Model	4-1
	4.1	Anthropogenic Sources of Discharge to the LVW	4-1
	4.2	Known Sources of Perchlorate	
	4.3	Perchlorate Patterns and Suspected Discharges	
5.0	Concl	usions and Recommendations	5-1
	5.1	Conclusions	5-1
	5.2	Recommendations for Phase II Data Gap Investigation	5-3

6.0	References	6-'	1

List of Appendices

- Appendix A Response to Stakeholder Comments
- Appendix B Notice of Intent and Underground Service Alert Tickets
- Appendix C Boring Logs and Well Construction Diagrams
- Appendix D Well Development Records
- Appendix E Laboratory Reports of Soil Property Testing
- Appendix F Correspondence Regarding Hexavalent Chromium Analysis
- Appendix G Groundwater Sampling Records
- Appendix H Geophysical Logging Report
- Appendix I Survey Report
- Appendix J Data Validation Summary Report
- Appendix K Analytical Laboratory Reports
- Appendix L Las Vegas Wash Bioremediation Pilot Study Work Plan

List of Tables

- Table 1 Rationale for Phase I Groundwater Monitoring Wells
- Table 2 Phase I Groundwater Monitoring Wells Installation Details
- Table 3 Summary of Grain Size Analysis
- Table 4 Summary of Moisture Content Analysis
- Table 5 Summary of Atterberg Limits Analysis
- Table 6 Transducer Installation Details
- Table 7 Summary of Depth to Bedrock
- Table 8
 Depth to Groundwater and Groundwater Elevations July 2018
- Table 9Water Quality Parameters July 2018
- Table 10 Analytical Results of Groundwater Well Sampling July 2018

List of Figures

- Figure 1 Downgradient Study Area Location Map
- Figure 2 Phase I Monitoring Wells and Groundwater and Surface Water Perchlorate Concentrations from April 2016
- Figure 3 Geology, Phase I Monitoring Wells and Perchlorate Concentrations in Groundwater April 2016
- Figure 4 Geology of the Downgradient Study Area
- Figure 5 Phase I Groundwater Monitoring Wells Sampled
- Figure 6 Groundwater Elevations Along Las Vegas Wash July 2018
- Figure 7 Schematic Cross Section A-A' of Groundwater and Surface Water Elevations Along Las Vegas Wash (July 2018)
- Figure 8 Perchlorate Concentrations in Groundwater April 2016 and July 2018
- Figure 9 Perchlorate Concentrations in Groundwater July 2018
- Figure 10 Chlorate Concentrations in Groundwater July 2018
- Figure 11 Chloride/Bromide Ratio in Groundwater July 2018
- Figure 12 Dissolved Chromium Concentrations in Groundwater July 2018
- Figure 13 Total Dissolved Solids (TDS) Concentrations in Groundwater July 2018
- Figure 14 Conceptual Site Model of Perchlorate in the Las Vegas Wash
- Figure 15 Perchlorate Concentrations in Surface Water Samples: Transect Sampling (May 2018)
- Figure 16 Perchlorate Concentrations in Surface Water Samples: Grab Sampling (May 2018)

List of Abbreviations

%	percent
BCL	Basic Comparison Level
bgs	below ground surface
cfs	cubic feet per second
CSM	Conceptual Site Model
DGI	Data Gap Investigation
DGIP	Data Gap Investigation Plan
Downgradient Study Area	NERT RI Downgradient Study Area
EA	Environmental Assessment
EPA	U.S. Environmental Protection Agency
Endeavour	Endeavour LLC
lb/day	pounds per day
LVW	Las Vegas Wash
mg/L	milligram(s) per liter
NDEP	Nevada Division of Environmental Protection
NERT	Nevada Environmental Response Trust
NERT Site	on-site portion of the NERT RI
Reclamation	U.S. Bureau of Reclamation
RI	Remedial Investigation
SNWA	Southern Nevada Water Authority
TDS	total dissolved solids
µg/L	microgram(s) per liter
USCS	Unified Soil Classification System
UMCf	Upper Muddy Creek formation
xMCf	Transitional Muddy Creek formation

1.0 Introduction

This Data Gap Investigation (DGI) Technical Memorandum describes the installation of the initial (Phase I) groundwater wells and the results of subsequent groundwater sampling along the Las Vegas Wash (LVW) in support of the Nevada Environmental Response Trust (NERT) Remedial Investigation (RI) Downgradient Study Area in Henderson, Nevada (herein referred to as the Downgradient Study Area) (**Figure 1**). This DGI was developed at the direction of the Nevada Division of Environmental Protection (NDEP) and describes the rationale, procedures and methods for the installation, development and sampling of the groundwater wells as well as the observations and results of the investigation. In general, the work was performed consistent with the *Data Gap Investigation Plan (DGIP) – Phase I Groundwater Monitoring Well Installation* as modified by the May 31, 2018 Technical Memorandum (AECOM 2017a and 2018a). Consistent with NDEP protocols, this DGI Technical Memorandum was provided to stakeholders for review; however, no stakeholder comments were received (**Appendix A**).

The overall objective of the investigation of the Downgradient Study Area is to identify subsurface pathways through which perchlorate-impacted groundwater is entering the LVW. The Phase I DGI was conducted to aid in meeting that objective. The Phase I DGIP identified 10 new wells; however, one well was not installed due to near surface bedrock which the drill rig was unable to penetrate. The DGI, therefore, consisted of the installation of nine new wells, sampling of groundwater from the nine new and 17 existing wells, and installation of transducers in the nine new wells to characterize groundwater conditions in areas where data gaps were identified.

Perchlorate concentrations in the Downgradient Study Area are generally defined but additional data are required to address specific data gaps identified based on historic data and groundwater monitoring data collected in April 2016 (AECOM 2016a), transducer data (AECOM 2018b), and LVW surface water data collected in May 2016 (AECOM 2016b), February 2017 (AECOM 2017d), and in February, March, and May 2018 (AECOM 2018c). The term perchlorate flux and perchlorate load are used to describe perchlorate inflow and transportation within LVW. Perchlorate flux into LVW is the measurement of the amount of perchlorate discharging into LVW per unit of time, for example pounds per day (lb/day). Total perchlorate load in LVW is the estimated amount of perchlorate that is carried by the surface water in LVW at a specific location, for example 29 lb/day at Lower Narrows Weir. As stated in the DGIP, the data gaps addressed in part by this Phase I DGI include:

- 1. Where are the high concentration (1,000 micrograms per liter [µg/L] or higher) perchlorate-impacted groundwater plumes along the north and south sides of the LVW?
- 2. Why are there noticeable differences in perchlorate concentrations in groundwater over relatively short distances?
- 3. Do the high-concentration perchlorate plumes follow distinct water-bearing zones within the alluvium or bedrock formations?
- 4. Along the LVW, does groundwater flow generally in the same direction as the surface water?
- 5. Where does perchlorate-impacted groundwater discharge to the LVW?
- 6. Where is the groundwater/surface water interface and how far is it from the LVW?
- 7. Is there an area of known or suspected perchlorate flux of sufficient magnitude where an interim remedial action would be appropriate?
- 8. Is perchlorate-impacted groundwater bypassing the seep well field on its eastern side in the vicinity of monitoring well COH2B1?
- 9. Do concentrations of perchlorate in groundwater fluctuate over time, seasonally, or after a rain event?

Remaining data gaps will be the focus of the more extensive Phase II investigation that will build on the Phase I results (presented in this document) and the surface water studies performed by AECOM in the winter and spring of 2018. The well installation, sampling, and analytical results of the samples collected during this investigation are summarized in this DGI Technical Memorandum. The data collected during this field effort have been used to address the data gaps and update the Conceptual Site Model (CSM), previously presented in the DGIP. As an interim deliverable, this document presents the sampling and analytical results of the samples collected per the DGIP. All data presented in this document, in addition to complimentary data from adjacent areas within Operable Unit-3 (NERT RI Study Area north of Galleria Road), will be further evaluated by NERT during the preparation of the RI Report.

1.1 Rationale for Phase I Well Installation Locations

Perchlorate concentrations obtained from the April and May 2016 groundwater and surface water analysis were used to identify key locations along the LVW where data gaps exist that could be addressed by the installation of groundwater monitoring wells completed in the shallow (0 to 90 feet below ground surface [bgs]) water-bearing zone). In addition, historical data and recommendations presented in previous data gap technical memorandums were also evaluated (Broadbent 2015 and Environ 2015). **Table 1** presents the rationale for the installation of each well. **Figure 2** shows the nine groundwater monitoring well locations in relation to the perchlorate concentrations present in April and May 2016 in groundwater, surface water and seeps. **Figure 3** shows the geology, location of the Phase I wells and the perchlorate concentrations in groundwater from April 2016.

1.2 Site Background Information

1.2.1 Regional Geology

The Site is located within the Las Vegas Valley, which occupies a topographic and structural basin trending northwest-southeast and extending approximately 55 miles from near Indian Springs on the north to Railroad Pass on the south. The valley is bounded by the Las Vegas Range, Sheep Range, and Desert Range to the north; by Frenchman and Sunrise Mountains to the east; by the McCullough Range and River Mountains to the south and southeast; and the Spring Mountains to the west. The mountain ranges bounding the east, north, and west sides of the valley consist primarily of Paleozoic and Mesozoic sedimentary rocks (limestones, sandstones, siltstones, and fanglomerates), whereas the mountains on the south and southeast consist primarily of Tertiary volcanic rocks (basalts, rhyolites, andesites, and related rocks) that overlie Precambrian metamorphic and granitic rocks (ENSR 2007).

In the Las Vegas Valley, eroded Tertiary and Quaternary sedimentary and volcanic rocks comprise the unconsolidated basin deposits, which can be up to 13,000 feet thick (ENSR 2007). The valley floor consists of fluvial, paludal (swamp), playa, and lacustrine deposits surrounded by more steeply sloping alluvial fan aprons derived from erosion of the surrounding mountains. Generally, the deposits grade finer with increasing distance from their source and with decreasing elevation. The structure within the Quaternary and Tertiary-aged basin fill is characterized by a series of generally north-south trending fault scarps.

1.2.2 Local Geology

The local geology and hydrogeology are defined by data collected from soil borings and wells that have been installed in the LVW area. The following descriptions have been updated from the CSM report (ENSR 2005). The Downgradient Study Area is composed of Quaternary alluvial deposits, the Muddy Creek formation, the Thumb formation, and the Horse Springs formation (**Figure 4**). These deposits are described in more detail below.

Alluvium. The alluvium consists of a reddish-brown heterogeneous mixture of fine- to coarse-grained angular sand and gravel with lesser amounts of silt, clay, and caliche. Boulders and cobbles are common. Due to the mode of deposition, no distinct beds or units are continuous over the LVW area. North of LVW the alluvium is primarily from the Frenchman Mountains and the clasts are generally composed of limestone, sandstone, siltstone, quartzite, with locally high concentrations of granite and gneiss (Bell and Smith 1980). South of LVW the

alluvium is derived from the River Mountains and McCullough Range. The clasts present in the alluvium and derived from these mountains are dominantly composed of dacite, with basalt, tuff, and sedimentary rocks also present. Gypsum is also present in all of the alluvial deposits (Bell and Smith 1980).

South of LVW a feature of the alluvial deposits is the stream-deposited sands and gravels that were laid down within paleochannels eroded into the surface of the Muddy Creek formation during infrequent flood runoff periods. These deposits vary in thickness and are narrow and generally linear. These are generally uniform sand and gravel deposits that exhibit higher permeability than the adjacent, well-graded deposits. Along LVW the paleochannels are less distinct and have likely been reworked as the main channel of LVW meandered and alternately cut downward and filled in with sediments through the course of seasonal storms, wastewater releases, and manmade channel alterations. The LVW has been and continues to be significantly modified through the installation and modification of erosion control features and improvements made to roads, bike paths, footpaths, and wildlife habitat within Clark County Wetlands Park.

The thickness of the alluvial deposits ranges from less than 1 foot to more than 90 feet in the Downgradient Study Area. Soil types identified in on-site soil borings include gravel, sandy gravel, silty gravel, clayey gravel, sand, silty sand, clayey sand, sandy clay, clay, sandy silt, and silt.

Transitional (or reworked) Muddy Creek formation. Where present, Transitional Muddy Creek formation (xMCf) is encountered at the base of the alluvium. The xMCf consists of reworked sediments derived from the Muddy Creek formation. The xMCf appears similar to the Muddy Creek formation, but it consists of reworked, less consolidated, and indurated sediments.

Muddy Creek formation. The Upper Muddy Creek formation (UMCf) of Pleistocene age occurs in the Las Vegas Valley as valley-fill deposits that are coarse grained near mountain fronts and become progressively finer grained toward the center of the valley. The Muddy Creek formation represents deposition in an alluvial apron environment from the Spring Mountains to the west, grading into fluvial, paludal (swamp), playa, and lacustrine environments further out into the valley center.

In Phase I borings, the contact between the Quaternary alluvium and the UMCf (fine-grained member) is typically marked by gray-green to yellow-green gypsiferous clays and silts. The Muddy Creek formation can also be yellow brown or red brown. The UMCf is up to 325 feet thick (Bell and Smith 1980).

Horse Springs formation. As described in the geotechnical investigations conducted for the weir construction, the Horse Springs formation is composed of siliceous limestone interbedded with white to yellow silts and shales (GES 2007a). By Lower Narrows Weir it consists mostly of carbonate beds and is intruded by andesite sills with low-grade metamorphic contact aureoles. An aureole is the zone of altered rock that surrounds an intrusion. It consists of interbedded limestone, dolomite, and calcareous sandstone and claystone. Colors range from buff-white to pinkish gray to red brown. It is distinguished mainly by the fissile siltstone and claystone beds, variability of color over 6 inches to several feet, and an abundance of carbonate beds.

Thumb formation. As described in the geotechnical investigations conducted for the weir construction, the Thumb formation consists of red limestone, calcareous sandstone and siltstone (GES 2007b). Some parts of this formation are well bedded. The formation also contains volcanic flows and dikes. It is characterized by three sequences:

- 1. An <u>upper sequence</u> consisting of Precambrian gneiss, schist and granite clasts strongly cemented in a silica matrix. The clasts are typically angular. It becomes weakly cemented by the Frenchman fault zone.
- A <u>middle sequence</u> consisting of thinly laminated pink to reddish yellow claystone and siltstone. This sequence is 20 to 30 feet thick, weakly cemented and friable. It contains gypsum veins and cross bedding.

3. A <u>lower sequence</u> that is composed of interbedded medium-grained sandstone, siltstone and claystone. It is predominantly red to reddish brown in color, weakly to moderately cemented and has some greenish gray units. Individual beds are 0.5 to 8 inches thick. Generally the sandstone beds are more strongly cemented than the siltstone and claystone beds. The silt and clay beds have low permeability. This unit dips at 8 to 30 degrees and the Frenchman fault deforms it.

Extrusive Igneous Rocks. North of LVW, an andesitic and basaltic sequence follows the trend of the Frenchman fault. It consists of an upper greenish black flow of porphyritic basalt that has green olivine phenocrysts in a black groundmass. Below this flow is float composed of brownish black basaltic andesite. The trend of this sequence is North 32 degrees West and it exhibits dips up to 60 degrees to the southwest (GES 2007a and GES 2007b).

1.2.3 Local Groundwater Hydrology

The local groundwater hydrology is based on data collected from existing wells that have been installed in the LVW area. The depth to groundwater within the Downgradient Study Area along LVW varies from less than 3 feet bgs to over 40 feet bgs. Generally, when a well is physically near LVW shallow depth to water is observed; conversely, when a well is far away from LVW a deeper depth to water is observed, which is mainly due to topographic elevation differences. Actual groundwater elevations increase with distance from LVW. The groundwater flow direction is generally to the east at a gradient of 0.0079 feet per feet. The shallow flow zone has been defined as groundwater from 0 to 90 feet bgs, and this zone was the focus of the Phase I investigation.

The groundwater quality along LVW was evaluated by the Southern Nevada Water Authority (SNWA)(Zhou 2012). The data was based on samples collected from wells on a monthly or quarterly basis from 2001 to 2010. The pH values in groundwater were typically between 6.5 and 7.5. Dissolved oxygen was generally less than 5 milligrams per liter (mg/L). Total dissolved solids (TDS) ranged from 1,400 to 6,800 mg/L and groundwater exhibiting TDS concentrations lower than 3,000 mg/L were suspected of being mixed with surface water from LVW (Zhou 2012).

2.0 Well Installation and Data Collection

Well installation and sampling for this DGI were conducted consistent with the DGIP – Phase I Groundwater Monitoring Well Installation. Nine groundwater monitoring wells were installed, developed, and sampled as part of this DGI. The wells are located within the Downgradient Study Area along the north and south banks of the LVW. The nine new wells and 17 existing wells were sampled. These well locations are shown on **Figure 5**.

2.1 Pre-Field Activities

Work was conducted under the site-specific Health and Safety Plan (AECOM 2017b) and Quality Assurance Project Plan (AECOM 2017c) was developed for the Downgradient Study Area and the planned field work. The existing NERT RI Quality Assurance Project Plan was adapted to include the proposed Downgradient Study Area investigations, specifically including the changes applied to the proposed well installations described below in Section 2.2.8.

Access to U.S. Bureau of Reclamation (Reclamation) and Clark County properties to install the new groundwater wells was obtained by NDEP and NERT, respectively. An Environmental Assessment (EA) was prepared for wells located on Reclamation land. Wells located on Clark County were assessed at the same level as the well locations on Reclamation property and were included in the EA. Reclamation issued a Right-of-Use Entry Permit (Contract No. 16-07-30-L0850E) for the NDEP Downgradient Study Area activities, including this Phase I DGI. Per the EA requirements, an Archaeological Inadvertent Discovery Plan was prepared and approved by Reclamation. In addition, on-site biological monitors were approved by Reclamation before being assigned to the field work. Clark County issued a Revocable Permit for Occupancy on May 15, 2018, authoring access to their property.

NERT, in conjunction with the drilling subcontractor, obtained the standard well drilling approvals from the Nevada Division of Water Resources. Notification was made to Nevada's Underground Service Alert to have utilities in the vicinity of the proposed wells located and marked. A utility geophysical clearance survey was conducted at each boring location. Notice of Intent and Underground Service Alert tickets are provided in **Appendix B**.

2.2 Field Activities

To maintain consistency in the methods applied in the field for this assessment, field activities adhered to the procedures described in relevant Field Guidance Documents in the Field Sampling Plan for the NERT RI/Feasibility Study (ENVIRON 2014). Groundwater sampling was conducted using low-flow sampling methods.

2.2.1 Well Installation and Development

Well installation activities were conducted June 13 through June 28, 2018. Soil borings were advanced using the rotary sonic drilling method. Equipment that came in contact with impacted soil or water was decontaminated prior to drilling and decontaminated between boreholes. Each well borehole was drilled to depths up to 90 feet bgs, until the UMCf or bedrock such as the Horse Spring formation or the Thumb formation was encountered, or until refusal was encountered, whichever came first (**Table 2**). The lithology at each soil boring was logged by the field geologist using the Unified Soil Classification System (USCS). Soil boring logs are provided in **Appendix C**.

The new groundwater monitoring wells were identified as NERT (owner) followed by the approximate river mile to the nearest hundredth of a mile, followed by the N or S for the north or south side of the LVW, followed by 1,2,3, etc. for the number of wells within that hundredth of a river mile. For example the westernmost Phase I monitoring well was identified as NERT5.91S1.

The total depth of each boring was determined in the field based on if and where the UMCf or other bedrock such as the Horse Spring or Thumb formation was encountered. The boreholes were 8 inches in diameter. Well completion depths were between 40.4 and 55.4 feet bgs, with the exception of one well (NERT3.80S1) that was completed at 20 feet bgs (**Table 2**).

Each borehole was backfilled to the desired total depth of the well by pouring in bentonite chips. Wells were constructed of 4-inch diameter schedule 40 PVC with a screened interval of 10 feet. The well depth and screened interval were selected to match the surrounding wells and to intercept the same flow zone of interest. Monterey #3 sand was used as the filter pack and extended at least 2 feet above the well screen. The screen slot size was 0.020 inches. A minimum 2-foot hydrated bentonite seal was placed above the filter pack and the annular space was backfilled with bentonite chips to the surface. Well completions were flush mounted traffic-rated well boxes with a vault and lockable well cap. Soil boring logs and well construction diagrams are provided in **Appendix C**.

Well development activities were conducted July 9 through July 17, 2018, exceeding the minimum required 72hours waiting period after well completion. The wells were developed by bailing and surging to remove fine particles that may have gotten into the well or filter pack. Well development continued until the water was clear and field parameters stabilized. Stabilization of field parameters was over three readings as follows: $pH \pm 0.1$, temperature ± 1 degree Celsius, and within ± 10 percent (%) for specific conductivity, dissolved oxygen, oxygen reduction potential and turbidity. Well development records are provided in **Appendix D**.

2.2.2 Soil Property Testing

Soil property samples were collected from the nine boring locations during the drilling activities. One soil sample was collected from the unsaturated zone and up to five samples were collected from the saturated zone. The samples locations were selected by the field geologist and the task lead based on field observations. In general, samples were collected where a lithologic change was observed. The soil property testing included:

- grain-size distribution (ASTM-D422),
- moisture content (ASTM-D2216),
- Atterberg limits (ASTM D4318), and
- USCS description (ASTM-D2487).

Samples were shipped under chain-of-custody protocols to PTS Laboratories in Santa Fe Springs, California. Results of the soil property testing are provided on **Tables 3 through 5** and laboratory reports are provided in **Appendix E**.

2.2.3 Groundwater Sampling

Groundwater sampling activities were conducted July 9 through July 17, 2018. Groundwater sampling was conducted using the low-flow method (in which low volumes of water were purged with little or no drawdown) while allowing water quality field parameters to stabilize as specified in the field guidance document, if achievable between three successive measurements. If field parameters did not stabilize by the time six volumes had been purged, then final water quality parameters were recorded and a sample of groundwater was collected. The pump intake was positioned at the approximate midpoint of the well screen.

A water quality meter (equipped with a flow-through cell) was used during purging to track water quality field parameters and assess when stabilization of parameters had occurred. Samplers conducted in-field measurements for depth to water, pH, electrical conductivity, dissolved oxygen, oxidation-reduction potential, turbidity and temperature of groundwater samples. Stabilization of field parameters was determined over three readings as follows: pH \pm 0.1, Temperature \pm 1 degree Celsius, Specific Conductivity, Dissolved Oxygen, Oxygen, Oxygen Reduction Potential and Turbidity within \pm 10 %. A water quality meter, calibrated as recommended by the manufacturer, was used to measure these parameters.

The identification system for the groundwater samples consisted of the well ID followed by the sample date in YYYYMMDD format. For example, a groundwater sample collected from monitoring well NERT5.91S1 on June 28, 2018, was identified as NERT5.91S1-20180628.

Groundwater samples from the new wells were analyzed for the following constituents:

- Perchlorate (U.S. Environmental Protection Agency [EPA] Method 314.0);
- Chlorate (EPA Method 300.1);
- Chromium, Dissolved (EPA Method 200.8 [ICP-MS]);
- Chloride (EPA Method 300.0);
- Bromide (EPA Method 300.0); and
- TDS (Method SM 2540C).

Groundwater samples obtained from the nine new wells for analyses of total dissolved chromium (i.e., combined trivalent and hexavalent chromium) and hexavalent chromium were filtered in the field using a 0.45-micron filter. Groundwater samples designated only for hexavalent chromium analysis were to be analyzed within 24 hours of sample collection or the sample would be preserved by pH adjustment upon arrival at the laboratory (i.e., within 24 hours after sample collection) to allow for a longer holding time. Due to an equipment malfunction at the laboratory, these samples were not analyzed within the holding time; therefore, hexavalent chromium data is not available for the new wells. Correspondence regarding hexavalent chromium testing with the laboratory and NDEP is included in **Appendix F**. The Phase I wells will be analyzed for hexavalent chromium in the Phase II investigation.

To obtain a more complete picture of the perchlorate and chlorate concentrations in groundwater along the LVW, 17 existing wells were sampled simultaneously with the nine new wells. The 26 wells sampled are shown on **Figure 5**. The existing wells were only analyzed for perchlorate and chlorate. Groundwater sampling records are presented in **Appendix G**.

2.2.4 Water Level Measurements

During well installation activities and the groundwater sampling event, groundwater monitoring wells were sounded for depth to water. An electronic sounder, accurate to the nearest \pm 0.01 feet, was used to measure depth to water in each well. The electronic sounder was lowered down the casing to the top of the water column, and the graduated markings on the probe wire or tape were used to measure the depth to water from the surveyed point on the rim of the well casing or to the ground surface prior to the installation of the well casing.

2.2.5 Induction Logging of Bore Holes

Induction logging was conducted July 19 and 20, 2018, at each of the nine new wells. Formation conductivity and natural gamma data were collected using a Robertson Geologging, Ltd. dual induction probe. These data were acquired from the 4-inch PVC casing used for construction of the new wells. Details of the induction logging procedures are provided in the NERT Remedial Investigation Borehole Geophysics (GEOVision 2018) report in **Appendix H**.

2.2.6 Transducer Installation

After Ramboll completed nuclear magnetic resonance logging and AECOM sampled the wells, AECOM installed transducers in each well. The transducers were set to automatically record groundwater level data every 15 minutes (96 times per day). Prior to the installation of each transducer and following installation of the transducer, a manual groundwater level measurement was collected using a water-level sounder. Static groundwater level

readings were measured and recorded to the nearest 0.01 foot from the surveyed reference mark on the top north edge of the inner well casing.

The installation of each dedicated transducer typically consisted of placing the transducer at approximately 20 feet below the top of the water table and securing the transducer with a cable within the well head. As shown on **Table 6**, some wells have less than 20 feet of water column so for these wells the transducer was placed approximately 2 feet above the bottom of the well. Data from these transducers will be downloaded on a bimonthly (every two months) basis starting November 2018 concurrently with existing transducers in the Downgradient Study Area (AECOM 2018b). Automated readings from the transducers will need to be corrected for barometric pressure fluctuations. Barometric data is available from the barometer in well WMW4.9S.

2.2.7 Surveying of New Groundwater Well Locations

New groundwater well locations and elevations (ground surface and top of casing) were surveyed by a licensed land surveyor. Locations were referenced to the State Plane Coordinate System and elevations were referenced to the North American Datum 83 Nevada East Zone (2701) with vertical datum based on NAVD 88 referenced to the City of Henderson Benchmark network. The survey report is presented in **Appendix I**.

2.2.8 Deviations from DGIP – Phase I Groundwater Monitoring Well Installation

The procedures for well installation and sampling were detailed in the DGIP – Phase I Groundwater Monitoring Well Installation. Modifications to the investigation plan were developed based on discussions with Ramboll regarding the procedures used for the installation of other monitoring wells in the NERT RI. These modifications were presented in a technical memorandum, dated May 31, 2018 (AECOM 2018a). These modifications were made, in part, so drilling procedures would be consistent with the other RI well installations, and included:

- Drilling 8-inch diameter boreholes instead of 12-inch diameter boreholes;
- Removing seven to ten borehole volumes of water during development if the well has sufficient recharge to provide that volume of water over a 4-hour period instead of developing the well until the water was clear and field parameters had stabilized. Development was stipulated to not exceed 4 hours in both the original work plan and the May 31, 2018, technical memorandum modification.
- Backfilling of the borehole to the desired well depth by pouring bentonite chips into the well bore instead
 of using a tremmie pipe to place bentonite slurry.
- Increasing the total depth of each borehole to 90 feet bgs instead of 70 feet bgs.
- Relocating three wells (NERT5.91S1, NERT5.11S1, and NERT3.80S1) due to field conditions, including
 avoidance of biologically sensitive resources and restoration areas, and to prevent the blocking of a
 public bike path.

In addition to the modification to the initial investigation plan, the following deviations occurred due to field conditions and laboratory issues.

- One well (NERT3.65S1) was not installed due to refusal in the conglomerate unit of the Thumb formation at 3 feet bgs.
- The borings for four wells (NERT4.93S1, NERT4.51S1, NERT4.38N1, and NERT3.80S1) were not drilled to a total depth of 90 feet due to refusal at shallower depths.
- Hexavalent chromium results were not obtained because the samples could not be analyzed within the holding time due to a malfunction of laboratory equipment (Appendix F).

2.3 Data Validation

Data validation was conducted to assess the validity and usability of laboratory analytical data from the July 2018 Groundwater Sampling conducted in the Downgradient Study Area. Data generated from sampling activities were validated to Stage 2A per the Data Validation Guidance issued by NDEP on July 13, 2018 (NDEP 2018). With the exception of hexavalent chromium, all samples were analyzed as requested and all holding times were met. Due to matrix interference, the results for perchlorate for four samples were qualified as estimated ("J+"). In addition, due to low-level blank contamination, the results for chromium for three samples were qualified as estimated ("J+"). No other data were qualified. Based upon the Stage 2A data validation all other results are considered valid and usable for all purposes.

Overall, the data as qualified are useable for meeting Project objectives. All results are considered to be valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for analysis, for the Project is 100 %. Additionally, because all samples in each data set were collected and analyzed under similar prescribed conditions, the data are considered to be comparable. Details of the data validation are presented in the Data Validation Summary Report in **Appendix J**.

3.0 Well Installation and Groundwater Sampling Results

3.1 Lithology

Sediments encountered in the boreholes drilled along the LVW include interbedded layers of poorly graded gravel, sandy gravel, poorly graded sand, gravelly sand, gravelly silty sand, silty sand, clayey sand, sandy silt, silt, sandy clay, and clay. These sediments were encountered at thicknesses of 22.5 feet to 90 feet and are typical of the fluvial depositional environment encountered in the Downgradient Study Area near the LVW.

Alluvium varied from unconsolidated to very well-cemented. Within the alluvium, discontinuous beds of gravel, sand, silt and clay were observed. Caliche was encountered in several boreholes.

Bedrock formations were encountered in six of the boreholes between 22.5 feet and 75 feet bgs (NERT3.80S1, NERT4.21N1, NERT4.38N1, NERT5.11S1, NERT5.49S1, and NERT5.91S1). North of the LVW between Lower Narrows Weir and Homestead Weir, the Thumb formation was encountered in two boreholes (NERT4.38N1 and NERT4.21N1) at 57.5 and 56 feet bgs, respectively. In the eastern-most borehole (NERT3.80S1) located south of the LVW, both the UMCf and the Thumb formation were observed at depths of 22.5 feet and 30 feet bgs, respectively. In the Phase I borings, the Thumb formation is dark gray to dark reddish brown, densely cemented silt. A summary of depth to bedrock is provided in **Table 7**.

The top of the UMCf was encountered in the three western-most boreholes south of the LVW at 50 to 66 feet bgs. In the Phase I boreholes, the contact between the Quaternary alluvium and the UMCf is typically marked by graygreen to yellow-green gypsiferous clays and silts. These boreholes (NERT5.91S1, NERT5.49S1, and NERT5.11S1) are located in the central portion of the Downgradient Study Area, between Pabco Road Weir and Bostick Weir.

Eastward, three boreholes (NERT4.93S1, NERT4.71S1, and NERT4.51S1) south of the LVW between Bostick Weir and Lower Narrows Weir did not encounter bedrock formations. Two of these boreholes (NERT4.93S1 and NERT4.51S1) hit refusal at depths of 65 feet and 57.5 feet bgs (within the alluvium) and one (NERT4.71S1) was drilled to its target depth of 90 feet bgs.

3.2 Soil Property Testing

Soil property testing was conducted on 43 samples (**Tables 3 through 5**). Testing included grain size distribution, moisture content, Atterberg limits, and USCS description. The USCS description from these analyses is shown on the boring logs at the depth that the sample was obtained. Moisture content ranged from 3.3 to 75.3 percent of dry weight. In general, the grain size distribution and USCS description exhibited a smaller overall grain size than the field observations. This is not uncommon in sandy, gravelly, alluvial settings where samples collected for soil property testing are from a discrete layer within the alluvial sediments which may not be representative of the deposit being described. Typically, the larger gravel clasts are not included in the sample bag, thus biasing the analysis toward finer grained classification. In addition the USCS description from the lab is based on the material that is smaller than the 40 screen sieve. In general, the Atterberg limits exhibited higher plasticity that the field observations. Field testing for plasticity of fine grained fraction is difficult when fine sand is present as it is in most of the samples.

3.3 Water Levels and Field Parameters

Groundwater was encountered between 2.89 and 43.31 feet bgs (**Table 8**). Groundwater elevations ranged from approximately 1,440 to 1,530 feet above mean sea level (**Table 8**). In general, groundwater elevations were highest at the western side of the Downgradient Study Area and lowest in the east side (**Figure 6**). In addition, when a well is physically near LVW shallow depth to water is observed; conversely, when a well is far away from

LVW a deeper depth to water is observed, which is mainly due to topographic elevation differences. Actual groundwater elevations increase with distance from LVW. The July 2018 groundwater elevations are shown in cross section with the weirs' profiles and surface water elevations on **Figure 7**.

Water quality field parameters were collected when each well was sampled. Field measurements for pH, electrical conductivity, dissolved oxygen, oxidation-reduction potential, turbidity and temperature were obtained and evaluated for stability (**Table 9**).

3.4 Induction Logging

Induction logging was performed on the nine Phase I wells. Data from borings demonstrated similar patterns. The upper 10 to 35 feet exhibited low conductivity which corresponds to gravelly sand to silty sand observed during drilling activities. Elevated conductivity corresponding to finer-grained silts and sands, as well as the groundwater table, were detected below the coarser-grained shallower sediments. Silty sands and sandy silts were detected between 5 feet and 35 feet bgs in three borings (NERT4.71S1, NERT4.51S1, and NERT4.38N1). These borings are located between Calico Ridge Weir and Lower Narrows Weir.

A comparison of the two coil spacings (long and short) showed that, overall, differences within each soil boring were fairly small suggesting lateral homogeneity in sediment conductivity. The natural gamma results correlate weakly with the sediment type and grain size noted by the soil boring logs. Since the induction logging was conducted after the wells were completed, the logs did not record data down to the UMCf or other bedrock formations.

The results of the NMR logging performed by Ramboll provided useful information regarding water content and potential mobility of the water. The resulting data were used to estimate hydraulic conductivity.

3.5 Groundwater Sampling Results

Groundwater samples were collected from 26 wells, nine new Phase I wells and 17 existing wells that were previously sampled in April 2016 (AECOM 2016a). Phase I wells were sampled for the six constituents listed in Section 2.2.3. The 17 existing wells were only sampled for perchlorate and chlorate. Analytical laboratory results are provided in **Appendix K**. Of interest and relevance to the groundwater quality assessment is the initiation of the LVW Bioremediation Pilot Study. The work plan for this study is included in **Appendix L**. The LVW Bioremediation Pilot Study includes the installation of injection and monitoring wells along two transects: Transect 1A is east and south of the seep well field and Transect 1B is south of LVW in the vicinity of Bostic Weir and Calico Ridge Weir (**Appendix L**). Injection of carbon donors was started in January 2018.

3.5.1 Perchlorate

Concentrations of perchlorate detected in the new Phase I wells ranged from 5.1 to 6,000 µg/L, and in the 17 existing wells from 3.9 J to 3,900 µg/L (**Table 10**). **Figure 8** presents the April 2016 and July 2018 concentrations of perchlorate in wells. **Figure 9** presents the July 2018 perchlorate concentrations and perchlorate contours. Perchlorate concentrations in groundwater exceeded the Nevada Interim Action Screening Level of 18 µg/L in 23 of the 26 wells sampled in July 2018 (**Table 10**). Concentrations are highest between Historic Lateral Weir Expansion and Lower Narrows Weir, with the highest concentrations detected in the new Phase I wells. Downgradient of the Lower Narrows Weir, concentrations decrease.

Between Pabco Road Weir and Historic Lateral Weir Expansion, two wells (WMW5.7N and NERT5.49S1), showed significantly lower concentrations (3.9 J and 5.1 μ g/L) than other wells in the general vicinity. Lower concentrations (680 and 930 μ g/L) were also detected in two wells (WMW4.9N and WMW4.9S) between Bostick and Calico Ridge Weirs. Additionally, significantly lower concentrations (4.3 J and 48 μ g/L) than surrounding wells were detected in two wells (MW-20 and MW-25) located on the northern boundary of the Henderson Landfill site.

A comparison of concentrations of the existing wells between April 2016 and August 2018 showed that concentrations were lower in 11 wells and higher in six wells in 2018. In general, concentrations in 2018 remained relatively stable to those reported in 2016, with the exception of four locations. Groundwater from well WMW4.9S1showed a significantly higher concentration in 2018 exhibiting a 71% increase, from the 2016 concentration. Caution should be used when making comparisons with well WMW4.9S1 since it is downgradient of the LVW Bioremediation Pilot Study Transect 1B and perchlorate concentrations are likely affected. Groundwater from three wells,COH2B1, MW-02, and MW-20, had concentrations that were lower in 2018 exhibiting 70% to 89% decreases from the 2016 concentrations.

3.5.2 Chlorate

Concentrations of chlorate detected in the new Phase I wells ranged from 300 to 25,000 μ g/L, and in the 17 existing wells from 13 J to 14,000 μ g/L (**Figure 10** and **Table 10**). Chlorate concentrations in groundwater equaled or exceeded the BCL of 1,000 μ g/L in 18 of the 26 wells sampled in July 2018 (**Table 10**)(NDEP 2017). Chlorate concentrations show the same distribution of concentrations as perchlorate concentrations, with a generally increasing trend between Historical Lateral Weir and Lower Narrows Weir (5,900 to 25,000 μ g/L). The highest concentrations were detected in the new Phase I wells. Concentrations decrease downgradient of the Lower Narrows Weir.

Between Pabco Road Weir and Historic Lateral Weir Expansion, four wells (COH2B1, NERT5.91S1, WMW5.58S and NERT5.49S1) showed significantly lower concentrations (13J to 8,900 µg/L) than other upgradient wells. Lower concentrations (13 J and 2,700 µg/L) were also detected in two wells (WMW4.9N and WMW4.9S) between Bostick and Calico Ridge Weirs. Additionally, significantly lower concentrations (78 J and 57 µg/L) were detected in two wells (MW-20 and MW-25) located on the northern boundary of the Henderson Landfill site.

A comparison of concentrations of the existing wells between April 2016 and August 2018 showed that concentrations were lower in six wells and higher in 10 wells in 2018. In about half of the wells, concentrations in 2018 remained relatively stable to those reported in 2016. At seven wells concentrations were significantly different. Four wells (WMW5.5S, MW-3, WMW4.9S, and LNDMW2) showed significantly higher concentrations of 1.3 to 4.7 times in 2018 than those reported in 2016. At two of the locations (COH2B1 and AA-30), concentrations were lower by 1.5 to 8.9 times in 2018 than those reported in 2016 (**Figure 10**).

The 2018 data shows a general correlation between perchlorate and chlorate concentrations. High chlorate concentrations were typically detected in wells with high perchlorate concentrations, and vice versa, low chlorate concentrations were detected in wells with low perchlorate concentrations (**Table 10**).

3.5.3 Chloride/Bromide Ratio

Chloride concentrations in the new Phase I wells ranged from 250 to 910 mg/L (Figure 11 and Table 10). Chloride concentrations in groundwater exceeded the BCL of 250 mg/L in all 9 of the wells sampled in July 2018 (Table 10)(NDEP 2017). Bromide concentrations in the new Phase I wells were non-detect with the exception of one sample with a detection of 0.27 J. None of the bromide concentrations exceeded the BCL of 11.3 mg/L (Table 10)(NDEP 2017). The chloride/bromide ratios ranged from >0.52 to >926. The highest chloride/bromide ratio was at >926 at NERT5.49S1 located west of Historical Lateral Expansion. Ratios decrease significantly to the west and east from NERT5.49S1. The lowest ratio was >166 at NERT4.71S1 located just west of Calico Ridge Weir.

3.5.4 Chromium

Dissolved chromium concentrations in the new Phase I wells ranged from 1.3 J to 26 μ g/L (**Figure 12 and Table 10**). None of the dissolved chromium concentrations exceeded the maximum contaminant level for drinking water of 100 μ g/L (**Table 10**). Concentrations are highest between Historic Lateral Weir Expansion and Lower Narrows Weir. The highest concentration of dissolved chromium was detected at 26 μ g/L in NERT4.71S1 located south of the LVW just west of Calico Ridge Weir. Chromium concentrations decrease to the west and east from

NERT4.71S1. The lowest concentrations were detected on the west and east end of the Downgradient Study Area.

3.5.5 Total Dissolved Solids

TDS concentrations in the new Phase I wells ranged from 1,400 to 5,200 mg/L (Figure 13 and Table 10). There is not a BCL established for TDS. The TDS concentrations exceeded the secondary maximum contaminant level for drinking water of 500 mg/L in all nine wells tested. Concentrations are highest between Historic Lateral Weir Expansion and Homestead Weir. The highest concentration of TDS was detected at 5,200 mg/L in NERT4.71S1 located south of the LVW just west of Calico Ridge Weir. Concentrations decrease to the west and east from NERT4.71S1. The lowest concentration was detected in at 1,400 mg/L at NERT5.49S1 located west of Historic Lateral Weir Lateral Weir Expansion.

3.6 Investigative Waste Disposal

Soil and rock waste was transported to a secure staging area on the NERT site. NERT managed the waste profiling and disposal of the waste along with other investigative-derived waste generated for the RI investigation. The liquid investigative-derived waste was placed into polyethylene tanks and transported to the groundwater extraction and treatment system at the NERT Site. The liquid waste was discharged into the GW-11 pond, which receives groundwater pumped from extraction wells. The liquid waste was treated and discharged through the on-site treatment systems. The remaining investigative-derived waste was double-bagged in plastic trash bags and was disposed as municipal trash.

4.0 Conceptual Site Model

A CSM of the LVW and potential inputs of perchlorate was developed for the DGIP – Phase I Groundwater Monitoring Well Installation (AECOM 2017a). This section updates the CSM based on the surface water and groundwater data collected in 2017 and 2018. A diagram of the updated CSM is provided in **Figure 14**. That figure depicts estimated perchlorate load (in lb/day) along the LVW from surface water sampling data collected during April and May of 2018. During that sampling event, construction of the Sunrise Mountain Weir and the Historic Lateral Weir Expansion was ongoing. A large volume of groundwater was being pumped from those construction areas to a temporary treatment facility where perchlorate was removed prior to discharge back to the LVW upstream of the Pabco Road Weir. As a result of that dewatering and treatment program, perchlorate concentrations in the LVW were lower than would otherwise be expected, particularly within the reach between Upper Narrows and Calico Ridge Weirs.

4.1 Anthropogenic Sources of Discharge to the LVW

Discharges from the four major wastewater treatment plants in the valley represent the vast majority of flow in the LVW (Clark County Water Reclamation District, City of Las Vegas Water Pollution and Control Facility, City of Henderson Water Reclamation Facilities, and City of North Las Vegas Water Reclamation Facility). Outfalls from groundwater treatment plants (NERT, American Pacific Corporation /Endeavour LLC [Endeavour], and TIMET) join the channel conveying treated wastewater from the City of Henderson, entering LVW above Pabco Road Weir (**Figure 14**). The remaining flow in the LVW comes from Duck Creek and the C-1 Channel, as well as non-point sources including urban and stormwater runoff and shallow groundwater discharge. Comparison of surface water and groundwater discharge (AECOM 2018b). Other parts of LVW are below the groundwater, which cause infiltration (loss) of the surface water. This condition is dynamic and changes depending on a wide variety of variables including, but not limited to, increases in flow rates from the wastewater treatment plants due to increased land development, diurnal fluctuations in wastewater flows, and seasonal fluctuations of the groundwater table.

The treatment plants contribute a relatively steady daily supply of water to the LVW throughout the year. The outfalls discharge continuously but at a predictably cyclic rate. That cycling causes a diurnal flow pattern similar to a tidal pattern, with daily high and daily low flows. Unless disrupted by rain storm events, daily high flows are on the order of 100 % higher than the daily low. However, the constant daily discharge represents the vast majority of flow in LVW, and the natural, seasonal variability in streamflow has largely been eliminated. On average, streamflow tends to be somewhat higher from October through March (290 to 340 cubic feet per second [cfs]) and lower from April through September (260 to 310 cfs) (USGS 2017).

Along with the general increase in flow in LVW through the years, there has also been an increase in the magnitude of stormwater runoff draining into the LVW. Fifty years ago, the annual peak flow at Pabco Road was on the order of 300 cfs (median value of 280 cfs from 1957 to 1967), or similar to the current average annual flow (298 cfs). More recently, annual peak flows are on the order of 4,500 cfs (median value of 4,350 cfs from 2005 to 2015) (USGS 2017).

In an effort to protect the channel from the erosive forces of higher flows, a series of erosion control structures (weirs) have been constructed to slow the water velocities in the LVW. Where erosional forces have been allowed to run their course, the stream channel within the Downgradient Study Area is generally 40 feet or less in width. Near some of the weirs, the width increases to 300 feet or more.

The channel materials consist of loose, unconsolidated sediments that have been shifted and sorted by the energy of the flowing water. Most of the underlying material is alluvium that consists of both fine-grained materials

(silts and clays) and courser materials (sands and gravels). As the water carries those deposits downstream, sand and gravel are deposited in areas with higher velocity, providing a more solid streambed. Where streamflow slows down in natural pools and behind some of the weir structures, silts and clays are deposited, creating a soft bottom. The Horse Springs formation is present in the southern streambank east of Calico Ridge Weir, and the Thumb formation is present on the northern and southern streambanks between the Lower Narrows and Three Kids Weirs.

4.2 Known Sources of Perchlorate

The former Kerr McGee/Tronox site (NERT On-Site Study Area) (**Figure 1**) has been the location of industrial operations since 1942 when it was developed by the U.S. government as a magnesium plant to support World War II operations. Following the war, this area continued to be used for industrial activities, including production of perchlorate, boron, and manganese compounds. Former industrial and waste management activities conducted at the NERT On-Site Study Area, as well as those conducted at adjacent properties, resulted in contamination of environmental media, including soil, groundwater, and surface water. The Endeavour site has also released perchlorate to groundwater and operates a treatment system to the west of the NERT site. Data indicate that between 16 to 19 lb/day perchlorate enter the Athens Drainage Channel downgradient of the Endeavour plume (Endeavour 2018).

Since 1979, the NERT On-Site Study Area has been the subject of numerous investigations and removal actions. Soil removal actions were conducted in 2010 and 2011 from the NERT On-Site Study Area to minimize potential health risks from impacted soil. Additional soil removal was performed in 2013 when the eastern end of the Beta Ditch was excavated. The soil removal activities and post-removal conditions are described in detail in the Revised Interim Soil Removal Action Completion Report (ENVIRON 2012). On-site and off-site groundwater removal actions include the installation of the groundwater extraction and treatment system, designed to capture and treat perchlorate and hexavalent chromium in shallow groundwater.

In Spring 1999, SNWA hydrologists discovered a seep ("the original seep") discharging to the LVW at approximately 400 gallons per minute. Perchlorate concentrations in the seep exceeded 100,000 µg/L in 1999. The results of the seep samples indicated that a significant mass flux of perchlorate was entering the LVW. Kerr McGee subsequently implemented a capture system (consisting of a dam and sump structure) at the seep in November 1999 to reduce the migration of perchlorate to the LVW (ENSR 2005). The operation of the Seep Capture System and Seep Well Field has contained and treated a substantial mass of perchlorate that otherwise would have entered the LVW. To support the Downgradient Study Area investigation, surface water samples were collected from several locations in and near the LVW in May 2016. As part of that sampling program, a sample was collected from the sump immediately downgradient of the seep discovered by SNWA in 1999. The capture system that was subsequently implemented has significantly reduced both the perchlorate concentration and volume of groundwater discharging at the location. The 2016 sample had a perchlorate concentration of 85 µg/L, three orders of magnitude lower than samples collected in 1999. The seep was reported to be active only seasonally, with the small volume of flow terminating a short distance downstream in a topographic low where it seeps back into the ground and/or is evaporated into the air upgradient of its historic confluence with LVW. The seep was active during the May 2016 sampling, with discharge through the sump visible (AECOM 2016b). In the fall of 2017 there was no longer visible evidence of the seep as it was completely filled in during activities associated with the construction of Sunrise Mountain Weir.

4.3 Perchlorate Patterns and Suspected Discharges

During the May 2016 sampling program (AECOM 2016b) an attempt was made to locate the seeps that were sampled by Kerr McGee in 2000. Seeps that were successfully located, accessible, and flowing were subsequently sampled. It is surmised that weir construction, onshore riparian zone restoration, flooding and vegetative growth during intervening years, and the ongoing regional drought conditions may have affected the occurrence and, if present, the flow from the previously identified seeps. Because the installation of the weirs likely altered the seeps, attempts were made to relocate the seeps and, if possible, sample them. Of the 18 historic seep locations, only three (KM-45, KM-67 and KM-71) could be located in May 2016. All other historic

seeps may have been buried by weir and bank construction, submerged by the expanded stream channel and associated sediments, temporarily dried up under the drought conditions of the time, or obscured by dense vegetation.

Two seeps (KM-67 and KM-71) were sampled in May 2016. The concentrations of perchlorate in the seeps were lower in 2016 than in 2000. At KM-71, the concentration in 2016 (1.4 J µg/L) was substantially lower than in 2000 (3,400 µg/L). In 2000, KM-71 was located downgradient of the current location of the Sunrise Mountain Weir. The seep was located in 2016 immediately upstream of the KM-71 location in a backwater channel. The seep that was sampled in May 2016 could be a different seep than the seep sampled in 2000. At KM-67, located near the Three Kids Weir, the concentration (1,500 µg/L) in 2016 was slightly lower than in 2000 (2,100 µg/L). Construction of Three Kids Weir was completed in July 2015. A riprap weir referred to as "Demonstration Weir" was constructed near this location in 1999. The Demonstration Weir was relocated and rebuilt in 2007 and was eventually dismantled in 2013 and replaced by the Three Kids Weir (Las Vegas Wash Coordination Committee 2016). Although a weir was in place in this location during both the 2000 and 2016 sampling events, it is not clear to what extent, if any, each weir affected the stream flow and sample results during the 2000 and 2016 sampling events.

During the January and February 2017 surface water sampling events, sampling locations and methodology were designed to further refine the understanding of where perchlorate enters the LVW, and what impact the varying flow regime has on perchlorate concentrations in surface water samples. Known and suspected regions of perchlorate discharge were selected to help pinpoint loci of discharge and where, along transects, that discharge may be occurring. By characterizing the flow regime during sample collection, estimates of actual perchlorate flux were calculated to represent flow-weighted sampling results.

Following intensive water-temperature studies in the LVW in early 2018, a number of new and previously sampled surface water locations were selected for sampling in May 2018 (**Figures 15** and **16**). Locations were selected to target new potential locations of groundwater inputs identified as temperature anomalies during thermal infrared and fiber optic distributed temperature sensing surveys, to refine the understanding of perchlorate contributions in areas where perchlorate flux into the LVW were suspected, and to resample previous locations to evaluate changes over time. The Phase I groundwater monitoring wells were installed in July 2018 to provide additional groundwater data along LVW.

The results of the surface water and seep sampling conducted by Kerr McGee in 2000 and by AECOM in May 2016, December 2016, January and February 2017, and May 2018 indicate that there is evidence of perchlorate discharge to the LVW, particularly in the areas between the Upper Narrows Weir and Sunrise Mountain Weir (under construction during the 2018 sampling event), between the Historic Lateral Weir Expansion (under construction in 2018) and the Calico Ridge Weir, downstream of the Calico Ridge Weir, between the Lower Narrows and Homestead Weirs, and downstream of the Three Kids Weir (**Figures 15** and **16**).

Surface water sampling results indicate the potential for small, cumulative gains of perchlorate along the southern bank of the LVW from the region near the Historic Lateral Weir Expansion down to the Three Kids Weir, where perchlorate was generally found to be approximately twice as high as samples collected from mid-channel locations. Along much of that bank, the slow, relatively minor seepage of groundwater may be contributing to a slow general increase in perchlorate load. Larger gains observed in sample results are more likely to be attributed to more focused discharge of groundwater with higher concentrations of perchlorate. These higher concentration discharges were detected near the toe of the Upper Narrows Weir, near the toe of the Calico Ridge Weir, and near the toe of the Three Kids Weir.

During the May 2018 sampling event, samples were collected from sampling points across 13 transects (**Figure 15**) in the LVW. In addition, 14 grab samples were collected (**Figure 16**). The surface water sample locations in LVW ranged from upstream of Duck Creek Confluence Weir to downstream of the Lake Las Vegas area, located outside of the Downgradient Study Area. During the 2018 sampling event, most samples were collected during low-flow periods in an effort to normalize conditions at the time of sampling. Details regarding the supplemental

surface water sampling event will be provided in the Supplemental Surface Water Investigation Technical Memorandum (AECOM 2018c, currently in preparation).

Surface water data were collected outside of the Downgradient Study Area between Rainbow Gardens Weir and the Lake Las Vegas Outlet (**Figure 16**). These surface water data indicate that no significant additional sources of perchlorate were identified along this section of the LVW (AECOM 2018c, currently in preparation).

In July 2018, nine new groundwater monitoring wells were installed along LVW and a total of 26 wells (the nine new wells and 17 existing wells) along LVW were sampled. These wells were sampled to provide additional data on groundwater impacts in the Downgradient Study Area. Surface water elevations were compared to groundwater elevations to evaluate where groundwater was likely entering LVW. As shown on **Figure 7**, groundwater elevations appear to be higher than surface water elevations below Calico Ridge Weir, Homestead Weir, and Three Kids Weir indicating groundwater elevations at all other locations between Pabco Road Weir and Three Kids Weir.

Perchlorate flux into LVW is the measurement of the amount of perchlorate discharging into LVW per unit of time, for example 5 lb/day. Total perchlorate load in LVW is the amount of perchlorate estimated that is carried by the surface water in LVW at a specific location, for example 29 lb/day at Lower Narrows Weir. Perchlorate load and flux at various reaches along the LVW are discussed in detail below and presented on **Figure 14**. NERT also collects surface water samples on a monthly basis as part of its ongoing RI surface water sampling program. Perchlorate load is reported from these sampling events in the Semi-Annual Remedial Performance Memorandum and Annual Remedial Performance Report. Given the variances in sample collection dates and sample locations, variances in reported perchlorate load in the LVW are to be expected. How the groundwater data contribute to the understanding of the total perchlorate loading in LVW is also discussed below.

Upper Narrows to Pabco Road Weir: Based on 2018 surface water samples, the perchlorate load above Pabco Road Weir was between 1 and 2 lb/day. Along this reach, groundwater data obtained from well COH2B1 in July 2018 showed a perchlorate concentration of 1600 μ g/L (**Figures 9** and **14**). As shown on **Figure 8** this concentration was much lower than the 2016 perchlorate concentration of 5,600 μ g/L, a decrease of 4,000 μ g/L .Caution should be used when making comparisons with this well because it is downgradient of the LVW Bioremediation Pilot Study Transect 1A and perchlorate concentrations are likely affected. The groundwater elevation is slightly below the surface water elevation at Pabco Weir indicating, at the time of measurement, groundwater was not entering LVW at this location (**Figures 6** and **7**).

Pabco Road Weir to Bostic Weir: Based on 2018 surface water samples, the estimated perchlorate load in LVW begins to increase slowly near the Historic Lateral Weir Expansion. Between Pabco Road Weir and Bostic Weir the 2018 groundwater data was obtained from nine wells. Perchlorate concentrations ranged from 3.9 to 6,000 μg/L (**Figures 9** and **14**). Along this reach, the groundwater elevations were lower than the surface water elevations indicating that at the time of measurement, groundwater was not entering LVW (**Figures 6** and **7**). Of interest is the grab sample from the C-1 channel that exhibited a perchlorate concentration of 1,800 μg/L. This sample was collected from the C-1 Channel about 2.5 days after a rain event. It is possible that evaporation from the pool of standing water concentrated perchlorate to some degree. This sample result from the C-1 Channel, which only conveys flow to the LVW during storm events, is much higher than expected.

Bostic Weir to Calico Ridge Weir: Based on 2018 surface water samples, the estimated perchlorate load in LVW increased to 5.3 lb/day below the Bostick Weir, and 7.0 lb/day as the water entered the Calico Ridge Weir. Along this reach, groundwater data was obtained from six wells in July 2018. Perchlorate concentrations ranged from 680 to 3,800 µg/L (**Figures 9** and **14**). Groundwater elevations along this reach were equal to or higher than the surface water elevations indicating, at the time of measurement, groundwater was likely infiltrating into LVW (**Figures 6** and **7**).

Calico Ridge Weir to Lower Narrows Weir: Based on 2018 surface water samples, the estimated perchlorate load in LVW increased to 29 lb/day by the time it reaches Lower Narrows Weir. Most of the 22 lb/day perchlorate flux is suspected to come from groundwater discharge near the toe of the Calico Ridge Weir. Along this reach, groundwater data was obtained from three wells in July 2018. Perchlorate concentrations ranged from 4.3 J to 3,100 µg/L (**Figures 9** and **14**). Downgradient of Calico Ridge Weir, groundwater elevations are higher than surface water elevations and upgradient of Lower Narrows Weir groundwater elevations were lower than surface water elevations. At the time of measurement, groundwater was likely infiltrating into LVW downgradient of Calico Ridge Weir; however, it was not entering the LVW upgradient of Lower Narrows Weir (**Figures 6** and **7**).

Lower Narrows Weir to Homestead Weir: Based on 2018 surface water samples, the estimated perchlorate load in LVW increased slightly. Along this reach, groundwater data was obtained from three wells in July 2018. Perchlorate concentrations ranged from 48 to 2,200 μ g/L (Figures 9 and 14). Groundwater elevations were lower than surface water elevations indicating that at the time of measurement, groundwater was not entering LVW along this reach (Figures 6 and 7).

<u>Homestead Weir to Three Kids Weirs:</u> Based on 2018 surface water samples, the estimated perchlorate load in LVW was 32 to 33 lb/day. This represents a gain of 3 lb/day from the Lower Narrows Weir to the Three Kids Weir. Along this reach, groundwater data was obtained from two wells in July 2018. Perchlorate concentrations ranged from 320 to 1,100 µg/L (**Figures 9** and **14**). Downgradient of Homestead Weir, groundwater elevations were higher than surface water elevations and upgradient of Three Kids Weir groundwater elevations were lower than surface water elevations. At the time of measurement, groundwater was likely infiltrating into LVW downgradient of Homestead Weir; however, it was not entering LVW upgradient of Three Kids Weir (**Figures 6** and **7**).

Three Kids Weir to Rainbow Gardens Weir: Based on 2018 surface water samples, the estimated perchlorate load in LVW was 40 to 56 lb/day. Downstream of the Three Kids Weir, discharge from the KM-67 seep enters on the south bank and begins to mix in with the waters of the LVW. Along this reach, groundwater data was obtained from one well in July 2018. The perchlorate concentration in this well was 1,500 µg/L (Figures 9 and 14). Downgradient of Three Kids Weir, groundwater elevations were higher than surface water elevations indicating that at the time of measurement, groundwater was likely infiltrating into LVW (Figures 6 and 7).

5.0 Conclusions and Recommendations

5.1 Conclusions

The following summarizes the conclusions of this Phase I DGI organized by the data gaps identified in Section 1.0.

 Where are the high concentration (1,000 μg/L or higher) perchlorate-impacted groundwater plumes along the north and south sides of the LVW?

Based on groundwater samples collected in July 2018, perchlorate concentrations of 1,000 μ g/L or higher are present along the south bank of LVW except at monitoring wells NERT5.49S1 (5.1 μ g/L) east of Historic Lateral Weir Expansion Weir, WMW4.9S (930 μ g/L) between Bostic Weir and Calico Ridge Weir, and MW-20 (48 μ g/L) and MW-25 (4.3 μ g/L) at the Henderson Landfill site (**Figure 9**). The highest concentration of 6,000 μ g/L was detected at NERT5.11S1 south of LVW between Historic Lateral Weir Expansion and Bostic Weir.

There is limited data for the north bank of LVW; however, based on the six locations sampled, perchlorate concentrations of 1,000 μ g/L or higher are present in three wells between Lower Narrows Weir and Homestead Weir.

Additional monitoring wells are needed to further define the extent of high concentration (1,000 μ g/L or higher) perchlorate plumes. Investigation of perchlorate concentrations along areas of LVW should be located in areas where the groundwater elevation is higher than the surface water elevation in LVW, as these conditions allow perchlorate-impacted groundwater to enter LVW (**Figure 7**).

2. Why are there noticeable differences in perchlorate concentrations in groundwater over relatively short distances?

The data indicate that the perchlorate concentrations in groundwater are spatially highly variable. Since perchlorate is highly soluble, it is indicative that there are discrete flow zones within the alluvial sediments that are not in close communication. The lower perchlorate concentration of 930 μ g/L at WMW4.9S is surrounded by nearby wells MW-13, NERT4.71S1, and NERT4.93S1 with concentrations from 3,700 μ g/L, 3,800 μ g/L, and 3,900 μ g/L, respectively (**Figure 9**). Well WMW4.9S is screened over 30 feet while the surrounding wells are screened over 10-foot intervals. All of these wells are screened in gravelly sand to sand strata. The reason for the lower concentration may be related to the longer screened interval of well WMW4.9S.

Groundwater from wells WMW5.7N and NERT5.49S1 exhibit lower perchlorate concentrations than surrounding wells. Perchlorate concentrations in WMW5.7N and NERT5.49S1 are 3.9 J μ g/L and 5.1 μ g/L respectively. Perchlorate concentrations in surrounding wells WMW5.5SS, NERT5.91S1, and WMW5.5S are 2,500 μ g/L, 2,900 μ g/L, and 3,100 μ g/L, respectively (**Figure 9**). Groundwater in well NERT5.49S1 exhibited the lowest TDS concentration (1,400 mg/L) of all the wells sampled for TDS (**Figure 13**). The low TDS concentration indicates that it is likely that surface water is mixing with groundwater at this location. The surface water would also dilute the perchlorate concentrations.

Sampling of existing wells, installation of additional monitoring wells, and pump or tracer tests are needed to further investigate why perchlorate concentrations change over relatively short distances.

3. Do the high-concentration perchlorate plumes follow distinct water-bearing zones within the alluvium or bedrock formations?

Distinct water-bearing zones were identified in the Phase I individual boring logs; however, distinct water-bearing zones were not identified as being continuous between nearby boreholes that had boring logs available for comparison. Cluster wells recently installed (Spring to Summer 2018) for the LVW Bioremediation Pilot Study have discrete screened intervals within the alluvial deposits and preliminary data support the presence of discrete water bearing zones. The cluster wells exhibit different water levels and different concentrations indicating that the groundwater monitored in adjacent wells at depths of less than 90 feet bgs is from distinct and separate water bearing zones. Pump and tracer tests are needed to further investigate distinct water bearing zones within the alluvium and bedrock.

4. Along the LVW, does groundwater flow generally in the same direction as the surface water?

The groundwater flow direction adjacent to LVW appears to flow generally to the east, similar to the surface water flow direction. Sampling of existing wells, installation of additional monitoring wells, and pump or tracer tests will further refine the understanding of groundwater flow along LVW.

5. Where does perchlorate-impacted groundwater discharge to the LVW?

As shown on **Figure 7** there are three locations along the LVW downstream of Pabco Road Weir (Calico Ridge Weir, Homestead Weir, and Three Kids Weir) where the groundwater elevation is higher than the elevation of the surface water in the LVW. These conditions allow for potential discharge of groundwater into the LVW because of the higher potentiometric surface of groundwater. Based on this and surface water sampling to date, perchlorate-impacted groundwater is discharging to the LVW downgradient of Calico Ridge Weir and Three Kids Weir. Although elevations and perchlorate concentrations in groundwater near Homestead Weir are also higher than those for surface water, the surface water perchlorate data collected to date do not support a significant discharge of perchlorate-impacted groundwater to the LVW near Homestead Weir.

Sampling of existing wells, installation of additional monitoring wells, and pump or tracer tests are needed to further investigate where impacted groundwater is discharging to LVW.

6. Where is the groundwater/surface water interface and how far is it from the LVW?

The groundwater/surface water interface is dynamic. As indicated by TDS concentrations, the groundwater/surface water interface is immediately adjacent to LVW in some areas and up to 470 feet away at well NERT5.49S1. Low TDS concentrations (less than 1,800 parts per million) have been detected in groundwater from wells NERT5.49S1, WMW4.95S, WMW5.58S, and WMW5.7N in 2016 and 2018.

Sampling of existing wells and installation of additional monitoring wells are needed to further investigate the groundwater/surface water interface.

7. Is there an area of known or suspected perchlorate flux of sufficient magnitude where an interim remedial action would be appropriate?

Given that perchlorate concentrations in Lake Mead are well below NDEP's interim action level and that NERT is completing a pilot study between Bostic and Homestead Weirs (an area with elevated perchlorate mass flux from groundwater to surface water), AECOM does not recommend implementation of interim remedial actions at this time.

8. Is perchlorate-impacted groundwater bypassing the seep well field on its eastern side in the vicinity of monitoring well COH2B1?

Concentrations of perchlorate in groundwater from well COH2B1 were 5,600 μ g/L in April 2016 and 1,600 μ g/L in July 2018. This indicates that perchlorate-impacted groundwater is present in this area and that the concentration fluctuates as much as 4,000 μ g/L. *The source of the perchlorate in this well may be from the Endeavour plume (Ramboll 2018 and Endeavour 2018)*.

Sampling of existing wells, installation of additional monitoring wells, and pump or tracer tests are needed to further investigate the source of perchlorate in this area.

9. Do concentrations of perchlorate in groundwater fluctuate over time, seasonally, or after a rain event?

Comparisons of perchlorate concentrations in groundwater from 17 wells sampled in April 2016 and July 2018 indicate that nine wells had concentrations that were within 10% of each other, five wells had concentrations that were 21 to 80% of each other, and three wells had concentrations that decreased over 200% (**Figure 8**). Additional data are needed to evaluate changes in groundwater perchlorate concentrations seasonally and/or after rain events because at present there are only two data points over two years.

Sampling of existing wells, installation of additional monitoring wells, and pump or tracer tests are needed to further investigate perchlorate fluctuations over time.

5.2 Recommendations for Phase II Data Gap Investigation

The Phase I investigation was focused on the stretch of LVW between Pabco Road Weir and just below Three Kids Weir. Based on the results of the 2016, 2017, and 2018 surface water investigations, the 2016 groundwater sampling, the 2017 to 2018 transducer data, and the Phase I groundwater investigation, the following specific areas along LVW have been identified where surface water and groundwater data indicate that perchlorate-impacted groundwater is entering LVW and contributing to the perchlorate flux in the surface water: It is understood that the measurements of flux may not be fully representative of normal conditions because weir construction and dewatering was occurring at the time of the investigation.

- 1. Between Bostic and Calico Ridge Weir approximately 2 lb/day of perchlorate are entering LVW.
- Downgradient of Calico Ridge Weir on both the north and south banks of LVW approximately 22 lb/day of perchlorate are entering LVW.
- 3. Downgradient of Homestead Weir approximately 3 lb/day of perchlorate are entering LVW.
- 4. Downgradient of Three Kids Weir, near the area of KM-67 seep, approximately 23 lb/day of perchlorate are entering LVW.

The Phase II investigation should be focused on the specific areas identified as contributing the largest flux to LVW. These are downgradient of Calico Ridge Weir (22 lb/day of perchlorate) and downgradient of Three Kids Weir (23 lb/day of perchlorate). All work should be closely coordinated with the LVW Bioremediation Pilot Study. Evaluating the area between Bostic and Calico Ridge Weir is not recommended because there is only 5 lb/day of flux and the surface water data did not indicate that groundwater is entering LVW. Evaluating the area downgradient of Homestead Weir is less promising because the perchlorate flux is only increasing 3 lb/day and the surface water data did not indicate that groundwater was entering LVW in that area; however it is an area of interest to NDEP due to the groundwater elevations near Homestead Weir being higher than surface water elevations, potentially indicating gaining conditions.

Additional monitoring wells should be installed on the north and south sides of LVW at and both east and west of the Calico Ridge Weir, and east and west of Three Kids Weir to investigate perchlorate concentrations in

groundwater. Tracer tests should be conducted from groundwater to surface water in areas where perchlorate concentrations in groundwater are the highest and adjacent to LVW where surface water data indicate that perchlorate impacted-groundwater is entering LVW. Pump tests should be conducted to determine yield, permeability and conductivity of the shallow flow zone in these areas.

Additional monitoring wells could also be installed downgradient of Homestead Weir on the south side of LVW to investigate groundwater concentrations and to further evaluate if groundwater is entering LVW in this area.

To evaluate changes in perchlorate concentrations over short distances, well clusters should be installed with discrete screened intervals to determine if the perchlorate is following discrete layers within the flow zone. Tracer tests between wells could be used to determine connectivity. To evaluate changes in perchlorate concentrations after rain events and seasonally, a subset of wells could be selected for monthly monitoring over an entire year. This study would likely require other consultants due to the length of AECOM's contract.

6.0 References

AECOM, 2018a. Technical Memorandum. RI Modification: Data Gap Investigation Plan Phase I Groundwater Monitoring Well Installation Downgradient Study Area. Nevada Environmental Response Trust Site, Henderson Nevada. May 18, 2018.

AECOM, 2018b. Technical Memorandum Groundwater Data Gap Investigation Transducer Installation and Monitoring, Downgradient Study Area. Nevada Environmental Response Trust Site, Henderson Nevada. October 2018

AECOM, 2018c. Supplemental Surface Water Investigation Technical Memorandum, Preliminary Draft. NERT Remedial Investigation – Downgradient Study Area. Nevada Environmental Response Trust Site, Henderson Nevada. Currently in preparation 2018.

AECOM, 2017a. Data Gap Investigation Plan – Phase I Groundwater Monitoring Well Installation, Final. NERT Remedial Investigation – Downgradient Study Area. Nevada Environmental Response Trust Site, Henderson Nevada. May 2017a.

AECOM, 2017b. HAZWOPER Health and Safety Plan. NERT Remedial Investigation – Downgradient Study Area. Nevada Environmental Response Trust Site, Henderson, Nevada. Final. August 28, 2017.

AECOM, 2017c. Quality Assurance Project Plan. NERT Remedial Investigation – Downgradient Study Area. Nevada Environmental Response Trust Site, Henderson, Nevada. Final. May 2017 (Rev 1).

AECOM, 2017d. Surface Water Investigation Technical Memorandum, NERT Remedial Investigation – Downgradient Study Area. Nevada Environmental Response Trust Site, Henderson Nevada. December 2017.

AECOM, 2016a. Groundwater Sampling Technical Memorandum, NERT Remedial Investigation – Downgradient Study Area. Nevada Environmental Response Trust Site, Henderson Nevada. October.

AECOM, 2016b. Surface Water and Seep Grab Sampling Technical Memorandum. NERT Remedial Investigation – Downgradient Study Area. Nevada Environmental Response Trust Site, Henderson Nevada. November.

Bell, J. W. and Smith E.I., 1980. Geologic Map of the Henderson Quadrangle, Nevada, Nevada Bureau of Mines and Geology Map 67.

Broadbent & Associates, Inc. (Broadbent), 2015. NERT Regional Groundwater Data Gap Technical Memorandum. April 17.

Endeavour LLC (Endeavour) 2018. Bureau of Industrial Site Cleanup (BISC) Semi-Annual/Annual Monitoring and Performance Report Rev 1. January – June 2018 Perchlorate Bioremediation System, Endeavour LLC. August 14 revised September 14, 2018.

ENSR International (ENSR), 2005. Conceptual Site Model, Kerr-McGee Facility, Henderson, Nevada. February.

ENSR, 2007. Phase A Source Area Investigation Results Report, Tronox LLC Facility, Henderson, Nevada. September.

ENVIRON International Corporation (ENVIRON), 2012. Revised Interim Soil Removal Action Completion Report, Nevada Environmental Response Trust Site, Henderson, Nevada, August 2010 – November 2011. January. Revised September 28. NDEP approved December 17, 2012.

ENVIRON, 2014. Field Sampling Plan (Rev 1) Nevada Environmental Trust Site. July 18.

ENVIRON, 2015. Technical Memorandum Data Gap Evaluation, Regional Groundwater Investigation, Nevada Environmental Response Trust Site, Henderson Nevada, March 28.

Geotechnical and Environmental Services Inc. (GES), 2007a. Updated Geotechnical Investigation Relocated Homestead Weir, SNWA Contract No. 810M Las Vegas Erosion Control Program, Clark County Nevada. November 1.

GES, 2007b. Updated Geotechnical Investigation Relocated Lower Narrows Weir, SNWA Contract No. 810M Las Vegas Erosion Control Program, Clark County Nevada. November.

GEOVision 2018. NERT Remedial Investigation Borehole Geophysics, Las Vegas Wash, Henderson, Nevada, August 14.

Las Vegas Wash Coordination Committee, 2016. Website accessed March 2016 https://www.lvwash.org/html/being_done_stabilization_threekids.html)

Nevada Division of Environmental Protection (NDEP), 2018. NDEP Data Validation and Verification Requirements BMI Complex and Common Areas. July 13.

NDEP, 2017. Users Guide and Background Technical Document for the NDEP Basic Comparison Levels for Human Health for the BMI Complex and Common Areas December 2008 – Rev 14 July 2017.

Ramboll, 2018. Annual Remedial Performance Report for Chromium and Perchlorate,. Nevada Environmental Response Trust Site. November 9.

United States Environmental Protection Agency (EPA), 1997. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846). Office of Solid Waste, Washington, DC 20460. June.

United States Geological Survey (USGS), 2017. Flow data obtained from http://maps.waterdata.usgs.gov/mapper/index.html.

Zhou, Xiaoping, 2012. Shallow Groundwater Quality along Las Vegas Wash Final Report prepared for the Southern Nevada Water Authority. September 2012.

AECOM

Tables

Table 1 Rationale for Phase I Groundwater Monitoring Wells NERT RI - Downgradient Study Area Henderson, Nevada

New Well	Proposed Pilot Boring Depth in feet bgs ⁽¹⁾	Proposed Well Depth in feet bgs (2)	Well Diameter ⁽³⁾	Proposed Well Screen in feet bgs ⁽⁴⁾		April and May 2016	Geology and Approximate Distance from Pertinent Features
NERT5.91S1	90	50	4"	40 - 50	38 - 50		This well is in alluvium overlying the Muddy Creek formation 1,000 feet east northeast from well COH2B1 and 1,900 feet west southwest of well WMW5.5S. It is 450 feet west of a paleochannel identified by Ed Krish (2015).
NERT5.49S1	90	40	4"	30 - 40			This well is in alluvium overlying the Muddy Creek formation 570 feet southeast from well WMW5.58S1 and 350 feet west northwest of well WMW5.5S. It is on a paleochannel identified by BRC (2007) and 250 feet northwest of a paleochannel identified by Ed Krish (2015).
NERT5.11S1	90	45	4"	35 - 45	33 - 45	Surface water concentrations are 19 to 23 μ g/L.	This well is in alluvium overlying the Muddy Creek formation 1,700 feet northeast from proposed well NERT5.49S1 and 800 feet west southwest of proposed well NERT4.93S1. It is 380 feet west of a paleochannel identified by Ed Krish (2015).
NERT4.93S1	90	50	4"	40 - 50	38 - 50	Determine concentrations between MW-13 (total well depth of 49.4 feet bgs at 3,800 μ g/L and WMW4.9S (total well depth of 46.75 feet bgs at 270 μ g/L) to obtain additional data on the paleochannel and perchlorate impacts in the area. Surface water concentrations are 15 to 23 μ g/L.	This well is in alluvium overlying the Muddy Creek formation 470 feet northwest from well MW-13 and 500 feet southwest of well WMW4.9S. It is 400 feet east of a paleochannel identified by Ed Krish (2015).
NERT4.71S1	90	50	4"	40 - 50		paleochannel and perchlorate impacts in the area. Surface water concentrations are 15 to 44 $\mu g/L.$	This well is in alluvium overlying the Muddy Creek formation 65 feet northeast from well WMW4.9S and 1100 feet west southwest of proposed well NERT4.51S1. It is on a paleochannel identified by Northgate (2010), 150 feet northeast of a paleochannel identified by Ed Krish (2015), and 500 feet southwest of a paleochannel identified by BRC (2007).
NERT4.51S1	90	50	4"	40 - 50	38 - 50	Determine concentrations between proposed well NERT4.71S1 and LNDMW1 (total well depth of 61 feet bgs at 1,900 μ g/L) to obtain additional data on the paleochannel and perchlorate impacts in the area. Surface water concentrations increase from 15 to 44 μ g/L in this area.	This well is in alluvium overlying the Muddy Creek formation 1,150 feet east northeast of proposed well NERT4.71S1 and 1,000 feet west southwest of well LNDMW1. It is 600 feet northeast of a paleochannel identified by BRC (2007).
NERT4.38N1	90	55	4"	45 - 55	43 - 55	Determine concentrations west of LNDMW2 (total well depth of 55.05 feet bgs at 1,500 μ g/L) to further characterize perchlorate concentrations on the north side of LVW. Surface water concentrations increase from 15 to 44 μ g/L in this area.	This well is in alluvium overlying the Thumb formation. It is 450 feet west from well LNDMW2 and 1,900 feet east northeast of well WMW4.9N.
NERT4.21N1	90	55	4"	45 - 55	43 - 55		This well is in alluvium overlying the Thumb formation 450 feet southeast from well LNDMW2 and 100 feet southeast of proposed well NERT4.38N1. This well is 1,400 feet southwest of a mapped fault within the Frenchman Fault zone.
NERT3.80S1	90	60	4"	50 - 60	48 - 60	Determine concentrations between LNDMW1 (total well depth of 61 feet bgs at 1,900 μ g/L) and WMW3.5S (total well depth of 59.8 feet bgs at 1,400 μ g/L) on the south side of LVW to further characterize perchlorate impacts in the area. This well may also provide additional data regarding faulting in the area. Surface water concentrations are 35 to 50 μ g/L.	This well is in alluvium overlying the Thumb formation. It is 2,550 feet east northeast from well LNDMW1 and 70 feet southwest of proposed well NERT3.65S1. It is between the projected traces of two mapped faults within the Frenchman Fault zone.
NERT3.65S1 (Not installed due to refusal of sonic drill at 3 feet bgs)	90	60	4"	50 - 60	48 - 60	Determine concentrations southwest of WMW3.5S (total well depth of 59.8 feet bgs at 1,400 μ g/L) near Three Kids Weir to further characterize perchlorate impacts in the area. This well may also provide additional data regarding faulting in the area. Surface water concentrations in LVW are 26 to 35 μ g/L and there is a seep in this area (KM67) with a concentration of 1,400 μ g/L.	This well is in alluvium over the Thumb formation. It is 500 feet south of the KM67 seep and is 25 feet southwest of well WMW3.5S. It is within Frenchman Fault zone as documented in the Demonstration Weir (Three Kids Weir) geotechnical report (GES, 2003).

Notes:

⁽¹⁾ Proposed Borehole depth is similar to other NERT off site RI wells to provide stratigraphic information at comparable depths.

⁽²⁾ The Proposed Well Depths are as proposed in the Data Gap Investigation Plan (DGIP) - Phase I Groundwater Monitoring Well Installation (AECOM, May 2017a). ⁽³⁾ The borehole is 8 inches in diameter and sealed with bentonite from the total depth to the planned well screen.

 $^{(4)}$ Well casing is 4 inch schedule 40 PVC and well screen slot size is 0.02 inches

⁽⁵⁾ Sand Pack size is No. 3.

µg/L: micrograms per liter

bgs: below ground surface

References:

Basic Remediation Company (BRC), 2007. BRC Closure Plan, BMI Common Areas, Clark County Nevada. May.

Geotechnical & Environmental Services (GES), 2003. Geotechnical Investigation Demonstration Weir W-3.9 Replacement, SNWA Contract 810-K, Las Vegas Wash Erosion Control Program, Clark County Nevada, August 8. Krish, Ed, 2015. Data Gap memorandum and paleochannel map sent to NDEP. February 27.

Northgate Environmental Management Inc. (Northgate), 2010. Capture Zone Evaluaiton Report, Tronoc LLC, Henderson Nevada. December.

Table 2Phase I Groundwater Monitoring Well Installation DetailsNERT RI - Downgradient Study AreaHenderson, Nevada

				N	Vell Installatio	Well Development				
Well ID	Drilling Start Date	Drilling Completion Date	Pilot Boring Depth ^{1.} (feet bgs)	Depth to Groundwater (feet bgs)	Well Completion Depth (feet bgs)	Well Screen ^{2.} (feet bgs)	Sand Pack Interval ^{3.} (feet bgs)	Date Developed	Depth to Groundwater (feet bgs)	Well Depth after Development (feet bgs)
NERT5.91S1	6/17/2018	6/18/2018	90	35	50.4	40 - 50	38 - 50	6/28/2018	13.35	50.00
NERT5.49S1	6/18/2018	6/19/2018	90	26	40.4	30 - 40	28 - 40	6/27/2018	26.79	40.10
NERT5.11S1	6/16/2018	6/17/2018	90	25	45.4	35 - 45	33 - 45	6/27/2018	20.77	45.05
NERT4.93S1	6/15/2018	6/16/2018	65 ^{4.}	26	55	45 - 55	43 - 55	6/26/2018	27.77	54.55
NERT4.71S1	6/26/2018	6/27/2018	90	26	50	40 - 50	38 - 50	7/5/2018	28.75	47.30
NERT4.51S1	6/13/2018	6/14/2018	57.5 ^{4.}	27	54	40 - 50	37.5 - 51	6/26/2018	26.60	53.32
NERT4.38N1	6/20/2018	6/21/2018	60 ^{4.}	33	40.9	30 - 40	28 - 40	6/25/2018	33.2	39.8
NERT4.21N1	6/19/2018	6/20/2018	90	42	55.4	45 - 55	43 - 55	6/25/2018	35.88	54.9
NERT3.80S1	6/27/2018	6/28/2018	55 ^{4.}	12	20	10 - 20	8 - 20	7/5/2018	10.67	19.67
NERT3.65S1	6/28/2018	6/28/2018	3 ^{4.}	NA	NA	NA	NA	NA	NA	NA

Notes:

1. The borehole was 8 inches in diameter and sealed with bentonite from the total depth to the bottom of the well screen.

2. Well casing is 4-inch schedule 40 PVC and well screen slot size is 0.02 inches.

3. Sand pack is Monterey No. 3 sand.

4. Encountered refusal at specified depth. Final depth is a deviation from the Data Gap Investigation Phase I Work Plan.

bgs - below ground surface

NA - Not applicable

Table 3Summary of Grain Size AnalysisNERT Downgradient Study Area, Henderson, Nevada

					,		icle Size Distribution (weight percent) ⁽²⁾			
	- ·			Mean Grain Size	Median		Sand Size			
Soil Boring Name	Sample Identification	Collection Date	Depth (feet)	Description USCS/ASTM ⁽¹⁾	Grain Size (mm)	Gravel	Coarse	Medium	Fine	Silt/Clay
NERT5.91S1	NERT5.91S1 17'	6/17/2018	17	Fine sand	0.105	8.23	5.67	13.57	37.23	35.30
	NERT5.91S1 40'	6/17/2018	40	Medium sand	0.602	6.3	17.25	31.96	27.34	17.15
	NERT5.91S1 47'	6/17/2018	47	Medium sand	1.12	13.92	18.31	34.38	18.28	15.12
	NERT5.91S1 50'	6/17/2018	50	Medium sand	1.709	24.65	20.82	35.73	14.29	4.51
	NERT5.91S1 60'	6/17/2018	60	Medium sand	1.05	1.11	25.38	40.61	23.76	9.15
	NERT5.91S1 87'	6/17/2018	87	Coarse sand	1.787	5.51	39.88	36.35	14.29	3.97
NERT5.49S1	NERT5.49S1 20'	6/18/2018	20	Coarse sand	1.367	12.07	26.91	25.22	26.69	9.10
	NERT5.49S1 32'	6/18/2018	32	Gravel	2.224	31.77	20.62	23.5	17.66	6.44
	NERT5.49S1 72'	6/18/2018	72	Medium sand	0.603	0	11.02	48.28	30.3	10.4
	NERT5.49S1 89'	6/18/2018	89	Gravel	4.54	48.17	28.42	17.02	5.79	0.59
NERT5.11S1	NERT5.11S1 17'	6/16/2018	17	Gravel	4.028	42.84	32.3	15.8	5.02	4.04
	NERT5.11S1 37'	6/16/2018	37	Fine sand	1.343	22.35	18.97	23.97	24.43	10.28
	NERT5.11S1 40'	6/16/2018	40	Fine sand	0.356	5.47	5.18	32.40	51.9	5.06
	NERT5.11S1 67'	6/16/2018	67	Fine sand	0.255	0.00	2.22	33.79	35.85	28.14
	NERT5.11S1 72'	6/16/2018	72	Medium sand	0.472	0.3	9.42	43.27	31.85	15.16
NERT4.93S1	NERT4.93S1 15'	6/15/2018	15	Fine sand	0.239	6.22	9.38	23.38	39.75	21.27
	NERT4.93S1 41'	6/15/2018	41	Silt/clay	0.083	0	0.92	11.23	42.45	45.4
	NERT4.93S1 47'	6/15/2018	47	Gravel	7.356	60.98	16.79	12.86	6.71	2.66
	NERT4.93S1 48'	6/15/2018	48	Medium sand	1.178	16.59	19.25	32.28	23.38	8.5
	NERT4.93S1 60'	6/15/2018	60	Medium sand	0.333	10.14	13.93	23.11	30.85	21.97
NERT4.51S1	NERT4.51S1 15'	6/14/2018	15	Silt/clay	0.072	0.96	7.2	16.32	24.21	51.31
	NERT4.51S1 42'	6/14/2018	42	Gravel	4.931	51.43	21.53	14.14	8.96	3.95
	NERT4.51S1 48'	6/14/2018	48	Gravel	6.907	59.91	19.64	12.11	6.34	2
	NERT4.51S1 52'	6/14/2018	52	Gravel	9.216	74.01	13.99	8.35	2.9	0.76
NERT4.38N1	NERT4.38N1 12'	6/20/2018	12	Gravel	16.141	87.48	4.19	3.18	3.13	2.02
	NERT4.38N1 35'	6/20/2018	35	Medium sand	0.392	0	0.26	47.47	39.38	12.89
	NERT4.38N1 45'	6/20/2018	45	Medium sand	0.795	0.91	11.12	55.5	25.43	7.03
	NERT4.38N1 55'	6/20/2018	55	Fine sand	0.202	0	0.21	27.36	42.64	29.8
	NERT4.38N1 60'	6/20/2018	60	Fine sand	0.236	0	1.77	29.08	46.25	22.9
NERT4.21N1	NERT4.21N1 22'	6/19/2018	22	Medium sand	0.805	1.48	20.09	41.73	22.44	14.26
	NERT4.21N1 45'	6/19/2018	45	Gravel	3.462	44.21	16.09	25.19	12.75	1.75
	NERT4.21N1 48'	6/19/2018	48	Gravel	4.59	49.03	21.37	20.51	8.3	0.79

Table 3 Summary of Grain Size Analysis NERT Downgradient Study Area, Henderson, Nevada

						Particle Size Distribution (weight percent) ⁽²⁾				
				Mean Grain Size	Median		Sand Size			
Soil Boring Name	Sample Identification	Collection Date	Depth (feet)	Description USCS/ASTM ⁽¹⁾	Grain Size (mm)	Gravel	Coarse	Medium	Fine	Silt/Clay
	NERT4.21N1 62'	6/19/2018	62	Medium sand	1.262	2.91	29	42.7	18.28	7.11
	NERT4.21N1 87'	6/19/2018	87	Coarse sand	1.597	10.42	32.44	27.66	20.04	9.44
NERT4.71S1	NERT4.71S1 23'	6/26/2018	23	Coarse sand	2.171	30.72	20.09	21.04	13.10	1.90
	NERT4.71S1 37'	6/26/2018	37	Fine sand	0.091	0.00	16.09	1.12	53.36	37.93
	NERT4.71S1 47'	6/26/2018	47	Coarse sand	2.550	28.03	21.37	29.17	11.01	3.07
	NERT4.71S1 87'	6/27/2018	87	Coarse sand	3.068	31.18	29	38.67	2.07	0.85
	NERT4.71S1 89.5'	6/27/2018	89.5	Gravel	3.968	45.03	32.44	18.94	11.10	5.43
NERT3.80S1	NERT3.80S1 10'	6/27/2018	10	Medium sand	0.670	15.64	20.09	14.50	31.60	10.38
	NERT3.80S1 12'	6/27/2018	12	Medium sand	0.397	19.16	16.09	7.96	38.89	12.65
	NERT3.80S1 15'	6/27/2018	15	Coarse sand	2.978	38.72	21.37	19.56	12.52	0.63
	NERT3.80S1 35'	6/27/2018	35	Medium sand	0.361	16.10	29	7.28	35.96	16.42

Notes:

(1) Based on Mean from Trask; USCS: Unified Soil Classification System

(2) Grain Size Analysis via Method D422M, sieve method

ASTM: ASTM Method D422M, sieve method

N/A: Mean grain size could not be calculated using Trask method because there was no 25 weight percent fraction of material in the sample. mm: millimeters

	NERT Downgradient Stud			Moisture
Soil Boring Name	Sample Identification	Collection Date	Depth (feet)	Content ⁽¹⁾
NERT5.91S1	NERT5.91S1 17'	6/17/2018	17	23.3
	NERT5.91S1 40'	6/17/2018	40	33.1
	NERT5.91S1 47'	6/17/2018	47	24.2
	NERT5.91S1 50'	6/17/2018	50	17.9
	NERT5.91S1 60'	6/17/2018	60	33.1
	NERT5.91S1 87'	6/17/2018	87	75.3
NERT5.49S1	NERT5.49S1 20'	6/18/2018	20	7.0
	NERT5.49S1 32'	6/18/2018	32	14.1
	NERT5.49S1 72'	6/18/2018	72	70.8
	NERT5.49S1 89'	6/18/2018	89	41.7
NERT5.11S1	NERT5.11S1 17'	6/16/2018	17	6.8
	NERT5.11S1 37'	6/16/2018	37	4.3
	NERT5.11S1 40'	6/16/2018	40	13.6
	NERT5.11S1 67'	6/16/2018	67	62.7
	NERT5.11S1 72'	6/16/2018	72	37.3
NERT4.93S1	NERT4.93S1 15'	6/15/2018	15	10.2
	NERT4.93S1 41'	6/15/2018	41	23.8
	NERT4.93S1 47'	6/15/2018	47	8.7
	NERT4.93S1 48'	6/15/2018	48	13.4
	NERT4.93S1 60'	6/15/2018	60	25.0
NERT4.51S1	NERT4.51S1 15'	6/14/2018	15	7.2
	NERT4.51S1 42'	6/14/2018	42	4.6
	NERT4.51S1 48'	6/14/2018	48	3.3
	NERT4.51S1 52'	6/14/2018	52	6.3
NERT4.38N1	NERT4.38N1 12'	6/20/2018	12	3.7
	NERT4.38N1 35'	6/20/2018	35	15.3
	NERT4.38N1 45'	6/20/2018	45	9.5
	NERT4.38N1 55'	6/20/2018	55	10.9
	NERT4.38N1 60'	6/20/2018	60	19.6
NERT4.21N1	NERT4.21N1 22'	6/19/2018	22	19.1
	NERT4.21N1 45'	6/19/2018	45	13.8
	NERT4.21N1 48'	6/19/2018	48	7.7
	NERT4.21N1 62'	6/19/2018	62	13.2
	NERT4.21N1 87'	6/19/2018	87	13.6
NERT4.71S1	NERT4.71S1 23'	6/26/2018	23	4.7
	NERT4.71S1 37'	6/26/2018	37	26.3
	NERT4.71S1 47'	6/26/2018	47	10.7
	NERT4.71S1 87'	6/27/2018	87	9.3
	NERT4.71S1 89.5'	6/27/2018	89.5	9.0
NERT3.80S1	NERT3.80S1 10'	6/27/2018	10	10.1
	NERT3.80S1 12'	6/27/2018	12	20.6
	NERT3.80S1 15'	6/27/2018	15	6.3
	NERT3.80S1 35'	6/27/2018	35	4.7

Table 4Summary of Moisture Content AnalysisNERT Downgradient Study Area, Henderson, Nevada

Notes:

(1) ASTM Method D2216. Moisture Content is in percent of dry weight.

Table 5Summary of Atterberg Limits AnalysisNERT Downgradient Study Area, Henderson, Nevada

				Atte	erberg Lin	nits ⁽¹⁾	
Soil Boring Name	Sample Identification	Collection Date	Depth (feet)	Liquid Limit	Plastic Limit	Plastic Index	USCS
NERT5.91S1	NERT5.91S1 17'	6/17/2018	17	31.2	17.1	14.1	CL - Sandy Lean Clay
	NERT5.91S1 40'	6/17/2018	40	42.0	18.0	24.0	CL - Sandy Lean Clay
	NERT5.91S1 47'	6/17/2018	47	31.9	11.8	20.1	CL - Lean Clay with Sand
	NERT5.91S1 50'	6/17/2018	50	32.1	11.8	20.3	CL - Sandy Lean Clay with Gravel
	NERT5.91S1 60'	6/17/2018	60	85.4	29.7	55.7	CH - Fat Clay with Sand
	NERT5.91S1 87'	6/17/2018	87	147.7	40.0	107.7	CH - Fat Clay with Sand
NERT5.49S1	NERT5.49S1 20'	6/18/2018	20	23.2	10.6	12.6	CL/SC - Clayey Sand
	NERT5.49S1 32'	6/18/2018	32	20.0	Non	-Plastic	CL/ML - Silty Clay with Gravel
	NERT5.49S1 72'	6/18/2018	72	42.1	18.0	24.1	CL - Sandy Lean Clay
	NERT5.49S1 89'	6/18/2018	89	42.1	16.1	26.0	CL - Lean Clay with Gravel
NERT5.11S1	NERT5.11S1 17'	6/16/2018	17	33.9	16.8	17.1	SP - Poorly Graded Sand with Gravel
	NERT5.11S1 37'	6/16/2018	37	27.3	16.8	10.5	CL - Lean Clay with Sand
	NERT5.11S1 40'	6/16/2018	40	20.5	Non	-Plastic	ML - Sandy Silt
	NERT5.11S1 67'	6/16/2018	67	85.5	29.7	55.8	CH - Sandy Fat Clay
	NERT5.11S1 72'	6/16/2018	72	107.2	30.6	76.6	CH - Sandy Fat Clay
NERT4.93S1	NERT4.93S1 15'	6/15/2018	15	21.6	19.2	2.4	ML - Sandy Silt
	NERT4.93S1 41'	6/15/2018	41	31.6	16.6	15.0	CL - Sandy Lean Clay
	NERT4.93S1 47'	6/15/2018	47	20.1	Non	-Plastic	GP - Poorly graded Gravel with Sand
	NERT4.93S1 48'	6/15/2018	48	21.2	14.9	6.3	CL/ML - Sandy Silty Clay with Gravel
	NERT4.93S1 60'	6/15/2018	60	30.9	16.5	14.4	CL-Sandy Lean Clay
NERT4.51S1	NERT4.51S1 15'	6/14/2018	15	30.3	19.6	10.7	CL - Lean Clay with Sand
	NERT4.51S1 42'	6/14/2018	42	21.9	Non	-Plastic	GP - Poorly Graded Gravel with Sand
	NERT4.51S1 48'	6/14/2018	48	21.0	Non	-Plastic	GP - Poorly Graded Gravel with Sand
	NERT4.51S1 52'	6/14/2018	52	53.5	17.0	36.5	CH - Gravely Fat Clay with Sand
NERT4.38N1	NERT4.38N1 12'	6/20/2018	12	36.4	14.8	21.6	GP/CL Poorly Graded Gravel with Clay
	NERT4.38N1 35'	6/20/2018	35	24.0	Non	-Plastic	ML - Sandy Silt
	NERT4.38N1 45'	6/20/2018	45	37.5	13.2	24.3	CL - Sandy Lean Clay
	NERT4.38N1 55'	6/20/2018	55	68.1	16.0	52.1	CH - Sandy Fat Clay
	NERT4.38N1 60'	6/20/2018	60	45.7	19.8	25.9	CL - Sandy Lean Clay

Table 5 Summary of Atterberg Limits Analysis NERT Downgradient Study Area, Henderson, Nevada

				Atte	Atterberg Limits ⁽¹⁾		
Soil Boring Name	Sample Identification	Collection Date	Depth (feet)	Liquid Limit	Plastic Limit	Plastic Index	USCS
NERT4.21N1	NERT4.21N1 22'	6/19/2018	22	31.2	16.8	14.4	CL - Lean Clay with Sand
	NERT4.21N1 45'	6/19/2018	45	21.6	Non	-Plastic	CL/ML - Silty Clay with Gravel
	NERT4.21N1 48'	6/19/2018	48	17.8	Non	-Plastic	CL/ML - Silty Clay with Gravel
	NERT4.21N1 62'	6/19/2018	62	44.3	16.1	28.2	CL - Lean Clay with Sand
	NERT4.21N1 87'	6/19/2018	87	44.4	14.7	29.7	CL - Lean Clay with Sand
NERT4.71S1	NERT4.71S1 23'	6/26/2018	23	19.0	Non	-Plastic	SM - Silty Sand with Gravel
	NERT4.71S1 37'	6/26/2018	37	28.3	18.8	9.5	CL - Lean Clay with Sand
	NERT4.71S1 47'	6/26/2018	47	23.0	Non	-Plastic	SM - Silty Sand with Gravel
	NERT4.71S1 87'	6/27/2018	87	19.3	11.6	7.7	CL/SP - Pooly Graded Sand with Gravel
	NERT4.71S1 89.5'	6/27/2018	89.5	19.6	13.1	6.5	CL/ML- Silty Lean Clay with Gravel
NERT3.80S1	NERT3.80S1 10'	6/27/2018	10	21.0	Non	-Plastic	SM - Silty Sand with Gravel
	NERT3.80S1 12'	6/27/2018	12	17.6	12.2	5.4	CL/ML - Silty Lean Clay with Sand
	NERT3.80S1 15'	6/27/2018	15	17.9	Non	-Plastic	SP - Poorly Graded Sand with Gravel
	NERT3.80S1 35'	6/27/2018	35	26.1	11.4	14.7	CL - Sandy Lean Clay with Gravel

Notes:

(1) ASTM Method D4318. Silt assumed as fine fraction for Non-Plastic samples.

USCS: Unified Soil Classification System

CH: Inorganic clays of high plasticity, fat clays

CL: Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays

GP: Poorly graded gravel

MH: Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts

ML: Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity

SC: Clayey sand

SP: Poorly graded sand

Table 6Transducer Installation DetailsNERT RI - Downgradient Study AreaHenderson Nevada

Well ID	Date & Time of Install	Pre-Installation Depth to Groundwater (feet btoc)	Total Well Total Depth (feet btoc)	Water Column (feet)	Transducer Future Start Time	Estimated Transducer Depth ⁽¹⁾ (feet btoc)	Transducer Depth Below Pre-Installation Depth to Groundwater ⁽²⁾ (feet)	Post-Installation Depth to Groundwater (feet btoc)
NERT5.91S1	9/6/18 1415	12.87	49.7	36.83	1500	33	20.13	12.85
NERT5.49S1	9/6/18 1515	26.90	39.75	12.85	1600	37.75	10.85	26.9
NERT5.11S1	9/7/18 1215	20.8	44.75	23.95	1245	40	19.20	20.8
NERT4.93S1	9/7/2018 1150	27.57	54.05	26.48	12.15	47	19.43	27.57
NERT4.71S1	9/7/2018 1110	28.87	46.73	17.86	1145	44.75	15.88	28.86
NERT4.51S1	9/7/2018 1025	26.31	50	23.69	1100	46	19.69	26.31
NERT4.38N1	9/7/2018 0715	32.85	39.51	6.66	0800	37.5	4.65	32.87
NERT4.21N1	9/7/18 0810	35.54	54.61	19.07	0900	53	17.46	35.54
NERT3.80S1	9/7/18 0955	10.62	19.4	8.78	1015	17.5	6.88	10.62

Notes:

btoc: Below top of casing.

(1) Depth of the transducer is measured to the bottom of the transducer.

(2) Transducers were installed approximately 20 feet below the pre-installation groundwater surface, or approximately 2 feet above the measured total depth of the well if water column was less than 22 feet.

Table 7Summary of Depth to BedrockNERT RI - Downgradient Study Area

Henderson, Nevada

Well ID	Depth to Bedrock (feet bgs)	Bedrock	Comments
NERT3.80S1	22.5	UMCf	Near an outcrop of Thumb (basal conglomerate).
	30	Thumb	Refusal at 55 feet bgs.
NERT4.21N1	56	Thumb	Altered Thumb formation. Drilled to 90 feet bgs. Soil is lithified below 60 feet bgs.
NERT4.38N1	57.5	Thumb	Drilled to 60 feet bgs.
NERT4.51S1	No bedrock encountered	NA	Refusal at 57.5 feet bgs due to large gravel.
NERT4.71S1	No bedrock encountered	NA	Drilled to 90 feet bgs.
NERT4.93S1	No bedrock encountered	NA	Refusal at 65 feet bgs due to volcanic breccia.
NERT5.11S1	66	UMCf	Drilled to 90 feet bgs.
NERT5.49S1	75	UMCf	Drilled to 90 feet bgs.
NERT5.91S1	50	UMCf	Drilled to 90 feet bgs.

Notes:

bgs: below ground surface

UMCf: Upper Muddy Creek formation

NA: Not applicable

Table 8 Depth to Groundwater and Groundwater Elevations July 2018 NERT Downgradient Study Area

Henderson, Nevada

Well ID	Easting ⁽¹⁾	Northing ⁽¹⁾	Elevation ⁽¹⁾ (feet amsl, TOC)	Date Gaged	Depth to Water (feet, TOC)	Elevation (feet amsl)
AA-30	836125.80	26733691.92	1532.35	7/13/2018	18.55	1513.80
COH2B1	832598.59	26733593.69	1546.95	7/13/2018	16.21	1530.74
LNDMW1	841145.67	26736145.45	1511.19	7/11/2018	36.68	1474.51
LNDMW2	840864.28	26737125.16	1501.98	7/17/2018	34.22	1467.76
MW-3	836835.36	26733434.90	1523.29	7/12/2018	2.89	1520.40
MW-4	836666.49	26733446.64	1526.35	7/17/2018	6.04	1520.31
MW-02	838994.12	26734478.11	1533.13	7/12/2018	39.52	1493.61
MW-13	838306.91	26734740.22	1529.84	7/12/2018	34.92	1494.92
MW-20	840590.41	26735460.67	1512.54	7/12/2018	32.7	1479.84
MW-25	839862.75	26734834.10	1531.65	7/12/2018	39.34	1492.31
NERT5.91S1	833571.59	26733845.83	1536.76	7/16/2018	12.61	1524.15
NERT5.49S1	835451.85	26734325.76	1543.37	7/16/2018	26.32	1517.05
NERT5.11S1	837144.38	26734881.04	1522.88	7/10/2018	19.84	1503.04
NERT4.93S1	837979.18	26734990.31	1523.33	7/10/2018	26.91	1496.42
NERT4.71S1	838991.63	26735349.66	1519.29	7/9/2018	28.51	1490.78
NERT4.51S1	840138.03	26735857.15	1506.24	7/10/2018	25.91	1480.33
NERT4.38N1	840337.59	26737140.64	1505.04	7/16/2018	32.51	1472.53
NERT4.21N1	841309.13	26736954.70	1502.07	7/16/2018	35.32	1466.75
NERT3.80S1	843700.76	26736780.10	1460.54	7/9/2018	10.47	1450.07
WMW5.7N	834471.76	26734425.52	1528.50	7/17/2018	8.36	1520.14
WMW5.5S	835768.11	26733971.74	1528.22	7/13/2018	13.55	1514.67
WMW5.58S	835070.11	26734647.03	1526.08	7/13/2018	16.60	1509.48
WMW4.9S	838411.85	26735290.15	1518.84	7/13/2018	26.2	1492.64
WMW4.9N	838408.40	26736756.98	1523.37	7/17/2018	31.58	1491.79
WMW3.5S	844697.76	26737275.90	1483.54	7/16/2018	43.31	1440.23
WMW3.5N	843836.97	26737791.35	1482.54	7/17/2018	35.17	1447.37

Notes:

(1) Well coordinates and elevations surveyed by licensed surveyor (Stanley) April 4 through 8, 2016. Coordinate system: State Plane Coordinate System; Elevations are referenced to the North American Datum (NAD) 83 Nevada East Zone (2701) with vertical datum based on NAVD 88 referenced to the City of Henderson Benchmark network.

amsl = Above mean sea level

TOC = Top of casing

Table 9 Water Quality Parameters July 2018 NERT Downgradient Study Area

Henderson, Nevada	

Well ID	Sample Date	Screen Interval (feet, bgs)	Water- Bearing Zone	Lithology	Purge Volume Removed (Liters)	Temp (°C)	рН	EC (μS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Purge Flow Rate (mL/min)	Depth to Water (feet)	Color / Odor
AA-30	7/13/2018	11.7 - 31.7	Shallow	Qal	6.0	25.15	7.72	8.08	1.46	168	7.9	200	18.55	Clear/None
COH2B1	7/13/2018		Shallow		12.5	26.14	7.26	3.66	0.55	169	37.6	200	16.21	Clear/None
LNDMW1	7/11/2018		Shallow		11.25	27.10	7.13	4.98	3.13	171	412	150	36.68	Cloudy/None
LNDMW2	7/17/2018		Shallow		8.0	32.47	7.22	3.42	0.56	179	582	200	34.22	Clear/None
MW-3	7/12/2018		Shallow		3.0	28.93	7.34	5.13	4.98	179	1.0	150	2.89	Clear/None
MW-4	7/17/2018		Shallow		2.75	34.43	7.2	4.26	2.92	127	0.0	150	6.04	Clear/None
MW-02	7/12/2018	? - 45	Shallow		7.5	25.67	7.17	4.05	6.34	146	2.2	200	39.52	Clear/None
MW-13	7/12/2018	? - 48	Shallow	Qal	4.5	27.45	7.21	5.52	4.34	142	22.6	250	34.92	Clear/None
MW-20	7/12/2018		Shallow		8.01	30.01	7.51	3.45	1.04	147	129	200	32.7	Clear/None
MW-25	7/12/2018		Shallow		6.5	27.65	7.30	4.41	6.84	143	11.7	200	39.34	Clear/None
NERT3.80S1	7/9/2018	10 - 20	Shallow	Qal	6.25	33.14	7.15	3.64	1.27	124	24.6	150	10.47	None
NERT4.21N1	7/16/2018	45 - 55	Shallow	Qal	7.0	33.81	7.25	4.00	2.39	1.54	0.4	200	35.32	Cloudy/None
NERT4.38N1	7/16/2018	30 - 40	Shallow	Qal	5.0	34.48	7.21	3.73	1.60	168	36.8	200	32.51	Clear/None
NERT4.51S1	7/10/2018	40 - 50	Shallow	Qal	3.75	29.13	7.23	4.89	4.64	162	0.0	200	25.91	None
NERT4.71S1	7/9/2018	40 - 50	Shallow	Qal	8.5	25.76	8.28	5.65	3.89	152	54	200	28.50	None
NERT4.93S1	7/10/2018	45 - 55	Shallow	Qal	5.5	28.73	7.10	4.58	2.7	151	5.5	200	26.91	None
NERT5.11S1	7/10/2018	35 - 45	Shallow	Qal	7.25	25.96	7.04	5.27	0.58	102	16.7	200	19.84	None
NERT5.49S1	7/16/2018	30 - 40	Shallow	Qal	7.0	33.25	7.94	1.53	0.49	139	45.1	200	26.32	Clear/None
NERT5.91S1	7/16/2018	40 - 50	Shallow	Qal	4.75	31.09	7.62	2.48	0.57	154	39.2	150	12.61	None
WMW3.5N	7/17/2018		Shallow		18.5	29.11	7.11	6.21	1.09	195	>1000	200	35.17	Red Brown/None
WMW3.5S	7/16/2018		Shallow		7.0	29.12	7.11	3.69	0.55	179	7.8	200	43.31	Clear/None
WMW4.9N	7/17/2018		Shallow		10.0	28.39	7.15	3.17	1.09	174	181	200	31.58	Clear/None
WMW4.9S	7/13/2018		Shallow		6.0	34.28	7.31	2.53	1.10	64	44.3	200	26.2	Clear/None
WMW5.5S	7/13/2018		Shallow		6.0	30.50	7.23	3.58	3.33	164	11.7	200	13.59	Clear/None
WMW5.58S	7/13/2018		Shallow		12.25	34.55	7.53	4.32	0.57	-79	498	150	17.31	Brown/None
WMW5.7N	7/17/2018		Shallow		4.0	37.71	7.14	2.32	0.48	174	0.0	200	8.36	Clear/None

Notes:

-- = No data available

bgs = below ground surface

°C = Degrees Celsius

DO = Dissolved Oxygen

EC = Electrical Conductivity

ORP - Oxidation reduction potential

mg/L = milligrams per liter

mL/min = milliliters per minute

mV = millivolts

NA = Not applicable

NTU = Nephelometric Turbidity Units

TBD = To be determined

TOC = Top of Casing

Qal = Alluvium

µS/cm = microSiemens per centimeter

Table 10 Analytical Results of Groundwater Well Sampling July 2018 NERT Downgradient Study Area

Henderson, Nevada

		Sample ID Method Screening Level	Perchlorate (µg/L) 314 18 µg/L	Chlorate (μg/L) 300.1B 1,000	Chloride (mg/L) 300.0 250 mg/L	Bromide (mg/L) 300.0 11.3	Chloride / Bromide Ratio	Dissolved Chromium (µg/L) 200.8 100 µg/L	Total Dissolved Solids (mg/L) SM 2540C 500 mg/L
Well ID	Sample Date	Source	BCL	BCL	2nd MCL	BCL		MCL	2nd MCL
NERT3.80S1	7/9/2018	NERT3.80S1-20180709	1100	1700	480	ND (<2.5)	>192	1.8 J	3100
NERT4.21N1	7/16/2018	NERT4.21N1-20180716	2200	6800	570	ND (<2.5)	>228	15	4000
NERT4.38N1	7/16/2018	NERT4.38N1-20180716	1400	300	510	ND (<2.5)	>204	2.5 B	3600
NERT4.51S1	7/10/2018	NERT4.51S1-20180710	3100	10000	710	ND (<2.5)	>284	19	4900
NERT4.71S1	7/10/2018	NERT4.71S1-20180710	3800	14000	830	ND (<5.0)	>166	26	5200
NERT4.93S1	7/10/2018	NERT4.93S1-20180710	3900	19000	770	ND (<2.5)	>308	15	4300
NERT4.93S1	7/10/2018	NERT4.93S1-20180710-EB	ND (<4.0)	ND (<20)	0.26 J	ND (<0.50)	>0.52	ND (<2.0)	ND (<10)
NERT4.93S1	7/10/2018	NERT4.93S1-20180710-FB	ND (<4.0)	ND (<20)	ND (<0.50)	ND (<0.50)	>1.00	ND (<2.0)	ND (<10)
NERT4.93S1	7/10/2018	NERT4.93S1-20180710-FD	3900	18000	770	ND (<2.5)	>308	14	4300
NERT5.11S1	7/10/2018	NERT5.11S1-20180710	6000	25000	910	ND (<2.5)	>364	13	4700
NERT5.49S1	7/16/2018	NERT5.49S1-20180716	5.1	ND (<100)	250	0.27 J	>926	1.3 J B	1400
NERT5.91S1	7/16/2018	NERT5.91S1-20180716	2900	660	570	ND (<2.5)	>228	1.5 J B	3100
AA-30	7/13/2018	AA-30-20180713	3900	9400					
COH2B1	7/13/2018	COH2B1-20180713	1600	1000					
LNDMW1	7/11/2018	LNDMW1-20180711	1600	4700					
LNDMW2	7/17/2018	LNDMW2-20180717	1700	6000					
MW-02	7/12/2018	MW-02-20180712	1900	2600					
MW-02	7/12/2018	MW-02-20180712-EB	ND (<4.0)	ND (<20)					
MW-02	7/12/2018	MW-02-20180712-FB	ND (<4.0)	ND (<20)					
MW-02	7/12/2018	MW-02-20180712-FD	1900	2600					
MW-13	7/12/2018	MW-13-20180712	3700	14000					
MW-20	7/12/2018	MW-20-20180712	48	78 J					
MW-25	7/12/2018	MW-25-20180712	4.3 F1	57					
MW-3	7/12/2018	MW-3-20180712	3300	6200					
MW-4	7/12/2018	MW-4-20180712	3000	5900					
WMW3.5N	7/17/2018	WMW3.5N-20180717	320	640					
WMW3.5S	7/16/2018	WMW3.5S-20180716	1500	3900					
WMW4.9N	7/17/2018	WMW4.9N-20180717	680	13 J					
WMW4.9S	7/13/2018	WMW4.9S-20180713	930	2700					
WMW4.9S	7/13/2018	WMW4.9S-20180713-FD	900	2700					
WMW5.58S	7/13/2018	WMW5.58S1-20180713	2500	3200					
WMW5.5S	7/13/2018	WMW5.5S-20180713	3100	11000					
WMW5.7N	7/17/2018	WMW5.7N-20180717	3.9 J F1	ND (<100)					

BCL - Basic Comparison Level: Residential water basic comparison levels in NDEP July 2017 BCL spreadsheet (NDEP 2017). BCL for perchlorate is identified as 18 ug/L to be consistent with the Nevada Interim Action Level.

MCL - Maximum Contaminant Level: Primary United States Environmental Protections Agency Maximum Contaminant Level (USEPA 40 CFR Part 141). 2nd MCL - Secondary Maximum Contaminant Level: National Secondary Drinking Water Regulations (USEPA, 40 CFR Part 143).

Gray Shading - Value equals or exceeds screening level

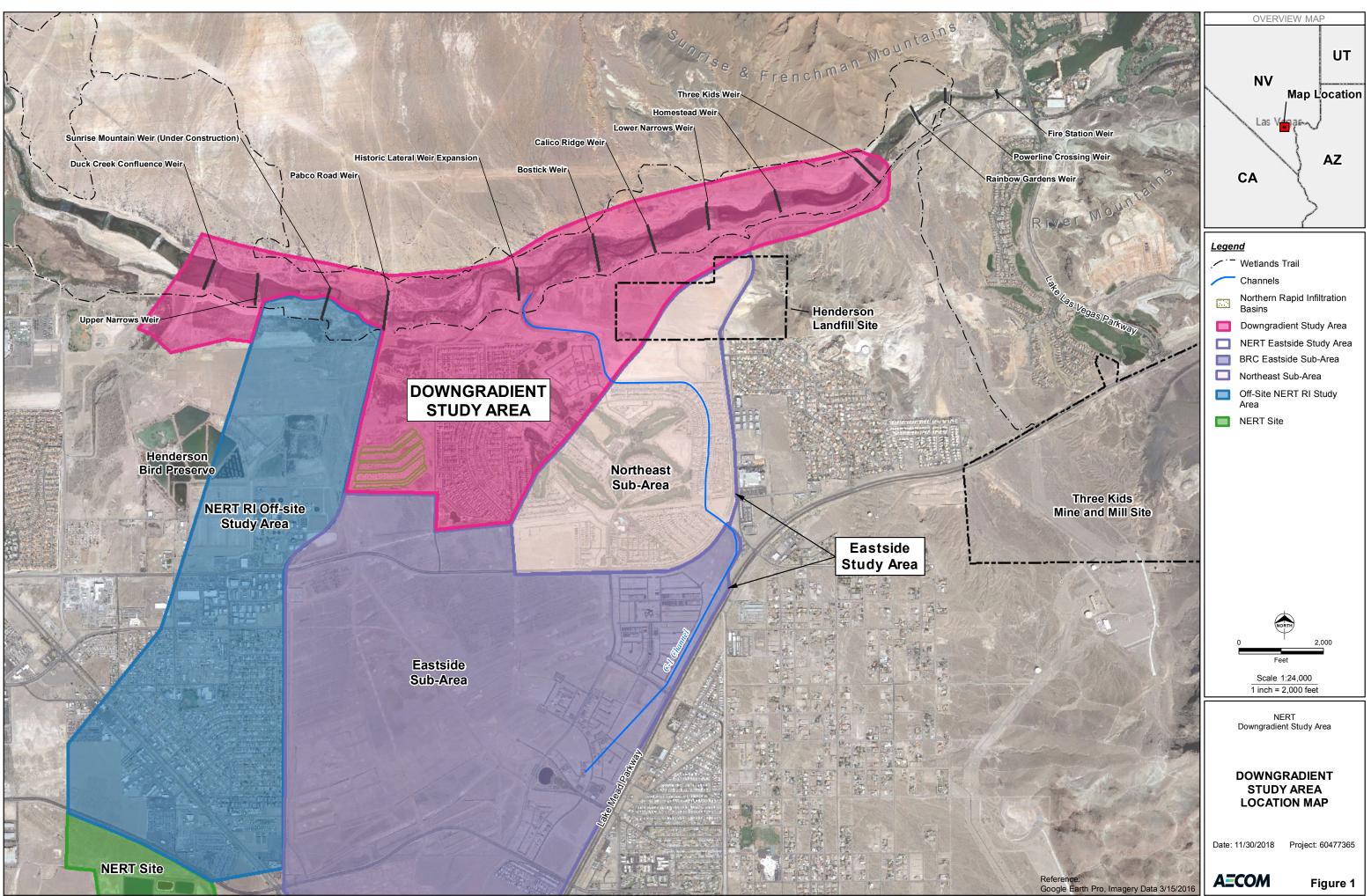
-- Not analyzed

ND - Not Detected above associated method detection limit

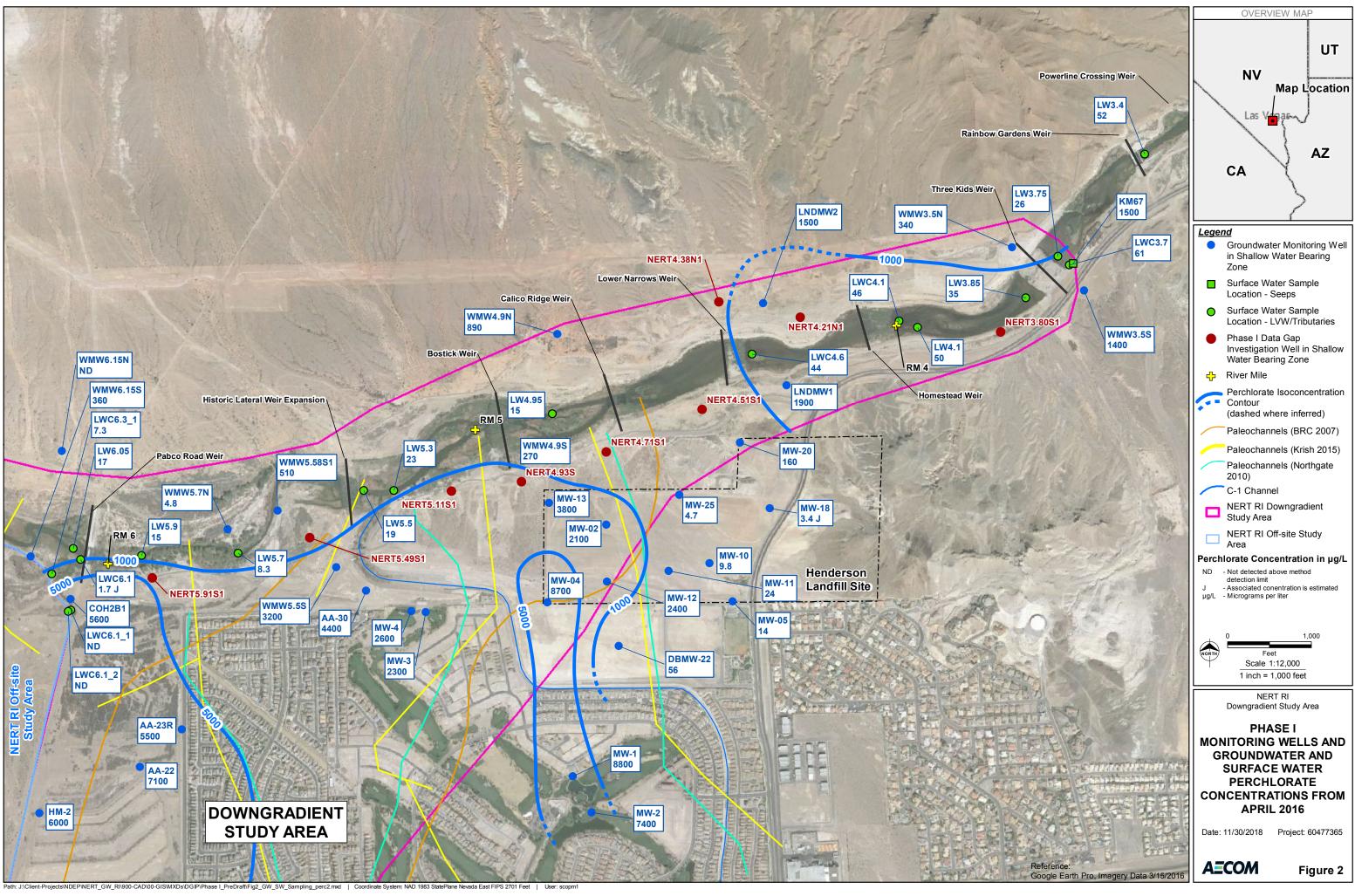
B - Compound was found in the blank and sample.

