

Treatability Study Work Plan Permeable Reactive Barrier Pilot, Revision 1

Nevada Environmental Response Trust Site, Henderson, Nevada

Prepared for: **Nevada Environmental Response Trust**

Prepared by: ENVIRON International Corporation Chicago, Illinois

Date: **December 27, 2013**

Project Number: **2132100I (I06)**

Treatability Study Work Plan, Permeable Reactive Barrier Pilot, Revision 1

Nevada Environmental Response Trust (Former Tronox LLC Site) Henderson, Nevada

Nevada Environmental Response Trust (NERT) Representative Certification

I certify that this document and all attachments submitted to the Division were prepared at the request of, or under the direction or supervision of the Trust. Based on my own involvement and/or my inquiry of the person or persons who manage the system(s) or those directly responsible for gathering the information or preparing the document, or the immediate supervisor of such person(s), the information submitted and provided herein is, to the best of my knowledge and belief, true, accurate, and complete in all material respects.

Office of the Nevada Environmental Response Trust

Environmental	Response Trust Trustee A study A not individually, but solely in its representative capacity as the Nevada Response Trust Trustee A study A st
Name:	Jay A. Steinberg, not individually, but solely in his representative capacity as
President of t	he Nevada Environmental Response Trust Trustee
Title:	Solely as President and not individually
Company: as the Nevad	Le Petomane XXVII, Inc., not individually, but solely in its representative capacity a Environmental Response Trust Trustee
Date:	12/24/13

Treatability Study Work Plan, Permeable Reactive Barrier Pilot, Revision 1

Nevada Environmental Response Trust (Former Tronox LLC Site) Henderson, Nevada

Responsible Certified Environmental Manager (CEM) for this project

I hereby certify that I am responsible for the services described in this document and for the preparation of this document. The services described in this document have been provided in a manner consistent with the current standards of the profession and, to the best of my knowledge, comply with all applicable federal, state and local statutes, regulations and ordinances.

John M. Pekala, PG Senior Manager Date

Certified Environmental Manager ENVIRON International Corporation CEM Certificate Number: 2347

CEM Expiration Date: September 20, 2014

The following individuals provided input to this document:

John M. Pekala, PG, CEM
Allan J. DeLorme, PE
Bruce S. Kennington
Scott D. Warner, PG, CHG, CEG
Laurie LaPat-Palasko, PhD, QEP
Kevin Kyrias-Gann, PE
Beth Richter
Chris Stubbs, PhD
Kim Kuwabara, CEM

Ruben So

December 2013 ENVIRON

Contents

		Page
1	Introduction	1
1.1	Background and Regulatory Status	1
1.1.1	Groundwater Contamination	1
1.2	Work Plan Organization	2
2	Purpose and Objectives	3
2.1	Purpose	3
2.2	Objectives	3
2.2.1	Bio-Trap [®] ISM Testing Objectives	3
2.2.2	Bench-Scale Column Study Objectives	6
2.2.3	PRB Pilot Objectives	6
2.3	Work Performed By Others	6
3	Site Conditions	8
3.1	Geology	8
3.2	Hydrology	8
3.3	Groundwater Quality	9
4	Technology Overview and Rationale	10
4.1	PRB Functional Description	10
4.2	PRB Case Study Review	11
5	PRB Pilot Design	12
5.1	Candidate Installation Location	12
5.2	Preliminary Activities	13
5.2.1	Soil Boring and Well Installation	13
5.2.2	Groundwater Sampling and Analysis	13
5.2.3	Single Borehole Dilution Testing	14
5.2.4	Management of Investigation-Derived Wastes	14
5.3	ISM Testing	14
5.3.1	Stage 1 ISM Testing	15
5.3.2	Stage 2 ISM Testing	18
5.3.3	Bench-Scale Column Testing	18
5.3.4 5.3.5	Establishment of Parameters for PRB Pilot Design Reporting	21 23
5.3.6	Final Design and Permitting	23
5.5.0	= 00.gr. drid : 01111tting	20

i

6	Monitoring	25
6.1	Preliminary Groundwater Monitoring Plan for PRB Pilot	25
6.2	Monitoring Well Locations	25
7	Schedule	26
8	References	27

List of Tables

Table 1:	Summary of Work Performed by Others
Table 2:	Well Construction Details for Existing Wells
Table 3:	Summary of Ground Water Indicator Parameters, Vicinity of Candidate PRB Pilot
	Test Location
Table 4:	Summary of Ground Water Quality Results (Northgate, December 2010)
Table 5:	Summary of Selected PRB Case Studies
Table 6:	Analytical Parameters for Groundwater - PRB Pilot

List of Figures

Figure 1:	Site Location Map
Figure 2a:	Proposed PRB Pilot Test Location, Potentiometric Surface Map
Figure 2b:	Proposed PRB Pilot Test Location, Groundwater Perchlorate Isoconcentrations
Figure 3:	Geologic Cross Section A - A'
Figure 4:	Geologic Cross Section B - B'
Figure 5:	Geologic Cross Section C - C'
Figure 6:	Conceptual Pilot Layout
Figure 7:	Preliminary Time Schedule for PRB Treatability Study

List of Appendices

Appendix A:	Boring Logs and Well Construction Diagrams
Appendix B:	Research Laboratory Bench-Scale Testing Protocols
Appendix C:	Standard Operating Procedures

Acronyms and Abbreviations

AMPAC American Pacific Corporation

AWF Athens Road Well Field

bgs below ground surface

BMI Black Mountain Industrial

COC contaminant of concern

COPCs chemicals of potential concern

DO dissolved oxygen

ENVIRON ENVIRON International Corporation

FBR fluidized bed reactor

ESTCP U.S. Department of Defense, Environmental Security Technology Certification Program

FRTR Federal Remediation Technologies Roundtable

ft feet

ft/ft feet per foot

GEO geochemistry sampler

GC-FID gas chromatograph – flame ionization

gpm gallon per minute

GWETS Groundwater Extraction and Treatment System

IC-MS/MS Ion chromatography-mass spectroscopy-mass spectroscopy

ISM in-situ microcosm

ITRC Interstate Technology & Regulatory Council

IWF Interceptor Well Field

MI Microbial Insights, Inc.

MICRO Bio-Trap® sampler mg/L milligrams per liter

mL milliliter

NDWR Nevada Division of Water Resources

NAC Nevada Administrative Code

NDEP Nevada Division of Environmental Protection

NERT Nevada Environmental Response Trust

NOI Notice of Intent

NPDES National Pollutant Discharge Elimination System

ORP oxidation-reduction potential

PID photoionization detector

PPE Personal Protective Equipment

PRB Permeable Reactive Barrier

PVC polyvinyl chloride

Qal quaternary alluvium

QA/QC control assurance/quality control

qPCR quantitative polymerase chain reaction

RAOs Remedial Action Objectives

SERDP Strategic Environmental Research & Development Program

Shaw Environmental Inc.

Site NERT Site

SOPs Standard Operating Procedures

SWF Seep Area Well Field

Tronox LLC

μg/L micrograms per liter

UIC Underground Injection Control

UMCf Upper Muddy Creek Formation

μSm/cm microSiemens per centimeter

USA Underground Service Alert

USDW Underground Source of Drinking Water

USEPA United States Environmental Protection Agency

VFAs volatile fatty acids

WBZs water-bearing zones

1 Introduction

ENVIRON International Corporation (ENVIRON) on behalf of the Nevada Environmental Response Trust (NERT) has prepared this Treatability Study Work Plan for a Permeable Reactive Barrier Pilot for the Nevada Division of Environmental Protection (NDEP). This Treatability Study Work Plan provides a scope of work, including in-situ microcosm (ISM) testing, bench-scale column testing, and pre-design activities to enable design of a permeable reactive barrier (PRB) pilot system to be developed to treat perchlorate-impacted groundwater at the NERT Site in Clark County, Nevada (the "Site"). ENVIRON is currently investigating potentially feasible technologies to be used in conjunction with the existing Groundwater Extraction and Treatment System (GWETS) at the Site. Various in-situ and ex-situ technologies are under consideration to mitigate the migration of perchlorate in groundwater. Of the technologies currently under consideration, in-situ treatment through the use of PRB technology appears to represent a particularly promising method to reduce current and future costs of the GWETS while providing an effective means to mitigate perchlorate migration from the Site. If effective, the PRB-emplaced treatment could help to reduce the need for downgradient extraction of groundwater and treatment in the GWETS as is currently performed at both the Athens Road Well Field (AWF) and the Seep Well Field (SWF), and thereby, significantly reduce the cost for remediation of the perchlorate groundwater plume at the Site.

This Treatability Study Work Plan provides details on the initial proposed studies, including ISM studies and bench-scale column studies, to provide information to aid the design of a PRB pilot system at the Site. Although a discussion is included as to what a PRB pilot system may entail, the information presented is preliminary and is based on the current knowledge of the Site. The design and monitoring of such a PRB pilot system will be refined as more information is collected in the ISM and column studies.

This Work Plan has been prepared and is being submitted as part of the Remedial Investigation (RI) and Feasibility Study (FS) for the Site, pursuant to the Interim Consent Agreement entered into by the Trust effective February 14, 2011. A RI/FS Work Plan to address soil and groundwater contamination at the Site was submitted to NDEP on December 27, 2012. The RI/FS Work Plan was reviewed by NDEP and various stakeholders during 2013 and a revised work plan, addressing and incorporating comments from NDEP and stakeholders, will be submitted to NDEP in January 2014. The RI/FS Work Plan and this Treatability Study Work Plan are anticipated to be reviewed by NDEP in the first quarter of 2014. Implementation of this work plan is dependent on NDEP approval of the work plan and associated budgetary approval.

1.1 Background and Regulatory Status

1.1.1 Groundwater Contamination

The Site has been undergoing active remediation to manage hexavalent chromium groundwater contamination (since 1986) and perchlorate contamination of groundwater (since 1998), under consent orders issued by NDEP to the Kerr McGee Chemical Corporation and since February 14, 2011, pursuant to an Interim Consent Agreement between NERT and NDEP. Both constituents are treated by means of a groundwater extraction system and on-site treatment facilities, collectively referred to as the GWETS. Groundwater is collected at three well fields: the on-site Interceptor Well Field (IWF), the off-site AWF, and the off-site SWF. Groundwater

collected from the IWF is first treated to reduce hexavalent chromium to trivalent chromium through a ferrous sulfate treatment system. After the ferrous sulfate treatment process, perchlorate is treated using perchlorate-reducing bacteria in a series of fluidized bed reactors (FBRs). Groundwater extracted from the AWF and SWF is discharged directly to the FBR process for perchlorate removal. Following treatment, groundwater is discharged to the Las Vegas Wash under a National Pollutant Discharge Elimination System (NPDES) permit (NV0023060).

The on-site IWF also includes a bentonite-slurry barrier wall, which was constructed in 2001 as a physical barrier across the higher concentration portion of the on-site perchlorate groundwater plume. The barrier is approximately 1,600 feet (ft) in length and 60 ft deep, constructed to tie into approximately 30 ft of the underlying Upper Muddy Creek Formation (UMCf).

Although the current GWETS has effectively removed substantial amounts of perchlorate (and hexavalent chromium) from groundwater, elevated concentrations persist in groundwater at the Site.

1.2 Work Plan Organization

This Work Plan document relates to the proposed in-situ microcosm testing, column testing, and pre-design activities necessary for design and installation of a PRB pilot system and is organized as follows:

- Section 2 presents the purpose and objectives of the proposed PRB pilot;
- Section 3 presents the Site conditions in the candidate location of the proposed PRB pilot;
- Section 4 presents an overview of PRB technology and the rationale for the proposed PRB pilot;
- Section 5 presents the proposed approach for design of the PRB pilot, including up-front soil boring, well installation, in-situ and bench-scale studies, establishment of design parameters, and reporting;
- Section 6 presents a preliminary monitoring scheme to be undertaken for the PRB pilot treatability study;
- Section 7 presents the proposed schedule for the studies; and
- Section 8 details the references used in compiling this Work Plan.

Tables and Figures are presented at the back of the report text, followed by the Appendices.

2 Purpose and Objectives

2.1 Purpose

As described in Section 1.1, the GWETS is currently in operation at the Site. The GWETS extracts and treats groundwater containing perchlorate and hexavalent chromium to control the migration of these chemicals of potential concern (COPCs) in groundwater and to limit the discharge of COPCs to the Las Vegas Wash. The purpose of this Work Plan is to evaluate the technical feasibility and overall effectiveness of an in-situ PRB in treating perchlorate to levels that will achieve the remedial action objectives (RAOs) for perchlorate in groundwater at the Site. To properly evaluate this technology ENVIRON proposes to conduct ISM testing and column studies, followed by installation and operation of a PRB pilot system at the Site. The specific objectives for these studies including a summary of work done to date (by others) are provided below.

2.2 Objectives

The objective of the ISM studies, bench-scale column tests, and pilot test is to evaluate the effectiveness of using PRB technology as a component of the overall remediation of the Site. The ISM testing will provide valuable information to assess the performance of various amendments under actual in-situ conditions. The bench-scale column testing will provide supplemental information regarding the degradation of perchlorate under laboratory-controlled conditions. The ISM and bench-scale studies collectively will develop necessary information required for the design and implementation of a full-scale PRB at the Site, which could be used for sustained in-situ treatment of perchlorate in groundwater to meet RAOs. This will be achieved by the specific objectives presented below.

2.2.1 Bio-Trap® ISM Testing Objectives

Laboratory bench-scale studies have traditionally been employed to screen potential in-situ bioremediation strategies. However, duplication of in-situ conditions in the laboratory is difficult and the results may not correlate directly to the field. For this reason, ENVIRON proposes to supplement the bench-scale study described below with a method known as Bio-Trap[®] ISMs, to asses and screen bioremediation strategies directly in the field. ISMs are a cost-effective method to supplement laboratory studies to provide the chemical, geochemical, and microbiological lines of evidence required for screening remediation options and validating selected remediation technologies. ISM studies consist of an assembly of physically isolated units, each corresponding to a specific option, such as monitored natural attenuation, biostimulation and/or bioaugmentation. Each ISM unit contains multiple passive diffusion samplers to examine COPC concentrations, redox conditions, and microbial populations. The assembly of ISM units can be deployed in existing monitoring wells and is recovered for subsequent analysis to simultaneously screen multiple treatment options. Evaluation of remediation alternatives is based on comparisons of multiple lines of chemical, geochemical, and microbiological evidence between the ISM units.

ISMs allow the evaluation of various bioremediation approaches under actual in-situ conditions in a single-field study by simultaneously deploying multiple ISM units in a single-test well. The below illustration and photograph show the components and a picture of an ISM unit, respectively. To evaluate the effect of various treatment approaches, the ISM would be

equipped with three types of passive samplers: a contaminant of concern (COC) sampler, a geochemistry (GEO) sampler, and a Bio-Trap® (MICRO) sampler. The COC sampler results are used to compare concentrations of parent compounds (perchlorate) and daughter product formation (chlorate, chlorite, and chloride) between ISM units undergoing different treatments. Quantification of geochemical parameters including competing electron acceptors (nitrate, sulfate, etc.) and volatile fatty acids (VFAs) are used to compare redox states and provide the geochemical footprint of subsurface microbial activity in each ISM unit.

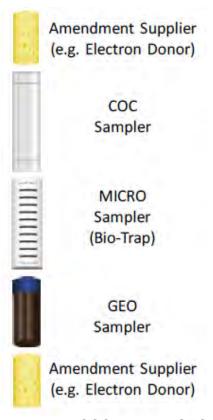


Illustration of an ISM sampler including COC sampler, GEO sampler and MICRO sampler.

Photograph of a MICRO sampler assembly.

The MICRO samplers contain a proprietary sampling matrix, Bio-Sep[®] beads, which are readily colonized by subsurface bacteria. Following ISM deployment, MICRO samplers are recovered from each ISM unit for quantitative polymerase chain reaction (qPCR) enumeration of key microbial populations (e.g., perchlorate reducers). Therefore, comparison of qPCR results for the MICRO samplers in each ISM provides a quantitative assessment on the efficacy of each treatment tested to stimulate growth of organisms responsible for contaminant biodegradation. The qPCR approach has been developed and used in field applications for more than a decade (Higuchi, Dollinger, Walsh, and Griffith, 1992).

The purpose of the ISM evaluation is to obtain information concerning the particular amendment that would be most successful at enhancing the indigenous microbial population to biodegrade perchlorate under native hydrogeologic groundwater conditions. The results of this testing program will identify which microbial populations predominate in the presence of various carbon donors, and how the donor amendment affects the geochemical conditions of the groundwater.

The objectives of the ISM study are as follows:

- Conduct an initial screen to evaluate a variety of electron donors to determine which amendment(s) show the most promising results for biodegradation of perchlorate in Site groundwater;
- Based on the results of the initial screen, use the most promising amendment to establish in situ biodegradation rates for perchlorate in groundwater; and

• Develop the necessary parameters from the observed reaction kinetics to enable the selection of the configuration (e.g., trench PRB, injected PRB) and sizing for design of the PRB pilot system.

2.2.2 Bench-Scale Column Study Objectives

Bench-scale testing using site-specific groundwater and soil cuttings in flow-through columns is proposed to supplement the information obtained in the ISM study for the evaluation of candidate amendments tailored to the Site conditions. The purpose of the column tests is to obtain perchlorate biodegradation rates with the selected carbon donor source and evaluate the potential for fouling or clogging of the aquifer materials with the amendment. The flow-through columns will be monitored throughout the study for influent and effluent perchlorate concentrations, electron acceptor (e.g., oxygen, nitrate, iron, and sulfate), and metals concentrations along with oxidation-reduction potential (ORP) and pH. Since a known amount of perchlorate will be injected into the columns and the amount of perchlorate and perchlorate daughter products will be monitored in the effluent at various locations throughout the column, a mass balance can be performed on the change in perchlorate concentration over time and distance within the column. These results along with the data obtained from the ISM evaluation will be used to guide the design of the PRB pilot system.

The objectives of operation of the bench-scale study are as follows:

- Develop the parameters from the observed degradation rates for design of the PRB pilot;
- Evaluate the performance of the columns under various flow rates; and
- Evaluate conditions that may result in fouling/clogging.

2.2.3 PRB Pilot Objectives

The objectives of the PRB pilot are as follows:

- Evaluate the effectiveness, implementability, and operational limitations (e.g., biofouling) of the design configuration and amendment selected from the ISM Study under actual field conditions at the Site:
- Determine the appropriate dose rates for the selected amendment;
- Evaluate the potential geochemical impact from operation of the PRB pilot system on the solubility and mobilization of metals within the aquifer; and
- Evaluate the hydraulic performance of the PRB pilot system and develop the geotechnical parameters necessary for the design and installation of a full-scale system at the Site.

2.3 Work Performed By Others

Between 2000 and 2010, a series of studies were undertaken and plans were prepared relevant to the application of PRB technology, including the following:

Date	Type of Study or Plan	Performed by
12/19/2000	Hydrogeologic	Errol L. Montgomery and Associates Inc.
1/18/2001	Seep Groundwater Characterization	Kerr-McGee Chemical, LLC
2/14/2010	Work Plan for PRB Pilot Testing	Shaw Environmental, Inc. (Shaw)
10/25/2010	Emulsion Retention Testing and Bench- Scale Jar Testing	Northgate Environmental Management, Inc. (Northgate)

A detailed summary of the work performed to date by others related to the proposed PRB pilot is provided in Table 1. In February 2011, the Trust assumed ownership of the Site, following which the Trust and NDEP discussed the implementation of a RI/FS at the Site. As a result, the Northgate and Shaw plans were not implemented and it was agreed that any treatability studies would be evaluated and proposed as part of the RI/FS. ENVIRON has reviewed the prior work plans along with associated NDEP comments and has incorporated relevant details into this Work Plan. The proposed pilot testing herein continues and builds on the preliminary evaluation of PRB technology and proposed pilot testing previously presented by others.

3 Site Conditions

3.1 Geology

From review of available borehole logs (Northgate, 2011) and as is described in the following, the geology of the area of the proposed PRB is comprised of the following three units: general fill, quaternary alluvium (Qal) and a Tertiary UMCf.

- Fill Material is not generally present in the area of the proposed PRB, the exceptions being in borehole MW-K5 (northeastern corner of the proposed PRB area) and PC-103 (adjacent to the southwestern corner of the proposed PRB). In these areas, fill is described as a silty sand (3.5 ft thick) overlying a clayey, sandy gravel to 8 ft below ground surface (bgs) (MW-K5); and as "construction material" (taken to refer to demolition rubble) extending to 6 ft bgs (PC-103).
- Quaternary Alluvium is present in each of the seven locations drilled to date in the area of the proposed PRB and generally comprises a reddish-brown heterogeneous mixture of well-graded sand and gravel with lesser amounts of silt and clay. The gravel comprises the aforementioned Tertiary volcanic rocks with rare cobbles encountered (PC-98R at 29–30 ft bgs). Caliches (hardened deposits of calcium carbonate) are also known to be present in the area and were recorded as a band of gravel from 16–20 ft bgs in PC-98R. The alluvial deposits extend to between 29 and 40.5 ft bgs with thicknesses ranging between 23 and 40.5 ft. These alluvial deposits are further described as being loose and coarse (Errol L. Montgomery & Associates, 2000).
- A major feature of the alluvial deposits is the stream-deposited sands and gravels that were laid down within paleochannels that were eroded into the surface of the UMCf during infrequent flood runoff periods. These deposits vary in thickness and are narrow and linear. These generally uniform sand and gravel deposits exhibit higher permeability than the adjacent, well-graded deposits. In general, these paleochannels trend northeastward (ENSR, 2006).
- Tertiary UMCf underlies the alluvial deposits and is comprised generally of gray/green sandy and silty clay to clayey sand with gypsum crystals. This formation was encountered in all but one of the boreholes drilled in the proposed PRB area (borehole I-2 drilled by Northgate as a PRB test bore in 2011, which terminated in the alluvial deposits).
 Referencing the available borehole logs for the proposed PRB area (Northgate, 2011), the UMCf was encountered between 29 and 40.5 ft bgs. The full thickness of the UMCf was not determined as all the boreholes drilled into it terminated within the first few feet.

Soil boring logs and well construction diagrams for wells in the vicinity of the candidate PRB location are included in Appendix A. A table of well construction details is provided in Table 2. Cross sections showing the detailed geology in the area of the proposed PRB pilot are presented on Figures 3 to 5.

3.2 Hydrology

Depth to groundwater in the candidate PRB pilot area ranges from about 21 to 24 ft bgs. The groundwater gradient averages 0.02 feet per foot (ft/ft) south of the AWF, flattening to 0.007 ft/ft just south of the SWF (ENVIRON, 2011b, 2012). The groundwater flow direction at the Site is

8

generally north to north-northwesterly. This generally uniform flow pattern may be modified locally by subsurface alluvial channels cut into the underlying UMCf, the on-site bentonite-slurry groundwater barrier wall, off-site artificial groundwater highs or "mounds" created by the infiltration of City of Henderson wastewater effluent discharged to ponds in the Henderson Bird Viewing Preserve, and by depressions created by the groundwater extraction wells at the three groundwater recovery well fields (Northgate, 2010).

The rate of groundwater movement in the general area of the candidate PRB location has been estimated by others to be in the range of 30 to 45 ft/day (Errol L. Montgomery & Associates, 2000). Recent groundwater modeling performed by ENVIRON has resulted in estimates of groundwater velocity in the immediate vicinity of the candidate location for the Quaternary Alluvium in the range of 2 to 3 ft/day.

NDEP has defined three water-bearing zones (WBZs) that are of interest at the Black Mountain Industrial (BMI) complex: the Shallow Zone, which extends to approximately 90 ft bgs, is unconfined to partially confined, and is considered the "water table aquifer"; the Middle Zone, from approximately 90 to 300 ft bgs; and the Deep Zone, which is defined as the contiguous water-bearing zone that is generally encountered between 300 to 400 ft bgs (NDEP, 2009a). The Shallow Zone will be the focus of the PRB pilot test.

3.3 Groundwater Quality

Within the candidate PRB pilot area, perchlorate concentrations in groundwater samples range from 3 to 18 milligrams per liter (mg/L) (ENVIRON, 2011b, 2012). During the pump test of PC-98R, the following conditions were observed with respect to general groundwater quality parameters (Errol L. Montgomery & Associates, 2000).

- Temperature ranged from 23° to 24° C
- Specific Conductivity ranged from 12,300 to 13,500 microSiemens per centimeter (μSm/cm);
 and
- pH ranged from 6.90 to 7.70.

Water quality analyses performed by Northgate in 2010 included dissolved metals and anionic species. The results showed a high concentration (1,400 mg/L) of sulfate is present in shallow groundwater. A summary of groundwater indicator parameters and water quality conditions in the candidate location for the PRB pilot is presented in Table 3 and Table 4.

To further establish groundwater quality in the vicinity of the proposed PRB pilot location and as is discussed further in Section 5 below, baseline groundwater sampling and analysis is proposed as part of design activities for the PRB pilot.

4 Technology Overview and Rationale

PRB technology for the removal of perchlorate involves the creation of conditions in the subsurface environment, which are conducive to the growth of biological communities that are able to use perchlorate as an electron acceptor. The conditions required for such a reaction to occur include the presence of a suitable electron donor (or carbon source), appropriate redox potential, and the presence of other agents necessary for biological growth (e.g., trace nutrients). The specific area of the subsurface environment where these conditions are created are referred to as the reactive or treatment zone and constitute the active portion of the PRB. The treatment zones are created in the path of groundwater flow such that perchlorate in groundwater is removed biologically as it moves through the zone. Remediation of perchlorate in groundwater at the Site using an in-situ technology, such as a PRB includes the following challenges:

- Potentially high groundwater velocities;
- Natural competition in the aquifer for electron donor (i.e., electron donor demand);
- Controlling conditions (e.g., redox potential, concentration of electron donor) to limit biofouling; and
- Sustained long-term operation.

The design of the PRB will depend upon various parameters including the characteristics of the formation, the type of amendment (i.e., election donor) to be deployed, and the resulting time necessary to degrade perchlorate to the desired concentration in groundwater (Federal Remediation Technologies Roundtable ([FRTR], 2005). In addition to consideration of the stoichiometry and rate of degradation of perchlorate, dosing of the selected electron donor needs to account for other, abiotic processes that would consume the donor and reduce their bioavailability to degrade perchlorate (Strategic Environmental Research & Development Program (SERDP), 2009).

System design typically requires an estimate of groundwater flow, solute transport, and biodegradation processes that are involved in the application of a bioremediation system. Specifically, these estimates are used to ensure that the treatment system will: 1) biologically degrade perchlorate within the treatment zone, and 2) avoid excess delivery of electron donor. Using electron donor biological decay rates established based on the data obtained in the ISM study and the bench-scale column testing, the projected fate and transport of injected electron donor can be estimated. Thus, electron donor delivery can be optimized to limit downgradient migration (and subsequent secondary impacts such as metals mobilization) while still providing a sufficiently large biological treatment zone, and reducing the potential for biofouling.

4.1 PRB Functional Description

A PRB is an engineered in-situ treatment system and can include active pumping or passive flow through a reactive zone. A PRB is an in-situ, permeable treatment zone designed to intercept and remediate a contaminant plume. The term "barrier" is intended to convey the idea that contaminant migration is impeded; however, the PRB is designed to be more permeable than the surrounding aquifer media so that groundwater can easily flow through the structure

without significantly altering groundwater hydrology (Interstate Technology & Regulatory Council [ITRC], 2011).

4.2 PRB Case Study Review

A literature review was performed, to obtain currently available information on the efficacy of pilot tests and full-scale installations of PRBs for treatment of perchlorate and other similar contaminants in groundwater. A summary of the selected PRB case studies reviewed is presented in Table 5. Perchlorate reductions were reported in the range of 86% to 97%. Passive PRBs (i.e., PRBs that utilized a solid substrate placed in situ) were successful in treating perchlorate concentrations from 170,000 micrograms per liter (µg/L) to non-detect levels. PRBs that utilized injection wells for delivery of amendments have been shown to be as effective as passive systems, although performance data for full-scale, long-term operation of such PRBs is limited. Proximal to the candidate PRB location at the Site, an active PRB, which employed groundwater extraction, amendment and re-injection, was operated at the neighboring American Pacific Corporation (AMPAC) site for treatment of perchlorate in groundwater. This system extracted groundwater, mixed in electron donor (sodium benzoate) ex-situ, and reinjected the groundwater downgradient. The active PRB at the AMPAC site successfully reduced perchlorate from influent levels as high as 31,000 µg/L to non-detect levels (AMPAC, 2009). The system operated for approximately six years before it was shut down after the discovery of additional perchlorate source areas. The AMPAC system did not have the capacity to treat the additional perchlorate loading anticipated and was deemed to not be cost effective in treating the additional load associated with the additional sources areas. Subsequently, AMPAC installed a higher-capacity FBR system (AMPAC, 2012).

Although the AMPAC PRB system was successful at reducing perchlorate, the system experienced problems with biofouling. Early on and to improve the infiltration capacity, AMPAC modified the system from a gallery of shallow injection wells to a deep reinjection trench due to biofouling downgradient of the injection site. Biofouling control was also attempted through the injection of several biocides, including peroxide and hypochlorite, at the injection site with varying and inconsistent results. The most effective control measure reported was the addition of an oxygen scavenger, sodium metabisulfite, in amended groundwater prior to re-injection. It was reported that this resulted in lowering of the dissolved oxygen of the injected groundwater from 6 mg/L to less than 1 mg/L (AMPAC, 2011). At the time the PRB system was shut down at the AMPAC site, the flow rate had been reduced to 130 gallon per minute (gpm) from its design flow of 225 gpm due to bio-fouling at the injection location. Operational considerations, such as introduction of oxygen during extraction and reinjection, and potential overdosing of electron donor suggested by the observed reduction of sulfate downgradient of the reinjection wells, likely contributed to the observed biofouling.

The potential for bio-fouling and mobilization of other constituents will be a key consideration during design and operation of the proposed PRB at the NERT Site. In addition to the potential for bio-fouling, the reduction of perchlorate can also result in mobilization of otherwise stable metals (e.g., manganese and iron). Mobilization of iron and manganese was noted in one of the larger pilot studies performed in Rancho Cordova, California. It is noted that manganese was also mobilized during operation of the active PRB at the AMPAC site (AMPAC, 2009, 2011).

5 PRB Pilot Design

As described above, ENVIRON proposes treatability studies at both the bench-scale and pilot-scale to gather the necessary information to evaluate the technical feasibility and overall effectiveness of using PRB technology for the sustained treatment of perchlorate in groundwater at the Site. Specifically, ENVIRON intends to:

- 1. Install soil borings and monitoring wells in an area designated for the PRB pilot while also collecting the necessary groundwater and soil cuttings to enable bench-scale testing;
- 2. Conduct in-situ studies and a bench-scale test program to test the efficiency of various electron donors, establish optimal dosing rates, and to develop parameters to enable pilot system design; and
- 3. Complete a final design of the PRB pilot installation at the candidate installation location at the Site.

5.1 Candidate Installation Location

ENVIRON is proposing to locate the PRB pilot in the location previously identified by Shaw and Northgate; approximately 2,000 ft downgradient of the AWF, approximately mid-way between the AWF and SWF. A groundwater potentiometric surface map and a map of perchlorate isoconcentration contours for the proposed location for the PRB pilot are shown in Figure 2a and Figure 2b, respectively. The in-situ PRB pilot will be located to intersect the flow of groundwater in the saturated alluvium overlying the UMCf. The property in the proposed installation location is owned by the City of Henderson. Arrangements for access for installation and monitoring of the PRB pilot will be required prior to installation.

This candidate location has been proposed based on the following:

- The area is far enough from the extraction well fields, such that the injected substrate will not be affected by pumping gradients;
- The area is located within the paleochannels in the UMCf, which appear to influence the direction of groundwater flow from the Site and transport of perchlorate from the Site to the Las Vegas Wash (refer to cross sections on Figures 3 to 5, and Section 3);
- Perchlorate concentrations are elevated (>10 mg/L), making observation of concentration reductions easier and (if successful) effecting a significant mass removal of perchlorate, while not being so high as to prevent effective treatment via the PRB;
- There is sufficient distance downgradient of the test area prior to the Las Vegas Wash to monitor for degradation by-products, dissolution/release of compounds that may adversely affect water quality, and unconsumed substrate; and
- The area is not occupied by existing structures or in close proximity to drainage features/other factors which might influence surface or groundwater flow or access/transportation routes.

5.2 Preliminary Activities

A soil boring, which will be converted to a new permanent monitoring well, will be installed in the area proposed for the PRB pilot. This newly installed monitoring well will be used to collect information necessary to assess local groundwater flow, and to assess the geologic conditions and soil chemistry. The newly installed monitoring well will also provide a location for ISM testing. Prior to drilling activities, land access to the area for installation will be obtained from the City of Henderson. No less than 48 hours prior to the planned drilling activities, Underground Service Alert (USA) will be notified to identify any possible subsurface utilities or piping that may be in the area of the planned installation. Following installation, the newly installed monitoring well will be developed, purged, and sampled. Both the groundwater sampled and the soil cuttings from the well installation will be shipped to the laboratory for analytical and microbial testing. To provide an in-situ measurement of horizontal groundwater flow at the candidate PRB pilot location, single borehole dilution testing will be performed at the newly installed well to measure groundwater flow. These activities are discussed in further detail below.

5.2.1 Soil Boring and Well Installation

A single monitoring well will be drilled in accordance with Nevada Division of Water Resources (NDWR) requirements outlined in Nevada Administrative Code (NAC) Chapter 534, and notices of intent to drill will be submitted to the Division for the new well.

The soil boring for well installation will be conducted using a Mini Sonic drilling rig within the candidate PRB pilot area. Soil cores will be described in the field by an experienced field geologist. Soil borings will be advanced through the alluvium and will be terminated at the contact of the alluvium and Muddy Creek formation. Samples of soil from the saturated zone within the soil boring will be collected for microbial testing to establish a baseline for perchlorate reducing microorganisms and for use in bench-scale column testing.

Upon reaching the target depth at the top of the UMCf, the soil boring will be converted to a permanent monitoring well. The monitoring well will be constructed using 2-inch diameter slotted polyvinyl chloride (PVC) screen from the top of the water table to the top of the UMCf (a length of approximately 25 ft) and 2-inch diameter schedule 40 PVC riser to the ground surface. A filter pack of washed sand will be placed around the well screen to approximately 2 to 3 ft above the top of the screen. A seal consisting of approximately 2 to 3 ft of hydrated bentonite chips will be placed above the filter pack followed by bentonite/cement grout to the surface.

Following installation, the monitoring well will be developed using a submersible pump. Well development will consist of removal of approximately 10 well volumes of groundwater from the monitoring well. Standard Operating Procedures (SOPs) for photoionization detector (PID) screening for environmental sampling, soil sampling, and monitoring well installation and development are provided in Appendix C.

5.2.2 Groundwater Sampling and Analysis

Prior to groundwater sampling, water level measurements will be collected prior to the purging and sampling of the new monitoring well. The depth to water and the total well depth will be measured using an electronic water level meter. The water levels will be determined to the

nearest 0.01 of a foot with an accuracy of ± 0.02 ft and the total well depth will be determined to the nearest 0.1 of a foot with an accuracy of ± 0.2 ft.

5.2.3 Single Borehole Dilution Testing

A single borehole dilution test is a relatively simple hydrogeological technique used to determine the volumetric flow rate of groundwater through a borehole. The technique potentially provides a means to obtain hydrogeological properties, without the need to undertake a pumping test, avoiding the logistical difficulties of such testing. This testing method provides a measurement of ambient groundwater velocity and the capability to reveal zones of preferential flow and zones of negligible flow within a single borehole (Pitrak, M., Mares S., and Kobr, M., 2007).

Borehole dilution testing will be performed at the newly installed well in the candidate PRB location. To perform the test, a tracer solution (e.g., bromide, fluoride) of known concentration will be circulated/mixed within the screened interval of the monitoring well. The decline of tracer concentration (i.e., "dilution") with time within the well screen will be monitored directly using a vertical array of tracer specific-ion electrode probes located at known depth intervals. Based on the dilution characteristics observed, the vertical distribution (i.e., heterogeneity) of hydraulic properties and/or flow velocity can be estimated for the formation within the well screen section. The presence of vertical flow within the well screen can also be identified from the probe/depth dilution response pattern. The rate of groundwater flow measured in the borehole dilution test will be used to help establish the duration for placement of ISM Bio-Trap®s, to establish the flow rates used in the bench-scale columns, and as a parameter used in the design of the PRB pilot.

5.2.4 Management of Investigation-Derived Wastes

In obtaining soil and groundwater for the bench-scale tests, investigation-derived wastes, including leftover soil cuttings (from drilling of boreholes), groundwater (from purging/development of monitoring wells), and spent personal protective equipment (PPE) will be generated.

Consistent with current management practices and pending waste characterization, waste soil, and spent PPE will be stored in 55-gallon drums, transported to the NERT Site, and staged in a temporary holding area on the Site located away from surface water features and storm drains. The drums will be labeled with a drum identification number, the description of the contents, the date generated, and the point of contact to be reached regarding questions. Based on the results of waste characterization samples, arrangements will be made for disposal.

Purged groundwater will be temporarily stored in suitable containers prior to being transferred to the on-site GWETS for treatment.

5.3 ISM Testing

ISM testing results will be used to generate information useful in the design of the PRB pilot system. The ISM testing will provide information to enable selection of electron donors and dosing rates and to identify the geometry and sizing of the PRB for pilot testing.

The biostimulation ISM units will contain a section of sponge-like cellulosic material saturated with the commercial electron donor solution or solid electron donor material. In addition to the

electron donor and nutrient amendments if needed, the ISM units will contain COC, MICRO, and GEO samplers for evaluation of perchlorate and perchlorate byproducts, electron acceptors, nutrients and microbial populations.

The specific objectives of the proposed ISM testing are:

- 1. Identification of suitable electron donors and supplemental amendments (e.g., nutrients) required for perchlorate reduction.
- 2. Evaluation of the perchlorate degradation rates achievable at the candidate PRB pilot location at the Site.
- 3. Establish degradation and hydraulic parameters required to design a PRB pilot.

The ISM testing will be performed in two stages at the candidate PRB location. The first stage (Stage 1 ISM study) will evaluate a variety of potential electron donors. Based on the results of the Stage 1 ISM study, the most effective electron donor will be evaluated in the subsequent second stage (Stage 2 ISM study) by means of retrieval of ISM Bio-Trap®s over time, which will provide an indication of the rate of perchlorate biodegradation in situ. A more detailed description of the proposed two-stage ISM study is provided below.

5.3.1 Stage 1 ISM Testing

The Stage 1 ISM study will include the deployment of Bio-Trap[®]s, to establish the most promising candidate amendment(s) for perchlorate reduction. The traps to be deployed in the Stage 1 study will include one unamended trap allowing for the analysis of monitored natural attenuation parameters. Three additional traps, each amended with a different electron donor substrate will be installed in wells PC-98R, MW-K5 and the newly installed well. The ISMs will be provided by a specialized vendor, Microbial Insights, Inc. (MI), and will be constructed at the PRB location. The following is a list of potential electron donor substrates identified for testing. At least one substrate will be evaluated from each of the three groups described below:

- 1. Soluble electron donors (e.g., lactate, acetate);
- 2. Solid carbon electron donors (e.g., compost and peat, mulch mixed with sand or pea gravel); and
- 3. Proprietary, slow-release electron donor (e.g., Regenesis HRC®, FMC EHC®, Duramend®, EOS Remediation EOS®).

The above electron donors were selected based on their ability to be applied to a variety of potential PRB designs (e.g., via direct injection, passive diffusion wells, or within a trenched wall). Each has demonstrated success in similar environments based on review of case studies and published research, and cost-effectiveness in full-scale application (Batelle, 2000, FRTR, 2005, ITRC, 2011).

With respect to soluble donors, acetate was selected as a candidate electron donor to be evaluated because it can be readily metabolized by a variety of microflora and requires relatively low energy to be utilized. Lactate ferments directly to acetate, and has been used in

PRBs at other sites such as the Naval Surface Warfare Center in Indian Head, Maryland (Table 5).

Proprietary electron donors, Regenesis HRC®, EOS Remediation EOS®, FMC EHC® and Duramend®, have also been identified for testing as these products are designed to provide a slow release that can extend the longevity of the PRB between dosings and can avoid some of the problems with bio-fouling associated with other substrates. Each of these proprietary products has been specifically formulated for use in in-situ anaerobic degradation of halogenated organic compounds, and would be effective at reducing perchlorate. Following approval of this Work Plan, a vendor will be selected to supply one of these proprietary electron donors for testing.

