

December 15, 2010

TestAmerica Project Number: G0L020446

PO/Contract: 2027.07

Ted Splitter Tronox LLC / AIU Henderson, NV PO Box 268859 Oklahoma City, OK 73126-8859

Dear Mr. Splitter,

This report contains the analytical results for the samples received under chain of custody by TestAmerica on December 2, 2010. These samples are associated with your Tronox Henderson Air Monitoring project.

The test results in this report meet all NELAC requirements for parameters that accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The case narrative is an integral part of this report.

If you have any questions, please feel free to call me at (916) 374-4383.

Sincerely,

DAVID R. ALLTUCKER

Project Manager

Table of Contents

TestAmerica West Sacramento Project Number G0L020446

Case Narrative

Quality Assurance Program

Sample Description Information

Chain of Custody Documentation

AIR, TO-13, Semivolatile Organics Samples: 2, 6, 9

Sample Data Sheets Method Blank Report Laboratory QC Reports

AIR, TO-9, Dioxins/Furans

Samples: 1, 5, 8

Sample Data Sheets Method Blank Report Laboratory QC Reports

AIR, Metals by ICPMS (As and Mn)

Samples: 3, 4, 7, 10

Sample Data Sheets Method Blank Report Laboratory QC Reports

AIR, TSP-Total Suspended Particulates

Samples: 3, 4, 7, 10

Sample Data Sheets Method Blank Report Laboratory QC Reports

Raw Data Package

Case Narrative

TestAmerica West Sacramento Project Number G0L020446

AIR, TO-13, Semivolatile Organics

Sample(s): 2, 9

The surrogate recovery for 1,2-Dichlorobenzene-d4 is low and outside criteria. However, the surrogate recoveries in the associated method blank and laboratory control sample (LCS) were within established control limits. The results may be low. The surrogate recovery was confirmed by re-analysis.

AIR, TO-9, Dioxins/Furans

Sample(s): 1, 5, 8

Several analytes in each sample and the associated method blank have been qualified with a "Q" flag due to the ion abundance ratios being outside of criteria. The analytes have been reported as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio for these analytes.

There were no other anomalies associated with this project.

TestAmerica Laboratories West Sacramento Certifications/Accreditations

Certifying State	Certificate #	Certifying State	Certificate #
Alaska	UST-055	New York*	11666
Arizona	AZ0708	Oregon*	CA 200005
Arkansas	88-0691	Pennsylvania	68-1272
California*	01119CA	South Carolina	87014
Colorado	NA	Texas	T104704399-08-TX
Connecticut	PH-0691	Utah*	QUAN1
Florida*	E87570	Virginia	00178
Georgia	960	Washington	C1281
Hawaii	NA	West Virginia	9930C, 334
Illinois	200060	Wisconsin	998204680
Kansas*	E-10375	NFESC	NA
Louisiana*	30612	USACE	NA
Michigan	9947	USDA Foreign Plant	37-82605
Nevada	CA44	USDA Foreign Soil	P330-09-00055
New Jersey*	CA005	US Fish & Wildlife	LE148388-0
New Mexico	NA	Guam	09-014r

^{*}NELAP accredited. A more detailed parameter list is available upon request. Updated 3/25/2009

QC Parameter Definitions

QC Batch: The QC batch consists of a set of up to 20 field samples that behave similarly (i.e., same matrix) and are processed using the same procedures, reagents, and standards at the same time.

Method Blank: An analytical control consisting of all reagents, which may include internal standards and surrogates, and is carried through the entire analytical procedure. The method blank is used to define the level of laboratory background contamination.

Laboratory Control Sample and Laboratory Control Sample Duplicate (LCS/LCSD): An aliquot of blank matrix spiked with known amounts of representative target analytes. The LCS (and LCSD as required) is carried through the entire analytical process and is used to monitor the accuracy of the analytical process independent of potential matrix effects. If an LCSD is performed, it may also be used to evaluate the precision of the process.

Duplicate Sample (DU): Different aliquots of the same sample are analyzed to evaluate the precision of an analysis.

Surrogates: Organic compounds not expected to be detected in field samples, which behave similarly to target analytes. These are added to every sample within a batch at a known concentration to determine the efficiency of the sample preparation and analytical process.

Matrix Spike and Matrix Spike Duplicate (MS/MSD): An MS is an aliquot of a matrix fortified with known quantities of specific compounds and subjected to an entire analytical procedure in order to indicate the appropriateness of the method for a particular matrix. The percent recovery for the respective compound(s) is then calculated. The MSD is a second aliquot of the same matrix as the matrix spike, also spiked, in order to determine the precision of the method.

Isotope Dilution: For isotope dilution methods, isotopically labeled analogs (internal standards) of the native target analytes are spiked into the sample at time of extraction. These internal standards are used for quantitation, and monitor and correct for matrix effects. Since matrix effects on method performance can be judged by the recovery of these analogs, there is little added benefit of performing MS/MSD for these methods. MS/MSD are only performed for client or QAPP requirements.

Control Limits: The reported control limits are either based on laboratory historical data, method requirements, or project data quality objectives. The control limits represent the estimated uncertainty of the test results.

Sample Summary

TestAmerica West Sacramento Project Number G0L020446

WO#	Sample #	Client Sample ID	Sampling Date	Received Date
MAQQV	1	UW-11292010B	11/29/2010 07:22 PM	12/2/2010 09:00 AM
MAQQW	2	UW-11292010B	11/29/2010 07:22 PM	12/2/2010 09:00 AM
MAQQ1	3	UW-11292010B	11/29/2010 07:22 PM	12/2/2010 09:00 AM
MAQQ4	4	DW-11292010B	11/29/2010 08:17 PM	12/2/2010 09:00 AM
MAQQ6	5	UW-11302010B	11/30/2010 05:27 PM	12/2/2010 09:00 AM
MAQQ9	6	UW-11302010B	11/30/2010 05:29 PM	12/2/2010 09:00 AM
MAQRA	7	UW-11302010B	11/30/2010 05:26 PM	12/2/2010 09:00 AM
MAQRD	8	DW-11302010B	11/30/2010 05:44 PM	12/2/2010 09:00 AM
MAQRF	9	DW-11302010B	11/30/2010 05:45 PM	12/2/2010 09:00 AM
MAQRH	10	DW-11302010B	11/30/2010 05:47 PM	12/2/2010 09:00 AM

Notes(s):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity, pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Cushody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.

Page: Cooler#

9 9

3-6 DAY TURN AROUND environmental management, Inc. 300 Frank H. Ogawa Plaza, Ste 510 Oakland, CA 94612 (510) 839-0688 Lab PM Additional Commente/Special instructions: ITEM# ab PM email | David_Alitucker@testamericainc.com DW-113020108 DW-11292010B UW-11292010B UW-11292010B DW-11302010B W-11302010B JW-11302010B JSED MEDIA JW-11292010B JW-11302010B JW-11302010B 880 Riverside Parkway David Alltucker Test America Laboratories Inc. West Sacramento, CA 95605 (918) 373-5800 SAMPLE ID
Samples IDs MUST BE UNIQUE Site PM Name Phone/FaH (/ Project# Ş Site PM Email Site Address | 560 W Lake Mead Pkwy Brte ID #:102 Required Project Information: Henderson SAMPLE LOCATION (510) 435-4809 TRONOX LLC, HENDERSON 2027.07 Ted Splitter@ngem.com Ted Splitter State, Zip Ronda S. Bailey X MORPHIS INFO ≵ ≵ ₹ ξ ≵ 3 \$ ₹ ₹ ≵ ₹ MATRIX CODE NV, 89016 G=GRAB C=COMP SAMPLE TYPE Send EDD to Frank. Hagar@ngem.com
CC Hardcopy report to PDF Electronic Version Only - FTP Upload City/State Address Required Invoice Information:
Send Invoice to Susan Growley Tronox LLC. CC Hardcopy report to See Additional Comments Below o N 11/30/2010 11/29/2010 11/30/2010 11/30/2010 11/30/2010 11/30/2010 11/29/2010 11/30/2010 11/29/2010 11/29/2010 SAMPLE DATE PO Box 55 SIGNATURE OF BRUTANOIS Henderson, NV 89009 Frank.Hagar@ngem.com 5:26 PM 5.29 PM 8.17 PM 5-47 PM 5:44 PM 5:27 PM 7.22 PM 5:45 PM 7:22 PM 7 22 PM SAMPLE TIME 013/61 --L **#OF CONTAINERS** Phone #. Nexes (949) 260-9293 Comments/Lab Sample I.D. Volume (m³) PLEASE DISCARD 641.91 642.84 393.08 943.37 626 43 1107.98 1081 47 726 94 m.Jul Analysis Preservative Filtered COC# 2027.07.0018 Regular Total # of Samples: 4 TO-9A/DioHms, Furans Time TO-13A/8270C/HCB ×× TSP × × $\overline{\times}$ × 6020/As/Mn/ICPMS OPID SCYIN Sample Receipt Conditions Temp in 0C Samples on Ice? Υ'N Event Complete? Y/N 5 day XX Y/N Y/N Sample intact? Mark One Y/N ž Top Blank

LOT RECEIPT CHECKLIST TestAmerica West Sacramento

CLIENT /	orthacte		PM	DA_	_ LOG#	68359
LOT# (QUANTIMS ID)	4010200	146	_QUOTE#_	84087	LO	CATION NIYO AC
DATE RECEIVED	12/2/w	_TIME RECEIV	ED	900		Checked (✓)
DELIVERED BY GOLDENSTATE		☐ ON TRAC			,	
☐ TAL COURIER ☐ T	AL SF	☐ VALLEY LC	GISTICS			Ø
CUSTODY SEAL STATUS	MINTACT	BROKEN	□ N/A			
CUSTODY SEAL #(S)	NA			<u>.</u>	<u>.</u>	,
SHIPPPING CONTAINER(S) 🗌 TAL	☑ CLI	ENT 🗌	N/A		Ø
COC #(S)						
TEMPERATURE BLANK	Observed:	NA	Corrected:	·	·· ····	
SAMPLE TEMPERATURE						•
Observed: 3 LABORATORY THERMON		<u>خ</u> Corre	ected Average	e_3		
IR UNIT: #4 🔽		OTHER	<u> </u>			
					- Init	W 12/2/w ials Date
pH MEASURED LABELED BY	YES			,	:-::::::::::::::::::::::::::::::::::::	
LABELS CHECKED BY PEER REVIEW		****				Ħ
SHORT HOLD TEST NOT	IFICATION		SAMPLE R	A ZNA		
			VOA-ENCO	DRES N/A		otin
☐ METALS NOTIFIED	OF FILTER/PRI	ESERVE VIA VI	ERBAL & EM	IAIL ØN/A		
COMPLETE SHIPM APPROPRIATE TEMPE						Ø
CLOUSEAU	☐ TEMPERAT	URE EXCEEDE	ED (2 °C – 6 °	°C)"		
☐ WET ICE	☐ BLUE ICE	☐ GEL PACK	□ ио со	OLING AGE	NTS USED	☐ PM NOTIFIED
					 Initials	
Notes	···					
	<u> </u>					

^{*1} Acceptable temperature range for State of Wisconsin samples is ≤4°C.

Bottle Lot Inventory

Lot ID:___

401020446

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
VOA*																				
VOAh*											$\overline{}$									
AGB																				
AGBs																				
250AGB																				
250AGBs																				
250AGBn																				
500AGB																				
AGJ																				
500AGJ																				
250AGJ																	1			
125AGJ																				
CGJ																				
500CGJ		1																		
250CGJ																				
125CGJ																				
PJ																				
PJn															_			}		
500PJ																				
500PJn		_																		
500PJna															-			Ī		
500PJzn/na]]		
250PJ																				
250PJn																				
250PJna																				
250PJzn/na																				
Acetate Tube																		ļ		
"CT .																				
Encore			3																	
Folder/filter			1	1			/			/_										
PUF		1			1	/		1	1					_					ļ	
Petri/Filter																ļ. <u>.</u>				
XAD Trap																		<u> </u>		
Ziploc																<u> </u>		ļ		
																<u> </u>				
<u> </u>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

h = hydrochloric acid s = sulfuric acid na = sodium hydroxide n = nitric acid na = zinc acetate

Number of VOAs with air bubbles present / total number of VOA's

AIR, TO-13, Semivolatile Organics

Sample ID: UW-11292010B

Trace Level Compounds

Work Order #....: MAQQW1AA Lot - Sample #....: G0L020446 - 002 Matrix....: AA Dilution Factor:] Date Received: 12/02/10 Date Sampled: 11/29/10 Volume...: 726.94 Analysis Date....: 12/07/10 Prep Date: 12/02/10 Method....: EPA-2 TO-13 Prep Batch #: 0336447 Instrument ID....: 5MH

Initial Wgt/Vol....: 1 Sample Analyst ID....: Kenny Q. Truong

PARAMETER	RESULT	RI	EPORTING LIMIT	DETECTION LIMIT UNITS		
Hexachlorobenzene	ND	0.014		0.0018	ug/m3	
SURROGATE		PERCE	NT RECOVERY	RECO	OVERY LIMITS	
1,2-Dichlorobenzene-d4		53	*	60 - 1	20	
2-Fluorobiphenyl		74		58 - 1	05	
2-Fluorophenol		65		41 - 1	05	
Nitrobenzene-d5		74		46 - 1	18	
Phenol-d5		75		43 - 1	22	
Terphenyl-d14		95		69 - 1	10	
2,4,6-Tribromophenol		103		61 - 1	18	

Surrogate recovery is outside stated control limits.

Sample ID: UW-11302010B

Trace Level Compounds

Lot - Sample #:	G0L020446 - 006	Work Order #:	MAQQ91AA	Matrix: AA
Date Sampled;	11/30/10	Date Received:	12/02/10	Dilution Factor: 1
Prep Date:	12/02/10	Analysis Date:	12/07/10	Volume: 641.91
Prep Batch #:	0336447	Instrument ID:	5MH	Method: EPA-2 TO-13

Initial Wgt/Vol....: 1 Sample Analyst ID....: Kenny Q. Truong

PARAMETER	RESULT	REPORTING LIMIT	DETECTION LIMIT UNITS		
Hexachlorobenzene	ND	0.016	0.0020	ug/m3	
SURROGATE		PERCENT RECOVERY	RECOVE	CRY LIMITS	
1,2-Dichlorobenzene-d4		61	60 - 120		
2-Fluorobiphenyl		81	58 - 105		
2-Fluorophenol		69	41 - 105		
Nitrobenzene-d5		76	46 - 118		
Phenol-d5		80	43 - 122		
Terphenyl-d14		97	69 - 110		
2,4,6-Tribromophenol		112	61 - 118		

Sample ID: DW-11302010B

Trace Level Compounds

Lot - Sample #....: G0L020446 - 009 Work Order #: MAQRF1AA Matrix....: AADate Received: 12/02/10 Dilution Factor:] Date Sampled: 11/30/10 Volume...: 642.84 Prep Date: 12/02/10 Analysis Date: 12/08/10 Method....: EPA-2 TO-13 Prep Batch #: Instrument ID....: 5MH 0336447

Initial Wgt/Vol...: 1 Sample Analyst ID....: Kenny Q. Truong

PARAMETER	RESULT	RI	EPORTING LIMIT	DETECTION LIMIT UNITS		
Hexachlorobenzene	ND	0.016		0.0020	ug/m3	
SURROGATE		PERCE	NT RECOVERY	REC	OVERY LIMITS	
1,2-Dichlorobenzene-d4		59	*	60 - 1	20	
2-Fluorobiphenyl		85		58 - 1	05	
2-Fluorophenol		69		41 - 1	05	
Nitrobenzene-d5		79		46 - 1	18	
Phenol-d5		78		43 - 1	22	
Terphenyl-d14		103		69 - 1	10	
2,4,6-Tribromophenol		109		61 - 1	18	

^{*} Surrogate recovery is outside stated control limits.