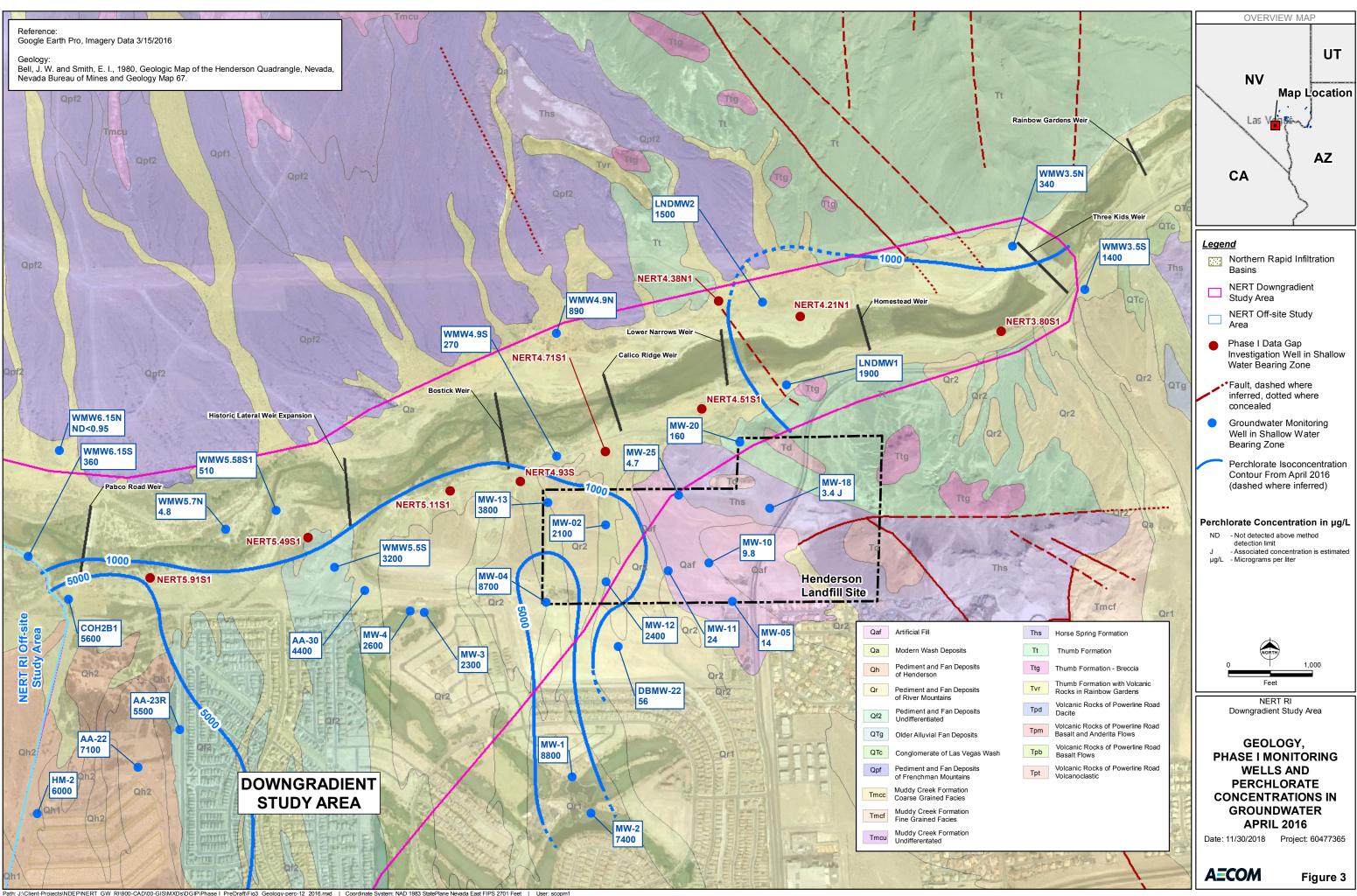
J - Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

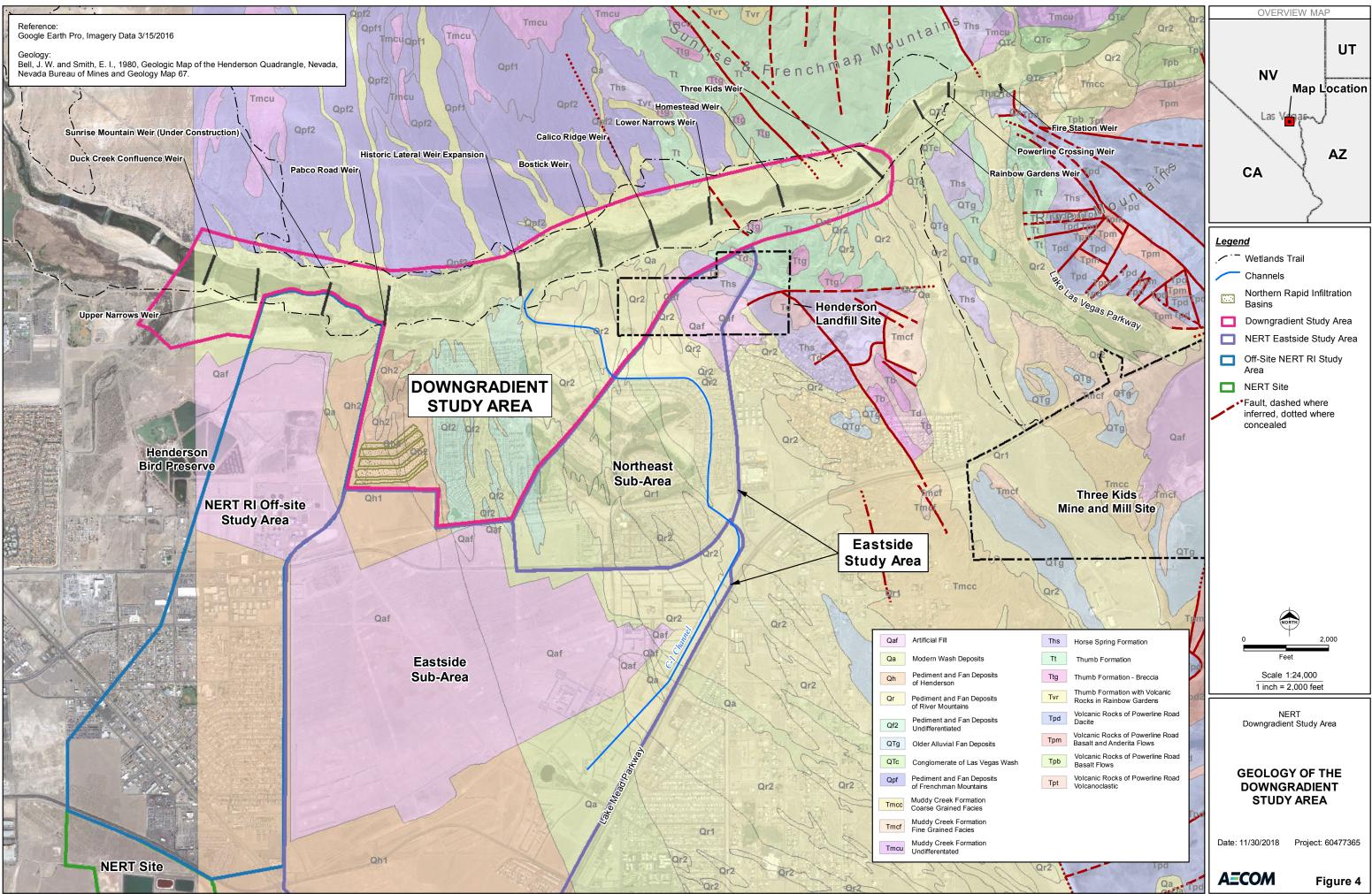
F1 - Matrix spike and/or matrix spike duplicate recovery is outside acceptable limits

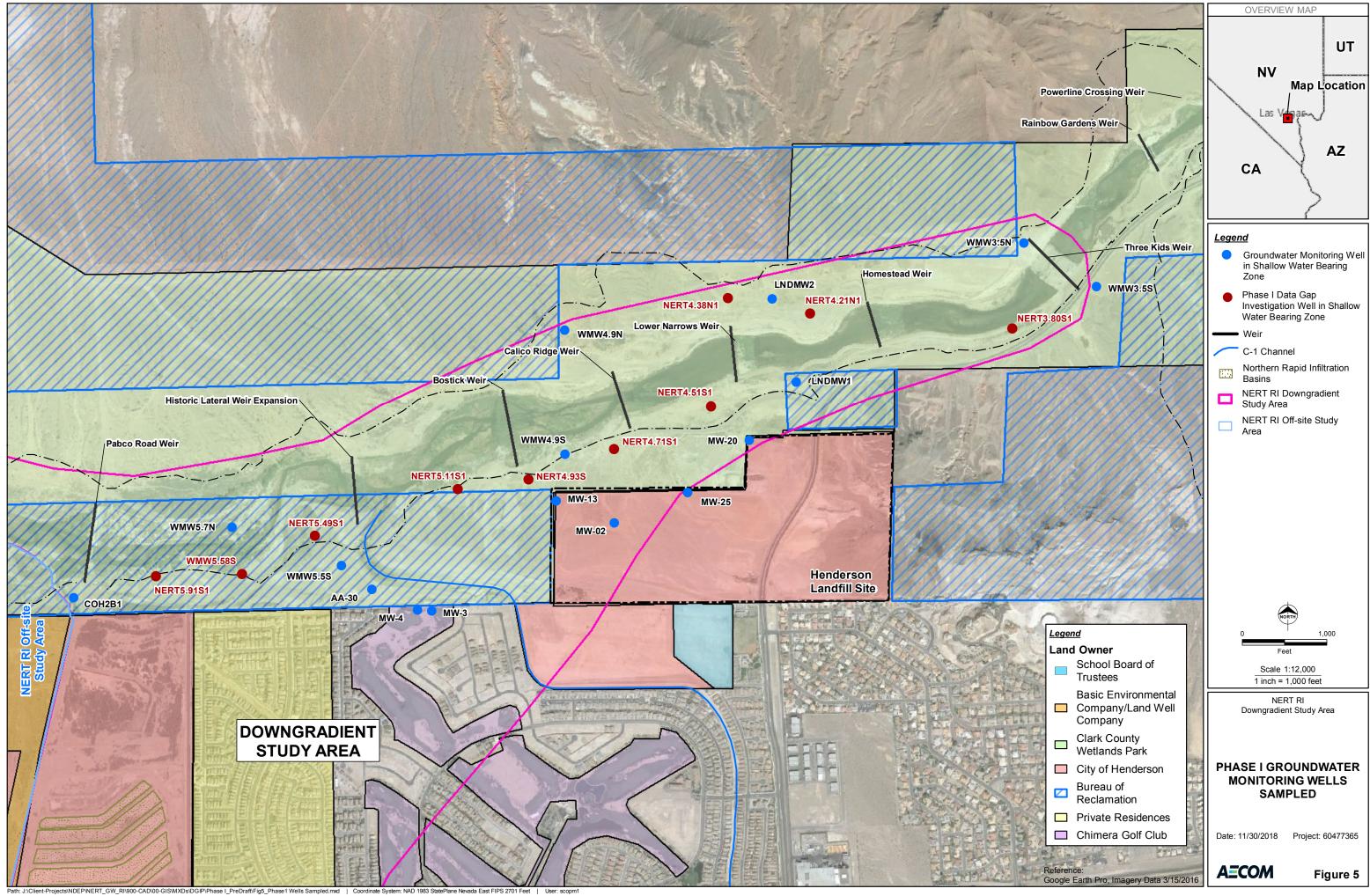

µg/L - Micrograms per liter

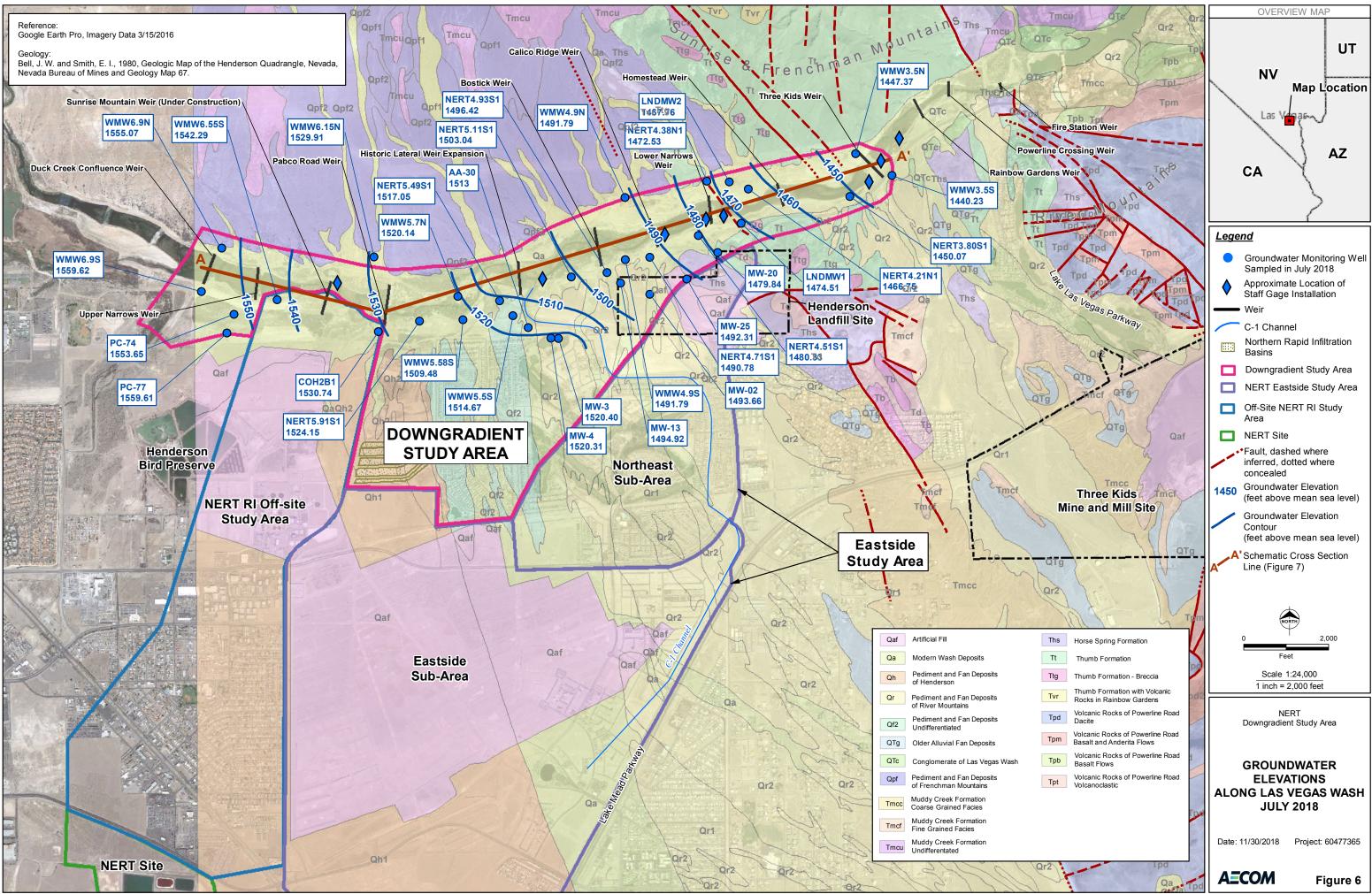
mg/L - Milligrams per liter

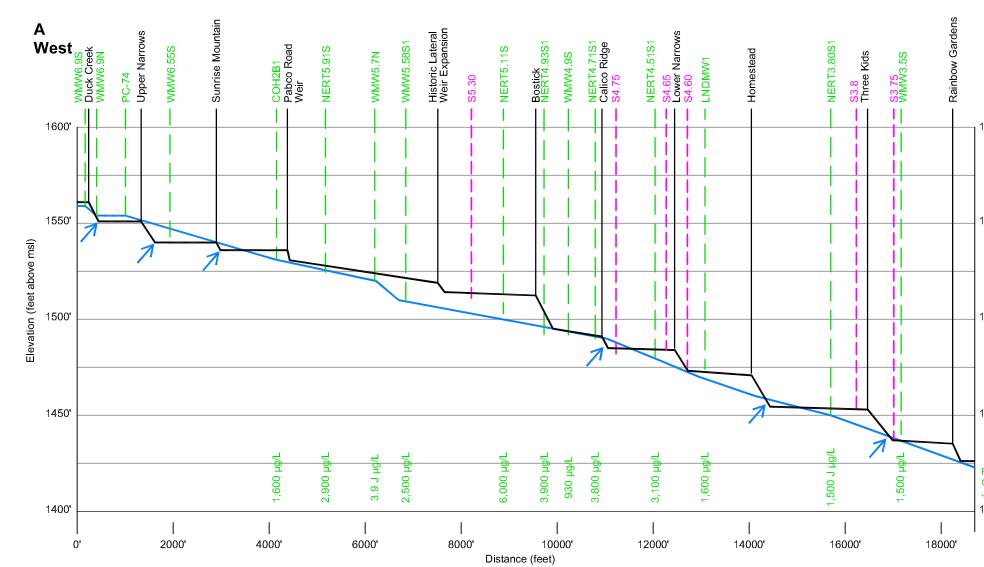


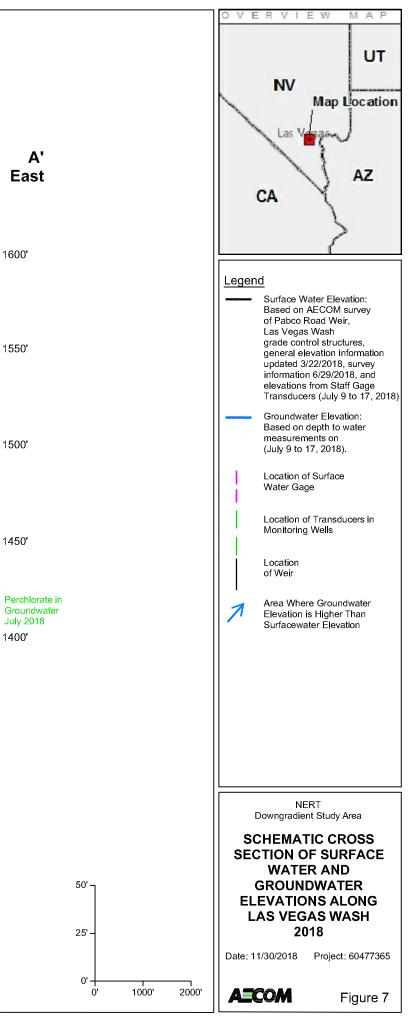

AECOM

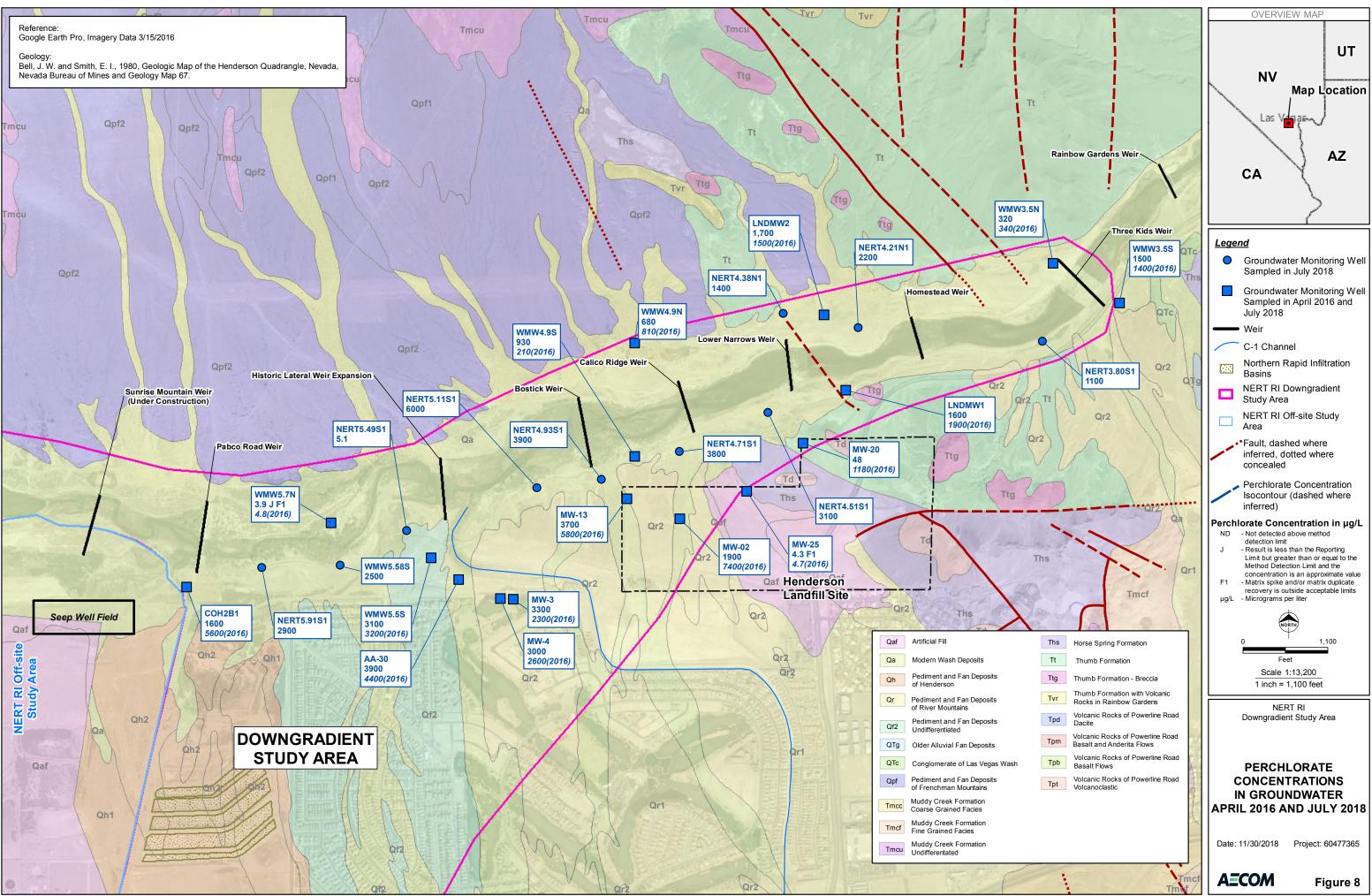

Figures

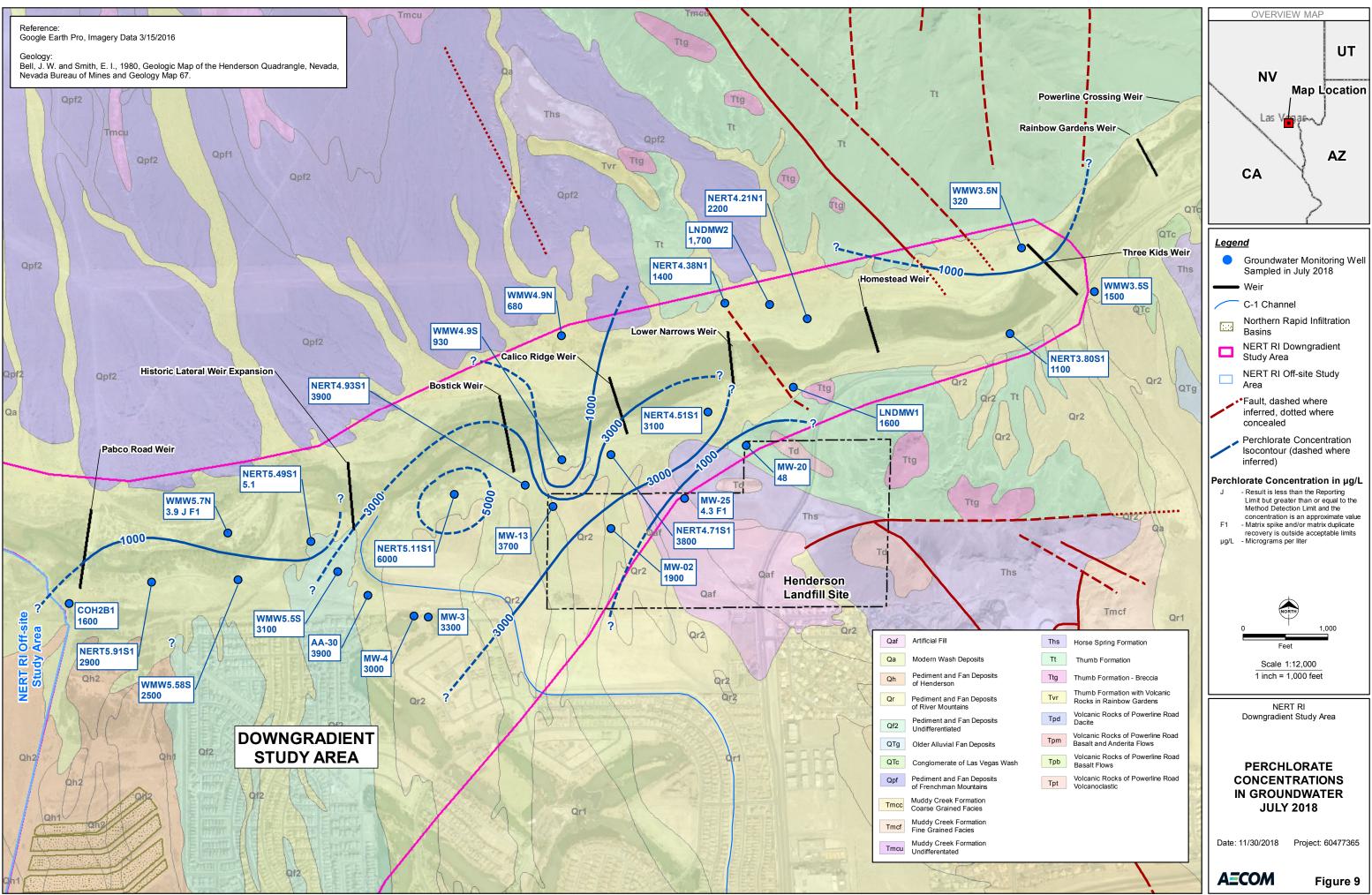

Path: J.Client-ProjectsINDEP/NERT_GW_RI/900-CAD/00-GIS/MXDs/DGIP/Phase I_PreDraft/Fig1_Vicinity Map.mxd | Coordinate System: NAD 1983 StatePlane Nevada East FIPS 2701 Feet | User: scopm1

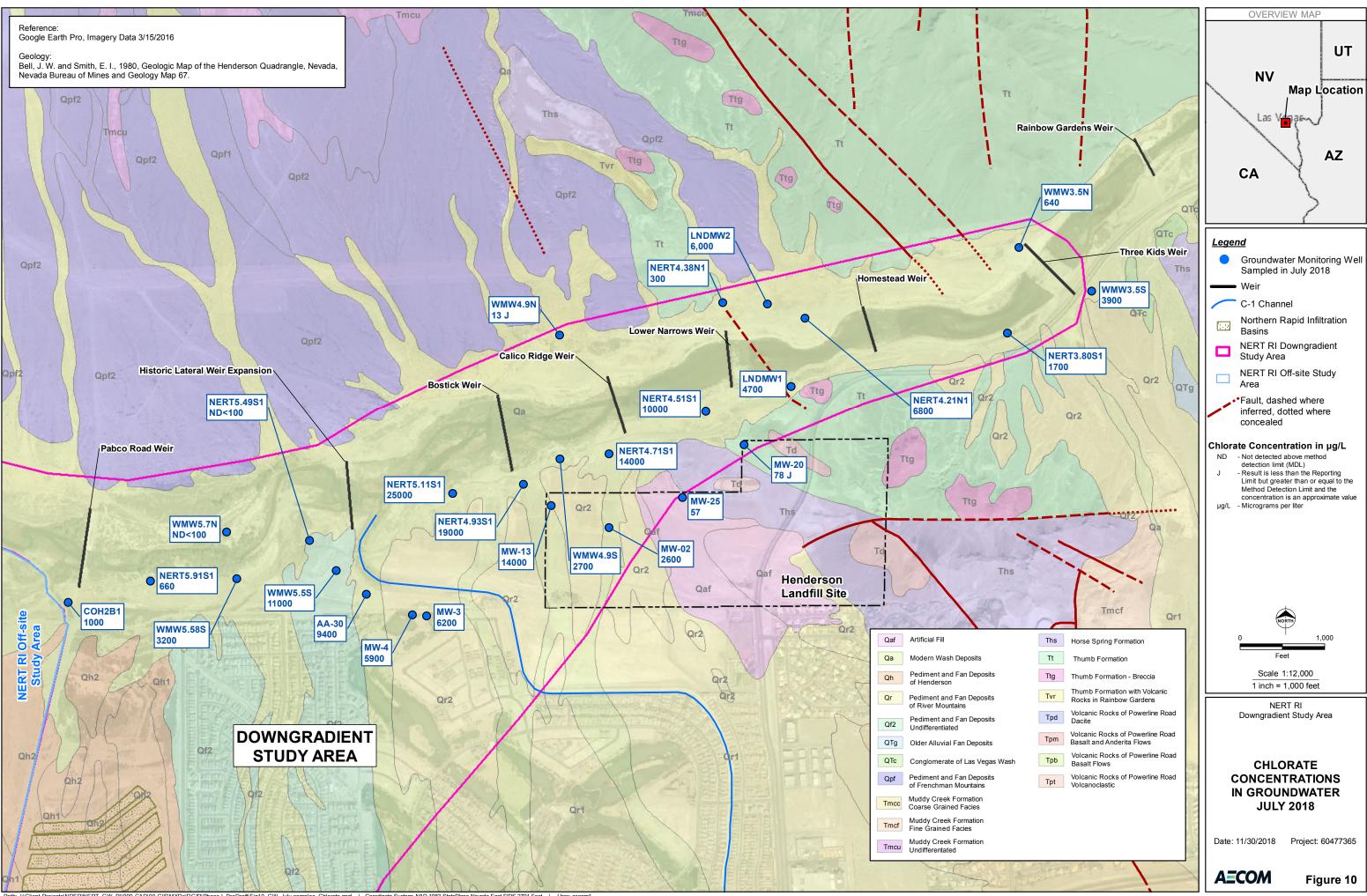


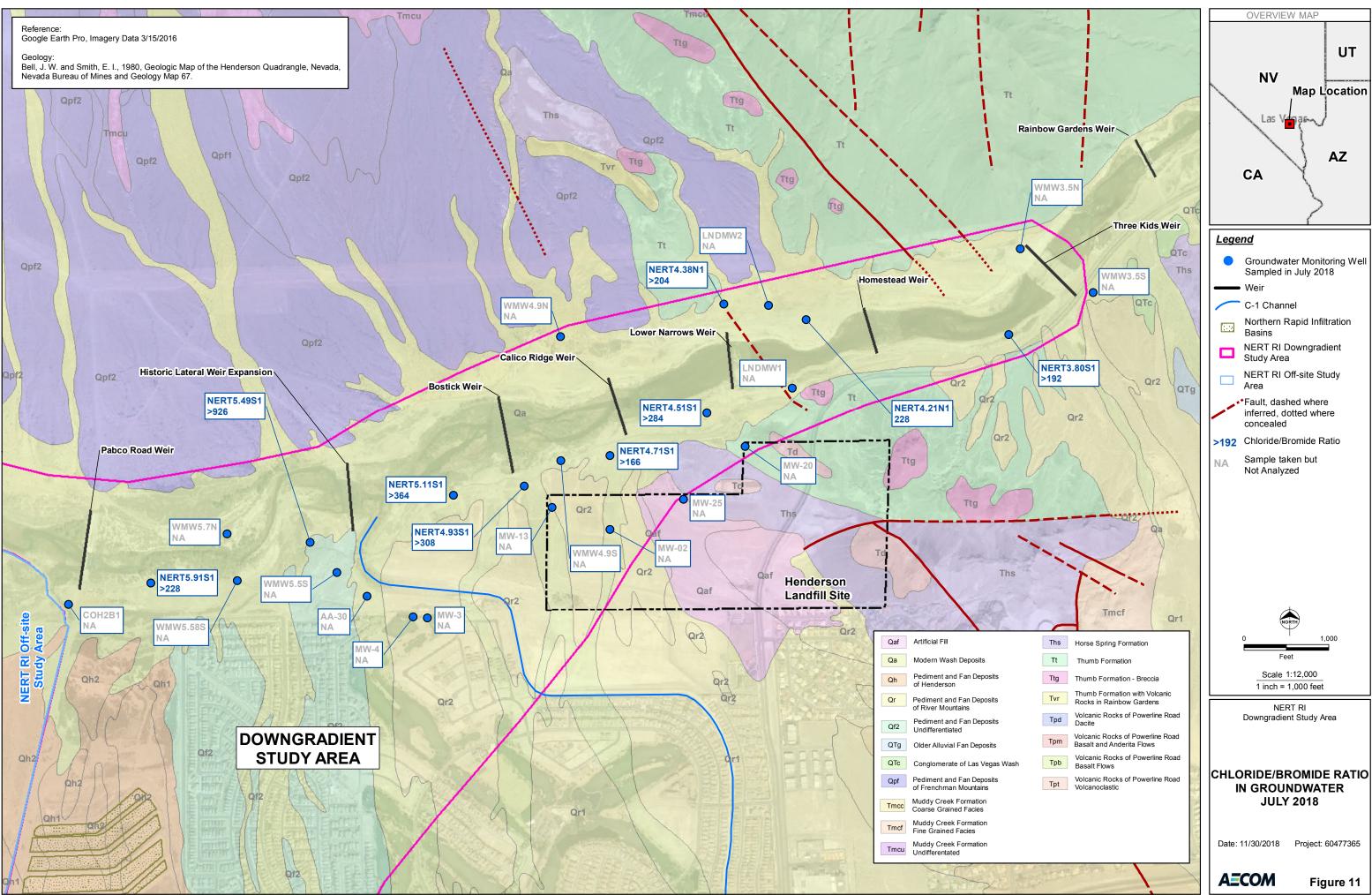


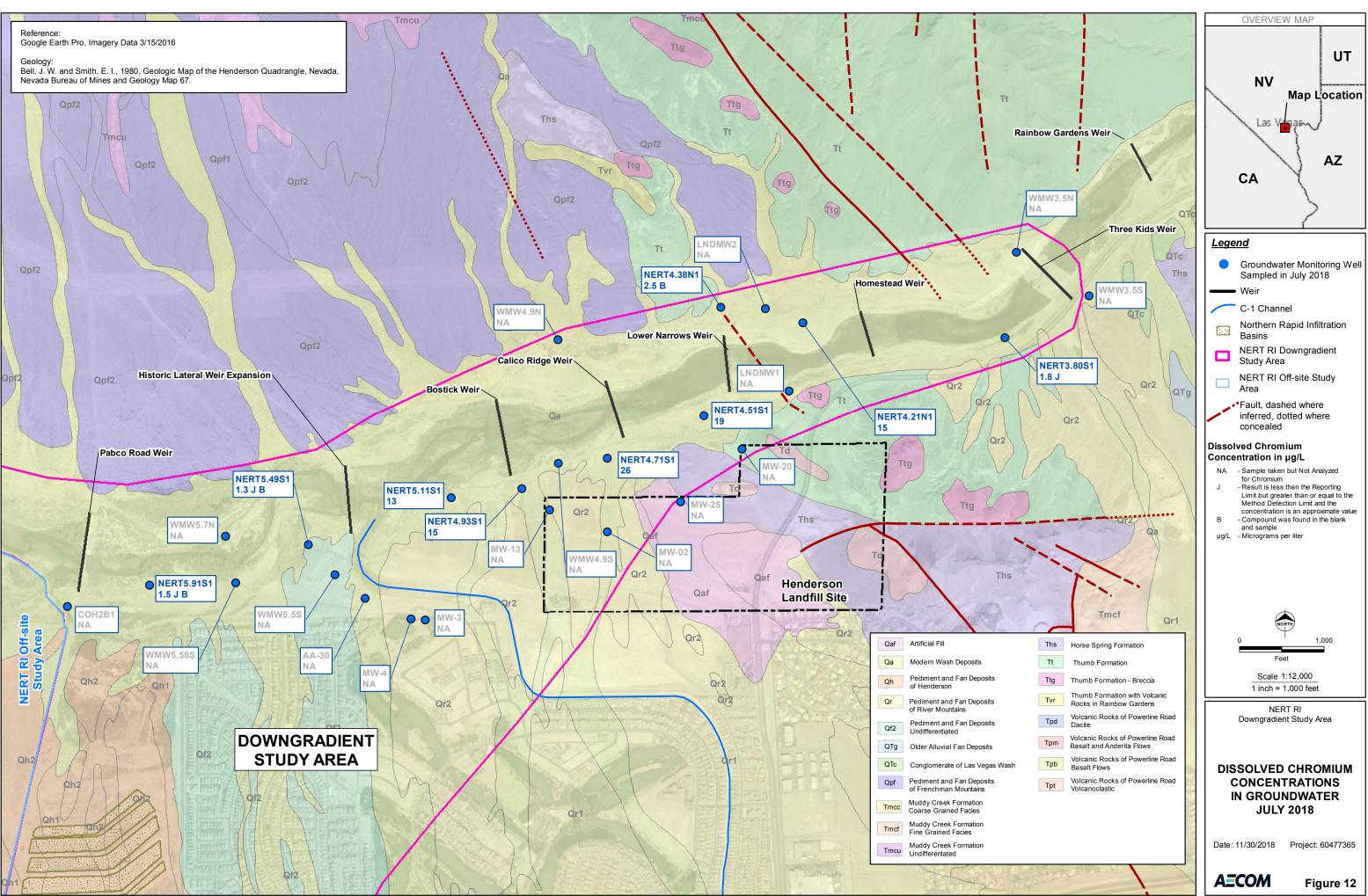

Path: J:Client-ProjectsINDEPINERT_GW_RI1900-CAD100-GISIMXDs/DGIPIPhase I_PreDraft/Fig4_Geologic Study Area.mxd | Coordinate System: NAD 1983 StatePlane Nevada East FIPS 2701 Feet | User: scopm1

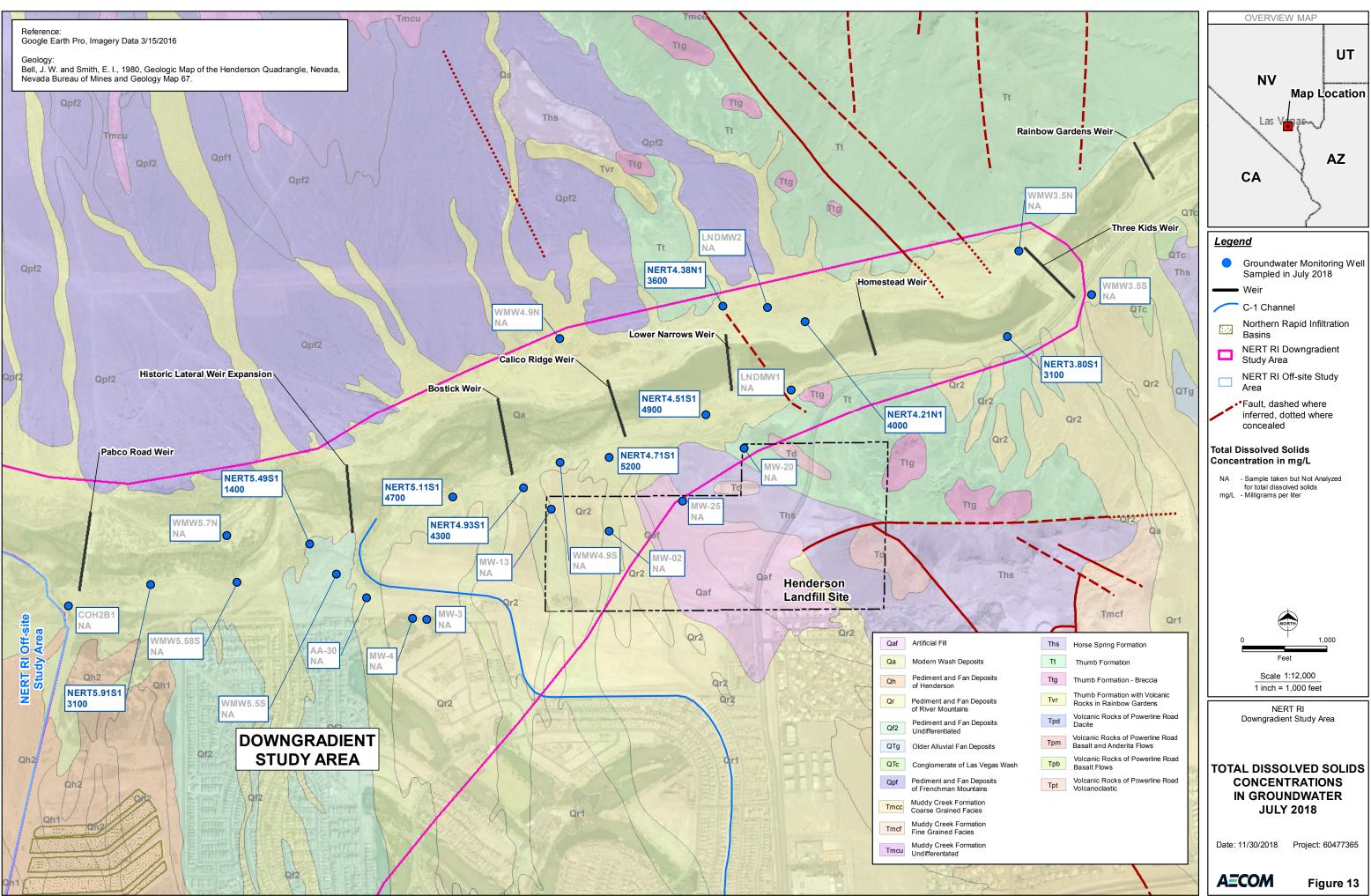


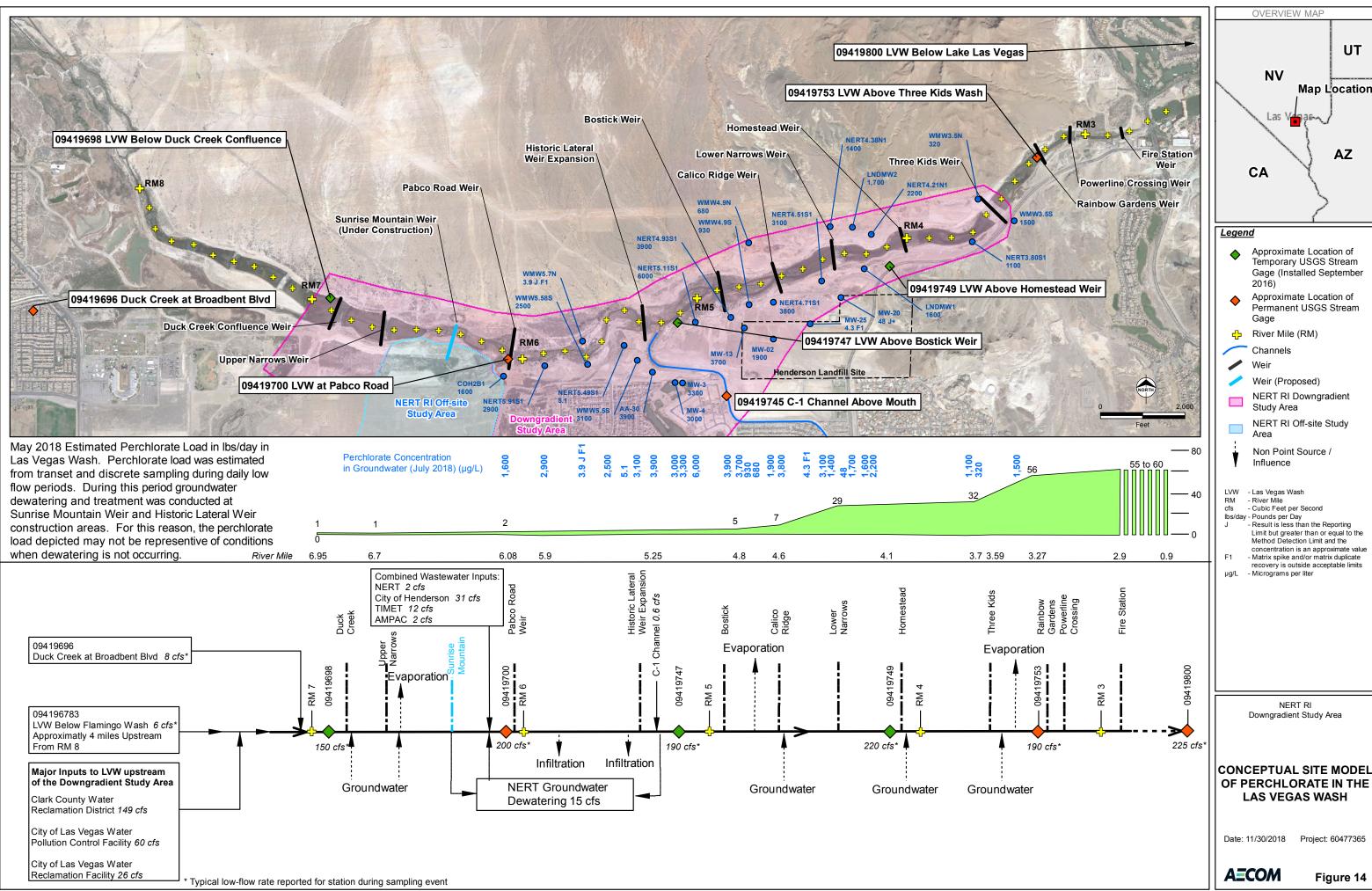

Path: J.(Client-ProjectsINDEP/NERT_GW_RI/900-CAD/00-GIS/MXDs/DGIP/Phase I_PreDraft/Fig6_GW_July samples_GWElev.mxd | Coordinate System: NAD 1983 StatePlane Nevada East FIPS 2701 Feet | User: scopm

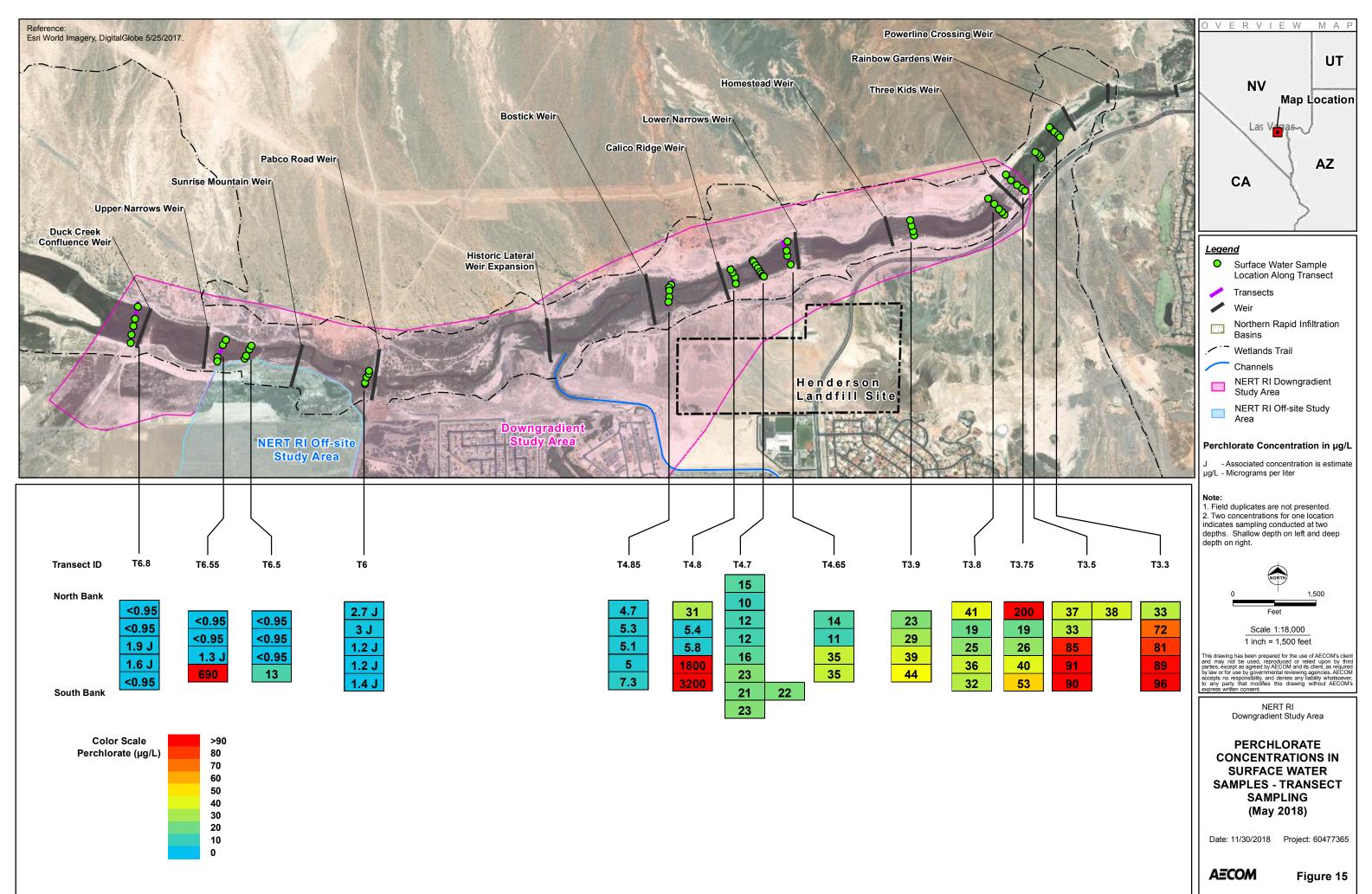


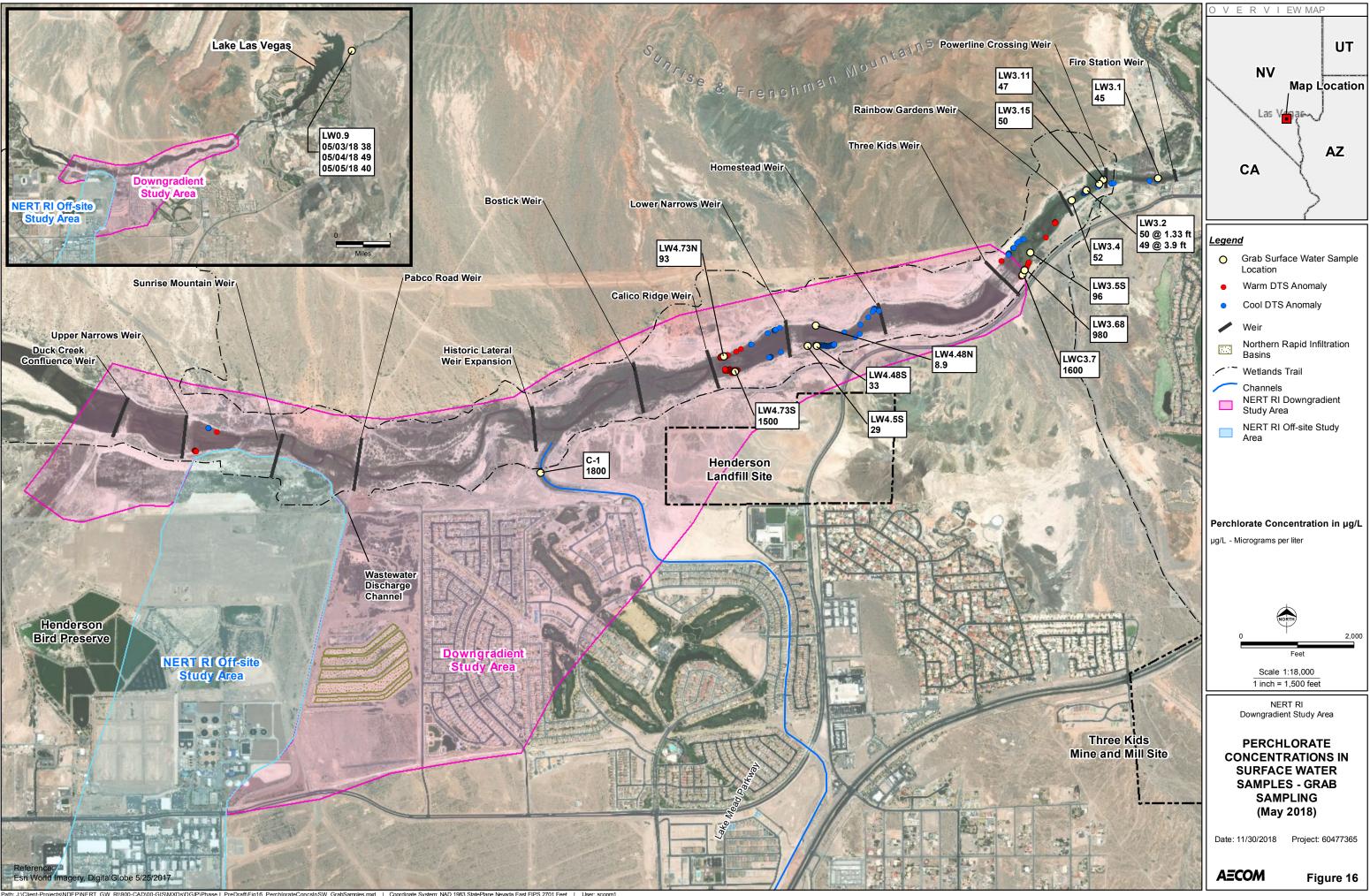

Path: J:Client-Projects\NDEP\NERT_GW_RI\900-CAD\00-GIS\MXDs\DGIP\Phase I_PreDraft\Fig8_GW_July samples_Perc2016.mxd | Coordinate System: NAD 1983 StatePlane Nevada East FIPS 2701 Feet | User: scopm1


Path: J.Client-ProjectsINDEPINERT_GW_RI1900-CAD100-GISIMXDsIDGIPIPhase I_PreDraft/Fig9_GW_July samples_Perc2018.mxd | Coordinate System: NAD 1983 StatePlane Nevada East FIPS 2701 Feet | User: scopm1


Path: J:Client-ProjectsINDEPINERT_GW_R11900-CAD100-GISIMXDs/DGIP\Phase I_PreDraft\Fig10_GW_July samples_Chlorate.mxd | Coordinate System: NAD 1983 StatePlane Nevada East FIPS 2701 Feet | User: scopm1


Path: J:Client-ProjectsINDEPINERT_GW_RI900-CAD100-GISIMXDsIDGIP\Phase I_PreDraftFig11_GW_July samples_ChI-B Ratios.mxd | Coordinate System: NAD 1983 StatePlane Nevada East FIPS 2701 Feet | User: scopm1


Path: J:\Client-Projects\NDEP\NERT_GW_RI\900-CAD\00-GIS\MXDs\DGIP\Phase I_PreDraft\Fig12_GW_July samples_Chromium.mxd | Coordinate System: NAD 1983 StatePlane Nevada East FIPS 2701 Feet | User: scopm1


Path: J:\Client-Projects\NDEP\WERT_GW_RI\900-CAD\00-GIS\MXDs\DGIP\Phase I_PreDraft\Fig13_GW_July samples_TDS.mxd | Coordinate System: NAD 1983 StatePlane Nevada East FIPS 2701 Feet | User: scopm1

Path: J.(Client-ProjectsINDEPINERT_GW_RI)900-CAD\00-GISIMXDs\DGIP\Phase I_PreDraft\Fig14_GW-CSM-2018.mxd | Coordinate System: NAD 1983 StatePlane Nevada East FIPS 2701 Fet | User: scopm1

Path: J/Client-Projects/NDEP/NERT_GW_RI/900-CAD/00-GIS/MXDs/DGIP/Phase I_PreDraft/Fig15_Transects-Perchlorate.mxd | Coordinate System: NAD 1983 StatePlane Nevada East FIPS 2701 Feet | User: scopm1

Path: J\Client-Projects\NDEP\NERT_GW_RI\900-CAD\00-GIS\MXDs\DGIP\Phase 1_PreDraft\Fig16_PerchlorateConcsInSW_GrabSamples.mxd | Coordinate System: NAD 1983 StatePlane Nevada East FIPS 2701 Feet | User: scopm1

Appendix A

Response to Stakeholder Comments (No stakeholder comments received) Appendix B

Notice of Intent and Underground Service Alert Tickets

DIVISIO	CONSERVATION AN N OF WATER 100 Shadow Lane, St Las Vegas, Nevada 1486-2770 · Fax (70)	RESOUR nite 201 89106		JRCES	JASON	ctor KING, P.E. Engineer
	http://water.nv.	EOV				
	NOTICE OF INTEN REVIEW FOR					
To: Bob Nix		Date: J	une 12	, 2018		
Facsimile No.:	or E-mail Address:	bnix@casca	de-env	com		
This document was:	E-mailed	Faxed				
NOI Card Number: 39997	Appro	ved		ejected	I (See reason	ns below)
Work performed		mi	ssing		invalid	
Proposed use of well			ssing		invalid	
Intended start date		mi	ssing		invalid	
Waiver/Permit number if applicable	c	mi	ssing		invalid	
Well location (legal description, Gl	PS coordinates)	mi	ssing		invalid	
Parcel number		mi	ssing		invalid	
Address at well location		mi	ssing		invalid	
Permit number		mi	ssing		invalid	
Waiver number or NDEP Facility I	D Number	mi	ssing		invalid	
Address of Client		mi	ssing		invalid	
Name of client/owner		mi	ssing		invalid	
Contractor's license number		mi	ssing		invalid	
Onsite well driller's license number	r	mi	ssing		invalid	
Drilling company name/address		mi	ssing		invalid	
Driller's signature		mi	ssing		invalid	
Replacement well		Ye	s		No	
If yes, existing well must l pursuant to NAC 534.300		e replacemer	nt well	is drille	ed,	

STATE OF NEVADA

3.6551

BRADLEY CROWELL

Instructions: Please note that you must provide a copy of the well driller's report for the installation of one (1) monitor well within 30 days of completion. If you have any questions, please do not hesitate D to give our office a call.

Person reviewing NOI Card: Christi Cooper, waiver issued by Tracy Geter

Date reviewed: June 11, 2018

BRIAN SANDOVAL

GOVERNOR

BRIAN SANDOVAL Governor

BRADLEY CROWELL Director STATE OF NEVADA

JASON KING, P.E. State Engineer

JOHN GUILLORY, P.E. Supervising Engineer

DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES DIVISION OF WATER RESOURCES

SOUTHERN NEVADA BRANCH OFFICE

400 Shadow Lane, Suite 201 Las Vegas, Nevada 89106 (702) 486-2770 • Fax (702) 486-2781 <u>http://water.nv.gov</u>

June 12, 2018

MO-3500

Bob Nix Operations Manager Cascade Drilling, LP 4221 West Oquendo Road Las Vegas, Nevada 89118

RE: Request for waiver to install one (1) temporary monitor well (NERT 3.65S1) to collect groundwater samples and analyze the samples as requested by Nevada Division of Environmental Protection (NDEP) Order Number 8-001721, located on vacant land, just south of 201 Via Antincendio, Clark County, Nevada, within the SW¼ of the NE¼ of Section 28, T.21S, R.63E (Lat: 36° 05' 44.720" N, Long: -114° 56' 44.650" W, NAD 83/ WGS 84), and within the Las Vegas Valley Basin (212).

Dear Mr. Nix:

As provided in Nevada Administrative Code (NAC) § 534.450 of the Regulation for Water Well and Related Drilling, permission is herewith granted to install one (1) temporary monitor well to assess water conditions as described in your request received June 5, 2018. Your statement ensuring Nevada Environmental Response Trust responsibility for abandonment of the well upon project completion was received in this office on June 5, 2018.

This office also waives the following regulations:

 NAC § 534.4351 (1) (c). The purpose of this well is to collect groundwater samples and analyze the samples as requested by NDEP Order Number 8-001721, located on vacant land, just south of 201 Via Antincendio, Clark County, Nevada. The wellhead shall be protected from damage due to vandalism or sunlight. If polyvinyl chloride (PVC) casing is used, then the well must be completed with ASTM F-480 (Sch. 40 or heavier) well casing as provided in NAC § 534.362. Cascade Drilling, LP MO-3500 June 12, 2018 Page 2

2) NAC 534.4357(1c) - "If water or vapors which are being monitored in a monitoring well are not encountered within 5 feet below the surface of the ground, the well driller shall place in the annual space of the well: From the seal placed pursuant to paragraph (b) to the surface, a seal, with a minimum thickness of 20 feet below the surface, consisting of cement grout, neat cement or concrete grout." Due to the shallow depth and large screen intervals of the proposed monitor well, you are allowed to install the sanitary seal as shown in your waiver request.

Glued casing joint connections will not be allowed. Full compliance with the remainder of the statute and regulation is required.

A plot map showing the actual location of the completed wells must be submitted upon completion of the drilling operations. Please include an accurate description of the location of the monitor well on the completion reports (GPS coordinates are required).

The well driller's reports shall bear this waiver number: MO-3500.

Authorization to drill under this waiver expires one (1) year from the date of this letter.

The well driller must have a copy of this waiver in possession at all times during drilling activities pertaining to this project. This well may only be pumped when necessary to obtain samples.

Please note that you must notify the Nevada Division of Environmental Protection (NDEP) for possible permitting requirements for groundwater or temporary surface discharge permits, which may include Underground Injection Control (UIC) or National Pollution Discharge Elimination System (NPDES) Permit Numbers. For more information regarding the permitting process with NDEP, please contact NDEP Water Pollution Control Department at (775) 687-4670.

The wells shall be plugged and abandoned, as provided by regulation, upon project completion. The current owner of Assessor's Parcel Number 160-28-601-001 is shown as County of Clark (Parks and Community Services) by the records of the Clark County Assessor's office. This waiver does not imply or grant any land use agreements between County of Clark (Parks and Community Services) and any land owners. It is expressly understood that this authorization does not relieve the operator of the requirements of any other state, federal or local agencies.

If you have any questions, please contact this office at 702-486-2770.

Sincerely. rule

Tracy Geter Drilling Supervisor

cc:

File Carson City Office Christi Cooper, SNBO Office Jay A. Steinberg, President, Nevada Environmental Response Trust, Chicago, Illinois

> NOI No. 39997 APN 160-28-601-001 NDEP Order No. 8-001721 For one, 4-inch Monitor Well

ORIGINAL FILE WITH DIVISION OF WATER RESOURCES 6-4-18 NOTICE OF INT Today's Date: 6-4-18 Intended Start Date: Type of Work to be Done: Drilling: Deepening: Reconditioning:	ENT (2-18 Plugging: Well ID (if applicable): 3.6551
Is this a replacement well? Yes No If there is an exist Proposed use of well:	ting well, what is the well log number?
If this well is a domestic well, is it located within a water purveyor's service area? Yes D If this is a monitor well required by another government agency, what is the facility ID number	
If this well is being completed under a waiver, please provide the corresponding waiver numb If a water right is associated with this well, what is the permit number? Location of the well by Public Land Survey: Latitude: Latitude: Longitude: Longitude: Longitude: Longitude: Location of the well by Public Land Survey: Latitude: Location of the well by Public Land Survey: Latitude: Latitude: Location of the well by Public Land Survey: Latitude: Latit	er:
Address at well location: Assessor Parcel Number: County: Name of Client: Natoda Environmental Trust Subdivisio Name of Client: Natoda Environmental Trust	
Contractor's License Number: 0073966 On-Site Driller's Lice Company Name and Address: 02000 Prilling 4221000 Need Log Forms Need Intent Cards	nicago IL 60601-2314 nse Number: 25/2 Oquendo Rd Las Vegas Hy iller's Signature: Bob W 89118

		Ø
IN THE OFFICE OF THE ST	TATE ENGINEER OF N	ievada 7
	T OF INTENT DNITORING WELI	L
Notice of Intent # <u>399997</u> I, Nevada Environmental Response Trust (Trust by and through Le Petomane XXVIII Inc., not individually but solely as Trustee of the Trust <u>35 East Wacker Drive #690</u> Chicago, IL 60601-2314 <u>312-505-2688</u>	_	DCNR/DWR/SNBO RECEIVED JUN 05 2018 For well NERT3.65S1 - no additional wells included.
of the real property located at:		
Street Address (if any)		
County Assessor Parcel Number (APN) 160-28-6	601-001	
Situated within the SW 1/4 NE 1/4 Sec		
$ \left\{ \begin{array}{l} \text{Latitude (N):} & \underline{36^{\circ} 05^{\circ} 44.72^{\circ}} \\ \text{Longitude (W):} & \underline{114^{\circ} 56^{\circ} 44.65^{\circ}} \end{array} \right\} \text{ or } \left\{ \begin{array}{l} U \\ U \\ U \\ U \end{array} \right. \\ \text{and whereupon one or more monitoring wells are} \right\} $	JTM (m) E: JTM (m) N: c located or to be located, fu	Datum NAD83/WGS84 Ily understand that I shall
be responsible for, and shall cause the wells to be		
in Nevada Administrative Code (NAC) 534.436		
drilling/plugging wells in the State of Nevada,	not later than thirty day	ys after the date when
monitoring is no longer required.		n 18 1 1 11
I shall further make any purchaser of this parcel av Responsible Party (Printed Name): Jay Steinberg	(Signature):	Not Low Low but Solily a Solely in his representative ent of the Nevada sponse Trust Trustee
Subscribed and sworn to before me on 5-31-1.	8 JODD W.	KOL
by TODD W. Koller	STA OF TENNE	
Signature of Notary Public Required	OF V Notary St	VILLIA
and a second provide required	((.27.	

IN THE OFFICE OF THE STATE ENGINEER OF THE STATE OF NEVADA REQUEST FOR A WAIVER TO DRILL OBSERVATION OR MONITOR WELL(S)

The applicant and/or person or company responsible for drilling and plugging the temporary well(s):

Bob Nix	Operations Manager	Cascade Drilling LP
Name 4221 W. Oquendo Rd.	Title Las Vegas	Company NV 89118
Street Address or PO Box	City or Town	State and ZIP Code
Telephone number of responsible p	arty: (702) 715-5811	
Estimated project dates:Jun-12	2-2018 Start Date Jun-29-2018	8 Completion Date
and the second	Coordinates and Map Datum are required same project, use the accompanying form to list each	Contraction of the second s
SW 1/4 NE 1/4 Secti	on <u>28</u> T <u>21 s</u> R <u>63 H</u>	E, M.D.B. & M.
$ \left\{ \begin{array}{l} \text{Latitude (N): } 36^{\circ} 05 \underline{44.7}, \\ \text{Longitude (W): } \underline{114^{\circ} 56^{\circ} 44.6} \end{array} \right. $	$\left\{ \begin{array}{c} uTM \ (m) \ E: \\ uTM \ (m) \ N: \end{array} \right\}$ or $\left\{ \begin{array}{c} uTM \ (m) \ E: \\ uTM \ (m) \ N: \end{array} \right\}$	Datum NAD83/WGS84
County Assessor Parcel Number (A	APN): 160-28-601-001	_
Street Address (if any):		DCNR/DWR/SNBO
NDEP Order # (if any): 8-001721		RECEIVED
Purpose and duration of well(s):		JUN 05 2018
No Later the thirty days after the d	ate when monitoring is no longer requi	ired
	the filter pack change to an original waiver, or if the please give the original waiver number.	
The following	ng items must be submitted with the	waiver request:
 A schematic drawing Affidavit of Intent to Location Map (i.e., Lagendary) 	of the typical monitor well construct Plug a Well (Listing all wells by well ID/N arge Scale, inch = miles) Small Scale, inch = feet)	ion
Signatory Contact Information:		
(702) 715-5811	Bob Nix	
Telephone Number	Printed Nam	ie
4221 W Oquendo Rd.	Bob	n
Mailing Address	Signature	/
Las Vegas, NV 89118	Jun-04-2	018
City, State, ZIP Code	Date	
Rev 12/14 - waiver mo	-QUARTER FILING FEE MUST ACC	OMPANY THIS REQUEST

4.21 N1 STATE OF NEVADA BRIAN SANDOVAL BRADLEY CROWELL GOVERNOR Director JASON KING, P.E. State Engineer DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES **DIVISION OF WATER RESOURCES** 400 Shadow Lane, Suite 201 Las Vegas, Nevada 89106 (702) 486-2770 · Fax (702) 486-2781 http://water.nv.gov NOTICE OF INTENT CARD **REVIEW FORM** To: Bob Nix Date: June 13, 2018 Facsimile No .: or E-mail Address: bnix@cascade-env.com E-mailed This document was: Faxed NOI Card Number: 39999 Approved Rejected (See reasons below) Work performed missing invalid Proposed use of well missing invalid Intended start date missing invalid Waiver/Permit number if applicable missing invalid Well location (legal description, GPS coordinates) \square missing invalid Parcel number missing invalid Address at well location missing Π invalid Permit number missing invalid Waiver number or NDEP Facility ID Number missing invalid Address of Client missing invalid Name of client/owner missing invalid Contractor's license number missing invalid Onsite well driller's license number missing invalid

Driller's signature Replacement well

Drilling company name/address

If yes, existing well must be plugged at time the replacement well is drilled, pursuant to NAC 534.300 Replacement Well.

Instructions: Please note that you must provide a copy of the well driller's report for the installation of one (1) monitor well within 30 days of completion. If you have any questions, please do not hesitate to give our office a call.

missing

missing

 \checkmark

invalid

invalid

No

Person reviewing NOI Card: Christi Cooper, waiver issued by Tracy Geter Date reviewed: June 11, 2018 BRIAN SANDOVAL Governor

BRADLEY CROWELL Director

STATE OF NEVADA

JASON KING, P.E. State Engineer

JOHN GUILLORY, P.E. Supervising Engineer

DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES DIVISION OF WATER RESOURCES SOUTHERN NEVADA BRANCH OFFICE 400 Shadow Lane, Suite 201 Las Vegas, Nevada 89106 (702) 486-2770 • Fax (702) 486-2781

http://water.nv.gov

June 13, 2018

MO-3503

Bob Nix Operations Manager Cascade Drilling, LP 4221 West Oquendo Road Las Vegas, Nevada 89118

4.21 N1

RE: Request for waiver to install one (1) temporary monitor well (NERT 4.38N1) to collect groundwater samples and analyze the samples as requested by Nevada Division of Environmental Protection (NDEP) Order Number 8-001721, located on vacant land, just north of 1720 East Galleria Drive, Clark County, Nevada, within the SW¼ of the NW¼ of Section 28, T.21S, R.63E (Lat: 36° 05' 43.479" N, Long: -114° 57' 23.950" W, NAD 83/ WGS 84), and within the Las Vegas Valley Basin (212).

Dear Mr. Nix:

As provided in Nevada Administrative Code (NAC) § 534.450 of the Regulation for Water Well and Related Drilling, permission is herewith granted to install one (1) temporary monitor well to assess water conditions as described in your request received June 5, 2018. Your statement ensuring Nevada Environmental Response Trust responsibility for abandonment of the well upon project completion was received in this office on June 5, 2018.

This office also waives the following regulations:

 NAC § 534.4351 (1) (c). The purpose of this well is to collect groundwater samples and analyze the samples as requested by NDEP Order Number 8-001721, located on vacant land, just north of 1720 East Galleria Drive, Clark County, Nevada. The wellhead shall be protected from damage due to vandalism or sunlight. If polyvinyl chloride (PVC) casing is used, then the well must be completed with ASTM F-480 (Sch. 40 or heavier) well casing as provided in NAC § 534.362. Cascade Drilling, LP MO-3503 June 13, 2018 Page 2

> 2) NAC 534.4357(1c) - "If water or vapors which are being monitored in a monitoring well are not encountered within 5 feet below the surface of the ground, the well driller shall place in the annual space of the well: From the seal placed pursuant to paragraph (b) to the surface, a seal, with a minimum thickness of 20 feet below the surface, consisting of cement grout, neat cement or concrete grout." Due to the shallow depth and large screen intervals of the proposed monitor well, you are allowed to install the sanitary seal as shown in your waiver request.

Glued casing joint connections will not be allowed. Full compliance with the remainder of the statute and regulation is required.

A plot map showing the actual location of the completed wells must be submitted upon completion of the drilling operations. Please include an accurate description of the location of the monitor well on the completion reports (GPS coordinates are required).

The well driller's reports shall bear this waiver number: MO-3503.

Authorization to drill under this waiver expires one (1) year from the date of this letter.

The well driller must have a copy of this waiver in possession at all times during drilling activities pertaining to this project. This well may only be pumped when necessary to obtain samples.

Please note that you must notify the Nevada Division of Environmental Protection (NDEP) for possible permitting requirements for groundwater or temporary surface discharge permits, which may include Underground Injection Control (UIC) or National Pollution Discharge Elimination System (NPDES) Permit Numbers. For more information regarding the permitting process with NDEP, please contact NDEP Water Pollution Control Department at (775) 687-4670.

The wells shall be plugged and abandoned, as provided by regulation, upon project completion. The current owner of Assessor's Parcel Number 160-28-201-001 is shown as County of Clark (Parks and Community Services) by the records of the Clark County Assessor's office. This waiver does not imply or grant any land use agreements between County of Clark (Parks and Community Services) and any land owners. It is expressly understood that this authorization does not relieve the operator of the requirements of any other state, federal or local agencies.

If you have any questions, please contact this office at 702-486-2770.

Sincerely,

cc:

Tracy Geter Drilling Supervisor

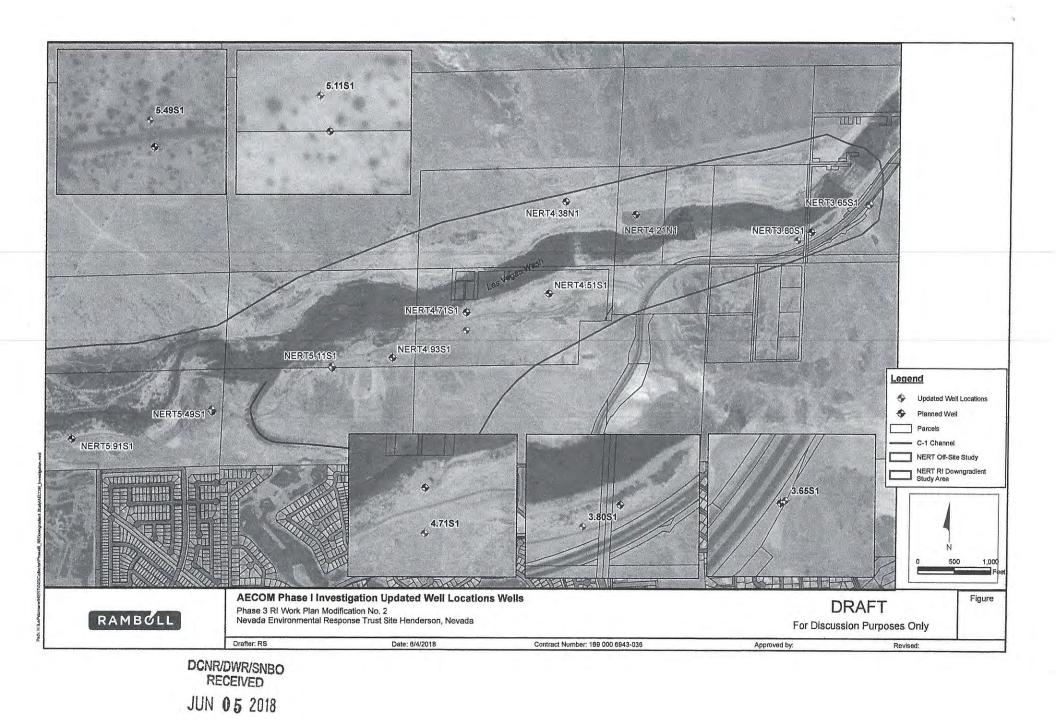
File Carson City Office Christi Cooper, SNBO Office Jay A. Steinberg, President, Nevada Environmental Response Trust, Chicago, Illinois

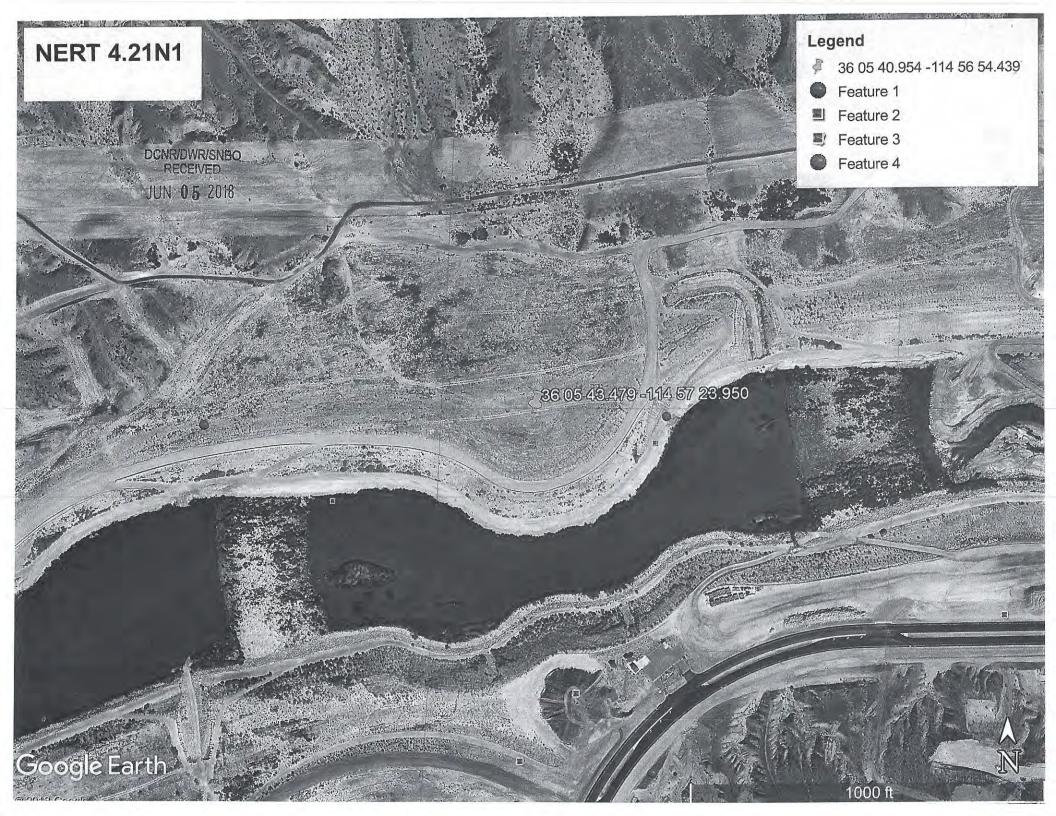
> NOI No. 39999 APN 160-28-201-001 NDEP Order No. 8-001721 For one, 4-inch Monitor Well

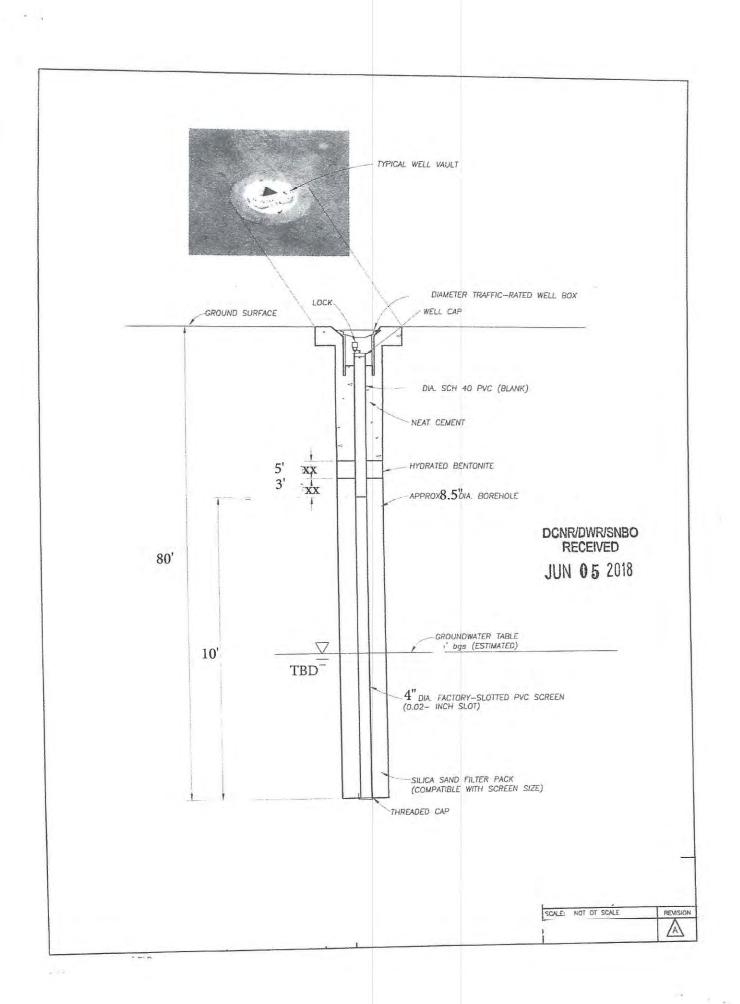
IGINAL E WITH DIVISION OF TER RESOURCES 6-4-18	NOTICE OF INTENT Intended Start Date: 6-12-18 NERT 4.21N2 Well ID (if applicable): 4.21N2
oday's Date: Type of Work to be Done: Drilling:	Deepening: Reconditioning: L No If there is an existing well, what is the well log number? I No If there is an existing well, what is the well log number? I Diameter of well: Inches Number of wells: Diameter of well: If yes, what is the DOM waiver:
Proposed use of well: If this well is a domestic well, is it located If this is a monitor well required by anoth If this well is being completed under a w	within a water purveyor's service and a serv
If a water right is associated with the Location of the well by Public Land Sur Latitude: $36^{\circ}05'43$	Vey: SW 1/4 III NAD 27 479 N UTM E NAD 83/WGS 84
Assessor Parcel Number Clark	S-28-201-001 Subdivision Name: Invironmental Response Trust Wocker Dr. #696 Chicage IL 60601-2314 Wocker Dr. #696 Chicage IL 60601-2314
	Need Intent Cards Need Intent
Need Log Forms (Rev. 1-14)	Need interio curre

IN THE OFFICE OF THE STATE ENGINEER OF NEVADA

AFFIDAVIT OF INTENT TO PLUG A MONITORING WELL


Notice of Intent # <u>399</u> I, Nevada Environmental Response	se Trust (Trust	t) Name & Title	DCNR/DWR/SNBO RECEIVED JUN 05 2018
by and through Le Petomane X. not individually but solely as Tr		Company	JUN 00 LONG
Trust			
35 East Wacker Drive #690 Chicago, IL 60601-2314		Address	and the second se
		-	For well NERT4.21N1 - no additional wells
312-505-2688		Telephone Number	included.
of the real property located at:			
Street Address (if any)			
County Assessor Parcel Number (AP	N) 160-28-20	01-001	
		ion 28 T 21 s	S R 63 E, M.D.B. & M.
$\begin{cases} \text{Latitude (N):} & \frac{36^{\circ}05'43.479''}{114^{\circ}57'23.950''} \\ \text{and whereupon one or more monitor} \\ \text{be responsible for, and shall cause th} \\ \text{in Nevada Administrative Code (NA)} \end{cases}$	ing wells are in the second seco	located or to be locate plugged in accordance	d, fully understand that I shall with the provisions contained
drilling/plugging wells in the State			
monitoring is no longer required.			
I shall further make any purchaser of	this parcel aw	are of these conditions	. AO111
Responsible Party (Printed Name): Jay Steinberg No State of Tennessee County of <u>W-11jam 500</u>	ster (not individua capacity as F	taly but solely in his representative resident of the Nevada tal Response Trust Trustee (MSA)
Subscribed and sworn to before me or	n 5-31-18	IN IS	
by TODO W. Koller		STATE OF TENNESSEE NOTARY	
T-h.Kh	-	CONOTARY PUBLIC	
Signature of Notary Public Requ	uired	OF WILLINGta	ry Seal Revised 12/14


IN THE OFFICE OF THE STATE ENGINEER OF THE STATE OF NEVADA REQUEST FOR A WAIVER TO DRILL OBSERVATION OR MONITOR WELL(S)


The applicant and/or person or company responsible for drilling and plugging the temporary well(s):

Bob Nix	Nix Operations Manager		Cascade Drilling LP	
Name 4221 W. Oquendo Rd.	Title Las Vegas		NV 89118	Company
Street Address or PO Box	City or Town		State and ZIP Code	
Telephone number of responsible party:	(702) 715	-5811		
Estimated project dates:Jun-12-201	8 Start Date	Jun-29-2018	_ Completion I	Date
Location of the well: PLSS, GPS Coord (If more than one well is to be installed for the same put	roject, use the accompanying	form to list each w	ell.)	
SW 1/4 NW 1/4 Section	<u>28</u> T <u>21 s</u>	R <u>63</u> E, N	A.D.B. & M.	
$ \begin{cases} \text{Latitude (N):} & 36*05'43.479'' \\ \text{Longitude (W):} & 114*57'23.950'' \\ \end{cases} $	or {UTM (n UTM (n	n) E: n) N:	}	Datum NAD83/WGS84
County Assessor Parcel Number (APN):	160-28-201-001			
Street Address (if any):			DC	NR/DWR/SNBO
NDEP Order # (if any): 8-001721			50	RECEIVED
Purpose and duration of well(s):			JU	IN 05 2018
No Later the thirty days after the date w	hen monitoring is no l	onger required		
Also we need to waive NAC 534.4357 (on the surface completions and installati we will be placing a 5' seal above the fi	ion of the well that is t lter pack	o be installed		
has other monitor wells installed, please	give the original waiv	er number.	М	/0
The following iter	ms must be submitte	d with the wa	iver request:	
• A schematic drawing of the				
 Affidavit of Intent to Plug a Location Map (i.e., Large S Site Detail Map (i.e., Small 	scale, inch = miles)	by well ID/Nam	e) (Separate Affid	avit for each ¼, ¼)
Signatory Contact Information:				
(702) 715-5811		Bob Nix		
Telephone Number		Printed Name		
4221 W Oquendo Rd.		Bob 1	Y	
Mailing Address		Signature		
Las Vegas, NV 89118		Jun-04-2018	3	
City, State, ZIP Code		Date		

Rev 12/14 - waiver mo 20 PER QUARTER-QUARTER FILING FEE MUST ACCOMPANY THIS REQUEST

4.38N1

BRIAN SANDOVAL GOVERNOR

STATE OF NEVADA

BRADLEY CROWELL Director

> JASON KING, P.E. State Engineer

DIVISI	F CONSERVATION A ON OF WATER 400 Shadow Lane, S Las Vegas, Nevada 2) 486-2770 · Faz (70 http://water.av	RESOURCES Suite 201 89106 (2) 486-2781	OURCES	3	
	NOTICE OF INTEN REVIEW FOR				
To: Bob Nix		Date: June 1	2, 2018		
Facsimile No.:	or E-mail Address	bnix@cascade-en	V.com		
This document was:	E-mailed	Faxed	v.com		
NOI Card Number: 40479	Appro	ved	Rejected	d (See reaso	ns below)
Work performed		missing			
Proposed use of well		missing	H	invalid	H
Intended start date		missing	Н	invalid	H
Waiver/Permit number if applicabl	e	missing	H	invalid invalid	H
Well location (legal description, G		missing	П	invalid	
Parcel number)	missing		invalid	
Address at well location		missing		invalid	
Permit number		missing	Ξ	invalid	
Waiver number or NDEP Facility I	D Number	missing		invalid	H
Address of Client	2011 (1997) - F	missing	Н	invalid	H
Name of client/owner		missing	Η	invalid	H
Contractor's license number		missing		invalid	H
Onsite well driller's license number		missing		invalid	
Drilling company name/address		missing	H		
Driller's signature		missing		invalid	
Replacement well		Yes		invalid	
If yes, existing well must b	e plugged at time the		ie drille	No	

pursuant to NAC 534.300 Replacement Well. is arilled,

Instructions: Please note that you must provide a copy of the well driller's report for the installation of one (1) monitor well within 30 days of completion. If you have any questions, please do not hesitate to give our office a call.

Person reviewing NOI Card: Christi Cooper, waiver issued by Tracy Geter Date reviewed: June 11, 2018

BRIAN SANDOVAL Governor

BRADLEY CROWELL Director STATE OF NEVADA

JASON KING, P.E. State Engineer

JOHN GUILLORY, P.E. Supervising Engineer

DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES DIVISION OF WATER RESOURCES SOUTHERN NEVADA BRANCH OFFICE

400 Shadow Lane, Suite 201 Las Vegas, Nevada 89106 (702) 486-2770 • Fax (702) 486-2781 <u>http://water.nv.gov</u>

June 12, 2018

MO-3502

Bob Nix Operations Manager Cascade Drilling, LP 4221 West Oquendo Road Las Vegas, Nevada 89118

RE: Request for waiver to install one (1) temporary monitor well (NERT 4.38N1) to collect groundwater samples and analyze the samples as requested by Nevada Division of Environmental Protection (NDEP) Order Number 8-001721, located on vacant land, approximately one-half mile north of 1650 East Galleria Drive, Clark County, Nevada, within the SE¼ of the NE¼ of Section 29, T.21S, R.63E (Lat: 36° 05' 45.246" N, Long: -114° 57' 35.591" W, NAD 83/ WGS 84), and within the Las Vegas Valley Basin (212).

Dear Mr. Nix:

As provided in Nevada Administrative Code (NAC) § 534.450 of the Regulation for Water Well and Related Drilling, permission is herewith granted to install one (1) temporary monitor well to assess water conditions as described in your request received June 5, 2018. Your statement ensuring Nevada Environmental Response Trust responsibility for abandonment of the well upon project completion was received in this office on June 5, 2018.

This office also waives the following regulations:

 NAC § 534.4351 (1) (c). The purpose of this well is to collect groundwater samples and analyze the samples as requested by NDEP Order Number 8-001721, located on vacant land, approximately one-half mile north of 1650 East Galleria Drive, Clark County, Nevada. The wellhead shall be protected from damage due to vandalism or sunlight. If polyvinyl chloride (PVC) casing is used, then the well must be completed with ASTM F-480 (Sch. 40 or heavier) well casing as provided in NAC § 534.362. Cascade Drilling, LP MO-3502 June 12, 2018 Page 2

> 2) NAC 534.4357(1c) - "If water or vapors which are being monitored in a monitoring well are not encountered within 5 feet below the surface of the ground, the well driller shall place in the annual space of the well: From the seal placed pursuant to paragraph (b) to the surface, a seal, with a minimum thickness of 20 feet below the surface, consisting of cement grout, neat cement or concrete grout." Due to the shallow depth and large screen intervals of the proposed monitor well, you are allowed to install the sanitary seal as shown in your waiver request.

Glued casing joint connections will not be allowed. Full compliance with the remainder of the statute and regulation is required.

A plot map showing the actual location of the completed wells must be submitted upon completion of the drilling operations. Please include an accurate description of the location of the monitor well on the completion reports (GPS coordinates are required).

The well driller's reports shall bear this waiver number: MO-3502.

Authorization to drill under this waiver expires one (1) year from the date of this letter.

The well driller must have a copy of this waiver in possession at all times during drilling activities pertaining to this project. This well may only be pumped when necessary to obtain samples.

Please note that you must notify the Nevada Division of Environmental Protection (NDEP) for possible permitting requirements for groundwater or temporary surface discharge permits, which may include Underground Injection Control (UIC) or National Pollution Discharge Elimination System (NPDES) Permit Numbers. For more information regarding the permitting process with NDEP, please contact NDEP Water Pollution Control Department at (775) 687-4670.

The wells shall be plugged and abandoned, as provided by regulation, upon project completion. The current owner of Assessor's Parcel Number 160-29-601-001 is shown as County of Clark (Parks and Community Services) by the records of the Clark County Assessor's office. This waiver does not imply or grant any land use agreements between County of Clark (Parks and Community Services) and any land owners. It is expressly understood that this authorization does not relieve the operator of the requirements of any other state, federal or local agencies.

If you have any questions, please contact this office at 702-486-2770.

Sincerely,

CC:

Tracy Geter Drilling Supervisor

File Carson City Office Christi Cooper, SNBO Office Jay A. Steinberg, President, Nevada Environmental Response Trust, Chicago, Illinois

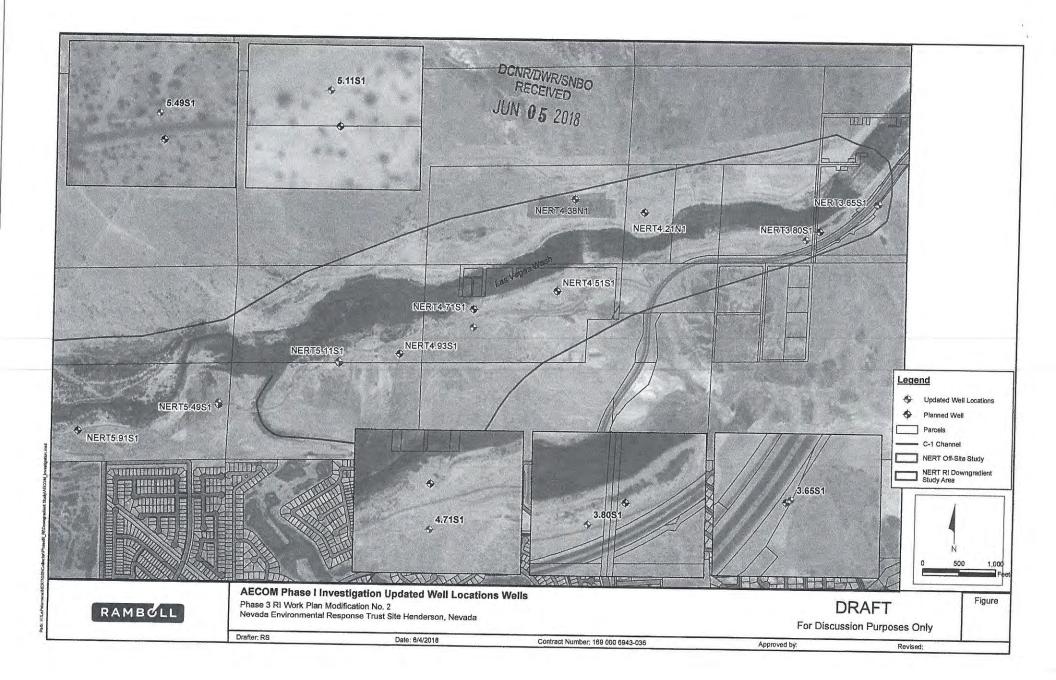
> NOI No. 40479 APN 160-29-601-001 NDEP Order No. 8-001721 For one, 4-inch Monitor Well

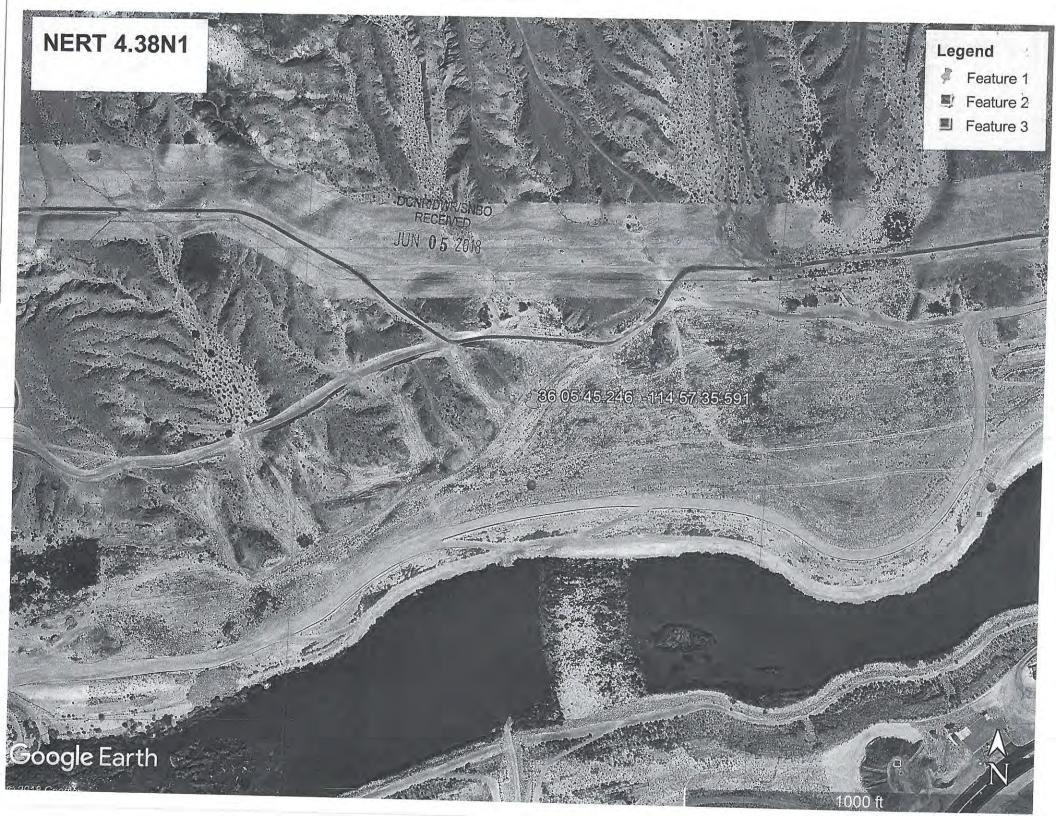
ORIGINAL FILE WITH DIVISION OF WATER RESOURCES	and the second day of the second day was a second day of the second day of the second day of the second day of			
Today's Date: 6-4	-18 NO	TICE OF INTENT	man	
Type of Work to be Done:	Intended Stal	t Date: 6-12-10	D No	
	es No No	ditioning:	NERT	+0479
Proposed use of well:	Monstor		(If applicable):	4. 38N1
If this is a monitor well room	Diameter of ti located within a water purveyor's service by another government anon-	inches	the well log number?	
		area? Yes 🗆 No 🗔	Number of wells: 1	•
If a water right is associated with	by another government agency, what is the der a waiver, please provide the correspond this well, what is the permit number?	ling waiver number	If yes, what is the DOM wa	
Location of the well by Public Land Latitude: 36°05	Survey: SE			DEP
Longitude: 119057	45.246 M	1/4 Sec. 29	21.	_
Address at well location:	33.591 W UTME		NS	R_63E
Assessor Parcel Number:	0-19.101		NAD 27	
	5-1-001-0	001		14
Address of Client: 35 East	livonmental Response Weder Dr. \$690	Subdivision Name:		
Contractor's License Number:	073966 Dr. \$690	Chicant		
Need Log Forms	ede Drilling (Pu) On-Site Dr	iller's License Number	60601-2314	-
(Rev. 1-14) Ne	P73966 AcDrillingLP4221W.	Oquendo Rd. Car	5/2	<u> </u>
		Driller's Signature:	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	118
	and the second second	-Sundrule:	no no	

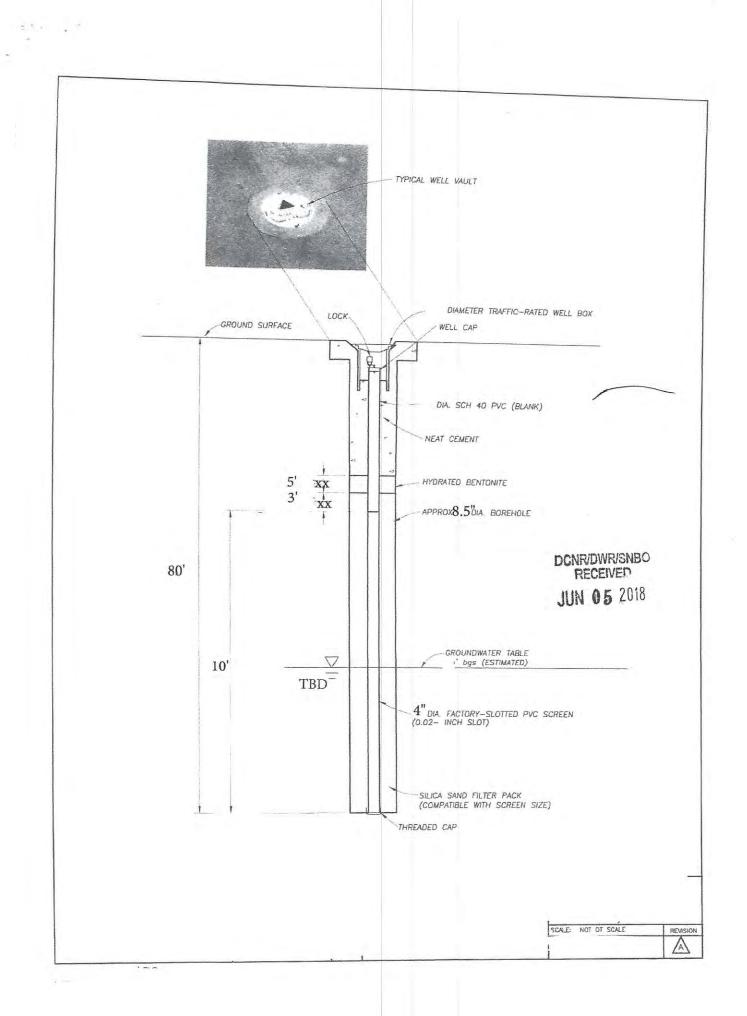
IN THE OFFICE OF THE STATE ENGINEER OF NEVADA

AFFIDAVIT OF INTENT TO PLUG A MONITORING WELL

Notice of Intent # 40479		
I. Nevada Environmental Response Trust (Trus		DCNR/DWR/SNBO RECEIVED
not individually but solely as Trustee of the	Company	JUN 05 2018
Trust 35 East Wacker Drive #690	Address	
Chicago, IL 60601-2314	Address	
	-	For well NERT4.38N1 - no additional wells
312-505-2688	Telephone Number	included.
of the real property located at:		
Street Address (if any)		
County Assessor Parcel Number (APN) 160-29-6	01-001	
Situated within the SE 1/4 NE 1/4 Sect	tion 29 T 21 S	R 63 E, M.D.B. & M.
$ \left\{ \begin{array}{c} \text{Latitude (N):} \\ \text{Longitude (W):} \\ \text{and whereupon one or more monitoring wells are} \end{array} \right\} \text{ or } \left\{ \begin{array}{c} U' \\ U' $	TM (m) E:	
be responsible for, and shall cause the wells to be	plugged in accordance wit	th the provisions contained
in Nevada Administrative Code (NAC) 534.4365	and all other applicable	rules and regulations for
drilling/plugging wells in the State of Nevada,	not later than thirty da	ays after the date when
monitoring is no longer required.		
I shall further make any purchaser of this parcel aw	are of these conditions.	1 Ala
Responsible Party (Printed Name): Jay Steinberg	Signature): Ju Atta	by but soleh a
State of Tennessee	not i dividually, i capacity as Presic	but solely in his representative
County of Williamson	Environmental Re	esponse Trust Trustee
Subscribed and sworn to before me on 5-31-1	8 TODD W. KO	
by TODD W.Koller		
T-W.KM	OF WILL Notary S	ANE
Signature of Notary Public Required	Notary S 11-27-202	eal Revised 12/14


IN THE OFFICE OF THE STATE ENGINEER OF THE STATE OF NEVADA REQUEST FOR A WAIVER TO DRILL OBSERVATION OR MONITOR WELL(S)


The applicant and/or person or company	responsible for drilling	and pluggin	g the temporary well(c).
Bob Nix	Operations Manager	108	
Name 4221 W. Oquendo Rd.	Title		Cascade Drilling LP
Street Address or PO Box	Las Vegas		NV 89118
Telephone number of responsible party:	City or Town		State and ZIP Code
	(702) 715-	5811	
Estimated project dates:Jun-12-201	8 Start Date Ju	in-29-2018	Completion Date
Location of the well: PLSS, GPS Coord (If more than one well is to be installed for the same p	dinates and Map Datu	m are requir	red.
SE 1/4 NE 1/4 Section	00	R _ 63 E, N	
∫ Latitude (N): 36*05'45.246"			
$\begin{cases} \text{Latitude (N):} & 36*05'45.246''\\ \text{Longitude (W):} & 114*57'35.591'' \end{cases}$	or $\begin{cases} UTM (m) \\ UTM (m) \end{cases}$	L	Datum
		IN	NAD83/WGS8
County Assessor Parcel Number (APN):	160-29-601-001		
Street Address (if any):			
NDEP Order # (if any): 8-001721			DCNR/DWR/SNBO
Purpose and duration of well(s):	the second second second		RECEIVED
No Later the thirty days after the date wh	en monitoring is no lon	ger required	JUN 05 2018
Also we need to waive NAC 534.4357 (1 on the surface completions and installation	on of the well that is to h	pact of the in the installed	stallation
we will be placing a 5' seal above the filt If this waiver is an amendment or change	to an original waiver o	rifthe prop	erty
has other monitor wells installed, please g	give the original waiver	number.	M/O
The following item	is must be submitted w	ith the waiv	ver request:
• A schematic drawing of the t	vpical monitor well co	nstruction	
 Affidavit of Intent to Plug a 	Well (Listing all wells by y	vell ID/Name)	(Separate Affidavit for each ¼, ¼)
 Location Map (i.e., Large Sc. Site Detail Map (i.e., Small S 	ale, $incn = miles$)		
Signatory Contact Information:			
(702) 715-5811	B	ob Nix	
Telephone Number		inted Name	1
4221 W Oquendo Rd.		Bal 2	st
Mailing Address	Sig	gnature //	У
Las Vegas, NV 89118	Ju	m-04-2018	


City, State, ZIP Code

S120 PER QUARTER-QUARTER FILING FEE MUST ACCOMPANY THIS REQUEST

Date

. +

DDIAN CANDON		STATE OF NEV	ADA			
BRIAN SANDOVAL GOVERNOR			1 HOTL		BRADLE	
		S. Statistical Mark			D	irector
					JASOI Stat	N KING, e Engine
	DIVISIO	CONSERVATION A ON OF WATER 400 Shadow Lane, 1 Las Vegas, Nevada 486-2770 · Fax (7 http://water.ny	RESOU Suite 201 a 89106 (02) 486-278	RCES	CES	
		NOTICE OF INTEN REVIEW FOI				
To: Bob Nix			Date:	June 18, 20	018	
				1		
Facsimile No.:		or E-mail Address	: bnix@cas	cade-env.co	m	
	This document was:	✓E-mailed	Faxed			
NOI Card Num	ber: 40000		oved	Rei	ected (See reaso	ns hel
Work perfo	rmed				-	
Proposed us				nissing [invalid	Ц
Intended sta				nissing L	invalid	
Waiver/Per	mit number if applicable	2		nissing [nissing [invalid	
	on (legal description, GF			nissing	invalid	
Parcel numl		o cooraniaces)		hissing	invalid	
	well location			nissing	invalid	
Permit num				nissing	invalid	
	ber or NDEP Facility II	D Number		hissing	invalid	
Address of					invalid	
Name of cli				nissing	invalid	
	license number			nissing	invalid	
	driller's license number			nissing L	invalid	
	npany name/address			nissing	invalid	
Driller's sig				nissing	invalid	
Replacemer				issing	invalid	
If ye	es, existing well must be suant to NAC 534.300	e plugged at time th Replacement Well.		es] No rilled,	\checkmark
Instructions: Pl	ease note that you must) monitor well within 30 give our office a call.	provide a copy of the	e well driller If you have	's report for any questio	the installation of the state o	of one t hesit:

Person reviewing NOI Card: Christi Cooper, waiver issued by Tracy Geter

Date reviewed: June 15, 2018

BRIAN SANDOVAL Governor

BRADLEY CROWELL Director STATE OF NEVADA

JASON KING, P.E. State Engineer

JOHN GUILLORY, P.E. Supervising Engineer

DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES DIVISION OF WATER RESOURCES

SOUTHERN NEVADA BRANCH OFFICE

400 Shadow Lane, Suite 201 Las Vegas, Nevada 89106 (702) 486-2770 • Fax (702) 486-2781 <u>http://water.nv.gov</u>

June 18, 2018

MO-3509

Bob Nix Operations Manager Cascade Drilling, LP 4221 West Oquendo Road Las Vegas, Nevada 89118

RE: Request for waiver to install one (1) temporary monitor well (NERT 4.51S1) to collect groundwater samples and analyze the samples as requested by Nevada Division of Environmental Protection (NDEP) Order Number 8-001721, located on vacant land, just north of 1650 East Galleria Drive, Clark County, Nevada, within the NE¼ of the SE¼ of Section 29, T.21S, R.63E (Lat: 36° 05' 32.770" N, Long: -114° 57' 38.384" W, NAD 83/ WGS 84), and within the Las Vegas Valley Basin (212).

Dear Mr. Nix:

As provided in Nevada Administrative Code (NAC) § 534.450 of the Regulation for Water Well and Related Drilling, permission is herewith granted to install one (1) temporary monitor well to assess water conditions as described in your request received June 7, 2018. Your statement ensuring Nevada Environmental Response Trust responsibility for abandonment of the well upon project completion was received in this office on June 7, 2018.

This office also waives the following regulations:

 NAC § 534.4351 (1) (c). The purpose of this well is to collect groundwater samples and analyze the samples as requested by NDEP Order Number 8-001721, located on vacant land, just north of 1650 East Galleria Drive, Clark County, Nevada. The wellhead shall be protected from damage due to vandalism or sunlight. If polyvinyl chloride (PVC) casing is used, then the well must be completed with ASTM F-480 (Sch. 40 or heavier) well casing as provided in NAC § 534.362. Cascade Drilling, LP MO-3509 June 18, 2018 Page 2

> 2) NAC 534.4357(1c) - "If water or vapors which are being monitored in a monitoring well are not encountered within 5 feet below the surface of the ground, the well driller shall place in the annual space of the well: From the seal placed pursuant to paragraph (b) to the surface, a seal, with a minimum thickness of 20 feet below the surface, consisting of cement grout, neat cement or concrete grout." Due to the shallow depth and large screen intervals of the proposed monitor well, you are allowed to install the sanitary seal as shown in your waiver request.

Glued casing joint connections will not be allowed. Full compliance with the remainder of the statute and regulation is required.

A plot map showing the actual location of the completed wells must be submitted upon completion of the drilling operations. Please include an accurate description of the location of the monitor well on the completion reports (GPS coordinates are required).

The well driller's reports shall bear this waiver number: MO-3509.

Authorization to drill under this waiver expires one (1) year from the date of this letter.

The well driller must have a copy of this waiver in possession at all times during drilling activities pertaining to this project. This well may only be pumped when necessary to obtain samples.

Please note that you must notify the Nevada Division of Environmental Protection (NDEP) for possible permitting requirements for groundwater or temporary surface discharge permits, which may include Underground Injection Control (UIC) or National Pollution Discharge Elimination System (NPDES) Permit Numbers. For more information regarding the permitting process with NDEP, please contact NDEP Water Pollution Control Department at (775) 687-4670.

The wells shall be plugged and abandoned, as provided by regulation, upon project completion. The current owner of Assessor's Parcel Number 160-29-701-002 is shown as County of Clark (Parks and Community Services) by the records of the Clark County Assessor's office. This waiver does not imply or grant any land use agreements between County of Clark (Parks and Community Services) and any land owners. It is expressly understood that this authorization does not relieve the operator of the requirements of any other state, federal or local agencies.

If you have any questions, please contact this office at 702-486-2770.

Sincerely, un

cc:

Tracy Geter Drilling Supervisor

File Carson City Office Christi Cooper, SNBO Office Jay A. Steinberg, President, Nevada Environmental Response Trust, Chicago, Illinois

> NOI No. 40000 APN 160-29-701-002 NDEP Order No. 8-001721 For one, 4-inch Monitor Well

ORIGINAL FILE WITH DIVISION OF WATER RESOURCES		NOTICE C	OF INTENT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the state of the
Today's Date: 6	1-18	Intended Start Date:	6-12-18	No. 400	00
Type of Work to be Done:	Drilling: Deepening:			Well ID (if applicable): 14.	1717
Is this a replacement well?		•	Plugging:		2774
Proposed use of well:	Monitor	If there	is an existing well, what i	s the well log number?	
	ell, is it located within a water	Diameter of well:	4 inches	Number of wells:	
If this is a monitor well requ	uired by another government	purveyor's service area?	Yes INO I	If yes, what is the DOM waiver:	
If this well is being complete	ed under a waiver, please pro	agency, what is the facility II	number? 8-00	1721	EP
If a water right is associated	d with this well, what is the pe	white the corresponding wait	er number:		
Location of the well by Publi	ic Land Survey:		20		
Latitude: 36°O	532.770 N	1/4 <u>SE</u> 1/	4 Sec. 29	T_21_4/S R	63 _F
Longitude: 1140 5	7 38 384 W	UTM E		NAD 27	
Address at well location:		or UTM N		NAD 83/WGS 84	
Assessor Parcel Number:	160-29-70	1-002			
County: Clo		1-002			
		Sub	division Name:		
Name of Client: Acyc.da Address of Client: 35 (Environmentol	Kesponse Tru.	rt		
	-ost Wacker	Dr #690 G	hirage IL	60601-2314	
Contractor's License Number:	-100	On City D III	s License Number:	2512	
Company Name and Address:	Cascade Drilli	ngLP 4221 W	· Oguan In F	1. Las Yegas N	
Need Log Forms	Need Intent Cards	5	1 und 0 h	GJ Yegas N	4
	102-220	8811	Driller's Signature:	Solv Oill	8
			-		

GOVERNOR			JASON KING, P.E State Engineer	-
DIVIS	OF CONSERVATION AND NA ION OF WATER RES 400 Shadow Lane, Suite 2 Las Vegas, Nevada 8910 02) 486-2770 · Fax (702) 48 http://water.nv.gov	SOURCES 201 96	3	
	NOTICE OF INTENT CA REVIEW FORM	RD		
To: Bob Nix		Date: June 12, 2018		
Facsimile No.:	or E-mail Address: bniz	x@cascade-env.com Faxed		
NOI Card Number: 40482	Approved	Rejecte	ed (See reasons below	v)
Work performed Proposed use of well Intended start date Waiver/Permit number if applica Well location (legal description, Parcel number Address at well location Permit number Waiver number or NDEP Facility Address of Client Name of client/owner	GPS coordinates)	missing missing	invalid invalid invalid invalid invalid invalid invalid invalid invalid invalid	
Contractor's license number Onsite well driller's license numl	ber	missing 🗌 missing	invalid 🗌	

STATE OF NEVADA

BRADLEY CROWELL

BRIAN SANDOVAL

Replacement well Yes No If yes, existing well must be plugged at time the replacement well is drilled, pursuant to NAC 534.300 Replacement Well.

Instructions: Please note that you must provide a copy of the well driller's report for the installation of one (1) monitor well within 30 days of completion. If you have any questions, please do not hesitate to give our office a call.

 \square

 \square

missing

missing

invalid

invalid

Person reviewing NOI Card: Christi Cooper, waiver issued by Tracy Geter Date reviewed: June 11, 2018

Drilling company name/address

Driller's signature

BRIAN SANDOVAL Governor

BRADLEY CROWELL Director **STATE OF NEVADA**

JASON KING, P.E. State Engineer

JOHN GUILLORY, P.E. Supervising Engineer

DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES DIVISION OF WATER RESOURCES

SOUTHERN NEVADA BRANCH OFFICE

400 Shadow Lane, Suite 201 Las Vegas, Nevada 89106 (702) 486-2770 • Fax (702) 486-2781 <u>http://water.nv.gov</u>

June 12, 2018

MO-3499

Bob Nix Operations Manager Cascade Drilling, LP 4221 West Oquendo Road Las Vegas, Nevada 89118

RE: Request for waiver to install one (1) temporary monitor well (NERT-4-71S1) to collect groundwater samples and analyze the samples as requested by Nevada Division of Environmental Protection (NDEP) Order Number 8-001721, located on vacant land, just north of 1650 East Galleria Drive, Henderson, Nevada, within the NW¼ of the SE¼ of Section 29, T.21S, R.63E (Lat: 36° 05' 27.87" N, Long: -114° 57' 52.37" W, NAD 83/ WGS 84), and within the Las Vegas Valley Basin (212).

Dear Mr. Nix:

As provided in Nevada Administrative Code (NAC) § 534.450 of the Regulation for Water Well and Related Drilling, permission is herewith **granted** to install one (1) temporary monitor well to assess water conditions as described in your request received June 5, 2018. Your statement ensuring Nevada Environmental Response Trust responsibility for abandonment of the well upon project completion was received in this office on June 5, 2018.

This office also waives the following regulations:

 NAC § 534.4351 (1) (c). The purpose of this well is to collect groundwater samples and analyze the samples as requested by NDEP Order Number 8-001721, located on vacant land, just north of 1650 East Galleria Drive, Henderson, Nevada. The wellhead shall be protected from damage due to vandalism or sunlight. If polyvinyl chloride (PVC) casing is used, then the well must be completed with ASTM F-480 (Sch. 40 or heavier) well casing as provided in NAC § 534.362. Cascade Drilling, LP MO-3499 June 12, 2018 Page 2

2) NAC 534.4357(1c) - "If water or vapors which are being monitored in a monitoring well are not encountered within 5 feet below the surface of the ground, the well driller shall place in the annual space of the well: From the seal placed pursuant to paragraph (b) to the surface, a seal, with a minimum thickness of 20 feet below the surface, consisting of cement grout, neat cement or concrete grout." Due to the shallow depth and large screen intervals of the proposed monitor well, you are allowed to install the sanitary seal as shown in your waiver request.

Glued casing joint connections will not be allowed. Full compliance with the remainder of the statute and regulation is required.

A plot map showing the actual location of the completed wells must be submitted upon completion of the drilling operations. Please include an accurate description of the location of the monitor well on the completion reports (GPS coordinates are required).

The well driller's reports shall bear this waiver number: MO-3499.

Authorization to drill under this waiver expires one (1) year from the date of this letter.

The well driller must have a copy of this waiver in possession at all times during drilling activities pertaining to this project. This well may only be pumped when necessary to obtain samples.

Please note that you must notify the Nevada Division of Environmental Protection (NDEP) for possible permitting requirements for groundwater or temporary surface discharge permits, which may include Underground Injection Control (UIC) or National Pollution Discharge Elimination System (NPDES) Permit Numbers. For more information regarding the permitting process with NDEP, please contact NDEP Water Pollution Control Department at (775) 687-4670.

The wells shall be plugged and abandoned, as provided by regulation, upon project completion. The current owner of Assessor's Parcel Number 160-29-701-002 is shown as County of Clark (Parks and Community Services) by the records of the Clark County Assessor's office. This waiver does not imply or grant any land use agreements between County of Clark (Parks and Community Services) and any land owners. It is expressly understood that this authorization does not relieve the operator of the requirements of any other state, federal or local agencies.

If you have any questions, please contact this office at 702-486-2770.

Sincerely. M

cc:

Tracy Geter Drilling Supervisor

File Carson City Office Christi Cooper, SNBO Office Jay A. Steinberg, President, Nevada Environmental Response Trust, Chicago, Illinois

> NOI No. 40482 APN 160-29-701-002 NDEP Order No. 8-001721 For one, 4-inch Monitor Well

WATER RESOURCES / 11 10 6-	12-18 INU. 40402
Today's Date: 6-9-18 Intended Start Date:	Well ID (if applicable): 4.71S1
Type of Work to be Done: Drilling: 🖆 Deepening: 🗖 Reconditioning: 🥅	Plugging:
is this a replacement went if the	xisting well, what is the well log number?
Proposed use of well: Monitor Diameter of well: 9	inches Number of wells:
If this well is a domestic well, is it located within a water purveyor's service area? Yes	ber? B-00 1721 Agency: NDEP
If this is a monitor well required by another government agency, what is the facility ID numbers	Agency: Agency:
If this well is being completed under a waiver, please provide the corresponding waiver nut	mber:
If a water right is associated with this well, what is the permit number?	19 21 -63-
26905'27 87" N	Sec. 29 T 21 NKS R63 E
Lotitude:	NAD 27
Longitude: 114.0 57 52.37"W UTMN	NAD 83/WGS 84
Address at well location:	
Assessor Parcel Number: 160-21 101 000	
	sion Name:
Name of Client: ARuada Environmental Trust	
25 E. 1 Wheeker Drive #690 C	hicago IL 60601-2314
Address of Client: 53 East Walker The offer	2512
Contractor's License Number: 0073966 On-Site Driller's L	Icense Number:
Company Name and Address: Cascade Drilling LP 4221W- Oquer	10 0 10. US + Ugos 1+4 0-1110
Need Log Forms Need Intent Cards	Driller's Signature:
(Rev. 1-14)	

	IN THE OFFICE OF THE ST	ATE ENGINEE	R OF NEV	ADA
	AFFIDAVI	Γ OF INTEN	Т	
	TO PLUG A MO			
	Notice of Intent # 40482	_		DCNR/DWR/SNBO
I,	Nevada Environmental Response Trust (Trus by and through Le Petomane XXVII Inc., not individually but solely as Trustee of the	^{st)} Name & Title Company		JUN 05 2018
	Trust 35 East Wacker Drive #690 Chicago, IL 60601-2314	Address	F	For well NERT4.71S1 -]
	312-505-2688		r	ncluded.
oft	he real property located at:			
Stre	eet Address (if any)			
Col	inty Assessor Parcel Number (APN) 160-29-7	701-002		
				63 E, M.D.B. & M.
{ and	Latitude (N): $\frac{36^{\circ}0527.87'}{1/4^{\circ}5752.37''}$ or $\begin{cases} U\\ U \end{cases}$ whereupon one or more monitoring wells are	TM (m) E: TM (m) N: located or to be lo	cated, fully	Datum NAD83/WGS84 understand that I shall
{ and be	Latitude (N): $\frac{36^{\circ} \circ 5^{\circ} 27.87'}{1000}$ or $\begin{cases} U \\ U \\ U \end{cases}$ whereupon one or more monitoring wells are responsible for, and shall cause the wells to be	TM (m) E: TM (m) N: located or to be lo plugged in accorda	cated, fully ance with the	Datum NAD83/WGS84 understand that I shall e provisions contained
{ and be	Latitude (N): $\frac{36^{\circ} \circ 5^{\circ} 27.87'}{1000}$ or $\begin{cases} U \\ U \\ U \end{cases}$ whereupon one or more monitoring wells are responsible for, and shall cause the wells to be Nevada Administrative Code (NAC) 534.436	TM (m) E: TM (m) N: located or to be lo plugged in accorda 5 and all other ap	cated, fully ance with the plicable rule	Datum NAD83/WGS84 understand that I shall e provisions contained es and regulations for
and be in i	Latitude (N): $\frac{36^{\circ} \circ 5^{\circ} 27.87'}{1000}$ or $\begin{cases} U \\ U \\ U \end{cases}$ whereupon one or more monitoring wells are responsible for, and shall cause the wells to be Nevada Administrative Code (NAC) 534.436 ling/plugging wells in the State of Nevada,	TM (m) E: TM (m) N: located or to be lo plugged in accorda 5 and all other ap	cated, fully ance with the plicable rule	Datum NAD83/WGS84 understand that I shall e provisions contained es and regulations for
<pre>{ and be in 1 dril mo</pre>	Latitude (N): $\frac{36^{\circ} \circ 5^{\circ} 27.87'}{14^{\circ} 57 52.37'}$ or $\begin{cases} U \\ U \\ U \end{cases}$ whereupon one or more monitoring wells are responsible for, and shall cause the wells to be Nevada Administrative Code (NAC) 534.436 ling/plugging wells in the State of Nevada, nitoring is no longer required.	TM (m) E: TM (m) N: located or to be lo plugged in accorda 5 and all other ap not later than t l	cated, fully ance with the plicable rule hirty days	Datum NAD83/WGS84 understand that I shall e provisions contained es and regulations for after the date when
<pre>{ and be in 1 dril mo I sl Res (Pr Sta</pre>	Latitude (N): $\frac{36^{\circ} \circ 5^{\circ} 27.87}{1000}$ or $\begin{cases} U \\ U \\ U \end{cases}$ whereupon one or more monitoring wells are responsible for, and shall cause the wells to be Nevada Administrative Code (NAC) 534.436 ling/plugging wells in the State of Nevada, nitoring is no longer required . all further make any purchaser of this parcel average sponsible Party inted Name): Jay Steinberg Wells are the of Tennesse Party the of Tennesse Party	TM (m) E: TM (m) N: TM (m) N: located or to be lo plugged in accorda 5 and all other ap not later than t l ware of these condit (Signature):	icated, fully ance with the plicable rule hirty days tions.	Datum NAD83/WGS84 understand that I shall e provisions contained es and regulations for after the date when M Datum M
<pre>{ and be in 1 dril mo I sh Res (Pr Sta Co)</pre>	Latitude (N): $\frac{36^{\circ} \circ 5^{\circ} 27.87'}{1000}$ or $\begin{cases} U \\ U \\ U \\ U \end{cases}$ whereupon one or more monitoring wells are responsible for, and shall cause the wells to be Nevada Administrative Code (NAC) 534.436 ling/plugging wells in the State of Nevada, nitoring is no longer required . all further make any purchaser of this parcel average for the state of the	TM (m) E: TM (m) N: TM (m) N: located or to be lo plugged in accorda 5 and all other ap not later than the ware of these condit (Signature): not ind capacit Enviror	icated, fully ance with the plicable rule hirty days tions.	Datum NAD83/WGS84 understand that I shall e provisions contained es and regulations for after the date when MA Johnhar May Solely of the Nevada nse Trust Trustee
<pre>{ and be in 1 dril mo I sh Res (Pr Sta Co)</pre>	Latitude (N): $\frac{36^{\circ} \circ 5^{\circ} 27.87}{100}$ or $\begin{cases} U \\ U \\ U \end{cases}$ whereupon one or more monitoring wells are responsible for, and shall cause the wells to be Nevada Administrative Code (NAC) 534.436 ling/plugging wells in the State of Nevada, nitoring is no longer required . all further make any purchaser of this parcel average for Tennessee unty of <u>U:U:amsen</u> oscribed and sworn to before me on <u>5.31.4</u>	TM (m) E: TM (m) N: TM (m) N: located or to be lo plugged in accorda 5 and all other ap not later than the ware of these condit (Signature): not ind capacit Enviror	icated, fully ance with the plicable rule hirty days tions.	Datum NAD83/WGS84 understand that I shall e provisions contained es and regulations for after the date when What Salely hely in his representative of the Nevada hase Trust Trustee

IN THE OFFICE OF THE STATE ENGINEER OF THE STATE OF NEVADA REQUEST FOR A WAIVER TO DRILL OBSERVATION OR MONITOR WELL(S)

The applicant and/or person or company responsible for drilling and plugging the temporary well(s):

Bob Nix Operations M			Cascade Drilling LP	
Name 4221 W. Oquendo Rd.	Title Las Vegas		NV 89118	mpany
Street Address or PO Box	City or Toy	wn	State and ZIP Code	
Telephone number of responsible party:	(702) 715	5-5811	_	
Estimated project dates:Jun-12-20	18 Start Date	Jun-29-2018	Completion Da	ite
Location of the well: PLSS, GPS Coor (If more than one well is to be installed for the same)				
\underline{NW} $\frac{1}{4}$ \underline{SE} $\frac{1}{4}$ Section	29 T 21 S	R <u>63</u> E, N	1.D.B. & M.	
$\begin{cases} \text{Latitude (N): } 36^{\circ}0527.87'' \\ \text{Longitude (W): } 114^{\circ}5752.37'' \end{cases}$	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	n) E: n) N:	}	Datum NAD83/WGS84
County Assessor Parcel Number (APN)	: 160-29-701-002			
Street Address (if any):				ALC: NO.
NDEP Order # (if any): 8-001721				DCNR/DWR/SNBO RECEIVED
Purpose and duration of well(s):				JUN 05 2018
No Later the thirty days after the date w	when monitoring is no l	onger required		0011 00 2010
Also we need to waive NAC 534.4357 on the surface completions and installat we will be placing a 5' seal above the f	tion of the well that is t		<u>Istanation</u>	
If this waiver is an amendment or chang has other monitor wells installed, please			erty M/C)
The following ite	ems must be submitted	d with the wai	ver request:	
 A schematic drawing of the Affidavit of Intent to Plug Location Map (i.e., Large S Site Detail Map (i.e., Small 	a Well (Listing all wells Scale, inch = miles)) (Separate Affidav	it for each ¼, ¼)
Signatory Contact Information:				
(702) 715-5811 Telephone Number		Bob Nix Printed Name		
4221 W Oquendo Rd.		Bob ?	ny	
Mailing Address		Signature		
Las Vegas, NV 89118		Jun-04-2018		
City, State, ZIP Code		Date		

Rev 12/14 - waiver mo \$120 PER QUARTER-QUARTER FILING FEE MUST ACCOMPANY THIS REQUEST

JASON KING, P.E. State Engineer

ST	AT	E	OF	NE\	IA	DA
U 4 .	4 6 2	these ?	~ +			

BRIAN SANDOVAL GOVERNOR

A	ala	OF THE	Elle .	
H	C	2	R	
H	hor	2	Re	R
1.1			1	1
	N.S.	VAD	De	

DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES DIVISION OF WATER RESOURCES 400 Shadow Lane, Suite 201 Las Vegas, Nevada 89106 (702) 486-2770 · Fax (702) 486-2781 http://water.av.gov						
	NOTICE OF INTENT REVIEW FORM					
To: Bob Nix		Date:	June 12,	2018		
Facsimile No.:	or E-mail Address:		scade-env.	com		
This document was	: E-mailed	Faxed				
NOI Card Number: 40478	Appro	ved		ejected	(See reasons	s below)
Work performed Proposed use of well Intended start date Waiver/Permit number if applic Well location (legal description Parcel number Address at well location Permit number Waiver number or NDEP Facil Address of Client Name of client/owner Contractor's license number Onsite well driller's license num	, GPS coordinates) ity ID Number		missing missing missing missing missing missing missing missing missing missing missing missing		invalid invalid invalid invalid invalid invalid invalid invalid invalid invalid invalid invalid	
Drilling company name/addres Driller's signature Replacement well			missing missing Yes		invalid invalid No	

If yes, existing well must be plugged at time the replacement well is drilled, pursuant to NAC 534.300 Replacement Well.

Instructions:Please note that you must provide a copy of the well driller's report for the installation of two
(2) monitor wells within 30 days of completion. If you have any questions, please do not
hesitate to give our office a call.

Person reviewing NOI Card: Christi Cooper, waiver issued by Tracy Geter

Date reviewed: June 11, 2018

5,1152 4.9351

BRIAN SANDOVAL Governor

BRADLEY CROWELL Director STATE OF NEVADA

JASON KING, P.E. State Engineer

JOHN GUILLORY, P.E. Supervising Engineer

DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES DIVISION OF WATER RESOURCES SOUTHERN NEVADA BRANCH OFFICE 400 Shadow Lane, Suite 201 Las Vegas, Nevada 89106 (702) 486-2770 • Fax (702) 486-2781 http://water.nv.gov

June 12, 2018

MO-3501

Bob Nix Operations Manager County of Clark (Parks and Services) P.O. Box 711 Dallas, Texas 75221-0711

RE: Request for waiver to install two (2) temporary monitor wells to collect groundwater samples and analyze the samples as requested by Nevada Division of Environmental Protection (NDEP) Order Number 8-001721, located on vacant land, just northwest of 1650 East Galleria Drive, Henderson, Nevada and within the Las Vegas Valley Basin (212).

Dear Mr. Nix:

As provided in Nevada Administrative Code (NAC) § 534.450 of the Regulation for Water Well and Related Drilling, permission is herewith **granted** to install two (2) temporary monitor wells to assess water conditions as described in your request received June 5, 2018. Your statement ensuring Nevada Environmental Response Trust responsibility for abandonment of the well upon project completion was received in this office on June 5, 2018.

The two (2) proposed monitor wells referenced in your letter are listed below:

Well Name	Legal Description	GPS Coordinates (NAD 83/ WGS 84)
NERT 5.11S1	NE¼, SW¼ Section 29, T.21S, R63E	36° 05' 23.07" N, -114° 58' 14.820" W
NERT 4.93S1	NE¼, SW¼ Section 29, T.21S, R63E	36° 05' 24.152" N, -114° 58' 04.605" W

Cascade Drilling, LP MO-3501 June 12, 2018 Page 2

This office also waives the following regulations:

- NAC § 534.4351 (1) (c). The purpose of this well is to collect groundwater samples and analyze the samples as requested by NDEP Order Number 8-001721, located on vacant land, just northwest of 1650 East Galleria Drive, Henderson, Nevada. The wellhead shall be protected from damage due to vandalism or sunlight. If polyvinyl chloride (PVC) casing is used, then the well must be completed with ASTM F-480 (Sch. 40 or heavier) well casing as provided in NAC § 534.362.
- 2) NAC 534.4357(1c) "If water or vapors which are being monitored in a monitoring well are not encountered within 5 feet below the surface of the ground, the well driller shall place in the annual space of the well: From the seal placed pursuant to paragraph (b) to the surface, a seal, with a minimum thickness of 20 feet below the surface, consisting of cement grout, neat cement or concrete grout." Due to the shallow depth and large screen intervals of the proposed monitor well, you are allowed to install the sanitary seal as shown in your waiver request.

Glued casing joint connections will not be allowed. Full compliance with the remainder of the statute and regulation is required.

A plot map showing the actual location of the completed wells must be submitted upon completion of the drilling operations. Please include an accurate description of the location of the monitor well on the completion reports (GPS coordinates are required).

The well driller's reports shall bear this waiver number: MO-3501.

Authorization to drill under this waiver expires one (1) year from the date of this letter.

The well driller must have a copy of this waiver in possession at all times during drilling activities pertaining to this project. This well may only be pumped when necessary to obtain samples.

Please note that you must notify the Nevada Division of Environmental Protection (NDEP) for possible permitting requirements for groundwater or temporary surface discharge permits, which may include Underground Injection Control (UIC) or National Pollution Discharge Elimination System (NPDES) Permit Numbers. For more information regarding the permitting process with NDEP, please contact NDEP Water Pollution Control Department at (775) 687-4670.

NOI No. 40478 APN: 160-29-301-001 NDEP Order No. 8-001721 For two, 4-inch monitor wells Cascade Drilling, LP MO-3501 June 12, 2018 Page 3

The wells shall be plugged and abandoned, as provided by regulation, upon project completion. The current owner of Assessor's Parcel Number 160-29-301-001 is shown as County of Clark (Parks and Services) by the records of the Clark County Assessor's office. This waiver does not imply or grant any land use agreements between County of Clark (Parks and Services) and any land owners. It is expressly understood that this authorization does not relieve the operator of the requirements of any other state, federal or local agencies.

If you have any questions, please contact this office at 702-486-2770.

Sincerely, Treux

Tracy Geter Drilling Supervisor

File

cc:

Carson City Office Christi Cooper, SNBO Office Jay A. Steinberg, President, Nevada Environmental Response Trust, Chicago, Illinois

> NOI No. 40478 APN: 160-29-301-001 NDEP Order No. 8-001721 For two, 4-inch monitor wells

NO 40478
TIOT OF INITY OF INITY
6-1A (Capitable): 3.34
FILE WITH DIVISIONS 6 - 4 - 10 Intended Starts
D canditioning
Today's Date: Type of Work to be Done: Drilling: Deepening: Heconolision of If there is an existing well, what is the well log number of wells:
Type of work and the second seco
Is this a replacement were Montfor Diameter of work
fundlit Agency.
is it located with the facility ID human
If this well is a domestic well, well required by another government agency, what is the vertice of the source of
It this is a me
If this well is being completed under a wave, per If a water right is associated with this well, what is the permit number? If a water right is associated with this well, what is the permit number? NE 1/4 Sec. 29 T T NS NAD 27 NAD 27 NAD 27 NAD 27
Location of the wall hv Public Land Survey: <u>ITE</u> UTME UTME NAD 83/WGS 84
Location of the 360 05 73.07
Latitude: 1110 58' 14.82'Wor UTMN
Longitude: 119 30 11
Address at well location: Parcel Number: 160-29-301-001 Subdivision Name:
Accessor Parcel Number: 160 Control Subdivision
Nevada Lime bar Dr. Chicago = 2512 4199118
Name of Client: 35 East Wacker Dr. Chicago Es 2512 On-Site Driller's License Number: 2512 On-Site Driller's License Number: Rd Cas Vegos MY 99118
Address of Client: 0013760 (PU12/W. Ogueneoic O / D/
Contractor's License Number Cascade Drillinger in consture: Ban 19
Name of Client: 35 East Wacker Address of Client: 0073966 Contractor's License Number: 0073966 Company Name and Address: 0073966 Need Log Forms Need Intent Cards O2-2200 -5811 Driller's Signature: BabNy
Need Log Forms M02-000
(Rev. 1-14)

			\mathcal{O}
	IN THE OFFICE OF THE S	STATE ENGINEER OF	NEVADA
	AFFIDAV	TT OF INTENT	
		ONITORING WEI	L
	Notice of Intent # 40478		DCNR/DWR/SNBO RECEIVED
I,	Nevada Environmental Response Trust (T by and through Le Petomane XXVII Inc., not individually but solely as Trustee of th		JUN 05 2018
	Trust 35 East Wacker Drive #690	Address	
	Chicago, IL 60601-2314		For well NERT5.11S1 - additional wells included
	312-505-2688	Telephone Number	on "Additional Well Location" sheet
oft	he real property located at:		
Str	eet Address (if any)		
		0 201 001	
Co	inty Assessor Parcel Number (APN) 160-2	29-301-001	
	ated within the <u>NE</u> ¹ / ₄ <u>SW</u> ¹ / ₄		RE, M.D.B. & M.
{	Latitude (N): 36°0523.07" or Longitude (W): 114°58 14.82'	UTM (m) E: UTM (m) N:	Datum NAD83/WGS84
	l whereupon one or more monitoring wells responsible for, and shall cause the wells to		
	Nevada Administrative Code (NAC) 534.		
dri	lling/plugging wells in the State of Neva	ada, not later than thirty	days after the date when
m	onitoring is no longer required.		
I s	hall further make any purchaser of this parce	el aware of these conditions.	1 Pd.A.d.
Re (P	sponsible Party Finted Name): Jay Steinberg, Wess J	(Signature):	Stely but solly a
	ate of Tennessee	(capacity as Pi	resident of the Nevada
C	ounty of <u>Williamson</u>	Environmenta	al Response Trust Trustee
Sı	bscribed and sworn to before me on 5^{-3}	31-18	W KO
by	TOOD W. Koller	- (100)	STATE V
			OF ENNESSEE NOTARY
	T-W.KK		PUBLIC O
	Signature of Notary Public Required	THOMA	OF WILLIAM Revised 12/14

11-27-2021

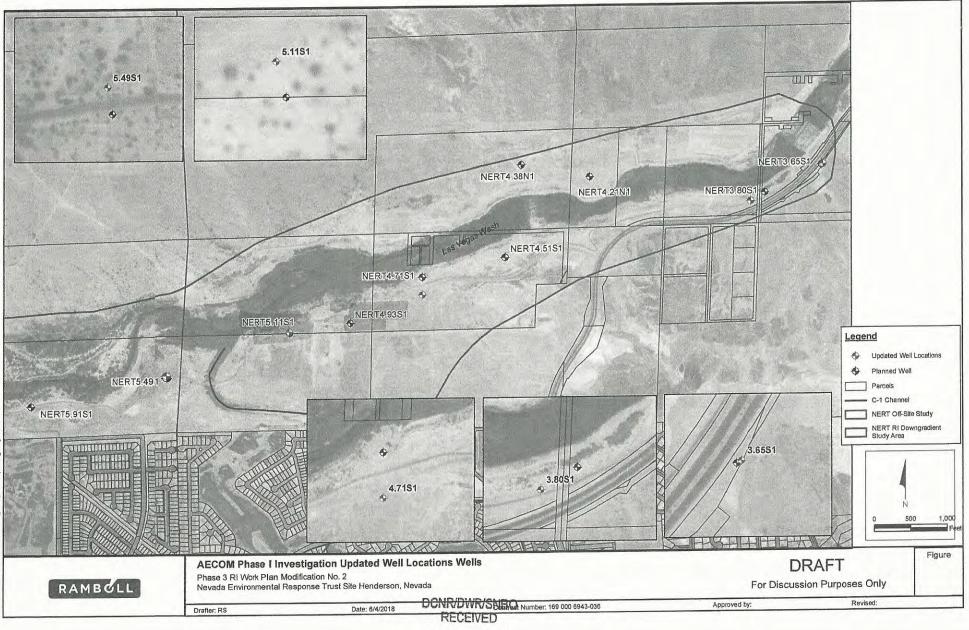
DCNR/DWR/SNBO RECEIVED

JUN 05 2018

Additional Well Locations

Coordinate system Lat/Long

Datum NAD83/WGS84


Well ID/Name	C	oordinates	1/4	1/4	Sec.	Twn	Rng	APN
JERT4.93S1	36° 05' 24.152" N	114° 58' 04.605" W	NE	SW	29	218	63E	160-29-301-001
			_					

IN THE OFFICE OF THE STATE ENGINEER OF THE STATE OF NEVADA REQUEST FOR A WAIVER TO DRILL OBSERVATION OR MONITOR WELL(S)

The applicant and/or person or company responsible for drilling and plugging the temporary well(s):

Bob Nix	Operations Manager	Cascade Drilling LP			
Name 4221 W. Oquendo Rd.	Title Las Vegas	Company NV 89118			
Street Address or PO Box	City or Town	State and ZIP Code			
Telephone number of responsible party:	(702) 715-5811				
Estimated project dates:Jun-12-20	18 Start Date Jun-29-201	8 Completion Date			
Location of the well: PLSS, GPS Cool (If more than one well is to be installed for the same					
NE 1/4 SW 1/4 Section		E, M.D.B. & M.			
$ \begin{cases} \text{Latitude (N):} & 36^{\circ} \ 0.5^{\circ} \ 2.3 \ 0.7^{\circ} \\ \text{Longitude (W):} & 114^{\circ} \ 58^{\circ} \ 14.82^{\circ} \end{cases} $	$ \label{eq:constraint} \ \ \text{or} \left\{ \begin{matrix} \text{UTM (m) E:} \\ \text{UTM (m) N:} \end{matrix} \right. \end{matrix} \right. \ \ \ \ \ \ \ \ $	Datum NAD83/WGS8			
County Assessor Parcel Number (APN): 160-29-301-001				
Street Address (if any):		DCNR/DWR/SNBO			
Purpose and duration of well(s):		RECEIVED			
No Later the thirty days after the date	when monitoring is no longer requi	JUN 05 2018			
on the surface completions and installa we will be placing a 5' seal above the If this waiver is an amendment or chan has other monitor wells installed, pleas	filter pack ge to an original waiver, or if the	property			
The following it	tems must be submitted with the	waiver request:			
• A schematic drawing of t	he typical monitor well construct g a Well (Listing all wells by well ID/N 9 Scale, inch = miles)				
Signatory Contact Information:					
(702) 715-5811	Bob Nix				
Telephone Number	Printed Nar	ne /			
4221 W Oquendo Rd.	Bo	6 All			
Mailing Address	Signature	/			
Las Vegas, NV 89118	Jun-04-2	2018			
City, State, ZIP Code	Date				

Rev 12/14 - waiver_mo \$120 PER QUARTER-QUARTER FILING FEE MUST ACCOMPANY THIS REQUEST

JUN 05 2018

54952

BRIAN	SANDOVAL
GO	VERNOR

, 1² 8 1/2

STATE OF NEVADA

BRADLEY CROWELL Director

> JASON KING, P.E. State Engineer

	N OF WATER 400 Shadow Lane, 4 Las Vegas, Nevada) 486-2770 · Fax (7 http://water.ny	Suite 201 a 89106 702) 486-278				
	NOTICE OF INTEN REVIEW FOI					
o: Bob Nix			June 13	3, 2018		
acsimile No.:	or E-mail Address	: bnix@case	cade-env	.com		
This document was:	✓E-mailed	Faxed				
OI Card Number: 40480		oved		Rejected	I (See reason	ns below)
Work performed		IT	nissing		invalid	
Proposed use of well			nissing		invalid	
Intended start date			issing		invalid	
Waiver/Permit number if applicable	3		nissing	Π	invalid	
Well location (legal description, GI			issing	Π	invalid	Π
Parcel number			nissing		invalid	Π
Address at well location			nissing		invalid	Ē
Permit number			nissing		invalid	
Waiver number or NDEP Facility I	D Number	m	nissing		invalid	
Address of Client		m	nissing		invalid	
Name of client/owner		m	nissing		invalid	
Contractor's license number		m	nissing		invalid	
Onsite well driller's license number			uissing		invalid	
Drilling company name/address		m	nissing		invalid	
Driller's signature			nissing		invalid	
Replacement well		Y	es		No	

pursuant to NAC 534.300 Replacement Well.

Ja Ja

 Instructions:
 Please note that you must provide a copy of the well driller's report for the installation of one

 (1) monitor well within 30 days of completion. If you have any questions, please do not hesitate to give our office a call.

Person reviewing NOI Card: Christi Cooper, waiver issued by Tracy Geter

Date reviewed: June 11, 2018

BRIAN SANDOVAL Governor

1.1

BRADLEY CROWELL Director

STATE OF NEVADA

JASON KING, P.E. State Engineer

JOHN GUILLORY, P.E. Supervising Engineer

DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES DIVISION OF WATER RESOURCES SOUTHERN NEVADA BRANCH OFFICE

400 Shadow Lane, Suite 201 Las Vegas, Nevada 89106 (702) 486-2770 • Fax (702) 486-2781 <u>http://water.nv.gov</u>

June 13, 2018

MO-3504

Bob Nix Operations Manager Cascade Drilling, LP 4221 West Oquendo Road Las Vegas, Nevada 89118

RE: Request for waiver to install one (1) temporary monitor well (NERT 5.49S1) to collect groundwater samples and analyze the samples as requested by Nevada Division of Environmental Protection (NDEP) Order Number 8-001721, located at 8850 East Russell Road, Clark County, Nevada, within the SE¼ of the SE¼ of Section 30, T.21S, R.63E (Lat: 36° 05' 17.370" N, Long: -114° 58' 34.930" W, NAD 83/ WGS 84), and within the Las Vegas Valley Basin (212).

Dear Mr. Nix:

As provided in Nevada Administrative Code (NAC) § 534.450 of the Regulation for Water Well and Related Drilling, permission is herewith granted to install one (1) temporary monitor well to assess water conditions as described in your request received June 5, 2018. Your statement ensuring Nevada Environmental Response Trust responsibility for abandonment of the well upon project completion was received in this office on June 5, 2018.

This office also waives the following regulations:

 NAC § 534.4351 (1) (c). The purpose of this well is to collect groundwater samples and analyze the samples as requested by NDEP Order Number 8-001721, located at 8850 East Russell Road, Clark County, Nevada. The wellhead shall be protected from damage due to vandalism or sunlight. If polyvinyl chloride (PVC) casing is used, then the well must be completed with ASTM F-480 (Sch. 40 or heavier) well casing as provided in NAC § 534.362. Cascade Drilling, LP MO-3504 June 13, 2018 Page 2

2) NAC 534.4357(1c) - "If water or vapors which are being monitored in a monitoring well are not encountered within 5 feet below the surface of the ground, the well driller shall place in the annual space of the well: From the seal placed pursuant to paragraph (b) to the surface, a seal, with a minimum thickness of 20 feet below the surface, consisting of cement grout, neat cement or concrete grout." Due to the shallow depth and large screen intervals of the proposed monitor well, you are allowed to install the sanitary seal as shown in your waiver request.