Solid carbon electron donors, hard wood mulch, peat, and compost, have been selected based on their common availability and extended release properties. Each of these solid substrates has advantages and disadvantages. For example, the lignins in mulch are not as readily bioavailable compared to other substrates (compost and peat). However, compost and peat may be less commercially available than mulch and therefore could be more costly. The addition of gravel or sand to these substrates will provide the necessary structure to achieve the desired hydraulic characteristics for flow of groundwater through the PRB. As summarized in Table 5, the use of mulch, compost, and peat as electron donors in PRBs has been demonstrated at sites such as the Naval Weapons Industrial Reserve Plant in McGregor, Texas and Whiteman Air Force Base near Kansas City, Missouri.

Once the amendments and samplers have been added to each ISM unit, the assembled units can be connected to form a single line for in well deployment. A nylon rope or cable is attached to the uppermost ISM unit. A stainless steel weight is added to the bottom-most ISM unit and the assembly is lowered into the monitoring well. The cable is typically attached to an eye bolt in the gripper plug or top of casing. The cable must be long enough to suspend the assembly of ISM units within the screened interval of the saturated zone.

Prior to installation of the ISM units, each well will be purged and the following parameters will be collected approximately every five minutes during the purging process and will be recorded in a field notebook and/or groundwater sampling log forms along with the pumping rate, depth to water, and other observations: pH, conductivity, ORP, and dissolved oxygen (DO). Purging will continue until pH, conductivity and turbidity readings have stabilized over three consecutive readings. The in-line water quality meter will be disconnected prior to sampling. After the wells have been purged and sampled for baseline parameters listed in the below table "Stage 1 ISM Study - Summary of Testing Parameters", following the sampling SOPs of Appendix C, a series of ISM units will be deployed in each monitoring well.

After the desired minimum incubation period, the Stage 1 ISM units will be retrieved and the samplers removed, appropriately labeled, placed in zippered bags, and shipped overnight on ice to MI under standard chain-of-custody. The samplers will be analyzed for the following parameters.

16

Stage 1 ISM Study - Summary of Testing Parameters and Frequency

Parameter (Analytical Method)	Frequency
Perchlorate by ion chromatography-mass spectroscopy-mass spectroscopy (IC-MS/MS) 1	Baseline groundwater samples and after a minimum of 4 weeks of incubation ³ in-situ.
Nitrate/nitrate (United States Environmental Protection Agency (USEPA) Method 300.0)	
Conductivity (microelectrode)	
Total Kjeldahl Nitrogen (USEPA Method 351.2)	
Orthophosphate (USEPA Method 300.0 or USEPA 365.3)	
Microbial population: perchlorate reducers (qPCR method) and general microbial groups via Phospholipid fatty acid analysis	
Redox indicators plus Chloride	Baseline groundwater samples and after a
- Dissolved oxygen (microelectrode);	minimum of 4 weeks of incubation ³ in-situ.
- Chloride and sulfate (USEPA Method 300.0);	
- Chlorate (USEPA Method 300.1);	
 Sulfide (HACH Method 8131 (USEPA Methylene Blue Method)); 	
 Ferric and ferrous iron (HACH Method 8008 and 8147); and 	
Methane in headspace (Gas chromatograph – flame ionization (GC-FID)²)	
Dissolved Metals (Ag, As, B, Ba, Be, Ca, Cd, Cr, Co, Cu, Fe, Hg, K, Mo, Mg, Mn, Na, Ni, Pb, Sb, Se, Tl, Zn), and U) (USEPA Methods 6010/6020/7400/200.8)	Baseline groundwater samples and after a minimum of 4 weeks of incubation ³ in situ.
Quality Assurance/Quality Control (QA/QC)	Duplicates will be run on 5% of the groundwater samples. Typical runs will consist of blanks, daily calibration check samples, and runs of standard reference materials, when available.

Notes:

- CIO4- concentrations will be measured by sequential ion chromatography-mass spectroscopy-mass spectroscopy (IC-MS/MS). CIO4- will be quantified using a Dionex LC 20 ion chromatography system consisting of GP50 pump, CD25 conductivity detector, AS40 automated sampler and Dionex IonPac AS16 (250 X 2 mm) analytical column. A hydroxide (NaOH) eluent at 0.3 milliliters per minute (mL min-1) is followed by 90% acetonitrile (0.3 mL min-1) as a post-column solvent. To overcome matrix effects, all samples are spiked with Cl18O3 or Cl18O4 internal standards.
- Kampell, D.H. and S.A. Vandegrift. 1998. Analysis of Dissolved Methane, Ethane, and Ethylene in Ground Water by a Standard Gas Chromatographic Technique. J. of Chromatographic Sci. 36:253-256.
- A minimum incubation period of 4 weeks is anticipated, but may be adjusted based on estimated of ground water velocity from the single borehole dilution testing and the results of initial baseline groundwater sampling.

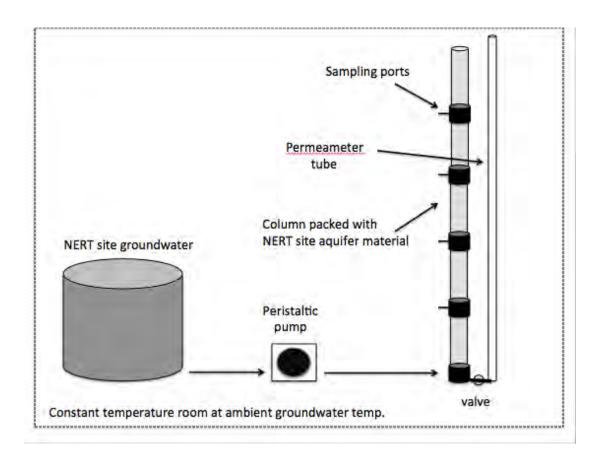
Based on the results of the initial ISM testing, selection of the amendments for follow-on testing in the Stage 2 ISM study will be determined. It is anticipated that at least two amendments will be selected for the Stage 2 study.

5.3.2 Stage 2 ISM Testing

The Stage 2 study will consist of the deployment of four to five Bio-Trap®s, each amended with the selected substrate(s), for deployment in the single new monitoring well. Approximately every 2 to 3 weeks (based on the results of the Stage 1 testing), one of the Bio-Trap®s containing each of the candidate amendments will be removed for lab analysis for the parameters listed in the table below. ENVIRON estimates the Stage 2 ISM test to require a total duration of approximately 3 to 5 months. The results of this testing will provide a general rate of degradation under actual in-situ conditions in the field.

ISM Phase 2 Testing - Summary of Testing Parameters and Frequency

Location	Parameter (Analytical Method)	Frequency
MICRO Sample	Microbial Analyses: perchlorate reducers (Microbial Insights, Inc. or similar company/university)	Every 2 to 3 weeks
COC Sampler	Perchlorate by IC-MS/MS ¹ Nitrate/nitrate (USEPA Method 300.0) Conductivity (microelectrode)	Every 2 to 3 weeks
GEO or pumped groundwater sample	 Redox indicators plus Chloride Dissolved oxygen (microelectrode), Chloride, nitrite, nitrate, ferrous, ferric iron, sulfate, sulfide (USEPA Method 300.0), Sulfide (HACH Method 8131 (USEPA Methylene Blue Method)) Ferric and ferrous iron (HACH Method 8008 and 8147 Methane in pore water (GC-FID²) 	Every 2 to 3 weeks


Notes:

- CIO4- concentrations will be measured by sequential ion chromatography-mass spectroscopy-mass spectroscopy (IC-MS/MS). CIO4- will be quantified using a Dionex LC 20 ion chromatography system consisting of GP50 pump, CD25 conductivity detector, AS40 automated sampler and Dionex IonPac AS16 (250 X 2 mm) analytical column. A hydroxide (NaOH) eluent at 0.3 milliliters per minute (mL min-1) is followed by 90% acetonitrile (0.3 mL min-1) as a post-column solvent. To overcome matrix effects, all samples are spiked with C118O3 or C118O4 internal standards.
- ² Kampell, D.H. and S.A. Vandegrift. 1998. Analysis of Dissolved Methane, Ethane, and Ethylene in Ground Water by a Standard Gas Chromatographic Technique. J. of Chromatographic Sci. 36:253-256.

5.3.3 Bench-Scale Column Testing

Column studies will be performed using the electron donors selected from the results of the Stage 1 ISM study and will be run in parallel with the Stage 2 ISM study activities. The column study will be used to test the effectiveness of donors in a flow-through mode simulating field

conditions of the Site, providing additional information useful in the design of the PRB pilot. Specifically, the column testing will be used to refine the list of potential amendments targeted for the pilot testing. The amendment(s) chosen for the pilot testing will be those that reduce perchlorate but also maintain the hydraulic properties of the formation (minimize biofouling). A schematic diagram of the 1-D column system is shown in the laboratory column setup illustration below.

One column for each candidate amendment selected from the results of the Stage 1 ISM testing, plus one unamended control column will be constructed. Column experiments will be performed in 5-foot long, 2-inch diameter columns with five equally spaced sampling ports located along their lengths. A sample of soil cuttings from within the saturated zone of the soil boring will be submitted to a lab for microbial testing for perchlorate reducing bacteria to establish a baseline for this population. Additionally and at the conclusion of the column testing, a sample of soil from the bottom of each column will be submitted to the lab for microbial testing for perchlorate reducing bacteria to establish the change in the microbial population.

The columns will be packed with aquifer matrix material from the newly installed monitoring well at the candidate PRB location. A 5-centimeter layer of fine gravel will be placed at the bottom of each column to equalize the distribution of flow through the column. Glass wool will be inserted in the inner side of sampling ports to avoid dead zones and clogging of sampling ports. Immediately after establishment of the columns, the hydraulic conductivity of the test columns

will be assessed by connecting a falling head permeameter to the column. Hydraulic conductivity will be measured using the falling head method and compared to existing data for the Site.

Laboratory Column Set-up

Groundwater collected from the candidate PRB location at the Site will be shipped to the off-site laboratory and introduced through 2 millimeter (mL) stainless steel tubing in up-flow mode. A peristaltic pump with Viton tubing will used to convey water through the column at groundwater velocities representative of conditions at the candidate location for the PRB pilot. The experiment will be set-up in a constant temperature room so that groundwater and the test columns will be maintained at ambient temperatures similar to those present at the candidate PRB location.

The influent concentrations will be monitored three times per week to track changes in perchlorate concentration. Influent samples for all column experiments will be collected at the sampling ports on the delivery side of the pump. Samples from each sample port will be collected every three to four days with a 5 mL pre-rinsed airtight glass syringe fitted with luerlock and injected into 2-mL glass vials. Samples collected will be analyzed for perchlorate, nitrate/nitrite and conductivity. On a weekly basis, additional redox indicators will be measured including dissolved oxygen, ferrous iron, ferric iron, sulfate and sulfide, and methane. Oxidation-reduction characteristics of each sampled zone will be determined from the water chemistry parameter results. Additional samples will be collected from the columns for metals analysis at an external certified laboratory. Column studies will be run for a period of approximately 8 to 12 weeks, with flows through the columns adjusted based on the observed groundwater velocity observed from the single borehole dilution testing, subject to extension if additional information is desired. Following the termination of the studies, the falling head permeameter study will be repeated and the hydraulic conductivity measured again to assess the effect on aquifer hydraulic properties. Declines in conductivity over the duration of testing will provide evidence of conditions that may be conducive to biofouling. If conductivity declines significantly (e.g., greater than 5 to 10 times the initially measured hydraulic conductivity), column materials will be removed and total carbon measured on the aguifer material to determine the amount of biomass accumulated along the flow path.

Analytical Procedures

Major anions (Cl⁻, NO³⁻, and SO₄²⁻) will be analyzed by ion chromatography following USEPA Method 300.0. Perchlorate concentrations will be separately measured by sequential ion chromatography-mass spectroscopy-mass spectroscopy (IC-MS/MS). Redox parameters will be measured using standard methods for DO (by microelectrode), nitrite, nitrate, ferrous and ferric iron, sulfate, sulfide (by ion chromatograph), and methane in pore water (by GC-FID). To assess the liberation of metals from the aquifer matrix, samples will also be collected for metals analysis over the course of the column testing. Below is a summary of the testing parameters, analytical methods and frequency for the column testing.

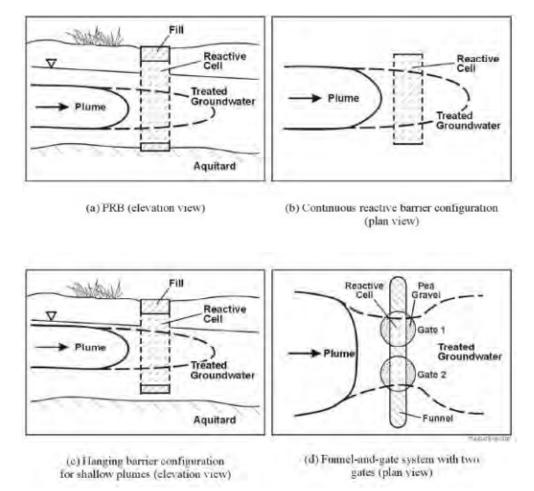
Column Testing - Summary of Testing Parameters and Frequency

Location	Parameter (Analytical Method)	Frequency
Column influent	Perchlorate by IC-MS/MS ¹	3 times/week for 12 weeks
Sample ports	Perchlorate by IC-MS/MS ¹ , Nitrate/nitrite (USEPA Method 300.0), Conductivity (microelectrode)	Every 3 to 4 days
All Sample Ports	 Redox indicators plus Chloride Dissolved oxygen (microelectrode), Chloride, ferrous and ferric iron, sulfate, sulfide (USEPA Method 300.0), Sulfide (HACH Method 8131 (USEPA Methylene Blue Method)) Ferric and ferrous iron (HACH Method 8008 and 8147) Methane in pore water (GC-FID²) 	Weekly
Column Effluent	Dissolved Metals (Ag, As, B, Ba, Be, Ca, Cd, Cr, Co, Cu, Fe, Hg, K, Mo, Mg, Mn, Na, Ni, Pb, Sb, Se, Ti, Zn, and U) (USEPA Methods 6010/6020/7400/200.8)	Every two weeks
Each Column	Hydraulic conductivity (Falling Head Permeability Test (ASTM D5084-10))	At beginning and after termination of study

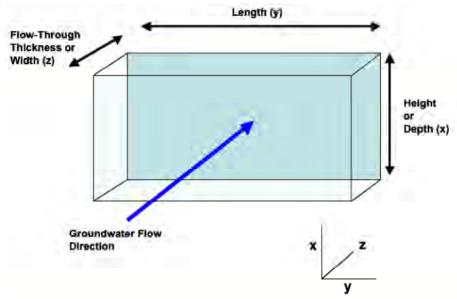
Notes:

- CIO4- concentrations will be measured by sequential ion chromatography-mass spectroscopy (IC-MS/MS). CIO4- will be quantified using a Dionex LC 20 ion chromatography system consisting of GP50 pump, CD25 conductivity detector, AS40 automated sampler and Dionex IonPac AS16 (250 X 2 mm) analytical column. A hydroxide (NaOH) eluent at 0.3 milliliters per minute (mL min-1) is followed by 90% acetonitrile (0.3 mL min-1) as a post-column solvent. To overcome matrix effects, all samples are spiked with Cl18O3 or Cl18O4 internal standards.
- Kampell, D.H. and S.A. Vandegrift. 1998. Analysis of Dissolved Methane, Ethane, and Ethylene in Ground Water by a Standard Gas Chromatographic Technique. J. of Chromatographic Sci. 36:253-256.

QA/QC


Duplicates will be run on 5% of the samples. Typical runs will consist of blanks, daily calibration check samples, and runs of standard reference materials, when available. Split samples can be provided for analysis upon request.

5.3.4 Establishment of Parameters for PRB Pilot Design


The results of the borehole dilution testing for groundwater flow measurement, the Stage 2 ISM study and the bench-scale column testing will be used to establish rate perchlorate reduction and will be applied to reactive-transport models as described below.

PRB as a treatment technology is a method of mass flux reduction. For the PRB pilot design, it will be necessary to reasonably estimate the mass of reactant that will be needed to treat the mass flux of contaminants. The geologic characteristics in the planned footprint of the area to be treated will also be important in this design. Accordingly, the dosing of amendments, the associated degradation rate and the velocity of groundwater flow through the PRB will be necessary to define for design of the PRB pilot.

The PRB must be able to intercept the contaminant plume without unacceptable contaminant bypass either below or around the barrier. Additionally, effective remediation using a PRB will depend on the availability of appropriate quantities of reactive media and the geochemical and redox conditions to allow for sufficient constituent degradation. The reactive zone must be large (i.e., in thickness and width) enough to allow the degradation. The thickness of the PRB is designed based on the required residence time of the contaminants and the groundwater flow velocity. The residence time must be sufficient to allow for degradation of the target contaminant(s) to reduce the contaminant flux (ITRC, 2011). A schematic of various PRB configurations and flow through a PRB with the associated PRB dimensions are provided in the below illustrations.

Schematic Illustration of Some PRB Configurations (Batelle, 2000).

Schematic of dimensions of a PRB (ITRC, 2011).

5.3.5 Reporting

At the conclusion of the Stage 1 ISM study, a letter report summarizing the results of baseline groundwater sampling, the borehole dilution testing and the Stage 1 study along with a recommendation for candidate amendment(s) for follow-on study will be provided to the NDEP. At the conclusion of the bench-scale column testing, a letter report with the results of the Stage 2 ISM study and the bench-scale column testing will be prepared and submitted to the NDEP.

5.3.6 Final Design and Permitting

Utilizing the results of the Stage 2 ISM study and the bench-scale column testing, a Design Report for the Final PRB Pilot will be prepared and submitted to the NDEP. The Design Report will include the detailed plans and specifications for the pilot construction, along with operation and monitoring plans.

Installation of the PRB pilot will require obtaining a General Permit as a Class V Underground Injection Control (UIC) well, if an injectable amendment is selected. Class V UIC wells are non-hazardous wells that inject fluids above the underground source of drinking water (USDW). The injected PRB would qualify for a general permit under the Nevada regulation NAC 445A.891.

In addition to the Class V UIC permit, the PRB pilot will require an application for a UIC General Permit for Short-Term Remediation. UIC General Permits for Short-Term Remediation only allow for a one-time injection of electron donor amendments, and are valid for a period of less than six months. Longer term operation of the PRB pilot may ultimately be required to fully complete the study objectives. In such a case, application for a UIC General Permit for Long-Term Remediation may be necessary at that time.

The permitting process for either Long-Term or Short-Term Remediation Permits requires the submission of the project work plan, a letter of concurrence, UIC Form 200, Notice of Intent (NOI) Form U210, and the respective fees for each permit. General UIC permits are typically issued within 60 days of submission.

Additional permits may be required for construction and will be identified as part of the final design for the PRB pilot.

6 Monitoring

6.1 Preliminary Groundwater Monitoring Plan for PRB Pilot

Groundwater sampling frequency during the PRB pilot test will be established based on the reaction rates observed in the ISM studies and the bench-scale column testing. From the case study review, a potential sampling frequency could be every 2 weeks for the first 60 days, with the frequency decreasing to a monthly sampling rate after the 60-day mark. This sampling frequency was utilized at the Aerojet General Corporation's site in Rancho Cordova, California and was effective in evaluation of perchlorate removal efficiencies in this application. A monthly sampling frequency, as implemented in the Charleston Naval Weapons Station PRB installation, has been shown to provide sufficient data to demonstrate efficacy of the PRB treatment.

A suite of groundwater sampling parameters envisioned in monitoring the performance of the PRB pilot is provided in Table 6. Baseline sampling would be performed for all of the newly installed monitoring wells, existing monitoring wells, and piezometers identified prior to the installation of the PRB pilot system, and would be sampled quarterly thereafter during operation of the PRB. Based on the results observed, it may be possible to reduce or eliminate certain parameters from the monitoring program. Performance monitoring would be performed based on results obtained and Site conditions. It is currently anticipated to be performed after the installation and commencement of operation of the PRB and monthly thereafter during PRB operations.

6.2 Monitoring Well Locations

A conceptual layout of the monitoring wells and piezometers for the PRB pilot system installation is illustrated on Figure 6. A staggered well layout was selected to provide for monitoring of the groundwater conditions both laterally and downgradient of the PRB pilot system. The illustrated spacing of the monitoring wells was based on an assumed hydraulic conductivity of approximately 35 ft/day and the results of the Northgate bench-scale study that indicated successful perchlorate reductions within 14 days. Existing wells (PC-98R and MW-K5) will also be used to provide information on upgradient groundwater quality and elevations. A monitoring well located within the PRB itself is included to provide information on the geochemistry within the wall and to provide a means to observe signs of potential biofouling. Piezometers are included to monitor for changes in groundwater elevations as impacts to groundwater flow, or reductions in hydraulic conductivity that could signal biofouling of the PRB pilot system.

7 Schedule

A preliminary schedule for implementing the activities presented in this Work Plan is provided on Figure 7. The duration of the ISM studies is based on experience and the time necessary for acclimation of the microflora and for adjustments in dosing rates. Based on the results of the ISM studies and the bench-scale column tests, the design for the PRB pilot would be finalized, along with a schedule for installation and associated plans (e.g., final operations and monitoring plans). A preliminary schedule for construction and operation of the PRB pilot is included in the time schedule of Figure 7; however, the time frame presented may need to be adjusted based on the PRB pilot design.

26

8 References

- AMPAC. 2009. July September, 2009 Quarterly Performance, UIC, Perchlorate In Situ Bioremediation System, American Pacific Corporation, Henderson, Nevada. October 29.
- AMPAC. 2011. Semi-Annual Performance Report: July 1 December 31, 2010, Perchlorate In Situ Bioremediation System, American Pacific Corporation, Henderson, Nevada. March 22.
- Battelle. 2000. Design Guidance for Application of Permeable Reactive Barriers for Groundwater Remediation. Air Force Research Laboratory Tyndall Air Force Base, Florida. Contract No. F08637-95-D-6004. March 31.
- CH2MHill. 2010. The Evolution of a Field Application of Nano Scale Zero Valent Iron (nZVI) in a Deep Low Permeability Aquifer. February.
- ENVIRON. 2011a. Phase I Environmental Site Assessment of Tronox LLC, Clark County, Nevada. January.
- ENVIRON. 2011b. Annual Remedial Performance Report for Chromium and Perchlorate, NERT Site, Henderson, Nevada July 2010 June 2011. August 26.
- ENVIRON. 2012. Semi-Annual Remedial Performance Report for Chromium and Perchlorate, NERT Site, Henderson, Nevada, July 2011 December 2011. February 29.
- Errol L Montgomery & Associates Inc. 2000. Analysis of Rate of Groundwater Movement Based on Results of Tracer and Hydraulic Tests Conducted Between Pittman Lateral and Seep Area Henderson, Nevada. December 19.
- ESTCP (U.S. Department of Defense, Environmental Security Technology Certification Program). 2010. Cost and Performance Report (ER-0221), Edible Oil Barriers for Treatment of Chlorinated Solvent and Perchlorate-Contaminated Groundwater. February.
- FRTR (Federal Remediation Technologies Roundtable). 2005. Federal Remediation Technologies Reference Guide and Screening Manual, Version 4.0. February 1. Available at: http://www.frtr.gov/matrix2/top_page.html
- Higuchi, R., Dollinger, G., Walsh, P.S. and Griffith, R. 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10:413-417.
- ITRC (Interstate Technology & Regulatory Council). 2008. Remediation Technologies for Perchlorate Contamination in Water and Soil. PERC-2. Washington, D.C.: Interstate Technology & Regulatory Council, Perchlorate Team. March. Available at: www.itrcweb.org.
- ITRC. 2011. Permeable Reactive Barrier: Technology Update. PRB-5. The Interstate Technology & Regulatory Council, PRB: Technology Update Team. June. Available at: www.itrcweb.org.
- Jackson, W. Andrew, M. Jeon, J. H. Pardue, and T. Anderson. 2004. Enhanced Natural Attenuation of Perchlorate in Soils Using Electrokinetic Injection. Bioremediation Journal. 8(1-2):65-79.

- Kampell, D.H. and S.A. Vandegrift. 1998. Analysis of Dissolved Methane, Ethane, and Ethylene in Ground Water by a Standard Gas Chromatographic Technique. J. of Chromatographic Sci. 36:253-256.
- Kerr-McGee Chemical LLC (KMCC). 2001. Seep Area Groundwater Characterization Report, Henderson Nevada Facility January 18.
- NDEP (Nevada Division of Environmental Protection). 2010. Letter to Tronox LLC, Response to Shaw's proposal for demonstration of perchlorate treatment within groundwater using an injected PRB. April 15.
- Northgate (Northgate Environmental Management, Inc.). 2010. Work Plan to Conduct In-Situ Permeable Reactive Barrier Pilot Test for Perchlorate-Impacted Groundwater, Tronox LLC, Henderson, Nevada October 25.
- Northgate. 2011. Bench-Scale Experiments in Support of an In Situ Permeable Reactive Barrier Pilot Test: Effective Oil Retention, Biological Reduction of Perchlorate, and Metals Mobilization Using Site-Specific Soils and Groundwater, Nevada Environmental Response Trust Site, Henderson, Nevada. March 28.
- Pitrak, M., Mares S., and Kobr, M. 2007. A Simple Borehole Dilution Technique in Measuring Horizontal Ground Water Flow. Ground Water. Vol. 45, No. 1, pp 89–92) January–February.
- SERDP (U.S. Department of Defense Strategic Environmental Research & Development Program). 2009. "In-Situ Bioremediation of Perchlorate in Groundwater". Springer Science+Business Media. LLC.
- Shaw (Shaw Environmental Inc.) 2010. Proposal for Demonstration of Perchlorate Treatment within Groundwater Using an Injected Permeable Reactive Barrier. February 14.
- Solutions-IES, Inc. 2008. Final Report, Edible Oil Barriers for Treatment of Chlorinated Solvent and Perchlorate-Contaminated Groundwater, ESTCP Project ER-0221. February.
- Tan, K., T.A. Anderson and W.A. Jackson. 2004. Degradation Kinetics of Perchlorate in Sediments and Soils. Water, Air, and Soil Pollution. 151:245-259.
- USEPA (United States Environmental Protection Agency). 2006. Contaminated Site Clean-up Information, Technology News and Trends Newsletter, November 2006 Issue. (http://cluin.org/products/newsltrs/tnandt/view.cfm?issue=1106.cfm last accessed August 25, 2012). November.

28

HUV`Yg'

Á

H5 6 @9 '% GiaaUfmicZK cf_'DYfZcfaYX'VmiCh\Yfg

8 UhY cZ Ghi Xm	HmdY'cZGhiXm	DYf Zcfa YX Vm	8 YhUj`gʻcZHYghjb[#CVgYfj Uhjcbg	7 cbWi g]cbg#FYgi `hg
	P^å¦[*^[[*&&	Ò¦[ÁŠEÁT[} &*[{ ^¦^Ása)} åÁ OE•[&ãasa*^•ÁQ,&È	• ãơ Ùãơ Áãi/h ẫÁGC ạể • ã Á ÁÜ æơ Á ÁÖ![ˇ] å¸ æơ ీÁT [ç^{ ^} › ỞÓæ ^ åÁ; } ÁÜ^• ˇ o• Á ÁV æð Å ÁÐ P^ å æð æðÁ/ • o• ÁÔ[} å * &ơ åÁs ^ ç ^^ } ÁÚāc æð ÁŠæð æðÁþ åÁL/^] ÁCE ^ æðÉP^ } å^ !• [} ÉÞ ^ çæåæð ÇÒ [ÁŠĚT [] ở [{ ^! ^ ÁS ÁOE • [&ãæð • ÉOEEETEÁ © ÁB ÁO• • • { ^} ơ, æð Á } å^ kæð ^ } Á, ¼; ¼; Á [Å	~ÁOE ~ ã^¦Áo@BA}^••Á æ ÁOÊÁdæ; ∳{ã•ãçãc Á æ ÁiÍÊ€€ÉA æ ∥[}•Á,^¦Áåæ ÁÇ]å BÐ Áæ; å Á@妿 ∣ÆÁ &[}å*&cãçãc Á æ ÁOÊ€€ÉA]å BOCÊ V@Á^][¦ÓÁæ†[Á;[♂åÁo@æÁæÁ@Á[¸^¦Á;æd•Á;Áó@Áæ*ãA¦ÁŒÈÉÀŒÁæÁæ]°çã { DÁ&[{]¦ã^Á&[æ•^¦Á *¦æãj^åÁ^åã, ^}•Ó, @B&@æð;]^æÁÁ[Áæ&ãããææ*Á;[¦^Áæ}ãåÁ;[*}叿æ*¦Á;[ç^{^}, dĚÁÛ]^&ãææ†ÊÁœÁ ¦^•*∣æÁ;ÁæÁ;*{]Ác∿•ŒÁ,^¦-{¦{ ^åÁææ¼[}}ã√æ;Å, ÁÚÔЁ]ÌÜÁæ;åÁ,ãæ;ÁæØ,Áæ;Ååãææ;ÁÚÜÓÁ;ā[oÁæ*Áæ;Å ,^¦^æÁn][¦c*åĚÁ√@Á;*{]Ác∿•cÁæ;Á[¦ÁGJÈÁ@;*¦•Áæ;åáóæ,Áæ;^¦æ*^Á;*{]ā;*Áææ;Á;æðÁæA.GÁ
	Ù^^]Á Õ¦[`}叿&^¦Á Ô@edæ&&c^¦ãææ¶}	S^ # &O^^AO@{	• *• e^{ EÁA @ Á•] ^ & & & & & & & & & & & & & & & & & &	V@Á^• \ o Á - Á@ Æş ç^• cð æði } Æş åðææ^åK "Á/@ÁOT ŒĞ[¸^!ÁÚ[}å• Áæt^æÆp} & {] æ• ē ¾ Ás@ ÁÛ^^] DÁ¸æ• Ás@ Á; ſÆā^} cðæð åÁ![ັ}叿æ^!Á åð & &æ** ^Æs[¸ cæði ð ¾ Áð } ð ð ð åð æð þ Á; cæði þ & ^} dæði }• Æş þ ¢ l ¾ æð Æsæ Ásæ Ásæ Ásæ Ásæ Ásæ Ásæ Ásæ Ásæ Ásæ Á
CBFI ED€F€	Y [¦\ÁÚ æ)Á{¦Á ÚÜÓÁÚā[oÁ V^•cā]*	Ù @eş ÁÖ) çã[]{ ^} cæ†ÉÑQ &È	[ā, b/8cā] } A, -Á [[, Á^/2e ^Ê/4 âāa ^A, ā4; * ea) ã8 Á ` à • dæ AÇÒU Ùí Í JÌ DÁS, đ Ás@ Áæ c æ e å Á	Q Áng Án-ÖÒÚÁY CC'¦Á[ÂU@e, Ásaæ^åÁQI;¦āÁn-ÍÉÁGEF€DÉÁ@ ÁÖ^]æd(^)dá[{{^} c^åÁs@en-Á;@en-Á;@iA, 'dā, ^} cÁ æ•^••{^} o Á@esåÁs^^}Ásæd¦ā°åÁ; 'dā, Ás@Á;¦[][•^åÁÚÜÓÁnd-æÁn{] [^ā,*Ánĕ ã^¦Ác•o ĒÁ, æcë ¦ædÁ *¦æsåā°}dásæsv¦Ác•o Áng åÁā, b^8c°åEp *{] Ēaæsá, Ásaæsv¦Ác•o Áss^¦;Ë 8Ö^^ĒÁGEEFÁnd;åÁÖ;¦[JÁT[}&[{^\;^Á æ)åÁQE•[8ãnec•ĒÁGEEEDÁnd;åÁs@en-Án@*]åÁs^Ás[}•ãa^¦^åÁg, Ás •ãa°ā;*Ás@Á;¦[][•^åÁ[8ænā]}Á;-Ás@Á ÚÜÓĒÁÁÜ@e, ÁsãaÁ;[dá,¦[*¦^••Ág Ánæsč æd]^Á}å^¦ædā;*Ás@Áða¦áÁs8æd^ÁstāndÈ
	Ò(` •ā }Á Ü^c^}a]}Á V^•a]*Á=;åÁ Ó^}&@====== V^•a]*	Þ[¦o@tæe*AÓ}çāi[}{^}cæe Á Tæ)æt^{^}o£áQ,&È		D

H5 6 @9 '& K Y``7 cbglfi Whjcb'8 YhUj`g'Zcf'9 l]ghjb['K Y`g'

T[}ã([¦ā,*Áv^ Á0Ö	Y^∥ÁÖãæ(^o∿¦Á G3,&@•D	Ö¦a a} * ÁT^c@ å	Y^∥ÁTæe^¦ãæþ	Ù&'^^}^å Z[}^	Öæ¢ÁÔ[{] ^ơ\å	V[œ4ÁÖ^]c@ Ç^^oÁa*•D	Ù&¦^^} ÁÖ^] c@ Ç^^oÁs*•D
TYËSÍ	G	W}\}[¸}	W}\}[,}	ĠĚËĦĚ	I £ÐÐÐFJJÌ	ΙΗĚ	GÌĚ
ÚÔ⊞€€	G	P[[, ÁÙ¢^{ ÁŒ*^¦	ÚXÔ	ìĚĦÌĚ	Í ÐFÌ ÐЀ€€€	Н	ìĚ
ÚÔ⊞ŒÜ	G	W}\}[¸}	ÚXÔ	FÍ∄€	Ì BFÎ BOS€€€	l€Ĭ	FÍ
ÚÔËF€H	G	W}\}[¸}	ÚXÔ	JËGJ	CÐ-BD€€F	GJĚ	J
ÚÔËG	G	P[[, ÁÛ¢^{ ÁŒ *^¦	ÚXÔ	FÎ Ë Ë F Ë	H B AHBAN)	HG	FÎ Ë
ÚÔÉ H	G	P[[, ÁÛ¢^{ ÁŒ *^¦	ÚXÔ	FH <u>Ü</u> HG <u>Ť</u>	ĺ Ð Ð JJÌ	Н	FH
ÚÔËJÌ	I	P[[, ÁÙ¢^{ ÁŒ *^¦	ÚXÔ	FHĚ ËH	Í⊞FÏEÐS€€€€	HĚ	FHĚ
ÚÔËÌ Ü	I	W}\}[¸}	ÚXÔ	G€ÏHÍ	ÌÐòÐĐ€€€€	l€Ĭ	Œ
ÚÔË	G	P[[, ÁÙ¢^{ ÁŒ *^¦	ÚXÔ	FI Ë ËGJË	HECH EENN J	HG	GJË
ÚÔË	G	P[[, ÁÙ¢^{ ÁŒ *^;	ÚXÔ	FÏ ËË ŒË	HEGI EE11j	ΙÍ	ΙŒΪ

H56 @ " GiaaUfmicZ; fcibX'K UhYf'=bX]WUrcf'DUfUaYhYfg J]W]b]lmicZ7UbX]XUhYDF6'D]`chHYgh@cWUr]cb

_													
	V All	<u>Yæe^¦Á</u> <u>Š^ç^</u> [<u>Ô@ </u> æe^	<u>Þãdæc^</u>	<u>Ù` ~æe^</u>	<u>ÖU</u>	<u> </u>	<u>1P</u>	<u>VUÔ</u>	<u>OE</u> \ æ¢ā; ãĉ	Ú^¦&@[¦æe^ <i>/</i>	VÖÙ	Ô¦Á∕[œ¢Á
	<u>Y ^ </u>	<u>Ç</u> øÁ • D	<u>Ç</u> *EŠĎ	<u>Ç * EŠ</u> D	<u>Ç</u> *EŠD	<u>Ç * EŠ</u> D	<u>Ç</u> XD	<u>ĢÈ</u> È	<u>Ç*EŠ</u> D	<u>Ç*⊞ŠÁæ#</u> <u>ÔæÔU_HD</u>	<u>Ú^¦&@[¦æe^/</u> \ <u> </u>	<u>Ç*EŠ</u> D	<u>Ô¦Á/[cæ‡</u> Á <u>Ç;*EŠ</u> D
×ν	ΤËÌÌ	FÌΙ	ď	JÈ	€ÌH FÌ	OHÌÁæeÁ⊅	FF€€		ΪÈÁξÂ	ΙΪΙ	ΒÏН		
buüvpájaá Óæjüðiðá Yæš	TËF€€	ÏJĒĀ{Á JGĒJ	ìÍÁqÆr€Ì	JI	ÈHFÌÁQÁ HÈ	.FGÈÍÁsæ- <i>l</i> Þ	[\] HÍG€		ΪÈΕÁξÂ	ΙΪΙ	GΪН		
	ΤËTÍÍ		FÈI	ìÎÈ	ÌÈEÏ								
ρά	Ü^*ã[}æ Xæ *^∙⊞	Á	ŁF €€Á {Á Í € €	ŁGÍÁ{ÁÍ€		€ÈÁÆ	ËF€€Á{Á F€€				F€€Á¶ÁGÍ€	Í€€€	ÈÉÁ{ÁF
	TYËSÍ	FÍÎÏÈF	ЭH	FH							Œ	ÏI€€	€ÈÉÍH
ьòæïÁúïóÁ šuôæ@р	ÚÔŒH	fĺΪĺ∄Ġ	ŒĤ	ÍÈ							FÌ	ÍŒ€	Ł€ÈF
ĬĴ,	ÚÔËÌÜ	FÍÏ€ÈÎ									Ĝ	ÏŒ€	€ÈÉÍI
ÆŽ SQB	ÚÔË H	FÍÎÌÈΗ	Į.								HÈH	I J€€	€ÈEIÎ
χç	ÚÔËG	FÍΪŒÈΪ	FÌ	FH				ΪÈ			HÈHÍ	Í F€€	€È€ÏÍ
π /0)	Ü^*ã[}æ) Xæ)ĭ^∙Œ		F€Á¶ÁÍ€	ÍÁq[ÁdJF€							FÁ{ÁG€	Í€€€	ÈEGÁ(AÈEÍ
) <i>Ø</i> / , , ЛР	ŒÜÚËŒ	FÍÌÏÈ€									Ğ	I΀€	€ÈEFH
WVPÁU ÚÜÓÁ ÔŒVŒ	ŒÜÚÉÉŒ	FÍÌΗËΉ									Œ	î	€ÈÉÎÌ
ÙUWWP <i>ÁU®</i> ÚÜÓÁ ŠUÔŒÆWÞ	ŒÜÚÉÎÓ	FÍÌH∄G									HF	JÍ € €	€ÈÌ
ÙU ŠU	ŒÜÚËË	FÍÌ HÈGÎ									ΙÈ	î	€ÈEHÌ
Á	ÚÔĦÎ	FÍÍIĚG									FÎ	ÍŒ€	€È
N W	ÚÔĦ Ì	FÍÍIÈ€F									Ê	Î F€€	€ÈÈÌÍ
ь∪ї∨РА́ЈØÁ ÚЇÓÊUÔŒУ@Ъ	ÚÔĦ J	FÍÍIÈG									ΪÈΗ	I€€€	€ÈEH
JÜ. ÆU	ÚÔË€	FÍÍIÈÌ									ΪĤ	H €€	€ÈEHG
Jď.	ÚÔË G	FÍÍÍÈÌ									ŒÎ	H €€	€È€È H
Ú	ÚÔË Ì	FÍÍÍÈÏ									€ĚÌ	ď €€	€ÈEIÍ

Þ[৫**\•** K

 $\hat{O}@[|aee^ABAjataee^AaaeeaAaaAaaA]A![{A\hat{O}} \Rightarrow X@U \Rightarrow qAGEFFAGE}]*aeAja^!-{|{ae}AcAU^][|c|AGEFFAGE]}*aeAja^!-{|{ae}AcAU^][|c|ACAU^][|c|AGEFFAGE]}*aeAja^!-{|{ae}AcAU^][|c|ACAU^][|c$

Ô¦Áa) åÁVÖÙÁşa¢ĭ^•Áad^Á¦[{Ác@ÁÔÞXOÜUÞÁG€FGÁa)}ĭadÁ^][¦c

Pã @•o48[} &^}dæaã[}•Á;ç^¦Á;æ{]|ā;*Á;^¦ã;åÁæ4^Á;|^•^} c^å

HCD, c^!] \^c^a\ha![{ \hat{1}, aa} \hat{1} [&[\lambda (\lambda \lambda \rangle [\lambda (\lambda \lambda \rangle [\lambda (\lambda \lambda \rangle [\lambda (\lambda \rangle \rangle

