

### Soil Gas Investigation and Human Health Risk Assessment Work Plan for Parcels C, D, F, G, and H

Nevada Environmental Response Trust Site Henderson, Nevada

> Prepared for: Nevada Environmental Response Trust Henderson, Nevada

Prepared by: ENVIRON International Corporation Emeryville, California

> Date: March 18, 2013

Project Number: 21-32100GA



#### Soil Gas Investigation and Human Health Risk Assessment Work Plan for Parcels C, D, F, G, and H

#### Nevada Environmental Response Trust Site (Former Tronox LLC Site) Henderson, Nevada

#### Nevada Environmental Response Trust (NERT) Representative Certification

I certify that this document and all attachments submitted to the Division were prepared at the request of, or under the direction or supervision of the Trust. Based on my own involvement and/or my inquiry of the person or persons who manage the system(s) or those directly responsible for gathering the information or preparing the document, or the immediate supervisor of such person(s), the information submitted and provided herein is, to the best of my knowledge and belief, true, accurate, and complete in all material respects.

Le Petomane XXVII, Inc., not individually, but solely in its representative capacity as the Nevada Environmental Response Trust Trustee

| Signature:     | Qe A       | Semler       | . Ces Set     | . not individua | Ilv. but solely in his |        |
|----------------|------------|--------------|---------------|-----------------|------------------------|--------|
| representative | capacity a | as President | of the Nevada | Environmenta    | I Response Trust Tr    | rustee |

Name: Jay A. Steinberg, not individually, but solely in his representative capacity as President of the Nevada Environmental Response Trust Trustee

Title: Solely as President and not individually

3/15/13

**Company:** Le Petomane XXVII, Inc., not individually, but solely in its representative capacity as the Nevada Environmental Response Trust Trustee

Date:

ENVIRON

### Soil Gas Investigation and Human Health Risk Assessment Work Plan for Parcels C, D, F, G, and H

#### Nevada Environmental Response Trust (Former Tronox LLC Site) Henderson, Nevada

#### Responsible Certified Environmental Manager (CEM) for this project

I hereby certify that I am responsible for the services described in this document and for the preparation of this document. The services described in this document have been provided in a manner consistent with the current standards of the profession and, to the best of my knowledge, comply with all applicable federal, state and local statutes, regulations and ordinances.

<u>March 18, 2013</u>

Date

John M. Pekala, PG Senior Manager

Certified Environmental Manager ENVIRON International Corporation CEM Certificate Number: 2347 CEM Expiration Date: September 20, 2014

The following individuals provided input to this document:

John M. Pekala, PG Allan J. DeLorme, PE Lynne Haroun, MPH Christopher J. Ritchie, PE Christopher M. Stubbs, PhD, PE Kimberly Souder Emily Lisker James Hiller Ruben So

|     |         |                                                                | Page |
|-----|---------|----------------------------------------------------------------|------|
| 1.0 | Introd  | luction                                                        | 1    |
|     | 1.1 (   | Overview                                                       | 1    |
|     | 1.2     | Work Plan Organization                                         | 3    |
|     | 1.3     | Site Background                                                | 3    |
|     | 1.4     | Climate                                                        | 4    |
|     | 1.5     | Geologic and Hydrogeological Setting                           | 4    |
| 2.0 | Study   | Area Description, Historical Uses, and Previous Investigations | 6    |
|     | 2.1     | Parcel C                                                       | 7    |
|     | 2.2     | Parcel D                                                       | 8    |
|     | 2.3     | Parcel F                                                       | 8    |
|     | 2.4     | Parcel G                                                       | 10   |
|     | 2.5 I   | Parcel H                                                       | 10   |
|     | 2.6     | Study Area CSM: Discussion of the Source of VOCs in Soil Gas   | 11   |
| 3.0 | Field S | Sampling Plan                                                  | 12   |
|     | 3.1     | Pre-Sampling Activities                                        | 12   |
|     | 3.2 I   | Health and Safety                                              | 12   |
|     | 3.3     | Sampling Locations                                             | 12   |
|     | ;       | 3.3.1 Parcel C                                                 | 13   |
|     | :       | 3.3.2 Parcel D                                                 | 13   |
|     | :       | 3.3.3 Parcel F                                                 | 14   |
|     | :       | 3.3.4 Parcel G                                                 | 14   |
|     | :       | 3.3.5 Parcel H                                                 | 15   |
|     | 3.4     | Sampling Methodology                                           | 15   |
|     | 3.5     | Sample Handling and Chain-of-Custody                           | 16   |
|     | 3.6     | Analytical Testing                                             | 17   |
|     | 3.7     | Equipment Decontamination                                      | 17   |
|     | 3.8 I   | Management of Investigation-Derived Waste                      | 18   |
|     | 3.9     | Evaluation and Reporting of Results                            | 18   |
| 4.0 | Data E  | Evaluation                                                     | 19   |
|     | 4.1 I   | Data Sources                                                   | 19   |
|     | 4.2     | Data Usability                                                 | 19   |
|     | 4.3 I   | Data Analysis                                                  | 20   |
| 5.0 | Huma    | n Health Risk Assessment Work Plan                             | 21   |
|     | 5.1     | Selection of Chemicals of Potential Concern                    | 21   |
|     | 5.2 I   | Exposure Assessment                                            | 21   |
|     | ł       | 5.2.1 Conceptual Site Model                                    | 21   |
|     | ł       | 5.2.2 Exposure Assumptions                                     | 22   |
|     | :       | 5.2.3 Exposure Concentrations                                  | 22   |
|     | 5.3     | Toxicity Assessment                                            | 24   |
|     | 5.4     | Risk Characterization                                          | 24   |

| 7.0 | Refe | erences | 5                                       | 28 |
|-----|------|---------|-----------------------------------------|----|
| 6.0 | Sche | edule   |                                         | 27 |
|     | 5.5  | Uncer   | rtainty Analysis                        | 26 |
|     |      | 5.4.3   | Cumulative Cancer Risk and Hazard Index | 25 |
|     |      | 5.4.2   | Assessment of Non-Cancer Health Effects | 25 |
|     |      | 5.4.1   | Assessment of Cancer Risks              | 25 |

#### List of Tables

| Table 1 | LOUs Within and Upgradient of the Study Area Parcels        |
|---------|-------------------------------------------------------------|
| Table 2 | Shallow Groundwater Locations with VOC Sampling Data        |
| Table 3 | Proposed and Existing Soil Gas Sampling Locations           |
| Table 4 | Exposure Parameters                                         |
| Table 5 | Johnson and Ettinger Modeling Parameters for the Study Area |
| Table 6 | Parcel-Specific Johnson and Ettinger Modeling Parameters    |
| Table 7 | Soil Properties Data                                        |

#### List of Figures

| Figure 1 | Site Location Map                                                       |
|----------|-------------------------------------------------------------------------|
| Figure 2 | Study Area and Site Features                                            |
| Figure 3 | Surrounding Facilities                                                  |
| Figure 4 | Soil Gas, Groundwater, and Soil Property Sampling Locations             |
| Figure 5 | Conceptual Site Model for the Site and Study Area (Highlighted Portion) |
| Figure 6 | Road Map of Site Risk Assessments                                       |

#### List of Appendices

Appendix A Soil Boring Logs

# Acronyms

| AST      | aboveground storage tank                                              |
|----------|-----------------------------------------------------------------------|
| BCL      | Basic Comparison Level                                                |
| BEC      | Basic Environmental Company                                           |
| bgs      | below ground surface                                                  |
| BMI      | Black Mountain Industrial                                             |
| CEM      | Certified Environmental Manager                                       |
| CERCLA   | Comprehensive Environmental Response, Compensation, and Liability Act |
| CFR      | Code of Federal Regulations                                           |
| Converse | Converse Consultants                                                  |
| COPC     | chemical of potential concern                                         |
| CSM      | conceptual site model                                                 |
| DVSR     | Data Validation Summary Report                                        |
| EC       | exposure concentration                                                |
| ENSR     | ENSR Corporation                                                      |
| ENVIRON  | ENVIRON International Corporation                                     |
| EPC      | exposure point concentration                                          |
| ERM-West | ERM-West, Inc.                                                        |
| ESA      | Environmental Site Assessment                                         |
| FOD      | frequency of detection                                                |
| ft       | feet                                                                  |
| HI       | hazard index                                                          |
| HQ       | hazard quotient                                                       |
| HRA      | Health Risk Assessment <sup>1</sup>                                   |
| HHRA     | Human Health Risk Assessment <sup>1</sup>                             |
| IDW      | investigation-derived waste                                           |
| IRIS     | Integrated Risk Information System                                    |
| IWF      | Interceptor Well Field                                                |

<sup>&</sup>lt;sup>1</sup> The term HRA was used for risk assessments conducted at the Nevada Environmental Response Trust Site prior to its transfer to the Nevada Environmental Response Trust. For the Trust, environmental investigations are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The term HHRA is consistent with terminology under CERCLA and is adopted for all risk assessments conducted on behalf of the Trust.

| LOU       | Letter of Understanding                                       |
|-----------|---------------------------------------------------------------|
| µg/kg     | microgram per kilogram                                        |
| µg/m³     | microgram per cubic meter                                     |
| µg/L      | microgram per liter                                           |
| m         | meters                                                        |
| ml        | milliliters                                                   |
| mph       | miles per hour                                                |
| NCEA      | National Center for Environmental Assessment                  |
| NDEP      | Nevada Division of Environmental Protection                   |
| NERT      | Nevada Environmental Response Trust (the Trust)               |
| Northgate | Northgate Environmental Management, Inc.                      |
| NV        | Nevada                                                        |
| OSHA      | Occupational Safety and Health Administration                 |
| OSSM      | Olin Chlor-Alkali/Stauffer/Syngenta/Montrose (formerly POSSM) |
| POSSM     | Pioneer/Olin Chlor-Alkali/Stauffer/Syngenta/ Montrose         |
| PPE       | personal protection equipment                                 |
| PPRTV     | Provisional Peer Reviewed Toxicity Values                     |
| Qal       | Quaternary alluvial deposits                                  |
| QC        | quality control                                               |
| Site      | Nevada Environmental Response Trust Site                      |
| TCE       | trichloroethylene                                             |
| Tronox    | Tronox LLC                                                    |
| Trust     | Nevada Environmental Response Trust                           |
| UMCf      | Upper Muddy Creek Formation                                   |
| UR        | unit risk                                                     |
| USEPA     | US Environmental Protection Agency                            |
| UST       | underground storage tank                                      |
| VOC       | volatile organic compound                                     |

# 1.0 Introduction

This Soil Gas Investigation and Human Health Risk Assessment (HHRA) Work Plan (the work plan) has been prepared by ENVIRON International Corporation (ENVIRON) on behalf of the Nevada Environmental Response Trust (the Trust) for Parcels C, D, F, G, and H at the Nevada Environmental Response Trust Site (the Site) located in Henderson, Nevada. For purposes of this work plan, Parcels C, D, F, G, and H are collectively referred to as the Study Area.

This work plan presents the HHRA methodology for evaluating the vapor intrusion pathway<sup>2</sup>. The work plan also incorporates the revised *Soil Gas Investigation Work Plan for Parcels C, D, F, G, and H*, dated October 2012 (ENVIRON 2012c) and addresses comments received from the Nevada Division of Environmental Protection (NDEP) on the October 2012 work plan. In the January 29, 2013 comments, NDEP approved the field work described in the October 2012 work plan. The field work was also discussed in a February 21, 2013 teleconference (NDEP 2013c). The approved field work was implemented the week of March 4, 2013.

### 1.1 Overview

In a letter to the Trust dated August 7, 2012 (NDEP 2012c), NDEP commented on the May 18, 2012, *Revised Closure and Post-Remediation Screening HRA Report for Parcels C, D, F, G, and H*, prepared by Northgate Environmental Management, Inc. (Northgate)<sup>3</sup>. In comment #12, NDEP stated that the soil gas sampling data collected for the *Site-Wide Soil Gas Human Health Risk Assessment* (Northgate 2010d) were not adequate to characterize risk when the parcels were evaluated individually. In addition, based on a review of figures showing the chloroform plume in shallow groundwater, NDEP noted that soil gas samples from the Phase B investigation were collected from locations where results for volatile organic compounds (VOCs) would likely be biased low. Finally, NDEP commented that it may be reasonable to use sitewide soil gas data in conjunction with groundwater data to evaluate potential risks for the vapor intrusion pathway. This work plan has been prepared in response to NDEP comment #12, comments provided in an August 30, 2012 call between ENVIRON and NDEP, and in response to NDEP's January 29, 2013 comments (NDEP 2013b) on the October 2012 *Soil Gas Investigation Work Plan*.

The following elements are included in this work plan:

- 1. The field sampling and analysis plan, to address the NDEP-identified data gaps in the available soil gas data for the Study Area with the objective of providing additional analytical data for the characterization of potential risk to human health.
- 2. The risk assessment approach for evaluating potential human health risks for the vapor intrusion pathway.

<sup>&</sup>lt;sup>2</sup> The vapor intrusion pathway (also referred to as the indoor air pathway in this report) refers to the migration of volatile chemicals from contaminated groundwater or soil into an overlying building.

<sup>&</sup>lt;sup>3</sup> The term HRA was used for risk assessments conducted at the Site prior to its transfer to the Nevada Environmental Response Trust. For the Trust, environmental investigations are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The term HHRA is consistent with terminology under CERCLA and is adopted for all risk assessments conducted on behalf of the Trust.

3. The approach for characterizing cumulative risk from exposures to both indoor air (through the vapor intrusion pathway) and soil.<sup>4</sup>

Following completion of soil gas sampling and data validation activities, a Data Validation Summary Report (DVSR) will be prepared and submitted to NDEP. The Study Area will be evaluated either as a single exposure unit, using the maximum detected concentrations across all Study Area parcels for analytes identified as chemicals of potential concern (COPCs) in the soil gas HHRA, or as individual parcels, using maximum detected concentrations within each individual parcel. The specific approach will be determined following a review of the results of the additional soil gas sampling. Because potential risks associated with exposures to indoor air are higher than risks associated with inhalation of ambient (outdoor) air, the need to evaluate the outdoor air pathway will be made in consultation with NDEP following review of the risk results for the indoor air pathway.

The proposed HHRA approach is consistent with risk assessment guidance from the US Environmental Protection Agency (USEPA). Additionally, NDEP guidance and NDEP correspondence applicable to risk assessment, as provided at NDEP's Technical Topics web site (http://ndep.nv.gov/bmi/technical.htm) will be followed. Documents that will guide the preparation of the DVSR and HHRA include, but are not limited to, the following:

- Risk Assessment Guidance for Superfund: Volume I—Human Health Evaluation Manual (Part A) (USEPA 1989);
- Guidance for Data Usability in Risk Assessment (Parts A and B) (USEPA 1992a,b);
- OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance) (USEPA 2002a);
- User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings (USEPA 2004);
- Technical and Regulatory Guidance, Vapor Intrusion Pathway: A Practical Guideline (Interstate Technology & Regulatory Council 2007);
- Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment) (USEPA 2009);
- Statistical Analysis Recommendations for Field Duplicates and Field Splits, BMI Plant Sites and Common Areas Projects, Henderson, Nevada (NDEP 2008a);
- Guidance on the Development of Summary Statistic Tables, BMI Plant Sites and Common Area Projects, Henderson, Nevada (NDEP 2008c);
- Supplemental Guidance on Data Validation, BMI Plant Sites and Common Areas Projects, Henderson, Nevada (NDEP 2009);

<sup>&</sup>lt;sup>4</sup> Potential risks associated with soils within the Study Area are currently being evaluated. The current draft of the soil HRA was submitted to NDEP on May 18, 2012 (Northgate 2012) and NDEP provided comments on the draft HRA on August 7, 2012. Responses to NDEP comments and revisions to the draft HRA are in preparation. Results from the final (NDEP-approved) HRA will be combined with the risk results for the vapor intrusion pathway to evaluate cumulative risk.

- Soil Physical and Chemical Property Measurement and Calculation Guidance, BMI Plant Sites and Common Areas Projects, Henderson, Nevada (NDEP 2010b);
- Supplemental Guidance for Assessing Data Usability for Environmental Investigations at the BMI Complex and Common Areas in Henderson, Nevada (NDEP 2010c);
- Revised Guidance on Qualifying Data due to Blank Contamination for the BMI Complex and Common Areas, Henderson, Nevada (NDEP 2012a); and
- Guidance on Unified Chemical Electronic Data Deliverable Format, BMI Plant Sites and Common Areas Projects, Henderson, Nevada (NDEP 2012b).

### 1.2 Work Plan Organization

The overall format of the work plan follows:

- The remainder of Section 1 presents background information on the Site and Study Area, including a brief summary of the ownership and operational history, physical setting, climate, geology, and hydrogeology of the area;
- Section 2 describes the features and historical uses of the Study Area and summarizes the results of previous soil and groundwater investigations;
- Section 3 presents the field sampling plan, including a description of pre-sampling activities, health and safety requirements, and soil gas sampling locations; analytical methods, equipment decontamination, and management of investigation-derived waste are described;
- Section 4 describes the approach for data evaluation and data analysis;
- Section 5 presents the conceptual site model (CSM) and the HHRA methodology, including (1) identification of COPCs, (2) exposure assessment, (3) toxicity assessment, and (4) risk characterization;
- Section 6 provides the schedule for field work and document preparation; and
- Section 7 lists the references cited in this work plan.

#### 1.3 Site Background

The approximately 410-acre Site is located within Sections 1, 12, and 13 of Township 22 S, Range 62 E within the Black Mountain Industrial (BMI) Complex in unincorporated Clark County, Nevada (Figure 1). The area comprising the BMI Complex (including the Site) is surrounded by the City of Henderson. Parcels C, D, F, G, and H (comprising the Study Area) are generally located towards the Site perimeter, to the north, west, and south (Figure 2). Also within the Site boundaries are Parcels A, B, and E<sup>5</sup>. Parcels A and B have generally been investigated on a timeline separate from environmental investigations of the Study Area (see ENVIRON 2012d). Only limited investigations of Parcel E have been conducted due to the continued operation of the Olin (also referred to as the Olin Chlor-Alkali/Stauffer/-Syngenta/Montrose [OSSM]) groundwater treatment system (NDEP 2010a).

<sup>&</sup>lt;sup>5</sup> Former Parcels I and J (and a portion of Parcel B) were sold and are no longer a part of the Site.

Tronox LLC (Tronox) currently leases a portion of the Site from the Trust (Figure 2), on which it operates a chemical manufacturing business. The Site is surrounded by several facilities owned and operated by a number of chemical companies (Figure 3).

The Site has been the subject of extensive environmental investigations since the 1970s. In 1994, NDEP identified 69 Letter of Understanding (LOU) Potential Source Areas (NDEP 1994), and in 2005 identified an additional potential source area (NDEP 2005) that was further evaluated during the Phase B 2008 investigation (NDEP 2011). These areas are referred to in this and other reports as LOUs. LOUs within the Study Area are identified in Section 2.

#### 1.4 Climate

The climate of Las Vegas Valley is arid, consisting of mild winters and dry, hot summers. Average annual precipitation as measured in Las Vegas from 1971 to 2000 was 4.49 inches. Precipitation generally occurs during two periods, December through March and July through September. Winter storms generally produce low intensity rainfall over a large area. Summer storms generally produce high intensity rainfall over a smaller area for a short duration. The violent summer thunderstorms account for most of the documented floods in Las Vegas area. Winds frequently blow from the south or northwest at a mean velocity of approximately 9 miles per hour (mph); however, velocities in excess of 50 mph are not atypical when weather fronts move through the area. During these windy events, dust, sand, and soil at the ground surface can become airborne and may travel several miles. Temperatures can rise to 120°F in the summer, and the average relative humidity is approximately 20%. The mean annual evaporation rate from lake and reservoir surfaces ranges from 60 to 82 inches per year (summarized from Kleinfelder [1993]).

#### 1.5 Geologic and Hydrogeological Setting

The Site is located within Las Vegas Valley, which occupies a topographic and structural basin trending northwest-southeast and extending approximately 55 miles from near Indian Springs on the north to Railroad Pass on the south. The valley is bounded by the Las Vegas Range, Sheep Range, and Desert Range to the north, by Frenchman and Sunrise Mountains to the east, by the McCullough Range and River Mountains to the south and southeast, and the Spring Mountains to the west. The mountain ranges bounding the east, north, and west sides of the valley consist primarily of Paleozoic and Mesozoic sedimentary rocks (limestones, sandstones, siltstones, and fanglomerates), whereas the mountains on the south and southeast consist primarily of Tertiary volcanic rocks (basalts, rhyolites, andesites, and related rocks) that overlie Precambrian metamorphic and granitic rocks (ENSR Corporation [ENSR] 2007). The Study Area is located on Quaternary alluvial deposits (Qal) that slope north toward Las Vegas Wash. The thickness of the alluvial deposits ranges from less than 1 foot (ft) to more than 50 ft beneath the Site. Soil types identified in on-site soil borings include poorly sorted gravel, silty gravel, poorly sorted sand, well sorted sand, and silty sand (ENSR 2005). The Upper Muddy Creek Formation (UMCf) of Pleistocene age occurs in Las Vegas Valley as valley-fill deposits that are coarse-grained near mountain fronts and become progressively finer-grained toward the center of the valley. Where encountered beneath the Site, the UMCf is composed of at least two thicker units of fine-grained sediments of clay and silt (the first and second fine-grained facies, respectively) interbedded with at least two thinner units of coarse-grained sediments of sand, silt, and gravel (the first and second coarse-grained facies, respectively) (ENSR 2005).

Depth to groundwater ranges from about 27 to 80 feet below ground surface (bgs) and is generally deepest in the southernmost portion of the Site (where Parcel H is located), becoming shallower as it approaches the Las Vegas Wash to the north. The groundwater flow direction at the Site is generally north to north-northwesterly, whereas north of the Site, the direction changes slightly to the north-northeast (ENSR 2005).

A major feature of the alluvial deposits is the stream-deposited sands and gravels that were laid down within paleochannels that were eroded into the surface of the UMCf during infrequent flood runoff periods. These deposits are thickest within the paleochannel boundaries, which are narrow and linear and trend northeastward. The paleochannels (shown on Figure 4) act as preferential pathways for groundwater flow, which may significantly influence the chemical distribution in the alluvium (ENSR 2005). Additional details on the regional and local geology and hydrogeology, including information on the water-bearing zones, are provided in the *Remedial Investigation and Feasibility Study Work Plan* (ENVIRON 2012d) submitted to NDEP on December 17, 2012.

An on-site Interceptor Well Field (IWF) and groundwater barrier wall are shown on Figure 2. The groundwater barrier wall was constructed in 2001 as a physical barrier across the higher concentration portion of an existing perchlorate/chromium plume. The IWF captures the highest concentrations of the groundwater plume located downgradient of on-site source areas. The interceptor wells and barrier wall have significantly decreased chemical concentrations in the alluvium downgradient of the IWF.

# 2.0 Study Area Description, Historical Uses, and Previous Investigations

This section describes features and historical uses of the Study Area. In addition, results from previous soil and groundwater investigations for VOCs are summarized to support source-area identification for the vapor intrusion pathway CSM. Specifically, as described in Section 2.6, available information and investigation results suggest that groundwater is the primary source of VOCs in soil gas beneath the Study Area.

The following listing identifies Phase I Environmental Site Assessments (ESAs) and soil investigations completed for the Study Area.

- Phase 1 ESAs: In March 2007, Converse Consultants (Converse) completed a Phase 1 ESA that included the areas occupied by Parcels C, D, F, and H (Converse 2007) and a May 21, 2007 addendum to the Phase 1 ESA that included the area occupied by Parcel G (as reported by Tronox [2007]). As part of the Phase 1 ESA, Converse conducted a site visit and reviewed historical aerial photographs dating from 1950 through 2006. In addition, an earlier Phase 1 was completed in 2005 by Tetra Tech EM Inc. for Parcel F (as reported by Converse [2007]).
- Phase 2 soil investigations: Phase 2 soil sampling plans were prepared for Parcels C and D (Basic Environmental Company [BEC] 2007a), Parcel F (BEC 2007b), Parcel G (BEC 2007c), and Parcel H (BEC 2007d,e) to identify and characterize the distribution of Site-related chemicals based on the findings of the Phase A Investigation (ENSR 2007) in the vicinity of future land-use features (e.g., warehouses, commercial office buildings) and historical site features (e.g., identified for further investigation based on information presented in the Phase 1 ESAs). At most locations, samples were collected at both the ground surface and approximately 10 ft bgs and analyzed for 82 VOCs by USEPA Method SW8260B. At some locations, samples were collected at approximately 5 ft bgs instead of 10 ft bgs.
- Phase 2 supplemental soil investigation: Based on the results of the Phase 2 soil investigations, a supplemental soil investigation was conducted in 2008 to address potential data gaps and to define the aerial extent of detected compounds (BEC 2008a). At most locations, samples were collected at the ground surface and approximately 10, 20, 30, and 40 ft bgs and analyzed for 82 VOCs by USEPA Method SW8260B.

NDEP reviewed and approved the soil sampling work plans identified above (approval dates are provided in Section 7, References) and the resulting DVSRs (ERM-West, Inc [ERM-West] 2008a,b; 2009). It is noted that VOC soil contamination was not the subject of any of the interim soil removals completed within the Study Area following the investigations described above. Specifically, the removals addressed contaminants exceeding remediation goals, i.e., primarily asbestos contamination, as well as elevated levels of dioxins/furans at one location in Parcel C and elevated levels of benzo(a)pyrene at one location in Parcel G (BEC 2008b). Confirmation sampling results indicated that all detected analytes or analyte groups (i.e., asbestos, dioxins,

SVOCs, PCBs, and arsenic) were below their respective NDEP Basic Comparison Levels (BCLs) and met the NDEP target goals for asbestos (Northgate 2012).

LOUs within and upgradient of the Study Area parcels are listed in Table 1. As shown, NDEP has not specifically identified VOCs as potential contaminants for most LOUs within or immediately upgradient of the Study Area (NDEP 2011). However, it is noted that the initial identification of potential LOU contaminants was based on a review of historical operations and the limited sampling data available at the time of the LOU designations in 1994 (NDEP 1994). Given that the Study Area parcels are situated within the NERT property, as well as in the vicinity of other BMI companies, it is possible that environmental media within one or more of the parcels could have been indirectly impacted. Further, operational histories that included former use of VOCs do not necessarily mean that environmental media has been impacted. While information on operational history was used to inform the soil sampling plans developed for the Study Area, the soil sampling results provide confirmatory evidence for the presence or absence of contamination.

Chloroform concentrations in shallow groundwater wells sampled within or near the Study Area are provided in Table 2. As shown, 17 shallow wells<sup>6</sup> within the Study Area were identified with VOC results (3 in Parcel C, 7 in Parcel D, 3 in Parcel F, 1 in Parcel G, and 3 in Parcel H). Well locations are shown on Figure 4. Chloroform results were selected for presentation as chloroform has been detected at the highest frequencies and concentrations in groundwater and previously collected soil gas samples.

### 2.1 Parcel C

Parcel C is a 20.4-acre parcel located directly north and adjacent to the former Trade Effluent Settling Ponds (LOU 1). The parcel is entirely vacant land. The Phase 1 ESA reported that sometime prior to 1950, multiple ditches (lined with French drains) oriented north-south were installed across Parcel C, perpendicular to and leading from a main French drain that traversed east-west along the northern berm of the former Trade Effluent Ponds (LOU 1), which were located immediately to the south of Parcel C. The drains were constructed because infiltration from the former, unlined Trade Effluent Ponds resurfaced in Parcel C (Converse 2007). At some point, these ditches were disturbed and possibly graded over (Northgate 2012). Stained soil and gravel and a number of debris piles (reportedly not associated with industrial waste or disposal) were identified based on the review of historical aerial photographs (Converse 2007). No LOUs are located within Parcel C; however, a number of LOUs, including LOUs 1, 2,10, 22, 23, 32, 55, and 58, are located upgradient of Parcel C (Figure 4).

Fifteen soil samples were collected in Parcel C at the surface and at a depth of 10 ft bgs during the Phase 2 soil investigation. With the exception of acetone, a common laboratory contaminant, the following VOCs were detected at low concentrations: chloroform; 1,2-dichlorobenzene; 1,3-dichlorobenzene; 1,4-dichlorobenzene; ethylbenzene; isopropylbenzene; methyl ethyl ketone; n-propyl benzene; tetrachloroethylene; toluene; 1,2,3-trichlorobenzene; 1,2,4-trichlorobenzene; 1,3,5-trimethylbenzene; and xylenes. During

<sup>&</sup>lt;sup>6</sup> Shallow groundwater is defined by NDEP as groundwater at depths of up to 90 ft bgs.

the Phase 2 supplemental soil investigation, acetone and methyl ethyl ketone were detected in the single surface sample collected in Parcel C; VOCs were not detected in the 10 ft bgs sample from this same location (ERM-West 2009).

# 2.2 Parcel D

Parcel D is a 24.6-acre parcel located directly north of Parcel C. The entire parcel is vacant land, although the Phase 1 ESA reported that a number of debris piles (reportedly not associated with industrial waste or disposal) were present. A small debris pile from a homeless encampment near Warm Springs Road on the western portion of Parcel D was noted during a site visit conducted by ENVIRON on March 8, 2013. ENVIRON is in the planning process of removing the debris pile. Southern Nevada Auto Parts (a former Kerr-McGee tenant) operated an auto impound vard where wrecked, police-impounded, and repossessed vehicles were stored. NDEP identified this area as LOU 68. The southern portion of the lease area appeared to have minor soil staining (Kleinfelder 1993). The ditches (French drains) described above for Parcel C extended into and terminated in the eastern two-thirds of Parcel D (Northgate 2012). LOU 6 (the Unnamed Drainage Ditch Segment, also referred to as the Northwest Ditch) extends across Parcel D. The Northwest Ditch, which originated near the Beta Ditch (LOU 5) and crossed the northern portion of the Site (Kleinfelder 1993), conveyed process waste streams from the BMI Complex facilities to the BMI Common Area and was identified under the Phases I and II BMI Common Area Consent Agreement as a BMI Common Areas issue (ENSR 2005; Broadbent & Associates, Inc. 2011).

Seven samples were collected in Parcel D at the surface and at a depth of 10 ft bgs during the Phase 2 soil investigation. Two VOCs (acetone and 1,3-dichlorobenzene) were detected in the same sample at 10 ft bgs, and seven VOCs (acetone; ethylbenzene; n-propyl benzene; toluene; 1,2,4-trimethylbenzene; 1,3,5-trimethylbenzene;,and xylenes) were detected in three surface samples. Of note, VOCs were not detected in samples collected in the Northwest Ditch (LOU 6) (ERM-West 2008a). No additional samples for VOC analysis were collected in Parcel D during the 2008 Phase 2 supplemental soil investigation (ERM-West 2009).

# 2.3 Parcel F

Parcel F is a 7.2-acre parcel on the western boundary of the Site. Most of the parcel is vacant land, although portions of a building foundation are located within the parcel. In October 2005, Tetra Tech EM Inc. completed a Phase I ESA for Parcel F (as reported by Converse [2007] and Northgate [2012]) that identified an empty steel tank, three 55-gallon drums (no longer present on March 8, 2013), soil and gravel staining, a subsurface storm sewer system (LOU 59), and a painted surface on the interior of a building. The Phase 1 ESA review of historical aerial photographs identified a building present on Parcel F in 1950 that was no longer visible in 2006 (Converse 2007).

LOUs 63, 65c, and a portion of LOU 59 are located in Parcel F. Parcel F was leased from 1980 to 1986 by W.S. Hatch Company, a trucking operation. The area within Parcel F that now comprises LOU 63 was leased by J.B. Kelley (also a trucking operation) from 1986 through at least 1993 (Kleinfelder 1993). The company hauled commodities such as lime and soda ash. The specific areas of interest within LOU 63 included a 10,000-gallon fiberglass diesel underground storage tank (UST), a ceramic-lined 600-gallon waste-oil UST, and a truck

washing area with eight open concrete vaults that served as foundations for peat storage buildings during World War II. Rinsate from truck washing was reportedly discharged to the former vault floors, metal containment tanks, a storm sewer, and/or the ground surface. Chemicals identified as being in the rinsate included lime, soda ash, barite, and magnesium chloride brine. VOCs were not specifically identified as being present in the rinsate. On-site wash activities ceased in 1991. Additional fluids from truck maintenance activities, such as oil changes, were reportedly discharged to the storm sewer, which conveyed the wash water and other fluids northward to the Beta Ditch (Kleinfelder 1993). Field investigations of the diesel waste-oil USTs were conducted, and both tanks, which were found to have leaked, were removed in 1991. Contaminated soil in the tank pits was reportedly excavated at the time of the tank removal (Kleinfelder 1993).

The area identified as LOU 65c was formerly occupied by Nevada Pre-Cast Concrete, which used office space near the J.B. Kelley Site operations from January 1973 to May 1978. As reported by Kleinfelder (1993), Nevada Pre-Cast Concrete used the area only for offices. No waste streams or chemical uses were reported for LOU 65c.

Segments of LOU 59 (the Storm Sewer System) are located in Parcel F. NDEP has not specifically identified VOC contamination as an issue of concern for this LOU (NDEP 2011).

LOUS 4, 25, 26, 27, 28, 41, 60, 65a, 65c, and 65d are upgradient of Parcel F. Historically, VOC use was associated with six of these LOUs (LOUS 4, 28, 41, 65a, 65c, and 65d), while VOC use was not reported for the remaining LOUs (LOUS 25, 26, 27, and 60) (NDEP 2011). In addition, several empty aboveground storage tanks (ASTs) are located upgradient of Parcel F that historically stored sodium chlorate; however, there is no reported history of the tanks leaking. Although the ASTs are at a higher elevation than that of Parcel F, the ASTs are within a bermed and lined containment area designed to hold 110 percent of the contents of the largest tank.

Fifteen soil samples were collected in Parcel F at the surface and at a depth of 10 ft bgs during the 2007 Phase 2 investigation. Of the seven sample locations in LOU 63 (J.B. Kelley Trucking Inc.), acetone was detected at low levels at one sample location at depths of 0 and 10 ft bgs, and methyl ethyl ketone, methyl n-butyl ketone, and 1,2,4-trimethylbenzene were detected at low levels in one surface sample. VOCs were not detected in the one sample location in LOU 65c (Nevada Precast Concrete Products). With the exception of common laboratory contaminants (acetone, methylene chloride, and methyl ethyl ketone), ethylbenzene, 1-nonanal, n-propyl benzene, toluene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and xylenes were detected at low levels in six other samples in Parcel F, outside of the LOUs (ERM-West 2008a). During the 2008 Phase 2 supplemental investigation, only two VOCs (carbon tetrachloride and chloroform) were detected at 20 and 30 feet bgs, and three VOCs (acetone, methylene chloride, and 1.2,4-trimethylbenzene) were detected at the surface at all three sample locations. All VOCs were detected at low concentrations, except for chloroform which was detected at concentrations of 200 µg/kg, 300 µg/kg, and 410 µg/kg at one location. Samples were collected at two of the same sample locations in LOU 63 during the Phase 2 supplemental investigation as in the Phase 2 investigation; acetone, chloroform, and methylene chloride were detected at low concentrations in two samples (ERM-West 2009). No samples were collected in LOU 65c (ERM-West 2009).

# 2.4 Parcel G

Parcel G is a 2.8-acre parcel on the western side of the Site. The parcel is comprised primarily of vacant land, although a building is located on the northern portion of the parcel, and a utility vault, portions of a rail line, and several drain inlets are also present. The Phase 1 ESA identified staining and some debris, indicating the presence of stormwater evaporative residue as reported by BEC (2007c).

LOUs 59, 60, and 65d are located within Parcel G. Segments of LOUs 59 (the Storm Sewer System) and 60 (the Acid Drain System) are located in the parcel. No waste streams or chemical uses have been identified for LOU 65d. Green Ventures International (LOU 65d) leased a building ("S3 Changehouse") from August 1980 to September 1981 for use as a marketing office by a green farming operation. Only office activities were conducted by Green Ventures International (Kleinfelder 1993). NDEP has not specifically identified VOC contamination as an issue of concern for LOUs 59 and 60, while NDEP identified VOCs as potential contaminants for LOU 65d based on historical operations and limited sampling data (NDEP 2011). Further, no LOUs are located immediately upgradient of Parcel G.