QC DATA ASSOCIATION SUMMARY

G0L020446

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
002	AA	EPA-2 TO-13		0336447	
006	AA	EPA-2 TO-13		0336447	
009	AA	EPA-2 TO-13		0336447	

Method Blank Report

Trace Level Compounds

Work Order #....: MAR231AA Matrix....: AIR Lot - Sample #....: G0L020000 - 447B Dilution Factor: 1 Date Received: 12/02/10 Date Sampled: 11/29/10 Volume...: 0 Analysis Date....: 12/07/10 12/02/10 Prep Date: Method....: EPA-2 TO-13 5MH Prep Batch #: 0336447 Instrument ID:

Initial Wgt/Vol....: 1 Sample Analyst ID....: Kenny Q. Truong

PARAMETER	RESULT	REPORTING LIMIT	DETECTION LIMIT UNITS			
Hexachlorobenzene	ND	10.0	1.3	ug		
SURROGATE		PERCENT RECOVERY		RECOVERY LIMITS		
1,2-Dichlorobenzene-d4		68		60 - 120		
2-Fluorobiphenyl		84		58 - 105		
2-Fluorophenol		72		41 - 105		
Nitrobenzene-d5		79		46 - 118		
Phenol-d5		81		43 - 122		
Terphenyl-d14		95		69 - 110		
2,4,6-Tribromophenol		100		61 - 118		

LABORATORY CONTROL SAMPLE DATA REPORT

Trace Level Compounds

Client Lot # ...: Work Order # ...: MAR231AC-LCS G0L020446 Matrix: AIR

MAR231AD-LCSD G0L020000 - 447 LCS Lot-Sample#:

Prep Date: 12/02/10 Analysis Date ..: 12/07/10

Prep Batch # ...: 0336447

Dilution Factor:

Method....: EPA-2 Kenny Q. Truong Instrument ID..: 5MH TO-13 Analyst ID.....:

Initial Wgt/Vol: 1 Sample

PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS
Hexachlorobenzene	100 100	96.8 99.1	ug ug	97 99	(70 - 110) (70 - 110)	2.3	(0 - 30)
SURROGATE			PERCENT RECOVERY		RECOVERY LIMITS		
2-Fluorobiphenyl			92 97		(58 - 105) (58 - 105)		
2-Fluorophenol			77 81		(41 - 105) (41 - 105)		
Nitrobenzene-d5			90 93		(46 - 118) (46 - 118)		
Phenol-d5			83 84		(43 - 122) (43 - 122)		
Terphenyl-d14			96 94		(69 - 110) (69 - 110)		
2,4,6-Tribromophenol			110 109		(61 - 118) (61 - 118)		

Calculations are performed before rounding to avoid round-off errors in calculated results

Bold print denotes control parameters

AIR, TO-9, Dioxins/Furans

Sample ID: UW-11292010B

Trace Level Organic Compounds

EPA-2 TO-9

Lot - Sample #....: G0L020446 - 001 Date Sampled: 11/29/10 12/03/10 Prep Date: Prep Batch #: 0337382

Work Order #....: MAQQV1AA Date Received: 12/02/10 Analysis Date: 12/07/10

Matrix....: AA Instrument ID:

Volume: 348.34 Units....: pg/m3

4D5

Initial Wgt/Vol: 1 Sample Dilution Factor: Analyst ID:

Mark Onishi

TEF TEQ REPORTING RESULT CONCENTRATION **PARAMETER FACTOR** LIMIT 2,3,7,8-TCDD 20 0 ND 1.0 Total TCDD ND 20 0 100 0 1,2,3,7,8-PeCDD ND 1.0 ND 100 0 Total PeCDD 100 0.1 0 ND 1,2,3,4,7,8-HxCDD 0 1,2,3,6,7,8-HxCDD ND 100 0.1 1,2,3,7,8,9-HxCDD ND 100 0.1 0 100 0 Total HxCDD ND 100 0.01 0 1,2,3,4,6,7,8-HpCDD ND 100 ND Total HpCDD 0.0003 0.000016 OCDD 19 JQB 200 2,3,7,8-TCDF ND 20 0.1 0 Total TCDF ND 20 100 0.03 0 1,2,3,7,8-PeCDF ND 100 0.3 0 ND 2,3,4,7,8-PeCDF Total PeCDF ND 100 1,2,3,4,7,8-HxCDF 6.2 100 0.1 0.0018 JQ 0.00083 2.9 100 0.1 1,2,3,6,7,8-HxCDF ND 100 0.1 0 2,3,4,6,7,8-HxCDF 100 0.1 0 ND 1,2,3,7,8,9-HxCDF **Total HxCDF** 18 100 15 JQB 100 0.01 0.00043 1,2,3,4,6,7,8-HpCDF 0.00013 100 0.01 1,2,3,4,7,8,9-HpCDF 4.6 **Total HpCDF** 29 100 200 0.0003 0.000061 **OCDF** 71 J

Total TEQ Concentration

0.0033

Sample ID: UW-11292010B

Trace Level Organic Compounds

EPA-2 TO-9

Lot - Sample #:	G0L020446 - 001	Work Order #:	MAQQV1AA	Matrix: AA
Date Sampled:	11/29/10	Date Received:	12/02/10	Instrument ID: 4D5
Prep Date:	12/03/10	Analysis Date:	12/07/10	Volume: 348.34
Prep Batch #:	0337382	Dilution Factor:	_	Units: pg/m3
Initial Wgt/Vol:	1 Sample	Analyst ID:	Mark Onishi	

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	99	50 - 120
13C-1,2,3,7,8-PeCDD	86	50 - 120
13C-1,2,3,6,7,8-HxCDD	96	50 - 120
13C-1,2,3,4,6,7,8-HpCDD	84	40 - 120
13C-OCDD	82	40 - 120
13C-2,3,7,8-TCDF	94	50 - 120
13C-1,2,3,7,8-PeCDF	98	50 - 120
13C-1,2,3,4,7,8-HxCDF	80	50 - 120
13C-1,2,3,4,6,7,8-HpCDF	82	40 - 120
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37Cl4-2,3,7,8-TCDD	101	50 - 120

OUALIFIERS

Results and reporting limits have been adjusted for dry weight.

Notes:

WHO TEFs for human risk assessment based on the conclusions of the World Health Organization meeting in Geneva, Switzerland, June 2005.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

J Estimated Result.

Q Estimated maximum possible concentration (EMPC).

Sample ID: UW-11292010B

Trace Level Compounds

Lot - Sample #...: G0L020446 - 001

Date Sampled....: 11/29/10

Prep Date...: 12/03/10

Prep Batch #: 0337382
Initial Wgt/Vol....: 1 Sample

Work Order #...: MAQQV1AA

Date Received...: 12/02/10

Analysis Date...: 12/07/10
Instrument ID...: 4D5

Analyst ID....: Mark Onishi

Matrix...: AA
Dilution Factor...: 2
Volume...: 348.34

Method....: EPA-2 TO-9

PARAMETER	RESULT		REPORTING LIMIT	DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		0.057	0.0075	pg/m3
Total TCDD	ND		0.057	0.0075	pg/m3
1,2,3,7,8-PeCDD	ND		0.29	0.017	pg/m3
Total PeCDD	ND		0.29	0.017	pg/m3
1,2,3,4,7,8-HxCDD	ND		0.29	0.0078	pg/m3
1,2,3,6,7,8-HxCDD	ND		0.29	0.0069	pg/m3
1,2,3,7,8,9-HxCDD	ND		0.29	0.0069	pg/m3
Total HxCDD	ND		0.29	0.0078	pg/m3
1,2,3,4,6,7,8-HpCDD	ND		0.29	0.015	pg/m3
Total HpCDD	ND		0.29	0.015	pg/m3
OCDD	0.054	J Q B	0.57	0.0098	pg/m3
2,3,7,8-TCDF	ND		0.057	0.011	pg/m3
Total TCDF	ND		0.057	0.011	pg/m3
1,2,3,7,8-PeCDF	ND		0.29	0.012	pg/m3
2,3,4,7,8-PeCDF	ND		0.29	0.012	pg/m3
Total PeCDF	ND		0.29	0.012	pg/m3
1,2,3,4,7,8-HxCDF	0.018	J	0.29	0.0052	pg/m3
1,2,3,6,7,8-HxCDF	0.0084	JQ	0.29	0.0049	pg/m3
2,3,4,6,7,8-HxCDF	ND		0.29	0.0052	pg/m3
1,2,3,7,8,9-HxCDF	ND		0.29	0.0057	pg/m3
Total HxCDF	0.050		0.29	0.0057	pg/m3
1,2,3,4,6,7,8-HpCDF	0.042	JQB	0.29	0.0055	pg/m3
1,2,3,4,7,8,9-HpCDF	0.013	J	0.29	0.0066	pg/m3
Total HpCDF	0.082		0.29	0.0060	pg/m3
OCDF	0.20	J	0.57	0.011	pg/m3
INTERNAL STANDARDS			PERCENT RECOVERY	RECOVERY	LIMITS
13C-2,3,7,8-TCDD			99	50 - 120	
13C-1,2,3,7,8-PeCDD			86	50 - 120	
13C-1,2,3,6,7,8-HxCDD			96	50 - 120	
13C-1,2,3,4,6,7,8-HpCDD			84	40 - 120	
13C-OCDD			82	40 - 120	
13C-2,3,7,8-TCDF			94	50 - 120	
13C-1,2,3,7,8-PeCDF			98 80	50 - 120 50 - 120	
13C-1,2,3,4,7,8-HxCDF			80 82	40 - 120	
13C-1,2,3,4,6,7,8-HpCDF					/ I IBAITO
SURROGATE			PERCENT RECOVERY	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD			101	50 - 120	

Sample ID: UW-11292010B

Trace Level Compounds

Lot - Sample #:	G0L020446 - 001	Work Order #:	MAQQV1AA	Matrix: AA
Date Sampled:	11/29/10	Date Received:	12/02/10	Dilution Factor: 2
Prep Date:	12/03/10	Analysis Date:	12/07/10	Volume: 348.34
Prep Batch #:	0337382	Instrument ID:	4D5	Method: EPA-2 TO-9
Initial Wgt/Vol;	1 Sample	Analyst ID:	Mark Onishi	

- B Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- J Estimated Result.
- Q Estimated maximum possible concentration (EMPC).

Sample ID: UW-11302010B

Trace Level Organic Compounds

EPA-2 TO-9

Lot - Sample #....: G0L020446 - 005 Date Sampled: 11/30/10 12/03/10 Prep Date: Prep Batch #: 0337382

1 Sample

Initial Wgt/Vol:

Work Order #....: MAQQ61AA Date Received....: 12/02/10 12/07/10 Analysis Date: Dilution Factor....: 2

Instrument ID: 626.43 Volume: Units....: pg/m3

Matrix...: AA

4D5

Mark Onishi Analyst ID:

PARAMETER	RESUL	Γ	REPORTING LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	ND		20	1.0	0
Total TCDD	ND		20		0
1,2,3,7,8-PeCDD	ND		100	1.0	0
Total PeCDD	ND		100		0
1,2,3,4,7,8-HxCDD	ND		100	0.1	0
1,2,3,6,7,8-HxCDD	ND		100	0.1	0
1,2,3,7,8,9-HxCDD	ND		100	0.1	0
Total HxCDD	ND		100		0
1,2,3,4,6,7,8-HpCDD	5.2	JQ	100	0.01	0.000083
Total HpCDD	12		100		
OCDD	28	JВ	200	0.0003	0.000013
2,3,7,8-TCDF	ND		20	0.1	0
Total TCDF	ND		20		0
1,2,3,7,8-PeCDF	ND		100	0.03	0
2,3,4,7,8-PeCDF	ND		100	0.3	0
Total PeCDF	ND		100		0
1,2,3,4,7,8-HxCDF	9.7	J	100	0.1	0.0015
1,2,3,6,7,8-HxCDF	6.0	J	100	0.1	0.00096
2,3,4,6,7,8-HxCDF	ND		100	0.1	0
1,2,3,7,8,9-HxCDF	ND		100	0.1	0
Total HxCDF	29		100		
1,2,3,4,6,7,8-HpCDF	25	JQB	100	0.01	0.00040
1,2,3,4,7,8,9-HpCDF	6.6	JQ	100	0.01	0.00011
Total HpCDF	45		100		
OCDF	61	J	200	0.0003	0.000029
Total TEO Concentration					0.0031

Total TEQ Concentration

0.0031

Sample ID: UW-11302010B

Trace Level Organic Compounds

EPA-2 TO-9

Lot - Sample #:	G0L020446 - 005	Work Order #:	MAQQ61AA	Matrix:	AA
Date Sampled:	11/30/10	Date Received:	12/02/10	Instrument I	D: 4D5
Prep Date:	12/03/10	Analysis Date:	12/07/10	Volume:	626.43
Prep Batch #:	0337382	Dilution Factor:	2	Units:	pg/m3
Initial Wgt/Vol:	1 Sample	Analyst ID:	Mark Onishi		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	98	50 - 120
13C-1,2,3,7,8-PeCDD	106	50 - 120
13C-1,2,3,6,7,8-HxCDD	102	50 - 120
13C-1,2,3,4,6,7,8-HpCDD	74	40 - 120
13C-OCDD	76	40 - 120
13C-2,3,7,8-TCDF	91	50 - 120
13C-1,2,3,7,8-PeCDF	118	50 - 120
13C-1,2,3,4,7,8-HxCDF	83	50 - 120
13C-1,2,3,4,6,7,8-HpCDF	75	40 - 120
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37Cl4-2,3,7,8-TCDD	101	50 - 120

QUALIFIERS

Results and reporting limits have been adjusted for dry weight.

Notes:

WHO TEFs for human risk assessment based on the conclusions of the World Health Organization meeting in Geneva, Switzerland, June 2005.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

J Estimated Result.

Q Estimated maximum possible concentration (EMPC).

Sample ID: UW-11302010B

Trace Level Compounds

Lot - Sample #....: Date Sampled: Prep Date:

G0L020446 - 005 11/30/10 12/03/10 0337382

Work Order #....: MAQQ61AA Date Received:

12/02/10 12/07/10

Dilution Factor....: 2 Volume....: 626.43

Matrix...:

Analysis Date: Instrument ID:

4D5

Method....: EPA-2 TO-9

AA

Prep Batch #: Initial Wgt/Vol....:

1 Sample

Analyst ID:

Mark Onishi

PARAMETER	RESULT		REPORTING LIMIT	DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		0.032	0.0091	pg/m3
Total TCDD	ND		0.032	0.0091	pg/m3
1,2,3,7,8-PeCDD	ND		0.16	0.022	pg/m3
Total PeCDD	ND		0.16	0.022	pg/m3
1,2,3,4,7,8-HxCDD	ND		0.16	0.0067	pg/m3
1,2,3,6,7,8-HxCDD	ND		0.16	0.0059	pg/m3
1,2,3,7,8,9-HxCDD	ND		0.16	0.0059	pg/m3
Total HxCDD	ND		0.16	0.0067	pg/m3
1,2,3,4,6,7,8-HpCDD	0.0084	J Q	0.16	0.0072	pg/m3
Total HpCDD	0.019		0.16	0.0072	pg/m3
OCDD	0.045	J B	0.32	0.0077	pg/m3
2,3,7,8-TCDF	ND		0.032	0.012	pg/m3
Total TCDF	ND		0.032	0.012	pg/m3
1,2,3,7,8-PeCDF	ND		0.16	0.015	pg/m3
2,3,4,7,8-PeCDF	ND		0.16	0.015	pg/m3
Total PeCDF	ND		0.16	0.015	pg/m3
1,2,3,4,7,8-HxCDF	0.016	J	0.16	0.0056	pg/m3
1,2,3,6,7,8-HxCDF	0.0096	J	0.16	0.0054	pg/m3
2,3,4,6,7,8-HxCDF	ND		0.16	0.0056	pg/m3
1,2,3,7,8,9-HxCDF	ND		0.16	0.0062	pg/m3
Total HxCDF	0.046		0.16	0.0062	pg/m3
1,2,3,4,6,7,8-HpCDF	0.040	JQB	0.16	0.0048	pg/m3
1,2,3,4,7,8,9-HpCDF	0.011	JQ	0.16	0.0057	pg/m3
Total HpCDF	0.071		0.16	0.0057	pg/m3
OCDF	0.098	J	0.32	0.0070	pg/m3
INTERNAL STANDARDS]	PERCENT RECOVERY	RECOVERY	LIMITS
13C-2 3 7 8-TCDD		-	28	50 - 120	

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	98	50 - 120
13C-1,2,3,7,8-PeCDD	106	50 - 120
13C-1,2,3,6,7,8-HxCDD	102	50 - 120
13C-1,2,3,4,6,7,8-HpCDD	74	40 - 120
13C-OCDD	76	40 - 120
13C-2,3,7,8-TCDF	91	50 - 120
13C-1,2,3,7,8-PeCDF	118	50 - 120
13C-1,2,3,4,7,8-HxCDF	83	50 - 120
13C-1,2,3,4,6,7,8-HpCDF	75	40 - 120
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37C14-2,3,7,8-TCDD	101	50 - 120

Sample ID: UW-11302010B

Trace Level Compounds

Lot - Sample #:	G0L020446 - 005	Work Order #:	MAQQ61AA	Matrix: AA
Date Sampled:	11/30/10	Date Received:	12/02/10	Dilution Factor: 2
Prep Date:	12/03/10	Analysis Date:	12/07/10	Volume: 626.43
Prep Batch #:	0337382	Instrument ID:	4D5	Method: EPA-2 TO-9
Initial Wgt/Vol:	1 Sample	Analyst ID:	Mark Onishi	

- B Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- J Estimated Result.
- Q Estimated maximum possible concentration (EMPC).