Glued casing joint connections will not be allowed. Full compliance with the remainder of the statute and regulation is required.

A plot map showing the actual location of the completed wells must be submitted upon completion of the drilling operations. Please include an accurate description of the location of the monitor well on the completion reports (GPS coordinates are required).

The well driller's reports shall bear this waiver number: MO-3504.

Authorization to drill under this waiver expires one (1) year from the date of this letter.

The well driller must have a copy of this waiver in possession at all times during drilling activities pertaining to this project. This well may only be pumped when necessary to obtain samples.

Please note that you must notify the Nevada Division of Environmental Protection (NDEP) for possible permitting requirements for groundwater or temporary surface discharge permits, which may include Underground Injection Control (UIC) or National Pollution Discharge Elimination System (NPDES) Permit Numbers. For more information regarding the permitting process with NDEP, please contact NDEP Water Pollution Control Department at (775) 687-4670.

The wells shall be plugged and abandoned, as provided by regulation, upon project completion. The current owner of Assessor's Parcel Number 160-30-000-003 is shown as United States of America (USA) by the records of the Clark County Assessor's office. This waiver does not imply or grant any land use agreements between USA and any land owners. It is expressly understood that this authorization does not relieve the operator of the requirements of any other state, federal or local agencies.

If you have any questions, please contact this office at 702-486-2770.

Sincerely,

Tracy Geter Drilling Supervisor

File

cc:

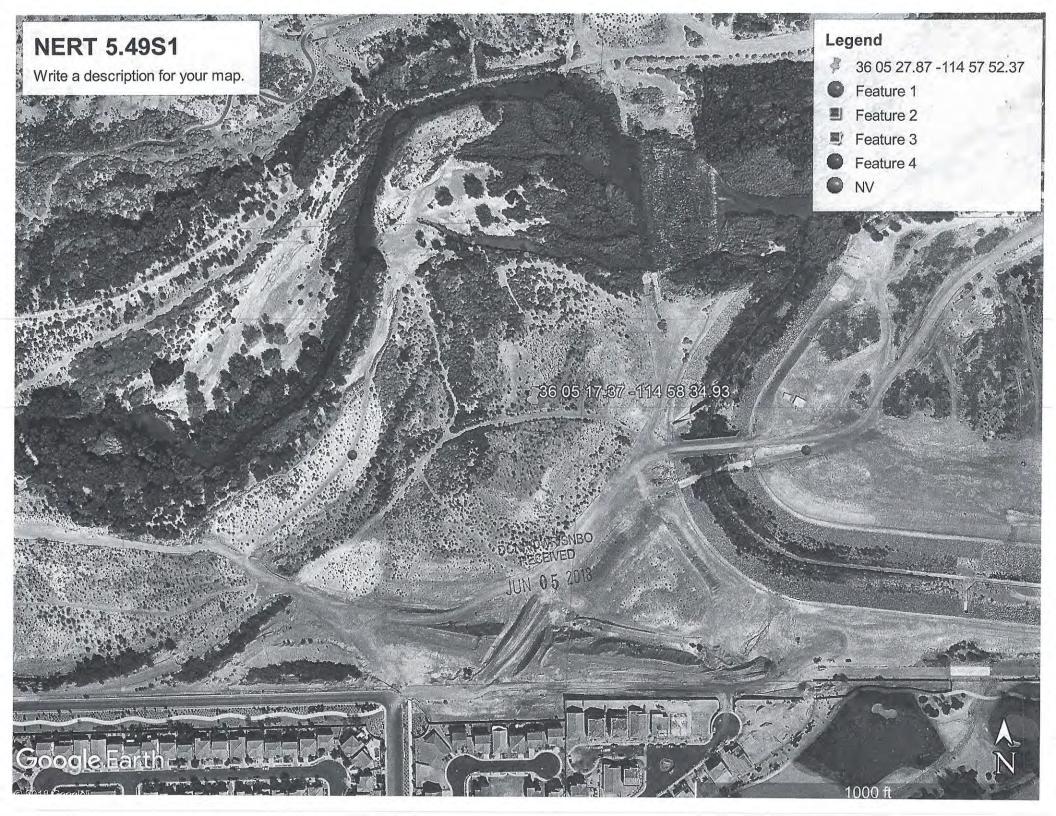
Carson City Office Christi Cooper, SNBO Office Jay A. Steinberg, President, Nevada Environmental Response Trust, Chicago, Illinois

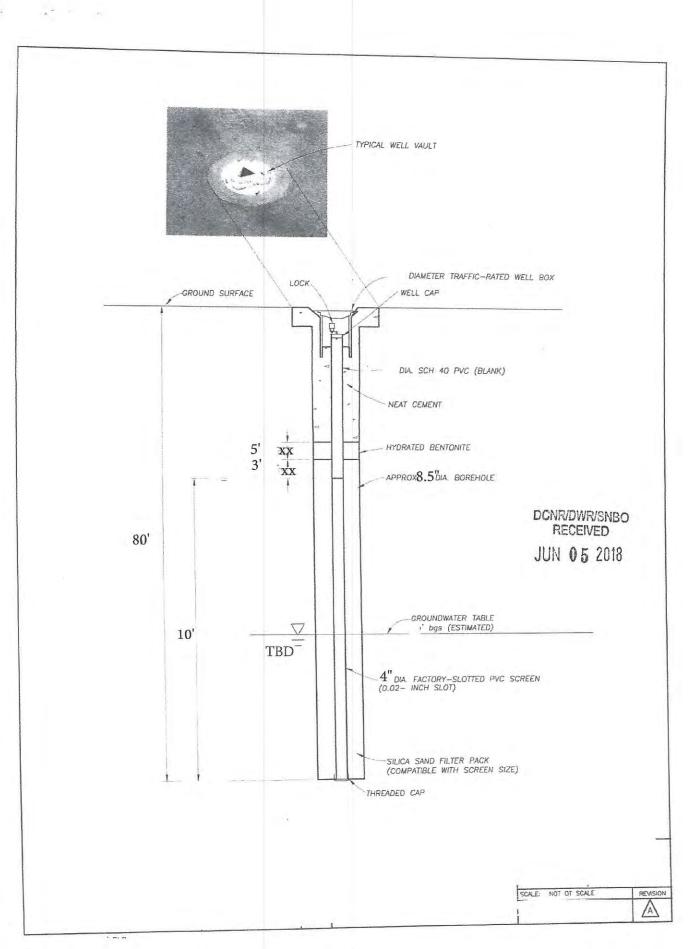
> NOI No. 39999 APN 160-30-000-003 NDEP Order No. 8-001721 For one, 4-inch Monitor Well

ORIGINAL FILE WITH DIVISION OF WATER RESOURCES	and the second secon	NOTICE O	F INTENT	and and a second and a second	
Today's Date: 6-4-6	<u>e</u> Inter	nded Start Date:	6-12-18	No.	40480
Type of Work to be Done: Dril	ling: 🗗 Deepening: 🗖	Reconditioning:	Plugging:	Well ID (if applicabl	e): 5.4951
Is this a replacement well? Yes	D. No M	If there i			
Proposed use of well:	onitor	Diameter of well:	s an existing well, what i	s the well log number?	1
If this well is a domestic well, is it	located within a water purveyo	or's service area?	Yes 🖂 No 🗔		
If this is a monitor well required by	y another government agency,	what is the facility ID		If yes, what is the DO	M waiver:
If this well is being completed und	ler a waiver, please provide the	e corresponding waiv		Agency	" TIDEP
If a water right is associated with t	his well, what is the permit nu	mber?			
Location of the well by Public Land	d Survey: SE 1/4	0	Sec. 30	21.	62
A	17.37"N		sec.	T AI WS	ROJE
Longitude: 1/4° 58	34, 92'w	UTM E		_ NAD 2	7
	11 13 10	UTM N		NAD 8	3/WGS 84
Address at well location:	0-30-00	00-00	0		
Assessor Parcel Number:	-	0-00	3		
County: Clar		Sub	division Name:		
Name of Client: NCYGda I	Environmental	Response	Trust		
Address of Client: 35 Eo.	st Wacker Dr	. *690 (Chicago I	L 60601-	- 22/4
	0073966	On-Site Driller		251)	1011
Company Name and Address:	scadeDrillingL	PYZZIW.C	Jauendo R	d Cacilla	All
Need Log Forms	Need Intent Cards]	1	d las Vicgo	69118
(Rev. 1-14)	702-220.	-5811	Driller's Signature:	Baly	10
					State (States)

	IN THE OFFICE OF THE	STATE ENGINEER OF	NEVADA
	AFFIDA	VIT OF INTENT	
	TO PLUG A M	IONITORING WEI	L
	Notice of Intent # 40480		DCNR/DWR/SNBO
Ī,	Nevada Environmental Response Trust (T by and through Le Petomane XXVII Inc., not individually but solely as Trustee of th Trust	Name & Title	JUN 05 2018
	35 East Wacker Drive #690 Chicago, IL 60601-2314	Address	
	312-505-2688	Telephone Number	For well NERT5.49S no additional wells included.
oft	he real property located at:		
Str	eet Address (if any)		
Siti { and	Latitude (N): $36^{\circ}05'17.37''$ Longitude (W): $114^{\circ}58'34.93''$ or whereupon one or more monitoring wells	Section <u>30</u> T <u>21 s</u> UTM (m) E: UTM (m) N: are located or to be located, t	Datum <u>NAD83/WGS84</u> fully understand that I shal
Situ { and be in dril	Latitude (N): $36^{\circ}05'17.37''$ Longitude (W): $114^{\circ}58'34.93''$ or whereupon one or more monitoring wells responsible for, and shall cause the wells to Nevada Administrative Code (NAC) 534.	Section <u>30</u> T <u>21</u> s UTM (m) E: UTM (m) N: are located or to be located, to be plugged in accordance with 4365 and all other applicable	Datum NAD83/WGS84 fully understand that I shall ith the provisions contained e rules and regulations for
Site { and be in : dril mo	Latitude (N): $36^{\circ}05'17.37''$ Longitude (W): $114^{\circ}58'34.93''$ or whereupon one or more monitoring wells responsible for, and shall cause the wells to Nevada Administrative Code (NAC) 534. ling/plugging wells in the State of Neva nitoring is no longer required.	Section <u>30</u> T <u>21 s</u> UTM (m) E: UTM (m) N: are located or to be located, f be plugged in accordance wi 4365 and all other applicable ida, not later than thirty d	Datum NAD83/WGS84 fully understand that I shall ith the provisions contained e rules and regulations for ays after the date when
Situ and be in 1 dril mo I sh Res (Pr Sta	Latitude (N): $36^{\circ}05'17.37''$ Longitude (W): $114^{\circ}58'34.93''$ or whereupon one or more monitoring wells responsible for, and shall cause the wells to Nevada Administrative Code (NAC) 534.	Section <u>30</u> T <u>21 s</u> UTM (m) E: UTM (m) N: are located or to be located, f be plugged in accordance wi 4365 and all other applicable ida, not later than thirty d el aware of these conditions.	Datum NAD83/WGS84 fully understand that I shall ith the provisions contained e rules and regulations for
Situ and be in dril mo I sh Res (Pr Sta Cou	Latitude (N): $36^{\circ}05'17.37''$ Longitude (W): $114^{\circ}58'34.93''$ or whereupon one or more monitoring wells responsible for, and shall cause the wells to Nevada Administrative Code (NAC) 534. ling/plugging wells in the State of Neva nitoring is no longer required. hall further make any purchaser of this parce sponsible Party inted Name): Jay Steinberg, $M_{15}M_{15}M_{15}$	Section <u>30</u> T <u>21 s</u> UTM (m) E: UTM (m) N: are located or to be located, f be plugged in accordance wi 4365 and all other applicable ida, not later than thirty d el aware of these conditions. (Signature): (Sign	$\begin{array}{c} & \text{Datum} \\ \hline NAD83/WGS84 \\ \hline fully understand that I shall it the provisions contained it to provide it$
Situ and be in dril mo I sh Res (Pr Sta Cou	Latitude (N): $36^{\circ}05'17.37''$ Longitude (W): $114^{\circ}58'34.93''$ or whereupon one or more monitoring wells responsible for, and shall cause the wells to Nevada Administrative Code (NAC) 534. lling/plugging wells in the State of Neva nitoring is no longer required. hall further make any purchaser of this parce sponsible Party inted Name): Jay Steinberg, $M_{15}M$ te of $Tennessee$ unty of $W: II:ansom$	Section <u>30</u> T <u>21 s</u> UTM (m) E: UTM (m) N: are located or to be located, for be plugged in accordance with 4365 and all other applicable ida, not later than thirty de el aware of these conditions. (Signature). (Signa	Datum NAD83/WGS84 fully understand that I shall ith the provisions contained ith the provisi
Situ and be in 1 dril mo I sh Res (Pr Sta Cou Sub	Latitude (N): $36^{\circ}05'17.37''$ Longitude (W): $114^{\circ}58'34.93''$ or whereupon one or more monitoring wells responsible for, and shall cause the wells to Nevada Administrative Code (NAC) 534. Iling/plugging wells in the State of Neva nitoring is no longer required. Hall further make any purchaser of this parce sponsible Party inted Name): Jay Steinberg, $M_{LS}M$ te of Tennessee unty of <u>W:llianson</u>	Section <u>30</u> T <u>21 s</u> UTM (m) E: UTM (m) N: are located or to be located, for be plugged in accordance with 4365 and all other applicable ada, not later than thirty d el aware of these conditions. (Signature): Not individually capacity as Press Environmental (-18 (Signature): NO S TENIN NO PL	Datum NAD83/WGS84 fully understand that I shall ith the provisions contained ith the provisi

IN THE OFFICE OF THE STATE ENGINEER OF THE STATE OF NEVADA **REQUEST FOR A WAIVER TO DRILL OBSERVATION OR MONITOR WELL(S)**


The applicant and/or person or company responsible for drilling and plugging the temporary well(s):


3

Bob Nix	Operations Manager	Cascade Dri	lling LP
Name 4221 W. Oquendo Rd.	Title Las Vegas	NV 89118	Company
Street Address or PO Box	City or Town	State	e and ZIP Code
Telephone number of responsible party:	(702) 715-5811		
Estimated project dates:Jun-12-20	18 Start Date Jun-29-2018	Completion	Date
Location of the well: PLSS, GPS Coor (If more than one well is to be installed for the same)	이 방법에 가지 않는 것 같은 것이 같이 많이 좋다. 나는 것 같은 것은 것이 많이		
SE 1/4 SE 1/4 Section		, M.D.B. & M.	
Latitude (N): 36*05'17.37"	$\int UTM(m) E$:		Datum
$\begin{cases} \text{Latitude (N):} & 36*05'17.37''\\ \text{Longitude (W):} & 114*58'34.93'' \end{cases}$	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$		NAD83/WGS8
County Assessor Parcel Number (APN)	: 160-30-000-003		
Street Address (if any):			
NDEP Order # (if any): 8-001721		-	DCNR/DWR/SNBO
Purpose and duration of well(s): No Later the thirty days after the date w		1	JUN 05 2018
	ge to an original waiver or if the r	property	
If this waiver is an amendment or change has other monitor wells installed, please	•	Ν	//O
has other monitor wells installed, please	•		И/О
 has other monitor wells installed, please The following ite A schematic drawing of the 	e give the original waiver number. ems must be submitted with the v e typical monitor well constructi a Well (Listing all wells by well ID/Na Scale, inch = miles)	waiver request: on	
 has other monitor wells installed, please The following ite A schematic drawing of th Affidavit of Intent to Plug Location Map (i.e., Large 	e give the original waiver number. ems must be submitted with the v e typical monitor well constructi a Well (Listing all wells by well ID/Na Scale, inch = miles)	waiver request: on	
 has other monitor wells installed, please The following ite A schematic drawing of th Affidavit of Intent to Plug Location Map (i.e., Large Site Detail Map (i.e., Small 	e give the original waiver number. ems must be submitted with the v e typical monitor well constructi a Well (Listing all wells by well ID/Na Scale, inch = miles)	waiver request: on	
has other monitor wells installed, please The following ite A schematic drawing of th Affidavit of Intent to Plug Location Map (i.e., Large Site Detail Map (i.e., Smal Signatory Contact Information:	e give the original waiver number. ems must be submitted with the v e typical monitor well constructi a Well (Listing all wells by well ID/Na Scale, inch = miles) I Scale, inch = feet)	waiver request: on ame) (Separate Affi	
has other monitor wells installed, please The following ite A schematic drawing of th Affidavit of Intent to Plug Location Map (i.e., Large Site Detail Map (i.e., Smal Signatory Contact Information: (702) 715-5811	e give the original waiver number. ems must be submitted with the v e typical monitor well constructi a Well (Listing all wells by well ID/Na Scale, inch = miles) I Scale, inch = feet) Bob Nix	waiver request: on ame) (Separate Affi	
has other monitor wells installed, please The following ite A schematic drawing of th Affidavit of Intent to Plug Location Map (i.e., Large Site Detail Map (i.e., Small Signatory Contact Information: (702) 715-5811 Telephone Number	e give the original waiver number. ems must be submitted with the vertice typical monitor well construction a Well (Listing all wells by well ID/Na Scale, inch = miles) I Scale, inch = feet) Bob Nix Printed Name	waiver request: on ame) (Separate Affi	
has other monitor wells installed, please The following ite A schematic drawing of th Affidavit of Intent to Plug Location Map (i.e., Large Site Detail Map (i.e., Small Signatory Contact Information: (702) 715-5811 Telephone Number 4221 W Oquendo Rd.	e give the original waiver number. ems must be submitted with the v e typical monitor well constructi a Well (Listing all wells by well ID/Na Scale, inch = miles) I Scale, inch = feet) Bob Nix Printed Name Bod	waiver request: on ame) (Separate Affi	

JUN 05 2018

BOD Nix DEG ALERT # W815 900 626 JULY 6/2018 54951

From: Sent:		on@usan.org	
		, June 7, 2018 7:20 AM	
To:	Gabe Mi		
Subject:	USA Nor	th 811 Confirmation for Ticket X81	5800161-00X
EMLCFM 00317 USA	ANX 06/07/18 07:2	0:00 X815800161-00X NORM	NEW POLY LREQ
Message Number:	X815800161 Rev:	00X Received by USAN at 0	7:14 on 06/07/18
Work Begins: Night Work:		0 Notice: 020 hrs	Priority: 2
Expires: 07/05/1	18 at 23:59 Upd	ate By: 07/02/18 at 00	:00
	GABRIEL MICLETTE		
Company:	RAMBOLL		
	510 S. 4TH STREE		
City:	HENDERSON	State: NV Z	ip: 89015
Business Tel:		Fax:	
Email Address:	gmiclette@rambol	l.com	
Nature of Work:	VERTICAL BORING	FOR SOIL SAMPLES	
Done for:	NERT	Explosives:	
Foreman:	GREG		
	510-655-7400		
		od: WHITE PAINT 🖌	
Permit Type:	NOV	1	
Excavation Enter	rs Into Street Or	Sidewalk Area: NJ	
Location:			
Street Address:	W BURKHOLDER BLV	D	
Cross Street:	E RUSSELL RD 🗸		
AT A POINT 1530 AND E RUSSELL RI		0 NORTH OF THE INTERSECTI	ON OF W BURKHOLDER BLVD*
COORDINATES: 360)5'17.019" N, 114	58'34.845" W	
Place: HENDERSON	3	County: CLARK	State: NV
Long/Lat Long: -	-114.975616 Lat:	36.087654 Long: -114.976	971 Lat: 36.088753
Comments: 5.49S1			
Sent to:			
BAWACO - BASTC M	VATER COMPANY	CENTE2 = CENTURYLIN	K
DAMACO - DADIC I			
CTYHEN = CITY HE	ENDERSON	NENGSO = NV ENERGY	

BRIAN SANDONAL STATE OF	NEVADA			
BRIAN SANDOVAL GOVERNOR	NEVADA		BRADLET	Y CROW
Soldhing .	- HEL		Di	recipi
	之臣			KING, I
	<u></u>			
NY N	EA-			
DEPARTMENT OF CONSERVATION DIVISION OF WAT	N AND NATURAL	RESOURC	ES	
400 Shadow Las		CES		
Las Vegas, Nev	vada 89106			
(702) 486-2770 · Fa	x (702) 486-2781 II.NV.gov			
NOTICE OF IN	TENT CARD			
REVIEW	FORM			
To: Bob Nix	Date:	lune 13, 201	8	
	-			
Facsimile No.: or E-mail Add	ress: bnix@casca	de-env.com		
This document was: DE-mailed	Faxed			
NOI Card Number: 40481	pproved	Dotes	1/6-	
	pproveu	L]Kejec	ted (See reaso	ns belo
Work performed	mi	ssing	invalid	
Proposed use of well	mi	ssing	invalid	
Intended start date	mi	ssing	invalid	
Waiver/Permit number if applicable	mis	ssing	invalid	
			invalid	
Well location (legal description, GPS coordinates)		ssing	117.1 3 4 4 4	
Parcel number	mis	ssing	invalid	
Parcel number Address at well location	mi: mi:			
Parcel number Address at well location Permit number	mis mis mis	ssing	invalid	
Parcel number Address at well location	mis mis mis mis	ssing	invalid invalid	
Parcel number Address at well location Permit number	mis mis mis mis mis	ssing	invalid invalid invalid	
Parcel number Address at well location Permit number Waiver number or NDEP Facility ID Number	mis mis mis mis mis mis	ssing	invalid invalid invalid invalid	
Parcel number Address at well location Permit number Waiver number or NDEP Facility ID Number Address of Client	mis mis mis mis mis mis mis	ssing	invalid invalid invalid invalid invalid	
Parcel number Address at well location Permit number Waiver number or NDEP Facility ID Number Address of Client Name of client/owner	mis mis mis mis mis mis mis mis	ssing	invalid invalid invalid invalid invalid invalid invalid	
Parcel number Address at well location Permit number Waiver number or NDEP Facility ID Number Address of Client Name of client/owner Contractor's license number	mis mis mis mis mis mis mis mis	ssing	invalid invalid invalid invalid invalid invalid invalid invalid	
Parcel number Address at well location Permit number Waiver number or NDEP Facility ID Number Address of Client Name of client/owner Contractor's license number Onsite well driller's license number	mis mis mis mis mis mis mis mis mis	ssing	invalid invalid invalid invalid invalid invalid invalid	

Do

Instructions: Please note that you must provide a copy of the well driller's report for the installation of one (1) monitor well within 30 days of completion. If you have any questions, please do not hesitate to give our office a call.

Person reviewing NOI Card: Christi Cooper, waiver issued by Tracy Geter Date reviewed: June 11, 2018

BRIAN SANDOVAL Governor

BRADLEY CROWELL Director STATE OF NEVADA

JASON KING, P.E. State Engineer

JOHN GUILLORY, P.E. Supervising Engineer

DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES DIVISION OF WATER RESOURCES SOUTHERN NEVADA BRANCH OFFICE 400 Shadow Lane, Suite 201 Las Vegas, Nevada 89106 (702) 486-2770 • Fax (702) 486-2781 <u>http://water.nv.gov</u>

June 13, 2018

MO-3505

Bob Nix Operations Manager Cascade Drilling, LP 4221 West Oquendo Road Las Vegas, Nevada 89118

RE: Request for waiver to install one (1) temporary monitor well (NERT 5.91S1) to collect groundwater samples and analyze the samples as requested by Nevada Division of Environmental Protection (NDEP) Order Number 8-001721, located at 8850 East Russell Road, Clark County, Nevada, within the SW¼ of the SE¼ of Section 30, T.21S, R.63E (Lat: 36° 05' 13.397" N, Long: -114° 58' 58.424" W, NAD 83/ WGS 84), and within the Las Vegas Valley Basin (212).

Dear Mr. Nix:

As provided in Nevada Administrative Code (NAC) § 534.450 of the Regulation for Water Well and Related Drilling, permission is herewith granted to install one (1) temporary monitor well to assess water conditions as described in your request received June 5, 2018. Your statement ensuring Nevada Environmental Response Trust responsibility for abandonment of the well upon project completion was received in this office on June 5, 2018.

This office also waives the following regulations:

 NAC § 534.4351 (1) (c). The purpose of this well is to collect groundwater samples and analyze the samples as requested by NDEP Order Number 8-001721, located at 8850 East Russell Road, Clark County, Nevada. The wellhead shall be protected from damage due to vandalism or sunlight. If polyvinyl chloride (PVC) casing is used, then the well must be completed with ASTM F-480 (Sch. 40 or heavier) well casing as provided in NAC § 534.362.

Cascade Drilling, LP MO-3505 June 13, 2018 Page 2

2) NAC 534.4357(1c) - "If water or vapors which are being monitored in a monitoring well are not encountered within 5 feet below the surface of the ground, the well driller shall place in the annual space of the well: From the seal placed pursuant to paragraph (b) to the surface, a seal, with a minimum thickness of 20 feet below the surface, consisting of cement grout, neat cement or concrete grout." Due to the shallow depth and large screen intervals of the proposed monitor well, you are allowed to install the sanitary seal as shown in your waiver request.

Glued casing joint connections will not be allowed. Full compliance with the remainder of the statute and regulation is required.

A plot map showing the actual location of the completed wells must be submitted upon completion of the drilling operations. Please include an accurate description of the location of the monitor well on the completion reports (GPS coordinates are required).

The well driller's reports shall bear this waiver number: MO-3505.

Authorization to drill under this waiver expires one (1) year from the date of this letter.

The well driller must have a copy of this waiver in possession at all times during drilling activities pertaining to this project. This well may only be pumped when necessary to obtain samples.

Please note that you must notify the Nevada Division of Environmental Protection (NDEP) for possible permitting requirements for groundwater or temporary surface discharge permits, which may include Underground Injection Control (UIC) or National Pollution Discharge Elimination System (NPDES) Permit Numbers. For more information regarding the permitting process with NDEP, please contact NDEP Water Pollution Control Department at (775) 687-4670.

The wells shall be plugged and abandoned, as provided by regulation, upon project completion. The current owner of Assessor's Parcel Number 160-30-000-003 is shown as United States of America (USA) by the records of the Clark County Assessor's office. This waiver does not imply or grant any land use agreements between USA and any land owners. It is expressly understood that this authorization does not relieve the operator of the requirements of any other state, federal or local agencies.

If you have any questions, please contact this office at 702-486-2770.

Sincerely,

cc:

Tracy Geter Drilling Supervisor

File Carson City Office Christi Cooper, SNBO Office Jay A. Steinberg, President, Nevada Environmental Response Trust, Chicago, Illinois

> NOI No. 40481 APN 160-30-000-003 NDEP Order No. 8-001721 For onc, 4-inch Monitor Well

	TICE OF INTENT No. 40481
WATER RESOURCES 6-4-18 Intended S	6-12-18 HERT FORCE
Today's Date: 01100	Well ID (if applicable):
Type of Work to be Done: Drilling: 🗹 Deepening: 🗔 Rec	onditioning: Plugging:
Is this a replacement well? Yes No	If there is an existing well, what is the well log number?
Proposed use of well:	
If this well is a domestic well, is it located within a water purveyor's se If this is a monitor well required by another government agency, what	O MAINI HDEP
If this is a monitor well required by another government agency, man	
If this well is being completed under a waiver, please provide the corr	
If a water right is associated with this well, what is the permit number	SE 1/4 Sec. 30 T 21 N/S R 63 E
Location of the well by Public Land Survey: 3/1/4 36005 13.397.N	NAD 27
Latitude: 30-03 13.37	UTM E IND 83/WGS 84
Longitude: 11405858.424 ~~r	
Address at well location: Address Parrel Number 160 - 30 - 000	- 00 3
Assessor Parcel Number:	Subdivision Name:
County: Clark	
Name of Client: Nevada Environmental	Response Trust
Name of Client 35 East Wacker Dr #	=690 chicogo IL 60601-2314
	- 1811
Contractor's License Number: 0073966	On-Site Driller's License Number: 43/4
Company Name and Address: Cascade Drilling L) 422 W. Oquendo Rd. Las Yeges Ky 89118
The state of Cards	R- Det
Need Log Forms Need Intent Cards	3// Driller's Signature:
(Rev. 1-14) 702-220-50	271

IN THE OFFICE OF THE STATE ENGINEER OF NEVADA

AFFIDAVIT OF INTENT TO PLUG A MONITORING WELL

	Notice of Intent # 4048 (DCNR/DWR/SNBO RECEIVED
I,	Nevada Environmental Response Trust (Trus	st)Name & Title	JUN 05 2018
	by and through Le Petomane XXVII Inc.,		
	not individually but solely as Trustee of the Trust	Company	
	35 East Wacker Drive #690	Address	
	Chicago, IL 60601-2314		
			For well NERT5.91S1 - no additional wells
	312-505-2688	Telephone Number	included.
oft	he real property located at:		
Stre	et Address (if any)		
Cou	onty Assessor Parcel Number (APN) 160-30-00	00-003	
Situ	ated within the SW 1/4 SE 1/4 Sect	tion 30 T 21 S	R 63 E, M.D.B. & M.
{	Latitude (N): $\frac{36^{\circ}05'13.397''}{114^{\circ}58'58.424''}$ or $\begin{cases} U'' \\ U'' \\ U'' \end{cases}$	ГМ (m) E:	- Datum
	whereupon one or more monitoring wells are		
be r	esponsible for, and shall cause the wells to be	plugged in accordance with	the provisions contained
in N	Nevada Administrative Code (NAC) 534.4365	and all other applicable	rules and regulations for
	ing/plugging wells in the State of Nevada,		
	itoring is no longer required.	not miter than thirty day	s after the date when
	all further make any purchaser of this parcel aw	ana af thease and l'u'	
		are of these conditions.	WISSIM
Resp (Prir	nted Name): Jay Steinberg	S. A.	1 butsolely
(Tennessee		non on
State	of Williamson	capacity as Preside	at solely in his representative nt of the Nevada
Cour	nty of		nt of the Nevada
Subs	ceribed and sworn to before me on $5.31.18$		
by ·	TODD W. Koller	KODD W. K	OLLED
		/ / STAT	
-		S NOTAF	
	Signature of Notary Public Required	Kotary Se	191
	game of from y rubbe Required	OF W	
		11.27-2	021

IN THE OFFICE OF THE STATE ENGINEER OF THE STATE OF NEVADA REQUEST FOR A WAIVER TO DRILL OBSERVATION OR MONITOR WELL(S)

The applicant and/or person or company	responsible for dri	lling and pluggin	g the temporary	well(s):
Bob Nix	Operations Manag		Cascade Drilli	
Name 4221 W. Oquendo Rd.	Title Las Vegas			ompany
Street Address or PO Box	City or	Town	State an	nd ZIP Code
Telephone number of responsible party:	(702)	715-5811		
Estimated project dates:Jun-12-201	8 Start Date	Jun-29-2018	_ Completion Da	ate
Location of the well: PLSS, GPS Coord (If more than one well is to be installed for the same p SW ¹ / ₄ SE ¹ / ₄ Section	dinates and Map I roject, use the accompany 30 T 21 S	ving form to list each w	ell.)	
		- R <u>63</u> E, N	1.D.B. & M.	
$ \begin{cases} \text{Latitude (N):} & 36*05'13.397'' \\ \text{Longitude (W):} & 114*58'58.424 \end{cases} $	or UTM	(m) E: (m) N:	}	Datum NAD83/WGS84
County Assessor Parcel Number (APN): Street Address (if any):	160-30-000-003			
NDEP Order # (if any): 8-001721			DCN	R/DWR/SNBO
Purpose and duration of well(s):			F	RECEIVED
No Later the thirty days after the date wh	nen monitoring is ne	o longer required	JUL	05 2018
Also we need to waive NAC 534.4357 (on the surface completions and installation we will be placing a 5' seal above the fill If this waiver is an amendment or change	on of the well that i ter pack	<u>s to be installed</u>		
has other monitor wells installed, please	give the original wa	iver number.	M/C) -
The following iten	ns must be submit	ted with the wai	ver request:	
 A schematic drawing of the Affidavit of Intent to Plug a Location Map (i.e., Large Science Site Detail Map (i.e., Small Science 	typical monitor we Well (Listing all wel cale, inch = miles)	ell construction		it for each ¼, ¼)
Signatory Contact Information:				
(702) 715-5811		Bob Nix		
Telephone Number		Printed Name	1	
4221 W Oquendo Rd.		Bal	2	
Mailing Address		Signature		
Las Vegas, NV 89118		Jun-04-2018		
City, State, ZIP Code		Date		

Rev 12/14 - waiver_mo S120 PER QUARTER-QUARTER FILING FEE MUST ACCOMPANY THIS REQUEST

From:	Gabe Miclette
То:	Bilodeau, Sally; Bob Nix
Cc:	Caceres-Schnell, Carmen; Piper, Sara; Ross E Russell; Neil A. Hale
Subject:	RE: 811 dig tickets for 5 of 10 Phase I wells
Date:	Thursday, May 31, 2018 12:53:28 PM
Attachments:	image004.jpg image005.png image001.png

Bob and Sally,

Below are the dig ticket and and corresponding well ids. Let me know if you need anything else!

Well ID #		Dig ticket number
NERT	4.93s1	X815002979-00X
NERT	5.11s1	X815002989-00X
NERT	3.80s1	X815003007-00X
NERT	4.51s1	X815003009-00X
NERT	4.71s1	X815003012-00X

Cheers,

Gabriel Miclette

D +1 510 420 2535 gmiclette@ramboll.com

Ramboll 2200 Powell Street Suite 700 Emeryville, CA 94608 USA www.ramboll.com

From: Bilodeau, Sally [mailto:Sally.Bilodeau@aecom.com]

Sent: Thursday, May 31, 2018 12:39 PM

To: Bob Nix <bnix@cascade-env.com>

Cc: Caceres-Schnell, Carmen <Carmen.Caceres-Schnell@aecom.com>; Piper, Sara

<Sara.Piper@aecom.com>; Ross E Russell <rrussell@ramboll.com>; Gabe Miclette

<GMiclette@ramboll.com>; Neil A. Hale <nhale@cascade-env.com>

Subject: RE: 811 dig tickets for 5 of 10 Phase I wells

Gabe, Please give Bob the reference numbers thanks.

Sally Bilodeau, PG, CEM **AECOM** Camarillo CA D +1-805-764-4006 M +1-805-551-0649

Built to deliver a better world

From: Bob Nix [mailto:bnix@cascade-env.com]
Sent: Thursday, May 31, 2018 12:30 PM
To: Bilodeau, Sally
Cc: Caceres-Schnell, Carmen; Piper, Sara; Ross E Russell; Gabe Miclette; Neil A. Hale
Subject: RE: 811 dig tickets for 5 of 10 Phase I wells

Would you happen to have a reference Well ID # associated with these 5 Tickets?

BOB NIX OPERATIONS MANAGER 4221 West Oquendo Road Las Vegas, NV 89118

P 702-220-8811 C 702-715-5811 | BNIX@CASCADE-ENV.COM

EXCELLENCE ON EVERY LEVEL™ <u>WWW.CASCADE-ENV.COM</u> Please consider the environment before printing this e-mail Cascade Drilling | Technical Services

From: Bilodeau, Sally [mailto:Sally.Bilodeau@aecom.com]

Sent: Thursday, May 31, 2018 9:51 AM

To: Bob Nix <<u>bnix@cascade-env.com</u>>

Cc: Caceres-Schnell, Carmen <<u>Carmen.Caceres-Schnell@aecom.com</u>>; Piper, Sara <<u>Sara.Piper@aecom.com</u>>; Ross E Russell <<u>rrussell@ramboll.com</u>>; Gabe Miclette <<u>GMiclette@ramboll.com</u>>

Subject: FW: 811 dig tickets for 5 of 10 Phase I wells

Bob,

I apologize if you already got these from Ramboll but attached are 5 of the 10 Dig Alert tickets for the upcoming drilling project by Las Vegas Wash in Henderson.

I am also including the current table for drilling and well completion details.

I'd like to discuss the need for a portable toilet on site when you have time, please email or call my cell.

Sally Bilodeau, PG, CEM AECOM Camarillo CA D +1-805-764-4006 M +1-805-551-0649

Built to deliver a better world

From: Gabe Miclette [mailto:GMiclette@ramboll.com] Sent: Wednesday, May 30, 2018 7:45 PM To: Ross E Russell; Bilodeau, Sally Subject: 811 dig tickets to start

Hi Ross and Sally,

Attached are 5 of the dig tickets for the downgradient locations NERT: 3.80s1, 4.51s1, 4.71s1, 4.93s1, and 5.11s1. Once the remaining locations are marked out and accessible, Ramboll will submit the remaining dig tickets. As you can see in the attachments, the tickets expire 6/27/18. Have a great rest of the evening.

Cheers,

Gabriel Miclette

D +1 510 420 2535 gmiclette@ramboll.com

Ramboll 2200 Powell Street Suite 700 Emeryville, CA 94608 USA www.ramboll.com

From:	Gabe Miclette
То:	Bilodeau, Sally
Cc:	Caceres-Schnell, Carmen; Piper, Sara; Ross E Russell; Neil A. Hale; Bob Nix
Subject:	RE: 811 dig tickets for the remaining 5 of 10 Phase I wells
Date:	Thursday, June 07, 2018 7:57:55 AM
Attachments:	image002.png
	image003.png
	image004.jpg
	image005.png

,	Well ID #	Dig ticket number	
NERT	5.91s1	X815800149-00X	7/5/2018
NERT	5.49s1	X815800161-00X	7/5/2018
NERT	3.65s1	X815800174-00X	7/5/2018
NERT	4.38s1	X815800203-00X	7/5/2018
NERT	4.21s1	X815800221-00X	7/5/2018

Cheers,

Gabriel Miclette

D +1 510 420 2535 gmiclette@ramboll.com

Ramboll 2200 Powell Street Suite 700 Emeryville, CA 94608 USA www.ramboll.com

From: Gabe Miclette

Sent: Thursday, June 07, 2018 7:56 AM

To: 'Bilodeau, Sally' <Sally.Bilodeau@aecom.com>

Cc: 'Caceres-Schnell, Carmen' <Carmen.Caceres-Schnell@aecom.com>; 'Piper, Sara'

<Sara.Piper@aecom.com>; Ross E Russell <rrussell@ramboll.com>; 'Neil A. Hale' <nhale@cascade-

env.com>; Bob Nix <bnix@cascade-env.com>

Subject: 811 dig tickets for the remaining 5 of 10 Phase I wells

Hi all,

Attached is the remaining dig tickets for the Downgradient Phase 1 wells. Let me know if you have any questions.

Cheers,

Gabriel Miclette

D +1 510 420 2535 gmiclette@ramboll.com

Ramboll 2200 Powell Street Suite 700 Emeryville, CA 94608 USA www.ramboll.com

From: Gabe Miclette
Sent: Thursday, May 31, 2018 12:53 PM
To: 'Bilodeau, Sally' <<u>Sally.Bilodeau@aecom.com</u>>; Bob Nix <<u>bnix@cascade-env.com</u>>
Cc: Caceres-Schnell, Carmen <<u>Carmen.Caceres-Schnell@aecom.com</u>>; Piper, Sara
<<u>Sara.Piper@aecom.com</u>>; Ross E Russell <<u>rrussell@ramboll.com</u>>; Neil A. Hale <<u>nhale@cascade-env.com</u>>
Subject: RE: 811 dig tickets for 5 of 10 Phase I wells

Bob and Sally,

Below are the dig ticket and and corresponding well ids. Let me know if you need anything else!

W	ell ID #	Dig ticket number
NERT	4.93s1	X815002979-00X
NERT	5.11s1	X815002989-00X
NERT	3.80s1	X815003007-00X
NERT	4.51s1	X815003009-00X
NERT	4.71s1	X815003012-00X

Cheers,

Gabriel Miclette

D +1 510 420 2535 gmiclette@ramboll.com

Ramboll 2200 Powell Street Suite 700 Emeryville, CA 94608 USA www.ramboll.com

From: Bilodeau, Sally [mailto:Sally.Bilodeau@aecom.com]
Sent: Thursday, May 31, 2018 12:39 PM
To: Bob Nix <<u>bnix@cascade-env.com</u>>
Cc: Caceres-Schnell, Carmen <<u>Carmen.Caceres-Schnell@aecom.com</u>>; Piper, Sara
<<u>Sara.Piper@aecom.com</u>>; Ross E Russell <<u>rrussell@ramboll.com</u>>; Gabe Miclette
<<u>GMiclette@ramboll.com</u>>; Neil A. Hale <<u>nhale@cascade-env.com</u>>
Subject: RE: 811 dig tickets for 5 of 10 Phase I wells

Gabe, Please give Bob the reference numbers thanks.

Sally Bilodeau, PG, CEM **AECOM** Camarillo CA D +1-805-764-4006 M +1-805-551-0649

Built to deliver a better world

From: Bob Nix [mailto:bnix@cascade-env.com]
Sent: Thursday, May 31, 2018 12:30 PM
To: Bilodeau, Sally
Cc: Caceres-Schnell, Carmen; Piper, Sara; Ross E Russell; Gabe Miclette; Neil A. Hale
Subject: RE: 811 dig tickets for 5 of 10 Phase I wells

Would you happen to have a reference Well ID # associated with these 5 Tickets?

 BOB NIX OPERATIONS MANAGER

 4221 West Oquendo Road

 Las Vegas, NV 89118

 P 702-220-8811 C 702-715-5811 | BNIX@CASCADE-ENV.COM

 EXCELLENCE ON EVERY LEVEL™
 WWW.CASCADE-ENV.COM

Please consider the environment before printing this e-mail Cascade Drilling | Technical Services

?

From: Bilodeau, Sally [mailto:Sally.Bilodeau@aecom.com]

Sent: Thursday, May 31, 2018 9:51 AM

To: Bob Nix <<u>bnix@cascade-env.com</u>>

Cc: Caceres-Schnell, Carmen <<u>Carmen.Caceres-Schnell@aecom.com</u>>; Piper, Sara

<<u>Sara.Piper@aecom.com</u>>; Ross E Russell <<u>rrussell@ramboll.com</u>>; Gabe Miclette

<<u>GMiclette@ramboll.com</u>>

Subject: FW: 811 dig tickets for 5 of 10 Phase I wells

Bob,

I apologize if you already got these from Ramboll but attached are 5 of the 10 Dig Alert tickets for the upcoming drilling project by Las Vegas Wash in Henderson.

I am also including the current table for drilling and well completion details.

I'd like to discuss the need for a portable toilet on site when you have time, please email or call my cell.

Sally Bilodeau, PG, CEM **AECOM** Camarillo CA D +1-805-764-4006 M +1-805-551-0649

Built to deliver a better world

From: Gabe Miclette [mailto:GMiclette@ramboll.com] Sent: Wednesday, May 30, 2018 7:45 PM To: Ross E Russell; Bilodeau, Sally Subject: 811 dig tickets to start

Hi Ross and Sally,

Attached are 5 of the dig tickets for the downgradient locations NERT: 3.80s1, 4.51s1, 4.71s1, 4.93s1, and 5.11s1. Once the remaining locations are marked out and accessible, Ramboll will submit the remaining dig tickets. As you can see in the attachments, the tickets expire 6/27/18. Have a great rest of the evening.

Cheers,

Gabriel Miclette

D +1 510 420 2535 gmiclette@ramboll.com

Ramboll 2200 Powell Street Suite 700 Emeryville, CA 94608 USA www.ramboll.com

EMLCFM 04170 USANX 05/30/18 18:59:14 X815002979-00X NORM NEW POLY LREQ Message Number: X815002979 Rev: 00X Received by USAN at 18:57 on 05/30/18 Work Begins: 06/04/18 at 17:00 Notice: 030 hrs Priority: 2 Night Work: Weekend Work: Expires: 06/27/18 at 23:59 Update By: 06/25/18 at 00:00 Caller: GABRIEL MICLETTE RAMBOLL Company: Address: 510 S. 4TH STREET City: HENDERSON State: NV Zip: 89015 Business Tel: 510-655-7400 Email Address: gmiclette@ramboll.com Fax: Nature of Work: VERTICAL BORING FOR SOIL SAMPLES Done for: NERT Explosives: Foreman: GREG Cell Tel: 602-734-7711 Area Premarked: Y Premark Method: WHITE PAINT Permit Type: NO Excavation Enters Into Street Or Sidewalk Area: N Location: Street Address: E RUSSELL RD Cross Street: MCCORMICK RD AT A POINT 2720 FEET EAST AND 1520 NORTH OF THE INTERSECTION OF E RUSSELL RD AND MCCORMICK RD COORDINATES: 36 05' 24.152" N, 114 58' 04.605" W Place: HENDERSON County: CLARK State: NV Long/Lat Long: -114.966859 Lat: 36.089603 Long: -114.968248 Lat: 36.090829 Comments: FOR 4.93S1 Sent to: BAWACO = BASIC WATER COMPANY CENTE2 = CENTURYLINK CTYHEN = CITY HENDERSON NENGSO = NV ENERGY SWGLVE = SWGAS LAS VEGAS

EMLCFM 04180 USANX 05/30/18 19:04:06 X815002989-00X NORM NEW POLY LREQ Message Number: X815002989 Rev: 00X Received by USAN at 19:00 on 05/30/18 Work Begins: 06/04/18 at 17:00 Notice: 030 hrs Priority: 2 Night Work: Weekend Work: Expires: 06/27/18 at 23:59 Update By: 06/25/18 at 00:00 Caller: GABRIEL MICLETTE RAMBOLL Company: Address: 510 S. 4TH STREET City: HENDERSON State: NV Zip: 89015 Business Tel: 510-655-7400 Email Address: gmiclette@ramboll.com Fax: Nature of Work: VERTICAL BORING FOR SOIL SAMPLES Done for: NERT Explosives: Foreman: GREG Cell Tel: 602-734-7711 Area Premarked: Y Premark Method: WHITE PAINT Permit Type: NO Excavation Enters Into Street Or Sidewalk Area: N Location: Street Address: E RUSSELL RD Cross Street: MCCORMICK RD AT A POINT 2045 FEET EAST AND 1500 NORTH OF THE INTERSECTION OF E RUSSELL RD AND MCCORMICK RD COORDINATES: 3605'23.000" N, 11458'14.821" W Place: HENDERSON County: CLARK State: NV Long/Lat Long: -114.969712 Lat: 36.089026 Long: -114.971066 Lat: 36.090125 Comments: FOR 5.11S1 Sent to: BAWACO = BASIC WATER COMPANY CENTE2 = CENTURYLINK CTYHEN = CITY HENDERSON NENGSO = NV ENERGY SWGLVE = SWGAS LAS VEGAS

EMLCFM 04193 USANX 05/30/18 19:14:31 X815003007-00X NORM NEW POLY LREQ Message Number: X815003007 Rev: 00X Received by USAN at 19:04 on 05/30/18 Work Begins: 06/04/18 at 17:00 Notice: 030 hrs Priority: 2 Night Work: Weekend Work: Expires: 06/27/18 at 23:59 Update By: 06/25/18 at 00:00 Caller: GABRIEL MICLETTE RAMBOLL Company: Address: 510 S. 4TH STREET City: HENDERSON State: NV Zip: 89015 Business Tel: 510-655-7400 Email Address: gmiclette@ramboll.com Fax: Nature of Work: VERTICAL BORING FOR SOIL SAMPLES Done for: NERT Explosives: Foreman: GREG Cell Tel: 602-734-7711 Area Premarked: Y Premark Method: WHITE PAINT Permit Type: NO Excavation Enters Into Street Or Sidewalk Area: N Location: Street Address: OLSEN ST Cross Street: CALICO RIDGE DR AT A POINT 3050 FEET EAST AND 3555 NORTH OF THE INTERSECTION OF CALICO RIDGE DR AND OLSEN ST COORDINATES: 3605'40.954" N, 11456'54.439" W Place: HENDERSON County: CLARK State: NV Long/Lat Long: -114.947533 Lat: 36.094157 Long: -114.948888 Lat: 36.095256 Comments: FOR 3.80S1 Sent to: BAWACO = BASIC WATER COMPANY CENTE2 = CENTURYLINK CTYHEN = CITY HENDERSON NENGSO = NV ENERGY SWGLVE = SWGAS LAS VEGAS

EMLCFM 04197 USANX 05/30/18 19:19:30 X815003009-00X NORM NEW POLY LREQ Message Number: X815003009 Rev: 00X Received by USAN at 19:15 on 05/30/18 Work Begins: 06/04/18 at 17:00 Notice: 030 hrs Priority: 2 Night Work: Weekend Work: Expires: 06/27/18 at 23:59 Update By: 06/25/18 at 00:00 Caller: GABRIEL MICLETTE RAMBOLL Company: Address: 510 S. 4TH STREET City: HENDERSON State: NV Zip: 89015 Business Tel: 510-655-7400 Email Address: gmiclette@ramboll.com Fax: Nature of Work: VERTICAL BORING FOR SOIL SAMPLES Done for: NERT Explosives: Foreman: GREG Cell Tel: 602-734-7711 Premark Method: WHITE PAINT Area Premarked: Y Permit Type: NO Excavation Enters Into Street Or Sidewalk Area: N Location: Street Address: OLSEN ST Cross Street: CALICO RIDGE DR AT A POINT 737 FEET WEST AND 2770 NORTH OF THE INTERSECTION OF CALICO RIDGE DR AND OLSEN ST COORDINATES: 3605'32.770" N, 11457'38.384" W Place: HENDERSON County: CLARK State: NV Long/Lat Long: -114.959927 Lat: 36.091919 Long: -114.961281 Lat: 36.093018 Comments: FOR 4.51S1 Sent to: BAWACO = BASIC WATER COMPANY CENTE2 = CENTURYLINK NENGSO = NV ENERGY SWGLVE = SWGAS LAS VEGAS

EMLCFM 04201 USANX 05/30/18 19:24:11 X815003012-00X NORM NEW POLY LREQ Message Number: X815003012 Rev: 00X Received by USAN at 19:20 on 05/30/18 Work Begins: 06/04/18 at 17:00 Notice: 030 hrs Priority: 2 Night Work: Weekend Work: Expires: 06/27/18 at 23:59 Update By: 06/25/18 at 00:00 Caller: GABRIEL MICLETTE RAMBOLL Company: Address: 510 S. 4TH STREET City: HENDERSON State: NV Zip: 89015 Business Tel: 510-655-7400 Email Address: gmiclette@ramboll.com Fax: Nature of Work: VERTICAL BORING FOR SOIL SAMPLES Done for: NERT Explosives: Foreman: GREG Cell Tel: 602-734-7711 Area Premarked: Y Premark Method: WHITE PAINT Permit Type: NO Excavation Enters Into Street Or Sidewalk Area: N Location: Street Address: OLSEN ST Cross Street: CALICO RIDGE DR AT A POINT 1850 FEET WEST AND 2500 NORTH OF THE INTERSECTION OF CALICO RIDGE DR AND OLSEN ST COORDINATES: 3605'30.267" N, 11457'52.354" W Place: HENDERSON County: CLARK State: NV Long/Lat Long: -114.963900 Lat: 36.091236 Long: -114.965254 Lat: 36.092336 Comments: FOR 4.71S1 Sent to: BAWACO = BASIC WATER COMPANY CENTE2 = CENTURYLINK CTYHEN = CITY HENDERSON NENGSO = NV ENERGY SWGLVE = SWGAS LAS VEGAS

From:notification@usan.orgTo:Gabe MicletteSubject:USA North 811 Confirmation for Ticket X815800149-00XDate:Thursday, June 07, 2018 7:14:17 AM

EMLCFM 00284 USANX 06/07/18 07:14:10 X815800149-00X NORM NEW POLY LREQ Message Number: X815800149 Rev: 00X Received by USAN at 07:02 on 06/07/18 Work Begins: 06/11/18 at 17:00 Notice: 020 hrs Priority: 2 Night Work: Weekend Work: Expires: 07/05/18 at 23:59 Update By: 07/02/18 at 00:00 Caller: GABRIEL MICLETTE RAMBOLL Company: Address: 510 S. 4TH STREET City: HENDERSON State: NV Zip: 89015 Business Tel: 510-655-7400 Email Address: gmiclette@ramboll.com Fax: Nature of Work: VERTICAL BORING FOR SOIL SAMPLES Done for: NERT Explosives: Foreman: GREG Cell Tel: 510-655-7400 Area Premarked: Y Premark Method: WHITE PAINT Permit Type: NO Excavation Enters Into Street Or Sidewalk Area: N Location: Street Address: W BURKHOLDER BLVD Cross Street: E RUSSELL RD AT A POINT 370 FEET WEST AND 480 NORTH OF THE INTERSECTION OF W BURKHOLDER BLVD AND E RUSSELL RD COORDINATES: 3605'13.397 N 11458'58.424 W Place: HENDERSON County: CLARK State: NV Long/Lat Long: -114.981977 Lat: 36.086679 Long: -114.983331 Lat: 36.087778 Comments: FOR 5.91S1 Sent to: BAWACO = BASIC WATER COMPANY CENTE2 = CENTURYLINK COXLVE = COX COMM LAS VEGAS CTYHEN = CITY HENDERSON NENGSO = NV ENERGY SWGLVE = SWGAS LAS VEGAS

From:notification@usan.orgTo:Gabe MicletteSubject:USA North 811 Confirmation for Ticket X815800161-00XDate:Thursday, June 07, 2018 7:20:07 AM

EMLCFM 00317 USANX 06/07/18 07:20:00 X815800161-00X NORM NEW POLY LREQ Message Number: X815800161 Rev: 00X Received by USAN at 07:14 on 06/07/18 Work Begins: 06/11/18 at 17:00 Notice: 020 hrs Priority: 2 Night Work: Weekend Work: Expires: 07/05/18 at 23:59 Update By: 07/02/18 at 00:00 Caller: GABRIEL MICLETTE RAMBOLL Company: Address: 510 S. 4TH STREET City: HENDERSON State: NV Zip: 89015 Business Tel: 510-655-7400 Email Address: gmiclette@ramboll.com Fax: Nature of Work: VERTICAL BORING FOR SOIL SAMPLES Done for: NERT Explosives: Foreman: GREG Cell Tel: 510-655-7400 Area Premarked: Y Premark Method: WHITE PAINT Permit Type: NO Excavation Enters Into Street Or Sidewalk Area: N Location: Street Address: W BURKHOLDER BLVD Cross Street: E RUSSELL RD AT A POINT 1530 FEET WEST AND 900 NORTH OF THE INTERSECTION OF W BURKHOLDER BLVD AND E RUSSELL RD COORDINATES: 3605'17.019" N, 11458'34.845" W Place: HENDERSON County: CLARK State: NV Long/Lat Long: -114.975616 Lat: 36.087654 Long: -114.976971 Lat: 36.088753 Comments: 5.49S1 Sent to: BAWACO = BASIC WATER COMPANY CENTE2 = CENTURYLINK CTYHEN = CITY HENDERSON NENGSO = NV ENERGY SNVWTR = SO NEV WTR AUTHORITY SWGLVE = SWGAS LAS VEGAS

174-00X

EMLCFM 00345 USANX 06/07/18 07:29:52 X815800174-00X NORM NEW POLY LREQ Message Number: X815800174 Rev: 00X Received by USAN at 07:20 on 06/07/18 Work Begins: 06/11/18 at 17:00 Notice: 020 hrs Priority: 2 Night Work: Weekend Work: Expires: 07/05/18 at 23:59 Update By: 07/02/18 at 00:00 Caller: GABRIEL MICLETTE Company: RAMBOLL Address: 510 S. 4TH STREET City: HENDERSON State: NV Zip: 89015 Business Tel: 510-655-7400 Email Address: gmiclette@ramboll.com Fax: Nature of Work: VERTICAL BORING FOR SOIL SAMPLES Done for: NERT Explosives: Foreman: GREG Cell Tel: 510-655-7400 Area Premarked: Y Premark Method: WHITE PAINT Permit Type: NO Excavation Enters Into Street Or Sidewalk Area: N Location: Street Address: OLSEN ST Cross Street: CALICO RIDGE DR AT A POINT 3610 FEET EAST AND 4050 FEET NORTH OF THE INTERSECTION OF CALICO RIDGE DR AND OLSEN ST COORDINATES: 3605'44.659" N, 11456'44.600" W Place: HENDERSON County: CLARK State: NV Long/Lat Long: -114.945174 Lat: 36.094732 Long: -114.946528 Lat: 36.095832 Comments: FOR 3.65S1 Sent to: BAWACO = BASIC WATER COMPANY CENTE2 = CENTURYLINK CTYHEN = CITY HENDERSON NENGSO = NV ENERGY SWGLVE = SWGAS LAS VEGAS

From:notification@usan.orgTo:Gabe MicletteSubject:USA North 811 Confirmation for Ticket X815800203-00XDate:Thursday, June 07, 2018 7:43:28 AM

EMLCFM 00408 USANX 06/07/18 07:43:22 X815800203-00X NORM NEW POLY LREQ Message Number: X815800203 Rev: 00X Received by USAN at 07:29 on 06/07/18 Work Begins: 06/11/18 at 17:00 Notice: 020 hrs Priority: 2 Weekend Work: Night Work: Expires: 07/05/18 at 23:59 Update By: 07/02/18 at 00:00 Caller: GABRIEL MICLETTE RAMBOLL Company: Address: 510 S. 4TH STREET City: HENDERSON State: NV Zip: 89015 Business Tel: 510-655-7400 Email Address: gmiclette@ramboll.com Fax: Nature of Work: VERTICAL BORING FOR SOIL SAMPLES Done for: NERT Explosives: Foreman: GREG Cell Tel: 510-655-7400 Area Premarked: Y Premark Method: WHITE PAINT Permit Type: NO Excavation Enters Into Street Or Sidewalk Area: N Location: Street Address: OLSEN ST Cross Street: CALICO RIDGE DR AT A POINT 395 FEET WEST AND 4000 NORTH OF THE INTERSECTION OF CALICO RIDGE DR AND OLSEN ST COORDINATES: 3605'45.246" N, 11457'35.591" W Place: HENDERSON County: CLARK State: NV Long/Lat Long: -114.959130 Lat: 36.095587 Long: -114.960485 Lat: 36.096686 Comments: FOR 4.38S1 Sent to: BAWACO = BASIC WATER COMPANY CENTE2 = CENTURYLINK NENGSO = NV ENERGY SNVWTR = SO NEV WTR AUTHORITY SWGLVE = SWGAS LAS VEGAS

From:notification@usan.orgTo:Gabe MicletteSubject:USA North 811 Confirmation for Ticket X815800221-00XDate:Thursday, June 07, 2018 7:48:24 AM

EMLCFM 00444 USANX 06/07/18 07:48:18 X815800221-00X NORM NEW POLY LREQ Message Number: X815800221 Rev: 00X Received by USAN at 07:43 on 06/07/18 Work Begins: 06/11/18 at 17:00 Notice: 020 hrs Priority: 2 Night Work: Weekend Work: Expires: 07/05/18 at 23:59 Update By: 07/02/18 at 00:00 Caller: GABRIEL MICLETTE Company: RAMBOLL Address: 510 S. 4TH STREET City: HENDERSON State: NV Zip: 89015 Business Tel: 510-655-7400 Email Address: gmiclette@ramboll.com Fax: Nature of Work: VERTICAL BORING FOR SOIL SAMPLES Done for: NERT Explosives: Foreman: GREG Cell Tel: 510-655-7400 Area Premarked: Y Premark Method: WHITE PAINT Permit Type: NO Excavation Enters Into Street Or Sidewalk Area: N Location: Street Address: OLSEN ST Cross Street: CALICO RIDGE DR AT A POINT 430 FEET EAST AND 3710 NORTH OF THE INTERSECTION OF CALICO RIDGE DR AND OLSEN ST COORDINATES: 3605'43.479" N, 11457'23.950" W Place: HENDERSON County: CLARK State: NV Long/Lat Long: -114.956156 Lat: 36.094766 Long: -114.957511 Lat: 36.095866 Comments: FOR 4.21S1 Sent to: BAWACO = BASIC WATER COMPANY CENTE2 = CENTURYLINK NENGSO = NV ENERGY SWGLVE = SWGAS LAS VEGAS

Appendix C

Boring Logs and Well Construction Diagrams

-						e Desc ordina		ocation: Las Vegas Wash 26736780.1 N 843700.76 E		Ambient PID Reading: Sheet: 1 of 2	NA
AECOM COORTINATES. 1220 Avenida Acaso Camarillo, CA 93012 Drilling Equipmen									Weather: Sunny, hot, dry	Monitoring Well Install	ed: Yes
	805-388		12					From Cores	Boring Diameter: 8 IN.	Screened Interval:	
pprov	ed By: S	. Bilo	deau					Logged By: S. Piper	Date/Time Started: 06-27-18	Depth of Boring: 55 F	TBGS
	Contracto			Drillir	ng			Backfill:	Date/Time Finished: 06-28-18	Water Level: 10.6	7 FT BGS
иеги (ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	Headspace (ppm) USCS Graphic Log			grained material (grained material (mineralogical fea	MATERIAL IDENTIFICATION, color, description of fine grained material (silt and clay) description of coarse grained material (sand and gravel), structural or mineralogical features, density or stiffness, moisture content, odors or staining.		ram
5						SP-			RAVELLY SILTY SAND, light yellowish		4-inch schedule 40 PVC 94.4 % cement / 5.6% bentonite mixture
<u></u> <u>10</u>	NERT 3.80S1 10 20180627 1330 NERT 2 2051 12			1		SM		angular sand, 35% cobbles up to 8 inc			2.5-foot bentonite seal
<u>15</u>	3.80S1 12 20180627 1340 NERT 3.80S1 15 20180627 1345			1		SC- SM		GRAVELLY SAND, light gravel, soft, wet -@12' PTS (CL-ML) silty SILTY SAND TO CLAYE low to high plastic	reddish brown (5YR 6/3), fine sand and lean clay with gravel Y SAND, dusky red (2.5YR 4/4), 40% fines, 60% fine grained sand, contains		0.02 inch slotted screen #3 Monterey
20								cemented fragmen -@15' PTS (SP) poorly g	raded sand with gravel		sand
<u>25</u> 	-					SC- SM		difficult drilling -@23.5' color returns to -@26' sand content incre is wet -@27.5' Silty sand to cla	eases, fines are non-plastic and material yey sand (SM-SC), dark yellowish brown re low to high plasticity, sand is fine		
35	NERT 3.80S1 35					SM		sandstone, some c dense fragments (l -@33.5' color change to fines, 60% fine sar	dusky red (2.5 YR 4/4), 40% non-plastic nd, cobbles up to 4 inches in diameter		
<u>40</u>	20180627 1500			1				-@35' some clay lenses -@35' PTS (CL) sandy le			Hydrated Bentonite chips
45	Notes:										

						ent:		NDEP		Bor	ing No. NERT 3.80S1		
Л	EC	7						60477365	Handarson NV				
H						e Desc ordina		ocation: Las Vegas Wash, 1 26736780.1 N 843700.76 E			Reading: NA		
	AEC 220 Aveni	da Aca							Weather: Sunny, hot, dry	Sheet: 2			
Camarillo, CA 93012 805-388-3775 Approved By: S. Bilodeau									Boring Diameter: 8 IN.	Screened Inte	/ell Installed: Yes erval [:]		
								Logged By: S. Piper	Date/Time Started: 06-27-18		ing: 55 FT BGS		
	соntracto			Drillir	na			Backfill:	Date/Time Finished: 06-28-18	Water Level:			
	Jonnacio							Backill.	Date Time Timaned. 00 10 10	Trator Lovon	10.0111200		
DEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	Headspace (ppm)	NSCS	Graphic Log	grained material (s grained material (s	CATION, color, description of fine ilt and clay) description of coarse and and gravel), structural or ires, density or stiffness, moisture taining.	v	Well Diagram		
50						SM		sandstone, some cla dense fragments (lit -@47.5' silty sandstone, 2 -@50' very hard drilling, op	rk yellowish brown (10 YR 3/4, silty y lenses present, material has very nified siltstone) <i>(continued)</i> 0% silt, 80% fine grained sand ben hole, no casing gravel up to 1 inch in diameter				
								well installed. Refusal at 55 feet. Boring Terminated	h bentonite chips to 20 feet. Monitoring				

	4 <i>Ξ</i> (0	M		Site	e Desc	cription/L	60477365 .ocation: Las Vegas Wash,		Ambient PID Reading:	NERT 4.21N1	
	AEC 1220 Aveni		so			ordina			Elevation: 1502.07 FT Datum:	Sheet: 1 of 2		
Camarillo, CA 93012 805-388-3775 Drilling Equipment Sample Type(s):									Weather: Sunny, hot, dry Boring Diameter: 8 IN.	Monitoring Well Installed: Yes Screened Interval:		
nnrou	red By: S	Bilo	10211		Jai	npie i	<i>ype</i> (<i>s</i>).	Logged By: S. Piper	Date/Time Started: 06-19-18	Depth of Boring: 90 FT	T BGS	
	Contracto			Drillir	na			Backfill:	Date/Time Finished: 06-19-18		T BGS	
2111111g				Dimi					Bater nine riniarea. ee ee			
DEPTH (ft)	Sample ID Sample Depth (ft) Blows per 6"/RQD Recovery (ft) Headspace (ppm) USCS Graphic Log		Graphic Log	grained material (grained material (TCATION, color, description of fine silt and clay) description of coarse sand and gravel), structural or tures, density or stiffness, moisture staining.	Well Diagram						
5 10 15 20 25 30 35 40	NERT 4.21N1 22 2018061 1015			1		SP- SM		 6/4), 5% non plastia angular sand, 10% up to 1 inch in diam -@15-17.5' No recovery -@18' gravel increases to 4/1) -@20' silt increases to 10 (5YR 6/3) -@22' PTS (CL) lean clay SILTY SAND, light reddis fines, 80% fine to 0 -@25' silty sand with gracoarse-grained, an to 1/2 inch in diame moist, dense, diffic -@27.5-30' drill pipe was -@30-40' silt increases to 10 	b 20%, color change to dark grey (5YR 0%, color change to light reddish brown y with sand sh brown (5YR 6/3), 20% non plastic coarse grained, angular sand, soft, dry vel, 25% low plastic fines, 65% fine- to gular sand, 10% fine-grained gravel up eter, dark yellowish brown (10YR 4/4), ult to drill s very hot		92% cement / 8% bentonite mixture 4-inch schedule 40 PVC	
						SM		5% non plastic fine sand, 20% fine to c inch in diameter, so	es, 75% fine to coarse grained, angular coarse grained, angular gravel up to 1		3-foot bentonite seal	
45	NERT 4.21N1 45 20180619 1105			1				grained, angular sa	and, 20% fine to coarse grained, angular in diameter, soft, wet			
	Notes:							1		k.: •, ⊨_+.:	*1	

ENSR BLOG PHASE 1 WELLS.GPJ ENSR CA.GDT 9/17/18

					Clie			NDEP		Boring No. NERT 4.21N1
	AE	20						60477365 ocation: Las Vegas Wash, H	landerson NV	
4						ordina			Elevation: 1502.07 FT Datum:	Ambient PID Reading: NA Sheet: 2 of 2
	AE 1220 Ave Camarillo							t/Method: /Sonic	Weather: Sunny, hot, dry	Monitoring Well Installed: Yes
		88-3775	J12			-		From Cores	Boring Diameter: 8 IN.	Screened Interval:
Appr	oved By:	S. Bilo	deau			-		Logged By: S. Piper	Date/Time Started: 06-19-18	Depth of Boring: 90 FT BGS
Drillir	ng Contrac	tor: Ca	iscade	Drilli	ng			Backfill:	Date/Time Finished: 06-19-18	Water Level: 42 FT BGS
DEPTH	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	Headspace (ppm)	NSCS	Graphic Log	grained material (si grained material (si	CATION, color, description of fine It and clay) description of coarse and and gravel), structural or res, density or stiffness, moisture taining.	Well Diagram
50 55 60 65 	201806 1120 NERT 4.21N1 (1155 	9	-	1		SP SM ML		angular gravel, wet -@ 48' PTS (CL-ML) silty of GRAVELLY SAND TO SIL 10% low plastic fines 30% fine to coarse g diameter, soft, wet THUMB FORMATION, dar	TY SAND, reddish brown (5YR 3/2), , 60% coarse grained, angular sand, rained, angular gravel up to 1 inch in k reddish brown (5YR 3/4), 80% silt, nd, cemented, small pieces are friable, ile drilling with sand	0.02 inch slotted screen #3 Monterey sand
										Hydrated Bentonite chips and natural backfill
	NERT 4.21N1 { 2018061 1516			1				-@87' PTS (CL) lean clay -@87.5-90' sandy siltstone -Backfilled boring with ben well installed. Total Depth = 90 feet. Boring Terminated Target depth achieved		
ENDK BLUG FIAGE	Notes	:								

_					Pro	oject N	lumber:	60477365		Boring No. N		
A	AEC	0	Μ					ocation: Las Vegas Wash,	, Henderson, NV,	Ambient PID Reading: N	IA	
_	AEC	DM				ordina			E Elevation: 1505.04 FT Datum:	Sheet: 1 of 2		
	1220 Aveni Camarillo, C	da Aca			Drii	lling E	quipmer	t/Method: /Sonic	Weather: Sunny, hot, dry	Monitoring Well Installed.	Yes	
	805-388				Sa	mple 1	Type(s):	From Cores	Boring Diameter: 8 IN.	Screened Interval:		
pprov	ed By: S	. Bilo	deau					Logged By: S. Piper	Date/Time Started: 06-20-18	Depth of Boring: 60 FT BGS		
Drilling	Contracto	r: Ca	scade	Drillin	ng			Backfill:	Date/Time Finished: 06-21-18	Water Level: 33 FT	BGS	
DEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	Headspace (ppm)	NSCS	Graphic Log	grained material (grained material (FICATION, color, description of fine (silt and clay) description of coarse (sand and gravel), structural or tures, density or stiffness, moisture staining.	Well Diagra	m	
5	-					ML			2.5Y 6/2), 70% non plastic fines, 30% some fragments are very hard, may be			
10	NERT 4.38N1							decomposed bedro	orly graded gravel with clay		cement/bentonit mixture	
15	121 2018 0620 1320			1				-@12.5' Drill bit is very ho -@15' stopped drilling to	ot		4-inch schedule 40 PVC	
20 25						SM		fine to medium gra				
30						SM		soft	nes, 75% fine to medium grained sand,		2-foot bentonite seal	
<u>35</u> 40	NERT 4.38N1 121 2018 0620 1445			1		ML		fines, 70% fine to n coarse grained gra to wet -@35' PTS (ML) sandy si -@36' increase in silt cor	nedium grained sand, 10% fine to vel up to 1 inch in diameter, soft, moist		0.02 inch slotted screen #3 Monterey sand	
40	NERT 4.38N1							-@40' color change to lig	yht brownish grey (10YR 6/2)			
_	Notes:	_	_	_	_	_	_					

						ent:			NDEP			Boring	No. NERT 4.38N1
	Λ <i>Ξ(</i>	20							60477365				
	AEC					e Desc ordina			ocation: Las Vegas Wash, H	Elevation: 1505.04 FT Datum:		Ambient PID Re Sheet: 2 of	
	AEC 1220 Aveni Camarillo, (da Aca							t/Method: /Sonic	Weather: Sunny, hot, dry		Monitoring Well	
	805-388		/12			-			From Cores	Boring Diameter: 8 IN.		Screened Interv	
Appro	ved By: S	6. Bilo	deau						Logged By: S. Piper	Date/Time Started: 06-20-18		Depth of Boring	60 FT BGS
Drillin	g Contracto	or: Ca	scade	Drillir	ng				Backfill:	Date/Time Finished: 06-21-18		Water Level:	33 FT BGS
DEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	Headspace (ppm)	NSCS	Graphic od	GIAPIIIC LOG	grained material (si grained material (sa	CATION, color, description of fine It and clay) description of coarse and and gravel), structural or res, density or stiffness, moisture aining.		We	l Diagram
 50 55 60	NERT 4.38N1 121 2018 0620 0850			1		ML			moist (continued) -@45' material is dry, PTS -@52.5' material is damp -@55' PTS (CH) sandy fat THUMB FORMATION, dar amorphous gypsum (siltstone beds, dense -@60' PTS (CL) sandy lear	clay k grey (10YR 4/1), 100% silt, white) occurs between thin, platy,	e		HydratedBentonite chips and natural backfill
ENSR BLOG PHASE 1 WELLS.GPJ ENSR CA.GDT 9/17/18													
ENSK BLOG PHAS	Notes:												

	AECO 220 Avenio	da Aca				ordina			4 EElevation: 1506.24 FT Datum:	Sheet: 1 of 2	l. Vee
С	amarillo, C 805-388		12			-		t/Method: /Sonic From Cores	Weather:Sunny, hot, dry Boring Diameter: 8 IN.	Monitoring Well Installed Screened Interval:	res
nnrova	ed By: S	Bilor	6211		Sai	npie i	<i>ype</i> (<i>s</i>).	Logged By: S. Piper	Date/Time Started: 06-13-18		TBGS
	Contracto			Drillir	na			Backfill:	Date/Time Finished: 06-14-18	Depth of Boring: 57.5 FT BGS Water Level: 27 FT BGS	
, ming	Contracto			Dimin					Date finde findaned. SS 11 10		200
UEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	Headspace (ppm)	NSCS	Graphic Log	grained material (grained material (ICATION, color, description of fine silt and clay) description of coarse sand and gravel), structural or ures, density or stiffness, moisture staining.	Well Diagra	m
5	NERT					SM		fines, 70% fine to m	vish brown (10YR 6/4), 30% non-plastic nedium grained, angular sand, ip to 1 inch in diameter, dry, soft		94.4 % cement / 5.6% bentonite mixture
20 25 30	4.51S1 15 20180614 0850			1		SP- SM		5/4), 5% non-plastic to coarse grained g diameter, dry, soft -@15' PTS (CL) lean claa -@17.5' color change to l increases to 15%, g -@20' 5% non-plastic fine 15% medium to ver in diameter -@22.5-24' gravelly lens, fines, 50% coarse g grained gravel -@24' gravelly sand to sil non-plastic fines, 5 40% coarse grained diameter	ILTY SAND, yellowish brown (10YR c fines, 90% fine grained sand, 5% fine gravel, cobbles up to 3 inches in y with sand brown (10YR 5/3) and gravel content gravel is fine to medium grained es, 80% fine to medium grained sand, ry coarse grained gravel up to 2 inches dark red (2YR 4/6) 10% non-plastic grained sand, 40% medium to coarse Ity sand (SP-SM), brown (10YR 5/3), 5% 5% medium to coarse grained sand, d gravel, cobbles up to 4 inches in fficult drilling in gravelly material		4-inch schedule 40 PVC
35						SP		grained, angular sa	n (10YR 4/3), 70% fine to coarse and, 30% fine grained, angular gravel, hes in diameter, soft to medium, wet		3-foot bentonite seal
40	NERT 4.51S1 42 20180614 0841			1		SP- SM		5/4), 10% low plast sand, 30% medium cobbles up to 9 incl -@42' PTS (GP) poorly g -@42.5' color change to	ILTY SAND, yellowish brown (10YR ic fines, 60% fine to medium grained n to coarse grained, angular gravel, hes in diameter, soft to medium, moist raded gravel with sand very dark greyish brown (10YR 3/2), nd gravel, material is wet		
	Notes:										

					Clie		lumher:	NDEP 60477365		Boring No. NERT 4.51S1
	λΞC	0	M					.ocation: Las Vegas Wash, H	lenderson, NV,	Ambient PID Reading: NA
_	AECO					ordina			EElevation: 1506.24 FT Datum:	Sheet: 2 of 2
	1220 Avenio Camarillo, C	da Aca: CA 930			Dril	ling E	quipmen	t/Method: /Sonic	Weather: Sunny, hot, dry	Monitoring Well Installed: Yes
	805-388	-3775			Sar	mple T	Type(s):	From Cores	Boring Diameter: 8 IN.	Screened Interval:
pprov	ed By: S	. Biloc	leau					Logged By: S. Piper	Date/Time Started: 06-13-18	Depth of Boring: 57.5 FT BGS
Drilling	Contracto	r: Ca		Drillir	-		1	Backfill:	Date/Time Finished: 06-14-18	Water Level: 27 FT BGS
DEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	Headspace (ppm)	nscs	Graphic Log	grained material (si grained material (sa	CATION, color, description of fine It and clay) description of coarse and and gravel), structural or res, density or stiffness, moisture raining.	Well Diagram
50	NERT 4.51S1 48 20180614 0856			1		SP- SM		5/4), 10% low plastic sand, 30% medium tr cobbles up to 9 inche <i>(continued)</i> -@48' PTS (GP) poorly gra	-	0.02 Inch slotted screen 3 Monterey sand solution
55	NERT 4.51S1 52 20180614 1600			1		ML		5/1), breccia with chl		Hydrated Bentonite chips

					Clie	ent:		NDEP			
							lumber:	60477365		Boring No. N	ERT 4.71S1
	AEC	Ĵ O	M		Site	e Desc		ocation: Las Vegas Wash, H		Ambient PID Reading: N	IA
	AEC				Cod	ordina	tes:	26735349.66 N 838991.63 E	Elevation: 1519.29 FT Datum:	Sheet: 1 of 2	
	1220 Aveni Camarillo, (CA 930				<u> </u>		t/Method: /Sonic	Weather:Sunny, hot, dry	Monitoring Well Installed:	Yes
	805-388	5-3775			Sar	mple ī	Type(s):	From Cores	Boring Diameter: 8 IN.	Screened Interval:	
Approv	ed By: S	S. Bilo	deau					Logged By: S. Piper	Date/Time Started: 06-26-18	Depth of Boring: 90 FT	
Drilling	Contracto			e Drillii			1	Backfill:	Date/Time Finished: 06-27-18	Water Level: 28.75 F	TBGS
DEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	Headspace (ppm)	nscs	Graphic Log	grained material (si grained material (si	CATION, color, description of fine ilt and clay) description of coarse and and gravel), structural or res, density or stiffness, moisture taining.	Well Diagra	n
<u>5</u> 10 15 20 25 30	NERT 4.71S1 23 20180627 1050	3		1		SM ML SM CL- ML		fines, 65% fine to me angular gravel up to -@ 12.5' silt increases to 4 gypsum crystals pres -@ 19-20' Sand lens (SP) -@ 22.5-24' Sand and Gra diameter -@23' PTS (SM) Silty Sand -@24-25' Sand and Gravel diameter SANDY SILT WITH CLAY, sandy silt with plastic plasticity of clay is hi SILTY SAND WITH GRAV low plastic fines, me med grained gravel u SANDY SILT WITH CLAY.	I lens (SP) gravel is up to 2 inches in , light yellowish brown (10YR 6/4), c clay lenses, plasticity of silt is low, gh, dense, moist /EL, light yellowish brown (10YR 6/4), dium to coarse grained sand, fine to up to ½ inch diameter, dense, moist , yellowish brown (10YR 5/4), sandy enses, plasticity of silt is low, plasticity		cement / bentonite mixture 4-inch schedule 40 PVC
<u>35</u> 40	NERT 4.71S1 37 20180626 1130			1		SP		to coarse angular sa up to 1 inch diameter -@37' PTS (CL) Lean Clay SILTY SAND, dark yellowis	sh brown (10YR 3/4), 40% low plastic ed sand, some high plastic clay and		3-foot bentonite seal
45	NERT 4.71S1 47 20180626			1		SP					0.02 inch slotted screen #3 Monterey sand
		i]	1							

					Clie		lumber:	NDEP 60477365		Boring No. NERT 4.71S1
	EC	'n	M					ocation: Las Vegas Wash, H	lenderson. NV.	Ambient PID Reading: NA
"	AEC					ordina		-	Elevation: 1519.29 FT Datum:	Sheet: 2 of 2
	220 Aveni amarillo, 0	da Aca			Dril	ling E	quipmen	t/Method: /Sonic	Weather: Sunny, hot, dry	Monitoring Well Installed: Yes
	805-388	-3775			Sar	nple 1	Type(s):	From Cores	Boring Diameter: 8 IN.	Screened Interval:
Approve	ed By: S	6. Biloc	leau					Logged By: S. Piper	Date/Time Started: 06-26-18	Depth of Boring: 90 FT BGS
Drilling	Contracto	r: Ca		Drillir	<u> </u>		1	Backfill:	Date/Time Finished: 06-27-18	Water Level: 28.75 FT BGS
DEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	Headspace (ppm)	NSCS	Graphic Log	grained material (si grained material (sa	CATION, color, description of fine It and clay) description of coarse and and gravel), structural or res, density or stiffness, moisture aining.	Well Diagram
 	1140					SP		GRAVELLY SAND, yellowi sub angular coarse s gravel up to 1 inch di -@52.5' color change to ve	rk yellowish brown (10YR3/4) sh brown (10YR 5/4), 60% angular to and, 40% fine to coarse basaltic ameter, soft, wet <i>(continued)</i> ry dark greyish brown (10YR 3/2) sand grained with cobbles up to 3 inches	
60 65 70						SM		fines, 60% fine sand, subangular gravel wi dense, wet	brown (10YR4/3), 20% non plastic 20% fine to coarse, angular to th cobbles up to <3 inches diameter,	
						SP		grained sand, 40% fi subangular gravel wi soft, wet -@71' gravel lens stained r -@72.5' fine sand lens, loo -@75' color change to grey to 6 inches in diamet	ks like beach sand <i>i</i> sh brown (10YR 5/2) cobbles are up er	Hydrated Bentonite chips
δ	NERT 4.71S1 87 20180627 0720 NERT 4.71S1 89.5			1		SM		60% fine to med san gravel up to 2 inches	inches in diameter aded Sand with Gravel d sand content	
	20180627 0725								h bentonite chips to 45 feet and a	
	Notes:									

Click Average Autors Dermits Exponentiativeterior 150mic Wester Sumy, Ind. by Monosoft Wester Sumy, Ind. by Monosoft Wester Sumy, Ind. by Monosoft Wester Sump, Ind. by Monosoft Wester Summ, Ind. by Monosoft Wester Summa, Ind. by <t< th=""><th></th><th>AEC</th><th>0</th><th>M</th><th></th><th></th><th></th><th></th><th>ocation: Las Vegas Wash,</th><th></th><th>Ambient PID Reading:</th><th>NA</th></t<>		AEC	0	M					ocation: Las Vegas Wash,		Ambient PID Reading:	NA
Bit Market Processor Sample Type(s): From Cores Baring Dameter: 8 N Screened Interval: parced Py: S. Bladeau Logge By S. Piper Date Time Started. 06-14-18. Deptot of Borng. 06 FT BGS. Dig Contractor: Cascade Drilling Backtit: Date Time Started. 01-14-18. Deptot of Borng. 06 FT BGS. Dig Contractor: Cascade Drilling Backtit: Date Time Started. 01-14-18. Well Diagram. Dig By: Sign By: Sign By: Sign By: Sign By: Sign By: Sign By: Well Diagram. Sign By: Well Diagram. Sign By: Well Diagram. Sign By: Sign:		220 Avenio	da Aca								Sheet: 1 of 2	
proved By: S. Bindeau Logged By: S. Piper Date/Time Started: 06-14-18 Depth of Borny: 06 FT BGS Bing Contractor: Cancedu Diffure Backfit: Date/Time Started: 06-15-18 Water Level: 27.8 FT BGS Image Contractor: Bing Contractor: Backfit: Date/Time Started: 06-15-18 Water Level: 27.8 FT BGS Image Contractor: Bing Contractor: Backfit: Marchaet Starter Well Diagram Image Contractor: Bing Contractor: Bing Contractor: Image Contractor: Well Diagram Image Contractor: Bing Contractor: Bing Contractor: Image Contractor: Image Contractor: Well Diagram Image Contractor: Bing Contractor: Bing Contractor: Image Contractor: Image Contractor: Image Contractor: Well Diagram Image Contractor: Bing Contractor: SP CIRAVELLY SAND: Velicowish brown (10/YR 54), 60% fine to coarse grained stand: 15% fine to coarse grained stand: 20% fine to coarse g	С			12			-					2. 165
alting Contractor Cascade Drilling Backfit DeterTime Finished: 06-15-18 Weter Level: 27.8 FT BGS is is <td< th=""><th>nrove</th><th>ed By: S</th><th>Bilor</th><th>leau</th><th></th><th></th><th></th><th>) 0 (0).</th><th></th><th></th><th></th><th>BGS</th></td<>	nrove	ed By: S	Bilor	leau) 0 (0).				BGS
End E					Drillir	na						
9												
5 SP GRAVELLY SAND, velowish brown (10YR 5/4), 80% fine to coarse grained gravel with cobbles 3 inches max, signal, 20% fine to coarse grained gravel with cobbles 3 inches max, signal, soft, drug 10 SP GRAVELLY SAND TO SILTY SAND, grayish brown (10YR 5/2), 5% non-plastic fines, 80% fine grained sand, 15% fine to coarse grained gravel (11 inch max), soft, dry 11 GRAVELLY SAND TO SILTY SAND, grayish brown (10YR 5/2), 5% non-plastic fines, 75% fine grained sand, 15% fine to coarse grained gravel, with cobbles 4 inches max 12 -@15 'PTS (ML) sandy sitt 13 -@15' Color change to yellowish brown (10YR 5/4) 5% non-plastic fines, 75% fine grained sand, 20% fine to coarse grained gravel, with cobbles 4 inches max 20 -@15' Color change to gray (5YR 5/1), gravel is volcanic mybility?) with some fellows and uptrz present, small gas vesicles are also present. 28 GRAVELLY SAND, velowish brown (10YR 5/4), 60% fine to coarse grained gravel, with cobbles 4 inches max 29 -@27.32 no recovery, gravely sand 30 -@27.32 no recovery, gravely sand 31 GRAVELLY SAND, velowish brown (10YR 5/4), 60% fine to coarse grained sand, soft, moist 32 -@27.32 no recovery, gravely sand 33 CL CLAP, brown (7.5YR 5/3), 100% low plastic fines, 80% fine to coarse grained sand, soft, moist 34 -@40 color change to dark grey brown (7.5YR/20) -@40 color change to dark grey brown	(ff)	Sample ID	Sample Depth (f	Blows per 6"/RQ	Recovery (ft)	Headspace (ppn	NSCS	Graphic Log	grained material (s grained material (s mineralogical feat	silt and clay) description of coarse sand and gravel), structural or ures, density or stiffness, moisture	Well Diagra	am
15 4/a93115 2018015 -@15' PTS (ML) sandy silt -@15' PTS (ML) sandy silt -@16' color change to yellowish brown (10YR 5/4) 5% non-plastic fines, 75% fine grained sand, 20% fine to coarse grained gravel, with cobbles 4 inches max 20 -@16' PTS (ML) sandy silt -@16' PTS (ML) sandy silt -@16' color change to gray (5YR 5/1), gravel is volcanic thyolite(?) with some feldspar and quartz present, small gas velcles are also present. 25 -@27-32' no recovery, gravely sand 30 -@27-32' no recovery, gravely sand 33 -@27-32' no recovery, gravely sand 34.4 %, for coarse grained, angular sand, 20% fine to coarse grained angular gravel, soft, wet CL CLAY, brown (7.5YR 5/3), 100% low plastic fines, stiff, moist -@40 color change to dark grey brown (7.5YR4/20) -@41' PTS (CL) sandy lean clay	5						SP-		GRAVELLY SAND, yellow coarse grained sam with cobbles 3 inch GRAVELLY SAND TO SI 5% non-plastic fine:	d, 20% fine to coarse grained gravel es max, angular, soft, dry LTY SAND, gravish brown (10YR 5/2), s, 80% fine grained sand, 15% fine to		
35 GRAVELLY SAND, yellowish brown (10YR 5/4), 80% fine to coarse grained angular sand, 20% fine to coarse grained angular gravel, soft, wet 35 CL CL CLAY, brown (7.5YR 5/3), 100% low plastic fines, stiff, moist -@37' 3" silty sand lens 20% non plastic fines, 80% fine grained sand, soft, moist -@37' 3" silty sand lens 20% non plastic fines, 80% fine grained sand, soft, moist -@40 color change to dark grey brown (7.5YR4/20) -@41' PTS (CL) sandy lean clay	20	4.93S1 15 20180615			1				-@18' color change to yel non-plastic fines, 75 coarse grained grav -@ 22.5-27' color change rhyolite(?) with som gas vesicles are als	llowish brown (10YR 5/4) 5% 5% fine grained sand, 20% fine to xel, with cobbles 4 inches max e to grey (5YR 5/1), gravel is volcanic te feldspar and quartz present, small so present.		schedule 40 PVC 94.4 % cement / 5.6% bentonite
-@37' 3" silty sand lens 20% non plastic fines, 80% fine grained sand, soft, moist -@40 color change to dark grey brown (7.5YR4/20) -@41' PTS (CL) sandy lean clay	35]]] 	coarse grained, ang angular gravel, soft,	gular sand, 20% fine to coarse grained , wet		IIIXure
	<u>40</u>	4.93S1 41 20180615			1				-@37' 3" silty sand lens 2 sand, soft, moist -@40 color change to dar	0% non plastic fines, 80% fine grained k grey brown (7.5YR4/20)		3-foot
45	45	0828										bentonite seal
Notes:		Notoo										

					Clie	ent:		NDEP		
		_					umber:	60477365		Boring No. NERT 4.93S1
A	EC	O	M		Site	e Desc	cription/L	ocation: Las Vegas Wash, I	Henderson, NV,	Ambient PID Reading: NA
	AECON	1			Cod	ordina	tes:	26734990.31 N 837979.18 E	Elevation: 1523.33 FT Datum:	Sheet: 2 of 2
Camai	Avenida rillo, CA	9301				-		t/Method: /Sonic	Weather: Sunny, hot, dry	Monitoring Well Installed: Yes
80	5-388-37	115			Sar	mple 7	ype(s):	From Cores	Boring Diameter: 8 IN.	Screened Interval:
Approved B								Logged By: S. Piper	Date/Time Started: 06-14-18	Depth of Boring: 65 FT BGS
Drilling Cont	tractor:			Drillir				Backfill:	Date/Time Finished: 06-15-18	Water Level: 27.8 FT BGS
DEPTH (ft)	Sample IU	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	Headspace (ppm)	nscs	Graphic Log	grained material (s grained material (s	CATION, color, description of fine ilt and clay) description of coarse and and gravel), structural or ires, density or stiffness, moisture taining.	Well Diagram
4.93; 2018 8.4.93; 50 2018 08 	ERT S1 47 30615 ERT 30615 324 S1 48 30615 324			1		SP SM SP- SM		5/4), fine to medium grained gravel up to -@47 PTS (GP) poorly gra SILTY SAND, light reddish plastic fines, mediur -@50' PTS (CL-ML) sandy GRAVELLY SAND TO SIL 4/2), 10% non plasti angular sand, 40% r gravel with cobbles Clasts are compose Difficult to drill. GRAVELLY SILTY SAND 50% medium plastic angular sand, 30% f	h brown (5YR6/4), mottled, non to low n grained sand, soft, wet	0.02 inch soluted screen #3 Monterey sand
								-@60 PTS (CL) sandy lea -backfilled boring with ben was installed. Refusal at 65 feet. Boring Terminated	n clay tonite chips to 55 feet. Monitoring well	Bentonite chips
No	otes:									

	AEC	0	Μ					60477365 ocation: Las Vegas Wash,	Henderson, NV,	Ambient PID Reading: NA	
-	AECO				Co	ordina	tes:	26734881.04 N 837144.38	E Elevation: 1522.88 FT Datum:	Sheet: 1 of 2	
	1220 Avenio Camarillo, C	A 930			Dril	ling E	quipmen	t/Method: /Sonic	Weather: Sunny, hot, dry	Monitoring Well Installed: Yes	
	805-388	-3775			Sai	mple 1	Type(s):	From Cores	Boring Diameter: 8 IN.	Screened Interval:	
oprov	ed By: S	. Biloc	leau					Logged By: S. Piper	Date/Time Started: 06-15-18	Depth of Boring: 90 FT BGS	
rilling	Contracto	r: Ca		Drillir	ng		1	Backfill:	Date/Time Finished: 06-16-18	Water Level: 20.8 FT BGS	
UEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	Headspace (ppm)	NSCS	Graphic Log	grained material (s grained material (s	ICATION, color, description of fine silt and clay) description of coarse sand and gravel), structural or ures, density or stiffness, moisture staining.	Well Diagram	
20 25	NERT 5.1151 17 20180615 1457			1		SP- SM SP- SM		10% non plastic fine 10% fine to coarse max, angular, soft, o -@8' color change to light content increases GRAVELLY SAND, light t medium grained sa with cobbles >4 incl GRAVELLY SAND TO SI 25% non plastic fine 15% fine to coarse max, angular, soft, i -@17' PTS (SP) poorly gr SILTY SAND, 40% non pl sand, 5% fine grain	t brownish gray (10YR 6/2) and gravel brownish gray (10YR 6/2), 70% fine to nd, 30% fine to coarse grained gravel hes max, angular, soft, dry LTY SAND, brownish gray (10YR 6/2), es, 60% fine to medium grained sand, grained gravel with cobbles >4 inches moist raded sand with gravel lastic fines, 55% fine to med. grained ed gravel up to 1/4" in size	cemer bentor mixtur 4-inch schedi PVC	nite re 1
<u>30</u> 						SM		grained gravel up to SILTY SAND TO SANDY	SILT, light yellowish brown (10YR5/4), es, 35% fine to med. grained sand, 15%	3-foot bentor	nite seal
	NERT										
	5.11S1 37 20180615			1		SP		-@37' PTS (CL) lean clay			
	NERT							fines, 55% fine grain	sh brown (10YR 5/2), 30% low plastic ned sand, 15% fine to medium grained		
40	5.11S1 40 20180615			1		SM		gravel with cobbles	up to 4 inches in size, soft, wet	0.02 in	
	1520							fines, 55% fine grai	ish brown (10YR 5/4), 30% low plastic ned sand, 15% fine to medium grained		d screen onterey
								gravel up to 4" in siz -@40' PTS (ML) sandy si	t noist		
45								@15' difficult drilling			
								-@45' difficult drilling			
	I						Le Frider	1			
	Notes:										

					Clie			NDEP		Boring No. NERT 5.11S1
	A —/							60477365		
	4 <u></u> <u></u> <u></u> <u></u> <u></u>	U.	Μ					ocation: Las Vegas Wash, H		Ambient PID Reading: NA
	AECO 220 Avenio	da Aca				ordina lina E			Elevation: 1522.88 FT Datum:	Sheet: 2 of 2
С	amarillo, C 805-388		12			-		t/Method: /Sonic From Cores	Weather: Sunny, hot, dry Boring Diameter: 8 IN.	Monitoring Well Installed: Yes Screened Interval:
pprove	ed By: S	. Bilo	deau		00,	1010 1	<i>Jp0</i> (0).	Logged By: S. Piper	Date/Time Started: 06-15-18	Depth of Boring: 90 FT BGS
	Contracto			e Drillir	ng			Backfill:	Date/Time Finished: 06-16-18	Water Level: 20.8 FT BGS
DEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	Headspace (ppm)	NSCS	Graphic Log	grained material (si grained material (si	CATION, color, description of fine It and clay) description of coarse and and gravel), structural or res, density or stiffness, moisture taining.	Well Diagram
50						SM		fines, 55% fine grain	sh brown (10YR 5/4), 30% low plastic ed sand, 15% fine to medium grained e, dense, moist <i>(continued)</i>	
<u>60</u> 65						CL- ML		55% medium plastic	CLAY, light reddish brown (5YR 6/4), fines with some highly plastic clay ned. grained sand, 5% fine grained ze, stiff, moist	
70	NERT 5.11S1 67 20180618 0750 NERT 5.11S1 72 20180618 0810			1		CL		plastic fines with son		Hydrated Bentonite chips
<u>80</u> 85								-@80' color change to gray grained sand, 5% fin -@85' gypsum crystals	/ 60% low plastic fines, 25% fine e grained gravel	
90	Notes:							, target depth achieved, ba 45 feet. Monitoring w Total Depth = 90 feet. Boring Terminated Target depth achieved	ckfilled boring with bentonite chips to ells installed.	

			Clie Proi	-	umber:	NDEP 60477365		Boring No. NERT 5.49S1
AECC)M		-			.ocation: Las Vegas Wash, H	lenderson, NV,	Ambient PID Reading: NA
AECOM	▰▰▾◾			ordina			Elevation: 1543.37 FT Datum:	Sheet: 1 of 2
1220 Avenida Ao Camarillo, CA 93			Drill	ing E	quipmen	t/Method: /Sonic	Weather: Sunny, hot, dry	Monitoring Well Installed: Yes
805-388-377			San	nple 7	ype(s):	From Cores	Boring Diameter: 8 IN.	Screened Interval:
oproved By: S. Bil	odeau					Logged By: S. Piper	Date/Time Started: 06-18-18	Depth of Boring: 90 FT BGS
rilling Contractor: C	ascade	e Drillin	ng			Backfill:	Date/Time Finished: 06-19-18	Water Level: 26.8 FT BGS
Sample ID Sample ID	Blows per 6"/RQD	Recovery (ft)	Headspace (ppm)	NSCS	Graphic Log	grained material (sil grained material (sa mineralogical featur content, odors or st	CATION, color, description of fine It and clay) description of coarse and and gravel), structural or res, density or stiffness, moisture aining.	Well Diagram
5 		1		SP- SM		 coarse grained sánd, inches max), angular -@12.5' gravel content incr GRAVELLY SAND TO SIL 5/4), 5% non plastic f to coarse grained ang inches in size, soft, d -@20' PTS (CL-SC) clayey GRAVELLY SAND, very da grained sand, 25% fir gravel (2 inches max) -@25' material is wet, cobb -@27.5' color change to red -@30' color change to very -@32' PTS (CL-ML) Silty cl -@32' PTS (CL-ML) Silty cl -@32.5' 60% sand 40% gr 	eases to 30% TY SAND, yellowish brown (10YR ines, 75% fine grained sand, 30% fine gular gravel with cobbles up to 3 ry sand rk gray (10YR 3/1), 75% fine to med. the to very coarse grained angular), angular, soft, dry ble size increases to 6 inches ddish brown (5YR 4/4) dark gray (5YR 3/1) ay with gravel avel P) 100% fine to coarse grained pobbles up to 6 inches max size) ravel	4-inch schedule 40 PVC cement / bentonite mixture 3-foot bentonite seal 0.02 inch solited screen #3 Monterey sand

1	\ = ^				Clie	ent:		NDEP		
1	ΛΞΛ				Pro	Project Number: 60477365				Boring No. NERT 5.49S1
1		0	Μ					ocation: Las Vegas Wash, H	enderson, NV,	Ambient PID Reading: NA
	AECO	DM			Coc	ordina	tes:	26734326.34 N 835452.17 E	Elevation: 1543.37 FT Datum:	Sheet: 2 of 2
	1220 Avenio amarillo, C 805-388	CA 930				-		t/Method: /Sonic	Weather: Sunny, hot, dry	Monitoring Well Installed: Yes
	805-388	-3775			Sar	nple 7	Type(s):	From Cores	Boring Diameter: 8 IN.	Screened Interval:
	ed By: S			D				Logged By: S. Piper	Date/Time Started: 06-18-18	Depth of Boring: 90 FT BGS
Drilling	Contracto			Drillir				Backfill:	Date/Time Finished: 06-19-18	Water Level: 26.8 FT BGS
DEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	Headspace (ppm)	NSCS	Graphic Log	grained material (sil grained material (sa	CATION, color, description of fine t and clay) description of coarse and and gravel), structural or es, density or stiffness, moisture aining.	Well Diagram
50 55 60						SP		grained sand, 25 [%] fir gravel (2 inches max)	rk gray (10YR 3/1), 75% fine to med. he to very coarse grained angular h, angular, soft, dry <i>(continued)</i> gular volcanic conglomerate.	
						SP- SM		10% non plastic fines 70% fine to coarse gr present, angular, soft	ON, dark yellowish brown (10YR 4/4), , 20% fine to coarse grained sand, ained angular gravel, cobbles >6" , wet ON, dark yellowish brown (10YR 4/4)	
65 70 75	NERT 5.49S1 72 20180618 1115			1				-@72' PTS (CL) Sandy lear		Hydrated Bentonite chips
						ML			ON, siltstone/claystone with gypsum omposition odor present	
	NERT 5.49S1 89 20180618 1130			1				-@89' PTS (CL) Lean clay -@90' backfilled boring with well installed. Total Depth = 90 feet. Boring Terminated Target depth achieved	with gravel bentonite chips to 45'. Monitoring	
	Notes:									

	AEC 1220 Aveni		\$0		Co	ordina	tes:	26738845.83 N 833571.59 I	E Elevation: 1536.76 FT Datum:	Sheet: 1 of 2	
	amarillo, 0 805-388	CA 930						t/Method: /Sonic	Weather: Sunny, hot, dry	Monitoring Well Installed: Yes	
					Sai	nple 1	ype(s):	From Cores	Boring Diameter: 8 IN.	Screened Interval:	PO0
	ed By: S			D				Logged By: S. Piper	Date/Time Started: 06-17-18	Depth of Boring: 90 FT	
lling	Contracto			Drillir				Backfill:	Date/Time Finished: 06-18-18	Water Level: 13.35	FT BGS
(ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	Headspace (ppm)	NSCS	Graphic Log	grained material (s grained material (s	ICATION, color, description of fine silt and clay) description of coarse sand and gravel), structural or ures, density or stiffness, moisture staining.	Well Diagra	m
5 10 15 20 25 30	NERT 5.9151 17 20180617 0815			1		SP- SM CL- ML SM		5/4), 10% non plasti sand, 30% fine to cc cobbles up to 3 inch -@10 - 11' Sandy silt lens grained sand -@13' color is mottled: br (10YR 5/4) SANDY SILT TO SANDY 10% clay, med. plastic composed of sand v -@17' PTS (CL) Sandy le GRAVELLY SILT TO SAN med plastic fines, 3 grained angular gra moist -@25' color is mottled: br (10YR 5/4) -@27.5' color change to y SILTY SAND WITH CLAY silt, 10% clay, med.	570% low plastic fines, 30% fine own (2.5YR 5/3) and yellowish brown CLAY, brown (2.5YR 5/3), 60% silt, stic fines, 30% fine grained sand, with silt and clay lenses, dense, moist		cement / bentonite mixture 4-inch schedule 40 PVC
<u>40</u> <u>45</u>	NERT 5.91S1 40 20180617 0930 NERT 5.91S1 47 20180617			1		SM		plastic fines, 50% fi gravel -@40' PTS (CL) Sandy le GRAVELLY SILTY SAND plastic fines, 60% fi	, yellowish brown (10YR 5/4), 20% non ne to med. grained sand, 20% fine to canic gravel with cobbles up to 6 inches		3-foot bentonite seal
		I				I	1.1.1.			<u>ì.•</u>	1

Approved By: S. Bilodeau Logged By: S. Piper Data Drilling Contractor: Cascade Drilling Backfill: Data H Q Image: Cascade Drilling Backfill: Data H Q Image: Cascade Drilling Backfill: Data H Q Image: Cascade Drilling Image: Cascade Drilling Backfill: Data H Q Image: Cascade Drilling Image: Casc	tion: 1536.76 FT Datum: Sheet: 2 of 2 Weather:Sunny, hot, dry Monitoring Well Installed: Yes g Diameter: 8 IN. Screened Interval: /Time Started: 06-17-18 Depth of Boring: 90 FT BGS /Time Finished: 06-18-18 Water Level: 13.35 FT BGS N, color, description of fine clay) description of coarse id gravel), structural or ensity or stiffness, moisture Well Diagram with gravel with gravel Image: Structure is the state is the
AECOM Site Description/Location: Las Vegas Wash, Hender AECOM 1220 Avenida Acaso Coordinates: 26738845.83 N 833571.59 E Elev Drilling Camarillo, CA 93012 805-388-3775 Sample Type(s): From Cores Borid Approved By: S. Bilodeau Logged By: S. Piper Date Drilling Contractor: Cascade Drilling Backfill: Date H Image: Contractor: Cascade Drilling MATERIAL IDENTIFICATION H Image: Content of the content of t	tion: 1536.76 FT Datum: Sheet: 2 of 2 Weather: Sunny, hot, dry Monitoring Well Installed: Yes g Diameter: 8 IN. Screened Interval: /Time Started: 06-17-18 Depth of Boring: 90 FT BGS /Time Finished: 06-18-18 Water Level: 13.35 FT BGS N, color, description of fine clay) description of coarse id gravel), structural or ensity or stiffness, moisture i. Well Diagram with gravel Image: Structure in the started in the st
AECOM 1220 Avenida Acaso Camarillo, CA 93012 805-388-3775 Coordinates: 26738845.83 N 833571.59 E Elev Approved By: S. Bilodeau Drilling Equipment/Method: /Sonic Sample Type(s): From Cores Borin Approved By: S. Bilodeau Logged By: S. Piper Data Drilling Contractor: Cascade Drilling Backfill: Data Drilling Contractor: Cascade Drilling Backfill: Data H H H H H H Data Matternation G G G G G Data Matternation G H H G G Data Matternation G G G G G Data G H H H G G G Data G G G G G G G G Data H G G G G G G G G G G G G G G G G G G <th>Weather: Sunny, hot, dry Monitoring Well Installed: Yes g Diameter: 8 IN. Screened Interval: /Time Started: 06-17-18 Depth of Boring: 90 FT BGS /Time Finished: 06-18-18 Water Level: 13.35 FT BGS N, color, description of fine clay) description of coarse id gravel), structural or ensity or stiffness, moisture i. Well Diagram with gravel Image: Structure in the started in the st</th>	Weather: Sunny, hot, dry Monitoring Well Installed: Yes g Diameter: 8 IN. Screened Interval: /Time Started: 06-17-18 Depth of Boring: 90 FT BGS /Time Finished: 06-18-18 Water Level: 13.35 FT BGS N, color, description of fine clay) description of coarse id gravel), structural or ensity or stiffness, moisture i. Well Diagram with gravel Image: Structure in the started in the st
Camarillo, CA 93012 805-388-3775 Drilling Equipment/Method: /Sonic Approved By: S. Bilodeau Logged By: S. Piper Date Drilling Contractor: Cascade Drilling Backfill: Date Drilling Contractor: Cascade Drilling Backfill: Date H Q Q Q Q Q Q H Q Q Q Q Q Q Q H Q Q Q Q Q Q Q H Q Q Q Q Q Q Q H Q Q Q Q Q Q Q Q H Q Q Q Q Q Q Q Q H Q Q Q Q Q Q Q Q H Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q H Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q <t< th=""><th>g Diameter: 8 IN. Screened Interval: /Time Started: 06-17-18 Depth of Boring: 90 FT BGS /Time Finished: 06-18-18 Water Level: 13.35 FT BGS N, color, description of fine clay) description of coarse ind gravel), structural or ensity or stiffness, moisture i. Well Diagram with gravel . .</th></t<>	g Diameter: 8 IN. Screened Interval: /Time Started: 06-17-18 Depth of Boring: 90 FT BGS /Time Finished: 06-18-18 Water Level: 13.35 FT BGS N, color, description of fine clay) description of coarse ind gravel), structural or ensity or stiffness, moisture i. Well Diagram with gravel . .
Approved By: S. Bilodeau Logged By: S. Piper Data Drilling Contractor: Cascade Drilling Backfill: Data H Q Q Q Q Q Q H Q Q Q Q MATERIAL IDENTIFICATION H Q Q Q Q Q Q H Q Q Q Q Q Q H Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	Time Started: 06-17-18 Depth of Boring: 90 FT BGS /Time Finished: 06-18-18 Water Level: 13.35 FT BGS N, color, description of fine clay) description of coarse id gravel), structural or ensity or stiffness, moisture j. Well Diagram
Drilling Contractor: Cascade Drilling Backfill: Date H Image: Contractor: Cascade Drilling Image: Contractor: Cascade Drilling Image: Contractor: Date H Image: Contractor: Image: Contractor: Image: Contractor: Cascade Drilling Image: Contractor: Date H Image: Contractor: Image: Contr	Time Finished: 06-18-18 Water Level: 13.35 FT BGS N, color, description of fine clay) description of coarse id gravel), structural or ensity or stiffness, moisture i. Well Diagram with gravel Image: Comparison of the comparison of coarse id gravel or the comparison of the compariso
0930 NERT 50 5.9151 50 20180617 1 0930 ML ML MUDDY CREEK FORMATION, siltstone/claystone with 20 moist	clay) description of coarse Id gravel), structural or ensity or stiffness, moisture with gravel abt greenish grev, 80%
NERT -0000 <	aht greenish grev. 80%
	el present d
Notes:	

	Client: NDEP	WEI	LL ID: NERT3.80S1
4-0044	Project Number: 60477365 - 2016-170		
AECOM	Site Location: Las Vegas Wash, Henderson, Nevada	Date Installed:	6/28/2018
	Well Location: Coords:	Inspector: Sara	e Piper
	Method: Sonic	Contractor:	Cascade
	MONITORING WELL CONSTRUCTI	ON DETAIL	
	Traffic rated well box	Depth from G.S. (feet)	Elevation(feet) Datum <u>NAVD88</u> _
Measuring Point for Surveying & Water Levels	Top of Riser Pipe		1460.54
	Ground Surface (G.S.)	0.0	1461.06
Cement, Bentonite, Bentonite Slurry Grout, or Native Materials % Cement % Bentonite	Riser Pipe: Length <u>10</u> Inside Diameter (ID) <u>4 inches</u> Type of Material <u>PVC</u> Bottom of Steel Guard Pipe		
<u> </u>	Top of Bentonite	5.5	1455.6
	Bentonite Seal Thickness 2.5 feet		
	Top of Sand	8	1453.1
	Top of Screen	10	1451.1
	▼_ Stabilized Water Level	10.67	1450.4
	Screen:		
	Length 10 feet Inside Diameter (ID) 4 inches Slot Size 0.020 inches Type of Material Schedule 40 PVC		-
	Type/Size of Sand <u>#3</u> Sand Pack Thickness <u>2 inches</u>		
	Bottom of Screen	20	1441.1
	Bottom of Tail Pipe:	20	1441.1
-	Bottom of Borehole drilled to 5	55 feet and backfilled with be	entonite chips 1406.1
Bore Describe Measuring Poir North side at to		9/13/2018 Date	

	Client: NL	DEP			WEL	L ID: NER	T4.21N1
4-0044	Project Num	ber: 6047736	5 - 2016-170				
AECOM	Site Location: Las Vegas Wash, Henderson, Nevada			Date Installed:		6/19/2018	
	Well Locatio	on:	Coords:		Inspector:		Sara Piper
	Method:	Sonic			Contractor:	Cascade	
		MONITORING	GWELL CONSTR	UCTION DE	CTAIL		
		Traffic rated well box		Deptl	n from G.S. (feet)		Elevation(feet) Datum <u>NAVD88</u> _
Measuring Point for Surveying & Water Levels		_ _Top of Riser Pipe					1502.07
		_Ground Surface (G.S.)			0.0		1502.29
Cement, Bentonite, Bentonite Slurry Grout, or Native Materials 92 % Cement		_Riser Pipe: Length Inside Diameter (ID) Type of Material S	45 feet 4 inches Schedule 40 PVC				
8 % Bentonite % Native Materials		_Bottom of Steel Guard Pip	be				
		Top of Bentonite			40		1462.29
		Bentonite Seal Thickness	3 feet				
		Top of Sand			43		1459.29
		Top of Screen			45		1457.29
		Stabilized Water Leve	el		35.88		1466.41
		Screen:					
		Length	10 feet			_	
		Inside Diameter (ID)	4 inches				
		Slot Size Type of Material	0.020 inches PVC				
		Type/Size of Sand Sand Pack Thickness	#3 2 inches				
		Bottom of Screen			55		1447.3
		_Bottom of Tail Pipe:			55.4		1446.9
		Bottom of Borehole		drilled to 90 feet	and backfilled with	bentonite	1412.3
Boreh Describe Measuring Point North side at top		<u>8 inches</u> Approved Sal	: ly W. Bilodear	N Date	9/13/2018		

	Client: NDEP	WEL	L ID: NERT4.38N1
A=0044	Project Number: 60477365 - 2016-170		
AECOM	Site Location: Las Vegas Wash, Henderson, Nevada	Date Installed:	6/21/2018
	Well Location: Coords:	Inspector:	Sara Piper
	Method: Sonic	Contractor:	Cascade
	MONITORING WELL CONSTRUCTION	DETAIL	
		Depth from G.S. (feet)	Elevation(feet) Datum <u>NAVD88</u>
	Traffic rated well box	Flush	
Measuring Point for Surveying & Water Levels	Top of Riser Pipe		1505.04
	Ground Surface (G.S.)	0.0	1505.27
Cement, Bentonite, Bentonite Slurry Grout, or Native Materials	Riser Pipe: Length <u>30 feet</u> Inside Diameter (ID) <u>4 inches</u> Type of Material Schedule 40 PVC		
% Bentonite	Bottom of Steel Guard Pipe		
% Native Materials			
	Top of Bentonite	26	1479.3
	Bentonite Seal Thickness 2 feet		
		28	1477.3
	Top of Screen	30	1475.3
	Stabilized Water Level	33.2	1472.1
	Screen: Length 10 feet		
	Inside Diameter (ID) <u>4 inches</u> Slot Size <u>0.020 inches</u> Type of Material <u>Schedule 40 PVC</u>		-
	Type/Size of Sand <u>#3</u> Sand Pack Thickness <u>2 inches</u>		
	Bottom of Screen	40	1465.3
	Bottom of Tail Pipe:	40	1465.3
	Bottom of Borehole drilled to 60	feet and backfilled with	bentonite 1445.3
B Describe Measuring Po	Borehole Diameter: <u>8 inch</u> es Approved:	9/13/2018	
North side at t		Date	

	Client: NDEP	WELL ID: NERT4.51S1		
4=0044	Project Number: 60477365 - 2016-170			
AECOM	Site Location: Las Vegas Wash, Henderson, Nevada	Date Installed:	6/14/2018	
	Well Location: Coords:	Inspector:	Sara Piper	
	Method: Sonic	Contractor: Case	cade	
	MONITORING WELL CONSTRUCTION I	DETAIL		
	De	epth from G.S. (feet)	Elevation(feet) Datum <u>NAVD88</u>	
	Traffic rated well box	Flush		
Measuring Point for Surveying & Water Levels	Top of Riser Pipe		1506.24	
	Ground Surface (G.S.)	0.0	1506.79	
Cement, Bentonite, Bentonite Slurry Grout, or Native Materials % Cement	Riser Pipe: Length <u>40 feet</u> Inside Diameter (ID) <u>4 inches</u> Type of Material <u>Schedule 40 PVC</u>			
% Bentonite	Bottom of Steel Guard Pipe			
	Top of Bentonite	34 feet	1472.8	
	Bentonite Seal Thickness <u>3 feet</u> Top of Sand	37 feet	1469.8	
	Top of Screen	40 feet	1466.8	
	▼ Stabilized Water Level	26.6 feet	1480.2	
	Screen:			
	Length 10 feet Inside Diameter (ID) 4 inches Slot Size 0.020 inches Type of Material Schedule 40 PVC	-		
	Type/Size of Sand <u>#3</u> Sand Pack Thickness <u>2 inches</u>			
	Bottom of Screen	50 feet	1456.8	
	Bottom of Tail Pipe:	50.4 feet	1456.4	
	Bottom of Borehole drilled to 57.5	feet and backfilled with bent	tonite1449.3	
E Describe Measuring Po North side at		9/13/2018 ate		

	Client: NI	DEP		WEI	LL ID: NERT4.	7151
A=0044	Project Nun	nber: 60477365 - 2016-170				
AECOM	Site Locatio	m: Las Vegas Wash, Henderson, Nevada		Date Installed:	6/27/2018	
	Well Location	on: Coords:		Inspector: Sara	e Piper	
	Method:	Sonic		Contractor:	Cascade	
		MONITORING WELL CONST	RUCTION D	ETAIL		
		Traffic rated well box	Dep	th from G.S. (feet)		Elevation(feet) Datum <u>NAVD88</u> _
Measuring Point for Surveying & Water Levels		Top of Riser Pipe				1519.29
		_Ground Surface (G.S.)		0.0		1519.64
Cement, Bentonite, Bentonite Slurry Grout, or Native Materials		_Riser Pipe: Length <u>30</u> Inside Diameter (ID) <u>4 inches</u> Type of Material <u>Schedule 40 PVC</u>				
% Bentonite % Native Materials		_Bottom of Steel Guard Pipe			_	
		Top of Bentonite		35		1484.6
		Bentonite Seal Thickness <u>3 feet</u> Top of Sand		38		1481.6
		Top of Screen		40		1479.6
		▼ Stabilized Water Level		28.75		1490.9
		_Screen: Length 10 feet				
		Inside Diameter (ID) <u>4 inches</u> Slot Size <u>0.020 inches</u> Type of Material <u>Schedule 40 PVC</u>			-	
		Type/Size of Sand#3Sand Pack Thickness2 inches				
		Bottom of Screen		50		1469.6
		Bottom of Tail Pipe:		50.4		1469.2
		Bottom of Borehole	drilled to 90 feet a	nd backfilled with b	entonite chips	1429.6
Bor Describe Measuring Poi North side at t		<u>8 inches</u> Approved: Sally W. Bilode	tun Date	9/13/2018		

	Client: NDEP	WELL ID: NER	T4.93S1
A=0044	Project Number: 60477365 - 2016-170		
AECOM	Site Location: Las Vegas Wash, Henderson, Nevada	Date Installed:	6/15/2018
	Well Location: Coords:	Inspector:	Sara Piper
	Method: Sonic	Contractor: Cascade	
	MONITORING WELL CONSTRUCTION D	ETAIL	
	Dep	oth from G.S. (feet)	Elevation(feet) Datum <u>NAVD88</u> _
-	Traffic rated well box	Flush	
Measuring Point for Surveying & Water Levels	Top of Riser Pipe		1523.33
	Ground Surface (G.S.)	0.0	1523.83
Cement, Bentonite, Bentonite Slurry Grout, or Native Materials	Riser Pipe: Length <u>45 feet</u> Inside Diameter (ID) <u>4 inches</u> Type of Material <u>Schedule 40 PVC</u>		
% Bentonite	Bottom of Steel Guard Pipe		
% Native			
Materials			
	Top of Bentonite	40 feet	1483.8
	Bentonite Seal Thickness <u>3 feet</u>	43 feet	1480.8
		43 1001	1480.8
	Top of Screen	45 feet	1478.8
	Stabilized Water Level	27.77 feet	1496.1
	Screen:		
	Length <u>10 feet</u>	_	
	Inside Diameter (ID) <u>4 inches</u> Slot Size <u>0.020 inches</u> Type of Material Schedule 40 PVC		
	Type/Size of Sand #3 Sand Pack Thickness 2 inches		
	Bottom of Screen	55 feet	1468.8
	Bottom of Tail Pipe:	55.4 feet	1468.4
	Bottom of Borehole drilled to 65 fee	et and backfilled with bentonite	1458.8
Describe Measuring Poin		9/13/2018	
North side at to	p of casing.	e	

	Client: N	DEP		WEI	LL ID: NERT5.11S1	
A=0044	Project Nun	nber: 60477365 - 2016-170				
AECOM	Site Locatio	on: Las Vegas Wash, Henderson, Nevada		Date Installed:	6/16/2018	
	Well Locati	on: Coords:		Inspector: Sara	a Piper	
	Method:	Sonic		Contractor:	Cascade	
		MONITORING WELL CONST	FRUCTION D	ETAIL		
		Traffic rated well box	Dep	oth from G.S. (feet)	Elevation(feet) Datum <u>NAVD88</u>	
Measuring Point for Surveying & Water Levels		Top of Riser Pipe			1522.88	
		_Ground Surface (G.S.)		0.0	1523.18	
Cement, Bentonite, Bentonite Slurry Grout, or Native Materials		Riser Pipe: Length <u>35</u> Inside Diameter (ID) <u>4 inches</u> Type of Material <u>Schedule 40 PVC</u>				
% Bentonite % Native Materials		_Bottom of Steel Guard Pipe				
		Top of Bentonite Bentonite Seal Thickness 3 fwwt		30	1493.2	
		Top of Sand		33	1490.2	
		_Top of Screen		35	1488.2	
		Stabilized Water Level		20.77	1502.4	
		Screen: Length 10 feet Inside Diameter (ID) 4 inches Slot Size 0.020 inches Type of Material Schedule 40 PVC			-	
		Type/Size of Sand #3 Sand Pack Thickness 2 inches				
		Bottom of Screen		45	1478.2	
		_Bottom of Tail Pipe:		45.4	1477.8	
		Bottom of Borehole	drilled to 90 feet a	nd backfilled with b	entonite chips 1433.2	
Bor Describe Measuring Poi North side at t		<u>8 inches</u> Approved: Sally W. Biluda	lan Date	9/13/2018 9	-	

	Client: N	DEP		WEI	LL ID: NERT5.49S1	
4=0044	Project Nur	nber: 60477365 - 2016-170				
AECOM	Site Locatio	on: Las Vegas Wash, Henderson, Nevada	Date Installed:	6/18/2018		
	Well Locati	on: Coords:		Inspector: Sara	ı Piper	
	Method:	Sonic		Contractor:	Cascade	
		MONITORING WELL CONS	STRUCTION D	ETAIL		
		Traffic rated well box	Dep	th from G.S. (feet)	Elevation(feet Datum <u>NAVD88</u>	
Measuring Point for Surveying & Water Levels		Top of Riser Pipe			1543.37	
		_Ground Surface (G.S.)		0.0	1543.73	
Cement, Bentonite, Bentonite Slurry Grout, or Native Materials % Cement		Riser Pipe: Length <u>30</u> Inside Diameter (ID) <u>4 inches</u> Type of Material <u>Schedule 40 PVC</u>				
% Bentonite		_Bottom of Steel Guard Pipe				
		Top of Bentonite		25	1518.73	
		Bentonite Seal Thickness 3 feet	t			
		Top of Sand		28	1515.73	
		_Top of Screen		30	1513.7	
		▼_Stabilized Water Level		26.79	1516.94	
		_Screen:				
		Length10 feetInside Diameter (ID)4 inchesSlot Size0.020 inchesType of MaterialSchedule 40 PVC			-	
		Type/Size of Sand #3 Sand Pack Thickness 2 inches				
		Bottom of Screen		40	1503.73	
		Bottom of Tail Pipe:		40.4	1503.33	
		Bottom of Borehole	drilled to 90 feet ar	nd backfilled with be	entonite chips 1453.73	
Bor Describe Measuring Poi North side at t		<u>8 inches</u> Approved: Sally W. Biluc	lean Date	9/13/2018		

	Client: NI	DEP		WEI	LL ID: NERT5.91S1	
A=0044	Project Nun	<i>aber:</i> 60477365 - 2016-17				
AECOM	Site Locatio	n: Las Vegas Wash, Henderson, N	evada	Date Installed:	6/17/2018	
	Well Location	on: Cod	rds:	Inspector: Sara	ı Piper	
	Method:	Sonic		Contractor:	Cascade	
		MONITORING WELL	CONSTRUCTION I	DETAIL		
		Traffic rated well box	De	epth from G.S. (feet)	Elevation(feet) Datum <u>NAVD88</u> _	
Measuring Point for Surveying & Water Levels		_ Top of Riser Pipe			1536.76	
		_Ground Surface (G.S.)		0.0	1537.10	
Cement, Bentonite, Bentonite Slurry Grout, or Native Materials % Cement % Bentonite		_Riser Pipe: Length30 Inside Diameter (ID)4 inches Type of Material Schedule 40	PVC			
% Native Materials		_Bottom of Steel Guard Pipe				
		Top of Bentonite		35	1502.1	
		Bentonite Seal Thickness	3 feet			
		Top of Sand		38	1499.1	
		_Top of Screen	_	40	1497.1	
		Stabilized Water Level		13.35	1523.8	
		Screen:				
		Length10 feetInside Diameter (ID)4 inchesSlot Size0.020 incheType of MaterialSchedule 40			_	
		Type/Size of Sand #3 Sand Pack Thickness 2 inches				
		Bottom of Screen		50	1487.1	
		_Bottom of Tail Pipe:	_	50.4	1486.7	
		Bottom of Borehole	drilled to 90 feet	and backfilled with b	entonite chips 1446.8	
	ehole Diameter:	8 inches Approved:		0/40/0040		
Describe Measuring Poin North side at to		Sally W. T	loclan Da	9/13/2018 te		

Appendix D

Well Development Records

	Well/Piez. ID:
AECOM	NERT 3.8051
· Development Record	
Client NDEP Site Location: NERT3.5051-LUN	
Project No: 60477365-2016-170 Date: 7/5/K/ Developer: J CARTIEN F Vorduzed	Arcon
WELL/PIEZOMETER DATA	Contraction
Well Diameter UII PVC Material	
Measuring Point Description Weath TOC S' BH Geology at Screen Interval	
Depth to Top of Screen (ft.) 9.67 (if known)	
	t <u>700</u> 240
Total Well Depth (ft.) 19,67 Calculate Purge Volume (gal.)	akh +12.5 = 375- 170-0 -
Depth to Static Water Level (ft.) 10.67 Disposal Method Pc/M	1 - 700 0 1/1 1/2 375- 170-240 1/1 1/2 375- 170-240 1/1 1/2 375- 170-240 1/1 1/2 375- 170-240
Wellhead PID/FID	
Original Well Development Redevelopment Date of Original Development	
DEVELOPMENT METHOD Sarge black/ Briler, Jump PURGE METHOD	
Field Testing Equipment Used: Make Model Serial Num	iber
140R18A 4.52-2 7415	
Field Testing Calibration Documentation Found in Field Notebook # Page #	Daily
	,
Volume Spec. Cond TimeRenoved (gal) T° (C/F) pH (umhos) Turbidity (NTUs) DO Color Odor	Other
750 25 2626 743 3.81 30.1 260 Clear Nome	
\$10 76 25.62 7.17 3:71 2.7 1.30 Cher stre 820 00 2524 7.16 3:70 0.0 1.28 Cher nor	
330 125 24,68 7,10 301 0.0 1.24 du Alone	
340 150 24,12 7,11 3,73 0.0 1.27 chen der	
and an and a set of the rest char was	
0900 200 29.027.11 3879 00 1.25 Clan non	
78/18	
ACCEPTANCE CRITERIA (from workplan) 32-472.	
Min. Purge Volume (7-10 borehole volumes) Zef gallons Has required volume been removed	if there is sufficient recharge but not over 4 hrs
Maximum Turbidity Allowed NTUs 170-210 Has required turbidity been reached Have parameters stabilized	
pH +-0.1 If no or N/A explain below:	
emp 1 degree C	
di others 10%	
11 A	
ignature Date:	-//4
1	
Serge/Bail l not a 3 god remared	
Pumpion e 740 - puge e 2.5 gal/min	
pung in en en or	

	NERT
AECOM	
Well/Piezometer Develo	pment Record 4.21W
Client: NDEP Site Location: NOV	In side of week
Project No: 60477365-2016-170 Date:	Developer. Dr. Tilivala-Cascade.
WELL/PIEZOMETER DATA	11 Material Sch 40 PUC
Measuring Point Description <u>U cicll TDC</u> Depth to Top of Screen (fl.) <u>4</u> <u>4</u> <u>7</u>	Geology at Screen Interval Grally, Sand (if known)
Depth to Bottom of Screen (ft.) 54.9	Time of Water Level Measurement 0802
Total Well Depth (ft.)	Time of Water Level Measurement 0.802 . Calculate Purge Volume (gal.) 3 Calculate Sing Volume 3 Calculate Sing Volum
Depth to Static Water Level (ft.) 35.88	Disposal Method Polytanti on trailer
/	Wellhead PID/FID
Original Well Development	Date of Original Development 6/25/18
DEVELOPMENT METHOD Baily Surge +pcmp	PURGE METHOD
Field Testing Equipment Used: 101100 59613, Bailey Sovere	WL Model WL Model indicator block and pump (man Joon = max 3 gm)
Field Testing Calibration Documentation Found in Field Notebook #	Page #
Volume Spec. Cond	DO Color Other DTW ORP
Time Removed (gal) T° (C/F) pH (umhos) Turbidity (NTUs)	32T BVN - 36 129 25PD
1002 2.5 27.047.62554 071,000	d Official and Official
1012 B. 5 3.32 7.62 5. 80 8 50	2.21 cloudy = 32 119 2.0 5pm
1017 22.5 23.71 7.55 5.60 350	2.19 clean 36 110
1022 35 23.72 7.51 5.61 280	2.20 CIRCY 36 100
1027 47.5 23.737.8 5.62 130	22011RN - 36 100
ACCEPTANCE CRITERIA (from workplan) Min. Purge Volume (7-10 borehole volumes)gallons Has required volumes Maximum Turbidity AllowedNTUs Has required turb Stabilization of parameters 10% Have parameters pH +-0.1 If no or N/A ex- temp 1 degree C all others 10%	stabilized
1 111	Date: 6/25/18
Signature	
Bailed 7 gallons	
Pump 47.5 gallons.	