Five soil samples were collected at the surface and a depth of 5 ft bgs in Parcel G during the Phase 2 soil investigation. Acetone, methyl ethyl ketone, toluene, and 1,2,4-trimethylbenzene were detected at low levels in 11 samples at all five sample locations. During the 2008 Phase 2 supplemental investigation, soil samples were collected at the surface and at approximately 10, 20, 30, and 40 ft bgs. Of the 82 VOCs analyzed, three VOCs (carbon tetrachloride, chloroform, and trichloroethylene [TCE]) were detected at a depth of 40 feet bgs, and acetone and methylene chloride were detected at low levels at the surface. Chloroform was detected in two samples at two locations at concentrations of 1.5  $\mu$ g/kg and 110  $\mu$ g/kg. In the same location of the high chloroform detection, carbon tetrachloride and TCE were also detected. These samples were collected from sample locations within 50 ft to the east and west of LOU 65d (Nevada Precast Concrete Products) (ERM-West 2009).

#### 2.5 Parcel H

Parcel H is a 26-acre parcel in the southern portion of the Site. The parcel is comprised primarily of vacant land that is crossed by dirt roads and drainage channels (Converse 2007). BEC (2007e) and Converse (2007) reported that a pad-mounted transformer (no longer present on March 8, 2013), three debris piles (two of which were no longer present on March 8, 2013), and an abandoned water supply line that served the landscaping area along Lake Mead Parkway are also located within the parcel. BEC (2007e) reported that based on the age of the transformer, it is unlikely that the transformer contained PCBs. (The age of the transformer was not provided by BEC [2007e].) No LOUs were identified within Parcel H.

Nineteen samples were collected at the surface and at a depth of 10 ft bgs in Parcel H during the Phase 2 soil investigation. Acetone, acetonitrile, dichloromethane, toluene, and 1,2,4-trimethylbenzene were detected at low levels in 28 samples at 12 sample locations. Soil samples from Parcel H were not analyzed for VOCs during the Phase 2 supplemental investigation (ERM-West 2009).

# 2.6 Study Area CSM: Discussion of the Source of VOCs in Soil Gas

Available information and investigation results indicate that the apparent source of VOCs in soil gas beneath the Study Area is groundwater that was historically impacted by on-site and/or offsite releases of VOCs. While VOCs were detected in soil during the Phase 2 investigations described in Sections 2.1 through 2.5, with the exception of common laboratory contaminants (i.e., acetone, methylene chloride, and methyl n-butyl ketone), VOCs were detected at concentrations of less than approximately 25  $\mu \alpha/k\alpha$  in the surface and 10 ft bas samples. Similarly, during the Phase 2 supplemental investigation, VOCs (other than chloroform and common laboratory contaminants) were detected at concentrations of less than approximately 5 µg/kg at all depths sampled. At one location in Parcel F, chloroform was detected at relatively high concentrations (i.e., between 200 and 410 µg/kg) at depths of 20 and 30 ft bgs; however, chloroform was not detected in the surface and 10 ft bgs samples from the same location. Chloroform was also detected at a relatively high concentration of 110 µg/kg in another sample at 40 ft bgs in Parcel G, but was not detected in the 0, 10, 20, or 30 ft bgs samples from the same location. These results are consistent with groundwater as the source of chloroform (and other VOCs) in soil gas samples. In reviewing soil, soil gas, and groundwater data for Parcels A and B, Northgate (2010c) also concluded that the apparent source of chloroform and other VOCs detected in soil gas was impacted groundwater migrating beneath Parcels A and B from the south and west (i.e., upgradient from the parcels).

As discussed in the *Remedial Investigation and Feasibility Study Work Plan* (ENVIRON 2012d), the Olin property to the west of the Site (Figure 3) occupies the location of the former BMI Complex chloralkali production facility. In 1947, manufacturing facilities were constructed to produce pesticides and chlorinated organic compounds. Over time, extensive volumes of process effluents and solid wastes were disposed of in unlined ponds and buried on the Olin property. These wastes contained high levels of TDS, chlorinated VOCs, and extensive amounts of phosphoric acid. Prior to 1976, certain process effluents were routed to the Upper and Lower BMI Ponds. Due to the direction of groundwater flow in the region (generally north to northeasterly), a groundwater contaminant plume has migrated onto the Site from the Olin property. Contaminants include VOCs, NAPL, and pesticides. The responsible parties for this plume are currently operating a groundwater treatment system and performing groundwater monitoring under NDEP oversight (ENVIRON 2011b).

Further characterization of the VOCs in groundwater and evaluation of potential on-site and offsite sources of groundwater impacts was in the *Remedial Investigation and Feasibility Study Work Plan* (ENVIRON 2012d).

# 3.0 Field Sampling Plan

This section identifies pre-sampling activities and the proposed locations and analytical suite for proposed soil gas samples. As described in Section 1.0, the field sampling plan was approved on January 29, 2013 (NDEP 2013b) and further discussed during the February 21, 2013 teleconference (NDEP 2013c). This section is included in the work plan for completeness and to address NDEP's comments in the January 29, 2013 comment letter (NDEP 2013b).

# 3.1 Pre-Sampling Activities

Prior to initiating the field work, a health and safety plan will be prepared and utility locating, drilling, and analytical laboratory subcontractors will be retained. Sample locations will be cleared by an independent utility locator under the supervision of an ENVIRON engineer or geologist and notification will be made to Underground Service Alert at least three business days prior to starting drilling activities.

### 3.2 Health and Safety

All personnel performing work at the Site with the potential for exposure to hazardous substances or health hazards are required to be 40-hour Occupational Safety Health Administration (OSHA) trained in accordance with Code of Federal Regulations (CFR) 1910.120 and will meet the personnel training requirements in accordance with 29 CFR 1910.120(e). It is required that Level D personal protection equipment (PPE) be worn by all personnel working at the Site. It is not anticipated that an upgrade to Level C or higher PPE will be necessary, however, all on-site ENVIRON personnel and drillers working at the Site will be trained in the use and limitations of, and be qualitatively fit tested, for half-face respirators in accordance with 29 CFR 1910.134. Prior to conducting sampling activities, a health and safety meeting will be directed by an ENVIRON representative and attended by the sampling team.

# 3.3 Sampling Locations

A total of 9 soil gas samples will be collected from a depth of 5 ft bgs in the Study Area (2 in Parcel C, 2 in Parcel D, 3 in Parcel F, 2 in Parcel G, and none in Parcel H), as listed in Table 3 and shown on Figure 4. Figure 4 also shows the locations of shallow groundwater wells sampled for VOCs; the wells were identified using NDEP's regional database<sup>7</sup>, the Phase A Investigation (ENSR 2007), and the Phase B Groundwater Investigation (Northgate 2010a), as well as soil gas locations within and near the Study Area that were sampled as part of the 2008 soil gas investigation (ENSR 2008). Additionally, Figure 4 shows the concentrations of chloroform in shallow groundwater based on results from the Phase A and B Groundwater Investigations and data obtained from NDEP's regional database. The chloroform plume map was developed by Northgate, as presented in Northgate 2010d. The ENSR (2008) soil gas sampling locations and shallow groundwater wells sampled for VOCs shown on Figure 4 will be evaluated for use in the HHRA. Following the data usability evaluation discussed in Section 4.0, the specific soil gas and shallow groundwater data suitable for use in the HHRA will be selected. Therefore, not all of the soil gas sampling locations and shallow groundwater data suitable for use in the HHRA will be selected.

<sup>&</sup>lt;sup>7</sup> The NDEP regional database is available at: <u>http://ndep.neptuneinc.org/ndep\_gisdt/home/index.xml</u>.

nearby the Study Area (and displayed on Figure 4 and Table 2) are specifically mentioned in Sections 3.3.1 through 3.3.5 below.

The following factors were considered in identifying the proposed sampling locations: (1) chloroform concentrations in shallow groundwater beneath and upgradient of the Study Area parcels, (2) direction of groundwater flow, (3) LOUs at which VOCs may have been used, and (4) VOC results for soil samples collected within the Study Area parcels. The locations of paleochannels, the Olin extraction well field, and the IWF (shown on Figure 2) were also considered. Additionally, several proposed soil gas samples were located near groundwater wells analyzed for VOCs during the Phase B investigation. The purpose of locating proposed soil gas samples near groundwater monitoring wells is to investigate the correlation between soil gas and underlying groundwater concentrations, as recommended by NDEP (NDEP 2012c, 2013b).

The following sections discuss the existing and proposed soil gas sampling locations and identify existing shallow groundwater wells within the Study Area parcels. In NDEP's comment letter on the October 2012 work plan (NDEP 2013b), NDEP approved the soil gas sampling locations. One sampling location, E-SG-8, was moved slightly north to correspond with the revised boundary of Parcel G. This new sampling location is still in a location of higher predicted chloroform concentrations in shallow groundwater and is closer to a shallow groundwater well as discussed further in Section 3.3.4.

### 3.3.1 Parcel C

Five soil gas samples (SG18, SG19, SG24, SG90, and SG91) were collected within or on the border of Parcel C as part of the 2008 sampling (ENSR 2008) and eight shallow groundwater samples (AA-BW-04A, H-28, M-6A, M-7B, M-98, M-99, M-100, and MC-3) from wells within or on the border of Parcel C were analyzed for VOCs as part of the Phase B sampling (Northgate 2010a). Additional soil gas samples and groundwater samples were collected near Parcel C and will be used to provide additional information about chemical distributions in the vicinity of Parcel C and will be considered for use in the HHRA (Tables 2 and 3).

Two additional samples (E-SG-2 and E-SG-3) will be collected within Parcel C and two additional samples (E-SG-1 and E-SG-9, as discussed below) will be collected in Parcel D near the border of Parcel C (Figure 4). Sample E-SG-2 is in an area of elevated benzene concentrations in shallow groundwater, near groundwater well MC-3, and near the paleochannel extending from the chloroform and benzene groundwater plumes into Parcel C. E-SG-3 is in a region of elevated chloroform concentrations in shallow groundwater and near groundwater well AA-BW-04A. With these additional samples, there will be thirteen paired soil gas and groundwater samples in and near Parcels C and D, one sample located near paleochannels, and two samples collected near predicted maximum concentrations of chloroform and benzene as measured and interpolated in shallow groundwater.

# 3.3.2 Parcel D

Two soil gas samples (SG16 and SG18) were collected within or on the border of Parcel D as part of the 2008 sampling (ENSR 2008) and seven shallow groundwater samples (M-23, MC-09R, MC-45, MC-53, MC-94, MC-MW-29, MC-MW-32) were collected within Parcel D as part of

the Phase B sampling (Northgate 2010a) near the neighboring Olin property. Additional soil gas samples and groundwater samples collected near Parcel D will be used to provide additional information about chemical distributions in the vicinity of Parcel D and will be considered for use in the HHRA (Tables 2 and 3).

Two additional samples (E-SG-1 and E-SG-9) are proposed for Parcel D. Sample E-SG-1 will be collected in Parcel D, near the border of Parcel C; this additional sample can be used to better characterize contaminant distributions along the southern portion of Parcel D and the northern portion of Parcel C. For both Parcels, this location is in a region without nearby soil gas samples. Sample E-SG-9 is located at the southern edge of LOU 68, Southern Nevada Auto Parts Site (formerly Pick-A-Part), and near LOU 6, the Unnamed Drainage Ditch Segment, which crosses Parcel D. The remaining area of Parcel D has adequate soil gas sampling either within the Parcel, or nearby and upgradient of the Parcel. With these additional samples, there will be thirteen paired soil gas and groundwater samples in and near Parcels C and D, and one proposed sample collected near the maximum interpolated concentration of chloroform in shallow groundwater.

#### 3.3.3 Parcel F

One soil gas sample (SG34) was collected in Parcel F in 2008 (ENSR 2008) and three shallow groundwater samples (TR-6, M-92, MC-MW-17) were collected as part of the Phase B sampling (Northgate 2010a) or on the neighboring Olin property. Additional soil gas samples and groundwater samples collected near Parcel F will be used to provide additional information about chemical distributions in the vicinity of Parcel F and will be considered for use in the HHRA (Tables 2 and 3).

Three additional samples (E-SG-4, E-SG-5, and E-SG-6) will be collected within Parcel F, as shown on Figure 4. Samples E-SG-4 and E-SG-6 are in the western portion of the site, near higher predicted chloroform concentrations in shallow groundwater; the two samples should adequately characterize the southwestern and the northwestern portions of Parcel F. Sample E-SG-5 will be collected to better characterize the northern portion of Parcel F as sampling north of Parcel F indicates there may be rapid changes in chloroform concentrations over relatively small distances in this region. With these additional samples, there will be five paired soil gas and groundwater samples in and near Parcel F, and two samples collected near predicted maximum concentrations of chloroform as interpolated in shallow groundwater.

# 3.3.4 Parcel G

No soil gas samples were collected in Parcel G as part of the 2008 sampling (ENSR 2008). One soil gas sample (SG45) was collected in the former southern portion of Parcel G that is no longer considered part of the Study Area. One shallow groundwater sample (TR-8)<sup>8</sup> was collected as part of the Phase B sampling (Northgate 2010a). Additional soil gas samples and groundwater samples collected near Parcel G will be used to provide additional information

<sup>&</sup>lt;sup>8</sup> This well was not included in the previously submitted October 2012 *Draft Soil Gas Investigation Work Plan for Parcels C, D, F, G, and H* (ENVIRON 2012c).

about chemical distributions in the vicinity of Parcel G and will be considered for use in the HHRA (Tables 2 and 3).

Two additional samples (E-SG-7 and E-SG-8) will be collected inside Parcel G, as shown on Figure 4. E-SG-7 and E-SG-8 were selected to be in the western portion of Parcel G, near higher predicted chloroform concentrations in shallow groundwater. The two samples are required to adequately characterize both the southwestern and the northwestern portions of Parcel G. Parcel G is relatively small, and its eastern portion is well characterized by soil gas samples in or near Parcel G. With these additional samples, there will be one paired soil gas and groundwater sample and two samples collected near predicted maximum concentrations of chloroform as interpolated in shallow groundwater.

### 3.3.5 Parcel H

Two soil gas samples (SG49 and SG50) were collected in Parcel H as part of the 2008 sampling (ENSR 2008), and four shallow groundwater samples (M-103, M-120, M-121, and TR-10) were collected within or on the border of Parcel H as part of the Phase B sampling (Northgate 2010a). Additional soil gas samples and groundwater samples collected near Parcel H will be used to provide additional information about chemical distributions in the vicinity of Parcel H and will be considered for use in the HHRA (Tables 2 and 3). Parcel H appears to be upgradient of potential chemical plumes and is characterized by soil gas samples on its southwestern, northern, and eastern portions. Additionally, there are three paired soil gas and groundwater samples in and near Parcel H. As such, adequate soil gas and groundwater samples are recommended.

#### 3.4 Sampling Methodology

Nine soil gas samples (E-SG-1 through E-SG-9) will be collected at the locations shown on Figure 4. Based on utility clearing, access limitations, and other field observations, the actual soil gas sample locations and depths may deviate from those proposed herein. In general, the planned depth for the temporary probes is five feet bgs.

To install the soil gas probes, borings will be advanced using direct-push tooling consisting of 2.25-inch outer diameter Macrocore MC5 sampler with new PVC sleeves. All borings will be continuously cored to avoid compressing the surrounding formation. The soil cores will be collected in PVC sleeves to observe the soil conditions and adjust the soil gas probe depth as necessary.

Each temporary soil gas probe will be constructed by placing a new half-inch sintered stainless steel filter at the target depth of five feet. New 0.25-inch outside diameter (0.187-inch inside diameter) Teflon<sup>®</sup> tubing will be attached to the filter, and will extend in one piece to above the ground surface. The filter will be emplaced within approximately one foot of a sand pack comprised of clean, kiln-dried Monterrey 30-mesh sand. Approximately two inches of dry granular bentonite will be emplaced on top of the sand pack to ensure that the sand pack will not be plugged when the remaining borehole is sealed with hydrated granular bentonite. The tubing will be labeled at the surface for the location and depth. A gas-tight Swagelok® fitting will cap the sampling tube and allow the direct attachment of the sampling train.

Soil gas probes installed using direct-push tooling will be allowed to equilibrate a minimum of 30 minutes before sampling. Soil gas probes installed using hand auger methods will be allowed to equilibrate a minimum of 48 hours. Equilibration times are measured from the time the probe is sealed, including the annular seal as well as the tubing cap, to when the purging and sampling begins. Following equilibration, a laboratory-supplied 1-liter Summa<sup>™</sup> canister will be attached to the tubing via quarter-inch Swagelok fittings. A laboratory-supplied critical orifice flow controller (calibrated to 100-200 milliliters per minute [ml/min]) with integral particulate filter will be installed immediately upstream of the Summa<sup>™</sup> canister. The sample connections will then be tested using a shut-in test to confirm the integrity of the sample connections.

Once connections are checked, soil gas will be withdrawn from the Teflon® tubing using an evacuated purge Summa<sup>™</sup> canister connected via a shut-off valve. The first three dead volumes of soil gas will be discarded to purge the sample tubing, sand pack, and void space of the dry bentonite in the annular space. To calculate the void space of the sand pack and dry bentonite, a porosity of 30% will be assumed.

After purging, the soil gas sample will be collected in a 1-liter Summa<sup>™</sup> canister while monitoring the fill time and the in-line vacuum gauge. The sample fill time and initial and final vacuums will be recorded in the field notes. Following sampling, or at a later date, the tubing will be pulled from the ground and the surface patched to match surroundings. During sampling, a tracer gas atmosphere will be generated, maintained, and monitored around the top of the soil vapor probe where the tubing exits the ground and around sample connections. As discussed in the February 21, 2013 teleconference with NDEP (NDEP 2013c), ENVIRON will use helium as a tracer gas for this scope of work as it has significant advantages over liquid tracers, but other leak check options, such as liquid tracers, will be on standby if problems are encountered with using helium.

ENVIRON will be present during drilling to maintain a log of the borings, make observations of the work area conditions, conduct health and safety monitoring of possible organic vapors encountered during drilling, screen and log soil cores, direct the installation of the soil probes, perform leak testing, and collect and maintain custody of soil gas and field quality control (QC) samples. Field QC samples for this investigation will consist of one duplicate soil gas sample and one trip blank sample per sample shipment. Duplicate samples will be collected at a rate of 5% (one duplicate for every 20 primary samples) and will be collected at the same time as primary samples using a T-fitting. Replicate sampling is not planned.

# 3.5 Sample Handling and Chain-of-Custody

Each lot of sampling containers will be certified as contaminant-free by the laboratory. Samples will be collected, handled, and stored in such a manner that they are representative of their original condition and chemical composition. For soil gas samples collected in Summa<sup>™</sup> canisters, this generally means that the containers are free of leaks before, during, and after sampling. The occurrence of leaks will be mitigated through the use of proper tools and tightening canister fittings according to manufacture specifications. Leaks will be identified through the use of vacuum checks before and after sampling as well as before and after transport to the laboratory.

Identification of samples and maintenance of custody are important elements that will be utilized to ensure samples characterize site conditions. All samples will be properly identified and maintained under chain-of-custody protocol to protect sample integrity. Sample chain-of-custody procedures will be used to maintain and document sample integrity during collection, transportation, storage, and analysis. A sample is considered to be under the control of, and in the custody of, the responsible person if the samples are in their physical possession, locked or sealed in a tamper-proof container, or stored in a secure area.

The chain-of-custody form provides an accurate written record that traces the possession of individual samples from the time of collection in the field until they are accepted at the analytical laboratory. The chain-of-custody form also documents the samples collected and the analyses requested. The field sampler will sign the chain-of-custody form and will record the time and date at the time of transfer to the laboratory or an intermediate person. A set of signatures is required for each relinquished/received transfer, including internal transfer. The original imprint of the chain-of-custody will accompany the sample containers and a duplicate copy will be kept in the project file.

If the samples are to be shipped to the laboratory, the original chain-of-custody relinquishing the samples will be sealed inside a plastic bag within the shipping box and the box will be sealed with custody tape that has been signed and dated by the last person listed on the chain-of-custody. US Department of Transportation shipping requirements will be followed and the sample shipping receipt will be retained in the project files as part of the permanent chain-of-custody document. The shipping company (e.g., Federal Express, UPS) will not sign the chain-of-custody forms as a receiver; instead the laboratory will sign as a receiver when the samples are received.

# 3.6 Analytical Testing

Soil gas samples and QC samples will be submitted to a qualified licensed analytical laboratory under chain-of-custody protocol for analysis of VOCs by USEPA Method TO-15 and helium on a standard 5-day turn-around time. The laboratory's ability to achieve practical quantitation limits that are below concentrations corresponding to either a cancer risk level of  $1 \times 10^{-6}$  for carcinogens or a hazard quotient (HQ) of 1 for non-carcinogens was confirmed.

#### 3.7 Equipment Decontamination

Prior to mobilizing the sampling rigs to the Site, the rig and all associated equipment will be cleaned with a high-pressure, steam washer to remove any oil, grease, mud, tar, and other foreign matter. In order to minimize the potential for cross-contamination, equipment used during the field investigation (including all non-dedicated sampling equipment) will be decontaminated between uses at each sampling location. Decontamination will consist of a detergent wash (Alconox or equivalent) followed by a clean water wash, and finally a clean water rinse; or alternatively, using high pressure steam washer.

Sample containers, soil gas manifolds, and critical orifice flow controllers with integral particulate filters are dedicated sampling equipment and will be received as certified-clean from the laboratory. Materials used for probe construction (tubing, filters, and fittings) will be purchased new and not reused.

#### 3.8 Management of Investigation-Derived Waste

Investigation-derived waste (IDW) will be collected in 5-gallon buckets or 55-gallon drums that will be labeled and sealed following completion of field activities. Each container will be marked with water-proof labels and water-proof markers. Each container will receive a unique identification number and will be cataloged for waste containment documentation purposes. Following characterization, each container of material will be disposed of as appropriate per federal, state and local requirements.

#### 3.9 Evaluation and Reporting of Results

Upon receipt of all field and analytical data, a DVSR will be prepared in accordance with NDEP Guidance (NDEP 2008b, 2009, 2012a,c). The reporting of results of the field work and analytical results will include the following:

- A description of the field methods employed, analytical methods, analytical results, data evaluation methods, and data validation results;
- Laboratory analysis results presented in tabulated form;
- A scale map(s) depicting locations of the soil gas borings;
- A scale map(s) presenting the concentrations of contaminants of concern at each investigative location; and
- Laboratory-certified analytical reports provided in Adobe Acrobat (.PDF) electronic form on a compact disc (CD) in an appendix.

# 4.0 Data Evaluation

This section describes the sources and types of data that will be considered in the HHRA as well as the data evaluation process.

### 4.1 Data Sources

The following sources and types of data will be evaluated for use in the soil gas HHRA:

- Historical soil gas samples collected in or near the Study Area and analyzed for VOCs from the Phase B Site-Wide Soil Gas Survey (previously summarized in the 2010 Soil Gas HRA [Northgate 2010d]);
- Additional soil gas samples collected in the Study Area and analyzed for VOCs, as identified in this work plan; and
- Groundwater samples collected in or near the Study Area from shallow groundwater wells and analyzed for VOCs.

The data will be used for two primary purposes: (1) to evaluate groundwater and soil gas results relative to the CSM that has been developed for the Site and Study Area (Figure 5) and (2) to characterize potential risks to human health associated with the vapor intrusion pathway. Only data of appropriate quality to meet the specific objectives of the evaluations will be used. Data usability for risk assessment purposes is discussed in Section 4.2 below.

### 4.2 Data Usability

The primary objective of the data usability evaluation is to identify appropriate data for use in the HHRA. All relevant site characterization data will be evaluated in accordance with the NDEP *Supplemental Guidance for Assessing Data Usability for Environmental Investigations at the BMI Facility in Henderson, NV* (NDEP 2010c), which is based on USEPA's *Guidance for Data Usability in Risk Assessment* (Parts A and B) (USEPA 1992a,b).

The USEPA data usability evaluation framework provides the basis for identifying and evaluating uncertainties in HHRAs with regard to site characterization data. USEPA (1992a) states that "data usability is the process of assuring or determining that the quality of data generated meets the intended use," and that when risk assessment is the intended use, USEPA's guidance "provide[s] direction for planning and assessing analytical data collection activities for the HHRA..." USEPA has established a specific guidance framework to provide risk assessors with a consistent basis for making decisions about the minimum quality and quantity of environmental analytical data sufficient to support risk assessment decisions (USEPA 1992a,b; NDEP 2010c). The USEPA data usability guidance provides an explicit set of data quality criteria that are used to evaluate the usability of site characterization data in the risk assessment process:

- Reports to Risk Assessor;
- Documentation;
- Data Sources;
- Analytical Methods and Detection Limits;

- Data Review; and
- Data Quality Indicators (i.e., precision, accuracy, representativeness, comparability, and completeness).

The data identified for the HHRA will be evaluated relative to the above criteria.

# 4.3 Data Analysis

As described by NDEP (2010c), the purpose of the data analysis step is to "use simple exploratory data analysis to compare data to the expectations of the CSM, to determine if the data adequately represent the source terms and exposure areas or evaluation areas." Consistent with the NDEP guidance, summary statistics, simple data plots, and spatial plots of the data will be included in the HHRA. All data evaluations will incorporate the soil gas data used in the 2010 Soil Gas HRA (Northgate 2010d) and the data from the new soil gas samples. The results will be discussed in the appropriate section of the HHRA, including in the Uncertainty Analysis section. Additionally, as requested by NDEP, the following types of analyses will be prepared in the HHRA:

- Cross plots for collocated soil gas and groundwater samples collected in or near the Study Area;
- VOC concentrations presented in the 2010 Soil Gas HRA (Northgate 2010d) will be compared with the most recent groundwater sample results for the same wells to evaluate any temporal changes to VOC concentrations in groundwater;
- Risk calculations for the new soil gas samples will be compared to the risk results presented in the Northgate (2010d) Soil Gas HRA; and
- Risks estimated using VOC concentrations for groundwater and the associated soil gas samples will be compared.

Data adequacy will be discussed in the context of: (1) the results of the analytical program to ensure that the analytical program adequately identified all relevant chemicals that have the potential to affect risk calculations; and (2) review of the sampling points and results to ensure that the Study Area has been sufficiently characterized and that areas that may require remediation have not been missed.

# 5.0 Human Health Risk Assessment Work Plan

This section describes the methodology for the HHRA. The methodology is generally consistent with, but supersedes that presented previously in the 2010 *Health Risk Assessment Work Plan* (Northgate 2010b, approved by NDEP on March 16, 2010). As noted In Section 1, following review of the results of the additional soil gas sampling, a determination will be made as to whether the Study Area will be evaluated as a single exposure unit (using the maximum detected COPC concentrations across all Study Area parcels), or as individual parcels, using maximum detected concentrations within each individual parcel.

Given the complexity of the Site, risk assessments have been completed or are currently in progress or proposed for the different Site areas and/or contaminated media. Figure 6 depicts the HHRAs completed or in progress for the Site, Parcels A and B, and the Study Area for each contaminated medium.

The following sections describe the risk assessment methodology, following USEPA's (1989) four-step process: selection of COPCs, exposure assessment, toxicity assessment, and risk characterization.

### 5.1 Selection of Chemicals of Potential Concern

A preliminary list of COPCs will be identified that includes all analytes detected in soil gas. This list will be reviewed to determine if frequency of detection (FOD) will be used as a metric to potentially reduce the number of COPCs carried through the HHRA. As suggested by USEPA (1989), chemicals with a FOD less than or equal to 5 percent may be considered for elimination. The rationale for eliminating any detected analytes as COPCs will be fully documented.

#### 5.2 Exposure Assessment

This section presents the exposure assessment methodology, including the CSM, exposure assumptions, fate and transport modeling to predict indoor air concentrations, and determination of exposure concentrations<sup>9</sup> (ECs).

#### 5.2.1 Conceptual Site Model

A CSM depicts the relationships between a chemical source, exposure pathway, and potential receptor at a site. It also identifies the potential exposure routes (e.g., inhalation of air) for contacting impacted media. These source-pathway-receptor relationships provide the basis for the quantitative exposure assessment. Only "complete" source-pathway-receptor relationships are included in the quantitative risk evaluation. The "working" CSM for the Site (including the Study Area) was presented in the *Remedial Investigation/Feasibility Study Work Plan* submitted to NDEP on December 17, 2012. For this HHRA, the potentially exposed population and exposure pathways for the Study Area are highlighted in the CSM presented in Figure 5. The elements of the CSM for the evaluation of the vapor intrusion pathway are summarized below.

<sup>&</sup>lt;sup>9</sup> The term exposure concentration (EC) is used for the inhalation pathway, consistent with current USEPA guidance (2009) for evaluating inhalation exposures. As used in this work plan, the term EC is synonymous with the more familiar term, exposure point concentration (EPC), used for evaluating other (non-inhalation) pathways.

Surrounding land use is predominantly industrial. The nearest residential developments are located north and south of the Site, with residential developments to the east and west located at a greater distance. Given the highly industrialized nature of the 5,000-acre BMI complex (which includes the Study Area, the overall Site, and adjacent facilities), and the long-term lease with Tronox, future use of the Site and parcels is expected to remain industrial/commercial.

For this HHRA, inhalation of vapors released from soil and groundwater to indoor air for longterm indoor commercial/industrial workers is the only pathway evaluated (Figure 5). Other potential receptors include visitors and trespassers. However, as discussed in USEPA's *Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites* (USEPA 2002b), evaluation of exposures to members of the public entering an operating facility is generally not warranted for two reasons: (1) public access is restricted or controlled at industrial sites and (2) while the public may have access to a property, exposures of an on-site worker would be much higher than those of a visitor because workers spend substantially more time at a site. Accordingly, on-site visitors and trespassers will not be quantitatively evaluated in the risk assessment.

#### 5.2.2 Exposure Assumptions

Exposure parameters common to all inhalation pathways are the exposure time, exposure frequency, exposure duration, and averaging time. The values used for these parameters are presented in Table 4.

#### 5.2.3 Exposure Concentrations

The following sections describe the fate and transport modeling and approach for calculating ECs.

#### 5.2.3.1 Fate and Transport Modeling

Chemicals detected in soil gas and groundwater can potentially migrate through the unsaturated zone to ambient or indoor air. This migration is quantified for the purposes of this assessment through an intermedia transfer factor. When the transfer factor is multiplied by the source concentration of a chemical in groundwater (in micrograms per liter [ $\mu$ g/L]) or soil gas (in micrograms per cubic meter [ $\mu$ g/m<sup>3</sup>]), the product is the predicted steady-state concentration in indoor or ambient air (in  $\mu$ g/m<sup>3</sup>).

Intermedia transfer factors will be estimated using the screening-level model described by Johnson and Ettinger (1991). Specifically, Version 3.1 of the spreadsheet implementation developed by the USEPA will be used (USEPA 2004). The Johnson and Ettinger model was developed to predict vapor migration into buildings using a combination of diffusion and advection.

For exposure of current/future on-site workers, transfer factors for soil gas to indoor air and for groundwater to indoor air will be derived as follows:

- Soil gas: transport of soil gas from 5 ft bgs into a commercial slab-on-grade building; and
- Groundwater: transport of VOCs released from groundwater at 25-40 feet bgs into a commercial slab-on-grade building.

The Study Area and parcel-specific input parameters for use in the Johnson and Ettinger model are listed in Tables 5 and 6, respectively.

Soil samples were collected to determine site-specific soil properties representative of the unsaturated zone as part of the 2010 Soil Gas HRA (Northgate 2010d). Soil samples were analyzed in accordance with NDEP guidance (NDEP 2010b) at 16 locations at depths of 9 to 15 ft bgs (mostly at 10 ft) across the Site to determine volumetric water content, soil total porosity, dry bulk density, and grain density. The results of the soil testing are shown in Table 7. Since the available data is considered sufficiently representative of the soil properties in the Study Area to be used for modeling purposes, additional soil samples for evaluation of soil properties will not be collected.

Reviews of boring logs (provided in Appendix A) and cross-sections indicated that the Site has a layer of alluvium, comprised of loamy sand approximately 20-50 feet thick. The soil samples shown in Table 7 were all collected in the alluvium. Below the alluvium lies the UMCf, with a higher percentage of clay and silt than the alluvium. Across most of the Site, the unsaturated zone is composed entirely of alluvium. However, in some areas of the Site, the lower portion of the unsaturated zone includes a few feet of the finer-grained UMCf, located just above the groundwater table. The soil properties for the Johnson and Ettinger model were conservatively selected assuming that the entire unsaturated zone is alluvium with site-specific soil properties based on the average of measured values shown in Table 7. It is a conservative assumption to neglect the presence of the UMCf in areas where it is part of the unsaturated zone because the finer-grained UMCf would act to reduce vapor transport. Following review of the analytical data, the impact of this assumption may be evaluated by conducting a sensitivity analysis of the model results.

As there are no buildings present in Parcels C, D, F, and H, a conservative default building, as shown in Table 5, is proposed. The default building size of 100 meters (m) by 100 m (USEPA 2004) was selected. While many commercial buildings are larger, often such a building is partitioned into smaller areas or offices which may represent smaller isolated breathing zones. This building size would have a default vapor flow rate of 5 liters/minute into the building (USEPA 2004). California's default air exchange rate of 1 air change per hour (Cal/EPA 2011) is proposed in the absence of a default rate from USEPA. As there is no default value for the height of a commercial building, a conservative height of 10 feet is proposed, although many commercial buildings have higher first floor ceilings. As shown in Table 6, a parcel-specific depth to groundwater will be used.

#### 5.2.3.2 Exposure Concentrations

The specific soil gas results for use in the HHRA will be identified based on the results of the data evaluation step. Using these results as model input, indoor air concentrations will be modeled using the Johnson and Ettinger (J&E) model. The contaminant concentration in air, rather than contaminant intake, is used as the basis for estimating chemical inhalation risks based on guidance described in *Part F, Supplemental Guidance for Inhalation Risk Assessment* (USEPA 2009). The ECs for noncarcinogens and carcinogens are estimated as follows:

$$EC = \frac{C \times TF \times ET \times EF \times ED}{AT}$$

where:

- EC = exposure concentration  $(\mu g/m^3)$ 
  - C = COPC concentration in soil gas or groundwater ( $\mu g/m^3$ or  $\mu g/L$ )
- TF = transfer factor ( $\mu g/m^3$  per  $\mu g/m^3$  or  $\mu g/m^3$  per  $\mu g/L$ )
- ET = exposure time (hr/d)
- EF = exposure frequency (d/yr)
- ED = exposure duration (yr)
- AT = averaging time (hr); based on ED (yr) × 365 d/yr × 24 hr/d for non-carcinogens  $(AT_{nc})$  and based on 70 yr (average lifetime) for carcinogens  $(AT_c)$

#### 5.3 Toxicity Assessment

Consistent with the NDEP hierarchy for selecting toxicity values to derive BCLs (NDEP 2013a), cancer and noncancer toxicity values will be identified based on the following sources, listed in general order of preference:

- USEPA's Integrated Risk Information System (IRIS). IRIS is an on-line database of USEPA-approved oral and inhalation toxicity values (USEPA 2013).
- USEPA's Provisional Peer Reviewed Toxicity Values (PPRTVs). PPRTVs are interim toxicity values developed by the Office of Research and Development/National Center for Environmental Assessment/Superfund Health Risk Technical Support Center. PPRTV values are listed in NDEP's table of BCLs.
- National Center for Environmental Assessment (NCEA, or other current USEPA sources).
- USEPA's Health Effects Assessment Summary Tables (HEAST) (USEPA 1997). HEAST provides an older listing of provisional toxicity values.
- California Environmental Protection Agency (Cal/EPA) toxicity criteria.
- ATSDR toxicological profiles, which list MRLs for evaluating noncarcinogens.
- USEPA's Environmental Criteria and Assessment Office (ECAO).
- NDEP-identified toxicological surrogates.
- Peer-reviewed scientific literature.

#### 5.4 Risk Characterization

This section describes the approach for conducting the final step of the HHRA, the risk characterization step. In this final step, quantitative information on human exposure and chemical toxicity are combined to calculate corresponding receptor-specific cancer risk and hazard levels.