Sample ID: DW-11302010B

Trace Level Organic Compounds

EPA-2 TO-9

Lot - Sample #....: G0L020446 - 008

Date Sampled....: 11/30/10

Prep Date....: 12/03/10

Prep Batch #: 0337382

Work Order #...: MAQRD1AA

Date Received...: 12/02/10

Analysis Date...: 12/08/10

Dilution Factor...: 2

Matrix....: AA
Instrument ID....: 4D5
Volume....: 393.08
Units....: pg/m3

Initial Wgt/Vol: 1 Sample Analyst ID....: Mark Onishi

PARAMETER	RESULT	Γ	REPORTING LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	ND		20	1.0	0
Total TCDD	ND		20		0
1,2,3,7,8-PeCDD	ND		100	1.0	0
Total PeCDD	ND		100		0
1,2,3,4,7,8-HxCDD	ND		100	0.1	0
1,2,3,6,7,8-HxCDD	ND		100	0.1	0
1,2,3,7,8,9-HxCDD	ND		100	0.1	0
Total HxCDD	ND		100		0
1,2,3,4,6,7,8-HpCDD	10	J	100	0.01	0.00025
Total HpCDD	17		100		
OCDD	25	JВ	200	0.0003	0.000019
2,3,7,8-TCDF	16	J	20	0.1	0.0041
Total TCDF	39		20		
1,2,3,7,8-PeCDF	16	J	100	0.03	0.0012
2,3,4,7,8-PeCDF	9.6	J	100	0.3	0.0073
Total PeCDF	50		100		
1,2,3,4,7,8-HxCDF	42	J	100	0.1	0.011
1,2,3,6,7,8-HxCDF	22	JQ	100	0.1	0.0056
2,3,4,6,7,8-HxCDF	ND		100	0.1	0
1,2,3,7,8,9-HxCDF	ND		100	0.1	0
Total HxCDF	160		100		
1,2,3,4,6,7,8-HpCDF	100	В	100	0.01	0.0025
1,2,3,4,7,8,9-HpCDF	32	J	100	0.01	0.00081
Total HpCDF	200		100		
OCDF	200	J	200	0.0003	0.00015
Total TEO Composituation					0.022

Total TEQ Concentration

0.033

Sample ID: DW-11302010B

Trace Level Organic Compounds

EPA-2 TO-9

Lot - Sample #:	G0L020446 - 008	Work Order #:	MAQRD1AA	Matrix:	AA
Date Sampled:	11/30/10	Date Received:	12/02/10	Instrument I	D: 4D5
Prep Date:	12/03/10	Analysis Date:	12/08/10	Volume:	393.08
Prep Batch #:	0337382	Dilution Factor:	2	Units:	pg/m3
Initial Wgt/Vol:	1 Sample	Analyst ID:	Mark Onishi		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	97	50 - 120
13C-1,2,3,7,8-PeCDD	98	50 - 120
13C-1,2,3,6,7,8-HxCDD	97	50 - 120
13C-1,2,3,4,6,7,8-HpCDD	84	40 - 120
13C-OCDD	84	40 - 120
13C-2,3,7,8-TCDF	94	50 - 120
13C-1,2,3,7,8-PeCDF	105	50 - 120
13C-1,2,3,4,7,8-HxCDF	87	50 - 120
13C-1,2,3,4,6,7,8-HpCDF	84	40 - 120
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37Cl4-2,3,7,8-TCDD	100	50 - 120

QUALIFIERSResults and reporting limits have been adjusted for dry weight.

WHO TEFs for human risk assessment based on the conclusions of the World Health Organization meeting in Geneva, Switzerland, June 2005

В Method blank contamination. The associated method blank contains the target analyte at a reportable level

J Estimated Result

Q Estimated maximum possible concentration (EMPC).

Sample ID: DW-11302010B

Trace Level Compounds

 Lot - Sample #....:
 G0L020446 - 008

 Date Sampled....:
 11/30/10

 Prep Date....:
 12/03/10

 Prep Batch #....:
 0337382

37Cl4-2,3,7,8-TCDD

 Work Order #....:
 MAQRD1AA

 Date Received....:
 12/02/10

 Analysis Date....:
 12/08/10

 Instrument ID....:
 4D5

Matrix...: AA
Dilution Factor...: 2
Volume...: 393.08
Method...: EPA-2 TO-9

Initial Wgt/Vol....: 1 Sample Analyst ID....: Mark Onishi

PARAMETER	RESULT		REPORTING LIMIT	DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		0.051	0.017	pg/m3
Total TCDD	ND		0.051	0.017	pg/m3
1,2,3,7,8-PeCDD	ND		0.25	0.031	pg/m3
Total PeCDD	ND		0.25	0.031	pg/m3
1,2,3,4,7,8-HxCDD	ND		0.25	0.016	pg/m3
1,2,3,6,7,8-HxCDD	ND		0.25	0.014	pg/m3
1,2,3,7,8,9-HxCDD	ND		0.25	0.013	pg/m3
Total HxCDD	ND		0.25	0.016	pg/m3
1,2,3,4,6,7,8-HpCDD	0.026	J	0.25	0.011	pg/m3
Total HpCDD	0.042		0.25	0.011	pg/m3
OCDD	0.062	JВ	0.51	0.010	pg/m3
2,3,7,8-TCDF	0.040	J	0.051	0.019	pg/m3
Total TCDF	0.098		0.051	0.019	pg/m3
1,2,3,7,8-PeCDF	0.041	J	0.25	0.019	pg/m3
2,3,4,7,8-PeCDF	0.025	J	0.25	0.019	pg/m3
Total PeCDF	0.13		0.25	0.019	pg/m3
1,2,3,4,7,8-HxCDF	0.11	J	0.25	0.015	pg/m3
1,2,3,6,7,8-HxCDF	0.056	J Q	0.25	0.014	pg/m3
2,3,4,6,7,8-HxCDF	ND		0.25	0.015	pg/m3
1,2,3,7,8,9-HxCDF	ND		0.25	0.017	pg/m3
Total HxCDF	0.42		0.25	0.016	pg/m3
1,2,3,4,6,7,8-HpCDF	0.27	В	0.25	0.0089	pg/m3
1,2,3,4,7,8,9-HpCDF	0.081	J	0.25	0.011	pg/m3
Total HpCDF	0.50		0.25	0.011	pg/m3
OCDF	0.51	J	0.51	0.016	pg/m3

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS	
13C-2,3,7,8-TCDD	97	50 - 120	
13C-1,2,3,7,8-PeCDD	98	50 - 120	
13C-1,2,3,6,7,8-HxCDD	97	50 - 120	
13C-1,2,3,4,6,7,8-HpCDD	84	40 - 120	
13C-OCDD	84	40 - 120	
13C-2,3,7,8-TCDF	94	50 - 120	
13C-1,2,3,7,8-PeCDF	105	50 - 120	
13C-1,2,3,4,7,8-HxCDF	87	50 - 120	
13C-1,2,3,4,6,7,8-HpCDF	84	40 - 120	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	

100

50 - 120

Sample ID: DW-11302010B

Trace Level Compounds

Lot - Sample #:	G0L020446 - 008	Work Order #:	MAQRD1AA	Matrix: AA
Date Sampled:	11/30/10	Date Received:	12/02/10	Dilution Factor: 2
Prep Date:	12/03/10	Analysis Date:	12/08/10	Volume: 393.08
Prep Batch #:	0337382	Instrument ID:	4D5	Method: EPA-2 TO-9
Initial Wgt/Vol:	1 Sample	Analyst ID:	Mark Onishi	

- B Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- J Estimated Result.
- Q Estimated maximum possible concentration (EMPC).

QC DATA ASSOCIATION SUMMARY

G0L020446

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	AA	EPA-2 TO-9		0337382	
002	AA	EPA-2 TO-13		0336447	
003	AA AA	CFR50B APDX B SW846 6020		0341297 0341211	
004	AA AA	CFR50B APDX B SW846 6020		0341297 0341211	
005	AA	EPA-2 TO-9		0337382	
006	AA	EPA-2 TO-13		0336447	
007	AA AA	CFR50B APDX B SW846 6020		0341297 0341211	
008	AA	EPA-2 TO-9		0337382	
009	AA	EPA-2 TO-13		0336447	
010	AA AA	CFR50B APDX B SW846 6020		0341297 0341211	

Method Blank Report

Trace Level Compounds

Lot - Sample #....: G0L030000 - 382B Date Sampled: 11/29/10 12/03/10 Prep Date:

Prep Batch #: 0337382 Initial Wgt/Vol....: 1 Sample Work Order #....: MAVWM1AA Date Received:

12/02/10 Analysis Date: 12/07/10

Instrument ID....: 4D5

Analyst ID: Mark Onishi Matrix...: AIR Dilution Factor....: 2 Volume....: 0

Method....: EPA-2 TO-9

PARAMETER	RESULT		REPORTING LIMIT	DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		20	1.9	pg
Total TCDD	ND		20	1.9	pg
1,2,3,7,8-PeCDD	ND		100	3.6	pg
Total PeCDD	ND		100	3.6	pg
1,2,3,4,7,8-HxCDD	ND		100	2.1	pg
1,2,3,6,7,8-HxCDD	ND		100	1.8	pg
1,2,3,7,8,9-HxCDD	ND		100	1.8	pg
Total HxCDD	ND		100	2.1	pg
1,2,3,4,6,7,8-HpCDD	ND		100	2.7	pg
Total HpCDD	2.8		100	2.7	pg
OCDD	20	J	200	3.3	pg
2,3,7,8-TCDF	ND		20	5.2	pg
Total TCDF	ND		20	5.2	pg
1,2,3,7,8-PeCDF	ND		100	2.0	pg
2,3,4,7,8-PeCDF	ND		100	2.1	pg
Total PeCDF	ND		100	2.2	pg
1,2,3,4,7,8-HxCDF	ND		100	1.3	pg
1,2,3,6,7,8-HxCDF	ND		100	1.3	pg
2,3,4,6,7,8-HxCDF	ND		100	1.3	pg
1,2,3,7,8,9-HxCDF	ND		100	1.5	pg
Total HxCDF	ND		100	1.5	pg
1,2,3,4,6,7,8-HpCDF	2.9	JQ	100	2.0	pg
1,2,3,4,7,8,9-HpCDF	ND		100	2.4	pg
Total HpCDF	2.9		100	2.2	pg
OCDF	ND		200	3.5	pg
INTERNAL STANDARDS			PERCENT RECOVERY	PECOVERV	TIMITS

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	95	50 - 120
13C-1,2,3,7,8-PeCDD	97	50 - 120
13C-1,2,3,6,7,8-HxCDD	99	50 - 120
13C-1,2,3,4,6,7,8-HpCDD	82	40 - 120
13C-OCDD	77	40 - 120
13C-2,3,7,8-TCDF	92	50 - 120
13C-1,2,3,7,8-PeCDF	102	50 - 120
13C-1,2,3,4,7,8-HxCDF	87	50 - 120
13C-1,2,3,4,6,7,8-HpCDF	81	40 - 120
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS

Method Blank Report

Trace Level Compounds

Lot - Sample #....: Work Order #: MAVWMIAA Matrix...: AIR G0L030000 - 382B 12/02/10 Dilution Factor....: 2 Date Received: Date Sampled: 11/29/10 Volume...: 0 Analysis Date....: 12/07/10 12/03/10 Prep Date: Method....: EPA-2 TO-9 Prep Batch #: 0337382 Instrument ID: 4D5 Initial Wgt/Vol....: 1 Sample Analyst ID: Mark Onishi

QUALIFIERS

J Estimated Result.

Q Estimated maximum possible concentration (EMPC).

LABORATORY CONTROL SAMPLE DATA REPORT

Trace Level Compounds

Client Lot # ...: G0L020446

G0L030000 - 382

Work Order # ...: MAVWM1AC-LCS MAVWM1AD-LCSD

LCS Lot-Sample#: Prep Date:

12/03/10

Analysis Date ..: 12/07/10

Prep Batch # ...: **Dilution Factor:**

2

0337382

Mark Onishi

Method....: EPA-2

Matrix: AIR

Analyst ID....: Initial Wgt/Vol:

1 Sample

Instrument ID ..: 4D5

TO-9

PERCENT SPIKE MEASURED RECOVERY **AMOUNT** AMOUNT RECOVERY LIMITS **PARAMETER** UNITS RPD **RPD LIMITS** 2,3,7,8-TCDD 400 433 108 (70 - 130)pg 400 426 107 (70 - 130)1.7 (0 - 30)pg 1,2,3,7,8-PeCDD 2000 2250 113 (70 - 130)pg 2000 2210 111 (70 - 130)1.7 (0 - 30)pg 2000 1,2,3,4,7,8-HxCDD 1890 94 (70 - 130)pg 2000 93 1860 pg (70 - 130)1.6 (0 - 30)1,2,3,6,7,8-HxCDD 2000 2240 112 (70 - 130)pg 2000 2130 107 pg (70 - 130)4.9 (0 - 30)1,2,3,7,8,9-HxCDD 2000 2130 107 pg (70 - 130)2000 1980 99 (70 - 130)7,2 (0 - 30)pg 1,2,3,4,6,7,8-HpCDD 2000 2050 103 (70 - 130)pg 2000 2040 102 (70 - 130)0.38 (0 - 30)pg OCDD 4000 4060 102 (70 - 130)pg 4000 4010 100 1.2 (70 - 130)(0 - 30)pg 2,3,7,8-TCDF 400 417 104 (70 - 130)pg 400 423 106 (70 - 130)1.3 (0 - 30)pg 1,2,3,7,8-PeCDF 2000 2080 104 (70 - 130)pg 2000 2050 103 (70 - 130)1.2 (0 - 30)pg 2,3,4,7,8-PeCDF 2000 2030 101 (70 - 130)pg 2000 1980 99 (70 - 130)2.1 (0 - 30)pg 1,2,3,4,7,8-HxCDF 2000 2190 109 (70 - 130)pg 2000 2120 рg 106 (70 - 130)3.2 (0 - 30)1,2,3,6,7,8-HxCDF 2000 98 1950 pg (70 - 130)2000 1970 98 pg (70 - 130)0.87(0 - 30)2000 2240 112 2,3,4,6,7,8-HxCDF (70 - 130)pg 2000 2230 112 (70 - 130)0.52 (0 - 30)pg 1,2,3,7,8,9-HxCDF 2000 2230 111 (70 - 130)pg 2000 2190 110 (70 - 130)1.6 (0 - 30)pg 1,2,3,4,6,7,8-HpCDF 2000 2240 112 (70 - 130)Pg 2200 2000 110 (70 - 130)1.6 (0 - 30)pg 1,2,3,4,7,8,9-HpCDF 2000 2380 119 (70 - 130)pg 2000 2300 115 (70 - 130)3.2 (0 - 30)pg **OCDF** 4000 4230 106 (70 - 130)pg 4000 4200 105 (70 - 130)0.78 (0 - 30)pg RECOVERY PERCENT RECOVERY LIMITS INTERNAL STANDARD

13C-2,3,7,8-TCDD 101 (50 - 120)100 (50 - 120)110 (50 - 120)13C-1,2,3,7,8-PeCDD 108 (50 - 120)99 13C-1,2,3,6,7,8-HxCDD (50 - 120)

LABORATORY CONTROL SAMPLE DATA REPORT

Trace Level Compounds

Client Lot #: LCS Lot-Sample# :	G0L020446 G0L030000 - 382	Work Order #: N	MAVWM1AC-LCS MAVWM1AD-LCSD	Matrix:	AIR
INTERNAL STANDA	ARD	PERCI RECO		RECOVERY LIMITS	
13C-1,2,3,4,6,7,8-H	pCDD	105 91 87		(50 - 120) (40 - 120)	
13C-OCDD		96 88		(40 - 120) (40 - 120) (40 - 120)	
13C-2,3,7,8-TCDF	.P	98 97		(50 - 120) (50 - 120)	
13C-1,2,3,7,8-PeCD		117 113 89		(50 - 120) (50 - 120) (50 - 120)	
13C-1,2,3,4,6,7,8-H		93 87		(50 - 120) (40 - 120)	
		86		(40 - 120)	

Notes:

Calculations are performed before rounding to avoid round-off errors in calculated results

Bold print denotes control parameters

AIR, Metals by ICPMS (As and Mn)

Sample ID: UW-11292010B

Trace Level Compounds

Work Order #....: MAQQ11AC Lot - Sample #....: G0L020446 - 003 Matrix...: AA Date Received: 12/02/10 Dilution Factor: 1 Date Sampled: 11/29/10 Volume...: 1081.47 12/07/10 Analysis Date....: 12/07/10 Prep Date: Method....: SW846 6020 Prep Batch #: 0341211 Instrument ID: M02

Initial Wgt/Vol...: 0.08333 L Analyst ID....: Sabine Hargrave

PARAMETER	RESULT		REPORTING LIMIT	DETECTION LIMIT	UNITS
Arsenic	0.0018	ВJ	0.0022	0.00045	ug/m3
Manganese .	2.63		0.00111	0.000157	ug/m3

B Estimated result Result is less than RL and greater than or equal to the IDL.