H5 6 @9 `(GiaaUfmcZ; fcibX`KUhYf`EiU`]hmFYgi`hg` fBcfh\[UhYž8YWYaVYf`&\$%\$L

Úælæ{ ^&¦	W}ão•	Ü^•ˇ œ
Öã•[ç^åÆr^œ;		
OB; cã[[}^	{ * E Š	ŁÆŒ€Í
OE•^} &&ÁQ[dD	{ * E Š	€ÈH
Œ•^}&ÁÇ^&[ç^¦æà ^D	{ * E Š	€È€HÏÌ
OE•^} &AÇCCCD	{ * E Š	ŁÆŒŒ€ÜI
OE•^}	{ * E Š	€ÈEHFJ
Ó^¦^ ã {	{ * E Š	ŁÆŒ€
Ôæå{ã{	{ * E Š	ŁÆŒ€Í
Ô@![{ã{ÁQ;cæ;D	{ * E Š	ŁÆŒ€Í
Ô@[{ã{ÁÇXOD	{ * E Š	ŁÆŒ€F
Ô[]]^¦	{ * E Š	ŁÆEF
Q[}ÁQ[dD	{ * E Š	FĒ
CQ[} ÁÇCCOD	{ * E Š	€ÈF
Š^æå	{ * E Š	ŁÆŒ€Í
T ^{&` ^	{ * E Š	ŁÆŒ€F
Þ & \^	{ * E Š	€ÈEFI
Ù^ ^} ã {	{ * E Š	€ÈF
Ù ặ ç^¦	{ * E Š	ŁÆŒ€Í
Vœdajã{	{ * E Š	ŁÁ€È€€G
Zą &	{ * E Š	ŁÆĒ
CE; a[} a&AÛ]^&a^• Abe) åAû	Jc@¦ÁÚæ¦æ{ ^¢^¦•	
Ô@[¦ãå^	{ * £ Š	93€€
Ô@[¦æe^\	{ * E Š	Ġ
Ú^¦&@[¦æe^	{ * E Š	GΈ
Þãdær^	{ * E Š	ÌÈ
Ù´ æ&^	{ * £\$	FI €€
Ù - 486 ^	{ * E Š	ŁÆĒ
ÖU	{ * E Š	ìĚ
ÖUÔ	{ * E Š	ΙÈ
UÜÚ	{ * E Š	FI Î
] P	{ * E Š	ΪÈG

H5 6 @9 ') Gi a a UfmcZGY YWWYX DF 6 '7 UgY Ghi X]Yg

G]hY'BUaY	HYVV bc`c[m	<mxfui`]w8yhu]`g< th=""><th>@cWUhjcb</th><th>7 cbhUa]bUbhg</th><th>D]`ch#i```GWUY</th><th>7 cgh</th><th>DYfZcfa UbWY</th><th>@cb[Yj]lm</th></mxfui`]w8yhu]`g<>	@cWUhjcb	7 cbhUa]bUbhg	D]`ch#i```GWUY	7 cgh	DYfZcfa UbWY	@ cb[Yj]lm
Unidynamics Phoenix Inc	Nano Scale Zero Valent Iron injection	Deep injection	Goodyear, AZ	TCE, perchlorate	In field pilot test	N/A	Experienced TCE rebound; hydrogen concentrations increased	N/A
Aerojet General Corporation	In situ horizontal flow treatment barrier wells using citric acid for	Used recirculation of water from Deep Aquifer Region to shallower aquifer region back to Deep.	CA	impacted	In field pilot / demonstration scale test	Capital: \$403,205	Perchlorate concentrations decreased an average 95% from start to Day 275. Shallow well perchlorate concentrations went from 2230 µg/L to 90 µg/L. Deep well perchlorate concentrations decreased from 3722 µg/L to 1780 µg/L. Mn and Fe were not mobilized. Showed rebound of perchlorate between phased operations.	Long term operation is feasible
		Hydraulic conductivity of 15 ft/day		There were concerns about mobilizing Mn and Fe.		O&M for 30 yrs: \$784,944		
		Injections occurred from 46-61 ft bls for upper section, and 80-100 ft bls for lower section				Long term monitoring: \$271, 342		
Alliant Techsystems, Inc	Substrate (EOS) Biobarrier	Shallow injections (15 bgs). 50 feet wide GW flow velocity = 100	Elkton, MD	Perchlorate and chlorinated solvents	In field pilot study	estimated at \$38,000 or \$19/ft.		Effectiveness of barrier lasted 2.5 to 3.5 years
		ft/year, Ground permeability = 29 ft/day						
Plant	Biobarrier (mushroom compost, pine wood chips, soybean oil, and 1" crushed limestone) with injected emulsified oil substrate (EOS) solution	Shallow	0 ,	Perchlorate contaminated ground water	Full scale		Reduced perchlorate concentration from 1,000 μg/L to <2 μg/L	N/A

H56@9') GiaaUfmcZGYYWWYX'DF6'7UgY'GhiX]Yg

G]hY`BUaY	HYW bc`c[m	<mxfui`]w8yhj]`g< th=""><th>@cWUrjcb</th><th>7cbhUa]bUbhg</th><th>D]`ch#i```GWUY</th><th>7 cgh</th><th>DYfZcfa UbWY</th><th>@cb[Yj]lm</th></mxfui`]w8yhj]`g<>	@cWUrjcb	7cbhUa]bUbhg	D]`ch#i```GWUY	7 cgh	DYfZcfa UbWY	@ cb[Yj]lm
Whiteman AFB	Biobarrier (organic mulch and clean sand)	Shallow (10 to 20 ft deep)	Near Kansas City, MO	CVOCs, primarily TCE (groundwater contaminants)	Full Scale	\$275/linear foot,	Monitoring shows CVOC degradation within the biobarrier, CVOC concentrations in downgradient wells are 88% lower than in upgradient wells	Continued to show effective treatment after 2 years of operation
Confidential Industrial Site research funded by ESTCP	injected to form a	Shallow (10 ft deep, 10 ft wide, 50 ft long). Shallow hydraulic gradient of 0.003 ft/ft, hydraulic conductivity averaged between 22 to 40 ft/day. Assuming 30% porosity, ground water velocity was approximately 80 ft/year.	,	Perchlorate and TCE plume	Pilot	the site estimated at \$38,000, or	Dissolved iron increased from non-detect to a maximum of 78 mg/L, manganese also increased. Perchlorate rebound experienced 4 months after injection, but concentrations continued to decrease for 7 more months.	At least 3.5 years (monitoring ended after 3.5 years)
		Average GW velocity in specific test area calculated to be 400 ft/year.					Average removal efficiency of perchlorate was 97% (reduced from 10,000 µg/L to <4 µg/L) 10' downgradient of injection wells.	
Charleston Naval Weapons Station		Shallow (10 ft deep), used a small grid configuration Aquifer between 0.5 ft and 6 ft bgs Hydraulic conductivity of	S.C.	TCE	Pilot	direct injection; \$428/ cu yd for a recirculation	Ground water was oxidative, determined this is not optimal for biodegradation. TCE was reduced by 76 to 86% lower through test cell groundwater than in background groundwater. TCE reduced by up to 96% to 99% after buffered EOS injection.	Initial injection treatment continued to work for at least 28 months, second injection treatment prolonged treatment out to 3.5 years (end of monitoring)
		surficial aquifer 1 to 10 ft/day						
Naval Surface Warfare Center	Recirculation treatment using sodium lactate as electron donor, with a sodium bicarbonate buffer	conductivity of 5.2 ft/day and 2.7 ft/day in Mainland	Indian Head, MD	Perchlorate	Pilot	-	Reduced from 170,000 μg/L to below detection (5 μg/L)	Biobarrier can be continually replenished by sodium lactate injection; study lasted 20 weeks

H5 6 @9 ') Gi a a UfmicZGY YWNYX DF 6 '7 UgY Ghi X]Yg

G]HYBUaY	HYW bc`c[m	<mxfui`]w8yhu]`g< th=""><th>@cWUh]cb</th><th>7cbhUa]bUbhg</th><th>D]`ch#ti```GWUY</th><th>7 cgh</th><th>DYfZcfa UbWY</th><th>@b[Yj]lm</th></mxfui`]w8yhu]`g<>	@cWUh]cb	7cbhUa]bUbhg	D]`ch#ti```GWUY	7 cgh	DYfZcfa UbWY	@ b[Yj]lm
Confidential Industrial Site	Hardwood mulch biowall with pea gravel to reduce compaction (a 50/50 mix) (in situ passive permeable reactive barrier)	PRB installed to a depth of 25 ft bgs to target the permeable gravel zone at that depth. Ground water flow velocity of 25 to 51 ft/year.		Perchlorate (impacted soil and groundwater)	Full scale	Used one pass trenching, cost \$185/linear foot		Documented operation of 2.5 years anticipated to work as an effective barrier for "at least the next 3 – 4 years"
Grain Silo Facility Kansas	EHC injection from Adventus	Ground water table encountered at 23 ft bgs Ground water velocity averages 1.8 ft/day	Kansas	Carbon tetrachloride and its catabolites	Pilot	\$37/ft ²	Carbon tetrachloride was reduced by up to 99.5%; initial concentration was 1,000 ppb, final concentration measured was 5 ppb	Documented operation of over 4 years with continuous removal of carbon tetrachloride at or over 94%

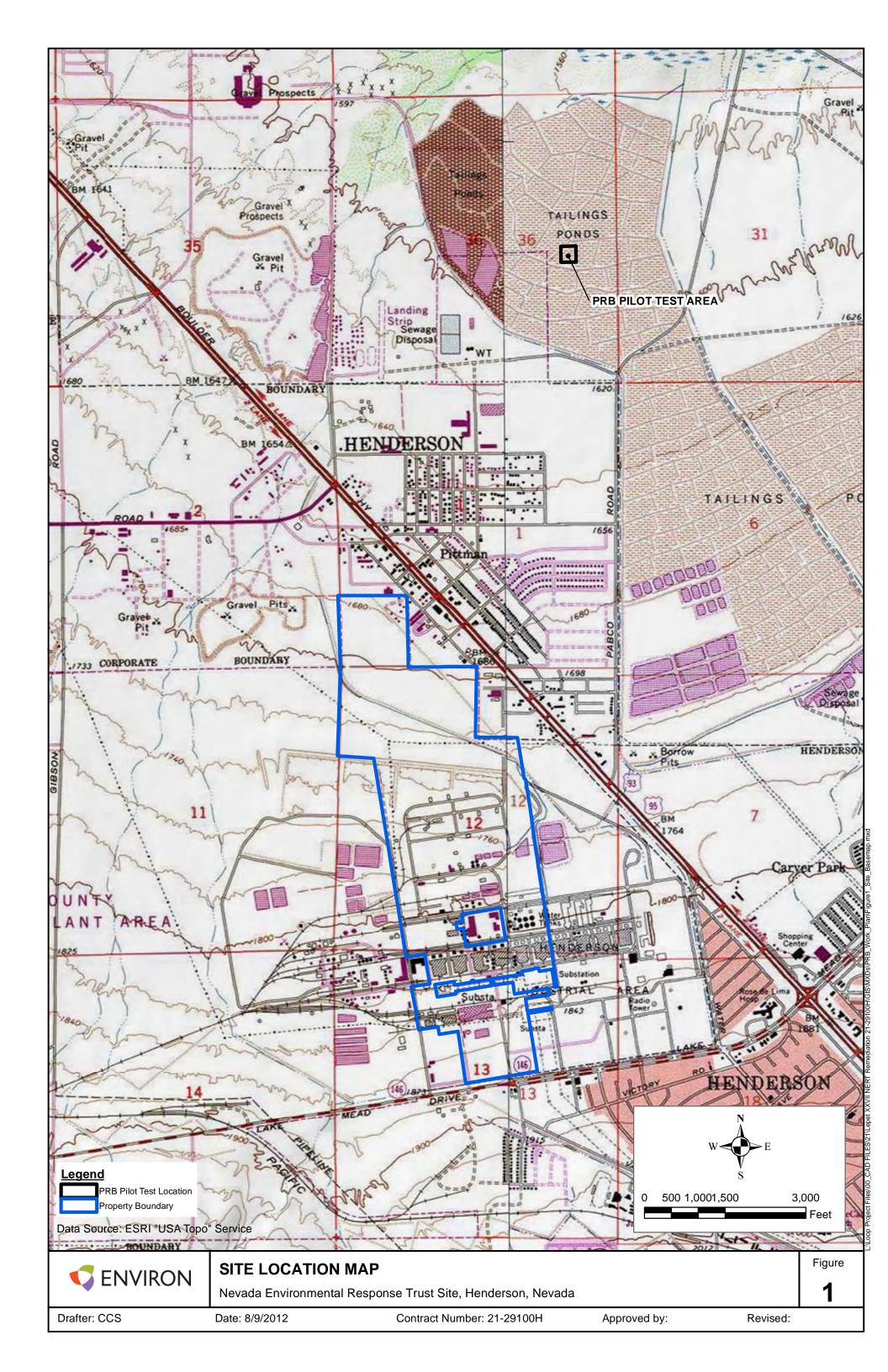
References:

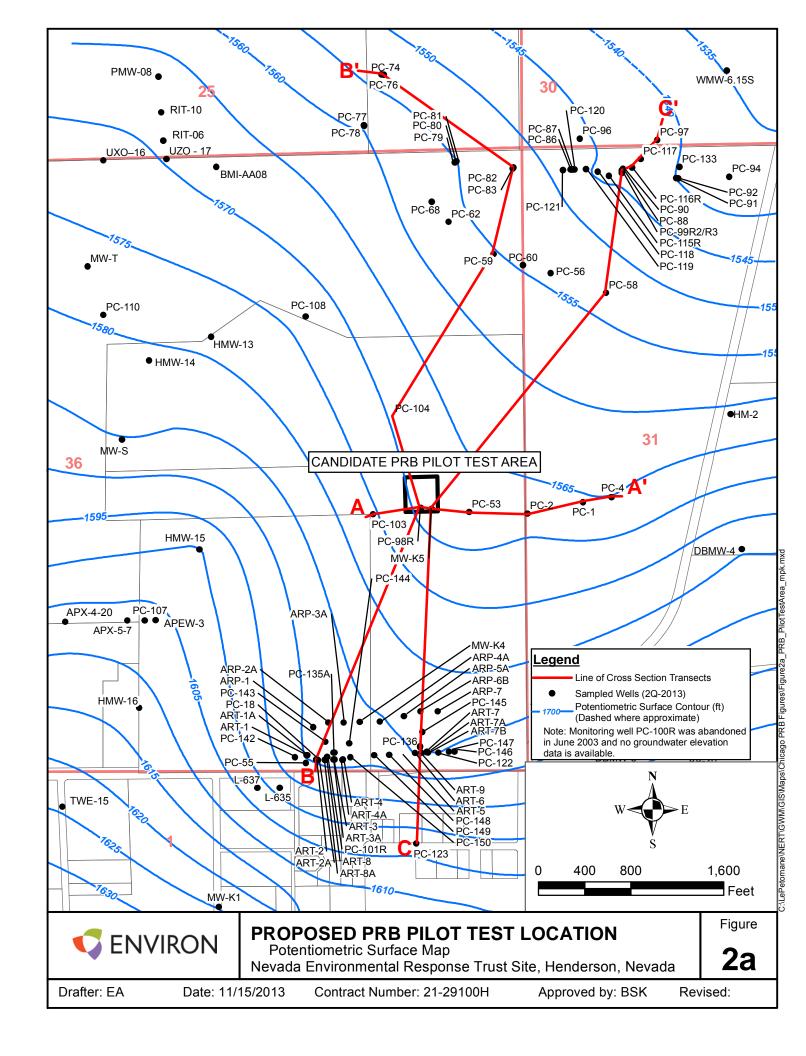
- "Environmental Protection Agency November 2006, Technology News and Trends.
- "Environmental Alliance December 2006, Application of Mulch Biowall for Anaerobic Treatment of Perchlorate in Shallow Groundwater.
- "Shaw Environmental July 2009, In Situ Bioremediation of Perchlorate in Groundwater.
- "CH2MHill February 2010, The Evolution of a Field Application of nano Scale Zero Valent Iron (nZVI) in a Deep Low Permeability Aquifer.
- "Solutions-IES February 2010, Edible Oil Barriers for Treatment of Chlorinated Solvent and Perchlorate-Contaminated Groundwater.
- "Solutions-IES July 2010, Evaluation of Potential for Monitored Natural Attenuation of Perchlorate in Groundwater (Indian Head).

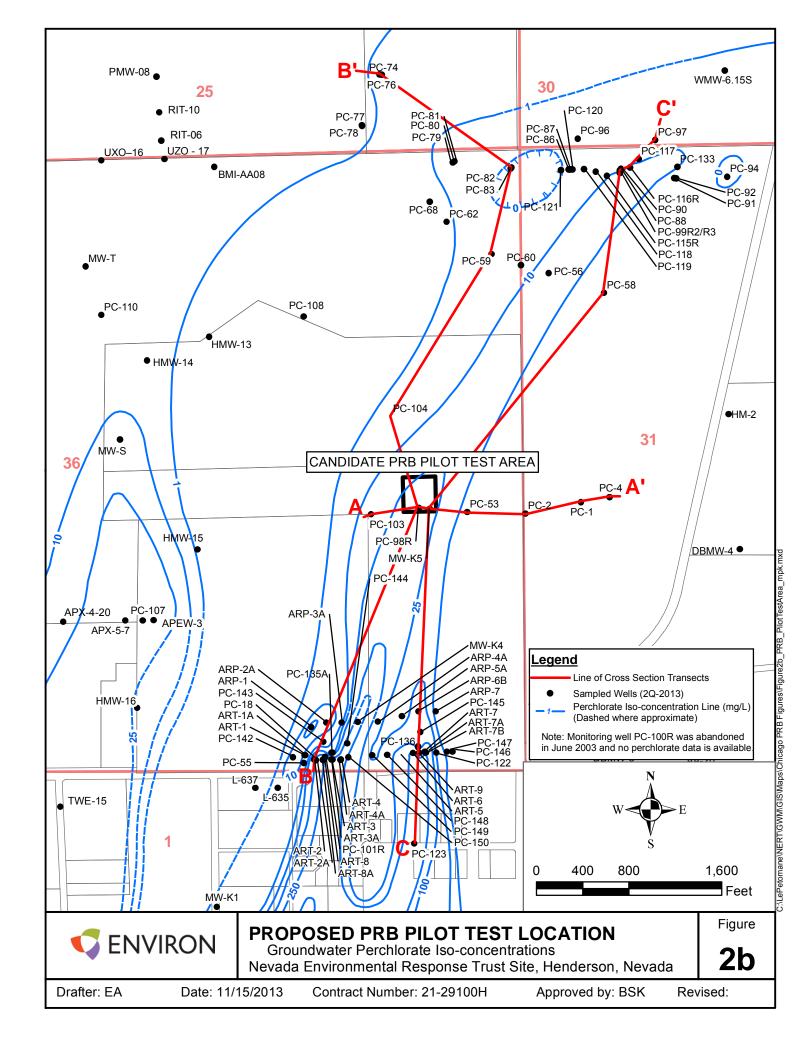
H5 6 @ '* '5 bU'mh]WU'DUfUa YhYfg'DF6 'A cb]hcf]b['!'DF6 'D]`ch

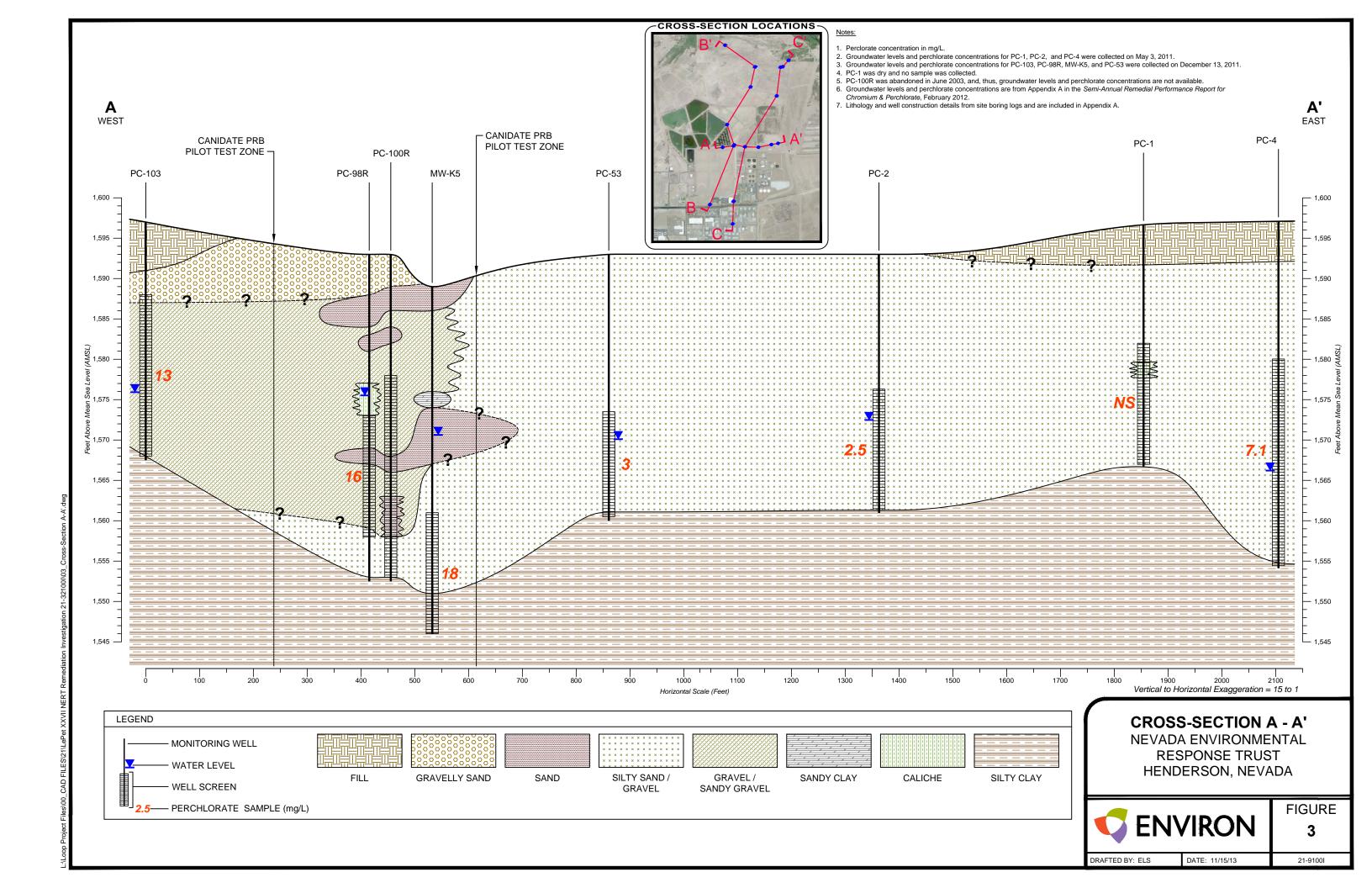
Baseline and Quarterly Sampling Parameters

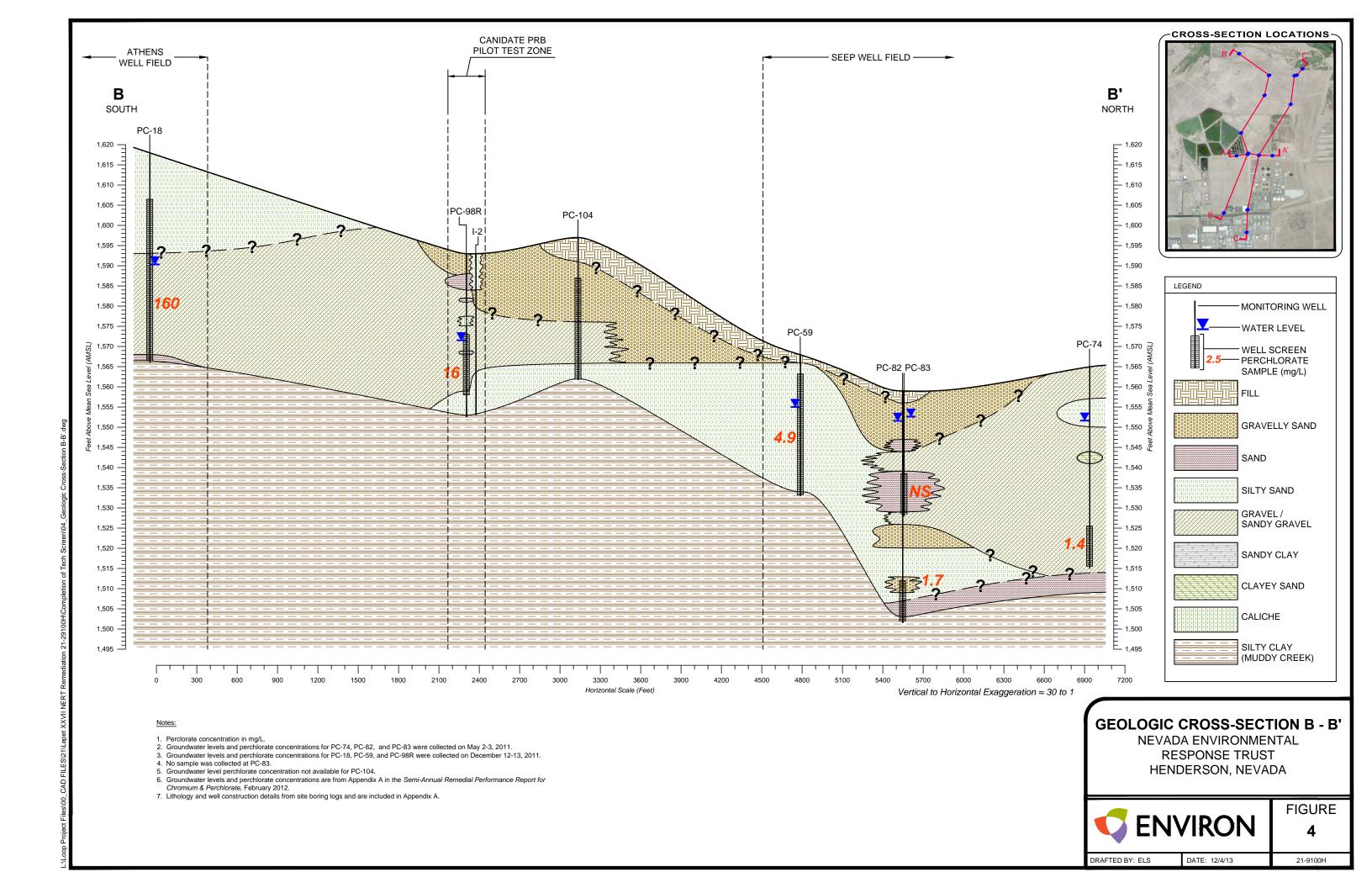
Parameter	Method
V^{] ^ æeč ^ ÊÁ, P ÊÁÔ[} å š & æçãc ÊÁÖU Á se) å ÁUÜÚ	Ú[¦cæà ^ÁaN åÁŞ,∙dˇ{^}c
	Ú[¦caaà ^ÁaN åÁSp•dˇ{^}c
V~¦àããã€	WÙÒÚŒÁT^c@}åÁFÌ€ÈF
V[æ#ÁU¦* æ} &%ÁÔæà[} ÁÇVUÔD	WÙÒÚŒÁT^c@, åÁi FÍ ÈF
Öã•[ç^åÁ∪¦*æ) &ÁÔæ}à[} ÁÇÖUÔD	WÙÒÚŒÁT^c@, åÁi FÍ ÈF
V[cæ ÁÞ ãť [* ^ }	WÙÒÚŒÁT^c@, åÁHÍFÈF
V[œdÁÚ@[•] @[¦[ˇ•	WÙÒÚŒÁT^c@, åÁHÎÍĒ
O.‡\æ ajã ãĉ	WÙÒÚŒÁT^c@, åÁHF€ÈG
Pæå} ^••	WÙÒÚŒÁT^c@, åÆH€ÈF
V[œ#ÄÖã•[ç^åÁÛ[ãã•ÁÇVÖÙD	WÙÒÚŒÁT^c@, åÁF΀ÈF
Ú^¦&@[¦æe^	WÙÒÚŒT^c@ åÁFI
Ô@[aæ^\Á\$\O@ ae^	WÙÒÚŒÁT^c@ åÁ HE€ÌE
Ô@	WÙÒÚŒÁT^o@; åÁH€€È€
Öã•[ç^åÁT^œ्æ∳Á	
ÇCE ÊÎCE ÊÎCÊC	
T * ÉÁT } ÉÁÞ æ ÉÁÞ æ ÉÁÚ à ÉÁÚ à ÉÁÚ à ÉÁÚ ^ ÉÉV ÉÁZ } DÉÁS; å ÁNDÁ	WÙÒÚŒÁT^c@; å•ÂI€F€EDEGEÖI €EEDE€EÈ
Ø^\; [ˇ•Áse}åÁØ^\; &KÁC[}	POSÔPÁT^coQåÂi€€ÌÁsa)åÂiFIÏ
Þãdær^Ádhpādār^	WÙÒÚŒÁT^c@, åÁH€€È€
Ù' æe^	WÙÒÚŒÁT^c@; åÁH€€È€
	POEÖPÁT^c@ åÅiFHFÁÇNÙÒÚOÆT^c@ ^}^Á
Ù '- a a^	Ó `^ÁT^c@ å
T^c@#)^	

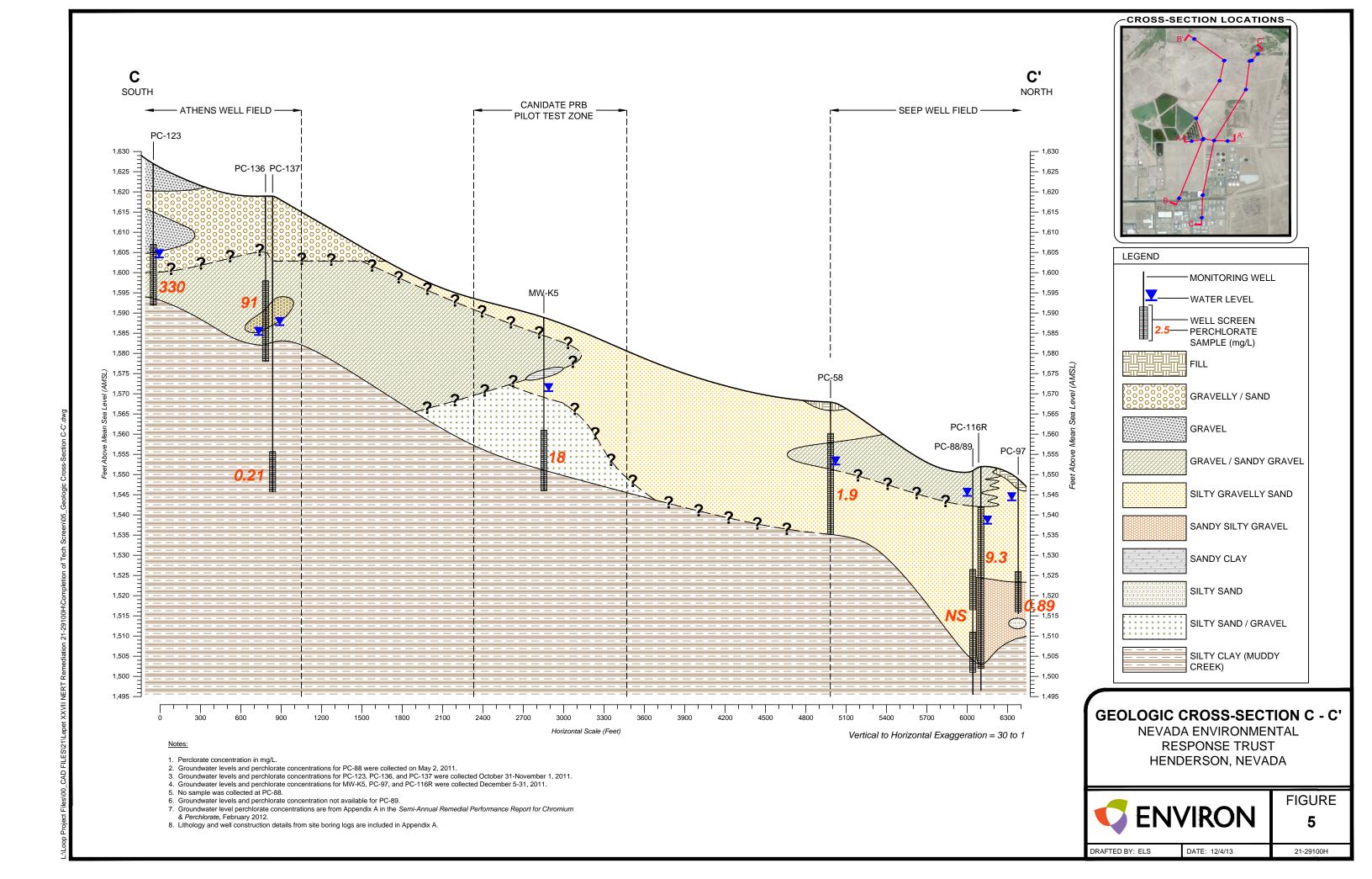

Parameters for Performance Monitoring


Parameter	Method
V^{] ^ ¦æc ' ¦^ÉÁ, PÉÁÔ[} å ` & cãç ãc ÉÁÖU Ása) å ÁUÜÚ	Ú[ˈcæàː/^Áðî/å/Áðj•dˇ{^}c
Õ¦[ˇ}叿e^\Án ^çæea[}	Ú[¦œaà ^Áaî\ åÁa∮•d`{^}c
Ú^¦&@[¦æe^	WÙÒÚŒT^c@, åÁHFI
Ô@[¦æe^ÁÐÓ@[¦ãe^	WÙÒÚŒÁT ^c@ åÁ rl€€ÌE
Ô@{ aa^	WÙÒÚŒÁT^c@, åÁH€€È€
OH•^} &&	WÙÒÚŒÁT^c@, åÁG€€ÉÈ
Q(}	WÙÒÚŒÁT^œQ åÁGHÎÈEFŒHÎÈG
V[cæ ÁU¦*æ)a&ÁÔæ¦à[}ÁÇVUÔD	WÙÒÚŒÁT^c@, åÁi FÍĒF
Þãdã v Áð Þãdæv	WÙÒÚŒÁT^c@, åÁH€€È€
Ù´ -æe^\	WÙÒÚŒÁT^c@, åÁH€€È€
	POEÔPÁT^c@; åÁiFHFÁÇVVÙÒÚOEÁT^c@; ^}^Á
Ù` - a a^	Ó `^ÁT^c@ å
X[æðā ^ÁØæð ÁOB&ãã•	T^c@(åÁÛYÌ€FÍÁT[åããð\å
P^¢æçæ¢^}oÁ&@[{ã{	WÙÒÚŒÁT^c@, åÄiFJJ




:][i fYg


Á



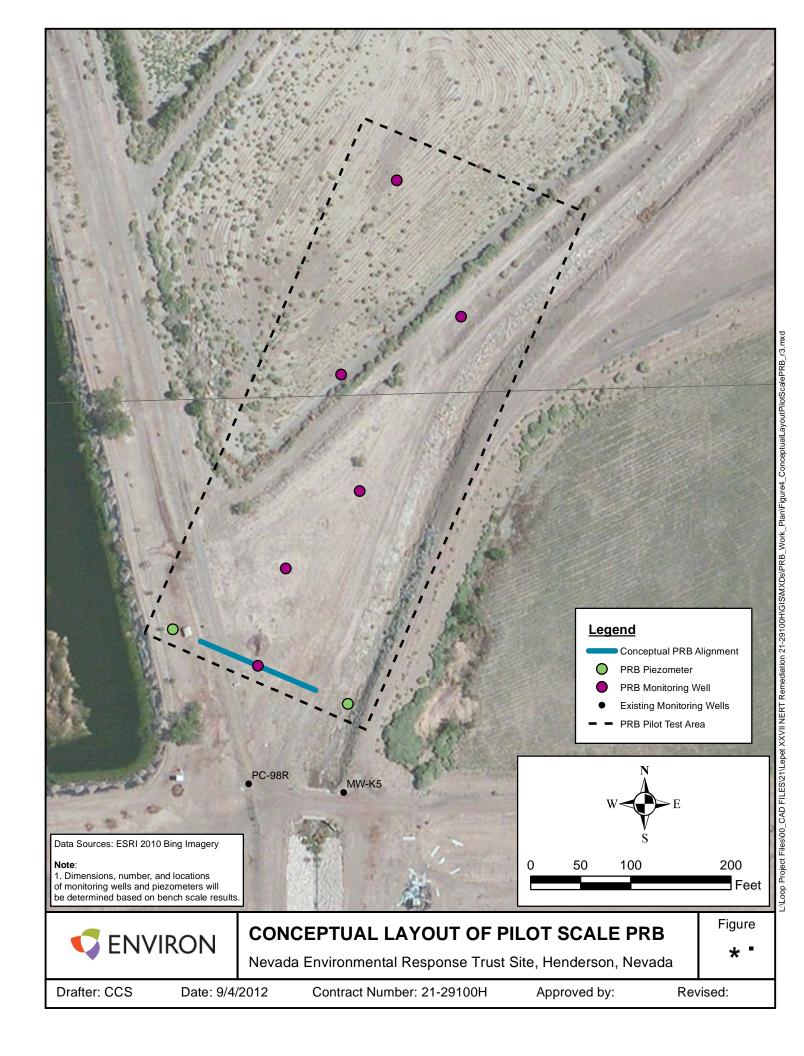
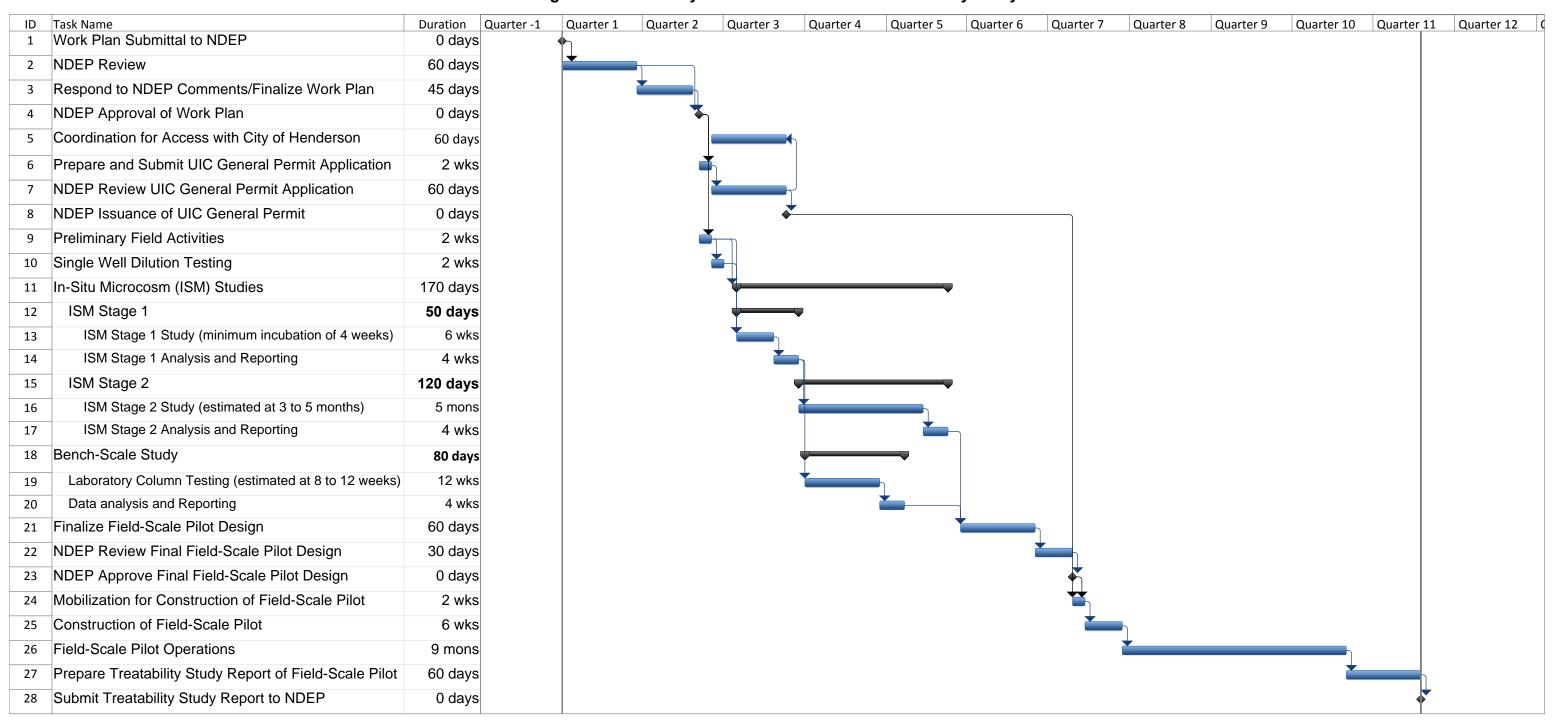



Figure 7. Preliminary Time Schedule for PRB Treatability Study

SENVIRON

Appendix A

Boring Logs and Well Construction Diagrams

December 2013 ENVIRON

EXPLORATION LOG MW-K5

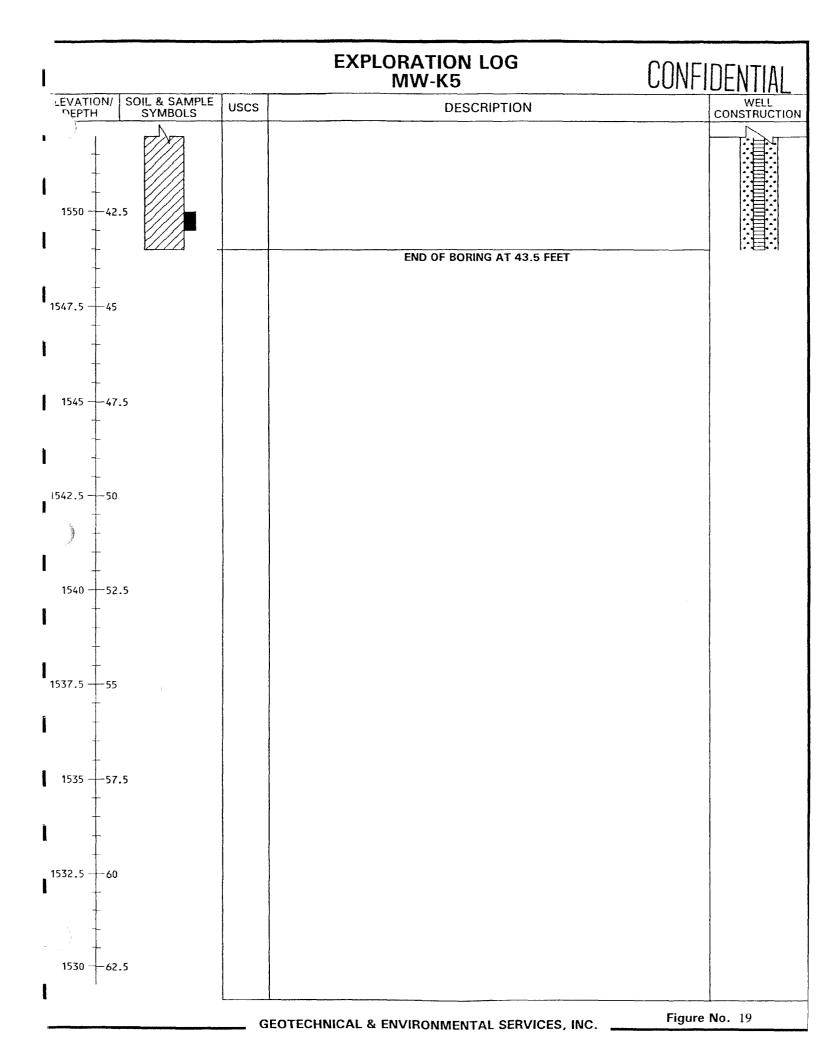

CONFIDENTIAL

Figure No. 19

***OJECT: FORMER PEPCON FACILITY** PROJECT NO.: 97664V1 LE LOCATION: SEE SITE PLAN **EXPLORATION DATE:** EXPLORATION SIZE (diameter): __2" MONITORING WELL _ EQUIPMENT: ____ MOBILE B-61-HDX G.S. ELEVATION: 1592.49 LOGGED BY: S. JOHNSON INITIAL DEPTH TO WATER: DATE MEASURED: 4-2-98 FINAL DEPTH TO WATER: 18.7 DATE MEASURED: 4-3-98 ELEVATION/ SOIL & SAMPLE WELL uscs **DESCRIPTION SYMBOLS** CONSTRUCTION Dark brown poorly graded sand with silt, moist and dense. 1590 -2.5 Dark brown poorly graded gravel with clay and sand, moist and dense. 587.5 ...black with organic material to 8.0 1585 --7.5 GP-GC Dark brown poorly graded gravel with clay and sand, moist and dense. 582.5 -1580 12.5 CL Dark brown sandy lean clay, moist and very stiff. SP Dark brown poorly graded sand, moist to very moist and very dense. ...groundwater encountered, medium dense to 22.0 1575 17.5

GEOTECHNICAL & ENVIRONMENTAL SERVICES, INC.