### 5.4.1 Assessment of Cancer Risks

Carcinogenic risk will be estimated as the incremental probability of an individual developing cancer over a lifetime as a result of exposure to COPCs. The following equations will be used to calculate chemical-specific risk and total risk:

$$Risk_{inhalation} = EC \times UR$$

where:

EC = exposure concentration ( $\mu$ g/m<sup>3</sup>)

UR = unit risk  $(\mu g/m^3)^{-1}$ 

and

```
Total Risk = \sum Individual Chemical Risk
```

#### 5.4.2 Assessment of Non-Cancer Health Effects

The potential for non-cancer adverse health effects will be estimated as follows:

Hazard Quotient<sub>inhalation</sub> = 
$$\frac{EC \times CF}{RfC}$$

where:

EC = exposure concentration ( $\mu g/m^3$ )

CF = conversion factor  $(10^{-3} \text{ mg/}\mu\text{g})$ 

RfC = reference concentration  $(mg/m^3)$ 

If more than one COPC is evaluated, the HQs for each COPC will be summed to obtain the hazard index (HI).

Hazard Index = 
$$\sum$$
Hazard Quotients

If an HI exceeds 1.0, the potential for adverse health effects will be further evaluated by considering the "critical effect" or target organ of each COPC, following a process referred to as "segregation of HI." The segregation of HI by target organ is consistent with USEPA guidance for non-carcinogens (USEPA 1989). This approach, if applied, will be discussed with NDEP.

#### 5.4.3 Cumulative Cancer Risk and Hazard Index

The cumulative cancer risk and non-cancer hazard will be estimated for the soil and vapor intrusion pathways for an indoor commercial/industrial worker. The cumulative risk will be based on the combined results for the vapor intrusion pathway as estimated in the vapor intrusion HHRA and for the soil-ingestion pathway, as reported in the *Revised Post-Remediation Screening Human Health Risk Assessment Report for Parcels C, D, F, G, and H.* As noted

previously, the soil HHRA is currently in preparation; the final evaluation of cumulative risks will be based on the NDEP-approved soil HHRA.

To estimate cumulative risk and HI for the indoor commercial/industrial worker, it is assumed that the worker is exposed to COPCs in soil (via incidental ingestion) and soil gas (via inhalation of vapors in indoor air of a commercial building), as represented by the following equations:

 $Cumulative Risk = Risk_{inhalation} + Risk_{soil ingestion}$ 

Cumulative Hazard Index = Hazard Index<sub>inhalation</sub> + Hazard Index<sub>soil ingestion</sub>

### 5.5 Uncertainty Analysis

The process of estimating risk has inherent uncertainties associated with the calculations and assumptions used. The approach that is used in the HHRA will be health protective and will tend to overestimate potential exposure. This results in estimated risk and hazard levels that are likely to be higher than the actual risks or hazards experienced by exposed populations. A discussion of key uncertainties associated with the available data and the methodology used to estimate potential risks and hazards will be included in the HHRA.

# 6.0 Schedule

NDEP approved the field work proposed in the *Soil Gas Investigation Work Plan for Parcels C, D, F, G, and H*, dated October 2012 (ENVIRON 2012c). Field work was completed on March 13, 2013. The DVSR will be submitted to the Trust within approximately six weeks of receiving the validated analytical data from the laboratory. Within approximately four weeks of receipt of the validated soil gas sampling analytical results, the soil gas sampling results and vapor intrusion HHRA report will be submitted to NDEP for review.

# 7.0 References

- Basic Environmental Company (BEC), 2007a. Phase 2 Sampling and Analysis Plan to Conduct Soil Characterization, Tronox Parcels "C" and "D" Site, Henderson, Nevada. September 19. NDEP approved October 29, 2007.
- BEC, 2007b. Phase 2 Sampling and Analysis Plan to Conduct Soil Characterization, Tronox Parcel "F" Site, Henderson, Nevada. September 19. NDEP approved October 9, 2007.
- BEC, 2007c. Phase 2 Sampling and Analysis Plan to Conduct Soil Characterization, Tronox Parcel "G" Site, Henderson, Nevada. September 27. NDEP approved October 29, 2007.
- BEC, 2007d. Phase 2 Sampling and Analysis Plan to Conduct Soil Characterization, Tronox Parcel "H" Site and Errata Pages for Phase 2 Sampling and Analysis Plans to Conduct Soil Characterization, Tronox Parcels "C", "D" and "F" Sites, Henderson, Nevada. November 8. NDEP approved November 20, 2007.
- BEC, 2007e. Phase 2 Sampling and Analysis Plan to Conduct Soil Characterization, Tronox Parcel "H" Site, Henderson, Nevada. December 12. NDEP approved December 17, 2007.
- BEC, 2007f. Technical Memorandum Data Review for 2007 Tronox Parcels A/B Investigation, BMI Industrial Complex, Clark County, Nevada. December 6. NDEP found NFA January 17, 2008.
- BEC, 2008a. Sampling and Analysis Plan to Conduct Supplemental Soil Characterization, Tronox Parcels "C", "D", "F", "G", and "H", Henderson, Nevada. May 28. NDEP approved June 5, 2008.
- BEC, 2008b. Removal Action Workplan for Soil, Tronox Parcels "C", "D", "F", "G" and "H" Sites, Henderson, Nevada. July 1. NDEP approved July 2, 2008.
- Broadbent & Associates, Inc., 2011. Quarterly Status Report for the 1st Quarter of 2011. Titanium Metals Corporation, Henderson, Nevada Facility, Facility ID #H000537. April 15.
- California Environmental Protection Agency (Cal/EPA), 2011. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance). Final. Department of Toxic Substances Control. October.
- Converse Consultants, 2007. Phase I Environmental Site Assessment [ESA], Approximately 182 Acres, APNs 178-13-601-002,-002, 178-12-101-002, -003, 178-12-201-005, 178-12-601-005, 178-01-401-001, 178-11-501-007, and Portions of 178-12-401-009 & 178-13-101-002, Henderson, Nevada. March 5. NDEP commented May 11, 2007.
- ENSR Corporation (ENSR), 2005. Conceptual Site Model, Kerr-McGee Facility, Henderson, Nevada, February. NDEP requested response to comments during the next monthly meeting October 22, 2005.
- ENSR, 2007. Phase A Source Area Investigation Results Report, Tronox LLC Facility, Henderson, Nevada, September. NDEP approved the Report November 30, 2007 and Appendix G – Data Validation Summary Report (DVSR) December 17, 2007.

- ENSR, 2008. Phase B Source Area Investigation Work Plan, Soil Gas Survey, Tronox LLC Facility, Henderson, Nevada, March. NDEP approved March 26, 2008.
- ENVIRON International Corporation (ENVIRON), 2012a. Scope of Work for Response to NDEP Comments on the May 18, 2012 Sale Parcels Risk Assessment, Nevada Environmental Response Trust Site, Henderson, NV. September 11.
- ENVIRON, 2012b. Interim Soil Removal Action Completion Report, Nevada Environmental Response Trust Site, Henderson, Nevada, August 2010 – November 2011. Revised September.
- ENVIRON, 2012c. Draft Soil Gas Investigation Work Plan for Parcels C, D, F, G, and H, Nevada Environmental Response Trust Site, Henderson, Nevada. October.
- ENVIRON, 2012d. Remedial Investigation and Feasibility Study Work Plan, Nevada Environmental Response Trust Site, Henderson, Nevada. December 17. Under NDEP review.
- ERM-West, Inc. (ERM-West), 2008a. Data Validation Summary Report, Tronox Parcels C, D, F, and G Investigation, November 2007, BMI Industrial Complex, Clark County, Nevada. February. NDEP approved April 3, 2008.
- ERM-West, 2008b. Data Validation Summary Report, Tronox Parcel H Investigation, January 2008, BMI Industrial Complex, Clark County, Nevada. April. NDEP approved May 5, 2008.
- ERM-West, 2009. Data Validation Summary Report, Tronox Parcels C, D, F, G and H Supplemental Investigations-June-July 2008, BMI Industrial Complex, Clark County, Nevada. January 2009. NDEP approved July 28, 2010.
- Interstate Technology & Regulatory Council (ITRC), 2007. Technical and Regulatory Guidance, Vapor Intrusion Pathway: A Practical Guideline. January.
- Johnson, P.C. and R.A. Ettinger, 1991. Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors into Buildings. Environmental Science and Technology, 25, 1445-1452.
- Kleinfelder, 1993. Environmental Conditions Assessment, Kerr-McGee Chemical Corporation, Henderson, Nevada. April.
- Nevada Division of Environmental Protection (NDEP), 1994. Phase II Letter of Understanding between NDEP and Kerr-McGee. August 15.
- NDEP, 2005. NDEP Response to Conceptual Site Model, dated February 28, 2005. May 6.
- NDEP, 2008a. Statistical Analysis Recommendations for Field Duplicates and Field Splits, BMI Plant Sites and Common Areas Projects, Henderson, Nevada. November 14.
- NDEP, 2008b. Detection Limits and Data Reporting, BMI Plant Sites and Common Areas Projects, Henderson, Nevada. December 3.
- NDEP, 2008c. Guidance on the Development of Summary Statistics Tables, BMI Plant Sites and Common Areas Projects, Henderson, Nevada. December 10.
- NDEP, 2009. Supplemental Guidance on Data Validation, BMI Plant Sites and Common Areas Projects, Henderson, Nevada. April 13.
- NDEP, 2010a. Letter to Tronox LLC re: TRX Sale Parcels A through K, Tronox LLC. January 7.
- NDEP, 2010b. Soil Physical and Chemical Property Measurement and Calculation Guidance, BMI Plant Sites and Common Areas Projects, Henderson, Nevada. March 11.
- NDEP, 2010c. Supplemental Guidance for Assessing Data Usability for Environmental Investigations at the BMI Complex and Common Areas in Henderson, Nevada. September 1.
- NDEP, 2011. Action Memorandum: Removal Actions, Nevada Environmental Response Trust Site, Clark County, Nevada, July 21.
- NDEP, 2012a. Revised Guidance on Qualifying Data due to Blank Contamination for the BMI Complex and Common Areas, BMI Plant Sites and Common Areas Projects, Henderson, Nevada. January 5.
- NDEP, 2012b. Guidance on Unified Chemical Electronic Data Deliverable Format, BMI Plant Sites and Common Areas Projects, Henderson, Nevada. March 5.
- NDEP, 2012c. NDEP Response to: Revised Closure and Post-Remediation Screening Health Risk Assessment Report for Parcels C, D, F, G, and H. Nevada Environmental Response Trust Site, Henderson, Nevada, Dated: May 18, 2012. August 7.
- NDEP, 2013a. User's Guide and Background Technical Document for the Nevada Division of Environmental Protection (NDEP) Basic Comparison Levels (BCLs) for Human Health for the BMI Complex and Common Areas. December 2008. Revision 10. January 2013.
- NDEP, 2013b. NDEP Response to: Soil Gas Investigation Work Plan for Parcels C, D, F, G, and H, Nevada Environmental Response Trust Site, Henderson, Nevada, Dated: October 2012. January 29.
- NDEP, 2013c. Meeting Minutes regarding NERT's Questions on the Parcels Soil Gas Issues. February 21.
- Northgate Environmental Management, Inc. (Northgate), 2010a. Revised Data Validation Summary Report, Phase B Investigation Groundwater, Tronox LLC, Henderson, Nevada. April 7. NDEP approved April 14, 2010.
- Northgate, 2010b. Health Risk Assessment Work Plan, Tronox LLC, Henderson, Nevada, March 9. NDEP approved March 16, 2010.
- Northgate, 2010c. Revised Technical Memorandum: Screening-Level Indoor Air Health Risk Assessment for the 2008 Tronox Parcels A/B Soil Gas Investigation, BMI Industrial Complex, Clark County, Nevada. November 12. NDEP commented May 23, 2011.

- Northgate, 2010d. Site-Wide Soil Gas Human Health Risk Assessment, Tronox LLC, Henderson, Nevada. November 22. Not reviewed by NDEP.
- Northgate, 2010e. Capture Zone Evaluation Report, Tronox LLC. Henderson, Nevada. December 10. NDEP commented April 5, 2011; ENVIRON to submit a Response to Comments and resubmit the 2010 Model.
- Northgate, 2012. Revised Closure and Post-Remediation Screening Health Risk Assessment Report for Parcels C, D, F, G, and H. Nevada Environmental Response Trust Site, Henderson, Nevada. May 18. NDEP provided comments on August 7, 2012.
- Tronox LLC (Tronox), 2007. Draft Tronox Response to NDEP Comments Regarding Converse Phase I For Various Tronox Parcels. May 29.
- US Environmental Protection Agency (USEPA), 1989. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A). Interim Final. EPA/540/1-89/002:Office of Emergency and Remedial Response. Washington, DC
- USEPA, 1990. National Oil and Hazardous Substances Pollution Contingency Plan. US Environmental Protection Agency, Federal Register 55:8666.
- USEPA, 1992a. Guidance for Data Usability in Risk Assessment (Part A), Final. April. http://www.epa.gov/oswer/riskassessment/datause/parta.htm
- USEPA, 1992b. Guidance for Data Usability in Risk Assessment (Part B), Final. May. http://www.epa.gov/oswer/riskassessment/datause/partb.htm
- USEPA, 1997. Health Effects Assessment Summary Tables (HEAST), FY 1997 Update. EPA-540-R-97-036. July.
- USEPA, 2002a. OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). November.
- USEPA, 2002b. Supplemental Guidance for Developing Soil Screening Levels for Superfun Sites. OSWER 9355.4-24. December.
- USEPA, 2004. User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings. February.
- USEPA, 2009. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Final. EPA-540-R-070-002: Office of Emergency and Remedial Response. Washington, D.C.
- USEPA, 2013. Integrated Risk Information System (IRIS). USEPA on-line database: http://www.epa.gov/iris/index.html.

# Tables

| Parcel         LOUs <sup>a</sup> Potential Contaminants <sup>b</sup> #         Name         Location         VOCs (benzene derivatives)           10         On-Site Hazardous Waste Landfill         upgradient         no VOCs           22         Pond WC-West and Associated Piping         upgradient         no VOCs           23         Pond WC-East and Associated Piping         upgradient         no VOCs           24         Pond WC-East and Associated Piping         upgradient         no VOCs           55         Area Affected by July 1990 Fire         upgradient         no VOCs           56         Area Affected by July 1990 Fire         upgradient         no VOCs           6         Unnamed Drainage Ditch Segment         within         no VOCs           7         PCRed A Auto Parts Site         within         no VOCs           26         Trash Storage Area         upgradient         no VOCs           27         PCRES Storage Area         upgradient         no VOCs           28         Hazardous Waste Storage Area         upgradient         no VOCs           28         Hazardous Waste Storage Area         upgradient         vOCs           29         Storm Sewer System         within         no VOCs           60                                         | TABLE 1<br>LOUs Within and Upgradient of the Study Area Parcels |       |                                                         |                                          |                            |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------|---------------------------------------------------------|------------------------------------------|----------------------------|--|--|
| Parcel         #         Name         Location         Potential Contaminants*           1         Trade Effluent Settling Ponds         upgradient         VOCs (benzene derivatives)           10         On-Site Hazardous Waste Landfill         upgradient         no VOCs           22         Pond WC-West and Associated Piping         upgradient         no VOCs           32         Groundwater Remediation Unit         upgradient         no VOCs           32         Groundwater Remediation Unit         upgradient         no VOCs           55         Area Affected by July 1990 Fire         upgradient         no VOCs           58         AP Plant Area New D-1 Building Washdown         upgradient         no VOCs           6         Unnamed Drainage Ditch Segment<br>(BMI Landfill)         within         no VOCs           68         Southern Nevada Auto Parts Site<br>(Kerr-McGee tenant)         within         no VOCs           25         Process Hardware Storage Area         upgradient         no VOCs           28         Hazardous Waste Storage Area         upgradient         no VOCs           28         Hazardous Waste Storage Area         upgradient         vOCs           28         Hazardous Waste Storage Area         upgradient         vOCs           28 | Banaal                                                          |       | LOUsª                                                   |                                          |                            |  |  |
| Parcel C         1         Trade Effluent Settling Ponds         upgradient         VOCs (benzene derivatives)           10         On-Site Hazardous Waste Landfill         upgradient         no VOCs           22         Pond WC-West and Associated Piping         upgradient         no VOCs           32         Groundwater Remediation Unit         upgradient         no VOCs           55         Area Affected by July 1990 Fire         upgradient         no VOCs           58         AP Plant Area New D-1 Building Washdown         upgradient         no VOCs           6         Unnamed Drainage Ditch Segment<br>(Kerr-McGee tenant)         within         no VOCs           68         Southern Nevada Auto Parts Site<br>(Kerr-McGee tenant)         within         no VOCs           25         Process Hardware Storage Area         upgradient         no VOCs           26         Trash Storage Area         upgradient         no VOCs           27         PCCB Storage Area         upgradient         No VOCs           28         Hazardous Waste Storage Area         upgradient         No VOCs           29         Storm Sewer System         within         no VOCs           60         Acid Drain System         upgradient         No VOCs           61         Ukerr-McGee   | Parcel                                                          | #     | Name                                                    | Location                                 | Potential Contaminants"    |  |  |
| Parcel C         10         On-Site Hazardous Waste Landfill         upgradient         no VOCs           23         Pond WC-West and Associated Piping         upgradient         no VOCs           32         Groundwater Remediation Unit         upgradient         no VOCs           32         Groundwater Remediation Unit         upgradient         no VOCs           55         Area Affected by July 1990 Fire         upgradient         no VOCs           56         AP Plant Area New D-1 Building Washdown         upgradient         no VOCs           7         Unnamed Drainage Ditch Segment<br>(Kerr-McGee tenant)         within         no VOCs           25         Process Hardware Storage Area         upgradient         no VOCs           26         Trash Storage Area         upgradient         no VOCs           27         PCB Storage Area         upgradient         no VOCs           28         Hazardous Waste Storage Area         upgradient         no VOCs           29         Storms Sewer System         within         no VOCs           41         Unit 1 Tenants - Stains         upgradient         no VOCs           42         Hazardous Waste Storage Area         upgradient         no VOCs           41         Unit 1 Tenants - Stains         up               |                                                                 | 1     | Trade Effluent Settling Ponds                           | upgradient                               | VOCs (benzene derivatives) |  |  |
| Parcel C22Pond WC-West and Associated Pipingupgradientno VOCs23Pond WC-East and Associated Pipingupgradientno VOCs32Groundwater Remediation Unitupgradientno VOCs55Area Affected by July 1990 Fireupgradientno VOCs58AP Plant Area New D-1 Building Washdownupgradientno VOCsParcel D6Unnamed Drainage Ditch Segment<br>(BMI Landfill)withinno VOCs6Southern Nevada Auto Parts Site<br>(Kerr-McGee tenant)withinno VOCs25Process Hardware Storage Areaupgradientno VOCs26Trash Storage Areaupgradientno VOCs27PCB Storage AreaupgradientvOCs28Hazardous Waste Storage AreaupgradientVOCs29Storm Sewer Systemwithinno VOCs60Acid Drain Systemupgradientno VOCs63J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)withinNo VOCs65a-dNevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a,b and d<br>upgradientVOCs64Green Ventures International<br>(Kerr-McGee tenant)withinno VOCs                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 | 10    | On-Site Hazardous Waste Landfill                        | upgradient                               | no VOCs                    |  |  |
| Parcel C23Pond WC-East and Associated Pipingupgradientno VOCs32Groundwater Remediation Unitupgradientno VOCs55Area Affected by July 1990 Fireupgradientno VOCs58AP Plant Area New D-1 Building Washdownupgradientno VOCsParcel D6Unnamed Drainage Ditch Segment<br>(BMI Landfill)withinno VOCs6Southern Nevada Auto Parts Site<br>(Kerr-McGee tenant)withinno VOCs25Process Hardware Storage AreaupgradientVOCs (benzene derivatives)26Trash Storage Areaupgradientno VOCs27PCB Storage Areaupgradientno VOCs28Hazardous Waste Storage AreaupgradientVOCs29Storm Sewer Systemwithinno VOCs41Unit 1 Tenants - StainsupgradientVOCs28Hazardous Waste Storage AreaupgradientVOCs29Storm Sewer Systemwithinno VOCs60Acid Drain SystemupgradientvOCs61Nevada Precast Concrete Products<br>(Kerr-McGee tenant)65 within;<br>65a,b and d<br>upgradientVOCs62Green Ventures International<br>(Kerr-McGee tenant)withinno VOCs63Green Ventures International<br>(Kerr-McGee tenant)withinno VOCs                                                                                                                                                                                                                                                                                                                                 |                                                                 | 22    | Pond WC-West and Associated Piping                      | upgradient                               | no VOCs                    |  |  |
| 32Groundwater Remediation Unitupgradientno VOCs55Area Affected by July 1990 Fireupgradientno VOCs58AP Plant Area New D-1 Building Washdownupgradientno VOCsParcel D6Unnamed Drainage Ditch Segment<br>(BMI Landfill)withinno VOCs68Southern Nevada Auto Parts Site<br>(Kerr-McGee tenant)withinno VOCs25Process Hardware Storage AreaupgradientVOCs (benzene derivatives)26Trash Storage Areaupgradientno VOCs27PCB Storage Areaupgradientno VOCs28Hazardous Waste Storage Areaupgradientno VOCs28Hazardous Waste Storage AreaupgradientNo VOCs28Hazardous Waste Storage AreaupgradientNo VOCs29Storm Sewer Systemwithinno VOCs60Acid Drain SystemwithinNo VOCs63J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)withinVOCs65a-dNevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a, b and d<br>upgradientVOCs65a-dGreen Ventures International<br>(Kerr-McGee tenant)withinno VOCs65dGreen Ventures International<br>(Kerr-McGee tenant)withinNo VOCs                                                                                                                                                                                                                                                                                                                                       | Parcel C                                                        | 23    | Pond WC-East and Associated Piping                      | upgradient                               | no VOCs                    |  |  |
| 55Area Affected by July 1990 Fireupgradientno VOCs58AP Plant Area New D-1 Building Washdownupgradientno VOCsParcel D6Unnamed Drainage Ditch Segment<br>(BMI Landfill)withinno VOCs6Southern Nevada Auto Parts Site<br>(Kerr-McGee tenant)withinno VOCs7Former Hardesty Chemical Company SiteupgradientVOCs (benzene derivatives)25Proces Hardware Storage Areaupgradientno VOCs26Trash Storage Areaupgradientno VOCs27PCB Storage AreaupgradientNOCs28Hazardous Waste Storage AreaupgradientVOCs29Storm Sewer Systemwithinno VOCs41Unit 1 Tenants - StainsupgradientVOCs60Acid Drain Systemupgradientno VOCs63J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)withinVOCs65a-dNevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a, b and d<br>upgradientVOCsParcel G59Storm Sewer Systemwithinno VOCs60Acid Drain Systemwithinno VOCs759Storm Sewer Systemwithinno VOCs759Storm Sewer Systemwithinno VOCs765a-dGreen Ventures International<br>(Kerr-McGee tenant)withinno VOCs765a-dGreen Ventures International<br>(Kerr-McGee tenant)withinno VOCs                                                                                                                                                                                                                                         |                                                                 | 32    | Groundwater Remediation Unit                            | upgradient                               | no VOCs                    |  |  |
| 58AP Plant Area New D-1 Building Washdownupgradientno VOCsParcel D6Unnamed Drainage Ditch Segment<br>(BMI Landfill)withinno VOCs68Southern Nevada Auto Parts Site<br>(Kerr-McGee tenant)withinno VOCs25Process Hardware Storage AreaupgradientVOCs (benzene derivatives)26Trash Storage Areaupgradientno VOCs27PCB Storage Areaupgradientno VOCs28Hazardous Waste Storage AreaupgradientNOCs29Storm Sewer Systemwithinno VOCs41Unit 1 Tenants - StainsupgradientNOCs63J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)withinNOCs63J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)withinVOCs65a-dNevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a,b and d<br>upgradientVOCsParcel G59Storm Sewer Systemwithinno VOCs65a-dGreen Ventures International<br>(Kerr-McGee tenant)65c within;<br>65a,b and d<br>upgradientVOCsParcel H                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 | 55    | Area Affected by July 1990 Fire                         | upgradient                               | no VOCs                    |  |  |
| Parcel D6Unnamed Drainage Ditch Segment<br>(BMI Landfill)withinno VOCs68Southern Nevada Auto Parts Site<br>(Kerr-McGee tenant)withinno VOCs4Former Hardesty Chemical Company SiteupgradientVOCs (benzene derivatives)25Process Hardware Storage Areaupgradientno VOCs26Trash Storage Areaupgradientno VOCs27PCB Storage AreaupgradientNo VOCs28Hazardous Waste Storage AreaupgradientVOCs41Unit 1 Tenants - StainsupgradientVOCs59Storm Sewer Systemwithinno VOCs60Acid Drain Systemupgradientno VOCs63J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)withinVOCs65a-dNevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a,b and d<br>upgradientvOCsParcel G59Storm Sewer Systemwithinno VOCs60Acid Drain Systemwithinno VOCsParcel G59Storm Sewer Systemwithinno VOCs60Acid Drain Systemwithinno VOCs61Acid Drain Systemwithinno VOCs62Green Ventures International<br>(Kerr-McGee tenant)withinNo VOCs65dGreen Ventures International<br>(Kerr-McGee tenant)withinVOCs                                                                                                                                                                                                                                                                                                                      |                                                                 | 58    | AP Plant Area New D-1 Building Washdown                 | upgradient                               | no VOCs                    |  |  |
| Parcel D68Southern Nevada Auto Parts Site<br>(Kerr-McGee tenant)withinno VOCs4Former Hardesty Chemical Company SiteupgradientVOCs (benzene derivatives)25Process Hardware Storage Areaupgradientno VOCs26Trash Storage Areaupgradientno VOCs27PCB Storage Areaupgradientno VOCs28Hazardous Waste Storage AreaupgradientVOCs41Unit 1 Tenants - StainsupgradientVOCs41Unit 1 Tenants - StainsupgradientVOCs60Acid Drain Systemwithinno VOCs63J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)withinVOCs65a-dNevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a, band d<br>upgradientVOCsParcel G60Acid Drain Systemwithinno VOCs61Green Ventures International<br>(Kerr-McGee tenant)withinno VOCs62Green Ventures International<br>(Kerr-McGee tenant)withinNoVCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Parcal D                                                        | 6     | Unnamed Drainage Ditch Segment<br>(BMI Landfill)        | within                                   | no VOCs                    |  |  |
| 4Former Hardesty Chemical Company SiteupgradientVOCs (benzene derivatives)25Process Hardware Storage Areaupgradientno VOCs26Trash Storage Areaupgradientno VOCs27PCB Storage Areaupgradientno VOCs28Hazardous Waste Storage AreaupgradientVOCs (benzene derivatives)41Unit 1 Tenants - StainsupgradientVOCs41Unit 1 Tenants - StainsupgradientVOCs60Acid Drain Systemwithinno VOCs63J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)withinVOCs65a-dNevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a,b and d<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Parcel D                                                        | 68    | Southern Nevada Auto Parts Site<br>(Kerr-McGee tenant)  | within                                   | no VOCs                    |  |  |
| 25Process Hardware Storage Areaupgradientno VOCs26Trash Storage Areaupgradientno VOCs27PCB Storage Areaupgradientno VOCs28Hazardous Waste Storage AreaupgradientVOCs41Unit 1 Tenants - StainsupgradientVOCs59Storm Sewer Systemwithinno VOCs60Acid Drain SystemupgradientvOCs63J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)withinVOCs65a-dNevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a, b and d<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 | 4     | Former Hardesty Chemical Company Site                   | upgradient                               | VOCs (benzene derivatives) |  |  |
| 26Trash Storage Areaupgradientno VOCs27PCB Storage Areaupgradientno VOCs28Hazardous Waste Storage AreaupgradientVOCs41Unit 1 Tenants - StainsupgradientVOCs59Storm Sewer Systemwithinno VOCs60Acid Drain SystemupgradientNOCs63J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)withinVOCs65a-dNevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a,b and d<br>upgradientVOCsParcel G59Storm Sewer Systemwithinno VOCs60Acid Drain Systemwithinno VOCs61Green Ventures International<br>(Kerr-McGee tenant)withinno VOCs65dGreen Ventures International<br>(Kerr-McGee tenant)withinVOCs65dGreen Ventures International<br>(Kerr-McGee tenant)withinVOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 25    | Process Hardware Storage Area                           | upgradient                               | no VOCs                    |  |  |
| Parcel F27PCB Storage Areaupgradientno VOCs28Hazardous Waste Storage AreaupgradientVOCs41Unit 1 Tenants - StainsupgradientVOCs59Storm Sewer Systemwithinno VOCs60Acid Drain Systemupgradientno VOCs63J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)withinVOCs65a-dNevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a,b and d<br>upgradientVOCsParcel G59Storm Sewer Systemwithinno VOCs60Acid Drain SystemwithinNOCs65a-dNevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a,b and d<br>upgradientVOCs60Acid Drain Systemwithinno VOCs60Acid Drain Systemwithinno VOCs60Green Ventures International<br>(Kerr-McGee tenant)withinVOCs65dGreen Ventures International<br>(Kerr-McGee tenant)withinVOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 | 26    | Trash Storage Area                                      | upgradient                               | no VOCs                    |  |  |
| Parcel F28Hazardous Waste Storage AreaupgradientVOCs41Unit 1 Tenants - StainsupgradientVOCs59Storm Sewer Systemwithinno VOCs60Acid Drain Systemupgradientno VOCs63J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)withinVOCs65a-dNevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a,b and d<br>upgradientVOCsParcel G59Storm Sewer Systemwithinno VOCs60Acid Drain SystemwithinNOCs60Acid Drain Systemwithinno VOCs60Acid Drain Systemwithinno VOCs60Green Ventures International<br>(Kerr-McGee tenant)withinno VOCs65dGreen Ventures International<br>(Kerr-McGee tenant)withinVOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 27    | PCB Storage Area                                        | upgradient                               | no VOCs                    |  |  |
| Parcel F41Unit 1 Tenants - StainsupgradientVOCs59Storm Sewer Systemwithinno VOCs60Acid Drain Systemupgradientno VOCs63J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)withinVOCs65a-dNevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a,b and d<br>upgradientVOCsParcel G59Storm Sewer Systemwithinno VOCs60Acid Drain Systemwithinno VOCs61Green Ventures International<br>(Kerr-McGee tenant)withinno VOCs65dGreen Ventures International<br>(Kerr-McGee tenant)withinVOCs65dGreen Ventures International<br>(Kerr-McGee tenant)withinVOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | 28    | Hazardous Waste Storage Area                            | upgradient                               | VOCs                       |  |  |
| Parcel F59Storm Sewer Systemwithinno VOCs60Acid Drain Systemupgradientno VOCs63J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)withinVOCs65a-dNevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a,b and d<br>upgradientVOCs65a-dStorm Sewer Systemwithinno VOCs60Acid Drain Systemwithinno VOCs60Acid Drain Systemwithinno VOCs60Acid Drain Systemwithinno VOCs65dGreen Ventures International<br>(Kerr-McGee tenant)withinVOCsParcel H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 | 41    | Unit 1 Tenants - Stains                                 | upgradient                               | VOCs                       |  |  |
| 60Acid Drain Systemupgradientno VOCs63J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)withinVOCs63Nevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a,b and d<br>upgradient65c within;<br>65a,b and d<br>upgradientParcel G59Storm Sewer Systemwithinno VOCs60Acid Drain Systemwithinno VOCs65dGreen Ventures International<br>(Kerr-McGee tenant)withinvOCs65dGreen Ventures International<br>(Kerr-McGee tenant)withinVOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Parcel F                                                        | 59    | Storm Sewer System                                      | within                                   | no VOCs                    |  |  |
| 63     J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)     within     VOCs       63     J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)     within     VOCs       65a-d     Nevada Precast Concrete Products<br>(Kerr-McGee tenant)     65c within;<br>65a,b and d<br>upgradient     VOCs       Parcel G     59     Storm Sewer System     within     no VOCs       60     Acid Drain System     within     no VOCs       65d     Green Ventures International<br>(Kerr-McGee tenant)     within     VOCs       Parcel H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 | 60    | Acid Drain System                                       | upgradient                               | no VOCs                    |  |  |
| 65a-dNevada Precast Concrete Products<br>(Kerr-McGee tenant)65c within;<br>65a,b and d<br>upgradientVOCsParcel G59Storm Sewer Systemwithinno VOCs60Acid Drain Systemwithinno VOCs65dGreen Ventures International<br>(Kerr-McGee tenant)withinVOCsParcel H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 | 63    | J.B. Kelley Trucking Inc. Site<br>(Kerr-McGee tenant)   | within                                   | VOCs                       |  |  |
| Farcel G         59         Storm Sewer System         within         no VOCs           60         Acid Drain System         within         no VOCs           65d         Green Ventures International<br>(Kerr-McGee tenant)         within         VOCs           Parcel H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 | 65a-d | Nevada Precast Concrete Products<br>(Kerr-McGee tenant) | 65c within;<br>65a,b and d<br>upgradient | VOCs                       |  |  |
| Parcel G     60     Acid Drain System     within     no VOCs       65d     Green Ventures International<br>(Kerr-McGee tenant)     within     VOCs       Parcel H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 59    | Storm Sewer System                                      | within                                   | no VOCs                    |  |  |
| Green Ventures International<br>(Kerr-McGee tenant)     within     VOCs       Parcel H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Parcel G                                                        | 60    | Acid Drain System                                       | within                                   | no VOCs                    |  |  |
| Parcel H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FarcerG                                                         | 65d   | Green Ventures International<br>(Kerr-McGee tenant)     | within                                   | VOCs                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Parcel H                                                        |       |                                                         |                                          |                            |  |  |

-- = no LOUs are within or upgradient of the Parcel

LOU = Letter of Understanding

VOC = volatile organic compound

<sup>a</sup> Gray highlighted LOUs indicated that NDEP identified them for no further action (ENSR 2007).

<sup>b</sup> The contaminants listed for each parcel were identified in NDEP (2011).

#### Reference:

ENSR Corporation (ENSR), 2007. Phase A Source Area Investigation Results Report, Tronox LLC Facility, Henderson, Nevada. September. NDEP approved November 30, 2007.