J Estimated Result.

Sample ID: DW-11292010B

Trace Level Compounds

Lot - Sample #....: G0L020446 - 004 Work Order #....: MAQQ41AC Matrix...: AADate Received: 12/02/10 Dilution Factor: 1 Date Sampled....: 11/29/10 Volume...: 1107.96 12/07/10 Analysis Date: 12/07/10 Prep Date: Method...: SW846 6020 Prep Batch #: Instrument ID....: M02 0341211

Initial Wgt/Vol...: 0.08333 L Analyst ID...: Sabine Hargrave

PARAMETER	RESULT		REPORTING LIMIT	DETECTION LIMIT	UNITS
Arsenic	0.0011	ВЈ	0.0022	0.00044	ug/m3
Manganese	0.0581		0.00108	0.000153	ug/m3

QUALIFIERS

B Estimated result Result is less than RL and greater than or equal to the IDL.

J Estimated Result.

Sample ID: UW-11302010B

Trace Level Compounds

Lot - Sample #....: G0L020446 - 007 Date Sampled: 11/30/10 12/07/10 Prep Date: Prep Batch #:

0341211

0.08333 L

Work Order #: MAQRAIAC Date Received:

Analyst ID:

12/02/10 12/07/10

Analysis Date: Instrument ID: M02

Sabine Hargrave

Matrix....: AA

Dilution Factor: 1 Volume...: 943.37

Method....: SW846 6020

PARAMETER	RESULT		REPORTING LIMIT	DETECTION LIMIT	UNITS
Arsenic	0.0013	BJ	0.0025	0.00052	ug/m3
Manganese	0.812		0.00127	0.000180	ug/m3

QUALIFIERS

Initial Wgt/Vol....:

В Estimated result. Result is less than RL and greater than or equal to the IDL

J Estimated Result

Sample ID: DW-11302010B

Trace Level Compounds

Lot - Sample #:	G0L020446 - 010	Work Order #:	MAQRHIAC	Matrix: AA
Date Sampled:	11/30/10	Date Received:	12/02/10	Dilution Factor: 1
Prep Date:	12/07/10	Analysis Date:	12/07/10	Volume: 934.22
Prep Batch #:	0341211	Instrument ID:	M02	Method: SW846 6020
Initial Wgt/Vol:	0.08333 L	Analyst ID:	Sabine Hargrave	

PARAMETER	RESULT		REPORTING LIMIT	DETECTION LIMIT	UNITS
Arsenic	0.0012	BJ	0.0026	0.00052	ug/m3
Manganese	0.134		0.00128	0.000182	ug/m3

QUALIFIERS

B Estimated result Result is less than RL and greater than or equal to the IDL.

J Estimated Result

QC DATA ASSOCIATION SUMMARY

G0L020446

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
003	AA	SW846 6020		0341211	
004	AA	SW846 6020		0341211	
007	AA	SW846 6020		0341211	
010	AA	SW846 6020		0341211	

Method Blank Report

Trace Level Compounds

Work Order #....: MA0J71AA Lot - Sample #....: G0L070000 - 211B Matrix...: AIR Dilution Factor: 1 Date Received: 12/02/10 Date Sampled: 11/29/10 Volume...: 0 Prep Date: 12/07/10 Analysis Date: 12/07/10

Method....: SW846 6020 Prep Batch #: M02 0341211 Instrument ID:

Analyst ID: Sabine Hargrave Initial Wgt/Vol....: 0.08333 L

PARAMETER	RESULT		REPORTING LIMIT	DETECTION LIMIT	UNITS
Arsenic	0.82	В	2.4	0.49	ug
Manganese	ND		1.2	0.17	ug

QUALIFIERS

Estimated result. Result is less than RL and greater than or equal to the IDL.

LABORATORY CONTROL SAMPLE DATA REPORT

Trace Level Compounds

Client Lot # ...: Work Order # ...: MA0J71AD-LCS Matrix AIR G0L020446

G0L070000 - 211 MA0J71AE-LCSD LCS Lot-Sample#: 12/07/10

Prep Date: 12/07/10 Analysis Date ..:

Prep Batch # ...: 0341211 Dilution Factor: 1

Analyst ID: Sabine Hargrave Instrument ID..: M02 Method....: SW846 6020

Initial Wgt/Vol: 0.08333 L

PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCENT RECOVERY	RECOVERY LIMITS	<u>RPD</u>	RPD LIMITS
Arsenic	240	227	ug	95	(86 - 110)		
	240	220	ug	92	(86 - 110)	3.3	(0 - 15)
Manganese	240	226	ug	94	(88 - 110)		
_	240	219	ug	91	(88 - 110)	2.9	(0 - 15)

Notes:

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

AIR, TSP-Total Suspended Particulates

Sample ID: UW-11292010B

Trace Level Compounds

Lot - Sample #....: G0L020446 - 003 Date Sampled:

11/29/10 12/02/10

Prep Batch #: 0341297 0

Initial Wgt/Vol....:

Work Order #....: MAQQ11AA

Date Received: 12/02/10

Analysis Date: Instrument ID:

Analyst ID:

12/07/10

QA-045

Thep Phomsopha

Matrix....: AA

Dilution Factor: 1 Volume....: 1081.47

Method....: CFR50B APDX B

PARAMETER

Prep Date:

RESULT

REPORTING LIMIT

DETECTION LIMIT UNITS

Total Suspended Particulates

0.0000402

0.000000462

g/m3

Sample ID: DW-11292010B

Trace Level Compounds

Work Order #....: MAQQ41AA Lot - Sample #....: G0L020446 - 004 Matrix....: AA Date Received: 12/02/10 Dilution Factor: 1 Date Sampled: 11/29/10 Volume....: 1107.96 Prep Date: 12/02/10 Analysis Date: 12/07/10 Method....: CFR50B APDX B

Prep Batch #: 0341297 QA-045 Instrument ID ...:

Thep Phomsopha Analyst ID: Initial Wgt/Vol:

PARAMETER RESULT REPORTING LIMIT **DETECTION LIMIT UNITS** 0.000000451 **Total Suspended Particulates** 0.0000243 g/m3

Sample ID: UW-11302010B

Trace Level Compounds

 Lot - Sample #...:
 G0L020446 - 007
 Work Order #...:
 MAQRA1AA
 Matrix...:
 AA

 Date Sampled...:
 11/30/10
 Date Received...:
 12/02/10
 Dilution Factor....:
 1

 Prep Date...:
 12/02/10
 Analysis Date....:
 12/07/10
 Volume....:
 943.37

Prep Batch #: 0341297 Instrument ID....: QA-045 Method....: CFR50B APDX B

Initial Wgt/Vol...: Analyst ID....: Thep Phomsopha

PARAMETER RESULT REPORTING LIMIT DETECTION LIMIT UNITS

Total Suspended Particulates 0.0000392 0.000000530 -- g/m3

Sample ID: DW-11302010B

Trace Level Compounds

Work Order #....: MAQRH1AA Lot - Sample #....: G0L020446 - 010 Matrix...: AA Dilution Factor: 1 Date Received: 12/02/10 Date Sampled: 11/30/10 Volume...: 934.22 Prep Date: 12/02/10 Analysis Date: 12/07/10

Prep Batch #: 0341297 Instrument ID....: QA-045 Method....: CFR50B APDX B

Initial Wgt/Vol...: Analyst ID....: Thep Phomsopha

PARAMETER RESULT REPORTING LIMIT DETECTION LIMIT UNITS

Total Suspended Particulates 0.0000337 0.000000535 -- g/m3

QC DATA ASSOCIATION SUMMARY

G0L020446

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
003	AA	CFR50B APDX B		0341297	
004	AA	CFR50B APDX B		0341297	
007	AA	CFR50B APDX B		0341297	
010	AA	CFR50B APDX B		0341297	

AIR, TO-13, Semivolatile Organics

Raw Data Package

Run/Batch Data

Includes (as applicable):

runlogs

continuing calibration standards
interference/performance check standards
continuing calibration blanks
method blanks

lcs

ms/sd

sample raw data

ms tune data

West Sacramento

8270C CCV Checklist

Instrument: SV5					
ICAL Date: 10/02/10		[FTPP ID: DFT1207		
Initiator/Date: KT-12	/08/10	S	tandard ID: HSL1207		
Reviewer/Date:	3y 12	18/20 N	ICM #:		_
I: 8270C Criteria				Initiated	Reviewed
Log Book page included. CCV compared to correct ICA Tune documentation is present Manual re-integrations are che Retention time correct for Isor CCV Internal Standards are with Samples analyzed within 12 he	t and meets crite cked, initialed a ners and all othe ithin 50-200% or ours of Tune tim	nd hardcopies r analytes. f ICAL mid-p			
Tailing and degradation criteri	a are met.				
Spot check manual integration	s in Target. And	alyte checked	·	. NA	EVA.
Non-CCC ≤ 50% D					Ø
II: 8270C SPCC Check N-nitroso-di-n-propylamine	Initiated	Review	ed 2,4-Dinitrophenol	Initiated	Reviewed
Hexachlorocyclopentadiene	\boxtimes		4-Nitrophenol	<u> </u>	
Phenol 1,4-Dichlorobenzene 2-Nitrophenol	CCC must be ≤ Initiated	20%D (If CO Reviewed	Acenaphthene N-nitrosodiphenylamine Pentachlorophenol	ust be <20%I Initiated	Reviewed
2,4-Dinitrophenol Hexachlorobutadiene 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol			Flouranthene Di-n-octyl phthalate Benzo(a)pyrene		
IV: AFCEE 3.1 and 4.0	OAPP Crite			Initiated	Reviewed
All analytes in CCV +/- 20%D CCV and Sample Internal Stan Are the compounds which requ spreadsheet?	compared to IC dards are within	CAL. 150-200% of	•	X X X	

West Sacramento

8270C CCV Checklist

V: DOD QSM V3 Criteria	Initiated	Reviewed
For 8270, CCCs must be <u>≤</u> 20% D.	\boxtimes	B
RRFs for SPCCs must meet minimum response factor criteria	\boxtimes	
CCV and sample Internal Standards are within 50-200% of ICAL mid-point.		\square
SIM: All analytes must be ≤ 20%	□NA	NA
Are the compounds which required manual integrations documented in the MI spreadsheet?	\boxtimes	

TestAmerica West Sacramento

GC/MS INSTRUMENT LOG SEMI-VOLATILES

Method Key (MTH Column)
QL = EPA 8270C (WS-MS-0005)
JZ = EPA TO-13A (WS-MS-0005) Inst ID : sv5.i

Batch ID: 120710.B ICAL Date: See Calib Report VX = EPA 8270C-SIM (mod) CWM (WS-MS-0003) QI = EPA 8270C-SIM (WS-MS-0008) See raw data for standard IDs

FX = PAH-SIM Isotope Dilution (WS-MS-0006)

 $F9 = EPA 8270C-SIM \pmod{1,4-Dioxane}$ (WS-MS-0011)

Date	Time	USER	Sample ID	File ID	Vol or	Extract	Diln	MTH	Comments
	i	i	I		Wt	Vol	1		j
======================================	======== 18:30		======================================	QC001.D	na i	NA NA	 (NA	===== {	======================================
7-DEC-2010	18:58	KT	{DFTPP 50ug/ml	DFT1207.D	NA !	NA.	, NA	i	l
7-DEC-2010	19:18	KT	AP9 050 ug/ml CS-4	 AP91207.D	NA I	NA	NA.	i	1
7-DEC-2010	19:43	KT	HSL 050 ug/ml CS-4	HSL1207.D	NA	NA.	NA		
7-DEC-2010	20:07	KT	MAGSMLAC GOK230000-447C	S120701.D	30 gr	1 mL	1	QL	
7-DEC-2010	20:58	, KT	MAWSALAA GOLO60000-218B	S120702.D	1000 mL	1 mL	1	Or	HAL SUM.
7-DEC-2010	21:23	KT	MAWSALAC GOLO60000-218C	S120703.D	1000 mL)	1 mL	jı	QL	1
7-DEC-2010	21:47	KT	L99LV2AF G0K180601-1RX	S120704.D	1042.37 mL	1 mL	1	QL	low sull con
7-DEC-2010	22:12	KT	MAR231AA GOL020000-447B	S120705.D	1000 Sa	1 mL	1	JZ	[
7-DEC-2010	22:36	KT	MAR231AC GOL020000-447C	S120706.D	1000 Sa	1 mL	1	JZ	<u> </u>
07-DEC-2010	23:01	KT	MAR231AD G0L020000-447L	S120707.D	1000 Sa	1 mL	1	JZ]
07-DEC-2010	23:25	KT	MAQQWIAA GOLO20446-2	\$120708.D	1000 Sa	1 mL] 1	JZ	low Gurs.
7-DEC-2010	23:50	KT	MAQQ91AA G0L020446-6	5120709.D	1000 Sa	1 mL	1	JZ	l
08-DEC-2010	00:14	j kt	MAQRF1AA G0L020446-9	S120710.D	1000 Sa	1 mL	1	J2	11m Smy
08-DEC-2010	00:38	KT	MAXH81AA G0L060000-307B	S120711.D	30 g	1 mL] 1	QL	
08-DEC-2010	01:03	KT	MAXH81AC GOLO60000-307C	S120712.D	30 g (l mL	1	QL	l
08-DEC-2010	01:27	KT	MANSMIAA GOLO10485-1	S120713.D	30.18 g	1 m <u>L</u>	1	QL	l
08-DEC-2010	01:52	KT	MANSRIAF GOLD10485-3	S120714.D	29.8 g	1 mL] 1	QL	l
08-DEC-2010	02:16	KT	MAN3VLAF GOLD10485-5	S120715.D	29.8 g J	1 mL	J i	j QL	l
08-DEC-2010	02:41	KT	MAN3X1AF G0L010485-7	S120716.D	30.05 g	1 mL	1	QL	l
08-DEC-2010	03:05	KT	MAN321AF G0L010485-9	S120717.D	29.57 g	1 mL	1	ĺQL	l
08-DEC-2010	03:30	[KT	MAN341AF G0L010485-11	S120718.D	29.94 g	1 mL	1	[QL	l <u> </u>
08-DEC-2010	03:54	KT	MAN341CK GOL010485-11S	S120719.D	29.89 g	1 mL	1	\ Or	l
08-DEC-2010	04:18	KT	MAN341CL GOL010485-11D	[S120720.D	30.03 g	1 mL	1	QL	l
08-DEC-2010	04:43	KT	MAN371AF G0L010485-13	[\$120721.D]	29.9 g	1 mL	l ı) QL	l
08-DEC-2010	05:07	KT	MAN4D1AF G0L010485-15	S120722.D	29.92 g	1 mL	1	QL	l
08-DEC-2010	05:32	KT	MAN4GLAF GOL010485-17	Sl20723.D	30.23 g	1 mL] 1	QL	l
08-DEC-2010	05:56	KT	MAN4MLAF GOL010485-19	S120724.D	30.16 g	1 mL	1	QL	1
08-DEC-2010	06:21	KT	L92K41AD G0K130493-3	\$120725.D	29.81 g	1 mL	1	Or	l
08-DEC-2010	06:45	KT ·	L92K91AE G0K130493-8 1X	S120726.D	29.96 g	1 mL	1] QL	<u></u>