AECOM Well/Plezometer Develo Client: NDEP Site Location: LV Project No: 60477365-2016-170 Date:	
Pum munsue	Geology at Screen Interval SILF, Sand 29 Valls (if known) Time of Water Level Measurement 1210 Calculate Purge Volume (gal.) 3 Calsing Udune R.9 Disposal Method Pulytant on truck Weilhead PID/FID Date of Original Development 6/25/18
Field Testing Calibration Documentation Found in Field Notebook # Time Volume Spec. Cond 1322 9122 9122 9122 1322 9122 9122 9122 9122 1327 10 23.60 9.57 3.14 91000 1332 22.5 23.75 7.71 5.05 3.42 1332 32.37 7.97 7.71 5.02 19.77 1332 34 23.77 7.97 5.02 19.77 1332 34 23.77 7.97 5.02 19.77 1332 34 23.77 7.97 5.02 19.77 1337 34 23.77 7.97 5.02 19.77 1337 34 23.77 7.97 5.02 19.77 1337 34 3.92 72 19.77 19.77 13.77 7.97 7.97 7.97 7.97 19.77 13.77 7.97 7.97 7.97 7.97 19.77 13.77 7.97 7.97 7.9	Is) DO Color Odor Other DTW GRP DI-94 Brown - Other 33-22 87
Stabilization of parameters 10% Have parameters	urbidity been reached Image: Stabilized explain below:

AECOM	Vell/Piezometer Develo	Well/Piez. ID: NERT4.575/	
Client: NDEP Project No: 60477365-2016-170	Site Location: W		
WELL/PIEZOMETER DATA	r 🗌 Diameter	// Material	
Measuring Point Description	TOC	Geology at Screen Interval	
Depth to Top of Screen (ft.)	<i>4</i> 0		
Depth to Bottom of Screen (ft.)	50	Time of Water Level Measurement 7:15	
Total Well Depth (fl.)	53.30	Calculate Purge Volume (gal.) $\frac{24.4-1}{170}$	1
Depth to Static Water Level (fl.)	26-60	Disposal Method	
•	17.35 well 5411 7.05 sond pack soll	Wellhead PID/FID	
Original Well Development	Redevelopment	Date of Original Development 6-26-18	
DEVELOPMENT METHOD	Pump	PURGE METHOD Bril/Suge/Pump 1.5 @ 2.5	-
Field Testing Equipment Used:	Make Horiba	Model Serial Number 4-50 59613	
Field Testing Calibration Documentation	on Found in Field Notebook #	Page #	

Time	Volume Removed (gal)	T° (Ĉ/F)	pН	Spec. Cond (umhos)	Turbidity (NTUs)	DO %	Color	Odor	Other	ORPMV
Time	27.5	25.56	7.49	5.74	137	109.3	Clear	None	2.5 gpm	-29
9:3/		23.58	750	5.75	139	18-4	Elear	kn	2.5	153
9:52		23.57	750	5.74	119	79.5	ch-~	Are	26.66 PT	-w 143
10:00	100	23.57	7.54	5.74	121	71.7	Cle-	More		133
10:05		23-56	7.55	5.79	135	67.0	Clev	Nrc	26.66 D	W129
18:10		23.60		5.75	116	60.4	Cler	me		
10:15		23.61	7.56	5.74	120	10.1	Clev	Noc		123
10:20				5.75	130	547	Chr	me		118
10:25			7.56	575	125	52.0	Chr	Non		116
10:30		23.61	7.56	675	120	50.3	cha	Non	26.66 0	
10:35	187.5	2-40)	7.56	3 / 3	120	30.0			26.62-F	the DTW

ACCEPTANCE CRITERIA (from workplan)

Min. Purge Volume (7-10 borehole volumes) _ Maximum Turbidity Allowed _____ NTUs Stabilization of parameters 10% pH +-0.1 temp 1 degree C all others 10% gallons Has required volume been removed Has required turbidity been reached Have parameters stabilized If no or N/A explain below:

m

Yes	No	N/A
X		
		X
\boxtimes		

if there is sufficient recharge but not over 4 hrs	/
Signature	2

Date:

6-26-18

P"

Scanned by CamScanner

LV Wash

6:00 arrive onsite 6:30 mode to meet dullars Ats Meeting 7:00 mobe to well NERT 4.5151 Are checked By Biologist prior to well Davelopment. 7:15 Set up Development truck on well (cascade Drilling) 7:30 Take well DTW & TD 7:45 Remove sediment from Bottom of well with Barter 2" Some send fire grained removed from Bottom of well 8:07 125 gallons removed with Bailer. Very small amount of Sond removed with last few Bails, 53.3 TD /some 8:10 stort shinging 15 min every 5' server 26.64 ATW 2675 DTW 8:45 Buil sediment from Bottom of well. - 15 sellons removed 9:00 26.70 DTW 9:05 Sat pump in well 49.3 ft 9:30 Stort pamp NDEP errives on site obeserves well Drvelopment Well peramaters have stablized 187.5 gallons have been 10:00 2501 persed 53.33 TD Final 26.62 DTW Final 10:50 DTW measured on west side of easing

4 D - - - ----

Development Record		
Client: NDEP	Site Location: NERT	LVW
Project No: 60477365-2016-170	Date: <u>713/14</u>	Developer: 5 CARGORIO AECOM
WELL/PIEZOMETER DATA		Developer: <u>5 CARCARIO AGECCOM</u> F Verdyzer Cascado
Well Piezometer	Diameter ///	<u>Material</u>
Measuring Point Description	with Tue 8" 2	Geology at Screen Interval
Depth to Top of Screen (fL)	34,80 37.30	(if known)
Depth to Bottom of Screen (ft.)	44.80 47.30	Time of Water Level Measurement
Total Well Depth (ft.)	44, 5047.30	Calculate Purge Volume (gal.)
Depth to Static Water Level (ft.)	29.75	Disposal Method foly kent to NERTSik
X		Wellhead PID/FID
Original Well Development	Redevelopment	Date of Original Development
DEVELOPMENT METHOD Swgl	Baile, Purp	PURGE METHOD
Field Testing Equipment Used:	Make	Model Serial Number
	Horba US2-	1415

___ Page # _

Well/Piez. ID:

_ - Daily

NERTY.7151

Field Testing Calibration Documentation Found in Field Notebook #__

	Volume			Spec. Cond			T		
TimeRei	noved (gal)	T° (C/F)	рН	(umhos)	Turbidity (NTUs)	DO	Color	Odor	Other
1195	_30_	33.39	10.15	5.47	21000	2.2~	Bion	Nore.	6
1214	105	30.26	8.84	5.36	>1000	2.18	Ohney	Weng.	
235	155	2814	4.211	5,48		5.07	chula	Nort	
1755	205	27.06	7.94	SITC	128	2.29	cloudy	None	
1315	255	27.19	7.86	5.57	11.8	2.04	Clean	nore	-
1325	280	26,74	7.79	5.62	7.6	2,87	Clear	Weny)
1335	305	26.66	7.76	5-62	6.4	2.64	Ober	Way)
1345	330	26,50	- E - L	5.72	5.9	2.59	Clay	None	-
355	37	76.59		5.70	5.5	2.63	chen	Nanc	~
12/00	and	agami	1- 4	milite	- Al				
					7/2				
CCEPTAN		rom workpla	an) 29	4=+20	111				

ACCEPTANCE CRITERIA (from workplan) 2941-00 Min. Purge Volume (7-10 borehole volumes) gallons Maximum Turbidity Allowed _____ NTUs Stabilization of parameters 10% pH +-0.1 temp 1 degree C

Has required volume been removed Has required turbidity been reached Have parameters stabilized

Surg / Bail & Ogur - Sevent fle of boution to the matin o bother off well - 27 sal removed 1110 - Remanne Bablom @ 417.30 11th ~ Regin Burny @ 25 sel/min

Date:

if there is sufficient recharge but not over 4 hrs

34-4-45

If no or N/A explain below:

all others 10%

Signature

Well/Piezometer Development Record lient: NDEP Site Location: LV $W_{dS}h$ roject No: 60477365-2016-170 Date: 6-2.6-19 Developer: Cas cadc FELLIPIEZOMETER DATA Velocities of the set sub- roject No: 60477365-2016-170 Date: 6-2.6-19 Developer: Cas cadc Velocities of the set sub- roject No: 60477365-2016-170 Date: Geology at Screen Interval (if known) Time of Water Level Measurement Diameter $\frac{4'}{4'}$ Material Diameter $\frac{4'}{5}$ Time of Water Level Measurement otal Well Depth (ft.) 53.90 Calculate Purge Volume (gal.) Disposal Method Time of Water Level Measurement Date of Original Development $\frac{6 \cdot 26 \cdot 19}{7, 5 \cdot 5 \cdot 5, 77}$ Purge Method Disposal Method Time of Water Level (ft.) Date of Original Development $\frac{6 \cdot 26 \cdot 19}{7, 7, 3 \cdot 5, 7, 7}$ Purge Method Disposal Method Disposal Method Developm	ATCO									Well/Piez. I	D: 4.935/
oject No: 60477365-2016-170 Date: $6-2.6-19$ Developer: Cascudd ELL/PIEZOMETER DATA eil	~=(0	M	1	Nell/I	Piezome	ter Develo	pment	Recor	d	n cr	
VELUPIEZOMETER DATA Velupiter I Diameter $\frac{9}{1^{\prime\prime}}$ Material easuring Point Description Tec INST Systement Interval (fk hown) easuring Point Description Tec INST Systement Interval (fk hown) epht to Bottom of Screen (ft.) $\frac{9}{15}$ Time of Water Level Measurement Diameter $\frac{1}{95}$ Disposal Method IS $3 \cdot 9 \odot$ Calculate Purge Volume (gal.) pits to Static Water Level (ft.) 27.77 Disposal Method IS $3 \cdot 9 \odot$ Calculate Purge Volume (gal.) pits to Static Water Level (ft.) 27.77 Disposal Method IS $3 \cdot 9 \odot$ Calculate Purge Volume (gal.) pits to Static Water Level (ft.) 27.77 Disposal Method If $5 \cdot 7 \circ 1$ Disposal Method Intervol Marke Model Serial Number Advector Marke Model Serial Number Advector Mar	lient:	NDEP			Site Location	n: LV V	Vash				
Vell Piezometer Diameter $4^{\prime\prime}$ Material easuring Point Description $7 \le c$ $w \le \tau$ $Geology$ at Screen Interval (if known) $metrial$ epth to Top of Screen (ft.) 4^{\prime} 5^{\prime} Time of Water Level Measurement ball Well Depth (ft.) 5^{\prime} 7^{\prime} 2^{\prime} 7^{\prime} epth to Static Water Level (ft.) 2^{\prime} 7^{\prime} 7^{\prime} 7^{\prime} epth to Static Water Level (ft.) 2^{\prime} 7^{\prime} 7^{\prime} 7^{\prime} repth to Static Water Level (ft.) 2^{\prime} 7^{\prime} 7^{\prime} 7^{\prime} repth to Static Water Level (ft.) 2^{\prime} 7^{\prime} </th <th>roject No:</th> <th>60477365</th> <th>5-2016-170</th> <th>Date:</th> <th>6-26-19</th> <th><u>.</u></th> <th>Develope</th> <th>T. Case</th> <th>ade</th> <th>- <u>1</u>-</th> <th></th>	roject No:	60477365	5-2016-170	Date:	6-26-19	<u>.</u>	Develope	T. Case	ade	- <u>1</u> -	
Vell Piezometer Diameter $4^{\prime\prime}$ Material easuring Point Description $7 \le c$ $w \le \tau$ $Geology$ at Screen Interval (if known) $metrial$ epth to Top of Screen (ft.) 4^{\prime} 5^{\prime} Time of Water Level Measurement ball Well Depth (ft.) 5^{\prime} 7^{\prime} 2^{\prime} 7^{\prime} epth to Static Water Level (ft.) 2^{\prime} 7^{\prime} 7^{\prime} 7^{\prime} epth to Static Water Level (ft.) 2^{\prime} 7^{\prime} 7^{\prime} 7^{\prime} repth to Static Water Level (ft.) 2^{\prime} 7^{\prime} 7^{\prime} 7^{\prime} repth to Static Water Level (ft.) 2^{\prime} 7^{\prime} </td <td>ELL/PIEZ</td> <td>OMETER DAT</td> <td>A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>14.1</td>	ELL/PIEZ	OMETER DAT	A								14.1
easuring Point Description $\boxed{7ac}$ wst sde Geology at Screen Interval (if known) epth to Top of Screen (ft.) $\frac{45}{5}$ Time of Water Level Measurement stal Well Depth (ft.) 53.90 Calculate Purge Volume (gal.) epth to Static Water Level (ft.) $a7.77$ Disposal Method $rg.97: Brev Hold rg.97: Brev Hold rg.97: Brev Hold right Well Development Sde efficien Hold Disposal Method rg.97: Brev Hold rg.97: Brev Hold Method rg.97: Brev Hold Purge Emethod Brevelopment Date of Original Development EVELOPMENT METHOD Purge Mark Model Serial Number rg.97: S^{-2}: 3:47: 7:73: 5: PO 73:3: 2: 93: 7: 4: 5: PO 73:3: 2: 93: 7: 4: 5: PO rime Removed (gal) T^*(C/F) pH (umbos) Turbidity (NTUs) D0rg/ Color Oder 5Ph/ Time Removed (gal) T^*(C/F) pH Spec. Cond Model Serial Number f:5:70: 172: 5: 2: 3: 4: 7: 7: 3: 5: PO 73: 3: 2: 93: 7: 7: 9: 5: PO 73: 3: 4: 7: 7: 7: 5: PO 73: 4: 7: 7: 7: 5: PO 73: 4: 7: 7: 7: 7: 5: PO 73: 4: 7: 7: 7$	ell 🗹		Piezomete	r 🗌		Diameter 4	"		Materia	I	210
pipt to Top of Screen (it.) $\frac{45}{5}$ pipt to Bottom of Screen (it.) $\frac{55}{5}$ tal Well Depth (it.) 53.90 calculate Purge Volume (gal.) pipt to Static Water Level (it.) 27.77 Disposal Method	easuring P	oint Descriptio	n	Toc	West so	1 - C C C C C C C C	Geology		terval		
tal Well Depth (ft.) 53.90 Calculate Purge Volume (gal.) pth to Static Water Level (ft.) 27.77 Disposal Method 13.972 27.777 Disposal Method 13.972 27.777 Disposal Method 13.972 27.777 Disposal Method 13.975 8.912 9.017 13.972 8.912 9.0172 13.972 8.912 9.0172 13.972 8.912 9.0172 13.972 9.0172 9.0172 13.972 13.972 9.0172 11.1572 11.792 11.792 11.1572 11.972 11.972 11.1572 11.792 11.792 11.792 11.1572 11.792 11.792 11.792 11.792 11.172 11.792 11.792 11.792 11.792 11.792 11.172 11.792 11.792 11.792 11.792 11.792 11.172 11.792 11.792 11.792 11.792 11.792 $11.11.$	pth to Top	o of Screen (ft.)		45		(if known)	-			
pth to Static Water Level (ft.) 27.77 Disposal Method $19.917 \pm well + 9.17$ Wellhead PID/FID $2.05 \pm 8.4 \pm 6.42$ Wellhead PID/FID PURGE METHOD $Beil / 5xxyz / Pa.$ EVELOPMENT METHOD add Testing Equipment Used: Hor iba $A-50$ $S76/3$ eld Testing Calibration Documentation Found in Field Notebook # Page # Time Removed (gal) T* (C/F) pH (umhos) Turbidity (NTUs) DO*X Color Odor 5P/M (umhos) Turbidity (NTUs) DO*X Color Odor 5P/M $1/45 \pm 56 = 23.52 + 7.43 \pm 5.93 = 987 \pm 6.24 \pm 7a*$ $Mac = 2.5 \pm 7.70 \pm 23.54 + 7.74 \pm 5.96 = 7.13 \pm 2.75^{-} 1.149 + 7.149 \pm $	pth to Bot	tom of Screen	(ft.)	5	-5		Time of W	Vater Level I	Measurem	nent	12:10
IS 97 to well guil The set of t	tal Well D	epth (ft.)		5.	3.90		Calculate	Purge Volu	me (gal.)		26=1
Instruction Redevelopment Date of Original Development 6.26-17 EVELOPMENT METHOD PURGE METHOD PURGE METHOD Bail / Sarge / Particle eld Testing Equipment Used: Make Model Serial Number Hor iba A-50 S74/3 eld Testing Calibration Documentation Found in Field Notebook # Page # Time Removed (gal) 1° (C/F) PH General Serial Number 1/1/5 53 23.52 7.43 5.93 98.7 16.21 Tarr Mace 2.5 1/1/5 53 23.52 7.43 5.90 71.3 2.98 Volume Volume Nace 2.5 1/1/5 53 23.57 7.33 5.90 71.3 2.98 Volume / A Mace 2.5 1/1/5 53 23.47 7.95 5.90 71.3 2.98 Volume / A Mace 2.5 1/2 /5 53 7.91 5.92 7.77 4.25 8.11 7.89 8.2 7.57 1/2 /5 7.12 5.97 7.12 5.97 7.14 2.5 8.11 7	pth to Sta	tic Water Leve	el (ft.)	2	7. 77		Disposal I	Method			
Instruction Redevelopment Date of Original Development 6.26-17 EVELOPMENT METHOD PURGE METHOD PURGE METHOD Bail / Sarge / Particle eld Testing Equipment Used: Make Model Serial Number Hor iba A-50 S74/3 eld Testing Calibration Documentation Found in Field Notebook # Page # Time Removed (gal) 1° (C/F) PH General Serial Number 1/1/5 53 23.52 7.43 5.93 98.7 16.21 Tarr Mace 2.5 1/1/5 53 23.52 7.43 5.90 71.3 2.98 Volume Volume Nace 2.5 1/1/5 53 23.57 7.33 5.90 71.3 2.98 Volume / A Mace 2.5 1/1/5 53 23.47 7.95 5.90 71.3 2.98 Volume / A Mace 2.5 1/2 /5 53 7.91 5.92 7.77 4.25 8.11 7.89 8.2 7.57 1/2 /5 7.12 5.97 7.12 5.97 7.14 2.5 8.11 7					1	8.97 = well gull	Wellhead	PID/FID			-
PURGE METHOD Buil / Savgz / Pa Page # Time Removed (gal) T° (C/F) pH (umbos) Turbidity (NTUs) D0°2 (Color Odor Other Other Vac 2:5 gam Color 0 23.50 7.9 S. P3 2.987 Use 2.5 Savga 2.5 Savga 2.5 Savga 2.7 Savga 2.7 Savga 2.7 Savga 2.5	iginal We	II Development	t 🖾		A		- G	riginal Deve	lopment	6-26-18	
Alternation Point Used: Make Model Serial Number	VELOP	NENT METHO									mp
Horibe M-50 \$76/3 eld Testing Calibration Documentation Found in Field Notebook # Page # Time Removed (gal) T° (C/F) pH (umhos) Turbidity (NTUs) D0ry/ Color Odor Other 1/1/5 50 23,52,77,73 5.9 98,7 16.21 Terr Marc 2.5 3.9 (S1/0 97,5 23,47 7.4/5 5.9 07/3 2.98 Vrsylyt R. Nacc 2.5 3.9 (S1/0 1/2.5 23.47 7.4/5 5.9 07/3 2.98 Vrsylyt R. Nacc 2.5 (S1/0 1/2.5 23.47 7.4/2 5.7 4.25 5.41 Taw Nacc 2.5 S145 1/2.0 23.50 7.42 5.7 4.25 5.41 Taw Nacc 2.5 5:45 1/2.0 23.50 7.42 5.7 4.25 5.41 Taw Nacc 2.5 5:45 1/2.0 23.50 7.49 5.8 4/2.5 1.51 Nacc 2.5 5.7 5:45 1/2.7 2/3.51 7.50 5.8 2.9				-	1.1	- Make				•	
Time Volume Spec. Cond Turbidity (NTUs) D0%/L Color Odor SPM 1145 5% 23,52 7,43 5-83 987 6.21 Tan Marc 2.5 57.5 23,72 7,43 5-83 987 6.21 Tan Marc 2.5 57.5 23,47 7,45 5.90 713 2.88 VryLehTa Nacc 2.5 57.9 12.0 23,50 7,42 5.77 4.25 6.41 Tan Nacc 2.5 57.5 120 23,50 7,42 5.77 4.25 6.41 Tan Nacc 2.5 57.5 132.5 23.412 7,48 5.97 4.25 1.57 YrcyLitter Nacc 2.5 57.5 132.5 23.37 7.49 5.82 4.25 1.57 Marc 2.5 57.5 157.5 23.37 7.50 5.82 3.46 1.32 1.47 Nacc 2.5 57.5 170 23.36 75.7 5.83	ciu restin	g cquipment o	Jocu.					ouci			<u>.</u>
$y_1:4/5$ 50 $23,52$ $7,43$ $5-83$ 987 6.21 Tar North 2.5 570 97.5 23.47 7.45 5.80 713 2.88 Very left B. North 2.5 4570 12.5 23.47 7.45 5.80 713 2.88 Very left B. North 2.5 4570 12.5 23.47 7.47 5.83 2.75^{-1} 1.49 Class 1.49 Class 1.49 North 2.5 4575 120 23.50 742 5.77 425 1.51 Very left More 2.5 575^{-5} 132.5 23.42 7.48 5.80 425^{-1} 1.51 Very left More 2.5 575^{-5} 132.5 7.48 5.87 3.18 1.51 Very left More 2.5 $16:0^{-7}$ 127.5 23.37 7.49 5.81 3.38 1.35 1.47 $Nacc$ 2.5 1.47 $Nacc$ 2.5 1.47 $Nacc$	Time		T° (C/F)	DH			DOmy	Color	Odor	5PM Other	ORP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		50	23.52	7.93	5.83	987	6.21	Tar	None	2.5 5pm	115 2
Pamp burn $out - Had$ to restarc 5:45 120 23.50 7.42 5.77 2.5 $b.411$ Tam Now: 2.5 5:50 132.5 23.42 7.48 5.80 4255 1.51 Very 12 Brown March 2.5 5:55 145 23.37 7.48 5.97 3.38 1.38 $1.407m$ Now: 2.5 6.57 157.5 23.37 7.49 5.81 3.38 1.35 $1.417m$ Now: 2.5 6.57 157.5 23.37 7.50 5.82 3.46 1.32 1.7 Now: 2.5 $41/0$ 182.5 23.37 7.50 5.83 2.99 1.32 1.7 Now: 2.5 61.155 1.90 23.36 751 5.83 2.79 1.32 1.7 Now: 2.5 1.57 61.155 1.90 23.36 751 5.83 2.79 1.32 1.7 Now: 2.5 <td< td=""><td>5100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-FI)</td><td>149</td></td<>	5100									-FI)	149
5: 45 120 $23 \le 0$ 7.42 5.77 6.25 6.11 7_{an} N_{onc} 2.5 $5:50$ 132.5 23.42 7.46 5.80 425 1.51 V_{rey}/dBm N_{onc} 2.5 $5:50$ 132.5 23.37 7.48 5.81 338 1.35 M_{onc} 2.5 $5:50$ 157.5 23.37 7.49 5.81 338 1.35 M_{onc} 2.5 $6:50$ 157.5 23.37 7.49 5.81 338 1.35 M_{onc} 2.5 $6:50$ 170 23.36 750 5.82 346 1.52 1.77 M_{onc} 2.5 $4:/0$ 182.5 23.37 7.50 5.83 2.97 1.32 1.77 M_{onc} 2.5 $6:155$ 140 23.36 757 5.33 2.79 1.32 1.77 M_{onc} 2.5 $6:155$ 1490 23.36 757 5.33 2.79 1.3	3.70	112.5						CIPOV	Noc	2.5	121 -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.45	120						Tim	None	2.5	136
5:55 - 145 23.37 7.48 5.81 3.38 1.38 $1.4477m$ Nmc 2.5 $6:50$ 157.5 23.37 7.49 5.81 338 1.35 $1.4477m$ Nmc 2.5 $4:70$ 127.5 23.36 7.50 5.82 346 1.52 1.57 Nmc 2.5 $4:70$ 182.5 23.37 7.50 5.82 2.97 1.33 1.7 Nmc 2.5 $4:70$ 182.5 23.37 7.50 5.83 2.97 1.33 1.7 Nmc 2.5 1.57 $5:15$ 1.92 23.36 757 5.83 2.79 1.32 1.7 Nmc 2.5 $5:435$ $PAmp$ $Pamp$ $CEPTANCE CRITERIA (from workplan)$ 1.92 98 1.32 1.7 Nmc 2.5 1.4	550				5-8 D	425					131
6:00 157.5 23.37 7.49 $5.8/$ 338 1.35 $1/4hT$ Tm Nm 2.5 $6:03$ 170 23.36 7.50 5.82 346 1.32 1.7 Nm 2.5 $4:/0$ 182.5 23.37 7.50 5.83 2.98 1.33 1.7 Nmc 2.5 $5:15$ 190 23.36 $75/$ 5.83 2.98 1.32 1.7 Nmc 2.5 $6:15$ 190 23.36 $75/$ 5.83 2.98 1.32 1.7 Nmc 2.5 $6:15$ 190 23.36 $75/$ 5.83 2.79 1.32 1.7 Nmc 2.5 54015 $P4m25$ Yes No N/A Has required volume been removed X Q			23.38	7.48			1.38			2.5	127 2
3153 170 23.36 7.50 5.82 346 1.32 1.77 Nonc 2.5 $41/0$ 182.5 23.37 7.50 5.83 2.98 1.33 1.7 Nonc 2.5 61.15 190 23.36 751 5.83 2.98 1.32 1.7 Nonc 2.5 61.15 190 23.36 751 5.83 2.79 1.32 1.7 Nonc 2.5 61.15 190 23.36 751 5.83 2.79 1.32 1.7 Nonc 2.5 5400 $P4mp$ $P4mp$ Nmc 2.5 192 $gallons$ Has required volume been removed Mmc 2.5 6100 $P4mp$ $NTUs$ Has required turbidity been reached \square <th< td=""><td></td><td></td><td>23.37</td><td>7.49</td><td></td><td></td><td></td><td></td><td></td><td></td><td>121</td></th<>			23.37	7.49							121
6:15 190 23.36 751 5-83 2.79 1.32 1111 None 2.5 6:15 190 23.36 751 5-83 2.79 1.32 1111 None 2.5 1 6:15 190 23.36 751 5-83 2.79 1.32 1111 None 2.5 1 6:15 PAmpb Yes No N/A Yes No N/A 6:15 PAmpb 192 gallons Has required volume been removed Yes No N/A Iaximum Turbidity Allowed NTUs Has required turbidity been reached Image:			23.36	7.50				1. 11	None	2.5	119
6:15 190 23.36 751 5-83 2.79 1.32 111 More 2:5 111 Staps PAmps Yes No N/A CCEPTANCE CRITERIA (from workplan) 192 gallons Has required volume been removed Yes No N/A Iaximum Turbidity AllowedNTUs NTUs Has required turbidity been reached IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		182.5							Noc	2.5	A second second second
Stop PAMP Yes No N/A CCEPTANCE CRITERIA (from workplan) 192 gallons Has required volume been removed Image: Classical content of parameters 10% Yes No N/A aximum Turbidity AllowedNTUs NTUs Has required turbidity been reached Image: Classical content of parameters 10% Interest 10% Image: Classical content of parameters 10% Itemp 1 degree Classical content of parameters 10% Image: Classical content of parameters 10% Image: Classical content of parameters 10% Image: Classical content of parameters 10% Itemp 1 degree Classical content of parameters 10% Image: Classical content of parameters 10% Image: Classical content of parameters 10% Image: Classical content of parameters 10% Itemp 1 degree Classical content of parameters 10% Image: Classical content of parameters 10% Image: Classical content of parameters 10% Image: Classical content of parameters 10% Itemp 1 degree Classical content of para			23.36	751	5.83	279	1.32	1. 17	None	2:5	117 27
there is sufficient recharge but not over 4 hrs	lin. Purge Iaximum T tabilization H +-0.1	Volume (7-10 b urbidity Allowed of parameters	orehole vo d NT	lumes)	192 gallons	Has required turb Have parameters	idity been n stabilized	eached	Yes		÷
there is sufficient recharge but not over 4 hrs											
	there is su	fficient recharg	e but not ov	ver 4 hrs	1	m			-	A	
é.				(sn/			Date:	6-	26-18	
	and a state										
100 1-7 interes in cul		100 1	-71.	res	in the	c.l					
182 SAIL = 7 volumes 65 refusal 45:55		182 51	- / Volue		65	retusel	45-	55			

Scanned by CamScanner

NERT 4.9351	6-26-18
11:00 Set up on well	
11:20 Lunch	
12:10 DTW= 27.77 TD 53-90 - soft Bottom	
12:20 Use Barker on well- Bottom of Well has much	mad - fine grained
some fine grained sand also	
13:08-25 gallons remared with backer. Still a little	bit of sand
still comiting from bottom of well	
13:10 stort to surge well so min	
13:45 Finish surge 28.25 DTW 54.55 TD	
13:50 Bail move water post-surger 25 gallons	
14:30 Set pamp in well	
14:45 Start pamp	
15:12 Pump stops working is replaced.	
15:415 re-start pamping	
15.15 over 7 volumes of well & bore Hoke me	
190 sull. total pumping is stopped. Chem	p site.
16:20 ATW= 27.76 TD=54.55 Final	

Well/Piez.	D:	1151
NER	15.	1131

AECOM

Well/Piezometer Development Record

Client:	NDEP		-		on:		r: <u>C</u> r	sculu			_
Project No	6047736	5-2016-170) Date:	6-27-1	<u>Y</u>	Develope	r				
	ZOMETER DA		_		Diameter4	, //		Material			
Well 🖄		Piezomete	_	hests		Geology a	at Screen Ir	terval			_
	Point Descripti			35	102	(if known)					_
	op of Screen (ft			45	-	Time of W	ater Level	Measureme	ent	7:10	
	Bottom of Screen	n (ft.)		4.80	-		Purge Volu			159 5	ell.
	Depth (ft.)					Disposal N					-
Depth to S	static Water Lev	el (ft.)	2	0.77	-	Wellhead					_
					nent 🗌			lopment	6-27-18		
Original W	ell Developmen	t 🛛		Redevelopm	nent		ETHOD	Bail	/ Pomp	1.5 "	_
DEVELOF	MENT METHO	D		mp	-		odel				
Field Test	ing Equipment L	Jsed:		Ha	Make r/bn		50	5	al Number 16/3	C.	
Field Testi	ng Calibration D)ocumentati	ion Foun	d in Field Not	ebook #	P	age #		зрт		отw
	Volume	TR (0/E)	pН	Spec. Cond (umhos)	Turbidity (NTUs)	DO	Color	Odor	Other	ORP -4	20.91
Time 9:20	Removed (gal)	22.48	7.41	5.83	963	0.90	Ton Ger	None	2.5	-13	
9130	37.5	22.47	747	5.82 5.81	459	0.45	Clar	Noc	25	-13 -10	20 88
7:45	82.5		7.48	5.80	333	0.32	ela	Non	2.5	-5	
7:50	112.5	21.44	7.48	5.12	229	0.30	Char Clan	Nme	2.5	-2	
10:10	137.5	22.45	7.49	5.80	215	0.21	clar	Mm	2.5	-/ z	0-88
10:20	162.5	22.15	7.99	5.91	202	0-20					
Min. Purge Maximum T Stabilization pH +-0.1	NCE CRITERIA Volume (7-10 be Turbidity Allowed to of parameters		mes)_		Has required volu Has required turbi Have parameters If no or N/A exp	dity been re stabilized	moved eached	Yes M M			_
temp 1 degr all others 10				-							-
	fficient recharge	but not ove	er 4 hrs ,	Son ;	m		Date:	6-2	7-18		_

NERT 5.1151 Well Development

6:00 Arme onsite 0:15 Has Mueting 6:30 Set up on well 511.51 7:00 Initial DTW=20.77 TD=44.80 7:20 start to bail water & sediment from bottom of well. Small amount of fine send from bittom of well 10 gallons removed from well with Bailer, 7:35 Stort to sage well 30 min. 8:10 Bail sediment from bottom of well 20 gallons removed. P:45 Set pumps in well 10" from BTM, 9:15 start Pamp @2.5 gpm quad deps ociol

6-27-18

10:35 Final DTW= 20.80 TD= 45.05

Well/Pie NE(Z.ID:	5.	ч	951
1.1-1	-	_	_	

AECOM	Well/Piezometer Devel	opment Record	5.77
Client: NDEP Project No: 60477365-2016-170	Site Location: LV Date: $\frac{2}{27-18}$	Developer. Cascada	
WELL/PIEZOMETER DATA	er Diameter	Material	
Well A Piezomete Measuring Point Description	TOC South side	Geology at Screen Interval	
Depth to Top of Screen (ft.) Depth to Bottom of Screen (ft.)	40	Time of Water Level Measurement	/2:00
Total Well Depth (fL)	<u> </u>	Calculate Purge Volume (gal.)	110
Depth to Static Water Level (ft.)		Disposal Method	
Original Well Development	Redevelopment	Date of Original Development 6-27-18	
DEVELOPMENT METHOD Field Testing Equipment Used:	Bril/Suge/Prmp Make	PURGE METHOD Pump Model Serial Number	
Frend resulty Equipment Used.	Hariba	M-50 596/3	_

Field Testing Calibration Documentation Found in Field Notebook #

Page #

13:35				A A I					())))	1	(
	Volume	-	-11	Spec. Cond	Turbidity (NTUs)	DO	Color	Odor	50m Other	OR	P DTW
Time	Removed (gal)		pH	(umhos)	Ha I	1.45	Clear	None	2.5	81	
12:40	12.5	22.64	7.61	2.36	421					64	26.80
13:50	37.5	22.41	7.64	2-37	92.5	0.10	Clear	Nne	2.5		2011
14:00	62.5	22.35	7.65		31.7	0.00	Clear	None	2.5	58	
14:05	75	22.30	7.67	2.37	15.6	8.00	clear	None	25	56	26.80
14:10		22.30	7.17	2.37	7.3	0.00	Gler	Non	2.5	1	
14.15	100	22.31	7.68	2.37	3-2	0.00	clear	hom	2.5		2680
14:20	1125	22.30	7.68	2-37	1.4	0.80	chen	Nne	2.5		
11.											
							~				
										1	
										-	

ACCEPTANCE CRITERIA (from workplan)

Min. Purge Volume (7-10 borehole volumes) // 6 gallons Has required volume been removed Has required turbidity been reached _NTUs Maximum Turbidity Allowed _ Stabilization of parameters 10% pH +-0.1

Have para	ameters	stabilized
If no or	N/A exp	blain below.

AD M M M M	2000	

all others 10%			
if there is sufficient recharge but not over 4 hrs	M	Date:	6-

-27-18

temp 1 degree C

6-27-18 22 Wesh NERT 5.4951 11:45 Set op on well 5.4951 12:30 DTW = 26.79 TD = 39.99 12:03 Bail sedment from Latton of well 13 Schara renoved FI 12:30 TD = 40.10 12:35 Surge well 30 minetors 40.05 TD 13:05 Bail sedment from bottom of Well 10 Schlong renoved 40.10 TD 13:25 Set primp in well 1' from BTM Start @ 13:35 14:20 Primp stopped 14:20 Primp stopped 14:20 Primp Stopped

AECOM

Well/Piez. ID: NERT 5-9151

Well/Piezometer Development Record

Client:	NDEP		_	Site Locatio	n:	Wash							
Project No	o: <u>604773</u>	65-2016-17	Date:	6-28-18	7	Develope	r:	scadt					
			_		_								
WELL/PIE	EZOMETER DA	TA				11							
Well	ĺ	Piezomete	er 🔲		Diameter			Material					
Measuring	Point Descript	ion	TOO	EAST			t Screen Int	terval					
Depth to T	op of Screen (f	t.)		40	-	(if known)							
Depth to B	Bottom of Scree	n (ft.)		50	-	Time of W	ater Level N	Measureme	ent	6:42)		
Total Well	Depth (ft.)		4	6,25	Initia/	Calculate	Purge Volur	216					
Depth to S	Static Water Lev			13.35		Disposal M							
Depth to 5	datic water Lev	ei (it.)		2	R. 8 will val								
				7	7.05 Bur Hole,								
Original W	ell Developmen	nt 🗹		Redevelopm	ent	Date of Or	iginal Devel	lopment	6-28-18				
DEVELOP	MENT METHO	D	Bai	1/ Surge	(Pmp	PURGE M	ETHOD		Pamp 1.5*				
Field Testi	ng Equipment L	Jsed:			Make		odel	Seria	al Number				
				μ	oriba	4-5	0	59	613				
			-							,			
Field Testi	ng Calibration L	locumentati		a in Field Note	ebook #	P	age #						
8:12	Values		r	Spec. Cond			r	I	7		0T) 4		
Time	Volume Removed (gal)	T° (C/F)	рН	(umhos)	Turbidity (NTUs)	DOm	Color	Odor	3 Jpm Other	ORP	DTW		
8:15	9	22.93	7.65	5.08	MAX	0.53	Tan	None	3	75			
8:21	27	22.95		5.02	MAX	0.12	Tan	Ne	3	-25	31.40		
8128	48	22.86	7.67	4.86	MAX	0.00	Light Tan	None	3	-42	35.70 36.94		
8:35	67	22.76	7.66	4.74	MAX 109	0.00	Very 13477	None	3	-40	37.55		
8:43	93	22.74	7.66	4.68	36.8	0.00	Gror Clen	None			37.65		
8:50	174	22.73	7.66	4.67	17.0	0.00	Clear	None	3		37.75		
8:58		22.74	7.66	4.66	6.8	0.00	Cler	No	3	-55			
9:06	162	22.74	7.67	4.66	3.7	2.00	Clear	None	3	-54	37.94		
9:24	216	22.73	7.66	4.67	3.6	0.00	Clerr	Non	3	-53	37.97 38-10		
1.21	210			1.2						-	51-7-		
L					MAX=>1000					1			
ACCEPTAN	ICE CRITERIA	(from work	plan)					Yes	No N/A				
Min. Purge	Volume (7-10 bo	orehole volu	mes) 🤆	216 gallons	Has required volu	me been re	emoved	Yes X X X					
	urbidity Allowed		ls		Has required turbi		eached	N N N					
	of parameters '	10%			Have parameters			K	\Box \Box				
pH +-0.1					If no or N/A exp	lain below:							
temp 1 degre				-									
all others 10	70			-									
if there is suf	ficient recharge	but not ove	r 4 hrs	/ 7									
Signature			/	sa n			Date:	6-22	8-13				

6:00 Annie onsite & mobe to well 6:20 Alt & Meeting 6:40 Set up on well DTW = 13.35 TD 46.25 6:45 Start to bail sediment from bottom of well Mostly Silt removed from bottom of well II gallons remared 50 Ft TD tagged 7:00 Start to surge well. 7:38 Bail sediment from bottom of well. 20 gal removed post BasSurge 8:00 Set primp in well 8:12 Start pump & 3 spin 9:24 Stop pump 216 sal. removed. 7 vil. well parameters stablized. 9:45 Final 15.25 DTW 50.0 TD

Scanned by CamScanner

Appendix E

Laboratory Reports of Soil Property Testing

5730 Centralcrest St. • Houston, TX 77092 Telephone (713) 316-1800 • Fax (877) 225-9953

July 11, 2018

Carmen Caceres-Schnell. Project Manager, AECOM, 1220 Avenida Acaso, Camarillo, CA 93012.

Re: PTS File No: 48147 Project Name: NDEP Downgradient Study Area Project Number: 60477365 Task 2016-170

Dear Carmen Caceres-Schnell,

Please find enclosed report for Physical Properties analyses conducted upon samples received from your **NDEP Downgradient Study Area** project. All analyses were performed by applicable ASTM, EPA, or API methodologies. The samples are currently in storage and will be retained for thirty days past the completion of testing at no charge. Please note that the samples will be disposed of at that time. You may contact me regarding storage, disposal, or return of the samples

PTS Laboratories appreciates the opportunity to be of service. If you have any questions or require additional information, please contact myself or Emeka Anazodo at (713) 316-1800.

Sincerely, PTS Laboratories, Inc.

C.A.Umeh

Chidi Umeh Flow Laboratory Supervisor

Encl.

PTS Laboratories

Project Name: Project Number: NDEP Downgradient Study Area 60477365 Task 2016-170

PTS File No: 48147 Client: AECOM

TEST PROGRAM - 20180628

	r	Core	Grain Size	GRAM - 2018062 Atterberg	o USCS Soil	Moisture		
CORE ID	Depth ft.	Recovery ft.	Analysis ASTM D422	Limits ASTM D4318	Classification ASTM D2487	Content D2216	Comments	
Date Received: 20180627		Bags	Grab	Grab	Calc.	Grab		
NERT4.51S1 15' 20180614	15	N/A	х	х	х	х	In ZipLock Bag	
NERT4.51S1 42' 20180614	42	N/A	Х	х	x	х	In ZipLock Bag	
NERT4.51S1 48' 20180614	48	N/A	Х	Х	x	х	In ZipLock Bag	
NERT4.51S1 52' 20180614	52	N/A	Х	Х	x	х	In ZipLock Bag	
NERT4.93S1 15' 20180615	15	N/A	х	х	х	х	In ZipLock Bag	
NERT4.93S1 41' 20180615	41	N/A	х	х	x	х	In ZipLock Bag	
NERT4.93S1 47' 20180615	47	N/A	х	х	х	х	In ZipLock Bag	
NERT4.93S1 48' 20180615	48	N/A	х	х	x	х	In ZipLock Bag	
NERT4.93S1 60' 20180615	60	N/A	х	х	x	х	In ZipLock Bag	
NERT5.11S1 17' 20180615	17	N/A	х	х	x	х	In ZipLock Bag	
NERT5.11S1 37' 20180615	37	N/A	х	х	х	х	In ZipLock Bag	
NERT5.11S1 40' 20180615	40	N/A	х	х	х	х	In ZipLock Bag	
NERT5.11S1 67' 20180616	67	N/A	х	х	x	х	In ZipLock Bag	
NERT5.11S1 72' 20180616	72	N/A	х	х	х	х	In ZipLock Bag	
NERT5.91S1 17' 20180617	17	N/A	х	х	х	х	In ZipLock Bag	
NERT5.91S1 40' 20180617	40	N/A	х	х	х	х	In ZipLock Bag	
NERT5.91S1 47' 20180617	47	N/A	х	х	х	х	In ZipLock Bag	
NERT5.91S1 50' 20180617	50	N/A	х	х	x	х	In ZipLock Bag	
NERT5.91S1 60' 20180617	60	N/A	х	х	х	х	In ZipLock Bag	
NERT5.91S1 87' 20180617	87	N/A	х	х	x	х	In ZipLock Bag	
NERT5.49S1 20' 20180618	20	N/A	х	х	х	х	In ZipLock Bag	
NERT5.49S1 32' 20180618	32	N/A	х	х	x	х	In ZipLock Bag	
NERT5.49S1 72' 20180618	72	N/A	х	х	х	х	In ZipLock Bag	
NERT5.49S1 89' 20180618	89	N/A	х	х	x	х	In ZipLock Bag	
NERT4.21N1 22' 20180619	22	N/A	х	х	х	х	In ZipLock Bag	
NERT4.21N1 45' 20180619	45	N/A	х	х	х	х	In ZipLock Bag	
NERT4.21N1 48' 20180619	48	N/A	х	х	x	х	In ZipLock Bag	
NERT4.21N1 62' 20180619	62	N/A	х	х	x	х	In ZipLock Bag	
NERT4.21N1 87' 20180619	87	N/A	х	х	x	х	In ZipLock Bag	
NERT4.38N1 12' 20180620	12	N/A	х	х	x	х	In ZipLock Bag	
NERT4.38N1 35' 20180620	35	N/A	х	х	x	х	In ZipLock Bag	
NERT4.38N1 45' 20180620	45	N/A	х	х	x	х	In ZipLock Bag	
NERT4.38N1 55' 20180621	55	N/A	х	х	x	х	In ZipLock Bag	
NERT4.38N1 60' 20180621	60	N/A	Х	х	х	х	In ZipLock Bag	
TOTALS:			34	34	34	34	34	

Laboratory Test Program Notes

Standard TAT for basic analysis is 10-15 business days. Grain Size Analysis: Dry Sieve method; includes tabular data, graphics and statistical sorting in Excel format. USCS Soil Classification by ASTM D2487 requires Atterberg Limits and Grain Size Analysis (included as part of Test Program).

PTS File No: Client: Report Date:

WATER (MOISTURE) CONTENT OF SOIL OR ROCK BY MASS (Methodology: ASTM D 2216)

Project Name: Project No: NDEP Downgradient Study Area 60477365 Task 2016-170

SAMPLE ID.	DEPTH, ft.	PTS ID NO	ANALYSIS DATE	ANALYSIS TIME	MATRIX	TARE WEIGHT, grams	WET SAMPLE + TARE WT., grams	DRY SAMPLE + TARE WT., grams	MOISTURE CONTENT, % dry weight
NERT4.51S1 15' 20180614	15.0	1	20180702	11:00	soil	15.45	57.44	54.63	7.2
NERT4.51S1 42' 20180614	42.0	2	20180702	11:00	soil	15.50	59.91	57.94	4.6
NERT4.51S1 48' 20180614	48.0	3	20180702	11:00	soil	15.37	75.29	73.35	3.3
NERT4.51S1 52' 20180614	52.0	4	20180702	11:00	soil	15.53	58.20	55.69	6.3
NERT4.93S1 15' 20180615	15.0	5	20180702	11:00	soil	15.36	64.60	60.03	10.2
NERT4.93S1 41' 20180615	41.0	6	20180702	11:00	soil	15.43	78.36	66.28	23.8
NERT4.93S1 47' 20180615	47.0	7	20180702	11:00	soil	15.43	76.52	71.61	8.7
NERT4.93S1 48' 20180615	48.0	8	20180702	11:00	soil	15.56	71.19	64.63	13.4
NERT4.93S1 60' 20180615	60.0	9	20180702	11:00	soil	15.28	72.83	61.33	25.0
NERT5.11S1 17' 20180615	17.0	10	20180702	11:00	soil	15.60	60.86	57.98	6.8
NERT5.11S1 37' 20180615	37.0	11	20180702	11:00	soil	15.42	65.21	63.14	4.3
NERT5.11S1 40' 20180615	40.0	12	20180702	11:00	soil	15.49	60.68	55.28	13.6
NERT5.11S1 67' 20180616	67.0	13	20180702	11:00	soil	15.45	60.99	43.44	62.7
NERT5.11S1 72' 20180616	72.0	14	20180702	11:00	soil	15.36	61.48	48.96	37.3
NERT5.91S1 17' 20180617	17.0	15	20180702	11:00	soil	15.39	61.64	52.91	23.3
NERT5.91S1 40' 20180617	40.0	16	20180702	11:00	soil	15.42	64.68	52.43	33.1
NERT5.91S1 47' 20180617	47.0	17	20180702	11:00	soil	15.47	61.29	52.36	24.2
NERT5.91S1 50' 20180617	50.0	18	20180702	11:00	soil	15.49	69.24	61.09	17.9

PTS File No: Client: Report Date:

WATER (MOISTURE) CONTENT OF SOIL OR ROCK BY MASS (Methodology: ASTM D 2216)

Project Name: Project No: NDEP Downgradient Study Area 60477365 Task 2016-170

DEPTH, ft.	PTS ID NO	ANALYSIS DATE	ANALYSIS TIME	MATRIX	TARE WEIGHT, grams	WET SAMPLE + TARE WT., grams	DRY SAMPLE + TARE WT., grams	MOISTURE CONTENT, % dry weight
					g	<u>j</u>	<u>g</u>	, e j
60.0	19	20180702	11:00	soil	15.37	62.30	50.64	33.1
87.0	20	20180702	11:00	soil	15.49	59.23	40.44	75.3
20.0	21	20180702	11:00	soil	15.63	73.76	69.95	7.0
32.0	22	20180702	11:00	soil	15.44	68.84	62.26	14.1
72.0	23	20180702	11:00	soil	15.53	74.91	50.30	70.8
89.0	24	20180702	11:00	soil	15.46	64.38	49.98	41.7
22.0	25	20180702	11:00	soil	15.49	72.29	63.18	19.1
45.0	26	20180702	11:00	soil	15.53	76.42	69.04	13.8
48.0	27	20180702	11:00	soil	15.49	72.44	68.39	7.7
62.0	28	20180702	11:00	soil	15.55	58.96	53.91	13.2
87.0	29	20180702	11:00	soil	15.58	87.20	78.65	13.6
12.0	30	20180702	11:00	soil	60.49	153.92	150.59	3.7
35.0	31	20180702	11:00	soil	60.45	137.66	127.41	15.3
45.0	32	20180702	11:00	soil	60.09	145.97	138.49	9.5
55.0	33	20180702	11:00	soil	60.61	159.67	149.92	10.9
60.0	34	20180702	11:00	soil	60.86	123.50	113.25	19.6
	ft. 60.0 87.0 20.0 32.0 72.0 89.0 22.0 45.0 48.0 62.0 87.0 12.0 35.0 45.0 55.0	no 60.0 19 87.0 20 20.0 21 32.0 22 72.0 23 89.0 24 22.0 25 45.0 26 48.0 27 62.0 28 87.0 29 12.0 30 35.0 31 45.0 32 55.0 33	ft. NO DATE 60.0 19 20180702 87.0 20 20180702 20.0 21 20180702 32.0 22 20180702 72.0 23 20180702 89.0 24 20180702 45.0 25 20180702 45.0 26 20180702 48.0 27 20180702 62.0 28 20180702 87.0 29 20180702 12.0 30 20180702 45.0 21 20180702 55.0 33 20180702	ft. NO DATE TIME 60.0 19 20180702 11:00 87.0 20 20180702 11:00 20.0 21 20180702 11:00 32.0 22 20180702 11:00 72.0 23 20180702 11:00 89.0 24 20180702 11:00 22.0 25 20180702 11:00 45.0 26 20180702 11:00 48.0 27 20180702 11:00 62.0 28 20180702 11:00 62.0 28 20180702 11:00 87.0 29 20180702 11:00 12.0 30 20180702 11:00 35.0 31 20180702 11:00 45.0 32 20180702 11:00 55.0 33 20180702 11:00	t. NO DATE TIME 60.0 19 20180702 11:00 soil 87.0 20 20180702 11:00 soil 20.0 21 20180702 11:00 soil 32.0 22 20180702 11:00 soil 72.0 23 20180702 11:00 soil 89.0 24 20180702 11:00 soil 48.0 25 20180702 11:00 soil 48.0 27 20180702 11:00 soil 62.0 28 20180702 11:00 soil 87.0 29 20180702 11:00 soil 87.0 29 20180702 11:00 soil 12.0 30 20180702 11:00 soil 35.0 31 20180702 11:00 soil 45.0 32 20180702 11:00 soil 55.0 33 20180702 11:0	DEPTH, t. PTS ID NO ANALYSIS DATE MATRIX WEIGHT, grams 60.0 19 20180702 11:00 soil 15.37 87.0 20 20180702 11:00 soil 15.49 20.0 21 20180702 11:00 soil 15.63 32.0 22 20180702 11:00 soil 15.44 72.0 23 20180702 11:00 soil 15.43 89.0 24 20180702 11:00 soil 15.46 22.0 25 20180702 11:00 soil 15.49 45.0 26 20180702 11:00 soil 15.49 45.0 26 20180702 11:00 soil 15.53 87.0 29 20180702 11:00 soil 15.58 87.0 29 20180702 11:00 soil 60.49 35.0 31 20180702 11:00 soil 60.49 35.0	DEPTH, t. PTS ID NO ANALYSIS DATE ANALYSIS TIME MATRIX WEIGHT, grams + TARE WT, grams 60.0 19 20180702 11:00 soil 15.37 62.30 87.0 20 20180702 11:00 soil 15.49 59.23 20.0 21 20180702 11:00 soil 15.63 73.76 32.0 22 20180702 11:00 soil 15.44 68.84 72.0 23 20180702 11:00 soil 15.45 74.91 89.0 24 20180702 11:00 soil 15.46 64.38 22.0 25 20180702 11:00 soil 15.49 72.29 45.0 26 20180702 11:00 soil 15.49 72.44 62.0 28 20180702 11:00 soil 15.55 58.96 87.0 29 20180702 11:00 soil 15.58 87.20 12.0 <	DEPTH, t. PTS ID NO ANALYSIS DATE ANALYSIS TIME MATRIX WEIGHT, grams +TARE WT, grams 87.0 20 20180702 11:00 soil 15.43 64.38 49.98 22.0 25 20180702 11:00 soil 15.46 64.38 49.98 22.0 25 20180702 11:00 soil 15.49 72.29 63.18 45.0 26 20180702 11:00 soil 15.49 72.44 68.39 62.0 28 20180702 11:00 soil 15.58 87.20 78.65 12.

 PTS File No:
 48147

 Client:
 AECOM

 Report Date:
 07/11/18

ATTERBERG LIMITS DATA - FINE FRACTION < No. 40 SIEVE

Project Name:NDEP Downgradient Study AreaProject No:60477365 Task 2016-170

	. <u></u>		METHODS:	A-	ASTM D4318	(4)	ASTM D4318	ASTM D2487	USDA
SAMPLE ID.	DEPTH, ft.	PTS ID NO	ANALYSIS DATE	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	USCS / PLASTICITY CHART SYMBOL (Fines: <#40 Sieve)	USCS CLASSIFICATION, Group Symbol - Name	USDA SOIL TEXTURE SCHEME (2)
NERT4.51S1 15' 20180614	15	1	20180629	30.3	19.6	10.7	CL	CL - Lean Clay with sand	-
NERT4.51S1 42' 20180614	42	2	20180629	21.9	NON P	LASTIC	NP	GP - Poorly Graded gravel with sand	-
NERT4.51S1 48' 20180614	48	3	20180629	21.0	NON P	LASTIC	NP	GP - Poorly Graded gravel with sand	-
NERT4.51S1 52' 20180614	52	4	20180629	53.5	17.0	36.5	СН	CH - Gravely Fat Clay with Sand	-
NERT4.93S1 15' 20180615	15	5	20180629	21.6	19.2	2.4	ML	ML - Sandy silt	-
NERT4.93S1 41' 20180615	41	6	20180629	31.6	16.6	15.0	CL	CL - Sandy Lean Clay	-
NERT4.93S1 47' 20180615	47	7	20180629	20.1	NON P	LASTIC	NP	GP - Poorly graded Gravel with sand	-
NERT4.93S1 48' 20180615	48	8	20180629	21.2	14.9	6.3	CL-ML	CL-ML - Sandy Silty Clay with Gravel	-
NERT4.93S1 60' 20180615	60	9	20180629	30.9	16.5	14.4	CL	CL-Sandy Lean Clay	-
NERT5.11S1 17' 20180615	17	10	20180629	33.9	16.8	17.1	SP	SP - Poorly graded sand with Gravel	-
NERT5.11S1 37' 20180615	37	11	20180629	27.3	16.8	10.5	CL	CL - Lean Clay with Sand	-
NERT5.11S1 40' 20180615	40	12	20180629	20.5	NON P	LASTIC	NP	ML - Sandy Silt	-
NERT5.11S1 67' 20180616	67	13	20180629	85.5	29.7	55.8	СН	CH - Sandy Fat Clay	-
NERT5.11S1 72' 20180616	72	14	20180629	107.2	30.6	76.6	СН	CH - Sandy Fat Clay	-
NERT5.91S1 17' 20180617	17	15	20180629	31.2	17.1	14.1	CL	CL - Sandy Lean Clay	-
NERT5.91S1 40' 20180617	40	16	20180629	42.0	18.0	24.0	CL	CL - Sandy Lean Clay	-
NERT5.91S1 47' 20180617	47	17	20180702	31.9	11.8	20.1	CL	CL - Lean Clay with Sand	-

PTS File No:48147Client:AECOMReport Date:07/11/18

ATTERBERG LIMITS DATA - FINE FRACTION < No. 40 SIEVE

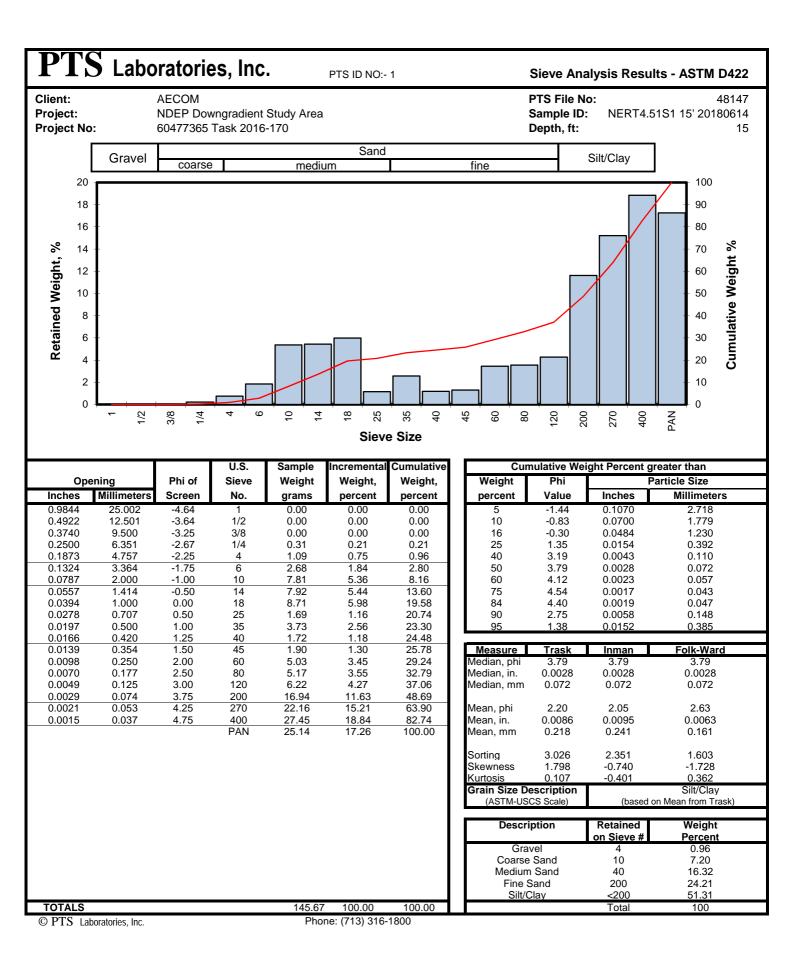
Project Name:NDEP Downgradient Study AreaProject No:60477365 Task 2016-170

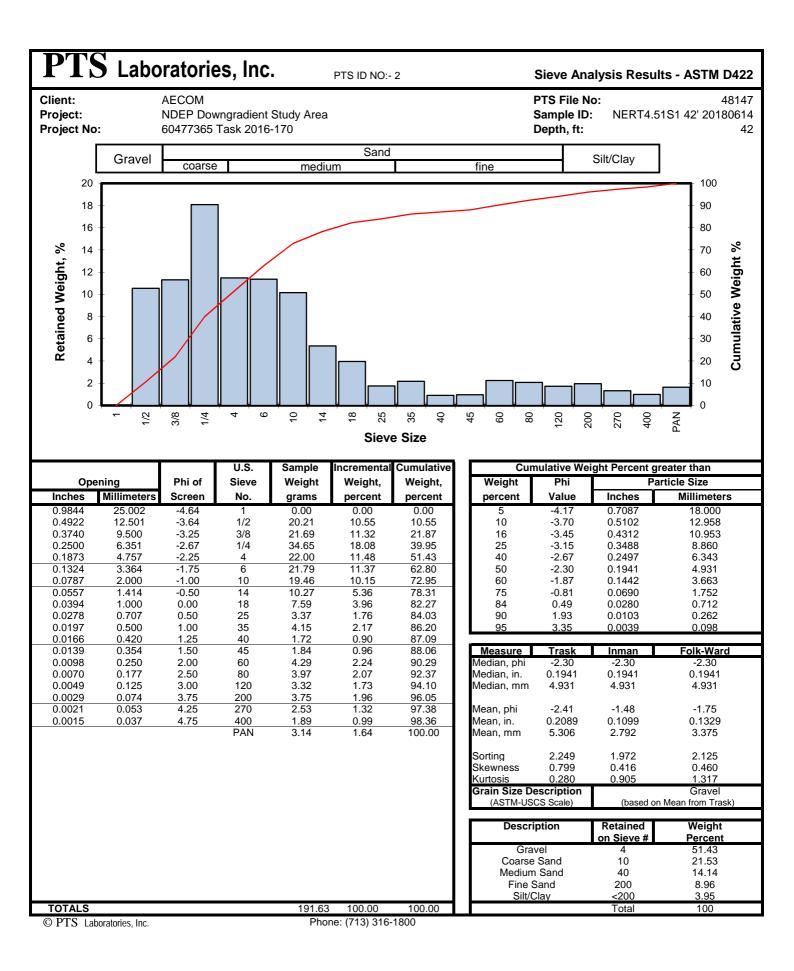
	•		METHODS:		ASTM D4318		ASTM D4318	ASTM D2487	USDA
SAMPLE ID.	DEPTH, ft.	PTS ID NO	ANALYSIS DATE	LIQUID LIMIT	TTERBERG LIMITS PLASTIC LIMIT	(1) PLASTICITY INDEX	USCS / PLASTICITY CHART SYMBOL (Fines: <#40 Sieve)	USCS CLASSIFICATION, Group Symbol - Name	USDA SOIL TEXTURE SCHEME (2)
					·		(
NERT5.91S1 50' 20180617	50	18	20180702	32.1	11.8	20.3	CL	CL - Sandy Lean Clay with Gravel	-
NERT5.91S1 60' 20180617	60	19	20180702	85.4	29.7	55.7	СН	CH - Fat Clay with Sand	-
NERT5.91S1 87' 20180617	87	20	20180702	147.7	40.0	107.7	СН	CH - Fat Clay with Sand	-
NERT5.49S1 20' 20180618	20	21	20180702	23.2	10.6	12.6	CL	CL-SC - Clayey Sand	-
NERT5.49S1 32' 20180618	32	22	20180702	20.0	NON P	LASTIC	NP	CL-ML - Silty Clay with Gravel	-
NERT5.49S1 72' 20180618	72	23	20180702	42.1	18.0	24.1	CL	CL - Sandy Lean Clay	-
NERT5.49S1 89' 20180618	89	24	20180702	42.1	16.1	26.0	CL	CL - Lean Clay with Gravel	-
NERT4.21N1 22' 20180619	22	25	20180702	31.2	16.8	14.4	CL	CL - Lean Clay with Sand	-
NERT4.21N1 45' 20180619	45	26	20180703	21.6	NON P	LASTIC	NP	CL-ML - Silty Clay with Gravel	-
NERT4.21N1 48' 20180619	48	27	20180703	17.8	NON P	LASTIC	NP	CL-ML - Silty Clay with Gravel	-
NERT4.21N1 62' 20180619	62	28	20180703	44.3	16.1	28.2	CL	CL - Lean Clay with Sand	-
NERT4.21N1 87' 20180619	87	29	20180703	44.4	14.7	29.7	CL	CL - Lean Clay with Sand	-
NERT4.38N1 12' 20180620	12	30	20180703	36.4	14.8	21.6	CL	GP-CL Poorly graded gravel with Clay	-
NERT4.38N1 35' 20180620	35	31	20180703	24.0	NON P	LASTIC	NP	ML - Sandy Silt	-
NERT4.38N1 45' 20180620	45	32	20180703	37.5	13.2	24.3	CL	CL - Sandy Lean Clay	-
NERT4.38N1 55' 20180621	55	33	20180703	68.1	16.0	52.1	СН	CH - Sandy Fat Clay	-
NERT4.38N1 60' 20180621	60	34	20180703	45.7	19.8	25.9	CL	CL - Sandy Lean Clay	-

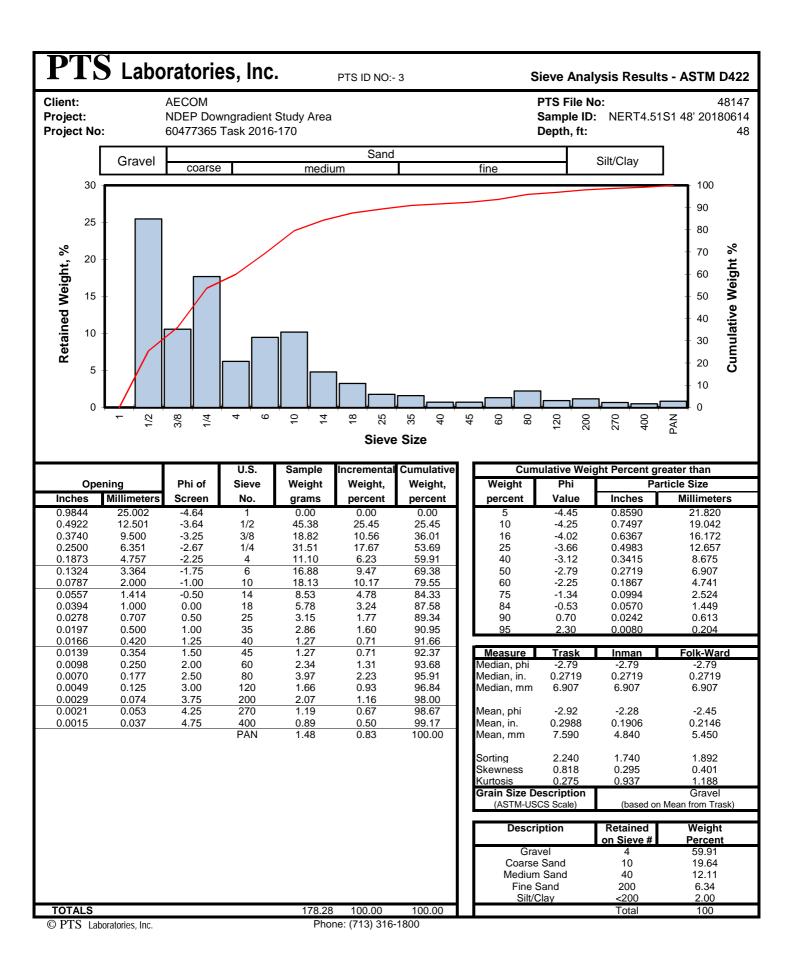
PARTICLE SIZE SUMMARY

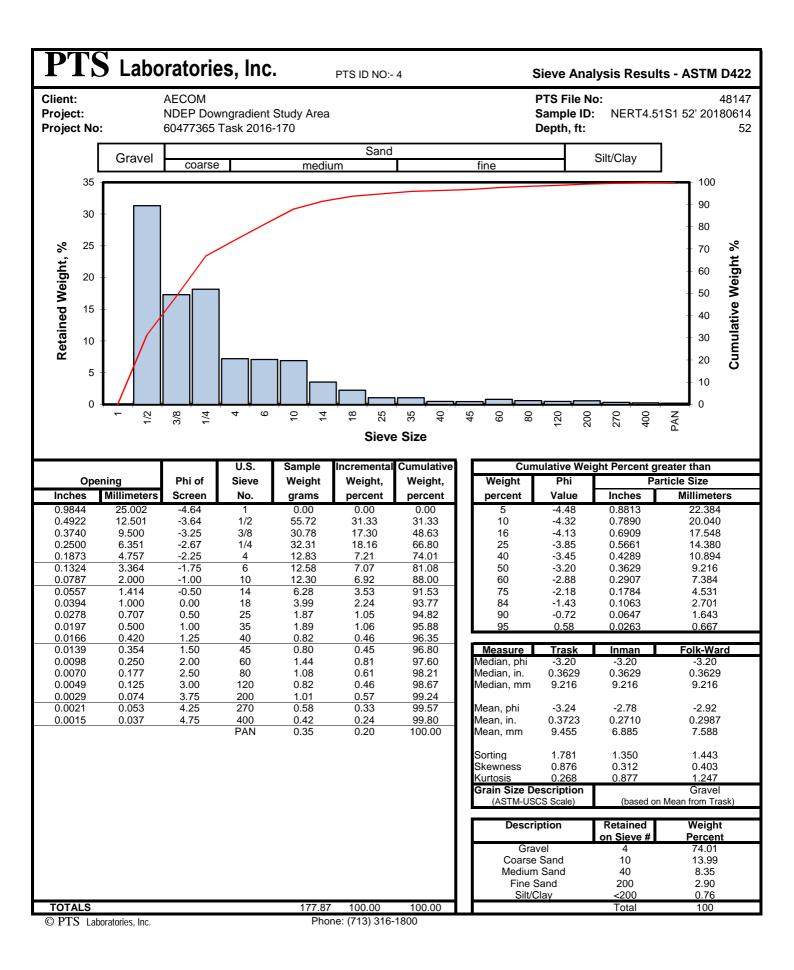
(METHODOLOGY: ASTM D422)

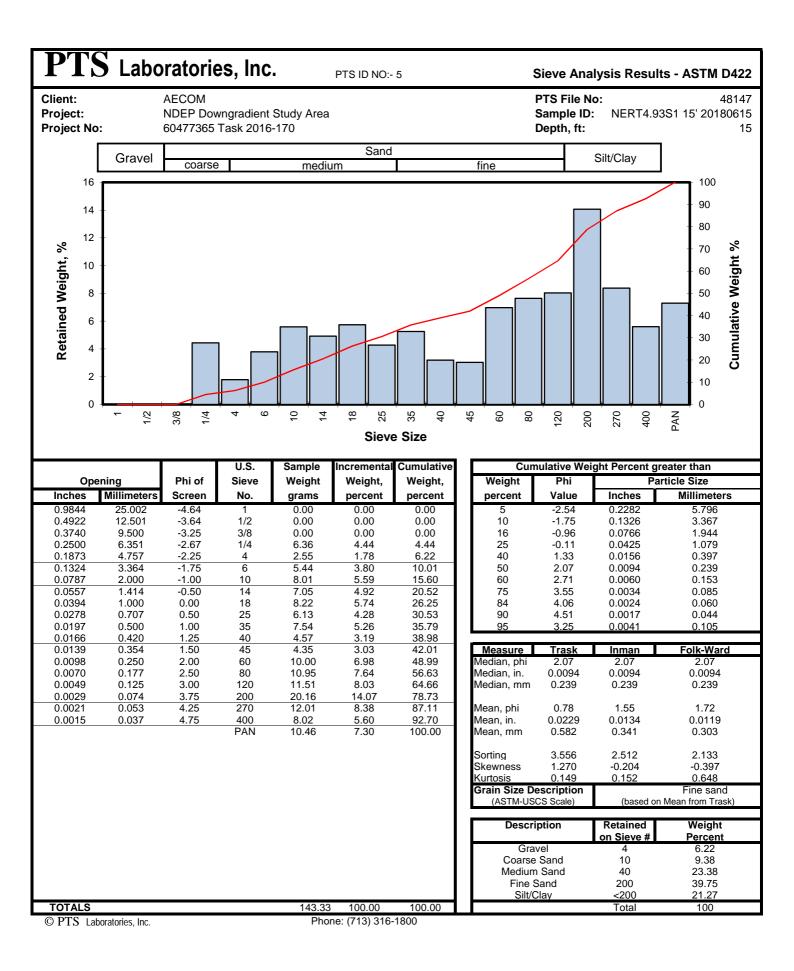
PROJECT NAME: PROJECT NO: NDEP Downgradient Study Area 60477365 Task 2016-170

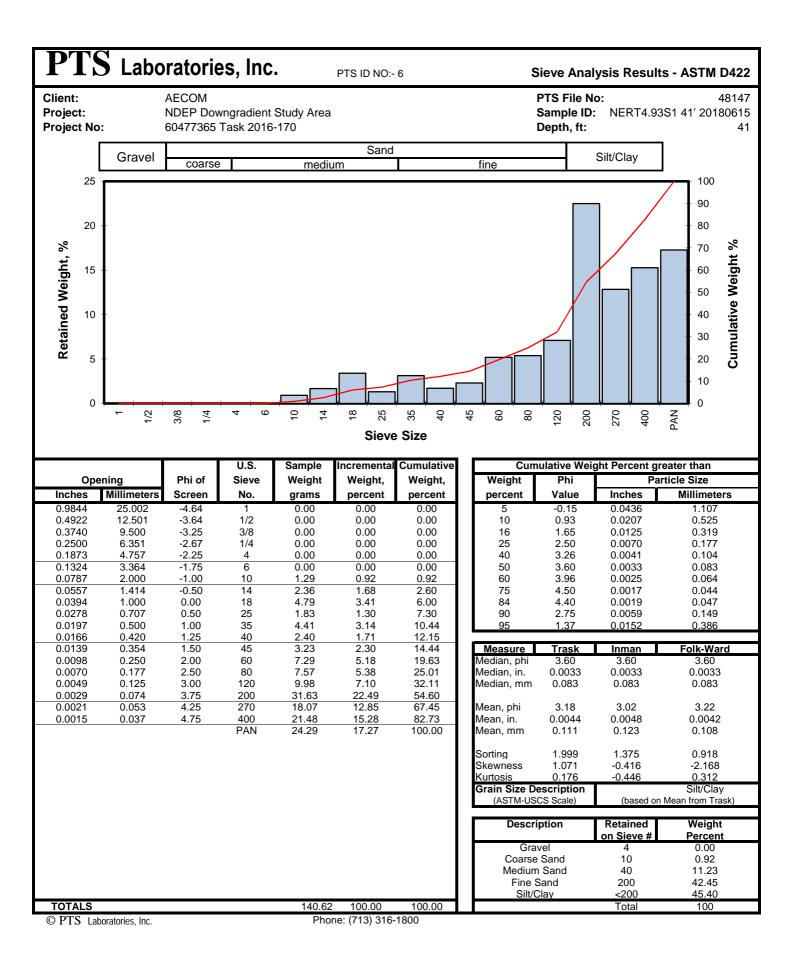

		PTS ID	Mean Grain Size Description	Median	Pa	Particle Size Distribution, wt. percent			ent
			USCS/ASTM	Grain Size,	Gravel		Sand Size	., p	Silt/Clay
Sample ID	Depth, ft.	No	(1)	mm		Coarse	Medium	Fine	Í
NERT4.51S1 15' 20180614	15.0	1	Silt/clay	0.072	0.96	7.20	16.32	24.21	51.31
NERT4.51S1 42' 20180614	42.0	2	Gravel	4.931	51.43	21.53	14.14	8.96	3.95
NERT4.51S1 48' 20180614	48.0	3	Gravel	6.907	59.91	19.64	12.11	6.34	2.00
NERT4.51S1 52' 20180614	52.0	4	Gravel	9.216	74.01	13.99	8.35	2.90	0.76
NERT4.93S1 15' 20180615	15.0	5	Fine sand	0.239	6.22	9.38	23.38	39.75	21.27
NERT4.93S1 41' 20180615	41.0	6	Silt/clay	0.083	0.00	0.92	11.23	42.45	45.40
NERT4.93S1 47' 20180615	47.0	7	Gravel	7.356	60.98	16.79	12.86	6.71	2.66
NERT4.93S1 48' 20180615	48.0	8	Medium sand	1.178	16.59	19.25	32.28	23.38	8.50
NERT4.93S1 60' 20180615	60.0	9	Medium sand	0.333	10.14	13.93	23.11	30.85	21.97
NERT5.11S1 17' 20180615	17.0	10	Gravel	4.028	42.84	32.30	15.80	5.02	4.04
NERT5.11S1 37' 20180615	37.0	11	Fine sand	1.343	22.35	18.97	23.97	24.43	10.28
NERT5.11S1 40' 20180615	40.0	12	Fine sand	0.356	5.47	5.18	32.40	51.90	5.06
NERT5.11S1 67' 20180616	67.0	13	Fine sand	0.255	0.00	2.22	33.79	35.85	28.14
NERT5.11S1 72' 20180616	72.0	14	Medium sand	0.472	0.30	9.42	43.27	31.85	15.16
NERT5.91S1 17' 20180617	17.0	15	Fine sand	0.105	8.23	5.67	13.57	37.23	35.30
NERT5.91S1 40' 20180617	40.0	16	Medium sand	0.602	6.30	17.25	31.96	27.34	17.15
NERT5.91S1 47' 20180617	47.0	17	Medium sand	1.120	13.92	18.31	34.38	18.28	15.12

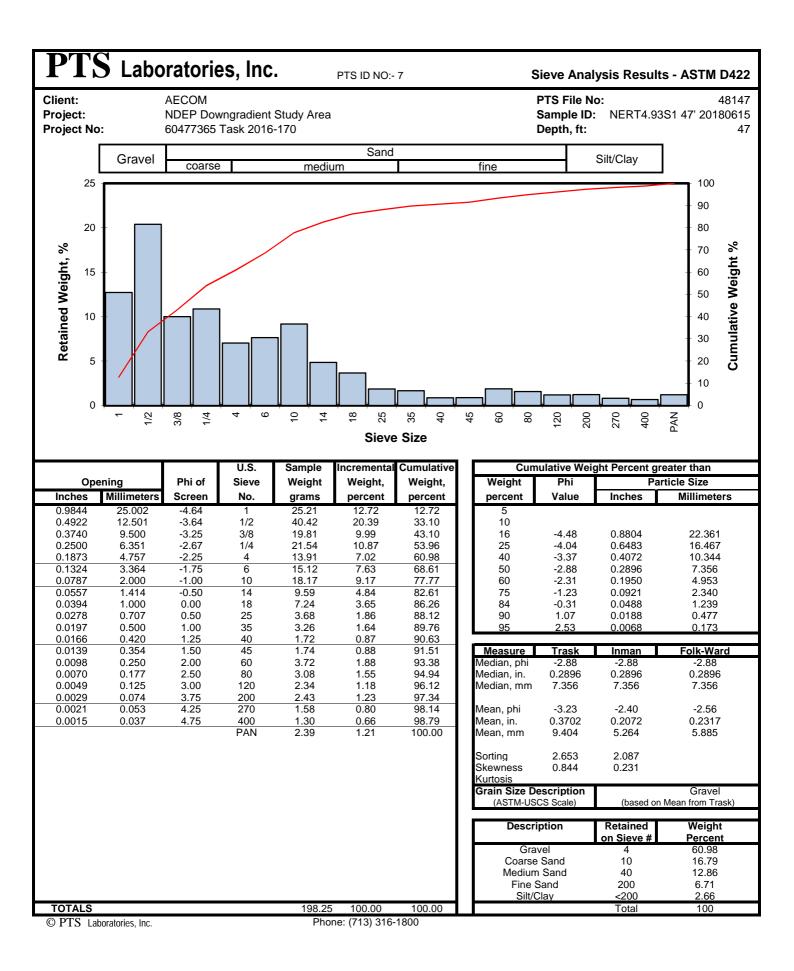

PARTICLE SIZE SUMMARY

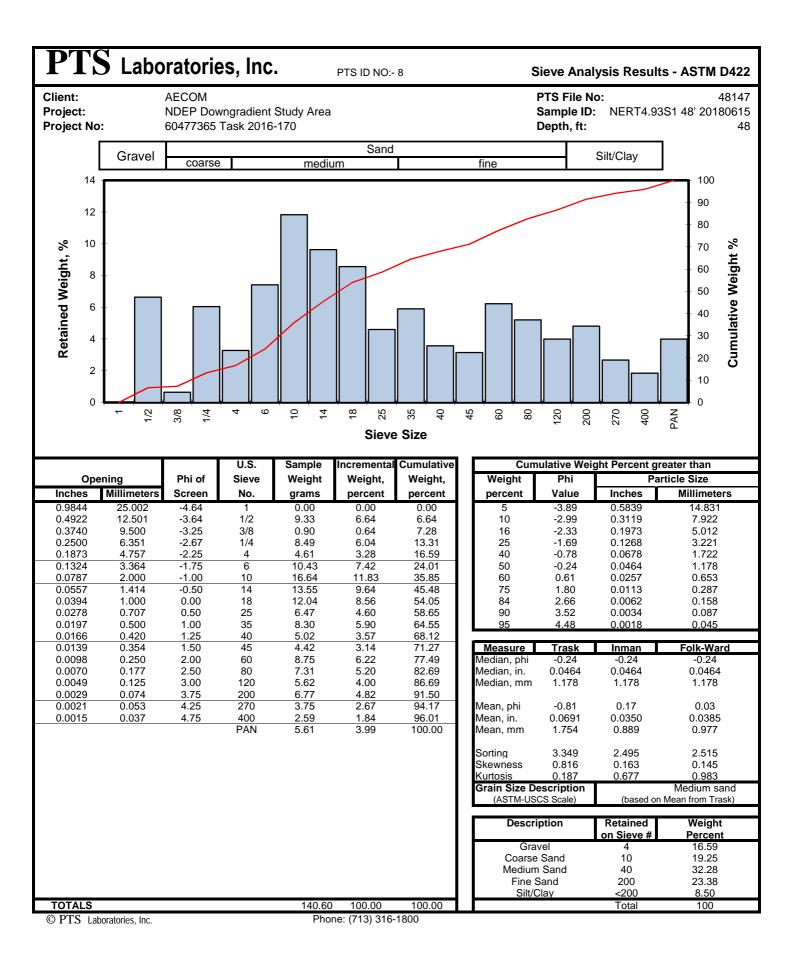

(METHODOLOGY: ASTM D422)

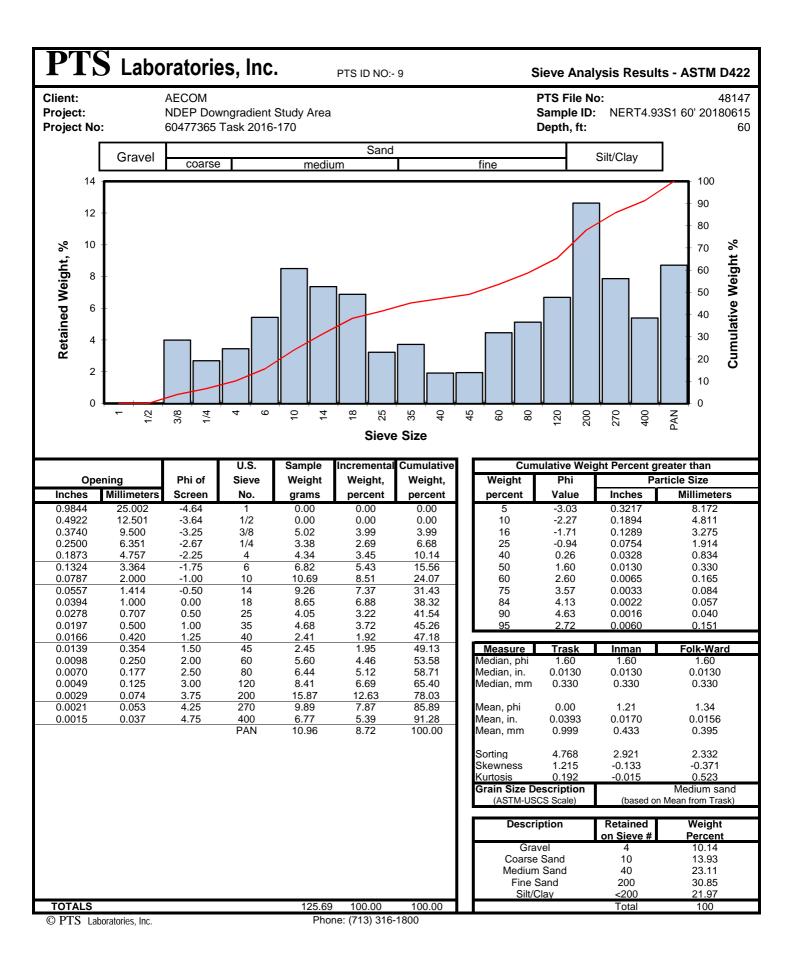

PROJECT NAME: PROJECT NO: NDEP Downgradient Study Area 60477365 Task 2016-170

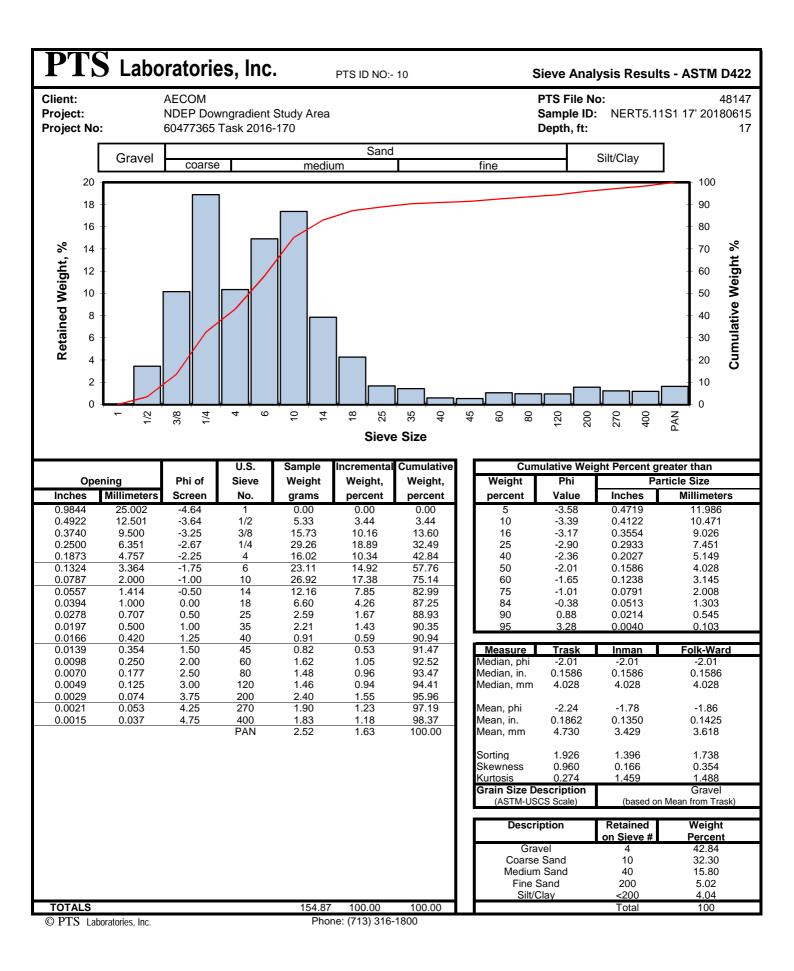

		PTS ID	Mean Grain Size Description	Median	P;	Particle Size Distribution, wt. percen			ent
			USCS/ASTM	Grain Size,	Gravel		Sand Size	, na poro	Silt/Clay
Sample ID	Depth, ft.	No	(1)	mm		Coarse	Medium	Fine	,
			• · · · ·						
NERT5.91S1 50' 20180617	50.0	18	Medium sand	1.709	24.65	20.82	35.73	14.29	4.51
NERT5.91S1 60' 20180617	60.0	19	Medium sand	1.050	1.11	25.38	40.61	23.76	9.15
NERT5.91S1 87' 20180617	87.0	20	Coarse sand	1.787	5.51	39.88	36.35	14.29	3.97
NERT5.49S1 20' 20180618	20.0	21	Coarse sand	1.367	12.07	26.91	25.22	26.69	9.10
NERT5.49S1 32' 20180618	32.0	22	Gravel	2.224	31.77	20.62	23.50	17.66	6.44
NERT5.49S1 72' 20180618	72.0	23	Medium sand	0.603	0.00	11.02	48.28	30.30	10.40
NERT5.49S1 89' 20180618	89.0	24	Gravel	4.540	48.17	28.42	17.02	5.79	0.59
NERT4.21N1 22' 20180619	22.0	25	Medium sand	0.805	1.48	20.09	41.73	22.44	14.26
NERT4.21N1 45' 20180619	45.0	26	Gravel	3.462	44.21	16.09	25.19	12.75	1.75
NERT4.21N1 48' 20180619	48.0	27	Gravel	4.590	49.03	21.37	20.51	8.30	0.79
NERT4.21N1 62' 20180619	62.0	28	Medium sand	1.262	2.91	29.00	42.70	18.28	7.11
NERT4.21N1 87' 20180619	87.0	29	Coarse sand	1.597	10.42	32.44	27.66	20.04	9.44
NERT4.38N1 12' 20180620	12.0	30	Gravel	16.141	87.48	4.19	3.18	3.13	2.02
NERT4.38N1 35' 20180620	35.0	31	Medium sand	0.392	0.00	0.26	47.47	39.38	12.89
NERT4.38N1 45' 20180620	45.0	32	Medium sand	0.795	0.91	11.12	55.50	25.43	7.03
NERT4.38N1 55' 20180621	55.0	33	Fine sand	0.202	0.00	0.21	27.36	42.64	29.80
NERT4.38N1 60' 20180621	60.0	34	Fine sand	0.236	0.00	1.77	29.08	46.25	22.90

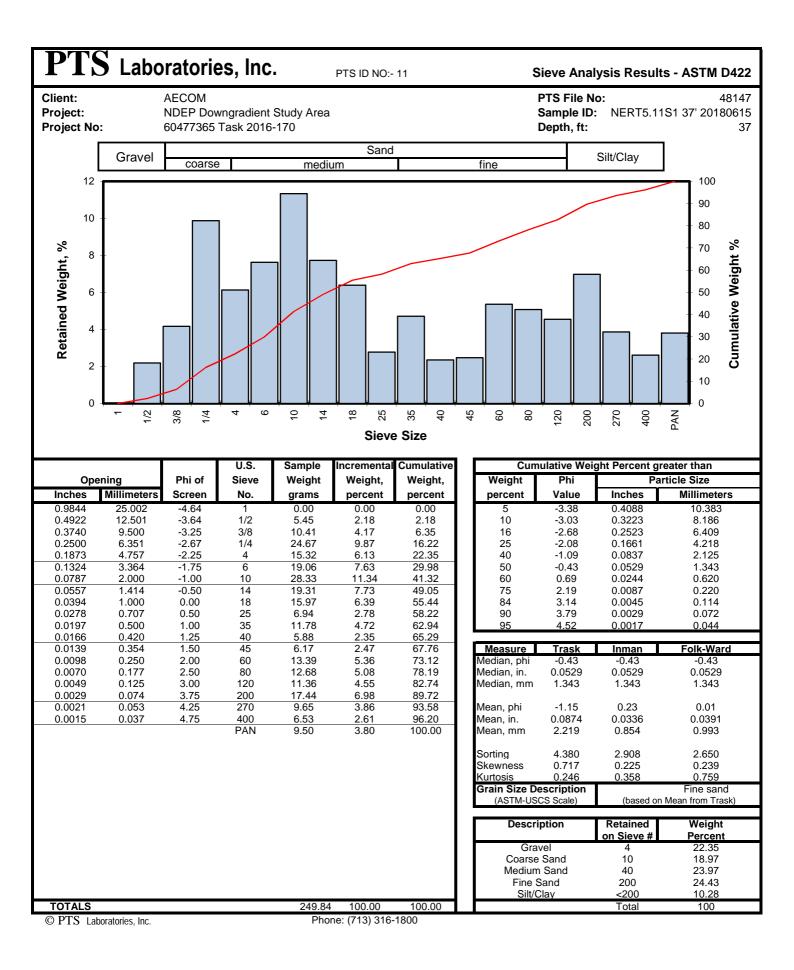


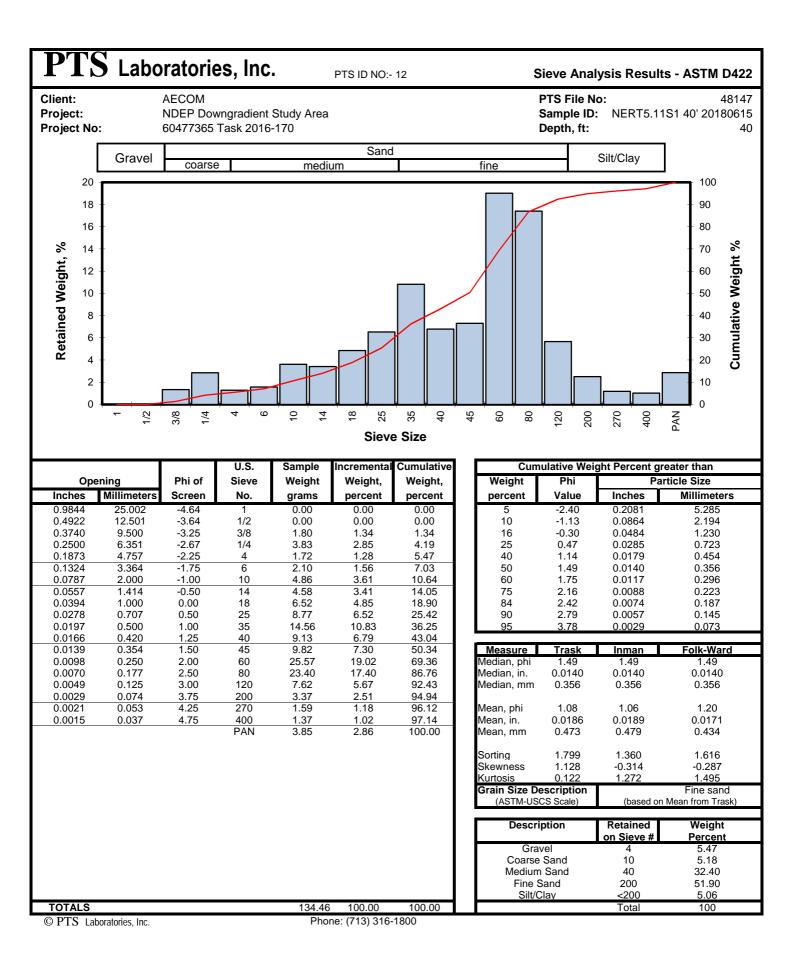


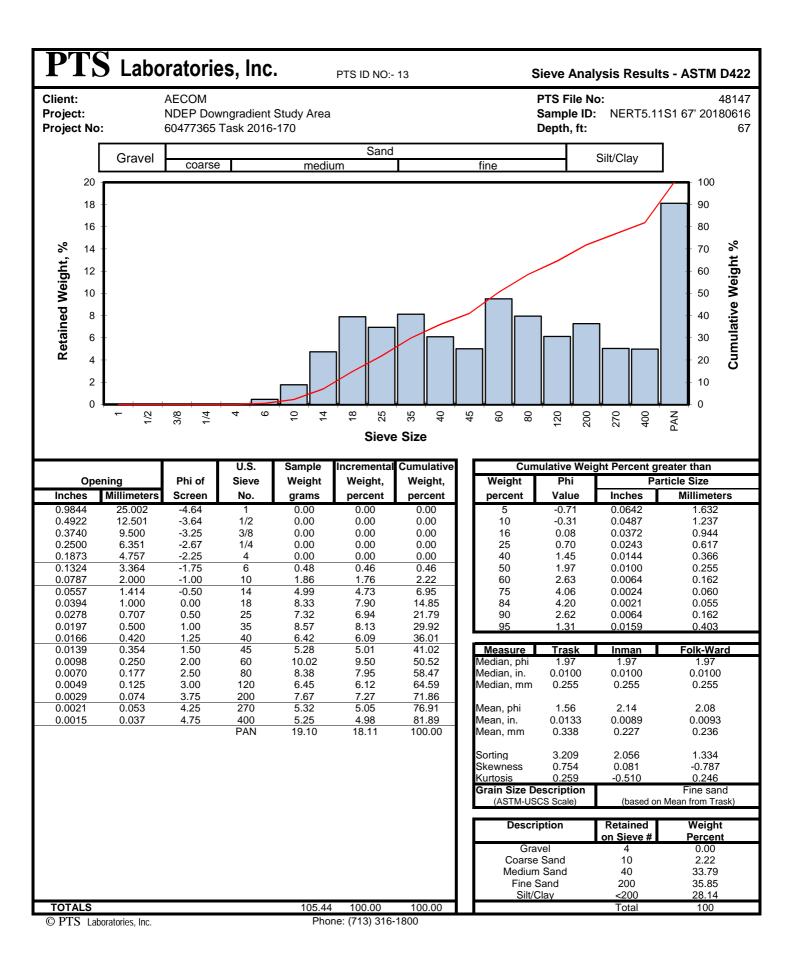


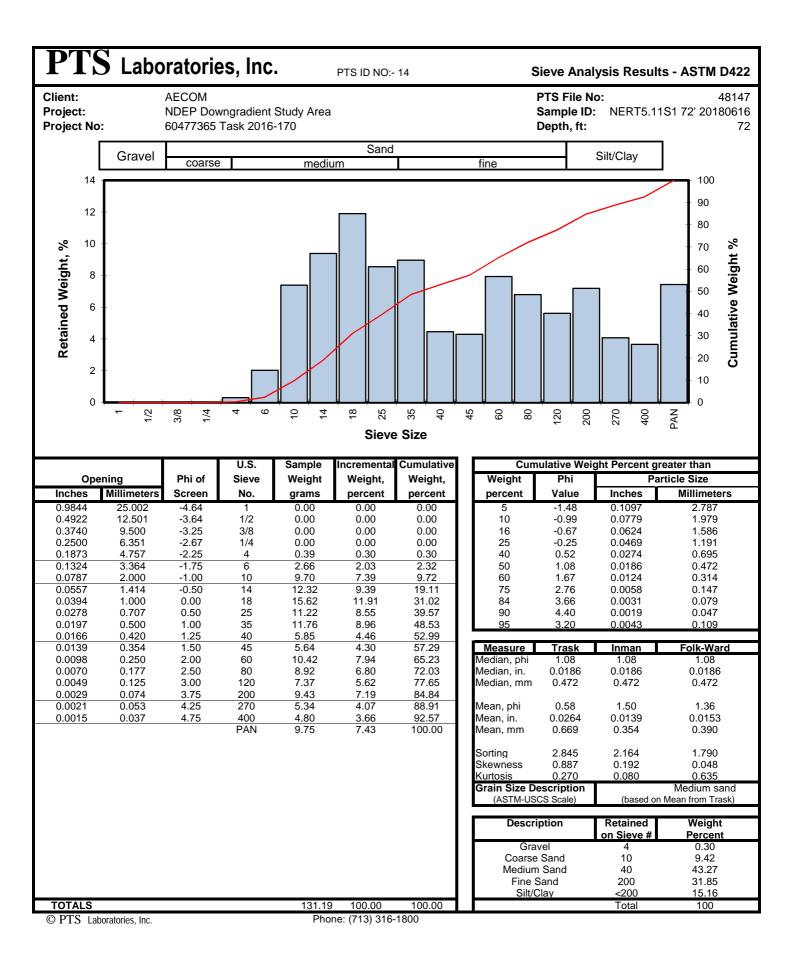


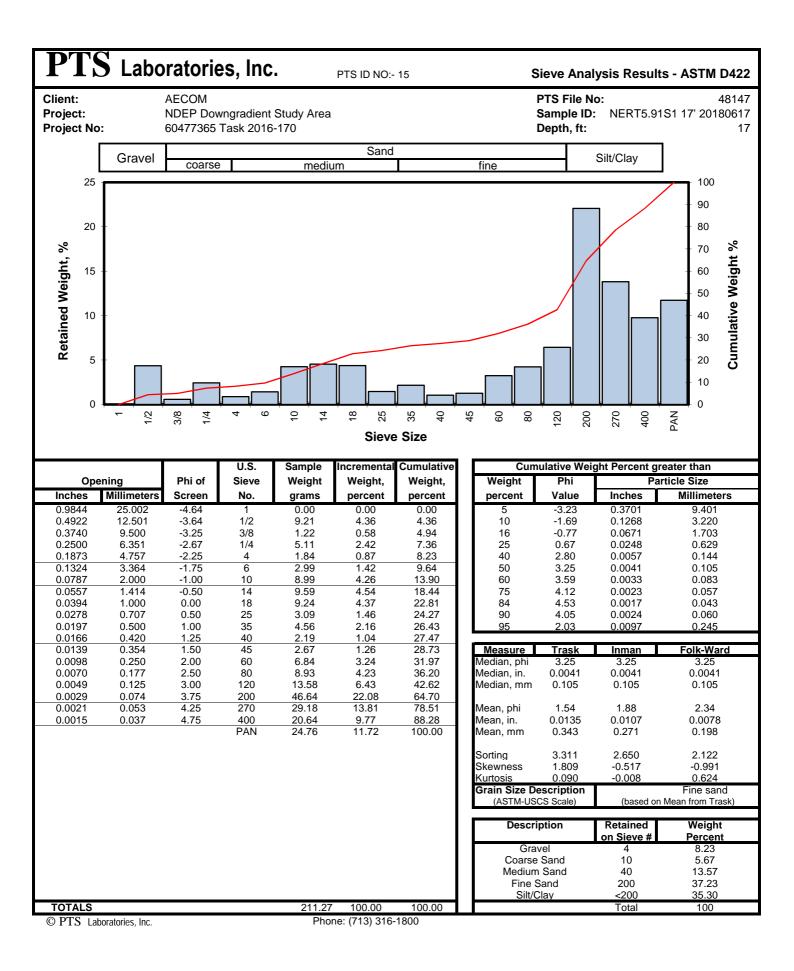


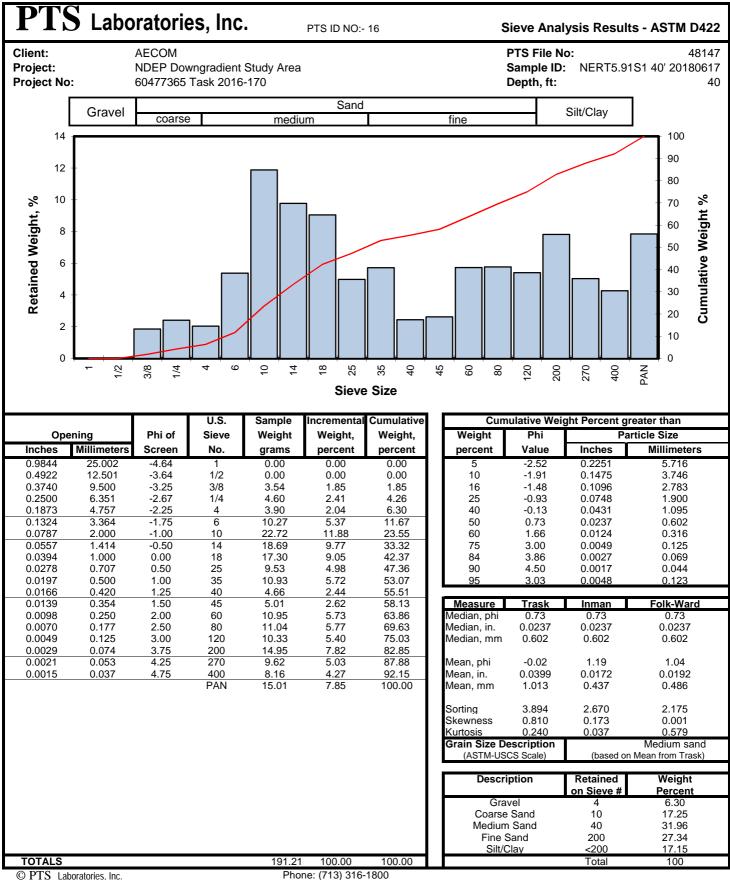


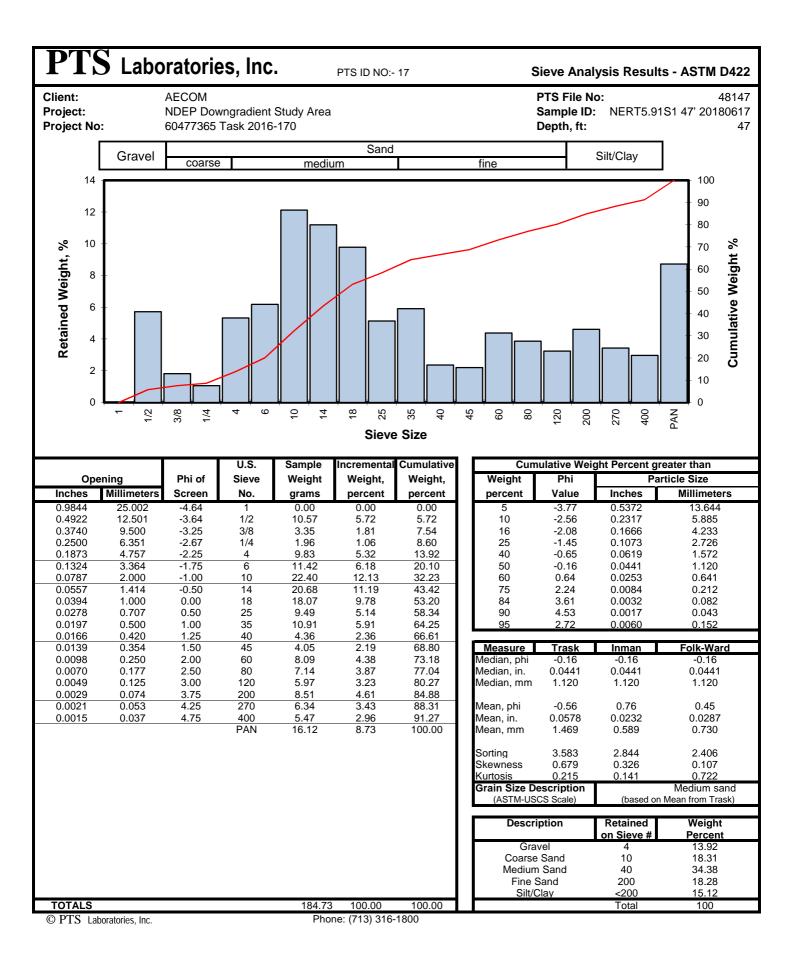


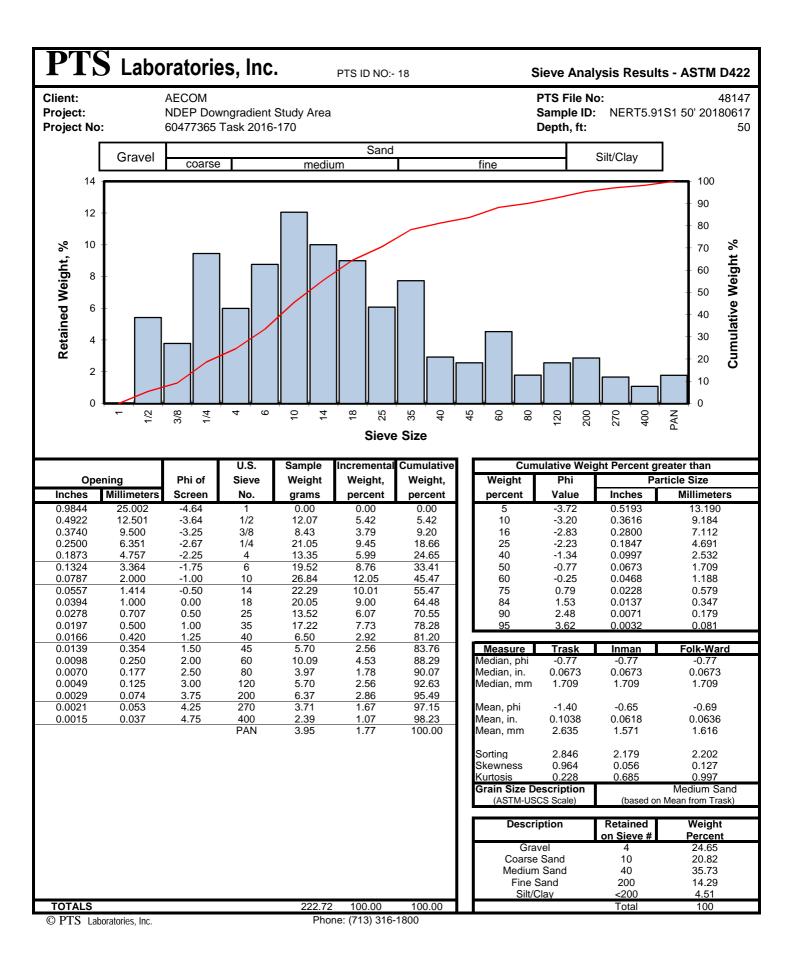


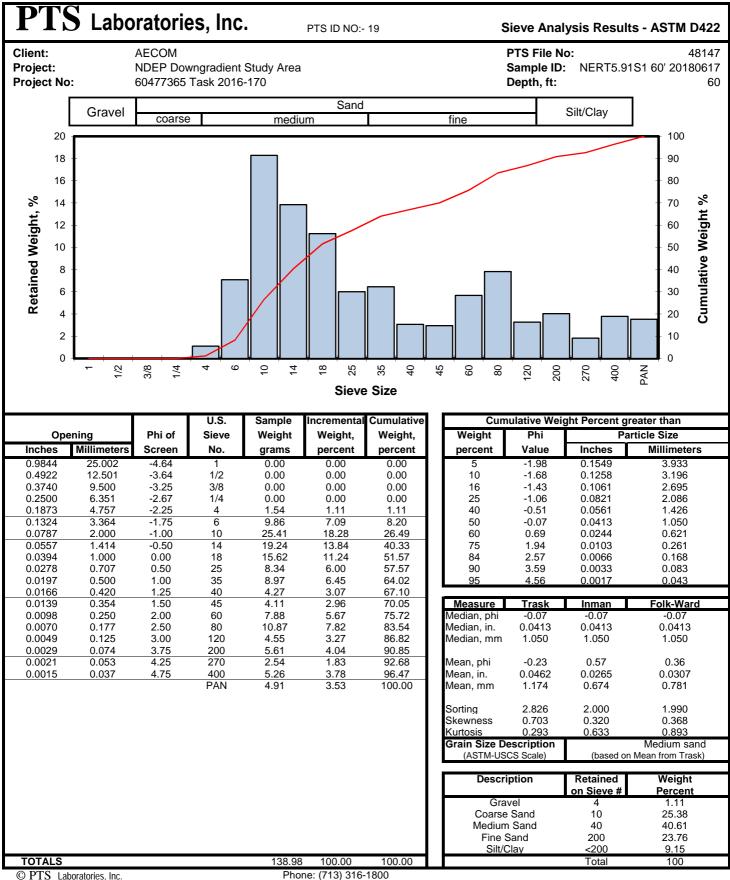






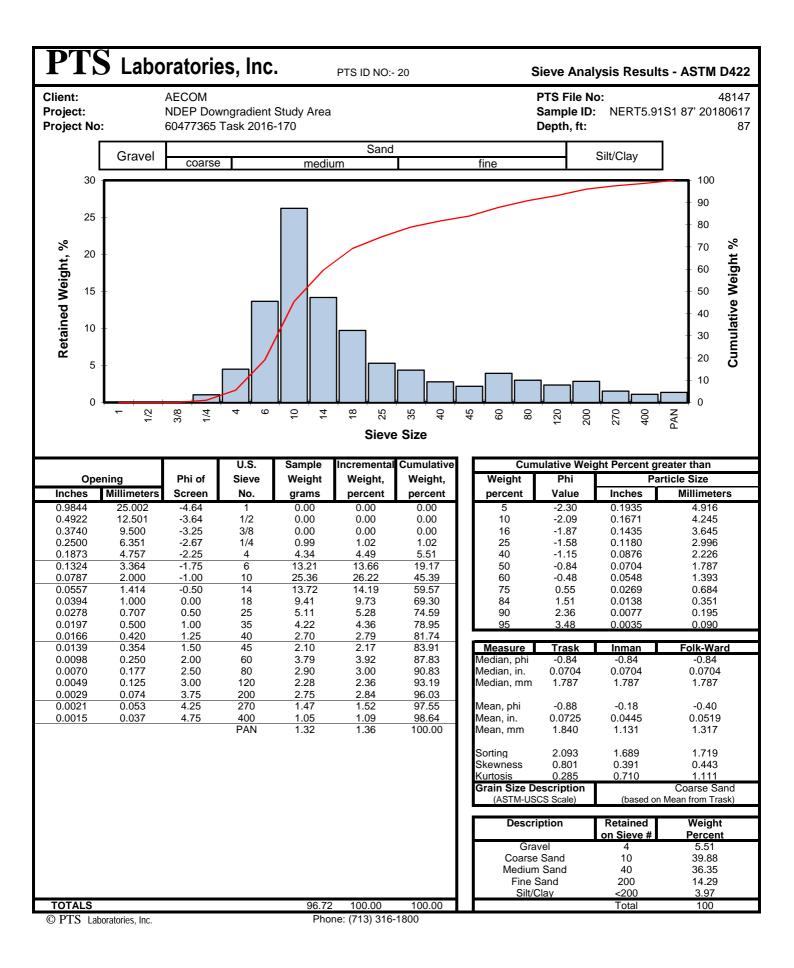


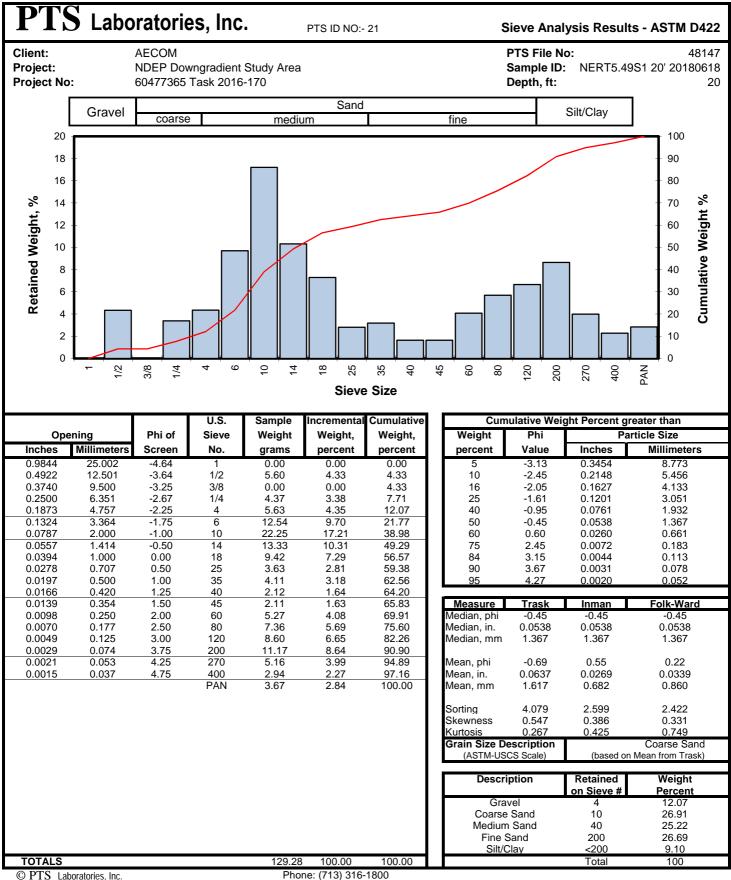




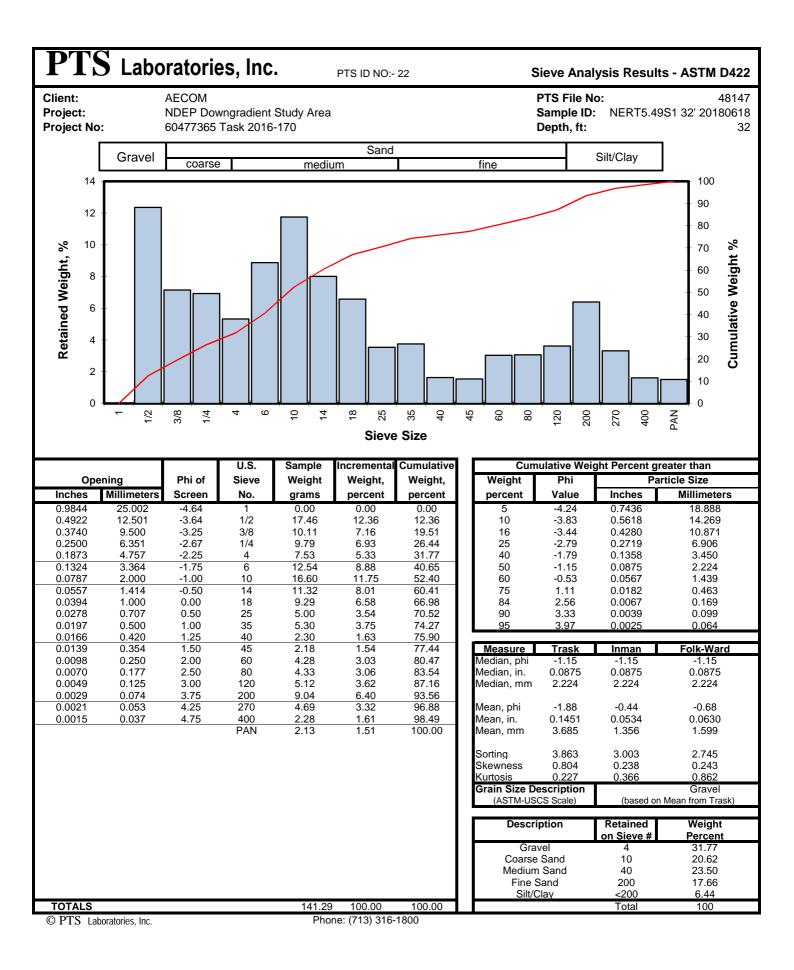
© PTS Laboratories, Inc.

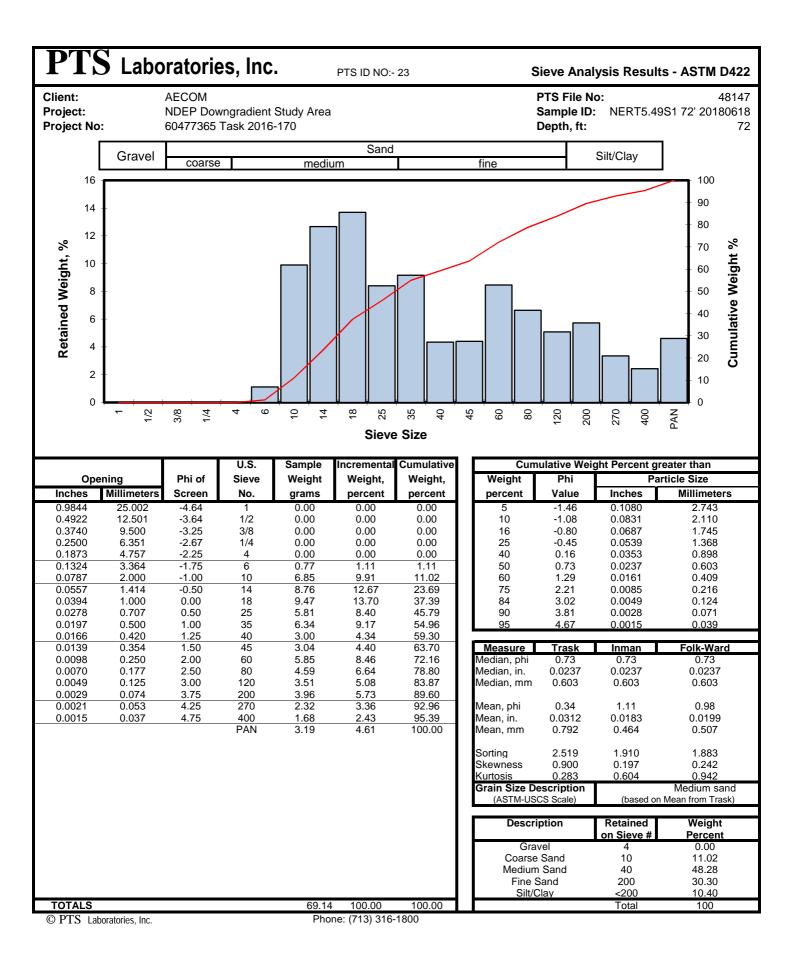
Phone: (713) 316-1800

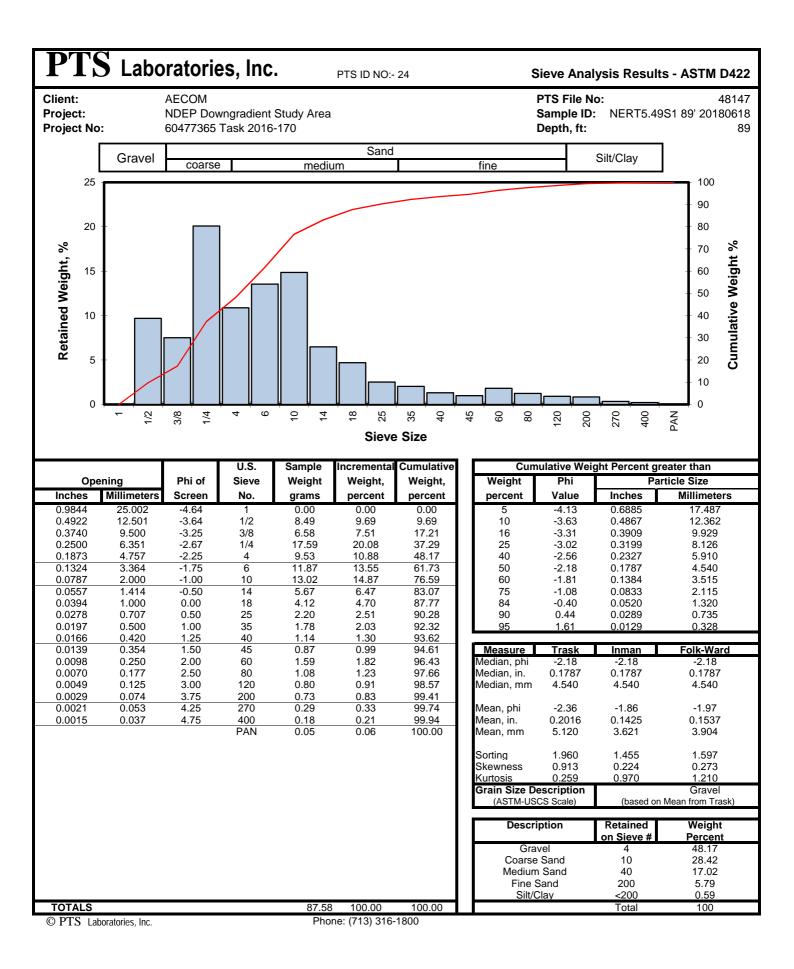


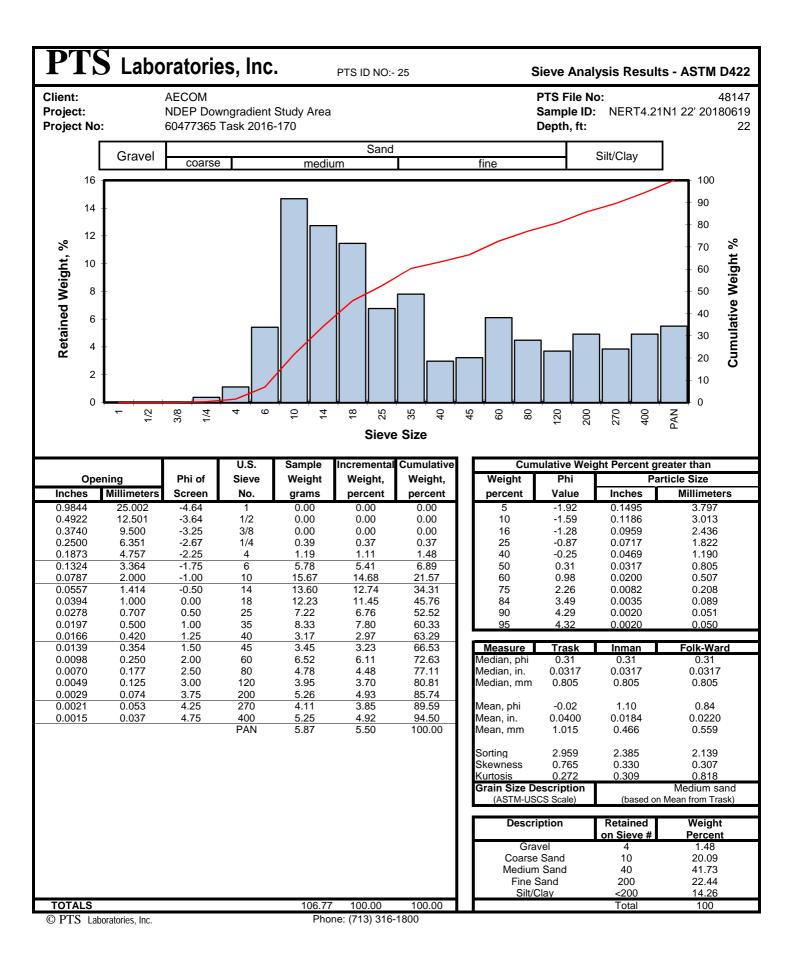


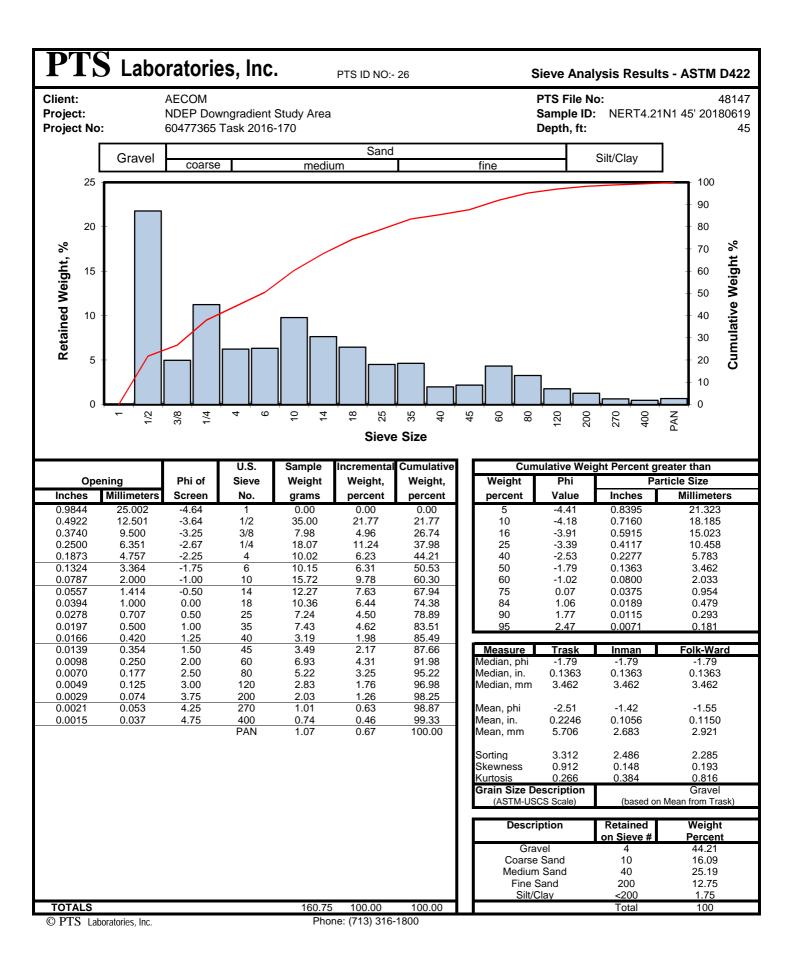
© PTS Laboratories, Inc.

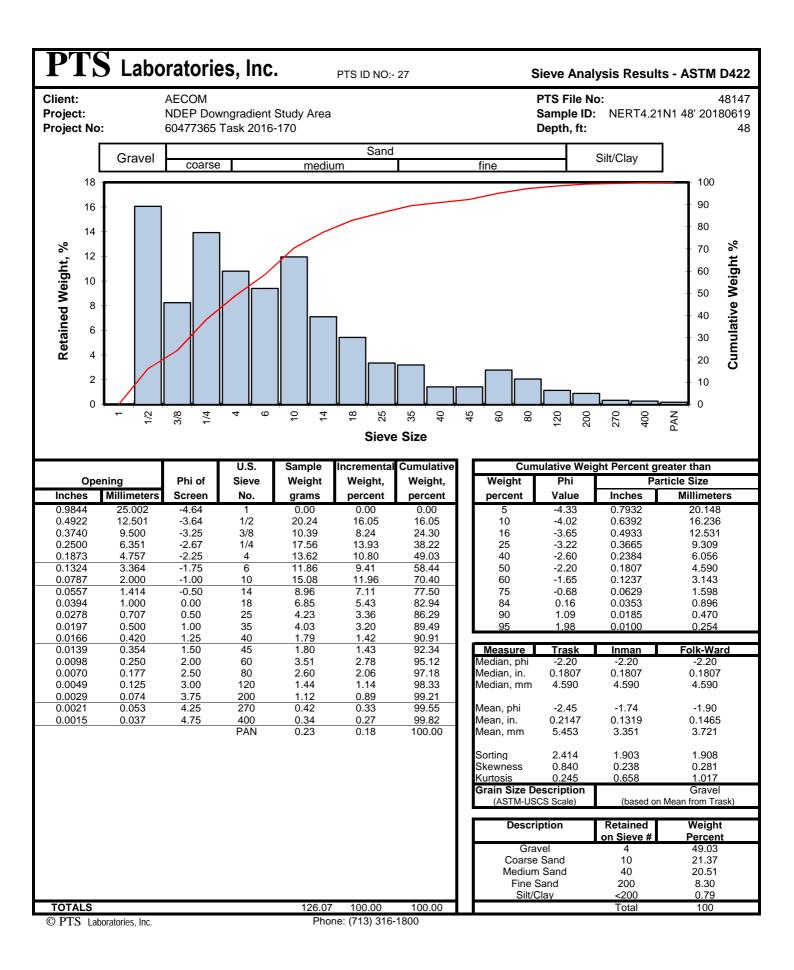

Phone: (713) 316-1800

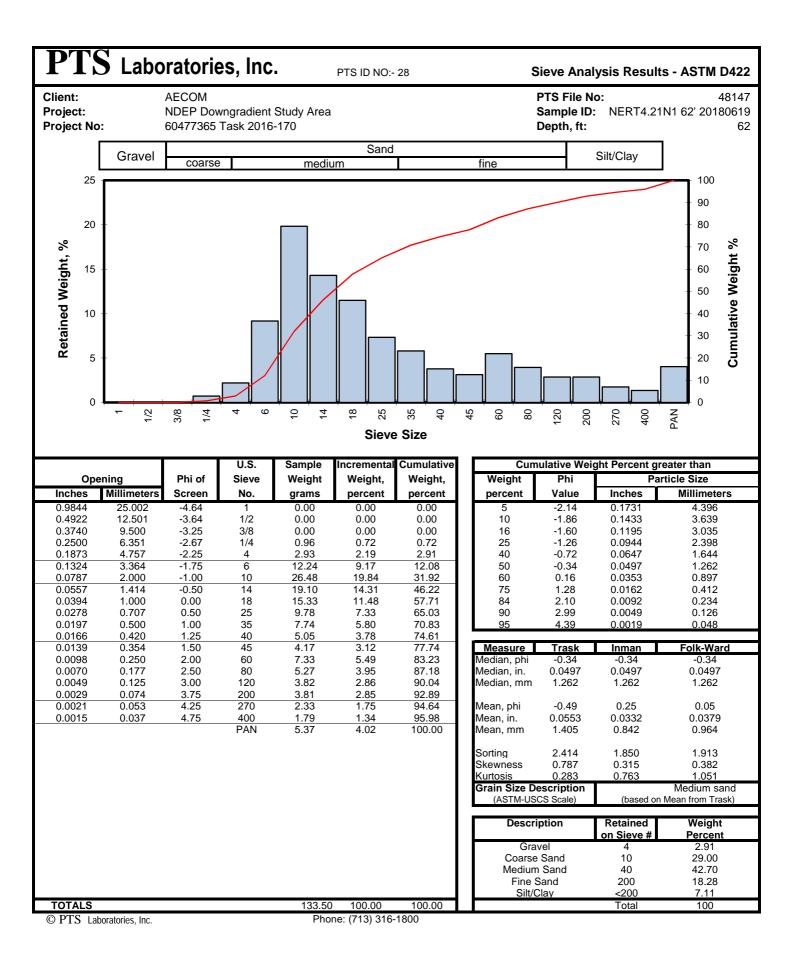


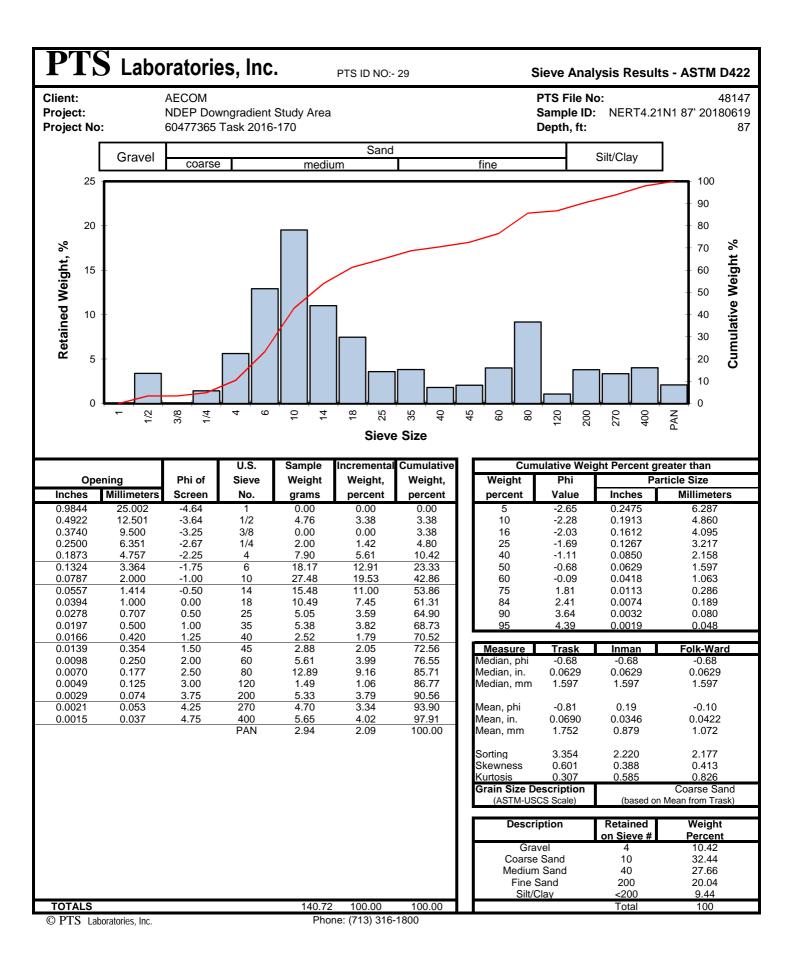


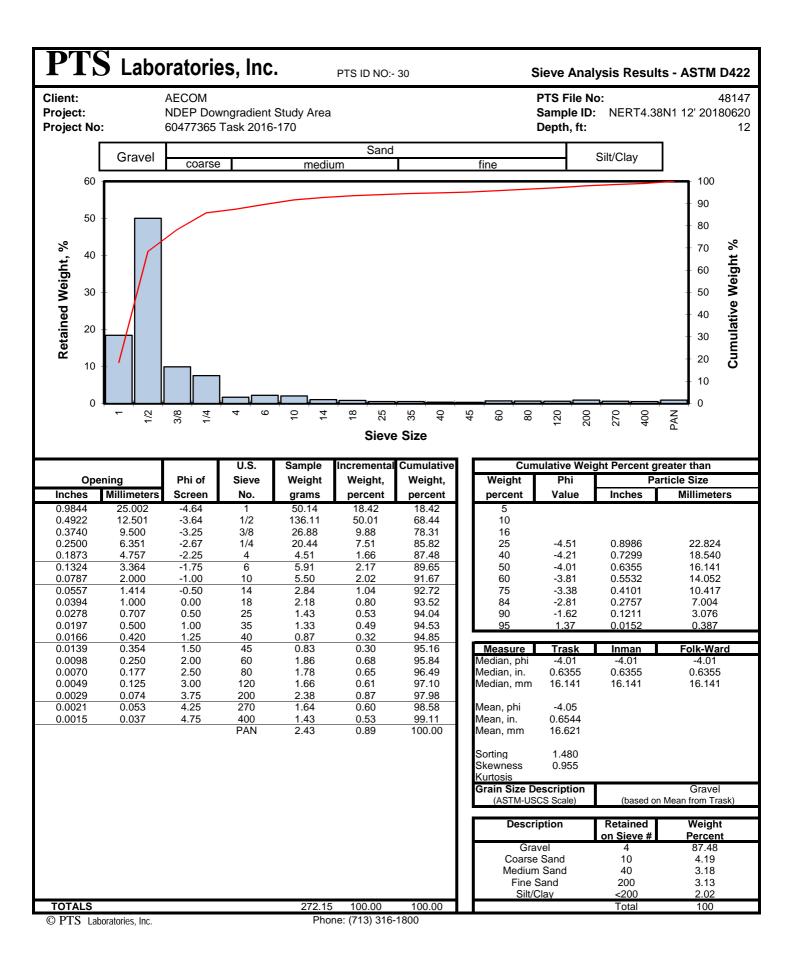

© PTS Laboratories, Inc.