Nevada Division of Environmental Protection (NDEP), 2011. Action Memorandum: Removal Actions, Nevada Environmental Response Trust Site, Clark County, Nevada. July 21.

| Sha      | TA<br>Ilow Groundwater Loca | ABLE 2<br>tions with VOC Samplir | ng Data <sup>a</sup> |
|----------|-----------------------------|----------------------------------|----------------------|
| Parcel   | Well ID                     | Date Sampled                     | Chloroform (ua/L)    |
|          |                             | 1/26/2009                        | 1300                 |
|          |                             | 1/26/2009                        | 940                  |
|          |                             | 1/26/2009                        | 1400                 |
|          |                             | 1/26/2009                        | 1200                 |
|          |                             | 4/20/2009                        | 3400                 |
|          |                             | 4/20/2009                        | 3100                 |
|          |                             | 4/20/2009                        | 4000                 |
|          |                             | 4/20/2009                        | 4000                 |
|          |                             | 4/20/2009                        | 910                  |
|          |                             | 7/21/2009                        | 1100                 |
|          | AA-BW-04A                   | 10/21/2009                       | 480                  |
|          |                             | 10/21/2009                       | 490                  |
|          |                             | 10/21/2009                       | 800                  |
|          |                             | 10/21/2009                       | 740                  |
|          |                             | 5/12/2010                        | 480                  |
|          |                             | 5/12/2010                        | 410                  |
|          |                             | 10/28/2010                       | 400                  |
|          |                             | 10/28/2010                       | 330                  |
|          |                             | 3/24/2011                        | 500                  |
|          |                             | 10/20/2011                       | 320                  |
| Parcel C |                             | 10/20/2011                       | 330                  |
|          | H-28                        | 3/18/1981                        | 200                  |
|          |                             | 7/1/1981                         | ND                   |
|          |                             | 10/13/1981                       | ND                   |
|          |                             | 2/9/1982                         | ND                   |
|          |                             | 6/23/1982                        | ND                   |
|          |                             | 12/7/1982                        | ND                   |
|          |                             | 3/3/1998                         | ND                   |
|          |                             | 4/29/1998                        | <5.0                 |
|          |                             | 0/20/1990                        | <5.0                 |
|          |                             | 3/18/1999                        | <5.0                 |
|          |                             | 12/13/2007                       | <0.66                |
|          |                             | 12/13/2007                       | 0.66                 |
|          |                             | 4/22/2009                        | 0.90                 |
|          |                             | 7/22/2009                        | 1.2                  |
|          |                             | 7/22/2009                        | 1.1                  |
|          |                             | 10/20/2009                       | 0.70                 |
|          |                             | 4/21/2010                        | 0.32                 |
|          |                             | 3/24/2011                        | 0.64                 |
|          |                             | 10/20/2011                       | <0.00                |
|          | M-6A                        | 6/27/2008                        | 2.2                  |
|          | M-23                        | 6/25/2008                        | 130                  |
|          |                             | 7/24/2009                        | 7.9                  |
|          | MC-09R                      | 5/19/2010                        | 4.3                  |
|          |                             | 4/22/2011                        | 6.5                  |
|          |                             | 1/17/1986                        | ND                   |
|          |                             | 2/19/1986                        | ND                   |
| Doroal D | MC-45                       | 7/15/1986                        | ND                   |
| Parcel D |                             | 12/6/2006                        | 3.0                  |
|          |                             | 0/20/2008<br>A/1/2004            | 3.0                  |
|          |                             | 6/29/2004                        | 31                   |
|          | N/0                         | 9/28/2004                        | 220                  |
|          | MC-53                       | 1/26/2005                        | 30                   |
|          |                             | 4/20/2005                        | 15                   |
|          |                             | 10/26/2005                       | 17                   |

| Shal                  | TA<br>low Groundwater Loca | ABLE 2<br>tions with VOC Samplii | ng Data <sup>a</sup> |
|-----------------------|----------------------------|----------------------------------|----------------------|
| Parcel                | Well ID                    | Date Sampled                     | Chloroform (ug/L)    |
|                       |                            | 2/1/2006                         | 2.7                  |
|                       |                            | 4/26/2006                        | 300                  |
|                       |                            | 7/26/2006                        | 25                   |
|                       |                            | 12/4/2006                        | 4.0                  |
|                       |                            | 4/18/2007                        | 0.0                  |
|                       |                            | 7/16/2007                        | 8.1                  |
|                       | MC-53                      | 12/21/2007                       | 5.1                  |
|                       | (Continued)                | 1/29/2008                        | 10                   |
|                       |                            | 4/9/2008                         | 36                   |
| Parcel D              |                            | 6/25/2008                        | 13                   |
| (Continued)           |                            | 11/6/2008                        | 73                   |
|                       |                            | 1/21/2009                        | 9.3                  |
|                       |                            | 4/14/2009                        | 7.1                  |
|                       |                            | 4/21/2010                        | 5.0                  |
|                       | MC-94                      | 10/7/2009                        | 5.4                  |
|                       |                            | 7/20/2009                        | 45                   |
|                       | MC-MW-29                   | 11/10/2009                       | 4.8                  |
|                       |                            | 3/4/2010                         | 0.0                  |
|                       |                            | 11/16/2010                       | 9.3                  |
|                       | MC-MW-32                   | 4/27/2011                        | 2.8                  |
|                       |                            | 12/13/2007                       | 2.4                  |
|                       |                            | 12/13/2007                       | <2.6                 |
|                       |                            | 1/21/2009                        | <0.08                |
|                       |                            | 4/28/2009                        | 0.61                 |
|                       | AA-BW-03A                  | 7/23/2009                        | 0.99                 |
|                       |                            | 10/27/2009                       | 3.2                  |
|                       |                            | 10/28/2010                       | <2.8                 |
|                       |                            | 3/29/2011                        | 4.9                  |
|                       |                            | 10/25/2011                       | 3.4                  |
|                       |                            | 1/23/2009                        | 70                   |
|                       |                            | 1/23/2009                        | 61                   |
|                       |                            | 4/21/2009                        | 44                   |
|                       |                            | 10/20/2009                       | 41                   |
|                       | AA-BW-05A                  | 10/20/2009                       | 16                   |
|                       |                            | 5/12/2010                        | 29                   |
| Relevant Nearby       |                            | 10/27/2010                       | 33                   |
| Locations for Parcels |                            | 3/24/2011                        | 28                   |
| C and D               |                            | 10/20/2011                       | <16                  |
|                       |                            | 8/24/1999                        | 490                  |
|                       |                            | 3/27/2000                        | ND                   |
|                       |                            | 6/15/2000                        | <300                 |
|                       |                            | 9/21/2000                        | <300                 |
|                       |                            | 11/8/2000                        | <300                 |
|                       |                            | 1/18/2001                        | <300                 |
|                       |                            | 5/24/2001                        | 54                   |
|                       | n-21K                      | 10/25/2001                       | 3/                   |
|                       |                            | 2/14/2001                        | .200                 |
|                       |                            | 4/11/2002                        | 69                   |
|                       |                            | 8/2/2002                         | <250                 |
|                       |                            | 11/8/2002                        | <250                 |
|                       |                            | 2/27/2003                        | 23                   |
|                       |                            | 6/5/2003                         | 24                   |
|                       |                            | 8/21/2003                        | 72                   |

| Parcel         Well ID         Date Sampled         Chloroform (ug/L)           12/11/2003         48           12/11/2003         48           9/11/2004         61           6/22/2004         11           9/16/2004         99           1/11/12/005         13           2/22/2005         5.5           9/23/2005         2.5           10/25/2005         0.5           2/2/2006         -6.0           2/2/2006         -6.0           2/2/2006         -6.0           2/2/2006         -11           4/25/2006         11           4/25/2006         11           4/25/2006         12           12/1/2006         -200           12/1/2006         -200           12/1/2006         -200           12/1/2006         -200           12/1/2006         -200           11/14/2007         19           11/15/2007         -21           11/15/2007         -210           11/16/2007         19           11/15/2008         <400           11/15/2008         <400           11/15/2008         <400           11/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TABLE 2           Shallow Groundwater Locations with VOC Sampling Data <sup>a</sup> |             |              |                   |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------|--------------|-------------------|--|--|--|
| Non         Non b         Provide 12/11/2003         48           3/11/2004         61         6/22/2004         61           9/16/2004         89         11         9/16/2004         89           1/11/2005         13         2/22/2005         13         2/22/2005         15/5           1/11/2005         13         2/2/2005         2.5         10/25/2005         2.25         10/25/2005         2.0         2/2/2006         -5         4/25/2006         11         4/25/2006         11         1         4/25/2006         11         1         1/2/2/2005         1/2/2/2005         1/2/2/2005         1/2/2/2005         1/2/2/2006         2/2/2/2006         -5         4/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006         1/2/2/2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Parcel                                                                              | Well ID     | Date Sampled | Chloroform (ug/L) |  |  |  |
| H-21R<br>(Continued)         3/11/2004         61           H-21R<br>(Continued)         9/16/2004         89           1/11/2005         13         2/22/2006           9/23/2005         -2/25         10/25/2005         -2/20           1/12/2006         -5.5         9/23/2005         -2/20           1/12/2006         -5.5         9/23/2005         -2/20           1/2/2/2006         -1         -         -           1/12/2/2006         -1         -         -           1/2/2/2006         11         -         -           1/2/2/2006         11         -         -           1/2/2/2006         11         -         -           1/2/2/2006         11         -         -           1/2/2/2006         12         -         -           1/2/2/2006         -1         -         -           1/2/2/2007         <400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 0.001                                                                             |             | 12/11/2003   | 48                |  |  |  |
| Relevant Nearby<br>Locations for Parcels<br>C and D (continued)         6.0         6.0           H-19A         11/1/2005         13           H-21R<br>(Continued)         11/1/2005         13           12/2/2006         -5.5         9/23/2005         -2.5           10/25/2005         2.0         2/2/2006         -5.5           2/2/2006         -5.5         -2/2/2006         -5.5           4/25/2006         11         -1/2/2/2006         -1/2           11/1/2/2006         -2/2/2006         -5.5         -2/2/2006         -1/2           11/1/2/2006         -2/2/2006         -1/2         -2/2/2006         -1/2           11/1/2/2006         -2/2/2006         -2/2/2006         -2/2/2006         -1/2           11/1/2/2006         -2/2/2006         -2/2/2006         -2/2/2006         -1/2           11/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     |             | 3/11/2004    | 61                |  |  |  |
| H-21R<br>(Continued)         9/16/2004         89           H-21R<br>(Continued)         13         2/2/2005         19           5/24/2005         2.5         9/23/2005         2.5           9/22/2006         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |             | 6/22/2004    | 11                |  |  |  |
| H-21R<br>(Continued)         111/2006         13<br>2/2/2/2005         19<br>5/2/2/2005         25<br>0/2/2/2005         20<br>2/2/2006         45.0           2/2/2006         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |             | 9/16/2004    | 89                |  |  |  |
| Relevant Nearby<br>Locations for Parcels<br>C and D (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |             | 1/11/2005    | 13                |  |  |  |
| Relevant Nearby<br>Locations for Parcels<br>C and D (continued)         5/24/2005         5.5           9/23/2005         -20           2/2/2006         -5.0           2/2/2006         -5.0           2/2/2006         -5.0           2/2/2006         -5.0           2/2/2006         -5.0           2/2/2006         -11           4/25/2006         11           4/25/2006         12           7/26/2006         12           12/1/2006         -2200           4/20/2007         -400           11/15/2007         19           11/15/2007         19           11/15/2007         21           13/3/2008         -4000           11/15/2007         21           13/3/2008         -400           11/15/2007         21           13/3/2008         -400           11/15/2008         -400           11/15/2009         -200           4/22/2005         -5.0           9/16/2004         10           11/30/2004         6.0           2/22/2005         -5.0           9/23/2005         7.6           10/25/2005         7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |             | 2/22/2005    | 19                |  |  |  |
| H-21R<br>(Continued)         9/23/2005         -2/25           10/25/2005         20           2/2/2006         -5.0           2/2/2006         -5.0           2/2/2006         -5.0           2/2/2006         -5.0           11         -4/25/2006         9.0           7/26/2006         11         -1.0           12/2/2006         -200         -2.0           12/2/2006         -200         -2.00           12/1/2006         -200         -2.00           12/1/2006         -200         -2.00           1/23/2007         -40         -2.00           1/11/5/2007         19         -1.11           1/30/2008         -100         -2.00           4/20/2007         -40         -7.11/1/2008           200         -4/20/2007         -40           11/15/2007         21         -1.30/2008           11/15/2008         -400         -1.11/15/2007           21/2/2008         -800         -1.11/15/2008           21/2/2008         -800         -2.00           11/15/2008         -400         -1.11/15/2008           21/2/2009         -0.08         -1.11/20/20         -2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                     |             | 5/24/2005    | 5.5               |  |  |  |
| H-21R<br>(Continued)         10/25/2005         20           H-21R<br>(Continued)         2/2/2006         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |             | 9/23/2005    | <25               |  |  |  |
| Relevant Nearby<br>Locations for Parcels<br>C and D (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |             | 10/25/2005   | 20                |  |  |  |
| H-21R<br>(Continued)         2/2/2006         <-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |             | 2/2/2006     | <5.0              |  |  |  |
| H-21R<br>(Continued)         4/25/2006         11           H-21R<br>(Continued)         7/26/2006         11           7/26/2006         12           12/1/2006         <200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |             | 2/2/2006     | <5                |  |  |  |
| Relevant Nearby<br>Locations for Parcels<br>C and D (continued)<br>H-21R<br>(Continued)<br>H-21R<br>(Continued)               H-21R<br>12/1/2006<br>12/1/2006             -200<br>12/1/2006             -200<br>12/1/2007             -200<br>4/2/20207             -200<br>4/2/20207             -200<br>4/2/2007             -200<br>4/2/2008             -200<br>4/2/2008             -400<br>11/15/2007             21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     |             | 4/25/2006    | 11                |  |  |  |
| Relevant Nearby<br>Locations for Parcels<br>C and D (continued)<br>H-21R<br>(Continued)<br>H-21R<br>(Continued)<br>H-21R<br>(Continued)<br>H-21R<br>(Continued)<br>H-21R<br>(Continued)<br>H-21R<br>(Continued)<br>H-21R<br>(Continued)<br>H-1/15/2007               200            Relevant Nearby<br>Locations for Parcels<br>C and D (continued)<br>(I/15/2007               11<br>(J30/2008<br>H/1/12/2008               400                 H/1/2008             (J/1/2008             (J/0/2009             (Z00             (J/19/2009             (Z00             (J/19/2009             (Z00             (J/19/2009             (Z00             (J/19/2009             (Z00             (J/19/2009             (Z00             (J/19/200             (J/10             (J/10/20             (J/10             (J/10/20             (J/10             (J/10/20             (J/10             (J/10/20             (J/10             (J/11/200             (J/10             (J/12/200             (J/10             (J/11/200             (J/10             (J/11/200             (J/11/20             (J/11/20             (J/11/20             (J/11/20             (J/11/20             (J/11/20             (J/11/20             (J/11/20             (J/11/11/20             (J/11/20             (J/11/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     |             | 4/25/2006    | 9.0               |  |  |  |
| Relevant Nearby<br>Locations for Parcels<br>C and D (continued)         17/26/2006         12           H-21R<br>(Continued)         12/1/2006         -200           1/2/3/2007         -200           4/20/2007         -40           7/17/2007         -80           11/15/2007         19           11/15/2007         21           1/30/2008         -400           4/2/2008         -400           1/1/15/2007         21           1/30/2008         -400           4/2/2008         -400           1/1/5/2007         21           1/30/2008         -400           1/1/5/2008         -400           1/1/5/2009         -200           1/1/3/2009         -200           1/1/3/2009         -200           1/1/3/2009         -200           1/1/3/2009         -200           1/1/3/2009         -200           1/1/3/2009         -200           9/16/2004         10           11/30/2004         6.0           2/2/2/2005         -5.0           9/2/3/2005         7.6           10/25/2006         -5.0           1/1/30/2006         -2.0           1/1/1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     |             | 7/26/2006    | 11                |  |  |  |
| H-21R<br>(Continued)         12/1/2006         <200           12/1/2006         <200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |             | 7/26/2006    | 12                |  |  |  |
| Relevant Nearby<br>Locations for Parcels<br>C and D (continued)         12/1/2006         <200           4/20/2007         <40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     | H-21R       | 12/1/2006    | <200              |  |  |  |
| Relevant Nearby<br>Locations for Parcels<br>C and D (continued)         1/23/2007         <200           4/20/2007         <40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     | (Continued) | 12/1/2006    | <200              |  |  |  |
| H-49A         4/20/2007         <40           7/17/2007         <80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |             | 1/23/2007    | <200              |  |  |  |
| Relevant Nearby<br>Locations for Parcels<br>C and D (continued)         7/17/2007             H-49A         11/15/2007         21         11/15/2007         21           11/15/2008         <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |             | 4/20/2007    | <40               |  |  |  |
| Relevant Nearby<br>Locations for Parcels<br>C and D (continued)         11/15/2007         19           11/15/2007         21           1/30/2008         <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |             | 7/17/2007    | <80               |  |  |  |
| Relevant Nearby<br>Locations for Parcels<br>C and D (continued)         11/15/2007         21           1/30/2008         <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |             | 11/15/2007   | 19                |  |  |  |
| Relevant Nearby<br>Locations for Parcels<br>C and D (continued)         1/30/2008         <100           7/11/2008         <800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |             | 11/15/2007   | 21                |  |  |  |
| Relevant Nearby<br>Locations for Parcels<br>C and D (continued)         4/2/2008         <400           7/11/2008         <800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |             | 1/30/2008    | <100              |  |  |  |
| Relevant Nearby<br>Locations for Parcels<br>C and D (continued)         7/11/2008         <800           11/5/2008         <400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Delevent Neerbur                                                                    |             | 4/2/2008     | <400              |  |  |  |
| Time         Time <th< td=""><td>Locations for Parcels</td><td></td><td>7/11/2008</td><td>&lt;800</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Locations for Parcels                                                               |             | 7/11/2008    | <800              |  |  |  |
| $H-49A = \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C and D (continued)                                                                 |             | 7/11/2008    | <800              |  |  |  |
| $H-49A \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |             | 11/5/2008    | <400              |  |  |  |
| $H-49A \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |             | 1/19/2009    | <200              |  |  |  |
| 4/16/2009         <200           4/20/2010         <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |             | 1/23/2009    | <0.08             |  |  |  |
| 4/20/2010         <100           9/16/2004         10           11/30/2004         6.0           2/22/2005         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |             | 4/16/2009    | <200              |  |  |  |
| $H-49A = \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |             | 4/20/2010    | <100              |  |  |  |
| $H-49A = \begin{bmatrix} 11/30/2004 & 6.0 \\ 2/22/2005 & <5.0 \\ 5/24/2005 & <5.0 \\ 9/23/2005 & 7.6 \\ 10/25/2005 & 7.0 \\ 2/2/2006 & <5.0 \\ 4/25/2006 & <5.0 \\ 7/25/2006 & <5.0 \\ 11/30/2006 & <2.0 \\ 11/30/2006 & <2.0 \\ 11/18/2007 & 3.4 \\ 4/17/2007 & 2.3 \\ 7/11/2007 & 2.0 \\ 11/14/2007 & 3.2 \\ 1/30/2008 & <2.0 \\ 4/3/2008 & <2.0 \\ 4/3/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |             | 9/16/2004    | 10                |  |  |  |
| $H-49A = \begin{bmatrix} 2/2/2005 & <5.0 \\ 5/24/2005 & <5.0 \\ 9/23/2005 & 7.6 \\ 10/25/2005 & 7.0 \\ 2/2/2006 & <5.0 \\ 4/25/2006 & <5.0 \\ 7/25/2006 & <5.0 \\ 11/30/2006 & <2.0 \\ 11/30/2006 & <2.0 \\ 11/18/2007 & 3.4 \\ 4/17/2007 & 2.3 \\ 7/11/2007 & 2.0 \\ 11/14/2007 & 3.2 \\ 1/30/2008 & <2.0 \\ 4/3/2008 & <2.0 \\ 4/3/2008 & <2.0 \\ 11/30/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2009 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |             | 11/30/2004   | 6.0               |  |  |  |
| $H-49A = \begin{array}{c cccc} & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                     |             | 5/24/2005    | <5.0              |  |  |  |
| $H-49A = \begin{bmatrix} 10/25/2005 & 7.0 \\ 2/2/2006 & <5.0 \\ 4/25/2006 & <5.0 \\ 7/25/2006 & <5.0 \\ 11/30/2006 & <2.0 \\ 11/30/2006 & <2.0 \\ 1/18/2007 & 3.4 \\ 4/17/2007 & 2.3 \\ 7/11/2007 & 2.0 \\ 11/14/2007 & 3.2 \\ 1/30/2008 & <2.0 \\ 4/3/2008 & <2.0 \\ 4/3/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/2009 & <2.0 \\ 1/19/200 & <2.0 \\ 1/19/200 & <2.0 \\ 1/19/200 & <2.0 \\ 1/19/200 & <2.0 \\ 1/19/200 & <2.0 \\ 1/19/200 & <2.0 \\ 1/19/200 & <2.0 \\ 1/19/200 & <2.0 \\ 1/19/200 & <2.0 \\ 1/19/200 & <2.0 \\ 1/19/200 & <2.0 \\ 1/19/200 & <2.0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |             | 9/23/2005    | 7.6               |  |  |  |
| $H-49A = \begin{bmatrix} 2/2/2006 & <5.0 \\ 4/25/2006 & <5.0 \\ \hline 7/25/2006 & <5.0 \\ \hline 11/30/2006 & <2.0 \\ \hline 11/8/2007 & 3.4 \\ \hline 4/17/2007 & 2.3 \\ \hline 7/11/2007 & 2.0 \\ \hline 11/14/2007 & 3.2 \\ \hline 1/30/2008 & <2.0 \\ \hline 4/3/2008 & <2.0 \\ \hline 4/3/2008 & <2.0 \\ \hline 11/5/2008 & <2.0 \\ \hline 11/5/2009 & <2.0 \\ \hline 1/15/2009 & <2.0 \\ \hline 1/15$      |                                                                                     |             | 10/25/2005   | 7.0               |  |  |  |
| $H-49A = \begin{bmatrix} 4/25/2006 & <5.0 \\ \hline 7/25/2006 & <5.0 \\ \hline 11/30/2006 & <2.0 \\ \hline 11/8/2007 & 3.4 \\ \hline 4/17/2007 & 2.3 \\ \hline 7/11/2007 & 2.0 \\ \hline 11/14/2007 & 3.2 \\ \hline 11/30/2008 & <2.0 \\ \hline 4/3/2008 & <2.0 \\ \hline 4/3/2008 & <2.0 \\ \hline 11/5/2008 & <2.0 \\ \hline $ |                                                                                     |             | 2/2/2006     | <5.0              |  |  |  |
| $H-49A = \begin{bmatrix} 7/25/2006 & <5.0 \\ 11/30/2006 & <2.0 \\ 11/18/2007 & 3.4 \\ 4/17/2007 & 2.3 \\ 7/11/2007 & 2.0 \\ 11/14/2007 & 3.2 \\ 1/30/2008 & <2.0 \\ 4/3/2008 & <2.0 \\ 4/3/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5/2008 & <2.0 \\ 11/5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |             | 4/25/2006    | <5.0              |  |  |  |
| $H-49A = \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |             | 11/25/2006   | <5.0              |  |  |  |
| H-49A<br>4/17/2007 2.3<br>7/11/2007 2.0<br>11/14/2007 3.2<br>1/30/2008 <2.0<br>4/3/2008 <2.0<br>7/11/2008 <2.0<br>11/5/2008 <2.0<br>11/5/2008 2.0<br>11/15/2009 <2.0<br>4/15/2009 <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     | 11.404      | 1/18/2007    | 3.4               |  |  |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     | H-49A       | 4/17/2007    | 2.3               |  |  |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |             | 7/11/2007    | 2.0               |  |  |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |             | 11/14/2007   | 3.2               |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |             | 1/30/2008    | <2.0              |  |  |  |
| T/11/2008         <2.0           11/5/2008         2.0           1/19/2009         <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |             | 4/3/2008     | <2.0              |  |  |  |
| 11/5/2008         2.0           1/19/2009         <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |             | 7/11/2008    | <2.0              |  |  |  |
| 1/19/2009         <2.0           4/15/2009         <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |             | 11/5/2008    | 2.0               |  |  |  |
| 4/15/2009 <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |             | 1/19/2009    | <2.0              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |             | 4/15/2009    | <2.0              |  |  |  |

| TABLE 2           Shallow Groundwater Locations with VOC Sampling Data <sup>a</sup> |         |                 |                   |  |  |  |
|-------------------------------------------------------------------------------------|---------|-----------------|-------------------|--|--|--|
| Parcel                                                                              | Well ID | Date Sampled    | Chloroform (ug/L) |  |  |  |
|                                                                                     |         | 9/16/2004       | ND                |  |  |  |
|                                                                                     |         | 2/22/2005       | <5.0              |  |  |  |
|                                                                                     |         | 5/24/2005       | <5.0              |  |  |  |
|                                                                                     |         | 9/23/2005       | <5.0              |  |  |  |
|                                                                                     |         | 1/25/2005       | <5.0              |  |  |  |
|                                                                                     |         | 4/25/2006       | <5.0              |  |  |  |
|                                                                                     |         | 7/19/2006       | 1.1               |  |  |  |
|                                                                                     |         | 7/25/2006       | <5.0              |  |  |  |
|                                                                                     |         | 11/30/2006      | <2.0              |  |  |  |
|                                                                                     | H-56A   | 1/17/2007       | <2.0              |  |  |  |
|                                                                                     | 1100/1  | 4/18/2007       | <2.0              |  |  |  |
|                                                                                     |         | 4/18/2007       | <2.0              |  |  |  |
|                                                                                     |         | //11/2007       | <2.0              |  |  |  |
|                                                                                     |         | 1/30/2008       | <2.0              |  |  |  |
|                                                                                     |         | 4/3/2008        | <2.0              |  |  |  |
|                                                                                     |         | 7/11/2008       | <2.0              |  |  |  |
|                                                                                     |         | 11/5/2008       | <2.0              |  |  |  |
|                                                                                     |         | 1/19/2009       | <2.0              |  |  |  |
|                                                                                     |         | 4/15/2009       | <2.0              |  |  |  |
| _                                                                                   |         | 4/19/2010       | 2.0               |  |  |  |
|                                                                                     |         | 9/16/2004       | ND                |  |  |  |
|                                                                                     |         | 2/22/2005       | <5.0              |  |  |  |
|                                                                                     |         | 9/23/2005       | <5.0              |  |  |  |
|                                                                                     |         | 10/25/2005      | 17                |  |  |  |
|                                                                                     |         | 2/2/2006        | 7.7               |  |  |  |
| Relevant Nearby                                                                     |         | 4/25/2006       | 4.9               |  |  |  |
| Locations for Parcels                                                               |         | 7/25/2006       | 16                |  |  |  |
| C and D (continued)                                                                 |         | 11/30/2006      | <2.0              |  |  |  |
|                                                                                     |         | 1/18/2007       | 4.3               |  |  |  |
|                                                                                     | H-58A   | 4/18/2007       | 4.6               |  |  |  |
|                                                                                     |         | 11/14/2007      | 5.6               |  |  |  |
|                                                                                     |         | 1/30/2008       | 9.7               |  |  |  |
|                                                                                     |         | 1/30/2008       | 9.0               |  |  |  |
|                                                                                     |         | 4/3/2008        | 8.6               |  |  |  |
|                                                                                     |         | 7/11/2008       | 4.8               |  |  |  |
|                                                                                     |         | 11/5/2008       | 2.4               |  |  |  |
|                                                                                     |         | 1/19/2009       | 2.0               |  |  |  |
|                                                                                     |         | 4/15/2009       | <2.0              |  |  |  |
| -                                                                                   | M-44    | 6/24/2008       | 34                |  |  |  |
| F                                                                                   | M 49    | 12/6/2006       | 99                |  |  |  |
|                                                                                     | IVI-48  | 7/9/2008        | 180               |  |  |  |
| Γ                                                                                   |         | 11/30/2006      | 2.3               |  |  |  |
|                                                                                     |         | 12/18/2007      | 2.2               |  |  |  |
|                                                                                     |         | 6/26/2008       | 2.1               |  |  |  |
|                                                                                     |         | <u>Z/3/2009</u> | 1.3               |  |  |  |
|                                                                                     |         | 7/28/2009       | 1.1               |  |  |  |
|                                                                                     | M-7B    | 7/28/2009       | 1.4               |  |  |  |
|                                                                                     |         | 10/28/2009      | 1.5               |  |  |  |
|                                                                                     |         | 4/22/2010       | 1.3               |  |  |  |
|                                                                                     |         | 10/28/2010      | <1.8              |  |  |  |
|                                                                                     |         | 3/30/2011       | 1.9               |  |  |  |
|                                                                                     | 14.54   | 10/26/2011      | 1.5               |  |  |  |
|                                                                                     | M-94    | 6/23/2008       | 50                |  |  |  |

| TABLE 2           Shallow Groundwater Locations with VOC Sampling Data <sup>a</sup> |          |              |                   |  |  |  |
|-------------------------------------------------------------------------------------|----------|--------------|-------------------|--|--|--|
| Parcel                                                                              | Well ID  | Date Sampled | Chloroform (ug/L) |  |  |  |
|                                                                                     | MOE      | 12/4/2006    | 350               |  |  |  |
|                                                                                     | M-90     | 6/27/2008    | 390               |  |  |  |
|                                                                                     | M-96     | 7/9/2008     | 28                |  |  |  |
|                                                                                     | M-98     | 11/30/2006   | 810               |  |  |  |
|                                                                                     | M-99     | 5/6/2010     | 150               |  |  |  |
|                                                                                     | M-100    | 12/4/2006    | 36                |  |  |  |
| -                                                                                   | MC-3     | 5/27/2009    | 16                |  |  |  |
|                                                                                     | MC-62    | 6/23/2008    | 2.3               |  |  |  |
|                                                                                     | MC-65    | 6/20/2008    | 8.3               |  |  |  |
|                                                                                     | MC-66    | 6/20/2008    | 5.2               |  |  |  |
| _                                                                                   | MO 07    | 6/20/2008    | 5.3               |  |  |  |
|                                                                                     | MC-97    | 6/25/2008    | 3.8               |  |  |  |
|                                                                                     |          | 11/10/2009   | 23                |  |  |  |
|                                                                                     |          | 5/4/2010     | 64                |  |  |  |
|                                                                                     | MC-MW-30 | 10/27/2010   | 6.0               |  |  |  |
|                                                                                     |          | 3/29/2011    | 17                |  |  |  |
|                                                                                     |          | 10/25/2011   | 11                |  |  |  |
| Relevant Nearby                                                                     |          | 7/23/2009    | 300               |  |  |  |
| Locations for Parcels                                                               | MC-MW-31 | 11/19/2009   | 31                |  |  |  |
| C and D (continued)                                                                 |          | 5/3/2010     | 42                |  |  |  |
|                                                                                     |          | 3/29/2011    | 26                |  |  |  |
|                                                                                     |          | 10/25/2011   | 23                |  |  |  |
|                                                                                     | MC-MW-33 | 11/17/2010   | 9.5               |  |  |  |
|                                                                                     |          | 11/17/2010   | 10                |  |  |  |
|                                                                                     |          | 4/28/2011    | <0.33             |  |  |  |
|                                                                                     | MC-MW-36 | 11/15/2010   | 100               |  |  |  |
|                                                                                     |          | 4/28/2011    | 140               |  |  |  |
|                                                                                     | MC-MW-37 | 4/28/2011    | 40                |  |  |  |
|                                                                                     | MC-MW-38 | 11/16/2010   | 10                |  |  |  |
|                                                                                     |          | 4/29/2011    | 8.2               |  |  |  |
|                                                                                     | PC-37    | 6/20/2008    | 2.0               |  |  |  |
|                                                                                     | PC-40    | 6/18/2008    | 1.6               |  |  |  |
|                                                                                     | <u> </u> | 12/1/2006    | 4.0               |  |  |  |
|                                                                                     | PC-72    | 6/23/2008    | 29                |  |  |  |
|                                                                                     | WELL-M2  | 4/23/2010    | <80               |  |  |  |
|                                                                                     | WELL-N   | 4/23/2010    | 4.0               |  |  |  |
|                                                                                     | WELL-O   | 4/23/2010    | 920               |  |  |  |
|                                                                                     |          | 11/29/2006   | 30                |  |  |  |
|                                                                                     | M-92     | 7/15/2009    | 30                |  |  |  |
|                                                                                     |          | 5/14/2010    | 28                |  |  |  |
| Derect 5                                                                            |          | 5/8/2008     | 7000              |  |  |  |
| Parcel F                                                                            | MC-MW-17 | 5/7/2010     | 4800<br>5100      |  |  |  |
|                                                                                     |          | 4/22/2011    | 5100              |  |  |  |
|                                                                                     |          | 7/17/2009    | 2700              |  |  |  |
|                                                                                     | IK-0     | 7/27/2010    | 2000              |  |  |  |
|                                                                                     |          | 3/20/2006    | 9.4               |  |  |  |
| Parcel G                                                                            | TR-8     | 3/20/2006    | 13                |  |  |  |
|                                                                                     | 11.0     | 3/20/2006    | 14                |  |  |  |
|                                                                                     |          | 7/14/2009    | 9.8               |  |  |  |
| Derect                                                                              | M 400    | 3/20/2006    | <5.0              |  |  |  |
| Parcel H                                                                            | M-103    | 3/21/2006    | <5.0              |  |  |  |
|                                                                                     |          | 1/0/2009     | 0.34              |  |  |  |

| TABLE 2           Shallow Groundwater Locations with VOC Sampling Data <sup>a</sup> |            |              |                   |  |  |  |
|-------------------------------------------------------------------------------------|------------|--------------|-------------------|--|--|--|
| Parcel                                                                              | Well ID    | Date Sampled | Chloroform (ug/L) |  |  |  |
|                                                                                     |            | 3/22/2006    | <5.0              |  |  |  |
|                                                                                     | M 120      | 11/28/2006   | 1.1               |  |  |  |
| Parcel H                                                                            | IVI-120    | 7/7/2009     | 1.5               |  |  |  |
| (Continued)                                                                         |            | 7/27/2010    | 1.1               |  |  |  |
|                                                                                     | M 101      | 3/23/2006    | <5.0              |  |  |  |
|                                                                                     | IVI- I Z I | 7/10/2009    | 2.6               |  |  |  |
|                                                                                     |            | 7/16/2008    | 24                |  |  |  |
|                                                                                     | AA-MW-23   | 7/16/2008    | 28                |  |  |  |
|                                                                                     |            | 10/29/2008   | 24                |  |  |  |
|                                                                                     | M-10       | 9/19/2001    | 16                |  |  |  |
|                                                                                     |            | 7/10/2009    | 55                |  |  |  |
|                                                                                     | M-13       | 12/1/2006    | 40                |  |  |  |
|                                                                                     |            | 6/25/2009    | 36                |  |  |  |
|                                                                                     |            | 6/25/2009    | 35                |  |  |  |
| Relevant Nearby                                                                     | M-97       | 11/29/2006   | 12                |  |  |  |
| Locations for                                                                       |            | 7/16/2009    | 10                |  |  |  |
| Parcels F, G, and H                                                                 | M 404      | 7/11/2008    | 240               |  |  |  |
|                                                                                     | 101-124    | 11/10/2008   | 200               |  |  |  |
|                                                                                     | M-137      | 10/29/2009   | 2.8               |  |  |  |
|                                                                                     | M 400      | 10/28/2009   | 5.1               |  |  |  |
|                                                                                     | IVI-138    | 10/28/2009   | 5.0               |  |  |  |
|                                                                                     | M-144      | 10/27/2009   | 2.3               |  |  |  |
|                                                                                     |            | 3/13/2006    | <5.0              |  |  |  |
|                                                                                     | TR-10      | 3/21/2006    | 1.6               |  |  |  |
|                                                                                     |            | 7/14/2009    | 2.6               |  |  |  |

< = sample not detected

ug/L = micrograms per liter

ND = sample not detected and detection limit not available

<sup>a</sup> ENVIRON identified these wells using NDEP's Regional Database available at http://ndep.neptuneinc.org/ndep\_gisdt/home/index.xml, the Data Validation Summary Reports for the Phase A Investigation (ENSR 2007b) and the Phase B Groundwater Investigation (Northgate 2010a).

#### References:

ENSR Corporation (ENSR), 2007. Phase A Source Area Investigation Results Report, Tronox LLC Facility, Henderson, Nevada, September. NDEP approved the Report November 30, 2007 and Appendix G – Data Validation Summary Report (DVSR) December 17, 2007.

Northgate Environmental Management, Inc. (Northgate), 2010a. Revised Data Validation Summary Report, Phase B Investigation Groundwater, Tronox LLC, Henderson, Nevada. April 7. NDEP approved April 14, 2010.

| TABLE 3           Proposed and Existing Soil Gas Sampling Locations <sup>a</sup> |        |                    |  |  |  |
|----------------------------------------------------------------------------------|--------|--------------------|--|--|--|
| Parcel <sup>b</sup> Sample ID Number                                             |        |                    |  |  |  |
| i alcei                                                                          | E-SG-1 | ENVIRON (proposed) |  |  |  |
|                                                                                  | E-SG-2 | ENVIRON (proposed) |  |  |  |
|                                                                                  | E-SG-3 | ENVIRON (proposed) |  |  |  |
|                                                                                  | SG13   | Phase B            |  |  |  |
|                                                                                  | SG14   | Phase B            |  |  |  |
| Parcel C                                                                         | SG17   | Phase B            |  |  |  |
|                                                                                  | SG18   | Phase B            |  |  |  |
|                                                                                  | SG19   | Phase B            |  |  |  |
|                                                                                  | SG24   | Phase B            |  |  |  |
|                                                                                  | SG90   | Phase B            |  |  |  |
|                                                                                  | SG91   | Phase B            |  |  |  |
|                                                                                  | E-SG-1 | ENVIRON (proposed) |  |  |  |
|                                                                                  | E-SG-9 | ENVIRON (proposed) |  |  |  |
|                                                                                  |        | Phase B            |  |  |  |
|                                                                                  | SG06   | Phase B            |  |  |  |
|                                                                                  | SG11   | Phase B            |  |  |  |
| Parcel D                                                                         | SG12   | Phase B            |  |  |  |
|                                                                                  | SG13   | Phase B            |  |  |  |
|                                                                                  | SG14   | Phase B            |  |  |  |
|                                                                                  | SG16   | Phase B            |  |  |  |
|                                                                                  | SG17   | Phase B            |  |  |  |
|                                                                                  | SG18   | Phase B            |  |  |  |
|                                                                                  | F-SG-4 | ENVIRON (proposed) |  |  |  |
|                                                                                  | E-SG-5 | ENVIRON (proposed) |  |  |  |
|                                                                                  | E-SG-6 | ENVIRON (proposed) |  |  |  |
|                                                                                  | SG33   | Phase B            |  |  |  |
|                                                                                  | SG34   | Phase B            |  |  |  |
| Parcel F                                                                         | SG39   | Phase B            |  |  |  |
|                                                                                  | SG63   | Phase B            |  |  |  |
|                                                                                  | SG72   | Phase B            |  |  |  |
|                                                                                  | SG73   | Phase B            |  |  |  |
|                                                                                  | SG74   | Phase B            |  |  |  |
|                                                                                  | SG88   | Phase B            |  |  |  |
|                                                                                  | E-SG-7 | ENVIRON (proposed) |  |  |  |
|                                                                                  | E-SG-8 | ENVIRON (proposed) |  |  |  |
| Parcel G                                                                         | SG44   | Phase B            |  |  |  |
|                                                                                  | SG45   | Phase B            |  |  |  |
|                                                                                  | SG64   | Phase B            |  |  |  |
|                                                                                  | SG47   | Phase B            |  |  |  |
|                                                                                  | SG48   | Phase B            |  |  |  |
|                                                                                  | SG49   | Phase B            |  |  |  |
| Parcel H <sup>c</sup>                                                            | SG50   | Phase B            |  |  |  |
|                                                                                  | SG66   | Phase B            |  |  |  |
|                                                                                  | SG67   | Phase B            |  |  |  |
|                                                                                  | SG68   | Phase B            |  |  |  |
|                                                                                  |        |                    |  |  |  |

bgs = below ground surface

<sup>a</sup> Phase B soil gas samples that will be used in support of the vapor intrusion health risk assessment were collected at a depth of 5 feet bgs. All ENVIRON samples will also be collected at 5 feet bgs.