Report Date: 08-Dec-2010 09:16

TestAmerica West Sacramento

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: sv5.i Injection Date: 07-DEC-2010 19:43

Init. Cal. Date(s): 17-AUG-2010 02-OCT-2010 Lab File ID: HSL1207.D

17:32 15:00

Analysis Type: Init. Cal. Times: Lab Sample ID: HSL 050 ug/ml CS-4 Quant Type: Method: \\SV5\C\chem\sv5.i\120710.B\8270f.m ISTD

1			CCAL MIN	1	1 MAX	}
COMPOUND	RRF / AMOUNT	RF50		' %D / %DRIFT		` '
			•		•	
\$ 7 2-Fluorophenol	1.40992	1.38812				
\$ 8 Phenol-d5	1.77296	1.79386	·			
\$ 9 2-Chlorophenol-d4	1 1.556981	1.58766	•	•	•	
\$ 10 1,2-Dichlorobenzene-d4	0.98513	0.98234	•	•		
\$ 11 Nitrobenzene-d5	0.33879	0.35247			-	
\$ 12 2-Fluorobiphenyl	1 1.288521	1.29519	1.29519 0.010		•	
\$ 13 2,4,6-Tribromophenol	0.17381	0.19209				
\$ 14 Terphenyl-d14	1 0.787891	0.83980			•	
15 N-Nitrosodimethylamine	0.92154	0.90338	·	•	•	
16 Pyridine	1.54111	1.38842	•			
23 Anıline	2.25673	2.18985			•	
24 Phenol	2.03729	1.98285	1.98285 0.010		•	
26 Bis(2-chloroethyl)ether	1.42859	1.44040				
27 2-Chlorophenol	1.56381	1.55159	1.55159 0.010	-0.78132	50.00000	
28 1,3-Dichlorobenzene	[1.70337]	1.71797	1.71797 0.010	0.85660	50.00000	Averaged
129 1,4-Dichlorobenzene	[1.78118]	1.79692	1.79692 0.010	0.88384	20.00000	Averaged
30 Benzyl Alcohol	1.05101	1.07280	1.07280 0.010	2.07283	50.00000] Averaged
31 1,2-Dichlorobenzene	1.63746	1.66522	1.66522 0.010	1.69533	50.00000	Averaged
32 2-Methylphenol	1.43012	1.43743	1.43743 0.010	0.51110	50.00000	Averaged
33 2,2'-oxybis(1-Chloropropane	[2.27365]	2.27930	2.27930 0.010	0.24858	50.00000	Averaged
34 4-Methylphenol	1.51904	1.52269	1.52269 0.010	0.24021	50.00000	Averaged
36 Hexachloroethane	[0.60636]	0.62583	0.62583 0.010	3.21023	50.00000	Averaged
137 N-Nitrosodinpropylamine	1.01180	1.04219	1.04219 0.050	3.00345	50.00000	Averaged
42 Nitrobenzene	0.33116	0.33780	0.33780 0.010	2.00304	50.00000	Averaged
44 Isophorone	0.63679	0.64378	0.64378 0.010	1.09855	50.00000	Averaged
45 2-Nitrophenol	0.19648	0.20934	0.20934 0.010	6.54860	20.00000	Averaged
46 2,4-Dimethyphenol	0.34911	0.35969	0.35969 0.010	3.02794	50.00000	Averaged
47 Bis(2-chloroethoxy)methane	! 0.38908	0.38567	0.38567 0.010	-0.87753	50.00000	Averaged
49 2,4~Dichlorophenol	0.27010	0.28269	0.28269 0.010	4.66165	20.00000	Averaged
50 Benzoic Acid	0.19324	0.17018	0.17018[0.010	-11.93634	50.00000	Averaged
51 1,2,4-Trichlorobenzene	0.29246	0.30642	0.30642 0.010	4.77577	50.00000	Averaged
52 Naphthalene	1.10443	1.11664	1.11664 0.010	1.10556	50.00000	Averaged!
54 4-Chloroaniline	0.43288	0.44296	0.44296[0.010	2.33006	50.00000	Averaged
157 Hexachlorobutadiene	0.14313	0.15539	0.15539 0.010	8.56540	20.00000	Averaged
60 4-Chloro-3-Methylphenol	0.30164	0.31622	0.31622 0.010	4.83582	20.00000	Averaged
63 2-Methylnaphthalene	0.69378	0.72988			50.00000	Averaged
66 Hexachlorocyclopentadiene	0.29846	0.31089			•	
169 2,4,6-Trichlorophenol	0.31913	0.33823		•	•	
170 2,4,5-Trichlorphenol	0.34380	0.37223			•	
	1.12571	1.12891			•	-
173 2-Nitroaniline	0.34119	0.37318		•	•	
76 Dimethylphthalate	1 1.296061	1.37278		•	•	•
1.0 princing the control of the cont	1 1.2,20001	1.3/2/0	1.5/2/0 5.010	1 3.31320	, 50.0000	Averaged
				1	1	11

Manual countition for 2-Chloropherol:

283629 × 40 = 1.55159 my 12/8/10

Page 5

Data File: \\SV5\C\chem\sv5.i\120710.B\HSL1207.D Report Date: 08-Dec-2010 09:16

TestAmerica West Sacramento

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: sv5.i Injection Date: 07-DEC-2010 19:43
Lab File ID: HSL1207.D Init. Cal. Date(s): 17-AUG-2010 02-OCT-2010
Analysis Type: Init. Cal. Times: 17:32 15:00
Lab Sample ID: HSL 050 ug/ml CS-4 Quant Type: ISTD
Method: \\SV5\C\chem\sv5.i\120710.B\8270f.m

1	[!	1	CCAL	MIN		l MAX	
. COMPOUND	RRF / AMOUNT	RF50 i	RRF50	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
77 Acenaphthylene	 1.96037	1.99034	1.99034	0.010	•	•	 Averag e d
179 2,6-Dinitrotoluene	0.30197	0.323641	0.32364		-	•	
180 3-Nitroaniline	0.37691	0.38357	0.38357			•	
181 Acenaphthene	1 1.247871	1.28624	1.28624			•	•
182 2,4-Dinitrophenol	50.000001	51.34863	0.18256			0.000e+000	
183 Dibenzofuran	1 1.656121	1.694761	1.69476				
184 4-Nitrophenol	0.156341	0.17850	0.17850	0.050	14.17580	50.00000	•
186 2,4-Dinitrotoluene	0.396331	0.42327	0.42327	0.010	6.79753	50.00000	
191 Fluorene	1.37139	1.37416	1.37416				•
92 Diethylphthalate	1.326991	1.41218	1.41218	0.010	6.41958	50.00000	
[93 4-Chlorophenyl-phenylether	0.57019	0.59965	0.59965	0.010			•
194 4-Nitroaniline	0.37361	0.416691	0.41669	0.010	11.52958	50.00000	Averaged
197 4,6-Dinitro-2-methylphenol	[50.00000]	51.68523	0.14755	0.010	3.37046	0.000e+000	Linear
198 N-Nitrosodiphenylamine	0.60628	0.642861	0.64286	0.010	6.03273	20.00000	Averaged
100 Azobenzene	0.78660	0.80950	0.80950	0.010	2.91115	50.00000	Averaged
101 4-Bromophenyl-phenylether	0.19527	0.21650	0.21650	0.010	10.87465	50.00000	Averaged
108 Hexachlorobenzene	0.21807	0.22971	0.22971	0.010	5.34174	50.00000	Averaged
110 Pentachlorophenol	[50.00000]	48.06186	0.12466	0.010	-3.87627	0.000e+000	Linear
114 Phenanthrene	1.26074	1.29243	1.29243	0.010	2.51321	50.00000	Averaged
115 Anthracene	1.25955	1.28271	1.28271	0.010	1.83948	50.00000	Averaged
118 Carbazole	1.15061	1.20490	1.20490	0.010	4.71881	50.00000	Averaged
120 Di-n-Butylphthalate	1.38442	1.53717	1.53717	0.010	11.03401	50.00000	Averaged
126 Fluoranthene	1.12969	1.20724	1.20724	0.010	6.86459	20.00000	Averaged
127 Benzidine	0.81067	0.83275	0.83275	0.010	2.72386	50.00000	Averaged
128 Pyrene	1 1.25025	1.294221	1.29422	0.010	3.51670	50.00000	Averaged
134 3,3'-dimethylbenzidine	0.715641	0.74478)	0.74478)	0.010	4.07166	50.00000	Averaged
136 Butylbenzylphthalate	1 0.626631	0.67197	0.67197	0.010	7.23566	[50.00000]	Averaged
138 Benzo(a)Anthracene	1.06548	1.12727	1.12727	0.010	5.79955	50.00000	Averaged
139 Chrysene	1.08994	1.11232	1.11232	0.010	2.05366	50.00000	Averaged
140 3,3'-Dichlorobenzidine	0.40189	0.41343	0.41343	0.010	2.87057	50.00000	Averaged
141 bis(2-ethylhexyl)Phthalate	0.86316	0.92502	0.92502	0.010	7.16702	50.00000	Averaged
142 Di-n-octylphthalate	1.37975	1.57196	1.57196	0.010	13.93055	20.00000	Averaged
144 Benzo(b)fluoranthene	0.90549	1.05811	1.05811	0.010	16.85442	50.00000	Averaged
145 Benzo(k)fluoranthene	1.16236	1.11437	1.11437	0.010	-4.12825	50.00000	Averaged
147 Benzo(e)pyrene	0.944251	0.996861	0.99686	0.010	5.57246	[50.00000]	Averaged
148 Benzo(a)pyrene	1.02655	1.046361	1.04636	0.010	1.93015	20.00000	Averagedi
151 Indeno(1,2,3-cd)pyrene	0.830291	0.91194{	0.91194	0.010	9.83363	50.00000	Averaged
152 Dibenzo(a,h)anthracene	0.92758	1.01587	1.01587	0.010	9.51876	10000001	Averaged!
153 Benzo(g,h,i)perylene	1.00427	1.06007	1.06007	0.010	5.55620	[50.00000]	Averagedi
M 162 benzo b,k Fluoranthene Tota	2.06785	2.17248	2.17248	0.0101	5.05995	50.00000	Averaged
	1	1				l1	1

Data File: \\SV5\C\chem\sv5.i\120710.B\HSL1207.D

Report Date: 08-Dec-2010 09:16

TestAmerica West Sacramento

Method 8270C

Page 1

Data file : \\SV5\C\chem\sv5.i\120710.B\HSL1207.D

Lab Smp Id: HSL 050 ug/ml CS-4 Client Smp ID: 8270F.M

Inj Date : 07-DEC-2010 19:43

Inst ID: sv5.i Operator : KT

Smp Info : HSL_050 ug/ml CS-4;2;;4;;;4

Misc Info: $3; \overline{0}; 1$ 8270STD.SUB; 10MSSV0310; 0; 8270F.M

Comment : SOP SAC-MS-0005

Method : \\SV5\C\chem\sv5.i\120710.B\8270f.m

Meth Date : 08-Dec-2010 09:16 semivoa Quant 7

Cal Date : 17-AUG-2010 21:19 Cal Fil

Als bottle: 97 Continu

Dil Factor: 1.00000

Integrator: Falcon Compour Quant Type: ISTD Cal File: AP90817D.D

Continuing Calibration Sample

Compound Sublist: 1 8270STD.SUB

Target Version: 4.14 Processing Host: SV5

_	pounds	QUANT SIG MASS					CAI	-AMT	OM	-cor
_		MASS						1-70-/I	OI	
≈==: ±			RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
*		====	====	=0=0000		2252222	==:		==	====
	1 1,4-Dichlorobenzene-d4	152	3.532	3.532	(1.000)	146239	40.	0000		
*	2 Naphthalene-d8	136	4.941	4.941	(1.000)	627132	40.	0000		
*	3 Acenaphthene-d10	164	7.024	7.024	(1.000)	339490	40.	0000		
*	4 Phenanthrene-dl0	188	8.879	8.879	(1.000)	541577	40.	0000		
*	5 Chrysene-d12	240	13.159	13.159	(1.000)	552156	40.	0000		
*	6 Perylene-d12	264	15.522	15.522	(1.000)	546812	40.	0000		
\$	7 2-Fluorophenol	112	2.330	2.330	(0.660)	253747	50.	0000		49.23
\$	8 Phenol-d5	99	3.221	3.221	(0.912)	327916	50.	0000		50.59
\$	9 2-Chlorophenol-d4	132	3.335	3.335	(0.944)	290223	50.	0000		50.98
\$:	10 1,2-Dichlorobenzene-d4	152	3.729	3.729	(1.056)	179570	50.	0000		49.86
\$ 3	11 Nitrobenzene-d5	82	4.154	4.154	(0.841)	276306	50.	0000		52.02
\$ 1	12 2-Fluorobiphenyl	172	6.247	6.247	(0.889)	549632	50.	0000		50.26
\$:	13 2,4,6-Tribromophenol	330	7.998	7.998	(1.139)	81516	50.	0000		55.26
\$:	14 Terphenyl-d14	244	11.439	11.439	(0.869)	579626	50.	0000		53.29
	15 N-Nitrosodimethylamine	74	1.304	1.304	(0.369)	165136	50.	0000		49.01
	16 Pyridine	79	1.314	1.314	(0.372)	253802	50.	0000		45.05
:	23 Aniline	93	3.231	3.231	(0.915)	400302	50.	0000		48.52
;	24 Phenol	94	3.231	3.231	(0.915)	362462	50.	0000		48.66
2	26 Bis(2-chloroethyl)ether	93	3.304	3.304	(0.935)	263303	50.	0000		50.41
:	27 2-Chlorophenol	128	3.345	3.345	(0.947)	283629	50.	0000		49.61
2	28 1,3-Dichlorobenzene	146	3.491	3.491	(0.988)	314042	50.	0000		50.43
2	29 1,4-Dichlorobenzene	146	3.542	3.542	(1.003)	328475	50.	0000		50.44
- 1	30 Benzyl Alcohol	108	3.708	3.708	(1.050)	196106	50.	0000		51.04
1	31 1,2-Dichlorobenzene	146	3.739	3.739	(1.059)	304401	50.	0000		50.85
	32 2-Methylphenol	108	3.864	3.864	(1.094)	262761	50.	0000		50.26
	33 2,2'-oxybis(1-Chloropropane)	45	3.874	3.874	(1.097)	416654	50.	0000		50.12
:	34 4-Methylphenol	108	4.029	4.029	(1.141)	278346	50.	0000		50.12
3	36 Hexachloroethane	117	4.071	4.071	(1.153)	114401	50.	0000		51.60
3	37 N-Nitrosodinpropylamine	70	4.029	4.029	(1.141)	190511	50.	0000		51.50
4	42 Nitrobenzene	77	4.175	4.175	(0.845)	264804	50.	0000		51.00
	44 Isophorone	82	4.434	4.434	(0.897)	504672	50.	0000		50.55
	45 2-Nitrophenol	139	4.537	4.537	(0.918)	164108	50.	0000		53.27
	46 2,4-Dimethyphenol	107	4.620	4.620	(0.935)	281963	50.	0000		51.51