EXPLORATION LOG MW-K5 CONFIDENTIAL SOIL & SAMPLE SYMBOLS .EVATION/ WELL CONSTRUCTION uscs **DESCRIPTION** 572.5 --20 ...gravel lense to 22.0 SP-SC Dark reddish brown clayey sand, wet and medium dense to dense. 1570 --22.5 1567.5 -...gravel lense to 27.5 1565 -27.5 ... dense to 32.5 562.5 -...gravel lense to 32.5 1560 --32.5 ...dense to very dense to 35.0 1557.5 ~ -- 35 ...medium dense to 38.0 1555 -37.5 CL White and green mottled sandy lean clay, moist to very moist and stiff. 1552.5 Figure No. 19 GEOTECHNICAL & ENVIRONMENTAL SERVICES, INC.

	RR-McGEE CORPORATION drology Dept S&EA Division		LLC		LOCATION HEN	DER	50	N, V	SORIN NUMB	IG SER PC 100
DEPTH IN FEET	LITHOLOGIC DESCRIPTIO	S SKAPHIC LOG	UNIFIED SOIL FIELD	PER	PID (ppm)	NO.	SC H	DIL SAM	1	REMARKS OR FIELD OBSERVATIONS
5 —	modyell brn (10 y R5/0 silt, Z5% volc grand sm pubbles up to 1"	1) 10%	SW	6"		NU.	λ <u>ι</u>	DEPTH	- REC.	damp@16'
	18-29 sty sdy GR 14 brn (54R5/4). 20-2 20-25% poorly sorted vf-vc sd 50% volc granule pebbles to 3" Locally hard thin calichitied zones	5 and 000	SW							7652,
36	29-36 sity SAND yell brn (10486/4), v w/com m-cg, SR-S 25-30% silt. Very calcareous. Minor size caliche nodul 36-45 sity gravs mod yell brn (1048 25% silt, 25% volcg	f-fg A m-vc AND, 001	SW							
EXPLANATION AALI ON AA	Water Table (24 Hour) Water Table (Time of Boring Photoionization Detection (pp Identifies Sample by Number) om)			SAND		DEBR TILL IGHLY IRGANI SANC	IS DE	OGGED BY	MPLIANCE
DE	THIN. WALLED TUBE PTH Depth Top and Bottom of Sa EC. Actual Length of Recovered	NO RECOVE Sample in Feet	RY	3	GRAVEL GILTY CLAY CLAYEY GILT		ANI	E	CISTING GRAD	KRISH DE ELEVATION (FT AMSL) GRID COORDINATES

1	KERR-McGEE CORPORATION Hydrology Dept S&EA Division	KM SUBSIDIA	RY	LLC	-	LOCATION HEND	ERS	10 č	し、し	V BORING PC 100		
DEPT	н		5.0	UNIFIED		PID		SC	OIL SAM	APLE		
IN FEET	LITHOLOGIC DESCRIPTIO	N	GRAPHIC LOG	SOIL FIELD CLASS.	PER 6"	(ppm)	NO.	TYPE	DEPTH	H REC.	REMARKS OR FIELD OBSERVATIONS	
	and sm pebbles; vf-		0-0-									
	13 45 511 0000			5W							-	
	AZ-45 sity grav SAND, gry oran pink	- 1	0.0								_	
45-	(54R 6/z) 10% clay		0:0:									
	silt. Zoto volcals	granules	1							-	MC not -	
	- silt, Zofo volcatis to 1/8-1/2" dissemthro	Jughout		,		_				-	reached	
	- Very calcareous w/mir sm. caliche nodules	ior				_					_	
_												
	TD 45'										_	
			:								_	
-										,		
											-	
	-											
-												
	-											
											-	
-								ĺ				
	-										_	
						NO Processor					_	
-												
						_						
İ	-											
_												
	-										_	
											-	
	4											
H.	▼ Water Table (24 Hour)				GI	RAPHIC LO	OG LEC	GEN	1D G	DATE DRILLED		
.	Water Table (Time of Boring))								5-18-		
1 1	PID Photoionization Detection (pp NO. Identifies Sample by Number YPE Sample Collection Method						FZ H	IGHLY	HC (DEAT)		H5A	
ATIO	VI cour		CY						. 10	Com f	PLIANCE	
EXPLANATION	BARREL	ROCCO	RE			GRAVEL			17	LOGGED BY	KRISH	
ă	THIN- WALLED CONTINUOUS TUBE SAMPLER	NO REC) COVER	Y	3	SILTY			- 1	. –	DE ÉLÉVATION (FT AMSL)	
	DEPTH Depth Top and Bottom of Sa REC. Actual Length of Recovered S	mple Sample in I	Feet			CLAYEY				LOCATION OR	GRID COORDINATES	

	RR-McGEE CORPO DROLOGY DEPAR	
	-	ATION DIAGRAM
Protective Pipe	¬·Casing Cap V	ent? Yes No No
Yes No No	Lock? Yes	$ \sim$ \sim \sim \sim \sim \sim \sim
Steel PVC	Weep Hole?	Yes No
Surveying Pin ?	Concrete Pad	Ft. xFt. xInches
Yes No	7.0.0	DRILLING INFORMATION:
	DEPTH FROM	1. Borehole Diameter= 8 Inches.
Concrete Ft.	BELOW TOP OF GRADE CASING	2. Were Drilling Additives Used? Yes No
		Revert Bentonite Water
<u> </u>		Solid Auger 🗌 Hollow Stem Auger 🔀
		3. Was Outer Steel Casing Used? Yes No 🛛
Cement/Bentonite Grout Mix		Depth=toFeet.
Yes 🔀 No 🗆		4. Borehole Diameter for Outer Casing_ Inches.
5.5 Gallons Water to 94Lb. Bag Cement & Ft.		WELL CONSTRUCTION INFORMATION:
3-5 Lb. Bentonite		1.Type of Casing: PVC Galvanized Teflon
Powder Other:		Stainless Other
		2. Type of Casing Joints: Screw-Couple Glue-
		Couple Other 3. Type of Well Screen: PVC X Galvanized
	×	Stainless Teflon Other
Bentonite Seal		4. Diameter of Casing and Well Screen:
Pellets X Slurry	₩	Casing 2 Inches, Screen 2 Inches.
	4	5. Slot Size of Screen: 0.020
Filter Pack 4.5 Ft.		6. Type of Screen Perforation: Factory Slotted
Above Screen		Hacksaw Drilled Other
	8.5	7. Installed Protector Pipe w/Lock: Yes 🗌 No 💢
		WELL DEVELOPMENT INFORMATION:
		I. How was Well Developed? Bailing Pumping
FILTER PACK MATERIAL		Air Surging (Air or Nitrogen) Other
Silica Sand	··.}	2. Time Spent on Well Development ?
		/ 60 Minutes/Hours
Washed Sand W		3. Approximate Water Volume Removed ? Gallons
Pea Gravel 🗌		4. Water Clarity Before Development? Clear
Other:		Turbid Opaque
		5. Water Clarity After Development? Clear 🔯 Turbid 🗌 Opaque 🗍
Sand Size 2-12 MESH		6. Did Water have Oder? Yes No 🛛
	38.5	If Yes, Describe
Dense Phase Sampling Cup 0.5 Ft.	*:}	7. Did Water have any Color? Yes No No
Bottom Plug Yes No	39	If Yes . Describe
Overdrilled Material	<u></u>	WATER LEVEL INFORMATION:
Backfill 1.0 Ft.	į	Water Level Summary (From Top of Casing) During Drilling Z5 Ft. Date 5-12-00
Grout Sand	1 40	Before Development 14.03 Ft. Date 5-19-00
Caved Material	<u> </u>	
Other:		After Development Ft. Date
Driller/Firm Campuance	Drill Rig Type Mobile	B-59 Date Installed 5-18-00
Drill Crew LoyA	Well No. PC 100	Kerr-McGee Hydrologist ED KRISH

·

SOIL BORING LOG KM-5655-B

	RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSIDIARY			Henc	lers	, NV	B	BORING PC 100 R			
DEPTH		<u>2</u>	UNIFIED		PID		SC	DIL SA	MPLE		REMARKS OR	
IN FEET	LITHOLOGIC DESCRIPTIO	GRAPHI LOG	SOIL FIELD CLASS.	PER 6'	(ppm)	NO.	TYPE	DEPI	H R	EC.	FIELD OBSERVATIONS	
_	0-4 gravelly SA	ND, 0:0							1		Start drilling	
_	gry brn W/10-15%	511+ 000	5W								@8:30 am	
	TO-ZON Vale arang	اه اه اما د ما	1								finish @ 9:00	
4 -	20-30% volc grand pea gravel. Vf-vc	SASA				 						
			SW		_						-	
っ _	4.7 SAND, gry br	nw									, make a	
/ _	granules to 1/0". f	v. sm 0.00	GW		_							
9 -	SA-SR sand.	- 10:0.6			- Marine	 	-					
-		brn	SW		_						-	
// 1	7-9 SAY GRAVEL A-SA to 1". 30-35	1 1080									dampe 121	
	rc sand	7000	į									
- 	<u> </u>	101/2							-			
15-	9-11 SAND, brn, wl 51++5-1070 v.sm	1000			_						_	
	f-ra, SA sand	gran Jose				ļ.						
	11-25 Sdy GRAVE		GW		_	Ì					VC18'	
_	11 = 20 30 3 NIVE	0.00										
20-	brn w/5-10% silt										_	
	25-30% vf-vc, SR-5	. 1.0.29				1						
	Grave up to 2" (ave											
-	3/4") volc w/min	00			-	1						
25-	caliche coatings	0.0.0										
_	25-27 SAND ben	, mod ::	SW			}						
27 -	sity (15-20%). Calco	reous. 1000				 						
• -	w/ 10-15 % sm vole q	ranules 000	GW		-							
30	11 v+-VC, SA-SR				-							
70-	bm, volc up to Z" (an	EL,										
_	bm, volc up to z" (an	1e 3/4")	- L		_						'	
-	11 Clean, vi-vc sd	11 -:-	. 5W		-							
- -	30-35 SAND brn	vf-c			 							
<i>5</i> 5 –	W/minorve, SH-SR. 10	7-10 10				1	1					
-	35-38 SITU SAND /50	1 4 51 1	5M					ĺ				
38 -	30-35 SAND brn W/minerve, SA-SR. IC silt, calcareous 35-38 Sity SAND/SO var amts of silt in v	f-fa 1		ļ		<u> </u>	-					
	Isa-sasd	140	GM/		-							
7	Water Table (24 Hour)	1.7.	1	G	RAPHIC I	OG LE	GEI	ND	DATE DR			
7	• • •	1)			C14V		DEB	RIS	8-		-00 1 of Z	
P	ID Photoionization Detection (p. Identifies Sample by Numbe	pm)		1							3C 17210N	
_	PE Sample Collection Method							Y NKC (PEAT)	DRILLED	BY		
EXPLANATION	SPUT-	ROCK			SAND		SAN	IDY Y	L	-A)	YNE	
3 /	BARREL						CLA	YEY	l .	_		
EX	THIN- CONTINUOUS	NO		1	GRAVEL	الدين ا	JMN	•0		G GRAC	KRISH DE ELEVATION (FT. AMSL)	
	TUBE SAMPLER	RECOVE	RY	1		Ш						
	EPTH Depth Top and Bottom of Sc			1	CLAYEY SILT				LOCATIO	PO NO	GRID COORDINATES	
D	TUBE CONTINUOUS	RECOVE	RY	1	SILTY CLAY CLAYEY SILT							

SOIL BORING LOG KM-5655-B

		KM SUBSIDI	ADV			LOCATION					
	RR-McGEE CORPORATION drology Dept S&EA Division	KMSUBSIDI				HEND	<u> </u>	0 N	, NV	BORIN	G PC100R
DEPTH	LITHOLOGIC DESCRIPTIO	N	GRAPHIC 10G	UNIFIED SOIL FIELD	BLOWS Per	PID			IL SAMP	PLE	REMARKS OR
IN FEET			25	CLASS	6'	(ppm)	NO.	TYPE	DEPTH	REC.	FIELD OBSERVATIONS
40.5	38-40.5 gravelly	situ	0.11								
	SAND, brn. 20-2	-1-	12.20	<u> </u>	 						MC @ 40.5
	5.1+ and 10-20% V										_
_	Em avanules CA-SA	2 . 2									
45-	sm granules. SA-SA ve sd.										
											_
-	40.5-41.5 Harn CLAY W/ gyp xta	SHY									_
	CLAY W/ gyp x+n	12				_					-
_	TD 41.51										
_	10 413										
-											_
-											
-											
-						_	,				_
											_
l —											
-											
-						_					_
-											
-											-
_											
-		'									_
-											
_											_
1 _											_
											
-											
-											
-			Ì								_
▼	Water Table (24 Hour)		<u> </u>		G	RAPHIC L	OG LE	GEN	D DÁ	TE DRILLED	PAGE OF 2
모						ELAY		DEBRI	S DR	8-16-	
PII	 Identifies Sample by Number 	om)					M	HGHLY		PERC	US510N
	I				1	SAND			100	LAY	JE
EXPLANATION	SPLIT- BARREL AUGER		OCK ORE		1	GRAVEL			Ιίο	GGED BY	
EXP	THIN: CONTINUOUS	No.	0					AND			KRISH E ELEVATION (FT. AMSL)
	TUBE	Г_Л	COVER	Υ	i	CLAYEY SILT				XCATION OF C	GRID COORDINATES
	PTH Depth Top and Bottom of Sa EC. Actual Length of Recovered	impie Sample in	Feet		ן אונט	SILT	. لــا 				COMMINES

		-McGEE CORF	
·		ROLOGY DEPA	
M	ONITORING	WELL INSTAL	LATION DIAGRAM
Protective Pipe		Casino Cao	Vent 7 Yes No
	-	Lack ? Yes	
			Yes No
Steel PVC	Ft.		
Surveying Pin 1	—'"	Concrete Pa	dFt. xFt. xInches
Yes No No	-	Par	DRILLING INFORMATION:
		DEPTH FROM	1. Borehole Diameter= 9 inches.
0		BELOW TOP OF	
Concrete /	ft.[]	GRADE CASING	2. Were Drilling Additives Used 7 Yes No
1		1	Revert Bentonite Water
- -			_ Solid Auger [] Hollow Stem Auger []
i f		·	3. Was Outer Steel Casing Used 7 Yes 🗌 No 🔯
Cement/Bentonite Grout Mix Yes No			Depth=taFeet.
5.5 Gallons Water to			4. Borehole Diameter for Outer Casinginches.
94Lb. Bag Cement & 4	Ft.	}	WELL CONSTRUCTION INFORMATION:
3-5 Lb. Bentonite	13 19	}	1. Type of Casing: PVC Galvanized Teflon
Other:			Stainless Other
			2. Type of Casing Jointe: Screw-Couple Glue-
		5	Couple Other 3. Type of Well Screen: PVC Galvanized
-		}	
Bentonite Seal	👹 👹		Stainless Teflon Other
5	ft. 		4. Diameter of Caeing and Well Screen:
Pellets Slurry	🟻 🔛	10	Casing 2 Inches, Screen 2 Inches.
			- 5. Slot Size of Screen: 0.040
Filter Pack	Ft.		6. Type of Screen Perforation: Factory Slotted 🗵
Above Screen		•	Hackeaw Drilled Other
1		15	7. Installed Protector Pipe w/Lock: Yes No No
			WELL DEVELOPMENT INFORMATION:
			1. How was Well Developed ? Bailing Pumping
			Air Surging (Air or Nitragen) 📈 Other
FILTER PACK MATERIAL	1. 日:		
Silica Sand 📈	나님		2. Time Spent on Well Development ?
	/ Ft.] 目:		/MMESSES/Hours
Washed Sand	— T. 日·		3. Approximate Water Volume Removed ! Gallons
Pea Gravel [4. Water Clarity Before Development ? Clear
Others	() 目 (1	Turbid Opaque
		{	5. Water Clarity After Development 7 Clear
Sand Size 8-12		1	Turbid Opaque
		40	6. Did Water have Oder? Yes No 🗌
		(19 Yes, Describe Pesticide
Dense Phase Sampling Cup	< F1	}	7. Did Water have any Color ? Yes 💢 No 💢
Bottom Plug	1 11	110	if Yes . Describe
Yes No 🗆		405	WATER LEVEL INFORMATION:
Overdrilled Material		į	Water Level Summary (From Top of Casing)
Backfill 1	Ft.	1	During Drilling 18' Ft. Date 8-16-00
Grout Sand		41.5	Before DevelopmentFt. Date
Caved Material		<i></i>	After Development 13.64 Ft. Date 8-17-00
Other:			Atter Development 10.01 Ft. Date 8-1/500
Driller/Firm Hormann	/ LAYNE	Deill Die Ture - Ar	-1000 Date Installed 8-16-00
CHIEF FROM HOR			10 14 D
Drill Grew		Well No. PC 100	PR Hydrologiet Ed Krish
			

		RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSID		LC		Hend	erso	-n	۸V	BORIN	G PC 103
DE	HT			呈,,	UNIFIED			<u>-</u> _		OIL SAMPL		
	ET	LITHOLOGIC DESCRIPTIO	N	GRAPHI 10G	SOIL FIELD CLASS.	PER 6'	PID (ppm)	NO.	TYPE	DEPTH	REC.	REMARKS OR FIELD OBSERVATIONS
		0-6 BERM. Com	•	7						····		
	-	construction mad	erial	/			<u> </u>					
	-			/								-
				/								
6	-			/					\dashv			
	-	6-10 SAND, grave brn (5485/4), 10-20/5 vol	114,	0.0	_ (
İ		grav to 1/4 " in vf-vc, A	c pea	. 0	5ฟ							-
10				8								
	-	10-17' GRAVEL, SO	Ly,	0.000					İ			_
	-	51+y, brn, 10-20% sill 20-30% vf-vc, SA-SR\$	1 -	000	C . 4				İ			-
		volc growel to 14. 51	. دما-	0000	GM							40
15	\dashv	fining-up. alluvial beds	of T	000								dampe 14'
17	- 1	16-17' Gravel to 4"	7	000								_
' '		17-29 Gravel, 51.	. sau	0.0.0								WTR EI7'
		tr silt. 10-15 % vf	-vc	000								
20		Sd, A-SR, Volc SA-S	R pea	0.00								
		gravel to 1/2" w/ loca	1 thin		GP							=
	_	beds up to 4"		000								_
10		25-28' com la volc	a revel	000								
63		25-28' com 19 volc	3	0000	,							
	_			00.0								
	_	Z8-Z9' gravel w/	20-307	1000								
30		29-30' CLAY, Si	114	74/1	CL							MC B 301
		E CLAY, 1+ grngr										MC & Zq'
	_	/					 					_
		(5648/1), 10-202; in matrix, non-c										
		eous, +r-sp ogps	arcui-									
	-		- um	-								_
		TD 30'							ļ			-
	_								1]
h	Y	Water Table (24 Hour)			<u> </u>	G	RAPHIC L	OG LEG	SEN	IDAT	DRILLED	PAGE
	∇	(1					D Fi			-3-9	
	PIE	Photoionization Detection (pp	m)			i		ESSA FI			DE NO	ī
Š	TYP	E Sample Collection Method							RGAN	DRIL	LED BY	NOISION
Ā	\bigvee	SPLIT. AUGER	R	OCK .			SAND	S	LAY		LAY	NE
EXPLANATION		BARREL	C	ORE			GRAVEL	S S	LAY	(EY	Ed Ed	KRISH
 ~		THIN- WALLED TUBE CONTINUOUS SAMPLER	N RE	O ECOVER	Y					l		E ELEVATION (FT. AMSL)
		PTH Depth Top and Bottom of Sa EC. Actual Length of Recovered S	mple			ı	CLAYEY SILT			LOC	ATION OR C	GRID COORDINATES
Ш						<u> </u>						

KERR-McGEE CORPORATION HYDROLOGY DEPARTMENT MONITORING WELL INSTALLATION DIAGRAM Protective Pipe ----____Casing Cap Vent? Yes 🔀 No 🗌 Yes 🖄 No 🗌 ___-Lock ? Yes 🗌 No 🛛 Weep Hole ? Yes 🔲 🛮 No 🔀 Steel A PVC Surveying Pin ? --Concrete Pad _____Ft. x ____Ft. x ____Inches No 🙀 Yes [DRILLING INFORMATION: 1. Borehole Diameter= 9 Inches. FROM **BELOW** TOP OF Concrete 2. Were Drilling Additives Used? Yes No X CASING GRADE Revert Bentonite Water Solid Auger 🗌 Hollow Stem Auger 🔲 3. Was Outer Steel Casing Used? Yes No 🛛 Cement/Bentonite Grout Mix Depth= to Feet. Yes 🗍 No X 4. Borehole Diameter for Outer Casing 5.5 Gallons Water to WELL CONSTRUCTION INFORMATION: 94Lb. Bag Cement & 0 Ft. 3-5 Lb. Bentonite 1. Type of Casing: PVC 😭 Galvanized 🗌 Teflon 🗍 Powder Stainless Other Other: 2. Type of Casing Joints: Screw-Couple W Glue-Couple Other 3. Type of Well Screen: PVC V Galvanized Stainless Teflon Other Bentonite Seal 4. Diameter of Casing and Well Screen: Ft. Pellets Slurry Casing 2 Inches, Screen 2 Inches. 5. Slot Size of Screen: 0.020 Filter Pack 6. Type of Screen Perforation: Factory Slotted 🛛 1.0 Ft. Above Screen Hacksaw Drilled Other 7. Installed Protector Pipe w/Lock: Yes [No [WELL DEVELOPMENT INFORMATION: 1. How was Well Developed? Bailing 🔲 Pumping 🔀 Air Surging (Air or Nitrogen) Other_ FILTER PACK MATERIAL 2. Time Spent on Well Development ? Silica Sand _/___ Minutes/Hours 20 Ft. Washed Sand 🛛 3. Approximate Water Volume Removed ? _____ Gallons Pea Gravel 4- Water Clarity Before Development? Clear Turbid Opaque 5. Water Clarity After Development? Clear Turbid [Opaque 🗌 Sand Size 3-12 6. Did Water have Oder? Yes No 29 If Yes, Describe Dense Phase Sampling Cup o. 5 Ft. 7. Did Water have any Color? Yes No No Bottom Plug If Yes , Describe Yes No 29.5 WATER LEVEL INFORMATION: Overdrilled Material Water Level Summary (From Top of Casing) Backfill 0.5 Ft. During Drilling 17 Ft. Date 2-3-01 Grout Sand Before Development_____ Ft. Date____ 30 Caved Material After Development _____ Ft. Date ____ Other: Driller/Firm LAYNE Drill Rig Type AP-1000 Date Installed Z-3-01 Kerr-McGee Drill Crew Perry Well No. PC - 103 Hydrologist

SOIL BORING LOG KM-5655-B

=		Milla Loa Milladas-b	KM SUBSIDIARY			LOCATION					
		RR-McGEE CORPORATION drology Dept S&EA Division	Kneu			Huse	رهما	, ~	<i>ν</i>	BORIN	G ER PC-2
DE	РТН		¥,	UNIFIED		PID		so	IL SAM	PLE	REMARKS OR
	N EET	LITHOLOGIC DESCRIPTIO	3RAP Z	FIELD	6'	(ppm)	NO.	YPE	DEPTH	REC.	FIELD OBSERVATIONS
10	8	SAND/SILTY SAND W/ GRAVEL; LT. TAN- BR WALL - GRASSO; DRY GANVEL C 6-7' SAND AS MOOVE GRAVEL @ 14-15' SAND AS MOOVE SAND AS MOOVE SAND AS MOOVE SAND AS MOOVE SAND AS MOOVE SAND AS MOOVE SAND AS MOOVE SAND AS MOOVE; SATURA	A30 0000 0 0000 0 0000 0 0000 0 0 0 0 0	SM- GM	PER 6"		NO.	1YPE	DEPTH	REC.	
25		`			3,12,27		,	Seat of Chinas Section (Chinas	30	1, 4'	CROMONOTEL SAMPLE TOKEN C 30'
3	· -	SILTY CLAY, REDOUBLY OR	LOW~	W	27		 '		31.5		
		GRADING INTO LT. GAR	Y- CREEN	11 21							_
	_	MUDDY CREEK	//	И							-
35		TO 35'									
	Y	, ,				RAPHIC L			<u> </u>	3/23/92	PAGE /
N O	PIL NC TYF	 Photoionization Detection (pr Identifies Sample by Number 	om)			SILT		HIGHLY ORGANIO	C (PEAT)	PRILLED BY	OD
IATI		SPLIT-	ROCK			SAND		SAND CLAY)Y	WABE	1 Drilling
EXPLANATION		BARREL	CORE			GRAVEL		CLAYE	EY L		
EX		THIN- WALLED TUBE CONTINUOUS SAMPLER	NO RECOV	ERY		SILTY CLAY			1	XISTING GRAD	EED EELEVATION (FT. AMSL)
		PTH Depth Top and Bottom of Sc EC. Actual Length of Recovered	imple Sample in Fee	ł		CLAYEY SILT			_	OCATION OR C	GRID COORDINATES

KERR-McGEE CORPORATION HYDROLOGY DEPARTMENT MONITORING WELL INSTALLATION DIAGRAM Protective Pipe ----- Casing Cap Vent ? Yes 🔲 No 🦳 Yes 7 No 🗌 _---Lock? Yes ☑ No ☐ Weep Hole? Yes No No Steel V PVC Ft. Surveying Pin ? -Concrete Pad _____Ft. x _____Ft. x _____Inches Yes 🗌 No 🗌 DRILLING INFORMATION: DEPTH FROM 1. Borehole Diameter= Inches. TOP OF CASING **BELOW** Concrete 2. Were Drilling Additives Used? Yes No GRADE Revert Bentonite Water Solid Auger 🔲 Hollow Stem Auger 🗹 3. Was Outer Steel Casing Used? Yes No 🖽 Cement/Bentonite Grout Mix Depth= to Yes No No 4. Borehole Diameter for Outer Casing____ __Inches. 5.5 Gallons Water to Ft. WELL CONSTRUCTION INFORMATION: 94Lb. Bag Cement & 1. Type of Casing: PVC Galvanized Teflon 3-5 Lb. Bentonite Powder Stainless Other Other: 2. Type of Casing Joints: Screw-Couple Glue-Couple Other 8 3. Type of Well Screen: PVC Galvanized Stainless Teflon Other___ Bentonite Seal Ft. 4. Diameter of Casing and Well Screen: Pellets 🛭 Slurry 🔲 Casing Z Inches, Screen Z Inches. 5. Slot Size of Screen: .020 Filter Pack 6. Type of Screen Perforation: Factory Slotted Above Screen Hacksaw Drilled Other 7. Installed Protector Pipe w/Lock: Yes M No WELL DEVELOPMENT INFORMATION: 1. How was Well Developed? Bailing Dumping W Air Surging (Air or Nitrogen) Other_ FILTER PACK MATERIAL 2. Time Spent on Well Development? Silica Sand _____/____ | Minutes/Hours 15 Ft. Washed Sand 🔲 3. Approximate Water Volume Removed ? 75 Gallons Pea Gravel 4. Water Clarity Before Development? Clear Turbid Opaque Other: _ 5. Water Clarity After Development? Clear 🗹 Turbid 🔲 Opaque [8-12 Sand Size 6. Did Water have Odcr? Yes No If Yes, Describe 7. Did Water have any Color? Yes No [] Dense Phase Sampling Cup Ft. Bottom Plug If Yes, Describe Yes 🔽 No 🗀 WATER LEVEL INFORMATION: Overdrilled Material Water Level Summary (From Top of Casing) Backfill Ft. /8' Ft. Date 3/23/98 During Drilling ____ Grout Sand Before Development Caved Material After Development 20.01 Ft. Date 3/25/98 Driller/Firm LEE ROBENTSON WEGER DRIG. Drill Rig Type B-61 Date Installed Kerr-McGee Drill Crew 4. ROBERTUN / B. JOHNSON Well No. PC-2 Hydrologist

	RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSIDI		<u> </u>		LOCATION HELD	ERSO	N)	27	BORING PC-52		
DEPTH IN FEET	LITHOLOGIC DESCRIPTIO)N	GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6"	PID (ppm)	NO.	SO H	DEPTH	REC.	REMARKS OR FIELD OBSERVATIONS	
33-	SILTY CLAY LA GIZAY TO WAITE LAW SOFT TO FE	~ BRU	110 10 10 10 10 10 10 10 10 10 10 10 10	SM/ GAL	G	RAPHIC L	OG LE		D DATE	DRIJLED	GREATER SAWRE COLLECTED - AT 20' -	
EXPLANATION TALE TO THE TALE TALE TALE TALE TALE TALE TALE TAL	Water Table (Time of Boring D Photoionization Detection (pp D Identifies Sample by Number	om) r RCCC NCCC	COVER	Y		CLAY SILT SAND GRAVEL		DEBR FILL	IS DRILLI C (FEAT) DRILLI DRILLI LOGG EXIST	LING METH SA LED BY JEDE GED BY J. LI TING GRAD		

	ERR-MCGEE CORPORATION KM SUBSIDIARY Idrology Dept S&EA Division KMC-LLC LOCATION HENTX-CSOW					2W 6	11	BORIN NUMB	G 7C-53	
DEPT IN FEET	LITHOLOGIC DESCRIPTION	GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6"	PID (ppm)	NO.	SOIL SA		REC.	REMARKS OR FIELD OBSERVATIONS
5-	SILTY SAND ROBEN TO TAN GRAVELS WELL GRADEN DRY SILTY SAND WI GRAVEL BOULD CLAYEY MOIST DARK BRWD	1.01.01.01.01.01.01.01.01.01.01.01.01.01								-
30	SAWN SPLTY BIEN-DU BIEN SLE CLAYEY TRE GULAVELS GIZ-V CARS GIZ SOT SILTY CON GRO GY TO OFF WH LAW FIRM									32 7/mitoy accil
	-						Z.\\\			TO 35'
EXPLANATION	BARREL AUGER CONTINUOUS	OCK ORE IO ECOVER	Y		SAND GRAVEL		DEBRIS ILL IGHLY RGANIC (PEAT)	DRILL LOGO	ING GRAD	ОВ

ı		<u></u>			
	[CASING PROFESTOR	ا KE	RR	-McGEE COR	PORATION
l	三	HY	DF	ROLOGY DEPA	ARTMENT
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	warn	MONITORII	۷G	WELL INSTAL	LLATION DIAGRAM
	Protective Pipe/		_	Casing Cap	Vent ? Yes V No
	Yes DB No]-	Lock ? Yes	
	Steel D PVC	1	$\overline{\Gamma}$		Yes No
	Surveying Pin ?	Ft.		200	
	Yes No L			Concrete P	adFt.xFt.xInches
	160 (100	0 V C	- 5	DEPTH	DRILLING INFORMATION:
			b.	FROM	1. Borehole Diameter= Inches.
	Concrete	Ft. y		BELOW TOP OF GRADE CASING	
			, ,		Revert 🗌 Bentonite 🗍 Water 🗍
		1	• * •		Solid Auger Hollow Stem Auger
		3.0			3. Was Outer Steel Casing Used? Yes 🗌 No 🗌
	Cement/Bentonite Grout Mix	(1) a (1) a			Depth= to Feet.
	Yes No				4. Borehole Diameter for Outer Casing Inches.
	5.5 Gallons Water to				WELL CONSTRUCTION INFORMATION:
	94Lb. Bag Cement &	Ft.			I. Type of Casing: PVC Galvanized Teflon
	3-5 Lb. Bentonite Powder			}	Stainless Other
	Other:	}			2. Type of Casing Joints: Screw-Couple Glue-
	<u></u>	}			Couple Other
		in the second		8	3. Type of Well Screen: PVC Galvanized
					Stainless Teflon Other
	Bentonite Seal	່ 3 Ft . ₩	▩		4. Diameter of Casing and Well Screen:
ł	Pellets Slurry	·'"\\		}	Casing Inches, Screen Inches.
	l Starty	₩	₩		5. Slot Size of Screen: 020
4	Filter Pack				6. Type of Screen Perforation: Factory Slotted
	Above Screen	Ft.			Hacksaw Drilled Other
				12	7. Installed Protector Pipe w/Lock: Yes No
		-		<u>13</u>	WELL DEVELOPMENT INFORMATION:
Ì				ţ	1. How was Well Developed? Bailing Pumping
					Air Surging (Air or Nitrogen) Other
	FILTER PACK MATERIAL				
	Silica Sand	\rightarrow \frac{1}{2}		}	2. Time Spent on Well Development ?
	Washed Sand 🖳 _	19.5 Ft			/Minutes/Hours
			<u> </u>		3. Approximate Water Volume Removed ? 100 Gallons
	Pea Gravel 🗌		-	}	4. Water Clarity Before Development? Clear
	Other:		1		Turbid Opaque 🖟 5. Water Clarity After Development ? Clear 🖟
				}	Turbid Opaque
	Sand Size 8-12				6. Did Water have Oder? Yes No U
		1	-	32.5	If Yes, Describe
	Dense Phase Sampling Cup			}	7. Did Water have any Color? Yes No No
	Bottom Plug	<u>0.5_</u> Ft.}			If Yes , Describe
	Yes No		•	33	— WATER LEVEL INFORMATION:
	Overdrilled Material				Water Level Summary (From Top of Casing)
	Backfill	Ft.		1	During DrillingFt. Date
	Grout Sand			35	Before Development 18 Ft. Date $5/4/98$
	Caved Material			, <u></u>	After Development 19.54 Ft. Date 5/12/98
12.3	Other:				/
	Driller/Firm LA EBEN			Drill Big Tung MA A G	3(15 13 6 Date Installed 5/4/98
	DEHICE FIRM WOSCH			orm wild tabe Tocol	Kerr-McGee /
	Drill Crew LEE ROBERTS	icis		Well No. PC-4	53 Hydrologist J. (RCAWFOIL)

20IL BO	IRING LOG KM-5655-B											
	RR-McGEE CORPORATION drology Dept S&EA Division	KMC	L	LC		LOCATION HENDE	ERSO	N	NV	BORING	R PC 98	
DEPTH			PHIC	UNIFIED		PID		SC	IL SAMP	LE	REMARKS OR	
IN FEET	LITHOLOGIC DESCRIPTION	N .	GRAP LOC	SOIL FIELD CLASS.	PER 6"	(ppm)	NO.	TYPE	DEPTH	REC.		SERVATIONS
-	0-12 gravelly SA	ハウ、	0 -									
_	mud yell brn (104R	5/4),	9									_
_	20-25% granules & pebbles to l'diam	sm.	.0			<u> </u>						
			, , ,	SP								
-	Sp-mod siltinmati	rix (10-	.0.0			<u> </u>			-			_
_	zol.). Sand vf-ro	42-92, :	0.									_
10 —			.0									
_			00.0					-		-		-
_	12-16 sty sty GRAV H brn (54R 5/4), 20	/= L 71.1 L	000	GW							al	
_	25% VE-VL A-SR	sand.	000			<u> </u>					damp	- 12 _
16 - -	50% volc granules t	-∿	01			_						-
-	50% volc granules to 6"	diam										-
20—	Mod com catiche 4	kroughi	0.0									<u> </u>
-	13-16 V. hard, dense	<u>-</u>									76	22'
-	10-34 Sty grav	elly	0.									
25-	16-34 sity grav SAND, mod brn(Y R4/4) °:	5 W								
-	720-25 to 511+, 20-25	2	0.									
-	granules and sm pe					-						
30-	10 % 11. 50 % VI-VE	, M-3K	(2			1.					
Ι΄.	· ·		10									
	_									,		
34	74-27 SHU SAND	14.40	1111	:	+-		-	╫	 		 	
	- brn(104R 6/4). Vf	- fg w/		SM		-						
37	minor ma, SR-SA.	25-302	Ni.	<u>i</u>	T		1	+				
	34-37 sty sAND. brn(0YR 6/4). Vf minor mg, SR-SA. silt. Mod com mod	areous		GC	†	-						
	▼. Water Table (24 Hour)			, , , ,	T	GRAPHIC	LOG I	EG	ND (DATE DRILLED		AGE 1 of Z
1 2	Water Table (Time of Borin PID Photoionization Detection (CLAY	E	DE FIL	BRIS L	5-16 DRILLING MET	НОО	
1	NO. Identifies Sample by Numb YPE Sample Collection Method					SILT		HIGH ORG	AARC IDEATE	DRILLED BY	<u> </u>	15A
N M	SPUT-	The Proces						SA CL	NDY AY	LOGGED BY	Compl	IANCE
EXPLANATION	BARREL	CORE				GRAVEL		CL SA	AYEY ND	ED	KRISH	
Ä	THIN- WALLED TUBE CONTINUOL SAMPLER	IOUS NO RECOVERY			1	SILTY CLAY				EXISTING GRADE ELEVATION (FT AMSL)		
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	Sample d Sample	in Feel	!	E	CLAYEY SILT]_		LOCATION OR GRID COORDINATES		

	RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSIDIA	L	ـد٥		HENDE	eso	٦	, NV	BORIN	G ER PC 98
DEPTH IN FEET	LITHOLOGIC DESCRIPTION	ИС	GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6'	PID (ppm)	NO.	TYPE	DEPTH	REC.	REMARKS OR FIELD OBSERVATIONS
41 -	37- 41 sdy grav SILT grav SAND W/15 % granules to 1/8-1/4" gry orange pink (5) Contains Z5-50 % vi In SILT/clay Matrix. Volc +1s granules to 1/8 Very calcareous w/m caliche nodules. 41-45 Sly CLA Hyrngry (5648/1). 25 % si v. calcareous w/ minus sized caliche modules 45' TT	dissem , mod /R 6/2). f-f st 10-20% -1/4" od c-vc Y y y ell t , or m-vc		CL							MC @ 41'
XPLANATION 1234 2	Water Table (24 Hour) Water Table (Time of Borin Photoionization Detection () Identifies Sample by Numb Sample Collection Method SPLIT-BARREL THIN-WALLED TUBE CONTINUOL SAMPLER	ppm) per	OCK CORE 40	ERY		CLAY SILT SAND GRAVEL SILTY CLAY		DEI FILL HIGH ORG SAL	BRIS O RIY ANIC (PEAT) D NDY AY AYEY ND	OGGED BY	00 2 of Z

KERR-McGEE CORPORATION HYDROLOGY DEPARTMENT FLUSH MONITORING WELL INSTALLATION DIAGRAM _---Casing Cap Vent? Yes No Protective Pipe ----Mount ____Lock ? Yes 🗌 No 🔲 Yes 🗌 No \square .Weep Hole ? Yes 🗌 🛮 No 🗍 Steel PVC Ft. Concrete Pad _____Ft. x _____Ft. x _____Inches Surveying Pin? ~ Yes 🗌 No \square DRILLING INFORMATION: DEPTH 1. Borehole Diameter= 10-5 Inches. FROM BFI OW TOP OF 2. Were Drilling Additives Used? Yes No X Concrete GRADE CASING Revert | Bentonite | Water | Solid Auger 🔲 🛮 Hollow Stem Auger 💢 3. Was Outer Steel Casing Used? Yes . No 🔯 Depth= to Feet. Coment/Bentonite Grout Mix 4. Borehole Diameter for Outer Casing? Yes 🔀 No 🗌 5.5 Gallons Water to WELL CONSTRUCTION INFORMATION: 10 Ft. 94Lb. Bag Cement & 1. Type of Casing: PVC Galvanized Teflon 3-5 Lb. Bentonite Stainless Other _ Powder 2. Type of Casing Joints: Screw-Couple 📈 Other: Couple Other _ 3. Type of Well Screen: PVC 📈 Galvanized 🗌 10 Stainless Teffon Other_ 4. Diameter of Casing and Well Screen: Bentonite Seal 2. Ft. Pellets Slurry Casing 4 Inches, Screen 4 Inc 12 5. Slot Size of Screen: 6. Type of Screen Perforation: Factory Slotted Filter Pack 1.5 Ft. Above Screen Hacksaw Drilled Dother_ 7. Installed Protector Pipe w/Lock: Yes \(\) No \(\) 13.5 WELL DEVELOPMENT INFORMATION: 1. How was Well Developed? Bailing Pumping Air Surging (Air or Nitrogen) Other_ FILTER PACK MATERIAL 2. Time Spent on Well Development ? Silica Sand _/__60 Minutes/Hours 20 Ft 3. Approximate Water Volume Removed ? ____ Gallons Washed Sand 4. Water Clarity Before Development? Clear Pea Gravel Turbid 🔯 Opaque 🔲 5. Water Clarity After Development? Clear Other: Opaque [Turbid [Sand Size 2-12 mesh 6. Did Water have Odor? Yes 🗌 No 🛛 33 If Yes, Describe ___ 7. Did Water have any Color ? Yes . No . Dense Phase Sampling Cup 0.5 Ft. If Yes . Describe Bottom Plug 33.5 Yes No 🗌 WATER LEVEL INFORMATION: Water Level Summary (From Top of Casing) Overdrilled Material During Drilling ZZ Ft. Date 5-16.00 Backfill 11.5 Ft. Before Development 14.01 Ft. Date 5-17-00 Grout | Sand Caved Material After Development _____ Ft. Date_ Other:_ Drill Rig Type Mobile B-59 Date Installed 5-17-00 Driller/Firm Compliance Well No. PC 98 . Hydrologist ED KRISH Drill Crew Loya

KE	ERR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSIDIA				LOCATION	der	`\$ 0	n NV	BORING	G PC98R
DEPTH IN FEET	LITHOLOGIC DESCRIPTION			SOIL HEID E		PID (ppm)	NO.	SC E	DEPTH	REC.	REMARKS OR FIELD OBSERVATIONS
_	0-5 gravelly	AND	0.00	CLASS.	6'			-			_
-	gryish brn Wio % S			SP							
_	gravel to 3/4". vf-v	pea	0			_					-
5	gravel to 3/4". vf-v	c sAsd	.0:								
-	5-9 SAND, gry & W/10% SIH and 5-1	rn		:		_					_
-	w/10% silt and 5-1	0%		SW		-			•		
9 -	volc granules to 1/4'	-f-VC	<u></u>								
-	154 sand 19-10 sdy GRAVE	(4,1"	0.00	ଖ୍ୟ			ļ				_
-	25-35% At-AC 24	-(1~)		5ฟ		 					damp@121
IZ -	10-12 SAND, brn		0:0:0:								0
	10% silt, 5% granules		<u></u>							,	
15-	volc, sa sand	/	000							,	
-	12-24 Sdy GRAVE	٤٢	<u> </u>	·							_
-	brn. w/5-10% silt		<u> </u>	GW		<u> </u>					7@18'
] -	Cranules to peagre	ivel.	。								
Zo_	A-SA. 12"-3/4" W/	minor	Ħ.		6	<u> </u>		7	zo		
-	3/4"-2"		0000		60	<u> </u>		X	21.5	50%	-
_	Locally caliche.	•]	00.00								
24 -	Locally caliche.		0.00			<u> </u>	ļ				
-	16-20' hard. Com co	aliche/		SP	250	<u> </u>		X	25-26	75%	
26-	cement		1000		30	 	1				
	24-26 SAND. gry bi clean, fing w/c-		0000								
-			000								_
120-	26-34 sdy GRA	t. 25-	00.0	GW	22	<u> </u>		V	30'-	80%	_
	30% vf-vc. SA sand		1000	}	30			\triangle	31.51	0.7	
	granule - pea gravé		000								
34	1/2-5/4	•	000	<u> </u>	 		 	ļ.,		ļ	
-	129-30 - cobbles u	p to74	0;0		12	\vdash		Þ	351-	100%	_
	34-40.5 gravelly 51 20-30% 511+ and 10	MY SAND	ه : ا	GM	31				36.51	1	_
	20-30 % silt and 10	-15%	0, 11	SM		<u> </u>					
	com. dissem st-size	,brn.	0.0								-
13			,0,0	<u>-1</u>	G	RAPHIC I	LOG LE	GE	10 1	E ORILLEO	
1 1	Z Water Table (Time of Boring	a)				CLAY			- (- 8 - C	
P	ID Photoionization Detection (p. Identifies Sample by Number	pm)			1				I .		CU5510N
1 1	PE Sample Collection Method					SILT			1	LEO BY	<u> </u>
	SPUT.	R	ЭCК			SAND		CLA		LA	YNE
	TYPE Sample Collection Method SPLIT. BARREL AUGER THIN. TONITINUOUS NO.							YEY LOX	EO KRISH		
X	I I MEN WALLED I COMMINGOUS I / I MO					SILTY	\Box		1	TING GRA	DE ELEVATION (FT AMSL)
	TUBE	∐ Ri	ECOVE	RY					— L_		
	PEPTH Depth Top and Bottom of S REC. Actual Length of Refovered		Feet		100	CLAYEY SILT		<u>-</u>		NO POTA	GRID COORDINATES
		F									

KERR-McGEE CORPORATION Hydrology Dept S&EA Division KM SUBSIDIARY KM CC						HENDERSON NV BORING NUMBER PC 98				98R		
DEP	TH .	Ī	H.	UNIFIED		PID		so	IL SAMPL			MARKS OR
FEE	T LITHOLOGIC DESCRIPTION	И	GRAPHIC LOG	SOIL FIELD CLASS.	PER €"	(ppm)	NO.	TYPE	DEPTH	REC.	FIELD C	BSERVATIONS
40.	<u> </u>	۰~ ا	ŽŽŽ	ÇL								
	- calcareous, Sand	15										_
	rf-fw/minor mg, s					-						_
	- 40.5-41.5 sty ch	AY										-
	It grn, w/ dissem	1 sm				<u> </u>			,			_
	gypoum x tals					 			-			_
	TO 415'											
	70415							-				_
	- . ·					 						_
	· -					-						-
1]									,		_
	_					<u> </u>				,		
	+					-					<u> </u> 	-
								ļ				
								-				
						-						_
						_						-
						<u> </u>						-
	-											-
												-
	-					<u> </u>						
						<u> -</u>						-
]									Ì		· -
	-					<u> </u>						-
												:
					1							
	-					<u> -</u>						-
1	-					<u> </u>						•
			<u> </u>	<u></u>	<u> </u>		1		<u></u>	<u></u>		2005
	¥ Water Table (24 Hour)					GRAPHIC			10	TE DRILLED	ľ	Z of Z
	V Water Table (Time of Boring Photoionization Detection (pp					CLAY	EX	FILL	KI2 DR	ILLING MET	ноо	
z	NO. Identifies Sample by Numbe TYPE Sample Collection Method					SILT		HIGHL ORGA	Y NIC (PEAT) DR	Perc	~0221C	DN
ATIC	SPUT-	n R	OCK			SAND		SAN CLA			AYN	<u> </u>
EXPLANATION	BARREL AUGER CORE					GRAVEL		CLAYEY ED KRISH			15 M	
ŭ	THIN- WALLED TUBE CONTINUOUS SAMPLER	N R	ECOVE	RY		SILTY	EXISTING GRADE ELEVATION IFT AMSLI					
	DEPTH Depth Top and Bottom of Sc REC. Actual Length of Recovered	LLI ample Samole :	n Faet		M	CLAYEY	LOCATION OR GRID COORDINATES		OINATES			
		pio (1							<u> </u>			

HYDROLOGY DEPARTMENT	4
MONITORING WELL INSTALLATION DIAGRAM MOUNT	T
Protective Pipe	
Yes No No No No No No No No No No No No No	
Steel PVC Weep Hole? Yes No	
Surveying Pin 1 Concrete Pad Ft. x Inc	hes
Yes No DEPTH DEPTH DRILLING INFORMATION:	
FROM 1. Borehole Diameter= 7 Inches.	
ConcreteFt. BELOW TOP OF 2. Were Drilling Additives Used ? Yes Or N	40 ☒
Revert Bentonite Water	
Solid Auger Hollow Stem Auger 3. Was Outer Steel Casing Used? Yes	NOX
	נישטיו
Cement/Bentonite Grout Mix Depth= to Feet.	
Yes No Outer Casing	
5.5 Gallons Water to 94Lb. Bag Cement & Ft. WELL CONSTRUCTION INFORMA	
3-5 Lb. Bentonite	L etion []
Powder Stainless OtherOther:	Glue-
Couple Other	
3. Type of Well Screen: PVC 🔯 Galvanize	d □
Stainless Teflon Other	
Bentonite Seal ### Ft. Seal 4. Diameter of Casing and Well Screen:	
Pellets Slurry I Inches, Screen 4	Inches.
5. Slot Size of Screen: 0.040	
Filter Pack 6. Type of Screen Perforation: Factory Slott Above Screen Hackeaw C Deilled C Other	eq 🔀
Tacksan Drines Other	No No
WELL DEVELOPMENT INFORM	
1. How was Well Developed ? Bailing Pur	
Air Surging (Air or Nitrogen) Other	
FILTER PACK MATERIAL 2. Time Spent on Well Development?	
Silica Sand Minutes/Mours	
Washed Sand [15 Ft.] 3. Approximate Water Volume Removed?	Gallons
Pea Gravel _ 4. Water Clarity Before Development? Clear	
Turbid X Opaque	. York
Trusta Con Constitution Constit	ı, 🔯
Sand Size 8-12 mesh Sign South Size 12 mesh	
11 Yes, Describe faint peste	
Dense Phase Sampling Cup 5 5 Ft No	N M
Bottom Plag	
WATER LEVEL INFORMATI	
Overdrilled Material Backfill Water Level Summary (From Top of Ca During Drilling 18 Ft. Date	-8 -00
Grout Sand	
Caved Material After Development Ft. Date	
Other:Pt Date	
Driller/Firm Drill Rig Type AP-1000 Date Installed 8-8-00	>
Drill Crew Well No. PC 98R Kerr-McGee ED KRIS	SH

.

Boring Log

Northgate Environmental Management 24411 Ridge Route Drive Laguna Hills, CA 92653 main (949) 716-0050: fax (949) 716-0055

- New	environn	mental mana	gement,	inc.				9	main (949) 716-0050; fax (9	49) 716	-0055
Project Number: 2027. 11.10								Boring ID: PRD-B	ench test boting	LŒ	(3:
Proje	ect Nam	e:	016	×	PP	ES T	bench	Location: Cott/ With	RF ou, NV		
Drilli	ing Cont	ractor:	E		0			Logged By: Pate			
Drilli	ing Meth	od: 👌	3A 5	51		Date	Started: 12/4/10	Total Depth: 46 3	65 Depth to Water:		
	hole Dia					Com	pleted:	Surface Elev.:	TOC Elev.:		
	ace Seal	-	m.				_				
-							То:		101 5 - 1		
		ollect	+ ((0)	901	95	of boter	al bailer fr	an boregale	0	
Depth (ft)	Sample ID	Sample Time	Recovery %	Blow Count	Graphic Log	ISCS Code		Material Descripti	on	Nater Level	PID (ppm)
- 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21						SP	7: brown (7.5th ned coorse silt fine por 17: brown fine por 17: brown (7.5th fine por 16.55; ~5% fine fine fine por 16.55; ~5% fine fine fine fine fine fine fine fine	Eyz) trace fine - soud, 75% v. fine ravel eyz) powly graded wise soud, ~20% soud, 5% s:1	notice and med		
22 23 24 25 26 27 28 29							27': brown (7.57') Med Soud, 7 Wed Mid	25/3) poorly grades 10% office - Fineso dense, low plasticil	sond 101 5:14, -10% med, 15% 5:14, 25% clay. y strong HCI TXM.	20/11	

Page 1 of

IL golden	
1	northgate
17	nortingato
40000	environmental management inc

Boring Log

Northgate Environmental Management 24411 Ridge Route Drive Laguna Hills, CA 92653 main (949) 716-0050; fax (949) 716-0055

Project Number: 2027, 11.10	Boring ID: PRI Bench test besting
Project Name: Tanox PEB beach test	Location: COHIWEF
Drilling Contractor: Egle	Logged By: Patrick Ferringer
Remarks:	

Depth (ft)	Sample ID	Sample Time	Recovery %	Blow Count	Graphic Log	USCS Code	Material Description	Water Level	PID (ppm)
31 32 33 34 35 36 37						-	33'; Frace fine - coarse P-St gravel		
- 39 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48							7D@ 40'DGS		
- 49 - 50 - 51 - 52 - 53 - 54 - 55 - 56 - 57									
- 59 - 60 - 61 - 62 - 63 - 64 - 65									
- 64 - 65							Page 2 of		

	COLL BORING LOG KM-5655-B KERD MACEE CORPORATION KM SUBSIDIARY LOCATION POPING										
	RR-McGEE CORPORATION drology Dept S&EA Division	KM SUBSIDIA		u		LOCATION HENI	DG156	W	NV	BORING	FR PC-18
DEPTH							l		IL SAMPLI	- 1	
IN	LITHOLOGIC DESCRIPTIO	N	호영 SOIL F		PER	PID (ppm)	<u> </u>				REMARKS OR FIELD OBSERVATIONS
FEET			ຮ_	CLASS.	6'	(pp)	NO.	TYPE	DEPTH	REC.	TILLO ODSERVITORIO
			وا ه								
_	Silty SAND ISO BEEN		[olj	Sur							
_	DRY WELL GRADED		1, 9,	Jin				3			
ــ	Glovers		1.6.								
5-	•		0								
-			0.1								
-						_					
-	1		>,.								
10-											
			0:			_					
_			1.			<u> </u>					_
-		•	.0.			<u> </u>					_
-	-		001			<u> -</u>					_
15-	1										
-			1.0.	Gm							_
-				-							
			6.2								COLLECT -
20-			000			_					GROUNDWATER -
-			100								SAMPLE AT 22'-
-	4		6:0								
-	1		6	'		-					_
2	/ /aa. tal. ho		6.								_
12)-	Sund grovel bin buy moist well		500								_
	being moist well.	jeoded	0,0								_
_		- -	0.0	7		_					.=
-			0.0:								_
30-	4		6'0			<u> </u>					-
-	_		- 1.	!		<u> </u>	1	1			_
-	Source (George	•	0."							ļ	_
-	7001/900000)4	. 0	Gm							_
_	SAND/GLOVEL GROWING BROWN WELL GROWER SAT SILTY)	0								
.	341 31619		6 .								_
	_		1:0			_					_
			6			-					_
}			1.0			-	1				_
1	Water Table (24 Hour)		11	1		RAPHIC	roe re	GEN	ID DAT	E DRILLED	PAGE
	•	1)				CLAY	76	DEBF FILL	RIS	4/21	
P	ID Photoionization Detection (p	pm)							1	LLING METH HS:	
	O. Identifies Sample by Number'PE Sample Collection Method	;1				SILT	\cong	HIGHLY ORGAN	HC (DEAT)	LLED BY /	<u>'7</u>
	7 cour		001			SAND		SAN	DY	W	Edick
EXPLANATION	SPLIT- BARREL AUGER	R	OCK ORE			GRAVEL	58		/EY	GED BY	Man far o
Ä	THIN- WALLED CONTINUOUS TUBE SAMPLER	N R	O ECOVE	RY	1	SILTY CLAY			EXI	STING GRAI	DE ELEVATION (FT. AMSL)
	EPTH Depth Top and Bottom of S REC. Actual Length of Recovered	ample Sample ir	r Feet	<u> </u>		CLAYEY SILT			LO	CATION OR	GRID COORDINATES

REMARKS OR FIELD OBSERVATIONS SPLIT SPOON AT 42' PROOF RETURNS T/MUDDY GREEK - 52'
FIELD OBSERVATIONS SPLIT 5700 N AT 42' PROOF RETURNS -
FIELD OBSERVATIONS SPLIT 5700 N AT 42' PROOF RETURNS -
POOR RETURNS -
POOR RETURNS -
POOR CETURALS -
-
-
T/MUDDY GREEK -
T/MUDDY GREEK -
T/MUDDY GREEK -
52'
-
Tour or 1001
DRILL TO 53'
_
. :,™ -
_
D PAGE
98 2 of 2
тноо
がん
a kan
ROWFORD
ADE ELEVATION (FT. AMSL)

FLUS) - KERB	• • • • • •		
1	-McGEE R ology		DRATION
7 102 110			ATION DIAGRAM
Protective Pipe -	C:	sina Can Va	ent? Yes 🔲 No 🧻
Yes No No		ick? Yes 🖸	
Steel OVC			res No
Surveying Fin ?Ft.			
Yes No		mcrete Fau	Ft. xInches
	DEP		DRILLING INFORMATION:
Concrete Ft.	BELOW	FROM TOP OF	I. Borehole Diameter= S Inches.
	GRADE	CASING	2. Were Drilling Additives Used? Yes No No Revert Bentonite Water
			Solid Auger Hollow Stem Auger
			3. Was Outer Steel Casing Used? Yes No
Cement/Bentonite Grout Mix			Depth=toFeet.
Yes [2] No [4. Borehole Diameter for Outer Casing Inches.
5.5 Gallons Water to 94Lb. Bag Cement & Ft.			WELL CONSTRUCTION INFORMATION:
3-5 Lb. Bentonite	1		I.Type of Casing: PVC 🗹 Galvanized 🗌 Teflon 🗌
Powder Other:	}		Stainless Other
			2. Type of Casing Joints: Screw-Couple Glue-
	17.5		3. Type of Well Screen: PVC Galvanized
			Stainless Teflon Other
Bentonite Seal Ft.	1		4. Diameter of Casing and Well Screen:
Pellets Slurry	96		Casing Inches, Screen Inches.
	1.2		5. Slot Size of Screen:
Filter Pack Above Screen Ft.			6. Type of Screen Perforation: Factory Slotted
			Hacksaw Drilled Other
<u> </u>	11.5		7. Installed Protector Pipe w/Lock: Yes No
	{		WELL DEVELOPMENT INFORMATION: 1. How was Well Developed? Bailing Pumping
	}		Air Surging (Air or Nitrogen) Other
FILTER PACK MATERIAL			2. Time Spent on Well Development ?
Silica Sand			,
Washed Sand D Ft. Ft.			
Pea Gravel		,	4. Water Clarity Before Development? Clear
			Turbid Opaque 🗹
Other:			5. Water Clarity After Development ? Clear
Sand Size 8-12			Turbid Opaque
	51.5		6. Did Water have Odcr? Yes No []/ If Yes, Describe
Dense Phase Sampling Cup O. 5 Ft.			7. Did Water have any Color? Yes No
Bottom Plug			If Yes, Describe
Yes No D	52		WATER LEVEL INFORMATION:
Overdrilled Material Backfill Ft.	1		Water Level Summary (From Top of Casing)
Grout Sand			During Drilling 22 Ft. Date 4/8/98
Caved Material	53_		Before Development 19.80' Ft. Date 4/17/98
Other:			After Development 19.90' Ft. Date 417/98
Driller/Firm WEBER	Drill Rig Typ	· Mobile	B-b(X) Date installed $4/8/98$
Drill Crew LEE ROBERTSON	Well No.	•	Kerr-McGee Hydrologist J. (296)FQZ)

	RR-McGEE CORPORATION	KM SUBSIDIARY KMCLL			LOCATION				BORING		
Hyd	drology Dept S&EA Division Km			HEND	erso	ر ۱۸۸	W_	NUMBER PC - 58			
EPTH IN FEET	LITHOLOGIC DESCRIPTION	GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6"	PID (ppm)	NO.	SO TYPE	IL SAMP DEPTH	REC.	REMARKS OR FIELD OBSERVATIONS	
_	BERM : SAND W/ GRAVEL							· · · · · · · · · · · · · · · · · · ·			
2,5	SAND W/ SILT; MED. B SLI! MOIST; OCK, GRAVEL		;								
5 —	SEL. POIST; OCE, GIENNEL		SM				Ā			-	
		[30] [末]	d		_						
0	GRAVEL 2016 @ 10-14	, 00	go an							•	
- - - 3		200					The second				
_ 		80									
_			\$ 								
 -0			5m				Section of the second				
- - -			6								
_											
5	CRANEL ZONE C 26-28	97	i cm		_		Ą				
_		30	\$0 0 5								
o —		10									
_	-		b		_						
34 - 5-	SILTY CLAY - CLAYET SILT; GEE U. SLI. PLASTIC; MUDDY CO	ENIS H-WHITE	CL-	-		1		35	1,5		
36 - - -	TO 36'	1	1					36.5	1,5	-	
-					<u></u>						
	, , ,	-\			RAPHIC I			-	5/21/9		
PI	D Photoionization Detection (p O. Identifies Sample by Number	pm)				HIGHLY (DEAT)		#C (05 AT)	RILLING METHOD //S A) RILLED BY		
TY	SPLIT- BARREL AUGER	ROCK	ROCK				SANDY CLAY			en DRIG.	
	THIN- WALLED CONTINUOUS		/EDV	ı	GRAVEL SILTY CLAY		SAN	D	T. K		
DE R	TUBE SAMPLER EPTH Depth Top and Bottom of S REC. Actual Length of Recovered	RECOV cample Sample in Fee		1	CLAY CLAYEY SILT		_	1		GRID COORDINATES EAST OF PC-SE	

KERR-McGEE CORPORATION										
FLUSH) MOUNT		OLOGY DEPAF Well install	ATION DIAGRAM							
Protective Pipe		Casing Cap Ve	ent ? Yes No No							
Yes No		Lock ? Yes [] No □							
Steel RVC	4-1-1		Yes No C							
Surveying Pin ?	Ft.	Concrete Pad	Ft. xFt. xInches							
Yes 🖸 No 🔽	1-2	-	DRILLING INFORMATION:							
-	1000	DEPTH	I. Borehole Diameter= & Inches.							
0		FROM BELOW TOP OF								
Concrete	Ft.	GRADE CASING	2. Were Drilling Additives Used? Yes No 🗹 Revert 🗌 Bentonite 🗍 Water 🗍							
			Solid Auger Hollow Stem Auger							
			3. Was Outer Steel Casing Used? Yes No 🖸							
 Cement/Bentonite Grout Mix			Depth= to Feet.							
Yes ☑ No □										
5.5 Gallons Water to			4. Borehole Diameter for Outer CasingInches. WELL CONSTRUCTION INFORMATION:							
94Lb. Bag Cement & _ 3-5 Lb. Bentonite	Ft.		I.Type of Casing: PVC Galvanized Teflon							
Powder			Stainless Other							
Other:			2. Type of Casing Joints: Screw-Couple Glue-							
			Couple Other							
	4.6		3. Type of Well Screen: PVC 📝 Galvanized 🗌							
Desarite Coal			Stainless 🗌 Teflon 🗌 Other							
Bentonite Seal	2.4 Ft. 🛞 🛞		4. Diameter of Casing and Well Screen:							
Pellets V Slurry	√ 7 ₩ ₩		Casing Z Inches, Screen Z Inches.							
511. 5 1			5. Slot Size of Screen: .020							
Filter Pack Above Screen _	0.8 Ft.		6. Type of Screen Perforation: Factory Slotted							
Above Ocicon _			Hacksaw Drilled Other							
	17.8	73	7. Installed Protector Pipe w/Lock: Yes \(\) No \(\overline{\text{V}} \)							
			WELL DEVELOPMENT INFORMATION:							
			I. How was Well Developed? Bailing Pumping Air Surging (Air or Nitrogen) Other							
FILTER PACK MATERIAL										
Silica Sand			2. Time Spent on Well Development?							
Washed Sand 🗸	25 Ft. []		45 / 0 Minutes/Hours							
			3. Approximate Water Volume Removed ? 80 Gallons							
Pea Gravel 🗌			4. Water Clarity Before Development ? Clear Turbid Opaque							
Other:			5. Water Clarity After Development ? Clear							
Sand Size 8-/2			Turbid Opaque O							
Salid Size	32.8	37 3	6. Did Water have Oder? Yes No							
		_ 	- If Yes, Describe							
Dense Phase Sampling Cup	,2 Ft.(::		7. Did Water have any Color? Yes No 🖸							
Bottom Plug Yes □ No ☑	33		If Yes , Describe							
Overdrilled Material			Water Level Summary (From Top of Casing),							
Backfill	3 Ft.		During Drilling $\frac{13}{5/21/98}$ Ft. Date $\frac{5/21/98}{98}$							
Grout Sand Caved Material	136		Before DevelopmentFt. Date							
Other:			After Development $8,00$ Ft. Date $6/5/98$							
Driller/Firm ROBERTSON	/ WASAN DRLK. I	Orill Rig Type <u>B-6/</u>	$40\times$ Date Installed $5/21/98$							
			Kerr-McGee							
Drill Crew L. RUBERTSON	M. ROBREON	Well No. PC-S	8 Hydrologist T. REED							

K	ORING LOG KM-5655-B ERR-McGEE CORPORATION K			LOCATION					BORING		
Н	ydrology Dept S&EA Division	KMCLL		<u> </u>	14END	IFILSO	ردو	, N	NUMBER PC-59		
DEPTH IN FEET	LITHOLOGIC DESCRIPTION	GRAPHIC LOG	UNIFIED SOIL FIELD	BLOWS PER 6"	PID (ppm)	NO.	TYPE I	DEPTH	.E REC.	REMARKS OR FIELD OBSERVATIONS	
	BERM: SAND W/GRAVEL	7.6	CLASS.	-		-	F				
2		300									
	SAND W/ SILT; OCC. GES.	1200								-	
5 -	Sci'noist	0:00									
	GRAVEL @ 3-4'				_		K K			_	
		10,			_					-	
				T	_						
10-							S Contract				
			Ì								
										=	
15-		loje									
	-				_				1	_	
		130	/ 							-	
	SAND AS ABOVE; SATURATED	الا الله الله الله الله الله الله الله	! sm		_			; 	ļ	_	
20-	- 020. 4,000	1, &									
					<u></u>					_	
			i								
25-	_	0	<u> </u>		<u> </u>					_	
		30								-	
	_						2	:			
201 -		6,7.								_	
30 -	SANOY SILT; LT. BEIGE; S	INTLIBATES;]	E					_	
	DCC FINE-MED, SAND	.	ML							_	
34				1							
35 -	SILTY CLAY; CLAYEY-SILT; GREEN-BEINE; U. SLI. ALMST	MES-	CL-		<u> </u>						
\$1.20	MUDDY CREEK		ML				5				
38	To 38'	<i>y</i> 12		-		1	X	38 39,5	1,4'	_	
 ,	Water Table (24 Hour)			G	RAPHIC I	OG LE	GEN		TE DRILLED	PAGE	
-	✓ Water Table (Time of Boring)				CLAY	-	DEBI FILL		ZZ 9	3 / of /	
1	PID Photoionization Detection (ppr NO. Identifies Sample by Number YPE Sample Collection Method	m)				\sim	HIGHLY	(100,000,17)		s A	
ATIO	M spur				SAND		SAN	1		BER DRIG.	
EXPLANATION	SPLIT-BARREL AUGER ROCK CORE THIN-WALLED TUBE CONTINUOUS NO RECOVERY			1	GRAVEL		CLA'	LO		RISED	
X			ERY	•	SILTY CLAY	EXISTING GRADE ELEVATION (FT. AM					
	DEPTH Depth Top and Bottom of San REC. Actual Length of Recovered S	nple ample in Feet			CLAYEY SILT			1		GRID COORDINATES WEST OF PC-56	

FLUSH MOUNT		R-McGE		ORATION
		-		ATION DIAGRAM
Protective Pipe		(Casing Cap V	ent ? Yes 🗌 No 📋
Yes □ \ Nø □			ock ? Yes [_ No
Steel 🔲 XPVC 🗆				Yes 🔲 No 🗋
Surveying Pin ?	Ft.		Concrete Pad	Ft. xFt. xInches
Yes 🗂 Nò 🔲	UV OF	V 0 : VI		DRILLING INFORMATION:
	1	DE	PTH FROM	1. Borehole Diameter= 8 Inches.
Concrete	Ft.	BELOW	TOP OF	2. Were Drilling Additives Used? Yes No D
-		GRADE	CASING	Revert Bentonite Water
				Solid Auger 🗌 Hollow Stem Auger 🔃
	1 1			3. Was Outer Steel Casing Used ? Yes 📗 No 🗹
Cement/Bentonite Grout Mix				Depth=toFeet.
Yes ☑ No ☐				4. Borehole Diameter for Outer CasingInches.
5.5 Gallons Water to 94Lb. Bag Cement &	Ft.			WELL CONSTRUCTION INFORMATION:
3-5 Lb. Bentonite				1.Type of Casing: PVC 🗹 Galvanized 🗌 Teflon 🗌
Powder Other:		}		Stainless Other
				2. Type of Casing Joints: Screw-Couple 📝 Glue-
	2			Couple Other Galvanized Strype of Well Screen: PVC Galvanized
		<i>⋒</i>		Stainless Teflon Other
Bentonite Seal	7. Ft.	₹		4. Diameter of Casing and Well Screen:
Pellets V Slurry -	1 4	₩		Casing 2 Inches, Screen 2 Inches.
		%	-	5. Slot Size of Screen: ,020
Filter Pack	& Ft.			6. Type of Screen Perforation: Factory Slotted 🗹
Above Screen _				Hacksaw Drilled Dother
	14.8	₹		7. Installed Protector Pipe w/Lock: Yes 🗌 No 🔃
		· :}		WELL DEVELOPMENT INFORMATION:
		4		I. How was Well Developed? Bailing Pumping Air Surging (Air or Nitrogen) Other
FILTER PACK MATERIAL		·:{		
Silica Sand				2. Time Spent on Well Development ?
	_30_Ft.			/
		`. \		3. Approximate Water Volume Removed ? // Gallons
Pea Gravel				4. Water Clarity Before Development? Clear 🗌 Turbid 🗌 Opaque 🗹
Other:				5. Water Clarity After Development? Clear 🖫
Sand Size _ 8-12_				Turbid Opaque
	1 34,8 ≡	.·.		6. Did Water have Odor? Yes No 🖸
Dense Phase Sampling Cup	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.:\		7. Did Water have any Color? Yes No
Bottom Plug	2_Ft.			If Yes , Describe
Yes No No	35	لن		- WATER LEVEL INFORMATION:
Overdrilled Material Backfill	> Ft.			Water Level Summary (From Top of Casing) During Drilling 8 Ft. Date 5/12/58
Grout Sand	- 	1		Before DevelopmentFt. Date
Caved Material 🛛	138			After Development 9.14' Ft. Date 6/15/98
Other:				Aiter Development 1.11 Pt. Date 6// 5/ / 0
Driller/Firm ROBERTSON	/ WEGER DRIC.	_ Drill Rig T	ype <u>B-61</u>	HOX Date Installed 5/22/98
	•			Kerr-McGee
Drill Crew	4. 1	- Meil Mo	Pc-5	9 Hydrologist T, RED

	RR-McGEE CORPORATION drology Dept S&EA Division					Henderson NV				BORI NUM	NG PC 74
DEPTH			·	UNIFIED SOIL	1				DIL SAN		REMARKS OR
IN FEET	LITHOLOGIC DESCRIPTIO	N	GRAPHIC 10G	FIELD CLASS.	P⊞R 6"	(ppm)	NO.	TYPE	DEPTH	H REC.	CIEID ORCEDVATIONS
	0.8 GRAVEL W/	5149	00.0			_					
-	sd, yell vrange.	•	000								_
_	30% gravel + boulde	is to	6.0	GW							
5 -	Z'diam volcani	C 5	000	GW.							_
	60% vc-vf SA sd		.00								_
	10% 5:1+		0.0								
-	8-15 514 SAND W	/minor	1								damp@7' -
10 -	gravel. Ine in silt		1								
_	vf-vc, sa-a. Gr		1::	2W							012.45'
_	up-6 2"	~~~!	0								4-29-00
15_		W. F. F. W. W. W. W. W. W. W. W. W. W. W. W. W.			ļ			<u> </u>			
-	15-21 Sdy GRA		000								(Perched)
-	w/minorsilt. gry b	rn . (0.0	Gw-							4-26-00
-	solve grav. No 2 to	+riv	000	GM		<u> </u>					_
20_	volc grav. to z" u sd vc-f SA-A ma 10-15% silt	•	66			-					only damp
-	21-24 Cly SAND		1.								@ 21' _
-	grn, sd f-vc u	/د	1	S C		-					A MIRE 24'
25	Com (40 %) clay 24-51 Pen Gravel	/	20-3				1	 			4-26-00
-						_					_
-	rc-f 3d matrix. gry. St. slty	2 cn	4								-
	25% sd 70% pango	~ \	000								-
30 _			مم	GW	1						
-	27-28.5w/ com cubbl	e?	4.5.0								-
-	boulders 37-48 boulder ze (thin) scattered throughout		0.00			_					-
35_	- de la da - 2.					-					-
	37-48 Down of 5	2 NE Z	0.00	1							
	Throughout		و و								-
			00000								_
ļ			100	<u> </u>		DANIES			l No. 1	DATE DRILL	ED PAGE
7	·	`				RAPHIC				4-26	-00 1 of Z
	PID Photoionization Detection (p	pm)			-	CLAY				DRILLING M	
	IO. Identifies Sample by Number PE Sample Collection Method	er.				SILT			ANIC (PEAT)	A S	
ATI V	SPLIT.		ROCK			SAND		CLA	7A 7DA	Con	npliance
EXPLANATION	BARREL		CORE			GRAVEL		CLAYEY LOGGED BY SAND E KRISH			
X	WALLED CONTINUOUS \ DE			DV	1	SILTY CLAY				EXISTING GRADE ELEVATION (FT. AMSL)	
	TUBE SAMPLER KECOVERT			κI	1			' 		LOCATION	OR GRID COORDINATES
	DEPTH Depth Top and Bottom of Sample REC. Actual Length of Recovered Sample in Feet					CLAYEY SILT		J		LUCATION	ON GRID COORDINATES

	KERR-McGEE CORPORATION Hydrology Dept S&EA Division KM SUBS KM SUBS		C LLC		Henderson NV		ンレ	BORING	PC74	
DEPTH IN FEET	LITHOLOGIC DESCRIPTIO		SC SC FIE CLA	FIED BLOWS OIL PER LD 6"	PID (ppm)	ИО.	ш	AMPLE PTH	REC.	REMARKS OR FIELD OBSERVATIONS
-	-	0	0000							SCREENED -
45-			0.00	W						WTR 5MPL - 4-28-00 - PH 7.3
51		6	0.0							TDS 7100 _
56	51-56 SAND, m SA-SR, grn gry, ha sity (10%). w/ 10%	rd. 51.	Si	J					,	
56 60-	56-70 sity sdy CL gen gry ared brn, n Calcareous, sticky, o slow. w/ 5-15% vf- sand in matrix. Contains 10% c-vc sized caliche nodula dissem. throughout	ntdled. Irills ma -gran		L- 1L						Muddy Creek -
-/\ -	TD 70'								,	7
-	Water Table (24 Hour) Water Table (Time of Boring Photoionization Detection (p NO. Identifies Sample by Number Sample Collection Method SPLIT. BARREL AUGER THIN. CONTINUOUS SAMPLER SAMPLER	pm) Pr ROC COF			CLAY SILT SAND GRAVEL SILTY CLAY		GEND DEBRIS FILL HIGHLY ORGANIC IPE SANDY CLAY CLAYEY SAND	AT) DRIL	GED BY	00 Z of Z
	DEPTH Depth Top and Bottom of S REC. Actual Length of Recovered	1	CLAYEY SILT	LOCATION OF			ATION OR	OR GRID COORDINATES		