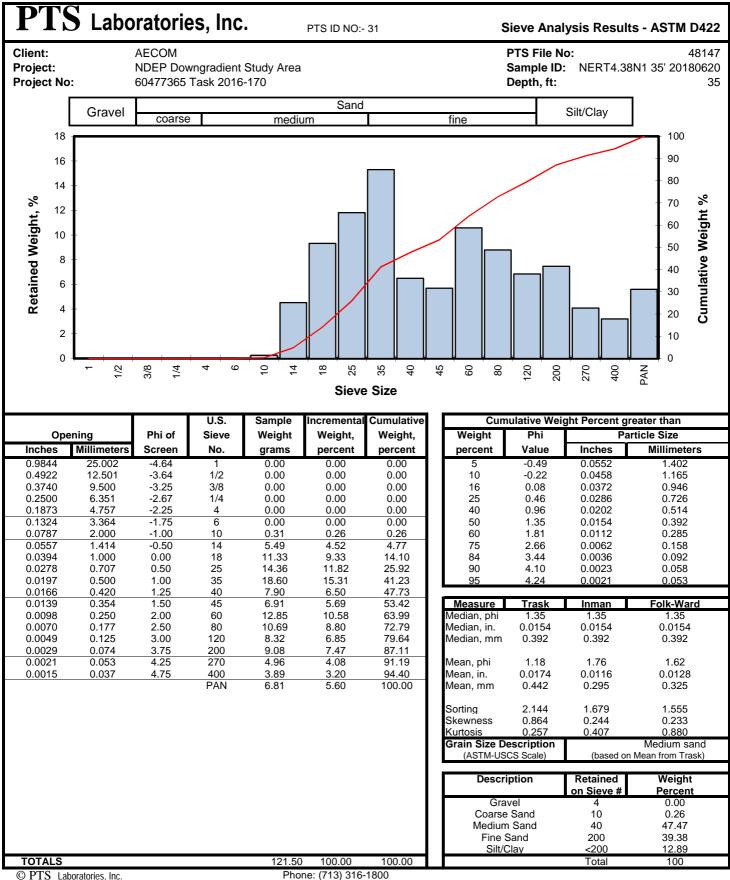

Phone: (713) 316-1800

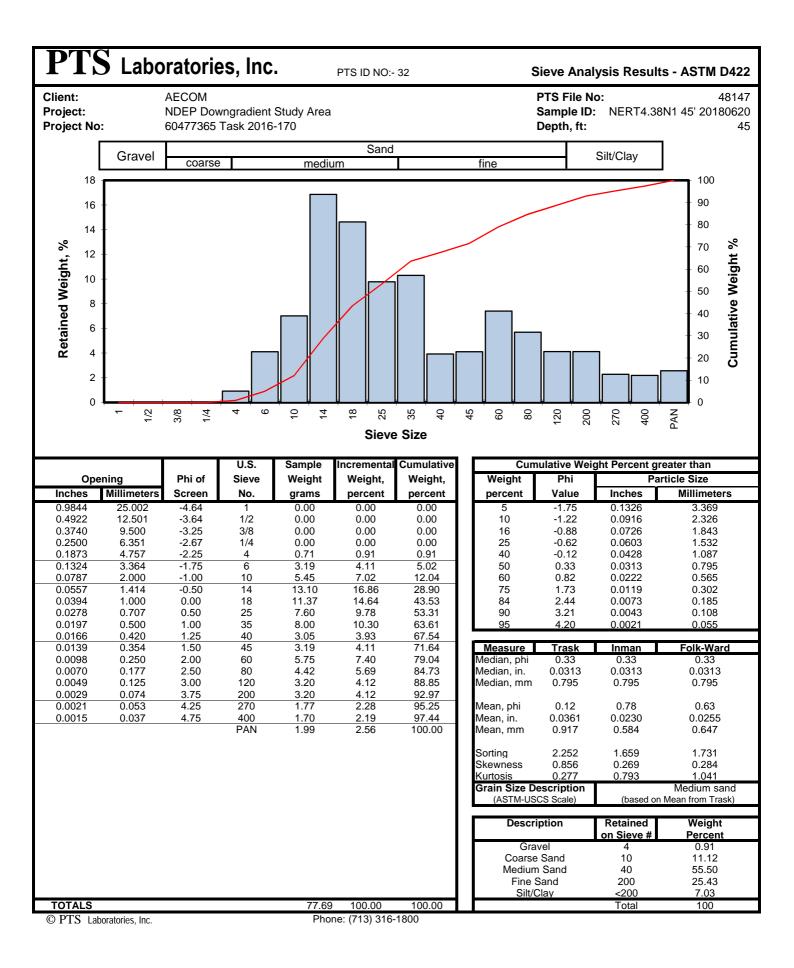


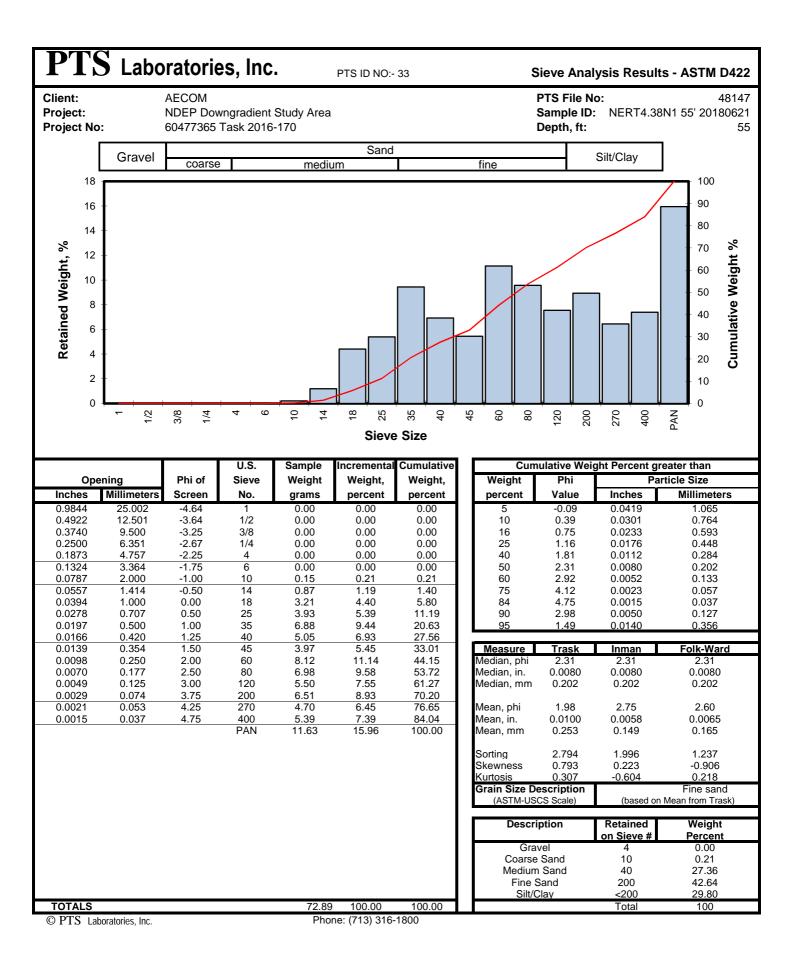


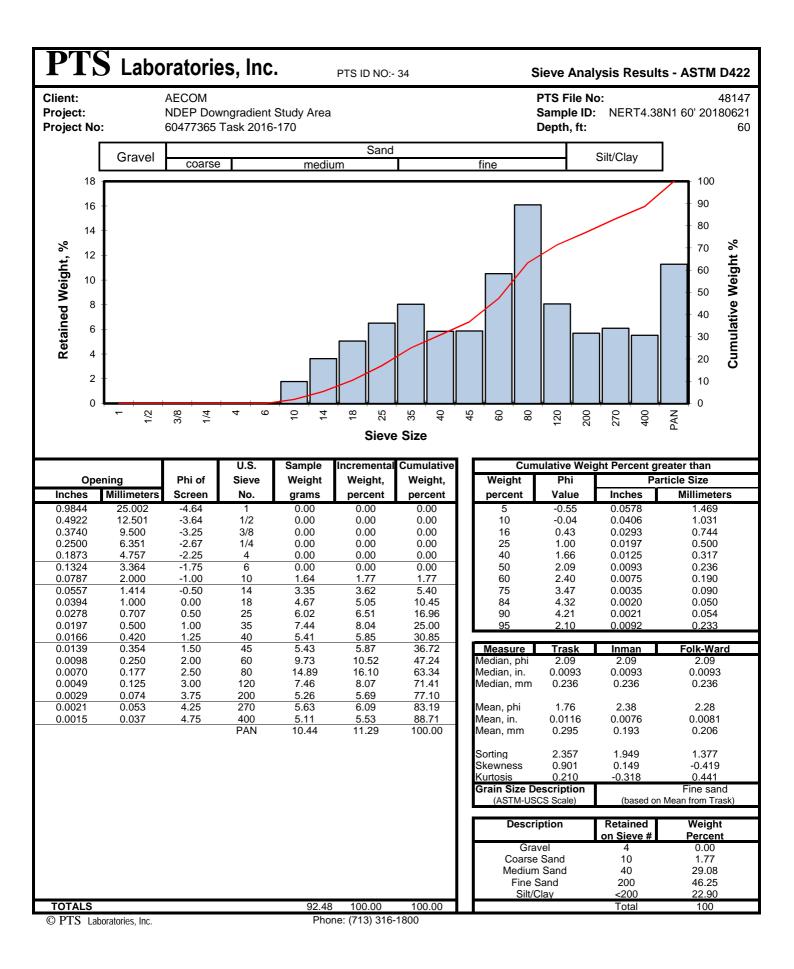












Phone: (713) 316-1800

V

V

r

V

ν

V

r

V

CHAIN OF CUSTODY RECORD

COMPANY			CHAIN	1	-	-			-	-	AN			-			ст		_			-		GE PO	#		F ²	
AECOM					_	_	_		-	_	AN	411	131				-	_	_	_	_	_	-		#	8	6028	
ADDRESS 1220 Avenida Acaso PROJECT MANAGER	CITY Cama	arillo	ZIP CODE 93012										2		02937		HYDRAULIC CONDUCTIVITY, EPA9100/API RP40 or D5084	GRAIN SIZE DISTRIBUTION ASTM D422 pr 4464M							NAROL IOURS IOURS			/S
Carmen Caceres-Schnell	car	men cacer	^{email} es-schnell@aecom			щ×		111							ME		PI RF	R					216					
PROJECT NAME	Garr		PHONE NUMBER	1		PACKAGĘ	SATURATIONS PACKAGE	AGI			È		25M		r AS		00/AI	A D4				AGE		-	IER:	_		
NDEP Downgradient Study Are	ea		(805)764-4031			PAC	AC	AC		ш	API			12	40 0		A91	STA		4318		ξ	Σ	SAN	IPLE IN	TEGRI	ГҮ (СН	ECK):
PROJECT NUMBER			FAX NUMBER	1	PACKAGE	È	SN P	S		8	000			108	L H	P40	町、	Z		Ň	AGE	β	S	INTA			EMP(F	F)73:
60477365 Task 2016-170				တ္တ	Ś	N N	10 10	E I	щ	Š.	년 (A		ې س	STN	AP		Ε	E	\mathbf{v}	ASTI	Ş		اک	PTS	QUOTE	E NO.		
SITE LOCATION				SAMPLES	2 PA	2	- Al	H	¥.	ι. Ε		- 4		X, A	HZ)	Y, A	LCT	l all	AC	Ś	a z	<u>g</u>	el					
DGIP Phase I Wells				AN	Ë	N	SATI 8	ЩЦ	PAC		E S	2		1×	9	느	ION	STE	Ϋ́-Bi	Ξ	S	5	Ē	DTO	FILE:			
SAMPLER SIGNATURE				NUMBER OF	SOIL PROPERTIES	HYDRAULIC CONDUCTIVITY	PORE FLUID 8	TCEQ/TNRCC PROPERTIES PACKAGE	CAPILLARITY PACKAGE	FLUID PROPERTIES PACKAGE	РНОТОLOG: СОВЕ РНОТОGRAPHY ИАРОВ ТВАМЕВОВТ ВАСИАСТ	POROSITY TOTAL AIR FILLED WATER	POROSITY: EFFECTIVE, ASTM D426M	SPECIFIC GRAVITY, ASTM D854	BULK DENSITY (DRY), API RP40 or ASTM D2937	AIR PERMEABILITY, API RP40	NULIC CC	I SIZE D	TOC: WALKLEY-BLACK	ATTERBERG LIMITS, ASTM D4318	VAPOR INTRUSION PACKAGE	FREE PRODUCT MOBILITY PACKAGE	Niolsture Content, AS IM D2216	PIS	42	314	7	
SAMPLE ID	DATE	TIME	DEPTH, FT	NUMB	SOILF	НУВЯ	PORE	TCEQ/	CAPIL	ELUD FLUD		PORO	PORO	SPECI	BULK	AIR PE	нуря/	GRAIN	TOC:	ATTER	VAPOF	FREE	MIOISI		co	MME	NTS	
NH24.515120180614 61	14/18	6850	15															x		x			x					
4.5151201406-14	1	0841	42															1										
4.5 1 48 201806 14		0856	48																									
4.515152-11	J	0916	52																									
UERT4.9351 15 2012 06 15 6	lislis	0958	15																									
4.9351 1420H CGUS		6826	14			-																						
4.93514720170615		0955	471																									
4.9351 4201206 15		0824	78'																									
4.935160701-80615	L	0953	601																								_	_
DERTS. 1151 17 20180615 61	15/18	1457	121																									
TISI 37. 11 RELINQUISHED BY		1520	371														1	5	U									
The suger		2. RECEI	September 1								QUISI	HED	BY										VED I	BY				
COMPANY		PTS	LABS. IN	JC	-				OMF		Y									C	OM	PAN	Y					
DATE TIME		DATE	18 TIMI	E 20	-			D	ATE						TIM	E				D	ATE				TI	IME		

V

 \checkmark

V

V

~

V

V

1

V

CHAIN OF CUSTODY RECORD

PAGE 2

OFY

COMPANY											AN	JAI	LYS	IS	RE	Q	JES	ST								PO# 86028
AECOM ADDRESS 1220 Avenida Acaso PROJECT MANAGER Carmen Caceres-Schnell PROJECT NAME NDEP Downgradient Study A PROJECT NUMBER 60477365 Task 2016-170 SITE LOCATION DGIP Phase I Wells SAMPLER SIGNATURE			ZIP CODE 93012 email res-schnell@aecom PHONE NUMBER (805)764-4031 FAX NUMBER	SAMPLES	SOIL PROPERTIES PACKAGE	ULIC CONDUCTIVITY PACKAGE	PORE FLUID SATURATIONS PACKAGE	TCEQ/TNRCC PROPERTIES PACKAGE	CAPILLARITY PACKAGE	FLUID PROPERTIES PACKAGE	PHOTOLOG: CORE PHOTOGRAPHY	VAPOR TRANSPORT PACKAGE	POROSITY: TOTAL, AIR FILLED, WATER FILLED	POROSITY: EFFECTIVE, ASTM D425M	SPECIFIC GRAVITY, ASTM D854	BULK DENSITY (DRY), API RP40 or ASTM D2937	AIR PERMEABILITY, API RP40	HYDRAULIC CONDUCTIVITY, EPA9100/API RP40 or D5084	GRAIN SIZE DISTRIBUTION ASTM D422 pr 4464M	TOC: WALKLEY-BLACK	ATTERBERG LIMITS, ASTM D4318	VAPOR INTRUSION PACKAGE	FREE PRODUCT MOBILITY PACKAGE	Moisture Content, ASTM D2216		TURNAROUND TIME 24 HOURS 5 DAYS 72 HOURS NORMAL OTHER: SAMPLE INTEGRITY (CHECK) INTACT TEMP(F) PTS QUOTE NO. PTS FILE: 48147
SAMPLE ID	DATE	TIME	DEPTH, FT	NUMBER OF	SOIL PF	HYDRAULIC	PORE P	TCEQ/T	CAPILL	FLUID F	рното	VAPOR	POROS	POROS	SPECIF	BULK D	AIR PER	HYDRA	GRAIN	TOC: W	ATTERE	VAPOR	FREE P	Moistu		COMMENTS
NEAT SILLI 40'20806 15	Glisha	1520	40'																x		x			x		
TILLI 672006 16	6/16/18	0750	671																1		1			1		
J SUISI 72201806 16	Gliclia	0310	72																							
NERT 5.911 172019 0617	1.0.0	0315	17'																							
J.913146 2017 06 17			40																							
5.915197 20130617	1	0930	47																							
5.4150 2013 06 17		0930	JO																							
5.91316020130617		0950	60																							
5.9151 67201806 17	J	1020	67																							
LEAT S. 495120 201406 13	6/18/18	0820	20'																							
5.495132.2018 06 (8 1. RELINQUISHED BY	6/18/18	0410	32																U					Y		
1, RELINQUISHED BY		2. RECE	IVED BY Cont								QUI	SHE	ED B	Y											D B	·Υ
COMPANY		PTS PTS	LABS IN	С					CON	1PAI	NY										1	CON	IPA	NY		
DATE TIME		DATE 627	TIM			-			DAT	E					-	ΓΙΜΕ	Ξ					DAT	E			TIME

PTS Laboratoriae Inc. + 8100 Secura Way + Santa Fe Springe CA 00670 + Phone (562) 3/7-2500 + Fey (562) 270-1150

V

CHAIN OF CUSTODY RECORD

PAGE

3 OF4

COMPANY											٨N	JAL	YS	IS	RE	QL	JES	ST								PO# 8	6028
AECOM ADDRESS 1220 Avenida Acaso PROJECT MANAGER Carmen Caceres-Schnell PROJECT NAME NDEP Downgradient Study / PROJECT NUMBER 60477365 Task 2016-170 SITE LOCATION DGIP Phase I Wells SAMPLER SIGNATURE		men.cacere	ZIP CODE 93012 email es-schnell@aecom PHONE NUMBER (805)764-4031 FAX NUMBER	SAMPLES	SOIL PROPERTIES PACKAGE	JLIC CONDUCTIVITY PACKAGE	PORE FLUID SATURATIONS PACKAGE	TCEQ/TNRCC PROPERTIES PACKAGE	CAPILLARITY PACKAGE	FLUID PROPERTIES PACKAGE	PHOTOLOG: CORE PHOTOGRAPHY	VAPOR TRANSPORT PACKAGE	POROSITY: TOTAL, AIR FILLED, WATER FILLED	POROSITY: EFFECTIVE, ASTM D425M	SPECIFIC GRAVITY, ASTM D854	BULK DENSITY (DRY), API RP40 or ASTM D2937	AIR PERMEABILITY, API RP40	HYDRAULIC CONDUCTIVITY, EPA9100/API RP40 or D5084	GRAIN SIZE DISTRIBUTION ASTM D422 pr 4464M	TOC: WALKLEY-BLACK	ATTERBERG LIMITS, ASTM D4318	VAPOR INTRUSION PACKAGE	FREE PRODUCT MOBILITY PACKAGE	Moisture Content, ASTM D2216		TURNAROUND TH 24 HOURS 72 HOURS OTHER: SAMPLE INTEGRIT INTACT PTS QUOTE NO. PTS FILE: 4814	5 DAYS ☐ NORMAL ☑ TY (CHECK): TEMP(F) <u>75</u> °
SAMPLE ID	DATE	TIME	DEPTH, FT	NUMBER OF	SOIL PF	HYDRAULIC	PORE F	TCEQ/T	CAPILL/	FLUID P	PHOTO	VAPOR	POROSI	POROS	SPECIF	BULK D	AIR PEF	HYDRAL	GRAIN S	TOC: W	ATTERE	VAPOR	FREE P	Moistu		COMME	
UEAT S. 4951 72 20130618	6/18/18	1115	72														1		x		x			x			
5-491 39 20180613	1	1130	39																1		1			1			
UERTY 2101 22 201906 19	1.00	1015	22																								
4.21.11452940619		1105	45																						ĺ.		
7.21414820130619		1120	48																								
4.21.0162.2014 06 19		1155	62																								
J 7.21.1 87201706 19		15/6	87																								
LEAT 4.38 W/ 12 201806-20	612019	1320 tot	2212																								
4.34 NI 35-20140520		1445	35																								
4.37 21452470620	4	1545	45																								
43101752430621	6/21/18	0350	55																6		L			V			
1. RELINQUISHED BY	-	2. RECEI	Genn						3. RI		NY	ISHI	ED B	SY						_		4. H			ED E	λΥ 	
DATE TIME		DATE) (C	2	_			DAT			_		_		TIME				_		DAT				TIME	
		627	18 1	43	35				2711								-					2.11	_				

DTS Laboratoriae Inc. + 8100 Secura May + Santa Fe Springe CA 00670 + Phone (562) 3/7-2500 + Fav (562) 270-1150

V

CHAIN OF CUSTODY RECORD

OFY

4

PAGE

COMPANY											٨N	NAI	LYS	IS	RE	QL	JES	ST								PO#	86028	
AECOM ADDRESS 1220 Avenida Acaso PROJECT MANAGER Carmen Caceres-Schnell PROJECT NAME NDEP Downgradient Study A PROJECT NUMBER 60477365 Task 2016-170 SITE LOCATION DGIP Phase I Wells SAMPLER SIGNATURE		men.cacere	ZIP CODE 93012 email es-schnell@aecom PHONE NUMBER (805)764-4031 FAX NUMBER	1	SOIL PROPERTIES PACKAGE	HYDRAULIC CONDUCTIVITY PACKAGE	PORE FLUID SATURATIONS PACKAGE	TCEQ/TNRCC PROPERTIES PACKAGE	CAPILLARITY PACKAGE	FLUID PROPERTIES PACKAGE	РНОТОLOG: СОRЕ РНОТОGRAPHY	VAPOR TRANSPORT PACKAGE	POROSITY: TOTAL, AIR FILLED, WATER FILLED	POROSITY: EFFECTIVE, ASTM D425M	SPECIFIC GRAVITY, ASTM D854	BULK DENSITY (DRY), API RP40 or ASTM D2937	AIR PERMEABILITY, API RP40	HYDRAULIC CONDUCTIVITY, EPA9100/API RP40 or D5084	GRAIN SIZE DISTRIBUTION ASTM D422 pr 4464M	TOC: WALKLEY-BLACK	ATTERBERG LIMITS, ASTM D4318	VAPOR INTRUSION PACKAGE	FREE PRODUCT MOBILITY PACKAGE	Moisture Content, ASTM D2216	-	TURNAROUNI 24 HOURS 72 HOURS FILE:	5 DAY: NORM GRITY (CHE TEMP(F	
SAMPLE ID	DATE	TIME	DEPTH, FT	NUMBER OF	SOIL PR	HYDRAU	PORE FI	TCEQ/T	CAPILLA	FLUID P	PHOTOL	VAPOR -	POROSI	POROSI	SPECIFI	BULK DE	AIR PER	HYDRAU	GRAIN S	TOC: W/	ATTERB	VAPOR	FREE PI	Moistu	Ì	1	MENTS	
UENTY.3 8UI 60 24 80621		0940	60																x		x			x				
1. RELINQUISHED BY		2. RECEIN										CUI	ED B												DBY	/		
	/	COMPAN DATE	LAG IN	E		P.	_			IPAN		J/IL		1	1	ГІМЕ	-			_	C		IPAN			TIME		
		620	1/18 11	43	5																							

PTS Ishorstories Inc + 8100 Secure Way + Santa Es Springs CA 00670 + Phone (562) 347-2500 + Eav (562) 270-1150

5730 Centralcrest St. • Houston, TX 77092 Telephone (713) 316-1800 • Fax (877) 225-9953

July 12, 2018

Carmen Caceres-Schnell. Project Manager, AECOM, 1220 Avenida Acaso, Camarillo, CA 93012.

Re: PTS File No: **48150** Project Name: NDEP Downgradient Study Area Project Number: 60477365 Task 2016-170

Dear Carmen Caceres-Schnell,

Please find enclosed report for Physical Properties analyses conducted upon samples received from your **NDEP Downgradient Study Area** project. All analyses were performed by applicable ASTM, EPA, or API methodologies. The samples are currently in storage and will be retained for thirty days past the completion of testing at no charge. Please note that the samples will be disposed of at that time. You may contact me regarding storage, disposal, or return of the samples

PTS Laboratories appreciates the opportunity to be of service. If you have any questions or require additional information, please contact myself or Emeka Anazodo at (713) 316-1800.

Sincerely, PTS Laboratories, Inc.

C.A.Umeh

Chidi Umeh Flow Laboratory Supervisor

Encl.

PTS Laboratories

Project Name:	
Project Number:	

NDEP Downgradient Study Area 60477365 Task 2016-170

PTS File No: 48150 Client: AECOM

			TEST PRO	GRAM - 2018070	6		
CORE ID	Depth ft.	Core Recovery ft.	Grain Size Analysis ASTM D422	Atterberg Limits ASTM D4318	USCS Soil Classification ASTM D2487	Moisture Content D2216	Comments
		Bags	Grab	Grab	Calc.	Grab	
Date Received: 20180705							
NERT4.71S1 23' 20180626	23	N/A	x	x	х	х	In ZipLock Bag
NERT4.71S1 37' 20180626	37	N/A	х	x	х	х	In ZipLock Bag
NERT4.71S1 47' 20180626	47	N/A	x	x	х	х	In ZipLock Bag
NERT4.71S1 87' 20180627	87	N/A	х	x	х	х	In ZipLock Bag
NERT4.71S1 89.5' 20180627	89.5	N/A	x	x	х	х	In ZipLock Bag
NERT3.80S1 10' 20180627	10	N/A	x	x	х	х	In ZipLock Bag
NERT3.80S1 12' 20180627	12	N/A	x	x	х	х	In ZipLock Bag
NERT3.80S1 15' 20180627	15	N/A	x	x	х	х	In ZipLock Bag
NERT3.80S1 35' 20180627	35	N/A	x	x	х	х	In ZipLock Bag
TOTALS:			9	9	9	9	9

Laboratory Test Program Notes

Standard TAT for basic analysis is 10-15 business days.

Grain Size Analysis: Dry Sieve method; includes tabular data, graphics and statistical sorting in Excel format.

USCS Soil Classification by ASTM D2487 requires Atterberg Limits and Grain Size Analysis (included as part of Test Program).

PTS File No: Client: Report Date:

WATER (MOISTURE) CONTENT OF SOIL OR ROCK BY MASS (Methodology: ASTM D 2216)

Project Name:	NDEP Downgradient Study Area
Project No:	60477365 Task 2016-170

48150

AECOM

07/12/18

SAMPLE ID.	DEPTH, ft.	PTS ID NO.	ANALYSIS DATE	ANALYSIS TIME	MATRIX	TARE WEIGHT, grams	WET SAMPLE + TARE WT., grams	DRY SAMPLE + TARE WT., grams	MOISTURE CONTENT, % dry weight
NERT4.71S1 23' 20180626	23.0	1	20180710	1610	soil	15.41	61.68	59.59	4.7
NERT4.71S1 37' 20180626	37.0	2	20180710	1610	soil	15.49	62.91	53.05	26.3
NERT4.71S1 47' 20180626	47.0	3	20180710	1610	soil	15.46	63.63	58.99	10.7
NERT4.71S1 87' 20180627	87.0	4	20180710	1610	soil	15.35	62.45	58.44	9.3
NERT4.71S1 89.5' 20180627	89.5	5	20180710	1610	soil	15.40	62.47	58.58	9.0
NERT3.80S1 10' 20180627	10.0	6	20180710	1610	soil	15.41	61.40	57.17	10.1
NERT3.80S1 12' 20180627	12.0	7	20180710	1610	soil	15.45	62.43	54.40	20.6
NERT3.80S1 15' 20180627	15.0	8	20180710	1610	soil	15.48	64.44	61.53	6.3
NERT3.80S1 35' 20180627	35.0	9	20180710	1610	soil	15.35	60.52	58.49	4.7

PTS File No:48150Client:AECOMReport Date:07/13/18

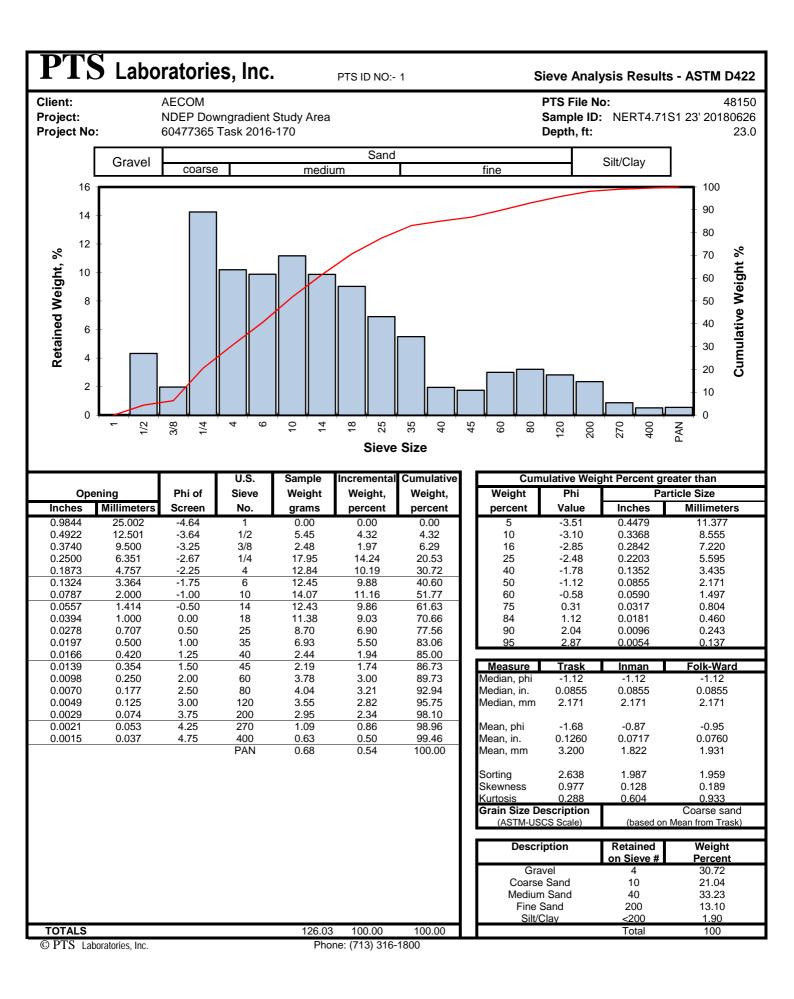
ATTERBERG LIMITS DATA - FINE FRACTION < No. 40 SIEVE

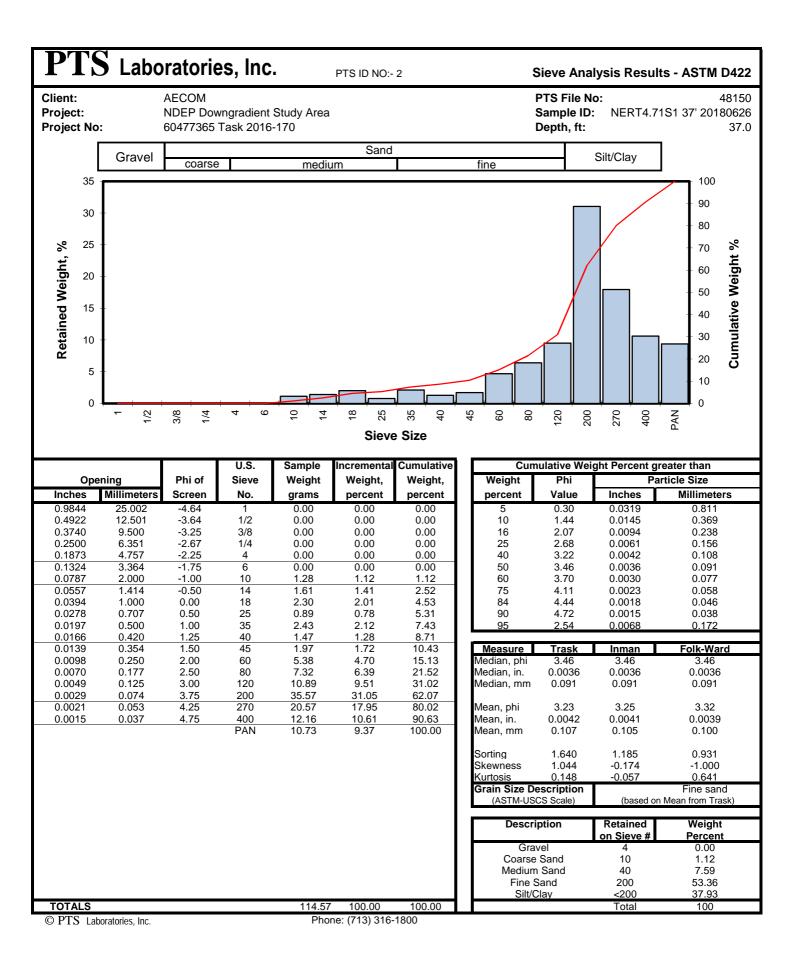
Project Name:NDEP Downgradient Study AreaProject No:60477365 Task 2016-170

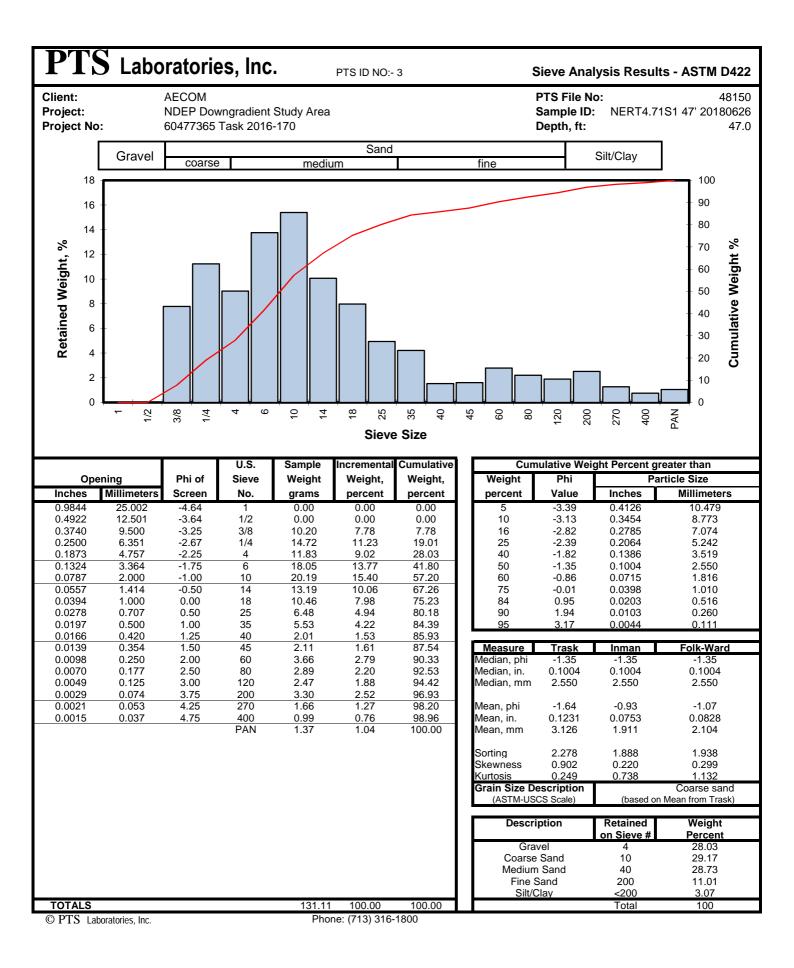
			METHODS:		ASTM D4318		ASTM D4318	ASTM D2487	USDA
SAMPLE ID.	DEPTH, ft.	PTS ID NO.	ANALYSIS DATE	AT LIQUID LIMIT	ITERBERG LIMITS PLASTIC LIMIT	S (1) PLASTICITY INDEX	USCS / PLASTICITY CHART SYMBOL (Fines: <#40 Sieve)	USCS CLASSIFICATION, Group Symbol: Name	USDA SOIL TEXTURE SCHEME (2)
NERT4.71S1 23' 20180626	23.0	1	20180712	19.0	NON P	LASTIC	NP	SM - Silty sand with gravel	-
NERT4.71S1 37' 20180626	37.0	2	20180712	28.3	18.8	9.5	CL	CL - Lean clay with sand	-
NERT4.71S1 47' 20180626	47.0	3	20180712	23.0	NON P	LASTIC	NP	SM - Silty sand with gravel	-
NERT4.71S1 87' 20180627	87.0	4	20180712	19.3	11.6	7.7	CL	CL-SP - Poorly graded sand with gravel	-
NERT4.71S1 89.5' 20180627	89.5	5	20180712	19.6	13.1	6.5	CL-ML	CL-ML - Silty lean clay with gravel	-
NERT3.80S1 10' 20180627	10.0	6	20180712	21.0	NON P	LASTIC	NP	SM - Silty sand with gravel	-
NERT3.80S1 12' 20180627	12.0	7	20180712	17.6	12.2	5.4	CL-ML	CL-ML - Silty lean clay with sand	-
NERT3.80S1 15' 20180627	15.0	8	20180712	17.9	NON P	LASTIC	NP	SP - Poorly graded sand with gravel	-
NERT3.80S1 35' 20180627	35.0	9	20180712	26.1	11.4	14.7	CL	Sandy lean clay with gravel	-

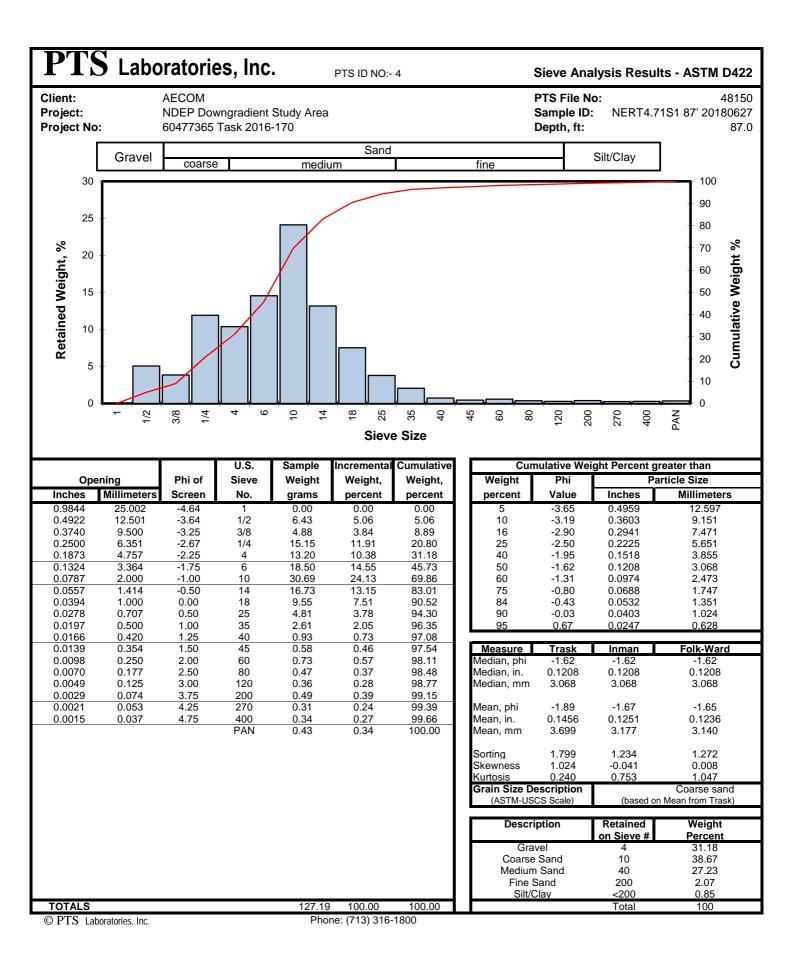
(1) Silt assumed as fine fraction for NON-PLASTIC (NP) samples.

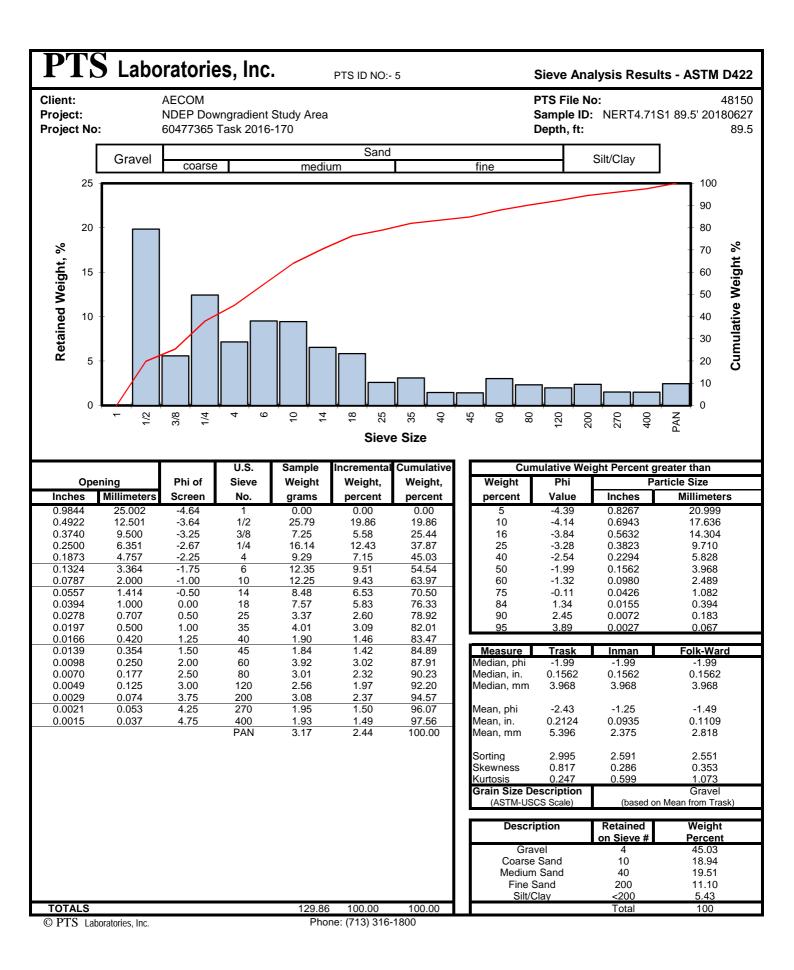
USCS: Unified Soil Classification System

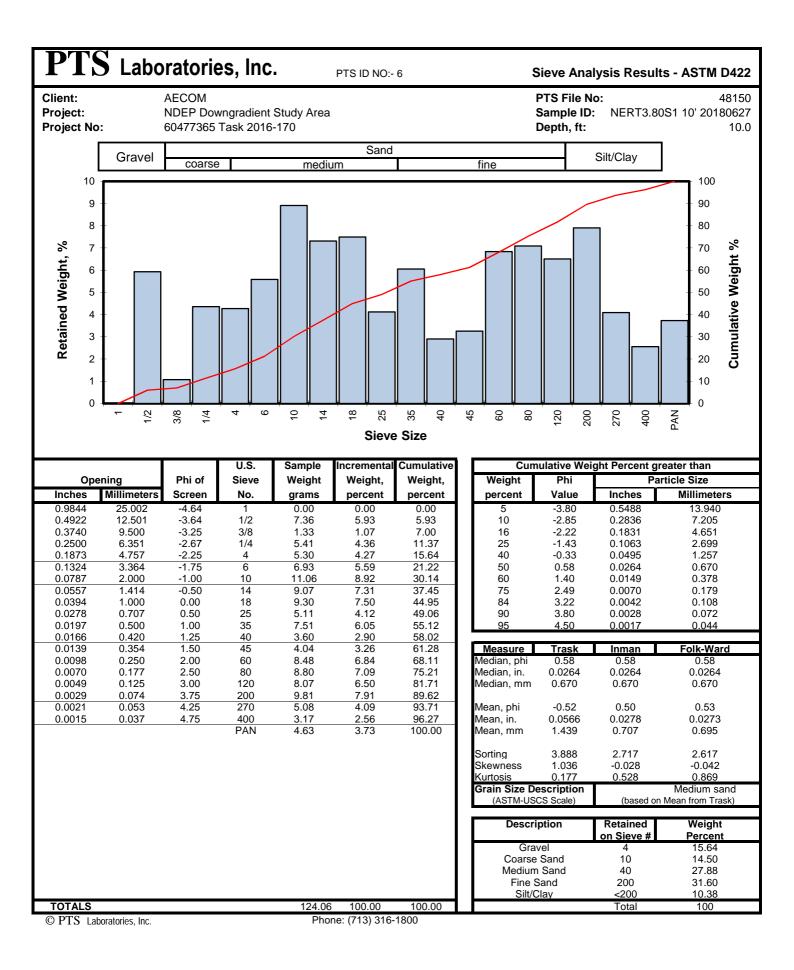

PTS File No: 48150 Report Date: 7/12/18

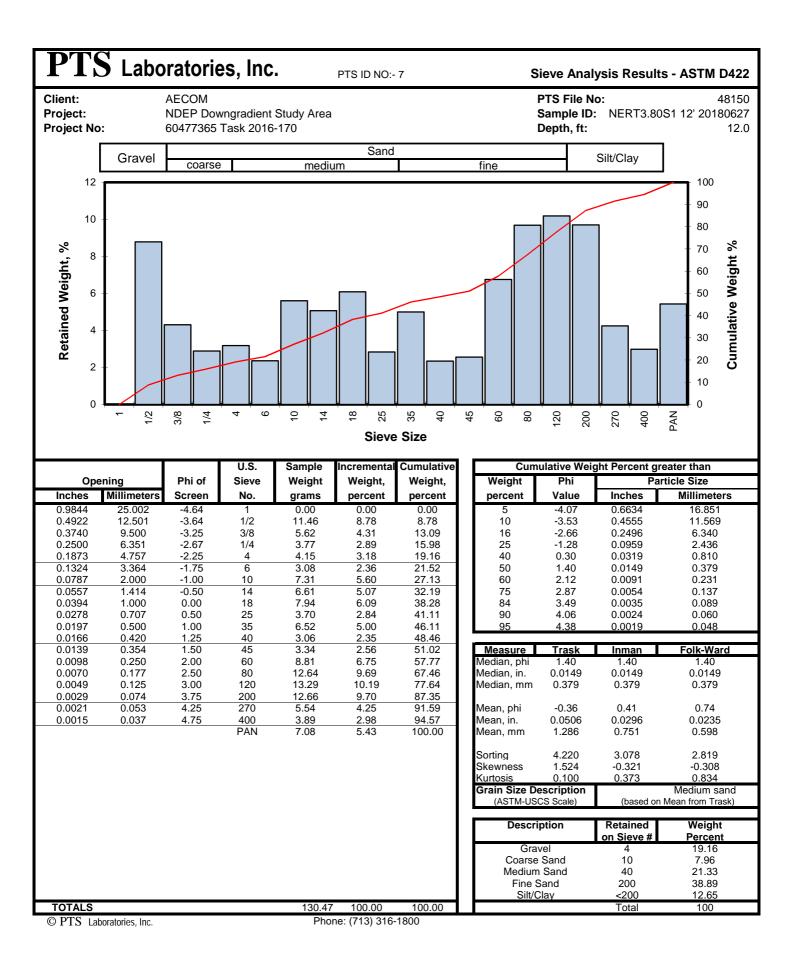

PARTICLE SIZE SUMMARY

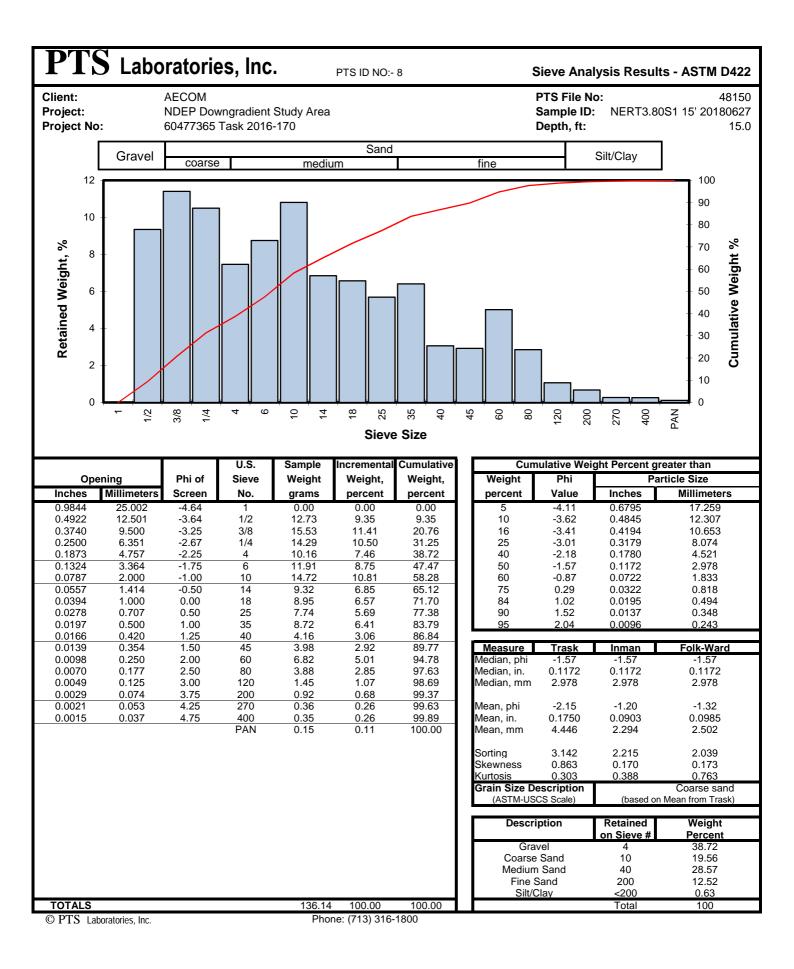

(METHODOLOGY: ASTM D422)

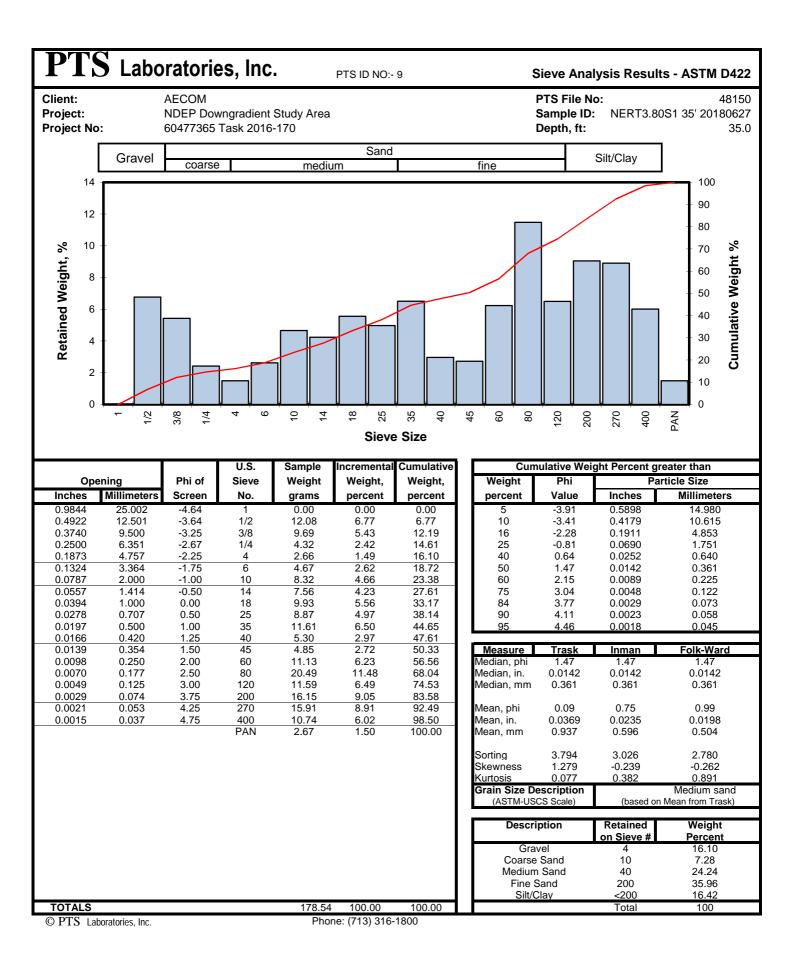

PROJECT NAME:	NDEP Downgradient Study Area
PROJECT NO:	60477365 Task 2016-170


			Mean Grain Size Description	Median	Pa	article Size	Distribution	, wt. perc	ent
		PTS ID	USCS/ASTM	Grain Size,	Gravel		Sand Size		Silt/Clay
Sample ID	Depth, ft.	No.	(1)	mm		Coarse	Medium	Fine	
NERT4.71S1 23' 20180626	23.0	1	Coarse sand	2.171	30.72	21.04	33.23	13.10	1.90
NERT4.71S1 37' 20180626	37.0	2	Fine sand	0.091	0.00	1.12	7.59	53.36	37.93
NERT4.71S1 47' 20180626	47.0	3	Coarse sand	2.550	28.03	29.17	28.73	11.01	3.07
NERT4.71S1 87' 20180627	87.0	4	Coarse sand	3.068	31.18	38.67	27.23	2.07	0.85
NERT4.71S1 89.5' 20180627	89.5	5	Gravel	3.968	45.03	18.94	19.51	11.10	5.43
NERT3.80S1 10' 20180627	10.0	6	Medium sand	0.670	15.64	14.50	27.88	31.60	10.38
NERT3.80S1 12' 20180627	12.0	7	Medium sand	0.379	19.16	7.96	21.33	38.89	12.65
NERT3.80S1 15' 20180627	15.0	8	Coarse sand	2.978	38.72	19.56	28.57	12.52	0.63
NERT3.80S1 35' 20180627	35.0	9	Medium sand	0.361	16.10	7.28	24.24	35.96	16.42









PTS Laboratories, Inc		CHAIN	1	-			_	_	_			_	REC		ст		-				-	GE PO#	1	OF 86028	+
AECOM			H		1	T	T	T						T	-	П	-				1	-			
ADDRESS CITY 1220 Avenida Acaso Ca	narillo	ZIP CODE 93012	1								٥		2027		0 or D508	4464M						TURNAI 24 HOU 72 HOU			AYS RMAL
		^{email} es-schnell@aecom			E GE	ц ц с	3				R FILLE	M	O MTS		API RP4	0422 br				щ	2216	OTHER			
PROJECT NAME NDEP Downgradient Study Area PROJECT NUMBER		PHONE NUMBER (805)764-4031 FAX NUMBER		GE	TY PACKAGE	SAI UHAI IONS PACKAGE		AGE	PHOTOGRAPHY	AGE	ED, WATE	EFFECTIVE, ASTM D425M	D854	P40	(, EPA9100	DISTRIBUTION ASTM D422 br 4464M		ASTM D4318	AGE	Y PACKAC	Content, ASTM D2216	SAMPLE		GRITY (C TEMP	
60477365 Task 2016-170 SITE LOCATION	a.		IPLES	S PACK/	CONDUCTIVITY		KAGE	ES PACH	E PHOT	RT PAC	, AIR FILI	CTIVE, A	Y, ASTM	Y, API R	UCTIVIT	RIBUTIO	LACK	TS, ASTI	IN PACK	MOBILIT	tent, A	PTS QU	OTEN	10.	
DGIP Phase I Wells SAMPLER SIGNATURE			R OF SAM	00			CAPILLARITY PACKAGE	FLUID PROPERTIES PACKAGE	LOG: CORE	VAPOR TRANSPORT PACKAGE	POROSITY: TOTAL, AIR FILLED, WATER FILLED	ITY: EFFE	SPECIFIC GRAVITY, ASTM D854 BUI K DENSITY (DRY) ADI RP40 or ASTM D2027	AIR PERMEABILITY, API RP40	HYDRAULIC CONDUCTIVITY, EPA9100/API RP40 or D5084		WALKLEY-BLACK	BERG LIMITS,	VAPOR INTRUSION PACKAGE	FREE PRODUCT MOBILITY PACKAGE	Ire Con	PTS FIL	e: 814	50	
SAMPLE ID DATE	TIME	DEPTH, FT	NUMBE	SOIL PF	HYDRAULIC		CAPILL	FLUID F	PHOTOLOG:	VAPOR	POROSI	POROSITY:	SPECIF BILLK D	AIR PEF	НУВВА	GRAIN SIZE	TOC: W	ATTERBERG	VAPOR	FREEP	Moisture		CON	IMENT	3
VERTY. 7 15123 2018 06 26 6/26/1	/oto	23														x		x			x				
4 11 37 11 4 6/26/1	1 1130	37							_	_		1				1	_			4					
11 11 47 11 11 6/2/1	1050	47		-	-	-				_		_					_		_	_					
1 11 872080627 6/27/1	NO.	87		-	+	_	-		_	_	-	-	+	-			_	$\left \right $	-	+	-				
	0725	89.5		_	-	-	-	-	_	_	+	+	-	-	-		_		-				-		
NERT 3. 8051 10 2180627 6/271	1 (1)	10		+	+	-	+	-	+	-	-	+	-	+	\vdash	+	-		-		-		-		-
	11 1340	(2		+	+	+	+		-	-	+	+	+	-		$\left \right $	-	+	-	+	+				_
u = 1, is' = 1, 6/241 u = 0, 35 = 1, 6/241		3			1	1						1		1		T		ţ		V	1				
					-																				
	2. RECE	IVED BY					3. 1	RELI	NQU	JISH	ED E	3Y							4. R	ECE	IVED	BY			
SOMPANY A	COMPAN	LABS INC			-	-	cc	MPA	NY									-	CON	IPAN	17				-
DATE TIME 5/29/18 (300)	DATE 7/5/	IB O	E G //	_		-	DA	TE		-			TI	ME		_	-		DAT	E			TIN	1E	-

Appendix F

Correspondence Regarding Hexavalent Chromium Analysis

From:	James Carlton Parker
To:	Van Den Berg, Harry; James Dotchin; "Steve Clough"
Cc:	Roper, Chad; Caceres-Schnell, Carmen; Bilodeau, Sally; Weiquan Dong; Alan Pineda
Subject:	RE: NERT RI - Phase I Groundwater Sample analysis for Hexavalent Chromium
Date:	Tuesday, July 31, 2018 2:49:21 PM
Attachments:	Table X Analytical Total Chrome Results.xlsx

Harry,

Based on the following information from your email and excel chart as well as the following information:

1) These samples are investigatory in nature and not performance samples,

2) Phase 2 well drilling is going to occur in the relatively near future,

3) Phase 1 wells were scheduled to be sampled again after Phase 2 drilling, but Phase 1 wells were originally scheduled only for perchlorate and chlorate at that time, and

4) Method 218.7 states samples <u>must be</u> analyzed within 14 days; it does not read samples <u>should be</u> analyzed.

NDEP finds we can discard the current out of time Phase 1 hex-chromium samples taken in July 2018 for now and when we return with Phase 2 drilling and it's subsequent Phase 1 and Phase 2 sampling we include hex-chromium on the Phase 1 wells (Phase 2 wells were scheduled to have hex-chromium). This is your option 4 below. If any questions please call me.

Carlton

From: Van Den Berg, Harry <Harry.VanDenBerg@aecom.com>

Sent: Tuesday, July 31, 2018 1:58 PM

To: James Carlton Parker <jcarltonparker@ndep.nv.gov>; James Dotchin <jdotchin@ndep.nv.gov>
 Cc: Roper, Chad <Chad.Roper@aecom.com>; Caceres-Schnell, Carmen <Carmen.Caceres-Schnell@aecom.com>;
 Bilodeau, Sally <Sally.Bilodeau@aecom.com>

Subject: NERT RI - Phase I Groundwater Sample analysis for Hexavalent Chromium

Carlton and JD,

Last week and again this week we followed up with TestAmerica and Silver State to check on the progress regarding the chromium results of the analytical tests for the Phase I wells, which were sampled on July 9, 10, and 16, 2018. TestAmerica has finished their analysis, however, Silver State missed their holding time for the Hex Cr analysis on all samples. Per method 218.7 hexavalent chromium analysis has a hold time of 14 days provided that samples are preserved upon receipt at the laboratory.

As you can see below when we contacted Silver State on Monday July 23, they indicated everything was progressing smoothly and that we should receive the first results in a few days. On Friday, July 27 they later told us that they had problems with their analytical equipment and requested to send the samples out to a sub (which we

approved and pointed out that the samples would need to be run over the weekend of July 28 and 29 for any of them to be within holding time). This morning they notified us that the analyses will not be analyzed by the subcontract laboratory they selected until Wednesday, August 1.

Based on historical results in the area we were not expecting to find Hex Cr in the groundwater, but the analysis was added to be thorough and complete. Attached is a table that has dissolved total chromium results which range from 1.3 to 26 ug/L in groundwater collected from the Phase I wells.

At this point we have several options as follows.

- 1) Analyze the samples for Hex Cr and report the results with an "out of holding time" flag
- 2) Resample all wells where hex chrome was specified and have the Hex Cr samples analyzed within method criteria by another laboratory.
- 3) Combination of 1) and 2) and report both Hex Cr results (those out of holding time and the re-sampling within method criteria)
- 4) Resample the wells for Hex Cr when the Phase II wells are sampled. The Phase I wells are already scheduled for a sampling event at that time but were only being analyzed for Perchlorate and chlorate.

We believe option 4 may be the best course of action, since it would provide data that could be used without restriction and would not significantly add to the cost. Of course AECOM and Silver State would not charge for the re-analysis. Please let us know how you would like us to proceed or if you wish to discuss.

Thanks,

Harry Van Den Berg, PE, CEM Associate Vice-President, Remediation

AECOM 1220 Avenida Acaso Camarillo, CA 93012

D: (805) 764-4045 M: (805) 890-3098

From:	Roper, Chad
To:	Bilodeau, Sally; Caceres-Schnell, Carmen
Subject:	FW: Groundwater Samples for Hexavalent Chromium from NERT
Date:	Monday, July 23, 2018 5:49:15 PM

FYI

From: Melissa Vega [mailto:mvega@ssalabs.com]
Sent: Monday, July 23, 2018 5:49 PM
To: Roper, Chad
Subject: RE: Groundwater Samples for Hexavalent Chromium from NERT

Hi Chad,

Everything seems to have gone smoothly. No major questions on sample names once I figured out the handwriting.

The first report should come out in a few days or so.

Thanks much Melissa

From: Roper, Chad < Chad. Roper@aecom.com>

Sent: Monday, July 23, 2018 3:48 PM

To: Melissa Vega <mvega@ssalabs.com>

Cc: 'John Sloan' <jsloan@ssalabs.com>; David Frohnen - ssa labs <dfrohnen@ssalabs.com>; Caceres-

Schnell, Carmen < Carmen. Caceres-Schnell@aecom.com>; Bilodeau, Sally

<Sally.Bilodeau@aecom.com>

Subject: Groundwater Samples for Hexavalent Chromium from NERT

Melissa,

I wanted to check on the status of the groundwater samples you received on July 11, and July 16... from AECOM and the NERT project...

Were there any sample name questions? Any login problems? Thanks,

Chad Roper, Ph.D.

Project Manager, Remediation D +1-805-764-4027 M +1-805-236-1009 Chad.Roper@aecom.com

AECOM

1220 Avenida Acaso Camarillo, California 93012-8750, USA T +1-805-388-3775 aecom.com

Built to deliver a better world

LinkedIn Twitter Facebook Instagram

Appendix G

Groundwater Sampling Records

AECOM

Well ID: 4A-30

Low-Flow Ground Water Sample Collection Record

a. To	tal Well Le	ngth_3	-1.24	red from Top c. Length of	Water Colu	umn <u>/5,7</u>			Casing Diam	neter/Material
b. Wa	ater Table	Depth	18.55	d. Calculated	d System V	olume (see	back) 10	29 21		
2. WELI a. Pu	PURGE	DATA	len	flow-	blad	Ich Bu	mp	5,47×3	Bung C	30'
- Terr - pH	ceptance (perature Cond.	<u>+</u> 2	°C 1 unit	see workplan) -D.O. Turbidity ORP	0.3 mg	NTU read	ing is > 10		U	
c. Fie	ld Testing	Equipm	ent use	d: Ma	ake		Model			Number
			-	ftendre	6		452		608	2.1
Time (24hr)	Volume <u>Removed</u> (Liters)		<u>Ha</u>	Spec. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (teet)	Color/Odor
07850	1.0	27.22	and the second second	7,90	1.70	176	162.9	200	14.55	Cleudy N
0900	3.0	27,06	7.21	7.89	1.46	1.72	31.2	200	14.55	Clear I n
09.10	5-0		1.22	8.07	1.17	169	8.4	200	18.55	*
0915	60		7.2.2	8.08	1.46	148	7.9	200	18,55	1
0920	- 50	noh	1			al				
					77	3/18				
d. Ac	ceptance	criteria p	bass/fail		Yes No		<u>م</u>			(continued on back)
Ha	ave parame If no or N			ow.						
3. SAMF	PLE COLL	ECTION	N: 1	Method:	in flo	w B	ladh	Punf		
Sample I			Type mc mc	No. of Conta	ainers	No	rvation ne DA	Analysi	s Req.	Time 0970 0920

AECOM

Well ID: COHT.81

Low-Flow Ground Water Sample Collection Record

Project I Site Loc	ation: /	ord low	177365 6, calm, 82):	,		<u>? () () () () () () () () () () () () () </u>		
			sured from To		a fille and a second						
			_ c. Length of					2.1	eter/Material		
b. W	ater Table D	Depth 16.2	d. Calculated	d System V	/olume (see	back) 7	199 + 1				
2. WEL	L PURGE D	ATA	Flur Bla		Pino	70	1.0 8 3	Russ	2060'		
			d (see workplan					o ung	Y C C		
- Ter - pH	nperature Cond.	<u>+</u> 2°C <u>+</u> 0.1 uni <u>+</u> 3%	-D.O.	0.3 mg 10% if		ing is > 10	NTUs				
c. Fie	eld Testing E	Equipment us	ed: M	ake 🗠		Model M-K-Z			Serial Number		
	Volume										
<u>Time</u> (24hr)	Removed (Liters)	Temp. pH		DO	ORP		Flow Rate		Color/Odor		
705	1	27.00 7.40	(µS/cm)	(mg/L)	(mV)	(NTU) 497	(ml/min) 2.cc	(teet)	Brown / NU		
720		25.93 7.25	3.64	0.88	176	526	700	16.25	11		
735		25.97 7.23		0.60	173	153	200	16.25	Cloudy INC		
745	8.5	26,03 7,25	and the second se	0.58	172	49.7	200	16.25	Clear In		
755		26.11 7.26		0.55	170	38.6	200	16.25			
800	11.5	26.14 7.20		0.55	170	39.5	200	16.25	h		
SIL	- <	anol			169	37.6	Zue	16.23			
	cceptance c	riteria pass/f	ail	Yes No		۱ <u>ــــــــــــــــــــــــــــــــــــ</u>		•	(continued on back)		
				P					(
H	ave parame	ters stabilize	3	U C							
	If no or N/	/A - Explain b		6 210	ONTH	but	stabh				
3. SAM		ECTION:	Method:	on fla	w - t	ladde	Pune				
Sample	ID Co	ntainer Type				rvation	Analysi		Time		
2131-20	6140713		2 Poly	1		ene	Perch		0510		
		125 4	a lity	/	23	DA	chka	orte	0810		
Comme	nts No	Antry.	west	1 gerer	tene .	t succ	me,	Dedice	trol Inh		
Signatur		11	° / /				Date	1	1		

Well ID: LNOMW-01

	NED			C	Date: 7	11/18	Tir		<u>)9حر)</u> am/pm
Project N Site Loca	ation:	LVW							<u> 36</u> am/pm
Weather	Conds:	Breeze, Hu	mind , n	950	Collector(s)	:	1e/24		
1. WATE	ER LEVEL	DATA: (meas	ured from To	o of Casin	a)			· · · · · · · · · · · · · · · · · · ·	
a. Tot	al Well Lei	ngth_61.56	c. Length of	Water Col	umn <u>Z1/</u>			7110	neter/Material
b. Wa	ter Table	Depth <u>36.6%</u>	d. Calculate	d System V	/olume (see	back)	1.1 × 1		
2. WELL	PURGE	ATA)	0	12	-273	limp	
a. Pu	rge Methoo	1: lant	kow b	and	King			limp	051
- Tem - pH	ceptance C perature Cond.	Criteria defined <u>+</u> 2°C <u>+</u> 0.1 unit <u>+</u> 3%	(see workplan -D.O. Turbidity ORP	0.3 m 10% i	g/I f NTU read milivolts	ing is > 10	NTUs		
c. Fiel	Id Testing	Equipment use	d: M	ake		Model			Number
		-	Herit	c	U	-52		608	21
	Volume						120.0		
Time (24hr)	Removed (Liters)	(°C)	Spec. Cond. (µS/cm)	(mg/L)	ORP (mV)	(NTU)	Flow Rate (ml/min)	Drawdown (teet)	Color/Odor
1015	0.5	30107163	4.89	5.47	121	2280	100	37.70	Aur Br
1030	4.8	27.11 7.10	5.01	3.37	155	21000	150	37.69	Brown
NUS	6.75	27.13 7.09	5.03	2.18	168	947	150	371.9	Abridy
1100	9.00	27,12 710	5.43	3.20	170	550	150	37.69	Churchy
105	9.75	27.52 7.12	5.01	3.25	169	417	150	37.69	clauti
1110	10.5	27.10 713	4.99	3.12	171	409	150	37.69	Clanty
1115	11.25	27,10 7.13	4.98	3.13	171	412	150	37.69	chury
a. Ac	ceptance c	criteria pass/fail		Yes N	o) N//	A			(continued en back)
Ha	ive parame	eters stabilized		3					
	If no or N	/A - Explain be	ow. Tarbi	ch h	reh l	ant S	Pab.		
3. SAMP		ECTION:	Method:	-		all	Rund		
Sample II	D Co	ontainer Type	No. of Conta	ainers	Proce	rvation	Analysi	P Peg	Time
OMWS1	20150011 20	a fold	1	0.1010	Aler.		fuell	A.	1/20
	-21	a Polyd	7/8/h				1. Spells	4	
	12	5 Pet Ton	In 1		CAD		chiland	1	ine
		1 1.		7 6 -			<i>W</i>		
		[manuma	a fra 1	enter	ut .				
Commen	ts	allos							
		1 1			>				1
Signature		No	<u>bl</u>				Date	n/h	hel -

Well ID: CADMWZ

Client: Project N	NEI No:	21 6477	215		D	ate: 7/	17/14	Ti		/ <u>///</u> am/pm //////am/pm
Site Loc	ation:	1.1	W	3 <u>a., 100</u> °	C	collector(s)):	AC 18		annph
			•	red from To			<u>3</u> (a-b)			neter/Material
b. Wa 2. WEL	ater Table I L PURGE I	Depth	<u>34172</u>	d. Calculate	d System V	olume (see	back) //	5.45×1 ·35×3	P	
- ren - pH	cceptance C nperature Cond.	± 2 ± 0.	.1 unit	-D.O.	0.3 mg	I/I NTU read	ing is > 10		Jung	<u>e</u>
c. Fie	eld Testing	Equipmo	ent used		ake		Model	2	Seria	Il Number
<u>Time</u> (24hr)	Volume <u>Removeo</u> (Liters)			Spec. Cond.		ORP		Flow Rate		<u>Color/Odor</u>
1030 104/K 1055 1100	10 4/10 8 .0 710	34.18 32.26 31.97	7.32 7.26 7.22 7.22	(μS/cm) 3.2C <u>3.30</u> 3.34 3.42	(mg/L) 1.18 0.54 0.52 0.55	(mV) //.5 /77 /75 /77	(NTU) >1050 4/66 5%7 5787	(ml/min) <u>Z00</u> <u>Z00</u> <u>Z00</u> <u>Z00</u> <u>Z00</u>	(feet) 34.24 34.24 34.24 34.24	Barn IN. Churchag II Churchag IV
1105 1114	18:0		7.23	3.42	0.56	179	582	7.00	34,24	denty/n/
d. Ad	cceptance	criteria p	bass/fail		Yes No	D N//	1 A		1	(continued on back
	ave parame If no or N	I/A - Exp	blain bel	Jurb		but .	stallhe	1		
3. SAM	ID C	ECTION ontainer		Method:			rvation	Analys	sis Req.	 Time,
<u>MW2-20</u>		5	50 mc	Poly	1	ne El	ne	0.	horate	110
Commer	nts <u>hre</u>	Min	See	shipe	f see	ne				
Signatur	e	Z		he to	D			Date	-11	nlid

AECOM

Well ID: Mw-or

Weather Conds: Cloudy, wm	dy 290	<u> </u>	collector(s)	: <u> </u>	e lew			
1. WATER LEVEL DATA: (measu	red from Top							•
a. Total Well Length	c. Length of	Water Colu	umn <u>SS</u>	<u>3</u> (a-b)		Casing Diam	eter/Material	
h Water Table Depth 3907	d Coloulator	I Sustam V			7.40	2" 8		
b. Water Table Depth <u>39.72</u> 2. WELL PURGE DATA a. Purge Method:	u. Calculated	i System v	olume (see	баск)	7 74	.?		
2. WELL PURGE DATA	£2.	- 11	I. R		C 70 J		42'	
			an bi	ing		Jung le		
 b. Acceptance Criteria defined (- Temperature <u>+</u> 2°C 	see workplan) -D.O.		./1					
$-pH$ ± 0.1 unit		0.3 mg 10% if		ing is > 10	NTUs			
- Sp. Cond. <u>+</u> 3%	ORP	<u>+</u> 10 m						
c. Field Testing Equipment use	d: Ma	ake		Model		Serial	Number	
	Itail	0		4-52			321	-
- Volume						,		-
Time Removed Temp. pH	Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Drawdown	Color/Odor	
(24hr) (Liters) (°C)	(µS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	(teet)		ĩ –
1250 0.5 29.67 7.44 1305 2.5 26.55 7.15	4.01	7.26	133	110 .	250	39,51	chian I wa	ne
1305 3.5 25.86 7.17	4.05	6.50	143	31.9	710	39.51	11	
1310 415 2544 7.17	4.04	6.39	1414	15.9	200	39.51	11	
1315 55 25,79 7.18 1320 6.5 8.6 7.18	4.04	6.42	145	6.9 4.7	200	39.51	N	-
1325 7.4 5.6 7.17	4.05	6.38	146	2.2	200	39.0		
1330 - 5 cm 1							AC 7/12/	111
d. Acceptance criteria pass/fail	(Yes No	N//	4			(continued on back)	
Have parameters stabilized								
16 no. on N/A – Eveloin hol								
If no or N/A - Explain bel	ow.				1-1			
······································	,	0	1	1 1	0			
3. SAMPLE COLLECTION:	Method: <u>Lc</u>	n tlov	v - h	addr	Pinp			
Sample ID Container Type	No. of Conta	ainers	Prese	rvation	Analysi	s Rea.	Time	
02-20150712 260 M2	Pely	1	Nor	~	fired	Soute	1330	-2
125 ml P	An Anton	1	ED		Ch le	int		•0
- Callect Field dup + FR MW-02-2		CR J	Equip	ment n	usa bi	ink m	w-02-24407	12-
	angle con	tumer		Litin	Tech		A State of the second second	
Comments <u>Arenc</u>			~					
								1

AECOM

Well ID: MW-3

Project No Site Local	tion: 📝	0477365			ate: 7/			Finish	<u>000</u> am/pm <u>1034</u> am/pm
Weather (Conds: 🥂	nt Clouchy	Hol Culm	95° C	ollector(s)	:_ <u>_</u>	e / Ev	V	
			ured from Top c. Length of V	-		<u>7</u> (a-b)		Casing Diam	eter/Material
b. Wat	ter Table D	epth <u>2.89</u>	d. Calculated	System Ve	olume (see	back) 🂪	9 x /	<u> </u>	
2. WELL a. Purg	PURGE D ge Method:	ATA	Flow 13/	uld .	Rup	13.	5+3	Pinge	16'
b. Acc - Temj - pH	eptance Cr perature Cond.	riteria defined <u>+</u> 2°C <u>+</u> 0.1 unit <u>+</u> 3%	(see workplan) -D.O. Turbidity ORP	0.3 mg	/I NTU read	ing is > 10			
c. Fiel	d Testing E	Equipment use	d: Ma			Model			Number
			fler. 5.	6		4-52		608	<u>a</u>
<u>Time</u> (24hr)	Volume <u>Removed</u> (Liters)	<u>Temp. pH</u> (°C)	Spec. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (teet)	<u>Color/Odor</u>
1005		29.47 7.39	5,08	5.K	1211	6.7	150	2.88	Clan / nes
1010	1.5 2.25	28.18 7.30		5.22	127	4.6	150 150	2.38	3) 11
1020		28.93 7.34		4.98	12.9	1,0	150	2.88	/
10.25	Sem	de -				ļ			
				71	1				
					110	· · ·			(
d. Acc	ceptance ci	riteria pass/fai		res No	N/A	A Contraction of the second se			(continued on back)
Hav	ve paramet	ters stabilized							
114	re paramet			ue L					
	If no or N/	A - Explain be	low.						
3. SAMP		CTION:	Method:	flor	v hi	udd	Prese		
					and Select		/		
Sample II		ntainer Type	No. of Conta	iners		rvation	Analys	is Req.	Time
1 11-3-2	6180111	125 0	The Make	·/	0	han -	K	and link	1175
			- anne		6,	(-1 ;		allone a	16-55
									·····
Comment	s <u>Ne</u>	me	3						
Signature	0	2/1	A	D			Date	2/12/	116

AECOM

Well ID: MW-L

1. WATE	R LEVEL	DATA:		red from Top		ollector(s)		· · · · · · · · · · · · · · · · · · ·		······
				c. Length of			/ (a-b)		Casing Diam	eter/Material
b. Wa	iter Table I	Depth	204	d. Calculated	d System V	olume (see	back)	1x 70		I-MARK-I
	PURGE I		en 1	Ekn L	Jadde	hum	، ،ک 	8 x3	Pure C	1 6.5-1
- Tem - pH	ceptance C iperature Cond.	<u>+</u> 2	°C .1 unit	see workplan) -D.O. Turbidity ORP	0.3 mg	NTU readi	ing is > 10		U	
c. Fie	ld Testing	Equipm	ent usec	1: Mi Heris	ake		Model		Serial	Number
	Maluma		_		/					
<u>Time</u> (24hr)	Volume <u>Removec</u> (Liters)	<u>Temp.</u> (°C)	<u>pH</u>	Spec. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (teet)	Color/Odor
1682	0,5	25.71	7.37	4.28	3.4.3	119	5.3	10	6.06	Claurlin
1055	1.25	35,47 34.58		4.28	2.91	124	1.8	150	6.06	Clen / Ale
1105	2.75		7.20	4.26	283	126	0.2	150	6.06	Clean 1 Mg
1)XI	Sen	14	2 -			2				
					- St					
						118				
d. Ac	ceptance	criteria p	bass/fail		Yes No	N/A			· · · ·	(continued on back
Ha	ive parame	eters sta	abilized							
	If no or N	/A - Exp	olain bek	ow.						
3. SAMF		ECTION	N: N	Nethod: /c	n flere	Blu	dh h	m		
Sample I	D Co	ontainer	Туре	No. of Conta	ainers	Prese	rvation	Analysi	s Rea.	Time
-41. 2Ur			2 Pul		/	No	ne	Purch		1110
		12		Anton 1		EL	, ,	Chlo	iste	
		43 5	engle	Contain	ba	Kelso 7	tech			
		ar								

AECOM

Site Loca Weather		vu ut Ck	unday, P	alm, ~ 90	2° C	collector(s)): <u> </u>	elen	/		
			•	red from Top			7		Casing Diam	neter/Mater	rial
				c. Length of		-			L/"	ioton mator	
				d. Calculated	-		77	1.6 x1 8 x3			
2. WELL	PURGE	ATA	ŝ	Flen i	22.1	0	57.	8+3		11 -1	
a. Pu	ge method		en 1	Flen 1	Stadde	King	2	an	nger	61	
D, AC	ceptance Comperature	riteria c ± 2	rennen (see workplan) -D.O.	0.3 mg						
- pH	•		.1 unit	Turbidity			ing is > 10	NTUs			
- Sp.	Cond.	<u>+</u> 3	%	ORP	<u>+</u> 10 m	nilivolts					
c. Fie	ld Testing	Equipm	ent used		ake		Model		-	Number	
			-	Her, ha			4.+2		658	21	
	Volume		-								
<u>Time</u> (24hr)	Removed (Liters)	<u>Temp.</u> (°C)	<u>pH</u>	Spec. Cond. (µS/cm)	<u>DO</u> (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (teet)	Color/O	<u>dor</u>
CRIFT	0.5-	1	7.28	5.53	SIK	120	46.4	250	321.90	Clear	Inc
0819 0823	1.5	27.47		5.49	4,40	1417	21.3	250	34,90 34,90		
6827	3.5	27.43		5.51	4.35	143	22.4	250	34.90		
0831	4.5	27.4K		5.52	4,34	142	72.6	250	34,95	11	
583K				Single							
				A	1/12/1						
d. Ac	L	riteria r	bass/fail		Yes No	N//	4			(continued on	hack)
		•		C	- , · ·		•			(001111200 011	beauty
Ha	ive parame	eters sta	abilized		go						
	If no or N	/A - Exr	hlain bel	ow			122				
				Tuib	>10	hord S	bull				
							•	1 0			
3. SAMP		ECTIO	N: I	Vethod:	m Ak	nº 5	Judan	Ang			
Sample I	D Co	ontainer	Туре	No. of Conta	ainers	Prese	rvation	Analysi	s Req.	Time	
1-13-2419			50 Put	2	1	N	ine	lan	chout.		
		12	5 Pel	, Amber	1	E	DA	chi	Inst		
		17	Ś	La contar	1	· ×	lea :	5. 1			
			Jem	un comian	ma b		(tea)	<u>un</u>			
Common	ts A	In	_								
Commen											

AECOM

Client: Project N	NER		7736		C)ate: <u>7</u>	112/14	Tii		<u>ピーバ</u> am/pm バ <u>イン</u> am/pm
Site Loca		LV	W							
Weather	Conds:	Clu	reh, E	hearn ,~	900	Collector(s	:	se 18	EW	
1. WATE		DATA:	(measu	red from Toj	o of Casin	a)	8-81 -			
			•	c. Length of			12 (a-h)		Casing Dian	neter/Material
				-					Z" PU	C
b. Wa	iter Table I	Depth 3	270	d. Calculate	d System V	Volume (see	back) 5.	66 x 1		
2. WELL	. PURGE I	DATA	_		,	, 0	1-	7.0 23	0	
a. Pu	ge Method	d:	ler	~ Flow	Blue	the Vi	mp		Jump E	62.5
b, Aco	ceptance C	Criteria d	defined (see workplan)					
	perature	<u>+</u> 2		-D.O.	, 0.3 m	g/l				
- pH	_	_	.1 unit	Turbidity		f NTU read	ing is > 10	NTUs		
- Sp.	Cond.	<u>+</u> 3	%	ORP	<u>+</u> 10 ı	milivolts				
c. Fie	ld Testing	Equipm	ent used				Model		Seria	Number
				_ iten	laca -		1.52		608	21
	\/_L.						•			
Time	Volume Removed			Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Drawdown	Color/Odor
(24hr)	(Liters)	(°C)		<u>(μS/cm)</u>	(mg/L)	(mV)	(NTU)	(ml/min)	(teet)	
14125	1.0	29.90	7.63	3.01	2.06	1.38	250	2 20	32.84	Cludy / W
1435	3.0	29.54		2.92	1.25	145	176	7.00	32.88	11
14150	5.0	29.88		3.47	1.09	14,7	139	200	32.98	clean M
14/55	7.0	29.95		3.50	1.62	147	135	200 ZUQ	37.88	chean Ille
1500	8.01	30.01		3,45	1.60	147	129	we -	32.88	4
1505	50	m	hin	/		S.C.				
			16-11		1	12/18				
a. Ac	ceptance	criteria	pass/fail		Yes N	6) N/	4			(continued on back)
Ha	ve parame	eters sta	abilized							
	•									
	If no or N	I/A - Exp	plain belo	w.		and the second sec		11/2		
				1416	>10n	TU: 5	int St	45K		
3. SAME		ECTIO	N: N	Nethod: Le	. fle	2.1 - 6	Jul.	B	1	
					4 10		"Harro	- nun	/	
Sample I	D C	ontainer	туре	No. of Cont	ainers	Prese	rvation	Analys	is Req.	Time
20-2014	nn		emt	0	/		ine	Ruce	about	KUT
		120	mi	Pely	/	Ĉł	A	Ch	unt	1505
		+3	Şan	aple lind	tann	for 1	itin Tee	<u>ک</u>		
Commen	ts	No	ne.		1	0				·-···
				1				- 10		
6	281 m/cc =			111-	/ /	2			1	1

AECOM

Well ID: MW-25

			•	ured from Top c. Length of		· · · · · ·	<u>с</u> (а-b)		Casing Diam	
b. Wa	iter Table [Depth 2	39.74	d. Calculated	l System V	olume (see	back) 9	432)	411	VC
2. WELL a. Pu	. PURGE I		Lon	d. Calculated	Bladd	Rum	29. 1	19+3	om l	50'
b. Aco - Terr - pH		riteria c <u>+</u> 2 <u>+</u> 0	defined (°C .1 unit	(see workplan) -D.O.) 0.3 mg	ı/I NTU readi				
c. Fie	ld Testing I	Equipm	ent use	d: Ma <i>Horaba</i>	ake	U-	Model		Serial	Number 2)
<u>Time</u> (24hr)	Volume <u>Removed</u> (Liters)	<u>Temp.</u> (°C)	- 	Spec. Cond.	DO	ORP		Flow Rate		Color/Odor
(24111)	-	31.17	7.54	(µS/cm)	(mg/L)	(mV)	(NTU) 32.4	(ml/min) ここの	(teet) 39.2/	Clenn
16100	3.25	31.31	7.43	3.77	5.77	176	125	ZXX.	59.2	Alone
1910 Une	5.25	31.32	7.43	3.61	5.90	178	7/17	200	39.21 The H	Alone
1.74A 22	and w	200	m	- Egun	mit	Mar A	March C	a are	and 11	<u> </u>
d. Ac	ceptance t	niteria p	bass/fail		Yes No	N/A				(continued on back)
Ha	ive parame If no or N			ow.						
3. SAMF		ECTIO	N:	Method: 1	A					
Sample I &-2++52			, Pely		piners	Prese Nore	rvation	Analysi	a	Time, n/A
		125	Pela	Amhn 1	<u> </u>	ADA		Ala	te	
										<u></u>

Г

Well ID: MW-25

Client:	NEI				L)ate:	12119	III	ne: Start 🗾	oc mp
Project N			77365						Finish	<u>) 40 am/p</u> i
Site Loca	-		AL					1		
Weather	Conds:	Calm	, Per	A doudy	~90"	Collector(s):	" E.W		
1. WATI	ER LEVEL	DATA:	(measu	ured from Top	o of Casin	g)				
				c. Length of			6 (a-h)		Casing Diam	eter/Material
									411	RIC
b. Wa	ater Table	Depth 3	39.34	d. Calculated	System \	/olume (se	e back) 9	43-11		
2. WELL		ΠΑΤΑ					29.	U1923		
	rge Metho		1	fline i	Rludda	lin	,	4	and	501
									april 6	10
				(see workplan)						
- ren - pH	perature	<u>+</u> 2	.1 unit	-D.O.	0.3 m		line in 5.40			
	Cond.	±0 ±3		Turbidity ORP		nilivolts	ling is > 10	NIUS		
- Op.	Conu.		/0	ORP	<u>+</u> 101	mirvons				
c. Fie	Id Testing	Equipm	ent use		ake		Model		Serial	Number
			_	Herib.	9		U-52		609	21
			-							
Time	Volume			Orace Oracle		0.00				
<u>Time</u> (24hr)	Removed (Liters)	<u>1 emp.</u> (°C)	<u>рН</u>	Spec. Cond. (µS/cm)	<u>DO</u> (mg/L)	ORP (mV)	<u>Iurbidity</u> (NTU)	Flow Rate (ml/min)	Drawdown (teet)	<u>Color/Odor</u>
700	0.5	29.95	7.43	4.27	6.47	109	119	200	39.31	Chen In
705	1.5	29.50		4.25	6.52	125	43.4	200	39.31	6/1 11
710	2.5	29.08	7.29	4.29	4.52	130	33.1	200	39.31	11
715-	3.5	24.02	7.29	4.37	6.94	136	ZUI	zve	39,31	4
720	4.5	27.75		4,39	6.94	139	15.1	zue	39.3 1	/
725	55	27.61	7.30	4.41	6.92	141	10.3	240	39,31	1
<u>730</u>	65	27.65	7.30	4.41	6.84	143	11.7	200	39.3'	11
d. Ac	ceptance	criteria r	hass/fail	K 7/12/1	Yes No	D N//	Δ			<u> </u>
	e opianoo i		000/101	K			7			(continued on back
Ha	ve parame	eters sta	bilized	t						
						-	,			
	If no or N	I/A - Exp	lain bel	ow.						
3 8440	LE COLL	ECTION		dethed:		~ /	11 11	0		
J. OAMP		ECHOR	4. I	Method:	ah t	har !	bluder	mp		
Sample II	D Co	ontainer	Type	No. of Conta	iners	Prese	rvation	Analysi	s Reg	Time
25-204		250				Non		Pirch		++-73
		125		Ampen 3		Ent		chle	sate	1
			Extin	Volum	t n	15/misi				
	<i>t</i>	3 5	angle	untain	- for "	Tetra ;	Fech			
Commen	ts									
			-	- 1	1					1

Well ID: pERT 3.401

Low-Flow Ground Water Sample Collection Record Client: 719/14 Time: Start 0745 am/pm NERT Date: Project No: 604.77365 Finish CAU am/pm Site Location: NERT LVW Collector(s): 32 Weather Conds: 950 Clandon, Ikli Sterze. 1. WATER LEVEL DATA: (measured from Top of Casing) Casing Diameter/Material a. Total Well Length 19.41 c. Length of Water Column 444 (a-b) " PJC b. Water Table Depth 10M7 d. Calculated System Volume (see back) 3== 17.52 2. WELL PURGE DATA a. Purge Method: Bladder Yumo b. Acceptance Criteria defined (see workplan) - Temperature <u>+ 2°C</u> -D.O. 0.3 mg/l - pH ± 0.1 unit Turbidity 10% if NTU reading is > 10 NTUs - Sp. Cond. ±3% ORP + 10 milivolts c. Field Testing Equipment used: Make Model Serial Number Horsha 4-52 60821 Volume Removed Temp. <u>Time</u> <u>pH</u> Spec. Cond. DO ORP Turbidity Flow Rate Drawdown Color/Odor (24hr) (Liters) (°C) (µS/cm) (mg/L)(ml/min) (mV) (NTU) (teet) 145 16.41 500 7.00 3.62 1.11 200 None .0 30.49 172 405 1-101.75 29.71 7,64 3.64 1.14 167 80, 150 10.41 Worr 810 22.5 31,00 1.26 7.16 1LK 3.61 47.8 150 10.46 Non 415 3.59 Se Sar 31.13 7.16 1.33 12/6 150 10.46 Non 4.1 Sum out 820 7.20 440 31,49 3.59 1.27 138 36.0 150 R1.46 rone 825 7.21 40412 31AL 3.62 25 132 30.3 NT 10.46 None 0430 32.74 7.19 3.65 128 150 24 K.46 4655 1. 14.3 Non 2735 3.64 33.14 1.27 8.46 25 7.15 10 24 74.6 non d. Acceptance criteria pass/fail N/A Yes No (continued on back) V R Have parameters stabilized If no or N/A - Explain below. d flew cell Tensi 3. SAMPLE COLLECTION: Method: Lan block Sample ID Container Type No. of Containers Preservation Analysis Reg. Time NERT3. 4051 Poli Intrie 252 0840 775 アルト 125 DA Comments Sun aut - 820, menung tenson tubas & they call 7/9/14 Signature 🝃 Date

10.47

AECOM

F

Well ID: NERTY. 21NI

1. WAT		DATA:	(measu	red from Top	of Casino	a)				
				c. Length of			/≪(a-b)			neter/Material
b. Wa	ater Table	Depth 3	K-32	d. Calculated	d System V	olume (see	back) /2	12x1	9	
							24	1	0	- 1
a. Pu	rge Metho	d:	en	Fkw	bladd	- Hum	P		hup C	3 (0)
b. Ac	ceptance (see workplan					V	
	nperature	<u>+</u> 2		-D.O.	0.3 mg	-				
- pH - Sn	Cond.	<u>+</u> 0 <u>+</u> 3	.1 unit	Turbidity ORP		NTU read	ling is > 10	NTUs		
		_			<u>+</u> 1011	nirvoits				
c. Fie	ld Testing	Equipm	ent use		ake		Model			Nymber
			-	Heril	rg		U.52		6082	21
	Volume		-							
Time	Remove	d Temp.	рН	Spec. Cond.	DO	ORP		Flow Rate	Drawdown	Color/Odo
(24hr)	(Liters)	(°C) 36.39	7.43	(μS/cm) 4,02	(mg/L)	(mV)	(NTU)	(ml/min)	(teet)	Clendy to
1215	2.0	35.59	7.29	3.94	2.59	128	<u>290</u> 209	200	35.30	Clendy 1V
1225	40	34.46		3.97	2.39	149	29.9	200	35.30	Cloar/M
1230	50	34.09	7.25	4,00	2.39	152	8.1	200	38-80	21
1235	60	33.90		4.01	2.39	1.51	0.5	200	35.30	el
12VK	70	33.81	7.25	4.00	2.39	1.54	0.4	200	30.30	11
<u> </u>				Sa	nale					
				ge Mui	74					
d. Ac	ceptance	criteria p	bass/fail	2	Yes No	0 N//	4			(continued on bac
Ha	ive param	eters sta	hilized				I			
	ive param	01013 310	DINZEG		Ψ					
	If no or N	I/A - Exp	blain bel	ow.						
					01		1 11	0	0	
3. SAMI	PLE COLL	ECTION	N: I	Method:	n +10	w b	luch	m	7	
Sample I	р с	ontainer	Type	No. of Conta	ainers	Prese	rvation	Analysi	s Reg	Time
•	241407/6		ent	1		Hr		Dic		11110
			c ml	the second s		No			ute Br. Cl	
			mi	ach 1		E	n.	Clater	ate	RH
		4100	m	pp/y 1		Am	Enflete	Crk	2	124
_	·	1.000								
Commer	its	Nac	A							

AECOM

Well ID: NERTY. 35M

		DATA: (mea ngth_ <u>39,7</u>		-	-		<u>4</u> (a-b)		Casing Diam	eter/Material
b. W	ater Table [Depth 32,51	d. Calc	ulated	System V	olume (see	back)	173×1		VC
2. WEL a. Pu	L PURGE I	рата I: <u>Сс</u> и	Flow	- hi	uddn p	rmp	12],	19+3	mp C :	35'
b. Ac - Ten - pH		riteria defined <u>+</u> 2°C <u>+</u> 0.1 unit <u>+</u> 3%	d (see work -D.O.	(plan)	0.3 mg	/I NTU read	ing is > 10			
c. Fie	eld Testing	Equipment us		Ma			Model USZ		Serial	Number
	Volume		·							
<u>Time</u> (24hr)	Removed (Liters)	Temp. pH	Spec. C (µS/c	Cond.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (feet)	Color/Odo
1340	1.0	36.03 7.20	3.69		1.82	170	57.3	èa '	32.00	Clear luke
1345	2.0	35.63 7.19			1.X	170	47.6	747	72.50	2/
1300	3.0	34.42 7.21			1.64	169	32.4	200	32.50 32.50	11
14/40	50	34.48 7.2			1:60	168	36.8	200	32.30	11
	- Sce	mles	1		-					
		V e	11 2,	1101	14					
d A		riteria pass/fi	 ail	Į	Yes Alo	P N/A				/
u. A	coeptance t		an		ies avo	IN//	`			(continued on bac
H	ave parame	eters stabilize	d							
	If we are be	/A	-1-							
	IT NO OF N	/A - Explain b	elow.	21	. notin	1.6	Stall	1.		
3. SAM	PLE COLLI	ECTION:	Method:	6	in flu	in bla	dhe h	mp		
Sample		ontainer Type					rvation	Analysi		Time
THISENI-				CUIIIa		HN		Die		Thue
		Zte me	01	1	(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Not		Parchloi		TDS
		17.5 m/	2 feb	1		20	A	chlen	ate	
		yve m	2 Paty)		Anton	det.	Cr6		
			/							

AECOM

Well ID: NERT4.5/5/

Site Location: Lund	umid 95° C	ollector(s):	clew	
			07000	
1. WATER LEVEL DATA: (measured		•	Cooling Dies	
a. Total Well Length <u>50.25</u> c. l	ength of Water Colu	mn <u>24,34</u> (a-b)		meter/Material
b. Water Table Depth 25.91 d. (Calculated System Ve	olume (see back)	91 (34023	<u>700</u>
a. Purge Method: Can Fk	in Bladder	Rume	Pinpe 4K.K	~/
		1 1 1		
b. Acceptance Criteria defined (see - Temperature <u>+</u> 2°C -D	worкpian) .O. 0.3 mg/	/I		
	•	NTU reading is > 10	NTUs	
	RP <u>+</u> 10 m	-		
c. Field Testing Equipment used:	Make	Model	Seria	al Number
		1.5-2	60521	
Volume <u>Time Removed Temp. pH Spe</u>	Cand DO		Class Data Data da	<u>a 1 101</u>
	ec. Cond. DO (µS/cm) (mg/L)	ORP <u>Turbidity</u> (mV) (NTU)	Flow Rate Drawdown (ml/min) (teet)	Color/Odor
	1.94 5.09	146 30.9	150 25.81	None
	,13 651	153 0.7	200 25.91	Alene
	.87 4.74	159 0,1	200 25.41	Word
	1.88 4.66	161 0.1	200 75.81	Nera
Sempled 12.20	1.89 4.64	162 0.0	200 25.81	None
		7/1		
		7/10/16		
d. Acceptance criteria pass/fail	Yes No	N/A		(continued on back)
Have parameters stabilized		_		
nave parameters stabilized				
If no or N/A - Explain below.				
. SAMPLE COLLECTION: Meth	od: law flu	67 01	R	
. SAMPLE COLLECTION. Meth	Ju: <u>Cela Fle</u>	w Dladen	mp	
Sample ID Container Type No	o of Containers	Preservation	Analysis Req.	Time
ERTY. SISI ZEE Poh	, 3	HAR3	Diser	1220
- ZSG Pyh	, 3	None		,705 ,
125 Put	Amber 3	EDA	Chlerak	
464 2 001	7 3	Am Suttate	Crb	
	· · · · · · · · · · · · · · · · · · ·	4	1 1 .	
comments 945- Ar Pan	Access an - I	· what had	preptin mut	

Well ID: NERTHAIS!

Client: NEDT Project No: 6000005	Date:7/9/)
Site Location: <u>NERT LVW</u> Weather Conds: <u>Support</u> Calm, 100	Collector(s): ACIEW
1. WATER LEVEL DATA: (measured from Top of Cas a. Total Well Length <u>しつのく</u> c. Length of Water (Column 14.54 (a-b) Casing Diameter/Material
b. Water Table Depth 3.57 d. Calculated System 2. WELL PURGE DATA a. Purge Method: Bladd Proof	$\frac{1}{3\pi} = \frac{1}{3\pi} $
- pH <u>+</u> 0.1 unit Turbidity 109	3 mg/l)% if NTU reading is > 10 NTUs 10 milivolts
c. Field Testing Equipment used: Make	Model Serial Number
Volume <u>Time Removed Temp. pH Spec. Cond. DC</u> (24hr) (Liters) (°C) (µS/cm) (mg/	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51 89 50.2 200 Z9.40 Nome
1010 2.0 35.24 7.95 4.89 1.9 1015 3.0 20.47 7.96 5.61 2.7 1020 4.6 31.84 9.04 5.17 2.2	17 107 22.4 200 24.40 Wine 17 107 95.7 200 24.40 None
1025 50 2942 9.18 5.40 2.5 1030 6.0 3052 9.26 5.24 2.92 1035 70 - 8.31 5.38 2.4	2 101 70.5 200 24,50 Wine 3 95 62.7 200 29.50 Wine
d. Acceptance criteria pass/fail Yes	No N/A
Have parameters stabilized If no or N/A - Explain below.	
3. SAMPLE COLLECTION: Method:	-low bladde hung
Sample ID Container Type Np. of Containers	Preservation Analysis Req. Time HNU3 D.S. Cr. None MAA None Include CI' B' TOS
Sou Poly.	Am Suitede Cr6 -
Comments In dle to sample due 7	to equipment issues
Signature	DateDate

NERT4,7151 7/9/18

×

Time	+ L	" Temp	pH	Spand	De	CRP	Turb	flow	Drawford	Come	5
1040	Q.U	30.25	6.34	5.245	2.41	94	440	200	224.90	Nord	·i
104)7	9.0	29.56	8.36	5.38	2.50	91	39.8	zu	28.89	Nove	
1050	100	30.12	8.35	5.36	2.10	90	36.6		-		
										_	
									_		+
					22						
(ge)						ELE					
			5						- 		
		2				ALS	RE	-			
)										
				(t	ι	23				

AECOM

Г

Well ID: NERTY, 7,51

Client: NERT		Da	ate: <u>7 //</u>	6/19	Tin	ne: Start O	SUS am/pm
Project No: 60477364	~						イイン am/pm
Site Location: NERT LV							
Weather Conds: Summy, calm		C	ollector(s)	: <u>4</u> 0	2120	N	
1. WATER LEVEL DATA: (measu	red from Top	of Casing	I)				
a. Total Well Length <u>リフゅ</u> て	-					Casing Diam	
b. Water Table Depth 24. 50	d. Calculated S	System Vo	olume (see	back) 🔼	= 24.1	-	
b. Water Table Depth <u>לא. רט</u> 2. WELL PURGE DATA a. Purge Method: <u>נטע</u>	flen I	3 Judd	hung	- n	= 47. Pump 6	3 412.	25'
b. Acceptance Criteria defined (- Temperature ± 2°C - pH ± 0.1 unit - Sp. Cond. ± 3%		0.3 mg	/I NTU readi	ing is > 10	·		
c. Field Testing Equipment used	d: Mak	ke _		Model		Serial	Number
-	Itari	ha		4-52		604	21
Volume <u>Time Removed Temp. pH</u> (24hr) (Liters) (°C)	Spec. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (teet)	Color/Odor
0815 1.5 2638 7.83	5.70	4.24	214	429	200	27.95	None
0820 2.5 26.14 8.12	5.65	4,02	198	376	2.00	27.95	None
0425 3.5 2592 8.26	5.67 "	4.36	179	2.72	200	27.95	Vone
0830 4. 25.79 8.29	5.65	3.96	170	210	2,00	27.95	Nor
0435 T.F 2580 4.28		3.93	16.7	105	200	27.95	None
0440 6.5 25.78 4.28		3.92	162	59	Zue	27.95	None
0845 7.5 25.74 8.29		3.94	157	52	200	27.95	None
d. Acceptance criteria pass/fail		3.89	152	54	ZO	27.95	Nora
Have parameters stabilized If no or N/A - Explain bel	Ľ	ies No	N/A	·			(continued on back)
3. SAMPLE COLLECTION:	Method: Can	- Floch	13	ladd	hing	1	
Sample ID Container Type ひにんナリーンント でもの	No. of Contair	ners	Prese	rvation	Analysi Doc (s Req.	Time
253	RG 1		None		And louts	<u> </u>	03 05550
.125	My Damper 1		EPA		Chlora		0853
and the l	Pely 1		An Th	the	Cor	6	0950
Comments							
Signature		$\sqrt{1}$	7		Date	7/10/1	8
	Ch						

AECOM

Well ID: NERT 4.1351

Client: NERT	Date:	7/10/18	Tin	ne: Start _/	3/5 am/pm
Project No: 604177 365				Finish	<u>345</u> am/pm
Site Location: NERT LVW			1-		
Weather Conds: Clear, Swnny, Umin	<u>95</u> Collecto	or(s):	<u> 1018</u>	'n	
1. WATER LEVEL DATA: (measured from Top		21		0	- 1
a. Total Well Length <u>50.3</u> c. Length of V			د م ،	411	eter/Material
b. Water Table Depth <u>26.91</u> d. Calculated	System Volume	(see back) Z	6.911		
b. Water Table Depth <u>26.91</u> d. Calculated 2. WELL PURGE DATA a. Purge Method: <u>Con Flow</u>	Bladh	Pum-p	Pu	mpe	451
b. Acceptance Criteria defined (see workplan) - Temperature $\pm 2^{\circ}$ C -D.O. - pH ± 0.1 unit Turbidity - Sp. Cond. $\pm 3\%$ ORP	0.3 mg/l 10% if NTU r <u>+</u> 10 milivolts	reading is > 10	NTUs		
c. Field Testing Equipment used: Mai		Model イ・デス		Serial	Number 2/
Volume					
<u>Time Removed Temp. pH Spec. Cond.</u> (24hr) (Liters) (°C) (μS/cm)	<u>DO</u> <u>OF</u> (mg/L) (m ¹		Flow Rate (ml/min)	Drawdown (teet)	Color/Odor
1320 0.5 33.93 7.33 4.49	4.27 14		200	26.93	None
1325 7.5 30,94 2.11 4.50	3.01 15		200	26.93	None
1330 2.8 30.27 7.09 4.48	2.71 15		200	26,93	None
1335 3.5 29.71 7.10 4.50	2.62 15		200	26.93	None
1340 4.5 2858 710 4.60		1 8.9	200	26.93	NEN
	2.70 15		Za	26.93	None
- Ser	Jed 1.5	50			
d. Acceptance criteria pass/fail	és No	N/A			(continued on back)
Have parameters stabilized					
3. SAMPLE COLLECTION: Method: <u>Cc</u>	- Flow	bladk	Row	ſ	
Sample ID Container Type No. of Contai		eservation	Analysi		Time 1350
4.7351 250 Poly 1	A	lore	Perchk	role, Cl. Rr	105 1
125 Puly Amber 1		XA	Chlo		
- Kke Pully 1	An	Sulfit	- C.r.	6	
Comments Contract Field due	lijete , t	gungma	+ Blenk	, J. F.	eld Blonk
Signature	D		Date	7/10	hy

AECOM

Well ID: NERTS. 118

				nid, Itol						
			•	red from Top c. Length of			1		Casing Diam	neter/Material
									2,11	PIPI
b. Wa	ater Table [Depth /	984	d. Calculated	d System V	olume (see	e back) /	1,39×1	/	<u>/ - </u>
2 WELL	. PURGE [Δ Τ Δ				•	49	1713	•	
a. Pu	rae Method	: Lei	VF	KL R	Judan	Pinn	2	De		2/01
							1	<i>1- W</i>	my C	/ 0
	ceptance C perature			see workplan		- //				
- pH	iperature	<u>+</u> 2 +0	.1 unit	-D.O. Turbidity	0.3 mg		ling is > 10	NTHE		
•	Cond.	+3		ORP		nilivolts	ang 15 - 10	11105		
•		-			_					
c. Fie	ld Testing I	Equipm	ent used		ake		Model			Number
			-	Mr, he	i	0	52		608	21
	Volume		-							
Time	Removed	Temp.	pH -	Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Drawdown	Color/Odor
(24hr)	(Liters)	(°C)		(μS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	(teet)	
1505	0.25			4,72	2.91	140	206	200	19,56	None
1510	1,25	29.50	6.97	5.03	0.91	138	117	Zar	19,86	None
1520	3.25	26.76	7.00	5.16	0.72	131 122	54.9	200	19.512	Nont
1528	41.25	26.50		5.18	0.57	115	26.7	Zoc	A.56	Nore
1530	5.25	26.77		5.19	0.56	112	21.4	7.00	19.86	None
1535	6.25	26.01		5.26	0.72	IOZ	16.4	240	19.86	Nors
1540	7.25	25%		527	958	102	16.7	200	19.86	Alono
a. Ac	ceptance c	riteria p	ass/fail	6	Yes No	> N//	٩.			(continued on bac
На	ive parame	ters sta	bilized	(1			
							l			
	If no or N	/A - Exp	lain bel	ow.						
3 SAME	LE COLLI		I• I	Method:		1	bludle	har		
01 074011		201101	• •		UN FI	on l	2 Gudas	- pm		
Sample I	D Co	ontainer	Туре	No. of Conta	ainers	Prese	rvation	Analysi	s Req.	Time
TS.IIS		50 1	2h	/		11noz		1)17 (Cr	154
			Perly .			Nin	. 6.	rch livete	Br, Cl. +5.	25 /
			ut Am	ber 1		EDA		<u>h las ent</u>	t.	
		e l	My	/		Am Jult	ite.	0,6		
Comment	4.0	n /				·- · _				
Commen		Vin	2							

NER

Well ID: NERT5.4991

Client: Project N	NEI	6045	177/	~			7/16/18			030 m/pm 17.0 am/pm
Site Loca	ation:	LVI	\sim	ight breaze,	Itut - le	collector(s	humidty	ge !	Ew	<u>////</u> ani/pin
1. WAT	ER LEVEL	DATA:	(measu	red from Top						
a. To	tal Well Le	ngth <u>39</u>	.95	c. Length of	Water Coli	umn <u>/34</u>	<u>·</u> 3_(a-b)		Casing Diam	neter/Material
b. Wa	ater Table	Depth _2	4.32	d. Calculated	d System V	olume (see			-	
2. WELI a. Pu	L PURGE	DATA d:	lun	Flen	blada	In Pu	mp	67023	Ping 6	2 35'
- Ten - pH	ceptance (nperature Cond.	<u>+</u> 2	°C .1 unit	see workplan -D.O. Turbidity ORP	0.3 mg 10% if	-	ling is > 10	NTUs	·	
c. Fie	eld Testing	Equipmo	ent usec		ake		Model			Number
			-	Hoube	1		U-52		608	21
_	Volume								· · · · · · · · · · · · · · · · · · ·	
<u>Time</u> (24hr)	Removed (Liters)	<u>d Temp.</u> (°C)	<u>pH</u>	Spec. Cond. (µS/cm)	<u>DO</u> (mg/L)	ORP (mV)	<u>Turbidity</u> (NTU)	Flow Rate (ml/min)	<u>Drawdown</u> (feet)	Color/Odor
K35	10	34.32		1.57	1,49	137	69.4	200	26.30	Rean /Wo
1040	2.0		7.49	1.53	0.69	137	62.5	1.00	26.30	11
1645	3.6	33.78	7.93	1.54	0.63	137	57.9	200	26.30	"
1055	50	33.62	7.96	1.53	0.59	138	58.4	200	26.30	
1100	6.0	33,23		1.55	0.53	138	49.7	200	26.32	1
1105	7.0		7.94	1.53	0.49	139	44.5	202	26.30	v
1110	500					271	16/14	- Coc	26:00	
	ceptance		ass/fail		Yes Me					(continued on back)
Цı		ntoro oto	لم ما ال							
Пе	ave parame		DIIZEU		Lyr L		}			
	lf no or N	I/A - Exp	lain bek	Tuch =	>KM	nh	it sta	the		
3. SAMF	PLE COLL	ECTION	1: N	Method:	un fler	- blu	delm 1	ung		
Sample I		ontainer		No. of Conta	ainers		rvation	Analys	is Req.	Time
4951-2	20140714		mlfo				1kz	Dis	Autoward and an and	1116
			me fe	long Aprila			DA	Ch lo		
			met		1		Suttert	Cr6		1110
Commen	nts 🗾	Vine								
Signature	e	24	14	A				Date	2/12,	14

Well ID: NERT 59151

Client: Project I	MERT		00710	D;	ate:/	16/18	Tin		1905 am/pm	
Site Loc	ation: 💋	When Course		<u>95°</u> 0	collector(s)):	e lew	1254	<u>}95⊘</u> am/pm	
		DATA: (measu ngth <u>49,90</u>	-	-		}(a-b)		Casing Diam	neter/Material	-
b. W 2. WEL a. Բւ	ater Table D L PURGE D Irge Method:	Depth <u>12 & 1</u> DATA : <u>(ew f</u> riteria defined + 2°C	d. Calculated	d System V	olume (see	e back) 2 73	4.34 x1 1x 2x7			
- pH	cceptance Conperature	<u>+</u> 0.1 unit			NTU read	ing is > 10		200		
c. Fie	eld Testing E	Equipment use -	d: M.	ake		Model		Serial	Number 2	-
Time (24hr)	Volume <u>Removed</u> (Liters)	- 	Spec. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (teet)	<u>Color/Odor</u>	-
0910	1.0	30.29 7.38	3.82	1.35	170	47.8	005	12.86	None Inone	
0915		29.78 7.44	2.63	1.29	168	34.8	150	12.40		Rochuse Flore R
0925	2.5	30.71 7.54 30.98 7.58	2,54	0.79	166	36.1 38.4	150	12.90	0	, R
0930	4,00	31.04 7.63	2.50	0.68	159	34.4	100	12.91	"	1
0935	4.75	31.09 7.62	2,418	0.57	154	39.2	Ise.	12.91	h	1
Ogek		Samples	1]
				and the second se	6/18]
d. A	cceptance c	riteria pass/fail		Yes No	> N//	4			(continued on back)	
Н	ave parame	ters stabilized								
	If no or N/	'A - Explain be	low. Jush >	10 M	v but	- Thus	L		_	
3. SAM	PLE COLLE	ECTION:	Method: 100	h flen	I R	Judde	Pump			
Sample 27 <u>5.9191-</u>		ntainer Type	No. of Conta	ainers	Har		the second s	Cr	Time 094/0	
		125 ml	Puly Anber	1	No ED4		Chlore	L. C.I. Rut.	094/0	•10
		you no		1	Am Ju		Gr 6		0942	•
Comme	nts	and								-
Signatur		11	14	2			Ditt	7/16/2		

AECOM

0

Well ID: WMW35 W

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		No: ation:	LVh						,	Finish <u>C</u>	955 am/pm
a. Total Well Length <u>55.90</u> c. Length of Water Column <u>20:73</u> (a-b) Casing Diameter/Material <u>2'' fvC</u> b. Water Table Depth <u>55.17</u> d. Calculated System Volume (see back) <u>3.35.17</u> c. WELL PURGE DATA <u>1000000000000000000000000000000000000</u>	Weathe	r Conds:	FEN	cloud,	Het Humr	<u> </u>	Collector(s): <u> </u>	e /EW		
2. WELL PURGE DATA a. Purge Method: $(anv flow Bladder hung Rung 0 < 0')$ b. Acceptance Criteria defined (see workplan) - Temperature $\pm 2^{\circ}C = 0.0$. $0.3 mg/l$ - PH ± 0.1 unit Turbidity 10% if NTU reading is > 10 NTUs - Sp. Cond. $\pm 3\%$ ORP ± 10 millivolts c. Field Testing Equipment used: Make Model Serial Number Maxie Model Serial Number Maxie Model Serial Number $Maxie Model Serial NumberMaxie Model Serial Number Maxie Model Serial NumberMaxie Model Serial NumberMaxie Model Serial Number Maxie Model Serial NumberMaxie Model Serial Number Maxie Model Serial NumberMaxie Model Serial NumberMaxie Model Serial Number Maxie Model Serial NumberMaxie Model Serial NumberMaxie Model Serial NumberMaxie Model Serial NumberMaxie Model New Nitwood State NumberMaxie Model New Nitwood State Number New Nitwood Nitwood Nitwood New Nitwood Nitwood$	a. To	otal Well Le	ength <u>5</u>	5.90	c. Length of	Water Col	umn <u>Zv.7</u>			-	
b. Acceptance Criteria defined (see workplan) - Temperature ±2°C - D.O. 0.3 mg/l - pH ±0.1 unit Turbidity 10% if NTU reading is > 10 NTUS - Sp. Cond. ±3% ORP ± 10 militvoits c. Field Testing Equipment used: Make Model Serial Number <u>Heridea</u> <u>H + 2</u> <u>H + 10 militvoits</u> c. Field Testing Equipment used: Make Model Serial Number <u>Heridea</u> <u>H + 2</u> <u>H + 10 militvoits</u> c. Field Testing Equipment used: Make <u>Model Serial Number</u> <u>Heridea</u> <u>H + 2</u> <u>H + 10 militvoits</u> c. Field Testing Equipment used: <u>Make <u>Model</u> <u>M + 2</u> <u>H + 2</u> <u>H + 10 militvoits</u> <u>Color: 0.6 militvoits</u> <u>L + 2 <u>H + 12 militvoits</u> <u>H + 2 <u>H + 10 militvoits</u> <u>H</u></u></u></u>	b. W	ater Table	Depth 3	5.17	d. Calculate	d System \	/olume (see				
$\begin{array}{ccccc} - \mbox{Temperature} & \pm 2^{*}{\rm CC} & -0.0. & 0.3 \mbox{ mgl} & 10\% \mbox{ if NTU reading is > 10 NTUs} \\ - \mbox{PH} & \pm 0.1 \mbox{ unit} & \mbox{Turbidity} & 10\% \mbox{ if NTU reading is > 10 NTUs} \\ - \mbox{Sp. Cond.} & \pm 3\% & ORP & \pm 10 \mbox{ millions} & \mbox{Male} & Male$	2. WEL a. Pເ	L PURGE	DATA	lew	flew B	Juddor	Ping	10	.14 25	Pimp e	' og '
MarideaMarideaMarideaVolumeTimeRemoved Temp.pHSpee. Cond.DQORPTurbidityFlow RateDrawdownColor(Odor(24hr)(Liters)(C)(C)(C)(C)(C)(C)(C)(C)(25)(Liters)(C)(C)(C)(C)(C)(C)(C)(C)(252)(L)(C)(C)(C)(C)(C)(C)(C)(253)(C)(C)(C)(C)(C)(C)(C)(253)(C)	- Ter - pH	mperature	<u>+</u> 2 <u>+</u> 0	°C).1 unit	-D.O. Turbidity	0.3 mg 10% if	NTU read	ing is > 10	NTUs		
Time Removed Temp pH Spec. Cond. DO ORP Turbidity Flow Rate Drawdown Color/Odor (24h) (Liters) (C) 125 125 6.52 2.14 1400 1700	c. Fie	eld Testing	Equipm	ient use -						,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Remove	d Temp.	- - <u>pH</u>							- 11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cros	15	30.81		6.52	2.27	214	21000	150	35.15	Brown / Work
22550 10.1 21.2 21.7 56.3 200 35.15 41.18 10.0 0.9.10 12.5 27.3 27.3 10.0 21.3 6.84 200 35.15 41.18 10.0 0.9.12 15.5 28.17 21.4 6.24 11.13 1977 21000 200 35.15 41.18 41.18 0.9.12 15.5 28.17 21.4 6.24 11.13 1977 21000 200 35.15 41.18 40.16 0.9.25 17.5 28.17 1.42 1.03 197 21000 200 35.15 41.18 41.16 0.9.35 18.5 29.17 6.25 1.03 196 2100 200 200 35.15 41.16 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>Red BIOWN INCL</td>						1					Red BIOWN INCL
$\frac{29cc}{29c} \frac{12.5}{15.5} \frac{27.37}{21.7} \frac{2.412}{2.42} \frac{1.65}{10.5} \frac{213}{21.3} \frac{6.84}{2.4} \frac{2.4}{2.4} \frac{35.45}{11.3} \frac{1648c}{10.6} \frac{166}{10.6} \frac{166}{$						1		-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-					
0930 19:5 29.11 711 6.21 1.04 195 51000 2000 35.16 for Blues 1 d. Acceptance criteria pass/fail Yes No N/A (continued on book) 1 <td< td=""><td>0915</td><td></td><td></td><td></td><td></td><td>1113</td><td>197</td><td>21000</td><td>200</td><td>3515</td><td></td></td<>	0915					1113	197	21000	200	3515	
d. Acceptance criteria pass/fail Yes No N/A (continued cas beek) Have parameters stabilized Di Di (continued cable) If no or N/A - Explain below. <u>Have bit the world wet clear ing - rist of programmeter</u> 3. SAMPLE COLLECTION: Method: <u>Len flum bladde Reinf</u> - 2 and Sample ID Container Type No. of Containers Preservation Analysis Req. Time <u>Swawer 2000 Reh 1 None bladde Collection of 2000</u> <u>220 ml fluh 1 EDA chlant 0945</u> <u>220 ml fluh 1 EDA chlant 0945</u> <u>220 ml fluh 1 EDA chlant 0945</u> <u>2335 19.5 295 7.11 6.23 1.01 196 21000 Zue 35.15 Rei Brewn find</u>								and the second se			Red Bionn 1
Have parameters stabilized Have parameters stabilized If no or N/A - Explain below. <u>Authority would not clear ing-rist of purposed</u> 3. SAMPLE COLLECTION: Method: <u>Can them bladder Runf</u> Sample ID Container Type No. of Containers Preservation Analysis Req. Time <u>Sample ID Container Type No. of Containers Preservation Analysis Req.</u> Time <u>Surveyours 25c mt folm 1</u> <u>Alone Rocklands 0945</u> <u>22c mt folm 1</u> <u>Date 2/16/18</u> Signature <u>Date 2/16/18</u> <u>Date 19.5 285 7.11 6.21 1.05 195 210cc 20c 35.15 Res Brown Inc</u> <u>0940 2.5 29.13 7.11 6.23 1.01 196 210co 20c 35.15 Res Brown Inc</u>			1.4	1111					202	35.18	
Authorities was all mat a deal ing - rist of gammatin 3. SAMPLE COLLECTION: Method: Lan flow flow flow flow flow flow flow flow		·				4					
Sample ID Container Type No. of Containers Preservation Analysis Req. Time N-205000 250 mL folm 1 Nore Revolution 0945 720 mL folm 1 EDA chlorate 0945 Comments well in good shape lock prosent d grant Signature Date 7/10/18 0935 19.5 295 711 6.21 1.05 195 71000 200 35.15 Res Brown In 0940 205 29.13 7.11 6.23 1.01 196 71000 200 35.15 Res Brown In		If no or N	√A - Exp	olain bel	ow. Turker	In war	1 na	+ cliar	100-0	rister	uyunti
Sample ID Container Type No. of Containers Preservation Analysis Req. Time N-205000 250 mL folm 1 Nore Revolution 0945 720 mL folm 1 EDA chlorate 0945 Comments well in good shape lock prosent d grant Signature Date 7/10/18 0935 19.5 295 711 6.21 1.05 195 71000 200 35.15 Res Brown In 0940 205 29.13 7.11 6.23 1.01 196 71000 200 35.15 Res Brown In		PLE COLL	ECTIO	N:	Method:	n fle	~ - G.	ladde	hunt	?	-2 ms
Signature Date June	3. SAM										
R25 mil fub 1 EDA Chlorite 0945 Comments Will in good shage lost prisent d secure Date 2 ////////////////////////////////////			ontainer	r I Vne			Proco	nyation	Analuci	e Ken	Lime
Signature Date	Sample					/			-	1 1 1	
Signature Date	Sample		2	isc mL	Poh	/	N	me	-	1 1 1	0945
0935 19.5 295 711 6.21 1.05 195 710ce 200 35.15 Res Burn March 0940 205 29.13 7.11 6.23 1.01 196 71000 200 35.15 Res Brown In	Sample	רוראא	7	isc ml 25 ml	Potn Leby	/	N. ED	A	-	1 1 1	0945
0940 Zur 29,13 7.11 6.23 1.01 196 21000 Zue 35.15 Rev Brown In	Sample	רוראא	7	isc ml 25 ml	Potn Leby	/	N. ED	A	-	1 1 1	0945
	Sample	nts	2	2 Cml	lohn lohn	 _lvd	NI. ED	A A A	Date	2/12	0945 0946 18
seur Sangles	Sample	nts	2 2 2 2 8 1 2 8 1 2 8 1 2	rent 20ml	Putr Putr Shere 6.21 1.0	loc local	195-	A A A A A A A A A A A A A A A A A A A	Date	2/10 35.15	1945 0946 198 R. Burn In
	Sample	nts	2 2 2 2 8 1 2 8 1 2 8 1 2	rent 20ml	Putr Putr Shere 6.21 1.0	loc local	195-	A A A A A A A A A A A A A A A A A A A	Date	2/10 35.15	1945 0946 198 R. Burn In
	Sample	nts	2 2 2 2 8 1 2 8 1 2 8 1 2	rent 20ml	Putr Putr Shere 6.21 1.0	loc local	195-	A A A A A A A A A A A A A A A A A A A	Date	2/10 35.15	1945 0946 198 R. Burn In

AECOM

Well ID: WMW 3.55

				ured from Top c. Length of			/ (a-b)		Casing Diam	
b. Wa	ater Table	Depth 4	3.31	d. Calculated	d System V	olume (see	back) <u>Z</u> .	73 11	<u> </u>	VC
2. WELI a. Pu	- PURGE	DATA	n f	ten Bla	the.	hung	۶.	19,3	Ringel	57'
b. Ac - Terr - pH		Criteria c <u>+</u> 2 <u>+</u> 0	defined (°C).1 unit	(see workplan) -D.O. Turbidity ORP) 0.3 mg	// NTU read	ing is > 10	NTUs	V	
c. Fie	ld Testing	Equipm	ent use	d: Ma	ake	,	Model		Serial	Number
			-	nonda	L				GUYE	21
Time (24hr)	Volume <u>Remove</u> (Liters)		<u>рН</u> -	Spec. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (feet)	Color/Odor
oxo	1.0	29.72		3.83	1.41	209	77.1	Zee	4/3.32	Mone /Mon
0755	2.0		7.68	3.73	0.94	195	29.4	200	43.32	11
0500	3.0		7.09	3.69	0.65	1.83	15.9	Zee	47.33	111
0405	4,0	29,10 29,17		3.67	0.59	179	10,6 9.2	200	43.30 43.30	
2815	6.0	29,29		3.68	0.57	178	7.7	200	43.30	,
0320	7.0	29.12		3.69	0.55	179	7.4	Zac	4332	1
	- 5	icon	in							
d. Ac	ceptance	critería p	bass/fail		Yes No	> N//	4			(continued on back
Ha	ave param If no or N			ow.	6/ 0					
3. SAMF	 PLE COLL	ECTION	N:	Method:	en fi	un -	blu Il	Alica	2	
Sample I	D C	ontainer		No. of Conta			rvation	Analysi	4 U	 Time
	UNICOTIL	26	OML D.		1	11	tone	Pres	lante	0920
No. of Street, or		120	mel	the amon	1		0.A	<u> </u>	lort	CN2C
								······		
				,	se halt			1		

a. To	tal Well Ler	ngth <u>5</u>	3.K	c. Length of	Water Colu				Casing Diam	eter/Material
				d. Calculated				5221 5623	ung l	
b. Ac - Terr - pH		riteria d <u>+</u> 2	lefined °C .1 unit	(see workplan) -D.O. Turbidity ORP	0.3 mg	/I NTU read	ing is > 10	v	U	
c. Fie	ld Testing I	Equipm	ent use		ake zila		Model	-	Serial	Number
	Volume		-							
Time (24hr)	Removed (Liters)	<u>Temp.</u> (°C)	<u>pH</u>	Spec. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (feet)	Color/Odor
1250	1.0		7.33	3,07	2.66	155	>1000	rue	3154	Red brown
1200	3.6	29.54		3.14	7.23	174	876	SCO	31.54	Red Brown 1
1210	5.0	28.84		3.16	1.19	174	474	200	31.54	2.4
1220	7.6	28.70		3.16	1.12	174	277	200	3154	Cloudy /V
1225	50	28,32		3.17	1.10	173	179	200	31,541	clair In
1230	9.0		7.16	3.17	1.09	173	173	200	31.541	deen /n
1001	10.0	28101	1.15	3,17	1.09 - AC	7/17	181	200	31.54	
d. Ac	ceptance c	riteria p	ass/fail		Yes No			I		(continued on back
На	ive parame	eters sta	bilized)	0					
	·									
	If no or N	/A - Exp	lain bel	ow.	- 12		111	1 pla		
					>10m					
3. SAMF			:	Method:	in flor	~ 510	ıddn	Rung		
Sample I		ontainer		No. of Conta			rvation	Analysi	s Req.	Time
1.9N=20	KID OT	Z	SOMO		1	Non	e	Ruch	brake	12.40
	erender i	1	25 ml	Pits Amber	- 1	EDF	7	chlo	rate	rye
	• • • • • • • • • • • • • • • • • • • •									
Comme	to ball			a share a)		111			
CUINNEL	ns _ cure	MIV	1 500	2 shure o	T Seci	ne u	loo			

AECOM

	NERT				D	ate: <u>7//</u>	3/18	Tir		2 <u>4</u> am/pm
Project N Site Loca		104773			<u> </u>				Finish	14/00 am/pm
1	Conds: <u> </u>			mi - 95	ø (Collector(s)): <u></u>	1EW		<u> </u>
		0		red from Top	o of Casing	g)	2		· · · · · · · · · · · · · · ·	
		W-2010-01-0-		c. Length of				-	Casing Diam	neter/Material
b. Wa	iter Table [Depth 26	20	d. Calculated	d System V	olume (see	e back)	3,6x1		
Z. WELL	PURGE D	DATA I: La	en :	fler !	bludch	hung	90		himp e	42'
- Terr - pH	ceptance C perature Cond.	<u>+</u> 2°C <u>+</u> 0.1	unit	ee workplan) -D.O. Turbidity ORP	, 0.3 mg 10% if	g/l	ing is > 10		·	
c. Fie	ld Testing I	Equipmen	nt used: —	Horiba	ake	ι	Model			Number
<u>Time</u> (24hr)	Volume <u>Removed</u> (Liters)	I <u>Temp.</u> (°C)		Spec. Cond. (µS/cm)	<u>DO</u> (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (feet)	<u>Color/Odor</u>
1250	1.0	37,17 7	.42	2.88	3.86	75	3.91	200	76.21	Char / We
1300	3.0	101 A A A A	.27	2.56	1.26	53 62	124	<u>200</u> 200	26.21	den INO
1316	5.0	1	731	2.54	1,16	65	52.2	240	26.21	11
1300	4.0	34.28 7	7.31	2.53	1.10	64	44.3	zve	26.21	V
1344	San	pla	- +			R				
					7/13/	18				
d. Ac	ceptance c	criteria pas	ss/fail		Yes A	N//	Â			(continued on back)
Ha	ive parame	eters stabi	ilized)	1			
	If no or N	/A - Expla	ain belo	w.	>Kn	This 1	but 5	1.11		
				lethod:						
J. SAMP	PLE COLLI	ECTION:	IV	ietnoa:	as th	en !	afundal	- The	4	
Sample I	D Co	ontainer T	ype	No. of Conta	ainers	Prese	rvation	Analys	is Req.	Time
M41.95-2	20180713	255	cml			Non	<	Ruch	lorate	1355
			me	Pary -	-	204	2122100	Chl	ough	1355
	01-12-02-000	FFILE	le d	inpluento	TTIWI.	17.95 -	KISON'S	(- PV)		1365
Commen	ts	ul n	See	I share	, At	loch	Pres	and d	Decup	L
		20	2	1/1	7				2	2
Signature										

AECOM

			(measu	red from Top	_)			Casing Diam	
			1255	d. Calculated	t Svstem Ve	olume (see	e back)	6.29 x1		NC
2. WEL	L PURGE I	ATA	Lev	- Fkn	- ble	dder	Pint	6. <u>29 x1</u> 887 73 2	Ring	0 33,5
- Ten - pH	ceptance C perature Cond.	<u>+</u> 2	°C 1 unit	see workplan) -D.O. Turbidity ORP	, 0.3 mg	/I NTU read	ling is > 10		U	
c. Fie	ld Testing I	Equipm	ent used	d: Ma	ake Vo	1	Model U-52		Serial	Number 2 /
<u>Time</u> (24hr)	Volume <u>Removed</u> (Liters)	I <u>Temp.</u> (°C)	- - - <u>-</u>	Spec. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)		<u>Color/Odo</u>
1000	10010		7.43	7,84	4,40	1419	575	200	(teet)	Clear In
1010	3.0	31,19	7.27	3.57	3.46	160	13.9	200	13.59	Chen In
1018	410	30.58		3.51	3.36	164	11.2	zue	13.59	<u>)</u>
1020	5.0		7,19 7,23	3.59	3.25	166 164	11.5	200	13,59	1
K30 -		< .			210	16/		200		
d. A	ceptance o	riteria	hass/fail		Yes Mø	8 N//	Δ		<u></u>	(continued on bac
	ave parame				_/_					(continued on bar
1 10	ave parame	1015 310	DINZCU				1			
	If no or N	/A - Exp	olain bel	ow. Twib =	>1011	u b	nt st	nulle		
3. SAMI		ECTIO	N:	Method:	len fi	in 4	Jult	ling		
Sample I		ontainer Z	• •	No. of Conta	ainers	Prese No	rvation	Analysi		Time 1030
			25 n	n2 Dely	1	EL		chla	nat	1130
				· · ·	-					
•	nts we	11		17		a luca	h Par	1		

AECOM

	Client: Project N	NEI	25	-	D	Date: 7/13/19 Time: Start //00 am/pm Finish /230 am/pm					
	Site Loca	ation:	LVW alm, Sum		(Collector(s):	ic lew			
	1. WATER LEVEL DATA: (measured from Top of Casing) a. Total Well Length yes/doi:10.100 Casing Diameter/Material 211 Diameter/Material										
	b. Water Table Depth 16,00 d. Calculated System Volume (see back) 5,22 r										
	b. Water Table Depth 16.60 d. Calculated System Volume (see back) 5.22 r 2. WELL PURGE DATA a. Purge Method: Carry Sking bludde Pump Rumpe 435'										
	- Ten - pH	ceptance C iperature Cond.	Criteria defined <u>+</u> 2°C <u>+</u> 0.1 unit <u>+</u> 3%	(see workplan -D.O. Turbidity ORP	0.3 mg 10% if	-	ding is > 10	NTUs			
	c. Fie	ld Testing I	Equipment use	ed: M Mail	ake		Model M-52		1000	Number	
		Volume									
	Time (24hr)	Removed (Liters)	(°C)	Spec. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	(NTU)	Flow Rate (ml/min)	Drawdown (teet)	Color/Odor	
	1105	35.91	the second se	4.78	2.97	61	21000	200	16,85	Brown / NO	
a A	1120	40	33.88 7.46	4.28	0.62	-59	2/000	200 150	17.30	Brown /n/cm	
~	1145	2.75	33.26 7.45	4.48	0.73	-93	879	150	17,31	21	
	1200	10.0	34.26 7.53		0.59	-80	536	150	17,31	11	
	1205	10.75	34.53 7.53	4.39	0.54	-80	519	150	17.31	<i>μ</i> !	
	1210	11.50	34.53 7.53		6.57	-79	491	150	17.31	11	
	1215	12.25	34.55 7.52		0.54	-78	498	150	17.31	11	
	d. Acceptance criteria pass/fail Yes No N/A (continued on back) Have parameters stabilized Image: Continued on back Image: Continued on back Image: Continued on back If no or N/A - Explain below. Image: Continued on back Image: Continued on back										
	3. SAMPLE COLLECTION: Method: Im flow - hladde hing										
7	J. SAM		ECTION:		un fi	on ·	5/udd	Ming			
<i>n m</i> h	Sample I	1 250	ontainer Type	No. of Cont	ainers	Nor		Analysi		Time <u>1206</u> 1220	
	125 ml fily Amber) EDA chlerete 120										
	Comments will in genel shape, Series will leach										
	Signature	e	2/14	H.	\mathbb{Z}		·····	Date	7/31	18	

AECOM

Well ID: WMW5.7W

	Client: Project N		ERT	7736	<	Da	ate: 7/	12/1-5	Tir		325 am/pm
	Site Loca		LVI	w		c	ollector(s)	:	1c/En	/	
					ured from Top c. Length of			<u>64</u> (a-b)			neter/Material
	b. Wa	ater Table [Depth <u></u>	5.36	d. Calculate	d System V	olume (see	back)	8.358 -1		VC
		L PURGE I		Lon	, fku	bladd	- Pim	7	5.14+3	pimpe	16'
	- Terr - pH	ceptance C nperature Cond.	<u>+</u> 2	°C .1 unit	see workplan -D.O. Turbidity ORP	0.3 mg	NTU read	ing is > 10	NTUs	A)	
	c. Fie	ld Testing	Equipm	ent used -	d: M Hor	ake		Model		Serial	Number
	Time	Volume <u>Removed</u>		- - - <u>PH</u>	Spec. Cond.	DO	ORP		Flow Rate		<u>Color/Odor</u>
	(24hr) 1730 1335	(Liters)	(°C) 3406 32.72		(μS/cm) . <u>Z.Z%</u> .2.31	(mg/L) /.69 0.53	(mV) 194 155	(NTU) 59 0.0	(ml/min) 200 200	(teet) 5,38 8,36	den Mor
	1340 1345 1355	3.0	32.60 32.71		2.32	0.47 0.48	178 174	00	the Zet	8-38 8.78	d 11 11
				<u>ore</u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Re Make				
	d. Ac	cceptance o	riteria p	bass/fail		Yes No	N//	۱ ۸			(continued on back)
	Ha	ave parame	eters sta	bilized							
		If no or N			ow.						
	3. SAMP		ECTION		Method:	une Elem	- 11.	11. 1	hand		
MU	Sample I		ontainer		No. of Cont		Prese	rvation	Analysi		Time
	2.710.2			cmlp	of only	1		DA	Chi	and	1370
		0									
	Commen	nts	Min	3000	1 share	d seco	me		······		
	Signature			11	//	1			Date	-1-	1.