<sup>b</sup> For each Parcel, listed samples include locations within or near the Parcel. Results for sample locations outside a Parcel will be discussed in the HHRA to understand the extent of contamination and may be used in the quantitative evaluation, as appropriate.

<sup>c</sup> No additional samples will be collected in Parcel H because adequate soil gas and groundwater samples exist to characterize the contaminant distribution.

| TABLE 4<br>Exposure Parameters                  |                |                  |        |            |  |  |
|-------------------------------------------------|----------------|------------------|--------|------------|--|--|
| Exposure Factors Units Symbol Commercial Worker |                |                  |        |            |  |  |
|                                                 |                |                  | Value  | Source     |  |  |
| Receptor-Specific Exposure Factors              |                |                  |        |            |  |  |
| Target Risk                                     | unitless       | TR               | 1E-06  |            |  |  |
| Target Hazard Quotient                          | unitless       | THQ              | 1.0    |            |  |  |
| Exposure Assumptions                            |                |                  |        |            |  |  |
| Exposure Frequency                              | days/year      | EF               | 250    | USEPA 2002 |  |  |
| Exposure Time <sup>a</sup>                      | hours/24 hours | ET               | 8      | USEPA 2002 |  |  |
| Exposure Duration                               | years          | ED               | 25     | USEPA 2002 |  |  |
| Averaging Time for Cancinogens                  | days           | AT <sub>c</sub>  | 25,550 | USEPA 2002 |  |  |
| Averaging Time for Noncarcinogens               | days           | AT <sub>nc</sub> | 9,125  | USEPA 2002 |  |  |

-- = not applicable

USEPA = United States Environmental Protection Agency

kg = kilograms

<sup>a</sup> It is assumed that long-term indoor commercial workers work 8 hours per workday.

# **References:**

USEPA, 2002b. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Emergency and Remedial Response. December.

USEPA, 2009. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment, Final). January.

 TABLE 5

 Johnson and Ettinger Modeling Parameters for the Study Area

| Parameter                                                  | Value              | Unite                                           | Poforonco/Pationalo                                                                                                                                                                                                                                                                      |  |  |
|------------------------------------------------------------|--------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Falaliletei                                                | value              | Units                                           | Reference/Rationale                                                                                                                                                                                                                                                                      |  |  |
|                                                            | -                  | <i>t</i> i                                      |                                                                                                                                                                                                                                                                                          |  |  |
| Soil gas sampling depth                                    | 5                  | ft                                              | Site-specific                                                                                                                                                                                                                                                                            |  |  |
| Groundwater depth                                          | Parcel<br>Specific | ft                                              | See Table 6                                                                                                                                                                                                                                                                              |  |  |
| Average soil temperature                                   | 17                 | Celsius                                         | Site-specific (Figure 8, USEPA 2004, p. 48). The average groundwater temperature in the Henderson, Nevada area.                                                                                                                                                                          |  |  |
| USDA soil type in layer A                                  | Loamy<br>Sand      |                                                 | Based on laboratory-measured grain size distributions of 15 samples collected across the Site in 2009. The normalized weight percent of sand, silt, and clay was plotted on the U.S. Soil Conservation Service Classification Chart provided in the J&E Model User's Guide (USEPA 2004). |  |  |
| Thickness of soil layer (soil gas)                         | 5                  | ft                                              | Site-specific                                                                                                                                                                                                                                                                            |  |  |
| Thickness of soil layer<br>(groundwater)                   | Parcel<br>Specific | ft                                              | See depth to groundwater in Table 6                                                                                                                                                                                                                                                      |  |  |
| Dry bulk density                                           | 1.703              | g/cm <sup>3</sup>                               | Site-specific. The arithmetic mean of 15 soil samples collected across the Site in 2009 and an additional sample collected in 2008.                                                                                                                                                      |  |  |
| Grain density                                              | 2.686              | g/cm <sup>3</sup>                               | Site-specific. The arithmetic mean of 15 soil samples collected across the Site in 2009 and an additional sample collected in 2008.                                                                                                                                                      |  |  |
| Total porosity                                             | 0.366              | unitless                                        | Site-specific. The arithmetic mean of 15 soil samples collected across the Site in 2009.                                                                                                                                                                                                 |  |  |
| Water-filled porosity                                      | 0.154              | unitless                                        | Site-specific. The arithmetic mean of 15 soil samples collected across the Site in 2009 and an additional sample collected in 2008.                                                                                                                                                      |  |  |
| USDA soil type above water table (Alluvium)                | Loamy<br>Sand      |                                                 | Based on laboratory-measured grain size distributions of 15 samples collected across the Site in 2009. The normalized weight percent of sand, silt, and clay was plotted on the U.S. Soil Conservation Service Classification Chart provided in the J&E Model User's Guide (USEPA 2004). |  |  |
| Capillary fringe thickness                                 | 18.75              | cm                                              | Default value for loamy sand (USEPA 2004)                                                                                                                                                                                                                                                |  |  |
| Capillary fringe total porosity                            | 0.366              | unitless                                        | Site-specific. The arithmetic mean of 15 soil samples collected across the Site in 2009.                                                                                                                                                                                                 |  |  |
| Capillary fringe water-filled porosity                     | 0.303              | unitless                                        | Default value for loamy sand (USEPA 2004)                                                                                                                                                                                                                                                |  |  |
| Surface Barrier Parameters - Indoor Air So                 | enarios            |                                                 |                                                                                                                                                                                                                                                                                          |  |  |
| Thickness of foundation                                    | 10                 | cm                                              | Model default (USEPA 2004)                                                                                                                                                                                                                                                               |  |  |
| Depth below grade to bottom of floor                       | 15                 | cm                                              | Model default, slab on grade (USEPA 2004)                                                                                                                                                                                                                                                |  |  |
| Foundation crack ratio                                     | 0.005              | unitless                                        | Model default (CalEPA 2011)                                                                                                                                                                                                                                                              |  |  |
| Average vapor flow rate into building (Q <sub>soil</sub> ) | 5                  | L/min                                           | Model default (USEPA 2004)                                                                                                                                                                                                                                                               |  |  |
| Air Dispersion Parameters - Indoor Scenar                  | rios               |                                                 |                                                                                                                                                                                                                                                                                          |  |  |
| Air exchange rate (AER)                                    | 1                  | 1/hr                                            | Cal/EPA (2011). Recommended value for general offices within<br>commercial buildings                                                                                                                                                                                                     |  |  |
| Length of building                                         | 1000               | cm                                              | Model default (USEPA 2004)                                                                                                                                                                                                                                                               |  |  |
| Width of building                                          | 1000               | cm                                              | Model default (USEPA 2004)                                                                                                                                                                                                                                                               |  |  |
| Enclosed space height                                      | 300                | cm                                              | Conservative assumption.                                                                                                                                                                                                                                                                 |  |  |
| Air Dispersion Parameters - Outdoor Scenarios              |                    |                                                 |                                                                                                                                                                                                                                                                                          |  |  |
| Q/C <sub>vol</sub>                                         | Parcel<br>Specific | (g/m <sup>2</sup> -s per<br>kg/m <sup>3</sup> ) | See Table 6                                                                                                                                                                                                                                                                              |  |  |

| bgs = below ground surface                            | cm = centimeter |
|-------------------------------------------------------|-----------------|
| Cal/EPA = California Environmental Protection Agency  | ft = feet       |
| HHRA = Human Health Risk Assessment                   | g = gram        |
| J&E = Johnson & Ettinger                              | hr = hour       |
| NA = not applicable                                   | L = liter       |
| Q/C <sub>vol</sub> = outdoor air dispersion factor    | m = meter       |
| U.S. = United States                                  | min = minute    |
| USDA = United States Department of Agriculture        | s = second      |
| USEPA = United States Environmental Protection Agency |                 |

# TABLE 5 Johnson and Ettinger Modeling Parameters for the Study Area

<sup>a</sup> A few soil gas samples were collected at 20 feet below ground surface; however, a soil gas sampling depth of 5 feet was assumed for these samples, which is a health-protective assumption, for expediency.

#### References:

- Cal/EPA, 2011. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance). Final. Department of Toxic Substances Control. October.
- USEPA, 2002b. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Emergency and Remedial Response. December.
- USEPA, 2004. User's Guide for Evaluating Subsurface Vapor Intrusion Into Buildings. Office of Emergency and Remedial Response. February 22.

# TABLE 6 Parcel-Specific Johnson and Ettinger Modeling Parameters

| Parcel   | Area (acres) | Q/C <sub>vol</sub><br>(g/m <sup>2</sup> -s per kg/m <sup>3</sup> ) <sup>a</sup> | Depth to<br>Groundwater (ft) <sup>b</sup> |
|----------|--------------|---------------------------------------------------------------------------------|-------------------------------------------|
| Parcel C | 20.9         | 45.3                                                                            | 25                                        |
| Parcel D | 24.3         | 44.4                                                                            | 30                                        |
| Parcel F | 7.1          | 53.4                                                                            | 35                                        |
| Parcel G | 2.8          | 61.9                                                                            | 40                                        |
| Parcel H | 26.3         | 43.9                                                                            | 40                                        |

Notes:

g = gramft = feet kg = kilogram m = meter  $Q/C_{vol}$  = site-specific dispersion factor USEPA = United States Environmental Protection Agency

<sup>a</sup> The following equation was used to calculate  $Q/C_{vol}$  using the constants for the Las Vegas, Nevada meterological station (USEPA 2002b).

 $Q/C_{vol} = A \times exp\left[\frac{(\ln A_{site} - B)^2}{C}\right]$ A = 13.3093 B = 19.8387 C = 230.1652 A<sub>site</sub> = Area of parcel in acres

<sup>b</sup> These values also represent the thickness of the soil layer.

# Reference:

USEPA, 2002b. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. December.

| TABLE 7         Soil Properties Data <sup>a</sup> |            |                                          |                                                       |                                                    |                                                          |            |  |  |  |  |  |  |  |
|---------------------------------------------------|------------|------------------------------------------|-------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|------------|--|--|--|--|--|--|--|
| Sample ID                                         | Depth (ft) | Volumetric Water<br>Content <sup>b</sup> | Dry Bulk Density <sup>c</sup><br>(g/cm <sup>3</sup> ) | Grain Density <sup>d</sup><br>(g/cm <sup>3</sup> ) | Soil Total Porosity <sup>e</sup><br>(g/cm <sup>3</sup> ) | Soil Type  |  |  |  |  |  |  |  |
| SA56-10BSPLP                                      | 10         | 0.134                                    | 1.689                                                 | 2.719                                              | 0.379                                                    | Loamy Sand |  |  |  |  |  |  |  |
| RSAM3-10BSPLP                                     | 10         | 0.145                                    | 1.593                                                 | 2.674                                              | 0.404                                                    | Loamy Sand |  |  |  |  |  |  |  |
| SA166-10BSPLP                                     | 10         | 0.100                                    | 1.721                                                 | 2.681                                              | 0.358                                                    | Loamy Sand |  |  |  |  |  |  |  |
| SA182-10BSPLP                                     | 10         | 0.182                                    | 1.740                                                 | 2.601                                              | 0.331                                                    | Sandy Loam |  |  |  |  |  |  |  |
| RSAJ3-10BSPLP                                     | 10         | 0.154                                    | 1.770                                                 | 2.682                                              | 0.340                                                    | Loamy Sand |  |  |  |  |  |  |  |
| RSAI7-10B                                         | 10         | 0.138                                    | 1.661                                                 | 2.682                                              | 0.381                                                    | Sand       |  |  |  |  |  |  |  |
| SA34-10BSPLP                                      | 10         | 0.169                                    | 1.738                                                 | 2.696                                              | 0.355                                                    | Loamy Sand |  |  |  |  |  |  |  |
| SA52-15BSPLP                                      | 15         | 0.239                                    | 1.405                                                 | 2.710                                              | 0.481                                                    | Sand       |  |  |  |  |  |  |  |
| RSAQ8-10BSPLP                                     | 10         | 0.148                                    | 1.697                                                 | 2.695                                              | 0.370                                                    | Sand       |  |  |  |  |  |  |  |
| RSAN8-10BSPLP                                     | 10         | 0.189                                    | 1.679                                                 | 2.683                                              | 0.374                                                    | Loamy Sand |  |  |  |  |  |  |  |
| RSAQ4-10BSPLP                                     | 10         | 0.141                                    | 1.841                                                 | 2.705                                              | 0.319                                                    | Sand       |  |  |  |  |  |  |  |
| SA148-10BSPLP                                     | 10         | 0.119                                    | 1.762                                                 | 2.732                                              | 0.355                                                    | Sand       |  |  |  |  |  |  |  |
| SA30-9BSPLP                                       | 9          | 0.160                                    | 1.805                                                 | 2.711                                              | 0.334                                                    | Sand       |  |  |  |  |  |  |  |
| SA128-10BSPLP                                     | 10         | 0.156                                    | 1.654                                                 | 2.654                                              | 0.377                                                    | Loamy Sand |  |  |  |  |  |  |  |
| SA102-10BSPLP                                     | 10         | 0.135                                    | 1.769                                                 | 2.696                                              | 0.344                                                    | Sand       |  |  |  |  |  |  |  |
| SA64-10BSPLP                                      | 10         | 0.148                                    | 1.717                                                 | 2.651                                              | 0.352                                                    | Sand       |  |  |  |  |  |  |  |
| Mean                                              | 10.25      | 0.154                                    | 1.703                                                 | 2.686                                              | 0.366                                                    | Loamy Sand |  |  |  |  |  |  |  |
| Min                                               | 9          | 0.100                                    | 1.405                                                 | 2.601                                              | 0.319                                                    | NA         |  |  |  |  |  |  |  |
| Max                                               | 15         | 0.239                                    | 1.841                                                 | 2.732                                              | 0.481                                                    | NA         |  |  |  |  |  |  |  |
| Median                                            | 10         | 0.148                                    | 1.719                                                 | 2.689                                              | 0.357                                                    | NA         |  |  |  |  |  |  |  |

 $g/cm^3$  = grams per cubic centimeter NA = not applicable

<sup>a</sup> The soil properties were reported in Northgate (2010d).

<sup>b</sup> As measured according to ASTM D 2216.

<sup>c</sup> As measured according to ASTM D 2937.

<sup>d</sup> As measured according to ASTM D 854.

<sup>e</sup> Calculated from dry bulk density and grain density.

# References:

Northgate Environmental Management, Inc. (Northgate), 2010d. Site-Wide Soil Gas Human Health Risk Assessment, Tronox LLC, Henderson, Nevada. November 22.

# Figures













H:\LePetomane\NERT\VI Risk Assessment\HRA Work Plan\Figures\Fig5\_ParcelsCSM

This CSM, is based off of the preliminary CSM submitted as part of the Remedial Investigation and Feasibility Study (RI/FS) Work Plan (ENVIRON 2012d) for the entire Site. Highlighted portions of this CSM indicate that this component of the CSM applies to Parcels A, B, C, D, F, G, and H, while the portions not highlighted apply to the remainder of the Site. The preliminary CSM, including the identification of sources, release mechanisms, exposure media, exposure routes, and receptors is based on current understanding of on-site and off-site environmental conditions. The CSM will be revised, as appropriate, based on further evaluation of available on-site and off-site characterization data and additional environmental data collected during the RI.

# EXPLANATION:

- a C1, C3, C4 = Category 1, 3, and 4 soils, where C1 = soils 0 10 feet bgs in ECAs; C3 = soils 0 10 feet bgs with concentrations >BCLs; C4 = soils 0 10 feet bgs not previously sampled or available information considered inadequate. C2 soils (not shown in the CSM) are soils 0 10 feet bgs with concentrations <BCLs.
- b Not evaluated, consistent with USEPA 2002.
- c --Parcels A and B: For the vapor intrusion (indoor air) pathway, a separate screening-level HRA has been conducted for these Parcels, as presented in the *Revised Technical Memorandum: Screening-Level Indoor Air Health Risk Assessment* (Northgate 2010c; NDEP commented on May 23, 2011).

--Parcels C, D, F, G, and H: This Work Plan addresses a sampling data gap noted by NDEP in their comment letter of August 7, 2012. This HRA will be prepared on a timeline separate from that for the Facility Area RI and Baseline HRA (BHRA).

- --Site-Wide Soil Gas HRA: Volatilization into indoor/ambient air was evaluated in the Site-Wide Soil Gas Human Health Risk Assessment (Northgate 2010d, not reviewed by NDEP).
- d Inhalation of VOCs will be higher for the indoor air pathway; inhalation of indoor air serves as an upper-bound estimate of potential exposures to VOCs in ambient air.
- e Groundwater is not and will not be used as a source of drinking water. Incidental ingestion and dermal contact with groundwater by on-site construction workers are not considered complete exposure pathways because depth to groundwater is >20 ft bgs. For off-site workers, depth to groundwater in some areas is <20 ft; however, the intermittent exposures of a construction worker to groundwater would be negligible.
- f Workers at the groundwater extraction and treatment facilities could potentially be exposed to contaminants in extracted groundwater. However, potential exposures of these workers will not be evaluated quantitatively in the BHRA as the workers are regulated by the Occupational Safety and Health Administration (OSHA) and a comprehensive worker health and safety plan (HASP) is in place to mitigate potential exposures.
- g There are two groundwater extraction treatment systems on-site. The groundwater barrier wall and extraction treatment system located north of the former Beta Ditch and upgradient of Parcels C and D treats for perchlorate and hexavalent chromium, and the Olin groundwater treatment system, a portion of which is located in Parcel E, treats for VOCs.

H:\LePetomane\NERT\VI Risk Assessment\HRA Work Plan\Figures\Fig5\_ParcelsCSM

- -- Incomplete pathway
- Complete or potentially complete exposure pathway and/or exposures evaluated for other receptors serve as an upper-bound estimate.
- Complete, but negligible exposure pathway; pathway will be discussed qualitatively.
- ECA Excavation Control Area
- SMP Potential exposures (direct-contact pathways) will be managed through the Site Management Plan (SMP).





Appendix A Soil Boring Logs

"If the page filmed is not as legible as. this label, it is due to the quality of the original."

Geraghty & Miller, Inc.

.

#### WELL LOG

Well No.: H-23

Project: Stauffer Chemical Company

#### Description

Sand, silty to clayey, grayish-brown very fine to very coarse (poorly sorted), and gravel, pebbles, cobbles and boulders, rounded to subangular; also with layers of caliche and caliche-cemented sand and gravel Notes: layers of cemented sand and gravel

27'-29', 31'-34', 40'-41'; organic odor in mud at 37'

Clay, silty, to silt, clayey, light brown with traces of sand and gravel in matrix; also, with occasional thin layers of sand, reworked caliche, and caliche (Muddy Creek Formation)

Notes: thin layers of white silt and clay (remorked caliche) at 54'-55', 87', 96'. Date Completed: 1/31/80

Location: Henderson, Nevada

Depth Below Land Surface (feet)

0 - 421

421 - 101

## LITHOLOGY LOG

## FOR HENDERSON

### WELL NO. H-28

## Description

π.

| Depth Below  |
|--------------|
| Land Surface |
| (feet)       |
|              |

 $0 - 44\frac{1}{2}$ 

· • . • . •

Sand, silty to clayey, grayish-brown very fine to very coarse (poorly sorted), and gravel, pebbles, cobbles and boulders, rounded to subangular; also with layers of caliche and caliche-cemented sand and gravel

.

Clay, silty, to silt, clayey, light brown  $44^{1}_{2}$  - 51 with traces of sand and gravel in matrix; also, with occasional thin layers of sand, reworked caliche, and caliche (Muddy Creek Formation)

Data from Geraghty and Miller, Inc., October, 1980.

SOIL BORING LOG KM-5655-B

|      | KE<br>Hy  | RR-McGEE CORPORATION<br>drology Dept S&EA Division                                |                                                                                                                 | LLC           |         | HENDEKSON |                | N                                                                                                              |      |                 | IG<br>ER M106 |          |                                          |
|------|-----------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|---------|-----------|----------------|----------------------------------------------------------------------------------------------------------------|------|-----------------|---------------|----------|------------------------------------------|
| DE   | РТН       |                                                                                   |                                                                                                                 | ₩<br>¥.       | UNIFIED | BLOWS     |                |                                                                                                                | sc   |                 |               |          |                                          |
| F    | N<br>EET  | LITHOLOGIC DESCRIPTIO                                                             | N                                                                                                               | GRAPI         | FIELD   | PER<br>6' | PID<br>(ppm)   | NO.                                                                                                            | YPE  | DEPT            | н             | REC.     | REMARKS OR<br>FIELD OBSERVATIONS         |
|      |           | 0-4 Gravel, sdu                                                                   | 1,                                                                                                              | 0.0.0         | CLAJJ.  |           |                |                                                                                                                | -    |                 |               |          |                                          |
|      | _         | 1+ brn (5 YR 5/4). In                                                             | terbels                                                                                                         | 0000          | GP      |           |                |                                                                                                                |      |                 |               |          |                                          |
| 1    | _         | of sdy gravel and grave                                                           | llysd                                                                                                           |               |         |           |                |                                                                                                                |      |                 |               |          | _                                        |
| 14   |           | Sd 40-60%, vf-vcg,                                                                | A-SR,                                                                                                           | à.:           |         |           |                |                                                                                                                |      |                 |               |          | an a |
|      | -         | Gravel 40-60, pea size                                                            | もとり                                                                                                             | .0 0          | c. 1    |           |                |                                                                                                                |      |                 |               |          |                                          |
|      |           | clasts. St. caliche ring                                                          | ds on                                                                                                           |               | JUN     |           |                |                                                                                                                |      |                 |               |          |                                          |
| 9    |           | 4-9 SAND arous                                                                    |                                                                                                                 | 0.0           |         |           |                |                                                                                                                |      |                 |               |          |                                          |
| '    |           | Horn, com calichifi                                                               | cation                                                                                                          | 00            |         |           |                |                                                                                                                |      |                 |               |          |                                          |
|      |           | vf-vL, A-SR, w/10-                                                                | Z0%                                                                                                             |               |         |           |                |                                                                                                                |      |                 |               |          | _                                        |
|      |           | Volc peagravel.                                                                   | . )                                                                                                             |               |         |           |                |                                                                                                                |      |                 |               |          | _                                        |
|      | _         | <u>T-20</u> SAND, gravi                                                           | ellyf                                                                                                           | 10.1:         | GM      |           |                |                                                                                                                |      |                 |               |          |                                          |
| 15   | _         | siltin matrix sd vi                                                               |                                                                                                                 | 0.01          |         |           |                |                                                                                                                |      |                 |               |          | DAMP @ 15'                               |
|      |           | A-SR, 25-35% Dea 0                                                                | vaniel                                                                                                          | 0.0           |         |           |                |                                                                                                                |      |                 |               |          | _                                        |
|      | _         | volc, up to Z" Mo                                                                 | d-com                                                                                                           | 00            |         |           |                |                                                                                                                |      |                 |               |          | -                                        |
| 2.   |           | caliche rinds                                                                     |                                                                                                                 | 0.            |         |           |                |                                                                                                                |      |                 |               |          |                                          |
| ٢    |           | 20-28 SILT, Hb                                                                    | rn                                                                                                              | ÎXÎ           |         |           | <u></u>        |                                                                                                                |      | Automatic and a |               | -        |                                          |
|      | _         | (5YR5/4) w/mmor 1                                                                 | tary                                                                                                            |               |         |           |                |                                                                                                                |      |                 |               |          | -                                        |
|      | -         | oran (INVR 8/4). Non.                                                             | -calcal                                                                                                         |               |         |           |                |                                                                                                                |      |                 |               |          |                                          |
| zs   |           | eous. Tr. vf-fg sd.                                                               |                                                                                                                 |               | ML      |           |                |                                                                                                                |      |                 |               |          | —                                        |
|      |           | 5-10% clay in matri                                                               | ¥                                                                                                               |               |         |           |                |                                                                                                                |      |                 |               |          |                                          |
|      |           |                                                                                   |                                                                                                                 | N             |         |           |                |                                                                                                                |      |                 |               |          | -                                        |
| Z    | 5 -       | 28-30 SILT, calcar                                                                | eous,                                                                                                           |               |         |           | V              | مر المراجع المراجع ( من عامل المراجع المراجع ) ( من عالم المراجع ) ( من عالم المراجع ) ( من عالم المراجع ) ( م |      | ******          |               | ~        |                                          |
| 30   | •         | Hbrn. com. v. thinp                                                               | arallel.                                                                                                        |               | ML      |           |                |                                                                                                                |      |                 |               |          |                                          |
|      |           | Encareous laminae                                                                 | , , , , , , , , , , , , , , , , , , ,                                                                           | : : : ·       |         |           |                |                                                                                                                |      |                 |               |          | WET @ 301 -                              |
|      |           | SAND, SILL, Say al                                                                | bedded,                                                                                                         |               | NAL /   |           | <u> </u>       |                                                                                                                |      |                 |               |          | -                                        |
|      |           | 14 brn . SLT : SD = 70                                                            | :30.                                                                                                            | ·             | "7      |           |                |                                                                                                                |      |                 |               |          |                                          |
| ىد   | _         | vfg, A-5A sd, 20%, in                                                             | SILT                                                                                                            | ·   •   •   • | SM      |           |                |                                                                                                                |      |                 |               |          |                                          |
|      |           | 30-40%, SILT in 5d                                                                |                                                                                                                 |               |         |           |                |                                                                                                                |      |                 |               |          | _                                        |
| 3    | 8-        |                                                                                   | 1940 - Maria Maria, 1940 - Maria Mandrida, 1940 - Maria Mandrida, 1940 - Maria Mandrida, 1940 - Maria Mandrida, |               |         |           |                |                                                                                                                |      |                 |               |          | -                                        |
|      | _         | 58-42 SAND, S<br>1+ brn, Vfa w/ 30-6                                              | 1+1/1                                                                                                           |               | SM      |           |                |                                                                                                                |      |                 |               |          |                                          |
|      | V         | Water Table (24 Hour)                                                             |                                                                                                                 |               |         | G         | RAPHIC LO      | DG LEG                                                                                                         | EN   | D               | DATE D        | RILLED   | PAGE                                     |
|      | <u></u>   | Water Table (Time of Boring)                                                      | ,                                                                                                               |               |         |           | ΊΔΥ            | DI<br>FI                                                                                                       | EBR  |                 | Z ·           |          | 21 1 of Z                                |
| z    | NO        | <ul> <li>Identifies Sample by Number</li> <li>Sample Collection Method</li> </ul> | m)                                                                                                              |               |         | Ш.        | нт             | HIC                                                                                                            | GHLY | CUDEAT          | F             | ERC      | LUSSION                                  |
| ATIO | $\nabla$  | SPUT.                                                                             |                                                                                                                 |               |         |           | AND            |                                                                                                                |      | DY              | RILLE         |          | ΙĒ                                       |
| PLAN | $\square$ | BARREL                                                                            |                                                                                                                 | ORE           |         |           |                |                                                                                                                | LAY  | EY              | OGGE          | D BY     |                                          |
| Ĕ    |           | THIN-<br>WALLED CONTINUOUS                                                        |                                                                                                                 | )             | ,       |           | JETY           | S/                                                                                                             | anc  | ,<br>E          | XISTIN        |          | KKISH<br>ELEVATION (FT. AMSL)            |
|      |           | TUBE                                                                              |                                                                                                                 | COVER         | r       |           | CLAY<br>CLAYFY |                                                                                                                |      |                 | 0.0           |          |                                          |
|      | RE        | C. Actual Length of Recovered S                                                   | nple<br>ample in                                                                                                | Feet          |         | KI S      | ILT            |                                                                                                                |      | ·               | .OCATI        | ION OR G | RID COORDINATES                          |
|      |           |                                                                                   |                                                                                                                 |               |         |           |                |                                                                                                                |      | l               |               |          |                                          |

| SO      | LB               | DRING LOG KM-5655-B                                                               |              |               |                          |                    |              |       |                |           |               |                                  |
|---------|------------------|-----------------------------------------------------------------------------------|--------------|---------------|--------------------------|--------------------|--------------|-------|----------------|-----------|---------------|----------------------------------|
| Γ       | KE               | RR-McGEE CORPORATION                                                              | KM SUBSIDI   | ARY           |                          | -                  |              |       |                |           | BORIN         | G                                |
| -       | пу               | arology Dept S&EA Division                                                        | KM (         |               |                          |                    | Hend         | ers   | ar             | N NI      |               | ER M-106                         |
| DE<br>F | PTH<br>IN<br>EET | LITHOLOGIC DESCRIPTIO                                                             | N            | RAPHIC<br>LOG | UNIFIED<br>SOIL<br>FIELD | BLOWS<br>PER<br>6' | PID<br>(ppm) | NO.   | Se<br>BE       | OIL SAN   | H REC         | REMARKS OR<br>FIELD OBSERVATIONS |
|         |                  | SI. Calcareous                                                                    |              | <u>.</u>      | CLASS.                   |                    |              |       | ļŕ-            |           |               |                                  |
| 4       | 2 -              |                                                                                   |              | <u>.</u>      | SM                       |                    |              |       |                |           |               | -                                |
|         | _                | 42-52 SILT, 1+6                                                                   | rn.w         | 41            | •                        |                    |              |       |                |           |               | _                                |
|         | , -              | 10.% clary and 10%                                                                | v fg sd      | ╋ <u>╋</u>    |                          |                    |              |       |                |           |               | _                                |
| 14      | ·                |                                                                                   | -            | ΗŅ.           |                          |                    |              |       |                |           |               |                                  |
|         |                  |                                                                                   |              | ┿╃Т           | ML                       |                    |              |       |                |           |               | -                                |
|         |                  | 42-47 mod calcar                                                                  | cong         | IN            |                          |                    |              |       |                |           |               | -                                |
|         |                  | H. gryoran (ovr)                                                                  | 8/4)         |               |                          |                    |              |       |                |           |               | _                                |
|         | -                |                                                                                   |              | N             |                          |                    |              |       | X              | 51.5      | . 100%        |                                  |
|         | _                |                                                                                   |              |               |                          |                    |              |       |                |           |               |                                  |
|         | -                | 52-55 SILT, Sdy                                                                   | , 1+         |               | MI                       |                    |              |       |                |           |               |                                  |
| 55      |                  | brn, 20-30% vfg                                                                   | sd.          |               | · · ·                    |                    |              |       |                |           |               |                                  |
|         | -                | 55-64' SAND, SI                                                                   | +7.          |               |                          |                    |              |       |                |           |               |                                  |
|         | -                | It brn and paleor                                                                 | an           |               |                          |                    |              |       |                |           |               |                                  |
|         | -                | (IDYR7/2) where a                                                                 | calcar-      |               | SM                       |                    |              |       |                |           |               |                                  |
| 6       | ? —              | eous. Vfg, A.SA                                                                   | w/           | :<br>: ````   |                          |                    |              |       |                |           |               |                                  |
|         | -                | 30-4070511+ 0 5-10<br>claus                                                       | 10           |               |                          |                    |              |       |                |           |               |                                  |
|         | _                | 58-62 culcarcous                                                                  |              | :::].         |                          |                    |              |       |                |           |               |                                  |
| 6       | 4 -              |                                                                                   |              |               |                          |                    |              |       |                |           |               |                                  |
|         |                  | 64-75 SILT, 50                                                                    | Y.           | ·             |                          |                    |              |       |                |           |               |                                  |
|         |                  | It brn, sl. calcare                                                               | ous.         | . .           |                          |                    |              |       |                |           |               |                                  |
|         | _                | 20-25% vfgsd, 10                                                                  | Zo           | · . ·         |                          |                    |              |       |                |           |               |                                  |
|         |                  | ciay                                                                              |              | · . .         |                          |                    |              |       |                |           |               |                                  |
| 7"      | ,                |                                                                                   |              | •             | ML                       |                    |              |       |                | 70-       | 1007          |                                  |
|         |                  |                                                                                   |              |               |                          |                    |              |       | $\triangle$    |           |               |                                  |
|         |                  |                                                                                   |              | ·[i]·[.       |                          |                    |              |       |                |           |               |                                  |
| _,      | /                |                                                                                   |              | :[.[.]        |                          |                    |              |       |                |           |               |                                  |
| //      |                  | 75-78 SILT, Sdy,                                                                  | 20%/0        | 11-           |                          |                    |              |       |                |           |               |                                  |
|         |                  | vfg, muttled Vipale                                                               | oran         |               | ML                       |                    |              |       |                |           |               |                                  |
| 72      | 5 -              | HOVR 8/2) & yell gry (5                                                           | Y 8/1)       |               |                          |                    |              |       |                |           |               |                                  |
|         |                  | 10-15 1/2 clay in mat                                                             | ·99F·<br>rix |               |                          |                    |              |       |                |           |               | ID @ 78/ -                       |
|         | <b>Y</b>         | Water Table (24 Hour)                                                             |              |               |                          | G                  | RAPHIC LO    | DG LE | GEN            | 1D I      | DATE DRILLED  | PAGE                             |
|         |                  | Water Table (Time of Boring)<br>Photoionization Detection (pp                     | m)           |               |                          |                    | CLAY         |       | DEBR           | RIS T     | C-Z-          |                                  |
| z       | NC<br>TYF        | <ul> <li>Identifies Sample by Number</li> <li>Sample Collection Method</li> </ul> | )            |               |                          | s 🗍                | ILT          | A     | HGHLY<br>DRGAN | IC (PEAT) | Percu         | 2510m                            |
| VIIO    | $\nabla$         |                                                                                   |              |               |                          |                    |              |       | SAN            | DY        |               | 10                               |
| ANA     | X                | SPLIT-<br>BARREL AUGER                                                            | RO<br>CO     | CK<br>RE      |                          | ••••               | AND          |       |                |           | L N Y         | NE                               |
| :XPL    |                  | THIN-                                                                             |              |               |                          |                    | GRAVEL       |       | SAN            | D         | E9 K          | rish                             |
|         |                  | WALLED CONTINUOUS<br>TUBE SAMPLER                                                 |              | COVER         | Y                        |                    | ILTY<br>CLAY |       |                | [         | EXISTING GRAD | E ELEVATION (FT. AMSL)           |
|         | DE               | PTH Depth Top and Bottom of Sar                                                   | nple         |               |                          |                    | LAYEY        |       |                | h         | OCATION OR G  | RID COORDINATES                  |
|         | RE               | C. Actual Length of Recovered S                                                   | ample in I   | Feet          |                          |                    |              |       |                |           |               |                                  |