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
~		====	====	~=====		****	======	=======
47	Bis (2-chloroethoxy) methane	93	4.713	4.713	(0.954)	302332	50.0000	49.56
49	2,4-Dichlorophenol	162	4.807	4.807	(0.973)	221606	50.0000	52.33
	Benzoic Acid	122	4.744	4.744	(0.960)	133403	50.0000	44.03
51	1,2,4-Trichlorobenzene	180	4.900	4.900	(0.992)	240209	50.0000	52.39
	Naphthalene	128	4.962	4.962	(1.004)	875348	50.0000	50.55
54	4-Chloroaniline	127	5.066	5.066	(1.025)	347244	50.0000	51.16
57	Hexachlorobutadiene	225	5.190	5.190	(1.050)	121809	50.0000	54.28
60	4-Chloro-3-Methylphenol	107	5.677	5.677	(1.149)	247891	50.0000	52.42
	2-Methylnaphthalene	142	5.895	5.895	(1.193)	572162	50.0000	52.60
66	Hexachlorocyclopentadiene	237	6.050	6.050	(0.861)	131928	50.0000	52.08
	2,4,6-Trichlorophenol	196	6.164	6,164	(0.878)	143533	50.0000	52.99
	2,4,5-Trichlorphenol	196	6.206	6,206	(0.883)	157960	50.0000	54.13
	2-Chloronaphthalene	162	6.340	6.340	(0.903)	479069	50.0000	50.14
	2-Nitroaniline	65	6.527	6.527	(0.929)	158363	50.0000	54.69
	Dimethylphthalate	163	6,807		(0.969)	582556	50.0000	52.96
	Acenaphthylene	152	6.838		(0.973)	844624	50.0000	50.76
	2.6-Dinitrotoluene	165	6.879		(0.979)	137342	50.0000	53.59
	3-Nitroaniline	138	7.024		(1.000)	162773	50.0000	50.88
	Acenaphthene	153	7.066		(1.006)	545831	50.0000	51.54
	2,4-Dinitrophenol	184	7.149	7.149	(1.018)	77473	50.0000	51.35
	Dibenzofuran	168	7.263	7.263	(1.034)	719192	50.0000	51.17
	4-Nitrophenol	109	7.283		(1.037)	75750	50.0000	57.09
	2,4-Dinitrotoluene	165	7.335	7,335	(1.044)	179621	50.0000	53.40
	Fluorene	166	7.667		(1.091)	583141	50.0000	50.10
	Diethylphthalate	149	7.667	7.667	(1.091)	599276	50.0000	53.21
	4-Chlorophenyl-phenylether	204	7.698	7.698	(1.096)	254471	50.0000	52.58
	4-Nitroaniline	138	7.771		(1.106)	176827	50.0000	55.76
	4,6-Dinitro-2-methylphenol	198	7.822	7.822	(0.881)	99886	50.0000	51.68
	N-Nitrosodiphenylamine	169	7.864	7.864	(0.886)	510051	58.6000	62.14
	Azobenzene	77	7.884		(0.888)	548009	50.0000	51.46
	4-Bromophenyl-phenylether	248	8.309	8.309	(0.936)	146565	50.0000	55.44
	Hexachlorobenzene	284	8.475	8.475	(0.954)	155510	50.0000	52.67
110	Pentachlorophenol	266	8.745	8.745	(0.985)	84390	50.0000	48.06
	Phenanthrene	178	8.910	8.910	(1.004)	874937	50.0000	51.26
115	Anthracene	178	8.973	8.973	(1.011)	868361	50.0000	50.92
118	Carbazole	167	9.242	9.242	(1.041)	815685	50.0000	52.36
120	Di-n-Butylphthalate	149	9.936	9.936	(1.119)	1040623	50.0000	55.52
126	Fluoranthene	202	10.714	10.714	(1.207)	817265	50.0000	53.43
127	Benzidine	184	11.004	11.004	(0.836)	574763	50.0000	51.36
128	Pyrene	202	11.066	11.066	(0.841)	893266	50.0000	51.76
	3,3'-dimethylbenzidine	212	12.278	12.278	(0.933)	514041	50.0000	52.04
136	Butylbenzylphthalate	149	12.413	12.413	(0.943)	463793	50.0000	53.62
138	Benzo (a) Anthracene	228	13.139	13.139	(0.998)	778036	50.0000	52.90
139	Chrysene	228	13.201	13.201	(1.003)	767718	50.0000	51.03
	3,3'-Dichlorobenzidine	252	13.190	13.190	(1.002)	285346	50.0000	51.44
141	bis(2-ethylhexyl)Phthalate	149	13.532	13.532	(1.028)	638447	50.0000	53.58
	Di-n-octylphthalate	149	14.579	14.579	(1.108)	1084956	50.0000	56.96
	Benzo (b) fluoranthene	252	14.942	14.942	(0.963)	723231	50.0000	58.43
	Benzo(k) fluoranthene	252	14.983	14.983	(0.965)	761691	50.0000	47.94
	Benzo(e)pyrene	252	15.356	15.356	(0.989)	681372	50.0000	52.79
	Benzo(a) pyrene	252	15.429		(0.994)	715205	50.0000	50.96
	Indeno(1,2,3-cd)pyrene	276	17.045		(1.098)	623322	50.0000	54.92
	Dibenzo (a, h) anthracene	278	17.087		(1.101)	694362	50.0000	54.76
	Benzo(g,h,i)perylene	276	17.408	17.408		724574	50.0000	52.78
					- •			

						AMOUN	TS
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
*======================================	====	-===		======:	*****		*****
M 162 benzo b,k Fluoranthene Totals	252				1484922	50.0000	52.53(A)

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Data File: \\SV5\C\chem\sv5.i\120710.B\HSL1207.D Page 4

Report Date: 08-Dec-2010 09:16

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 07-DEC-2010

Calibration Time: 18:30

Client Smp ID: 8270F.M

Level:

Sample Type:

Instrument ID: sv5.i Lab File ID: HSL1207.D

Lab Smp Id: HSL 050 ug/ml CS-4

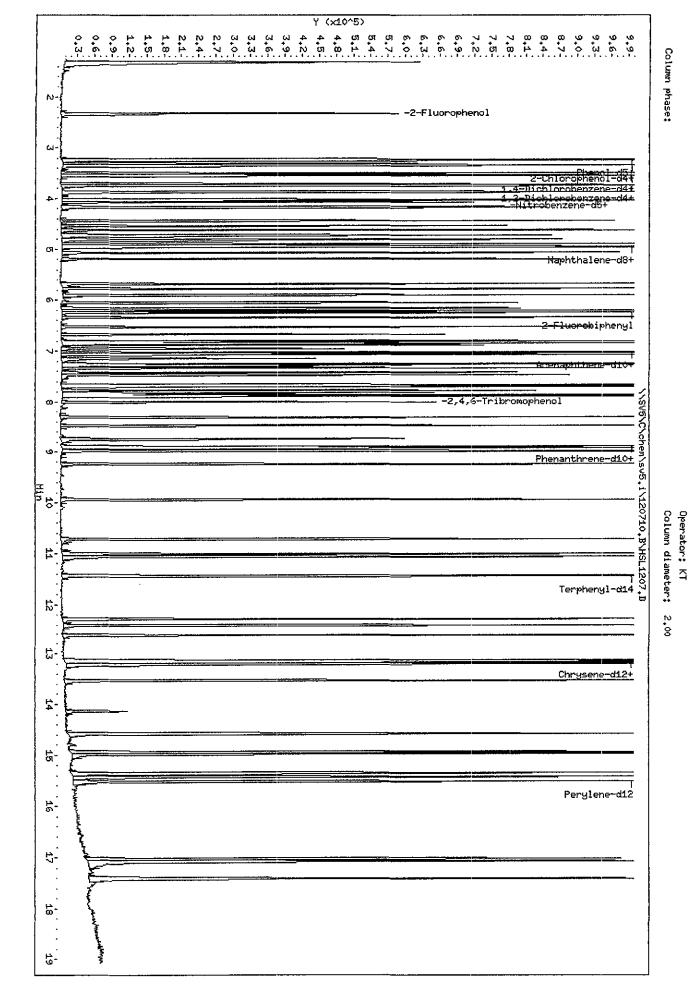
Analysis Type: SV Quant Type: ISTD

Operator: KT
Method File: \\SV5\C\chem\sv5.i\120710.B\8270f.m Misc Info: 3;;0;1 8270STD.SUB;10MSSV0310;0;8270F.M

Test Mode:

Use Initial Calibration Level 4.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	========	========		======
1 1,4-Dichlorobenze	122625	61313	245250	146239	19.26
2 Naphthalene-d8	530514	265257	1061028	627132	18.21
3 Acenaphthene-d10	282538	141269	565076	339490	20.16
4 Phenanthrene-d10	462722	231361	925444	541577	17.04
5 Chrysene-d12	435850	217925	871700	552156	26.68
6 Perylene-d12	422284	211142	844568	546812	29.49
<u>,</u>					


		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	========	========	======
1 1,4-Dichlorobenze	3.53	3.03	4.03	3.53	0.00
2 Naphthalene-d8	4.94	4.44	5.44	4.94	0.00
3 Acenaphthene-d10	7.02	6.52	7.52	7.02	0.00
4 Phenanthrene-d10	8.88	8.38	9.38	8.88	0.00
5 Chrysene-d12	13.16	12.66	13.66	13.16	0.00
6 Perylene-d12	15.52	15.02	16.02	15.52	0.00
·	 	· <u></u> i			

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Sample Info; HSL_050 ug/ml CS-4;2;;4;;;;4

Instrument: sv5.i

TAILING FACTOR/DEGRADATION SUMMARY RESULTS

TAILING ANALYSIS SUMMARY

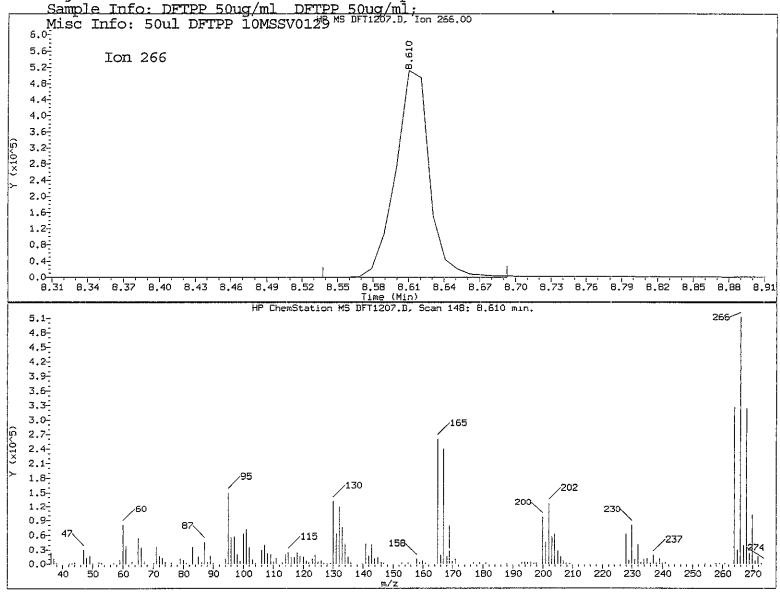
Compound	Tail Factor	Max Allowed Test
Pentachlorophenol	1.1044380	5.000 PASS
Benzidine	0.3282517	3.000 PASS

DDT DEGRADATION BREAKDOWN ANALYSIS SUMMARY

+======================================	i		Mars Allewed Fort
Compound	Response		Max Allowed Test
4,4-DDD + DDE	350133	10.5	20.5 PASS

Sample //SV5/C/chem/sv5.i/120710.B/DFT1207.D/DFT1207.D

****************** *** PASSED ***


12/8/10

TAILING FACTOR/DEGRADATION SAMPLE AND GRAPHIC REPORT

Report Date: 12/08/2010 09:15

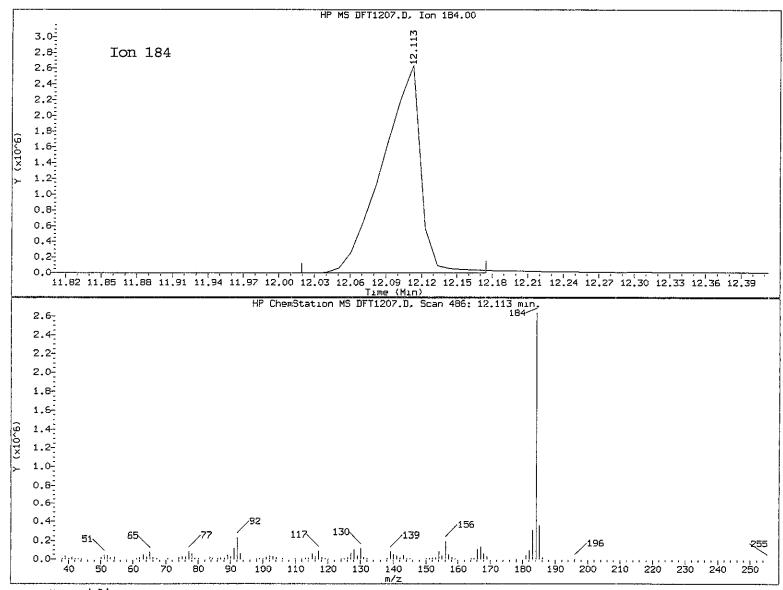
Datafile Analyzed: //SV5/C/chem/sv5.i/120710.B/DFT1207.D/DFT1207.D Method Used: \\SV5\C\chem\sv5.i\120710.B\DFTPP.M\resol.m Inst: sv5

Injection Date: 07-DEC-2010 18:58 Operator: KT

Pentachlorophenol

Exp. RT = 8.631 Found RT = 8.610

Tailing factor for Pentachlorophenol OK


Tail Factor = 1.104 Maximum Allowed = 5.0

Datafile Analyzed: //SV5/C/chem/sv5.i/120710.B/DFT1207.D/DFT1207.D Method Used: \\SV5\C\chem\sv5.i\120710.B\DFTPP.M\resol.m Inst: sv5

Injection Date: 07-DEC-2010 18:58 Operator: KT

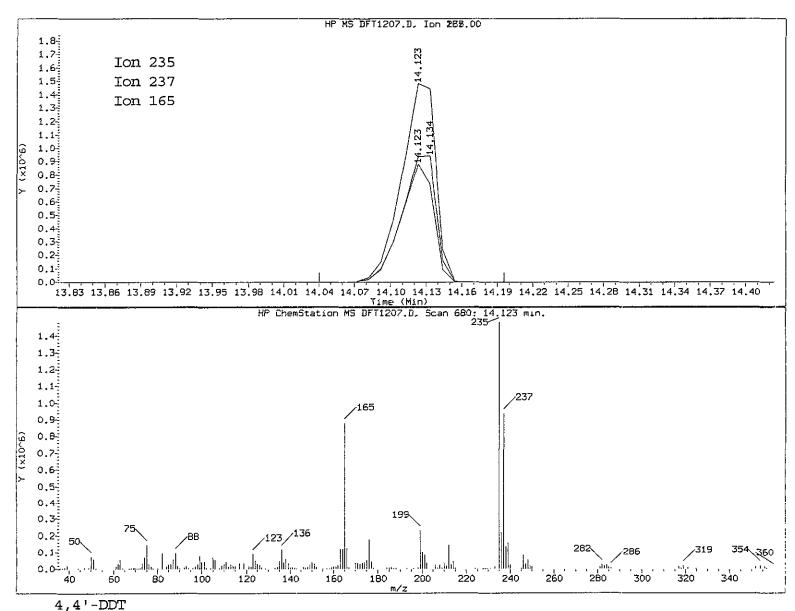
Sample Info: DFTPP 50ug/ml DFTPP 50ug/ml;

Misc Info: 50ul DFTPP 10MSSV0129

Benzidine

Exp. RT = 12.113

Found RT = 12.113


Tailing factor for Benzidine OK

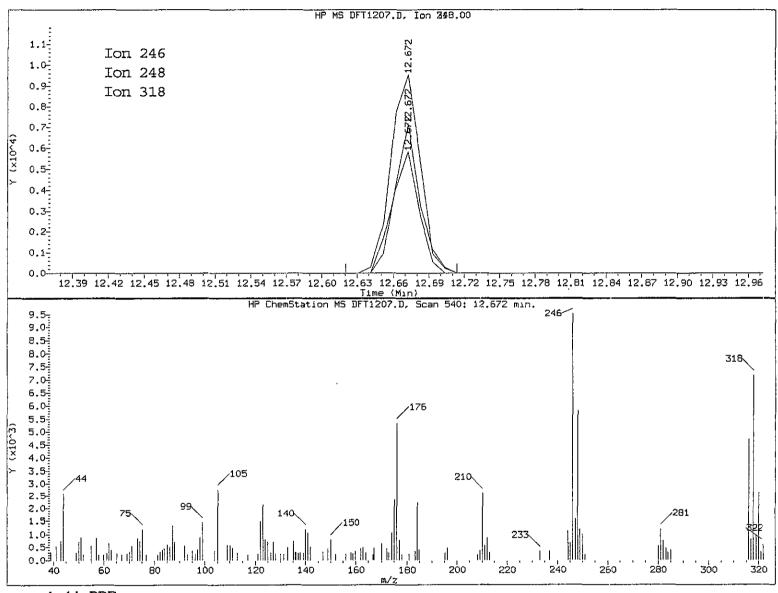
Tail Factor = 0.328 Maximum Allowed = 3.0