Appendix H

Geophysical Logging Report

NERT REMEDIAL INVESTIGATION BOREHOLE GEOPHYSICS

LAS VEGAS WASH HENDERSON, NEVADA

GEO Vision Project No. 18028

Prepared for

AECOM 1220 Avenida Acaso Camarillo, CA 93012 (805) 764-4031

Prepared by

GEO Vision Geophysical Services 1124 Olympic Drive Corona, CA 92881 (951) 549-1234

Report 18028-01 rev 1

August 14, 2018

TABLE OF CONTENTS

TABLE OF CONTENTS
TABLE OF FIGURES
TABLE OF TABLES
INTRODUCTION
SCOPE OF WORK
INSTRUMENTATION
INDUCTION / NATURAL GAMMA INSTRUMENTATION
MEASUREMENT PROCEDURES
INDUCTION / NATURAL GAMMA MEASUREMENT PROCEDURES
DATA ANALYSIS
INDUCTION / NATURAL GAMMA ANALYSIS
RESULTS
INDUCTION / NATURAL GAMMA RESULTS 11
SUMMARY
DISCUSSION OF INDUCTION / NATURAL GAMMA RESULTS
CERTIFICATION

Table of Figures

Figure 1:	Borehole NERT3.80S1	Dual Induction and Natural Gamma Logs	16
Figure 2:	Borehole NERT4.21N1	Dual Induction and Natural Gamma Logs	17
Figure 3:	Borehole NERT4.38N1	Dual Induction and Natural Gamma Logs	18
Figure 4:	Borehole NERT4.51S1	Dual Induction and Natural Gamma Logs	19
Figure 5:	Borehole NERT4.71S1	Dual Induction and Natural Gamma Logs	20
Figure 6:	Borehole NERT4.93S1	Dual Induction and Natural Gamma Logs	21
Figure 7:	Borehole NERT5.11S1	Dual Induction and Natural Gamma Logs	22
Figure 8:	Borehole NERT5.49S1	Dual Induction and Natural Gamma Logs	23
Figure 9:	Borehole NERT5.91S1	Dual Induction and Natural Gamma Logs	24

Table of Tables

Table 1:	Borehole logging dates and locations	6
Table 2.	Logging dates and depth ranges	15

APPENDICES

APPENDIX A DUAL INDUCTION AND NATURAL GAMMA QUALITY ASSURANCE LOGS

INTRODUCTION

Geophysical measurements were taken in nine preexisting 4 inch monitoring wells in Las Vegas Wash near Henderson, Nevada as part of the Nevada Environmental Response Trust (NERT) Remedial Investigation Downgradient Study Area. Data acquisition was performed on July 19, 2018 and July 20, 2018. The work was performed for AECOM, Project Number: 60477365. Data analysis and report were reviewed by a **GEO***Vision* Professional Geophysicist or Engineer.

SCOPE OF WORK

This report presents the results of dual induction and natural gamma logs collected in nine cased boreholes, as detailed in Table 1. The purpose of these studies was to supplement stratigraphic information.

BOREHOLE	DATES	COORDINATES – DEGREES ⁽¹⁾			
DESIGNATION	LOGGED	LATITUDE	LONGITUDE		
NERT3.80S1	7/20/2017	36.09491	-114.94855		
NERT4.21N1	7/20/2017	36.09543	-114.95664		
NERT4.38N1	7/20/2017	36.09596	-114.95992		
NERT4.51S1	7/19/2017	36.09244	-114.96063		
NERT4.71S1	7/19/2017	36.09106	-114.96452		
NERT4.93S1	7/19/2017	36.09009	-114.96795		
NERT5.11S1	7/19/2017	36.08981	-114.97078		
NERT5.49S1	7/19/2017	36.08831	-114.97652		
NERT5.91S1	7/19/2017	36.08702	-114.98289		

Table 1: Borehole logging dates and locations

⁽¹⁾Coordinates provided by AECOM

INSTRUMENTATION

Induction / Natural Gamma Instrumentation

Formation conductivity and natural gamma data were collected using a dual induction (DUIN) probe manufactured by Robertson Geologging, Ltd (RG). The probe is 7.5 feet long, and 1.5 inches in diameter.

This probe is most often used to assist with

- Bed boundary identification
- Strata correlation between borings
- Strata geometry and type (shale indication)

The probe receives control signals from, and sends the digitized measurement values to, a RG Micrologger II (ML) on the surface via an armored multi-conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. To provide probe depth data, cable travel is measured using a sheave of known circumference fitted with a digital rotary encoder. The probe and depth data are transmitted by USB link from the ML unit to a laptop computer where it is displayed and stored.

An electromagnetic (EM) induction probe consists of transmitter and receiver coils. An alternating current is applied to the transmitter coil, causing the coil to radiate a primary EM field. This primary EM field generates eddy currents in subsurface materials, which give rise to a secondary EM field. The secondary EM field is measured as an alternating current in the receiver coils, which is proportional to formation conductivity. The probe coil spacing is optimized to achieve high vertical resolution, minimal borehole influence and large radius of investigation. The RG dual induction probe has effective coil spacings of 1.6 and 2.6 feet, operates at a frequency of 39 kHz, has 1 millisiemens/meter resolution, and operates over a 5 to 3000 millisiemens/meter conductivity range.

Natural gamma measurements rely on small quantities of radioactive material contained in soil and rock to emit gamma radiation as they decay. Trace amounts of uranium and thorium are present in a few minerals; additionally potassium-bearing minerals such as feldspar, mica and clays will include traces of a radioactive isotope of potassium. This radiation is detected by scintillation, which is the production of a tiny flash of light when gamma rays strike a crystal of sodium iodide. The light is converted into an electrical pulse by a photomultiplier tube. Pulses above a threshold value of 60 KeV are counted by the probe's microprocessor. The measurement is useful because the radioactive elements are concentrated in certain soil and rock types, e.g. clay or shale, and depleted in others, e.g. sandstone or coal.

MEASUREMENT PROCEDURES

Geophysical data were acquired in nine preexisting 4 inch PVC monitoring wells. The monitoring wells were advanced at a nominal 8 inch diameter, prior to being completed. The DUIN probe can acquire data in uncased and PVC cased boreholes with or without fluid, thus ideal for this investigation.

Induction / Natural Gamma Measurement Procedures

Measurement procedures followed these ASTM standards:

- ASTM D5753-05 (Re-approved 2010), "Planning and Conducting Boring Geophysical Logging"
- ASTM D6274-10, "Conducting Boring Geophysical Logging Gamma"
- ASTM D6726-01 (Re-approved 2007), "Conducting Boring Geophysical Logging Electromagnetic Induction"

Prior to logging, measurement depths were referenced to ground surface. This was done by placing the top of the probe even with a stationary reference point, such as the top of monitoring well surface completion, and the electronic depth counter set to the probe length minus the height of the reference point. The calculations were recorded on field logs. Offset distances between probe tip and measurement points are corrected by the data acquisition software. Initially, the probe was lowered to the bottom of the boring, stopped, then returned to surface while acquiring data. Typically, probe ascent is approximately 15 feet/minute, collecting data continuously at 0.05-foot spacing. For this investigation, logs were run twice in each boring for quality assurance. All logging runs are summarized in Table 2.

This probe is not calibrated in the field, as it is used to provide qualitative measurements, not quantitative values, and is used only to assist in picking transitions between stratigraphic units, as described in ASTM D5753-05 (Reapproved 2010), "Planning and Conducting Borehole Geophysical Logging". However, functional tests were performed prior to logging the first

borehole and after logging the last borehole to ascertain functionality throughout the project. This is accomplished by securing a coil with an effective conductivity around the probe and then comparing and recording the output of the system.

Natural gamma is not calibrated in the field, as it is a qualitative measurement, not a quantitative value, and is used only to assist in picking transitions between stratigraphic units, as described in ASTM D6274-10, "Conducting Borehole Geophysical Logging – Gamma".

At the completion of each logging run, the probe zero depth indication at the depth reference point was verified prior to removal from the boring.

DATA ANALYSIS

Induction / Natural Gamma Analysis

No analysis is required for these data; however depths to identifiable boring log features, such as distinct natural gamma transitions, were compared to verify consistent depth readings on all logs. Using WellCADTM software version 5.2, data are shifted and trimmed, as need, then plotted as adjacent line logs. The final logs are then exported as LAS 2.0 format and saved as PDF.

RESULTS

Induction / Natural Gamma Results

Induction and natural gamma data for the nine monitoring wells are presented in Figure 1 through Figure 9, respectively. The repeat, second, or QA logs, plotted coincidently with the initial logs are presented in Figures A1 through A9 in Appendix A. Generally, all logged borings exhibit an increase in conductivity with depth. There is some indication of formational and or stratigraphic variability in individual monitoring wells, evidenced by conductivity inflections between 20 to 35 feet in NERT421N1, Figure 8.

Depths on all figures and tables are referenced to ground surface. LAS 2.0 data (initial and QA) for each borehole as well as PDF files of initial and QA logs accompany this report.

SUMMARY

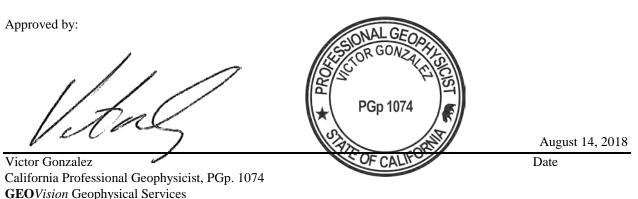
Discussion of Induction / Natural Gamma Results

Generally, conductivity and natural gamma data were of good quality. Long and short conductivity profiles provide a good indication of interbedding or interfaces, showing changes in conductivity that correspond with changes in natural gamma. Generally, all logged borings have an increase in conductivity with depth. There is some indication of formational and/or stratigraphic variability within individual boreholes. Repeat logs are near identical to the initial logs, with minor variability mostly in natural gamma, which is expected. Results support the validity and functionality of the method applied.

Quality Assurance

These geophysical measurements were performed using industry-standard or better methods for measurements and analyses. All work was performed under **GEO***Vision* quality assurance procedures, which include:

- Use of standard field data logs
- Use of equipment functional testing prior to logging to ascertain tools are working within manufacturer specifications.
- Independent review of results by a California professional geophysicist or engineer.


CERTIFICATION

All geophysical data, analysis, interpretations, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by a **GEO***Vision* California Professional Geophysicist.

Prepared by:

J. Jonathan Jordan Staff Geophysicist GEOVision Geophysical Services

August 14, 2018

Date

* This geophysical investigation was conducted under the supervision of a California Professional Geophysicist using industry standard methods and equipment. A high degree of professionalism was maintained during all aspects of the project from the field investigation and data acquisition, through data processing, interpretation and reporting. All original field data files, field notes and observations, and other pertinent information are maintained in the project files and are available for the client to review for a period of at least one year.

A professional geophysicist's certification of interpreted geophysical conditions comprises a declaration of his/her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations or ordinances.

BOREHOLE DESIGNATION	TOOL AND RUN NUMBER	DEPTH RANGE (FEET)	SAMPLE INTERVAL (FEET)	DATE LOGGED
NERT3.80S1	INDUCTION/NGAMMA 01	4.2 - 19.0	0.05	7/20/2018
NERT3.80S1	INDUCTION/NGAMMA 02	4.2 - 19.0	0.05	7/20/2018
NERT4.21N1	INDUCTION/NGAMMA 01	4.5 - 51.0	0.05	7/20/2018
NERT4.21N1	INDUCTION/NGAMMA 02	4.5 - 51.0	0.05	7/20/2018
NERT4.38N1	INDUCTION/NGAMMA 01	4.0 - 36.1	0.05	7/20/2018
NERT4.38N1	INDUCTION/NGAMMA 02	4.0 - 36.1	0.05	7/20/2018
NERT4.51S1	INDUCTION/NGAMMA 01	4.0 - 46.7	0.05	7/19/2018
NERT4.51S1	INDUCTION/NGAMMA 02	4.0 - 46.7	0.05	7/19/2018
NERT4.71S1	INDUCTION/NGAMMA 01	3.5 - 43.8	0.05	7/19/2018
NERT4.71S1	INDUCTION/NGAMMA 02	3.5 - 43.8	0.05	7/19/2018
NERT4.93S1	INDUCTION/NGAMMA 01	3.7 - 50.5	0.05	7/19/2018
NERT4.93S1	INDUCTION/NGAMMA 02	3.7 - 50.5	0.05	7/19/2018
NERT5.11S1	INDUCTION/NGAMMA 01	3.7 - 41.5	0.05	7/19/2018
NERT5.11S1	INDUCTION/NGAMMA 02	3.7 – 41.5	0.05	7/19/2018
NERT5.49S1	INDUCTION/NGAMMA 01	3.5 - 38.0	0.05	7/19/2018
NERT5.49S1	INDUCTION/NGAMMA 02	3.5 - 38.0	0.05	7/19/2018
NERT5.91S1	INDUCTION/NGAMMA 01	4.0 - 46.0	0.05	7/19/2018
NERT5.91S1	INDUCTION/NGAMMA 02	4.0 - 46.0	0.05	7/19/2018

Table 2. Logging dates and depth ranges

GE Vision	LOG TYPE	PROJECT	NERT Remedial Investigation
geophysical services		WELL	NERT3.80S1
geophysical services	Dual Induction	LOCATION	Henderson, NV
	Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 20, 2018

	Natural Gamma		Depth	2	Conductivity (short)	
)	CPS	200	Feet	-100	-100 mS/m Conductivity (long)	
				-100	mS/m	300
	2		• -0			

Figure 1: Borehole NERT3.80S1 Dual Induction and Natural Gamma Logs

GE Vision geophysical services	Dual Induction	PROJECT WELL LOCATION	NERT Remedial Investigation NERT4.21N1 Henderson, NV
	Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 20, 2018

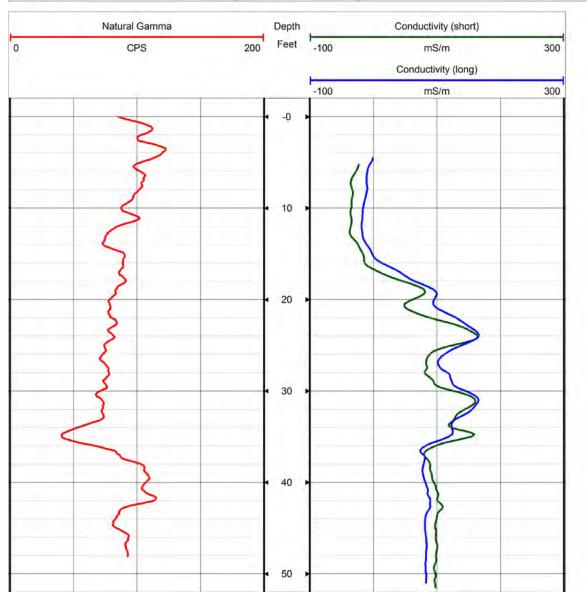


Figure 2: Borehole NERT4.21N1 Dual Induction and Natural Gamma Logs

GEOVision	LOG TYPE	PROJECT	NERT Remedial Investigation
geophysical services		WELL	NERT4.38N1
geophysical services	Dual Induction	LOCATION	Henderson, NV
	Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 20, 2018

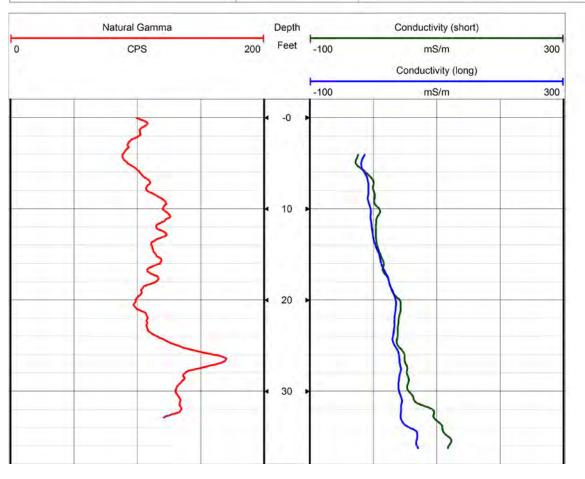


Figure 3: Borehole NERT4.38N1 Dual Induction and Natural Gamma Logs

GE Vision geophysical services	LOG TYPE	PROJECT	NERT Remedial Investigation NERT4.51S1
	Dual Induction	LOCATION	Henderson, NV
	Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 19, 2018

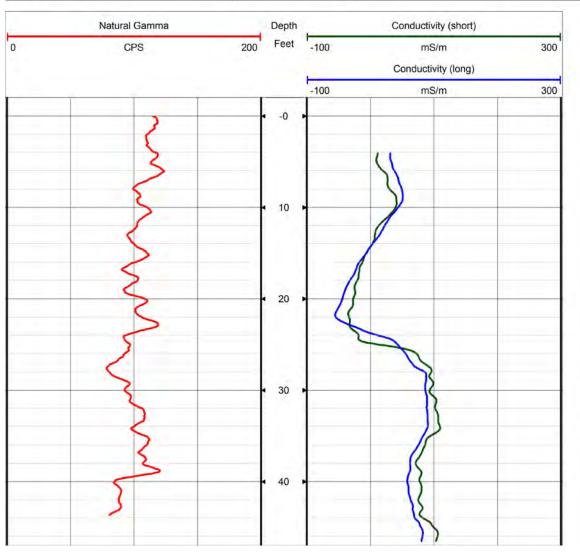


Figure 4: Borehole NERT4.51S1 Dual Induction and Natural Gamma Logs

GE Vision	LOG TYPE	PROJECT	NERT Remedial Investigation
geophysical services		WELL	NERT4.71S1
geophysical services	Dual Induction	LOCATION	Henderson, NV
	Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 19, 2018

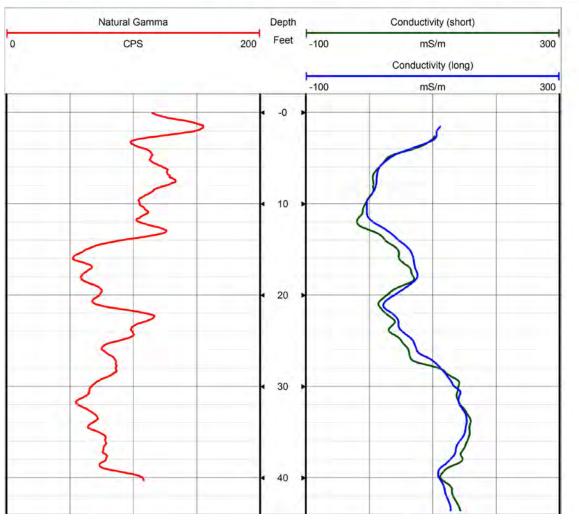
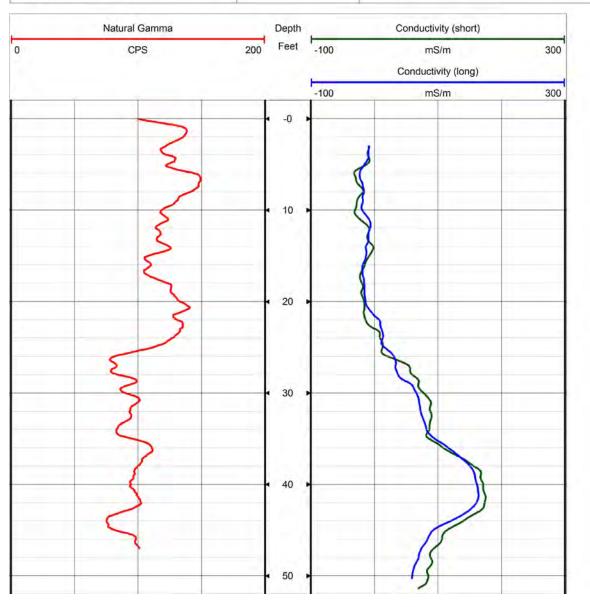
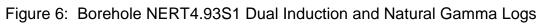




Figure 5: Borehole NERT4.71S1 Dual Induction and Natural Gamma Logs

GE Vision geophysical services	LOG TYPE	PROJECT WELL	NERT Remedial Investigation NERT4.93S1
geophysical services	Dual Induction	LOCATION	Henderson, NV
	Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 19, 2018

GE Vision geophysical services	LOG TYPE	PROJECT	NERT Remedial Investigation
		WELL	NERT5.11S1
	Dual Induction	LOCATION	Henderson, NV
	Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 19, 2018

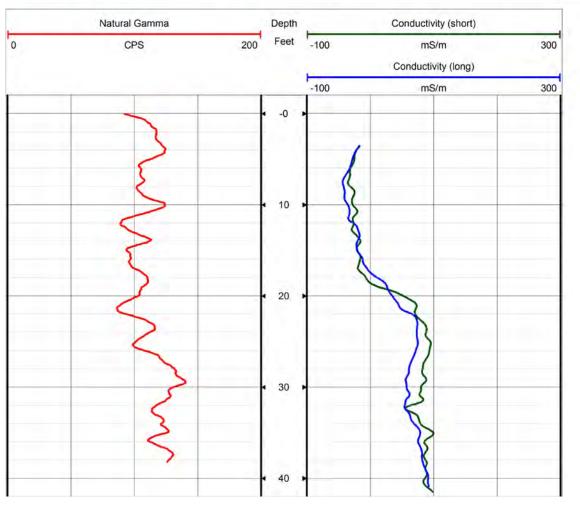


Figure 7: Borehole NERT5.11S1 Dual Induction and Natural Gamma Logs

GE Vision geophysical services	LOG TYPE	PROJECT	NERT Remedial Investigation
	1	WELL	NERT5.49S1
	Dual Induction	LOCATION	Henderson, NV
	Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 19, 2018

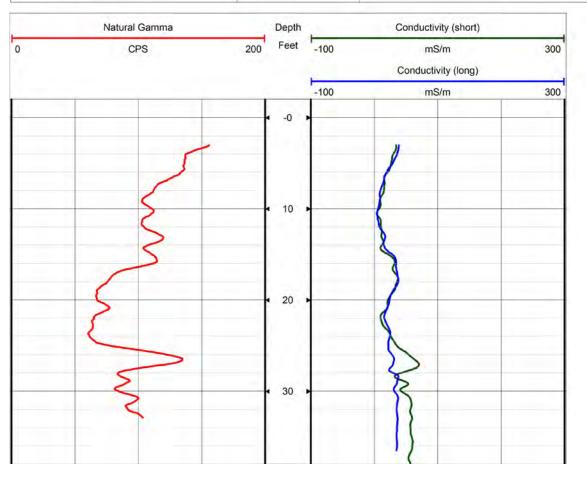


Figure 8: Borehole NERT5.49S1 Dual Induction and Natural Gamma Logs

GEOVision	LOG TYPE	PROJECT	NERT Remedial Investigation
geophysical services	1 m	WELL	NERT5.91S1
geophysical services	Dual Induction	LOCATION	Henderson, NV
	Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 19, 2018

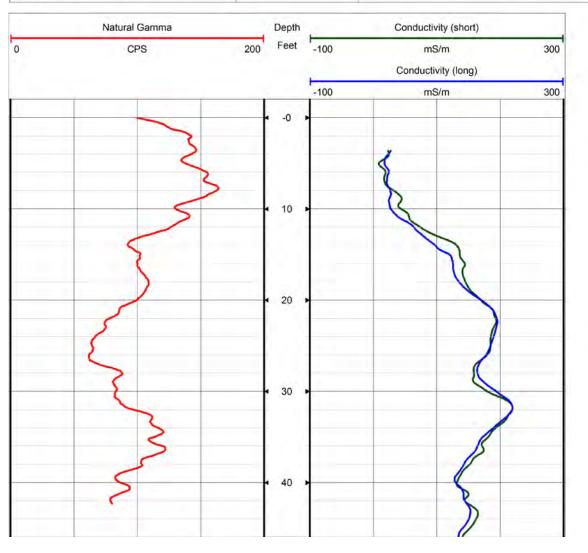


Figure 9: Borehole NERT5.91S1 Dual Induction and Natural Gamma Logs

APPENDIX A

DUAL INDUCTION AND NATURAL GAMMA QUALITY ASSURANCE LOGS

GEOVision	LOG TYPE	PROJECT	NERT Remedial Investigation
geophysical services		WELL	NERT3.80S1
geophysicus services	Dual Induction	LOCATION	Henderson, NV
	Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 20, 2018

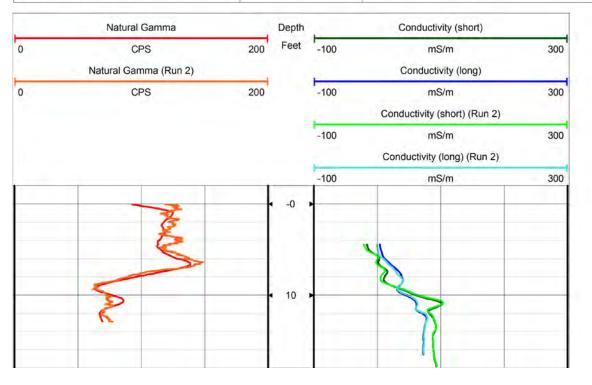


Figure A-1: Borehole NERT3.80S1 Dual Induction and Natural Gamma QA Logs

GEOVision	LOG TYPE	PROJECT	NERT Remedial Investigation NERT4.21N1
geophysical services	Dual Induction	LOCATION	Henderson, NV
	Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 20, 2018

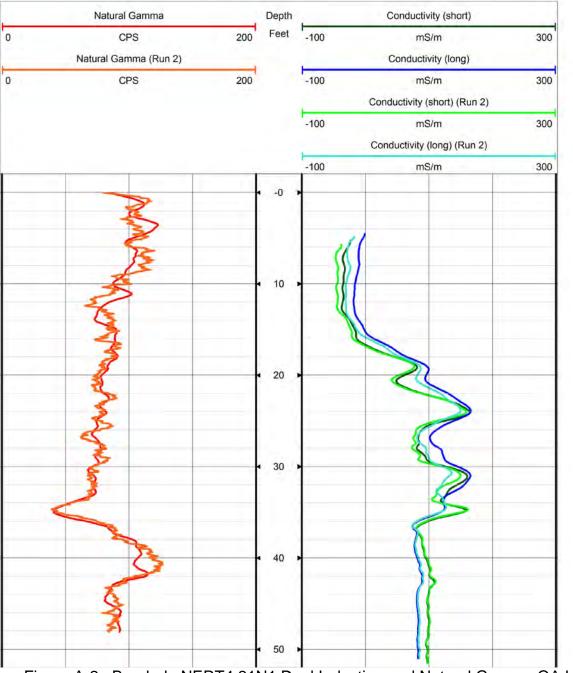


Figure A-2: Borehole NERT4.21N1 Dual Induction and Natural Gamma QA Logs

GEOVision	LOG TYPE	PROJECT	NERT Remedial Investigation NERT4.38N1
geophysical services	Dual Induction	LOCATION	Henderson, NV
	Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 20, 2018

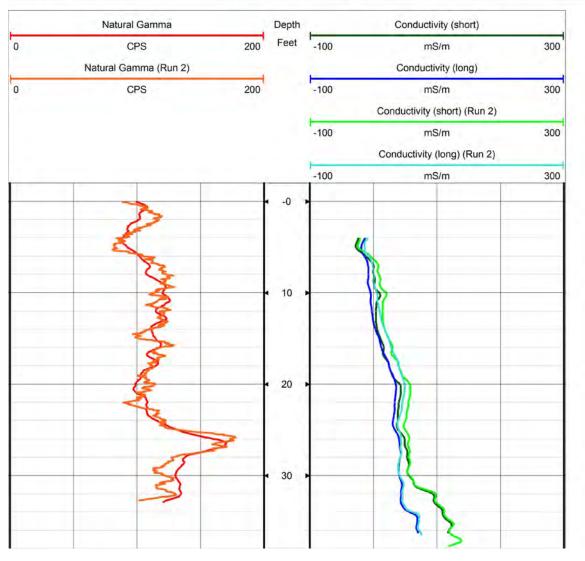
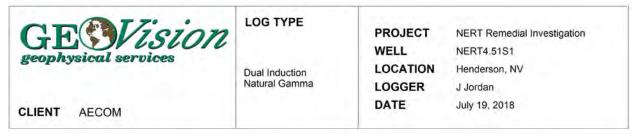



Figure A-3: Borehole NERT438.N1 Dual Induction and Natural Gamma QA Logs

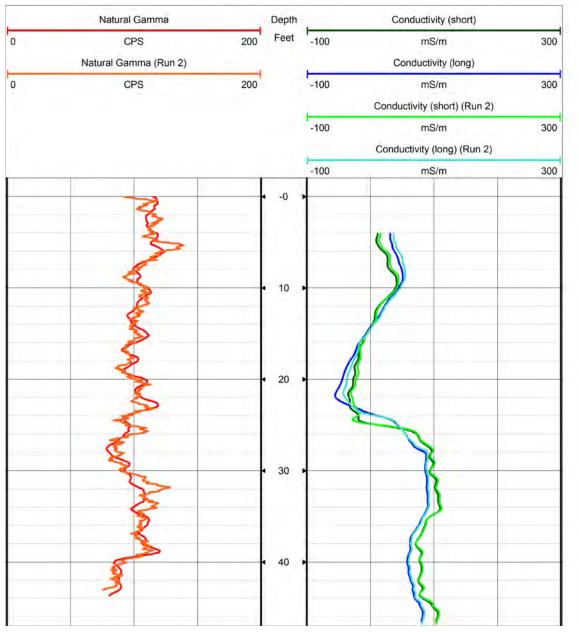
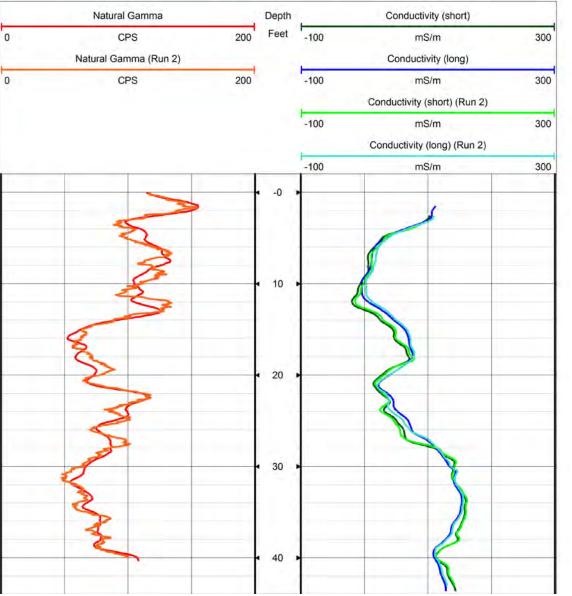
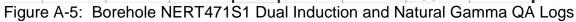




Figure A-4: Borehole NERT4.51S1 Dual Induction and Natural Gamma QA Logs

GESVision	LOG TYPE	PROJECT	NERT Remedial Investigation
geophysical services	Dual Induction	LOCATION	Henderson, NV
	Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 19, 2018

GE Vision geophysical services	Dual Induction	PROJECT WELL LOCATION	NERT Remedial Investigation NERT4.93S1 Henderson, NV
	Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 19, 2018

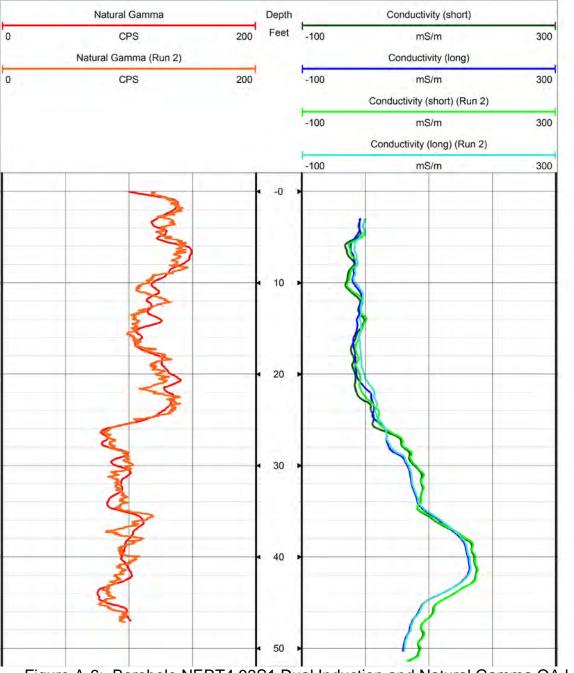
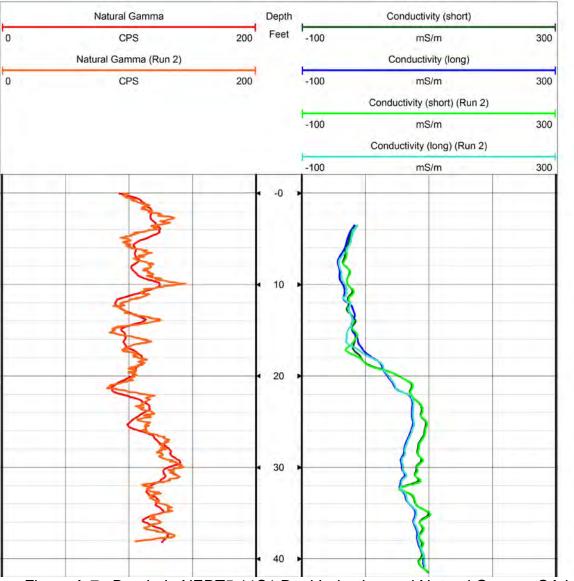
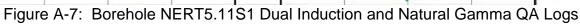




Figure A-6: Borehole NERT4.93S1 Dual Induction and Natural Gamma QA Logs

GEOVision	LOG TYPE	PROJECT	NERT Remedial Investigation
geophysical services	Dual Induction	LOCATION	Henderson, NV
	Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 19, 2018

GE Vision geophysical services	a manager of	PROJECT	NERT Remedial Investigation NERT5.49S1 Henderson, NV
	Dual Induction Natural Gamma	LOGGER	J Jordan
CLIENT AECOM		DATE	July 19, 2018

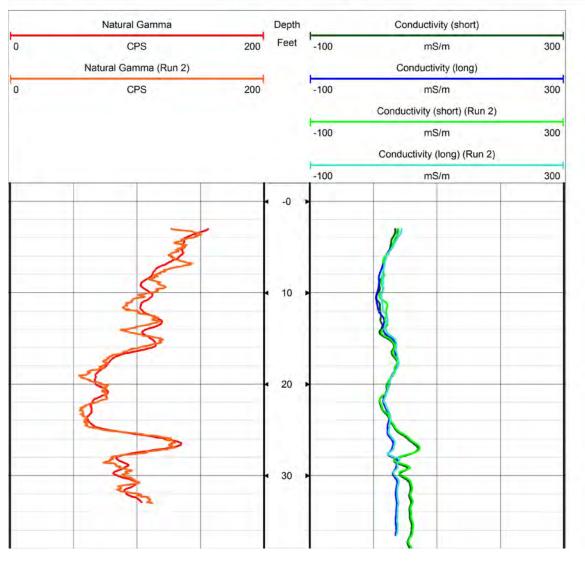


Figure A-8: Borehole NERT5.49S1 Dual Induction and Natural Gamma QA Logs

GE Vision geophysical services	LOG TYPE	PROJECT WELL LOCATION	NERT Remedial Investigation NERT5.91S1 Henderson, NV
CLIENT AECOM	Halardi Salinita	LOGGER DATE	J Jordan July 19, 2018

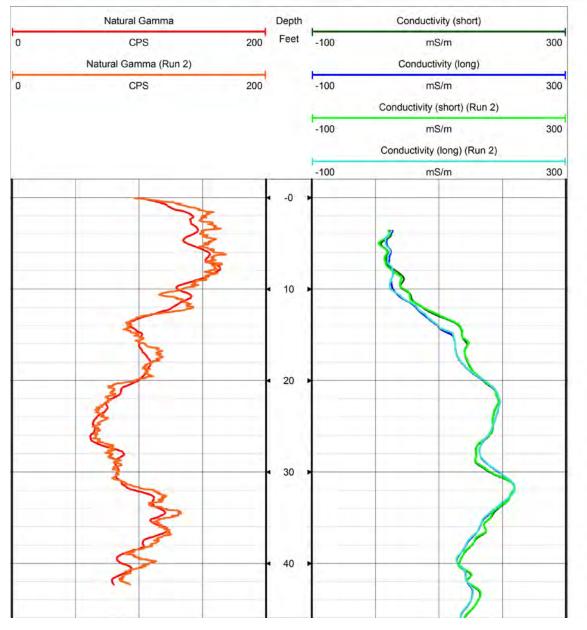


Figure A-9: Borehole NERT5.91S1 Dual Induction and Natural Gamma QA Logs

Appendix I

Survey Report

STANLEYCONSULTANTS, Inc

5820 South Eastern Avenue > Suite 200 > Las Vegas, NV 89119 702.369.9396 > stanleyconsultants.com

September 4, 2018

AECOM 1220 Avenida Acasco Camarillo, CA. 93012

Reference: WELL LOCATION SURVEY / LAS VEGAS WASH STUDY / FINAL REPORT

Attention: Carmen Caceres-Schnell

An additional Well Location Survey for the Las Vegas Wash Project was completed on June 29th, 2018. The attached spreadsheet has the final horizontal and vertical measurements for the recovered wells. The measurements made were to the top of the inner well casing along with a ground surface measurement immediately adjacent to the well. The horizontal coordinates are derived from the Nevada State Plane Coordinate System East Zone, North American Datum of 1983 (NAD83). The vertical elevations are based off of the North American Vertical Datum of 1988 (NAVD88).

If you should have any questions, please feel free to call me at (702) 534-2150.

Sincerely, STANLEY CONSULTANTS, INC.

By:

Alan W. Dill, P.L.S. Survey Manager

Survey ID	Northing	Easting	Elevation	Well ID and location	Location
30802	26736954.7	841309.125	1502.07	NERT4.21N1 TOP CASING	Top of Casing
30803	26736955.27	841309.423	1502.464	NERT4.21N1 TOP CONC	Top of Concrete
30804	26736955.36	841308.056	1502.293	NERT4.21N1 NG	Ground surface
30805	26737140.64	840337.588	1505.042	NERT4.38N1 TOP CASING	Top of Casing
30806	26737140.53	840336.841	1505.369	NERT4.38N1 TOP CONC	Top of Concrete
30807	26737140.41	840336.068	1505.271	NERT4.38N1 NG	Ground surface
30808	26734018.22	832750.228	1536.813	NAIL TAG CP	Nail Tag
30809	26734028.61	832752.186	1535.223	TOP WEIR PABCO	Top of Pabco Weir
30810	26734028.6	832752.174	1535.264	TOP WEIR PABCO	Top of Pabco Weir
30811	26733845.83	833571.59	1536.758	NERT5.91S1 TOP CASING	Top of Casing
30812	26733846.44	833571.393	1537.182	NERT5.91S1 TOP CONC	Top of Concrete
30813	26733846.77	833571.855	1537.102	NERT5.91S1 NG	Ground surface
30814	26734325.76	835451.847	1543.369	NERT5.49S1 TOP CASING	Top of Casing
30815	26734326.34	835452.173	1543.87	NERT5.49S1 TOP CONC	Top of Concrete
30816	26734326.39	835452.694	1543.728	NERT5.49S1 NG	Ground surface
30817	26734881.04	837144.377	1522.875	NERT5.11S1 TOP CASING	Top of Casing
30818	26734881.33	837143.661	1523.132	NERT5.11S1 TOP CONC	Top of Concrete
30819	26734881.75	837143.28	1523.183	NERT5.11S1 NG	Ground surface
30820	26734990.31	837979.182	1523.332	NERT4.93S1 TOP CASING	Top of Casing
30821	26734990.93	837979.305	1523.848	NERT4.93S1 TOP CONC	Top of Concrete
30822	26734991.23	837980.424	1523.83	NERT4.93S1 NG	Ground surface
30823	26735349.66	838991.633	1519.289	NERT4.71S1 TOP CASING	Top of Casing
30824	26735350.04	838991.232	1519.725	NERT4.71S1 TOP CONC	Top of Concrete
30825	26735349.65	838990.463	1519.644	NERT4.71S1 NG	Ground surface
30826	26735857.15	840138.034	1506.237	NERT4.51S1 TOP CASING	Top of Casing
30827	26735857.85	840137.717	1506.834	NERT4.51S1 TOP CONC	Top of Concrete
30828	26735858.27	840137.824	1506.792	NERT4.51S1 NG	Ground surface
30829	26738777.5	845358.726	1434.743	TOP WEIR	Top of Weir
30830	26739226.46	846034.185	1425.617	TOP ROCK	Top of Rock
30831	26736780.1	843700.756	1460.536	NERT3.80S1 TOP CASING	Top of Casing
30832	26736780.65	843700.59	1461.116	NERT3.80S1 TOP CONC	Top of Concrete
30833	26736781.33	843700.735	1461.061	NERT3.80S1 NG	Ground surface
30834	26736781.32	843700.735	1461.086	NERT3.80S1 NG	Ground surface

Survey ID	Latitude	Longatude	Elevation	Well ID and location	Location
30802	36d05'43.54651"	-114d57'23.90386"	1502.07	NERT4.21N1 TOP CASING	Top of Casing
30803	36d05'43.55212"	-114d57'23.90019"	1502.464	NERT4.21N1 TOP CONC	Top of Concrete
30804	36d05'43.55310"	-114d57'23.91683"	1502.293	NERT4.21N1 NG	Ground surface
30805	36d05'45.44708"	-114d57'35.72760"	1505.042	NERT4.38N1 TOP CASING	Top of Casing
30806	36d05'45.44604"	-114d57'35.73671"	1505.369	NERT4.38N1 TOP CONC	Top of Concrete
30807	36d05'45.44489"	-114d57'35.74614"	1505.271	NERT4.38N1 NG	Ground surface
30808	36d05'15.03940"	-114d59'08.41492"	1536.813	NAIL TAG CP	Nail Tag
30809	36d05'15.14204"	-114d59'08.39028"	1535.223	TOP WEIR PABCO	Top of Pabco Weir
30810	36d05'15.14188"	-114d59'08.39043"	1535.264	TOP WEIR PABCO	Top of Pabco Weir
30811	36d05'13.28448"	-114d58'58.42049"	1536.758	NERT5.91S1 TOP CASING	Top of Casing
30812	36d05'13.29060"	-114d58'58.42284"	1537.182	NERT5.91S1 TOP CONC	Top of Concrete
30813	36d05'13.29384"	-114d58'58.41719"	1537.102	NERT5.91S1 NG	Ground surface
30814	36d05'17.91535"	-114d58'35.47528"	1543.369	NERT5.49S1 TOP CASING	Top of Casing
30815	36d05'17.92101"	-114d58'35.47126"	1543.87	NERT5.49S1 TOP CONC	Top of Concrete
30816	36d05'17.92155"	-114d58'35.46492"	1543.728	NERT5.49S1 NG	Ground surface
30817	36d05'23.30182"	-114d58'14.81087"	1522.875	NERT5.11S1 TOP CASING	Top of Casing
30818	36d05'23.30472"	-114d58'14.81956"	1523.132	NERT5.11S1 TOP CONC	Top of Concrete
30819	36d05'23.30886"	-114d58'14.82417"	1523.183	NERT5.11S1 NG	Ground surface
30820	36d05'24.33025"	-114d58'04.63098"	1523.332	NERT4.93S1 TOP CASING	Top of Casing
30821	36d05'24.33645"	-114d58'04.62944"	1523.848	NERT4.93S1 TOP CONC	Top of Concrete
30822	36d05'24.33927"	-114d58'04.61578"	1523.83	NERT4.93S1 NG	Ground surface
30823	36d05'27.82049"	-114d57'52.26715"	1519.289	NERT4.71S1 TOP CASING	Top of Casing
30824	36d05'27.82426"	-114d57'52.27200"	1519.725	NERT4.71S1 TOP CONC	Top of Concrete
30825	36d05'27.82045"	-114d57'52.28140"	1519.644	NERT4.71S1 NG	Ground surface
30826	36d05'32.76687"	-114d57'38.25934"	1506.237	NERT4.51S1 TOP CASING	Top of Casing
30827	36d05'32.77376"	-114d57'38.26314"	1506.834	NERT4.51S1 TOP CONC	Top of Concrete
30828	36d05'32.77794"	-114d57'38.26180"	1506.792	NERT4.51S1 NG	Ground surface
30829	36d06'01.31180"	-114d56'34.41298"	1434.743	TOP WEIR	Top of Weir
30830	36d06'05.70759"	-114d56'26.14582"	1425.617	TOP ROCK	Top of Rock
30831	36d05'41.66646"	-114d56'54.77558"	1460.536	NERT3.80S1 TOP CASING	Top of Casing
30832	36d05'41.67188"	-114d56'54.77756"	1461.116	NERT3.80S1 TOP CONC	Top of Concrete
30833	36d05'41.67864"	-114d56'54.77574"	1461.061	NERT3.80S1 NG	Ground surface
30834	36d05'41.67845"	-114d56'54.77574"	1461.086	NERT3.80S1 NG	Ground surface

Appendix J

Data Validation Summary Report

Environment

Prepared for: Nevada Division of Environmental Protection Las Vegas, NV Prepared by: AECOM Camarillo, CA 60477365 February 2019

Data Validation Summary Report July 2018 Groundwater Sampling

NERT Remedial Investigation – Downgradient Study Area Nevada Environmental Response Trust Site Henderson, Nevada

Environment

Prepared for: Nevada Division of Environmental Protection Las Vegas, NV Prepared by: AECOM Camarillo, CA 60477365 February 2019

Data Validation Summary Report July 2018 Groundwater Sampling

Lify Bayati

Prepared By Lily Bayati

Reviewed By Chad Roper, PhD, CEM

Contents

1.0	Introd	luction	
	1.1	Precision and Accuracy of Environmental Data	
2.0	Wet C	Chemistry Analysis	
	2.1	Precision and Accuracy 2.1.1 Surrogate 2.1.2 MS/MSD Samples 2.1.3 DUP Samples 2.1.4 LCS Samples 2.1.5 FD Samples 2.1.6 Analyte Quantitation and Target Identification Representativeness	2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1
	L.L	2.2.1 Sample Preservation and Holding Times 2.2.2 Blanks	
	2.3	Comparability	
	2.4	Completeness	2-2
	2.5	Sensitivity	
3.0	Varia	nces in Analytical Performance	
4.0	Sumr	nary of PARCCS Criteria	
	4.1	Precision and Accuracy	4-1
	4.2	Representativeness	4-1
	4.3	Comparability	
	4.4	Completeness	
	4.5	Sensitivity	
5.0	Conc	lusions and Recommendations	
6.0	Refer	ences	6-1

List of Attachments

Attachment A Wet Chemistry Data Validation

List of Tables

- Table 1 Sample Cross Reference
- Table 2 Validation Elements
- Table 3 Qualification Codes and Definitions
- Table 4 Qualified Results

List of Acronyms

DQO	data quality objectives
DUP	duplicate
DVSR	Data Validation Summary Report
EB	equipment blank
EPA	United States Environmental Protection Agency
FB	field blank
FD	field duplicate
LCS/LCSD	laboratory control sample / laboratory control sample duplicate
MS/MSD	matrix spike / matrix spike duplicate
NDEP	Nevada Division of Environmental Protection
NERT	Nevada Environmental Response Trust
PARCCS	precision, accuracy, representativeness, comparability, completeness, sensitivity
PQL	practical quantitation limit
QA	quality assurance
QAPP	Quality Assurance Project Plan
QC	quality control
RPD	relative percent difference
SDG	sample delivery group
SQL	sample quantitation limit
TDS	Total Dissolved Solids
%R	percent recovery

1.0 Introduction

This Data Validation Summary Report has been prepared by AECOM to assess the validity and usability of laboratory analytical data from the July 2018 groundwater sampling conducted in the Downgradient Study Area of the Nevada Environmental Response Trust (NERT) site in Henderson, Nevada. The assessment was performed by AECOM under their May 2017 Quality Assurance Project Plan (QAPP) and included the collection and analyses of 33 environmental and quality control (QC) samples. The analyses were performed by the following methods:

- Chlorate by United States Environmental Protection Agency (EPA) Method 300.1B
- Perchlorate by EPA Method 314.0
- Total Dissolved Solids (TDS) by Standard Method 2540C
- Bromide and Chloride by EPA Method 300.0
- Total Chromium by EPA Method 200.8

Laboratory analytical services were provided by TestAmerica, Inc. (Irvine, California). The samples were grouped into sample delivery groups (SDGs). The water samples are associated with quality assurance (QA)/QC samples designed to document the data quality of the entire SDG or a sub-group of samples within an SDG. **Table 1** is a cross-reference table listing each sample identification (ID), analysis, SDG, sample date, laboratory ample ID, matrix, and validation level. **Table 2** is a reference table that identifies the QC elements reviewed.

The laboratory analytical data were validated in accordance with procedures described in the Nevada Division of Environmental Protection (NDEP) Data Verification and Validation Requirements - Supplement established for the BMI Plant Sites and Common Areas Projects, Henderson, Nevada, dated April 13, 2009. In accordance with an NDEP data validation guidance letter dated July 13, 2018, 100 percent of the analytical data were validated according to Stage 2A data validation procedures.

The analytical data were evaluated for QA/QC based on the following documents: AECOM's QAPP Downgradient Study Area, Henderson, Nevada, Revision, dated May 2017; NDEP Data Validation Guidance dated July 13, 2018; EPA's Contract Laboratory Program National Functional Guidelines for Inorganic Data Review dated January 2017; and EPA's SW 846 Third Edition, Test Methods for Evaluating Solid Waste, update I, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IV, February 2007.

This report summarizes the QA/QC evaluation of the data according to precision, accuracy, representativeness, completeness, comparability, and sensitivity (PARCCS) relative to the project data quality objectives (DQOs). This report provides a quantitative and qualitative assessment of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall usability.

The PARCCS summary report evaluates and summarizes the results of QA/QC data validation for the entire sampling program. Section 2.0 interprets specific QC deviations and their effects on both individual data points and the analyses as a whole. Section 4.0 presents a summary of the PARCCS criteria by comparing quantitative parameters with acceptability criteria defined in the project DQOs. Qualitative PARCCS criteria are also summarized in this section.

1.1 Precision and Accuracy of Environmental Data

Environmental data quality depends on sample collection procedures, analytical methods and instrumentation, documentation, and sample matrix properties. Both sample collection procedures and laboratory analyses contain potential sources of uncertainty, error, and/or bias, which affect the overall quality of a measurement. Errors in sample data may result from incomplete equipment decontamination, inappropriate sampling techniques, sample heterogeneity, improper filtering, and improper preservation. The accuracy of analytical results is dependent on selecting appropriate analytical methods, maintaining equipment properly, and complying with QC requirements. The sample matrix (i.e.. groundwater) is also an important factor in the ability to obtain precise and accurate results within a given media.

Environmental and laboratory QA/QC samples assess the effects of sampling procedures and evaluate laboratory contamination, laboratory performance, and matrix effects. QA/QC samples include equipment blanks (EBs), field blanks (FBs), field duplicates (FDs), method blanks, laboratory control samples/laboratory control sample duplicates (LCS/LCSDs), and matrix spike/matrix spike duplicates (MS/MSDs).

Before conducting the PARCCS evaluation, the analytical data were validated according to the QAPP (AECOM 2017), Functional Guidelines (EPA 2017), EPA SW 846 Test Methods (EPA 1996) and NDEP July 13, 2018 Data Validation Guidance (NDEP 2018). Samples not meeting the acceptance criteria were qualified with a flag, an abbreviation indicating a deficiency with the data. The following are flags used in data validation:

J-	Estimated - The associated numerical value is an estimated quantity with a negative bias. The analyte was detected but the reported value may not be accurate or precise.
J+	Estimated - The associated numerical value is an estimated quantity with a positive bias. The analyte was detected but the reported value may not be accurate or precise.
J	Estimated - The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. It is not possible to assess the direction of the potential bias. The analyte was detected but the reported value may not be accurate or precise.
R	Rejected - The data is unusable (the compound or analyte may or may not be present). Use of the "R" qualifier indicates a significant variance from functional guideline acceptance criteria. Either resampling or reanalysis is necessary to determine the presence or absence of the rejected analyte.
U	Nondetected - Analyses were performed for the compound or analyte, but it was not detected.
UJ	Estimated/Nondetected - The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
DNR	Do Not Report - A more appropriate result is reported from another analysis or dilution.
A	Indicates the finding is based upon technical validation criteria.
Ρ	Indicates the finding is related to a protocol/contractual deviation.
The hierarchy of fl	ags is listed below:

- R > J The R flag will always take precedence over the J qualifier.
- J+ The high bias (J+) flag is applied only to detected results.

J > J+ or J-	A non-biased (J) flag will always supersede biased (J+ or J-) flags since it is not possible to assess the direction of the potential bias.
J = J+ plus J-	Adding biased (J+, J-) flags with opposite signs will result in a nonbiased flag (J).
UJ = U plus J	The UJ flag is used when a non-detected (U) flag is added to J flag.

Table 3 lists the reason codes used. Reason codes explain why flags have been applied and identify possible limitations of data use. Reason codes are cumulative except when one of the flags is R then only the reason code associated to the R flag will be used.

Table 4 presents the overall qualified results after all the flags or validation qualifiers and associated reason codes have been applied.

Once the data are reviewed and qualified according to the QAPP, functional guidelines, EPA Test Methods, and NDEP guidance the data set is then evaluated using PARCCS criteria. PARCCS criteria provide an evaluation of overall data usability. The following is a discussion of PARCCS criteria as related to the project DQOs.

Precision measures the reproducibility of repetitive measurements. It is defined as the degree of mutual agreement among independent measurements as the result of repeated application of the sample analytical process under similar conditions.

Components of precision include analytical precision and total precision. Analytical precision is a measurement of the variability associated with duplicate or replicate analyses of the same sample in the laboratory, and is determined by analysis of laboratory QC samples, such as duplicate control samples (LCSD, MSD, or sample duplicates). If the recoveries of analytes in the specified control samples are comparable within established control limits, then precision is within limits.

Total precision is a measurement of the variability associated with the entire sampling and analytical process. It is determined by analysis of duplicate or replicate field samples, and measures variability introduced by both the laboratory and field operations. FD samples are analyzed to assess field and analytical precision.

Duplicate results are assessed using the relative percent difference (RPD) between duplicate measurements. If the RPD for laboratory QC samples exceeds the laboratory's statistically determined acceptance ranges, data will be qualified as described in the applicable validation procedure. If the RPD between primary and duplicate field samples exceeds 50 percent for groundwater, data will be qualified as described in the applicable validation procedure.

The RPD will be calculated as follows:

RPD =
$$\frac{|x_1 - x_2|}{\left(\frac{(x_1 + x_2)}{2}\right)} *100$$

where:

- x_1 = analyte concentration in the primary sample, and
- x₂ = analyte concentration in the duplicate sample

Possible causes of poor precision include improper sample collection or handling, inconsistent sample preparation, and poor instrument stability. In some duplicate pairs, results may be reported in either the primary or duplicate samples at levels below the practical quantitation limit (PQL) or non-detected. Since these values are considered to be estimates, RPD exceedances from these duplicate pairs do not suggest a significant impact on the data quality.

Accuracy is a measure of the agreement of an experimental determination and the true value of the parameter being measured. It is used to identify bias in a given measurement system. Recoveries outside acceptable QC limits may be caused by factors such as instrumentation, analyst error, or matrix interference. Accuracy is assessed through the analysis of MS, MSD, LCS, and LCSD. In some cases, samples from multiple SDGs were within one QC batch and therefore are associated with the same laboratory QC samples. Accuracy of inorganic analyses is determined using the percent recoveries of MS and LCS analyses.

Percent recovery (%R) is calculated using the following equation:

%R = (A-B)/C x 100

where:

A = measured concentration in the spiked sample

B = measured concentration of the spike compound in the unspiked sample

C = concentration of the spike

The %R of each analyte spiked in MS/MSD samples and LCS/LCSD is evaluated with the acceptance criteria specified by the previously noted documents. Spike recoveries outside the acceptable QC accuracy limits provide an indication of bias, where the reported data may overestimate or underestimate the actual concentration of compounds detected or quantitation limits reported for environmental samples.

Representativeness is a qualitative parameter that expresses the degree to which the sample data are characteristic of a population. It is evaluated by reviewing the QC results of blanks, samples and holding times. Positive detects of compounds in the blank samples identify compounds that may have been introduced into the samples during sample collection, transport, preparation, or analysis. The QA/QC blanks collected and analyzed are method blanks, calibration blanks, EBs, and FBs.

A method blank is a laboratory-grade water or solid matrix that contains the method reagents and has undergone the same preparation and analysis as the environmental samples. The method blank provides a measure of the combined contamination derived from the laboratory-source water, glassware, instruments, reagents, and sample preparation steps. Method blanks are prepared for each sample of a similar matrix extracted by the same method at a similar concentration level.

EBs consist of analyte-free water poured over or through the sample collection equipment. The water is collected in a sample container for laboratory analysis. These blanks are collected after the sampling equipment is decontaminated and measure efficiency of the decontamination procedure. EBs were collected and analyzed for all target analytes.

FBs consist of analyte-free source water stored at the sample collection site. Water is collected from each source water used during each sampling event. FBs were collected and analyzed for all target analytes.

For inorganic analyses, contaminants found in both the environmental sample and the blank sample are assumed to be laboratory artifacts if both values are less than the PQL or if a sample result and blank contaminant value are greater than the PQL and the sample result is less than 10 times the blank contaminant value. The blanks and associated samples are evaluated according to the NDEP July 13, 2018 Data Validation Guidance (NDEP 2018).

Holding times are evaluated to assure that the sample integrity is intact for accurate sample preparation and analysis. Holding times will be specific for each method and matrix analyzed. Holding time exceedance can cause loss of sample constituents due to biodegradation, precipitation, volatilization, and chemical degradation. In accordance with NDEP Guidance (NDEP 2018) sample results for analyses that were performed after the method holding time but less than two times the method holding time would be qualified as estimated (J- or UJ). For

analyses that were performed after two times the method holding time, detected sample results would be qualified as estimated (J-) and nondetect sample results would be qualified as rejected (R).

Comparability is a qualitative expression of the confidence with which one data set may be compared to another. It provides an assessment of the equivalence of the analytical results to data obtained from other analyses. It is important that data sets be comparable if they are used in conjunction with other data sets. The factors affecting comparability include the following: sample collection and handling techniques, matrix type, and analytical method. If these aspects of sampling and analysis are carried out according to standard analytical procedures, the data are considered comparable. Comparability is also dependent upon other PARCCS criteria, because only when precision, accuracy, and representativeness are known can data sets be compared with confidence.

Completeness is defined as the percentage of acceptable sample results compared to the total number of sample results. Completeness is evaluated to determine if an acceptable amount of usable data were obtained so that a valid scientific site assessment can be completed. Completeness equals the total number of sample results for each fraction minus the total number of rejected sample results divided by the total number of sample results multiplied by 100. As specified in the project DQOs, the goal for completeness for target analytes in each analytical fraction is 90 percent.

Percent completeness is calculated using the following equation:

where:

%C = percent completeness

T = total number of sample results

R = total number of rejected sample results

Completeness is also determined by comparing the planned number of samples per method and matrix as specified in the QAPP, with the number determined above.

Sensitivity is the ability of an analytical method or instrument to discriminate between measurement responses representing different concentrations. This capability is established during the planning phase to meet the DQOs. It is important that calibration requirements, detection limits, and PQLs presented in the QAPP are achieved and that target analytes can be detected at concentrations necessary to support the DQOs. The method detection limits (MDLs) represent the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. Sample quantitation limits (SQLs) are adjusted MDL values that reflect sample-specific actions, such as dilutions or varying aliquot sizes. PQLs are the lowest level at which the entire analytical system gives a recognizable signal and acceptable calibration point for the analyte. The laboratory is required to report detected analytes down to the SQL for this project. The laboratory uses a format that reports estimated values down to the SQL. In addition, sample results are compared to method blank and FB results to identify potential effects of laboratory background and field procedures on sensitivity.

The following sections present a review of QC data chlorate, perchlorate, bromide, chloride, TDS and chromium analyses.

2.0 Analysis

A total of 26 primary water samples and 7 QC samples were collectively analyzed for total chromium by EPA Method 200.8, bromide and chloride by EPA Method 300.0; chlorate by EPA Method 300.1B; perchlorate by EPA Method 314.0; and TDS by Standard Method 2540C. All analytical data were assessed to be valid. This section discusses the QA/QC supporting documentation as defined by the PARCCS criteria and evaluated based on the DQOs.

2.1 Precision and Accuracy

2.1.1 Surrogate

Surrogate (dichloroacetic acid) recoveries were evaluated for chlorate analysis by EPA Method 300.1B. All surrogate %Rs met the acceptance criteria as stated in the QAPP.

2.1.2 MS/MSD Samples

Due to MS/MSD %Rs outside of acceptance criteria as stated in the QAPP, the following samples were qualified as estimated ("J+") for perchlorate: MW-25-20180712, MW-20-20180712, WMW3.5S-20180716 and WMW5.7N-20180717 The details regarding the qualification of results are presented in Attachment A, Section 5.

2.1.3 DUP Samples

Duplicate (DUP) samples were evaluated for TDS analysis by SM 2540C. All DUP RPDs met the acceptance criteria as stated in the QAPP.

2.1.4 LCS Samples

LCS samples were evaluated for all wet chemistry methods. All LCS %Rs met the acceptance criteria as stated in the QAPP.

2.1.5 FD Samples

The FD samples were evaluated for acceptable precision with RPDs. Acceptable field and analytical precision was demonstrated for all FD pairs.

2.1.6 Analyte Quantitation and Target Identification

All analytes reported and the detection limits obtained comply with project specifications. All dilutions were appropriate.

2.2 Representativeness

2.2.1 Sample Preservation and Holding Times

The evaluation of holding times to verify compliance with all analytical methods was conducted. All water samples met the 7-day analysis holding time criteria for TDS, the 28-day analysis holding time criteria for chlorate, perchlorate, bromide and chloride; and the 180-day holding analysis holding time for chromium.

The details regarding sample preservation and holding times are presented in Attachment A, Section I.

2.2.2 Blanks

Method blanks, EBs, and FBs were analyzed to evaluate representativeness.

2.2.2.1 Method Blanks

Due to low-level blank contamination, the results for chromium for samples NERT5.91S1-20180716, NERT5.49S1-20180716, and NERT4.38N1-20180716 were qualified as estimated ("J+"). The details regarding the qualification of these results are presented in Attachment A, Section 2.

2.2.2.2 EBs and FBs

Two EBs (NERT4.93S1-20180710-EB and MW-02-20180712-EB) and two FBs (NERT4.93S1-20180710-FB and MW-02-20180712-FB) were submitted for analyses. No contaminants were found in EBs and FBs that required data qualification. The details regarding these results are presented in Attachment A, Section 3.

2.3 Comparability

The laboratory used standard analytical methods for all of the analyses. In all cases, the sample quantitation limits attained were at or below the PQLs. Target compounds detected below the PQLs flagged (J) by the laboratory should be considered estimated. The comparability of the data is regarded as acceptable.

2.4 Completeness

The completeness level attained for wet chemistry field samples was 100 percent. This percentage was calculated as the total number of accepted sample results divided by the total number of sample results multiplied by 100.

2.5 Sensitivity

All laboratory PQLs met the specified requirements described in the QAPP.

3.0 Variances in Analytical Performance

The laboratory used standard analytical methods for all of the analyses throughout the project. No systematic variances in analytical performance were noted in the laboratory case narratives.

4.0 Summary of PARCCS Criteria

The validation reports present the PARCCS results for all SDGs. Each PARCCS criterion is discussed in detail in the following sections.

4.1 Precision and Accuracy

Precision and accuracy were evaluated using data quality indicators such as surrogates, MS/MSD, DUP, LCS/LCSD, and field duplicates. The precision and accuracy of the data set were considered acceptable after incorporation of validation-qualified results.

All blanks, surrogate, MS/MSD, RPDs, DUP, LCS, and FD %R met acceptance criteria with the exceptions noted in Section 2.1

4.2 Representativeness

All samples for each method and matrix were evaluated for holding time compliance. All samples were associated with a method blank in each individual SDG. The representativeness of the project data is considered acceptable after incorporation of validation-gualified results.

4.3 Comparability

Sampling frequency requirements were met in obtaining necessary EBs, FBs and FDs. The laboratory used standard analytical methods for the analyses. The analytical results were reported in correct standard units. Sample integrity criteria were met. Sample preservation and holding times were within QC criteria. The overall comparability is considered acceptable after incorporation of validation-qualified results.

4.4 Completeness

Of the 88 total analytes reported from primary samples, 0 sample results were rejected. The completeness for the SDGs is as follows:

Parameter	Total Analytes	No. of Rejects	% Completeness
Perchlorate	26	0	100
Chlorate	26	0	100
TDS	9	0	100
Chloride	9	0	100
Bromide	9	0	100
Chromium	9	0	100
Total	88	0	100

The completeness percentage based on rejected data met the 90-percent DQO goal.

4.5 Sensitivity

Sensitivity was achieved by the laboratory to support the DQOs. Calibration concentrations and PQLs met the project requirements and low-level contamination in the method blanks, calibration blanks, EBs, and FBs did not affect sensitivity.

5.0 Conclusions and Recommendations

The analytical data quality assessment for the water sample laboratory analytical results generated during the July 2018 groundwater sampling in the Downgradient Study Area of the NERT site in Henderson, Nevada, established that the overall project requirements and completeness levels were met. No results were rejected. Sample results that were found to be estimated ("J+") are usable for limited purposes only. Based upon the Stage 2A data validation, all other results are considered valid and usable for all purposes.

6.0 References

AECOM, 2017. Quality Assurance Project Plan, Downgradient Study Area, Henderson, Nevada (QAPP), May (Rev 1).

EPA, 2017. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. January 2017.

_____, 1996. EPA SW 846 Third Edition, Test Methods for Evaluating Solid Waste, update I, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IV, February 2007.

_____,1983. EPA Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Cincinnati, Ohio. March.

NDEP, 2018. NDEP Data Validation and Verification Requirements for the BMI Complex and Common Areas. July 13.

Tables

Table 1

Sample Cross Reference

NERT Downgradient Study Area

Henderson, Nevada

SDG	Client Sample ID	Lab Sample ID	Matrix	Sample Date	QC Type	Validation Level	Bromide (E300)	Chlorate (E300.1B)	Chloride (E300)	Total Chromium (E200.8)	Perchlorate (E314.0)	Total Dissolved Solids (SM2540C)
4402156051	NERT3.80S1-20180709	440-215605-1	W	07/09/18		Stage 2A	Х	Х			х	Х
4402156051	NERT4.51S1-20180710	440-215605-3	W	07/10/18		Stage 2A	Х	Х	Х	х	х	х
4402156051	NERT4.71S1-20180710	440-215605-2	W	07/10/18		Stage 2A	Х	Х	Х	х	х	х
4402156051	NERT4.93S1-20180710	440-215605-4	W	07/10/18		Stage 2A	Х	Х	Х	х	х	х
4402156051	NERT4.93S1-20180710-EB	440-215605-7	W	07/10/18	EB	Stage 2A	Х	Х	Х	х	х	х
4402156051	NERT4.93S1-20180710-FB	440-215605-6	W	07/10/18	FB	Stage 2A	Х	Х	Х	х	х	х
4402156051	NERT4.93S1-20180710-FD	440-215605-5	W	07/10/18	DUP	Stage 2A	Х	Х	Х	х	х	х
4402156051	NERT5.11S1-20180710	440-215605-8	W	07/10/18		Stage 2A	Х	Х	Х	х	х	х
4402158041	AA-30-20180713	440-215804-12	W	07/13/18		Stage 2A		Х			х	
4402158041	COH2B1-20180713	440-215804-11	W	07/13/18		Stage 2A		Х			х	
4402158041	LNDMW1-20180711	440-215804-1	W	07/11/18		Stage 2A		Х			х	
4402158041	MW-02-20180712	440-215804-6	W	07/12/18		Stage 2A		Х			х	
4402158041	MW-02-20180712-EB	440-215804-9	W	07/12/18	EB	Stage 2A		Х			х	
4402158041	MW-02-20180712-FB	440-215804-8	W	07/12/18	FB	Stage 2A		Х			х	
4402158041	MW-02-20180712-FD	440-215804-7	W	07/12/18	DUP	Stage 2A		Х			х	
4402158041	MW-13-20180712	440-215804-3	W	07/12/18		Stage 2A		Х			х	
4402158041	MW-20-20180712	440-215804-10	W	07/12/18		Stage 2A		Х			х	
4402158041	MW-25-20180712	440-215804-2	W	07/12/18		Stage 2A		Х			х	
4402158041	MW-3-20180712	440-215804-4	W	07/12/18		Stage 2A		Х			х	
4402158041	MW-4-20180712	440-215804-5	W	07/12/18		Stage 2A		Х			х	
4402158041	WMW4.9S-20180713	440-215804-15	W	07/13/18		Stage 2A		Х			х	
4402158041	WMW4.9S-20180713-FD	440-215804-16	W	07/13/18	DUP	Stage 2A		Х			х	
4402158041	WMW5.58S-20180713	440-215804-14	W	07/13/18		Stage 2A		Х			х	
4402158041	WMW5.5S-20180713	440-215804-13	W	07/13/18		Stage 2A		Х			х	
4402162091	LNDMW2-20180717	440-216209-7	W	07/17/18		Stage 2A		Х			х	
4402162091	NERT4.21N1-20180716	440-216209-4	W	07/16/18		Stage 2A	Х	Х	х	х	х	Х
4402162091	NERT4.38N1-20180716	440-216209-5	W	07/16/18		Stage 2A	Х	Х	х	х	х	Х
4402162091	NERT5.49S1-20180716	440-216209-3	W	07/16/18		Stage 2A	Х	Х	Х	Х	х	Х
4402162091	NERT5.91S1-20180716	440-216209-2	W	07/16/18		Stage 2A	Х	Х	Х	Х	х	Х
4402162091	WMW3.5N-20180717	440-216209-6	W	07/17/18		Stage 2A		Х			х	
4402162091	WMW3.5S-20180716	440-216209-1	W	07/16/18		Stage 2A		Х			х	
4402162091	WMW4.9N-20180717	440-216209-8	W	07/17/18		Stage 2A		Х			х	
4402162091	WMW5.7N-20180717	440-216209-9	W	07/17/18		Stage 2A		Х			Х	

Notes:

SDG - Sample Designation Group

ID - Identifier

QC - Quality control

W - Water

EB - Equipment Blank

FB - Field Blank DUP - Duplicate

Doi - Duplicat

Table 2Validation ElementsNERT Downgradient Study Area

Henderson, Nevada

Stage 2A	All Analyses
Sample Receipt & Technical Holding Time	
Laboratory Blanks	
Field Blanks	
Surrogate Spikes	
Matrix Spike (MS), Matrix Spike Duplicate (MSD)	
Laboratory Duplicate (DUP)	
Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD)	
Field Duplicate	
Project Quantitation Limits (QL)	
Multiple Results for One Sample	
Overall Data Usability Assessment	

Notes:

v = Reviewed

Table 3Qualification Codes and DefinitionsNERT Downgradient Study Area

Henderson, Nevada

Reason Code	Explanation
а	qualified due to low abundance (radiochemical activity)
be	qualified due to equipment blank contamination
bf	qualified due to field blank contamination
bl	qualified due to laboratory blank contamination
bt	qualified due to trip blank contamination
bp	qualified due to pump blank contamination (wells w/o dedicated pumps, when contamination is detected in the Pump Blk)
br	qualified due to filter blank contamination (aqueous Hexavalent Chromium and Dissolved sample fractions)
С	qualified due to calibration problems
ср	qualified due to insufficient ingrowth (radiochemical only)
dc	dual column confirmation %D exceeded
е	concentration exceeded the calibration range
fd	qualified due to field duplicate imprecision
h	qualified due to holding time exceedance
i	qualified due to internal standard areas
k	qualified as Estimated Maximum Possible Concentrations (dioxins and PCB congeners)
I	qualified due to LCS recoveries
ld	qualified due to laboratory duplicate imprecision (matrix duplicate, MSD, LCSD)
m	qualified due to matrix spike recoveries
nb	qualified due to negative laboratory blank contamination (nondetect results only)
nd	qualified due to non-detected target analyte
0	other
р	qualified as a false positive due to contamination during shipping
рН	sample preservation not within acceptance range
q	qualified due to quantitation problem
S	qualified due to surrogate recoveries
sd	serial dilution did not meet control criteria
sp	detected value reported >SQL <pql< td=""></pql<>
st	sample receipt temperature exceeded
t	qualified due to elevated helium tracer concentrations
vh	volatile headspace detected in aqueous sample containers submitted for VOC analysis
x	qualified due to low % solids
Z	qualified due to ICS results

SDG	Client	Sample	Method	Client	Analyte	Lab	Lab	SQL	PQL	Units	Validator		Reason Code		fication
	Sample ID	Date		Analyte ID		Result	Qualifier				Qualifier	Code	Definition	Fin	ding
4402156051	NERT3.80S1-20180709	7/9/2018	E200.8	7440-47-3	Chromium	1.8	J	0.50	2.0	μg/l	J	sp	Detect <pql< td=""><td></td><td></td></pql<>		
4402156051	NERT3.80S1-20180709	7/9/2018	E300	16887-00-6	Chloride	480		1.3	100	mg/l					
4402156051	NERT3.80S1-20180709	7/9/2018	E300	24959-67-9	Bromide	1.3	U	1.3	2.5	mg/l					
4402156051	NERT3.80S1-20180709	7/9/2018	SM2540C	TDS	Total Dissolved Solids	3100		5.0	20	mg/l					
4402156052	NERT3.80S1-20180709	7/9/2018	E300.1	14866-68-3	Chlorate	1700		250	1000	µg/l					
4402156052	NERT3.80S1-20180709	7/9/2018	E314.0	14797-73-0	Perchlorate	1100		95	400	µg/l					
4402156051	NERT4.71S1-20180710	7/10/2018	E200.8	7440-47-3	Chromium	26		0.50	2.0	µg/l					
4402156051	NERT4.71S1-20180710	7/10/2018	E300	16887-00-6	Chloride	830		2.5	100	mg/l					
4402156051	NERT4.71S1-20180710	7/10/2018	E300	24959-67-9	Bromide	2.5	U	2.5	5.0	mg/l					
4402156051	NERT4.71S1-20180710	7/10/2018	E300.1	14866-68-3	Chlorate	14000		250	1000	µg/l					
4402156051	NERT4.71S1-20180710	7/10/2018	E314.0	14797-73-0	Perchlorate	3800		95	400	µg/l					
4402156051	NERT4.71S1-20180710	7/10/2018	SM2540C	TDS	Total Dissolved Solids	5200		5.0	100	mg/l					
4402156051	NERT4.51S1-20180710	7/10/2018	E200.8	7440-47-3	Chromium	19		0.50	2.0	µg/l					
4402156051	NERT4.51S1-20180710	7/10/2018	E300	16887-00-6	Chloride	710		1.3	100	mg/l					
4402156051	NERT4.51S1-20180710	7/10/2018	E300	24959-67-9	Bromide	1.3	U	1.3	2.5	mg/l					
4402156051	NERT4.51S1-20180710	7/10/2018	E300.1	14866-68-3	Chlorate	10000		250	1000	µg/l					
4402156051	NERT4.51S1-20180710	7/10/2018	E314.0	14797-73-0	Perchlorate	3100		95	400	µg/l					
4402156051	NERT4.51S1-20180710	7/10/2018	SM2540C	TDS	Total Dissolved Solids	4900		5.0	100	mg/l					
4402156051	NERT4.93S1-20180710	7/10/2018	E200.8	7440-47-3	Chromium	15		0.50	2.0	µg/l					
4402156051	NERT4.93S1-20180710	7/10/2018	E300	16887-00-6	Chloride	770		1.3	100	mg/l					
4402156051	NERT4.93S1-20180710	7/10/2018	E300	24959-67-9	Bromide	1.3	U	1.3	2.5	mg/l					
4402156051	NERT4.93S1-20180710	7/10/2018	E300.1	14866-68-3	Chlorate	19000		250	1000	µg/l					
4402156051	NERT4.93S1-20180710	7/10/2018	E314.0	14797-73-0	Perchlorate	3900		95	400	µg/l					
4402156051	NERT4.93S1-20180710	7/10/2018	SM2540C	TDS	Total Dissolved Solids	4300		5.0	50	mg/l					
4402156051	NERT4.93S1-20180710-FD	7/10/2018	E200.8	7440-47-3	Chromium	14		0.50	2.0	µg/l					
4402156051	NERT4.93S1-20180710-FD	7/10/2018	E300	16887-00-6	Chloride	770		1.3	100	mg/l					
4402156051	NERT4.93S1-20180710-FD	7/10/2018	E300	24959-67-9	Bromide	1.3	U	1.3	2.5	mg/l					
4402156051	NERT4.93S1-20180710-FD	7/10/2018	E300.1	14866-68-3	Chlorate	18000		250	1000	µg/l					
4402156051	NERT4.93S1-20180710-FD	7/10/2018	E314.0	14797-73-0	Perchlorate	3900		95	400	µg/l					
4402156051	NERT4.93S1-20180710-FD	7/10/2018	SM2540C	TDS	Total Dissolved Solids	4300	1	5.0	50	mg/l					[
4402156051	NERT4.93S1-20180710-FB	7/10/2018	E200.8	7440-47-3	Chromium	0.50	U	0.50	2.0	µg/l					
4402156051	NERT4.93S1-20180710-FB	7/10/2018	E300	16887-00-6	Chloride	0.25	U	0.25	0.50	mg/l					
4402156051	NERT4.93S1-20180710-FB	7/10/2018	E300	24959-67-9	Bromide	0.25	U	0.25		mg/l					
4402156051	NERT4.93S1-20180710-FB	7/10/2018	E300.1	14866-68-3	Chlorate	5.0	U	5.0	20	µg/l					
4402156051	NERT4.93S1-20180710-FB	7/10/2018	E314.0	14797-73-0	Perchlorate	0.95	U	0.95	4.0	µg/l					
4402156051	NERT4.93S1-20180710-FB	7/10/2018	SM2540C	TDS	Total Dissolved Solids	5.0	U	5.0	10	mg/l					
4402156051	NERT4.93S1-20180710-EB	7/10/2018	E200.8	7440-47-3	Chromium	0.50	U	0.50	2.0	µg/l					
4402156051	NERT4.93S1-20180710-EB	7/10/2018	E300	16887-00-6	Chloride	0.26	J	0.25	-	mg/l	J	sp	Detect <pql< td=""><td></td><td></td></pql<>		

SDG	Client	Sample	Method	Client	Analyta	Lab	Lab	SQL	PQL	Unite	Validator	Reason	Reason Code	Qualif	ication
SDG	Sample ID	Date	wethod	Analyte ID	Analyte	Result	Qualifier	SQL	PQL	Units	Qualifier	Code	Definition	Fine	ding
4402156051	NERT4.93S1-20180710-EB	7/10/2018	E300	24959-67-9	Bromide	0.25	U	0.25	0.50	mg/l					
4402156051	NERT4.93S1-20180710-EB	7/10/2018	E300.1	14866-68-3	Chlorate	5.0	U	5.0	20	µg/l					
4402156051	NERT4.93S1-20180710-EB	7/10/2018	E314.0	14797-73-0	Perchlorate	0.95	U	0.95	4.0	µg/l					
4402156051	NERT4.93S1-20180710-EB	7/10/2018	SM2540C	TDS	Total Dissolved Solids	5.0	U	5.0	10	mg/l					
4402156051	NERT5.11S1-20180710	7/10/2018	E200.8	7440-47-3	Chromium	13		0.50	2.0	µg/l					
4402156051	NERT5.11S1-20180710	7/10/2018	E300	16887-00-6	Chloride	910		1.3	100	mg/l					
4402156051	NERT5.11S1-20180710	7/10/2018	E300	24959-67-9	Bromide	1.3	U	1.3	2.5	mg/l					
4402156051	NERT5.11S1-20180710	7/10/2018	E300.1	14866-68-3	Chlorate	25000		500	2000	µg/l					
4402156051	NERT5.11S1-20180710	7/10/2018	E314.0	14797-73-0	Perchlorate	6000		95	400	µg/l					
4402156051	NERT5.11S1-20180710	7/10/2018	SM2540C	TDS	Total Dissolved Solids	4700		5.0	100	mg/l					
4402158041	LNDMW1-20180711	7/11/2018	E300.1	14866-68-3	Chlorate	4700		100	1000	µg/l					
4402158041	LNDMW1-20180711	7/11/2018	E314.0	14797-73-0	Perchlorate	1600		95	400	µg/l					
4402158041	MW-20-20180712	7/12/2018	E300.1	14866-68-3	Chlorate	78	J	10	100	µg/l	J	sp	Detect <pql< td=""><td></td><td></td></pql<>		
4402158041	MW-20-20180712	7/12/2018	E314.0	14797-73-0	Perchlorate	48		0.95	4.0	µg/l	J+	m	matrix spike %R	126/ 132	%
4402158041	COH2B1-20180713	7/13/2018	E300.1	14866-68-3	Chlorate	1000		20	200	µg/l					
4402158041	COH2B1-20180713	7/13/2018	E314.0	14797-73-0	Perchlorate	1600		95	400	µg/l					
4402158041	AA-30-20180713	7/13/2018	E300.1	14866-68-3	Chlorate	9400		100	1000	µg/l					
4402158041	AA-30-20180713	7/13/2018	E314.0	14797-73-0	Perchlorate	3900		95	400	µg/l					
4402158041	WMW5.5S-20180713	7/13/2018	E300.1	14866-68-3	Chlorate	11000		100	1000	µg/l					
4402158041	WMW5.5S-20180713	7/13/2018	E314.0	14797-73-0	Perchlorate	3100		95	400	µg/l					
4402158041	WMW5.58S-20180713	7/13/2018	E300.1	14866-68-3	Chlorate	3200		100	1000	µg/l					
4402158041	WMW5.58S-20180713	7/13/2018	E314.0	14797-73-0	Perchlorate	2500		95	400	µg/l					
4402158041	WMW4.9S-20180713	7/13/2018	E300.1	14866-68-3	Chlorate	2700		100	1000	µg/l					
4402158041	WMW4.9S-20180713	7/13/2018	E314.0	14797-73-0	Perchlorate	930		48	200	µg/l					
4402158041	WMW4.9S-20180713-FD	7/13/2018	E300.1	14866-68-3	Chlorate	2700		100	1000	µg/l					
4402158041	WMW4.9S-20180713-FD	7/13/2018	E314.0	14797-73-0	Perchlorate	900		48	200	µg/l					
4402158041	MW-25-20180712	7/12/2018	E300.1	14866-68-3	Chlorate	57		2.0	20	µg/l					
4402158041	MW-25-20180712	7/12/2018	E314.0	14797-73-0	Perchlorate	4.3	F1	0.95	4.0	µg/l	J+	m	matrix spike %R	126/ 132	%
4402158041	MW-13-20180712	7/12/2018	E300.1	14866-68-3	Chlorate	14000		100	1000	µg/l					
4402158041	MW-13-20180712	7/12/2018	E314.0	14797-73-0	Perchlorate	3700		95	400	µg/l					
4402158041	MW-3-20180712	7/12/2018	E300.1	14866-68-3	Chlorate	6200		100	1000	µg/l					
4402158041	MW-3-20180712	7/12/2018	E314.0	14797-73-0	Perchlorate	3300		95	400	µg/l					
4402158041	MW-4-20180712	7/12/2018	E300.1	14866-68-3	Chlorate	5900		100	1000	µg/l					
4402158041	MW-4-20180712	7/12/2018	E314.0	14797-73-0	Perchlorate	3000		95	400	µg/l					
4402158041	MW-02-20180712	7/12/2018	E300.1	14866-68-3	Chlorate	2600		100	1000	µg/l					
4402158041	MW-02-20180712	7/12/2018	E314.0	14797-73-0	Perchlorate	1900		95	400	µg/l					
4402158041	MW-02-20180712-FD	7/12/2018	E300.1	14866-68-3	Chlorate	2600		100	1000	µg/l					
4402158041	MW-02-20180712-FD	7/12/2018	E314.0	14797-73-0	Perchlorate	1900		95	400	µg/l					

SDG	Client	Sample	Method	Client	Analyte	Lab	Lab	SQL	PQL	Units	Validator	Reason	Reason Code	Qualif	ication
	Sample ID	Date		Analyte ID		Result	Qualifier				Qualifier	Code	Definition	Fin	ding
4402158041	MW-02-20180712-FB	7/12/2018	E300.1	14866-68-3	Chlorate	2.0	U	2.0	20	µg/l					
4402158041	MW-02-20180712-FB	7/12/2018	E314.0	14797-73-0	Perchlorate	0.95	U	0.95	4.0	µg/l					
4402158041	MW-02-20180712-EB	7/12/2018	E300.1	14866-68-3	Chlorate	2.0	U	2.0	20	µg/l					
4402158041	MW-02-20180712-EB	7/12/2018	E314.0	14797-73-0	Perchlorate	0.95	U	0.95	4.0	µg/l					
4402162091	WMW3.5S-20180716	7/16/2018	E300.1	14866-68-3	Chlorate	3900		100	1000	µg/l					
4402162091	WMW3.5S-20180716	7/16/2018	E314.0	14797-73-0	Perchlorate	1500		95	400	µg/l	J+	m	matrix spike %R	154/ 157	%
4402162091	NERT5.91S1-20180716	7/16/2018	E200.8	7440-47-3	Chromium	1.5	JB	0.50	2.0	µg/l	J+	bl	Method Blank	1.26	ug/L
4402162091	NERT5.91S1-20180716	7/16/2018	E300	16887-00-6	Chloride	570		1.3	100	mg/l					
4402162091	NERT5.91S1-20180716	7/16/2018	E300	24959-67-9	Bromide	1.3	U	1.3	2.5	mg/l					
4402162091	NERT5.91S1-20180716	7/16/2018	E300.1	14866-68-3	Chlorate	660		20	200	µg/l					
4402162091	NERT5.91S1-20180716	7/16/2018	E314.0	14797-73-0	Perchlorate	2900		95	400	µg/l					
4402162091	NERT5.91S1-20180716	7/16/2018	SM2540C	TDS	Total Dissolved Solids	3100		5.0	50	mg/l					
4402162091	NERT5.49S1-20180716	7/16/2018	E200.8	7440-47-3	Chromium	1.3	JB	0.50	2.0	µg/l	J+	bl	Method Blank	1.26	ug/L
4402162091	NERT5.49S1-20180716	7/16/2018	E300	16887-00-6	Chloride	250		0.25	25	mg/l					
4402162091	NERT5.49S1-20180716	7/16/2018	E300	24959-67-9	Bromide	0.27	J	0.25	0.50	mg/l	J	sp	Detect <pql< td=""><td></td><td></td></pql<>		
4402162091	NERT5.49S1-20180716	7/16/2018	E300.1	14866-68-3	Chlorate	10	U	10	100	µg/l					
4402162091	NERT5.49S1-20180716	7/16/2018	E314.0	14797-73-0	Perchlorate	5.1		0.95	4.0	µg/l					
4402162091	NERT5.49S1-20180716	7/16/2018	SM2540C	TDS	Total Dissolved Solids	1400		5.0	20	mg/l					
4402162091	NERT4.21N1-20180716	7/16/2018	E200.8	7440-47-3	Chromium	15	В	0.50	2.0	µg/l			Method Blank	1.26	ug/L
4402162091	NERT4.21N1-20180716	7/16/2018	E300	16887-00-6	Chloride	570		1.3	100	mg/l					
4402162091	NERT4.21N1-20180716	7/16/2018	E300	24959-67-9	Bromide	1.3	U	1.3	2.5	mg/l					
4402162091	NERT4.21N1-20180716	7/16/2018	E300.1	14866-68-3	Chlorate	6800		100	1000	µg/l					
4402162091	NERT4.21N1-20180716	7/16/2018	E314.0	14797-73-0	Perchlorate	2200		95	400	µg/l					
4402162091	NERT4.21N1-20180716	7/16/2018	SM2540C	TDS	Total Dissolved Solids	4000		5.0	50	mg/l					
4402162091	NERT4.38N1-20180716	7/16/2018	E200.8	7440-47-3	Chromium	2.5	В	0.50	2.0	µg/l	J+	bl	Method Blank	1.26	ug/L
4402162091	NERT4.38N1-20180716	7/16/2018	E300	16887-00-6	Chloride	510		1.3	100	mg/l					
4402162091	NERT4.38N1-20180716	7/16/2018	E300	24959-67-9	Bromide	1.3	U	1.3	2.5	mg/l					
4402162091	NERT4.38N1-20180716	7/16/2018	E300.1	14866-68-3	Chlorate	300		4.0	40	µg/l					
4402162091	NERT4.38N1-20180716	7/16/2018	E314.0	14797-73-0	Perchlorate	1400		95	400	µg/l					
4402162091	NERT4.38N1-20180716	7/16/2018	SM2540C	TDS	Total Dissolved Solids	3600		5.0	50	mg/l					
4402162091	WMW3.5N-20180717	7/17/2018	E300.1	14866-68-3	Chlorate	640		20	200	µg/l					
4402162091	WMW3.5N-20180717	7/17/2018	E314.0	14797-73-0	Perchlorate	320		9.5	40	µg/l			1		
4402162091	LNDMW2-20180717	7/17/2018	E300.1	14866-68-3	Chlorate	6000		100	1000	µg/l			1		
4402162091	LNDMW2-20180717	7/17/2018	E314.0	14797-73-0	Perchlorate	1700		95	400	µg/l					
4402162091	WMW4.9N-20180717	7/17/2018	E300.1	14866-68-3	Chlorate	13	J	10	100	µg/l	J	sp	Detect <pql< td=""><td></td><td></td></pql<>		
4402162091	WMW4.9N-20180717	7/17/2018	E314.0	14797-73-0	Perchlorate	680		19	80	µg/l					
4402162091	WMW5.7N-20180717	7/17/2018	E300.1	14866-68-3	Chlorate	10	U	10	100	µg/l					
4402162091	WMW5.7N-20180717	7/17/2018	E314.0	14797-73-0	Perchlorate	3.9	JF1	0.95	4.0	µg/l	J+	m	matrix spike %R	154/ 157	%

SDG	Client	Sample	Method	Client	Client	Client		Lab	SQL PQ		Units	Validator	Reason	Reason Code	Qualification
300	Sample ID	Date	Wethou	Analyte ID	Analyte	Result	Qualifier	3QL	FQL		Qualifier	Code	Definition	Finding	

Notes:

SDG Sample Designation Group

ID Identifier

J Estimated. The associated numerical value is the approximate concentration of the analyte in the sample.

It is not possible to assess the direction of the potential bias. The analyte was detected but the reported value may not be accurate or precise.

U Nondetected - Analyses were performed for the compound or analyte, but it was not detected.

UJ Estimated/Nondetected - The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

SQL sample quantitation limits

PQL practical quantitation limit

µg/l micrograms per liter

mg/l milligrams per liter

FD RPD field duplicate relative percent difference

% percent

%R percent recovery

< less than

> greater than

Attachment A

Wet Chemistry Data Validation

Chlorate by EPA Method 300.1B Perchlorate by EPA Method 314.0 Total Dissolved Solids by Standard Method 2540C Bromide, Chloride by EPA Method 300.0 Chromium by EPA Method 200.8

1. Sample Receipt and Technical Holding Times

All samples were collected and preserved appropriately, and all analyses were performed within the method-specified holding times. All analyses were performed as requested on the chain of custodies. The laboratory reported all requested analyses and the deliverable data reports were complete.

2. Laboratory Blanks

Laboratory method blanks were analyzed at the proper frequency as required by each analytical method. No contaminants were found in the laboratory method blanks with the following exception.

Method	Blank	Analyte	Concentration	Qualified Samples	Qualifier
EPA 200.8	Mb 440-489062/1-A	Chromium	1.26 ug/L	NERT5.91S1-20180716, NERT5.49S1-20180716	J+
				NERT4.38N1-20180716	
Note: MB= M	lethod Blank				

3. Field Blanks

Samples NERT4.93S1-20180710-EB and MW-02-20180712-EB were identified as equipment blanks. No contaminants were found in the equipment blanks or required data qualification.

Samples NERT4.93S1-20180710-FB and MW-02-20180712-FB were identified as field blanks. No contaminants were found in the field blanks.

4. Surrogate

Surrogate (dichloroacetic acid) recoveries were evaluated for chlorate analysis by EPA Method 300.1B. All surrogate percent recoveries met the acceptance criteria.

5. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on associated project samples. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions.

EPA	Sample	Analyte	MS	MSD	RPD	Qualified Samples	Qualifier
Method			Recovery	Recovery			
314.0	MW-25-20180712	Perchlorate	126%	132%	1	MW-25-20180712	J+
						MW-20-20180712	
	WMW5.7N-20180717	Perchlorate	154%	157%	1	WMW3.5S-20180716	
						WMW5.7N-20180717	
MS/MSD %F	Recovery Limits= 80-120%	6					

MS/MSD recovery limits do not apply when the sample concentration is $\geq 4x$ the spike added. In such an event, the data would be reported unflagged (*USEPA National Functional Guidelines*). In addition, batch or non-project MS/MSD data were not evaluated.

6. Duplicate Sample Analysis

Duplicate (DUP) analyses were performed for Total Dissolved Solids by Standard Method 2540C. All duplicate analyses met criteria and therefore no samples were qualified based on duplicate analysis results.

7. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

8. Field Duplicates

Samples NERT4.93S1-20180710-FD, MW-02-20180712-FD, and WMW4.9S-20180713-FD were identified as field duplicates. Acceptable field and analytical precision was demonstrated for all field duplicate pairs. When the sample or field duplicate concentration is <RL, the RL is used for calculation purposes.

9. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

10. Overall Assessment of Data

All samples were analyzed as requested and all holding times were met. Due to matrix interference, the results for perchlorate for four samples were qualified as estimated ("J+"). In addition, due to low-level blank contamination, the results for chromium for three samples were qualified as estimated ("J+"). No other data were qualified. Overall, based on this data validation, the data as qualified are useable for meeting project objectives. All results are considered to be valid; the analytical completeness defined as estimated) to the total number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for analysis, for the project is 100%. Additionally, because all samples in each data set were collected and analyzed under similar prescribed conditions, the data are considered to be comparable.

Appendix K

Analytical Laboratory Reports

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-215605-1 Client Project/Site: NERT Phase I GW Sample

For:

AECOM 1220 Avenida Acaso Camarillo, California 93012

Attn: Ms. Sally Bilodeau

Anta

Authorized for release by: 7/23/2018 3:09:52 PM

Patty Mata, Senior Project Manager (949)261-1022 patty.mata@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	11
Method Summary	12
Lab Chronicle	13
QC Sample Results	15
QC Association Summary	21
Definitions/Glossary	23
Certification Summary	24
Chain of Custody	25
Receipt Checklists	26

Client: AECOM Project/Site: NERT Phase I GW Sample

TestAmerica Job ID: 440-215605-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-215605-1	NERT3.80S1-20180709	Water	07/09/18 08:40	07/12/18 09:40
440-215605-2	NERT4.71S1-20180710	Water	07/10/18 08:50	07/12/18 09:40
440-215605-3	NERT4.51S1-20180710	Water	07/10/18 12:20	07/12/18 09:40
440-215605-4	NERT4.93S1-20180710	Water	07/10/18 13:50	07/12/18 09:40
440-215605-5	NERT4.93S1-20180710-FD	Water	07/10/18 13:50	07/12/18 09:40
440-215605-6	NERT4.93S1-20180710-FB	Water	07/10/18 14:00	07/12/18 09:40
440-215605-7	NERT4.93S1-20180710-EB	Water	07/10/18 14:15	07/12/18 09:40
440-215605-8	NERT5.11S1-20180710	Water	07/10/18 15:45	07/12/18 09:40

TestAmerica Irvine

Job ID: 440-215605-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-215605-1

Comments

Total Dissolved Chromium results are reported separately.

Receipt

The samples were received on 7/12/2018 9:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.0° C.

HPLC/IC

Method(s) 300.0: The following samples were diluted due to the nature of the sample matrix: NERT3.80S1-20180709 (440-215605-1), NERT4.71S1-20180710 (440-215605-2), NERT4.51S1-20180710 (440-215605-3), NERT4.93S1-20180710 (440-215605-4), NERT4.93S1-20180710-FD (440-215605-5) and NERT5.11S1-20180710 (440-215605-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client Sample ID: NERT3.80S1-20180709

Lab Sample ID: 440-215605-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	480		100	50	mg/L	200	300.0	Total/NA
Chlorate	1700		1000	250	ug/L	50	300.1B	Total/NA
Perchlorate	1100		400	95	ug/L	100	314.0	Total/NA
Total Dissolved Solids	3100		20	10	mg/L	1	SM 2540C	Total/NA

Client Sample ID: NERT4.71S1-20180710

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	830		100	50	mg/L	200	300.0	Total/NA
Chlorate	14000		1000	250	ug/L	50	300.1B	Total/NA
Perchlorate	3800		400	95	ug/L	100	314.0	Total/NA
Total Dissolved Solids	5200		100	50	mg/L	1	SM 2540C	Total/NA

Client Sample ID: NERT4.51S1-20180710

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride - DL	710		100	50	mg/L	200	_	300.0	Total/NA
Chlorate	10000		1000	250	ug/L	50		300.1B	Total/NA
Perchlorate	3100		400	95	ug/L	100		314.0	Total/NA
Total Dissolved Solids	4900		100	50	mg/L	1		SM 2540C	Total/NA

Client Sample ID: NERT4.93S1-20180710

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	770		100	50	mg/L	200	_	300.0	Total/NA
Chlorate	19000		1000	250	ug/L	50		300.1B	Total/NA
Perchlorate	3900		400	95	ug/L	100		314.0	Total/NA
Total Dissolved Solids	4300		50	25	mg/L	1		SM 2540C	Total/NA

Client Sample ID: NERT4.93S1-20180710-FD

_							
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	770	100	50	mg/L	200	300.0	Total/NA
Chlorate	18000	1000	250	ug/L	50	300.1B	Total/NA
Perchlorate	3900	400	95	ug/L	100	314.0	Total/NA
Total Dissolved Solids	4300	50	25	mg/L	1	SM 2540C	Total/NA

Client Sample ID: NERT4.93S1-20180710-FB

No Detections.

Client Sample ID: NERT4.93S ²	1-20180710	-EB				Lal	o S	ample ID): 440-2	215605-7
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Pr	rep Туре
Chloride	0.26	J	0.50	0.25	mg/L	1	_	300.0	Tc	otal/NA

Client Sample ID: NERT5.11S1-20180710

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	910		100	50	mg/L	200	_	300.0	Total/NA
Chlorate	25000		2000	500	ug/L	100		300.1B	Total/NA

This Detection Summary does not include radiochemical test results.

5 Lab Sample ID: 440-215605-2 Lab Sample ID: 440-215605-3

Lab Sample ID: 440-215605-4

Lab Sample ID: 440-215605-5

Lab Sample ID: 440-215605-6

Lab Sample ID: 440-215605-8

TestAmerica Irvine

Client Sample ID: NERT5.11S1-20180710 (Continued)						Lab Sample ID: 440-215605				
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac) Method	Prep Type		
Perchlorate	6000		400	95	ug/L	100	314.0	Total/NA		
Total Dissolved Solids	4700		100	50	mg/L	1	SM 2540C	Total/NA		

RL

2.5

100

RL

RL

400

RL

20

1000

Limits

90 - 115

Result Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

Qualifier

ND

480

1700

104

1100

%Recovery

MDL Unit

MDL Unit

MDL Unit

95 ug/L

MDL Unit

10 mg/L

250 ug/L

50 mg/L

1.3 mg/L

D

D

D

D

Prepared

Prepared

Prepared

Prepared

Prepared

Date Collected: 07/09/18 08:40

Date Received: 07/12/18 09:40

Analyte

Bromide

Chloride

Analyte

Chlorate

Surrogate

Analyte

Analyte

Perchlorate

Dichloroacetic acid(Surr)

General Chemistry

Method: 314.0 - Perchlorate (IC)

Client Sample ID: NERT3.80S1-20180709

Method: 300.0 - Anions, Ion Chromatography

Method: 300.1B - Disinfection By-Products, (IC)

TestAmerica Job ID: 440-215605-1

Lab Sample ID: 440-215605-1

Analyzed

07/13/18 22:06

07/13/18 22:22

Analyzed

07/14/18 19:42

Analyzed

07/14/18 19:42

Analyzed

07/19/18 15:35

Analyzed

07/13/18 08:49

Lab Sample ID: 440-215605-2

Lab Sample ID: 440-215605-3

Matrix: Water

Dil Fac

Dil Fac

Dil Fac

Dil Fac

Dil Fac

Matrix: Water

1

100

50

50

5

200

Total Dissolved Solids	3100	
Client Sample ID: NEBT4 749	1 20100710	

Client Sample ID: NERT4.71S1-20180710 Date Collected: 07/10/18 08:50

Date Received: 07/12/18 09:40

Method: 300.0 - Anions, Ion C	hromatography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromide	ND		5.0	2.5	mg/L			07/13/18 22:37	1(
Chloride	830		100	50	mg/L			07/13/18 22:53	200
Method: 300.1B - Disinfectior	By-Products, (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chlorate	14000		1000	250	ug/L			07/14/18 21:09	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dichloroacetic acid(Surr)	104		90 - 115			-		07/14/18 21:09	50
- Method: 314.0 - Perchlorate (IC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	3800		400	95	ug/L			07/19/18 15:16	100
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	5200		100	50	mg/L			07/16/18 08:41	1

Client Sample ID: NERT4.51S1-20180710 Date Collected: 07/10/18 12:20 Date Received: 07/12/18 09:40

Method: 300.0 - Anions, Ion Chromatography									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		2.5	1.3	mg/L			07/14/18 01:21	5

TestAmerica Irvine

Matrix: Water

Client: AECOM Project/Site: NERT Phase I GW Sample

TestAmerica Job ID: 440-215605-1

Date Collected: 07/10/18 12:20 Date Received: 07/12/18 09:40	1-20180710						Lab Samı	ole ID: 440-21 Matrix	5605-3 : Water
Method: 300.0 - Anions, Ion Chron			51	MD	11	_	Descend	Averbased	D!!
Analyte Chloride	710	Qualifier	RL		Unit mg/L	D	Prepared	Analyzed 07/14/18 01:37	Dil Fac 200
	/10		100	50	iiig/L			01114/10/01.07	200
Method: 300.1B - Disinfection By-I Analyte) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorate	10000		1000	250	ug/L			07/14/18 18:16	50
0	0/ D	0	1 : :4				Description	A	D# 5-
Surrogate	%Recovery 102	Quaimer	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	102		90 - 115					07/14/18 18:16	50
Method: 314.0 - Perchlorate (IC) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	3100		400		ug/L			07/19/18 13:42	100
-					-				
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	4900		100	50	mg/L			07/16/18 08:40	1
	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Analyte Bromide	Result ND	Qualifier	2.5	1.3	mg/L	D	Prepared	07/13/18 23:08	
Analyte Bromide	Result	Qualifier		1.3		<u>D</u> .	Prepared		
Analyte Bromide Chloride Method: 300.1B - Disinfection By-I	Result ND 770 Products, (IC))	2.5	1.3 50	mg/L mg/L			07/13/18 23:08 07/14/18 00:34	200
Analyte Bromide Chloride Method: 300.1B - Disinfection By-I Analyte	Result ND 770 Products, (IC Result		2.5	1.3 50 MDL	mg/L mg/L Unit	D	Prepared Prepared	07/13/18 23:08	200 Dil Fac
Analyte Bromide Chloride Method: 300.1B - Disinfection By-I Analyte	Result ND 770 Products, (IC))	2.5 100 RL	1.3 50 MDL	mg/L mg/L			07/13/18 23:08 07/14/18 00:34 Analyzed	200 Dil Fac
Analyte Bromide Chloride Method: 300.1B - Disinfection By-I Analyte Chlorate Surrogate	Result ND 770 Products, (IC Result 19000 %Recovery) Qualifier	2.5 100 RL 1000 <i>Limits</i>	1.3 50 MDL	mg/L mg/L Unit			07/13/18 23:08 07/14/18 00:34 Analyzed 07/14/18 21:38 Analyzed	Dil Fac
Analyte Bromide Chloride Method: 300.1B - Disinfection By-I Analyte Chlorate Surrogate	Result ND 770 Products, (IC Result 19000) Qualifier	2.5 100 RL 1000	1.3 50 MDL	mg/L mg/L Unit		Prepared	07/13/18 23:08 07/14/18 00:34 Analyzed 07/14/18 21:38	Dil Fac
Analyte Bromide Chloride Method: 300.1B - Disinfection By-I Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (IC)	Result ND 770 Products, (IC Result 19000 %Recovery 102) Qualifier	2.5 100 RL 1000 <i>Limits</i>	1.3 50 MDL 250	mg/L mg/L Unit		Prepared	07/13/18 23:08 07/14/18 00:34 Analyzed 07/14/18 21:38 Analyzed 07/14/18 21:38	200 Dil Fac 50 Dil Fac
Analyte Bromide Chloride Method: 300.1B - Disinfection By-I Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (IC) Analyte	Result ND 770 Products, (IC Result 19000 %Recovery 102) Qualifier Qualifier	2.5 100 RL 1000 <i>Limits</i> 90 - 115	1.3 50 MDL 250	mg/L mg/L Unit ug/L	D	Prepared Prepared	07/13/18 23:08 07/14/18 00:34 Analyzed 07/14/18 21:38 Analyzed	Dil Fac Dil Fac Dil Fac Dil Fac
Analyte Bromide Chloride Method: 300.1B - Disinfection By-I Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (IC) Analyte Perchlorate	Result ND 770 Products, (IC Result 19000 %Recovery 102 Result) Qualifier Qualifier	2.5 100 RL 1000 <u>Limits</u> 90 - 115 RL	1.3 50 MDL 250	mg/L mg/L Unit ug/L	D	Prepared Prepared	07/13/18 23:08 07/14/18 00:34 Analyzed 07/14/18 21:38 Analyzed 07/14/18 21:38 Analyzed	Dil Fac Dil Fac Dil Fac Dil Fac
Analyte Bromide Chloride Method: 300.1B - Disinfection By-I Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (IC) Analyte Perchlorate General Chemistry	Result ND 770 Products, (IC) Result 19000 %Recovery 102 Result 3900	Qualifier Qualifier Qualifier	2.5 100 RL 1000 <i>Limits</i> 90 - 115 RL 400	1.3 50 MDL 250 MDL 95	mg/L mg/L Unit ug/L Unit ug/L	D .	Prepared Prepared Prepared	07/13/18 23:08 07/14/18 00:34 Analyzed 07/14/18 21:38 Analyzed 07/14/18 21:38 Analyzed 07/14/18 15:53	E 2000 Dil Fac 500 Dil Fac Dil Fac
Analyte Bromide Chloride Method: 300.1B - Disinfection By-I Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (IC) Analyte Perchlorate General Chemistry Analyte	Result ND 770 Products, (IC Result 19000 %Recovery 102 Result 3900 Result) Qualifier Qualifier	2.5 100 RL 1000 <u>Limits</u> 90 - 115 RL	1.3 50 MDL 250 MDL 95 MDL	mg/L mg/L Unit ug/L	D	Prepared Prepared	07/13/18 23:08 07/14/18 00:34 Analyzed 07/14/18 21:38 Analyzed 07/14/18 21:38 Analyzed	Dil Fac Dil Fac Dil Fac Dil Fac Dil Fac
Analyte Bromide Chloride Method: 300.1B - Disinfection By-I Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (IC) Analyte Perchlorate General Chemistry Analyte	Result ND 770 Products, (IC) Result 19000 %Recovery 102 Result 3900	Qualifier Qualifier Qualifier	2.5 100 RL 1000 <u>Limits</u> 90 - 115 RL 400 RL	1.3 50 MDL 250 MDL 95 MDL	mg/L mg/L Unit ug/L Unit Unit	D .	Prepared Prepared Prepared	07/13/18 23:08 07/14/18 00:34 Analyzed 07/14/18 21:38 Analyzed 07/14/18 21:38 Analyzed 07/19/18 15:53 Analyzed	Dil Fac Dil Fac Dil Fac Dil Fac Dil Fac
Analyte Bromide Chloride Method: 300.1B - Disinfection By-I Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (IC) Analyte Perchlorate General Chemistry Analyte Total Dissolved Solids Client Sample ID: NERT4.93S ate Collected: 07/10/18 13:50	Result ND 770 Products, (IC Result 19000 %Recovery 102 Result 3900 Result 4300	Qualifier Qualifier Qualifier Qualifier	2.5 100 RL 1000 <u>Limits</u> 90 - 115 RL 400 RL	1.3 50 MDL 250 MDL 95 MDL	mg/L mg/L Unit ug/L Unit Unit	D .	Prepared Prepared Prepared Prepared	07/13/18 23:08 07/14/18 00:34 Analyzed 07/14/18 21:38 Analyzed 07/14/18 21:38 Analyzed 07/19/18 15:53 Analyzed 07/16/18 08:41 Die ID: 440-21	E 200 Dil Fac 50 Dil Fac 100 Dil Fac 100 Dil Fac
Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (IC)	Result ND 770 Products, (IC) Result 19000 %Recovery 102 Result 3900 Result 4300 1-20180710 natography	Qualifier Qualifier Qualifier Qualifier	2.5 100 RL 1000 <i>Limits</i> 90 - 115 RL 400 RL 50	1.3 50 MDL 250 MDL 95 MDL 25	mg/L mg/L Unit ug/L Unit mg/L	D	Prepared Prepared Prepared Prepared	07/13/18 23:08 07/14/18 00:34 Analyzed 07/14/18 21:38 Analyzed 07/14/18 21:38 Analyzed 07/19/18 15:53 Analyzed 07/16/18 08:41 Die ID: 440-21 Matrix	5 200 Dil Fac 50 Dil Fac 100 Dil Fac 100 11 5605-5 c: Water
Analyte Bromide Chloride Method: 300.1B - Disinfection By-I Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (IC) Analyte Perchlorate General Chemistry Analyte Total Dissolved Solids Client Sample ID: NERT4.93S Date Collected: 07/10/18 13:50 Date Received: 07/12/18 09:40 Method: 300.0 - Anions, Ion Chron Analyte	Result ND 770 Products, (IC) Result 19000 %Recovery 102 Result 3900 Result 4300 1-20180710 natography Result	Qualifier Qualifier Qualifier Qualifier	2.5 100 RL 1000 <i>Limits</i> 90 - 115 RL 50 RL	1.3 50 MDL 250 MDL 25 MDL 25	mg/L mg/L Unit ug/L Unit ug/L Unit mg/L	D .	Prepared Prepared Prepared Prepared	07/13/18 23:08 07/14/18 00:34 Analyzed 07/14/18 21:38 Analyzed 07/14/18 21:38 Analyzed 07/19/18 15:53 Analyzed 07/16/18 08:41 Die ID: 440-21 Matrix	C: Water
Analyte Bromide Chloride Method: 300.1B - Disinfection By-I Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (IC) Analyte Perchlorate General Chemistry Analyte Total Dissolved Solids Client Sample ID: NERT4.93S Pate Collected: 07/10/18 13:50 Pate Received: 07/12/18 09:40 Method: 300.0 - Anions, Ion Chron	Result ND 770 Products, (IC) Result 19000 %Recovery 102 Result 3900 Result 4300 1-20180710 natography	Qualifier Qualifier Qualifier Qualifier	2.5 100 RL 1000 <i>Limits</i> 90 - 115 RL 400 RL 50	1.3 50 MDL 250 MDL 25 MDL 25 MDL 1.3	mg/L mg/L Unit ug/L Unit mg/L	D	Prepared Prepared Prepared Prepared	07/13/18 23:08 07/14/18 00:34 Analyzed 07/14/18 21:38 Analyzed 07/14/18 21:38 Analyzed 07/19/18 15:53 Analyzed 07/16/18 08:41 Die ID: 440-21 Matrix	E 200 Dil Fac 50 Dil Fac 100 Dil Fac 100 11 5605-5 c: Water

RL 1000

Limits

90 - 115

Result Qualifier

18000

%Recovery Qualifier

103

Date Collected: 07/10/18 13:50 Date Received: 07/12/18 09:40

Analyte

Chlorate

Surrogate

Dichloroacetic acid(Surr)

Method: 314.0 - Perchlorate (IC)

Client Sample ID: NERT4.93S1-20180710-FD

Method: 300.1B - Disinfection By-Products, (IC)

TestAmerica Job ID: 440-215605-1

			Lab Sam	ole ID: 440-21 Matrix	5605-5 c: Water	
MDL 250	Unit ug/L	D	Prepared	Analyzed	Dil Fac	5
200	ug/L		Prepared	Analyzed	Dil Fac	6
				07/14/18 22:06	50	
	Unit	D	Prepared	Analyzed	Dil Fac	8
95	ug/L			07/19/18 16:12	100	

6:12	100	
0.12	100	9
ed 8:41	Dil Fac	
0-21	5605-6	
Matrix	: Water	
_		13
d	Dil Fac	
0:03	1	
0.03	1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	3900		400	95	ug/L			07/19/18 16:12	100
_ General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	4300		50	25	mg/L			07/16/18 08:41	1
Client Sample ID: NERT4.93S	1-20180710	-FB					Lah Sami	ole ID: 440-21	5605-6
Date Collected: 07/10/18 14:00	20100110	. 5					Lub Ourin		: Water
Date Received: 07/12/18 09:40									. mator
-									
Method: 300.0 - Anions, Ion Chron Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.50	0.25	mg/L			07/14/18 00:03	1
Chloride	ND		0.50		mg/L			07/14/18 00:03	1
					5				
Method: 300.1B - Disinfection By-	Products, (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorate	ND		20	5.0	ug/L			07/14/18 07:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	109		90 - 115					07/14/18 07:53	1
Method: 314.0 - Perchlorate (IC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	ND		4.0	0.95	ug/L			07/19/18 11:32	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10	5.0	mg/L			07/16/18 08:41	1
Client Sample ID: NERT4.93S	1-20180710	-EB					Lab Sam	ole ID: 440-21	5605-7
Date Collected: 07/10/18 14:15									: Water
Date Received: 07/12/18 09:40									
Method: 300.0 - Anions, Ion Chron	natography								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.50	0.25	mg/L			07/14/18 00:19	1
Chloride	0.26	J	0.50	0.25	mg/L			07/14/18 00:19	1
Method: 300.1B - Disinfection By-	Products, (IC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorate	ND		20	5.0	ug/L			07/14/18 08:29	1

Chiorate	ND		20	5.0 Ug/L		07/14/18 08:29	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	110		90 - 115			07/14/18 08:29	1

TestAmerica Irvine

Client Sample Results

TestAmerica Job ID: 440-215605-1

5 6 7

Client Sample ID: NERT4.93S Date Collected: 07/10/18 14:15 Date Received: 07/12/18 09:40	1-20180710	-EB					Lab Samı	ole ID: 440-21 Matrix	5605-7 c: Water
Method: 314.0 - Perchlorate (IC) Analyte	Posult	Qualifier	RL	МП	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	ND		4.0		ug/L		riepaieu	07/19/18 14:59	1
 General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10	5.0	mg/L			07/16/18 08:41	1
Client Sample ID: NERT5.11S	1-20180710)					Lab Sam	ole ID: 440-21	5605-8
Date Collected: 07/10/18 15:45 Date Received: 07/12/18 09:40								Matrix	c: Water
_									
Method: 300.0 - Anions, Ion Chron Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		2.5	1.3	mg/L			07/14/18 02:24	5
Chloride	910		100	50	mg/L			07/14/18 03:10	200
- Method: 300.1B - Disinfection By-I	Products, (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorate	25000		2000	500	ug/L			07/15/18 18:47	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	106		90 - 115					07/15/18 18:47	100
Method: 314.0 - Perchlorate (IC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	6000		400	95	ug/L			07/19/18 16:30	100
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	4700		100	50	mg/L			07/16/18 08:41	1

TestAmerica Irvine

Prep Type: Total/NA

Method: 300.1B - Disinfection By-Products, (I	C)
---	----

Matrix: Water

Percent Surrogate Recovery (Acceptance Limits)	

		DCAA	
Lab Sample ID	Client Sample ID	(90-115)	
440-215605-1	NERT3.80S1-20180709	104	
440-215605-2	NERT4.71S1-20180710	104	
440-215605-3	NERT4.51S1-20180710	102	
440-215605-3 MS	NERT4.51S1-20180710	113	
440-215605-3 MSD	NERT4.51S1-20180710	104	
440-215605-4	NERT4.93S1-20180710	102	
440-215605-5	NERT4.93S1-20180710-FD	103	
440-215605-6	NERT4.93S1-20180710-FB	109	
440-215605-7	NERT4.93S1-20180710-EB	110	
440-215605-8	NERT5.11S1-20180710	106	
440-215717-B-3 MS	Matrix Spike	109	
440-215717-B-3 MSD	Matrix Spike Duplicate	107	
440-215720-B-1 MS	Matrix Spike	109	
440-215720-B-1 MSD	Matrix Spike Duplicate	109	
LCS 440-487252/40	Lab Control Sample	109	
LCS 440-487528/4	Lab Control Sample	108	
LCS 440-487566/4	Lab Control Sample	106	
MB 440-487252/41	Method Blank	109	
MB 440-487528/5	Method Blank	109	
MB 440-487566/5	Method Blank	103	
MRL 440-487252/39	Lab Control Sample	108	
MRL 440-487528/3	Lab Control Sample	102	
MRL 440-487566/3	Lab Control Sample	107	
Surrogate Legend			

Surrogate Legend

DCAA = Dichloroacetic acid(Surr)

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client: AECOM Project/Site: NERT Phase I GW Sample

Method Description

Perchlorate (IC)

EPA = US Environmental Protection Agency

Anions, Ion Chromatography

Disinfection By-Products, (IC)

Solids, Total Dissolved (TDS)

SM = "Standard Methods For The Examination Of Water And Wastewater"

Method

300.0

300.1B

314.0

SM 2540C

Protocol References:

Laboratory References:

Protocol MCAWW

EPA

EPA

SM

Laboratory

TAL IRV

TAL IRV

TAL IRV

TAL IRV

1
5
8
9

TestAmerica Irvine

Page	12	of	26

Lab Sample ID: 440-215605-1

Matrix: Water

Matrix: Water

5

9

Client Sample ID: NERT3.80S1-20180709

Date Collected: 07/09/18 08:40 Date Received: 07/12/18 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	5 mL	1.0 mL	487320	07/13/18 22:06	NTN	TAL IRV
Total/NA	Analysis	300.0		200	5 mL	1.0 mL	487320	07/13/18 22:22	NTN	TAL IRV
Total/NA	Analysis	300.1B		50			487528	07/14/18 19:42	YZ	TAL IRV
Total/NA	Analysis	314.0		100			488407	07/19/18 15:35	PS	TAL IRV
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	487284	07/13/18 08:49	XL	TAL IRV

Client Sample ID: NERT4.71S1-20180710 Date Collected: 07/10/18 08:50

Date Received: 07/12/18 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	5 mL	1.0 mL	487320	07/13/18 22:37	NTN	TAL IRV
Total/NA	Analysis	300.0		200	5 mL	1.0 mL	487320	07/13/18 22:53	NTN	TAL IRV
Total/NA	Analysis	300.1B		50			487528	07/14/18 21:09	YZ	TAL IRV
Total/NA	Analysis	314.0		100			488407	07/19/18 15:16	PS	TAL IRV
Total/NA	Analysis	SM 2540C		1	10 mL	100 mL	487658	07/16/18 08:41	XL	TAL IRV

Client Sample ID: NERT4.51S1-20180710

Date Collected: 07/10/18 12:20 Date Received: 07/12/18 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	5 mL	1.0 mL	487320	07/14/18 01:21	NTN	TAL IRV
Total/NA	Analysis	300.0	DL	200			487320	07/14/18 01:37	NTN	TAL IRV
Total/NA	Analysis	300.1B		50			487528	07/14/18 18:16	YZ	TAL IRV
Total/NA	Analysis	314.0		100			488407	07/19/18 13:42	PS	TAL IRV
Total/NA	Analysis	SM 2540C		1	10 mL	100 mL	487658	07/16/18 08:40	XL	TAL IRV

Client Sample ID: NERT4.93S1-20180710 Date Collected: 07/10/18 13:50 Date Received: 07/12/18 09:40

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	5 mL	1.0 mL	487320	07/13/18 23:08	NTN	TAL IRV
Total/NA	Analysis	300.0		200			487320	07/14/18 00:34	NTN	TAL IRV
Total/NA	Analysis	300.1B		50			487528	07/14/18 21:38	YZ	TAL IRV
Total/NA	Analysis	314.0		100			488407	07/19/18 15:53	PS	TAL IRV
Total/NA	Analysis	SM 2540C		1	20 mL	100 mL	487658	07/16/18 08:41	XL	TAL IRV

Lab Sample ID: 440-215605-3

Lab Sample ID: 440-215605-4

Lab Sample ID: 440-215605-2

Matrix: Water

Matrix: Water

Lab Sample ID: 440-215605-5

Matrix: Water

Matrix: Water

Date Collected: 07/10/18 13:50 Date Received: 07/12/18 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	5 mL	1.0 mL	487320	07/14/18 00:50	NTN	TAL IRV
Total/NA	Analysis	300.0		200	5 mL	1.0 mL	487320	07/14/18 01:05	NTN	TAL IRV
Total/NA	Analysis	300.1B		50			487528	07/14/18 22:06	YZ	TAL IRV
Total/NA	Analysis	314.0		100			488407	07/19/18 16:12	PS	TAL IRV
Total/NA	Analysis	SM 2540C		1	20 mL	100 mL	487658	07/16/18 08:41	XL	TAL IRV

Client Sample ID: NERT4.93S1-20180710-FB
Date Collected: 07/10/18 14:00

Client Sample ID: NERT4.93S1-20180710-FD

Date Received: 07/12/18 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1			487320	07/14/18 00:03	NTN	TAL IRV
Total/NA	Analysis	300.1B		1			487252	07/14/18 07:53	YZ	TAL IRV
Total/NA	Analysis	314.0		1			488407	07/19/18 11:32	PS	TAL IRV
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	487658	07/16/18 08:41	XL	TAL IRV

Client Sample ID: NERT4.93S1-20180710-EB Date Collected: 07/10/18 14:15 Date Received: 07/12/18 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1			487320	07/14/18 00:19	NTN	TAL IRV
Total/NA	Analysis	300.1B		1			487252	07/14/18 08:29	YZ	TAL IRV
Total/NA	Analysis	314.0		1			488407	07/19/18 14:59	PS	TAL IRV
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	487658	07/16/18 08:41	XL	TAL IRV

Client Sample ID: NERT5.11S1-20180710 Date Collected: 07/10/18 15:45 Date Received: 07/12/18 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	5 mL	1.0 mL	487320	07/14/18 02:24	NTN	TAL IRV
Total/NA	Analysis	300.0		200	5 mL	1.0 mL	487320	07/14/18 03:10	NTN	TAL IRV
Total/NA	Analysis	300.1B		100			487566	07/15/18 18:47	YZ	TAL IRV
Total/NA	Analysis	314.0		100			488407	07/19/18 16:30	PS	TAL IRV
Total/NA	Analysis	SM 2540C		1	10 mL	100 mL	487658	07/16/18 08:41	XL	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Lab Sample ID: 440-215605-8

Lab Sample ID: 440-215605-7

Lab Sample ID: 440-215605-6

Matrix: Water

Matrix: Water

3 4 5 6 7 8

10

Method: 300.0 - Anions, Ion Chromatography

										•	Slient S	ample ID:		
Matrix: Water												Prep	Type: To	otal/NA
Analysis Batch: 487320														
		MB	MB											
Analyte	Re		Qualifier		RL		Unit			Pre	epared	Analy		Dil Fa
Bromide		ND			0.50		mg/L					07/13/18	3 13:26	
Chloride		ND			0.50	0.25	mg/L					07/13/18	3 13:26	
Lab Sample ID: LCS 440-487320/7									Clie	nt	Sample	ID: Lab C	Control S	Sample
Matrix: Water												Prep	Type: To	otal/NA
Analysis Batch: 487320														
				Spike	LC	S LCS						%Rec.		
Analyte				Added	Resu	t Qua	lifier	Unit	0)	%Rec	Limits		
Bromide				5.00	5.3	3		mg/L			107	90 _ 110		
Chloride				5.00	5.0	9		mg/L			102	90 - 110		
	hromat	ogra	iphy - DL	-					Oliont				5464.00	40074
Lab Sample ID: 440-215605-3 MS Matrix: Water	hromat	ogra	iphy - DL	-					Client	Sa	mple ID): NERT4. Prep	51S1-20 Туре: То	
Lab Sample ID: 440-215605-3 MS Matrix: Water						- M6			Client	Sa	mple ID	Prep		
Lab Sample ID: 440-215605-3 MS Matrix: Water Analysis Batch: 487320	Sample	Samp	ble	Spike	M		lifior	Unit				Prep %Rec.		
Lab Sample ID: 440-215605-3 MS Matrix: Water Analysis Batch: 487320 Analyte	Sample Result	Samp	ble	Spike Added	Resu	t Qua	lifier	Unit	Client		%Rec	Prep %Rec. Limits		
Method: 300.0 - Anions, Ion Cl Lab Sample ID: 440-215605-3 MS Matrix: Water Analysis Batch: 487320 Analyte Bromide - DL	Sample Result ND	Samp	ble	Spike Added 1000	Resu	t Qua	lifier	mg/L			%Rec 97	Prep %Rec. Limits 80 - 120		
Lab Sample ID: 440-215605-3 MS Matrix: Water Analysis Batch: 487320 Analyte Bromide - DL	Sample Result	Samp	ble	Spike Added	Resu	t Qua	lifier				%Rec	Prep %Rec. Limits		
Lab Sample ID: 440-215605-3 MS Matrix: Water Analysis Batch: 487320 Analyte Bromide - DL Chloride - DL	Sample Result ND	Samp	ble	Spike Added 1000	Resu	t Qua	lifier	mg/L	[)	% Rec 97 96	Prep %Rec. Limits 80 - 120	Type: To	otal/NA
Lab Sample ID: 440-215605-3 MS Matrix: Water Analysis Batch: 487320 Analyte Bromide - DL Chloride - DL Lab Sample ID: 440-215605-3 MSD	Sample Result ND	Samp	ble	Spike Added 1000	Resu	t Qua	lifier	mg/L	[)	% Rec 97 96	Prep %Rec. Limits 80 - 120 80 - 120 0: NERT4.	Type: To	otal/N/
Lab Sample ID: 440-215605-3 MS Matrix: Water Analysis Batch: 487320 Analyte	Sample Result ND 710	Samp Qualit	ble fier	Spike Added 1000 1000	Resu 97 168	Qua		mg/L	[)	% Rec 97 96	Prep %Rec. Limits 80 - 120 80 - 120 80 - 120 9: NERT4. Prep	Type: To 	180710 180710 otal/NA
Lab Sample ID: 440-215605-3 MS Matrix: Water Analysis Batch: 487320 Analyte Bromide - DL Chloride - DL Lab Sample ID: 440-215605-3 MSD Matrix: Water	Sample Result ND	Samp Qualit	ble fier	Spike Added 1000	Resu 97 168	t Qua		mg/L	[)	% Rec 97 96	Prep %Rec. Limits 80 - 120 80 - 120 0: NERT4.	Type: To 	180710 180710 otal/NA
Lab Sample ID: 440-215605-3 MS Matrix: Water Analysis Batch: 487320 Analyte Bromide - DL Chloride - DL Lab Sample ID: 440-215605-3 MSD Matrix: Water Analysis Batch: 487320 Analyte	Sample Result ND 710 Sample Result	Samp Qualit Samp	ble fier	Spike Added 1000 1000 Spike Added	Resu 97 168 MS Resu	D MSE)	mg/L	[) Sai	% Rec 97 96	Prep %Rec. Limits 80 - 120 80 - 120 80 - 120 9: NERT4. Prep	Type: To 	otal/NA
Lab Sample ID: 440-215605-3 MS Matrix: Water Analysis Batch: 487320 Analyte Bromide - DL Chloride - DL Lab Sample ID: 440-215605-3 MSD Matrix: Water Analysis Batch: 487320	Sample Result ND 710 Sample	Samp Qualit Samp	ble fier	Spike Added 1000 1000 Spike	Resu 97 168 MS	D MSE)	mg/L mg/L	Client) Sai	<mark>%Rec</mark> 97 96 mple ID	Prep %Rec. Limits 80 - 120 80 - 120 80 - 120 0: NERT4. Prep %Rec.	Туре: То 51S1-20 Туре: То	180710 Dtal/NA Dtal/NA RPI

Method: 300.1B - Disinfection E _		, , ,									
Lab Sample ID: MB 440-487252/41									Client	Sample ID: Metho	od Blank
Matrix: Water										Prep Type: 1	Fotal/NA
Analysis Batch: 487252											
	MB	MB									
Analyte	Result	Qualifier	RL		MDL	Unit		D	Prepared	Analyzed	Dil Fac
Chlorate	ND		20		5.0	ug/L				07/14/18 05:26	1
	МВ	МВ									
Surrogate	%Recovery	Qualifier	Limits						Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	109		90 - 115							07/14/18 05:26	1
								Clie	nt Samp	le ID: Lab Control	Sample
Matrix: Water										Prep Type: 1	Fotal/NA
Analysis Batch: 487252											
			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Quali	ifier	Unit	[0 %Rec	Limits	
Chlorate			100	100			ug/L		100	75 - 125	

TestAmerica Irvine

Lab Sample ID: LCS 440-487252/40

Matrix: Water

Analysis Batch: 487252

Method: 300.1B - Disinfection By-Products, (IC) (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

5 10

	LCS	LCS									
Surrogate	%Recovery		Limits								
Dichloroacetic acid(Surr)	109		90 - 115								
Lab Sample ID: MRL 440-48	7252/39						Client	Sample	e ID: Lab Co	ontrol S	amnlo
Matrix: Water	1252/55						onem	Jampie		ype: Tot	-
Analysis Batch: 487252									T TOP 1	ypc. 10	
			Spike	MRL	MRL				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chlorate			20.0	21.4		ug/L		107	50 - 150		
	MRL	MRL									
Surrogate	%Recovery		Limits								
Dichloroacetic acid(Surr)	108		90 - 115								
Lab Sample ID: 440-215720-	R_1 MS							Client	Sample ID:	· Matrix	Spiko
Matrix: Water								Client		ype: Tot	
Analysis Batch: 487252									T TOP 1	ypc. 10	
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	•	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chlorate	160	F1	200	425	F1	ug/L		133	75 - 125		
	MS	MS									
Surrogate	%Recovery		Limits								
Dichloroacetic acid(Surr)	109		90 - 115								
Lab Sample ID: 440-215720-	B-1 MSD						Client Sa	amole II	D: Matrix Sp	nike Dur	licate
Matrix: Water										ype: Tot	
Analysis Batch: 487252											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chlorate	160	F1	200	385		ug/L		113	75 - 125	10	25
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Dichloroacetic acid(Surr)	109		90 - 115								
Lab Sample ID: MB 440-487	528/5							Client S	Sample ID: I	Method	Blank
Matrix: Water										ype: Tot	
Analysis Batch: 487528											
-		MB MB									
	_										

	IVID								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorate	ND		20	5.0	ug/L			07/14/18 11:02	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	109		90 - 115			-		07/14/18 11:02	1

10

Method: 300.1B - Disinfection By-Products, (IC) (Continued)

Lab Sample ID: LCS 440-48752	28/4								Clie	nt	Sample	ID: Lab Co	ontrol S	ample
Matrix: Water												Prep T		
Analysis Batch: 487528														
				Spike	LC	S LCS	S					%Rec.		
Analyte				Added	Resu	lt Qua	alifier	Unit	0)	%Rec	Limits		
Chlorate				100	10	4		ug/L			104	75 - 125		
	105	LCS												
Surrogate	%Recovery		ïor	Limits										
Dichloroacetic acid(Surr)	108	Quum		90 - 115										
	100			00-110										
Lab Sample ID: MRL 440-48752	28/3								Clie	nt	Sample	ID: Lab Co	ontrol S	ample
Matrix: Water												Prep T		
Analysis Batch: 487528														
				Spike	MR	L MR	L					%Rec.		
Analyte				Added	Resu	it Qua	alifier	Unit	0)	%Rec	Limits		
Chlorate				20.0	22	0		ug/L			110	50 - 150		
	MRL	MPI												
Surrogate	%Recovery		lior	Limits										
Dichloroacetic acid(Surr)		Quain		90 - 115										
	102			30 - 113										
Lab Sample ID: 440-215605-3 N	NS								Client	Sa	mple ID	: NERT4.51	IS1-201	80710
Matrix: Water												Prep T		
Analysis Batch: 487528														
,	Sample	Samp	le	Spike	м	s ms						%Rec.		
Analyte	Result	Qualif	ier	Added	Resu	lt Qua	alifier	Unit	0)	%Rec	Limits		
Chlorate	10000			200	1090	0 4		ug/L			264	75 - 125		
	MS	MS												
Surroacto	ws %Recovery		lior	Limits										
Surrogate Dichloroacetic acid(Surr)	113	Qualli	iei	90 - 115										
	115			30 - 113										
									Client	Sa	mple ID	: NERT4.51	IS1-201	80710
Lab Sample ID: 440-215605-3 N	พอบ											Prep T		
	130													
Matrix: Water	130												ype. To	
Matrix: Water	Sample	Samp	le	Spike	MS	D MS	D					%Rec.	ype. To	
Matrix: Water Analysis Batch: 487528		-		Spike Added		D MS		Unit	C)	%Rec		RPD	RPD
Matrix: Water Analysis Batch: 487528 ^{Analyte}	Sample	-		•		lt Qua		Unit ug/L	[)	%Rec	%Rec.	-	RPD Limit
Matrix: Water Analysis Batch: 487528 ^{Analyte}	Sample Result 10000	Qualif		Added	Resu	lt Qua)		%Rec. Limits	RPD	RPD Limit
Matrix: Water Analysis Batch: 487528 Analyte Chlorate	Sample Result 10000 MSD	Qualif MSD	ier	Added	Resu	lt Qua			<u>[</u>)		%Rec. Limits	RPD	RPD Limit
Matrix: Water Analysis Batch: 487528 Analyte Chlorate Surrogate	Sample Result 10000 <i>MSD</i> %Recovery	Qualif MSD	ier	Added 200	Resu	lt Qua			C)		%Rec. Limits	RPD	RPD Limit
Matrix: Water Analysis Batch: 487528 Analyte Chlorate Surrogate	Sample Result 10000 MSD	Qualif MSD	ier	Added	Resu	lt Qua			<u> </u>) 		%Rec. Limits	RPD	RPD Limit
Matrix: Water Analysis Batch: 487528 Analyte Chlorate Surrogate Dichloroacetic acid(Surr)	Sample Result 10000 <i>MSD</i> %Recovery 104	Qualif MSD	ier	Added 200	Resu	lt Qua			<u> </u>		-244	%Rec. Limits 75 ₋ 125	RPD 10	RPD Limit 25
Matrix: Water Analysis Batch: 487528 Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Lab Sample ID: MB 440-487566	Sample Result 10000 <i>MSD</i> %Recovery 104	Qualif MSD	ier	Added 200	Resu	lt Qua			C		-244	%Rec. Limits 75 - 125 ample ID: I	RPD 10	RPD Limit 25
Matrix: Water Analysis Batch: 487528 Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Lab Sample ID: MB 440-487566 Matrix: Water	Sample Result 10000 <i>MSD</i> %Recovery 104	Qualif MSD	ier	Added 200	Resu	lt Qua			<u> </u>		-244	%Rec. Limits 75 ₋ 125	RPD 10	RPD Limit 25 Blank
Matrix: Water Analysis Batch: 487528 Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Lab Sample ID: MB 440-487566 Matrix: Water	Sample Result 10000 <i>MSD</i> %Recovery 104	Qualif MSD Qualif	ier	Added 200	Resu	lt Qua					-244	%Rec. Limits 75 - 125 ample ID: I	RPD 10	RPD Limit 25
Matrix: Water Analysis Batch: 487528 Analyte Chlorate Dichloroacetic acid(Surr) Lab Sample ID: MB 440-487566 Matrix: Water Analysis Batch: 487566	Sample Result 10000 <i>MSD</i> %Recovery 104 6/5	Qualif MSD Qualif	ier	Added 200	Resu 992	$\frac{\mathbf{Qua}}{0} \frac{\mathbf{Qua}}{4}$	alifier				-244 Client S	%Rec. Limits 75 - 125 ample ID: I Prep Ty	RPD 10 Method ype: To	RPC Limit 25 Blank tal/NA
Matrix: Water Analysis Batch: 487528 Analyte Chlorate Dichloroacetic acid(Surr) Lab Sample ID: MB 440-487566 Matrix: Water Analysis Batch: 487566 Analyte	Sample Result 10000 <i>MSD</i> %Recovery 104 6/5	Qualif MSD Qualif MB I	ier	Added 200	Resu 992 RL	It Qua 0 4	alifier		[-244	%Rec. Limits 75 - 125 ample ID: I Prep Ty Analyze	RPD 10 Method ype: To	RPD Limit 25 Blank tal/NA
Matrix: Water Analysis Batch: 487528 Analyte Chlorate Dichloroacetic acid(Surr) Lab Sample ID: MB 440-487566 Matrix: Water Analysis Batch: 487566 Analyte	Sample Result 10000 <i>MSD</i> %Recovery 104 6/5	Qualif MSD Qualif	ier	Added 200	Resu 992	It Qua 0 4	alifier				-244 Client S	%Rec. Limits 75 - 125 ample ID: I Prep Ty	RPD 10 Method ype: To	RPD Limit 25 Blank
Lab Sample ID: 440-215605-3 M Matrix: Water Analysis Batch: 487528 Analyte Chlorate Dichloroacetic acid(Surr) Lab Sample ID: MB 440-487566 Matrix: Water Analysis Batch: 487566 Analyte Chlorate	Sample Result 10000 <i>MSD</i> %Recovery 104 6/5	Qualif MSD Qualif MB I	ier ïer MB Qualifier	Added 200	Resu 992 RL	It Qua 0 4	alifier				-244 Client S	%Rec. Limits 75 - 125 ample ID: I Prep Ty Analyze	RPD 10 Method ype: To	RPD Limit 25 Blank tal/NA Dil Fac

Method: 300.1B - Disinfection By-Products, (IC) (Continued)

	37566/4						Client	t Sample	ID: Lab Con	trol Sa	ample
Matrix: Water									Prep Typ	be: Tot	tal/NA
Analysis Batch: 487566											
			Spike	LCS	LCS				%Rec.		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Chlorate			100	101		ug/L		101	75 - 125		
	105	LCS									
Surrogate	%Recovery		Limits								
Dichloroacetic acid(Surr)	106		90 - 115								
Lab Sample ID: MRL 440-48	37566/3						Client	t Sample	ID: Lab Con	trol Sa	ample
Matrix: Water									Prep Typ		
Analysis Batch: 487566											
-			Spike	MRL	MRL				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chlorate			20.0	20.9		ug/L		104	50 - 150		
	MRI	MRL									
Surrogate	%Recovery		Limits								
Dichloroacetic acid(Surr)		quamer	90 - 115								
Lab Sample ID: 440-215717	-B-3 MS							Client	Sample ID:	Matrix	Spike
Matrix: Water									· Prep Typ		
Analysis Batch: 487566											
-	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chlorate	7900		200	7730	4	ug/L		-67	75 _ 125		
	MS	MS									
Surrogate	%Recovery		Limits								
-	109		90 - 115								
Dicnioroacetic acia(Surr)											
Dichloroacetic acid(Surr)											licate
	-B-3 MSD						Client Sa	ample IC): Matrix Spil	ve Dup	
Lab Sample ID: 440-215717	-B-3 MSD						Client S	ample IC	Prep Typ		tal/NA
Lab Sample ID: 440-215717 Matrix: Water	7-B-3 MSD						Client S	ample IE			tal/NA
Lab Sample ID: 440-215717 Matrix: Water		Sample	Spike	MSD	MSD		Client S	ample IE			tal/NA RPE
Lab Sample ID: 440-215717 Matrix: Water Analysis Batch: 487566	Sample	Sample Qualifier	Spike Added		MSD Qualifier	Unit	Client Sa D	ample IC %Rec	Prep Typ		
Lab Sample ID: 440-215717 Matrix: Water Analysis Batch: 487566 ^{Analyte}	Sample	•	-		Qualifier			-	Prep Typ %Rec.	be: Tot	RPD
Lab Sample ID: 440-215717 Matrix: Water Analysis Batch: 487566	Sample Result 7900	Qualifier	Added	Result	Qualifier	Unit		%Rec	Prep Typ %Rec. Limits	RPD	RPC Limi
Lab Sample ID: 440-215717 Matrix: Water Analysis Batch: 487566 Analyte Chlorate	Sample Result 7900 MSD	Qualifier	Added	Result	Qualifier	Unit		%Rec	Prep Typ %Rec. Limits	RPD	RPC Limi
Dichloroacetic acid(Surr) Lab Sample ID: 440-215717 Matrix: Water Analysis Batch: 487566 Analyte Chlorate Surrogate Dichloroacetic acid(Surr)	Sample Result 7900	Qualifier	Added	Result	Qualifier	Unit		%Rec	Prep Typ %Rec. Limits	RPD	RPC Limi

Lab Sample ID: MB 440-488407/8							Client Sa	mple ID: Metho	d Blank
Matrix: Water								Prep Type: 1	otal/NA
Analysis Batch: 488407									
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	ND		4.0	0.95	ug/L			07/19/18 10:01	1

Lab Sample ID: LCS 440-488407/5

Method: 314.0 - Perchlorate (IC) (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA 5

10

Matrix: Water									Prep ⁻	Туре: То	tal/NA
Analysis Batch: 488407											
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Perchlorate			25.0	26.9		ug/L		107	85 - 115	·	
Lab Sample ID: MRL 440-4884	07/4						Clien	t Sampl	e ID: Lab C	ontrol S	ample
Matrix: Water									Prep ⁻	Type: To	tal/NA
Analysis Batch: 488407											
			Spike	MRL	MRL				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Perchlorate			1.00	1.00	J	ug/L		100	75 - 125		
Lab Sample ID: 440-215605-3 I	MS						Client S	Sample I	D: NERT4.	51S1-201	80710
Matrix: Water										Type: To	
Analysis Batch: 488407											
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Perchlorate	3100		2500	6110		ug/L		119	80 - 120		
Lab Sample ID: 440-215605-3 I	MSD						Client S	Sample I	D: NERT4.	51S1-201	80710
Matrix: Water										Type: To	
Analysis Batch: 488407											
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perchlorate	3100		2500	6030		ug/L		116	80 - 120	1	20
<u> </u>											

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 440-487284/1												Client S	ample ID: Metho	d Blank
Matrix: Water													Prep Type: 1	Fotal/NA
Analysis Batch: 487284														
		MB	MB											
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Pr	epared	Analyzed	Dil Fac
Total Dissolved Solids		ND			10		5.0	mg/L					07/13/18 08:49	1
- Lab Sample ID: LCS 440-487284/2										Clie	ent	Sample	ID: Lab Control	Sample
Matrix: Water													Prep Type: 1	Total/NA
Analysis Batch: 487284														
				Spike		LCS	LCS						%Rec.	
Analyte				Added		Result	Qual	ifier	Unit	I	D	%Rec	Limits	
Total Dissolved Solids				1000		996			mg/L			100	90 - 110	
Lab Sample ID: 440-215666-H-6 DU												Clie	ent Sample ID: D	uplicate
Matrix: Water													Prep Type: 1	Total/NA
Analysis Batch: 487284														
	Sample	Samp	ole			DU	DU							RPD
Analyte	Result	Quali	fier			Result	Qual	ifier	Unit		D		RPI	D Limit
Total Dissolved Solids	12000					11800			mg/L				0.	6 5

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: MB 440-487658/1 Matrix: Water												Client S	ample ID: Metho Prep Type:		
Analysis Batch: 487658		МВ	МВ												
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Pr	epared	Analyzed	I	Dil Fac
Total Dissolved Solids		ND			10		5.0	mg/L					07/16/18 08:40		1
Lab Sample ID: LCS 440-487658/2										Cli	ent	Sample	ID: Lab Contro	l Sa	mple
Matrix: Water													Prep Type:		
Analysis Batch: 487658															
-				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Total Dissolved Solids				1000		974			mg/L			97	90 - 110		
- Lab Sample ID: 440-215605-3 DU										Clien	t Sa	mple IC): NERT4.51S1-2	2018	30710
Matrix: Water												-	Prep Type:	Tot	al/NA
Analysis Batch: 487658															
	Sample	Samp	le			DU	DU								RPD
Analyte	Result	Quali	fier			Result	Qual	ifier	Unit		D		RP	D	Limit
Total Dissolved Solids	4900					4780			mg/L					2	5

Client: AECOM Project/Site: NERT Phase I GW Sample

HPLC/IC

Analysis Batch: 487252

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-215605-6	NERT4.93S1-20180710-FB	Total/NA	Water	300.1B	
440-215605-7	NERT4.93S1-20180710-EB	Total/NA	Water	300.1B	
MB 440-487252/41	Method Blank	Total/NA	Water	300.1B	
LCS 440-487252/40	Lab Control Sample	Total/NA	Water	300.1B	
MRL 440-487252/39	Lab Control Sample	Total/NA	Water	300.1B	
440-215720-B-1 MS	Matrix Spike	Total/NA	Water	300.1B	
440-215720-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.1B	

Analysis Batch: 487320

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-215605-1	NERT3.80S1-20180709	Total/NA	Water	300.0	
440-215605-1	NERT3.80S1-20180709	Total/NA	Water	300.0	
440-215605-2	NERT4.71S1-20180710	Total/NA	Water	300.0	
440-215605-2	NERT4.71S1-20180710	Total/NA	Water	300.0	
440-215605-3	NERT4.51S1-20180710	Total/NA	Water	300.0	
440-215605-3 - DL	NERT4.51S1-20180710	Total/NA	Water	300.0	
440-215605-4	NERT4.93S1-20180710	Total/NA	Water	300.0	
440-215605-4	NERT4.93S1-20180710	Total/NA	Water	300.0	
440-215605-5	NERT4.93S1-20180710-FD	Total/NA	Water	300.0	
440-215605-5	NERT4.93S1-20180710-FD	Total/NA	Water	300.0	
440-215605-6	NERT4.93S1-20180710-FB	Total/NA	Water	300.0	
440-215605-7	NERT4.93S1-20180710-EB	Total/NA	Water	300.0	
440-215605-8	NERT5.11S1-20180710	Total/NA	Water	300.0	
440-215605-8	NERT5.11S1-20180710	Total/NA	Water	300.0	
MB 440-487320/6	Method Blank	Total/NA	Water	300.0	
LCS 440-487320/7	Lab Control Sample	Total/NA	Water	300.0	
440-215605-3 MS - DL	NERT4.51S1-20180710	Total/NA	Water	300.0	
440-215605-3 MSD - DL	NERT4.51S1-20180710	Total/NA	Water	300.0	

Analysis Batch: 487528

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-215605-1	NERT3.80S1-20180709	Total/NA	Water	300.1B	
440-215605-2	NERT4.71S1-20180710	Total/NA	Water	300.1B	
440-215605-3	NERT4.51S1-20180710	Total/NA	Water	300.1B	
440-215605-4	NERT4.93S1-20180710	Total/NA	Water	300.1B	
440-215605-5	NERT4.93S1-20180710-FD	Total/NA	Water	300.1B	
MB 440-487528/5	Method Blank	Total/NA	Water	300.1B	
LCS 440-487528/4	Lab Control Sample	Total/NA	Water	300.1B	
MRL 440-487528/3	Lab Control Sample	Total/NA	Water	300.1B	
440-215605-3 MS	NERT4.51S1-20180710	Total/NA	Water	300.1B	
440-215605-3 MSD	NERT4.51S1-20180710	Total/NA	Water	300.1B	

Analysis Batch: 487566

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-215605-8	NERT5.11S1-20180710	Total/NA	Water	300.1B	
MB 440-487566/5	Method Blank	Total/NA	Water	300.1B	
LCS 440-487566/4	Lab Control Sample	Total/NA	Water	300.1B	
MRL 440-487566/3	Lab Control Sample	Total/NA	Water	300.1B	
440-215717-B-3 MS	Matrix Spike	Total/NA	Water	300.1B	
440-215717-B-3 MSD	Matrix Spike Duplicate	Total/NA	Water	300.1B	

HPLC/IC (Continued)

Analysis Batch: 488407

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-215605-1	NERT3.80S1-20180709	Total/NA	Water	314.0	
440-215605-2	NERT4.71S1-20180710	Total/NA	Water	314.0	
440-215605-3	NERT4.51S1-20180710	Total/NA	Water	314.0	
440-215605-4	NERT4.93S1-20180710	Total/NA	Water	314.0	
440-215605-5	NERT4.93S1-20180710-FD	Total/NA	Water	314.0	
440-215605-6	NERT4.93S1-20180710-FB	Total/NA	Water	314.0	
440-215605-7	NERT4.93S1-20180710-EB	Total/NA	Water	314.0	
440-215605-8	NERT5.11S1-20180710	Total/NA	Water	314.0	
MB 440-488407/8	Method Blank	Total/NA	Water	314.0	
LCS 440-488407/5	Lab Control Sample	Total/NA	Water	314.0	
MRL 440-488407/4	Lab Control Sample	Total/NA	Water	314.0	
440-215605-3 MS	NERT4.51S1-20180710	Total/NA	Water	314.0	
440-215605-3 MSD	NERT4.51S1-20180710	Total/NA	Water	314.0	

General Chemistry

Analysis Batch: 487284

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
440-215605-1	NERT3.80S1-20180709	Total/NA	Water	SM 2540C		
MB 440-487284/1	Method Blank	Total/NA	Water	SM 2540C		
LCS 440-487284/2	Lab Control Sample	Total/NA	Water	SM 2540C		
440-215666-H-6 DU	Duplicate	Total/NA	Water	SM 2540C		

Analysis Batch: 487658

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-215605-2	NERT4.71S1-20180710	Total/NA	Water	SM 2540C	
440-215605-3	NERT4.51S1-20180710	Total/NA	Water	SM 2540C	
440-215605-4	NERT4.93S1-20180710	Total/NA	Water	SM 2540C	
440-215605-5	NERT4.93S1-20180710-FD	Total/NA	Water	SM 2540C	
440-215605-6	NERT4.93S1-20180710-FB	Total/NA	Water	SM 2540C	
440-215605-7	NERT4.93S1-20180710-EB	Total/NA	Water	SM 2540C	
440-215605-8	NERT5.11S1-20180710	Total/NA	Water	SM 2540C	
MB 440-487658/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 440-487658/2	Lab Control Sample	Total/NA	Water	SM 2540C	
440-215605-3 DU	NERT4.51S1-20180710	Total/NA	Water	SM 2540C	

Definitions/Glossary

Client: AECOM Project/Site: NERT Phase I GW Sample

Qualifiers

 	_	
 - 1	\mathbf{c}	
 -		н.,

Qualifier	Qualifier Description
	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.