# SOIL BORING LOG KM-5655-B

|           | KER          | R-McGEE CORPORATION                                          | ARY        |             |         | LOCATION     |                |       | 1 .         | BORI            | BORING NATO7                |                          |  |  |
|-----------|--------------|--------------------------------------------------------------|------------|-------------|---------|--------------|----------------|-------|-------------|-----------------|-----------------------------|--------------------------|--|--|
|           | Hydr         | ology Dept S&EA Division                                     | KM         |             | LC      |              | HENI           | DERS  | 50          | N.N             |                             | BER MID /                |  |  |
| DEF       | тн           |                                                              |            | UHC<br>DHC  | UNIFIED | BLOWS        | PID            |       | so          | DIL SAN         | <b>NPLE</b>                 | DEMARKS OP               |  |  |
| FE        | ÈT           | LITHOLOGIC DESCRIPTIC                                        | N          | LO          | FIELD   | 6'           | (ppm)          | NO.   | ΥPE         | DEPTH           | H REC.                      | FIELD OBSERVATIONS       |  |  |
|           |              | TD 57'                                                       |            |             | CLAJJ.  |              |                |       |             |                 |                             |                          |  |  |
|           |              | 04107 10 101                                                 |            |             |         |              |                |       |             |                 |                             |                          |  |  |
|           | _            | 10/10/15/10                                                  | S          |             |         |              |                |       |             |                 |                             |                          |  |  |
|           | _            | 2 JOIN to                                                    | ~ <i>-</i> |             |         |              |                |       |             |                 |                             |                          |  |  |
|           |              |                                                              | <u> </u>   |             |         |              |                |       |             |                 |                             |                          |  |  |
|           | -            | MIOG Lith IN                                                 | 9          |             |         |              |                |       |             |                 |                             | -                        |  |  |
|           |              |                                                              | 7          |             |         |              |                |       |             |                 |                             |                          |  |  |
|           |              | tor descript                                                 | tion       |             |         |              |                |       |             |                 |                             |                          |  |  |
|           | $\neg$       |                                                              |            |             |         |              |                |       |             |                 |                             |                          |  |  |
|           | -            |                                                              |            |             |         |              |                |       |             |                 |                             | _                        |  |  |
|           |              |                                                              |            |             |         |              |                |       |             |                 |                             | _                        |  |  |
|           | _            |                                                              |            |             |         |              |                |       |             |                 |                             | _                        |  |  |
|           | -            |                                                              |            |             |         |              |                |       |             |                 |                             |                          |  |  |
|           | -            |                                                              |            |             |         |              |                |       |             |                 |                             | _                        |  |  |
|           | -            |                                                              |            |             |         |              |                |       |             |                 |                             | _                        |  |  |
|           |              |                                                              |            |             |         |              |                |       |             |                 |                             | _                        |  |  |
|           | _            |                                                              |            |             |         |              |                |       |             |                 |                             |                          |  |  |
|           | -            |                                                              |            |             |         |              | <u> </u>       |       |             |                 |                             | _                        |  |  |
|           | -            |                                                              |            |             |         |              | -              |       |             |                 |                             |                          |  |  |
|           |              |                                                              |            |             |         | -            |                |       |             |                 |                             |                          |  |  |
|           | _            |                                                              |            |             |         |              |                |       |             |                 |                             |                          |  |  |
|           | _            |                                                              |            |             |         |              |                |       |             |                 |                             | _                        |  |  |
|           |              |                                                              |            |             |         |              |                |       |             |                 |                             | -                        |  |  |
|           | -            |                                                              |            |             |         |              |                |       |             |                 |                             |                          |  |  |
|           |              |                                                              |            |             |         |              |                |       |             |                 |                             |                          |  |  |
|           | _            |                                                              |            |             |         |              |                |       |             |                 |                             |                          |  |  |
|           | -            |                                                              |            |             |         |              |                |       |             |                 |                             | _                        |  |  |
|           | -            |                                                              |            |             |         |              |                |       |             |                 |                             |                          |  |  |
|           |              |                                                              |            |             |         |              |                |       |             |                 |                             | _                        |  |  |
|           | -            |                                                              |            |             |         |              | L              |       |             |                 |                             |                          |  |  |
|           | -            |                                                              |            |             |         |              |                |       |             |                 |                             | _                        |  |  |
|           |              |                                                              |            |             |         |              |                |       |             |                 |                             |                          |  |  |
|           |              |                                                              |            |             |         |              |                |       |             |                 |                             | -                        |  |  |
|           | <b>_</b>     | Water Table (24 Hour)                                        |            | _           |         | G            | RAPHIC L       | OG LE | GE          | ND              | DATE DRILLE                 | PAGE                     |  |  |
|           |              | Water Table (Time of Boring<br>Photoionization Detection (pr | )<br>()    |             |         |              | CLAY           |       | DEB<br>FILL | RIS             | DRILLING ME                 | тнор                     |  |  |
| z         | NO.<br>TYPF  | Identifies Sample by Numbe<br>Sample Collection Method       | r          |             |         |              | SILT           |       | HIGHL       | Y<br>NIC (PEAT) | $\mathcal{P}_{\mathcal{E}}$ | REUSSION                 |  |  |
| IIO       | 17           |                                                              |            |             |         |              |                |       | SAN         | 1DY             | DRILLED BY                  | -AYNE                    |  |  |
| ANA       | Х            | SPLIT-<br>BARREL AUGER                                       | R          | OCK<br>ORE  |         |              | SAND           |       |             |                 | LOGGED BY                   |                          |  |  |
| XPL       |              |                                                              |            |             |         |              | GRAVEL         |       | SAN         |                 | E                           | d Krish                  |  |  |
| <b> "</b> | 2.1<br>(2.1) | WALLED CONTINUOUS<br>TUBE SAMPLER                            |            | o<br>Ecovef | RY      | $\mathbb{Z}$ | SILTY<br>CLAY  |       |             |                 | EXISTING GR                 | ADE ELEVATION (FT. AMSL) |  |  |
|           | DEP          | TH Depth Top and Bottom of Sc                                | بت<br>فسام | <b>r</b> .  |         |              | CLAYEY<br>SILT |       |             |                 | LOCATION O                  | R GRID COORDINATES       |  |  |
|           | RE           | Actual Length of Kecovered                                   | sample in  | reet        |         | 1            |                |       |             |                 |                             |                          |  |  |



| Client: Tronox LLC                |                       |                 |              |                 |                |            |                                                                                                                                                                                                                                      | Boring No. M-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |       |
|-----------------------------------|-----------------------|-----------------|--------------|-----------------|----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|
|                                   |                       | <u>1</u>        |              | Projec          | cation:        | er:        | U4020-023-151                                                                                                                                                                                                                        | boing ito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 1     |
| .                                 | 220 Aveni             | da Acaso        |              | Coord           | inates:        | 267151     | 98.289 N . 828917.057 E NAD83 Elevation: 1877.98 ft msl                                                                                                                                                                              | Sheet: 1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | (     |
| Cam                               | arillo, Cal           | ifornia 93      | 8012         | Drillin         | g Meth         | od:        | Sonic - Continuous Core                                                                                                                                                                                                              | Monitoring Well Installed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes         |       |
|                                   | (805) 38              | 8-3775          |              | Sample          | e Type(s       | s):        | Split Spoon/Core Boring Diameter: 7-inch                                                                                                                                                                                             | Screened Interval: 130-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50 feet     |       |
| Weather: Cold. cloudy, 30s to 40s |                       |                 |              |                 |                |            | Logged By: Ed Krish Dute Time Started. 3/11/06 7.30 and                                                                                                                                                                              | Depth of Boring: 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | feet        |       |
| Drilling (                        | Contracto             | )r:             | Proson       | ic              |                |            | Ground Elevation: Date/Time Finished: 3/11/06                                                                                                                                                                                        | Water Level: 79.4 fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eet         |       |
|                                   |                       | 9               |              |                 | 6              | [          |                                                                                                                                                                                                                                      | P and a second sec |             |       |
| Depth (ft)                        | Sample ID             | Sample Depth (f | Blows per 6" | Recovery (feet) | Headspace (ppn | U.S.C.S    | MATERIAL IDENTIFICATION, color, description of fine<br>clay) description of coarse grained material (sand and<br>mineralogical features, density or stiffness, moisture com                                                          | grained material (silt and<br>gravel), structural or<br>itent, odors or staining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth (Ft.) |       |
|                                   | M-117-0.5<br>M-117-5  | M               |              | 10              | 0.0            | SM<br>(GM) | ALLUVIUM: SILTY/GRAVELY SAND, with silty gravel lenses present, pa<br>20% silt with trace clay, 60 to 80% sand (very fine- to very coarse-grained, an<br>gravel to 2" maximum, (commonly 1/8" to 3/4", subangular to angular, volcar | tle yellow brown (10YR 6/4), 10-<br>agular to subrounded), 10 to 30%<br>nic to basaltic, well graded), dry, no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |       |
| 10                                | M-117-10              | $\ge$           |              | 10              | 0.0            |            | unusual odor of stanning.                                                                                                                                                                                                            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |       |
| 20                                | M-117-20<br>M-117-20D | $\times$        |              | 10              | 0.0            |            |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |       |
| 30                                | M-117-30              | $\times$        |              | 10              | 0.0            |            | From 27 to 40 ft: brown (5YR 5/4).                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |       |
| 40                                | M-117-40              | $\times$        |              | 10              | 0.0            | GM         | ALLUVIUM: SANDY SILTY GRAVEL, brown (5YR 5/4), 25% silt with tra                                                                                                                                                                     | ace clay, 35% sand (very fine- to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40 ft       | Ć     |
| 50                                | M-117-50              | X               |              | 10              | 0.0            | SM         | very coarse-grained, angular to subrounded), 40% gravel to 2 1/2" maximum (<br>subangular), dry, no unusual odor or staining.<br>From 46 to 47 ft: caliche zone at contact with Muddy Creek Fm - First coarse                        | grained facies at 47'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47 ft       |       |
|                                   |                       |                 |              |                 |                | (GM)       | SAND, with silty gravel lenses present, brown (5YR 5/4 & 5/6), 20 to 45% sil<br>(very fine- to very coarse-grained, angular to subrounded), 0 to 20% gravel to<br>3/4", angular to subangular), dry, no unusual odors or staining.   | It with trace clay, 50 to 70% sand<br>1" maximum (commonly 1/8" to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |       |
| 60                                | M-117-60              | $\ge$           |              | 20              | 0.0            |            |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |       |
| 70                                | M-117-70              | $\geq$          |              |                 | 0.0            |            | Damp at 70'<br>From 72 to 74 ft: caliche zone, nodular.                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |       |
| 80                                | M-117-80<br>M-117-80D | $\times$        |              | 17              | 0.0            |            | From 79 to 85 ft: common caliche nodules to 1/2".<br>Wet at 80'<br>From 85 to 100 ft: Sp. (?) caliche nodules to 1/2".                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>    |       |
| 90                                |                       |                 |              | 20              |                |            |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |       |
| 100 Notes:                        |                       | Checked b       | y            | swb             |                | Date:      | 8/10/06                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | (<br> |

|            | 1220 Aven   | ida Acaso       | ,            | Coord           | linates:       | 267150  | 068.012 N, 828036.397 E; NAD 83 Elevation: 1874.53 feet Sheet: 1 of 2                                                                                                                                                                                                                                                                                                                                                                     |             |
|------------|-------------|-----------------|--------------|-----------------|----------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Car        | narillo, Ca | lifornia 9      | 3012         | Drilli          | ng Meth        | od:     | Sonic - Continuous Core Monitoring Well Installed:                                                                                                                                                                                                                                                                                                                                                                                        | Yes         |
|            | (805) 38    | 8-3775          |              | Sampi           | e Type(:       | s):     | Split Spoon/Core Boring Diameter: 7-inch Screened Interval: 138-1                                                                                                                                                                                                                                                                                                                                                                         | 58 feet     |
| Veather.   | Sunny,      | vindy, f        | Os F         | e               |                |         | Eogreed by: En Krish Date: Time Started: 3/8/06 11:45 and Depth of Boring: 163                                                                                                                                                                                                                                                                                                                                                            | feet        |
| Drilling   | Contract    | or:             | Proson       | ic              |                |         | Ground Elevation: Date/Time Finished: 3/8/06 5:05 pm Water Level:                                                                                                                                                                                                                                                                                                                                                                         |             |
| 0_         | 1           | 9               |              | Ī               |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| Depth (ft) | Sample ID   | Sample Depth (f | Blows per 6" | Recovery (feet) | Headspace (ppm | U.S.C.S | MATERIAL IDENTIFICATION, color, description of fine grained material (silt and<br>clay) description of coarse grained material (sand and gravel), structural or<br>mineralogical features, density or stiffness, moisture content, odors or staining.                                                                                                                                                                                     | Depth (Ft.) |
|            | M-118-0.5   | $\geq$          |              | 10              |                | SM      | ALLUVIUM: SILTY SAND and GRAVELY SAND, with silty gravel lenses present, brown (5YR 5/5), 15 to                                                                                                                                                                                                                                                                                                                                           |             |
| . <u></u>  | M-118-5     |                 |              |                 | 24             | (GM)    | 20% silt, 65 to 70% sand (very fine- to very-coarse-grained, angular to subangular), 10 to 20% volcanic gravel to<br>4" maximum (commonly granule to nea gravel 18" to 1/4" angular to subangular), dry no unusual odor or                                                                                                                                                                                                                | <b>,</b>    |
|            | 14-110-5    | $\geq$          |              |                 | 2.4            |         | staining.                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1           |
| 10         | M-118-10    | $\geq$          |              | 10              | 12.8           |         | L                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
|            | {           |                 |              | 1               |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            | 1           |                 |              |                 |                |         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| ·          | 1.          |                 |              |                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| 20         | M-118-20    | $\geq$          |              | 10              | 5.1            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            | M-118-20D   |                 |              |                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            | 1           |                 |              |                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            | M 110 00    |                 |              | 10              | 20             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| 30         | M-118-30    | $\geq$          |              |                 | 2.9            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            |             |                 |              |                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            |             |                 |              |                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            | M-118-40    | $\times$        |              | 10              | 4.7            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| 10         |             |                 |              |                 |                |         | From 40 to 51 ft: very pale orange (10YR 8/2) with common caliche nodules and soft cement in sand matrix,                                                                                                                                                                                                                                                                                                                                 |             |
|            |             |                 |              |                 |                |         | nodules to 2 1/2".                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|            |             |                 |              | ĺ               |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            | M-118-50    | X               |              | 10              |                |         | From 51 to 52 ft: Silty Sand, very fine- to fine-grained, common caliche nodules, possibly reworked Muddy                                                                                                                                                                                                                                                                                                                                 |             |
|            |             |                 |              | 1               |                | 014     | Creek Fm.                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52 ft       |
|            | M-118-60    | X               |              | 7               | 0.4            | (GM)    | SAND T CREEK FM - TRST COASE-GRAINED FACIES: SLIT FAND and SLITTORAVELT<br>SAND, with silty gravel lenses present, brown (5YR 5/5), 10 to 35% silt, 60 to 80% sand (very fine- to very<br>coarse-grained, angular to subrounded), 0 to 15% granules and pea gravel (1/8" to 3/8", angular to subangular),<br>interbedded, dry, no unusual odors or staining.<br>From 52 to 62 ft: Local zones with caliche nodules (1/8" to 1" diameter). |             |
|            |             |                 |              |                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            |             |                 |              | 13              |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| "          |             |                 |              |                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| ,          |             |                 |              |                 |                |         | Down at 751                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
|            |             |                 |              |                 |                |         | inventh er 12                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| io         | M-118-80    | $\ge$           |              | 7               |                |         | From 77 to 80 ft: Local zones with caliche nodules (1/8" to 1" diameter).<br>Wet from 80'                                                                                                                                                                                                                                                                                                                                                 |             |
|            |             |                 |              |                 |                | :       | From 83 to 87 ft: Local zones with caliche nodules (1/8" to 1" diameter).                                                                                                                                                                                                                                                                                                                                                                 |             |
|            |             |                 |              | 1.2             |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            |             |                 |              | 13              |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| °          |             |                 |              |                 |                |         | From 92 to 102 ft: Local zones with caliche nodules (1/8" to 1" diameter).                                                                                                                                                                                                                                                                                                                                                                |             |
|            |             |                 |              | 12              |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            |             |                 |              | 13              |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            |             |                 |              |                 | 3.4            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| Notes      |             |                 |              |                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            |             |                 |              |                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            |             |                 |              |                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            |             |                 |              |                 |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|            |             | Chaolead h      |              | CU D            |                | Datas   | 2/10/04                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |        |         |          |               |                                                                                                                                                        | •                                                                                                                                          |                                        |                                                                                  |                                          |             |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|---------|----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|------------------------------------------|-------------|--|--|--|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mathbf{\Omega}$ | n. Y   | Client  | :        |               | Tronox LLC                                                                                                                                             |                                                                                                                                            |                                        |                                                                                  |                                          |             |  |  |  |
|            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |        | Projec  | t Numb   | er:           | 04020-023-151                                                                                                                                          | 4020-023-151 Boring No. M-12                                                                                                               |                                        |                                                                                  |                                          |             |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |        | Site Lo | ocation: |               | Henderson, NV                                                                                                                                          | lenderson, NV                                                                                                                              |                                        |                                                                                  |                                          |             |  |  |  |
|            | 1220 Aven                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ida Acas          | 0      | Coord   | inates:  | 2671516       | 2.900 N, 828387.792 E, NAD 83                                                                                                                          | Elevation: 1875.81 ft, msl                                                                                                                 |                                        | Sheet: 1 of 2                                                                    |                                          |             |  |  |  |
| Ca         | marillo, Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lifornia 9        | 3012   | Drillin | ng Metho | od:           | Sonic - Continuous Core                                                                                                                                |                                                                                                                                            |                                        | Monitoring Well Insta                                                            | alled:                                   | Yes         |  |  |  |
|            | (805) 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38-3775           |        | Sample  | e Type(s | s):           | Split Spoon/Core                                                                                                                                       | Boring Diameter: 7-inch                                                                                                                    |                                        | Screened Interval:                                                               | 80-10                                    | 0 feet      |  |  |  |
| Weather    | : Windy,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40s to 5          | 8s F   |         |          |               | Logged By: Ed Krish                                                                                                                                    | Date/Time Started: 3/8/06                                                                                                                  | 9:00 an                                | Depth of Boring:                                                                 | 107                                      | feet        |  |  |  |
| Drilling   | Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or:               | Proson | ic      | ·        |               | Ground Elevation:                                                                                                                                      | Date/Time Finished: 3/8/06                                                                                                                 |                                        | Water Level:                                                                     | 79.47                                    | 7           |  |  |  |
| Depth (ft) | (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       ( |                   |        |         |          |               |                                                                                                                                                        |                                                                                                                                            |                                        |                                                                                  |                                          | Depth (Ft.) |  |  |  |
|            | M-120-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |        | 7       |          | SW/SP         | ALLUVIUM: SAND, brown (5YR<br>medium- to very coarse-grained san                                                                                       | 5/4), 20% silt and clay, 60% sa                                                                                                            | nd (very fi<br>granules ar             | ne- to fine-grained with                                                         | common                                   |             |  |  |  |
|            | M-120-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\ge$             | 1      | 3       | 0.0      |               | angular to subangular), gravelly, dry                                                                                                                  | y, no unusual odors or staining.                                                                                                           | ai                                     | - Braver (Time Branned I                                                         | , , , , , , , , , , , , , , , , , , ,    |             |  |  |  |
|            | M-120-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 1      | 12      | 10       |               |                                                                                                                                                        |                                                                                                                                            |                                        |                                                                                  | ×                                        |             |  |  |  |
| 10         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |        |         |          |               |                                                                                                                                                        |                                                                                                                                            |                                        |                                                                                  | <b>*</b>                                 |             |  |  |  |
| 20         | м-120-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\geq$            |        | 10      | 1.8      |               |                                                                                                                                                        |                                                                                                                                            |                                        |                                                                                  |                                          | 21 ft       |  |  |  |
|            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i                 |        |         |          | GM            | ALLUVIUM: SANDY GRAVEL, bro                                                                                                                            | own (5YR 5/4), 20% silt and clay,                                                                                                          | 30% sand (                             | very fine- to very coarse-                                                       | -grained,                                |             |  |  |  |
|            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |        |         |          | GM            | angular to subangular), 50% gravel to                                                                                                                  | 3 1/2" (mostly 1/8" to 1 1/2", angu                                                                                                        | lar to subar                           | igular, basaltic), dry.                                                          |                                          | 26 ft       |  |  |  |
|            | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |        | 3       |          | SM            | ALLUVIUM: SILTY SAND, brown (5YR 5/4), 25 to 35% silt, 75% sand (very fine- to fine-grained with minor                                                 |                                                                                                                                            |                                        |                                                                                  |                                          |             |  |  |  |
| 30         | M-120-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\geq$            |        | 11      | 0.8      |               | medium to coarse-grained sand, ang<br>unusual odors or staining.                                                                                       | gular to subangular), 0 to 5% gra                                                                                                          | nules and g                            | gravel (fine gravel to 1/4                                                       | 4"), dry, no                             |             |  |  |  |
|            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |        |         |          |               | From 31 to 41 ft: moderate calcite c                                                                                                                   | ement.                                                                                                                                     |                                        |                                                                                  |                                          |             |  |  |  |
| 40         | M-120-40<br>M-120-40D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M                 |        | 12      | 2.2      |               |                                                                                                                                                        |                                                                                                                                            |                                        |                                                                                  |                                          |             |  |  |  |
| · —        | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |        |         |          |               | From 48 to 49 ft: caliche zone with i                                                                                                                  | nodules to $3 1/2$ ".                                                                                                                      |                                        |                                                                                  |                                          |             |  |  |  |
| 50         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |        | 12      | 1.6      |               | Contact with Muddy Creek Fm at 49                                                                                                                      | 9 ft                                                                                                                                       |                                        |                                                                                  |                                          | 49 ft       |  |  |  |
|            | M-120-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                 |        | -       |          | SC/SM<br>(GM) | MUDDY CREEK FM - FIRST CO<br>gravel lenses present and varying amo<br>50 to 70% sand (very fine- to fine-gra<br>15% gravel (granules to fine gravel to | ARSE-GRAINED FACIES: SA<br>ounts of silt, clay and/or gravel, b<br>nined, with medium- to very coars<br>o 1", angular to subangular), dry. | AND, with<br>rown (5YR<br>se-grained s | silty gravel lenses prese<br>5/4), 0 to 20% clay, 10<br>sand, angular to subangu | nt, silty<br>to 50% silt,<br>ılar), 0 to |             |  |  |  |
| 60         | M-120-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\times$          |        | 7       | 0.8      |               | From 49 to 57 ft: sand, silty or claye<br>From 57 to 83 ft: sand, gravelly <u>+</u> sil                                                                | y.<br>lt.                                                                                                                                  | 2                                      |                                                                                  |                                          |             |  |  |  |
| 70         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |        | . 15    |          |               |                                                                                                                                                        |                                                                                                                                            |                                        |                                                                                  |                                          |             |  |  |  |
| 80         | M-120-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\times$          |        | 7       | 1.8      |               | Damp at 80'<br>From 83 to 102 ft: sand, silty.<br>Wet at 85'                                                                                           |                                                                                                                                            |                                        |                                                                                  |                                          | . <u> </u>  |  |  |  |
| 90         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |        | 15      |          |               |                                                                                                                                                        |                                                                                                                                            |                                        |                                                                                  |                                          |             |  |  |  |
| 100        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l                 |        | 8       | l        | I             |                                                                                                                                                        | <u> </u>                                                                                                                                   | · .                                    |                                                                                  |                                          |             |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Checked b         | у      | SWB     | I        | Date: 8       | /10/06                                                                                                                                                 |                                                                                                                                            |                                        |                                                                                  |                                          |             |  |  |  |

(

(

(
|    |            |                                              | G                 | R            | Client<br>Projec | :<br>t Numb     | er:         | Tronox LLC         Boring No. M-12                                                                                                                                                                                                                                                                                              | 21          |
|----|------------|----------------------------------------------|-------------------|--------------|------------------|-----------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|    |            |                                              |                   |              | Site Lo          | cation:         |             | Henderson, NV                                                                                                                                                                                                                                                                                                                   |             |
|    | 1          | 1220 Aveni                                   | ida Acaso         | )            | Coord            | inates:         | 267150      | 01.237 N, 827694.571 E, NAD 83 Elevation: 1872.90 ft, msl Sheet: 1 of 2                                                                                                                                                                                                                                                         |             |
|    | Can        | arillo, Cal                                  | lifornia 9        | 3012         | Drillin          | g Metho         | od:         | Sonic Monitoring Well Installed:                                                                                                                                                                                                                                                                                                | Yes         |
|    |            | (805) 38                                     | 8-3775            |              | Sampl            | e Type(s        | <i>.</i> ): | Split Spoon/Core Boring Diameter: 7-inch Screened Interval: 77-9                                                                                                                                                                                                                                                                | 7 feet      |
| Й  | Veather:   | Windy,                                       | cold, 30          | s F          |                  |                 |             | Logged By: Ed Krish Date/Time Started: 3/10/06 7:30 am Depth of Boring: 107                                                                                                                                                                                                                                                     | feet        |
| Ľ  | Drilling ( | Contracto                                    | or:               | Proson       | ic               |                 |             | Ground Elevation: Date/Time Finished: 3/10/06 1:00 pm Water Level: 76.1                                                                                                                                                                                                                                                         |             |
|    | Depth (ft) | Sample ID                                    | Sample Depth (ft) | Blows per 6" | Recovery (feet)  | Headspace (ppm) | U.S.C.S     | MATERIAL IDENTIFICATION, color, description of fine grained material (silt and<br>clay) description of coarse grained material (sand and gravel), structural or<br>mineralogical features, density or stiffness, moisture content, odors or staining.                                                                           | Depth (Ft.) |
|    | 10         | M-121-0.5<br>M-121-5<br>M-121-5D<br>M-121-10 | N N               |              | 10               | 0.0<br>0.0      | SM/GM       | ALLUVIUM: SILTY/GRAVELLY SAND, brown (5YR 5/4), 15% silt with trace clay, 60% sand (very fine- to fine-grained, angular to subangular), 25% volcanic gravel (commonly 1/8" to 3/4", angular to subangular), dry, no unusual odors or staining.                                                                                  |             |
| 2  | 20         | M-121-20                                     | $\times$          |              | 10               | 17.2            |             |                                                                                                                                                                                                                                                                                                                                 |             |
| 3  | 30         | M-121-30                                     |                   |              |                  | 2.0             |             |                                                                                                                                                                                                                                                                                                                                 |             |
| 4  | 40         | M-121-40                                     | X                 |              | 6                | 0.8             |             | From 44 to 45ft: Silty Sand, 75% sand (very fine-grained sand with medium- to coarse-grained sand, angular to subangular), caliche zone with nodules to 4 1/2".                                                                                                                                                                 | 45 ft       |
| 5  | 50         | M-121-50                                     | $\times$          |              | 10               | 3.3             | SM<br>(GM)  | MUDDY CREEK FM - FIRST COARSE-GRAINED FACIES: SILTY SAND and GRAVELLY SAND, with silty gravel lenses present, brown (5YR 5/5), locally very silty to 40% silt with trace clay, gravely zones with 5 to 15% gravel (granules and fine gravel to 1", commonly 1/8" to 1/4", angular to subangular), no unusual odors or staining. |             |
| 6  | 50         | M-121-60                                     | $\times$          |              | 10               | 89.6            |             | From 63 to 67 ft: with 10% granules to 1/4".                                                                                                                                                                                                                                                                                    |             |
| 7  | 70         |                                              |                   |              | 13               | 104.0           |             | From 71 to 72 ft: with 5% granules to 1/8".<br>Damp at 71'                                                                                                                                                                                                                                                                      |             |
| 8  |            | M-121-80                                     | ~                 |              | 17               | 0.0             |             | From 77 to 79 ft: with 5% granules to 1/8".<br>From 80 to 82 ft: with 15% granules, fine gravel to 1".<br>From 82 to 89 ft: with 5% granules to 1/8".<br>Wet at 80'<br>From 89 to 92 ft: with 10% granules to 1/4".                                                                                                             |             |
| 10 |            |                                              |                   |              | 10               |                 |             | From 97 to 102 ft: with 5% granules to 1/8".                                                                                                                                                                                                                                                                                    |             |
|    |            | (                                            | Checked b         | y_ SW        | 13               | I               | Date:       | 8/10/04                                                                                                                                                                                                                                                                                                                         |             |
|    |            |                                              |                   |              |                  |                 |             |                                                                                                                                                                                                                                                                                                                                 |             |



\_ \_ \_ . . . .

WELL CONSTRUCTION DIAGRAM MONITOR WELL M-23

Note: Drilled 8-11-83

#### WELL CONSTRUCTION DIAGRAM WELL M-6A HENDERSON, NV



Date Drilled: 12-18-86 Drilled By: Mooney Drilling Drilling Method: Rotary Wash Logged By: W. M. Goodman, KM

#### WELL CONSTRUCTION DIAGRAM WELL M-7A HENDERSON, NV



Bentonite Logged By: W. M. Goodman, KM

P.A

| 1                  | ERR-McGEE CORPORATION                                                                                                                                        | ARY                             | LOCATION                        |                                 | BORIN                                        | G                                                   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------------------|-----------------------------------------------------|
| Hydr               | ology Dept. Engineering Services CHEMI                                                                                                                       | CAL                             | HENDER                          | SON NV.                         | NUMBI                                        | r M- 92                                             |
| DEPTH              | LITHOLOGIC DESCRIPTION                                                                                                                                       |                                 | PER (ppm)                       |                                 | PLE<br>REC.                                  | REMARKS OR<br>FIELD OBSERVATIONS                    |
| 5 -                | SILTY SAND, LT-MEDIUM BROWN,<br>WE-L GRADED, DRY TO SLIG-TLY<br>MUIST<br>CALICHE-CENSUTED GRAVEL ZONE<br>& 4-6'                                              | SM<br>XX<br>XX                  |                                 |                                 |                                              |                                                     |
| 10 _               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                           | X X<br>X X<br>X X<br>X X<br>X X |                                 |                                 |                                              | EARTHY ON<br>MUSTY ODOR<br>VOTAD DURING<br>DRILLING |
| 15 -               | - SILTY SAND AS ABOVE; BECOMWE<br>- MOX: MATELY MOIST @ 18'                                                                                                  |                                 |                                 |                                 |                                              |                                                     |
| 20-                | - SILTY CLAY, LT. BROWN, SLI. TO<br>- MUYLATLY MOST, STIFF, OCC.<br>- FINE TO MED SAND GRAINS<br>-                                                           | 51111                           |                                 |                                 |                                              |                                                     |
| 30 -<br>35 -<br>40 | SILTY CLAY AS ABOVE;<br>SATURATO, MOD. PLASTIC                                                                                                               | 17+-1-1-1-1715-7775<br>4        |                                 |                                 |                                              |                                                     |
|                    | ✓     Water Table (24 Hour)       ✓     Water Table (Time of Boring)       PID     Photoionization Detection (ppm)       NO.     Identifies Sample by Number |                                 |                                 |                                 | 5/4-                                         | HOD<br>HOD<br>J 57EM ALGER                          |
| (PLANATION         | TYPE Sample Collection Method                                                                                                                                | ROCK<br>CORE                    | SAND<br>GRAVEL                  | SANDY<br>CLAY<br>CLAYEY<br>SAND | DRILLED BY                                   | REED                                                |
| EX                 | THIN<br>WALLED<br>TUBE<br>DEPTH Depth Top and Bottom of Sample<br>REC. Actual Length of Recovered Sample                                                     | NO<br>RECOVERY<br>in Feet       | SILTY<br>CLAY<br>CLAYEY<br>SILT | X (nuishi                       | EXISTING GRA<br>$\sim / \$ 0$<br>LOCATION OF | ADE ELEVATION FT AMSLI                              |

| ب <u>بار م</u><br>امر را <b>با</b> | KERR-McGEE CORPORATION                                                                                            | KM SUBSIDIARY                     |                         |             | LOCATION                                | \$ ()- , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     | BORING                      | G<br>R M-93                                            |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------|-------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------|--------------------------------------------------------|
|                                    | Lighteening berrices                                                                                              | <u> </u>                          | UNIFIED                 | RI OWE      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                             |                                                        |
| DEPT<br>IN<br>FEET                 | H<br>LITHOLOGIC DESCRIPTIC                                                                                        | GRAPH NG<br>LOG                   | SOIL<br>FIELD<br>CLASS. | PER<br>FOOT | PID<br>(ppm)                            | NO. ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DEPTH                                               | REC.                        | REMARKS OR<br>FIELD OBSERVATIONS                       |
| 1                                  | GRNEL FILL                                                                                                        | 11,0                              |                         |             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                             |                                                        |
| 1                                  | - SILTY SAUD LA TO LED. B.<br>- URT, NO, CARL 1-6'                                                                | zown                              | Sm                      |             | 0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                             |                                                        |
| 5 _                                | - SILTY SAND AS ABOVE, GRAVE<br>- COBBULS COMMON FROM 6-1                                                         | 6 ANO                             |                         |             | 0<br>0                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                             | NU HYJROCMBON<br>OOR                                   |
| 10 -                               | - SILTY SAND AS MONE BEC<br>- SUI MOIST; CONICHE CEN<br>- GRONELLY ZONE FROM 14                                   | юмии 6<br>немъку 1 1<br>-15' 111- |                         |             | 00                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                             | -<br>-<br>-                                            |
| 15.                                |                                                                                                                   | XX<br>I                           | Sm                      |             | 9<br>9<br>9                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                             | -<br>-<br>-<br>-                                       |
| 20.                                | -<br>-<br>-                                                                                                       | <b>XX</b><br>1-<br>1-<br>1        | -                       |             | 0000                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                             |                                                        |
| 23.5                               | 5                                                                                                                 | 1                                 |                         |             | 00<br>0<br>0<br>0                       | a de la companya de la<br>Companya de la companya |                                                     |                             |                                                        |
| 30                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                          | 33' <del>1</del> //               |                         |             | 9000                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | an Ad                                               |                             | NO HYDROCARSON<br>0002                                 |
| 40                                 |                                                                                                                   | 7777                              | +11-11                  |             | 00<br>00<br>00                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                             |                                                        |
| Π                                  | ▼ Water Table (24 Hour)                                                                                           |                                   |                         |             | GRAPHIC                                 | LOG LEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GEND                                                | DATE DRILLED                | az 1 of 7                                              |
| NO                                 | √Water Table (Time of BorinPIDPhotoionization Detection (NO.Identifies Sample by NumbTYPESample Collection Method | ng)<br>ppm)<br>ber                |                         |             | CLAY                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEBRIS<br>FILL<br>IIGHLY<br>DRGANIC (PEAT)<br>SANDY | DRILLING MET                | LOW STEM AUGEL                                         |
| PLANATI                            | SPLIT-<br>BARREL AUGER                                                                                            |                                   |                         |             | GRAVEL                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CLAY<br>CLAYEY<br>SAND                              | WE STE<br>LOGGED BY<br>T. R | ED                                                     |
| EX                                 | THIN-<br>WALED<br>TUBE<br>DEPTH Depth Top and Bottom of                                                           | Sample                            | ERY                     |             | SILTY<br>CLAY<br>CLAY<br>CLAYEY<br>SILT | $\mathbf{X}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spurch1                                             | EXISTING GR                 | ADE ELEVATION ET AMSLI<br>1798 '<br>R GRID COORDINATES |
|                                    | REC. Actual Length of Recovere                                                                                    | a sample in ree                   |                         |             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                             |                                                        |