Datafile Analyzed: //SV5/C/chem/sv5.i/120710.B/DFT1207.D/DFT1207.D Method Used: \\SV5\C\chem\sv5.i\120710.B\DFTPP.M\resol.m Inst: sv5

Injection Date: 07-DEC-2010 18:58 Ope Sample Info: DFTPP 50ug/ml DFTPP 50ug/ml; Operator: KT

Misc Info: 50ul DFTPP 10MSSV0129

Exp. RT =14.134 Found RT = 14.123


Mass	Area	Ratio
	- -	-
235	2973238	100.00
237	1904311	64.05
165	1697556	57.09

Datafile Analyzed: //SV5/C/chem/sv5.i/120710.B/DFT1207.D/DFT1207.D Method Used: \\SV5\C\chem\sv5.i\120710.B\DFTPP.M\resol.m Inst: sv5

Injection Date: 07-DEC-2010 18:58 Operator: KT

Sample Info: DFTPP 50ug/ml DFTPP 50ug/ml;

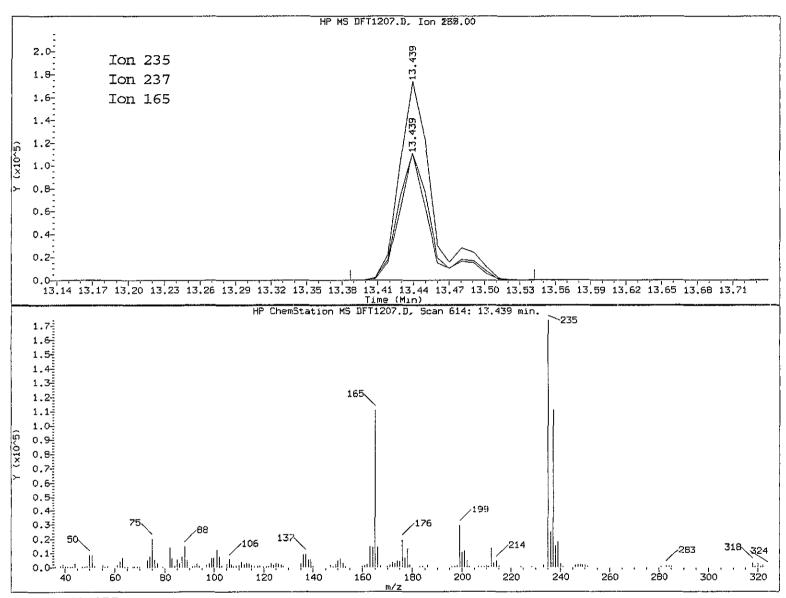
Misc Info: 50ul DFTPP 10MSSV0129

4,4'-DDE

318

Exp. RT = 12.683Found RT = 12.672

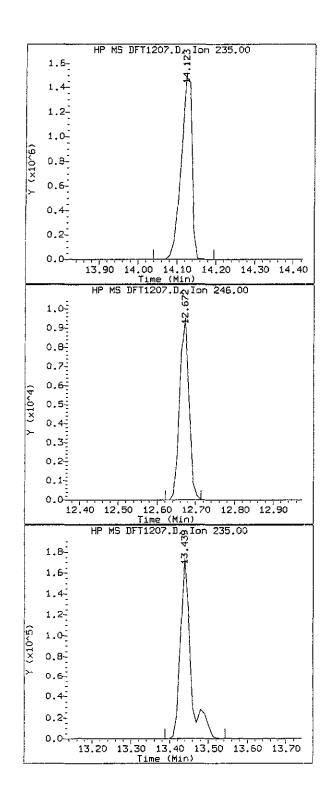
10633


64.58

Datafile Analyzed: //SV5/C/chem/sv5.i/120710.B/DFT1207.D/DFT1207.D Method Used: \\SV5\C\chem\sv5.i\120710.B\DFTPP.M\resol.m Inst: sv5

Injection Date: 07-DEC-2010 18:58 Operator: KT

Sample Info: DFTPP 50ug/ml DFTPP 50ug/ml;


Misc Info: 50ul DFTPP 10MSSV0129

4,4'-DDD

Exp. RT = 13.450Found RT = 13.439

Mass Area Ratio
---- 333667 100.00
237 212211 63.60
165 207323 62.13

Compound: 4,4'-DDT Quant Mass: 235

RT: 14.123 Area: 2973238

Compound: 4,4'-DDE

Quant Mass: 246

RT: 12.672 Area: 16466

Compound: 4,4'-DDD

Quant Mass: 235 RT: 13.439

Area: 333667

DDT DEGRADATION BREAKDOWN ANALYSIS SUMMARY

Compound	Response	%Breakdown	Max Allowed Test
4,4-DDD + DDE	350133	10.5	20.5 PASS

Report Date: 08-Dec-2010 09:15

TestAmerica West Sacramento

Page 1

Data file : \\SV5\C\chem\sv5.i\120710.B\DFT1207.D Lab Smp Id: DFTPP 50ug/ml

Inj Date : 07-DEC-2010 18:58

Inst ID: sv5.i Operator : KT

Smp Info : DFTPP 50ug/ml;

Misc Info: 50ul DFTPP 10MSSV0129

Comment

Method : \\SV5\C\chem\sv5.i\120710.B\DFTPP.m Meth Date : 08-Dec-2010 09:15 onishim Quant 1 Quant Type: ISTD Cal File:

Cal Date :

QC Sample: DFTPP

Als bottle: 96 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.14 Sample Matrix: None

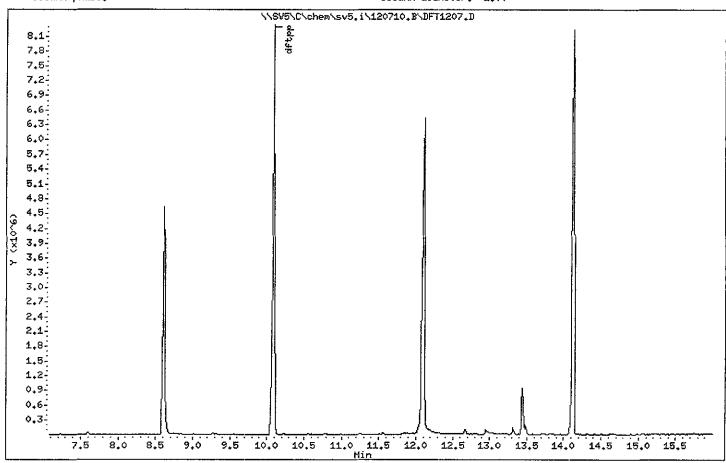
Processing Host: SV5

CONCENTRATIONS

					ON-COL	FINAL			
RT	EXP RT	REL RT	MASS	RESPONSE	(ug/L)	(ug/L)	TARGE!	r range	RATIO
====	86=====	========	2225	a======	2222355	====±==	=====		HESEC
1 (dftpp					CAS #:	5074-7	1-5	
10.091	10.092	(0.000)	198	941120			0.00-	100.00	89.89
10.091	10.092	(0.000)	51	358336			30.00-	60.00	38.08
10.091	10.092	(0.000)	68	5496			0.00-	2.00	1.59
10.091	10.092	(0.000)	69	344832			0.00-	0.00	36.64
10.091	10.092	(0.000)	70	1548			0.00-	2.00	0.45
10.091	10.092	(0.000)	127	486592			40.00-	60.00	51,70
10.091	10.092	(0.000)	197	0	0.0	0.0	0.00-	1.00	0.00
10.091	10.092	(0.000)	199	61496			5.00-	9.00	6.53
10.091	10.092	(0,000)	275	234944			10.00-	30.00	24.96
10.091	10.092	(0.000)	365	30584			1.00-	0.00	3.25
10.091	10.092	(0.000)	441	153408			0.01-	99.99	76.36
10.091	10.092	(0.000)	442	1046912			40.00-	0.00	111.24
10.091	10.092	(0.000)	443	200896			17.00-	23.00	19.19

Date : 07-DEC-2010 18:58

Client ID:


Instrument: sv5.i

Sample Info: DFTPP 50ug/m1;

Operator: KT

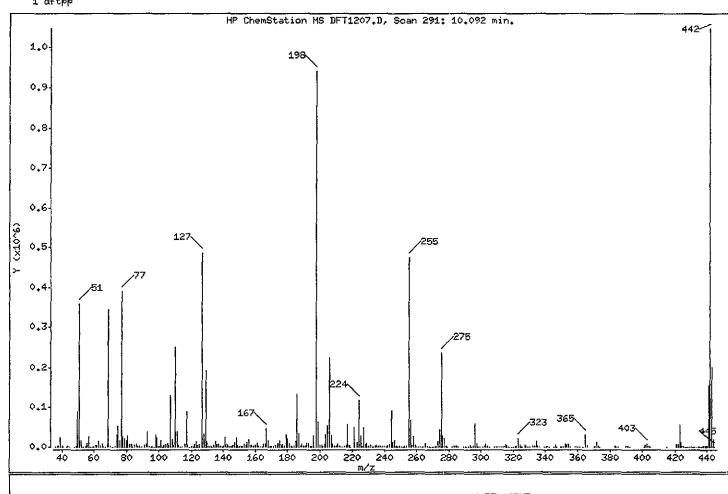
Column phase:

Column diameter: 2.00

Date : 07-DEC-2010 18:58

Client ID:

Instrument: sv5.i


Sample Info: DFTPP 50ug/ml;

Operator: KT

Column phase:

Column diameter: 2.00

1 dftpp

m/e ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
	1	+ !
198 Base Peak, 100% relative abundance	1 100.00	1
! 51 ! 30,00 - 60,00% of mass 198	38.08	I
68 Less than 2.00% of mass 69	1 0.58 (1.59)	ļ
69 Mass 69 relative abundance	l 36 ₊64]
1 70 Less than 2.00% of mass 69	1 0.16 (0.45)	ţ.
127 40,00 - 60,00% of mass 198	l 51.,7¢	I
197 Less than 1.00% of mass 198	1 0.00	1.
199 5.00 - 9.00% of mass 198	1 6,53	i
275 10.00 - 30.00% of mass 198	1 24,96	I
365 Greater than 1.00% of mass 198	1 3,25	Ţ.
441 Present, but less than mass 443	1 16.30	I
442 Greater than 40.00% of mass 198	l 111,24	I
443 17.00 - 23.00% of mass 442	1 21,35 (19,19)	i

Date : 07-DEC-2010 18:58

Client ID:

Instrument: sv5.i

Sample Info: DFTPP 50ug/ml;

Operator: KT

Column phase:

Column diameter: 2.00

Data File: DFT1207.D

Spectrum: HP ChemStation MS DFT1207.D, Scan 291: 10.092 min.

Location of Maximum: 442.00 Number of points: 351

	m/z	Y	m/z	Y	m/z	Y	m/z	Υ
i	35,90	444	1 130.00	15165	218,90	815	316.10	3790 I
ī	37,10	1237	131.00	3402 (221,10	511 76	317.10	707 1
1	38,10	3041	132.00	1928	223,00	11650	319,00	331 I
1	39,10	23944	133.00	627	224.10	118936	320,00	279 1
1	40,10	1333	134.00	5648	225,10	27912	321,00	2532
1	41.10	866	135.00	15521	226,00	3593	322,10	1307
I	43,10	513	136.00	6475	227,00	48416	323,10	21416
1	44.00	1753	137,00	6838 (228,00	6461.	324,10	4062 I
1	45,00	753	138.00	2028	229,00	9533	324,80	278
1	48,20	270	139,10	1195	230,00	1316	325,30	375
1	49.00	2085	140.10	2579	231.00	5001.	327,00	4274
ŀ	49,20	2117	141.00	23536 1	232,10	769	328.00	1617
į	50.10	88856	142,00	7158 (233,00	946	329,00	321 I
ı	51,10	3 58336	143.00	4808	234.00	3144	330,10	213 i
1	52,10	17656	144.10	1434	235,00	3698	332.00	1345 i
j	53,10	71 6 1	145.00	1389	236,00	1943	333,00	1805 l
I	55 , 00	1866	146.10	4295 i	237,00	3607	334.10	13511
1	56,00	10467	147.10	11654	238,10	630	335,10	3336
F	57,00	26216	148.00	23960	239,00	2294	336,10	533
1	58,00	1048	149.00		239,90	1581 	339 ,1 0	518
i	59,10	505	150.10	1321	241.00	2462	340.10	500 I
1	60.00	353 (151,10	3266 (242,10	5608	341,10	2417 I
1	61,00	4125	152.10	2089 (243,10	6797	342.00	954 I
I	62.00	4408 1	1.53,00		244.10		345.10	210
[+-	63,00	13262	154.00	5002	245,10	11742	346,00	4911
J	64,10	2478	155.00	11983	246.00	17040	347.00	1016
I	65,10	7180 (1.56.10	18168 I	247,00	3145	349,40	200
1	65,90	491 !	157,10	3848	248,10	993	350,10	241
1	67.10	443 !	1.58₊◊◊	4829 l	249,00	3497	351,00	379 I
1	68,10	5496	1.59.00	3216 I	250,10	775	352,00	7276
1	69.00	344832	160,00	5537 J	250.50	458	353,00	5018
ŧ	70.00	1 548 (1.61.10	9714 1	251,20	739	354,10	6944 i
ı	71.00	373 I	1.62,00	3000	252,10	1652	355,10	1070 i
ı	72,00	238	1.63,00	880	253,10	3061	358,00	213
I	73,00	2482	1.64.10	1172	255,00	475008	359,00	474

Data File: \\SV5\C\chem\sv5.i\120710.B\DFT1207.D

Date : 07-DEC-2010 18:58

Client ID:

Instrument: sv5.i

Sample Info: DFTPP 50ug/ml;

Operator: KT

Column phase:

Column diameter: 2.00

Data File: DFT1207.D

Spectrum: HP ChemStation MS DFT1207.D, Scan 291: 10.092 min.

Location of Maximum: 442.00 Number of points: 351

	m/z	Y	m/z	Y	m/z	Y	m/z	Υ
1	74,10	30400	165.00	7398	256,00	67736	, 1 359,90	283
ı	75,00	52048	166.10	6991	257,00	505 9	361.20	267
1	76,10	17480	1 167,00	44528	258,00	27248	363.00	244
ſ	77,10	388992	1 168,00	17480	259,00	4318	363,60	314
Į.	78,10	25320	169.00	2761	260.00	1011	365.00	30584
;	79,00	22488	1 170.00	1429	261,10		366.00	4285 I
1	80.00	17984	171.00	1677	261.90	331	370,00	573 I
1	81,00	28192	1 172,00	4461	263.10	452	371.00	1723
t	82,00	7221	1 173,00	5125	264,00	1075	372.00	12369 l
i	83,10	6312	1 174,00	9097	265,00	10046	373,00	3192
1	84.00	1064	1 175,00	17000	266,10	1795	373.80	383 i
1	85.00	4917	176,10	561 6	267,30	242	383,00	2959
ı	86,00	7509	177,00	8330	268,00	253	384,00	1011
l	87.00	2762	178.00	2927	269,10	217	I 384₊90	444
1	88.00	1236	1 179.00	32040	270.10	614	390,00	1487
1	89.00	726	1 180.00	20912	271.00	1060	391.00	1312
l	91,00	5994	181,00	9435	272,00	1955	392,00	832
ŀ	92,00	7280	182.00	1268	273,00	14825	1 400,90	776 (
i	93,00	38064	183,00	776	274,00	42624	1 402,00	5145 I
1	94.00	3059	184.10	2485	275,00	234944	1 403,00	8365
ļ	95,10	927	185.00	14710	276,00	29664	404.00	3051 1
į	96,00	1962	i 186,10	131200	277,00	20840	405,00	418 (
ļ	97,00	1088	1 187.00	34 592	278,00	3036	415,10	393 [
1	98,00	3065 6	188.10	3303	279,10	718	421.00	7241
1	99.00	24168	1 189.00	6593	282,10	418	422,00	7821
1	100.00	2137	1 190,00	1691	283,00	2278	423,00	56392]
1	101.00	17112	191.00	3385	284.10	1316	1 424,00	124 9 5
ı	102,10	707	192.00	8960	285,10	3296	425,10	1266
1	103,00	4533	1 193.00	9389	285,90	753	1 426.00	314
l	104.00	8374	194.10	2520	288,90	1173	427.00	462 1
1	105.00	9548	1 194.90	1781	290.00	670	1 427.60	218 !
1	106.00	3865	196.10	28664	291,10	577	1 428,30	410 I
I	107.00	129648	198.00	941120	292,00	912	1 428,90	223
1	108,00	20000	1 199,00	61496	293,00	4149	429,40	266 1
1	109,10	3956	1 200,00	4066	294,00	755	430,10	379

Data File: \\SV5\C\chem\sv5.i\120710.B\DFT1207.D

Date : 07-DEC-2010 18:58

Client ID:

Instrument: sv5.i

Sample Info: DFTPP 50ug/ml;

Operator: KT

Column phase:

Column diameter: 2.00

Data File: DFT1207.D

Spectrum: HP ChemStation MS DFT1207.D, Scan 291: 10.092 min.