		-McGEE CORP	RTMFNT
	-		LATION DIAGRAM FLUSH
Protective Pipe		Casing Cap V	Yent? Yes ♥ No □ Mount
Yes 🛛 No 🗌		Lock ? Yes [
Steel 🛛 PVC 🗆	1		Yes No
Surveying Pin ?	Ft.	Concrete Pad	ft.xFt.xInches
Yes No .	1	Post	DRILLING INFORMATION:
		DEPTH FROM	1. Borehole Diameter= 10 1/L Inches.
Concrete	Ft. 0 7	BELOW TOP OF GRADE CASING	2. Were Drilling Additives Used? Yes No X Revert Bentonite Water Solid Auger Hollow Stem Auger
	† }		3. Was Outer Steel Casing Used? Yes ☐ No ☑
Cement/Bentonite Grout Mix			Depth=toFeet.
Yes 🕅 No 🗌			4. Borehole Diameter for Outer CasingInches.
	29.5 Ft.		WELL CONSTRUCTION INFORMATION: 1. Type of Casing: PVC Salvanized Teflon
3-5 Lb. Bentonite Powder		}	Stainless Other
Other:			2. Type of Casing Joints: Screw-Couple Glue-
		29.5	3. Type of Well Screen: PVC 📈 Galvanized 🗌
			Stainless Teflon Other
Bentonite Seal			4. Diameter of Casing and Well Screen:
Pellets X Slurry -		345	Casing 2" Inches, Screen 2" Inches. 5. Slot Size of Screen: 0.02
Filter Pack			6. Type of Screen Perforation: Factory Slotted
Above Screen _			Hacksaw Drilled Other
		39.5	7. Installed Protector Pipe w/Lock: Yes No
			WELL DEVELOPMENT INFORMATION:
			I. How was Well Developed ? Bailing Pumping Air Surging (Air or Nitrogen) Other
FILTER PACK MATERIAL			2. Time Spent on Well Development ?
Silica Sand 🗌			// 60 Minutes Hours
Washed Sand 📈 _	10 Ft. 3	:	3. Approximate Water Volume Removed ? Gallons
Pea Gravel 🗌			4. Water Clarity Before Development? Clear 🗌 Turbid 🕅 Opaque 🗌
Other:	} =		5. Water Clarity After Development ? Clear 🕅 Turbid 🗍 Opaque 🗍
Sand Size #3		149.5	6. Did Water have Oder? Yes No 🗹 — If Yes, Describe
Dense Phase Sampling Cup	, , , , , , , , , , , , , , , , , , , ,		7. Did Water have any Color? Yes No 🛛
Bottom Plug Yes X No		50'	If Yes, Describe
Overdrilled Material Backfill	Ft.)		WATER LEVEL INFORMATION: Water Level Summary (From Top of Casing) During Drilling 24 Ft. Date 4-26-00
Grout 🗌 Sand 🔀		70'	Before Development 12.45 Ft. Date 4-29-00
Caved Material)	After Development 13.41' Ft. Date 5-11-00
Other:			
Driller/Firm Compl	iance	Drill Rig Type Mal	
Drill Crew Wells,		Well No. PC 7	74 Kerr-McGee Hydrologist Ed Krish

	ERR-McGEE CORPORATION ydrology Dept S&EA Division	KM SUBSIDIARY	LLC		LOCATION HE NT	> ER.50	N, N	/ BORIN	BORING PC 82		
DEPTH		I O	UNIFIE	DBLOWS			OIL SAM				
IN FEET	LITHOLOGIC DESCRIPTIO	Z GRAPHI	SOIL FIELD CLASS	PER	PID (ppm)	NO. J			REMARKS OR FIELD OBSERVATIONS		
-	0-3 disturbed to	11.0	6 5 m	i					@z'damp		
5_	dk brn, 20% silt, e granules & pea gravel	40% 111;	5 n	1 +					<u>⊽€5′</u>		
10_	of volc. 40% rf-vi	e 5d, []	o. Gr	^					- - -		
		0							_		
12	12-15 sky cly Sig Lkbrn, 15-25% vf.m.	SA·SR	ML	-				•			
15 -	volc granules . stic	ky	16								
	15-20 5)+y sdy GRA dkbrn, SR-5A, ZDIO	511+,	000 GN	1							
2 ロー	Z5 % vf-VC Sd, SA-S Z0-30 sity gravelly		00								
	- dk brn, zo% silt, AD granules to pea gran	10 Volc !	0						_		
25-	= SR; Vf-YC, SR-SA 50	\ 	SM GN	į							
		0,0	0, 0						-		
30-	30-33 say sity GR - ak brn, 30% sa-sR,	VF- C Sd, 5	000 G1	1		y - a canada de la calendar de la ca	and the second s	Programming to select			
33	202 silt, 50% volce 115 gravel to 2-3", 5R	~/ 12110011/	.0						-		
. در	115 gravel to 2-3", SR 33-39 sty gravelly as above @ 38'-39' gravel zone	إ :	50 G	l l							
	SR up to 3" diam 39-46 sity SAND, to	.0.	000 5N								
IT.	▼ Water Table (24 Hour)		· · · · · · · · · · · · · · · · · · ·		GRAPHIC	LOG LEG	END	DATE DRILLE			
	Water Table (Time of Borin PID Photoionization Detection (p NO. Identifies Sample by Numb TYPE Sample Collection Method	pm)		- 1	CLAY SILT	D FI	EBRIS LL GHLY RGANIC (PEAT)	5-4-0 DRILLING MET	1 4-		
EXPLANATION	SPLIT. BARREL AUGER	ROCI			SAND GRAVEL	S s	ľ	LOGGED BY	PLIANCE		
EXPL	THIN- WALLED TUBE CONTINUOUS SAMPLER		OVERY		GRAVEL SILTY CLAY		DIAM T	1	NR15H ADE ELEVATION (FT. AMSL)		
	DEPTH Depth Top and Bottom of S REC. Actual Length of Recovered		eet		CLAYEY SILT			LOCATION OF	R GRID COORDINATES		

KERR-McGEE CORPORATION Hydrology Dept S&EA Division KM SUBSIDIARY KM C LLC				HENDERSON, NV					BORING PC82						
	drology Dept S&EA Division	FML			DI 015		RSON				NOWRE	نه ا الم	06		
DEPTH IN	LITHOLOGIC DESCRIPTIO	N	RAPHIC LOG	UNIFIED SOIL FIELD	PER	PID (ppm)	1		OIL SAM				MARKS	OR ATION	ıs
FEET			5	CLASS.	6'		NO.	TYPE	DEPTH	1	REC.				
	SA, 30% sut in 70%														-
_	sd w/ minor c-vcgv	rains		SM											1
_	Sticky calcareous			,		_									
45—						_									\dashv
_	46-50 sity gravelly	SAND	0.0	SM-						_	*******				
-	dk brn, as above	0	0.0			_									4
- 				GM		_									-
50-	50-52 cly, sity sAN	P, 14.	14.5	SM-											\exists
52 -	red brn + grn gry . SA vf-fg sd w/ ZoZo clo	4-5R	1. 1. 6.	SC											-
-	rf-fg sd w/ ZoZo clo	cy + 30%	0.0	5M-		_									-
_	nodules, calcareous	٠	1000	GM							`				\Box
56 1	52-56 sity gravelly	SAND,	0.1.0	<u> </u>	ļ		m.	٨	dy C	1	5/.1				4
_	f-c sR-IA w/ ZUZ silt	and /							.,10	7 (0)	مار :				₫
-	30% volc + 15 publies +		//												
60 -	56-67 SITY CLAY,	1+	///	CL		-									\dashv
-	grn yellow, sticky														
-	_			1		_									_
-	-			}		-									-
65 -				1											
67.		· · · · · · · · · · · · · · · · · · ·	//	ļ		<u> </u>	-	_					-		-
	TD 67'														
_						_									_
						-									_
						-									_
-						_									
7	Water Table (24 Hour)					GRAPHIC I			'''		ORILLED	3.0	PAGE Z	of Z	
	Water Table (Time of Boring Photoionization Detection (p					CLAY		DEB FILL	RIS		NG METH	HOD	-	· <u> </u>	
N	O. Identifies Sample by Number PE Sample Collection Method					SILT		HIGH! ORGA	LY NIC (PEAT)	DRILLE		5 A			
110 K	71					SAND			- 1	_		-IANC	E-		
EXPLANATION	SPLIT. BARREL AUGER ROCK CORE THIN: WALLED CONTINUOUS NO					GRAVEL			Ì	LOGGE	ED BY				
EXPI							CLAYEY SAND FD KRISH				MSL)				
	WALLED TUBE CONTINUOUS SAMPLER RECOVERY			RY	1	SILTY									
	PEPTH Depth Top and Bottom of S REC. Actual Length of Recovered		n Feet			CLAYEY SILT		_		LOCAT	TION OR	GRID COOR	DINATES		
		Semble II													

KERR-McGEE CORPORATION HYDROLOGY DEPARTMENT										
	WELL INSTALLATION DIAGRAM									
Protective Pipe	Casing Cap Vent ? Yes No No									
Yes No D	Lock ? Yes									
Steel DVC D	Weep Hole? Yes No 🗌									
Surveying Pin ?	Concrete PadFt. xFt. xInches									
Yes No	DEPTH DEPTH									
	FROM 1. Borehole Diameter= 8 Inches.									
ConcreteFt.	BELOW TOP OF GRADE CASING 2. Were Drilling Additives Used? Yes No Revert Bentonite Water Solid Auger Hollow Stem Auger 3. Was Outer Steel Casing Used? Yes No									
Cement/Bentonite Grout Mix	Depth=toFeet.									
Yes No	<u> </u>									
E E Callera Water to	4. Borehole Diameter for Outer CasingInches.									
94Lb. Bag Cement & 9.5 Ft. 3-5 Lb. Bentonite Powder	WELL CONSTRUCTION INFORMATION. 1.Type of Casing: PVC S Galvanized Teflon Stainless Other									
Other:	2. Type of Casing Joints: Screw-Couple 🔀 Glue-									
	Couple Other Galvanized Screen: PVC Galvanized									
→	Stainless Teflon Other									
Bentonite Seal	4. Diameter of Casing and Well Screen:									
Pellets Slurry _	Casing 2 Inches, Screen 2 Inches.									
	5. Slot Size of Screen: 0.020									
Filter Pack Above Screen 33 Ft.	6. Type of Screen Perforation: Factory Slotted									
Above Screen	Hacksaw Drilled Other									
	7. Installed Protector Pipe w/Lock: Yes No.									
	WELL DEVELOPMENT INFORMATION									
	I. How was Well Developed? Bailing Pumping Air Surging (Air or Nitrogen) Other									
FILTER PACK MATERIAL										
Silica Sand	2. Time Spent on Well Development?									
Washed Sand M 10 Ft.	/ Minutes Hours 3. Approximate Water Volume Removed? Gallon									
Pea Gravel 🗆	4. Water Clarity Before Development? Clear Turbid Opaque									
Other: Cave-in	5. Water Clarity After Development? Clear									
gravel	Turbid Opaque									
Sand Size	6. Did Water have Oder? Yes No									
1 - - - -	If fes, Describe									
Dense Phase Sampling Cup o SFt.	7. Did Water have any Color? Yes No 🔀									
Bottom Plug Yes No No	If Yes, Describe									
Overdrilled Material Backfill 9.5 Ft.	WATER LEVEL INFORMATION: Water Level Summary (From Top of Casing) During Drilling 5 Ft. Date									
Grout Sand	1									
Caved Material	After Development 5.42 Ft. Date 5-11-DC									
Other:	Alter Development Oile Ft. Date 3 11-00									
Driller/Firm CompLIANCE	Drill Rig Type Mobile 6-59 Date Installed 5-4-00									
Drill Crew WELLS	Well No. PC82 Kerr-McGee Hydrologist ED KRBH									

	Hydrology Dept S&EA Division				LOCATION HEN	DERSO	N, No	BORING	PC 83
DEPTH IN	LITHOLOGIC DESCRIPTIO	SHC.	UNIFIED SOIL FIELD	BLOWS PER 6"		r	OIL SAMP		REMARKS OR FIELD OBSERVATIONS
FEET 10 - 20 - 30 -	pc 83 is 11' No of PC 82. See log for Pc for 11thology	бит	CLASS.		GRAPHIC			DATE DRILLEC	7 @ 5 ' 5 - 4 - 00
	Water Table (24 Hour) Water Table (7 Ime of Borin PID Photoionization Detection (5 NO. Identifies Sample by Numb TYPE Sample Collection Method SPLIT-BARREL THIN-WALLED TUBE DEPTH Depth Top and Bottom of SREC. Actual Length of Recovered	ppm) er ROCK CORE NO RECOV			SILT SAND GRAVEL SILTY CLAY SILTY CLAY SILTY	DE SA FII	EBRIS LL GHLY GANIC (PEAT) ANDY LAY LAY AND	DRILLING MET DRILLED BY Com LOGGED BY ED EXISTING GRA	00 1 of /

KERR-McGEE CORPORATION HYDROLOGY DEPARTMENT											
			ATION DIAGRAM -LUSH								
Protective Pipe		Casing Cap Ve	ent? Yes No Mount								
Yes No		Lock ? Yes [] No []								
Steel PVC	<u> </u>	Weep Hole?	Yes No No								
Surveying Pin ?	Ft.	Concrete Pad	Ft. xFt. xInches								
Yes No U	0.000	DEPTH	DRILLING INFORMATION:								
		FROM	I. Borehole Diameter= 8 Inches.								
Concrete	Ft.	BELOW TOP OF GRADE CASING	2. Were Drilling Additives Used? Yes ☐ No ☒								
		0	Revert 🗌 Bentonite 🗍 Water 🗍 Solid Auger 📗 Hollow Stem Auger 📈								
			3. Was Outer Steel Casing Used? Yes No								
Cement/Bentonite Grout Mix			Depth=toFeet.								
Yes No □			4. Borehole Diameter for Outer Casing Inches.								
5.5 Gallons Water to			WELL CONSTRUCTION INFORMATION:								
94Lb. Bag Cement & _ 3-5 Lb. Bentonite	$\frac{7}{1}$ ft $\frac{1}{1}$		1. Type of Casing: PVC Galvanized Teflon								
Powder			Stainless Other								
Other:			2. Type of Casing Joints: Screw-Couple Glue-								
		٦	Couple Other								
	+		Stainless Teflon Other								
Bentonite Seal	5 Ft. 8		4. Diameter of Casing and Well Screen:								
Pellets Slurry		12	Casing Z Inches, Screen Z Inches.								
	 	_1	5. Slot Size of Screen: O. DZ O								
Filter Pack	8.5 Ft.		6. Type of Screen Perforation: Factory Slotted 📈								
Above Screen			Hacksaw Drilled Other								
	1	_Z0.5	7. Installed Protector Pipe w/Lock: Yes No								
			WELL DEVELOPMENT INFORMATION: 1. How was Well Developed? Bailing Dumping								
			Air Surging (Air or Nitrogen) Other								
FILTER PACK MATERIAL			2. Time Spent on Well Development ?								
Silica Sand			/ 6D (Minutes/ Hours								
Washed Sand 🔀	10 Ft = 1		3. Approximate Water Volume Removed ? Gallons								
Pea Gravel			4. Water Clarity Before Development? Clear								
Other: caved gravel			Turbid M Opaque								
Other:			5. Water Clarity After Development ? Clear 🕅 Turbid 🗌 — Opaque 🗌								
Sand Size #3			6. Did Water have Odcr? Yes No								
	1 1	30.5	- If Yes. Describe								
Dense Phase Sampling Cup	0.5 Ft.	}	7. Did Water have any Color? Yes 🗌 🛮 No 💢								
Bottom Plug		- .	If Yes , Describe								
Yes No 🗌	1 1	31	WATER LEVEL INFORMATION:								
Overdrilled Material Backfill	6 Ft.		Water Level Summary (From Top of Casing) During Drilling 5 / Ft. Date 5-4-00								
Grout Sand		1 77	Before Development 3.82' Ft. Date 5-11-00								
Caved Material 💢) <u>5 </u>	After Development Ft. Date								
Other:			Arter Development I to Date								
Driller/Firm Com A	LIANCE	Drill Rig Type Mobile	8 - 59 Date Installed 5 - 5 - 00								
			Kerr-McGee								
Drill Crew WELLS		Well No. PC 83	3 Hydrologist ED KRISH								

KE	nn-Micuee Conforation		.LC		HEND	ERSO	, h	, ~~	BORING NUMBE	PC 88
DEPTH IN FEET	LITHOLOGIC DESCRIPTIO	GRAPHIC	UNIFIED SOIL FIELD CLASS.	BLOWS PER 6'	PID (ppm)	NO.	SOI	L SAMPLE DEPTH	REC.	REMARKS OR FIELD OBSERVATIONS
	O-12 Sdy GRAVE pale brn (54R5/2) SIH, 30% sd (5A-SR VC) and 60% volc gravel (SA-SR, up+ diam. 12-51 SILY grav SAND. pale yell be (104R6/2). Var. Sil 20-40%. 20-30% gravel to 3/4" (volc)	10% 00000000000000000000000000000000000	6.000000000000000000000000000000000000				<u> -</u>	-	•	Jampeo' Vez'
20 — - - - 25 — - - - -	Sand sa-sr vf- 12-21 10-20% stimatrix 21-51 com silt in 30-40% 27-33 gravel zone u pubbles to 3". Var. cement	matrix 10	SM- SM							
35-	cement 32-33 v. hard. slow abu coliche ceme 37-51 Var. amts o gravel (pebbles to up to 50%	drilling of	3.000							-
EXPLANATION TEXT	Water Table (24 Hour)) om) r ROCK CORE NO RECOV					DEBRI FILL MIGHLY DRGANI SAND CLAY	S S DRILL OY DRILL OY LOG EXIS	COP COP GED BY ED STING GRAI	00 1 of Z

KERR-McGEE CORPORATION Hydrology Dept S&EA Division KM SUBSIDIARY KM C LL C				<i>r</i>		LOCATION	FOC	- N - N /		BORING NUMBER PC 88		
		KINC		UNIFIED	BI UWC		r	いり, ロン				
DEPTI IN FEET	LITHOLOGIC DESCRIPTION	N	GRAPHIC LOG	SOIL FIELD CLASS.	PER 6"	PID (ppm)	i .	DEPTH	1	REMARKS OR FIELD OBSERVATIONS		
45- 51	MOST likely this 13 a series of fluv fining upward ser from gravels to si 51-62 slty CLAY	ial Liment, 1ts , grn	0.	5M 6M					-	MC 6 21,		
55-	gry (5648/2) and gry (548/1)	yell		CL						- - - - - -		
6Z -	TD 62'											
EXPLANATION	▼ Water Table (24 Hour) ▼ Water Table (Time of Borin Photoionization Detection (NO. Identifies Sample by Numb Somple Collection Method) ▼ SPLIT. BARREL AUGER THIN. WALLED TUBE DEPTH Depth Top and Bottom of	ppm) per US Sample	ROCK CORE NO RECOVE			CLAY SAND GRAVEL SILTY CLAYEY CLAYEY		GEND DEBRIS FILL HIGHLY DRGANIC (PEAT) SANDY CLAY CLAY CLAYEY SAND	CON LOGGED BY ED EXISTING GRA	-00 Z of Z		
	REC. Actual Length of Recovere											

KERR-McGEE CORPORATION HYDROLOGY DEPARTMENT I LUSH MONITORING WELL INSTALLATION DIAGRAM ____Casing Cap Vent ? Yes No N MOUNT Protective Pipe ----__Lock ? Yes 🗍 No 🗍 Yes No No .Weep Hole ? Yes 🗌 No 🔲 Steel PVC Ft. Surveying Pin ? --Concrete Pad Ft. x Ft. x inches Yes 🗌 No 🗌 DRILLING INFORMATION: DEPTH 1. Borehole Diameter= S Inches. FROM BELOW. TOP OF 2. Were Drilling Additives Used? Yes No Concrete CASING GRADE Revert Bentonite Water Solid Auger 🔲 - Hollow Stem Auger 💢 3. Was Outer Steel Casing Used? Yes No IX Depth= to Feet. Cement/Bentonite Grout Mix Yes X No 🗀 4. Borehole Diameter for Outer Casing 5.5 Gallons Water to WELL CONSTRUCTION INFORMATION: 33 Ft. 94Lb. Bag Cement & 1. Type of Casing: PVC X Galvanized Teflon I 3-5 Lb. Bentonite Powder Stainless Other Other: 2. Type of Casing Joints: Screw-Couple X Glue-Couple Other 33 3. Type of Well Screen: PVC 🔀 Galvanized 🗌 Stainless Teflon Other____ Bentonite Seal 4. Diameter of Casing and Well Screen: Ft. Casing 2 Inches, Screen 2 Inches. Pellets Slurry 5. Slot Size of Screen: 0.020 Filter Pack 6. Type of Screen Perforation: Factory Slotted 🔀 Ft. Above Screen Hacksaw Drilled Dther_ 7. Installed Protector Pipe w/Lock: Yes . No . 40 WELL DEVELOPMENT INFORMATION: I. How was Well Developed? Bailing Dumping Air Surging (Air or Nitrogen) Other_ FILTER PACK MATERIAL 2. Time Spent on Well Development? Silica Sand | _____/ 60 Minutes Hours 10 Ft. Washed Sand 3. Approximate Water Volume Removed? Gallons 4. Water Clarity Before Development? Clear Pea Gravel 🗌 Turbid Opaque Other: 5. Water Clarity After Development? Clear Opaque 🗌 Turbid 🗍 Sand Size 2-12 6. Did Water have Odcr? Yes No M MESH If Yes. Describe 7. Did Water have any Color? Yes No No Dense Phase Sampling Cup J. Ft. If Yes . Describe Bottom Plug Yes 🔀 No 🗌 WATER LEVEL INFORMATION: Water Level Summary (From Top of Casing) Overdrilled Material During Drilling 2' Ft. Date 5-11-00 Backfill Before Development 0.21 Ft. Date 5-13-00 Grout Sand 62 Caved Material X After Development _____ Ft. Date ___ Other: Drill Rig Type Mobile B. 59 Date Installed 5-11-00 Driller/Firm COMPLIANCE Well No. PC 38 Drill Crew WELLS Hydrologist 25 KR15H

	KERR-McGEE CORPORATION Hydrology Dept S&EA Division	KM SUBSIDIA		LLC		LOCATION HENT	iÉRi.	7.27	BORING	PC89
DEPT IN	H LITHOLOGIC DESCRIPTIO	LITHOLOGIC DESCRIPTION			BLOWS PER	PID (ppm)		OIL SAMF	1	REMARKS OR FIELD OBSERVATIONS
FEE			ຮື	CLASS.	6'	(PP)	NO.	DEPTH	REC.	TIELD OBSERVATIONS
										VCZ'
	-									_
5.	- PC89 located									
	7' east of Pl	7.8K								_
	PC89 located 7' east of Pl See log of P for lithology	'c 88 '							-	_
10.	for lithology									
										-
15	-								``	
										_
						_				_
20										
										_
25	_					<u> </u>				
						-				-
30										
	-					_				_
	. –									
35										
						_				
30) ————	····		ļ						
H	TD 397		1			3RAPHIC	LOG LEG	FND I	DATE DRILLED	PAGE
	✓ Water Table (24 Hour) ✓ Water Table (Time of Boring	g)				CLAY	DI Essi Fil		5-1Z	
7	PID Photoionization Detection (p NO. Identifies Sample by Number TYPE Sample Collection Method	pm)			1	SILT		GHLY CANIC (BEAT)		HSA
150						SAND	S c		Com I	PLIANCE
EXPLANATION	SPLIT- BARREL AUGER		OCK ORE		ł	GRAVEL		LAYEY		PLIANCE KRISH
EXF	THIN: WALLED TUBE CONTINUOUS SAMPLER	7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SECOVE 40	RY	i	SILTY		1	EXISTING GRA	DE ELEVATION (FT AMSL)
	DEPTH Depth Top and Bottom of S REC. Actual Length of Recovered	iample			1	CLAYEY SILT			LOCATION OR	GRID COORDINATES

		McGEE CORPO	
	•••	•	ATION DIAGRAM FLUSH
Protective Pipe		Casing Cap V	ent? Yes \ No \ MOUNT
Yes No		Lock ? Yes [
Steel PVC		Weep Hole ?	Yes No No
Surveying Pin ?	Ft.	Concrete Pad	Ft. xFt. xInches
Yes No No		8	DRILLING INFORMATION:
		DEPTH FROM	1. Borehole Diameter=
Concrete	Ft. 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	BELOW TOP OF GRADE CASING	2. Were Drilling Additives Used? Yes No Revert Bentonite Water Solid Auger Hollow Stem Auger 3. Was Outer Steel Casing Used? Yes No X
	1 }		Depth=toFeet.
Cement/Bentonite Grout Mix			
Yes No 🗌			4. Borehole Diameter for Outer CasingInches.
5.5 Gallons Water to 94Lb. Bag Cement &	1-7 Ft.		WELL CONSTRUCTION INFORMATION:
3-5 Lb. Bentonite			1. Type of Casing: PVC
Powder Other:			Stainless Other
			Couple Other
		17	3. Type of Well Screen: PVC 🛛 Galvanized 🗌
			Stainless Teflon Other
Bentonite Seal	. 3 Ft. ₩	3	4. Diameter of Casing and Well Screen:
Pellets Slurry		20	Casing 2 Inches, Screen 2 Inches.
			- 5. Slot Size of Screen: 0.020
Filter Pack	4.5 Ft.		6. Type of Screen Perforation: Factory Slotted
Above Screen _			Hacksaw Drilled Other
		24.5	7. Installed Protector Pipe w/Lock: Yes No X
	<u> </u>		WELL DEVELOPMENT INFORMATION: 1. How was Well Developed? Bailing ☐ Pumping ☒
			Air Surging (Air or Nitrogen) Other
FILTER PACK MATERIAL			2. Time Spent on Well Development ?
Silica Sand		. \	//Minutes/Hours
Washed Sand	10 Ft. 3	:	3. Approximate Water Volume Removed? Gallons
1		. \	4. Water Clarity Before Development? Clear
Pea Gravel 🗌		·	Turbid Dpaque
Other:			5. Water Clarity After Development? Clear 💢
Sand Size 3-12 MESH			Turbid Opaque
Salid Size		34.5	6. Did Water have Oder? Yes No W
		:\	7. Did Water have any Color? Yes No
Dense Phase Sampling Cu	P 0.5 Ft.	:{	If Yes, Describe
Bottom Plug Yes X No □		35	— WATER LEVEL INFORMATION:
Overdrilled Material Backfill	# Ft.		Water Level Summary (From Top of Casing) During Drilling 2 Ft. Date 5-12-00
Grout 🗌 Sand 🗌		70	Before Development +0.08 Ft. Date 5-13-00
Caved Material	<u> </u>	39	After Development Ft. Date
Other:	-		The Date
Driller/Firm Compr	IANCE	Drill Rig Type Mub	12. B-59 Date Installed 5-12-00
Daill Coom 1007 1 1 5		Well No. PC 8	Kerr-McGee Hydrologist こD KR1SH
Drill Crew WELLS		1 0	1 1.5 0.00g/oc C D PC PC 7011

•	CERR-McGEE CORPORATION	KM SUBSIDIARY				HENT	SEVE	ا بر	611/	BORING PC97		
	lydrology Dept S&EA Division			UNIFIED	DI OWS		دمسر					
DEPT IN FEET	LITHOLOGIC DESCRIPTIO	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	8	SOIL FIELD CLASS.	PER 6"	PID (ppm)	NO.	TYPE 26	DEPTH	REC.	REMARKS OR FIELD OBSERVATIONS	
	0-5 BERM materi	à \ 0:	1:-								_	
	brn sity gravelly	SAND 1	0	5W							damp @3'	
		1.0	0.			<u></u>						
5-		,0	0.								₹@6'	
	- 5-20 stygrave	My Ni	0 -			_					7 26	
	JAND, pale brno			,		_			•			
] 10% silt, 25% vole	- -		-		-					-	
10 -	granules and sm pe up to 1" Jiam Sand w vf-vc, SA	196167		SW								
	up to 1" diam		0.	3~								
	Sand WYT-VC, 3A		0							,	1	
15			0							`		
			0.									
			0									
			ا: و									
20	20-25 SITY SAND	> w/ i	- 0 -	-				 				
	20-25 SILY SANT minor gravel. Pa	la yell	0:1:	5M		_						
	brn (1048 6/2). S.1		11:	31. (_					-	
25	→	• 11	0:1					_		ng/Spin and Japan Japan Japan Japan Japan Japan Japan Japan Japan Japan Japan Japan Japan Japan Japan Japan Ja		
	- size up to 20%, Sa		0 0			_					-	
	above rf-vc, SR	- 5 A .]:	0.0									
	pale yell brn (love	GRAVEL!	0			_					-	
30	- pale yell brn . (love	6/2).		GW								
	725% silt, 25% vf-v	C, SA-SR	ا د									
	Gravel 5070, SR-5A,	granules	0 0	5 :								
	- and publics to 2"d	ram j		3								
36	Gravel 5070, SR-5A, and publics to 2"d locally com caliche 36.42 Silty SA	cement	00.	•				-				
	36.42 silty SA	MD .				-						
	- pale yell brn (10 y R			5M								
-	bimodal: vf-fg w/c	-BM ,		1	1	GRAPHIC	LOG L	EGE	ND I	DATE DRILLE	D PAGE	
	✓ Water Table (24 Hour)✓ Water Table (Time of Borin	ia)				CLAY				5-16.		
z	PID Photoionizotion Detection (NO. Identifies Somple by Numb TYPE Sample Collection Method	ppm)			1	SILT		FILL DE		DRILLING ME	HSA	
\TIO			CV			SAND		SA CI	NDY AY		PLIANCE	
EXPLANATION	SPLIT- BARREL AUGER	SPLIT- BARREL AUGER CORE								LOGGED BY	KR15H	
EX	THIN: WALLED TUBE CONTINUOU SAMPLER					GRAVEL SILTY CLAY]		_	ADE ELEVATION (FT AMSL)	
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovered	Sample d Sample in	Feet		87	CLAYEY SILT]_		LOCATION O	R GRID COORDINATES	

KERR-McGEE CORPORATION Hydrology Dept S&FA Division WM C L C				LOCATION HENDERSON NV BORING PC97					G DC 97			
H	lydrology Dept S&EA Division	1 17 1					ER 501	<u> </u>	MV			
DEPT	LITHOLOGIC DESCRIPTION	N E	501	UNIFIED SOIL	BLOWS PER	PID			OIL SAMI	PLE	REMARKS OR	
FEET	imotoole beselvi ne	689	5	FIELD CLASS.	6'	(ppm)	NO.	TYPE	DEPTH	REC.	FIELD OBSERVATIONS	
	C-VC, SR, Sand. 7		1:	5 M							_	
42	5,14 in matrix. Calc		11:	· · · · · · · · · · · · · · · · · · ·			<u> </u>					
43	42-43 sity gravely	SAND 10		<u>SW</u>				-			dense + dry	
	pale yell brn . Gravels 3/4" diam w/ minor cali	up to		ML- CL							MC@43	
45-] coment, calcareous	and All										
	- 43-45 dy sdy SIL	- 1				_				-		
						_					_	
	1 lt grn gry (5648/1)	,10-20,				-						
-	clay in matrix, 10-0 Vi-fy sand. Calca											
	w/ mmor sm. calicher											
		rodules									4	
	TD 45'									`.	-	
-	-											
						<u> </u>						
						-						
-												
						_					_	
	4					<u> </u>					_	
	_					 						
	-					_					_	
											_	
						-					_	
	_					<u> </u>						
						<u></u>					_	
	_					-					_	
+	T T (0.4.11)				1	GRAPHIC	LOGI	EGI	END	DATE DRILLE	1	
	■ Water Table (24 Hour)□ Water Table (Time of Boring	na)				CLAY			BRIS L	5-16		
	PID Photoionization Detection (ppm)			1				1	DRILLING ME	HSA	
z	NO. Identifies Sample by Numb TYPE Sample Collection Method	per			Ш	SILT		1 ORG	HLY GANIC (PEAT)	DRILLED BY	MOTY	
410			CV			SAND		SA CL	NDY AY	Con	PLIANCE	
AN	SPLIT- BARREL AUGER	RO CO	ORE		1	GRAVEL			AYEY ND			
EXPLANATION	THIN. CONTINUO	, \(\sum_{\cdots} \)	`		1			ר S ₪ 	MD		KRISH RADE ELEVATION (FT AMSL)	
	WALLED TUBE CONTINUOL SAMPLER	JS NC REC	COVE	ERY	18	SILTY	L_]_				
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	Sample d Sample in	Feet			CLAYEY SILT]_		LOCATION (OR GRID COORDINATES	

KERR-McGEE CORPORATION HYDROLOGY DEPARTMENT MONITORING WELL INSTALLATION DIAGRAM FLUSLI -----Casing Cap Vent ? Yes No Protective Pipe ----MOUNT Lock? Yes No Yes No Weep Hole? Yes No Steel PVC Ft. Surveying Pin ? --. Concrete Pad Ft. x Ft. x Inches Yes 🗍 No 🗌 DRILLING INFORMATION: DEPTH 1. Borehole Diameter= 8 Inches. FROM **BELOW** TOP OF 2. Were Drilling Additives Used? Yes No 🗹 Ft. Concrete GRADE CASING Revert Bentonite Water Solid Auger 🔲 - Hollow Stem Auger 📈 3. Was Outer Steel Casing Used? Yes No X Depth= to Feet. Cement/Bentonite Grout Mix Yes 📈 No \square 4. Borehole Diameter for Outer Casing 5.5 Gallons Water to WELL CONSTRUCTION INFORMATION: Ft. 94Lb. Bag Cement & 1. Type of Casing: PVC X Galvanized Teflon 3-5 Lb. Bentonite Powder Stainless Other __ 2. Type of Casing Joints: Screw-Couple M Glue-Other: Couple Other 3. Type of Well Screen: PVC 🛛 Galvanized 🗌 13 Stainless Teflon Other_ Bentonite Seal 4. Diameter of Casing and Well Screen: Ft. Casing 2 Inches, Screen 2 Inches. Pellets X Slurry 20 0.020 5. Slot Size of Screen: 6. Type of Screen Perforation: Factory Slotted 🔀 Filter Pack Ft. Above Screen Hacksaw Drilled Other 7. Installed Protector Pipe w/Lock: Yes No X 23 WELL DEVELOPMENT INFORMATION: 1. How was Well Developed? Bailing Dumping Air Surging (Air or Nitrogen) Other_ FILTER PACK MATERIAL 2. Time Spent on Well Development? Silica Sand | _____/ 60 Minutes Hours 10 Ft. 3. Approximate Water Volume Removed ? ____ Gallons Washed Sand 4. Water Clarity Before Development? Clear Pea Gravel Turbid Z Opaque Other: ___ 5. Water Clarity After Development? Clear Turbid [Opaque [Sand Size 2-12 mesh 6. Did Water have Oder? Yes No 33 If Yes, Describe Dense Phase Sampling Cup 0.5 Ft. 7. Did Water have any Color? Yes No No If Yes , Describe Bottom Plug 33.5 No 🗌 Yes 🔀 WATER LEVEL INFORMATION: Water Level Summary (From Top of Casing) Overdrilled Material During Drilling _____ 6 ' ___ Ft. Date 5-16-00 Backfill Before Development 0.26 Ft. Date 5-17-00 Grout | Sand | Caved Material After Development _____ Ft. Date ____ Other: Driller/Firm Compulance Drill Rig Type Mobile B-29 Date Installed 5-16-00 Kerr-McGee Well No. PC 97 Hydrologist ED KR13H Drill Crew WELLS

KERR-McGEE CORPORATION KM SUBSID			:			LOCATION				BORING TO		
	ydrology Dept S&EA Division	KM		LC		Hen	ders	٧٥	, NV		PC 104	
DEPTH			SHO	UNIFIED SOIL	BLOWS PER	PID		so	IL SAMP	LE	REMA	ARKS OR
IN FEET	LITHOLOGIC DESCRIPTION	אנ	GRAPHIC LOG	FIELD CLASS.	6'	(ppm)	ΝО.	TYPE	DEPTH	REC.	FIELD OB	SERVATIONS
	0-6 Berm Mater	ıal		CERTS.				Ì				
	sdy, gravelly Mi											
	1 - 1 0											-
				*								-
_			/									
6	6-21' SAND, gran	Jelly	0.0.						angani, a se shereba Abadam Pilipan			_
	# silty . Brn (54R5/	4).	010			<u> </u>						_
	10-20 % siltin sd ma	trix of	0.1			_						-
10 -	f-cgw/mmor vcg, 51		0 0	_								
	20-30% SA-SR, vole		0.0	2M								
	gravel to 3/4" w/1											
/	thin zones to 2". A		0:			_				`.		_
15 -	Calcareous.		0.									-
	6-12 com gravel to	2"	0.0									
	-		0.0			-						_
	-		00									_
21			0.0			The same of the sa						
1	21-35 GRAVEL \$	sdy	0.00			<u> </u>					damp	@ Z1 ' _
	GRAVEL, interbeddo	ed, brn	0.00			_						@ ZZ1 -
12/	(5 y R 5/4). Volc class	ts wp to	0.0									
100 -	- 1" except locally to - SA-SR, contains var	· amits	000	GP/								_
	of vf-vc, SA-JR S	d. +r	000	GM								
	- sil+		0.0		`	_						
30.	- 23-26 com lg grave	1404	100									-
7	29-30 sity gravelly	1 511 t	0.0	•								
			0 .			<u> </u>						-
	- 1 - 1 - 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0	145	0	-		-						-
35	- 34-35' com la grave	C	00.00	2				_			<u> </u>	-,
36	35-36' CLAY, S	14,	777	CL				+	<u> </u>		mc	<u>@ 35′</u>
	gry yellgrn (5647	//z).				-						No.
	calcareous. Tr-s	PAUPSU	m			<u> </u>						-
	TD @36'	 	Ι							1	<u> </u>	
	▼ Water Table (24 Hour)					GRAPHIC			.140	Z-3-0		AGE) of
	Water Table (Time of Borin PID Photoionization Detection (CLAY		DEI FILI	BRIS [DRILLING MET	гнор	<u>'</u>
Z	NO. Identifies Sample by Numb TYPE Sample Collection Method					SILT		HIGH	ILY ANIC (PEAT)	PER DRILLED BY	CUSSI	0 1
ATIC	SPLIT		ROCK			SAND		SA	NDY AY	LAY	NE	
EXPLANATION	BARREL							CL SA	ND DN	E d	Krish	
Ğ	THIN: WALLED TUBE CONTINUOL SAMPLER	ıs	NO RECOVE	ERY	1	SILTY				EXISTING GR	ADE ELEVATIO	N (FT AMSL)
	DEPTH Depth Top and Bottom of REC. Actual Length of Recovere	Sample d Sample	in Feet		181	CLAYEY SILT				LOCATION O	R GRID COORD	INATES

VEDD_I	McGEE CORPO	DRATION
HYDRO	LOGY DEPAR	RTMENT FINSH
MONITORING V	VELL INSTALL	ATION DIAGRAM MOUNT
Protective Pipe	Casing Cap Ve	ent ? Yes 🛛 No 🗌
Yes No No	Lock ? Yes] No 🛛
Steel PVC	Weep Hole?	Yes 🔲 No 🔯
Surveying Pin ? Ft.	Concrete Pad	Ft. x Ft. x Inches
Yes No X		DRILLING INFORMATION:
	DEPTH FROM	1. Borehole Diameter= Inches.
Concrete 6.5 Ft.	BELOW TOP OF GRADE CASING	2. Were Drilling Additives Used? Yes No 😿
	GIVADE OAOING	Revert 🗌 Bentonite 🗌 Water 🗌
		Solid Auger Hollow Stem Auger
		3. Was Outer Steel Casing Used? Yes ☐ No 🗹
Cement/Bentonite Grout Mix		Depth=toFeet.
Yes No)X		4. Borehole Diameter for Outer CasingInches.
5.5 Gallons Water to 94Lb. Bag Cement & P Ft.		WELL CONSTRUCTION INFORMATION:
3-5 Lb. Bentonite		1.Type of Casing: PVC 🔀 Galvanized 🗌 Teflon 🗌
Powder Other:		Stainless Other
	,	Couple Other
	6.5	3. Type of Well Screen: PVC 😿 Galvanized 🗌
		Stainless Teflon Other
Bentonite Seal 3.5 Ft.		4. Diameter of Casing and Well Screen:
Pellets X Slurry -	9	Casing 2 Inches, Screen 2 Inches.
		5. Slot Size of Screen: 0.020
Filter Pack Above Screen 1.0 Ft.		6. Type of Screen Perforation: Factory Slotted
Above Screen	4.00	Hacksaw Drilled Other 7. Installed Protector Pipe w/Lock: Yes No
1		WELL DEVELOPMENT INFORMATION:
		1. How was Well Developed? Bailing Pumping
		Air Surging (Air or Nitrogen) Other
FILTER PACK MATERIAL		2. Time Spent on Well Development ?
Silica Sand		/Minutes/Hours
Washed Sand Z ZS Ft.		3. Approximate Water Volume Removed ? Gallons
Pea Gravel		4. Water Clarity Before Development? Clear
		Turbid Opaque
Other:		5. Water Clarity After Development? Clear
Sand Size 3-12		Turbid Opaque 6. Did Water have Odor? Yes No
	35	- If Yes, Describe
Dance Phase Sampling Cun	\	7. Did Water have any Color? Yes No No
Dense Phase Sampling Cup 0.3 Ft.		If Yes , Describe
Yes No 🗆	35.3	WATER LEVEL INFORMATION:
Overdrilled Material Backfill 0.7 Ft.	!	Water Level Summary (From Top of Casing) During Drilling 22 Ft. Date $2-3-9$
Grout Sand	36	Before DevelopmentFt. Date
Caved Material) <u>/ </u>	After Development Ft. Date
Other:		
	Drill Rig Type AP-	
Drill Crow Perry	Well No. PC-1	04 Kerr-McGee Ed Krish