2001 P-A 6/03

|           | KERR-McGEE CORPORATION<br>Hydrology Dept S&EA Division                                                                                                                                 | KM SUBSIDIARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LC                      |           | LOCATION<br>HEN        | DERS   | ONIN                                       | $\mathcal{N}$ | BORIN                             | G<br>ERPC102                                       |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|------------------------|--------|--------------------------------------------|---------------|-----------------------------------|----------------------------------------------------|
| DEP       |                                                                                                                                                                                        | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UNIFIED                 | BLOWS     |                        |        | SOIL SA                                    | MPLE          | <u> </u>                          |                                                    |
| IN<br>FEE | LITHOLOGIC DESCRIPTIO                                                                                                                                                                  | GRAPH<br>LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SOIL<br>FIELD<br>CLASS. | PER<br>6' | PID<br>(ppm)           | NO.    | DEI                                        | ртн           | REC.                              | REMARKS OR<br>FIELD OBSERVATIONS                   |
| B         | - 0-8 GRAVEL.gry<br>- 51. sdy (10-15) m-vc<br>- sl slty (10'/0). Gra<br>- to 4", ave 1/2"                                                                                              | ×. v 00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GP                      |           |                        |        |                                            |               |                                   | start IIAM.<br>finish II:30 am<br>wet@0'<br>WTR@Z' |
|           | - 8-14 SITY SANDES<br>Say GRAVEL, INterb<br>- 8-9 brn, sity (40%),<br>- 9-11 brn sity say am                                                                                           | -t-tsd []0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sm/<br>GM               |           |                        |        |                                            |               |                                   | dry 8-9' _<br>wet@9' _                             |
| 14        | 30% silt, 20% f-c sd, e<br>pengravel to 1"<br>- <u>11-14</u> brn, slty vf-f s<br>14-19 sdy silt and                                                                                    | 507.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ML/<br>SM               |           |                        |        |                                            | -             |                                   |                                                    |
| 22        | SAND, interbedded<br>to Harnish brn. vf.                                                                                                                                               | brn 00000<br>-F sd 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GW                      |           |                        |        |                                            |               |                                   |                                                    |
| z4        | brn, 30-40 % vf-vc, F<br>in gran./peagravel,<br>to 1/2" (vole)<br>ZZ-24 slty SAND, b                                                                                                   | 1-5R 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SM<br>GM/<br>SM         |           |                        |        |                                            |               |                                   | -                                                  |
|           | 24-28 sitt in v4-tg Sa<br>24-28 sitty say GRA<br>dec sitt from 3070@24<br>@28'. brn, f-mw/cg S<br>pragrav/gran to 1/2-3,<br>28-36 say GRAVEL                                           | AVEL , 000<br>AVEL , 000<br>H to 15% 000<br>AVEL , 00 | GW                      |           |                        |        |                                            |               |                                   |                                                    |
| 36        | - brn & whtish. Contain<br>- 15. gravels. 20-30% f<br>- sd in gran/peagrave<br>- 1" w/ up to 6" locally                                                                                | - vc, sR   000<br>- vc, sR   000<br>- 1 ave   000<br>- 1 ave   000<br>00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GMJ<br>SM<br>GW         |           |                        |        |                                            |               |                                   |                                                    |
|           | Water Table (24 Hour)                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | G         | RAPHIC                 | OG LEO | ERRIS                                      |               | -17-                              | 00 1 of Z                                          |
| VATION    | V     Water Table (Time of Boring<br>PID       PID     Photoionization Detection (pp<br>Identifies Sample by Numbe<br>Sample Collection Method       TYPE     Sample Collection Method | n)<br>pm)<br>r<br>ROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |           | CLAY<br>SILT<br>SAND   |        | ILL<br>GHLY<br>RGANKC (PEA<br>ANDY<br>CLAY |               | LING METH<br>PERC<br>LED BY<br>LA | YNE                                                |
| EXPLAN    | THIN.<br>WALLED CONTINUOUS                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |           | GRAVEL<br>SILTY        | )<br>  | AND                                        | EXIS          | ED BY                             | KRISH-<br>DE ELEVATION (FT. AMSL)                  |
|           | DEPTH Depth Top and Bottom of Sc<br>REC. Actual Length of Recovered                                                                                                                    | ample<br>Sample in Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K Y                     |           | CLAY<br>CLAYEY<br>SILT |        |                                            | LOC           | ATION OR                          | GRID COORDINATES                                   |

 $\bigcirc$ 

| KI<br>Hy                                       | ERR-McGEE CORPORATION                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                            |               | •                           |                    | Hend                            | ersa | ۶'n,                                     | NV                              | BORING                              | S<br>R PC 36                                                  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------|--------------------|---------------------------------|------|------------------------------------------|---------------------------------|-------------------------------------|---------------------------------------------------------------|
| DEPTH<br>IN<br>FEET                            | LITHOLOGIC DESCRIPTIC                                                                                                                                                                                                                                                                                                                                                                                                                                         | N                                                                                                                                          | RAPHIC<br>LOG | UNIFIED<br>SOIL<br>FIELD    | BLOWS<br>PER<br>6' | PID<br>(ppm)                    | NO.  | SOIL                                     | . SAMPL                         | E REC.                              | REMARKS OR<br>FIELD OBSERVATIONS                              |
| 5 - 10 - 125 - 15 - 15 - 15 - 15 - 15 - 15 - 1 | SAND, gravelly, f-m<br><u>O-12.5</u> mod yell brn<br>f-m sd (w/minor c-vc) i<br>minor gravel (10-20% o<br>11/4"). Dry. Contains<br>silt. Minor caliche ce<br>@12.5 damp<br>SAND, silty & gravelly<br>12.5-15' 15-20% 1/4"-1/2"<br>and 25-30% silt.<br>SAND, silty, mod yell<br>SAND, silty, mod yell<br>SAND, silty, mod yell brn.<br>w/m, compact, w/z<br>silt<br>SAND, silty, grave<br>f-m w/c-vc and 10-1<br>1/4" gravel. 25-30%. S<br>Minor celiche cemen | (107R5/4)<br>and<br>of 1/4"-<br>10-15%<br>ment<br>10-15%<br>ment<br>11 brn,<br>gravel<br>gravel<br>, vf-f<br>zo70<br>clly,<br>15%<br>silt. |               | SW/<br>GW<br>SM<br>SM<br>SM |                    |                                 |      |                                          | 29-30                           | 100                                 | wet @ 151<br>V<br>Water sample_<br>taken when<br>hole 30'deep |
|                                                | Water Table (24 Hour)           Z         Water Table (Time of Boring           PlD         Photoionization Detection (pl)           OL         Identifies Sample by Numb                                                                                                                                                                                                                                                                                     | g)<br>opm)<br>er                                                                                                                           |               |                             |                    | CLAY                            |      | GENI<br>DEBRI<br>FILL<br>HIGHLY          | D DA <sup>T</sup><br>S Z<br>DRI | TE DRILLED<br>1 Z7 -<br>ILLING METH | 98 1 of Z                                                     |
| EXPLANATION                                    | YPE Sample Collection Method<br>SPLIT-<br>BARREL AUGER                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                            |               | PY                          |                    | SILT<br>SAND<br>GRAVEL<br>SILTY |      | ORGANIC<br>SAND<br>CLAY<br>CLAYE<br>SAND |                                 | ILLED BY                            | Jeber<br>J. Krish<br>De elevation (FT. AMSL)                  |
|                                                | TUBE SAMPLER<br>DEPTH Depth Top and Bottom of S<br>REC. Actual Length of Recovered                                                                                                                                                                                                                                                                                                                                                                            | iample<br>Sample in                                                                                                                        | Feet          | K I                         |                    | CLAY<br>CLAYEY<br>SILT          |      |                                          | LO                              | CATION OR                           | GRID COORDINATES                                              |

|                  | KE             | RR-MCGEE CORPORATION                                                             | KM SUBSIDI         | ARY            |                         |                    | LOCATION       | -         | ``                       | B       | ORIN    | 3           |                | 0              |     |
|------------------|----------------|----------------------------------------------------------------------------------|--------------------|----------------|-------------------------|--------------------|----------------|-----------|--------------------------|---------|---------|-------------|----------------|----------------|-----|
| <u> </u>         | Hyd            | rology Dept S&EA Division                                                        | KMC                |                |                         | -                  | 14500          | erso,     | N, $NV$ .                |         | NUMBE   | <u> </u>    | 3              | 1              |     |
| DEP<br>IN<br>FEI | PTH<br>N<br>ET | LITHOLOGIC DESCRIPTIC                                                            | ол                 | GRAPHIC<br>LOG | SOIL<br>FIELD<br>CLASS. | BLOWS<br>PER<br>6' | PID<br>(ppm)   | NO.       |                          | MPLE    | REC.    | RI<br>FIELD | EMARH<br>OBSER | (S OR<br>VATIO | ONS |
|                  |                | SAND/ SILTY SAND; OCL                                                            | , GRAVEL',         | rig            |                         |                    |                |           |                          |         |         |             |                |                |     |
|                  |                | LT. TAN-BRUWN; WELL-1                                                            | GRADED ;           | 0              |                         |                    |                |           |                          |         |         |             |                |                |     |
|                  | -              | GRAVEL ZONE C 3-4'                                                               |                    | 0,00           |                         |                    |                |           |                          |         |         |             |                |                |     |
| c                | _              |                                                                                  |                    | 6              |                         |                    |                |           |                          |         |         |             |                |                | _   |
|                  |                |                                                                                  |                    |                |                         |                    |                |           |                          |         |         |             |                |                | _   |
|                  | 4              |                                                                                  |                    | q t-           | SM                      |                    | <u> </u>       |           |                          |         |         |             |                |                |     |
|                  | ſ              |                                                                                  |                    |                |                         |                    |                |           |                          |         |         |             |                |                |     |
| 16               |                | SAND AS ABOVE, CRAVEL 2                                                          | unt                | - 0            |                         |                    |                |           |                          |         |         |             |                |                |     |
| 1.0              | _              | C 12. 13                                                                         |                    | it of          |                         |                    |                |           |                          |         |         |             |                |                |     |
|                  | -              |                                                                                  |                    | 0,00           |                         |                    |                |           |                          |         |         |             |                |                |     |
|                  |                |                                                                                  |                    |                |                         |                    |                |           |                          |         |         |             |                |                |     |
| 15               |                |                                                                                  |                    | <u> </u>       |                         |                    |                |           |                          |         |         |             |                |                |     |
|                  | -              |                                                                                  |                    | 6              | $\nabla$                |                    |                |           |                          |         |         |             |                |                |     |
|                  | _              |                                                                                  |                    | 6 0            | +                       | 1                  |                |           |                          |         |         |             |                |                |     |
|                  | ·              | SAND AS ABOUL; GRAY-BI                                                           | rown ;             |                |                         |                    |                |           |                          |         |         |             |                |                |     |
| 20               |                | GROWEL ZONE @ 22'                                                                |                    | 0.             |                         |                    |                |           |                          |         |         |             |                |                |     |
|                  |                |                                                                                  |                    | deg            |                         |                    |                |           |                          |         |         |             |                |                | -   |
|                  |                |                                                                                  |                    |                |                         |                    |                |           |                          |         |         |             |                |                | _   |
|                  | _              |                                                                                  |                    | 0              |                         |                    |                |           |                          |         |         |             |                |                |     |
| 25               | <u>,</u>       |                                                                                  |                    |                |                         |                    |                |           |                          |         |         |             |                |                |     |
| 7-               | ,              |                                                                                  |                    | 10             |                         |                    |                |           |                          |         |         |             |                |                |     |
| -                |                | SANDY SILT; OCC. GRAVE                                                           | ₹L;                |                |                         |                    |                |           |                          |         |         |             |                |                |     |
|                  |                | LT. GRAT-BROWN ; SATUR                                                           | ATK.               | . 0            |                         |                    |                |           |                          |         |         |             |                |                |     |
| 50               | ,              |                                                                                  |                    |                |                         |                    |                |           |                          |         |         |             |                |                |     |
|                  |                |                                                                                  |                    | .   `          | ML                      |                    |                |           |                          |         |         |             |                |                |     |
|                  | _              |                                                                                  |                    |                |                         |                    |                |           |                          |         |         |             |                |                |     |
| 120              |                |                                                                                  |                    |                |                         |                    |                |           |                          |         |         |             |                |                |     |
| 33               |                |                                                                                  |                    | 0 i            |                         |                    | <u> </u>       |           |                          |         |         |             |                |                |     |
|                  |                |                                                                                  |                    |                |                         |                    |                |           |                          |         |         |             |                |                | -   |
|                  |                |                                                                                  |                    |                |                         |                    |                |           |                          |         |         |             |                |                | _   |
|                  |                |                                                                                  |                    |                |                         |                    |                |           |                          |         |         |             |                |                |     |
|                  | <b>_</b>       | Water Table (24 Hour)                                                            |                    |                |                         | G                  | RAPHIC I       |           | GEND                     | 4/2-    | 7/9 x   |             | PAGE           | of Z           | 2   |
|                  |                | Water Table (Time of Boring<br>Photoionization Detection (p                      | g)<br>•pm)         |                |                         |                    | CLAY           | 22        | FILL                     | DRILLIN | G METH  | IOD         | l              |                |     |
| z                | NC<br>TYF      | <ul> <li>Identifies Sample by Numbe</li> <li>Sample Collection Method</li> </ul> | er                 |                |                         |                    | SILT           | $\sum$    | HIGHLY<br>ORGANIC (PEAT) |         | +SA     |             |                |                |     |
| 19               | Γ7             | ·<br>·                                                                           |                    |                |                         |                    | SAND           | $\square$ | SANDY                    |         | 11601   | Λ <u>Λ</u>  | 16             |                |     |
| ANA              | X              | SPLIT-<br>BARREL AUGER                                                           | R                  | OCK<br>ORE     |                         |                    | JANU           |           | CLAYEY                   | LOGGE   | DBY     |             |                |                |     |
| XPL              |                |                                                                                  |                    | ~              |                         |                    | GRAVEL         | 5         | SAND                     | -       | r. re   | Jess        | ON (57         | AMOUN          |     |
|                  |                | WALLED CONTINUOUS<br>TUBE SAMPLER                                                |                    | ECOVE          | RY                      |                    | SILTY<br>CLAY  |           |                          | EXISTIN | G GRAE  | JE ELEVATI  | UN (FT.        | AMSL)          |     |
|                  | DE<br>RI       | PTH Depth Top and Bottom of S<br>EC. Actual Length of Recovered                  | ample<br>Sample in | Feet           |                         |                    | CLAYEY<br>SILT |           |                          | LOCATIO | ON OR ( | GRID COOF   | DINATES        | 5              |     |

and the second second second second

| KE         | RR-McGEE CORPORATION                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |           |                |             | 1.11        | BORING     | R Pr 3Q                          |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|----------------|-------------|-------------|------------|----------------------------------|
| ПЕРТН      |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | BLOWS     | Heru           | so so       | <u>, NV</u> | F          |                                  |
| IN<br>FEET | LITHOLOGIC DESCRIPTIC                                                                                                                                                                       | SRAPH NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SOIL<br>FIELD | PER<br>6' | PID<br>(ppm)   | NO. J       | DEPTH       | REC.       | REMARKS OR<br>FIELD OBSERVATIONS |
|            | SAND, gravelly, 14<br><u>0-40'</u> , f-m w/ C<br>and 30-3570 1/4-3/4<br>(Minor 3/4"-2" grav).<br>Silty 5-10%. Minov<br>caliche cementation<br><u>20'-40'</u> 20% silt,<br>sd and grav as at | brn<br>-v c sd<br>-v c sd | CLASS.        |           |                |             |             |            |                                  |
|            |                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | о<br>о        |           |                |             |             | •          | MONT-WET @40'                    |
|            | L Water Table (24 Hour)                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u></u>       |           | GRAPHIC        | LOG LEGE    | ND DA       |            |                                  |
| 17         | Z Water Table (Time of Borin                                                                                                                                                                | g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           | CLAY           | DEB<br>FILL |             | LLING METH | 48 1 of 2                        |
| ZT         | IO. Identifies Sample by Numb<br>YPE Sample Collection Method                                                                                                                               | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           | SILT           |             | NIC (PEAT)  |            | JGER                             |
| ATIO       |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - <b>X</b>    |           | SAND           |             | 1DY         | W          | EBER                             |
| PLAN       | BARREL                                                                                                                                                                                      | ĊŎ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ŘĒ            |           | GRAVEL         |             |             | GGED BY    | Trail                            |
| EXF        | THIN-<br>WALLED<br>TUBE                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OVERY         |           | SILTY          |             | EXI         | STING GRA  | DE ELEVATION (FT AMSL)           |
| C          | DEPTH Depth Top and Bottom of S<br>REC. Actual Length of Recovered                                                                                                                          | Sample<br>I Sample in F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eet           |           | CLAYEY<br>SILT |             | LO          | CATION OR  | GRID COORDINATES                 |

#### LOCATION KM SUBSIDIARY **KERR-McGEE CORPORATION** BORING NUMBER PC-39 KMULLC Hydrology Dept. - S&EA Division HENDERSON, NU UNIFIED BLOWS GRAPHIC LOG DEPTH SOIL SAMPLE REMARKS OR FIELD OBSERVATIONS SOIL PID IN FEET LITHOLOGIC DESCRIPTION PER (ppm) ŕ NO. DEPTH REC. 6" CLASS. SAND / SILTY SAND; LT. TAN -BROWN; OCC. GRAVEL; SLI! φ MOIST; WELL - GRASKS • S 0 . Sm . SAND AS ABOUL CAAVEL 000 10. 20mg @ 10' 15 ΰ $\nabla$ 17 -Ð. 20 25 0 SM Ø, 36. 0 annuel 2016 C 33-35 35 0 Ō 40 DATE DRILLED PAGE **GRAPHIC LOG LEGEND** Water Table (24 Hour) 4/27/98 DRILLING METHOD of 2 DEBRIS FILL $\nabla$ Water Table (Time of Boring) PID Photoionization Detection (ppm) Identifies Sample by Number Sample Collection Method HIGHLY ORGANIC (PEAT) NO. HSA TYPE **EXPLANATION** SANDY CLAY SAND $\left|\right|$ WEBER DRIG ROCK CORE SPLIT-AUGER LOGGED BY BARREL GRAVEL T, CES EXISTING GRADE ELEVATION (FT. AMSL) THIN CONTINUOUS SAMPLER NO RECOVERY SILTY CLAY WALLED TUBE LOCATION OR GRID COORDINATES DEPTH Depth Top and Bottom of Sample REC. Actual Length of Recovered Sample in Feet

| KE     | RR-MCGEE CORPORATION                                                                   | KM SUBSID         | IARY        |          |       | LOCATION   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1           | BORIN     | G De                                     | 1                                      |
|--------|----------------------------------------------------------------------------------------|-------------------|-------------|----------|-------|------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|------------------------------------------|----------------------------------------|
| Hyo    | drology Dept S&EA Division                                                             | <u> </u>          | NCO         | <u> </u> |       | HEND       | ERS        | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,NV ···       | NUMBI     | ER PC                                    | 40                                     |
| DEPTH  |                                                                                        |                   | 1<br>Hores  |          | BLOWS | PID        |            | so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IL SAMPLE     |           | DEA                                      | AARKS OR                               |
| FEET   |                                                                                        | N                 | Lo RA       | FIELD    | 6'    | (ppm)      | NO.        | γPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEPTH         | REC.      | FIELD O                                  | BSERVATIONS                            |
|        |                                                                                        | 1. (- 11          | 1           | CLASS.   |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          | · · · · · · · · · · · · · · · · · · ·  |
| _      | SAND, gravely, mo                                                                      | ayen              | ·0, -       |          |       |            |            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           |                                          | -1                                     |
| -      | brn (10 y R 5/4), Con.                                                                 | tains             | 0.0         |          |       |            |            | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |           |                                          |                                        |
|        | ZD-30% 1/4"-3/4" a                                                                     | ravel.            | .6          |          |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          |                                        |
| 5-     | Slightly silty (5%                                                                     | ).                | 1           |          |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          |                                        |
| -      |                                                                                        |                   |             |          |       | <u> </u>   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          | -                                      |
|        | 0-10 w/minor cob                                                                       | bles -            | 0           |          |       | <u> </u>   |            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           |                                          | -                                      |
|        | 3/4" - 3"                                                                              |                   | 0.          |          |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          | -                                      |
| 10-    | minor caliche ceme                                                                     | int               | 0.0         |          |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          |                                        |
|        | throughout                                                                             |                   |             |          |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          |                                        |
| _      | 0-43 sand 15 +-                                                                        | m w/              | 0           |          |       | <u> </u>   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          | _                                      |
| -      | minor C-VC                                                                             |                   | ; ġ.        |          |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          | -                                      |
| -      |                                                                                        |                   | 0.0         |          |       |            |            | a la construcción de la |               |           |                                          | -                                      |
| 1/2    |                                                                                        |                   | 0.1         |          |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          |                                        |
|        |                                                                                        |                   | 0           | c.1      |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           | @ 18                                     | Jamp ]                                 |
| _      |                                                                                        |                   | <i>o</i> -, | 300      |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           | ~                                        | 1 -                                    |
|        |                                                                                        |                   | 0           |          |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          | _                                      |
| 20-    |                                                                                        |                   | 0           |          |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          | ·                                      |
| -      |                                                                                        |                   | 9:          |          |       | <u> </u>   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          | -                                      |
| -      |                                                                                        |                   | 0.          | •        |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :             |           |                                          | -                                      |
|        |                                                                                        |                   | 00          |          |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          |                                        |
| 25-    |                                                                                        |                   | 0           | ·        |       | <b></b>    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          |                                        |
| -      |                                                                                        |                   |             |          |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          | -                                      |
| -      |                                                                                        |                   | 0           |          |       |            | ŀ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          | ·                                      |
| -      |                                                                                        |                   | 0           |          |       | · · ·      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          |                                        |
| -      |                                                                                        |                   | 0           | :        |       | -          | 4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           | @ 30                                     | moist-wet                              |
| 30-    |                                                                                        | ,                 | 0.0         |          |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          |                                        |
| _      | 32-35 cobbles                                                                          | $\omega/\omega$   | 0.0         |          |       |            | a se se se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 5 5 51 L  | politik eta ili.                         |                                        |
|        | caliche cement                                                                         | . 1977 - 19       | 0.0         |          |       |            | 1.00       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |           |                                          | _                                      |
|        |                                                                                        |                   | 6.0         |          |       | i tana     | 1.121      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |                                          |                                        |
| 35-    |                                                                                        |                   |             |          |       | The second | 124        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | a series. | a a st                                   | and a factor francis a                 |
|        |                                                                                        |                   | 0.0         |          |       | - C.) + C  | 1.44       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1990 - A. 199 |           |                                          | · · · · · · · · ·                      |
|        |                                                                                        |                   | 0.          |          |       |            | 12         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |                                          |                                        |
| -      |                                                                                        |                   | 0.0         |          |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           | en e |                                        |
|        | 1                                                                                      |                   | 0.          | •        |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           | <br>                                     | AGE                                    |
|        | – Water Table (24 Hour)                                                                |                   |             |          | 0     | RAPHIC     |            | DER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.            | 27/28     | 3-98                                     | 1 of Z                                 |
|        | <ul> <li>Water Table (Time of Boring</li> <li>Photoionization Detection (p)</li> </ul> | g)<br>pm)         |             |          |       | CLAY       | 22         | FILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DRIL          | LING METH | 100                                      | ······································ |
|        | D. Identifies Sample by Number<br>PE Sample Collection Method                          | er í              |             |          |       | SILT       | $\square$  | HIGHLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | AL        | GER                                      |                                        |
| 01     |                                                                                        |                   |             |          |       |            | <u> </u>   | SAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DY            |           | -> -0                                    | ,                                      |
| X X    | SPLIT-<br>BARREI AUGER                                                                 | F                 |             |          |       | SAND       |            | CLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y<br>LOG      | GED BY    | EBER                                     | <u> </u>                               |
|        |                                                                                        |                   |             |          |       | GRAVEL     |            | SAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D D           | E.        | J.K                                      | rish                                   |
| Ш<br>Ш | THIN-<br>WALLED                                                                        |                   |             | RY       |       | SILTY      | ി          | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EXIS          | TING GRAU | DE ELEVATIO                              | N (FT AMSL)                            |
|        |                                                                                        |                   | .LCUVE      | .n 1     |       | CLAYEY     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 171011    |                                          |                                        |
|        | EPTH Depth Top and Bottom of S<br>EC. Actual Lenath of Recovered                       | ample<br>Sample i | n Feet      |          | 813   | SILT       |            | ; <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | ATION OR  | GRID COORD                               | INATES                                 |
|        |                                                                                        |                   |             | 5 A.     |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 1.1.1.2   | and the second second                    | ant a second film                      |

| KE<br>Hyd<br>DEPTH | RR-McGEE CORPORATION                                                                                                                                                                                                                 | KM SUBSIDI                                       |                           |                                   |                     |                                                 |     |                                         |                                                      |            |                                                                                                                 |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------|-----------------------------------|---------------------|-------------------------------------------------|-----|-----------------------------------------|------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|
| DEPTH              | drology Dept S&EA Division                                                                                                                                                                                                           | <u> </u>                                         |                           | HENT                              | ドア                  | 50N                                             | NV  | BORING                                  | GR PC 42                                             |            |                                                                                                                 |
| FEET               | LITHOLOGIC DESCRIPTIC                                                                                                                                                                                                                | N                                                | GRAPHIC<br>LOG            | UNIFIED<br>SOIL<br>FIELD<br>CLASS | BLOWS<br>PER<br>6'' | PID<br>(ppm)                                    | NO. | SOI                                     | DEPTH                                                | LE<br>REC. | REMARKS OR<br>FIELD OBSERVATIONS                                                                                |
|                    | SAND, gravelly, 1<br>(5VR 6/4) * poorlys<br>SA-SR, f-vc w/z<br>1/4-3/4" gravel. W<br>caliche cement 4<br>out<br><u>0'-41'</u> sparse sit<br>(5-10%)                                                                                  | t brn<br>sorted,<br>.0-30%<br>eak<br>trough<br>t |                           | SW                                |                     |                                                 |     |                                         |                                                      |            |                                                                                                                 |
| 35-                | Sand and gravel<br>dniling, poor ret<br>Water Table (24 Hour)                                                                                                                                                                        | , s lo w<br>ur ns                                | 0.0.0.0.0                 | a<br>a                            |                     | GRAPHIC                                         |     | EGEN                                    |                                                      |            | off auger flites<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| EXPLANATION        | Z       Water Table (Time of Borin-<br>ID         ID       Photoionization Detection (p         O.       Identifies Sample by Numb-<br>(PE         Sample Collection Method         SPLIT-<br>BARREL         THIN-<br>WALLED<br>TUBE | g)<br>ppm)<br>er<br>S                            | OCK<br>ORE<br>IO<br>ECOVE | RY                                |                     | CLAY<br>SILT<br>SAND<br>GRAVEL<br>SILTY<br>CLAY |     | HIGHLY<br>ORGAN<br>SANI<br>CLAY<br>SANI | IIC (PEAT) DF<br>DY<br>/<br>DY<br>/<br>EY<br>D<br>EX |            | HOD<br>NUGER<br>JEBER<br>J Krish<br>DE ELEVATION (FT AMSL)                                                      |

| н     | KE<br>ydro | RR-McGEE CORPORATION<br>logy Dept. Engineering Services                           | Chem         | ICal                      |                 |          | LOGATION      | <i>p</i> ce | Őr               | r MY           | BORIN                                        | G<br>ER PC-71        |
|-------|------------|-----------------------------------------------------------------------------------|--------------|---------------------------|-----------------|----------|---------------|-------------|------------------|----------------|----------------------------------------------|----------------------|
| DE    | PTH        |                                                                                   | <u> </u>     | PHIC                      | UNIFIED         | BLOWS    | PID           |             | so               | DIL SAMP       | LE                                           | REMARKS OR           |
| FE    | ET         |                                                                                   | JN           | GRA                       | FIELD<br>CLASS. | FOOT     | (ppm)         | NO.         | ТҮРЕ             | DEPTH          | REC.                                         | FIELD OBSERVATIONS   |
|       | _          | To at a ll                                                                        | .1           | 191                       |                 |          |               |             |                  |                |                                              | _                    |
|       | _          | In 17 Toresd.                                                                     | 74<br>11     | N                         |                 |          |               |             |                  |                |                                              | _                    |
| 1     |            | brower Lilty d                                                                    | 824          | ;<br>;<br>;               |                 |          |               |             |                  |                |                                              | _                    |
| J     |            | with varialy                                                                      | le           | 11.                       |                 |          |               |             |                  |                |                                              |                      |
|       | _          | Small to produ                                                                    | m            | . 0                       |                 |          |               |             |                  |                |                                              | _                    |
|       | _          | gravel in N                                                                       | איא          | df                        | GM              |          |               |             |                  |                |                                              | -                    |
| 10    | _          | la 4065.                                                                          |              | 0'.                       |                 |          |               |             |                  |                |                                              |                      |
|       | _          | pluid                                                                             |              | 1                         |                 |          |               |             |                  |                |                                              |                      |
|       | _          | Louiser.                                                                          |              | 1.001                     |                 |          |               |             |                  |                |                                              | -                    |
| 15    |            |                                                                                   |              | <b>\$</b> .               |                 |          |               |             |                  |                |                                              | -                    |
|       | -          |                                                                                   |              | 1.2                       |                 |          |               |             |                  |                |                                              |                      |
|       | _          | CN/ ictre 222 Gra                                                                 | -18a2        | ي د ير<br>د يو ي          | SP              |          |               |             | X                | 17-5-18        | 0.5                                          | 2055                 |
| 20    | 2          | Hard red clay                                                                     | ,            | NN                        | 05              |          |               |             |                  |                |                                              | _                    |
|       | _          | rddin -bcom                                                                       | N            | Ń                         |                 | 1        |               |             | X                | 10.2           | <u>/                                    </u> | 1945                 |
|       | _          | Siltyclay                                                                         |              |                           |                 | 45.<br>- |               |             |                  |                |                                              |                      |
| h     | 5_         |                                                                                   |              |                           | cι              |          |               |             |                  | ale of a       |                                              |                      |
|       | _          |                                                                                   |              |                           |                 |          |               |             | X.               | <u>[4]</u> 3~2 | 4 (, 3                                       |                      |
|       | _          | 0.11.1                                                                            |              |                           |                 | T        |               |             | X                | 17-28          | ? 1'                                         | 1110                 |
| 30    |            | 1401ish-boo                                                                       | S.W.         | $\sum$                    |                 |          |               |             |                  |                |                                              | _                    |
|       | _          | U (27, 5100R-                                                                     |              | $\langle \rangle \rangle$ |                 |          |               |             | X                | 30-31          | 11                                           | 1130                 |
|       |            | ery-myddy                                                                         | ree(         | $\backslash \rangle$      |                 |          |               |             |                  |                |                                              | -                    |
| -     | _          | rd 3317                                                                           |              |                           |                 |          |               |             |                  |                |                                              |                      |
| k:    | <u> </u>   |                                                                                   |              |                           |                 |          |               |             |                  |                |                                              |                      |
|       | _          |                                                                                   |              |                           |                 |          |               |             |                  |                |                                              | ×-                   |
|       |            |                                                                                   |              |                           |                 |          |               |             |                  |                |                                              |                      |
| h     | V          | Water Table (24 Hour)                                                             |              |                           | 1               | G        | RAPHIC L      | OG LE       | GEN              | D DA           | TE DRILLED                                   | PAGE                 |
|       |            | Water Table (Time of Boring)<br>Photoionization Detection (a                      | g)           |                           |                 |          | CLAY          |             | DEBR             |                | 1-50 -                                       |                      |
| z     | NO<br>TYP  | <ul> <li>Identifies Sample by Number</li> <li>Sample Collection Method</li> </ul> | er<br>er     |                           |                 | III s    | SILT          |             | IIGHLY<br>DRGANI |                | tolla                                        | Sten Awger           |
| IATIC | $\square$  | SPLIT-                                                                            |              | ОСК                       |                 |          | SAND          | $\boxtimes$ | SAND<br>CLAY     | or C           | an pl                                        | apple Drilling       |
| CPLAN | $\square$  | BARREL                                                                            |              | DRE                       |                 |          | GRAVEL        |             |                  |                | GGED BY                                      | e la entre           |
| ШЩ    |            | THIN-<br>WALLED CONTINUOUS<br>TUBE SAMPLER                                        |              | )<br>COVER                | Y               |          | SILTY<br>CLAY |             |                  | EXI            |                                              | ELEVATION (FT. AMSL) |
|       | DEI        | PTH Depth Top and Bottom of S                                                     | لال<br>مmple | c                         |                 |          | CLAYEY        |             |                  | LO             | CATION OR C                                  | GRID COORDINATES     |
|       | ĸĿ         | C. Actual Length of Recovered                                                     | Sample in    | reet                      |                 |          |               |             |                  |                |                                              |                      |

# SOIL BCRING LUG RA-5655-A

| н    | KI<br>ydro | ERR-McGEE CORPORATION                                                              | M SUBSIDIARY          | :1             |             | LOCATION      | lese      | $\tilde{\mathbf{x}}$ | NV     | BORIN          | G<br>ER PC-77          |
|------|------------|------------------------------------------------------------------------------------|-----------------------|----------------|-------------|---------------|-----------|----------------------|--------|----------------|------------------------|
| DE   | РТН        |                                                                                    |                       | UNIFIED        | BLOWS       |               |           | SOIL                 | SAMPLE | 1              |                        |
| FE   | N<br>ET    | LITHOLOGIC DESCRIPTION                                                             | GRAP LOC              | FIELD<br>CLASS | PER<br>FOOT | (ppm)         | NO.       | λbΕ                  | DEPTH  | REC.           | FIELD OBSERVATIONS     |
|      |            |                                                                                    |                       |                |             |               |           | T                    |        |                |                        |
|      | _          | Tax To reddi                                                                       | x Lip                 |                |             | ••• <u></u>   |           |                      |        |                | -                      |
|      | _          | 6 cm Sito                                                                          | · · ·                 |                |             |               |           |                      |        |                | _                      |
| Ľ    | <u>,</u>   |                                                                                    |                       |                |             |               |           |                      |        |                |                        |
|      |            | JANGWIN                                                                            | <i>j</i> ,            |                |             |               |           |                      |        |                | _                      |
|      |            | Variable Sha                                                                       |                       |                |             |               |           |                      |        |                |                        |
| (    |            | To medium                                                                          | · · •                 |                |             |               |           |                      |        |                | _                      |
|      |            | gravel                                                                             |                       |                |             |               |           |                      |        |                |                        |
|      |            | blining                                                                            |                       | CM             |             |               |           |                      |        |                | _                      |
|      |            | n n n n n n n n n n n n n n n n n n n                                              |                       | Gir            |             | ·             |           | ,                    |        |                |                        |
| 16   |            | L'equence                                                                          | 11                    |                |             |               |           | I                    |        |                |                        |
|      |            |                                                                                    | , j.                  |                |             |               |           |                      |        |                | _                      |
|      | _          |                                                                                    | 4                     |                |             |               |           |                      |        |                | -                      |
| 2    | 0_         |                                                                                    | 0                     |                |             |               |           |                      |        |                |                        |
|      | _          |                                                                                    | b.                    |                |             |               |           |                      |        |                | -                      |
|      | _          |                                                                                    |                       |                |             |               |           |                      |        |                | -                      |
| 25   | 5_         |                                                                                    | 0 - 0                 |                |             |               |           | × 11                 | 5-23   | 0'2            | 1515                   |
|      |            |                                                                                    |                       |                |             |               |           |                      |        |                | _                      |
|      | _          |                                                                                    | 1                     |                |             |               |           |                      |        |                | -                      |
| 1    | ~ -        | Siguence of                                                                        |                       |                |             |               |           |                      |        |                | -                      |
| 13   |            | CALICA CINE JAN                                                                    |                       | SP             |             |               |           |                      |        |                |                        |
|      |            |                                                                                    |                       |                |             |               |           |                      |        |                | -                      |
| 7.   |            |                                                                                    |                       |                |             |               |           |                      | :      |                | -                      |
| p    | )          | fleddish-brown                                                                     | $\sim$                |                |             |               |           | X34<br>X35           | 5-35   | 0.5            | 0750                   |
|      |            | Llay, Firm,                                                                        | Crock                 | eL             |             |               |           |                      | 00     |                |                        |
|      | _          | To ze et                                                                           |                       |                |             |               | 4         | <u>X</u> 3           | 7-58   | <i>א</i> '     | 04 80                  |
| 4    | 0<br>•     |                                                                                    |                       |                |             |               |           |                      | DATE   |                |                        |
|      | V          | Water Table (24 Hour)<br>Water Table (Time of Boring)                              |                       |                |             |               |           | EBRIS                | -17    | L. (-          | C18 ( of (             |
|      | PIE        | <ul> <li>Photoionization Detection (ppn<br/>Identifies Sample by Number</li> </ul> | n)                    |                |             | LAY           | HICE HICE | LL<br>GHLY           |        |                | x1 Rom Anon            |
| TION | TYP        | E Sample Collection Method                                                         |                       |                | I IIII S    | ILT           |           | GANIC (I             |        | ED BY          | ' Dive                 |
| ANA  | X          | SPLIT-<br>BARREL AUGER                                                             | ROCK                  |                | 🔤 s         | AND           | S C       |                      | LOGO   | Om n<br>SED BY | LIGARLE Dr. 11:19      |
| EXPL |            |                                                                                    |                       |                |             | RAVEL         | S S       | AND                  | EVIC   | Je 1           | relower                |
|      |            | TUBE                                                                               | RECOVER               | (              |             |               |           |                      | -      | GRAD           | E ELEVATION (FT. AMSL) |
|      | DE<br>RE   | PTH Depth Top and Bottom of San<br>C. Actual Length of Recovered Sc                | nple<br>ample in Feet |                |             | ILAYEY<br>ILT |           | ·····                |        | TION OR C      | GRID COORDINATES       |
|      | DE<br>RE   | PTH Depth Top and Bottom of Sam<br>C. Actual Length of Recovered Sc                | nple<br>ample in Feet |                |             |               |           |                      |        | TION OR C      | GRID COORDINATES       |