Glossary

Qualifiers		
HPLC/IC		
Qualifier	Qualifier Description	
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	5
	applicable.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
F1	MS and/or MSD Recovery is outside acceptance limits.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	8
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	9
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	12
DLC	Decision Level Concentration (Radiochemistry)	12
EDL	Estimated Detection Limit (Dioxin)	15
LOD	Limit of Detection (DoD/DOE)	13
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Accreditation/Certification Summary

TestAmerica Job ID: 440-215605-1

Laboratory: TestAmerica Irvine

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	CA01531	06-30-19
Arizona	State Program	9	AZ0671	10-14-18
California	LA Cty Sanitation Districts	9	10256	06-30-18 *
California	State Program	9	CA ELAP 2706	06-30-19
Guam	State Program	9	Cert. No. 17-003R	01-23-19
Hawaii	State Program	9	N/A	01-29-19
Kansas	NELAP	7	E-10420	07-31-18 *
Nevada	State Program	9	CA015312018-1	07-31-18 *
New Mexico	State Program	6	N/A	01-29-19
Oregon	NELAP	10	4028	01-29-19
USDA	Federal		P330-15-00184	07-09-21
Washington	State Program	10	C900	09-03-18

13 14

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Iruine 17461 Berian Ave Suite 100 Irvine, CA 72614	Cha	Chain of Custody Record	209428	THE LEADER IN EWIGONMENTAL TESTING	
Phone: 949.261.1022 Fax:	rogram: Dw	NPDES CRA Other:		1 estAmerica Laboratories, inc. TAL-8210 (0713)	
Client Contact	Project Manager: Sally D. lode 34	Site Contact: J CAPKTRIC	Date:	COC No	
/Name AECOM	TellFax: Sos 764 4000	Lab Contact: Factor Richa	Carrier:	COCs	2
1220 Ruenicla	Turnar			etRId	21
tte/Zip:	CALENDAR DAYS UWORKING DAYS			Only:	ŀ
Phone SUS JUY HOUL	TAT if different				Ł
Protect Name: A 15 01 01		27			= (
L PES				Job / SDG No :	(ن رن
PO# (201 2 32.5	1 day)/
	e Sample Cacomp	ی در این			•
Sample IO	JITTIC G=GRAD) MATTIX	- - -		Sample Specific Notes:	
NERT 35051-20140709	2/4/1× 0×10 6 60 1	X = X Y Y			
NERT4.7151-2050710	2/1/2/0520 6 1	3 11 11 1 1 1 1			
NERT45151-20196010	1220 6	9/1/1/2/2		Extra vil = pag //1131)	
NERT4331-3	<u>ب</u>	X X			
- D TU 9351-20121216 -		× · · · ·			
1					
,					
		¥ -/			
	11/2				
			440-215605	440-215605 Chain of Custody	
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	; 5=NaOH; 6= Other				
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Pleas	Please List any EPA Waste Codes for the sample in the		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) $Q_{\rm cont}/Q_{\rm cont}$	ed longer than 1 month)	
		rn to Cient	Disposal by Lab	Months	
ctions/QC Requirements & Co					
Custody Seals Intact Yes No	eal No .	Cooler Temp (°C): Obs'd	is'd 🖊 🗸 🗸 🖒	Therm ID No.: <u>/こ・</u> ク	
Relinquisted by	Company: Description	Received by:	Company	Date/Time: 2/1//19 a.5	000
Reinquished by	Date/Time	Received by:	Company:	ė	
cherry ?	- Free	e d			
Relinquished by	Company Date/Time:	Received in Laborationy by	Company.	Date/Time: $7/2/5$ 7.40	
018	(S) -712 L. U3 5-	7 1174 Sory		6.0 72.00	
		1			
		· 2 3 4 5	7 3 9 0	2 3 4 5	1

Login Sample Receipt Checklist

Client: AECOM

Login Number: 215605 List Number: 1

Creator: Garcia, Veronica G

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	Not Present
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 440-215605-1

List Source: TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-215605-2 Client Project/Site: NERT Phase I GW Sample

For:

AECOM 1220 Avenida Acaso Camarillo, California 93012

Attn: Ms. Sally Bilodeau

Anta

Authorized for release by: 7/23/2018 3:15:15 PM Patty Mata, Senior Project Manager

(949)261-1022 patty.mata@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Method Summary	8
Lab Chronicle	9
QC Sample Results	11
QC Association Summary	12
Definitions/Glossary	13
Certification Summary	14
Chain of Custody	15
Receipt Checklists	16

Sample Summary

Client: AECOM Project/Site: NERT Phase I GW Sample TestAmerica Job ID: 440-215605-2

Lab Sample ID	Client Sample ID	Matrix	Collected Received
440-215605-1	NERT3.80S1-20180709	Water	07/09/18 08:40 07/12/18 09:
440-215605-2	NERT4.71S1-20180710	Water	07/10/18 08:50 07/12/18 09:
440-215605-3	NERT4.51S1-20180710	Water	07/10/18 12:20 07/12/18 09:
440-215605-4	NERT4.93S1-20180710	Water	07/10/18 13:50 07/12/18 09:
440-215605-5	NERT4.93S1-20180710-FD	Water	07/10/18 13:50 07/12/18 09:
440-215605-6	NERT4.93S1-20180710-FB	Water	07/10/18 14:00 07/12/18 09:
440-215605-7	NERT4.93S1-20180710-EB	Water	07/10/18 14:15 07/12/18 09:
440-215605-8	NERT5.11S1-20180710	Water	07/10/18 15:45 07/12/18 09:

Job ID: 440-215605-2

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-215605-2

Comments

Only the Dissolved Chromium results are included in this report.

Receipt

The samples were received on 7/12/2018 9:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.0° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: AECOM
Project/Site: NERT Phase I GW Sample

TestAmerica Job ID: 440-215605-2

Client Sample ID: N	ERT3.80S1-2018	30709				Lab Sa	amp	le ID: 4	40-215605-1
Analyte		Qualifier	RL		Unit	Dil Fac			Ргер Туре
Chromium	1.8	J	2.0	0.50	ug/L	1	_ 20	00.8	Dissolved
Client Sample ID: N	IERT4.71S1-2018	30710				Lab Sa	amp	le ID: 4	40-215605-2
Analyte		Qualifier	RL		Unit	Dil Fac			Prep Type
Chromium	26		2.0	0.50	ug/L	1	_ 20	00.8	Dissolved
Client Sample ID: N	IERT4.51S1-2018	30710				Lab Sa	amp	le ID: 4	40-215605-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DM	ethod	Prep Type
Chromium	19		2.0	0.50	ug/L	1	- 20	00.8	Dissolved
Client Sample ID: N	IERT4.93S1-2018	30710				Lab Sa	amp	le ID: 4	40-215605-4
Analyte		Qualifier	RL		Unit	Dil Fac			Prep Type
Chromium	15		2.0	0.50	ug/L	1	_ 20	8.00	Dissolved
Client Sample ID: N	IERT4.93S1-2018	30710-FD				Lab Sa	amp	le ID: 4	40-215605-5
Analyte	Result	Qualifier	RL		Unit	Dil Fac	DM	ethod	Prep Type
Chromium	14		2.0	0.50	ug/L	1	- 20	8.00	Dissolved
Client Sample ID: N	IERT4.93S1-2018	30710-FB				Lab Sa	amp	le ID: 4	40-215605-6
No Detections.									
Client Sample ID: N	IERT4.93S1-201{	30710-EB				Lab Sa	amp	le ID: 4	40-215605-7
No Detections.									
Client Sample ID: N	IERT5.11S1-2018	30710				Lab Sa	amp	le ID: 4	40-215605-8
Analyta	Popult	Qualifier	DI	МП	Unit	Dil Eac	р м	lathad	Bron Tuno

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Chromium	13	2.0	0.50 ug/L	1 200.8	Dissolved

This Detection Summary does not include radiochemical test results.

Client Sample ID: NERT3.80S1-2 Date Collected: 07/09/18 08:40 Date Received: 07/12/18 09:40	0180709				La	ab Sample	ID: 440-21 Matrix	5605-1 :: Water
Method: 200.8 - Metals (ICP/MS) - Diss	solved							
Analyte Re	sult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	1.8 J	2.0	0.50	ug/L		07/17/18 14:49	07/17/18 22:58	1
Client Sample ID: NERT4.71S1-2	0180710				La	ab Sample	ID: 440-21	5605-2
Date Collected: 07/10/18 08:50 Date Received: 07/12/18 09:40							Matrix	: Water
Method: 200.8 - Metals (ICP/MS) - Diss								
	sult Qualifier	RL	мы	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	26	2.0		ug/L		•	07/17/18 23:00	1
Client Sample ID: NERT4.51S1-2	0180710				1.5	h Samolo	ID: 440-21	5605-3
Date Collected: 07/10/18 12:20 Date Received: 07/12/18 09:40	0100710				LC			: Water
Mothod: 200 % Motolo (ICP/MS) Diog	alved							
Method: 200.8 - Metals (ICP/MS) - Diss Analyte Re	sult Qualifier	RL	мпі	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	19 <u>quamer</u>	2.0		ug/L		07/17/18 14:49		
L_ 				U U				
Client Sample ID: NERT4.93S1-2 Date Collected: 07/10/18 13:50 Date Received: 07/12/18 09:40							ID: 440-21 Matrix	: Water
	sult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	15	2.0	0.50	ug/L		07/17/18 14:49	07/17/18 23:02	1
Client Sample ID: NERT4.93S1-2 Date Collected: 07/10/18 13:50 Date Received: 07/12/18 09:40	0180710-FD				La	ab Sample	ID: 440-21 Matrix	5605-5 :: Water
Method: 200.8 - Metals (ICP/MS) - Diss	solved							
Analyte Re	sult Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chromium	14	2.0	0.50	ug/L		07/17/18 14:49	07/17/18 23:04	1
Client Sample ID: NERT4.93S1-2 Date Collected: 07/10/18 14:00 Date Received: 07/12/18 09:40	0180710-FB				La	ab Sample	ID: 440-21 Matrix	5605-6 :: Water
Method: 200.8 - Metals (ICP/MS) - Diss	solved							
	sult Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chromium	ND	2.0	0.50	ug/L		07/17/18 14:49	07/17/18 23:10	1
Client Sample ID: NERT4.93S1-2					La	ab Sample	ID: 440-21	5605-7
Date Collected: 07/10/18 14:15 Date Received: 07/12/18 09:40	0180710-EB							: Water
Date Collected: 07/10/18 14:15 Date Received: 07/12/18 09:40 Method: 200.8 - Metals (ICP/MS) - Diss	solved						Matrix	: Water
Date Collected: 07/10/18 14:15 Date Received: 07/12/18 09:40 Method: 200.8 - Metals (ICP/MS) - Diss		RL 2.0		Unit ug/L	D	Prepared		Dil Fac

Client: AECOM

Project/Site: NERT Phase I GW Sample

TestAmerica Job ID: 440-215605-2

TestAmerica Irvine

Client Sample Results

Client: AECOM
Project/Site: NERT Phase I GW Sample

Lab S	Sample	ID: 440-215605-8
		Matrix: Water

Client Sample ID: NEP	RT5.11S1-20180710		Lab Sample ID: 440-215605-				
Date Collected: 07/10/18 1	5:45		Matrix: Water				
Date Received: 07/12/18 0	9:40				_		
Method: 200.8 - Metals (I	CP/MS) - Dissolved						
Analyte	Result Qualifier	RL	MDL Unit	D Prepared Analyzed Dil	Fac		
Chromium	13	2.0	0.50 ug/L	07/17/18 14:49 07/17/18 23:14	1		

Method

200.8

200.2

Protocol References:

Laboratory References:

ect/Site: NERT Phase I GW Sample							
nod	Method Description	Protocol	Laboratory	= 3			
3	Metals (ICP/MS)	EPA	TAL IRV	-			
2	Preparation, Total Recoverable Metals	EPA	TAL IRV				
rotocol R	References:			5			
EPA = l	US Environmental Protection Agency						
	y References: V = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022			7			

Batch

Туре

Prep

Analysis

Batch

Туре

Prep

Analysis

Client Sample ID: NERT4.51S1-20180710

Client Sample ID: NERT4.71S1-20180710

Date Collected: 07/09/18 08:40

Date Received: 07/12/18 09:40

Date Collected: 07/10/18 08:50

Date Received: 07/12/18 09:40

Date Collected: 07/10/18 12:20

Date Received: 07/12/18 09:40

Prep Type

Dissolved

Dissolved

Prep Type

Dissolved

Dissolved

Client Sample ID: NERT3.80S1-20180709

Batch

200.2

200.8

Batch

200.2

200.8

Method

Method

Lab Sample ID: 440-215605-1

Matrix: Water

Lab

TAL IRV

TAL IRV

Lab Sample ID: 440-215605-3 Matrix: Water

JL

Analyst

V V	alt	15	

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Dissolved	Prep	200.2			25 mL	25 mL	487981	07/17/18 14:49	JL	TAL IRV
Dissolved	Analysis	200.8		1			488106	07/17/18 22:52	B1H	TAL IRV

Lab Chronicle

Initial

Amount

25 mL

Initial

Amount

25 mL

Final

Amount

25 mL

Batch

Number

487981

488106

Dil

1

Dil

1

Factor

Factor

Run

Run

Client Sample ID: NERT4.93S1-20180710 Date Collected: 07/10/18 13:50 Date Received: 07/12/18 09:40

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	200.2			25 mL	25 mL	487981	07/17/18 14:49	JL	TAL IRV
Dissolved	Analysis	200.8		1			488106	07/17/18 23:02	B1H	TAL IRV

Client Sample ID: NERT4.93S1-20180710-FD Date Collected: 07/10/18 13:50 Date Received: 07/12/18 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	200.2			25 mL	25 mL	487981	07/17/18 14:49	JL	TAL IRV
Dissolved	Analysis	200.8		1			488106	07/17/18 23:04	B1H	TAL IRV

Client Sample ID: NERT4.93S1-20180710-FB Date Collected: 07/10/18 14:00 Date Received: 07/12/18 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	200.2			25 mL	25 mL	487981	07/17/18 14:49	JL	TAL IRV
Dissolved	Analysis	200.8		1			488106	07/17/18 23:10	B1H	TAL IRV

TestAmerica Irvine

Prepared

or Analyzed

07/17/18 14:49

07/17/18 23:00 B1H

Lab Sample ID: 440-215605-2 Matrix: Water

Lab Sample ID: 440-215605-5 Matrix: Water

Lab Sample ID: 440-215605-6

Lab Sample ID: 440-215605-4

Matrix: Water

Matrix: Water

Lab Sample ID: 440-215605-8

Lab Sample ID: 440-215605-7 Matrix: Water

Matrix: Water

Client Sample ID: NERT4.93S1-20180710-EB Date Collected: 07/10/18 14:15

Date Received: 07/12/18 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	200.2			25 mL	25 mL	487981	07/17/18 14:49	JL	TAL IRV
Dissolved	Analysis	200.8		1			488106	07/17/18 23:12	B1H	TAL IRV

Lab Chronicle

Client Sample ID: NERT5.11S1-20180710 Date Collected: 07/10/18 15:45 Date Received: 07/12/18 09:40

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	200.2			25 mL	25 mL	487981	07/17/18 14:49	JL	TAL IRV
Dissolved	Analysis	200.8		1			488106	07/17/18 23:14	B1H	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Method: 200.8 - Metals (ICP/MS)	
 _	

Lab Sample ID: MB 440-48 Matrix: Water Analysis Batch: 488106	7981/1-A	MB MB									ple ID: Me e: Total R Prep Bat	ecove	erable
Analyte	Re	sult Qualifier		RL	Ν	IDL U	nit	D	Р	repared	Analyze	əd	Dil Fac
Chromium		ND		2.0	(0.50 ug	g/L		07/1	7/18 14:49	07/17/18 2	2:49	1
Lab Sample ID: LCS 440-4	87981/2-A							Clien	it Sai	nple ID:	Lab Cont	trol Sa	ample
Matrix: Water									P	<mark>гер Тур</mark>	e: Total R	ecove	erable
Analysis Batch: 488106			Spike		LCS	LCS					Prep Bat %Rec.	tch: 4	87981
Analyte			Added	Re	sult	Qualifi	ier Uı	nit	D	%Rec	Limits		
Chromium			80.0		77.9		ug	/L		97	85 - 115		
Lab Sample ID: 440-21560	5-3 MS						С	lient S	amp	le ID: N	ERT4.51S	1-201	80710
Matrix: Water										F	Prep Type	: Diss	olved
Analysis Batch: 488106											Prep Bat	tch: 4	87981
	•	Sample	Spike		MS						%Rec.		
Analyte		Qualifier	Added			Qualifi		-	D	%Rec	Limits		
Chromium	19		80.0		90.0		ug	/L		89	70 - 130		
Lab Sample ID: 440-21560	5-3 MSD						С	lient S	amp	le ID: N	ERT4.51S	1-201	80710
Matrix: Water										F	Prep Type	: Diss	olved
Analysis Batch: 488106											Prep Bat	tch: 4	87981
	Sample	Sample	Spike		MSD	MSD					%Rec.		RPD
	•												
Analyte	•	Qualifier	Added	Re	sult	Qualifi	ier Ur	nit	D	%Rec	Limits	RPD	Limit

QC Association Summary

Client: AECOM Project/Site: NERT Phase I GW Sample

TestAmerica Job ID: 440-215605-2

9 10 11

487981

Metals

Prep Batch: 487981

440-215605-3 MSD

NERT4.51S1-20180710

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
40-215605-1	NERT3.80S1-20180709	Dissolved	Water	200.2	
40-215605-2	NERT4.71S1-20180710	Dissolved	Water	200.2	
40-215605-3	NERT4.51S1-20180710	Dissolved	Water	200.2	
40-215605-4	NERT4.93S1-20180710	Dissolved	Water	200.2	
40-215605-5	NERT4.93S1-20180710-FD	Dissolved	Water	200.2	
40-215605-6	NERT4.93S1-20180710-FB	Dissolved	Water	200.2	
40-215605-7	NERT4.93S1-20180710-EB	Dissolved	Water	200.2	
40-215605-8	NERT5.11S1-20180710	Dissolved	Water	200.2	
1B 440-487981/1-A	Method Blank	Total Recoverable	Water	200.2	
CS 440-487981/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
40-215605-3 MS	NERT4.51S1-20180710	Dissolved	Water	200.2	
40-215605-3 MSD	NERT4.51S1-20180710	Dissolved	Water	200.2	
alysis Batch: 488	106				
n <mark>alysis Batch: 488</mark> ab Sample ID	106 Client Sample ID	Prep Type	Matrix	Method	Prep Batch
-		Prep Type Dissolved	Matrix Water	Method	Prep Batch 487981
ab Sample ID	Client Sample ID	<u> </u>			
ab Sample ID 40-215605-1	Client Sample ID NERT3.80S1-20180709	Dissolved	Water	200.8	487981
ab Sample ID 40-215605-1 40-215605-2	Client Sample ID NERT3.80S1-20180709 NERT4.71S1-20180710	Dissolved Dissolved	Water Water	200.8 200.8	487981
ab Sample ID 40-215605-1 40-215605-2 40-215605-3	Client Sample ID NERT3.80S1-20180709 NERT4.71S1-20180710 NERT4.51S1-20180710	Dissolved Dissolved Dissolved	Water Water Water	200.8 200.8 200.8 200.8	487981 487981 487981 487981
ab Sample ID 40-215605-1 40-215605-2 40-215605-3 40-215605-4	Client Sample ID NERT3.80S1-20180709 NERT4.71S1-20180710 NERT4.51S1-20180710 NERT4.93S1-20180710	Dissolved Dissolved Dissolved Dissolved	Water Water Water Water	200.8 200.8 200.8 200.8 200.8	487981 487981 487981 487981 487981
ab Sample ID 40-215605-1 40-215605-2 40-215605-3 40-215605-4 40-215605-5	Client Sample ID NERT3.80S1-20180709 NERT4.71S1-20180710 NERT4.51S1-20180710 NERT4.93S1-20180710 NERT4.93S1-20180710-FD	Dissolved Dissolved Dissolved Dissolved Dissolved	Water Water Water Water Water	200.8 200.8 200.8 200.8 200.8 200.8	487981 487981 487981 487981 487981 487981
ab Sample ID 40-215605-1 40-215605-2 40-215605-3 40-215605-4 40-215605-5 40-215605-6	Client Sample ID NERT3.80S1-20180709 NERT4.71S1-20180710 NERT4.51S1-20180710 NERT4.93S1-20180710 NERT4.93S1-20180710-FD NERT4.93S1-20180710-FB	Dissolved Dissolved Dissolved Dissolved Dissolved Dissolved	Water Water Water Water Water Water	200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8	487981 487981 487981 487981 487981 487981
ab Sample ID 40-215605-1 40-215605-2 40-215605-3 40-215605-4 40-215605-5 40-215605-6 40-215605-7	Client Sample ID NERT3.80S1-20180709 NERT4.71S1-20180710 NERT4.51S1-20180710 NERT4.93S1-20180710 NERT4.93S1-20180710-FD NERT4.93S1-20180710-FB NERT4.93S1-20180710-EB	Dissolved Dissolved Dissolved Dissolved Dissolved Dissolved Dissolved	Water Water Water Water Water Water Water	200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8	487981 487981 487981 487981 487981 487981 487981
ab Sample ID 40-215605-1 40-215605-2 40-215605-3 40-215605-4 40-215605-5 40-215605-6 40-215605-7 40-215605-8	Client Sample ID NERT3.80S1-20180709 NERT4.71S1-20180710 NERT4.51S1-20180710 NERT4.93S1-20180710 NERT4.93S1-20180710-FD NERT4.93S1-20180710-FB NERT4.93S1-20180710-EB NERT5.11S1-20180710	Dissolved Dissolved Dissolved Dissolved Dissolved Dissolved Dissolved Dissolved	Water Water Water Water Water Water Water Water	200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8	487981 487981 487981 487981 487981 487981 487981 487981

Dissolved

Water

200.8

Definitions/Glossary

Client: AECOM Project/Site: NERT Phase I GW Sample

5

Qualifiers

Metals

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	8
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	11
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Accreditation/Certification Summary

Client: AECOM Project/Site: NERT Phase I GW Sample TestAmerica Job ID: 440-215605-2

12 13

Laboratory: TestAmerica Irvine

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	CA01531	06-30-19
Arizona	State Program	9	AZ0671	10-14-18
California	LA Cty Sanitation Districts	9	10256	06-30-18 *
California	State Program	9	CA ELAP 2706	06-30-19
Guam	State Program	9	Cert. No. 17-003R	01-23-19
Hawaii	State Program	9	N/A	01-29-19
Kansas	NELAP	7	E-10420	07-31-18 *
Nevada	State Program	9	CA015312018-1	07-31-18 *
New Mexico	State Program	6	N/A	01-29-19
Oregon	NELAP	10	4028	01-29-19
USDA	Federal		P330-15-00184	07-09-21
Washington	State Program	10	C900	09-03-18

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Iruine 17461 Berian Ave Suite 100 Irvine, ca 72614	Cha	Chain of Custody Record	209428	THE LEADER IN ENVIRONMENTAL TESTING	
Phone: 949.261.1822 Fax:	rogram: Dw	🗌 NPDES 🛛 RCRA 🔄 Other:		1 ESLAHITERICA LADORACOURS, 1110- TAL-8210 (0713)	
	Manager: Sa //	Site Contact: J CAPertR 10	Date:		
/Name AECOM	TellFax: Sos 764 4006	Lab Contact: Fach Richa	Carrier:	COCs	-7
1220 Ruenicla	Turnar			etRId	21
tte/Zip:	CALENDAR DAYS U WORKING DAYS			Only:	f
Phone SUS Juy Houle	TAT if different				Ł
Protect Name: A 15 01 01	2 weeks) 			= (
L PES				Job / SDG No :	رن
PO# (.011 2765	1 day)/
	e Sample Type	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			\sim
Sample Identification	Matrix			Sample Specific Notes:	
NERT 38051-20190709	2/1/18 08/10 6 61 2	31 24444			
NERT47151-2450716	2/1/1/2 10552 6 1 - 1	3 1/ 1/ 2/ 2/ 1/ 2			
NERT45151-20196010	1220 6	9/1/1/2/2		Extra vil = pag //113/	
NERT4331-	1350 6 3				
BNFOT4339 1- 20120-160					
N. F. D. T. (1 9351-2010 -		<u>></u> > > >			
neordage zurinne					
,					
	. /				
			440-215605		
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	; 5=NaOH; 6= Other				
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Pleas Comments Section if the lab is to dispose of the sample	Please List any EPA Waste Codes for the sample in the		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) $\mathcal{Q}_{\mathcal{A}_{\mathcal{A}_{\mathcal{A}}}}(\mathcal{A})$ (ed longer than 1 month)	
Q Non-Hazard	Doison B	Return to Cient	Disposal by Lab	Months	
ctions/QC					
Custody Seals Infact	Custody Seal No .	[Cooler Temp (°C): Obs/d	s'd_/.'/_Corr'd 2	Therm ID No.: 12.07	
	Company: Date/Time	Received	O Company		
1 all all all all all all all all all al	KIMLE Too	24	Δ	7/1/13 8:5	1001
Relinquished by	Company. Date/Time:	Received by	Company:	Date/Time: ' /	
Relinquished by	Date	Receive		Date/Time:	
/20 1			141-181	17/12/12 41 40	
18	(S) TRL. 435-	1174 SOSY		wit in	
)	12 13 14	7 8 9 10	1 2 3 4 5 6	

Login Sample Receipt Checklist

Client: AECOM

Login Number: 215605 List Number: 1 Creator: Garcia, Veronica G

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	Not Present
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 440-215605-2

List Source: TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817 Tel: (949)261-1022

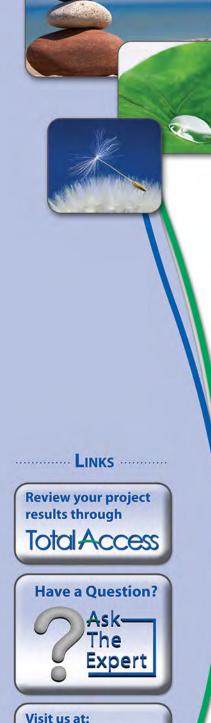
TestAmerica Job ID: 440-215804-1 Client Project/Site: NERT Las Vegas Wash, 60477365

For:

AECOM 13 Newfields Rd Exeter, New Hampshire 03833

Attn: Kristen Durocher

Anta


Authorized for release by: 7/25/2018 9:03:40 AM Patty Mata, Senior Project Manager

(949)261-1022 patty.mata@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	10
Lab Chronicle	11
QC Sample Results	14
QC Association Summary	20
Definitions/Glossary	22
	23
Chain of Custody	24
Receipt Checklists	

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365 TestAmerica Job ID: 440-215804-1

3
5
8
9

Lab Sample ID	Client Sample ID	Matrix	Collected Received
440-215804-1	LNDMW1-20180711	Water	07/11/18 11:20 07/14/18 10:15
440-215804-2	MW-25-20180712	Water	07/12/18 07:30 07/14/18 10:15
440-215804-3	MW-13-20180712	Water	07/12/18 08:35 07/14/18 10:15
440-215804-4	MW-3-20180712	Water	07/12/18 10:25 07/14/18 10:15
440-215804-5	MW-4-20180712	Water	07/12/18 11:10 07/14/18 10:15
440-215804-6	MW-02-20180712	Water	07/12/18 13:30 07/14/18 10:15
440-215804-7	MW-02-20180712-FD	Water	07/12/18 13:30 07/14/18 10:15
440-215804-8	MW-02-20180712-FB	Water	07/12/18 13:40 07/14/18 10:15
440-215804-9	MW-02-20180712-EB	Water	07/12/18 13:50 07/14/18 10:15
440-215804-10	MW-20-20180712	Water	07/12/18 15:05 07/14/18 10:15
440-215804-11	COH2B1-20180713	Water	07/13/18 08:10 07/14/18 10:15
440-215804-12	AA-30-20180713	Water	07/13/18 09:20 07/14/18 10:15
440-215804-13	WMW5.5S-20180713	Water	07/13/18 10:30 07/14/18 10:15
440-215804-14	WMW5.58S1-20180713	Water	07/13/18 12:20 07/14/18 10:15
440-215804-15	WMW4.9S-20180713	Water	07/13/18 13:55 07/14/18 10:15
440-215804-16	WMW4.9S-20180713-FD	Water	07/13/18 13:55 07/14/18 10:15

Job ID: 440-215804-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-215804-1

Comments

No additional comments.

Receipt

The samples were received on 7/14/2018 10:15 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.3° C.

Receipt Exceptions

The container label for the following sample did not match the information listed on the Chain-of-Custody (COC): WMW5.5S-20180713 (440-215804-13). The container labels list WMW5.5S, while the COC lists WMW5.5S1. The client was contacted and the sample ID was changed to match the container label. Selected other sample IDs were also changed slightly from the IDs listed on the COC, based on client email request.

HPLC/IC

Method(s) 300.1B: The following sample was diluted for Chlorate due to the nature of the sample matrix: MW-20-20180712 (440-215804-10). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client Sample Results

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

Dichloroacetic acid(Surr)

TestAmerica Job ID: 440-215804-1

Client Sample ID: LNDMW1-20180711 Date Collected: 07/11/18 11:20 Date Received: 07/14/18 10:15					Lab Sample ID: 440-215804-1 Matrix: Water				
ate Received: 07/14/18 10:15									
Method: 300.1B - Disinfection	n By-Produc	ts, (IC)							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chlorate	4700		1000	100	ug/L			07/15/18 22:36	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dichloroacetic acid(Surr)	108		90 - 115			-	•	07/15/18 22:36	5
Method: 314.0 - Perchlorate (IC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perchlorate	1600		400	95	ug/L		•	07/22/18 14:41	10
lient Sample ID: MW-25-	20180712					l al	h Samnle	ID: 440-215	804-
ate Collected: 07/12/18 07:30	20100712					La	o Gampic	Matrix:	
ate Received: 07/14/18 10:15								matrix	
Method: 300.1B - Disinfectior	By-Produc	ts. (IC)							
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chlorate	57		20	2.0	ug/L		-	07/16/18 04:29	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dichloroacetic acid(Surr)	95		90 - 115			-		07/16/18 04:29	
Method: 314.0 - Perchlorate (Analyte Perchlorate		Qualifier F1	RL 4.0		Unit ug/L	<u>D</u>	Prepared	Analyzed 07/20/18 11:02	Dil Fa
lient Sample ID: MW-13-	20180712					Lal	b Sample	ID: 440-215	5804-3
ate Collected: 07/12/18 08:35 ate Received: 07/14/18 10:15								Matrix	
Method: 300.1B - Disinfectior	n By-Produc	ts, (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chlorate	14000		1000	100	ug/L			07/15/18 23:04	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dichloroacetic acid(Surr)	110		90 - 115			-		07/15/18 23:04	5
Method: 314.0 - Perchlorate (IC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perchlorate	3700		400	95	ug/L			07/22/18 14:59	10
lient Sample ID: MW-3-2	0180712					l al	h Sample	ID: 440-215	804-4
ate Collected: 07/12/18 10:25 ate Received: 07/14/18 10:15								Matrix	
Method: 300.1B - Disinfectior	By-Produc	ts. (IC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chlorate	6200		1000		ug/L			07/15/18 23:32	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
			00 115			-		07/15/10 22:22	5

TestAmerica Irvine

07/15/18 23:32

90 - 115

111

50

Client: AECOM			Sample I	Resul	IS	Т	estAmerica	Job ID: 440-21	5804- ⁻
Project/Site: NERT Las Vegas V		65					0		004
Client Sample ID: MW-3-2 Date Collected: 07/12/18 10:25 Date Received: 07/14/18 10:15	5					Lai	o Sample	ID: 440-215 Matrix	
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perchlorate	3300		400	95	ug/L			07/22/18 15:57	10
Client Sample ID: MW-4-2 Date Collected: 07/12/18 11:10 Date Received: 07/14/18 10:15)					Lal	o Sample	ID: 440-215 Matrix	
Method: 300.1B - Disinfection Analyte		t <mark>s, (IC)</mark> Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Chlorate	5900		1000	100	ug/L			07/16/18 00:00	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dichloroacetic acid(Surr)	110		90 - 115			-		07/16/18 00:00	5
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perchlorate	3000		400	95	ug/L		-	07/22/18 16:15	10
Date Received: 07/14/18 10:15)								
	- D D - I -								
Method: 300.1B - Disinfection Analyte		t <mark>s, (IC)</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte Chlorate			RL 1000		Unit ug/L	<u>D</u>	Prepared	Analyzed 07/16/18 00:27	
Analyte Chlorate	Result 2600	Qualifier	1000			<u>D</u>		07/16/18 00:27	5
Analyte	Result	Qualifier				<u>D</u>	Prepared Prepared	-	5 Dil Fa
Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (Result 2600 %Recovery 107	Qualifier Qualifier	1000 Limits 90 - 115	100	ug/L		Prepared	07/16/18 00:27 Analyzed 07/16/18 00:27	Dil Fa
Analyte Chlorate Surrogate Dichloroacetic acid(Surr)	Result 2600 %Recovery 107 (IC) Result	Qualifier	1000 Limits	100 MDL	ug/L Unit	D		07/16/18 00:27 Analyzed	Dil Fa
Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (Analyte Perchlorate Client Sample ID: MW-02	Result 2600 %Recovery 107 (IC) Result 1900 -20180712	Qualifier Qualifier Qualifier	1000 Limits 90 - 115 RL	100 MDL	ug/L	D	Prepared Prepared	07/16/18 00:27 Analyzed 07/16/18 00:27 Analyzed 07/22/18 16:33 ID: 440-215	Dil Fa 2 011 Fa 10 3804-
Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (Analyte Perchlorate	Result 2600 %Recovery 107 (IC) Result 1900 -20180712	Qualifier Qualifier Qualifier	1000 Limits 90 - 115 RL	100 MDL	ug/L Unit	D	Prepared Prepared	07/16/18 00:27 Analyzed 07/16/18 00:27 Analyzed 07/22/18 16:33	Dil Fa Dil Fa 10 5804-
Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (Analyte Perchlorate Client Sample ID: MW-02 Date Collected: 07/12/18 13:30	Result 2600 %Recovery 107 (IC) Result 1900 -20180712- n By-Produc	Qualifier Qualifier Qualifier •FD	1000 Limits 90 - 115 RL	100 MDL 95	Unit ug/L ug/L	D	Prepared Prepared	07/16/18 00:27 Analyzed 07/16/18 00:27 Analyzed 07/22/18 16:33 ID: 440-215 Matrix:	Dil Fa Dil Fa 10 5804-
Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (Analyte Perchlorate Client Sample ID: MW-02 Date Collected: 07/12/18 13:30 Date Received: 07/14/18 10:15 Method: 300.1B - Disinfection	Result 2600 %Recovery 107 (IC) Result 1900 -20180712- n By-Produc	Qualifier Qualifier Qualifier •FD	1000 Limits 90-115 RL 400	100 MDL 95	Unit ug/L	D	Prepared Prepared	07/16/18 00:27 Analyzed 07/16/18 00:27 Analyzed 07/22/18 16:33 1D: 440-215 Matrix:	
Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (Analyte Perchlorate Client Sample ID: MW-02 Date Collected: 07/12/18 13:30 Date Received: 07/14/18 10:15 Method: 300.1B - Disinfection Analyte	Result %Recovery 107 (IC) Result 1900 -20180712 By-Product Result	Qualifier Qualifier Qualifier •FD ts, (IC) Qualifier	1000 Limits 90-115 RL 400 RL	100 MDL 95	Unit ug/L ug/L	D	Prepared Prepared	07/16/18 00:27 Analyzed 07/16/18 00:27 Analyzed 07/22/18 16:33 ID: 440-215 Matrix:	Dil Fa
Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (Analyte Perchlorate Client Sample ID: MW-02 Date Collected: 07/12/18 13:30 Date Received: 07/14/18 10:15 Method: 300.1B - Disinfection Analyte Chlorate	Result 2600 %Recovery 107 (IC) Result 1900 -20180712 By-Product Result 2600	Qualifier Qualifier Qualifier •FD ts, (IC) Qualifier	1000 Limits 90-115 RL 400 RL 1000	100 MDL 95	Unit ug/L ug/L	D	Prepared Prepared D Sample Prepared	07/16/18 00:27 Analyzed 07/16/18 00:27 Analyzed 07/16/18 00:27 Analyzed 07/22/18 16:33 ID: 440-215 Matrix: Analyzed 07/22/18 16:33	Dil Fa Dil Fa 10 5804- 5 Wate Dil Fa 5
Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate (Analyte Perchlorate Client Sample ID: MW-02 Date Collected: 07/12/18 13:30 Date Received: 07/14/18 10:15 Method: 300.1B - Disinfection Analyte Chlorate Surrogate	Result 2600 %Recovery 107 (IC) Result 1900 -20180712- n By-Product Result 2600 %Recovery 109 (IC)	Qualifier Qualifier Qualifier •FD ts, (IC) Qualifier	1000 Limits 90-115 RL 400 	100 MDL 95 MDL 100	Unit ug/L ug/L	D	Prepared Prepared D Sample Prepared	07/16/18 00:27 Analyzed 07/16/18 00:27 Analyzed 07/16/18 00:27 Analyzed 07/22/18 16:33 ID: 440-215 Matrix: Analyzed 07/16/18 00:55 Analyzed	Dil Fa Dil Fa 10 5804- 5 Wate Dil Fa Dil Fa

TestAmerica Irvine

07/22/18 16:51

Perchlorate

95 ug/L

Date Collected: 07/12/18 13:	40	. 5					o oumpre	Matrix:	
Date Received: 07/14/18 10: - Method: 200 18 Disinfect		to (IC)							
Method: 300.1B - Disinfect Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chlorate	ND	Quaimer	20		ug/L		Fiepaleu	-1000000000000000000000000000000000000	
Chiorate	ND		20	2.0	ug/L			07/15/16 17.29	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dichloroacetic acid(Surr)	106		90 - 115			-	•	07/15/18 17:29	
Method: 314.0 - Perchlorat									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perchlorate			4.0		ug/L		Trepared	07/20/18 16:55	
-									
Client Sample ID: MW-0 Date Collected: 07/12/18 13: Date Received: 07/14/18 10:	:50	-EB				La	b Sample	D: 440-215	
Method: 300.1B - Disinfect	ion By-Produc	ts, (IC)							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Chlorate	ND		20	2.0	ug/L			07/15/18 12:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dichloroacetic acid(Surr)			90 - 115			-	•	07/15/18 12:23	
Analyte Perchlorate	ND	Qualifier	RL 4.0	MDL 0.95	Unit ug/L	D	Prepared	Analyzed 07/20/18 17:15	Dil Fa
Client Sample ID: MW-2						Lab	Sample	D: 440-2158	
Date Collected: 07/12/18 15 Date Received: 07/14/18 10:								Matrix	: Wate
Method: 300.1B - Disinfect	ion By-Produc	ts, (IC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chlorate	78	J	100	10	ug/L			07/16/18 22:25	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dichloroacetic acid(Surr)		Guunner	90 - 115			-	Trepareu	07/16/18 22:25	
Method: 314.0 - Perchlorat	e (IC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perchlorate	48		4.0	0.95	ug/L			07/20/18 17:36	
Client Sample ID: COH	201 2019071	2				Lab	Sampla	D: 440-2158	04 1
Date Collected: 07/13/18 08: Date Received: 07/14/18 10:	:10	3				Lau	Sample	Matrix	
Method: 300.1B - Disinfect	ion By-Produc	te (IC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chlorate	1000		200		ug/L			07/18/18 06:50	1
					0				
Surrogate	%Recovery						Prepared	Analyzed	Dil Fa

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

Client Sample ID: MW-02-20180712-FB

TestAmerica Job ID: 440-215804-1

Lab Sample ID: 440-215804-8

TestAmerica Irvine

07/18/18 06:50

90 - 115

98

Dichloroacetic acid(Surr)

10

Client: AECOM Project/Site: NERT Las Veg	as Wash, 604773	65				Т	estAmerica	Job ID: 440-21	15804-1
Client Sample ID: COP Date Collected: 07/13/18 00 Date Received: 07/14/18 10	8:10	3				Lab	Sample	D: 440-2158 Matrix	3 04-1 1 : Wate
_ Method: 314.0 - Perchlora Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	1600		400	95	ug/L			07/22/18 17:10	100
Client Sample ID: AA- Date Collected: 07/13/18 09 Date Received: 07/14/18 10	9:20					Lab	Sample	D: 440-2158 Matrix	304-12 : Wate
Method: 300.1B - Disinfee Analyte		t <mark>s, (IC)</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorate	9400		1000		ug/L			07/15/18 13:57	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dichloroacetic acid(Surr)		Quanner	90 - 115				Fiepareu	07/15/18 13:57	50
_ Method: 314.0 - Perchlora									
Analyte Perchlorate	Result 3900	Qualifier		MDL	Unit ug/L	D	Prepared	Analyzed	Dil Fa
Date Received: 07/14/18 10 Method: 300.1B - Disinfe	ction By-Product								
Analyte Chlorate	Result 11000	Qualifier			Unit ug/L	D	Prepared	Analyzed 07/16/18 19:38	Dil Fa
			1000	100	ug/L			01/10/10 10:00	0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dichloroacetic acid(Surr) Method: 314.0 - Perchlora	99		90 - 115					07/16/18 19:38	5
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perchlorate	3100		400	95	ug/L			07/22/18 17:47	100
Client Sample ID: WM Date Collected: 07/13/18 12 Date Received: 07/14/18 10	2:20	80713				Lab	Sample	D: 440-2158 Matrix	
		t <mark>s, (IC)</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chlorate	3200		1000		ug/L			07/16/18 20:06	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dichloroacetic acid(Surr)	100		90 - 115					07/16/18 20:06	50
_ Method: 314.0 - Perchlora	ate (IC)								
Analyte	Docult	Qualifier	RL	MDL	l Init	D	Prepared	Analyzed	Dil Fa

1 2 3 4 5 6 7 8 9 10 11 12 13

TestAmerica Irvine

07/22/18 18:05

400

95 ug/L

2500

Perchlorate

Client: AECOM
Project/Site: NERT Las Vegas Wash, 60477365

TestAmerica Job ID: 440-215804-1

Date Collected: 07/13/18 1 Date Received: 07/14/18 1		713				Lab	Sample	D: 440-2158 Matrix:	
Method: 300.1B - Disinfe	ection By-Produc			MDI	11 14		Duran and	Analyzed	
Analyte		Qualifier		MDL 100		D	Prepared	Analyzed 07/16/18 20:34	Dil Fac
Chlorate	2700		1000	100	ug/L			07/16/18 20:34	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dichloroacetic acid(Surr)	100		90 - 115					07/16/18 20:34	50
Method: 314.0 - Perchlor	ate (IC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	930		200	48	ug/L			07/22/18 18:23	50
· · · · · · · · · · · · · · · · · · ·		713-FD				Lab	Sample	D: 440-2158 Matrix	
Date Collected: 07/13/18 1 Date Received: 07/14/18 1	3:55 0:15					Lab	Sample	D: 440-2158 Matrix:	
Date Collected: 07/13/18 1 Date Received: 07/14/18 1 Method: 300.1B - Disinfe	3:55 0:15 ection By-Produc	ts, (IC)	RI	MDI	Unit		•	Matrix	Water
ate Collected: 07/13/18 1 ate Received: 07/14/18 1 Method: 300.1B - Disinfe Analyte	3:55 0:15 ection By-Produc		RL 1000	MDL 100		Lab	Sample Prepared		Water
Date Collected: 07/13/18 1 Date Received: 07/14/18 1 Method: 300.1B - Disinfe Analyte	3:55 0:15 ection By-Produc Result	ts, (IC) Qualifier					•	Matrix: Analyzed	Dil Fac
Date Collected: 07/13/18 1 Date Received: 07/14/18 1 Method: 300.1B - Disinfe Analyte Chlorate	3:55 0:15 ection By-Produc Result 2700	ts, (IC) Qualifier	1000				- Prepared	Matrix: Analyzed 07/16/18 21:02	Dil Fac
Date Collected: 07/13/18 1 Date Received: 07/14/18 1 Method: 300.1B - Disinfe Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlor	13:55 0:15 ection By-Produc: Result 2700 %Recovery 99 rate (IC)	t <mark>s, (IC)</mark> Qualifier <i>Qualifier</i>	1000 Limits 90 - 115	100	ug/L	<u>D</u> .	Prepared Prepared	Matrix: Analyzed 07/16/18 21:02 Analyzed 07/16/18 21:02	Dil Fac
	13:55 0:15 ection By-Produc: Result 2700 %Recovery 99 rate (IC)	ts, (IC) Qualifier	1000 Limits		ug/L		- Prepared	Matrix: Analyzed 07/16/18 21:02 Analyzed	

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

TestAmerica Job ID: 440-215804-1

5	
6	
8	
9	

Method	Method Description	Protocol	Laboratory
300.1B	Disinfection By-Products, (IC)	EPA	TAL IRV
314.0	Perchlorate (IC)	EPA	TAL IRV

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client Sample ID: LNDMW1-20180711

Date Collected: 07/11/18 11:20

Date Received: 07/14/18 10:15

Lab Sample ID: 440-215804-1

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Factor Amount Amount Number or Analyzed Analyst Туре Run Lab Total/NA Analysis 300.1B 50 487572 07/15/18 22:36 YZ TAL IRV Total/NA 100 488893 07/22/18 14:41 PS TAL IRV Analysis 314.0 Client Sample ID: MW-25-20180712 Lab Sample ID: 440-215804-2 Date Collected: 07/12/18 07:30 Matrix: Water Date Received: 07/14/18 10:15 Batch Batch Dil Initial Final Batch Prepared Method Amount Number or Analyzed Prep Type Туре Run Factor Amount Analyst Lab Total/NA Analysis 300.1B 487566 07/16/18 04:29 YZ TAL IRV 1 Total/NA Analysis 314.0 488651 07/20/18 11:02 MMH TAL IRV 1

Client Sample ID: MW-13-20180712 Date Collected: 07/12/18 08:35 Date Received: 07/14/18 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.1B		50			487572	07/15/18 23:04	YZ	TAL IRV
Total/NA	Analysis	314.0		100			488893	07/22/18 14:59	PS	TAL IRV

Client Sample ID: MW-3-20180712 Date Collected: 07/12/18 10:25 Date Received: 07/14/18 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.1B		50			487572	07/15/18 23:32	YZ	TAL IRV
Total/NA	Analysis	314.0		100			488893	07/22/18 15:57	PS	TAL IRV

Client Sample ID: MW-4-20180712 Date Collected: 07/12/18 11:10

Date Received: 07/14/18 10:15

Bron Tuno	Batch	Batch	Bun	Dil	Initial Amount	Final	Batch	Prepared	Analyst	Lab
Prep Type Total/NA	Analysis	Method 300.1B	Run	Factor 50	Amount	Amount	Number 487572	or Analyzed 07/16/18 00:00	Analyst YZ	TAL IRV
Total/NA	Analysis	314.0		100			488893	07/22/18 16:15	PS	TAL IRV

Client Sample ID: MW-02-20180712 Date Collected: 07/12/18 13:30 Date Received: 07/14/18 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.1B		50			487572	07/16/18 00:27	YZ	TAL IRV

TestAmerica Irvine

Lab Chronicle

Lab Sample ID: 440-215804-3 Matrix: Water

Filldi	Datch	Frepareu			
Amount	Number	or Analyzed	Analyst	Lab	
	487572	07/15/18 23:04	YZ	TAL IRV	-
	488893	07/22/18 14:59	PS	TAL IRV	

Lab Sample ID: 440-215804-4 Matrix: Water

Lab Sample	ID: 440-215804-5
------------	------------------

Lab Sample ID: 440-215804-6

Matrix: Water

Matrix: Water

Lab Sample ID: 440-215804-6

Lab Sample ID: 440-215804-7

Lab Sample ID: 440-215804-8

Lab Sample ID: 440-215804-10

Lab Sample ID: 440-215804-11

Matrix: Water

Matrix: Water

Matrix: Water

Client Sample ID: MW-02-20180712

Date Collected: 07/12/18 13:30 Date Received: 07/14/18 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	314.0		100			488893	07/22/18 16:33	PS	TAL IRV

Lab Chronicle

Client Sample ID: MW-02-20180712-FD Date Collected: 07/12/18 13:30 Date Received: 07/14/18 10:15

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.1B		50			487572	07/16/18 00:55	YΖ	TAL IRV
Total/NA	Analysis	314.0		100			488893	07/22/18 16:51	PS	TAL IRV

Client Sample ID: MW-02-20180712-FB Date Collected: 07/12/18 13:40 Date Received: 07/14/18 10:15

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	300.1B		1			487572	07/15/18 17:29	YZ	TAL IRV
Total/NA	Analysis	314.0		1			488651	07/20/18 16:55	MMH	TAL IRV

Client Sample ID: MW-02-20180712-EB Date Collected: 07/12/18 13:50 Date Received: 07/14/18 10:15

-	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type Total/NA	Type Analysis	Method 300.1B	Run	Factor	Amount	Amount	Number 487572	or Analyzed 07/15/18 12:23	Analyst YZ	Lab TAL IRV
Total/NA	Analysis	314.0		1			488651	07/20/18 17:15	MMH	TAL IRV

Client Sample ID: MW-20-20180712 Date Collected: 07/12/18 15:05 Date Received: 07/14/18 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.1B		5			487614	07/16/18 22:25	YZ	TAL IRV
Total/NA	Analysis	314.0		1			488651	07/20/18 17:36	MMH	TAL IRV

Client Sample ID: COH2B1-20180713 Date Collected: 07/13/18 08:10 Date Received: 07/14/18 10:15

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.1B		10			488081	07/18/18 06:50	YZ	TAL IRV
Total/NA	Analysis	314.0		100			488893	07/22/18 17:10	PS	TAL IRV

TestAmerica Irvine

Lab Sample ID: 440-215804-9

Matrix: Water

Matrix: Water

Matrix: Water

Batch

Method

300.1B

314.0

Batch

Method

300.1B

314.0

Client Sample ID: AA-30-20180713

Batch

Type

Analysis

Analysis

Batch

Туре

Analysis

Analysis

Client Sample ID: WMW5.5S-20180713

Date Collected: 07/13/18 09:20

Date Received: 07/14/18 10:15

Date Collected: 07/13/18 10:30

Date Received: 07/14/18 10:15

Prep Type

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Lab Sample ID: 440-215804-12

Prepared

07/15/18 13:57

07/22/18 17:28 PS

07/22/18 17:47 PS

or Analyzed Analyst

ΥZ

Lab Sample ID: 440-215804-13

Prepared or Analyzed Analyst Lab 07/16/18 19:38 TAL IRV ΥZ

Matrix: Water

Lab

TAL IRV

TAL IRV

Matrix: Water

Matrix: Water

Matrix: Water

TAL IRV Lab Sample ID: 440-215804-14

Client Sample ID: WMW5.58S1-20180713 Date Collected: 07/13/18 12:20 Date Received: 07/14/18 10:15

Bron Tuno	Batch	Batch Mothod	Bun	Dil	Initial Amount	Final	Batch	Prepared	Analyst	Lab
Prep Type Total/NA	Type Analysis	Method 300.1B	Run	Factor 50	Amount	Amount	Number 487614	or Analyzed 07/16/18 20:06	Analyst YZ	Lab TAL IRV
Total/NA	Analysis	314.0		100			488893	07/22/18 18:05	PS	TAL IRV

Lab Chronicle

Initial

Amount

Initial

Amount

Final

Amount

Final

Amount

Batch

Number

487566

488893

Batch

Number

487614

488893

Dil

50

100

Dil

50

100

Factor

Factor

Run

Run

Client Sample ID: WMW4.9S-20180713 Date Collected: 07/13/18 13:55 Date Received: 07/14/18 10:15

	Batch	Batch	Dura	Dil	Initial	Final	Batch	Prepared	Amahuat	Lak
Prep Type Total/NA	Type Analysis	Method 300.1B	Run	Factor 50	Amount	Amount	Number 487614	or Analyzed 07/16/18 20:34	Analyst YZ	Lab TAL IRV
Total/NA	Analysis	314.0		50			488893	07/22/18 18:23	PS	TAL IRV

Client Sample ID: WMW4.9S-20180713-FD Date Collected: 07/13/18 13:55 Date Received: 07/14/18 10:15

Lab Sample ID: 440-215804-15

Lab Sample ID: 440-215804-16 Matrix: Water

Prep Type Total/NA	Batch Type Analysis	Batch Method 300.1B	Run	Dil Factor 50	Initial Amount	Final Amount	Batch Number 487614	Prepared or Analyzed 07/16/18 21:02	Analyst YZ	Lab TAL IRV
Total/NA	Analysis	314.0		50			488893	07/22/18 18:42	PS	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Lab Sample ID: MB 440-4	87566/5								C	Clie	ent Sam	ple ID: M		
Matrix: Water												Prep Typ	be: To	tal/NA
Analysis Batch: 487566														
	_	MB							_	_	_			
Analyte	Re		Qualifier	RL		MDL			D	Pı	repared	Analyz		Dil Fa
Chlorate		ND		20)	2.0	ug/L					07/15/18	11:32	
		MB	МВ											
Surrogate	%Reco	verv	Qualifier	Limits						P	repared	Analyz	ed	Dil Fa
Dichloroacetic acid(Surr)		103	-	90 - 115	-				-			07/15/18		
Lab Sample ID: LCS 440-4	487566/4							Cli	ent \$	Sar	nple ID	: Lab Con	trol S	ampl
Matrix: Water												Prep Typ	be: To	tal/N
Analysis Batch: 487566														
				Spike	LCS	LCS						%Rec.		
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Chlorate				100	101			ug/L		_	101	75 - 125		
	105	LCS												
Surrogate	%Recovery		lifier	Limits										
Dichloroacetic acid(Surr)	106			90 - 115										
_ab Sample ID: MRL 440-	487566/3							Cli	ent \$	Sar	nple ID	: Lab Con	trol S	ampl
Matrix: Water												Prep Typ	be: To	tal/N
Analysis Batch: 487566														
-				Spike	MRL	MRL						%Rec.		
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Chlorate				20.0	20.9			ug/L		_	104	50 - 150		
	MRI	MRL												
Surrogate	%Recovery			Limits										
Dichloroacetic acid(Surr)	107	Quai		90 - 115										
	107			30-110										
Lab Sample ID: 440-21580	04-2 MS								Clie	nt	Sample	ID: MW-2	25-201	8071
Matrix: Water												Prep Typ		
Analysis Batch: 487566														
	Sample	Sam	ple	Spike	MS	MS						%Rec.		
Analyte	Result	Qual	ifier	Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Chlorate	57			200	258			ug/L		_	100	75 - 125		
	140	MS												
Surrogate	мз %Recovery		lifior	Limits										
Dichloroacetic acid(Surr)	97	Qudi		90 - 115										
	37			50-110										
_ab Sample ID: 440-21580 Matrix: Water	04-2 MSD								Clie	nt	Sample	ID: MW-2 Prep Typ		
Analysis Batch: 487566														
	Sample	Sam	ple	Spike	MSD	MSD)					%Rec.		RP
Analyte	Result			Added	Result			Unit		D	%Rec	Limits	RPD	Lim
Chlorate	57			200	264			ug/L		—	104	75 - 125	2	2
								-						
	MSD	MSD												
Surrogato	%Pocovory			Limite										

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Dichloroacetic acid(Surr)	98		90 - 115

Dichloroacetic acid(Surr)

109

Method: 300.1B - Disinfection By-Products, (IC) (Continued)

2 3 4 5 6 7 8 9 10 11 12 13

Lab Sample ID: MB 440-4	87572/6							(Clie	ent Sam	ple ID: Meth		
Matrix: Water											Prep Type:	Tota	al/NA
Analysis Batch: 487572													
		MB MB											
Analyte	Res	sult Qualifier		I	MDL	Unit		D	Pi	repared	Analyzed	[Dil Fa
Chlorate		ND	20		2.0	ug/L					07/15/18 11:5	5	
		MB MB											
Surrogate		ery Qualifier	Limits						P	repared	Analyzed	,	Dil Fa
Dichloroacetic acid(Surr)		109 Quantier	90 - 115							epureu	07/15/18 11:5		<i></i>
		100	00-110								01710,101110	•	
Lab Sample ID: LCS 440-4	487572/5						Clie	ent	Sar	nple ID	: Lab Contro	l Sa	mple
Matrix: Water											Prep Type:		
Analysis Batch: 487572													
,,			Spike	LCS	LCS	;					%Rec.		
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Chlorate			100	103			ug/L		_	103	75 - 125		
Surve note	LCS		1 insit-										
Surrogate	%Recovery	Qualifier	Limits										
Dichloroacetic acid(Surr)	108		90 - 115										
Lab Sample ID: MRL 440-	49757914						CIL	+	6		: Lab Contro		mol
Matrix: Water	407 57 2/4						Cin	FIIL	Jai	inple iD	Prep Type:		
											Prep Type.	101	
Analysis Batch: 487572			Spike	MRL	MRI						%Rec.		
Analyte			Added	Result			Unit		D	%Rec	Limits		
Chlorate	·		20.0	20.9	Guu		ug/L		_	105	50 - 150		
			20.0	20.0			ug/L			100	00-100		
	MRL												
Surrogate	%Recovery	Qualifier	Limits										
Dichloroacetic acid(Surr)	109		90 - 115										
									~				
Lab Sample ID: 440-21561	18-AN-6 MS								CI	ient Sa	mple ID: Mat		
Matrix: Water											Prep Type:	lota	al/NA
Analysis Batch: 487572	Sampla	Somalo	Spike	Ме	MS						%Rec.		
Analyta	Sample	Qualifier	Added	-	-	lifior	Unit		D	%Rec	Limits		
Analyte Chlorate	67		200	Result 282	Qua	liller			_	108	75 - 125		
Shiorate	07	J	200	202			ug/L			106	75-125		
	MS	MS											
Surrogate	%Recovery	Qualifier	Limits										
Dichloroacetic acid(Surr)	109		90 - 115										
Lab Sample ID: 440-21561	18-AN-6 MSD	1					Client	Sa	mp	le ID: N	latrix Spike D		
Matrix: Water											Prep Type:	Tota	al/NA
Analysis Batch: 487572													
	Sample	-	Spike	MSD							%Rec.		RPI
Analyte		Qualifier	Added	Result		lifier	Unit		D	%Rec		PD	Limi
Chlorate	67	J	200	302			ug/L			118	75 - 125	7	25
	MSD	MSD											
Surrogate	%Recovery		Limits										

90 - 115

Lab Sample ID: MB 440-48	7614/6							Cli	ent Sam	ple ID: Met	hod	Blank
Matrix: Water	1014/0							01	ent Gan	Prep Type		
Analysis Batch: 487614												
	N	/IB MB										
Analyte	Res	ult Qualifier	RL	I	MDL	Unit	D	F	Prepared	Analyze	d	Dil Fac
Chlorate		ND	20		2.0	ug/L				07/16/18 07	7:54	1
		NB MB										
Surrogata		ив мв ery Qualifier	Limits						Transrad	Analyza	4	Dil Fac
Surrogate Dichloroacetic acid(Surr)			<u>90 - 115</u>						Prepared	Analyze		DIIFat
	1	03	90-115							07710/18 01	.04	1
Lab Sample ID: LCS 440-44	37614/5						Clier	t Sa	mnle ID	: Lab Cont	rol Sa	ample
Matrix: Water							•			Prep Type		
Analysis Batch: 487614												
····· , ··· · ··· · · · · · · · · · · · · · ·			Spike	LCS	LCS					%Rec.		
Analyte			Added	Result	Qual	ifier	Unit	D	%Rec	Limits		
Chlorate			100	102			ug/L		102	75 - 125		
0	LCS I											
Surrogate	%Recovery	Qualifier	Limits 90 - 115									
Dichloroacetic acid(Surr)	100		90-115									
Lab Sample ID: MRL 440-4	87614/4						Clior	t Sa		: Lab Cont		ample
Matrix: Water	0/014/4						oner			Prep Type		
Analysis Batch: 487614										пертуре	. 100	
Analysis Batch. 407014			Spike	MRL	MRL					%Rec.		
Analyte			Added	Result		ifier	Unit	D	%Rec	Limits		
Chlorate			20.0	20.6			ug/L		103	50 - 150		
							0					
	MRL I											
Surrogate	%Recovery	Qualifier	Limits									
Dichloroacetic acid(Surr)	99		90 - 115									
Lab Sample ID: 440-215804	1-10 MS						C	lient	Sample	e ID: MW-20	-201	80712
Matrix: Water									oumpic	Prep Type		
Analysis Batch: 487614												
	Sample S	Sample	Spike	MS	MS					%Rec.		
Analyte	Result (•	Added	Result	Qual	ifier	Unit	D	%Rec	Limits		
Chlorate	78		200	272			ug/L		97	75 - 125		
							-					
0	MS I											
Surrogate	%Recovery	Jualifier	Limits									
Dichloroacetic acid(Surr)	96		90 - 115									
Lab Sample ID: 440-215804							~	liont	Sample	D: MW-20	204	80740
Matrix: Water							U	nem	Sample	Prep Type		
Analysis Batch: 487614										inch i Ahe	. 101	
Analysis Datell. 40/014	Sample S	Sample	Spike	MSD	MSD					%Rec.		RPD
Analyte	Result (Added	Result			Unit	п	%Rec	Limits	RPD	Limi
Chlorate	78		200	276	qual		ug/L		99	75 - 125	1	25
	,5 0		200	210			~9, L		00	10-120		20
	MSD I	מא										
Surrogate	%Recovery (Limits									

Method: 300.1B - Disinfection By-Products, (IC) (Continued)

-		·				-								
Lab Sample ID: MB 440-4	88081/6								(Clie	ent San	nple ID: M		
Matrix: Water												Prep Ty	be: Tot	tal/NA
Analysis Batch: 488081														
		МВ М	В											
Analyte	Re	sult Q	ualifier	RI		MDL	Unit		D	Ρ	repared	Analyz		Dil Fac
Chlorate		ND		20)	2.0	ug/L					07/18/18	05:55	1
		мв м	B											
Surrogata	%Reco			Limits						Б	ranarad	Analy	ad	Dil Fac
Surrogate	/%Rec0	101 U	uaimer		-				-		repared	Analyz 		
Dichloroacetic acid(Surr)		101		90 - 115								07/10/10	05.55	1
Lab Sample ID: LCS 440-4	188081/5							CI	ont	C 21	nnio ID	: Lab Cor	trol S	amplo
Matrix: Water	+00001/5							CI	ent	Jai	inple in	Prep Ty		
												Fiebily	Je. 101	
Analysis Batch: 488081				Spike	201	LCS						%Rec.		
Analyto				Added	Result			Unit		D	%Rec	Limits		
Analyte						Qua	imer			_				
Chlorate				100	102			ug/L			102	75 - 125		
	LCS	LCS												
Surrogate	%Recovery	Qualifi	ier	Limits										
Dichloroacetic acid(Surr)	101			90 - 115										
Lab Sample ID: MRL 440-	488081/4							Cli	ent	Sai	nple ID	: Lab Cor	trol Sa	ample
Matrix: Water											· ·	Prep Ty		
Analysis Batch: 488081														
,, ,				Spike	MRL	MRL	_					%Rec.		
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Chlorate	·			20.0	21.3			ug/L		—	107	50 - 150		
								U						
	MRL													
Surrogate	%Recovery	Qualifi	ier	Limits										
Dichloroacetic acid(Surr)	101			90 - 115										
										_				
Lab Sample ID: 440-21583	38-A-1 MS									CI	ient Sa	mple ID: I		
Matrix: Water												Prep Ty	be: Tot	tal/NA
Analysis Batch: 488081														
	Sample	-		Spike	MS	-						%Rec.		
Analyte		Qualifi	er	Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Chlorate	160			200	375			ug/L			109	75 - 125		
	MS	MS												
Surrogato			ior	Limits										
Surrogate Dichloroacetic acid(Surr)	%Recovery 103	Qudiili		90 - 115										
	103			30 - 113										
Lab Sample ID: 440-21583								Clion	t Sa	mn		Aatrix Spil		licato
								Cileff	i Ja	mb	IC ID. N			
Matrix: Water												Prep Ty	Je. 101	al/INA
Analysis Batch: 488081	Samula	Samel	•	Spike	Men	MSD	`					%Rec.		PDF
Amelia	Sample	-		Spike				11		~	0/ P		000	RPD
Analyte	Result	Qualifi	er	Added	Result	Qua	litier	Unit		D	%Rec	Limits	RPD	Limit
Chlorate	160			200	366			ug/L			105	75 - 125	2	25

100		200
MSD	MSD	
%Recovery	Qualifier	Limits
101		90 - 115
	MSD %Recovery	MSD MSD %Recovery Qualifier

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

Method: 314.0 - Perchlorate (IC)

Г

TestAmerica Job ID: 440-215804-1

Lab Sample ID: MB 440-48 Matrix: Water Analysis Batch: 488651	8651/6										Clie	nt Sam	ple ID: Mo Prep Typ		
		MB N	ſΒ												
Analyte	Re		Qualifier		RL		MDL			D	Pr	repared	Analyz		Dil Fac
Perchlorate		ND			4.0		0.95	ug/L					07/20/18	10:10	1
Lab Sample ID: LCS 440-4 Matrix: Water	88651/5								Cli	ient	Sar	nple ID	: Lab Con Prep Typ		
Analysis Batch: 488651															
				Spike			LCS				_		%Rec.		
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Perchlorate				25.0		25.8			ug/L			103	85 - 115		
Lab Sample ID: MRL 440-4 Matrix: Water Analysis Batch: 488651	88651/4								Cli	ient	Sar	nple ID	: Lab Con Prep Typ		
Analysis Batch. 400051				Spike		MRL	MRL						%Rec.		
Analyte				Added		Result			Unit		D	%Rec	Limits		
Perchlorate				1.00		ND			ug/L		_	94	75 - 125		·
Lab Sample ID: 440-21580 Matrix: Water Analysis Batch: 488651		_	_							Clie	ent (Sample	D: MW-2 Prep Typ		
A methods	Sample	•		Spike		-	MS				_	0/ D = -	%Rec.		
Analyte Perchlorate	Result			Added 25.0		Result 35.9		Inter	Unit ug/L		D	%Rec 126	Limits 80 - 120		
Lab Sample ID: 440-21580 Matrix: Water Analysis Batch: 488651	Sample	•		Spike		MSD	-					-	PID: MW-2 Prep Typ %Rec.	be: To	otal/NA RPD
Analyte	Result 4.3		ier	Added 25.0		Result 37.4		lifier	Unit		D	%Rec 132	Limits 80 - 120	RPD	
Perchlorate	4.3	FI		25.0		37.4	ΓI		ug/L			152	60 - 120	4	20
Lab Sample ID: MB 440-48 Matrix: Water Analysis Batch: 488893 Analyte		MB N	1B Qualifier		RL		MDL	Unit		D		ent Sam	ple ID: Me Prep Typ Analyz	be: To	
Perchlorate	Nt		uaimei		4.0		0.95					epareu			1
Lab Sample ID: LCS 440-4 Matrix: Water Analysis Batch: 488893	88893/5			0				Ū	Cli	ient	Sar	nple ID	: Lab Con Prep Typ	trol S	
Anchite				Spike			LCS		11		•	% D = =	%Rec.		
Analyte Perchlorate				Added 25.0		Result 25.2	Qua	mer	Unit ug/L		D	%Rec 101	Limits 85 - 115		
Lab Sample ID: MRL 440-4 Matrix: Water Analysis Batch: 488893	88893/8			Spike			MRL		•	ient	Sar		: Lab Con Prep Typ %Rec.		
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Perchlorate				1.00		1.09	J		ug/L		_	109	75 - 125		

Added	Result	Qualifier	Unit ug/L	D	%Rec	Limits
1.00	1.00	0	ug, L		100	TestAmerica Irvine

MS MS

MSD MSD

22.6

Result Qualifier

22.1

Result Qualifier

Unit

ug/L

Unit

ug/L

Spike

Added

25.0

Spike

Added

25.0

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

Sample Sample

2.0 J

Sample Sample

2.0 J

Result Qualifier

Result Qualifier

Lab Sample ID: 320-41250-A-2 MS

Lab Sample ID: 320-41250-A-2 MSD

Matrix: Water

Matrix: Water

Analyte

Analyte

Perchlorate

Perchlorate

Analysis Batch: 488893

Analysis Batch: 488893

Client Sample ID: Matrix Spike Prep Type: Total/NA %Rec. Limits

D %Rec 5 80 80 - 120 **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA %Rec. RPD Limits RPD Limit D %Rec 8 20 82 80 - 120 2

QC Association Summary

Prep Type

Total/NA

Total/NA

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

Client Sample ID

MW-25-20180712

AA-30-20180713

Lab Control Sample

Lab Control Sample

MW-25-20180712

MW-25-20180712

Client Sample ID

Method Blank

HPLC/IC

Lab Sample ID

440-215804-2

440-215804-12

MB 440-487566/5

LCS 440-487566/4

MRL 440-487566/3

440-215804-2 MS

Lab Sample ID

440-215804-2 MSD

Analysis Batch: 487572

Analysis Batch: 487566

TestAmerica Job ID: 440-215804-1

Prep Batch

Total/NA Water 300.1B Method Prep Batch Prep Type Matrix

Matrix

Water

Water

Method

300.1B

300.1B

440-215804-1	LNDMW1-20180711	Total/NA	Water	300.1B	
440-215804-3	MW-13-20180712	Total/NA	Water	300.1B	
440-215804-4	MW-3-20180712	Total/NA	Water	300.1B	
440-215804-5	MW-4-20180712	Total/NA	Water	300.1B	
440-215804-6	MW-02-20180712	Total/NA	Water	300.1B	
440-215804-7	MW-02-20180712-FD	Total/NA	Water	300.1B	
440-215804-8	MW-02-20180712-FB	Total/NA	Water	300.1B	
440-215804-9	MW-02-20180712-EB	Total/NA	Water	300.1B	
MB 440-487572/6	Method Blank	Total/NA	Water	300.1B	
LCS 440-487572/5	Lab Control Sample	Total/NA	Water	300.1B	
MRL 440-487572/4	Lab Control Sample	Total/NA	Water	300.1B	
440-215618-AN-6 MS	Matrix Spike	Total/NA	Water	300.1B	
440-215618-AN-6 MSD	Matrix Spike Duplicate	Total/NA	Water	300.1B	

Analysis Batch: 487614

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-215804-10	MW-20-20180712	Total/NA	Water	300.1B	
440-215804-13	WMW5.5S-20180713	Total/NA	Water	300.1B	
440-215804-14	WMW5.58S1-20180713	Total/NA	Water	300.1B	
440-215804-15	WMW4.9S-20180713	Total/NA	Water	300.1B	
440-215804-16	WMW4.9S-20180713-FD	Total/NA	Water	300.1B	
MB 440-487614/6	Method Blank	Total/NA	Water	300.1B	
LCS 440-487614/5	Lab Control Sample	Total/NA	Water	300.1B	
MRL 440-487614/4	Lab Control Sample	Total/NA	Water	300.1B	
440-215804-10 MS	MW-20-20180712	Total/NA	Water	300.1B	
440-215804-10 MSD	MW-20-20180712	Total/NA	Water	300.1B	

Analysis Batch: 488081

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-215804-11	COH2B1-20180713	Total/NA	Water	300.1B	
MB 440-488081/6	Method Blank	Total/NA	Water	300.1B	
LCS 440-488081/5	Lab Control Sample	Total/NA	Water	300.1B	
MRL 440-488081/4	Lab Control Sample	Total/NA	Water	300.1B	
440-215838-A-1 MS	Matrix Spike	Total/NA	Water	300.1B	
440-215838-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.1B	

Analysis Batch: 488651

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-215804-2	MW-25-20180712	Total/NA	Water	314.0	
440-215804-8	MW-02-20180712-FB	Total/NA	Water	314.0	
440-215804-9	MW-02-20180712-EB	Total/NA	Water	314.0	

QC Association Summary

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

TestAmerica Job ID: 440-215804-1

8
9
3

HPLC/IC (Continued)

Analysis Batch: 488651 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-215804-10	MW-20-20180712	Total/NA	Water	314.0	
MB 440-488651/6	Method Blank	Total/NA	Water	314.0	
LCS 440-488651/5	Lab Control Sample	Total/NA	Water	314.0	
MRL 440-488651/4	Lab Control Sample	Total/NA	Water	314.0	
440-215804-2 MS	MW-25-20180712	Total/NA	Water	314.0	
440-215804-2 MSD	MW-25-20180712	Total/NA	Water	314.0	
Analysis Batch: 488	893				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-215804-1	LNDMW1-20180711	Total/NA	Water	314.0	
440-215804-3	MW-13-20180712	Total/NA	Water	314.0	
440-215804-4	MW-3-20180712	Total/NA	Water	314.0	
440-215804-5	MW-4-20180712	Total/NA	Water	314.0	
440-215804-6	MW-02-20180712	Total/NA	Water	314.0	
440-215804-7	MW-02-20180712-FD	Total/NA	Water	314.0	
440-215804-11	COH2B1-20180713	Total/NA	Water	314.0	
440-215804-12	AA-30-20180713	Total/NA	Water	314.0	
440-215804-13	WMW5.5S-20180713	Total/NA	Water	314.0	
440-215804-14	WMW5.58S1-20180713	Total/NA	Water	314.0	
440-215804-15	WMW4.9S-20180713	Total/NA	Water	314.0	
440-215804-16	WMW4.9S-20180713-FD	Total/NA	Water	314.0	
MB 440-488893/6	Method Blank	Total/NA	Water	314.0	
LCS 440-488893/5	Lab Control Sample	Total/NA	Water	314.0	
MRL 440-488893/8	Lab Control Sample	Total/NA	Water	314.0	
320-41250-A-2 MS	Matrix Spike	Total/NA	Water	314.0	
320-41250-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	314.0	

Definitions/Glossary

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

Qualifiers

HPLC/IC

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	7
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	8
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	9
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	10
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	11
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	12
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	13
MDA	Minimum Detectable Activity (Radiochemistry)	15
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Accreditation/Certification Su	ummary
--------------------------------	--------

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

Laboratory: TestAmerica Irvine

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Nevada	State Program	9	CA015312018-1	07-31-18 *

Tes	tAmerica Job ID: 440-215804-1	1
		2
		3
nber	Expiration Date	4
	07-31-18 *	5
		6
		7
		8
		9
		10
		11
		12
		13

THE LEADER IN ENVIRONMENTAL TESTING TESTAMERICA LADORATORIS, INC.	COC No:		Sampler J. COPATRIJ	For Lab Use Only:		Job / SDG No :	Sample Specific Notes		S. J. Wel = MS (was 1)								A Distance of the second	\ 			retained longer than 1 month)	Archive for Months	2 1694	Therm ID No.:	~ Date/Time // 3 // 7 // V	Date/Time	V - Mad 10 1015		1 2 3 4 5 6 7
secord 209427	Date:	Carrier:														440-215804 C		7			Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) $\mathcal{R}_{\mathcal{M}}$ $\mathcal{M}\mathcal{O}$	Disposal by Lab		Temp. (°C): Obs'd Corr'd:	Company:	Company	Why Company (1	
Chain of Custody Record	Site Contact:			1			× ۲۹۹۳ ۲۹۹۳ ۲۹۹ ۲۹۹۳ ۲۹۹۳ ۲۹۹ ۲۹۹۳ ۲۹۹۳ ۲	Z N	6 24 2.			× x 3 4 2 1		キャイメ 2 /	7 1	2 1244	2 W X Y					Return to Client		COOR Ter	I me Received by	Pime. Reperved by:	Time Recht Philipping		13
C Regulatory Program:		clear	Turnaro			2 days	Sample Sample Type C=Comp. Date Time G=Grab, Matrix	11	ë S		1025 G GW	1110 G GW	1330 6 61	1330 G GW	1340 G GW	L 1300 6 GW	7/12/14 1Sec 6 6W	. 14	N/E/2	5=NaOH; 6= Other	Piease List any EPA Waste Codes for the sample in the	Doison B	0	Custody Seaf No.:	Company: Date/Time	Company. Date/Fime.			
Test America Iruine 17461 Bertan Ave Suite 100 Irvine, CA 92614 Phone: 949.261.1022 Fax:	Client Contact	~	5	Dhone creating CA	ct Name.	PO# (6111-221 5)	Sample Identification	1100501-2015011	MW-25.20180312	MW-13-20180012		BMW-4-20140712	~	Mers- 2- 20136712-FU	m. 2. 20140712-FB	MW- 2-20180712-EB	MW- 20-2:01 50712			Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste ² Pieas Comments Section if the lab is to dispose of the sample.	Non-Hazard C. Flammable Skin Irritant	Special Instituctions/ac Requirements & Comments:	Custody Seals Intact		Lo .	Relinquished by	18	

TestAmerica Irvine 17461 Berian Ave Suite 100	Chain	Chain of Custody Record	209426 Te	TestAmerica
Irvine, C0 92614 Phone: 949.261.1022 Fax:	Regulatory Program:	s 🗌 RCRA	Testa	THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc. TAL-8210 (0713)
Client Contact	Sally B. lectur	Site Contact:	Date: COC No:	
Company Name AECo M	Tel/Fax: SUS 7/24 4/00/		Carrier:	of Z COCs
1221	s Turnaro		Sampler	1: J CAPATRIZ
٦	CALENDAR DAYS	27	For Lat	For Lab Use Only:
Te SOC 764	TAT # different from Below		Walk-in Client	Client
Fax Druch Namo	2 weeks	ч 77 12)	Lab Sampling	mpling
Site				
P.0#				
Sample Identification	Sample Sample Type (C=Comp. # of Date Time G=Grab) Matrix Cont.	Filtered Sa کربر ی کرک /		Sample Specific Notes
COH281- 2013	7/13/14 OS,16 G GW 2			
AA-30-20180713	6920 G			
WMW 2.5SI - ZO1807/3	7/13/14 1030 6 6W 2	WYY		
	1220 G Gaw	- \		
WmW.4.195 - 2014 0713	1355 G CW	2 2 2		
3WMW4.95-20120713-FU	1355 C CW	M L L		
of 2				
77				8
	A A			51
				167
Preservation Used: 1= ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	5=NaOH; 8= Other			
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Pleas Comments Section if the lab is to dispose of the sample	Please List any EPA Waste Codes for the sample in the		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) $\mathcal{R}_{\mathcal{M}}$ $\mathcal{M}_{\mathcal{O}}$	than 1 month)
Kon-Hazard	Doison B	Return to Client	Disposal by Lab	Months
Special Instructions/QC Requirements & Comments:		(1.1 1.3 NEB	La
C Yes No	Custody Seal No	Coole Temp. (°C): Obs'd	Corrd: C	No
1 hr	Date/Time	Mux Received by S	Company Date/Time	12/1X 1 YY 8
La la	Date/Time:	Received by	Company: Date Time:	ne:
Beinquished by.	Company: Date/Time.	Resident Printer of	Company MINN Date Tin	PHUR (105
18		12 13	M 6 7 8 9 10	1 2 3 4 5

Mata, Patty

From:Bilodeau, Sally <Sally.Bilodeau@aecom.com>Sent:Monday, July 23, 2018 8:07 PMTo:Mata, PattyCc:Roper, ChadSubject:RE: Corrections to sample names from COCs from Henderson Nevda July 11 - 13, 2018
samples

-External Email-

Correction to the correction The sample starting with WMW5.58S1 is OK do not change it.

Sally Bilodeau, PG, CEM **AECOM** Camarillo CA D +1-805-764-4006 M +1-805-551-0649

Built to deliver a better world

From: Bilodeau, Sally
Sent: Monday, July 23, 2018 7:56 PM
To: Mata, Patty
Cc: Roper, Chad
Subject: Corrections to sample names from COCs from Henderson Nevda July 11 - 13, 2018 samples

Patty,

Several sample names on the COCs are incorrect, the sample labels were correct on the bottles. Samples starting with MW-2 should be MW-02 for all samples collected 7/12/18 The sample starting with LNDMW01 should start with LNDMW1 The sample starting with WMW5.5S1 should start with WMW5.5S The sample starting with WMW5.58S1 should start with WMW5.58S

Sally Bilodeau, PG, CEG, CHG, CEM Senior Program Manager, Remediation, West D +1-805-764-4006 M +1-805-551-0649 sally.bilodeau@aecom.com

AECOM 1220 Avenida Acaso Camarillo CA 93012-8750, USA T +1-805-388-3775 aecom.com

Built to deliver a better world

LinkedIn Twitter Facebook Instagram

Login Sample Receipt Checklist

Client: AECOM

Login Number: 215804 List Number: 1 Creator: Bonta, Lucia F

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	Not Present
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 440-215804-1

List Source: TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-216209-1 Client Project/Site: NERT Las Vegas Wash, 60477365

For:

AECOM 1220 Avenida Acaso Camarillo, California 93012

Attn: Ms. Sally Bilodeau

Anto

Authorized for release by: 7/28/2018 3:59:18 PM Patty Mata, Senior Project Manager

(949)261-1022 patty.mata@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	9
Lab Chronicle	10
QC Sample Results	12
QC Association Summary	18
Definitions/Glossary	20
	21
Chain of Custody	22
Receipt Checklists	24

Sample Summary

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365 TestAmerica Job ID: 440-216209-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-216209-1	WMW3.5S-20180716	Water	07/16/18 08:20	07/19/18 09:30
440-216209-2	NERT5.91S1-20180716	Water	07/16/18 09:40	07/19/18 09:30
440-216209-3	NERT5.49S1-20180716	Water	07/16/18 11:10	07/19/18 09:30
440-216209-4	NERT4.21N1-20180716	Water	07/16/18 12:40	07/19/18 09:30
440-216209-5	NERT4.38N1-20180716	Water	07/16/18 14:00	07/19/18 09:30
440-216209-6	WMW3.5N-20180717	Water	07/17/18 09:45	07/19/18 09:30
440-216209-7	LNDMW2-20180717	Water	07/17/18 11:10	07/19/18 09:30
40-216209-8	WMW4.9N-20180717	Water	07/17/18 12:40	07/19/18 09:30
140-216209-9	WMW5.7N-20180717	Water	07/17/18 13:50	07/19/18 09:30

Job ID: 440-216209-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-216209-1

Comments

Total Dissolved Chromium results are reported separately.

Receipt

The samples were received on 7/19/2018 9:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.8° C.

Receipt Exceptions

The container label for the following sample did not match the information listed on the Chain-of-Custody (COC): WMW5.7N-20180717 (440-216209-9). The container labels list WMW5.7N-20180717, while the COC lists WMW5.7N-20180718. The client was contacted and they provided a revised COC with ID that matched the container labels. The EPA 300.1 analysis was confirmed to be for Chlorate.

HPLC/IC

Method(s) 300.0: The following samples were diluted due to the nature of the sample matrix: NERT5.91S1-20180716 (440-216209-2), NERT4.21N1-20180716 (440-216209-4) and NERT4.38N1-20180716 (440-216209-5). Elevated reporting limits (RLs) are provided.

Method(s) 300.1B: The following samples were diluted for Chlorate due to the nature of the sample matrix: NERT5.49S1-20180716 (440-216209-3), WMW4.9N-20180717 (440-216209-8) and WMW5.7N-20180717 (440-216209-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

TestAmerica Job ID: 440-216209-1

Client Sample ID: WMW3 Date Collected: 07/16/18 08:2 Date Received: 07/19/18 09:30	0	(16				Lat	o Sample	ID: 440-216 Matrix:	
Method: 300.1B - Disinfectio	on By-Produc	ts, (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chlorate	3900		1000	100	ug/L			07/22/18 18:26	5
		o					- ·		
Surrogate	% Recovery 	Qualifier	Limits			-	Prepared	Analyzed	Dil Fa
Dichloroacetic acid(Surr)	97		90 - 115					07/22/18 18:26	5
Method: 314.0 - Perchlorate	(IC)								
Analyte	· · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perchlorate	1500		400	95	ug/L			07/27/18 12:28	10
lient Comple ID: NEDT	- 04 64 2049	0740					Comula	10.440.240	200
lient Sample ID: NERT5 ate Collected: 07/16/18 09:4		50716				Lai	o Sample	ID: 440-216 Matrix:	
ate Received: 07/19/18 09:30								Watrix.	vvale
Method: 300.0 - Anions, Ion	Chromotogra	nhu							
Analyte		Qualifier	RL	мрі	Unit	D	Prepared	Analyzed	Dil Fa
Bromide			2.5	1.3			Topulou	07/19/18 20:27	
Chloride	570		100		mg/L			07/19/18 20:43	2
Method: 300.1B - Disinfectio	on By-Produc	ts, (IC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Chlorate	660		200	20	ug/L			07/23/18 15:54	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Dichloroacetic acid(Surr)			90 - 115			-		07/23/18 15:54	
Method: 314.0 - Perchlorate						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Perchlorate	2900		400	95	ug/L			07/25/18 19:21	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids	3100		50	25	mg/L			07/21/18 08:51	
					-				
lient Sample ID: NERT	5.49S1-2018	30716				Lal	o Sample	ID: 440-216	209-
ate Collected: 07/16/18 11:1	0							Matrix	Wate
ate Received: 07/19/18 09:30	0								
Method: 300.0 - Anions, Ion			ы		Unit	~	Dropered	Analyzed	
Analyte Chloride		Qualifier		MDL	mg/L	D	Prepared	Analyzed 07/19/18 22:46	Dil Fa
Chionae	250		20	13	iliy/L			01119/10 22.40	;
Method: 300.0 - Anions, Ion	Chromatoora	iphy - DL							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromide	0.27		0.50		mg/L			07/19/18 22:00	
	Dr. Dr. Droduo	ts. (IC)					_		
			_						DUE
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	
Analyte			RL 100		Unit ug/L	D	Prepared	Analyzed 07/24/18 08:58	
Method: 300.1B - Disinfectio Analyte Chlorate Surrogate	Result	Qualifier				D	Prepared Prepared		Dil Fa

lient: AECOM roject/Site: NERT Las Vegas	Wash 604773		Sample			Τe	estAmerica	Job ID: 440-21	16209-
lient Sample ID: NERT	5.49\$1-2018					Lab	Sample	ID: 440-216	
ate Collected: 07/16/18 11: ate Received: 07/19/18 09:3								Matrix	: Wate
Method: 314.0 - Perchlorate Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perchlorate	<u></u>		4.0	0.95			Tiopulou	07/25/18 18:26	
- cromotate	0.1			0100	~9 [,] =			01/20/10 10:20	
General Chemistry									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Fotal Dissolved Solids	1400		20	10	mg/L			07/21/18 08:51	
lient Sample ID: NERT	A 24NI4 2019	20716				Lah	Sample	ID: 440-216	200
•		50710				Lat	Sample		
ate Collected: 07/16/18 12:4 ate Received: 07/19/18 09:3								Matrix	: wat
ale Neceiveu. 0//13/10 03.3									
Wethod: 300.0 - Anions, Ior	n Chromatogra	phy							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Bromide	ND		2.5		mg/L			07/19/18 20:58	
Chloride	570		100	50	mg/L			07/19/18 21:14	2
Method: 300.1B - Disinfecti	ion By-Produc								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Chlorate	6800		1000		ug/L			07/22/18 20:45	
					0				
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil F
Dichloroacetic acid(Surr)	99		90 - 115					07/22/18 20:45	
Method: 314.0 - Perchlorate									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Perchlorate	2200		400		ug/L			07/25/18 19:40	1
					-				
General Chemistry									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Fotal Dissolved Solids	4000		50	25	mg/L			07/21/18 08:51	
lient Sample ID: NERT	7 39NI 201	20716				Lah	Sample	ID: 440-216	200
ate Collected: 07/16/18 14:0		507 10				Lat	Jampie	Matrix	
ate Received: 07/19/18 09:3								Matrix	. wat
Method: 300.0 - Anions, Ior									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Bromide	ND		2.5		mg/L			07/19/18 21:29	-
	510		100	50	mg/L			07/19/18 21:44	2
Chloride									
		ts (IC)							
Method: 300.1B - Disinfecti	ion By-Produc	t <mark>s, (IC)</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Method: 300.1B - Disinfecti Analyte	ion By-Produc				Unit ug/L	D	Prepared	Analyzed	Dil F
Method: 300.1B - Disinfecti Analyte Chlorate	ion By-Produc Result 300	Qualifier	40			D	Prepared	07/23/18 17:45	
Method: 300.1B - Disinfecti Analyte Chlorate Surrogate	ion By-Produc Result 300 %Recovery	Qualifier	40 Limits			D	Prepared Prepared	07/23/18 17:45 Analyzed	
Method: 300.1B - Disinfecti Analyte Chlorate Surrogate	ion By-Produc Result 300	Qualifier	40			<u>D</u>		07/23/18 17:45	
Method: 300.1B - Disinfecti Analyte Chlorate Surrogate Dichloroacetic acid(Surr)	ion By-Produc Result 300 %Recovery 97	Qualifier	40 Limits			D		07/23/18 17:45 Analyzed	
Chloride Method: 300.1B - Disinfecti Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate Analyte	ion By-Produc Result 300 %Recovery 97 e (IC)	Qualifier	40 Limits		ug/L	D		07/23/18 17:45 Analyzed	Dil F

1 2 3 4 5 6 7 8 9 10 11 12 13

lient: AECOM		Chem	Sample F	16901	15	Τ	estAmerica	Job ID: 440-21	6209-1
roject/Site: NERT Las Vegas V	Nash, 604773	65						000 12. 110 21	0200
Client Sample ID: NERT4 Date Collected: 07/16/18 14:00 Date Received: 07/19/18 09:30	0	30716				Lal	o Sample	ID: 440-216 Matrix:	209-5 Water
General Chemistry	Popult	Qualifier	Ы	MDI	Unit	P	Dremarad	Analyzed	
Analyte Total Dissolved Solids	<u></u>	Qualifier			mg/L	D	Prepared	07/21/18 08:51	Dil Fac
Client Sample ID: WMW3 Date Collected: 07/17/18 09:45 Date Received: 07/19/18 09:30	5	717				Lal	o Sample	ID: 440-216 Matrix:	
Method: 300.1B - Disinfectio		<mark>ts, (IC)</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorate	640		200	20	ug/L			07/23/18 18:13	10
Surrogate Dichloroacetic acid(Surr)	%Recovery 101	Qualifier	Limits			-	Prepared	Analyzed 07/23/18 18:13	Dil Fac 10
_ Method: 314.0 - Perchlorate		Qualifier	RL	МП	Unit	D	Prepared	Analyzed	Dil Fac
Analuta		Guanner				Ľ .	Flepaleu	Allalyzeu	
	320 W2-2018071		40	9.5	ug/L	Lal	o Sample	07/25/18 18:45	
Perchlorate Client Sample ID: LNDM Date Collected: 07/17/18 11:10	320 W2-2018071 0)	17	40	9.5	ug/L	Lal	o Sample	ID: 440-216	209-7
Perchlorate Client Sample ID: LNDM Date Collected: 07/17/18 11:10 Date Received: 07/19/18 09:30	320 W2-2018071 0) on By-Product	17	40 <u>RL</u> 1000	MDL	Unit	Lal	D Sample	ID: 440-216	209-7
Perchlorate Client Sample ID: LNDM Date Collected: 07/17/18 11:10 Date Received: 07/19/18 09:30 Method: 300.1B - Disinfectio Analyte Chlorate	320 W2-2018071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 ts, (IC) Qualifier	RL	MDL				ID: 440-216 Matrix: Analyzed 07/22/18 22:09	209-7 Water Dil Fac
Perchlorate Client Sample ID: LNDM Date Collected: 07/17/18 11:10 Date Received: 07/19/18 09:30 Method: 300.1B - Disinfectio Analyte	320 W2-2018071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 ts, (IC) Qualifier	RL 1000	MDL	Unit		Prepared	ID: 440-216 Matrix: Analyzed	209-7 Water Dil Fac 50
Perchlorate Client Sample ID: LNDM Date Collected: 07/17/18 11:10 Date Received: 07/19/18 09:30 Method: 300.1B - Disinfectio Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate	320 W2-2018071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 ts, (IC) Qualifier Qualifier	RL 1000 Limits 90 - 115	MDL 100	Unit ug/L	D	Prepared Prepared	ID: 440-216 Matrix: Analyzed 07/22/18 22:09 Analyzed 07/22/18 22:09	Dil Fac 50 Dil Fac 50
Perchlorate Client Sample ID: LNDM Date Collected: 07/17/18 11:10 Date Received: 07/19/18 09:30 Method: 300.1B - Disinfectio Analyte Chlorate Surrogate Dichloroacetic acid(Surr)	320 W2-2018071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 ts, (IC) Qualifier	RL 1000 Limits	<u>MDL</u> 100	Unit		Prepared	ID: 440-216 Matrix: Analyzed 07/22/18 22:09 Analyzed	Dil Fac
Perchlorate Client Sample ID: LNDMV Date Collected: 07/17/18 11:10 Date Received: 07/19/18 09:30 Method: 300.1B - Disinfectio Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate Analyte Perchlorate Client Sample ID: WMW4 Date Collected: 07/17/18 12:40	320 W2-2018071 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0	17 ts, (IC) Qualifier Qualifier	RL 1000 Limits 90 - 115 RL	<u>MDL</u> 100	Unit ug/L Unit	D	Prepared Prepared Prepared	ID: 440-216 Matrix: Analyzed 07/22/18 22:09 Analyzed O7/22/18 22:09	209-7 Water Dil Fac 50 Dil Fac 50 Dil Fac 100 209-8
Perchlorate Client Sample ID: LNDM Date Collected: 07/17/18 11:10 Date Received: 07/19/18 09:30 Method: 300.1B - Disinfectio Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate Analyte	320 W2-2018071 0 0 10 10 10 10 10 10 10 10 10 10 10 1	17 ts, (IC) Qualifier Qualifier Qualifier 717	RL 1000 Limits 90 - 115 RL	<u>MDL</u> 100	Unit ug/L Unit	D	Prepared Prepared Prepared	ID: 440-216 Matrix: Analyzed 07/22/18 22:09 Analyzed 07/22/18 22:09 Analyzed 07/25/18 20:16 ID: 440-216	209-7 Water Dil Fac 50 Dil Fac 50 Dil Fac 100 209-8
Perchlorate Client Sample ID: LNDM Date Collected: 07/17/18 11:10 Date Received: 07/19/18 09:30 Method: 300.1B - Disinfectio Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate Client Sample ID: WMW4 Date Collected: 07/17/18 12:40 Date Received: 07/19/18 09:30 Method: 300.1B - Disinfectio Analyte	320 W2-2018071 0 0 0 0 0 0 0 0 0 0 0 0 0	17 ts, (IC) Qualifier Qualifier Qualifier 717 ts, (IC) Qualifier	RL 1000 <i>Limits</i> 90-115 RL 400	MDL 100 MDL 95	Unit ug/L Unit ug/L	D	Prepared Prepared Prepared	ID: 440-216 Matrix: Analyzed 07/22/18 22:09 Analyzed 07/22/18 22:09 Analyzed 07/25/18 20:16 ID: 440-216 Matrix: Analyzed	209-7 Water Dil Fac 50 Dil Fac 100 209-8 Water Dil Fac
Perchlorate Client Sample ID: LNDM Date Collected: 07/17/18 11:10 Date Received: 07/19/18 09:30 Method: 300.1B - Disinfectio Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate Client Sample ID: WMW4 Date Collected: 07/17/18 12:40 Date Received: 07/19/18 09:30 Method: 300.1B - Disinfectio Analyte Chlorate Client Sample ID: WMW4 Date Collected: 07/19/18 09:30 Method: 300.1B - Disinfectio Analyte Chlorate	320 W2-201807 1 0 0 0 0 0 0 0 0 0 0 0 0 0	17 ts, (IC) Qualifier Qualifier Qualifier 717 ts, (IC) Qualifier J	RL 1000 Limits 90-115 RL 400	MDL 100 MDL 95	Unit ug/L Unit ug/L	D	Prepared Prepared Prepared D Sample Prepared	ID: 440-216 Matrix: Analyzed 07/22/18 22:09 Analyzed 07/22/18 22:09 Analyzed 07/25/18 20:16 ID: 440-216 Matrix: Analyzed 07/24/18 09:26	209-7 Water Dil Fac 50 Dil Fac 100 209-8 Water Dil Fac 5
Perchlorate Client Sample ID: LNDM Date Collected: 07/17/18 11:10 Date Received: 07/19/18 09:30 Method: 300.1B - Disinfectio Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate Client Sample ID: WMW4 Date Collected: 07/17/18 12:40 Date Received: 07/19/18 09:30 Method: 300.1B - Disinfectio Analyte	320 W2-2018071 0 0 0 0 0 0 0 0 0 0 0 0 0	17 ts, (IC) Qualifier Qualifier Qualifier 717 ts, (IC) Qualifier J	RL 1000 <i>Limits</i> 90-115 RL 400	MDL 100 MDL 95	Unit ug/L Unit ug/L	D	Prepared Prepared Prepared	ID: 440-216 Matrix: Analyzed 07/22/18 22:09 Analyzed 07/22/18 22:09 Analyzed 07/25/18 20:16 ID: 440-216 Matrix: Analyzed	209-7 Water Dil Fac 50 Dil Fac 100 209-8 Water
Perchlorate Client Sample ID: LNDM Date Collected: 07/17/18 11:10 Date Received: 07/19/18 09:30 Method: 300.1B - Disinfectio Analyte Chlorate Surrogate Dichloroacetic acid(Surr) Method: 314.0 - Perchlorate Analyte Perchlorate Client Sample ID: WMW4 Date Collected: 07/17/18 12:40 Date Received: 07/19/18 09:30 Method: 300.1B - Disinfectio Analyte Chlorate Surrogate Surrogate	320 W2-201807 1 m By-Product Result 6000 %Recovery 102 (IC) Result 1700 I.9N-201807 0 m By-Product Result 13 %Recovery 101 (IC)	17 ts, (IC) Qualifier Qualifier Qualifier 717 ts, (IC) Qualifier J	RL 1000 Limits 90-115 RL 400 400 Limits Limits Limits Limits 100 Limits	MDL 100 MDL 95 MDL 10	Unit ug/L Unit ug/L	D	Prepared Prepared Prepared D Sample Prepared	ID: 440-216 Matrix: Analyzed 07/22/18 22:09 Analyzed 07/22/18 22:09 Analyzed 07/25/18 20:16 ID: 440-216 Matrix: Analyzed 07/24/18 09:26 Analyzed	Dil Fac 50 Dil Fac 50 Dil Fac 100 209-8 Water Dil Fac 5 Dil Fac

Client: AECOM				
Project/Site: NERT Las	Vegas	Wash,	60477	'365

TestAmerica Job ID: 440-216209-1

Client Sample ID: WMW5.7N-20180717 Date Collected: 07/17/18 13:50 Date Received: 07/19/18 09:30

Lab Sample ID: 440-216209-9 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorate	ND		100	10	ug/L			07/24/18 09:54	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	98		90 - 115					07/24/18 09:54	5
- Method: 314.0 - Perchlora	ate (IC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate		J F1	4.0	0.05	ug/L			07/27/18 11:03	1

Method Summary

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL IRV
800.1B	Disinfection By-Products, (IC)	EPA	TAL IRV
14.0	Perchlorate (IC)	EPA	TAL IRV
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL IRV

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Lab Sample ID: 440-216209-1

Lab Sample ID: 440-216209-2

Matrix: Water

Matrix: Water

Project/Site: NERT Las Vegas Wash, 60477365 Client Sample ID: WMW3.5S-20180716

Date Collected: 07/16/18 08:20 Date Received: 07/19/18 09:30

Client: AECOM

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type Total/NA	Type Analysis	Method 300.1B	Run	Factor 50	Amount	Amount	Number 488870	or Analyzed 07/22/18 18:26	Analyst YZ	Lab TAL IRV
Total/NA	Analysis	314.0		100			489968	07/27/18 12:28	СТН	TAL IRV

Client Sample ID: NERT5.91S1-20180716 Date Collected: 07/16/18 09:40 Date Received: 07/19/18 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	5 mL	1.0 mL	488425	07/19/18 20:27	NTN	TAL IRV
Total/NA	Analysis	300.0		200			488425	07/19/18 20:43	NTN	TAL IRV
Total/NA	Analysis	300.1B		10			488938	07/23/18 15:54	YZ	TAL IRV
Total/NA	Analysis	314.0		100			489425	07/25/18 19:21	СТН	TAL IRV
Total/NA	Analysis	SM 2540C		1	20 mL	100 mL	488830	07/21/18 08:51	XL	TAL IRV

Client Sample ID: NERT5.49S1-20180716 Date Collected: 07/16/18 11:10 Date Received: 07/19/18 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0	DL	1	5 mL	1.0 mL	488425	07/19/18 22:00	NTN	TAL IRV
Total/NA	Analysis	300.0		50			488425	07/19/18 22:46	NTN	TAL IRV
Total/NA	Analysis	300.1B		5			489145	07/24/18 08:58	YZ	TAL IRV
Total/NA	Analysis	314.0		1			489425	07/25/18 18:26	CTH	TAL IRV
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	488830	07/21/18 08:51	XL	TAL IRV

Client Sample ID: NERT4.21N1-20180716 Date Collected: 07/16/18 12:40 Date Received: 07/19/18 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	5 mL	1.0 mL	488425	07/19/18 20:58	NTN	TAL IRV
Total/NA	Analysis	300.0		200			488425	07/19/18 21:14	NTN	TAL IRV
Total/NA	Analysis	300.1B		50			488870	07/22/18 20:45	YZ	TAL IRV
Total/NA	Analysis	314.0		100			489425	07/25/18 19:40	СТН	TAL IRV
Total/NA	Analysis	SM 2540C		1	20 mL	100 mL	488830	07/21/18 08:51	XL	TAL IRV

Lab Sample ID: 440-216209-3 Matrix: Water

Lab Sample ID: 440-216209-4

Matrix: Water

TestAmerica Job ID: 440-216209-1

Lab Sample ID: 440-216209-5

Matrix: Water

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

Client Sample ID: NERT4.38N1-20180716 Date Collected: 07/16/18 14:00

Date Received: 07/19/18 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	5 mL	1.0 mL	488425	07/19/18 21:29	NTN	TAL IRV
Total/NA	Analysis	300.0		200			488425	07/19/18 21:44	NTN	TAL IRV
Total/NA	Analysis	300.1B		2			488938	07/23/18 17:45	YZ	TAL IRV
Total/NA	Analysis	314.0		100			489425	07/25/18 19:58	СТН	TAL IRV
Total/NA	Analysis	SM 2540C		1	20 mL	100 mL	488830	07/21/18 08:51	XL	TAL IRV

Client Sample ID: WMW3.5N-20180717 Date Collected: 07/17/18 09:45 Date Received: 07/19/18 09:30

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	300.1B		10			488938	07/23/18 18:13	YZ	TAL IRV
Total/NA	Analysis	314.0		10			489425	07/25/18 18:45	CTH	TAL IRV

Client Sample ID: LNDMW2-20180717 Date Collected: 07/17/18 11:10 Date Received: 07/19/18 09:30

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	300.1B		50			488870	07/22/18 22:09	YZ	TAL IRV
Total/NA	Analysis	314.0		100			489425	07/25/18 20:16	CTH	TAL IRV

Client Sample ID: WMW4.9N-20180717 Date Collected: 07/17/18 12:40 Date Received: 07/19/18 09:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.1B		5			489145	07/24/18 09:26	YZ	TAL IRV
Total/NA	Analysis	314.0		20			489425	07/25/18 19:03	СТН	TAL IRV

Client Sample ID: WMW5.7N-20180717 Date Collected: 07/17/18 13:50 Date Received: 07/19/18 09:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.1B		5			489145	07/24/18 09:54	YZ	TAL IRV
Total/NA	Analysis	314.0		1			489968	07/27/18 11:03	CTH	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Lab Sample ID: 440-216209-7

Lab Sample ID: 440-216209-8 Matrix: Water

425 07/25/18 19:03 CTH TAL IRV Lab Sample ID: 440-216209-9

Matrix: Water

Matrix: Water

RL

0.50

0.50

MDL Unit

0.25 mg/L

0.25 mg/L

D

Prepared

Lab Sample ID: MB 440-488425/6

Lab Sample ID: LCS 440-488425/5

Matrix: Water

Matrix: Water

Analyte

Bromide

Chloride

Analysis Batch: 488425

Method: 300.0 - Anions, Ion Chromatography

MB MB

ND

ND

Result Qualifier

Client Sample ID: Method Blank

2 3 4 5

07/19/18 11:01 1 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analyzed

07/19/18 11:01

Prep Type: Total/NA

Dil Fac

1

Analysis Batch: 488425									
-		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromide	 	5.00	5.09		mg/L		102	90 - 110	
Chloride		5.00	4.93		mg/L		99	90 - 110	
 —									

Method: 300.0 - Anions, Ion Chromatography - DL

Lab Sample ID: 440-216209-3 MS Client Sample ID: NERT5.49S1-20180716 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 488425 Sample Sample Spike MS MS %Rec. Analyte **Result Qualifier** Added **Result Qualifier** Unit D %Rec Limits Bromide - DL 0.27 J 5.00 5.38 mg/L 102 80 - 120 Chloride - DL 350 E 5.00 353 E4 mg/L 112 80 - 120 Lab Sample ID: 440-216209-3 MSD Client Sample ID: NERT5.49S1-20180716 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 488425 Sample Sample Spike MSD MSD %Rec. RPD Added Analyte **Result Qualifier Result Qualifier** Unit %Rec Limits RPD Limit D Bromide - DL 0.27 J 5.00 5.46 mg/L 104 80 - 120 2 20 Chloride - DL 350 E 5.00 350 E4 56 80 - 120 20 mg/L 1

Method: 300.1B - Disinfection By-Products, (IC)

Lab Sample ID: MB 440-488 Matrix: Water	8870/6						Client Sar	nple ID: Methoo Prep Type: To	
Analysis Batch: 488870									
	MB	MB							
Analyte	Result	Qualifier	RL	I	MDL Uni	t D	Prepared	Analyzed	Dil Fac
Chlorate	ND		20		2.0 ug/l			07/22/18 10:32	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	100		90 - 115					07/22/18 10:32	1
Lab Sample ID: LCS 440-48	38870/5					Clien	t Sample II): Lab Control S	Sample
Matrix: Water						-	•	Prep Type: To	
Analysis Batch: 488870									
· ·····, · · · · · · · · · · · · · · ·			Spike	LCS	LCS			%Rec.	
Analyte			Added	Result	Qualifier	Unit	D %Rec	Limits	

Method: 300.1B - Disinfection By-Products, (IC) (Continued)

Lab Sample ID: LCS 440-4 Matrix: Water	488870/5					Clien	t Sample ID	: Lab Contro Prep Type:	
Analysis Batch: 488870								10.1010	
-	105	LCS							
Surrogate	%Recovery		Limits						
Dichloroacetic acid(Surr)	101		90 - 115						
-									
Lab Sample ID: MRL 440-	488870/4					Clien	t Sample ID	: Lab Contro	
Matrix: Water								Prep Type:	Total/NA
Analysis Batch: 488870			Spike	MDI	MRL			%Rec.	
Analyte			Added		Qualifier	Unit	D %Rec	Limits	
Chlorate			20.0	21.3		ug/L	$-\frac{1}{2}$ $\frac{100}{106}$	50 - 150	
						0			
Sumonoto		MRL	l incite						
Surrogate Dichloroacetic acid(Surr)	%Recovery 100	Quaimer	Limits 90 - 115						
	100		90-115						
Lab Sample ID: 440-21628	36-A-1 MS						Client Sa	mple ID: Ma	trix Spike
Matrix: Water								Prep Type:	
Analysis Batch: 488870									
	•	Sample	Spike	-	MS			%Rec.	
Analyte		Qualifier	Added		Qualifier	Unit	D %Rec	Limits	
Chlorate	160		200	374		ug/L	108	75 - 125	
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
Dichloroacetic acid(Surr)	99		90 - 115						
- Lob Comple ID: 440-24620						Oliont O		latrix Calles	Dunlingto
Lab Sample ID: 440-21628 Matrix: Water	50-A-1 WSD					Client 5	ample ID: W	latrix Spike Prep Type:	
Analysis Batch: 488870								гтер туре.	TOtal/INA
Analysis Batch. 400070	Sample	Sample	Spike	MSD	MSD			%Rec.	RPD
Analyte		Qualifier	Added	Result	Qualifier	Unit	D %Rec	Limits F	RPD Limit
Chlorate	160		200	377		ug/L	109	75 - 125	1 25
	Men	MSD							
Surrogate	%Recovery		Limits						
Dichloroacetic acid(Surr)	100		90 - 115						
-									
Lab Sample ID: MB 440-4	88938/6						Client Sam	n <mark>ple ID: Met</mark> h	
Matrix: Water								Prep Type:	Total/NA
Analysis Batch: 488938									
Analyte	Da	MB MB sult Qualifier		RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chlorate	Ke	ND Quaimer		20	2.0 ug/L	<u> </u>	Fiehaled	- Analyzed	
					ug/L			01,20,10 01.	- '
•		MB MB					_		-
Surrogate	%Reco	very Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)		101	90 - 11	5				07/23/18 07:	32 1

TestAmerica Irvine

LCS LCS

MRL MRL

22.1

Result Qualifier Unit

105

Result Qualifier Unit

ug/L

ug/L

Spike

Added

Limits 90 - 115

Spike

Added

Limits

90 - 115

20.0

100

Lab Sample ID: LCS 440-488938/5

Lab Sample ID: MRL 440-488938/4

Lab Sample ID: 440-216322-A-1 MS

Matrix: Water

Analyte

Chlorate

Surrogate

Analyte

Chlorate

Surrogate

Dichloroacetic acid(Surr)

Analysis Batch: 488938

Matrix: Water

Analysis Batch: 488938

Method: 300.1B - Disinfection By-Products, (IC) (Continued)

LCS LCS

MRL MRL

%Recovery Qualifier

100

99

%Recovery Qualifier

105

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

D %Rec

D %Rec

111

105

%Rec.

Limits

75 - 125

%Rec.

Limits

50 - 150

8 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank

Matrix: Water Analysis Batch: 488938

Dichloroacetic acid(Surr)

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chlorate	69		200	282		ug/L		107	75 - 125	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
Dichloroacetic acid(Surr)	100		90 - 115							

Lab Sample ID: 440-216322-A-1 MSD **Matrix: Water** Analysis Batch: 488938

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chlorate	69		200	279		ug/L		105	75 - 125	1	25
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

90 - 115

Lab Sample ID: MB 440-489145/6 **Matrix: Water** Analysis Batch: 489145

Dichloroacetic acid(Surr)

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorate	ND		20	2.0	ug/L			07/24/18 08:03	1
	MB	МВ							
Surrogate	%Recovery		Limits				Prepared	Analvzed	Dil Fac
						-	ropurou		
Dichloroacetic acid(Surr)	102		90 - 115					07/24/18 08:03	1

LCS LCS

MRL MRL

21.1

Result Qualifier

104

Result Qualifier

Unit

ug/L

Unit

ug/L

Spike

Added

Limits 90 - 115

Spike

Added

20.0

100

Lab Sample ID: LCS 440-489145/5

Lab Sample ID: MRL 440-489145/4

Matrix: Water

Analyte

Chlorate

Surrogate

Dichloroacetic acid(Surr)

Matrix: Water

Analysis Batch: 489145

Method: 300.1B - Disinfection By-Products, (IC) (Continued)

LCS LCS

%Recovery Qualifier

102

Client Sample ID: Lab Control Sample

D %Rec

D %Rec

106

104

%Rec.

Limits

75 - 125

50 - 150

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Type: Total/NA

8

Client Sample ID: Lab Control Sample Prep Type: Total/NA %Rec. Limits

Prep Type: Total/NA

Analysis Batch: 489145		
Analyte		
Chlorate	·	

	MRL	MRL	
Surrogate	%Recovery	Qualifier	Limits
Dichloroacetic acid(Surr)	101		90 - 115

Lab Sample ID: 440-216394-A-1 MS **Matrix: Water** Analysis Ratch: 490445

Analysis Batch: 409145	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chlorate	160		200	362		ug/L		103	75 - 125	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
Dichloroacetic acid(Surr)	102		90 - 115							

Lab Sample ID: 440-216394-A-1 MSD **Matrix: Water** Analysis Batch: 489145

Analysis Datch. 403145	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chlorate	160		200	369		ug/L		106	75 - 125	2	25
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Dichloroacetic acid(Surr)	102		90 - 115								

Method: 314.0 - Perchlorate (IC)

Lab Sample ID: MB 440-48942 Matrix: Water Analysis Batch: 489425	5/6					Client Sam	ple ID: Method Prep Type: To	
	MB MB							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	ND	4.0	0.95	ug/L			07/25/18 09:10	1

Spike

Added

25.0

Spike

Added

1.00

Lab Sample ID: LCS 440-489425/5

Lab Sample ID: MRL 440-489425/4

Lab Sample ID: 440-215316-A-2 MS

Matrix: Water

Matrix: Water

Matrix: Water

Analyte

Analyte

Analyte Perchlorate

Perchlorate

Perchlorate

Analysis Batch: 489425

Analysis Batch: 489425

Analysis Batch: 489425

Method: 314.0 - Perchlorate (IC) (Continued)

Client Sample ID: Lab Control Sample

D %Rec

Client Sample ID: Matrix Spike Duplicate

102

%Rec.

Limits

85 - 115

Client	Sai	mple ID	: Lab Control Sample	
			Prep Type: Total/NA	8
			%Rec.	
hit	D	%Rec	Limits	9
/L		93	75 - 125	40
	CI	ient Sa	mple ID: Matrix Spike	
			Prep Type: Total/NA	
			%Rec.	

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

	%Rec.	
_		

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Sample	Sample	Spike	MS	MS				%Rec.	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1.3	J	25.0	21.3		ug/L		80	80 - 120	

LCS LCS

MRL MRL

ND

Result Qualifier Unit

25.4

Result Qualifier

Unit

ug/L

ug/L

Lab Sample ID: 440-215316-A-2 MSD Matrix: Water Analysis Ratch: 489425

Analysis Datch. 403425											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perchlorate	1.3	J	25.0	23.0		ug/L		87	80 - 120	7	20

Lab Sample ID: MB 440-489968/6 **Matrix: Water** Analysis Batch: 489968

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	ND		4.0	0.95	ug/L			07/27/18 09:42	1

Lab Sample ID: LCS 440-489968/5 Matrix: Water Analysis Batch: 489968			Clie	nt Sample ID	: Lab Control Sample Prep Type: Total/NA
	Spike	LCS LC	s		%Rec.
Analyte	Added	Result Qu	ualifier Unit	D %Rec	Limits
Perchlorate	10.0	10.7	ug/L		85 - 115

Lab Sample ID: MRL 440-489968/4 **Matrix: Water** Analysis Batch: 489968

	Spike	MRL	MRL				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perchlorate	1.00	ND		ug/L		77	75 - 125	

Lab Sample ID: MRL 440-489968/8 Matrix: Water				Clie	nt Sar	nple ID	: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 489968	Spike	MRI	MRL				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Perchlorate	4.00	4.11		ug/L		103	75 - 125

TestAmerica Irvine

QC Sample Results

MS MS

19.3 F1

MSD MSD

19.6 F1

Result Qualifier

Result Qualifier

Unit

ug/L

Unit

ug/L

Spike

Added

10.0

Spike

Added

10.0

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

Sample Sample

Result Qualifier

3.9 J F1

Sample Sample

Result Qualifier

3.9 JF1

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: 440-216209-9 MS

Lab Sample ID: 440-216209-9 MSD

Lab Sample ID: MB 440-488830/1

Matrix: Water

Matrix: Water

Analyte

Analyte

Perchlorate

Perchlorate

Analysis Batch: 489968

Analysis Batch: 489968

%Rec.

Limits

80 - 120

%Rec.