SOIL BORING LOG KM-5655-B

		GEE CORPORATION Dept S&EA Division	KM SUBSIDIA KM	C LL C			LOCATION HE	NDE	R	507	BORING	PC 116 R
DEP				APHIC LOG	UNIFIED		PID		SC	IL SAMPLE	: I	REMARKS OR
FEE		LITHOLOGIC DESCRIPTIO	N	GRA	FIELD CLASS.	PER 6'	(ppm)	NO.	TYPE	DEPTH	REC.	FIELD OBSERVATIONS
5	an s + 50 20.	O GRAVEL, S IN SAND, gravel Herbeolded. Mini- y layers. Brn -80% gran - Z 30% silt in say mo -50% vf-vc, SA	y Thin "peb.	000000000000000000000000000000000000000	GW/ SW							damp@1' -
	101- brr 10- 10-	-18' SAND, 1, vf-cg, SA 3070 silt in mataly cam. sd-si- whiche nodules	rrix ze		5M							_ _ _ _ _ _
20	- 18- Com Zo	20 SILT, Sdy, gr culche nods, 20-30; -27 SAND, SI+	y grn, svf-fsd		ML							damp -
27	bri - c- m	1. Vf-mg w/mi VC. ZO-30/2 si itrix	nor		sМ							WTR.@Zo' -
	27 W/ Ser 70 col	-49 GRAVEL, minor gravelly s il silty sand. Pa ries of fining-up % volc+1s. granu obles. Zo-30% f it thin layers w/ tin sdymatrix 1-38 peagravel	and lebrn seq.)	0	GP/ GM			OG IS	69	NO IDA	E DRILLEO	I PAGE
	. .	Nater Table (24 Hour) Nater Table (Time of Boring	Λ				CLAY			-	7.25-	5 10 10
EXPLANATION	PID F	Photoionization Detection (pidentifies Sample by Numbersample Collection Method AUGER	pm) r R C	OCK ORE O ECOVER	RY		SAND GRAVEL SILTY CLAY		HIGHL ORGA SAN CLA	Y NRC (PEAT) DRIII DRIII DRIII DRIII DRIII DRIII DRIII DRIII DRIII DRIII DRIII DRIII DRIII DRIII DRIII DRIII DRIII Y	LA GEO BY	ERCUSSION YNE DKRISH DE ELEVATION (FT. AMSL)
	DEPTH REC.	Depth Top and Bottom of Si Actual Length of Recovered	ample Sample in	Feet			CLAYEY SILT		_		ATION OR	GRID COORDINATES

SOIL BORING LOG KM-5655-B

	KERR-	McGEE CORPORATION ogy Dept S&EA Division	KM SUBSIDI		LC		LOCATION HENT	DEKS	٥ <i>ر</i>	J , NV	BORING	G PC116R
DEP			1	Ę,	UNIFIED	BLOWS				OIL SAMP		
FEE		LITHOLOGIC DESCRIPTION	ON	GRAPHIC LOG	UNIFIED SOIL FIELD CLASS.	PER 6'	(ppm)	NO.	TYPE	DEPTH	REC.	REMARKS OR FIELD OBSERVATIONS
45	- 3	8'-49' com. cobb	1-2 to	0.0	GP,							_ _
49	-	· · · · · · · · · · · · · · · · · · ·		0000	GM							
	4	9-58 CLAY & SIT Clay, w/rost tra im. gyp xtols. gree and blue green	ces é nish	1	CL							MC@49'-
-0	1			V								
58		TD 58'										
Ħ	<u> </u>	Water Table (24 Hour)		<u> </u>	<u> </u>	-	GRAPHIC	LOG LE	GE	ND D	TE DRILLED	
EXPLANATION	B. II	Water Table (Time of Boring Photoionization Detection (publication Sample by Number Sample Collection Method PLIT. ARREL AUGER CONTINUOUS SAMPLER The Depth Top and Bottom of Sample Collection Method Auger Auger Auger Continuous Sample Continuo	er R C S M R R R R R R R R R R R R	OCK ORE IO ECOVE	RY		CLAY SILT SAND GRAVEL SILTY CLAY CLAY SILT		HIGHL ORGA SAN CLA	Y MC (PEAT) OH 4DY Y YEY ND	E O	USSION NE

KERR-McGEE CORPORATION									
HYDROLOGY DEPARTMENT MONITORING WELL INSTALLATION DIAGRAM									
Protective Pipe	Caeing Cap Vent ? Yes No								
Yes No 🕅	Lock? Yes No								
	Weep Hole ? Yes No								
Steel PVC 2.0 Ft.	are the second s								
Yes No No	Concrete PadFt. xInches								
	DEPTH DEPTH 12/								
	FROM 1. Borehole Diameter= 1374 Inches.								
ConcreteFt.	GRADE CASING 2. Were Drilling Additives Used ? Yes No X								
	Revert Bentonite Water Salid Auger Hollow Stem Auger								
	Solid Auger Hollow Stem Auger 3. Was Outer Steel Casing Used? Yes No X								
Cement/Bentonite Grout Mix Yes No 2	Depth=toFeet.								
5.5 Gallons Water to	4. Borehole Diameter for Outer Casing Inches.								
94Lb. Bag Cement &	WELL CONSTRUCTION INFORMATION: 1.Type of Casing: PVC次 Galvanized ☐ Teflon ☐								
3-5 Lb. Bentonite Powder	Stainless Other								
Other: CONCRETE	2. Type of Casing Joints: Screw-Couple Glue-								
	Couple Other								
	3. Type of Well Screen: PVC 📈 Galvanized 🗌								
	Stainless Teffon Other								
Bentonite Seai 3 Ft.	4. Diameter of Casing and Well Screen:								
Pellets Slurry	Casing & Inches, Screen & Inches.								
	5. Slot Size of Screen: 0.040								
Filter Pack Above Screen 2 Ft.	6. Type of Screen Perforation: Factory Slotted								
Addre Gereen	Hacksaw Drilled Other V-WIRE								
<u> </u>	7. Installed Protector Pipe w/Lock: Yes No								
	WELL DEVELOPMENT INFORMATION: 1. How was Well Developed? Bailing Dumping								
	Air Surging (Air or Nitrogen) Other								
FILTER PACK MATERIAL	SURGE BLOCK								
Silica Sand	2. Time Spent on Well Development?								
Washed Sand 7 40 Ft.	3. Approximate Water Volume Removed 7.2000 Gallons								
Pea Gravel	4. Water Clarity Before Development? Clear								
	Turbid X Opaque								
Other:	5. Water Clarity After Development? Clear 🔀								
Sand Size 8x12	Turbid Opaque Opaque Of No M								
m Es H	6. Did Water have Oder 1 Tes No X								
Dance Phase Sampling Cure	7. Did Water have any Color ? Yes No 🛛								
Dense Phase Sampling Cup 5.5 Ft.									
Yes No 🗆	55.5 (5'blank) If Yes, Describe								
Overdrilled Material Backfill Z.5 Ft.	Water Level Summary (From Top of Casing) During Drilling Ft. Date								
Grout Sand 🕱	S8 Before DevelopmentFt. Date								
Caved Material	After Development 4 . 20 Ft. Date 7-27-01								
Other:	Actor Development Ft. Date								
Driller/Firm LAYNE	Drill Rig Type $AP 1000$ Date installed $7-26-01$								
Drill Crow P. HORMAN	Well No. PC1/6R Kerr-McGee ED KR15H								

SOIL BORING LOG KM--5655-A LOCATION BORING KM SUBSIDIARY KERR-McGEE CORPORATION NUMBER PC 123 HE MOERSON, NI KMO Hydrology Dept. Engineering Services UNIFIED BLOWS
SOIL PER
FIELD FOOT SOIL SAMPLE REMARKS OR FIELD OBSERVATIONS DEPTH PID PER FOOT LITHOLOGIC DESCRIPTION IN FEET (ppm) DEPTH REC. NO. CLASS. CARADOLL SHY BUT 65 % Will pebbles 887 h GARL WIZEL VA-VESA And 10% silt. 85 0000 8-12 SAND, gravelly, brn, you where sa-sasd w SW The first of the acceptance in IZ-ZZ SZAVEL DWY: ora Tax voic pelables, SR, to 1/2-1" w/20 Evf-DAMPE 17 GIN VE, SA-SE SL. AND 10.0 10% 51/4 22 WET @ ZZ ZZ-Z] SAND, gravelly, 70% of 56 11 PM 5600 ZN To Ke pringraved 10 % alt 27-33 GRAVEL 1847 martin. 70% gravel to 1989 Gr. 00.0 W/84% 33 mod calichitical MC @ 33 33-35 CLAY, 31+y, yrn CL Bru 35.5 -TD 35.5

H		Markey Table	(04 Hour)		GRAPHIC LO	OG LEGEND	DATE DRILLED PAGE
	<u>v</u>	Water Table Water Table	(Time of Boring) ion Detection (ppm)		CLAY	DEBRIS FILL	3-9-04 of DRILLING METHOD
7	PID NO. TYPE	Idontifies Sa	mple by Number ection Method		SILT	HIGHLY ORGANIC (PEAT)	DRILLED BY
EXPLANATION			1	ROCK	SAND	SANDY CLAY	WD C
LAN	SPI BA	RREL	AUGER	ROCK CORE	GRAVEL	CLAYEY SAND	ES KRISH
X		IN- ALLED	CONTINUOUS SAMPLER	NO RECOVERY	SILTY		EXISTING GRADE ELEVATION (FT. AMSL)
			■_ and Bottom of Samp th of Recovered San	le nple in Feet	CLAYEY SILT		LOCATION OR GRID COORDINATES

KERR-McGEE CORPORATION HYDROLOGY DEPARTMENT MONITORING WELL INSTALLATION DIAGRAM ---- Casing Cap Vent ? Yes No 🗍 Protective Pipe -------Lock? Yes 🗌 No 🔯 Yes No 🖄 Weep Hole? Yes 🗌 No 🔝 Steel N PVC Ft. _____Ft. x _____Ft. x _____Inches Concrete Pad Surveying Pin ? --DRILLING INFORMATION: Yes 🗍 No 🖾 DEPTH 1. Borehole Diameter= Inches. FROM TOP OF 2. Were Drilling Additives Used? Yes No M **BELOW** GRADE CASING Concrete Revert Bentonite Water Solid Auger [Hollow Stem Auger [No 🔲 🏾 3. Was Outer Steel Casing Used? Yes Depth= to Feet. Cement/Bentonite Grout Mix 4. Borehole Diameter for Outer Casing____ No \square Yes 🔼 WELL CONSTRUCTION INFORMATION: 5.5 Gallons Water to ∃ 🧸 Ft. 1. Type of Casing: PVC 🔯 Galvanized 🗌 Teflon 🗌 94Lb. Bag Cement & 3-5 Lb. Bentonite Stainless Other Powder 2. Type of Casing Joints: Screw-Couple Glue-Other: Couple [Other ___ 3. Type of Well Screen: PVC Galvanized Stainless Teflon Other 4. Diameter of Casing and Well Screen: Bentonite Seal Ft. Casing Anches, Screen Anches. Pellets M Slurry 5. Slot Size of Screen: 6. Type of Screen Perforation: Factory Slotted Filter Pack Ft. Hacksaw Drilled Dother Above Screen 7. Installed Protector Pipe w/Lock: Yes 🗌 No 🕍 WELL DEVELOPMENT INFORMATION: 1. How was Well Developed? Bailing Pumping Air Surging (Air, or Nitrogen) Other BLULK /ALPA FILTER PACK MATERIAL 2. Time Spent on Well Development ? _____ Minutes/Hours Silica Sand 📈 3. Approximate Water Volume Removed ? ____ Gallons ° Ft. Washed Sand 4. Water Clarity Before Development? Clear Pea Gravel Turbid M Opaque 5. Water Clarity After Development? Clear Other: ____ Opaque [Turbid [] Sand Size 8-12 6. Did Water have Odcr? Yes 🗌 No 🖾 35 If Yes, Describe ____ 7. Did Water have any Color? Yes No Dense Phase Sampling Cup If Yes . Describe Bottom Plug WATER LEVEL INFORMATION: No 🗍 Yes 🔯 Water Level Summary (From Top of Casing) During Drilling 22.5 Ft. Date 3.5 Overdrilled Material Ft. Backfill Before Development Ran Ft. Date Grout Sand After Development _____ Ft. Date_ Caved Material Other: ___ Date Installed Drill Rig Type Driller/Firm Cath & Osti Kerr-McGee Well No. TOU 12 7 Hydrologist Drill Crew

_	ENSR AECOM							Tronox LLC 04020-023-160	Well No. PC-136					
-	NON	ALC	UIV		_				Road Well Field, Henderson,					
	EN:	e D				ordina		26728191.37 N 829517.89 E		Sheet: 1	of 2			
	1220 Aven	ida Aca						Sonic with continuous coring		Monitoring Well Installed: Yes				
(905)299 2775								Split Spoon and Core	Boring Diameter: 8 In.			nterval: 17.7-37.7 ft.		
Weathe	er: I	NA				•		Logged By: E. Krish	Date/Time Started: 12/18/20	008 11:30	Depth of Bo	oring: 38 ft.		
	Contracto		art Lo	ngvea	r / D.	Cerva	ntez	Backfill: NA	Date/Time Finished: 12/18/20		Water Leve			
DEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"	Recovery (ft)	Headspace (ppm)	SDSU SP-SM	Graphic Log	MATERIAL IDENTIF (silt and clay) desigravel), structural moisture content, ALLUVIUM: GRAVELLY sigravel to 3/4" with missing processing the signal of the si	d ss, grained	rial Well Diagram				
5						Sivi		subangular to subrou	unded sand, moderate calcare	ine to very coarsi	e graineu	2" Sch. 40 PVC Riser Cement (94%) and Bentonite (6%) Slurry		
15						GP- GM			own (5YR 6/4), 10% silt, 40% vo subrouned sand, 50% fine g			Sand Pack (#2-12)		
(GPJ ENSR CA.GDT 4/25/08						CM		SANDY GRAVEL, caliche				Well Screen		
TRONOX CAPTURE WP						SM GP-		SANDY GRAVEL, groundwater encountered at 32 feet bgs. SILTY GRAVELLY SAND, dark yellowish brown (10YR 4/2), locally up to 25% silt, 35% fine grained angular to subrounded volcanic pea gravel, up to 40% very fine to very coarse grained subangular to subrounded sand, alternating silty and clean sand. SANDY SILTY GRAVEL, brownish gray, very hard calichification, 20-30% very fine						
XON						GM	601	to coarse grained sa	nd in matrix, 10-20% silt. rom 32.5-33 feet bgs very silty-		2.,			
OH							196	ONINDI SILII GRAVEL, I	iom oz.o-oo ieel bys very silly-	TO /U.				
б	otes:						. 812							

Well Diagram

Total Depth = 38 feet. Boring Terminated Target depth achieved

CL

SANDY SILTY GRAVEL, brownish gray, very hard calichification, 20-30% very fine to coarse grained sand in matrix, 10-20% silt. (continued)

MUDDY CREEK FORMATION: CLAY, light greenish gray (10Y 7/1).

WELL CONSTRUCTION TRONOX TRONOX CAPTURE WP.GPJ ENSR CA.GDT 4/25/08

Notes:

ENSR AECOM	Project Number: (J4020-023-100			Well No. PC-137						
•		ocation: Fast Side of Athens	Road Well Field, Henderson, NV	Well 140. 1 3-107							
	-	26728198.98 N 829517.57 E		Sheet: 1	of 2						
ENSR 1220 Avenida Acaso		Sonic with continuous coring		Monitoring Well Installed: Yes							
Camarillo, CA 93012 (805)388-3775		Split Spoon and Core	Boring Diameter: 8 In.		erval: 59.7-69.7 ft.						
Weather: NA	Campio Type(c).	Logged By: E. Krish	Date/Time Started: 12/17/2007 14:15	Depth of Bor							
Drilling Contractor: Boart Longyea	r / D. Cervantez	Backfill: NA	Date/Time Finished: 12/17/2007 17:30	Water Level:							
			24.6.7								
DEPTH (ft) Sample ID Sample Depth (ft) Blows per 6" Recovery (ft)	Headspace (ppm) USCS Graphic Log	(silt and clay) desc gravel), structural moisture content,	MATERIAL IDENTIFICATION, color, description of fine grained mate (silt and clay) description of coarse grained material (sand and gravel), structural or mineralogical features, density or stiffness, moisture content, odors or staining.								
5	P-M S S S S S S S S S S S S S S S S S S S	very coarse grained, volcanic pea gravel, smoderately soft calca moderately soft calca subangular to pea gravel to 1/4", moderately soft calca subangular to pea gravel to 1/4", moderately soft calca subangular to subrounded, volcanic subangular to subrounded subrounded subrou	ate brown (5YR 4/2), 5% silt, 15% fine grained c pea gravel to 3/8", 80% very fine to very coars and sand ery pale orange (10YR 8/2), 20% silt, 30% very subangular to subrounded sand, 50% fine grain r pea gravel to 3/8" with minor 1".	parse unded,	Flush Mount —2" Sch. 40 PVC Riser —Cement (94%) and Bentonite (6%) Slurry						

50.7	to a				Clie			Tronox LLC				Wall N	lo DC 127					
E	NSR	AEC	ON	1			lumber:		Well No. PC-137									
						ordina		ocation: East Side of Athens 26728198.98 N 829517.57 E			Sheet: 2	Sheet: 2 of 2						
	EN 220 Aver	nida Aca						Sonic with continuous coring		Monitoring Well Installed: Yes								
C	camarillo, (805)38	CA 930 88-3775	12					Split Spoon and Core	Boring Diameter:	8 ln.			9.7-69.7 ft.					
Weathe	er:	NA						Logged By:E. Krish		12/17/2007 14:15	Depth of B	oring: 70	ft.					
Drilling (Contract	or: Bo	art Lo	ngyea	r / D. (Cerva	ntez	Backfill: NA	Date/Time Finished:	: 12/17/2007 17:30	Water Lev	el: 28 t	ft.					
DEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"	Recovery (ft)	Headspace (ppm)	SOSO GM	Graphic Log	gravel), structural moisture content,	cription of coarse gr l or mineralogical fea odors or staining.	rained material (sandatures, density or sti	I and Iffness, ANDY		Well Diagram					
45						ML CL-ML		CLAYEY SILT, yello plastic fines with up -light greenish gray (5GY -yellowish gray (5Y 7/2) from -mottled dark yellowish gray bgs. SANDY AND SILTY CLA very fine grained sai	8/1) from 38 to 40 fee om 40 to 49 feet bgs. een (5Y 6/2) to dark g	ray (5Y 9/1) from 49 to	o 50.5 feet							
55						ML		SANDY SILT, dusky yellov	w (5Y 6/4) , 20% very	fine grained sand.			—Bentonite Seal					
						ML	$ \cdot \cdot $	SANDY SILT, pale olive (1	10YR 6/2)				Sand Pack #2-12					
						SM		SILTY SAND, medium blu	ne gray (5B 5/1), 30%	silt, 70% very fine grai	ned sand.	1:11						
60				1.5		CL		SILTY CLAY AND CLAYE grained marcasite.	Y SILT, greenish gray	y (5G 6/1), disseminate	ed very fine							
						SM		SILTY AND CLAYEY SAN			0% very fine	1::目:	릚					
65						CL		CLAY WITH GYPSUM CF			abundant	1 目	Well Screen					
								gypsum crystals 3/8	to 11/2".				(2" Sch. 40 PVC 0.01"					
						CL		INTERBEDDED SILTY CI crystals.	AY AND CLAYEY SII	LT, moderate brown (*	0YR 5/4), no							
70 <u> </u> N o	otes:	<u> </u>	1				<u>V/////</u>	Total Depth = 70 feet. Boring Terminated Target depth achieved				<u> </u>	· :I					

	ERR-McGEE CORPORATION	ARY			LOCATION			,	BORING NUMBER PC-1		
				CMCLLC			ر <i>له لک</i> ا			<u> </u>	·
DEPTH IN FEET	LITHOLOGIC DESCRIPTION	N	GRAPHIC LOG	SOIL FIELD CLASS.	PER 6"	PID (ppm)	NO.	ш	SAMPLE DEPTH	REC.	REMARKS OR FIELD OBSERVATIONS
5 —	FILL: SAND /GRAVEL I IMPOUNDMENT BERM	~	ST.	*:							
10 -	SAND / SILTY SAND; LT. BROWN; GRANEL COMMING WELL-GRADED; DRY SAND AS ABOVE CALICHE ZONE @ 17-19' SAND AS ABOVE; BECOMY MUST	w;	10 00 000000000000000000000000000000000	Sm-							-
23.5 25- 30- 31 31-	SILTY CLAY; RED-BROWN PLI, KRAY-CNEN RESILES MUDOY CREEK TD 32		000000000000000000000000000000000000000		23.T				32 33,5	1.2'	CROUNDWATER = SAMPLE COLLECTES = E 28 =
EXPLANATION	Water Table (24 Hour) Water Table (Time of Boring PID Photoionization Detection (p IO. Identifies Sample by Number Sample Collection Method SPLIT- BARREL THIN- WALLED TUBE DEPTH Depth Top and Bottom of S REC. Actual Length of Recovered	Pm) Rr C N R	OCK ORE IO ECOVE	RY		CLAY SILT SAND GRAVEL SILTY CLAY CLAYEY SILT		GEND DEBRIS FILL HIGHLY DRGANIC (SANDY CLAY CLAY SAND	PEAT) DRII		

KERR-McGEE CORPORATION HYDROLOGY DEPARTMENT MONITORING WELL INSTALLATION DIAGRAM _---Casing Cap Vent? Yes No Protective Pipe ----___Lock ? Yes 🛭 No 🔲 Yes V No \square Ween Hole? Yes 🔲 No 🔲 Steel P PVC Surveying Pin ? --Concrete Pad Ft. x Ft. x Inches Yes 🗌 No 🗌 DRILLING INFORMATION: DEPTH 1. Borehole Diameter= 8 Inches. FROM **BELOW** TOP OF 2. Were Drilling Additives Used? Yes No 19 Concrete Ft. GRADE CASING Revert Bentonite Water Solid Auger | Hollow Stem Auger | 3. Was Outer Steel Casing Used? Yes No 🛚 Depth=____to Feet. Cement/Bentonite Grout Mix Yes [v] No 4. Borehole Diameter for Outer Casing Inches. 5.5 Gallons Water to WELL CONSTRUCTION INFORMATION: 8.5 Ft. 94Lb. Bag Cement & 1. Type of Casing: PVC A Galvanized Teflon 3-5 Lb. Bentonite Powder Stainless Other___ Other: 2. Type of Casing Joints: Screw-Couple Glue-Couple Other 3. Type of Well Screen: PVC \square Galvanized \square 10 Stainless Teflon Other_ Bentonite Seal 4. Diameter of Casing and Well Screen: Pellets Slurry Casing Z Inches, Screen Z Inches. 5. Slot Size of Screen: 1020 Filter Pack 6. Type of Screen Perforation: Factory Slotted <u> 2</u>フ Ft. Above Screen Hacksaw Drilled Other 7. Installed Protector Pipe w/Lock: Yes \(\subseteq No \) 14,7 WELL DEVELOPMENT INFORMATION: 1. How was Well Developed? Bailing Pumping D Air Surging (Air or Nitrogen) Other_ FILTER PACK MATERIAL 2. Time Spent on Well Development? Silica Sand 15 Ft. Washed Sand 3. Approximate Water Volume Removed ? 140 Gallons 4. Water Clarity Before Development? Clear Pea Gravel | Turbid Opaque D Other: ___ 5. Water Clarity After Development? Clear 1 Turbid | Opaque \square 8-12 Sand Size ___ 6. Did Water have Oder? Yes \(\text{No } \(\text{D} \) 129.7 If Yes. Describe 7. Did Water have any Color? Yes No IV Dense Phase Sampling Cup Ft. Bottom Plug If Yes . Describe Yes No No WATER LEVEL INFORMATION: Water Level Summary (From Top of Casing) Overdrilled Material Backfill During Drilling 23,5 Ft. Date 3/23/98 Grout Sand Before Development 20,3 Ft. Date 3/24/98 Caved Material (FROM After Development 22.42 Ft. Date 3/25/98 Other: Driller/Firm ROBERTSON / WEBER DRILING Drill Rig Type MBILE B-61 Date Installed Kerr-McGee

Drill Crew ROBERTSON/SOHWSON / RIVIERA Well No. PC-1

	ERR-McGEE CORPORATION ydrology Dept S&EA Division	KM SUBSIDIARY			LOCATION HEMDE	150-1	A/I/	BO NU	RING MBER P	C-4	
		10	() JUNIED -					AADI 5		- T	
DEPTI IN FEET	LITHOLOGIC DESCRIPTION	GRAPHIC LOG	SOIL FIELD CLASS.	PER 6"	PID (ppm)	NO.	SOIL SA	1	EIEID	EMARKS OR OBSERVATIONS	
	FILL: SAND AND GRAN	المرا									
	IN IMPOUNDMENT BER									_	
	-	J-12			_					-	
		不								_	
5 -	SAND / SILTY SAND; CRAN	10		1						-	
	- SHANDY SILTY SAND, LIT. TO ABO; LT. T.	17/1/									
	Brown; DRT TO SLI. M	0157			_					_	
	- WELL - CAASES	10.0						ļ		_	
10 -	┥ ,										
	- GRASIL @ 11-13,5'	600									
	7	000	Į.								
	_	1 -	,								
15 -	4				<u> </u>						
1	- SAND AS ABOVE	6.1	sm-							-	
	-	0.	GM		-						
					_						
20-		. 0	l								
		01			<u> </u>						
22	 		· Y -	+	<u> </u>		1 1			_	
	4	010									
	- GRAVEL @ 25-27'	000									
25 -		00.8	2								
		00									
			Í								
	4		1							-	
30 -	SAND AS ABOVE; SATURA	760			-					-	
	1	i a			<u> </u>	İ		-			
		نان ا								_	
l		00								_	
35-		·	, u,								
	- CRAVEL @ 38-40'		-		<u> </u>		Į į			-	
1	-	90								-	
	-	000	1							_	
40	1	20	b							_	
-	▼ Water Table (24 Hour)				RAPHIC			DATE DRIL	,	PAGE / of 2	
	∇ Water Table (Time of Boring				CLAY		DEBRIS FILL	DRILLING	4/98 METHOD	1 01 2	
	PID Photoionization Detection (p NO. Identifies Sample by Number IYPE Sample Collection Method	pm) er					HIGHLY ORGANIC (PEA	DRILLED	SA		
ATIOI	[7]			1	SAND		SANDY CLAY	DIVICEED		ING	
EXPLANATION	SPLIT- BARREL AUGER	ROCK CORE		-	GRAVEL		CLAYEY SAND	1	BER DR		
EX	THIN- WALLED SAMPLER THRE	NO RECOVI	ERY	1	SILTY CLAY			EXISTING	, /(A/S_/) GRADE ELEVA	TION (FT. AMSL)	
	DEPTH Depth Top and Bottom of S REC. Actual Length of Recovered	ample		1	CLAYEY SILT			LOCATION	N OR GRID COC	DRDINATES	

	ERR-McGEE CORPORATION	KM SUBSIDIA				LOCATION				BOR	ING	
<u> </u>	ydrology Dept S&EA Division	KMC	LLC	UNIFIED	01 03:55	HEND	<u>ENSON</u>			NUMBER PC - 4(CONT,)		
DEPTH	LITHOLOGIC DESCRIPTION	N	GRAPHIC LOG	SOIL	BLOWS PER	PID			OIL SAM		REMARKS OR FIELD OBSERVATIONS	
FEET				CLASS.	6,	(ppm)	NO.	TYPE	DEPTH	H REC.	TIELD OBSERVATIONS	
40	GRAVEL @ 41.5-42,5'	-	1010	5M-							GROUNDWATEL SAMPLE	
		Į.	500	Gn		_					TAKEN @ 42'	
43,5	SILTY CLAY, LT. GRAY-GRE	W: 54' V	177					A. S. Lingson				
45-	ALASTIC MUDDY CHEEK		///	CL	17				45			
	TO 45'				17 ₃₄ 52		1	Д	46.5	1,4		
	10 45					_						
-												
	-										_	
-		f										
١ _												
	_					_					_	
						<u> </u>					_	
-	_					<u> </u>						
-	_					<u> </u>						
											.==	
	_					_						
-											_	
	4											
	-					-					-	
-]										_	
	4						İ				_	
	-										_	
							<u> </u>					
1 1	Water Table (24 Hour)					RAPHIC I			10	DATE DRILL	i i	
	Water Table (Time of Boring Photoionization Detection (p	pm)				CLAY		DEB FILL	KIS	3/24 DRILLING M	ETHOD	
1 1	NO. Identifies Sample by Number YPE Sample Collection Method	er ′				SILT	\Box	HIGHL' ORGA	Y NIC (PEAT)	DRILLED BY	ISA	
						SAND			IDY		EN DRILLING	
EXPLANATION	SPLIT- BARREL AUGER	RO	OCK ORE		1	GRAVEL			YEY	LOGGED BY	,	
X X	THIN. CONTINUOUS		.		1			SAN	ID	EXISTING G	RESD (FT. AMSL)	
	TUBE CONTINUOUS SAMPLER	RE	COVE	RY	ı	SILTY CLAY			[
	DEPTH Depth Top and Bottom of S	ample	Ec.		团	CLAYEY SILT				LOCATION (OR GRID COORDINATES	
	REC. Actual Length of Recovered	sample in	reet									

KERR-McGEE CORPORATION HYDROLOGY DEPARTMENT MONITORING WELL INSTALLATION DIAGRAM Protective Pipe -------- Casing Cap Vent ? Yes No ---Lock ? Yes V No Yes V No 🗍 Weep Hole? Yes 🗌 No 🗍 Steel V PVC Surveying Pin ? ---Concrete Pad Ft. x Ft. x Inches Yes 🗌 No \square DRILLING INFORMATION: DEPTH 1. Borehole Diameter= 8 Inches. FROM TOP OF 2. Were Drilling Additives Used? Yes No No Concrete GRADE CASING Revert Bentonite Water Solid Auger | Hollow Stem Auger | 12 3. Was Outer Steel Casing Used? Yes No V Cement/Bentonite Grout Mix Yes D No 4. Borehole Diameter for Outer Casing Inches. 5.5 Gallons Water to WELL CONSTRUCTION INFORMATION: 12,6 Ft. 94Lb. Bag Cement & I.Type of Casing: PVC 🗹 Galvanized 🗌 Teflon 🗌 3-5 Lb. Bentonite Powder Stainless Other Other: 2. Type of Casing Joints: Screw-Couple W Glue-Couple | Other ___ 13.6 3. Type of Well Screen: PVC Galvanized Stainless Teflon Other Bentonite Seal 4. Diameter of Casing and Well Screen: Pellets Slurry Casing 2 Inches, Screen 2 Inches. 5. Slot Size of Screen: . 020 Filter Pack 6. Type of Screen Perforation: Factory Slotted 1.7 Ft Above Screen Hacksaw Drilled Other 7. Installed Protector Pipe w/Lock: Yes No WELL DEVELOPMENT INFORMATION: 1. How was Well Developed? Bailing Pumping Air Surging (Air or Nitrogen) Other_ FILTER PACK MATERIAL 2. Time Spent on Well Development? Silica Sand 45 / Minutes/Hours Washed Sand 3. Approximate Water Volume Removed? 50 Gallons 4. Water Clarity Before Development? Clear Pea Gravel Turbid Opaque Other: ___ 5. Water Clarity After Development? Clear Turbid Opaque Sand Size __ F-12 6. Did Water have Oder? Yes No D 42.7 If Yes, Describe 7. Did Water have any Color? Yes \ No \ Dense Phase Sampling Cup If Yes . Describe Bottom Plug No 🔲 Yes 🗌 WATER LEVEL INFORMATION: Water Level Summary (From Top of Casing) Overdrilled Material Backfill Ft. During Drilling 22' Ft. Date 3/24/98 Grout Sand Before Development_____ Caved Material After Development 23.65 Ft. Date 3/25/98 Other: ___ Driller/Firm L. ROBERTSON / WIREL DRUG. Drill Rig Type MOBILE B-61 Date Installed 3/24/98 Kerr-McGee Drill Crew ROBERTSD / JUHNSON / RIVERA Well No. PC-4

Appendix B

Research Laboratory Bench-Scale Testing Protocols

December 2013 ENVIRON

TREATABILITY STUDIES FOR PERCHLORATE FROM AQUIFER MATERIAL AT THE NEVADA ENVIRONMENTAL TRUST SITE

John H Pardue PhD, PE and W. Andrew Jackson, PhD, PE

Creation of a permeable reactive barrier (PRB) is one strategy to reduce perchlorate to nontoxic end products in contaminated aquifers. Kinetic information on perchlorate reduction and the identity of suitable electon donors is required to effectively design PRBs for this purpose. The treatability studies proposed below are designed to identify suitable electron donors that will drive perchlorate reduction without seriously impacting the permeability of the formation or causing unaceptable downgradient water quality impacts. The site of interest is the Nevada Envrionmental Response Trust (NERT) site in Henderson, NV. Based on previous microcosm studies, perchlorate reduction is electron donor limited in the Las Vegas wash and in the contaminaed groudwater (Battista et al., 2003). Reduction will not occur in the absence of a supplemental carbon source. Required dosage is unknown and depends on the background demand from other electon acceptors and the demand from perchlorate reducers. The goal of these treatability studies is to identify the identity and dose of a suitable carbon source.

1.1 Objectives

The overall objective of these bench-scale studies is to ensure success for a pilot PRB. The specific objectives of the proposed bench-scale treatability studies are:

- 1. Identification of suitable electron donors for perchlorate reduction
- 2. Measurement of perchlroate reduction kinetics in NERT aquifer material.
- 3. Establish kinetic and hydraulic parameters required to design a PRB pilotTasks

1.2 Tasks

Task 1. Identification of suitable organic donors

Soluble, slow-release and solid electron donors will be tested to establish candidate amendments for perchlorate reduction in the PRB pilot. Example soluble donors may inleude acetate, lactate or mixed donors (e.g., yeast extract) (Coates and Jackson, 2009). Proprietary slow-release donors will also be tested. These will be contrasted with a mixture of peat and sand to mimic constuction of a PRB out of a solid electron donor instead of amendment of the existing aquifer material. A total of 8-10 donors will be evaluated. Final selection of the amendments will be made jointly with ENVIRON. To establish effectiveness, serum bottle testing will be conducted on mixtures of site aquifer material, site groundwater and different concentrations of candidate donors. Testing will be conducted using methods described in the attached SOP. Briefly, materials will be assembled in a glove box in 160 mL serum bottles sealed with Teflon-lined septa and crimp caps (Tan et al., 2004 and Jackson et al., 2004). Bottles will be repetitively sampled over time to establish the kinetics of perchlorate reduction. In addition to perchlorate, concentrations of relavent redox pairs will be measured as the

changes in the aquifer material/groundwater systems progress. These will include oxygen, nitrate/nitrite, ferric/ferrous iron, sulfate/sulfide and methane. Studies will be run for 6-8 weeks or until the perchlorate is reduced by 80-90%. Successful electron donors will be evaluated based on kinetics of perchlorate reduction and mitigation of lag time due to presence of oxygen and nitrate. Cost and implementability will be additional strong considerations for candidate donors for further evaluation in 1-D columns.

Task 2. Assessment of perchlorate reduction kinetics in 1-D columns

Coumn studies will be used to test the effectivess of donors in a flow-through mode. Successful donors will be those that reduce perchlorate but also maintain the hysraulic properties of the formation (minimize biofouling). A schematic diagram of the 1-D column system is shown in Figure 1. Column experiments will be performed in three, 5 ft long, 2 inch diameter columns with 5 equispaced sampling ports located along their lengths. The columns will be packed with aquifer material from the NERT site. A 5 cm layer of fine gravel will placed at the bottom for even distribution of flow through the column. Glass wool will be inserted in the inner side of sampling ports to avoid dead zones and clogging of sampling ports. Immediately after establishment of the columns, the hydraulic conductivity of the test columns will be assessed by connecting a falling head permeameter to the column. Hydrualic conductivity will be measured using the falling head method and compared to existing site data.

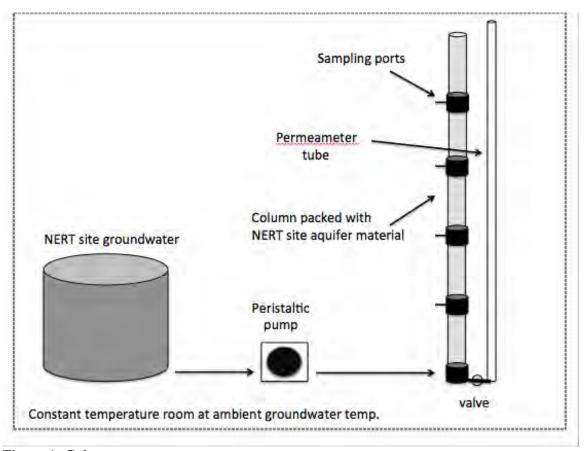


Figure 1. Column set-up

Contaminated groundwater, shipped from the site, will be introduced through 2 mm stainless steel tubing in upflox mode. A peristaltic pump (Cole Parmer Masterflex) with Viton tubing will used to convey water through the column at groundwater velocities representative of site conditions. The experiment will be set-up in a constant temperature room so that site groundwater and the test columns will be maintained at the ambient site temperature.

The influent concentrations will be monitored three times a week to track changes in perchlorate concentration. Influent samples for all column experiments will be collected at the sampling ports on the delivery side of the pump. Samples were collected with a 5 mL prerinsed airtight glass syringe fitted with luer-lock and injected into 2 mL glass vials. Sampling was performed after every three-four days for determination of perchlroate concentration, nitrate/nitrate concentrations and conductivity. On a weekly basis, additonal redox indicators will be measured including O2, nitrite, nitrate, ferrous iron, ferric iron, sulfate and sulfide, and methane. Redox characteristics of each sampled zone would be determined from these multiple lines of evidence from the water chemistry testing. Additional samples will be removed for metals analysis at an external certified laboratory acceptable to ENVIRON. Column studies will be run for 12 weeks, subject to extension if additional information is desired. Following the termination of the studies, the falling head permeameter study will be repeated and the hydraluc conductivity measured again. Declines in conductivity over the 12 weeks may be evidence of biofouling. If conductivity declines signflicantly (>5-10x), column materials will be removed and total carbon measured on the aguifer material to determine the amount of biomass accumulated along the flowpath.

Task 3. Establishing kinetic and hydraulic parameters

Column data for removal of perchlorate can be assessed using 1-D reactive-transport models:

$$\frac{\partial C}{\partial t} = -\frac{u_x}{R} \frac{\partial C}{\partial x} + \frac{D_x}{R} \frac{\partial^2 C}{\partial x^2} - \frac{k}{R} C$$

Because of the uncertainty in the scale-dependent dispersion term, D_x (the dispersion term is very small over the short depth of the columns), a simpler exponential equation can also be used to assess kinetics for pechlorate treatment.

$$C = C_o e^{-kRx/v}$$

where C [M/L³] is the concentration of the pollutant at a vertical distance, x [L], C_o [M/L³] is the initial concentration, k [T⁻¹] is a lumped temporal degradation rate constant, R is the retardation coefficient and v [L/T] is the seepage velocity. The equation captures several important mechanisms including equilibrium partitioning, advection and first-order reduction of perchlorate. Partitioning is expected to be negligible for perchlorate (e.g., R=1). Biodegradation rate constants will be determined by fitting the equation to contaminant profiles measured in Task 2 using CXTFIT, a curve fitting program used for 1-D column

studies (Toride et al., 1995) or using non-linear regression for the simpler exponential equation.