#### SOIL BORING LOG KM-5655-A KMEUBSIDIARY LOCATION **KERR-McGEE CORPORATION** BORING NUMBER PC-73 Henderson, mr Hydrology Dept. Engineering Services hemical UNIFIED SOIL FIELD CLASS. GRAPHIC LOG DEPTH SOIL SAMPLE PID REMARKS OR FIELD OBSERVATIONS IN FEET LITHOLOGIC DESCRIPTION (ppm) γPE NO. DEPTH REC. Tea to radial brown sith Sand with variable Small to Indium gravel in Thin layers 10 GM 15. ) č τ<u>γ</u>. 30. Composity sand with small grovel 35. Gm 40 GRAPHIC LOG LEGEND DATE DRILLED PAGE **.** Water Table (24 Hour) 12-1-98 of Z CLAY Water Table (Time of Boring) Photoionization Detection (ppm) Identifies Sample by Number DEBRIS FILL $\nabla$ PID NO Hollow Stem Alwaler HIGHLY ORGANIC (PEAT TYPE Sample Collection Method **EXPLANATION** SAND SANDY CLAY SPLIT-BARREL ROCK CORE AUGER GRAVEL CLAYEY SAND shirter THIN-CONTINUOUS WALLED TUBE EXISTING GRADE ELEVATION (FT. AMSL) NO RECOVERY SILTY CLAY AMPLER LOCATION OR GRID COORDINATES DEPTH Depth Top and Bottom of Sample REC. Actual Length of Recovered Sample in Feet

•

|        | KE<br>Hyd | KERR-McGEE CORPORATION                                             |                  |               | MCLLC 1- |          | HENDERSON , N |            |               | NUMBER TO I |          |           |            |          |                                        |    |
|--------|-----------|--------------------------------------------------------------------|------------------|---------------|----------|----------|---------------|------------|---------------|-------------|----------|-----------|------------|----------|----------------------------------------|----|
| DE     | РТН       |                                                                    |                  |               |          | la que   | HENI          | JERS       | <u> </u>      | 11          | 10       | NUMB      | ER         | TR       | !/                                     |    |
| F      | IN<br>EET | LITHOLOGIC DESCRIPTIO                                              | N                | SRAPHI<br>LOG | SOIL     | PER      | PID<br>(ppm)  | NO         | SC<br>L       |             |          | E<br>PEC  | FIELD      |          | KS OR                                  | NS |
|        |           | 0-4 GRAVEL                                                         | , sdy            |               | CLASS.   |          |               |            | 12            |             |          |           | ┨─────     |          | ······································ |    |
|        | -         | nod yell brn (10YR 5/                                              | 4).              | 0000          | GW       |          |               |            |               |             |          |           |            |          |                                        | -  |
|        | 4         | sol vi-ve arovel we                                                | 2 to             | 0.00          |          |          |               |            |               |             |          |           |            |          |                                        |    |
| 5      | 1         | 1" diam. A-5R con                                                  | ~ /              |               |          |          |               |            |               |             |          |           |            |          |                                        | _  |
|        | 4         | coliche coment                                                     |                  |               | รพ       |          |               |            |               |             |          |           |            |          |                                        |    |
|        |           | 4-B sand, vf-vc,                                                   | A-SA             |               |          |          |               |            |               |             |          |           |            |          |                                        | _  |
|        | -         | 7-8 hard caliche                                                   | [                | 0             |          |          |               |            |               | ••          |          |           |            |          |                                        | -  |
| 10     |           | 8-28 SAND, Grove                                                   | /<br>j] _        | 1             |          |          |               |            |               |             |          |           |            |          |                                        |    |
|        |           | gryoran (104R7/4) +                                                | · ),             | 0             |          |          |               |            |               |             |          |           |            |          |                                        | _  |
|        | -         | mod yell brn (104R 5/4)                                            |                  | :0:           | SP       |          |               |            |               |             |          |           |            |          |                                        | -  |
|        |           | VF-VC, A-SA, gravel                                                | to               | · · ·         |          |          |               |            |               |             |          |           | -          |          |                                        |    |
| 1      | _         | to I" diam                                                         |                  |               |          |          |               |            |               |             |          |           |            |          |                                        | _  |
|        | -         | Com. caliche cemen                                                 | ~t               | .,0           |          |          |               |            |               |             |          |           |            |          |                                        |    |
|        |           |                                                                    |                  | 0             |          |          |               |            |               |             |          |           |            |          |                                        |    |
| 2      | 2-1       |                                                                    |                  |               |          |          | _             |            |               |             |          |           |            |          |                                        |    |
|        |           |                                                                    |                  | · • •         |          | -        | _             |            |               |             |          |           | í          |          |                                        |    |
|        | 4         |                                                                    |                  | 1             |          | ŀ        | _             |            |               |             |          |           |            |          |                                        | -  |
| 4      |           | 24-28 lg cobbles w                                                 | 1                | 0.0           |          |          |               |            |               |             |          |           |            |          |                                        | -  |
| 63     |           | com caliche, hard                                                  |                  | 10-0          |          | -        |               |            |               |             |          |           |            |          |                                        | _  |
|        | 4         |                                                                    |                  | 100           | GP       |          |               |            |               |             |          |           |            |          |                                        | -  |
|        |           | 28-32 SAND W/ mu                                                   |                  | °° <u>⊥</u>   |          |          |               |            |               |             |          |           |            |          |                                        |    |
| 30     | ,         | caliche ant granules                                               | 5                |               | SW       |          | _             |            |               |             |          |           |            |          |                                        | -  |
|        | -         | vf-ve U                                                            |                  |               |          | -        |               |            |               |             |          |           |            |          |                                        |    |
|        | 1         | 32-50 GRAVEL have                                                  | -d               | 00-0          |          |          |               |            |               |             |          |           |            |          |                                        | _  |
|        | ,         | cementel, fracture                                                 | λ.               | 000<br>000    |          | ľ        |               |            |               |             |          |           | • •        |          |                                        |    |
| 2      |           | -Comi caliche cement                                               |                  | 100           | Gul      |          | -             | ļ          |               |             |          |           |            |          |                                        | _  |
|        |           | Minor so interbeds.                                                | andin            | 100           |          | -        |               |            |               |             | н<br>- с |           |            |          |                                        | -  |
|        |           | Gravin b diele                                                     | 1                | 0.0           |          | -        | -             |            |               |             |          |           |            |          |                                        |    |
|        |           | Jeren and Busky y                                                  | ell brn          | 0.0.0         |          |          |               |            |               |             |          |           |            |          |                                        | 4  |
|        | <u> </u>  | Water Table (24 Hour)                                              |                  |               |          | GR       | APHIC LO      | DG LEC     | EN            | D           | DATE     | DRILLED   | ~          | PAGE     |                                        |    |
|        | PID       | Water Table (Time of Boring)<br>Photoionization Detection (ppr     | n)               |               |          | C 🕅      | LAY           | D<br>FI    | EBR           | IS          | DRILL    | - /O -    | 77         |          | of                                     |    |
| N      | TYPE      | E Sample Collection Method                                         |                  |               |          | ∭ s      | LT            | ∏<br>8     | GHLY<br>RGANI | C (PEAT)    | 00       | A         | <u>RCH</u> | <u> </u> |                                        |    |
| NATI   | $\square$ |                                                                    | ск               |               | S.       | AND      | Sc            | ANC<br>LAY | γ             | -           | Bev      | LIV       | ,          |          |                                        |    |
| XPLA   |           |                                                                    |                  | DRE           |          | <b>.</b> | RAVEL         |            | ίαγ<br>Δηγ    | EY          | LOGG     | ED BY     | <u> </u>   | ~<br>`   |                                        |    |
| Ш<br>Ш |           | WALLED CONTINUOUS<br>TUBE SAMPLER                                  |                  | )<br>COVER1   | ۲ (      |          |               |            |               |             | EXIST    |           | ELEVATIO   |          | MSL)                                   |    |
|        | DEP<br>RE | PTH Depth Top and Bottom of San<br>C. Actual Length of Recovered S | nple<br>ample in | Feet          |          |          | LAYEY         |            |               |             | LOCA     | TION OR G | RID COOR   | DINATES  |                                        |    |
|        |           |                                                                    | -                |               |          |          |               |            |               |             | L        |           |            |          |                                        |    |

.

•••

|      | KERR-MCGEE CORPORATION           |                                        | XARY                       |           |       |                    |                  |       |            |             | BORING       |          |            |          |
|------|----------------------------------|----------------------------------------|----------------------------|-----------|-------|--------------------|------------------|-------|------------|-------------|--------------|----------|------------|----------|
|      | Inversion JEAN C                 |                                        |                            | LLC       |       |                    | HENDERSON        |       |            |             | NUMBER TR-12 |          |            |          |
| DEPT |                                  |                                        |                            | 꽃 UNIFIED |       |                    | T                | s     |            | MPI         | :            | T        |            |          |
| FEET | LITHOLOGIC DESCRIPTIO            | N                                      | ₩<br>M<br>M<br>M<br>M<br>M | FIELD     | PER   | DI9<br>(ppm)       | <u> </u>         |       |            |             |              | R        | EMARKS C   | )R       |
|      |                                  |                                        | ō                          | CLASS.    | 6.    |                    | NO.              | ž     | DEF        | чт <b>н</b> | REC.         | FIELD    | OBJEKVA    | TIONS    |
|      | - 0-5 GRAVEL W/SIL               | y sd                                   | <br>                       |           |       |                    |                  |       |            |             |              |          |            |          |
|      | Tinmatrix. Cum cali              | che                                    | 20.                        | 0.1       |       | L                  |                  |       |            |             |              |          |            | -        |
|      | Continus                         | 51786                                  | 00.                        | GM        |       | <b></b>            |                  |       |            |             |              |          |            | -        |
|      | The to Z' walk amis s            |                                        | 0 -                        |           |       | <b></b>            |                  | ŀ     |            |             |              | -        |            |          |
| 5 -  |                                  |                                        | .0.0                       |           |       |                    |                  |       |            |             |              |          |            | -        |
|      | -13-10 SAND, 31+4 "              | 2                                      | 519                        |           |       |                    |                  |       |            |             |              |          |            | _        |
|      | - mod cobble-size vo             | wd wbble-size vole                     |                            | SUL       |       |                    |                  |       |            |             |              |          |            |          |
|      | gravel, Com calich               | رح                                     | 14.0                       | 500       |       |                    |                  |       |            |             |              |          |            |          |
|      | - continue.                      |                                        | 13.1                       |           |       |                    |                  |       |            |             |              |          |            |          |
| 10 - | Jod vf-vc A-SR                   | ^                                      | : <u>0-1-0</u>             | <u> </u>  |       |                    |                  |       |            | ·           |              |          |            |          |
| 1    | 10-19 Gravel, bout               | 1 ders,                                | 0.0                        |           |       |                    |                  |       |            |             |              |          |            | _        |
|      | ] w/com. cali che coa.           | tings                                  | 0.0                        |           |       |                    |                  |       |            |             |              |          |            | _        |
|      | Mod vt-                          | vc sit                                 | : 0                        |           |       |                    |                  |       |            |             |              |          |            | _        |
| 15-  | sand matrix                      |                                        | 1000                       | GH        |       |                    |                  |       |            | _           |              | •        |            | _        |
|      | dkyell brn (10yRZ/               | Z)                                     | 0.0                        |           |       |                    |                  |       |            |             |              |          |            |          |
|      | - A ory pran (1976               | 27/2)                                  | 3.0                        |           |       |                    |                  |       |            |             |              |          |            | -        |
|      | - men gig many in                | - // +/                                | 0                          |           |       |                    |                  |       |            |             |              |          |            | -        |
| 19   |                                  |                                        | · <u>0 · ·</u>             |           |       |                    |                  |       |            |             |              |          |            | -        |
| -    | -19-21 SAND, 51+4 W/m            | rod                                    | 10                         | 51.1      |       |                    |                  |       |            |             |              |          |            | _        |
| 21   | pea gravel, volc.                | ,                                      | ;a. I.                     | 0.00      |       |                    |                  |       |            |             |              |          |            |          |
|      | 21-27 Gaugh h                    |                                        | 000                        |           |       | _                  |                  |       |            |             |              |          |            | 1        |
|      |                                  | 10-01 )                                | 0                          | GW        |       |                    |                  |       |            |             |              |          |            |          |
|      | - w/ mod sity so matrix          | · .                                    | 001                        |           | GW    |                    |                  |       |            |             |              |          |            | ·        |
| -    | 7 dk yell brn + gryor            | an,                                    | :00                        |           |       |                    |                  |       |            |             |              |          |            |          |
| 27   | ] St of-vc. Mod cen              | mente                                  | 00.                        |           |       |                    |                  |       |            |             |              |          |            | _        |
|      | Com caliche contin               | nga_                                   | 1.00                       |           |       |                    |                  |       |            |             |              |          |            | _        |
|      | 27-36 GRAVEL UP.                 | 4                                      | <u>ॅ</u> ंट,               |           |       |                    |                  |       |            |             |              |          |            |          |
| 30_  | have laber sizes with minute     |                                        | 2.0                        |           |       |                    |                  |       |            |             |              |          |            | -1       |
|      | - ufaxe st matrix HA             | RT                                     | 000                        |           |       |                    |                  |       |            |             |              |          |            |          |
|      | weill ce man ted will            |                                        | .0. <u></u>                | GP        |       |                    |                  |       |            |             |              |          |            | -        |
|      | - Calicha                        |                                        | 00                         |           |       |                    |                  |       |            |             |              |          |            | -1       |
|      |                                  |                                        | ÷                          |           |       |                    |                  |       |            |             |              |          |            | -        |
|      | - <b>-</b> • • • •               |                                        | <u>a.</u> .:               |           |       |                    |                  |       |            |             |              |          |            |          |
| 40   | 36-38 SAND HOAD                  |                                        | <u>0-1</u>                 |           | · ·   |                    |                  |       |            |             |              |          |            |          |
| 22   | cemented (raticha)               | vf-vc                                  |                            | SP        |       |                    |                  |       |            |             |              |          |            |          |
| 20   | 38-39 SANDY GRAVEL               | <u>as</u>                              | 000                        | GLI       |       |                    |                  |       |            |             |              |          |            | _        |
| ->9  | above, uncemented                | .,,                                    |                            | SP        |       |                    |                  |       |            |             |              |          |            | · _      |
|      | Water Table (24 Hour)            | ······································ |                            |           | G     | RAPHIC 10          | DG IF            | 2EN   | ID         |             |              |          | PAGE       |          |
|      | Z Water Table (Time of Boring)   |                                        |                            |           | 8000  |                    | 677 c            | 500   |            | 10          | -16-0        | 39       | l of       | 8        |
| Ē    | D Photoionization Detection (pp  | m)                                     |                            |           |       | CLAY (             | ES F             |       |            | DRILL       | ING METHO    |          |            | <u> </u> |
| Z    | (PE Sample Collection Method     |                                        |                            |           | []],  | il <b>t</b>        |                  | IGHLY | 10 ADC AT1 |             | A            | RC+      | ł          |          |
|      |                                  |                                        |                            |           |       |                    | CREAT            |       |            |             | ED BY        |          |            |          |
| Ž    |                                  |                                        |                            |           | 888 s | SAND SANDY<br>CLAY |                  |       | BEYLIK     |             |              |          |            |          |
|      |                                  |                                        | JRC                        | -         |       | GRAVEI             | $\left[ \right]$ |       | ΈY         |             | ED 8Y        |          |            |          |
| μ    | THIN-                            |                                        | Э <sup>,</sup>             |           | <br>  |                    | د ہے۔<br>ا       | -ANL  | <i>ر</i>   | EXIST       |              | d K      | Scit       |          |
|      | TUBE SAMPLER                     |                                        | COVER                      | Y         |       | LAY                |                  |       |            |             | GRADI        | LLCVAIN  | UNIT AMSLI |          |
| C    | EPTH Depth Top and Bottom of Sar | nple _                                 | _                          |           | M     | CLAYEY             | $\square$        |       |            | LOCA        | TION OR G    | RID COOR | DINATES    |          |
|      | Sector Length of Kecovered S     | ample in                               | Feet                       |           |       |                    | ۔ <i>ت</i>       |       |            |             |              |          |            |          |

| KERR-MCGEE CORPORATION KM SUBSIDIARY |            |                                                                                                 |                   |                      |         |            | LOCATION   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            | BORING        |                                    |  |  |
|--------------------------------------|------------|-------------------------------------------------------------------------------------------------|-------------------|----------------------|---------|------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------------|------------------------------------|--|--|
| DEPTH                                |            |                                                                                                 | IU                |                      |         | <u>Her</u> | JAK N'     | SUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,        |            | ER TR-5       |                                    |  |  |
|                                      | N          |                                                                                                 |                   |                      | DIL SAN | APLE       | REMARKS OR |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
|                                      |            |                                                                                                 |                   | S FIELD<br>CLASS. 6" |         | 6'         | (ppm)      | NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TΥΡΙ     | DEPT       | H REC.        | FIELD OBSERVATIONS                 |  |  |
|                                      | -          | SANDY GRAVEL W/ SILT ;                                                                          | su'               | .00                  |         |            | <b></b>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
|                                      | -          | MOIST ; GRAYISH- DRANGE I                                                                       | ∿~K<br>I-         | 00,                  | Gu      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
|                                      |            | 31/6 1                                                                                          | 10                | 200,                 |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
| S                                    | $\neg$     |                                                                                                 |                   | ¢ <u>g</u> .         |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               | -                                  |  |  |
| 1                                    | -          | SAND (VE-MED.) WITH SI                                                                          | T AND             | 0.                   |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
|                                      |            | aremelt; SLI: MUIST; SY                                                                         | n 1/2             |                      | _       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
|                                      |            |                                                                                                 |                   | 0.                   | sw      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
| 10                                   | · —        |                                                                                                 |                   | 0                    | _       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               | -                                  |  |  |
|                                      | -          | SANOY GRAVEL, SLI. MUN                                                                          | 7                 | 00                   |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
|                                      |            | SOME SILT; GRAYLIH - UR                                                                         | Ankl              | 0.0                  |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
|                                      |            | pank<br>sup 2/1                                                                                 |                   | 00                   |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               | -                                  |  |  |
| 15                                   | ·          |                                                                                                 | -                 | 500                  | 4w      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               | -                                  |  |  |
|                                      | -          |                                                                                                 |                   | 0                    |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
|                                      | -          |                                                                                                 |                   | Û,                   |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
|                                      |            |                                                                                                 |                   | 6.0                  |         |            | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               | -                                  |  |  |
| 20                                   |            | <u></u>                                                                                         |                   | 0.0                  | _       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               | -                                  |  |  |
|                                      | -          | SAND; UF-F GARINED; ,                                                                           | N.D -             |                      |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
|                                      |            | const sons all. To com                                                                          | ~v~/;             |                      | su      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
|                                      |            | SYR 61                                                                                          | ~~<br>14          |                      |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               | -                                  |  |  |
| 25                                   |            | ····· ···· ····                                                                                 |                   | <u> </u>             |         | -          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               | -                                  |  |  |
|                                      | -          | CANVELLY SAMS , UF - LOSA                                                                       | se :              | 0                    |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
|                                      |            | MUD. MUIST; LT. BRUN                                                                            | v:                | 0                    |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
|                                      |            | 542 6/4                                                                                         | ŕ                 | - 0                  |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               | -                                  |  |  |
| 30                                   | ,—         |                                                                                                 | ,                 | (h                   |         |            | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               | -                                  |  |  |
|                                      | -          |                                                                                                 |                   |                      | sw      |            | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
|                                      |            |                                                                                                 |                   | ÷\$                  |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               | · _                                |  |  |
|                                      | _          |                                                                                                 |                   |                      |         |            | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               | -                                  |  |  |
| .35                                  |            | ٩                                                                                               |                   | 0.                   |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               | _                                  |  |  |
|                                      |            |                                                                                                 |                   | . 0                  |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
| 3'                                   | ' ]        | 37-62 SILT W/ thir                                                                              | r sdy             | hŤΤ                  |         | -          | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               |                                    |  |  |
|                                      | _          | Jones, modyell brn (1                                                                           | 0YR5/4)           |                      |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               | Mcfg -                             |  |  |
| 40                                   |            | celcareous:                                                                                     |                   |                      | me      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |               | -                                  |  |  |
|                                      | . <b>_</b> | Water Table (24 Hour)                                                                           |                   |                      | 1       | GI         | RAPHIC LO  | DG LEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GEN      |            | ATE DRILLED   | PAGE                               |  |  |
|                                      | PID        | <ul> <li>✓ Water Table (Time of Boring)</li> <li>PID Photoionization Detection (ppm)</li> </ul> |                   |                      |         | 000 c      | CLAY       | DEBRIS<br>FILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | IS T       | DRILLING METH |                                    |  |  |
| z                                    | NO<br>TYP  | <ul> <li>Identifies Sample by Number</li> <li>Sample Collection Method</li> </ul>               |                   |                      | ∭.'s    | ALT        |            | IGHLY<br>XGAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C (PEAT) | ARCH       |               |                                    |  |  |
| NATIO                                | $\square$  | SPLIT.<br>BARREL AUGER ROCK                                                                     |                   |                      |         | 📖 s        | AND        | CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAYEY<br>CLAYEY<br>CLAYEY<br>CLAYEY<br>CLAYEY<br>CLAYEY<br>CLAYEY<br>CLAYEY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CLAY<br>CL |          | BRILLED BY | BEYLIK        |                                    |  |  |
| XPLA                                 |            |                                                                                                 |                   |                      |         |            | GRAVEL     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 0500       |               |                                    |  |  |
| Ê                                    | 2028       | TUBE CONTINUOUS                                                                                 |                   | O<br>ECOVER          | Y       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | F          | EXISTING GRAD | ノ (ノンシン)<br>DE ELEVATION (FT AMSL) |  |  |
|                                      | DEI<br>RE  | PTH Depth Top and Bottom of Sa<br>C. Actual Length of Recovered S                               | mple<br>iomple in | Feet                 |         |            | CLAYEY     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            | OCATION OR (  | GRID COORDINATES                   |  |  |

XX

#### KERR-MCGEE CORPORATION KM SUBSIDIARY LOCATION BORING NUMBER Hydrology Dept. - S&EA Division KMCC TR6 HENDERSON UNIFIED BLOWS SOIL PER FIELD 6" GRAPHIC LOG DEPTH SOIL SAMPLE IN FEET PID LITHOLOGIC DESCRIPTION REMARKS OR FIELD OBSERVATIONS (ppm) ΥPE NO. DEPTH REC. TD SO' 15' North of TR 5 see TR 5 lith log for lithology **T**. Water Table (24 Hour) GRAPHIC LOG LEGEND DATE DRILLED PAGE 9-24-99 DRILLING METHOD Water Table (Time of Boring) Photoionization Detection (ppm) Identifies Sample by Number Sample Collection Method Δ. 1 of DEBRIS FILL PID NO. TYPE ARCH HIGHLY ORGANIC (PEAT) EXPLANATION DRILLED BY SAND SANDY CLAY BEYLIK SPLIT-BARREL ROCK CORE AUGER LOGGED BY GRAVEL CLAYEY SAND E. KRISH THIN-WALLED TUBE CONTINUOUS NO RECOVERY SILTY CLAY EXISTING GRADE ELEVATION (FT AMSL) SAMPLER DEPTH Depth Top and Bottom of Sample CLAYEY SILT LOCATION OR GRID COORDINATES REC. Actual Length of Recovered Sample in Feet

1×

|            |                                                                       |                             |              |          |         | LOCATION |                | 1                            | BORING       |                   |          |  |
|------------|-----------------------------------------------------------------------|-----------------------------|--------------|----------|---------|----------|----------------|------------------------------|--------------|-------------------|----------|--|
|            |                                                                       |                             |              | LIAUCIED |         | HEN      | DERS           | ON                           | NUMB         | ER IKI            |          |  |
|            | N LITHOLOGIC DESCRIPTION                                              | N                           |              |          | PER     | PID      | S              | OIL SAN                      | APLE         | REMARKS OR        |          |  |
| l-         |                                                                       |                             | ຮັ           | CLASS.   | 6"      | (ppm)    | NO.            | DEPTH                        | H REC.       | FIELD OBSERVATION | IS       |  |
|            | - 0-12 GRAVEL, 9                                                      | sdγ,                        | 000          |          |         |          |                |                              |              |                   |          |  |
|            | ] gry oran (10y R7/4) an                                              | nd                          |              |          |         |          |                |                              |              |                   | _        |  |
|            | mod yell brin (10YR 5/                                                | A)_                         | 0.0          |          |         |          |                |                              |              |                   | -        |  |
| 5          | _ 60-70 % gravel up to                                                | 1"                          | 00           | ļ ,      |         |          |                |                              |              |                   | -        |  |
|            | - diam in sd (f-rc)m                                                  | matrix. C                   | 0.00         | GW       |         |          |                |                              |              | •                 |          |  |
|            | Mod. calcote cement                                                   |                             |              |          |         |          |                |                              |              |                   |          |  |
|            | - Mod calichiticatio                                                  | n                           | 0            |          |         |          |                |                              |              |                   | -        |  |
| 10         | · —                                                                   |                             | 0.0          |          |         |          |                |                              |              |                   | -        |  |
|            |                                                                       |                             | . 0<br>. 0   |          | -       |          |                |                              |              |                   |          |  |
| 17         | - 17 - 7 D SAND                                                       | 11.                         |              |          |         |          |                | <u> </u>                     |              |                   |          |  |
|            | sinos grave                                                           | יניי                        | 0.0          |          | -       |          |                |                              |              | •                 | -        |  |
| 15         | _ ~ ~ ~ ~ w/ 30-4                                                     | 1072                        |              |          |         | _        |                |                              |              |                   | -        |  |
|            | - 1" diam vole grave                                                  | ι                           | - ?<br>?     | 5W       | -       |          |                |                              |              |                   |          |  |
|            |                                                                       |                             | . <u>.</u> . |          | -       |          |                |                              |              |                   | _        |  |
|            |                                                                       |                             | 0            |          | -       | -        |                |                              |              |                   | -        |  |
| 20         | ·                                                                     |                             | 0            |          |         |          |                |                              |              |                   | -        |  |
|            | - 20-26 SAND, SH                                                      | 1                           | 1.1          | SM       | -       | _        |                |                              |              |                   |          |  |
|            | ] gry oran (10YR 7/4)                                                 |                             | <b>j</b> 1   |          | -       |          |                |                              |              |                   | _        |  |
|            | -vf-ve w/ 20% silt                                                    | in                          | 11           |          |         |          |                |                              |              |                   | -        |  |
|            | matrix                                                                |                             | 1.1          |          | -       | _        |                |                              |              |                   | _        |  |
| Z          | 6 - 71 - 43 - 54  MB                                                  |                             |              |          |         |          |                | -                            |              |                   |          |  |
|            |                                                                       |                             |              |          | -       | -        |                |                              |              |                   |          |  |
|            | _ grysrange (10) K 1/4                                                | -)                          |              |          |         | _        |                |                              |              | damp@z8'          | -        |  |
| 3          | - v+-m w/mmor ve, f                                                   | 4-5A                        |              |          | ·       |          |                |                              |              |                   |          |  |
|            | - Calcareous w/sp.s                                                   | sa-size                     |              |          | -       |          |                |                              |              |                   | _        |  |
|            | - Callebe nodules                                                     |                             |              | sw       | ŀ       | -        |                |                              |              |                   | -        |  |
|            |                                                                       |                             |              |          |         | -        |                |                              |              |                   | -        |  |
| 35         |                                                                       |                             |              |          | -       |          |                |                              |              |                   | _        |  |
|            |                                                                       |                             |              |          | ŀ       |          |                |                              |              |                   | _        |  |
|            | _                                                                     |                             |              |          | -       |          |                |                              |              |                   | -        |  |
|            |                                                                       |                             |              |          | -       |          |                |                              |              |                   |          |  |
| h          | V Water Table (24 Hour)                                               |                             |              |          | GP      |          |                |                              |              | Laves             | _        |  |
|            | ✓ Water Table (Time of Boring)                                        |                             |              |          |         |          |                | RIS 9                        | 1/25-9/      | 26/99 1 of 8      |          |  |
|            | PID Photoionization Detection (ppm<br>NO. Identifies Sample by Number | n)                          |              |          | CI      | LAY      | ES FILL        | . 10                         | RILLING METH |                   | -1       |  |
| NO         | TYPE Sample Collection Method                                         |                             |              |          | IIII si | LT       | ORGANIC (PEAT) |                              | PRILLED BY   | ARCH              | <u> </u> |  |
| NAT        | SPLIT-                                                                | SPLIT-<br>BARREL AUGER CORE |              |          |         | AND      | SAN<br>CLA     | IDY<br>Y                     | BEN          | トレス               |          |  |
| (PLA       |                                                                       |                             |              |          |         | RAVEI    | CLAYEY         |                              | OGGED BY     |                   | -1       |  |
| ۱ <u>۵</u> | THIN-<br>WALLED CONTINUOUS<br>TURE                                    |                             |              |          |         |          |                | EXISTING GRADE ELEVATION (FT |              |                   |          |  |
|            |                                                                       | רביבין<br>היו ואראו         | LAY<br>LAYFY |          |         |          |                |                              |              |                   |          |  |
|            | REC. Actual Length of Recovered So                                    | pie<br>omple in             | Feet         |          | BILL SI | LT       |                | <sup>L</sup>                 | OCATION OR G | RID COORDINATES   |          |  |

1%

•

| KERR-MCGEE CORPORATION |                                    |                                                                                   |                   | ARY  |                 | LOCATION |                |                 |        |        | BORING                             |                    |  |  |
|------------------------|------------------------------------|-----------------------------------------------------------------------------------|-------------------|------|-----------------|----------|----------------|-----------------|--------|--------|------------------------------------|--------------------|--|--|
| =                      | Anydrology Dept S&EA Division KINC |                                                                                   |                   |      | -               | T        | HEN            | HENDERSON       |        |        | NUMB                               | ER TR8             |  |  |
| DEI                    | PTH <br>N                          | LITHOLOGIC DESCRIPTIO                                                             | N                 | HES  | UNIFIED<br>SOIL | BLOWS    | PID            | PID SOIL SAMPLE |        |        |                                    | REMARKS OR         |  |  |
| FE                     | ET                                 |                                                                                   |                   | GRA  | FIELD<br>CLASS. | 6"       | (ppm)          | NO.             | ΓYPE   | DEPTH  | REC.                               | FIELD OBSERVATIONS |  |  |
|                        | _                                  |                                                                                   |                   |      |                 |          |                |                 | -      |        | <u> </u>                           |                    |  |  |
|                        | 4                                  |                                                                                   |                   |      |                 |          |                |                 |        |        |                                    | · -                |  |  |
|                        | -                                  |                                                                                   |                   |      |                 |          |                |                 |        |        |                                    |                    |  |  |
|                        |                                    | Have lar                                                                          |                   |      |                 |          |                |                 |        |        |                                    | -                  |  |  |
| 1                      |                                    | HULL LOLATET                                                                      | >                 |      |                 |          |                |                 |        |        |                                    |                    |  |  |
|                        | _                                  | 12 ft South                                                                       |                   |      |                 |          |                |                 |        |        |                                    | -                  |  |  |
| 1                      | -                                  | Г                                                                                 |                   |      |                 |          |                |                 |        |        |                                    |                    |  |  |
| 1                      |                                    | 0+ TK [-                                                                          |                   |      |                 |          |                |                 |        |        |                                    | _                  |  |  |
|                        |                                    | SEE TR7 for                                                                       |                   |      |                 |          |                |                 |        |        |                                    |                    |  |  |
|                        |                                    |                                                                                   |                   |      |                 |          |                |                 |        |        |                                    | -                  |  |  |
|                        | -                                  | Lithe logy                                                                        |                   |      |                 |          |                |                 |        |        |                                    |                    |  |  |
|                        |                                    | 01                                                                                |                   |      |                 |          |                |                 |        |        |                                    | · _                |  |  |
|                        |                                    | TD 98'                                                                            |                   |      |                 |          |                |                 |        |        |                                    |                    |  |  |
|                        | _                                  |                                                                                   |                   |      |                 |          |                |                 |        |        |                                    | -                  |  |  |
|                        | -                                  | NOTE:                                                                             |                   | :    |                 |          |                |                 |        |        |                                    |                    |  |  |
|                        |                                    | INTR& Curt as                                                                     |                   |      |                 |          |                |                 |        |        |                                    | -                  |  |  |
|                        |                                    | in ind pirst M                                                                    | Ċ,                |      |                 |          |                |                 |        |        |                                    |                    |  |  |
|                        | _                                  | gravel started                                                                    | e                 |      |                 |          |                |                 |        |        |                                    | -                  |  |  |
|                        | -                                  | 62 mil endel                                                                      | +                 |      |                 |          |                |                 |        |        |                                    |                    |  |  |
|                        |                                    |                                                                                   |                   |      |                 |          |                |                 |        |        |                                    | _                  |  |  |
|                        |                                    | 93 14.                                                                            |                   |      |                 |          |                |                 |        |        |                                    |                    |  |  |
|                        | _                                  |                                                                                   |                   |      |                 |          |                |                 |        |        |                                    |                    |  |  |
|                        | -                                  |                                                                                   |                   |      |                 |          |                |                 |        |        |                                    | ·                  |  |  |
|                        |                                    |                                                                                   |                   |      |                 |          |                |                 |        |        |                                    | -                  |  |  |
|                        | _                                  |                                                                                   |                   |      |                 |          |                |                 |        |        |                                    |                    |  |  |
|                        | -                                  |                                                                                   |                   |      |                 |          |                |                 |        |        |                                    |                    |  |  |
|                        |                                    |                                                                                   |                   |      |                 |          |                |                 |        |        |                                    | • • -              |  |  |
|                        |                                    | ٩                                                                                 |                   |      |                 |          |                |                 |        |        |                                    | -                  |  |  |
|                        | _                                  |                                                                                   |                   |      | }               |          |                |                 |        |        |                                    |                    |  |  |
|                        | -                                  |                                                                                   |                   |      |                 |          |                |                 |        |        |                                    |                    |  |  |
|                        | L L                                |                                                                                   |                   |      |                 |          |                |                 |        |        |                                    | -                  |  |  |
|                        |                                    |                                                                                   |                   |      |                 |          |                |                 |        |        |                                    | -                  |  |  |
|                        | <b>_</b>                           | Water Table (24 Hour)                                                             |                   |      |                 | G        | RAPHIC L       | OG LEC          | GEN    |        |                                    | PAGE               |  |  |
|                        |                                    | Water Table (Time of Boring)<br>Photoionization Detection (on                     | )<br>m)           |      |                 | . 📖 .    | CLAY           | D<br>E          | EBF    |        | LING METH                          | <u>G9 1 of 1</u>   |  |  |
| z                      | NC<br>TYP                          | <ul> <li>Identifies Sample by Number</li> <li>Sample Collection Method</li> </ul> |                   | lm.  | 511 T           |          | IGHLY          |                 | ARCH   |        |                                    |                    |  |  |
| ATIO                   | $\nabla$                           | SPUT-                                                                             |                   |      |                 |          |                | DY              | BEN    | (LIK   |                                    |                    |  |  |
| 'LAN                   | $\square$                          | BARREL                                                                            | ORE               |      |                 |          | 55 C           | LAI             | EY LOG | GED BY |                                    |                    |  |  |
| EXF                    |                                    | THIN-<br>WALLED CONTINUOUS NO<br>TUBE SAMPLER NO<br>RECOVERY                      |                   |      |                 |          | GRAVEL         | SAND            |        |        | E. KRISH                           |                    |  |  |
|                        | $z_{i}$                            |                                                                                   |                   |      |                 |          | CLAY           |                 |        |        | EXISTING GRADE ELEVATION (FT AMSL) |                    |  |  |
|                        | DE<br>RE                           | PTH Depth Top and Bottom of Sa<br>C. Actual Length of Recovered S                 | mple<br>Sample in | Feet |                 |          | CLAYEY<br>SILT |                 |        | LOC    | ATION OR C                         | GRID COORDINATES   |  |  |

. .