Limits

Prep Type: Total/NA

Prep Type: Total/NA

RPD

Client Sample ID: WMW5.7N-20180717

Client Sample ID: WMW5.7N-20180717

D %Rec

D %Rec

157

154

8

80 - 120 1 20 **Client Sample ID: Method Blank**

RPD

Limit

Matrix: Water											Prep Type: To	tal/NA
Analysis Batch: 488830												
	N	IB MB										
Analyte	Res	ult Qualifie	r	RL	I	MDL	Unit		D P	repared	Analyzed	Dil Fac
Total Dissolved Solids	N	ND		10		5.0	mg/L				07/21/18 08:41	1
Lab Sample ID: LCS 440-4	188830/2							Cli	ent Sa	mple ID	: Lab Control S	ample
Matrix: Water											Prep Type: To	tal/NA
Analysis Batch: 488830												
			Spike		LCS	LCS	;				%Rec.	
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits	
Total Dissolved Solids			1000		994			mg/L		99	90 - 110	
Lab Sample ID: 440-21604	9-C-11 DU									Client	Sample ID: Du	plicate
Matrix: Water											Prep Type: To	tal/NA
Analysis Batch: 488830												
	Sample S	Sample			DU	DU						RPD
Analyte	Result C	Qualifier			Result	Qua	lifier	Unit	D		RPD	Limit
Total Dissolved Solids	6500				6410			mg/L			1	5

QC Association Summary

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

TestAmerica Job ID: 440-216209-1

HPLC/IC

Analysis Batch: 488425

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-216209-2	NERT5.91S1-20180716	Total/NA	Water	300.0	
40-216209-2	NERT5.91S1-20180716	Total/NA	Water	300.0	
140-216209-3 - DL	NERT5.49S1-20180716	Total/NA	Water	300.0	
440-216209-3	NERT5.49S1-20180716	Total/NA	Water	300.0	
40-216209-4	NERT4.21N1-20180716	Total/NA	Water	300.0	
440-216209-4	NERT4.21N1-20180716	Total/NA	Water	300.0	
440-216209-5	NERT4.38N1-20180716	Total/NA	Water	300.0	
440-216209-5	NERT4.38N1-20180716	Total/NA	Water	300.0	
VB 440-488425/6	Method Blank	Total/NA	Water	300.0	
_CS 440-488425/5	Lab Control Sample	Total/NA	Water	300.0	
440-216209-3 MS - DL	NERT5.49S1-20180716	Total/NA	Water	300.0	
440-216209-3 MSD - DL	NERT5.49S1-20180716	Total/NA	Water	300.0	
nalysis Batch: 4888	70				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-216209-1	WMW3.5S-20180716	Total/NA	Water	300.1B	
440-216209-4	NERT4.21N1-20180716	Total/NA	Water	300.1B	
40-216209-7	LNDMW2-20180717	Total/NA	Water	300.1B	
MB 440-488870/6	Method Blank	Total/NA	Water	300.1B	
_CS 440-488870/5	Lab Control Sample	Total/NA	Water	300.1B	
VRL 440-488870/4	Lab Control Sample	Total/NA	Water	300.1B	
440-216286-A-1 MS	Matrix Spike	Total/NA	Water	300.1B	
440-216286-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.1B	
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
440-216209-2	NERT5.91S1-20180716	Total/NA	Water	300.1B	
440-216209-5	NERT4.38N1-20180716	Total/NA	Water	300.1B	
140-216209-6	WMW3.5N-20180717	Total/NA	Water	300.1B	
VIB 440-488938/6	Method Blank	Total/NA	Water	300.1B	
_CS 440-488938/5	Lab Control Sample	Total/NA	Water	300.1B	
VIRL 440-488938/4	Lab Control Sample	Total/NA	Water	300.1B	
440-216322-A-1 MS	Matrix Spike	Total/NA	Water	300.1B	
440-216322-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.1B	
nalysis Batch: 4891	45				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
440-216209-3	NERT5.49S1-20180716	Total/NA	Water	300.1B	
440-216209-8	WMW4.9N-20180717	Total/NA	Water	300.1B	
440-216209-9	WMW5.7N-20180717	Total/NA	Water	300.1B	
MB 440-489145/6	Method Blank	Total/NA	Water	300.1B	
_CS 440-489145/5	Lab Control Sample	Total/NA	Water	300.1B	
/IRL 440-489145/4	Lab Control Sample	Total/NA	Water	300.1B	
440-216394-A-1 MS	Matrix Spike	Total/NA	Water	300.1B	
140-216394-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.1B	
nalysis Batch: 4894	25				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
440-216209-2	NERT5.91S1-20180716	Total/NA	Water	314.0	
440-216209-3	NERT5.49S1-20180716	Total/NA	Water	314.0	

314.0

Water

Total/NA

NERT4.21N1-20180716

440-216209-4

QC Association Summary

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

TestAmerica Job ID: 440-216209-1

7 8 9 10 11

HPLC/IC (Continued)

Analysis Batch: 489425 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
440-216209-5	NERT4.38N1-20180716	Total/NA	Water	314.0	
440-216209-6	WMW3.5N-20180717	Total/NA	Water	314.0	
440-216209-7	LNDMW2-20180717	Total/NA	Water	314.0	
440-216209-8	WMW4.9N-20180717	Total/NA	Water	314.0	
MB 440-489425/6	Method Blank	Total/NA	Water	314.0	
LCS 440-489425/5	Lab Control Sample	Total/NA	Water	314.0	
MRL 440-489425/4	Lab Control Sample	Total/NA	Water	314.0	
440-215316-A-2 MS	Matrix Spike	Total/NA	Water	314.0	
440-215316-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	314.0	
•	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
440-216209-1	WMW3.5S-20180716	Total/NA	Water	314.0	Prep Bato
440-216209-1					Prep Bato
440-216209-1 440-216209-9	WMW3.5S-20180716	Total/NA	Water	314.0	Prep Bato
Lab Sample ID 440-216209-1 440-216209-9 MB 440-489968/6 LCS 440-489968/5	WMW3.5S-20180716 WMW5.7N-20180717	Total/NA Total/NA	Water Water	314.0 314.0	Prep Bato
440-216209-1 440-216209-9 MB 440-489968/6 LCS 440-489968/5	WMW3.5S-20180716 WMW5.7N-20180717 Method Blank	Total/NA Total/NA Total/NA	Water Water Water	314.0 314.0 314.0	Prep Bato
440-216209-1 440-216209-9 MB 440-489968/6 LCS 440-489968/5 MRL 440-489968/4	WMW3.5S-20180716 WMW5.7N-20180717 Method Blank Lab Control Sample	Total/NA Total/NA Total/NA Total/NA	Water Water Water Water	314.0 314.0 314.0 314.0 314.0	Prep Bato
440-216209-1 440-216209-9 MB 440-489968/6	WMW3.5S-20180716 WMW5.7N-20180717 Method Blank Lab Control Sample Lab Control Sample	Total/NA Total/NA Total/NA Total/NA Total/NA	Water Water Water Water Water	314.0 314.0 314.0 314.0 314.0 314.0	Prep Batc

General Chemistry

Analysis Batch: 488830

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-216209-2	NERT5.91S1-20180716	Total/NA	Water	SM 2540C	
440-216209-3	NERT5.49S1-20180716	Total/NA	Water	SM 2540C	
440-216209-4	NERT4.21N1-20180716	Total/NA	Water	SM 2540C	
440-216209-5	NERT4.38N1-20180716	Total/NA	Water	SM 2540C	
MB 440-488830/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 440-488830/2	Lab Control Sample	Total/NA	Water	SM 2540C	
440-216049-C-11 DU	Duplicate	Total/NA	Water	SM 2540C	

Definitions/Glossary

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

1 2 3 4 5 6 7 8 9 10 11 12 13

Qualifiers

HPLC/IC

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
Ξ	Result exceeded calibration range.
F1	MS and/or MSD Recovery is outside acceptance limits.

Glossary

a Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor DL Detection Limit (Do/D/DCE) DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Detection Limit (Do/D/DCE) EDL Estimated Detection Rediochermistry) EDL Estimated Detection D/D/DCE) MDA Minimum Detectable Activity (Radiochermistry) MDA Minimum Detectable Activity (Radiochermistry) MDC Minimum Detectable Concentration (Radiochermistry) MDC Minimum Detectable Activity (Radiochermistry) MDC Minimum Detectable Activity (Radiochermistry) MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown) PQL Practical Quantitation Limit	Abbreviation	These commonly used abbreviations may or may not be present in this report.	
CFLContains Free LiquidCNFContains No Free LiquidDERDuplicate Error Ratio (normalized absolute difference)Dil FacDilution FactorDLDetection Limit (DoD/DOE)DLDetection Limit (DoD/DOE)DLBeission Level Concentration (Radiochemistry)EDLEstimated Detection Limit (Dioxin)LOQLimit of Detection (DoD/DOE)MDAMinimum Detectable Activity (Radiochemistry)MDAMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitNLMinimum Level (Dioxin)NCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)PQLPractical Quantitation LimitQCQuality ControlREFRelative Error Ratio (Radiochemistry)REPRelative Error Ratio (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	¤		
CNFContains No Free LiquidDERDuplicate Error Ratio (normalized absolute difference)Dil FacDilution FactorDLDetection Limit (DoD/DOE)DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleDLCDecision Level Concentration (Radiochemistry)EDLEstimated Detection Limit (DoD/DOE)LOQLimit of Detection (DoD/DOE)LOQLimit of Detection (DoD/DOE)MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMDLMethod Detection LimitMLMinimum Level (Dioxin)NCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)PQLPractical Quantitation LimitQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RLRelative Error Ratio (Radiochemistry)RL<	%R	Percent Recovery	
DERDuplicate Error Ratio (normalized absolute difference)Dil FacDilution FactorDLDetection Limit (DoD/DOE)DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleDLCDecision Level Concentration (Radiochemistry)EDLDetection Limit (DoD/DOE)LOQLimit of Detection (DoD/DOE)LOQLimit of Quantitation (DoD/DOE)MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection Limit (Dioxin)NDLMinimum Detectable Concentration (Radiochemistry)MDLMinimum Detectable Concentration (Radiochemistry)MDLMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMDLNetection LimitMLMinimum Level (Dioxin)NDLPactical Quantitation Limit (or MDL or EDL if shown)PQLPractical Quantitation Limit (or MDL or EDL if shown)PQLQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RLRelative Error Ratio (Radiochemistry)RLRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	CFL	Contains Free Liquid	
Dil FacDilution FactorDLDetection Limit (DoD/DOE)DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleDLCDecision Level Concentration (Radiochemistry)EDLEstimated Detection Limit (Dioxin)LODLimit of Detection (DoD/DOE)LOQLimit of Quantitation (DoD/DOE)MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)NCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)PQLPractical Quantitation LimitQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	CNF	Contains No Free Liquid	
DLDetection Limit (DoD/DOE)DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleDLCDecision Level Concentration (Radiochemistry)EDLEstimated Detection Limit (Dioxin)LOQLimit of Detection (DoD/DOE)LOQLimit of Quantitation (DoD/DOE)MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Activity (Radiochemistry)MDLMethod Detection LimitMLMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)NCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)PQLPractical Quantitation LimitQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RLRelative Error Ratio (Radiochemistry)RLRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	DER	Duplicate Error Ratio (normalized absolute difference)	
DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleDLCDecision Level Concentration (Radiochemistry)EDLEstimated Detection Limit (Dioxin)LODLimit of Detection (DoD/DOE)LOQLimit of Quantitation (DoD/DOE)MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)NCNot CalculatedNDNot Calculated at the reporting limit (or MDL or EDL if shown)PQLPractical Quantitation LimitQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	Dil Fac	Dilution Factor	
DLCDecision Level Concentration (Radiochemistry)EDLEstimated Detection Limit (Dioxin)LODLimit of Detection (DoD/DOE)LOQLimit of Quantitation (DoD/DOE)MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)NCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)PQLPractical Quantitation LimitQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	DL	Detection Limit (DoD/DOE)	
EDLEstimated Detection Limit (Dioxin)LODLimit of Detection (DoD/DOE)LOQLimit of Quantitation (DoD/DOE)MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)NCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)PQLPractical Quantitation LimitQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
LODLimit of Detection (DoD/DOE)LOQLimit of Quantitation (DoD/DOE)MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)NCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)PQLPractical Quantitation LimitQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	DLC	Decision Level Concentration (Radiochemistry)	
LOQLimit of Quantitation (DoD/DOE)MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)NCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)PQLPractical Quantitation LimitQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	EDL	Estimated Detection Limit (Dioxin)	
MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)NCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)PQLPractical Quantitation LimitQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	LOD	Limit of Detection (DoD/DOE)	
MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)NCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)PQLPractical Quantitation LimitQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	LOQ	Limit of Quantitation (DoD/DOE)	
MDLMethod Detection LimitMLMinimum Level (Dioxin)NCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)PQLPractical Quantitation LimitQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	MDA	Minimum Detectable Activity (Radiochemistry)	
MLMinimum Level (Dioxin)NCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)PQLPractical Quantitation LimitQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	MDC	Minimum Detectable Concentration (Radiochemistry)	
NCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)PQLPractical Quantitation LimitQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	MDL	Method Detection Limit	
NDNot Detected at the reporting limit (or MDL or EDL if shown)PQLPractical Quantitation LimitQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	ML	Minimum Level (Dioxin)	
PQLPractical Quantitation LimitQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	NC	Not Calculated	
QCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
RERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	PQL	Practical Quantitation Limit	
RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	QC	Quality Control	
RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	RER	Relative Error Ratio (Radiochemistry)	
TEF Toxicity Equivalent Factor (Dioxin)	RL	Reporting Limit or Requested Limit (Radiochemistry)	
	RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEQ Toxicity Equivalent Quotient (Dioxin)	TEF	Toxicity Equivalent Factor (Dioxin)	
	TEQ	Toxicity Equivalent Quotient (Dioxin)	

Accreditation/Certification Summary

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365 TestAmerica Job ID: 440-216209-1

Laboratory: TestAmerica Irvine

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	CA01531	06-30-19
Arizona	State Program	9	AZ0671	10-14-18
California	LA Cty Sanitation Districts	9	10256	06-30-18 *
California	State Program	9	CA ELAP 2706	06-30-19
Guam	State Program	9	Cert. No. 17-003R	01-23-19
Hawaii	State Program	9	N/A	01-29-19
Kansas	NELAP	7	E-10420	07-31-18 *
Nevada	State Program	9	CA015312018-1	07-31-18 *
New Mexico	State Program	6	N/A	01-29-19
Oregon	NELAP	10	4028	01-29-19
USDA	Federal		P330-15-00184	07-09-21
Washington	State Program	10	C900	09-03-18

TestAmerica Irvine

	COC No: of COCs		For Lab Use Only:	Watk-in Client Lab Sampling.		100 SUG 100.	Sample Specific Notes	81	16.		7				440-215/200 Chain of Cruther			/		samples are retained longer than 1 month)	Archive for Months	R. TD 80		Date/Time: N/1 / 10:4	Date/Time	0220 Natta	o they	1 2 3 4 5 6 7
209425	Date:														440-216209					e assessed if samples are	Disposal by Lab	$\bigcirc \psi $	s'd: Uru Corr'd U	Company:	Company	2 FF	ý	8 9 10
Chain of Custody Record	CHE CAR		7				Filtered Sal Perform MS 3c0. 8 3c0. 7 2c0. 8 2c0. 1 3c0. 1		x x x x	7 7 7 7 7 7	<u> 入 × × × ×</u>	<u> </u>	*	×	* *	*				Sample Disposal (A fee may be assessed if $\mathcal{R} \mathcal{M} \mathcal{O}$	Return to Client		Cooler Temp. ("C) Obs'd:	Received by: NL	Received by:	Heopiver In Aboratory by	67	12 13
	Bileton	Turnaround Time	WORKING DAYS	TAT # different from Below			Sample Type (C=Comp. # of G=Grab) Matrix Cont.	6 GW Z	\ \		∽ 	~	2	~	2	2 7 7				Please List any EPA Waste Codes for the sample in the	🗌 Uriknown			t 1 Date/Time	Date/The:	Date/Time	549	
Regulatory Program:	Project Manager: S. 16		CALENDAR DAYS	TAT # differen			Sample Sample Date Time			110	1240	T 1400	2400 81/11/2	0/11	12:40	L 1350	7	8/12/1	3; 5=NaOH; 6= Other	ase List any EPA Was	🗌 Poison B		Custody Seal No.	Company dig ber of 2 2 2	Company	Company.	1357 11年11 555	~ / . / . / .
TestAmerica Irvine 17461 Berian Ave Suite 100 Irvine, CA 92614 Phone: 949,261,1022 Fax:		E E	City/State/Zip Camarv110 CA	Phone. Sos 264 web	act Name: NERT Phone	PO# Cas Vero 2 ar	Sample Identification	WMW 3.53 - 201807 16		NERT 5.4981-20140716	4 NERT 4.21N1-2019674	8 NERTY. 38N/- 20150316	R WMW 3.5N - 20190717	CICOSO2 - ZOISOTIT	CICOPIOS-NO.W.MMM	WMW 5.7N-20180718			Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Ple Commerts Servion if the labus to discose of the sample	Zvon-Hazard Elammable Skin Imfant	ctions/QC R	Custody Seals Intact			Relinquished by:	Jul	

TestAmerica Laboratories, Inc. TAL-8210 (0713)		of COCs	Sampler: J CHOTIN	Molte in Client	Lab Sampling.		Job / SDG No.:	Commelo Concello Matoc	E.		51	128	7										ithed longer than 1 month)	or Months	the co	Therm ID Ne.		NIX		0220 8/201to	man	~ 7/23/18	2 3 5 6 7
	Date:																						Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) <i>L U</i> _ ()	C Disposal by Lab	A / A) Obs'd: / Corrd Ut	Comp		Company	NAT A	1		18 9 11 0
Chain of Custody Record	Site Contact:	Lab Contact: Not March		7				یکی کی			XXXX	x x x x	<u> 入 次 次 次 次 次 次 次 次 次 次 次 次 次 </u>	スペペイ	*	×	*	*								[Cooler Temp. ("C)	Received t	L	A Received by	Hed ive find aboratory by	5	could realized by	12
Chain Chain Regulatory Program:	Ella Biladon		Turna	R DAYS L WORKING DAYS	TAT if different from Below	1 week	2 days 1 dav	Sample Type (C-Comp.		4	6940 (1 3	C / 0/17	1240 1 3	1400 3	6945	110 2	1240 2	1350 L L Z	00	N 1	X	· Other	A Waste Codes for the sample #	Unknown		al No	Date/Time.	201227 7 21/18 18	Trun Date/The	Date/Time	640	ノノト	
	Project Manager:	Tel/Fax:	A A A	₹.		X		Sample		Julau //		16		L ه/لاز	2/1-1/2 LIC			1	7- JUS 18	1		= H2804; 4=HN03; 5=NaOH; 6	rdous Waste? Please List any EF	a ol une sample		Circtody Seal No	Company 30	2. 3 Rece	Company	Company.	1344 1124 5	()) //)	
Test America Iruine 17461 Berian Ave Suite 106 Irvine, CA 92614 Phone: 949.261.1022 Fax:	Client Contact	Company Name: DECOM	12.20	ite/Zip Camarwll	Phone. Sos JL4 Hue	Project Name: NERT Phone I. Gun Scond	Site Las Vern 12/95	2		all DEIDZ - CC.C MILIM	NERT 5.9194 201907 16	NERT 5.4991-20190016	201202-1N1247 780	NERTY. 38N1- 20190	LILOSIO2-N2.5MMM			W/MW 5.2N-20180118				Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the	Comments Section If the lap is to dispose of the sample	ctions/QC Re	Custodis Carola latinat	Custory Seats Intact Creater	and the series of the series o	Relinquished by:	Relinquished by:	CIC TWL		

7/28/2018

Login Sample Receipt Checklist

Client: AECOM

Login Number: 216209 List Number: 1 Creator: Bonta, Lucia F

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	Not Present
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817 Tel: (949)261-1022

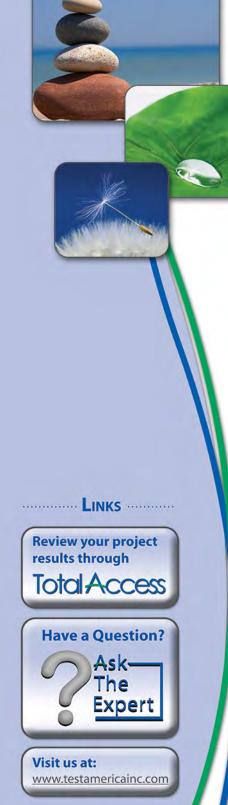
TestAmerica Job ID: 440-216209-2 Client Project/Site: NERT Las Vegas Wash, 60477365

For:

AECOM 1220 Avenida Acaso Camarillo, California 93012

Attn: Ms. Sally Bilodeau

Anto


Authorized for release by: 7/28/2018 4:00:32 PM

Patty Mata, Senior Project Manager (949)261-1022 patty.mata@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	6
Lab Chronicle	7
QC Sample Results	8
QC Association Summary	9
Definitions/Glossary	10
Certification Summary	11
Chain of Custody	12
Receipt Checklists	14

Sample Summary

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365 TestAmerica Job ID: 440-216209-2

ab Sample ID	Client Sample ID	Matrix	Collected	Received
0-216209-2	NERT5.91S1-20180716	Water	07/16/18 09:40	07/19/18 09:30
0-216209-3	NERT5.49S1-20180716	Water	07/16/18 11:10	07/19/18 09:30
0-216209-4	NERT4.21N1-20180716	Water	07/16/18 12:40	07/19/18 09:30
0-216209-5	NERT4.38N1-20180716	Water	07/16/18 14:00	07/19/18 09:30

TestAmerica Irvine

1 2 3 4 5 6 7 8 9 10

Job ID: 440-216209-2

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-216209-2

Comments

Only the Dissolved Chromium results are included in this report.

Receipt

The samples were received on 7/19/2018 9:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.8° C.

Receipt Exceptions

The container label for the following sample did not match the information listed on the Chain-of-Custody (COC): WMW5.7N-20180717 (440-216209-9). The container labels list WMW5.7N-20180717, while the COC lists WMW5.7N-20180718. The client was contacted and they provided a revised COC with ID that matched the container labels.

Metals

Method(s) 200.8: The method blank for preparation batch 440-489062 and analytical batch 440-489315 contained Chromium above the method detection limit (MDL). This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client Sample ID: NERT Date Collected: 07/16/18 09:4 Date Received: 07/19/18 09:3	0	80716				La	b Sample	ID: 440-216 Matrix	
Method: 200.8 - Metals (ICP			DI	MDI	11		Duran a na d	American	D!! 5-
Analyte Chromium		Qualifier		0.50		D	Prepared 07/23/18 14:23	Analyzed 07/24/18 13:56	Dil Fa
Client Sample ID: NERT Date Collected: 07/16/18 11:1 Date Received: 07/19/18 09:3	0	80716				La	b Sample	ID: 440-216 Matrix	
Method: 200.8 - Metals (ICP Analyte	/MS) - Dissolv	<mark>ed</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium	1.3	JB	2.0	0.50	ug/L		07/23/18 14:23	07/24/18 14:00	
Client Sample ID: NERT Date Collected: 07/16/18 12:4 Date Received: 07/19/18 09:3	0	50710				La	in Sample	ID: 440-216 Matrix	
Method: 200.8 - Metals (ICP Analyte		<mark>ed</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium	15	B	2.0	0.50	ug/L		07/23/18 14:23	07/24/18 13:46	
Client Sample ID: NERT Date Collected: 07/16/18 14:0 Date Received: 07/19/18 09:3	0	30716				La	b Sample	ID: 440-216 Matrix	
Method: 200.8 - Metals (ICP Analyte		<mark>ed</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium	2.5	D	2.0	0.50	ug/L		07/23/18 14:23	07/24/18 14:03	

Client Sample Results

Client: AECOM

Project/Site: NERT Las Vegas Wash, 60477365

TestAmerica Job ID: 440-216209-2

TestAmerica Irvine

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

Method	Method Description	Protocol	Laboratory
200.8	Metals (ICP/MS)	EPA	TAL IRV
200.2	Preparation, Total Recoverable Metals	EPA	TAL IRV

EPA = US Environmental Protection Agency

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TestAmerica Irvine

Dil

1

Dil

1

Factor

Factor

Run

Run

Initial

Amount

25 mL

Initial

Amount

25 mL

Final

Amount

25 mL

Final

Amount

25 mL

Batch

Туре

Prep

Analysis

Batch

Туре

Prep

Analysis

Client Sample ID: NERT5.49S1-20180716

Date Collected: 07/16/18 09:40

Date Received: 07/19/18 09:30

Date Collected: 07/16/18 11:10

Date Received: 07/19/18 09:30

Prep Type

Dissolved

Dissolved

Prep Type

Dissolved

Dissolved

Client Sample ID: NERT5.91S1-20180716

Batch

200.2

200.8

Batch

200.2

200.8

Method

Method

Lab Sample ID: 440-216209-2 Matrix: Water Batch Prepared Number or Analyzed Analyst Lab 489062 07/23/18 14:23 JL TAL IRV 489315 07/24/18 13:56 B1H TAL IRV Lab Sample ID: 440-216209-3 Matrix: Water Batch Prepared Number or Analyzed Analyst Lab 489062 07/23/18 14:23 JL TAL IRV 489315 07/24/18 14:00 B1H TAL IRV

Client Sample ID: NERT4.21N1-20180716 Date Collected: 07/16/18 12:40 Date Received: 07/19/18 09:30

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Dissolved	Prep	200.2			25 mL	25 mL	489062	07/23/18 14:23	JL	TAL IRV
Dissolved	Analysis	200.8		1			489315	07/24/18 13:46	B1H	TAL IRV

Client Sample ID: NERT4.38N1-20180716 Date Collected: 07/16/18 14:00 Date Received: 07/19/18 09:30

Lab Sample ID: 440-216209-5 Matrix: Water

Lab Sample ID: 440-216209-4

Matrix: Water

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Dissolved	Prep	200.2			25 mL	25 mL	489062	07/23/18 14:23	JL	TAL IRV
Dissolved	Analysis	200.8		1			489315	07/24/18 14:03	B1H	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

QC Sample Results

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

Lab Sample ID: MB 440-489	062/1-A								CI	ient \$	Samr	ole ID: Metho	d Blanl
Matrix: Water											_	e: Total Reco	
Analysis Batch: 489315												Prep Batch	
		MB MB											
Analyte	Re	sult Qualifier		RL		MDL	Unit		D	Prepa	red	Analyzed	Dil Fa
Chromium		1.26 J		2.0		0.50	ug/L		07/	23/18	14:23	07/24/18 13:40)
Lab Sample ID: LCS 440-48	9062/2-A							Clie	ent Sa	mpl	e ID:	Lab Control	Sample
Matrix: Water										Prep	Туре	e: Total Reco	overable
Analysis Batch: 489315												Prep Batch	48906
			Spike	L	cs	LCS						%Rec.	
Analyte			Added	Res	ult	Qual	ifier	Unit	D	%R	lec	Limits	
Chromium			80.0	7	8.0			ug/L			97	85 - 115	
Lab Sample ID: 440-216209	-4 MS							Client	Sam	ple II	D: NE	RT4.21N1-2	018071
Matrix: Water											P	rep Type: Di	ssolved
Analysis Batch: 489315												Prep Batch	48906
	Sample	Sample	Spike		MS	MS						%Rec.	
Analyte	Result	Qualifier	Added	Res	ult	Qual	ifier	Unit	D	%R	lec	Limits	
Chromium	15	B	80.0	8	6.5			ug/L			89	70 - 130	
Lab Sample ID: 440-216209	-4 MSD							Client	Sam	ple II	D: NE	RT4.21N1-2	018071
Matrix: Water											P	rep Type: Di	ssolved
Analysis Batch: 489315												Prep Batch	48906
	Sample	Sample	Spike	N	SD	MSD						%Rec.	RPI
Analyte	Result	Qualifier	Added	Res	ult	Qual	ifier	Unit	D	%R	lec	Limits RF	PD Limi
Chromium	15	B	80.0		7.1			ug/L			90	70 - 130	1 2

QC Association Summary

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

TestAmerica Job ID: 440-216209-2

Metals

Prep Batch: 489062

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-216209-2	NERT5.91S1-20180716	Dissolved	Water	200.2	
440-216209-3	NERT5.49S1-20180716	Dissolved	Water	200.2	
440-216209-4	NERT4.21N1-20180716	Dissolved	Water	200.2	
440-216209-5	NERT4.38N1-20180716	Dissolved	Water	200.2	
MB 440-489062/1-A	Method Blank	Total Recoverable	Water	200.2	
LCS 440-489062/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
440-216209-4 MS	NERT4.21N1-20180716	Dissolved	Water	200.2	
440-216209-4 MSD	NERT4.21N1-20180716	Dissolved	Water	200.2	
nalysis Batch: 4893	315				
analysis Batch: 4893	315				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	
Lab Sample ID		Prep Type Dissolved	Matrix Water	Method 200.8	
Lab Sample ID 440-216209-2	Client Sample ID				489062
Lab Sample ID 440-216209-2 440-216209-3	Client Sample ID NERT5.91S1-20180716	Dissolved	Water	200.8	489062 489062
Lab Sample ID 440-216209-2 440-216209-3 440-216209-4	Client Sample ID NERT5.91S1-20180716 NERT5.49S1-20180716	Dissolved Dissolved	Water Water	200.8 200.8	489062 489062 489062
Lab Sample ID 440-216209-2 440-216209-3 440-216209-4 440-216209-5	Client Sample ID NERT5.91S1-20180716 NERT5.49S1-20180716 NERT4.21N1-20180716	Dissolved Dissolved Dissolved	Water Water Water	200.8 200.8 200.8	489062 489062 489062 489062
Lab Sample ID 440-216209-2 440-216209-3 440-216209-4 440-216209-5 MB 440-489062/1-A	Client Sample ID NERT5.91S1-20180716 NERT5.49S1-20180716 NERT4.21N1-20180716 NERT4.38N1-20180716	Dissolved Dissolved Dissolved Dissolved	Water Water Water Water	200.8 200.8 200.8 200.8 200.8	489062 489062 489062 489062 489062 489062
Lab Sample ID 440-216209-2 440-216209-3 440-216209-4 440-216209-5 MB 440-489062/1-A LCS 440-489062/2-A 440-216209-4 MS	Client Sample ID NERT5.91S1-20180716 NERT5.49S1-20180716 NERT4.21N1-20180716 NERT4.38N1-20180716 Method Blank	Dissolved Dissolved Dissolved Dissolved Total Recoverable	Water Water Water Water Water	200.8 200.8 200.8 200.8 200.8 200.8	Prep Batch 489062 489062 489062 489062 489062 489062 489062 489062

Definitions/Glossary

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365

5

0

Qualifiers

Metals

metals	
Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	8
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	9
DER	Duplicate Error Ratio (normalized absolute difference)	_
Dil Fac	Dilution Factor	10
DL	Detection Limit (DoD/DOE)	-
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	12
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Accreditation/Certification Summary

Client: AECOM Project/Site: NERT Las Vegas Wash, 60477365 TestAmerica Job ID: 440-216209-2

Laboratory: TestAmerica Irvine

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	CA01531	06-30-19
Arizona	State Program	9	AZ0671	10-14-18
California	LA Cty Sanitation Districts	9	10256	06-30-18 *
California	State Program	9	CA ELAP 2706	06-30-19
Guam	State Program	9	Cert. No. 17-003R	01-23-19
Hawaii	State Program	9	N/A	01-29-19
Kansas	NELAP	7	E-10420	07-31-18 *
Nevada	State Program	9	CA015312018-1	07-31-18 *
New Mexico	State Program	6	N/A	01-29-19
Oregon	NELAP	10	4028	01-29-19
USDA	Federal		P330-15-00184	07-09-21
Washington	State Program	10	C900	09-03-18

TestAmerica Irvine

	COC No: of COCs			Watk-In Cilent Lab Sampling.		CON STIC / DOD	Sample Specific Notes	84	161		7				440-215/200 Chain of Cruthers				/		samples are retained longer than 1 month)	Archive for Months	of the si		Date/Time, 10:4	Date/Time	0220 Nalta	o there	1 2 3 4 5 6 7
209425	Date:														440-216209						e assessed if samples are	Disposal by Lab	O $h O$	Б	Company:	Company	2 FF	ý	8 9 10
Chain of Custody Record	CT: J CAR		7				Filtered Sa Perform Ms Perform Ms Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc	X	x x x x x	7 7 7 7 7 7	<u> </u>	<u> </u>	*	7 7 7	* *	*		,			Sample Disposal (A fee may be assessed if $\mathcal{N} = \mathcal{N} = \mathcal{O}$	Return to Client		Cooler Temp. (°C) Obs'd:		Received by	Reconvergence Aboratory by	C Z	12 13
	Bileton	Turnaround Time	WORKING DAYS	TAT if different from Below			Sample Type (C=Comp. G=Grab) Matrix Cont.	6 GW Z			∽ 	~	2	~	2	2 7 7 0					Please List any EPA Waste Codes for the sample in the	🗂 Unknown				~ Date/Time:/w	Date/Time	549	~
Regulatory Program:	Project Manager: S. 16		CALENDAR DAYS	TAT if differen			Sample Sample Date Time			0/1/	1240	T 1400	2400 81/11/2	0/11	12:40	L 1350	7		8/12/1	; 5=NaOH; 6= Other	ase List any EPA Was	🗌 Paison B		Custody Seal No.	Company Company	Company	Company.	1357 11年1 555	~ /
TestAmerica Irvine 17461 Berian Ave Suite 100 Irvine, CA 92614 Phone: 949,261,1022 Fax:		E E	City/State/Zip Camarwlle CA	Phone. Soc 764 week	act Name: NERT Phone	PO# Cas Vano 2045	Sample Identification	W/WW 3.53 - 20180716	N 1	NERT 5.4981-20190716	4 NERT 4.21N1-2019674	8 NERTY. 38N/- 20150316	PMMW 3.5N - 20190717	LUDMW2- ZOISOTIT	CICOPIOS -NP.W.MMM	WMW 5.7N-20180718				Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Ple Comments Section if the lab is to dispose of the sample	Skin Imtant Skin Imtant	Special Instructions/QC Requirements & Comments:	Custody Seals Intact	and the start	Relinquished by:	Relinquished by:	Jul	-

TestAmerica Laboratories, Inc. TestAmerica Laboratories, Inc.		of cocs	Sampler: J CH DATIN	For Lab Use Unit:	Lab Sampling.		Job / SDG No.:		Sample Specific Notes	84	76.		57										ineo longer inan 1 montn)	or Months	of at	Therm ID Nei-	Date/Time: N/18/18 10:40	Date/Time 9	0230 Allalta	man	2 3 4 5 6 7 7 5 2 7/8
	Date:	Carrier:																		/			Sample Disposal (A tee may be assessed it samples are retained longer (nair) month $\ell\sim\mathcal{M}$	C Disposal by Lab	A M O.R	Dbs'd: Vite Corrd Vite	Company:	Company	MARTIN		Part - Und Kope
Chain of Custody Record	1	Lab Contact: Port Produ		7					8 benden Perform N 3.00.5 3.00.5 2.540 3.00 2.540 3.00 5 0.1 1.00 5 0.1 1.00 5 0.1 1.00 5 0.1 1.00 5	X	× × ×	7 7 7 7 7	メ 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X	*	* *	*		, , ,			Sample Disposal (A tee may	Return to Client		Cooler Temp. ("C) Obs'd:	Received by: AUC	Received by	Realized in Aboratory by	The Bride I	12 13 13
	Sila Jour			WORKING DAYS	"price				Sample Type (C=Comp. G=Grab) Matrix Cont.	5		3	3	3	2	2	2	777			/		des for the sample in the	🗌 Unknown			Date/Time. 2//5 /~5 //~*	Date/Thme:	Date/Time	60	5
Regulatory Program:	Project Manager: C. /k.	TellFax: Sos 764		CALENDAR DAYS	TAT # different from			1 d	Sample Sample (Date Time	0		1110	12.40	L 1400	21/1/18 6945		1240	L 1350	108/19 Jul			S=NaOH; 6= Other	ise List any EPA Waste Co	Doison B		Custody Seal No.	Company Company	Company	Company.	354 1174 55	/
TestAmerica Iruine 17461 Berian Ave Suite 108 Irvine, CA 92614 Phone: 949.261.1022 Fax:	Client Contact	Company Name: DECOM	12:20	ite/Zip' Camarwlle	Te.	Protect Name: ALEDT PLANT COLOR	Site Las Verano Wash	PO# 60-100305	Samole Identification	11/Wh/ 359 - 20180116	NERT5919-20140716	116075 4981-2016001	10 0 T 4 71/11 - 20141-14	NERTH 2012-10131 4 201	LIMM1 3.5N-2012011		-2014071	7				Preservation Used: 1= ice, 2= HCI; 3= H2SO4; 4=HNO3;	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments control of the Internation of the control		ctions/QC Re	Custody Seals Intact		Relinquished by	Relinquished by:	CI AN USCA	

7/28/2018

Login Sample Receipt Checklist

Client: AECOM

Login Number: 216209 List Number: 1 Creator: Bonta, Lucia F

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	Not Present
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 440-216209-2

List Source: TestAmerica Irvine

13

Appendix L

Las Vegas Wash Bioremediation Pilot Study Work Plan

Las Vegas Wash Bioremediation Pilot Study Work Plan Nevada Environmental Response Trust Site Henderson, Nevada

PREPARED FOR

Nevada Environmental Response Trust 35 E. Wacker Drive, Suite 1550 Chicago, IL 60601

PRESENTED BY

Tetra Tech, Inc. 150 S. 4th Street, Unit A Henderson, NV 89015

September 22, 2017

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 Project Objectives	1
1.2 Work Plan Organization	1
1.3 Background	2
1.3.1 General	2
1.3.2 Regional Geology	2
1.3.3 Local Geology and Hydrogeology	3
1.3.4 Nature and Extent of Contamination	4
2.0 TECHNOLOGY DESCRIPTION	5
2.1 Microbiology and Biodegradation of Perchlorate	5
2.2 Previous Bioremediation Application	5
2.2.1 Bioremediation Treatability Study Findings	6
2.3 On-going Seep Well Field Area Treatability Study	6
3.0 PRE-DESIGN FIELD AND LABORATORY ACTIVITIES	8
3.1 Field Activities	8
3.1.1 Access Agreement	8
3.1.2 Utility Clearance	8
3.1.3 Installation of Soil Borings and Monitoring Wells	8
3.1.4 Single-Borehole Dilution Test	10
3.1.5 Slug Tests	
3.1.6 Nuclear Magnetic Resonance Logging	11
3.1.7 Las Vegas Wash Surface Water Evaluation	
3.1.8 Transducer Data Collection	
3.1.9 Management of Investigation-Derived Wastes	
3.1.10 Health and Safety	
3.2 Laboratory Studies	
4.0 PILOT STUDY CONCEPTUAL DESIGN	
4.1 Objectives	
4.2 Pilot Study Location	15
4.3 Conceptual Layout	15
4.3.1 Injection Well Layout	
4.3.2 Effectiveness Monitoring Wells	16

4.4 Preliminary Injection Design
4.4.1 Carbon Substrate Injections 17
4.4.2 Distribution Water
.0 EFFECTIVENESS MONITORING PLAN
5.1 Groundwater Sampling Procedures 19
5.1.1 Effectiveness Monitoring 19
5.2 Mass Flux Evaluation
5.3 Surface Water Sampling 21
5.4 Data Validation
.0 ACCESS AND PERMITTING REQUIREMENTS
6.1 Access Negotations
6.2 Permitting
6.2.1 Land Use Authorization 23
6.2.2 Well Installation Permitting
6.2.3 County Permitting 24
6.2.4 NDEP – Underground Injection Control Program 24
6.2.5 Water Appropriations Permit
.0 ECOLOGICAL REVIEW AND PROTECTION MEASURES
.0 REPORTING
.0 SCHEDULE
0.0 REFERENCES

LIST OF TABLES

Table 1 Example Soil Sampling Protocol	9
Table 2 Example Groundwater Effectiveness Monitoring Sampling Protocol	
Table 3 Preliminary Project Schedule	28

LIST OF FIGURES

o Property Ownership
o Property Ownership

LIST OF ACRONYMS/ABBREVIATIONS

Acronyms/Abbreviations	Definition
ASTM	American Society for Testing and Materials
AWF	Athens Road Well Field
bgs	below ground surface
BOD	biological oxygen demand
BOR	United States Bureau of Reclamation
CE	categorical exclusion
СОН	City of Henderson
DO	dissolved oxygen
EA	environmental assessment
EC	electrical conductivity
EVO	emulsified vegetable oil
FS	Feasibility Study
IPaC	Information Planning and Conservation
ITRC	Interstate Technology & Regulatory Council
lbs/day	pounds per day
μg/L	micrograms per liter
mg/L	milligrams per liter
mV	milliVolts
NAC	Nevada Administrative Code
NDEP	Nevada Division of Environmental Protection
NDWR	Nevada Division of Water Resources
NEPA	National Environmental Policy Act
NERT or Trust	Nevada Environmental Response Trust
NFG	National Functional Guidelines
ORP	oxidation reduction potential
PLFA	phospholipid fatty acids
PVC	polyvinyl chloride
RAO	Remedial action objective
RI	Remedial Investigation
RIBs	Rapid Infiltration Basins
qPCR	quantitative polymerase chain reaction
Site	Nevada Environmental Response Trust site
SWF	Seep Well Field

Acronyms/Abbreviations	Definition
TDS	total dissolved solids
Tetra Tech	Tetra Tech, Inc.
TOC	total organic compound
UIC	Underground Injection Control
UMCf	Upper Muddy Creek formation
UNLV	University of Nevada at Las Vegas
U.S. EPA	United States Environmental Protection Agency
USGS	United States Geological Survey
VFAs	volatile fatty acids
ZOI	zone of influence

Las Vegas Wash Bioremediation Pilot Study Work Plan

Nevada Environmental Response Trust Site

(Former Tronox LLC Site) Henderson, Nevada

Nevada Environmental Response Trust (NERT) Representative Certification

I certify that this document and all attachments submitted to the Division were prepared at the request of, or under the direction or supervision of NERT. Based on my own involvement and/or my inquiry of the person or persons who manage the system(s) or those directly responsible for gathering the information or preparing the document, or the immediate supervisor of such person(s), the information submitted and provided herein is, to the best of my knowledge and belief, true, accurate, and complete in all material respects.

Office of the Nevada Environmental Response Trust

Le Petomane XXVII, Inc., not individually, but solely in its representative capacity as the Nevada Environmental kot in dividelly, bu Response Trust Trustee

_, not individually, but solely in his representative capacity Signature: as President of ada Environmental Response Trust Trustee

Name: Jay A. Steinberg, not individually, but solely in his representative capacity as President of the Nevada Environmental Response Trust Trustee

Title: Solely as President and not individually

Company: Le Petomane XXVII, Inc., not individually, but solely in its representative capacity as the Nevada Environmental Response Trust Trustee

TETRA TECH

CERTIFICATION

I hereby certify that I am responsible for the services described in this document and for the preparation of this document. The services described in this document have been prepared in a manner consistent with the current standards of the profession, and to the best of my knowledge, comply with all applicable federal, state, and local statutes, regulations, and ordinances.

Description of Services Provided: Las Vegas Wash Bioremediation Pilot Study Work Plan, Nevada Environmental Response Trust Site, Henderson, Nevada

Tyled. Hansen

09/22/2017

Date

Kyle Hansen, CEM Field Operations Manager/Geologist Tetra Tech, Inc.

Nevada CEM Certificate Number: 2167 Nevada CEM Expiration Date: September 18, 2018

1.0 INTRODUCTION

On behalf of the Nevada Environmental Response Trust (NERT or Trust), Tetra Tech, Inc. (Tetra Tech) has prepared this Las Vegas Wash Bioremediation Pilot Study Work Plan (Work Plan) for implementation of an in-situ bioremediation pilot study where perchlorate continues to migrate into the Las Vegas Wash, which is downgradient of the NERT site (Site), located in Clark County, Nevada (Figure 1). This Work Plan is being submitted to the Nevada Division of Environmental Protection (NDEP) under the Interim Consent Agreement effective February 14, 2011. The Work Plan presents a conceptual design for implementation of the in-situ bioremediation pilot study based on the currently available data and provides details on pre-design activities to be conducted prior to the final pilot study design.

1.1 PROJECT OBJECTIVES

The overall objective of this pilot study is to demonstrate and evaluate the effectiveness of implementing in-situ bioremediation to reduce the perchlorate mass flux that is migrating into the Las Vegas Wash. Based on data from July 2015 through June 2016, an estimated 38.5 pounds per day (lbs/day) of perchlorate discharges to the Las Vegas Wash between the Pabco Rd and Northshore Rd weirs (Ramboll Environ, 2016). Additionally, a primary remedial action objective (RAO) for the Site is to mitigate the discharge of chemicals of potential concern in groundwater to the Las Vegas Wash (ENVIRON, 2014a).

This pilot study will build on the results of the previous in-situ bioremediation treatability study performed downgradient of the Athens Road Well Field (AWF) near the City of Henderson (COH) Bird Viewing Ponds and on-going Seep Well Field (SWF) Area Bioremediation Treatability Study. Although the previous and on-going treatability studies focus on the alluvium, this pilot study will also include implementation of in-situ bioremediation in the Upper Muddy Creek formation (UMCf), which has not been evaluated to date. The pilot study will be executed on a larger scale than previous bioremediation treatability studies conducted for NERT and provide key information needed for the future Feasibility Study (FS) to evaluate design, optimization/scale-up, and cost effectiveness of this technology and its effectiveness on the RAO of mitigation of the perchlorate mass flux discharge to the Las Vegas Wash.

1.2 WORK PLAN ORGANIZATION

This Work Plan is organized as follows:

- Introduction (Section 1.0): Provides the primary objectives of the pilot study along with relevant background information, including site history, regional geology and hydrogeology, local geology and hydrogeology, and extent of contamination.
- **Technology Description (Section 2.0):** Provides an overview of bioremediation of perchlorate and provides a summary of previous and on-going in-situ bioremediation treatability studies.
- **Pre-Design Field and Laboratory Activities (Section 3.0):** Provides a description of the field and laboratory activities to be completed prior to implementation of the pilot study to optimize and finalize the pilot study design.
- **Pilot Study Conceptual Design (Section 4.0):** Describes the conceptual design of the pilot study including objectives, evaluation of study locations, conceptual layout(s), and preliminary substrate injection design.
- Effectiveness Monitoring Plan (Section 5.0): Presents the conceptual effectiveness monitoring program for the pilot study, including the field, analytical, and microbial groundwater monitoring and data validation requirements.

- Access Agreement and Permitting (Section 6.0): Summarizes access agreement and permitting requirements for pilot study implementation.
- Ecological Review and Protection Measures (Section 7.0): Presents a summary of federally listed species with the potential to occur within the pilot study area and a summary of protective measures, if required.
- **Reporting (Section 8.0):** Summarizes reporting related to design and execution of the pre-design field activities and pilot study.
- Schedule (Section 9.0): Summarizes the schedule for conducting the pre-design activities, pilot study, and associated reporting.
- References (Section 10.0): Lists the documents referenced in this Work Plan.

1.3 BACKGROUND

1.3.1 General

The Site has been used for industrial purposes since 1942, when it was initially developed by the United States government as a magnesium plant to support World War II operations. Since that time, the Site and the surrounding properties have been used for chemical manufacturing, including the production of various chlorate and perchlorate compounds. Entities that operated at the Site include Western Electrochemical Company, American Potash and Chemical Company, Kerr-McGee Chemical Corporation, and Tronox. On February 14, 2011, NERT took title to the Site as part of the settlement of the Tronox Chapter 11 bankruptcy proceedings. As part of a long-term lease, Tronox operates a manufacturing facility on 114 acres of the Site to produce manganese and boron products. Historical industrial production and related waste management activities conducted at the Site and on adjacent properties have resulted in the contamination of various environmental media, including soil, groundwater, and surface water. The most notable site-related contaminants of potential concern are chromium and perchlorate (ENVIRON, 2014a).

The pilot study location is northeast of the Site along the Las Vegas Wash, which is located 13 miles southeast of Las Vegas in an unincorporated section of Clark County, Nevada (Figure 1). It is surrounded by the incorporated area of the COH. Approximately 230 acres in the northeastern and central portions of the NERT RI Study Area are owned by United States Bureau of Reclamation. Other landowners along the Las Vegas Wash include Clark County and the COH.

1.3.2 Regional Geology

The Site is located near the southeast end of the Las Vegas Valley, a structural basin that also includes the metropolitan areas of North Las Vegas, Las Vegas, and Henderson. Las Vegas Valley is bounded on the west by the Spring Mountains, on the north by the southern ends of the Sheep and Las Vegas Ranges, on the east by Frenchman and Sunrise Mountains, and on the south by the River Mountains and McCullough Range. The northwest-southeast trending structural basin that underlies Las Vegas Valley is composed of Precambrian crystalline rocks; Precambrian and Paleozoic carbonate rocks; Permian, Triassic, and Jurassic clastic rocks; and Miocene igneous rocks. Gravity data indicate that the deeper parts of the basin are filled with 3,000-5,000 feet of clastic sedimentary deposits that range in age from Miocene through Holocene (Plume, 1989).

The clastic sedimentary valley-fill deposits of Las Vegas Valley are generally believed to consist of Muddy Creek Formation and younger deposits. The Muddy Creek Formation also includes thick beds of gypsum and salt and basalt flows, though these are not exposed in the Las Vegas Valley. The thickness of the valley fill deposits in the vicinity of the Site is approximately 4,000 feet. Extraction of groundwater from the valley fill since the early 1900s has resulted in significant subsidence centered on the areas with the heaviest groundwater pumping, such as downtown Las Vegas (Plume, 1989).

1.3.3 Local Geology and Hydrogeology

At and near the Site, as well as the area near the Las Vegas Wash, soil borings have encountered valley fill deposits including Quaternary alluvium, transitional Muddy Creek Formation, and the Pleistocene Upper Muddy Creek Formation (UMCf). The alluvium is generally described as reddish-brown discontinuous layers of sand and gravel with minor amounts of silt, clay, and caliche. The thickness of these alluvial deposits ranges from less than one foot to more than 50 feet beneath the Site (ENVIRON, 2014a). Thick deposits of alluvium that are structurally narrow and linear have been interpreted as stream-deposited sands and gravels that were deposited within paleochannels during flooding events. The paleochannel sand and gravel deposits of the alluvium, the transitional Muddy Creek Formation is sometimes encountered below the Site. The transitional Muddy Creek Formation for the transitional Muddy Creek Formation. The UMCf underlies the transitional Muddy Creek Formation (if present) or alluvium, and consists of interbedded coarse-grained and fine-grained sediments that become progressively finer-grained to the north towards the central portion of the valley.

The UMCf subcrops beneath a thin veneer of Quaternary alluvium near the Site. In that area, the contact between the alluvium and the Muddy Creek Formation is typically marked by the appearance of a well-compacted, moderate brown silt-to-sandy silt or stiff clay-to-sandy clay (ENVIRON, 2014a). However, in the vicinity of the Las Vegas Wash and COH Bird Viewing Preserve, the contact is marked by light grey-green to yellow-green clays and silts. Recent information obtained from the on-going SWF Area Treatability Study area indicates that coarser-grained lenses also exist within the UMCf below the initial silty to clayey contact. Borehole log information in the areas east of Pabco Road indicates that the UMCf contact in that area similarly tends to be marked by silts and clays.

Locally, the ground surface slopes north toward the Las Vegas Wash. Thus, surface water north of the Site generally flows south to north toward the Las Vegas Wash (surface water on-Site does not leave the site). Surface water infiltrating into groundwater below the ponds of the COH Bird Preserve Viewing Preserve creates a groundwater high that diverts groundwater flowing north from the Site around the Bird Preserve. Subsurface paleochannels just south and east of the Bird Viewing Preserve also serve to direct impacted water from the Site toward the Las Vegas Wash.

The depth to water in wells near the proposed pilot study locations (i.e., wells AA-22, AA-23R, and WMW4.9S) tends to range between 26 and 30 feet based on recent measurements (AECOM, 2016). The horizontal groundwater gradient in the vicinity of the NERT Downgradient Study Area on unincorporated COH property is approximately 0.026 feet/foot based on recent groundwater level measurements in wells AA-22 and AA-23R (AECOM, 2016). Closer to the Las Vegas Wash, the horizontal groundwater gradient is distinctly lower, approximately 0.004 feet/foot, based on recent water level measurements in wells MW-13 and WMW4.9S (AECOM, 2016). The vertical gradient near the Las Vegas Wash is generally upward, with groundwater discharging into the Las Vegas Wash and underlying alluvium (ENVIRON, 2014a).

Unlike the areas west of Pabco Road, in the areas east of Pabco Road, the alluvial wells are not typically evaluated separately from the alluvial/UMCf transition and uppermost UMCf. Rather, the entire upper saturated interval down to 90 feet below ground surface (bgs) is contoured as the Shallow Zone [Daniel B. Stephens & Associates, Inc. (DBSA), 2010; AECOM, 2016]. This is in accordance with NDEP's definition of the water-bearing zones (NDEP, 2009). In the areas east of Pabco Road, the water table commonly occurs below the UMCf contact or just above it such that the layer of saturated alluvium is quite thin. Furthermore, hydraulic heads in the uppermost UMCf wells tend to be quite similar to those in nearby alluvial wells, as do perchlorate concentrations (AECOM, 2016). The underlying Middle Zone consists of thin, generally isolated sand lenses in the UMCf between 90 and 279 feet bgs, and the Deep Zone consists of UMCf between 270 and 400 feet bgs (DBSA, 2010).

1.3.4 Nature and Extent of Contamination

Recent alluvial groundwater sampling results, presented in data summaries from the Groundwater Sampling Technical Memorandum for the Downgradient Study Area (AECOM, 2016) activities, indicate that perchlorate concentrations in the area north of the Former COH Northern Rapid Infiltration Basins (RIBs) are higher than the concentrations near the Las Vegas Wash (Figure 2). Perchlorate concentrations ranged from 5,600 micrograms per liter (μ g/L) (well AA-23R) to 7,100 μ g/L (well AA-22) in the area to the north of the northern RIBs (Figure 2), while samples from wells closer to the Las Vegas Wash (Figure 3), exhibited lower concentrations ranging from 270 μ g/L (well WMW4.9S) to 3,800 μ g/L (well MW-13). In the same sampling event, hexavalent chromium concentrations north of the northern RIBs ranged from 30 μ g/L (well AA-23R) to 99 μ g/L (well AA-22). Samples from wells closer to the Las Vegas Wash exhibited generally lower concentrations ranging from 2.0 μ g/L (well WMW4.9S) to 39 μ g/L (well MW-13).

A number of shallow UMCf and alluvium/UMCf transition wells exist within the vicinity of the proposed pilot study location. These wells are typically contoured together with the alluvial wells as part of the Shallow Zone, and both sets of wells tend to have similar concentrations. Based on review of available data, perchlorate contamination is present in the shallow water-bearing zone, with elevated perchlorate concentrations potentially at depths of up to 90 feet bgs.

2.0 TECHNOLOGY DESCRIPTION

2.1 MICROBIOLOGY AND BIODEGRADATION OF PERCHLORATE

Perchlorate is the anionic component of ammonium perchlorate, a common ingredient in solid rocket fuel. Perchlorate salts are very soluble in water, (approximately 200,000 milligrams per liter [mg/L] for ammonium perchlorate and approximately 2,100,000 mg/L for sodium perchlorate) and do not adsorb very strongly to most soils.

Perchlorate also tends to be biologically stable under aerobic conditions or when there is a limited source of organic carbon. However, in the presence of a carbon substrate and after dissolved oxygen (DO) and nitrate have been depleted, perchlorate can act as an electron acceptor for anaerobic respiration. The first step in perchlorate biodegradation is carried out by the perchlorate reductase gene, wherein perchlorate is sequentially converted to chlorate and then to chlorite. A second gene, chlorite dismutase, further reduces the chlorite to chloride and oxygen (Interstate Technology & Regulatory Council [ITRC], 2008).

A variety of perchlorate-reducing bacteria have been isolated, with some of them being strict anaerobes, while others are facultative microbes. Generally, perchlorate-reducing microorganisms are known to be quite ubiquitous in the subsurface and are also quite versatile. As a result, successful groundwater treatment requires understanding the chemical, geochemical, physical, geological, and hydrogeological conditions at a site, and then developing an appropriate engineered approach. Physical, geological, and hydrogeological conditions are usually fixed, and therefore, a successful remedial strategy relies on the alteration and sustainment of the appropriate geochemical conditions to maintain perchlorate biodegradation. Favorable redox conditions that are appropriate for perchlorate biodegradation are less than 0 millivolts (mVs) and generally in the 0 to -100 mVs range. This range of redox is indicative of conditions wherein the aquifer is depleted of DO and nitrate is consumed, leaving perchlorate the next preferred electron acceptor as the respiratory source for native microorganisms (ITRC, 2008).

2.2 PREVIOUS BIOREMEDIATION APPLICATION

A groundwater bioremediation treatability study was performed between April 2015 and September 2016 within the vicinity of the COH Water Treatment Facility, which is immediately upgradient of the Bird Viewing Preserve and mid-way between the AWF and SWF. A treatability study results report, which summarized the laboratory bench-scale study, field carbon substrate injection design and details, and all the results and findings, was submitted in November 2016 and approved by NDEP on June 26, 2017 (Tetra Tech, 2016a). This section provides a brief summary of the findings of the treatability study.

The main elements of the treatability study included:

- (i) Single borehole dilution and slug tests to determine site hydrogeologic characteristics of hydraulic permeability and groundwater velocity;
- (ii) Bench batch microcosm and column testing at University of Nevada at Las Vegas (UNLV);
- (iii) Installation of field pilot study injection and monitoring wells;
- (iv) Two carbon substrate injection events; and
- (v) Periodic groundwater sampling, analyses, and evaluation of chemical, biochemical, and microbial parameters, which included a baseline sampling event followed by weekly, biweekly, and monthly groundwater sampling events.

2.2.1 Bioremediation Treatability Study Findings

As presented in the Groundwater Bioremediation Treatability Study Results Report (Tetra Tech, 2016a), groundwater in this area was amenable to enhanced biodegradation of perchlorate and other electron acceptors and co-contaminants, such as chlorate and nitrate. The addition of a carbon substrate in the form of a slow-release emulsified vegetable oil (EVO) product provided a sustained reducing environment, conducive to biodegrading perchlorate, in the subsurface within the targeted area downgradient of the injection. Bioremediation was shown to be a promising remedial process at this site and has strong potential to be a significant component of the overall remedy. The results, findings, and lessons learned from this study can be used to optimize the design and application of the technology in other areas to maximize effective perchlorate destruction. Several of the key findings that were used to develop this pilot study approach include:

- The relatively high groundwater velocity flow rates (32 feet/day) and short residence time were not an impediment to enhanced perchlorate biodegradation. The field study indicated that a sustained anaerobic condition was created and sustained in the subsurface during the study.
- The carbon substrate that was selected for laboratory and field testing, EVO, proved to be effective in creating and sustaining reducing conditions in groundwater.
- During the course of the study, perchlorate concentrations decreased by over 90 percent in some of the monitoring wells. Perchlorate concentrations of non-detectable concentrations were achieved at one location during the study.
- Maximum first-order perchlorate biodegradation rates in the field were determined to range from -0.25 day⁻¹ to -0.51 day⁻¹. At these rates, perchlorate concentrations decreased very rapidly in groundwater. The estimate for mass removal ranged from 4.1 to 17.4 lbs/day destruction of perchlorate through the study area.
- The higher total dissolved solids (TDS) concentrations (> 5,000 mg/L) in the area did not have an impact on the development of a microbial consortium with the ability to biodegrade perchlorate, nor did it appear to have an impact on acclimation time for perchlorate biodegradation.
- In both the laboratory and field studies, denitrification (nitrate biodegradation) occurred very rapidly and preferentially compared to perchlorate biodegradation. Perchlorate biodegradation followed denitrification and, once initiated, the two reductive processes were observed to occur concurrently.
- Transient arsenic solubilization was observed but it did not appear to mobilize downgradient of the study area.
- An overall decrease in permeability with the bioremediation technology was observed from periodic slug tests performed during the study, which was more pronounced in the last two events towards the end of the study.
 - Plausible causes include biomass buildup, oil adsorption, increase in alkalinity, and the formation of gas bubbles from biological activity.
 - Well redevelopment performed on the wells in the treatability study area indicates that relatively simple techniques can be adopted for permeability recovery that would enable periodic carbon substrate injections to be performed.
- Improved definition of preferential flow pathways and paleochannel morphology may be implemented in future studies to better define the baseline perchlorate mass and mass removal rates during bioremediation.

2.3 ON-GOING SEEP WELL FIELD AREA TREATABILITY STUDY

A second treatability study is currently being undertaken in the vicinity of the SWF extraction system in accordance with the NDEP-approved Seep Well Field Area Bioremediation Treatability Study Work Plan (Tetra Tech, 2016b) (SWF Area Treatability Study). The overall objective of the SWF Area Treatability Study is to demonstrate the effectiveness of using in-situ bioremediation to reduce the flux of perchlorate mass that is

migrating towards the Las Vegas Wash within the alluvium and is not currently being captured by the existing SWF. The subject study of this work plan, the Las Vegas Wash Bioremediation Pilot Study, builds on the results and findings of the previous COH treatability study summarized in Section 2.2 and also incorporates some of the findings and recommendations of the SWF Area Treatability Study, including the use of geophysical surveys, evaluation of a staggered injection well transect system, and construction of paired injection wells when the subsurface lithology suggests that this may improve injection coverage.

Pre-design activities and the first injection event for the SWF Area Treatability Study have been completed. As part of the pre-design, geophysical surveys, installation of soil borings and groundwater monitoring wells, groundwater sampling, aquifer testing, and basic bench-scale laboratory testing were completed between January and May 2017. Following the completion of the pre-design phase, twenty-five substrate injection wells (two transects, each of which are approximately 750 feet long) and an effectiveness monitoring network were installed in June 2017. Preliminary results from the on-going laboratory bench-scale studies currently being performed at UNLV have indicated that the addition of a slow-release carbon substrate, i.e., EVO, results in rapid bioremediation of nitrate and perchlorate in batch microcosms of site-specific media. One of the recommendations from the previous treatability study (described in Section 2.2), namely an evaluation of the sorption/desorption characteristics to site soils, is currently being performed at UNLV. The first field carbon substrate injection event was completed in September 2017.

To achieve cost efficiencies, final results from the UNLV bench-scale testing, pre-design field activities, and effectiveness monitoring associated with the SWF Treatability Study will be evaluated and applied to the design of the Las Vegas Wash bioremediation pilot study as appropriate. These include:

- Laboratory sorption/desorption test results from bench-scale studies;
- Application of geophysics;
- Zone of influence (ZOI) of the carbon substrate injection(s) and longevity of the carbon substrate;
- Conclusions on the advantages of a staggered configuration and paired injection well network, injection protocol and water distribution, downgradient influence of the injections, and any observed secondary geochemical impacts of the injections.

Additional data collected from the on-going NERT Remedial Investigation (RI) and the Downgradient RI will be reviewed and evaluated as data becomes available to incorporate any additional knowledge and significant findings into this pilot study.

3.0 PRE-DESIGN FIELD AND LABORATORY ACTIVITIES

This section describes the various preliminary activities to be completed prior to the field pilot study implementation of the Las Vegas Wash Bioremediation Pilot Study. The results will provide detailed information to optimize the final pilot study locations and design. Specifically, the objectives of the pre-design activities include:

- Characterization of the lithology in sufficient detail to refine conceptual injection well spacing.
- Identification of preferential flow pathways (such as paleochannels and transmissive zones) in order to better target injections.
- Assessment of localized vertical and horizontal distribution of perchlorate to target remediation zones.
- Accurate identification of groundwater flow directions and rates to design injection wells and perform injections to best address perchlorate migration into the Las Vegas Wash.

Various field activities will be conducted to gather the appropriate data to meet the objectives of the work, including soil boring and monitoring well installation, soil and groundwater sampling, single borehole dilution and slug tests, nuclear magnetic resonance (NMR) logging, surface water evaluations, transducer data collection, and laboratory bench tests. Each of these activities and their purpose are presented in this section.

3.1 FIELD ACTIVITIES

All field work described herein will be conducted in general accordance with the existing Field Sampling Plan, Revision 1 (ENVIRON, 2014b). Tetra Tech, on behalf of NERT, will prepare and submit required applications and obtain required permits prior to the installation of any soil borings, injection wells, and monitoring wells. Once approval is granted, an underground utility survey will be performed before drilling commences. All wells will be drilled in accordance with the Nevada Division of Water Resources (NDWR) requirements, following submittal of a Notice of Intent to Drill.

3.1.1 Access Agreement

Due to the off-Site location of the pre-design field activities and field pilot study (further described in Section 4.0), the Trust will acquire access agreements for all field activities (including injections and monitoring) from the COH and Clark County. Access requirements are further discussed in Section 6.0.

3.1.2 Utility Clearance

Tetra Tech will contact USA North Utility Locating Services, review available utility maps, and retain the services of a geophysical locator to check for underground utility lines prior to advancing the borings. Boring locations may be adjusted in the field based on the findings of the geophysical locator and utility locator service to avoid existing utilities, structures, or other site features. Prior to drilling, each location will also be cleared to a depth of 5 feet bgs either by hand augering or air knife operations.

3.1.3 Installation of Soil Borings and Monitoring Wells

Soil borings will be installed in strategic locations throughout the field study area to provide better characterization and allow for selection of the best locations for the bioremediation field pilot study. Twenty-five locations have been identified for installation of soil borings/monitoring wells (Figures 2 and 3). The purpose of the soil borings will be to obtain area-specific lithological information, physical parameters, and contaminant concentrations. Additionally, during boring installation, soil will be collected and transported to the UNLV for use in the laboratory bench tests (described in Section 3.2). Some of the borings at the eastern end of Transect 1b are anticipated to encounter bedrock. These borings will be advanced into the bedrock approximately 15 feet to evaluate its characteristics. Tetra Tech will retain a licensed drilling contractor to advance the soil borings using rotosonic drilling methods with collection of continuous soil cores for accurate lithologic logging and sampling. Before the drill rig mobilizes to each selected soil boring location, down-hole drilling equipment will be cleaned with a high-pressure, high-temperature water spray to avoid potential cross-contamination. Soil borings will be advanced through the alluvium and UMCf to a depth of 120 feet to evaluate soil conditions and perchlorate concentrations within the alluvium and UMCf. The continuous soil cores will be logged by the field geologist from ground surface to total depth using the Unified Soil Classification System. To the extent borings encounter bedrock, cores will be obtained to evaluate its characteristics.

The drilling contractor will decontaminate soil collection equipment between samples. Soil samples for laboratory analysis will be collected in laboratory-supplied containers, labeled, placed in plastic bags, and stored in a cooler on ice for transport to the project analytical laboratory. Selected soil samples will be analyzed for soil grain size distribution. Upon reaching groundwater, undisturbed soil samples will be collected using a Shelby tube, or similar collection device, from a select number of boreholes, for analysis of physical parameters including moisture content, porosity, soil density, and specific gravity. Soil samples will also be analyzed for a variety of chemical and biochemical parameters (*Table 1*). Depth-discrete groundwater samples will be collected from select boreholes within the alluvium, just above the top of the UMCf, and within the UMCf to vertically profile the perchlorate extent.

Parameter Laboratory Parameters	Analytical Method	Purpose
Perchlorate	E314.0	Estimate mass of perchlorate in saturated soil
ТОС	SM5310B	Estimate available natural organic carbon
Soil pH	SW846 9045C	Assess geochemical conditions
Soluble Cations and Anions ^{1,2}	Notes 1 and 2	Assess salt loading
TDS ²	SM2540C	Assess salt loading
Dissolved Metals ³	SW 846 6010/6020	Assess potential secondary impacts of treatment
Hexavalent Chromium	SW 846 7199	Assess potential secondary impacts of treatment such as mobilization potential of chromium into the groundwater under reducing conditions
Total Kjeldahl Nitrogen	Modified EPA Method 351.2	Evaluate potential nutrient availability in soil
Total Phosphorus	EPA 6010B	Evaluate potential nutrient availability in soil
PLFA	Microbial Insights Method ⁴	Examine native/natural microbial characteristics
Perchlorate Reductase Gene	Quantitative polymerase chain reaction (qPCR)	Examine native/natural microbial perchlorate degradation characteristics

Table 1 Example Soil Sampling Protocol

Acronyms and Abbreviations:

PLFA: Phospholipid Fatty Acids

TDS: Total dissolved solids

TOC: Total organic carbon

Notes:

1. Cations include sodium, potassium, calcium, and magnesium (Method SW6010). Anions include chloride, sulfate, nitrate (Method E300.0), carbonate, and bicarbonate (Method SM2320B).

2. Analysis to be performed on water extract prepared per method SW9056.

3. Metals include arsenic, chromium, iron, and manganese.

 White, D. C., H. C. Pinkart, and A. B. Ringelberg. (1995). Biomass measurements: Biochemical approaches, p. 91-101. In C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach, and M. V. Walter (ed.), Manual of Environmental Microbiology. ASM Press, Washington. Monitoring wells will be installed to evaluate the extent of perchlorate in the pilot study area and monitor key parameters to help optimize the design and effectiveness of the field pilot study. All 25 soil boring locations will be converted to permanent monitoring wells, and up to 15 of those locations may be installed as paired or clustered wells with screened intervals in the alluvium and UMCf. In locations where bedrock is encountered near the eastern end of Transect 1b, up to two of the borings will be completed as monitoring wells screened in bedrock to evaluate its hydraulic characteristics. In cases where a well is screened in bedrock, a paired shallower well in the overlying material (i.e., alluvium or UMCf) will also be installed next to the bedrock well to evaluate vertical gradients. Decisions regarding which and how many locations will be installed as paired wells will be based on review of the soil cores and lithology encountered during the soil boring installation. If borehole log information indicates multiple highly permeable productive zones in the UMCf at significantly different depths, up to 5 additional wells may be installed and screened in the deeper zones. The purpose of the additional deeper wells would be to evaluate the perchlorate concentration and hydraulic gradient changes with depth.

Most wells will be constructed using 2-inch schedule 40 polyvinyl chloride (PVC) casing and screened with 2-inch diameter slotted PVC well screen. Up to six wells will be installed with 4-inch diameter schedule 40 PVC casing and screened with 4-inch diameter slotted PVC well screen; these wells will be used for borehole dilution testing in the alluvium and UMCf. A sand filter pack will be installed in the annular space around the well screens and extend up to two feet above the top of the screen intervals. The remainder of the annular space will be backfilled with two feet of hydrated bentonite, followed by neat cement grout. The total well depth, slot size, filter pack, and length of the well screens will be determined in the field based on the lithology and depth to groundwater. Wells will be completed with flush-mounted, tamper-resistant (locked), traffic-rated well boxes, at an elevation approximately one-half inch above grade.

Following the completion of well construction, but no sooner than 24 hours after well construction is complete, Tetra Tech will develop each of the newly installed wells. A surge block and bailer will be used to swab and surge the filter pack and remove sediment from the well. This process will be followed by pumping with a submersible pump to purge the well of fine-grained sediment. Well development will be considered complete when three to ten casing volumes of water have been removed from the well, and index parameters consisting of pH, specific conductivity, turbidity, and temperature are stable (pH within 0.1 and other parameters generally within 10 percent) over three consecutive measurements. All index parameter readings will be recorded by Tetra Tech on well development logs.

Following well development, groundwater will be sampled and analyzed for a variety of field and laboratory parameters, described in more detail in Section 5.1, to establish baseline conditions of the soil and groundwater to be used in the laboratory bench studies. Collected groundwater will be transported to UNLV and used in the bench studies described in Section 3.2.

Following installation of all groundwater monitoring wells, a land surveyor will survey the horizontal coordinates of each well relative to North American Datum 83 with an accuracy of 0.1 foot, and the elevation of the ground surface and top of well casing measuring point relative to North American Vertical Datum 88 with accuracies of 0.1 foot and 0.01 foot, respectively. If nearby existing wells have not been recently surveyed as part of the on-going Downgradient Study Area investigation, then they may be resurveyed to ensure that a consistent datum is in use.

3.1.4 Single-Borehole Dilution Test

A single-borehole dilution test will be performed in the six newly installed 4-inch diameter monitoring wells to evaluate volumetric flow in the alluvium and UMCf within the field pilot study area. Single-borehole dilution tests consist of mixing a tracer compound into the groundwater in a well, and then observing the decline in tracer concentration in the well as a function of time using downhole instruments (Pitrak et al., 2007). The decline in tracer concentration in the well is due to dilution by volumetric groundwater flow, and the results will be used to estimate groundwater velocity in the immediate vicinity of the well.

Tracers used in single-borehole dilution tests are typically chloride or bromide salts, or fluorescent dyes. During the prior bioremediation treatability studies' preliminary testing activities, distilled water was successfully used as the tracer in five monitoring wells. Based on the proximity of the pilot study area to the Las Vegas Wash, the use of fluorescent dye tracers is not recommended. Furthermore, recent water quality results indicate that groundwater near the proposed field pilot study location has a specific conductance of 3,000 to 7,000 microsiemens per centimeter (AECOM, 2016). The fairly high specific conductance would support the potential use of distilled water as a tracer. Water samples collected after well installation will therefore be analyzed for major cations and anions to confirm the suitability of distilled water as a tracer, other appropriate tracers will be evaluated.

Results of the single-borehole dilution tests will be used to determine appropriate flow rates for use in the field pilot study design. All results will be provided in a final report which is further described in Section 8.0.

3.1.5 Slug Tests

Slug tests will be performed in all newly installed wells to estimate location-specific aquifer hydraulic conductivity within the field pilot study area and to confirm the results of the borehole dilution tests described in Section 3.1.5. The slug tests will be performed in general accordance with American Society for Testing and Materials (ASTM) Standard D4044-96 (ASTM International, 2008). Prior to conducting each slug test, the water level in the well will be measured manually with an electronic water level probe to determine the static groundwater level. An electronic pressure transducer/data logger will then be suspended in the well, and water levels will be monitored manually until static conditions are reestablished. A falling-head test will then be conducted by smoothly lowering a length of weighted and sealed PVC pipe (slug) into the well, securing it in place above the transducer, and recording the rate of water level decline. Once static conditions are reestablished, a rising-head test will be conducted by removing the slug and allowing the water level to again recover to static conditions while recording the rate of recovery. Barometric pressure changes during testing will be monitored and recorded using a pressure transducer placed above the water table.

At the end of each test, the pressure transducer will be removed from the well, and the water level displacement data will be downloaded to a laptop computer and corrected for barometric pressure effects. The corrected data will be interpreted using AQTESOLV for Windows (Duffield, 2014), or similar aquifer test analysis software. If possible, both the falling-head and rising-head data will be analyzed to cross-check the interpretation results.

3.1.6 Nuclear Magnetic Resonance Logging

As discussed in Section 2.2, one of the lessons learned during the previous treatability study was that improved definition of preferential flow pathways and paleochannel morphology was needed to better define the baseline perchlorate mass and mass removal rates during bioremediation. As a result, down-hole geophysics using NMR logging will be performed on all newly installed monitoring wells and select existing monitoring wells. This method was used successfully at the SWF Area Treatability Study area to identify higher-transmissivity zones within each well. NMR will be used in newly installed and select existing monitoring wells to delineate localized preferential flow pathways. This technology can be used in open or PVC-cased wells to provide high-resolution downhole estimates of hydraulic conductivity, total water content, and relative pore-size distributions below the water table (Walsh et al, 2013). Above the water table, NMR provides volumetric water content measurements. The specific tool used will depend on the diameter of the well, because larger diameter wells require a larger tool that has a larger radius of investigation. All tools are expected to provide a measurement approximately every 1.5 to 2 feet of depth. The high-resolution estimates of hydraulic conductivity will be compared to the lithologic logs and aquifer testing results for each well to assess the possibility of preferential flow pathways.

3.1.7 Las Vegas Wash Surface Water Evaluation

Groundwater from the pilot study area footprint generally discharges into the Las Vegas Wash. The Las Vegas Wash greatly influences groundwater flow directions in its vicinity and the engineered weirs that have been/will be installed in the Las Vegas Wash result in complex groundwater flow patterns adjacent to the Las Vegas Wash. Theoretically, groundwater should discharge from within the footprint of this pilot study to the Las Vegas Wash downstream of weirs and be recharged by the Las Vegas Wash upstream of weirs. However, determining exactly where the areas transition from recharge to discharge (and vice versa) is problematic and would require a level of effort beyond the scope of this pilot study.

Hence, a simplified approach is proposed to identify the general groundwater flow direction in the vicinity of the Las Vegas Wash so that the injection transects and monitoring wells can be properly located. The surface water elevation will be measured from the following existing nearby gauges each time groundwater elevations are measured in the existing and new wells in the Las Vegas Wash study area:

- Las Vegas Wash at Pabco Rd Nr Henderson, NV [United States Geological Survey (USGS) #09419700]
- Las Vegas Wash 05 Middle Way (USGS #360517114585301)
- Las Vegas Wash Abv Bostick Weir Nr Henderson, NV (USSG #09419747)
- Las Vegas Wash 07 Lower Narrows Abv Lower Narrows Weir (USGS #360535114574001)
- Las Vegas Wash Abv Homestead Weir Nr Henderson, NV (USGS #09419749)

The gauges will be re-surveyed at the same time as the pre-design monitoring wells to ensure that all points are on a consistent datum and accurately located with measuring points surveyed to 0.01 foot vertically. The water levels will be compared to nearby groundwater elevations to help assess the groundwater flow directions.

Surface water samples are currently collected on a monthly basis to monitor the mass flux of perchlorate migrating into the Las Vegas Wash, pursuant to the RI Phase 2 Investigation Modification No. 3 (Ramboll Environ, 2017). These data will be used during the pre-design phase to refine the quantity of the mass flux of perchlorate migrating into the Las Vegas Wash. The current surface water sampling program includes sample collection from Pabco, Bostick, Homestead, Three Kids, Sunrise Mountain, and Duck Creek weirs and includes analysis for perchlorate, chlorate, and TDS. As part of the pre-design, surface water samples will also be collected from the Historic Lateral, Calico Ridge, and Lower Narrows weirs. In addition to perchlorate, chlorate, and TDS, surface water samples will also be analyzed for organic content in terms of TOC and/or biological oxygen demand (BOD), as well as dissolved metals.

3.1.8 Transducer Data Collection

Data will be obtained from transducers installed in nearby existing monitoring wells by AECOM as part of their Downgradient Study Area RI field work that is currently on-going. This data will be compared to available USGS gauging station data to assist in assessing localized groundwater/surface water interactions over time. In addition, transducers will be installed in up to 10 of the newly installed pre-design monitoring wells to assess vertical and horizontal gradients in the alluvium and UMCf.

3.1.9 Management of Investigation-Derived Wastes

Investigation-derived waste generated during pre-design field activities will be managed according to applicable state, federal, and local regulations and as described in Field Sampling Plan, Revision 1 (ENVIRON, 2014b).

The investigation-derived waste that will be generated during the environmental investigation includes soil cuttings, personal protective equipment, equipment decontamination water, and groundwater generated during depth-discrete groundwater sampling and well development. Investigation-derived soil waste will be accumulated in plastic-lined roll-off bins. Solids will be characterized by collecting representative samples, as necessary, to determine disposal options. Depending upon the size of the container and quantity of material, one sample may be sufficient for characterization, or several samples may be composited in the field. Generally, a minimum of one

sample will be collected for each 10 cubic yards of solid waste or each roll-off bin. Waste sample analysis will be determined by the receiving waste facility's analysis requirements. Waste water generated during purging or decontamination activities will be temporarily stored in 55-gallon drums and/or 500-gallon totes and transferred into the GW-11 Pond. Drums, bins, and tanks will be labeled with "pending analysis" labels, the date accumulation began, contents, source, and contact information, and stored in a designated area. Management of investigation-derived waste will comply with the requirements of the access agreement.

3.1.10 Health and Safety

Fieldwork will be conducted in accordance with an Activity Hazard Analysis and other elements of Tetra Tech's internal Site-wide Health and Safety Plan (Tetra Tech, Inc., 2015), which addresses potential chemical and physical hazards associated with the field pilot study. It is anticipated that modified Level D personal protective equipment will be required for all field activities.

3.2 LABORATORY STUDIES

Bench-scale laboratory studies performed in connection with the previous bioremediation treatability study (Section 2.2) and on-going SWF Area Treatability Study (Section 2.3) have provided significant data on the biodegradation potential of perchlorate and other electron acceptors using EVO as the carbon substrate. The on-going EVO sorption/desorption laboratory testing for the SWF Area Treatability Study will provide additional information on the potential longevity of the carbon substrate for the alluvium. However, because the Las Vegas Wash Bioremediation Pilot Study will incorporate in-situ bioremediation not only in the alluvium but also the UMCf, additional bench-scale studies are warranted to gather information on site-specific soil and groundwater from the UMCf within the pilot study footprint. As a result, for purposes of this pilot study, limited and targeted laboratory studies will be performed as follows:

- (i) Short-term batch microcosm perchlorate biodegradation tests will be performed using soil and groundwater from the alluvium and UMCf collected during pre-design activities. Batch tests will confirm the applicability of EVO to the soil and groundwater that will be encountered in the vicinity of the Las Vegas Wash and provide an estimate of the acclimation time and perchlorate biodegradation rates. In addition to EVO, soluble substrate(s) (such as glycerin, acetate, and lactate) will also be evaluated in batch microcosms for specific application to the UMCf soil and groundwater because the chemical, lithological, and hydrogeological characteristics of this zone are different from the alluvium and, therefore, warrant testing using soluble as well as slow-release substrates.
- (ii) Column studies will be performed to simulate the upward migration of perchlorate from the UMCf into the alluvium and help establish the hydraulic, physical, and chemical relationship between these two lithological zones. These tests will be designed in order to understand the potential for upflux or transport of the perchlorate from the UMCf into the alluvium and better target these zones with carbon substrate during the pilot study and future remediation activities. While much is known about diffusion of ionic contaminants through low conductivity formations or clay liners, very little is known about back-diffusion of contaminants under the same conditions (Liu and Ball, 2002). It may be hypothesized that once the perchlorate in the alluvium groundwater is remediated, perchlorate in the UMCf may move via molecular diffusion into the alluvial portions of the formation. Such transport behavior is important and could be advantageous to addressing the perchlorate that could be residing in the upper portions of the UMCf, by focusing remediation activity and operations in the alluvium, which continually receives perchlorate via back diffusion.

Laboratory experiments are proposed to determine back-diffusion coefficients between the alluvium and the UMCf formations for perchlorate and co-contaminants. This will be accomplished by using Thorough Diffusion Cells and assuming Fickian diffusion (Shackelford, 2013). Several levels of TDS

will be used to simulate the various concentrations of TDS found in the UMCf and the alluvium. The set-up is likely to involve two chambers that will be filled with TDS-laden water and compacted cylinders of soils (i.e. alluvium and UMCF) placed between the cylinders. Once the soil column is placed among the two chambers, ions will start to diffuse through the soil column to the chambers and the TDS concentration and specific ion concentration in each will indicate the preferential path of the contaminants. The results will indicate whether back-diffusion is likely to occur to what extent it is expected to occur in the field in a given period of time.

(iii) EVO sorption/ desorption tests on soil and groundwater from the UMCf will be performed to understand the interactions of site-specific soil with the carbon substrate (which could include modifications and variations of EVO with additives), including substrate movement and how it desorbs over time, to support biodegradation. On-going laboratory sorption/desorption tests for the SWF Area Treatability Study are focusing on the alluvium; the proposed testing for this pilot study will examine the UMCf.

To achieve cost efficiencies and because the Galleria Road Bioremediation Treatability Study will be performed during a similar timeframe, only one set of laboratory studies will be performed for both the Las Vegas Wash Bioremediation Pilot Study and Galleria Road Bioremediation Treatability Study, presuming soil lithological and geochemical characteristics are similar for both areas.

4.0 PILOT STUDY CONCEPTUAL DESIGN

This section describes the conceptual design for the field pilot study, which includes specific objectives, pilot study location details, conceptual well layout, and preliminary substrate design. The field pilot study design, as well as the effectiveness monitoring program (described in Section 5.0), may be modified or refined based on the results of pre-design field and laboratory activities described in Section 3.0. The final design will be presented in a pilot study work plan addendum prior to implementation of the pilot study (described in Section 8.0).

4.1 OBJECTIVES

The objectives of the pilot study are to accomplish the following:

- Evaluate the feasibility and effectiveness of implementing in-situ bioremediation to reduce the flux of perchlorate mass migrating toward the Las Vegas Wash;
- Evaluate critical hydraulic (flow, migration, gradients) and chemical (perchlorate and other electron acceptors) relationships between the alluvium and UMCf that govern the flux to the Las Vegas Wash;
- Estimate the ZOI for substrate and biodegradation achievable in the alluvium and UMCf during the pilot study;
- Estimate or extrapolate the longevity of the carbon substrate and frequency of carbon substrate replenishment required to prevent perchlorate breakthrough immediately downgradient of the injection transect; and
- Examine the approach and feasibility for full-scale transect treatment including equipment, injection, and monitoring well layout, substrate addition and replenishment, and analytical sampling evaluation criteria to provide critical information applicable to the remedial alternatives evaluation in the forthcoming FS.

4.2 PILOT STUDY LOCATION

As shown in Figures 2 and 3, the proposed area for the pilot study is at two locations, noted as Transect 1a and Transect 1b. Transect 1a is located directly east of Pabco Road (also referred to as Aguila Road) on COH-owned property. This location was selected to intercept perchlorate contamination generally greater than 5,000 μ g/L, which represents one of two higher perchlorate concentration locations within the Downgradient Study Area that are contributing to the total mass flux migrating into the Las Vegas Wash, and proposed work in this area will provide valuable information on the potential mass flux pathways, mechanisms, and rates, which will be critical for developing a remedy evaluation for the feasibility study. Transect 1b is located upgradient of the Las Vegas Wash on Clark County-owned property and was selected to treat contamination potentially migrating into the Las Vegas Wash from a second area that generally has perchlorate contamination at concentrations greater than 5,000 μ g/L. Transect 1b is designed to connect with the bedrock outcrop at its eastern end. It is anticipated that the bedrock outcrop is an important feature influencing groundwater flow and perchlorate mass flux in this area.

4.3 CONCEPTUAL LAYOUT

This section describes the injection and monitoring wells that will be installed to evaluate the effectiveness of the in-situ bioremediation pilot study. Access agreements (discussed in Section 6.0) will be in-place prior to initiating field activities. Once access is granted, an underground utility survey will be performed before drilling commences. All wells will be drilled in accordance with the NDWR requirements. Drilling, well installation, and well development procedures are provided in the Field Sampling Plan, Revision 1 (ENVIRON, 2014b).

4.3.1 Injection Well Layout

Although the final number, location, spacing and orientation of the injection wells will be determined after completion of the pre-design field and laboratory activities described in Section 3.0, the injection wells within Transects 1a and 1b will be configured to best meet project objectives. Based on results from the previous and on-going treatability studies, there could be considerable heterogeneity in the lithology within relatively short distances. The soil grain type, thickness of sand/gravel lenses, and paleochannels vary in all three dimensions in the saturated subsurface. Therefore, flow pathways and transport of organic carbon during injections will likely be non-uniform. As a result, the injection transect could be installed in a single row or multiple staggered rows to address the impacts of heterogeneity and non-uniform flow, which could provide overlap and better distribution of the injected carbon substrate to curtail the potential for perchlorate breakthrough. The results of the on-going SWF Area Treatability Study will provide additional information and data that will assist in the final design of injection well transects and possible implementation of a staggered well network, if beneficial. Figures 4 and 5 depict the general injection well transect location. The final number of injection wells and configuration of the injection well transect line(s) will be determined in the pilot study work plan addendum.

The layout of the injection wells will also consider the orientation of the transects with respect to groundwater flow directions. It is anticipated that Transect 1a will be installed close to perpendicular to groundwater flow. Transect 1b will include portions that might be close to perpendicular to groundwater flow toward its eastern end while other portions near its center and western end might be more parallel to groundwater flow.

The injection well layout will potentially target both perchlorate-contaminated groundwater in the alluvium and UMCf in order to evaluate layouts that appropriately address the RAO of mitigation of perchlorate mass flux discharge to the Las Vegas Wash. Due to their difference in characteristics, the alluvium and UMCf will be addressed separately, as far as the injection well system is concerned. This includes the spacing, configuration, number of wells, and well design. Results of the pre-design activities, proposed UNLV bench-scale tests, and results of the on-going SWF Area Treatability Study will be used to finalize the injection system network.

Injection wells will be constructed of 2-inch schedule 40 PVC casing and screened with 2-inch diameter slotted PVC well screen, as discussed in Section 3.1.4. The total well depth, slot size, filter pack, and length of the well screens will be determined in the field based on the lithology and depth to groundwater. Paired wells may be used to separate screened intervals within the alluvium and UMCf to maximize subsurface distribution during substrate injections as needed. Wells will be completed with flush-mounted, tamper-resistant (locked), traffic-rated well boxes, at an elevation approximately one-half inch above grade. As discussed in Section 3.1.4, following the completion of well construction, but no sooner than 24 hours after well construction is complete, Tetra Tech will develop each of the newly installed wells.

4.3.2 Effectiveness Monitoring Wells

A monitoring well network, consisting of upgradient and downgradient monitoring wells, will be required to evaluate pilot study effectiveness. Upgradient monitoring wells will be used to determine the perchlorate concentrations in groundwater that are migrating into the injection well transect(s) and thereby, ultimately migrating into the Las Vegas Wash, if untreated. Downgradient monitoring wells will be installed at strategic locations downgradient of the injection well transects, directly in-line and offset from the injection wells, to monitor for treatment effectiveness. To the extent possible, monitoring wells that have been or will be installed by others in the vicinity of the pilot test will be incorporated in the monitoring well network. Periodic sampling of the Las Vegas Wash water will also be performed to provide additional information regarding bioremediation effectiveness on the RAO of mitigation of the perchlorate mass flux discharge to the Las Vegas Wash (Section 5.3).

Monitoring wells installed as part of the pre-design phase will be incorporated into the effectiveness monitoring program. Based on pre-design results and final pilot study layout, additional monitoring wells may be required. The exact number and location of monitoring wells will be finalized following the pre-design activities and presented in a pilot study work plan addendum (described in Section 8.0).

In general, new monitoring wells will be constructed of 2-inch schedule 40 PVC casing and screened with 2-inch diameter slotted PVC well screen and #3/16 filter pack, as discussed in Section 3.1.4. The slot size and filter pack may be adjusted based on the results of the soil physical parameter analyses. The depth of the well and length of well screen will be determined in the field based on lithology and depth to groundwater. Dual-nested or paired monitoring wells may be used to separate screened intervals, if conditions warrant. Wells will be completed with flush-mounted, tamper-resistant (locked), traffic-rated well boxes, at an elevation approximately one-half inch above grade. As discussed in Section 3.1.4, following the completion of well construction, but no sooner than 24 hours after well construction is complete, Tetra Tech will develop each of the newly installed wells.

4.4 PRELIMINARY INJECTION DESIGN

This section presents the preliminary injection design for injections of carbon substrate, water for chemical makeup, and distribution water. Results of the previous treatability studies have provided preliminary findings on the longevity of each carbon substrate injection event, lateral and downgradient coverage or influence of the injections, and impact of the distribution water. These findings have been incorporated in the conceptual injection design for both carbon substrate injections and follow-up distribution water. As the results from the on-going SWF Area Treatability Study are evaluated, the findings will be utilized for the final design of the pilot study and will be presented in a pilot study work plan addendum (described in Section 8.0).

4.4.1 Carbon Substrate Injections

Findings from the previous treatability study (described in Section 2.2) indicated that the effects of the first carbon injection lasted between two and three months in relatively high groundwater flow conditions (32 ft/day). That study incorporated a second injection event utilizing half of the quantity of carbon substrate used in the first event. The reason for adding only half the quantity was to examine the lower threshold of the substrate that would be required for bioremediation. In addition, the UNLV bench-scale column study indicated that temporary reductions in aquifer transmissivity could be an issue if excess carbon substrate was added. The second carbon substrate addition appeared to be sufficient for approximately two months, despite the observation that perchlorate continued to degrade and very little DO was present. The on-going SWF Area Treatability Study will provide additional data and information on the effectiveness and durability of the initial carbon substrate injection and frequency and need for subsequent injections.

In addition to the results from the previous and ongoing treatability studies, factors to be considered when determining the quantity of carbon substrate used for the Las Vegas Wash Bioremediation Pilot Study include the results and findings of the pre-design activities, known chemistry and geochemistry of the groundwater, and stoichiometric requirements for the carbon substrate based on the mass of perchlorate and other electron acceptors that will migrate through the transects. These estimates of carbon substrate quantities and projected frequency of the injections for the pilot study will be performed for the alluvium and UMCf, into which injections are expected to occur via two separate injection well network systems. The final substrate type and quantity for the injections into the UMCf (EVO, soluble substrate, or a combination of the two) will be evaluated and finalized in the pilot study work plan addendum based on the results and findings of the pre-design activities and UNLV bench-scale studies.

Prior to actual carbon substrate injections, slug tests will be performed on as many as half of the injection wells and monitoring wells to determine pre-injection hydraulic conditions. Step-rate injection tests will also be performed prior to carbon substrate injections to establish well injection rates and pressures in the injection wells. Slug tests will be performed periodically throughout the pilot study as they have been shown to provide valuable information on subsurface conductivity changes following carbon substrate injections as described in Section 2.2.

The carbon substrate will be pressure-injected into injection wells using a mobile injection system consisting of a tanker or trailer unit with a manifold piping system and hoses supplied with valves and regulators for controlling and monitoring rates of injection. The injection solution will be prepared by thoroughly mixing the carbon

substrate, additional amendments such as micronutrients, and water in the trailer-mounted mixing tank. Prior to each injection, water will be used for dilution of the carbon substrate (generally diluted at a ratio of 1:4 parts of carbon substrate to water).

4.4.2 Distribution Water

Distribution water is an important component of the injection process to improve subsurface distribution of the amendments within the injection well transect. This feature of the bioremediation design is important because it improves the distribution of the carbon substrate to create a more complete treatment barrier. As a result, a designated quantity of water (determined based on results from the pre-design field and laboratory activities described in Section 3.0) will be injected into each well either with or following injections.

Based on results observed regarding the impact of distribution water during the two injection events in the previous treatability study (Section 2.2), it appears that fairly large amounts of distribution water will likely be required to enhance distribution of the carbon substrate in the vicinity of the injection wells. It appears that up to two-thirds of a single pore volume of distribution water could be required for each well. Preliminary findings also indicated that injecting distribution water into alternate wells within the transect provided better distribution of the carbon substrate that was injected. Results and lessons learned from the injections associated with the SWF Area Treatability Study will also be incorporated into the final distribution water protocol for the Las Vegas Wash Bioremediation Pilot Study, which will be presented in a pilot study work plan addendum following completion of the pre-design activities (described in Section 8.0).

Based on a review of the available water sources, there are three choices for distribution water. Specifically, these include COH water obtained from a nearby hydrant, extraction of groundwater from nearby monitoring wells, and water from the Las Vegas Wash itself. A detailed evaluation of each water source, their advantages and disadvantages, and final selection will be provided in a forthcoming pilot study work plan addendum that will present the final pilot study design. It should be noted that for the previous treatability study near the COH water treatment facility, hydrant water was used as the source for distribution water. However, the SWF Area Treatability Study used extracted groundwater from upgradient monitoring wells in the immediate vicinity of the treatability study. A series of injection and subsequent monitoring events will be performed for the SWF Area Treatability Study prior to submittal of the Las Vegas Wash Bioremediation Pilot Study technical memorandum (described in Section 8.0) and lessons learned from these injections will be incorporated in the evaluation of distribution water sources.

5.0 EFFECTIVENESS MONITORING PLAN

This section describes the conceptual groundwater and surface water monitoring programs to determine treatment effectiveness during the pilot study. This section also describes the methodology to evaluate the pilot study's impact on perchlorate mass flux. Based on the results of the pre-design investigation, the monitoring plan may be modified in the final pilot study design presented in the pilot study work plan addendum (described in Section 8.0).

5.1 GROUNDWATER SAMPLING PROCEDURES

General groundwater sampling activities will follow the guidance of the Field Sampling Plan, Revision 1 (ENVIRON, 2014b). Prior to groundwater sample collection, groundwater levels will be gauged in all wells for use in potentiometric contouring. Groundwater samples will be collected using low-flow purging and sampling techniques. During low-flow purging of the wells, a pump capable of purging between approximately 0.1 to 0.13 gallons per minute will be used to minimize drawdown and induce inflow of fresh groundwater. The pump discharge water will be passed through a flow-through cell field water analyzer for continuous monitoring of field parameters (temperature, pH, turbidity, electrical conductivity, DO, and oxidation reduction potential). Field parameters will be monitored and recorded on field sampling forms during purging. The wells will be sampled when purging is complete, which is when the field parameter readings and water levels have stabilized. Per NDEP letter dated June 27, 2016, field-filtering of water samples for perchlorate analysis will not be required. Filtering for dissolved metals and hexavalent chromium analyses will be conducted in the field using a 0.45-micron filter.

5.1.1 Effectiveness Monitoring

Groundwater samples will be collected from all injection and monitoring wells in the vicinity of the pilot study areas to establish baseline conditions prior to the injections. After injections have occurred, groundwater samples will be periodically collected from the upgradient and downgradient monitoring wells. A variety of field, laboratory, and microbial parameters that may be evaluated during the study are listed in *Table 2*, which presents the parameters, associated methods, purpose, and frequency after injections. Effectiveness monitoring wells will include newly installed monitoring wells as well as select monitoring wells that are either existing or will be installed during the pre-design phase. The actual frequency of sampling, selected wells, and specific parameters to be sampled during each individual event will be presented as part of the final design and adjusted based on the results from pilot study effectiveness monitoring events. Specialized microbial analyses, namely, PLFA analyses and the presence of the perchlorate reductase gene, will be determined via the employment of Bio-Traps[®] in select wells during the study. In addition, slug tests will be repeated periodically during the field pilot study to examine any changes in hydraulic conductivity as a result of carbon injections and geochemical processes.

Parameter	Analytical Method	Purpose	Potential Frequency
Field Parameters			
EC	Field Meter	Assess geochemical conditions	
рН	Field Meter		Baseline, Weekly (Month 1), Biweekly (Month 2), Monthly thereafter
DO	Field Meter		
ORP	Field Meter		
Temperature	Field Meter		
Turbidity	Field Meter		

Table 2 Example Groundwater Effectiveness Monitoring Sampling Protocol

Parameter	Analytical Method	Purpose	Potential Frequency	
Laboratory Param	neters			
Perchlorate	E314	Assess treatment effectiveness	Baseline, Weekly (Month 1), Biweekly (Month 2), Monthly (Months 3 – 12), Quarterly thereafter	
TOC	SM5310B	Assess carbon substrate distribution in the aquifer		
Nitrate	E300.0	Assessment of nitrate as the most likely competing electron acceptor and carbon substrate consumer		
Sulfate	E300.0	Assessment of sulfate as an electron acceptor and potential carbon substrate consumer		
Chlorate/Chlorite	E300.1	Assess treatment effectiveness and examination as intermediate by-product of perchlorate biodegradation		
TDS	SM2540C	Assess impact of salts on delayed or slower perchlorate biodegradation in the flow-through mode		
Alkalinity	SM2320B	Assess geochemical conditions		
Hexavalent Chromium	SW846 7199	Assess secondary impacts of treatment		
Sulfide	HACH Method 8131	Examine secondary geochemical impacts	Baseline, Monthly (Months 1 – 6), Quarterly thereafter	
Total Nitrogen	E351.2	Examine the need for micronutrients		
Total Phosphorus	E365.3	Examine the need for micronutrients		
Ferrous Iron	HACH Field Kit	Assess effect of reducing conditions on iron		
Manganese	SW846 6010B	Assess potential for biologically driven dissolution of manganese		
Methane	EPA Method RSK175	Examine secondary geochemical impacts		
Dissolved Metals ⁽¹⁾	SW6010/6020	Assess secondary impacts of treatment (includes arsenic)		
VFAs	BF-MB-009, Rev 3	Surrogate carbon substrate assessment		
Chloride	E300.0	Potential estimation of conservative end-product of biodegradation		
PLFA	Microbial Insights Method ² Examine microbial response to carbon substrate addition, evaluate impact of carbon substrate on total live biomass over time		Baseline, Quarterly (through Month 6),	
Perchlorate Reductase Gene	qPCR	Examine microbial response to carbon substrate addition	Semi-annually	
Acronyms and Abbreve BL: Baseline EC: Electrical conductive DO: Dissolved Oxygen ORP: Oxidation-reducti	vity on potential			

PLFA: Phospholipid Fatty Acids

qPCR: quantitative polymerase chain reaction

TOC: Total organic carbon

TDS: Total dissolved solids

VFAs: Volatile Fatty Acids

Notes:

(1) Metals include arsenic, chromium, iron, and manganese.

(2) White, D. C., H. C. Pinkart, and D. B. Ringelberg. (1997). Biomass measurements: Biochemical approaches, p. 91-101. *In* C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach, and M. V. Walter (ed.), Manual of Environmental Microbiology. ASM Press, Washington.

5.2 MASS FLUX EVALUATION

In conjunction with groundwater monitoring, a groundwater model will be developed to assess the effectiveness of the pilot study. The objective of the groundwater modeling is to calculate the groundwater flux through the injection well transects before and after injection. The groundwater model results will be used to estimate the amount of perchlorate mass destroyed and amount of perchlorate mass that remains in the subsurface within the footprint of the pilot study after the study is completed. Specifically, the groundwater model for this Work Plan will be based on the Phase 6 Ramboll Environ groundwater flow and transport model (Phase 6 Model), which is scheduled to be completed by March 2018. The Phase 6 model will be modified by Tetra Tech to focus on the pilot study areas and Las Vegas Wash by using grid refinement and site-specific material properties measured by field techniques and laboratory analyses, such as NMR, slug tests, and physical properties. Once constructed, the modified groundwater model will be calibrated to the groundwater response to injections conducted during this study. Then, this model will be used to calculate groundwater flux through injection well transects to ultimately estimate perchlorate mass destroyed or left in place by the pilot study.

5.3 SURFACE WATER SAMPLING

Surface water samples are currently collected on a monthly basis to monitor the mass flux of perchlorate migrating into the Las Vegas Wash, pursuant to the RI Phase 2 Investigation Modification No. 3 at NERT (Ramboll Environ, 2017). This data will be used during the pre-design and pilot study phases to monitor for potential decreases in the mass flux of perchlorate migrating into the Las Vegas Wash resulting from this pilot study. The current surface water sampling program includes sample collection from six weir locations along the Las Vegas Wash, including Pabco, Bostick, Homestead, Three Kids, Sunrise Mountain, and Duck Creek weirs. Samples are analyzed for perchlorate, chlorate, and TDS. As part of the pilot study effectiveness monitoring program, surface water samples will also be periodically collected from three additional weir locations, including the Historic Lateral, Calico Ridge, and Lower Narrows weirs. In addition to surface water sampling, surface water elevations will also be periodically measured from nearby gauges and results will be compared to nearby groundwater elevations to help assess groundwater flow directions (locations presented in Section 3.1.8).

Surface water samples will be collected using similar techniques as used during collection of surface water samples required under RI Phase 2 Investigation Modification No. 3. Field parameters (temperature, pH, turbidity, electrical conductivity, DO, and ORP) will be monitored and recorded on field sampling forms prior to sample collection. In addition to the current monthly surface water sample analysis of perchlorate, chlorate, and TDS, organic content in terms of TOC and/or BOD as well as dissolved metals will be analyzed to obtain a baseline prior to in-situ bioremediation activities and to monitor for progress and secondary effects.

5.4 DATA VALIDATION

All pilot study field samples and field quality assurance/quality control (QA/QC) samples will be evaluated for quality and usability. Field QA/QC samples include equipment blanks, field blanks, field duplicates, and matrix spike/matrix spike duplicates. The QA/QC samples will provide information on the effects of sampling procedures and assess sampling contamination, laboratory performance, and matrix effects.

The current guidance described in the NDEP *Data Verification and Validation Requirements - Supplement April, 2009* states that "all data collected at the BMI Complex and Common Areas should be validated at least to Stage 2B...In addition, at least 10% of all data within a DVSR should be validated to Stage 4". However, laboratory analytical data from pilot study activities will be verified and validated to Stage 2A in accordance with recommendations made to NERT concerning end-use of data. The intended use of data is to support technology selection in the forthcoming FS. Per the January 11, 2017 email from Weiquan Dong, NDEP accepts the recommendation and is currently in the process of revising the existing guidance.

The analytical data will be evaluated for QA/QC based on the following documents: Quality Assurance Project Plan (QAPP), Revision 1, July 18 2014; NDEP Revised Guidance on Qualifying Data due to Blank Contamination for the BMI Complex and Common Areas, January 5 2012; National Functional Guidelines (NFG) for Inorganic Superfund Data Review, August 2014; National Functional Guidelines (NFG) for Superfund Organic Methods Data Review, August 2014; and individual United States Environmental Protection Agency (US EPA) and laboratory methods, based on the logic contained in the NFG.

6.0 ACCESS AND PERMITTING REQUIREMENTS

Both access agreements and permits will be required prior to performing pre-design and/or injection activities associated with this pilot study. This section presents a summary of the access and permit requirements that will likely be required for the implementation of this pilot study.

6.1 ACCESS NEGOTATIONS

Due to the off-site location of the pilot study, the Trust will acquire land use authorizations for all field activities. As described in Section 4.2, the proposed areas for the pre-design and pilot study consist of two locations that are public parcels of land under the jurisdiction of COH and Clark County, respectively. As a result, Tetra Tech, on behalf of NERT, will prepare and submit all required applications for access to these parcels, in coordination with the Trust. Any adjustments made to the plot study resulting from this process will be presented in the pilot study work plan addendum (described in Section 8.0).

6.2 PERMITTING

There will be a series of permits required for the various activities that are being proposed as part of the pilot study. In addition to the permits described herein, a review of other potential permitting requirements was conducted and based on project design, several regulatory requirements likely will not apply. These include an entry permit issued by the BOR because no new wells are proposed to be installed on Federal land for the predesign or pilot study activities. No new entry permit is anticipated as the only activity anticipated on Federal lands is limited to collecting data from existing wells, for which entry permits have already been established. Authorization under the construction stormwater general permit administered by NDEP is not anticipated because cumulative disturbances are not expected to exceed one acre. Lastly, there will be no wastewater discharges from well operation.

6.2.1 Land Use Authorization

As described above, land use authorization for well installation and operation will be required from COH and Clark County. The authorizations will consist of an application by Tetra Tech, on behalf of NERT, and demonstration that the land use meets applicable zoning requirements. This process may take several months and require Planning Commission review and approval, which could be expedited under an administrative review if the agencies consider the project a "governmental" facility or utility. Coordination also would be required with Clark County Parks & Recreation for facilities located in the Wetlands Park.

6.2.2 Well Installation Permitting

Both pre-design and field pilot study activities will require a Nevada Administrative Code (NAC) 534.441 Monitor Well Drilling Waiver and a NAC 534.320 Notice of Intent Card prior to installation of injection wells and monitoring wells. The Monitoring Well Drilling Waiver also requires a completed, signed, and notarized Affidavit of Intent to Abandon a Well as an attachment. As required, the injection and monitoring wells will be drilled by a licensed well driller pursuant to Nevada Revised Statutes 534.160 and will be constructed pursuant to NAC Chapter 534 – Underground Water and Wells. To the extent that any injection and monitoring wells associated with this pilot study are to be abandoned, they would be done so in accordance with the provisions contained in NAC 534.4365 and all other applicable rules and regulations for plugging wells in the State of Nevada. It is currently anticipated that most, if not all, of the injection and monitoring wells to be installed as part of this pilot study will remain in place at the end of the pilot study.

6.2.3 County Permitting

Per the Clark County Department of Air Quality, a dust control permit is required for activities that result in soil disturbance greater than 0.25 acres. A review of installation activities associated with pre-design and pilot study phases will be conducted to determine whether the soil disturbance will be greater than 0.25 acres. If required, Tetra Tech, on behalf of NERT, will prepare and submit the required dust control permitting application. No air permitting other than dust control is anticipated because there will be no air emissions associated with the wells or equipment needed for their installation and operation that would trigger minor source permitting.

6.2.4 NDEP – Underground Injection Control Program

The pilot study will require an underground injection control (UIC) permit for the injection of the carbon substrate and amendments into the saturated subsurface. Specifically, an application for a Class V General Permit for Long-Term Remediation UIC permit will be required. The UIC long-term general permit falls under NAC 445A. The permit application requires completion of UIC Form U200 – Permit Application and UIC Form U210 – Notice of Intent.

6.2.5 Water Appropriations Permit

Pursuant to Nevada Revised Statutes 533.335 and 533.437, an application for a Permit to Appropriate the Public Waters of the State of Nevada for Environmental Purposes (Water Appropriation Permit) may be required to support the extraction of groundwater from nearby injection or monitoring wells to be used as distribution water during injections. The need for the water appropriations permit will be determined following the detailed evaluation of the source for distribution water to be presented in the forthcoming pilot study work plan addendum that will present the final pilot study design.

7.0 ECOLOGICAL REVIEW AND PROTECTION MEASURES

As previously explained, the pilot study is located within the downgradient study area on private land that is owned by COH and on land that is under the jurisdiction of Clark County Wetlands Park. The most common vegetation community is desert shrubland, dominated by fourwing saltbush (*Atriplex canescens*), quailbush (*Atriplex lentiformis*), screw-bean mesquite (*Prosopis pubescens*), honey mesquite (*Prosopis glandulous* var. *torreyana*), salt cedar (*Tamarix chinensis*), and creosote (*Larrea tridentata*). Soils are loamy and gravelly. To the north of the pilot study areas is the riparian corridor of the Las Vegas Wash. Riparian vegetation communities are comprised of cottonwood (*Populus angustifolia*), willow (*Salix gooddingii*), and salt cedar, with inclusions of cattail (*Typha sp.*) wetlands.

Much of the pilot study area has been heavily disturbed for erosion control along the Las Vegas Wash, development of park infrastructure, and to support multiple wastewater outfalls for facilities discharging to the Las Vegas Wash. General disturbances near the Las Vegas Wash include roadways and a parking lot; picnic shelters and bathroom facilities; a paved bike path; unpaved trails; electric transmission structures; concrete weirs for treated wastewater outfalls to the wash; erosion control structures; and areas of active revegetation projects.

A desktop data review for federally listed species with the potential to occur was completed for the project area [Tetra Tech, 2017; United States Department of Interior – Bureau of Reclamation (USDOI – BOR), 2017]. Species for consideration were identified in a United States Fish and Wildlife Service (USFWS) Information Planning and Conservation (IPaC) report (USFWS, 2016). Surveys for federally protected species with the potential to occur were completed as recently as 2017 (Tetra Tech, 2017; USDOI-BOR, 2017). Documentation of past threatened and endangered species surveys in the Clark County Wetlands Park area is also provided in the Las Vegas Wash Wildlife Management Plan prepared by Southern Nevada Water Authority (SNWA) (SNWA, 2008) and the USFWS Biological Opinion prepared for other phases of SNWA weir construction (USFWS, 2009a). There is no federally-designated critical habitat for threatened or endangered species within 0.5 mile of the proposed pilot study locations, as documented in critical habitat rulemaking for individual species (USFWS, 2016; USFWS, 1994, 2013, 2014a). Findings of the desktop data review and surveys are summarized as follows:

- Southwest willow flycatcher (*Empidonax trailliii extimus*) inhabits dense riparian tree and shrub habitat, especially where willows and/or tamarisk are present, as well as standing water or saturated soils. It is typically found below 8,500 feet in elevation. Breeding and nesting occurs from early May through July (USFWS, 2014b). Individuals have been recorded in the Las Vegas Wash during migration, but no nesting has been documented. It was not documented as a breeding species in the Las Vegas Wash during an extensive avian population survey conducted between 2005 and 2015 (Great Basin Bird Observatory, 2016). The 2017 surveys did not document individuals of this species (Tetra Tech, 2017; USDOI-BOR, 2017). Nesting is considered unlikely due to the lack of suitable habitat and of historic use records.
- Yuma clapper rail (*Rallus longirostris yumanensis*) is a marsh bird found in dense cattail or cattail-bulrush marshes along the lower Colorado River in Mexico north to the lower Muddy River and Virgin River in Utah above those rivers' confluence with Lake Mead. In Nevada, this subspecies can be found along the Virgin River and lower Muddy River, along the Colorado River around Lake Mohave, and along the Las Vegas Wash (USFWS, 1983). Nesting is typically March through May (USFWS, 2010). Individuals were detected along the wash during multiple surveys conducted since 1998, but no nesting was documented (SNWA 2008). It was not documented as a breeding species in the Las Vegas Wash during an extensive avian population survey conducted between 2005 and 2015 (Great Basin Bird Observatory, 2016). The 2017 surveys did not document individuals of this species (Tetra Tech, 2017; USDOI-BOR, 2017).
- The yellow-billed cuckoo (*Coccyzus americanus*) is a riparian obligate that nests almost exclusively in large tracts of riparian woodlands, most commonly in cottonwood-willow-dominated woodlands

(Halterman, et al. 2015). Suitable breeding habitat is in multi-layered riparian woodlands (with a tree overstory and shrubby understory) and at least 12 acres in size. The species is typically found below 8,500 feet (USFWS, 2015). The nesting season for this species is considered June 1 through September 15. No migrant or resident yellow-billed cuckoo (*Coccyzus americanus*) were detected during systematic surveys along the wash during each year from 2000 to 2004 (SNWA, 2008). No individuals were found in the Las Vegas Wash during an extensive avian population survey conducted between 2005 and 2015 (Great Basin Bird Observatory, 2016). The 2017 surveys did not document individuals of this species (Tetra Tech, 2017; USDOI-BOR, 2017).

Desert tortoise (*Gopherus agassizii*) were observed on the north side of Las Vegas Wash in 2003 (SNWA 2008). In 2005, tortoise burrows were found within portions of Clark County Wetlands Park, and additional burrows, a carcass, and scat evidence were found outside of the park (SNWA, 2008; USFWS, 2009a). Two separate desert tortoise survey events conducted according to USFWS protocol were completed in 2017. Surveys did not detect desert tortoises or tortoise signs. However, an incidental observation of a live desert tortoise in the Downgradient Study Area was reported by a SNWA subcontractor on March 28, 2017 (personal communication from Carlton Parker, NDEP).

Riparian habitat lies outside of the pre-design and pilot study areas. Federally listed avian species are not anticipated to nest in the portion of the Las Vegas Wash located near the pre-design and pilot study areas. Effects to avian species from the work proposed as part of the pre-design and pilot study are not anticipated. Therefore, additional protection measures are not required.

The majority of the project area is disturbed as the remaining suitable habitat is fragmented by urban development. However, it is possible for the desert tortoise to occur based on historic documentation. Effects to the desert tortoise may occur from the work proposed as part of the pre-design and pilot study. Direct effects may include mortality caused by crushing or impact from vehicle and equipment operation. Potential indirect effects considered include habitat degradation, fragmentation, and loss; and behavioral alterations caused by noise disturbance, creation of dust hazards from heavy equipment and vegetation removal, and human and vehicle presence.

Protection measures, which may be implemented, if warranted, include the following, which are identified in the 2009 USFWS Biological Opinion (USFWS, 2009a) and in the Desert Tortoise (Mojave Population) Field Manual (USFWS, 2009b):

- An authorized desert tortoise biologist would serve as a biological monitor during activities that required the use of heavy equipment or that resulted in ground disturbance. The monitor would have authority to cease activities if a desert tortoise appeared in the proposed pilot study areas.
- Desert tortoises will be treated in a manner to ensure that they do not overheat, exhibit signs of overheating (e.g., gaping, foaming at the mouth, etc.), or be placed in a situation where they cannot maintain surface and core temperatures necessary to their well-being. Unless the tortoise is in imminent danger, no desert tortoise shall be captured, moved, transported, released or purposefully caused to leave its burrow for whatever reason when the ambient air temperature is above 95 degrees, or if the ambient air temperature is anticipated to exceed 95 degrees before handling can be completed.
- Desert tortoise education would be presented to field personnel prior to initiating activities.
- A maximum speed of 15 miles per hour would be enforced.
- Litter would be controlled to avoid opportunistic predators, such as desert kit fox, coyotes, and common ravens.

8.0 REPORTING

Monthly status updates will be provided to the Trust and NDEP summarizing the progress and results of the predesign field activities, laboratory, and pilot study.

Following completion of the pre-design phase described in Section 3.0, a pilot study work plan addendum will be prepared for NDEP and US EPA review. The pilot study work plan addendum will include the following:

- Summary of pre-design field activities, including presentation of soil boring logs, well construction diagrams, cross-sections, single borehole dilution tests, and slug tests;
- Analytical results summary of soil, groundwater, and surface water samples collected during the predesign field activities;
- Preliminary summary and application of bench testing results;
- Final pilot study design, including injection and monitoring well layout, targeted treatment depths and intervals in the alluvium and UMCf, injection protocol for carbon donor and distribution water source, and finalized effectiveness monitoring program; and
- Schedule of pilot study activities, including implementation, anticipated injection intervals, monitoring, and reporting.

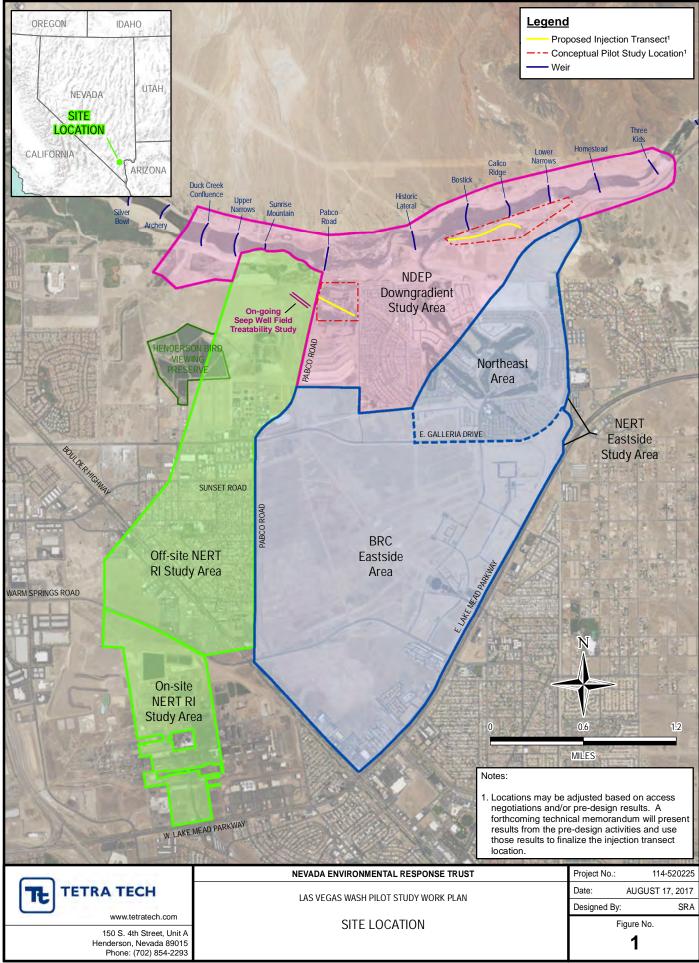
Following completion of the pilot study, a final Las Vegas Wash Bioremediation Pilot Study Report will be prepared and submitted for NDEP and US EPA review. This report will summarize the pilot study activities and will include:

- Results of soil borings, single borehole dilution tests, slug tests, and NMR logging conducted both during and following installation of the injection well network;
- Analytical results summary of soil and groundwater samples collected during injection and monitoring well installation as part of pilot study implementation;
- Summary of bench testing results;
- Evaluation of effectiveness in reducing perchlorate-contaminated groundwater that is migrating towards the Las Vegas Wash, including an estimate of the perchlorate mass reduction during the pilot study timeframe;
- Estimation of perchlorate degradation kinetics that were attainable in the field from trend graphs of individual monitoring wells; and
- Determination of the technology's feasibility and effectiveness for full-scale application and other relevant components required for proper evaluation in the FS, including:
 - o Potential layout and plan for full-scale implementation;
 - o Preliminary estimates of capital and operating costs for full-scale implementation;
 - Possible insights gathered from the predesign and pilot testing on where the mass flux is passing through the two transects and entering the Las Vegas Wash; and
 - Management of possible temporary reductions in aquifer transmissivity and any release of secondary constituents (e.g.: arsenic).

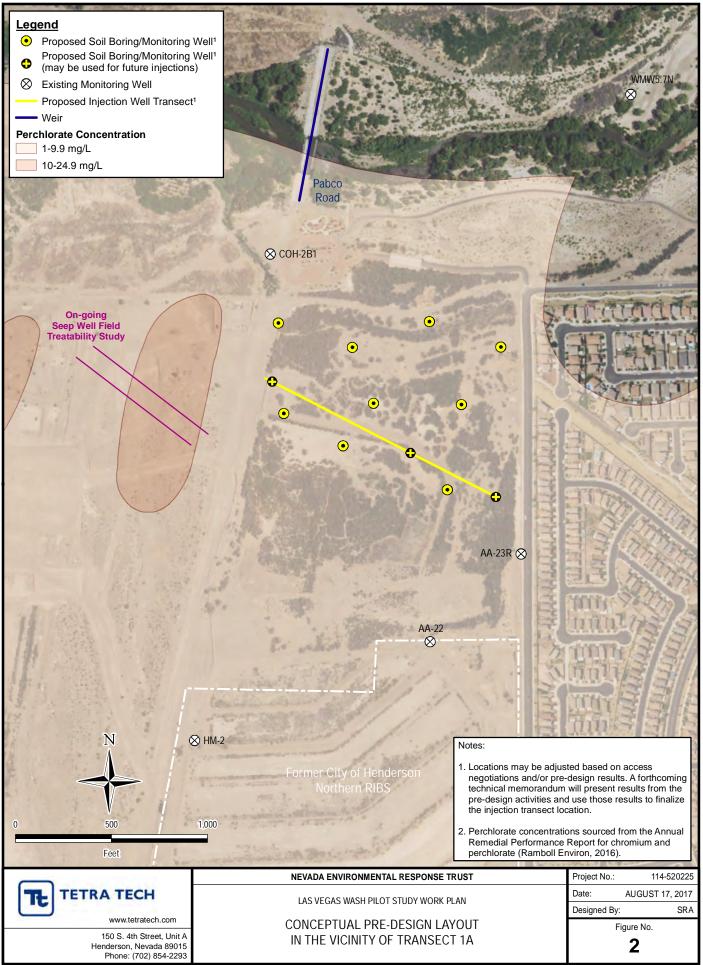
9.0 SCHEDULE

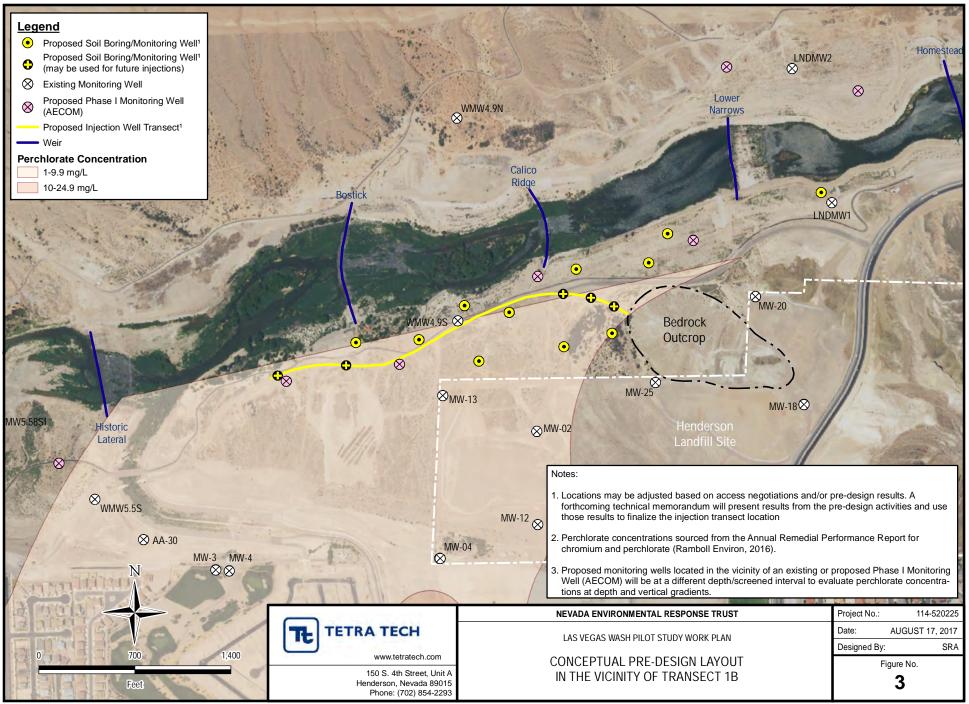
A general schedule for the primary deliverables and activities associated with implementing the pre-design and pilot study activities is presented in *Table 3*. This schedule is contingent upon Trust, NDEP, and US EPA approval of this Work Plan, Trust approval of funding and notice to proceed, completion of access agreements, and obtaining all necessary permits.

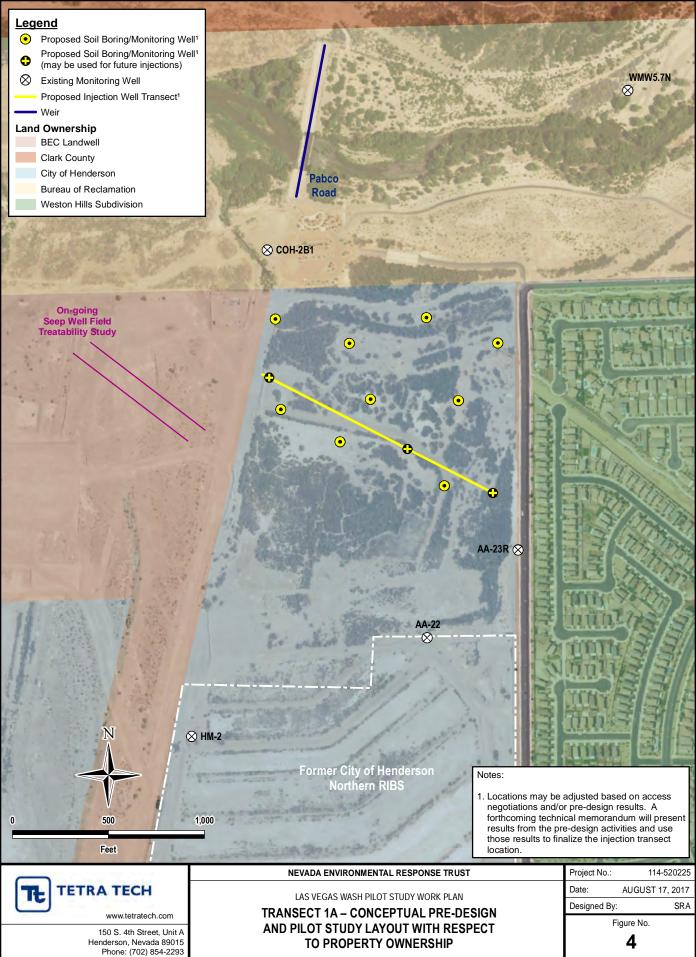
Task/Milestone	Estimated Start Date	Estimated Completion Date
Pre-Design Field Activities	January 2018	June 2018
Laboratory Bench-Scale Tests	February 2018	July 2018
Pilot Study Work Plan Addendum (presents pre-design results and final pilot study design)	July 2018	September 2018
Pilot Study Installation	October 2018	March 2019
Pilot Study Injections, Monitoring, and Reporting	April 2019	December 2020

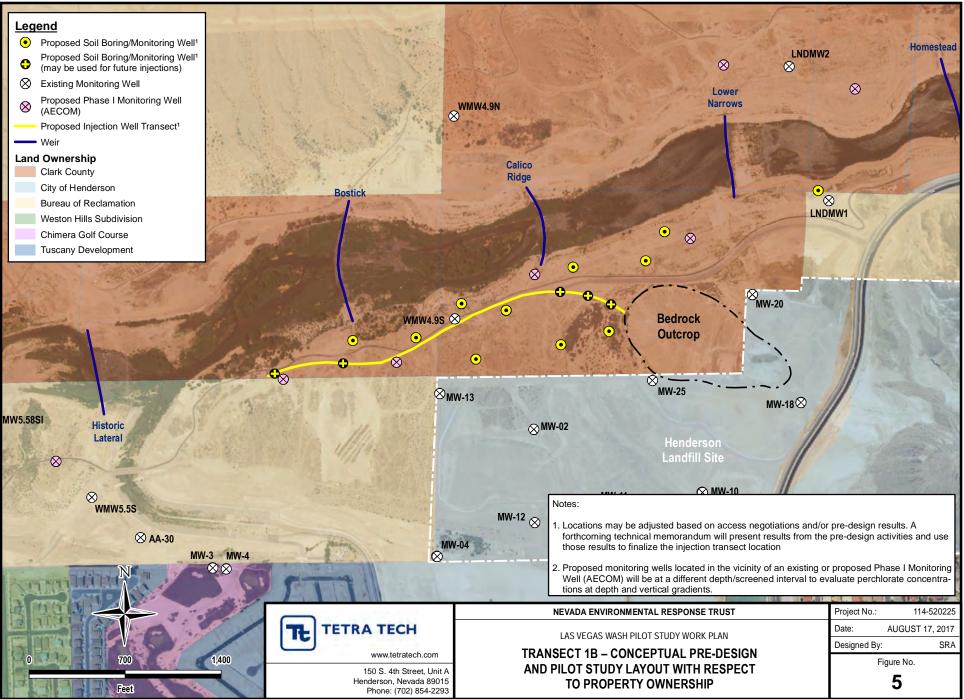

Table 3 Preliminary Project Schedule

10.0 REFERENCES


- AECOM. (2016). Groundwater Sampling Technical Memorandum. October 2016.
- ASTM International. (2008). Standard Test Method for (Field Procedure) for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers.
- Daniel B. Stephens & Associates, Inc. (2010). 2009 Groundwater Monitoring Report, BMI Common Areas (Eastside). Prepared for Basic Remediation Company. May 12, 2010.
- Dong, Weiquan. (2017). "Re: DVSR/EDD for the data from NERT treatability studies." Email received by Nevada Environmental Response Trust from NDEP. January 11, 2017
- Duffield, G. M. (2014). AQTESOLV for Windows Version 4.5 Users Guide.
- ENVIRON. (2014a). Remedial Investigation and Feasibility Study Work Plan, Revision 1, Nevada Environmental Response Trust, Henderson, Nevada. January 10, 2014.
- ENVIRON. (2014b). Field Sampling Plan, Revision 1, Nevada Environmental Response Trust Site, Henderson, Nevada.
- Great Basin Bird Observatory. (2016). *Bird Population and Vegetation Trends at the Las Vegas Wash*, 2005-2015.
- Halterman, M., et al. (2015). A Natural History Summary and Survey Protocol for the Western Distinct Population Segment of the Yellow-billed Cuckoo. April 22, 2015.
- ITRC. (2008). Technical/Regulatory Guidance. Remediation Technologies for Perchlorate Contamination for Water and Soil.
- LaFara, Donald. "Re: Sterile Filtration of Non-Compliance Perchlorate Samples". Letter received by Nevada Environmental Response Trust from NDEP. June 27, 2016.
- Liu, C. and Ball, W.P. (2002). Back diffusion of chlorinated solvent contaminants from a natural aquitard to a remediated aquifer under well-controlled field conditions: Predictions and measurements. *Groundwater*, 40(2), pp.175-184.
- NDEP. (2009). Hydrogeologic and Lithologic Nomenclature Unification. January 2009.
- Parker, Carlton, P.G. (2017). Personal communication regarding desert tortoise sighting in Downgradient Study Area, Supervisor, Bureau of Industrial Site Cleanup, Nevada Division of Environmental Protection. April.
- Pitrak, M., Mares, S., and Kobr, M. (2007). A Simple Borehole Dilution Technique in Measuring Horizontal Ground Water Flow. Ground Water, volume 45, issue 1.
- Plume, R. (1989). Ground-Water Conditions in Las Vegas Valley, Clark County, Nevada. Part 1: Hydrologic Framework.
- Ramboll Environ. (2016). Annual Remedial Performance Report for Chromium and Perchlorate, Nevada Environmental Response Trust, Henderson, Nevada. October 31, 2016.
- Ramboll Environ. (2017). Remedial Investigation Phase 2, Investigation Modification No. 3, Nevada Environmental Response Trust, Henderson, Nevada. May 31, 2017.
- Shackelford, C.D. and Moore, S.M., (2013). Fickian diffusion of radionuclides for engineered containment barriers: Diffusion coefficients, porosities, and complicating issues. *Engineering Geology*, *15*2(1), pp.133-147.
- SNWA. (2008). Las Vegas Wash Wildlife Management Plan. Prepared for the Las Vegas Wash Coordination Committee. March 2008.


- Tetra Tech. (2015). Health and Safety Plan for Site-Wide Investigations and Remedial Activities, Nevada Environmental Response Trust, Henderson, Nevada.
- Tetra Tech. (2016a). Groundwater Bioremediation Treatability Study Results Report, Nevada Environmental Response Trust, Henderson, Nevada.
- Tetra Tech. (2016b). Seep Well Field Area Bioremediation Treatability Study Work Plan, Nevada Environmental Response Trust, Henderson, Nevada.
- Tetra Tech. (2017). Weir Dewatering Treatment Biological Survey and Assessment. Nevada Environmental Response Trust, Henderson, Nevada. January 31, 2017.
- USDOI-BOR. (2017). Downgradient Study Area Phases I and II Groundwater Monitoring Well Installation, and Full-Scale Geophysical Investigation. Draft Environmental Assessment. LC-2517, LND-6.00.
- USFWS. (1983). Yuma Clapper Rail Recovery Plan. U.S. Fish and Wildlife Service, Albuquerque, NM. February 4, 1983.
- USFWS. (1994). Determination of Critical Habitat for the Mojave Population of the Desert Tortoise. Final Rule. 59 Federal Register 5820. February 8, 1994.
- USFWS. (2009a). Biological Opinion for Weir Construction Associated Activities within the Clark County Wetlands Park. U.S. Fish and Wildlife Service. April 23, 2009.
- USFWS. (2009b). Desert Tortoise (Mojave Population) Field Manual: (Gopherus agassizii). U.S. Fish and Wildlife Service. December 2009.
- USFWS. (2010). Yuma Clapper Rail Recovery Plan (Rallus longirostris yumaensis). U.S. Fish and Wildlife Service. February 10, 2010.
- USFWS. (2013). *Designation of Critical Habitat for Southwestern Willow Flycatcher*. Final Rule. 78 Federal Register 344. January 3, 2013.
- USFWS. (2014a). Designation of Critical Habitat for Western Distinct Population Segment of the Yellow-billed Cuckoo. Proposed Rule. 79 Federal Register 48548. August 15, 2014.
- USFWS. (2014b). Southwestern Willow Flycatcher (Empidonax traillii extimus) 5-Year Review: Summary and Evaluation. U.S. Fish and Wildlife Service. August 15, 2014.
- USFWS. (2015). Guidelines for Identification of Suitable Habitat for Western Yellow-billed Cuckoo in Utah. USFWS. June 2015.
- USFWS. (2016). Information for Planning and Conservation (IPaC) Trust Report. U.S. Fish and Wildlife Service. July 2016. http://ecos.fws.gov/ipac/Project/ZFLQT-O3SRV-CYXKQ-7VH24-H2GCNE.
- Walsh, D., Turner, P., Grunewald, E., Zhang, H., Butler Jr., J., Reboulet, E., Knobbe, S., Christy, T., Lane Jr., J., Johnson, C., Munday, T., Fitzpatrick, A. (2013). A Small-Diameter NMR Logging Tool for Ground-water Investigations. Ground Water, volume 51, issue 6, November 2013.
- White, D. C., H. C. Pinkart, and A. B. Ringelberg. (1995). Biomass measurements: Biochemical approaches, p. 91-101. In C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach, and M. V. Walter (ed.), Manual of Environmental Microbiology. ASM Press, Washington.


Figures



WITTS100FS1\PROJECTS\NERT\GIS FIGURE DATABASE\MXD\WORK PLAN\1_SITE_LOCATION.MXD