1.2.1 Analytical Procedures

Major anions (Cl̄, NO₃, and SO₄²-) will analyzed by ion chromatography following EPA Method 300.0. ClO₄⁻ concentrations will be separately measured by sequential ion chromatography-mass spectroscopy-mass spectroscopy (IC-MS/MS). ClO₄⁻ will quantified using a Dionex LC 20 ion chromatography system consisting of GP50 pump, CD25 conductivity detector, AS40 automated sampler and Dionex IonPac AS16 (250 X 2 mm) analytical column. The IC system is coupled with an Applied Biosystems – MDS SCIEX API 2000TM triple quadrupole mass spectrometer equipped with a Turbo-IonSprayTM source. A hydroxide (NaOH) eluent at 0.3 mL min⁻¹ is followed by 90% acetonitrile (0.3 mL min⁻¹) as a post-column solvent. To overcome matrix effects, all samples were spiked with Cl¹⁸O₃ or Cl¹⁸O₄ internal standards. Redox paramaters will be measured using standard methods O₂ (microelectrode), nitrite, nitrate, ferrous, ferric iron, sulfate, sulfide (ion chromatograph), methane in porewater (GC-FID), SOPs of each of these measurements are available upon request.

QA/QC

Full details of QA/QC procedures are available in the SOPs. Briefly, the QC program consists of blanks, calibration checks, matrix spikes and matrix spike duplicates. Our QA/QC for these parameters has been approved by a number of agencies including the US Army, Florida DEQ and others. Split samples will be provided for analysis at external laboratories at ENVIRON's request.

References:

Batista, Jacimaria R., Amy, Penny S., Chen, Yi-Tung, Papelis, Lambis, Unz, Richard. 2003. The Fate and Transport of Perchlorate in a Contaminated Site in the Las Vegas Valley. Part A: Investigation of the Influence of Biological Degradation and Sorption on the Fate of Perchlorate. Part B: Modeling of the Transport of Perchlorate in the Las Vegas Wash. Final Project Report EPA Grant Number: R827622E03

J. Coates and W.A. Jackson. 2009. Development of *In Situ* Bioremediation Technologies for Perchlorate in <u>In Situ Bioremediation of Perchlorate in Groundwater</u>. Hans F. Stroo and Herb Ward, (Eds.) 2009, XLVI, PP. 29-53.

Jackson, W. Andrew, M. Jeon, J. H. Pardue, and T. Anderson. 2004. Enhanced Natural Attenuation of Perchlorate in Soils Using Electrokinetic Injection. <u>Bioremediation Journal</u>. 8(1-2):65-79.

Tan, K., T.A. Anderson and W.A. Jackson. 2004. Degradation Kinetics of Perchlorate in Sediments and Soils. Water, Air, and Soil Pollution. 151:245-259.

Toride, N., F. J. Leij, and M. Th. van Genuchten. 1995. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments, Version 2.0. Research Report No. 137, U.S. Salinity Laboratory, USDA, ARS, Riverside, California.

Appendix C

Standard Operating Procedures

December 2013 ENVIRON

Standard Operating Procedure C-1:

Soil Sampling with Direct-Push or Hollow-Stem Auger Samplers

December 2013 ENVIRON

Standard Operating Procedure C-1: Soil Sampling with Direct-Push or Hollow-Stem Auger Samplers

This standard operating procedure (SOP) is applicable to the collection of representative soil samples using a direct-push or hollow-stem auger sampling technique. The methodologies discussed in this SOP are generic in nature and may be modified in whole or part to meet the handling and analytical requirements of the contaminants of concern, as well as the constraints presented by site conditions and equipment limitations. Modifications of sampling methodologies will be documented in the appropriate field logbook and discussed in reports summarizing field activities and analytical results. For the purposes of this procedure, soils are those mineral and organic materials not submerged in water for an extended period of time sufficient to support aquatic life.

Sample Collection

The primary means for the collection of subsurface soil samples will be a direct-push technique using a Geoprobe® or equivalent driver. Direct-push soil samples will be obtained using a closed-piston soil sampler with a liner (or equivalent sampling system). If needed, a hollow-stem auger sampler may be used to collect soil samples. The sampler will be operated in accordance with the manufacturer's recommended operating procedures for the type of equipment used.

Discrete Soil Sampling Procedures

Soil samples will be collected at predetermined intervals based on specific data needs. Each discrete sample will be described in the field notebook using the Unified Soil Classification System (USCS) as described below. Soil samples that will not become composite samples will be placed directly in the appropriate sample containers using a clean plastic or metal spatula, or by using a clean gloved hand.

Subsamples selected for laboratory analysis will be placed in appropriate sample containers provided by the analytical laboratory, labeled, placed in an iced cooler, and stored in accordance with chain-of-custody requirements specified in the QAPP (Appendix A to the Final (100%) Design Report) until shipment to the laboratory (or laboratories) is arranged. Chain-of-custody records will be completed for all samples according to the methods described in the QAPP (Appendix A to the Final (100%) Design Report).

Discrete samples that will become aliquots of a composite sample will be covered or capped as soon as possible after collection if the compositing process is not completed immediately. Each sample container will be labeled and stored on ice pending the composite process.

Composite Soil Sampling Procedures

Composite samples will be prepared from the discrete samples following collection of the required number of discrete sample specified for the sampling area. Each discrete sample will be removed from the sample container and placed on a clean sheet of aluminum foil. After removing sticks, grass, stones, and other debris, each discrete sample will be separated into quarters – cores will be cut lengthwise into 4 equal portions, while disturbed samples will be homogenized and divided. Three of the four quarters of each sample will then be placed into

1

one of three individual foil pans. The fourth portion of the discrete sample will be placed in a plastic baggie, labeled, sealed, and stored separately for potential individual analysis.

The compositing process of quartering discrete samples will be repeated for successive discrete samples until each of the three pans contains one quarter of each discrete sample. The contents of each aluminum foil pan will then be thoroughly mixed either by hand or by using an electrical or mechanical mixer. Upon completion of the mixing process, the contents of each individual pan will then be combined into one clean pan and again thoroughly mixed, resulting in one homogeneous sample. The composite soil sample will then be placed in the appropriate sample containers, labeled, and placed on ice pending shipment to the laboratory.

VOC Sample Collection Procedures

Soil samples obtained for laboratory analysis of VOCs will be collected in compliance with SW-846 Method 5035. Each soil sample will be obtained directly from the sampling device (i.e., not homogenized) using an En Core™ sampler or field preserved using Method 5035 compatible containers. A description of each sampling procedure is as follows:

EnCore Sampler

The EnCore[™] sampler is a single use, commercially available device constructed of an inert composite polymer. EnCore[™] uses a coring/storage chamber to collect either a 5-gram or 25-gram sample of cohesive soils. It has a press-on cap with a hermetically vapor tight seal and a locking arm mechanism. Three EnCore[™] samplers shall be filled at each sample location using the following procedures:

- Place the EnCore[™] sampler into the EnCore[™] T-Handle tool.
- Push the sampler into the soil sample until the small o-ring on the plunger of the EnCore™
 sampler is visible in the T-Handle viewing hole.
- Wipe off any excess soil from the coring body exterior using a clean paper towel.
- Place the cap on the end of the EnCore™ sampler and twist to lock the cap into place.
- Remove the sampler from the T-Handle and lock the plunger by rotating extended plunger rod fully counterclockwise until the plunger wings rest firmly against the plunger tabs.
- Place the label on the sampler and place the sampling into a labeled EnCore[™] sampler bag and zip closed.
- Place the filled EnCore[™] samplers in a cooler with ice for overnight shipment to the laboratory using standard chain-of-custody procedures. The soil samples must be prepared for analysis or frozen within 48 hours of sample collection.

Field Preservation

The procedures for the field preservation method are as follows:

- Push a one-time use plastic sampling tool such as a Terra Core[™] sampler into the soil to be samples to collect an approximately 5-gram sample aliquot.
- Transfer the 5-gram aliquot to laboratory provided, pre-preserved, 40-milliliter vials containing a specific amount of methanol, sodium bisulfate, and/or organic-free water. The

2

number of vials provided with each preservative will vary by the laboratory performing the analysis. One unpreserved container shall also be filled to allow for laboratory calculation of the sample dry weight.

• Label each sample and place in a cooler with ice for overnight shipment to the laboratory using standard chain-of-custody procedures.

Sample Description and Field Documentation

After samples for chemical and physical analysis have been prepared, a visual soil or lithologic description of each sample will be made according to the USCS, and will be recorded in a bound log notebook. Each sampling location will be photographed, and the approximate location will be placed on a site map and recorded in the field notebook.

Residual soil from the compositing process and stored individual discrete sample portions will be disposed in accordance with the Sampling and Analysis Plan.

Equipment Decontamination

Drilling and support equipment will not come in direct contact with the samples, so cross-contamination of samples is not a concern. However, this equipment will likely come in contact with impacted soil and must therefore be decontaminated prior to moving from one location to another.

The drilling equipment used for soil sampling and monitoring well installation will be cleaned with high-pressure/hot water washing equipment prior to initiating the field investigation. The same procedure will be applied to all drilling equipment between each boring location. The cleaning will occur at a decontamination pad constructed at a suitable location(s) at the site. Water used for cleaning will be obtained from a local potable water source. Equipment subject to these decontamination procedures includes, but is not limited to, the following:

- · Direct-push or hollow-stem auger drill rig.
- Direct-push or hollow-stem auger sampler components.

In addition, downhole equipment that comes in direct contact with samples will be decontaminated between each sample interval. This procedure will include washing with a nonphosphate detergent and rinsing with clean potable water.

If required, a piece of sampling equipment that comes in direct contact with soil samples (e.g., split-barrel samplers) will be selected for collection of field equipment blanks. After the equipment has been cleaned, it will be rinsed with DI water. The rinse water will be collected and submitted for analysis of all constituents for which the normal samples collected with the equipment are being analyzed.

Field blanks will be collected at the frequency specified in the QAPP (Appendix A to the Final (100%) Design Report).

Standard Operating Procedure C-2:

Low-Flow Groundwater Sampling for Chemical Analysis

December 2013 ENVIRON

Standard Operating Procedure C-2: Low-Flow Groundwater Sampling for Chemical Analysis

1 Purpose and Scope

This standard operating procedure (SOP) describes the procedures to be followed by a Field Geologist/Engineer while collecting groundwater samples using low-flow purging and sampling procedures. The low-flow methodology may alternatively be referred to by names such as "micropurging", "low-stress purging", low-impact purging, or "minimal drawdown purging." This SOP should be used primarily for collection of groundwater samples from permanent wells that have been designed, constructed, and developed for the purpose of monitoring groundwater. The groundwater samples that are collected using this SOP are acceptable for the analysis of environmental contaminants including, but not limited to: volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides and herbicides, polychlorinated biphenyls (PCBs), petroleum hydrocarbons, metals, and other inorganic compounds.

The procedures presented herein are intended to be of general use and may be supplemented by a Work Plan, Sampling and Analysis Plan, Quality Assurance Project Plan, and/or a Health and Safety Plan. Some of these procedures may not be required depending on the specific scope of work being conducted. As the work progresses, and if warranted, appropriate revisions may be made by the Project Manager. Procedures in this protocol may be superseded by applicable regulatory requirements.

2 General Requirements

All personnel performing on-site operations with the potential for exposure to hazardous substances or health hazards are required to be 40-hour trained in accordance with Code of Federal Regulations (CFR) 1910.120 and will meet the personnel training requirements in accordance with 29 CFR 1910.120(e).

The laboratory must be certified by the appropriate regulating agency for the analyses to be performed. If drilling is required as part of the scope of work, permits will be acquired from the appropriate agency, and an underground utility check will be performed before drilling begins. An underground utility check will, at a minimum, consist of contracting with a local utility alert service, if available. Under certain circumstances, including at sites with deeply buried, unknown, or multiple underground utilities, as well as at high risk sites such as oil refineries and heavy industrial facilities, manual utility clearance using hand auger or air knife methods should also be performed.

The activities described in this SOP require the implementation of a site-specific Health and Safety Plan to inform personnel of the hazards associated with this work and to describe the methods that will be employed to mitigate those hazards. The Health and Safety Plan must be prepared and approved by the Project Manager and the local Health and Safety Coordinator prior to initiating field work. A Health and Safety Meeting must be held at the start of each day to reassess any potential hazards associated with that day's field work.

3 Methods

This SOP has been prepared in accordance with the United States Environmental Protection Agency (USEPA) Standard Operating Procedure for Low-Stress (Low Flow)/Minimal Drawdown

Ground-Water Sample Collection, dated 2002. This guidance document is included as Attachment 3 of the Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers, which may be found via the following internet link:

http://www.epa.gov/swertio1/tsp/download/gw_sampling_guide.pdf

This methodology described herein is also consistent with the California Environmental Agency's (Cal-EPA), Representative Sampling of Groundwater for Hazardous Substances, Guidance Manual for Ground Water Investigations, dated June 2005. This document may be found via the following internet link:

http://www.dtsc.ca.gov/SiteCleanup/upload/SMP_Representative_Sampling_GroundWater.pdf

Unlike traditional purging methods, low-flow purging and sampling does not require the removal of an arbitrary volume of water from a well prior to sampling. Instead, low-flow purging and sampling relies on careful monitoring of water quality indicator parameters to determine when a representative groundwater sample can be collected. The low-flow methodology minimizes the effects on groundwater chemistry caused by the purging process by minimizing drawdown, reducing the amount of water removed from the well, and reducing the amount of turbidity in groundwater samples.

4 Equipment and Materials

A non-exhaustive summary of common supplies and equipment is presented below:

- Health and Safety Plan
- Site information (maps, contact numbers, previous field logs, etc.)
- Electronic water level indicator (Solinst or similar)
- Photoionization Detector (PID) of Flame ionization detector (FID) if VOCs are suspected
- Adjustable-rate sampling pump capable of rates <0.5 liters per minute (bladder pump preferred, e.g., QED Sample Pro)
- Bladders for sample pump
- Sample tubing (Teflon® or Teflon®-lined tubing preferred for sampling organic compounds)
- Multi-parameter meter (e.g. YSI 556 Multi-Parameter Meter) with flow through cell capable
 of measuring (at a minimum) temperature, pH, specific electrical conductance (SEC),
 dissolved oxygen (DO), and oxidation-reduction potential (ORP)
- Turbidity meter
- In-line filters (if required, e.g. for dissolved metals)
- Certified-clean sample containers and preservation supplies, sample labels, Ziploc™ bags

- Cooler with ice
- Decontamination supplies (e.g. phosphate-free detergent, distilled water)
- Tool kit with appropriate tools (socket wrench set, pry bar, Dolphin locks/keys)
- Drum(s) to collect purged water and decontamination water
- Drum labels
- Personal Protective Equipment (PPE), typically PPE will consist of:
 - Long-sleeved shirt and long pants
 - Steel-toed boots
 - Hardhat
 - Nitrile gloves
 - Safety glasses with side shields
 - Other as required by Health and Safety Plan
 - Field Forms (If the project requires it, a project-specific Field Logbook may substitute for any of the following with the exception of the Chain of Custody)
 - Field Investigation Daily Log
 - Water Level Measurement Log
 - Low-Flow Purging and Sampling Log
 - Equipment Calibration Log
 - Chain-of-Custody

5 Procedures

The following sections discuss the procedures to follow during low-flow purging and sampling monitoring wells with dedicated or non-dedicated equipment (e.g., bladder pumps with adjustable rate controls). Where applicable and when possible, the purging and sampling techniques should remain consistent from one sampling event to the next.

5.1 Pre-Sampling Activities

- 1. Sampling should begin at the monitoring well with the least contamination, generally upgradient or farthest from the site or suspected source. Then proceeding systematically to the monitoring wells with the higher expected groundwater concentrations.
- 2. All measuring devices and monitoring equipment should be calibrated according to manufacturer's recommendations. Water quality meters must be calibrated daily before use. Equipment calibration details should be recorded in the *Equipment Calibration Log*.
- 3. Unlock well and/or remove well cap. Record any damage or evidence of pressure (positive or negative) in the well in the Water Level Measurement Log. Monitor the headspace at the

- top of the well for VOCs with a PID or FID and record findings. If VOCs are present, monitor worker breathing zones during purging and sampling in accordance with the site Health and Safety Plan.
- 4. Prior to sampling, the depth-to-water in all wells must be measured to obtain the current static water level. Water levels should be measured to the nearest 0.01 feet relative to a reference measuring point on the Top of Casing (TOC) which must be surveyed relative to ground elevation. If there is no marked reference point on the TOC, measure from the North side of the casing. Record depth to groundwater information in the Water Level Measurement Log. The same water level measuring device should be used for all wells, if possible, and must be decontaminated between each well.
- 5. Use existing site information for total depth (TD) of monitoring well and use the information from depth to water to calculate the volume of water in the monitoring well. The TD of wells to be sampled should not be tagged prior to sampling to avoid disturbing sediments at the bottom of the well. If possible, have this information prior to the day of sampling. The TD of wells should be verified after sampling. Record TD and water volume information in the Low-Flow Purging and Sampling Log.

5.2 Purging and Sampling

- 1. If using non-dedicated equipment, place the pump and support equipment at the well head and slowly lower the pump and tubing down into the monitoring well until the location of the pump intake is set at a predetermined location within the screen interval. Where possible, pre-measured tubing should be used to place the pump intake at the same depth as previous sampling events, or at a depth where there is known contamination within the screen interval. If there is no previous information for the well, the pump intake should be placed at the middle (or slightly above the middle) of the screen interval. Record the pump depth in the *Low-Flow Purging and Sampling Log*.
- Measure depth to water to the nearest 0.01 feet relative to the reference measuring point on the TOC with an electronic water level indicator. Record depth to groundwater information in the Low-Flow Purging and Sampling Log. Leave water level indicator in the well.
- Connect the discharge line from the pump to a flow-through cell that at a minimum measures temperature, pH, SEC, DO, and ORP. Turbidity measurements can be made using a separate turbidity meter. The discharge line from the flow-through cell must be directed to a container to hold purge water collected during purging and sampling of the well.
- 4. Start pumping the well at a flow rate of between 0.1 and 0.5 liters per minute (L/min) and slowly increase the flow rate. (For new wells or wells with no purging history, start at the lower end of that range.) Check the water level. Maintain a steady flow rate while maintaining a drawdown of less than 0.3 feet. (Zero drawdown is optimal, but infrequently achievable). If drawdown is greater than 0.3 feet, lower the flow rate; 0.3 feet is a goal to help guide with the flow rate adjustment. This goal will be difficult to achieve in some wells due to low hydraulic conductivities and limitations to the lowest flow rate a pump can produce while maintaining steady flow. This goal may be adjusted based on site-specific conditions and personal experience. See the Special Advisory at the end of these

procedures.

5. Measure the discharge rate of the pump with a graduated cylinder and a stopwatch.

Also, measure the water level and record both flow rate and water level on the *Low-Flow Purging and Sampling Log*. Continue purging, monitor and record water level and pump rate every 3 to 5 minutes. Purging rates should be kept at minimal flow to ensure

minimal drawdown in the monitoring well.

6. A minimum of one tubing volume (including the volume of the water in the pump and flow cell) must be purged prior to recording the water quality indicator parameters. After this has been accomplished, monitor and record the water quality indicator parameters every three to five minutes in the Low-Flow Purging and Sampling Log. Stable readings of temperature, pH, SEC, DO, turbidity and ORP indicate when a representative sample can be collected. The stabilization criterion is based on three successive readings of the water quality indicator parameters as shown in Table 1. ORP may not always be an appropriate stabilization parameter and will depend on site-specific conditions. However, readings should be recorded because of its value for double-checking oxidizing conditions. The stabilization criterion is based on three successive readings of the water quality indicator parameters as shown in Table 1.

TABLE 1: Stabilization Criteria for Water Quality Indicator Parameters								
Parameter	Stabilization Criteria							
Temperature	± 3% of reading (minimum of ±0.2° C)							
рН	± 0.1 pH units							
Specific Electrical Conductance (SEC)	± 3% S/cm							
Dissolved Oxygen (DO)	± 0.3 milligrams per liter							
Turbidity	± 10% NTUs (when turbidity is greater than 10 NTUs)							
Oxidation-Reduction Potential (ORP)	± 10 millivolts							

7. Maintain the same pumping rate or reduce slightly for sampling as necessary in order to minimize disturbance of the water column. Sampling should be collected directly from the discharge port of the pump tubing prior to passing through the flow-through cell. Disconnect the pump's tubing from the flow-through cell so that the samples are collected from the pump's discharge tubing. For samples collected for dissolved gases or VOC analyses, the pump tubing needs to be completely full of ground water to prevent the ground water from being aerated as it flows through the tubing. Generally, the sequence of the samples is immaterial unless filtered (dissolved) samples are collected. Filtered samples must be collected last (see below). All sample containers should be filled with minimal turbulence by allowing the ground water to flow from the tubing gently down the inside of the container.

When filling VOC samples using volatile organic analysis (VOA) vials, a meniscus must be formed over the mouth of the VOA vial to eliminate the formation of air bubbles and head space prior to capping. Effervescence and colorimetric reactions should be recorded in the Low-Flow Purging and Sampling Log.

- 8. If a filtered (dissolved) metal sample is to be collected, then an inline filter is fitted at the end of the discharge tubing and the sample is collected after the filter. The inline filter must first be flushed in accordance with manufacturer's recommendations and if there are no recommendations for flushing, a minimum of 0.5 to 1.0 liter of groundwater from the monitoring well must pass through the filter prior to sampling. (Note: Groundwater filter cartridges are dedicated sampling equipment. A new cartridge should be used at each sampling location. Do not attempt to clean filter cartridges. If the filter becomes clogged or groundwater flow is too slowed, remove and replace with a new filter cartridge.)
- 9. For non-dedicated systems, remove the pump from the monitoring well. Decontaminate the pump and dispose of the tubing. For dedicated systems, disconnect the tubing that extends from the plate at the wellhead (or cap) and discard after use.
- 10. Close and lock the well.

Special Advisory: If a stabilized drawdown in the well can't be maintained at 0.3 feet and the water level is approaching the top of the screened interval, reduce the flow rate or turn the pump off (for 15 minutes) and allow for recovery. It should be noted whether or not the pump has a check valve. A check valve is required if the pump is to be shut off during purging. Under no circumstances should the well be pumped dry. Begin pumping at a lower flow rate, if the water draws down to the top of the screened interval again, turn pump off and allow for recovery. If two tubing volumes (including the volume of water in the pump and flow cell) have been removed during purging, then sampling can proceed next time the pump is turned on. This information should be noted in the *Low-Flow Purging and Sampling Log*. This behavior may necessitate an alternative purging and sampling procedure for subsequent sampling events.

5.3 Equipment Decontamination

The electronic water level indicator and the water quality meters will be decontaminated by the following procedures:

- 1. The water level indicator will be hand washed with phosphate-free detergent and a scrubber, then thoroughly rinsed with distilled water, or steam-cleaned.
- Water quality meter sensors and flow-through cell will be rinsed with distilled water between sampling locations. No other decontamination procedures are necessary or recommended for these meters since they are sensitive instruments. After the sampling event, the flow-through cell and sensors must be cleaned and maintained per the manufacturer's requirements.

Upon completion of the groundwater sample collection the sampling pump must be decontaminated between monitoring wells. The pump and discharge line including

support cable and electrical wires which were in contact with the groundwater in the well casing must be decontaminated by the following procedure:

- The outside of the pump, tubing, support cable and electrical wires must be pressuresprayed with soapy water, tap water and distilled water. Spray outside of tubing and pump until water is flowing off of tubing with each rinse. Use bristle brush to help remove visible dirt and contaminants.
- 2. Place the sampling pump in a bucket or in a short cylinder or well casing (4-inch diameter) with one end capped. The pump placed in this device must be completely submerged in the water. A small amount of phosphate-free detergent must be added with the potable (tap) water.
- 3. Remove the pump from the bucket or 4-inch casing and scrub the outside of the pump housing and cable.
- 4. Place pump and discharge line back in the container, start pump and re-circulate soapy water for approximately 2 minutes.
- 5. Re-direct discharge line to a 55-gallon drum. Continue to add 5 gallons of potable (tap) water.
- 6. Turn pump off and place pump into a second bucket of potable (tap) water. Continue to add 5 gallons of tap water.
- 7. Turn off and place pump into a third bucket which contains distilled/deionized water, continue to add 3 to 5 gallons of water.
- 8. If hydrophobic contaminants are present (such as separate phase (i.e. LNAPL or DNAPL, high levels of PCBs, etc.) an additional decontamination step, or steps, may be required.
- 9. Decontamination water will be collected and stored on-site for future disposal by the client unless other arrangements have been made.

6 Quality Control Samples

All field Quality Control (QC) samples must be prepared the same as primary samples with regard to sample volume, containers, and preservation. The sample handling and chain-of-custody procedures for the QC samples will be identical to the primary samples. The following are QC samples that may be collected during groundwater sampling:

- A field duplicate is an independent sample collected as close as possible to the same time that the primary sample is collected and from the same source. Field duplicates are used to document sample precision. Field duplicates will be labeled and packaged in the same manner as primary samples so that the laboratory cannot distinguish between the primary sample and the duplicate sample. Field duplicates are analyzed for the same suite of parameters as the primary samples. The frequency of analysis of field duplicates is generally one for every 20 primary samples, but may vary depending on project requirements.
- Equipment blanks are obtained by running distilled or deionized water over or through the

sample collection equipment after it has been decontaminated, and capturing the water in the appropriate sample containers for analysis. Equipment blanks are analyzed for the same suite of parameters as the primary samples. The frequency of analysis of equipment blanks is generally one for every day that non-dedicated sampling equipment is used, but may vary depending on project requirements.

- Field blanks are used to assess the presence of contaminants arising from field sampling
 procedures. Field blank samples are obtained by filling a clean sampling container with
 reagent-grade deionized water. Field blanks are analyzed for the same suite of parameters
 as the primary samples. Field blanks may or may not be incorporated into a groundwater
 sampling plan depending on project requirements.
- Trip blanks are sample containers that are used to evaluate sample cross-contamination of VOCs during shipment. For groundwater sampling, trip blanks consist of hydrochloric acid-preserved, analyte-free, deionized water prepared by the laboratory in VOA vials that will be carried to the field, stored with the samples, and returned to the laboratory for VOC analysis. Generally, one trip blank is required to accompany each sample shipping container or cooler that contains samples for VOC analysis; however, this may vary depending on project requirements.

7 Sample Handling and Custody

Samples will be collected, handled, and stored in such a manner that they are representative of their original condition and chemical composition. Identification of samples and maintenance of custody are important elements that must also be utilized to ensure samples characterize site conditions. All samples will be properly identified and maintained under chain-of-custody protocol to protect sample integrity. The following sections discuss the sample handling and custody requirements.

7.1 Sample Identification

To maintain consistency, a sample identification convention including unique identifiers for all groundwater and QC samples must be developed and followed throughout the project. The sample identifiers will be entered onto the sample labels, field forms, chain-of-custody forms, and other records documenting sampling activities.

7.2 Sample Labels

A sample label will be affixed to all sample containers sent to the analytical laboratory. Field personnel will complete an identification label for each sample with the following information written in waterproof, permanent ink:

- Client and project number;
- Sample location and depth, if relevant;
- Unique sample identifier;
- Date and time sample collected;
- Filtering performed, if any;
- Preservative used, if any;

- Name or initials of sampler; and
- Analyses or analysis code requested.

The use of pre-printed sample labels is preferred in order to reduce sample misidentification problems due to transcription errors. Sample labels must be completed and affixed to the sample container in the field at the time of sample collection.

If errors are made on a sample label, corrections will be made by drawing a single line through the error and recording the correct information. Corrections will be dated and initialed.

7.3 Containers, Preservation, and Hold Time

Each lot of preservative and sampling containers will be certified as contaminant-free by the supplier. All preserved samples will be clearly identified on the sample label and *Chain-of-Custody* form. If samples requiring preservation are not preserved, field records will clearly specify the reason for the discrepancy.

Chemical activity continues in the sample until it is either analyzed or preserved. Once the sample has been preserved, the sample may be held for a period of time before analysis. The time from the collection of the sample to the analysis is defined as the holding time. The holding time varies depending on the media being sampled and the analyses being performed. The collection, preservation, and analysis of samples must be conducted to avoid exceeding relevant holding times.

7.4 Sample Handling and Transport

Proper sample handling techniques are used to ensure the integrity and security of the samples. Samples for field measured parameters will be analyzed immediately in the field and recorded in the appropriate field forms. Samples for laboratory analysis will be transferred immediately to appropriate laboratory supplied containers in accordance with the following sample handling protocols:

- Don clean gloves before touching any sample containers, and take care to avoid direct contact with the sample;
- Samples will be quickly observed for color, appearance, and composition and recorded as necessary;
- The sample container will be labeled before or immediately after sampling;
- Sample containers and liners will be capped with Teflon[™]-lined caps before being placed in Ziploc[™]-type plastic bags. The samples will be placed in an ice chest kept at 4 °C for transport to the laboratory;
- All sample lids will stay with the original containers, and will not be mixed;
- Sample bottles will be wrapped in bubble wrap as necessary to minimize the potential for breakage during shipment; and
- The Chain-of-Custody form will be placed in a separate plastic bag and taped to the cooler

lid or placed inside the cooler. A custody seal will be affixed to the cooler if the samples are to be shipped by commercial carrier. For shipped samples, U.S. Department of Transportation shipping requirements will be followed and the sample shipping receipt will be retained in the project files as part of the permanent Chain-of-Custody document.

7.5 Sample Chain-of-Custody

Sample chain-of-custody procedures will be used to maintain and document sample integrity during collection, transportation, storage, and analysis. A sample is considered to be under the control of, and in the custody of, the responsible person if the samples are in their physical possession, locked or sealed in a tamper-proof container, or stored in a secure area.

The *Chain-of-Custody* form provides an accurate written record that traces the possession of individual samples from the time of collection in the field until they are accepted at the analytical laboratory. The *Chain-of-Custody* form also documents the samples collected and the analyses requested. The sampler will record the following information on the *Chain-of-Custody* forms:

- Client and project number;
- Name or initials and signature of sampler;
- Name of destination analytical laboratory;
- Name and phone number of Project Leader in case of questions;
- Unique sample identifier for each sample;
- Data and time of collection for each sample;
- Number and type of containers included for each sample;
- Analysis or analyses requested for each sample;
- Preservatives used, if any, for each sample;
- Sample matrix for each sample;
- Any filtering performed, if applicable, for each sample;
- Signatures of all persons having custody of the samples;
- Dates and times of transfers of custody;
- Shipping company identification number, if applicable; and
- Any other pertinent notes, comments, or remarks.

Blank spaces on the *Chain-of-Custody* will be crossed out and initialed by the field sampler between the last sample listed and the signatures at the bottom of the sheet.

The field sampler will sign the *Chain-of-Custody* and will record the time and date at the time of transfer to the laboratory or an intermediate person. A set of signatures is required for each relinquished/received transfer, including internal transfer. The original imprint of the *Chain-of-*

Custody will accompany the sample containers and a duplicate copy will be kept in the project file.

If the samples are to be shipped to the laboratory, the original *Chain-of-Custody* relinquishing the samples will be sealed inside a plastic bag within the ice chest, and the chest will be sealed with custody tape that has been signed and dated by the last person listed on the *Chain-of-Custody*. U.S. Department of Transportation shipping requirements will be followed and the sample shipping receipt will be retained in the project files as part of the permanent *Chain-of-Custody* document. The shipping company (e.g., Federal Express, UPS) will not sign the *Chain-of-Custody* forms as a receiver; instead the laboratory will sign as a receiver when the samples are received.

8 Field Documentation

Information collected during groundwater sampling may be recorded on individual field forms. If the project requires it, a project-specific Field Logbook may replace any of the individual field forms with the exception of the *Chain-of-Custody* form. Following review by the Project Manager, the original field records will be kept in the project file. The following forms may be used to document the field activities:

- Field Investigation Daily Log
- Water Level Measurement Log
- Low-Flow Purging and Sampling Log
- Equipment Calibration Log
- Chain-of-Custody

The *Field Investigation Daily Log* will be completed for each day of fieldwork containing (at a minimum) the times and descriptions of the work performed, the activities of the drillers and any other subcontractors or visitors on-site, arrival and departure times for all involved, and any other pertinent information. For larger projects, or when otherwise deemed appropriate by the Project Manager, this information may alternatively be recorded in a Field Logbook. In these cases, a separate Field Logbook must be used for each project or site.

The Water Level Measurement Log will be used to record water level measurements for all wells prior to commencement of groundwater sampling. The type, serial number, and calibration date for the water level measuring device will be included on this form. Additionally, this form will be used to record general observations of the conditions of the wells, wellheads, well boxes, and/or monuments.

The Low-Flow Purging and Sampling Log will be used to record the details of purging and sampling information for each well including the depth of the pump, purge rates, and volume purged from each well. This form will also be used to record all of the measurements of drawdown and water quality indicator parameters used for evaluating stabilization.

The Equipment Calibration Log will be used to document the calibration and status of any measuring instruments used in the field, e.g., PID/FID, water level measuring device, water quality meters, etc. The frequency and method of calibration will depend on the instrument. Any instruments used will be used in accordance with the factory-provided operating and/or service manuals.

Locations and unique identification of water samples collected from the monitoring wells will be recorded on the *Field Investigation Daily Log*, *Low-Flow Purging and Sampling Log*, a site map, and/or other appropriate forms.

Samples names, date/times, analyses to be performed, and other pertinent information will be recorded on the *Chain-of-Custody* form (discussed in Section 7.5) as a means of identifying and tracking the samples.

Standard Operating Procedure C-3:

Monitoring Well Installation and Development

December 2013 ENVIRON

Standard Operating Procedure C-3: Monitoring Well Installation and Development

This standard operating procedure (SOP) is applicable to the installation and development of wells for groundwater monitoring or remediation purposes. This SOP is generic in nature and may be modified in whole or part depending on constraints presented by site conditions and equipment limitations. Modifications of methodologies will be documented in the appropriate field logbook and discussed in reports summarizing field activities. The procedures herein are consistent with Title 35 Section 620E.505(a)(5)(F) of the Illinois Rules.

Well Installation

Prior to invasive activities, a subsurface utility check will be conducted. Wells will generally be constructed using 5- to 20-foot-long screen and sufficient riser to complete the well to, or slightly above, ground surface. The length of the well screen will be selected based on the planned use of each well and the observed lithology. Wells will be constructed using schedule 40 polyvinyl chloride (PVC) casing and 0.010 slot schedule 40 PVC well screen with a threaded bottom cap. Wells will generally be completed with a protective steel cover equipped with a lock to protect the well against damage and unauthorized entry.

Filter Material

Filter material will be well-graded, clean sand (generally less than 2-percent by weight passing a No. 200 sieve and less than 5 percent by weight of calcareous material).

Setting Wells

Upon completion of borehole drilling, the boring will be sounded to determine the total depth, and the PVC well materials will be assembled and lowered into the boring. PVC well materials will be measured to the nearest 0.1 foot and will be assembled such that the screened interval is positioned opposite the target formation. No PVC cement or other solvents will be used. Once the well has been positioned at the desired depth, filter sand will be slowly added to the borehole to fill the annular space to a depth approximately 1 to 2 feet above the top of the well screen. During sand placement, the driller will continually measure the depth to the sand using a weighted tape measure or other device to verify that the sand does not bridge between the auger and the well screen. Two feet of bentonite chips will be added on top of the filter sand and subsequently hydrated using clean, municipal water to form a transition seal. After the bentonite has hydrated for at least 30 minutes, the depth to the top of the bentonite will be measured and recorded. A neat cement/bentonite grout will be added from the top of the bentonite; a tremie pipe will be utilized to ensure that the grout is added from the bottom, upwards. The grout will be permitted to cure for 48 hours prior to well development.

Well Completion

All monitoring wells and monitoring points will be completed with a protective steel cover equipped with a lock to protect the well against damage and unauthorized entry. Wells will typically be completed above grade unless they are located within parking/driving areas, or are piped to a remediation system. Wells completed aboveground will be capped with a push-on well cap and completed with a steel stick-up casing. Wells completed below ground surface will

1

be capped with an expandable locking well cap and completed with a flush mounted traffic rated steel cover set into a 2 foot by 2 foot concrete pad. All wells will be labeled with a permanent marker that includes the well ID.

Development and Surveying

New wells will be developed after the grout has cured for a minimum of 48 hours. Wells will be developed by surging, bailing, and pumping to reduce or remove drilling-induced formation smear from the borehole walls, to remove sediment that may have accumulated during well installation, consolidate the filter pack, and to enhance the hydraulic connection between the formation target zone and the well. In most cases, a bailer or pump will be used to remove sediment and turbid water from the bottom of the well. A surge block will then be lowered up and down within the screened interval to flush the filter pack of fine sediment and remove smear from borehole walls. Following surging, the well will be bailed or pumped again to remove sediment and turbid water. Water will be removed from the well at a rate greater than the anticipated future pumping rate and water quality parameters including pH, turbidity, specific conductance and temperature will be recorded. Drawdown will also be recorded with an interface probe or water level meter. The development will proceed until sediment is removed sufficiently to achieve a turbidity measurement of 5 NTU (or less). The well installation report will specify if the target turbidity cannot be achieved.

Following well installation and completion, each well will be surveyed by a licensed surveyor to determine the location of the well and to establish the elevation at the top of casing and ground surface with reference to the site datum. Survey data will be incorporated into the database and onto the site base map.

Decontamination of Drilling Equipment

All drilling and well development equipment will be cleaned prior to use, and between wells. Drilling equipment will be steam cleaned, rinsed with potable water, and air dried. If equipment is not immediately put back to use, equipment will be covered with clean plastic to protect the materials from contact with dust or other contaminants. Pumps or other non-dedicated field equipment that comes into contact with impacted media will be cleaned using a non-phosphate detergent followed by a tap water rinse and a final, deionized water rinse. Decontamination water will be collected for appropriate, subsequent off-site disposal. Spent PPE or other disposable materials (e.g., tubing) will be placed into a drum for subsequent disposal.

Documentation

Well installation and construction activities will be recorded in the field notebook. A well construction diagram will be completed for each well, reviewed by appropriate personnel for completeness and accuracy, and filed electronically in the project file. The CQA Officer will complete and submit an IEPA Well Completion form for each well.

References

Illinois Rules, Title 35 Section 620E.505(a)(5)(F).

Standard Operating Procedure C-4:

Photoionization Detector (PID) Screening

December 2013 ENVIRON

Standard Operating Procedure C-4: Photoionization Detector (PID) Screening

This standard operating procedure (SOP) is applicable to the use of a photoionization detector/flame ionization detector (PID/FID) instrument during soil sampling activities. The methodology is generic in nature and may be modified in whole or part to meet the handling and analytical requirements of the contaminants of concern, as well as the constraints presented by site conditions and equipment limitations. Modifications of sampling methodologies will be documented in the appropriate field logbook and discussed in reports summarizing field activities and analytical results. For the purposes of this procedure, soils are those mineral and organic materials not submerged in water for an extended period of time sufficient to support aquatic life.

Equipment/Apparatus

Equipment needed for PID/FID screening of soil samples may include:

- PID/FID instrument
- Clear glass jar
- Aluminum foil
- Ziploc bags

Procedure

When using PID/FID instrument the following procedure must be used:

- Half-fill either a glass jar, or a Ziploc® baggie.
 - When using glass jars:

Fill jars with a total capacity of 8 oz. or 16 oz.

Seal each jar with one (1) or two (2) sheets of aluminum foil with the screw cap applied to secure the aluminum foil.

When using Ziploc® baggies:

Half fill bags from the split spoon or the excavation.

Zip to close.

- Vigorously shake the sample jars or bags for at least thirty (30) seconds once or twice in a 10- to 15-minute period to allow for headspace development.
- If ambient temperatures are below 32 degrees Fahrenheit (0 degrees Celsius) headspace development is to be within a heated vehicle or building.
- Quickly insert the PID/FID sampling probe through the aluminum foil. If plastic bags are
 used, unzip the corner of the bag approximately one to two inches and insert the probe or
 insert the probe through the plastic. Record the maximum meter response (should be
 within the first 2 to 5 seconds). Erratic responses should be discounted as a result of high
 organic vapor concentrations or conditions of elevated headspace moisture.

1

Record headspace screening data from both jars or bags for comparison.

- Calibration will be checked/adjusted daily. In addition, all manufacturers' requirements for instrument calibration will be followed.
- If sample jars are re-used in the field, jars will be cleaned according to field decontamination procedures. In addition, headspace readings must be taken to ensure no residual organic vapors exist in the cleaned sample jars.
- Plastic bags will not be reused.