Location of Maximum: 442.00 Number of points: 351

	m/z	Y		かくて		Y		m/z	Y		めぐて	Y	,
+-			+				ŀ		 	-+-			+
f	110.00	249792	1	201,50	į	5425	I	295,00	1487	I	430.90	416	,
ı	111.00	38184	1	202,00	:	L868	ŀ	296,00	58960	1	431.30	450	1
ı	112.00	4016	1	203,00		5341	ĺ	297,10	9033	ĺ	431.90	648	1
1	113.00	1059	1	204.00	33	2360	ı	298,00	587	Į	433,30	505	1
i	114.10	459	į	205.00	5	2464	1	298,90	288	Į	434,30	- 639	1
+-			-+-				+-		 	-+-			+
1	116,00	7217	ſ	206.10	22	1128	1	301,00	790	ı	434.80	729	1
1	117.00	88136	į	207,10	28	3424	1	302,00	1321	ı	435,30	936	1
1	118.00	5460	ī	208,00		6671	1	303.00	7805	i	436,50	1169	1
1	119.00	753	ī	209.00	2	2153	ı	304,00	2026	ı	437.70	1425	5 1
ı	120,10	1815	1	210.00	;	3375	1	305,10	340	i	438,50	2401	. 1
+-			+				+-		 	-+-			-+
1	121.10	320	1	211,10	1	3023	i	308.00	806	I	439,30	2087	' I
ı	122,00	8059	1	212,00	:	L700	Į	309,00	451	I	439,70	2173	1
1	123,00	13316	į	212,90		685	ı	310,10	976	1	441,00	153408	1
1	124.00	5505	ł	214.00		240	ı	311,00	287	į	442,00	1046912	1
1	125.10	6360	į	215,00	2	2484	1	312,10	251	l	443,00	200896	1
4-			+				+		 	-4-			+
1	127.00	486592	i	216.10	•	1575	1	313,00	923	į	444,00	19040	1
1	128.00	34736	1	21.7.00	5	7208	I	314,00	3152	I	444.90	845	1 2
í	129,00	192128	1	218.00	į	5655	ſ	315,00	7047	1			t
+-			+				+-		 	-+-			-+

Report Date: 08-Dec-2010 09:20

TestAmerica West Sacramento

Method 8270C

Data file : \\SV5\C\chem\sv5.i\120710.B\S120705.D

Lab Smp Id: MAR231AA G0L020000-Client Smp ID: 0336447

Inst ID: sv5.i Misc Info: 0;AIR;0;S11JZHCB.SUB;;0;0336447;8270F.M

Comment : SOP SAC-MS-0005

Method : \\SV5\C\chem\sv5.i\120710.B\8270F.m

Meth Date: 08-Dec-2010 09:16 semivoa Quant Type: ISTD Cal Date : 17-AUG-2010 21:19 Cal File: AP90817D.D

Als bottle: 5
Dil Factor: 1.00000
Integrator: Falcon

Compound Sublist: S11JZHCB.SUB

Target Version: 4.14 Processing Host: SV5

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi) * CpndVariable

Name	Value	Description
DF Uf Vt Vo Vi Cpnd Variable	1.000 1000.000 1000.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL) Local Compound Variable

								CONCENTR	ATIONS
			QUANT SIG					ON-COLUMN	FINAL
C	ompo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(ug/L)
=		========	====			=======================================	******	======	======
*	1	1,4-Dichlorobenzene-d4	152	3.532	3.532	(1.000)	103129	40.0000	(q)
*	2	Naphthalene-d8	136	4.941	4.941	(1.000)	453376	40.0000	
*	3	Acenaphthene-d10	164	7.024	7.024	(1.000)	242534	40.0000	
*	4	Phenanthrene-d10	188	8.879	8.879	(1.000)	404292	40.0000	
*	5	Chrysene-d12	240	13.159	13.159	(1.000)	393288	40.0000	
*	6	Perylene-d12	264	15.512	15.522	(1.000)	376254	40.0000	
\$	7	2-Fluorophenol	112	2.330	2.330	(0.660)	260997	71.7993	71.80
\$	8	Phenol-d5	99	3.221	3.221	(0.912)	368834	80.6884	80.69
\$	10	1,2-Dichlorobenzene-d4	152	3.729	3.729	(1.056)	85938	33.8355	33.84 (q)
\$	11	Nitrobenzene-d5	82	4.154	4.154	(0.841)	152047	39.5952	39.60
\$	12	2-Fluorobiphenyl	172	6.247	6.247	(0.889)	329259	42.1437	42.14
\$	13	2,4,6-Tribromophenol	330	7.998	7.998	(1.139)	105503	100.107	100.1
\$	14	Terphenyl-d14	244	11.439	11.439	(0.869)	367384	47.4244	47.42
	108	Hexachlorobenzene	284	Con	npound No	t Detecte	đ.		

QC Flag Legend

q - Qualifier signal exceeded ratio warning limit.

Data File: \\SV5\C\chem\sv5.i\120710.B\S120705.D Page 2

Report Date: 08-Dec-2010 09:20

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: sv5.i Calibration Date: 07-DEC-2010

Lab File ID: S120705.D Calibration Time: 19:43
Lab Smp Id: MAR231AA G0L020000- Client Smp ID: 0336447

Analysis Type: SV Level: LOW Quant Type: ISTD Sample Type: AIR

Operator: KT

Method File: \\SV5\C\chem\sv5.i\120710.B\8270F.m Misc Info: 0;AIR;0;S11JZHCB.SUB;;0;0336447;8270F.M

Test Mode:

Use Initial Calibration Level 4.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========		======
1 1,4-Dichlorobenze	122625	61313	245250	103129	-15.90
2 Naphthalene-d8	530514	265257	1061028	453376	-14.54
3 Acenaphthene-d10	282538	141269	565076	242534	-14.16
4 Phenanthrene-d10	462722	231361	925444	404292	-12.63
5 Chrysene-d12	435850	217925	871700	393288	-9.77
6 Perylene-d12	422284	211142	844568	376254	-10.90

COMPOUND	STANDARD	RT I LOWER	IMIT UPPER	SAMPLE	%DIFF
1 1,4-Dichlorobenze 2 Naphthalene-d8 3 Acenaphthene-d10 4 Phenanthrene-d10 5 Chrysene-d12 6 Perylene-d12	3.53	3.03	4.03	3.53	-0.00
	4.94	4.44	5.44	4.94	-0.00
	7.02	6.52	7.52	7.02	-0.00
	8.88	8.38	9.38	8.88	-0.00
	13.16	12.66	13.66	13.16	-0.00
	15.52	15.02	16.02	15.51	-0.00

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT. Report Date: 08-Dec-2010 09:20

TestAmerica West Sacramento

RECOVERY REPORT

Client Name:

Sample Matrix: GAS Lab Smp Id: MAR231AA G0L020000-

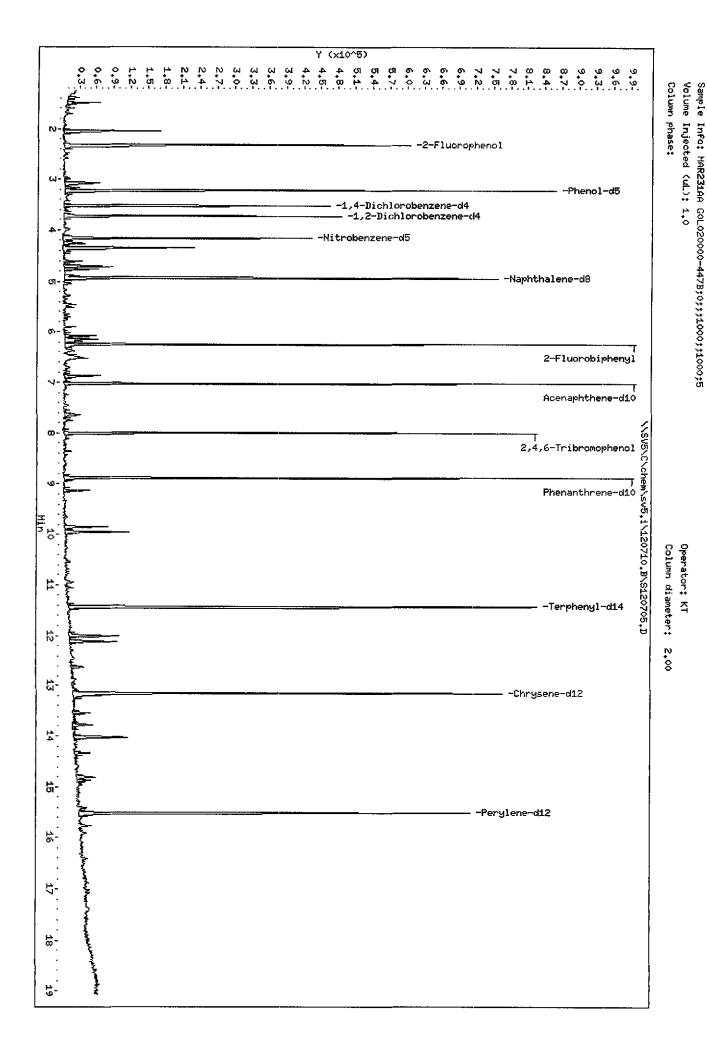
Level: LOW

Data Type: MS DATA

SampleType: SpikeList File: Quant Type: Sublist File: S11JZHCB.SUB

Method File: \\SV5\C\chem\sv5.i\120710.B\8270F.m Misc Info: 0;AIR;0;S11JZHCB.SUB;;0;0336447;8270F.M

Client SDG: 090498


Fraction: SV

Client Smp ID: 0336447

Operator: KT

SampleType: SAMPLE Quant Type: ISTD

SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
\$ 7 2-Fluorophenol	100.0	71.80	71.80	41-105
\$ 8 Phenol-d5	100.0	80.69	80.69	43-122
\$ 10 1,2-Dichlorobenzen	50.00	33.84	67.67	60-120
\$ 11 Nitrobenzene-d5	50.00	39.60	79.19	46-118
\$ 12 2-Fluorobiphenyl	50.00	42.14	84.29	58-105
\$ 13 2,4,6-Tribromophen	100.0	100.1	100.11	61-118
\$ 14 Terphenyl-d14	50.00	47.42	94.85	69-110

rage 4

Instrument: sv5.i

Client ID: 0336447

07-DEC-2010 22:12

Data File: \\SV5\C\ohem\sv5.i\120710.B\S120705.D

Report Date: 08-Dec-2010 09:38

TestAmerica West Sacramento

Method 8270C

Data file : \\SV5\C\chem\sv5.i\120710.B\S120706.D Lab Smp Id: MAR231AC G0L020000-Inj Date : 07-DEC-2010 22:36

Operator : KT Inst ID: sv5.i Smp Info : MAR231AC G0L020000-447C;3;LCS;;1000;;1000;2 Misc Info: 0;AIR;0;S11JZHCB.SUB;S11JZHCB.SPK;1;;8270F.M

Comment : SOP SAC-MS-0005

Method : \\SV5\C\chem\sv5.i\120710.B\8270F.m

Meth Date: 08-Dec-2010 09:16 semivoa Quant Type: ISTD Cal File: AP90817D.D Cal Date : 17-AUG-2010 21:19

QC Sample: LCS

Als bottle: 6
Dil Factor: 1.00000
Integrator: Falcon Compound Sublist: S11JZHCB.SUB

Target Version: 4.14 Processing Host: SV5

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi) * CpndVariable

Name	Value	Description
DF Uf Vt Vo Vi Cpnd Variable	1.000 1000.000 1000.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL) Local Compound Variable

							CONCENTRA	ATIONS
		QUANT SIG					ON-COLUMN	FINAL
Compo	ounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(ug/L)
====		====	====			******		
* :	1 1,4-Dichlorobenzene-d4	152	3.532	3.532	(1.000)	110216	40.0000	(p)
*	2 Naphthalene-d8	136	4.941	4.941	(1.000)	452013	40.0000	
*	3 Acenaphthene-dl0	164	7.024	7.024	(1.000)	250253	40.0000	
*	4 Phenanthrene-d10	188	8.879	8.879	(1.000)	402633	40.0000	
*	5 Chrysene-dl2	240	13.159	13.159	(1.000)	401152	40.0000	
*	6 Perylene-d12	264	15.522	15.522	(1.000)	398287	40.0000	
\$	7 2-Fluorophenol	112	2.330	2.330	(0.660)	299882	77.1918	77.19
\$	8 Phenol-d5	99	3.221	3.221	(0.912)	406171	83.1429	83.14
\$ 10	0 1,2-Dichlorobenzene-d4	152	Con	npound No	ot Detecte	eđ.		
\$ 1:	1 Nitrobenzene-d5	82	4.154	4.154	(0.841)	172361	45.0206	45.02
\$ 1:	2 2-Fluorobiphenyl	172	6.247	6.247	(0.889)	369712	45.8619	45.86
\$ 1:	3 2,4,6-Tribromophenol	330	7.998	7.998	(1.139)	119555	109.942	109.9
\$ 14	4 Terphenyl-d14	244	11.439	11.439	(0.869)	380177	48.1138	48.11
10	8 Hexachlorobenzene	284	8.475	8.475	(0.954)	212588	96.8505	96.85

QC Flag Legend

q - Qualifier signal exceeded ratio warning limit.

Data File: \\SV5\C\chem\sv5.i\120710.B\S120706.D Page 2

Report Date: 08-Dec-2010 09:20

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: sv5.i Calibration Date: 07-DEC-2010

Lab File ID: S120706.D Calibration Time: 19:43

Lab Smp Id: MAR231AC G0L020000-

Analysis Type: SV Level: LOW Quant Type: ISTD Sample Type: AIR

Operator: KT

Method File: \\SV5\C\chem\sv5.i\120710.B\8270F.m

Misc Info: 0; AIR; 0; S11JZHCB.SUB; S11JZHCB.SPK; 1; ; 8270F.M

Test Mode:

Use Initial Calibration Level 4.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	========	========	========	======
1 1,4-Dichlorobenze	122625	61313	245250	110216	-10.12
2 Naphthalene-d8	530514	265257	1061028	452013	-14.80
3 Acenaphthene-d10	282538	141269	565076	250253	-11.43
4 Phenanthrene-d10	462722	231361	925444	402633	-12.99
5 Chrysene-d12	435850	217925	871700	401152	-7.96
6 Perylene-d12	422284	211142	844568	398287	-5.68

		RT I	IMIT	-	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	
1 1,4-Dichlorobenze	3.53	3.03	4.03	3.53	-0.01
2 Naphthalene-d8	4.94	4.44	5.44	4.94	-0.00
3 Acenaphthene-d10	7.02	6.52	7.52	7.02	-0.00
4 Phenanthrene-d10	8.88	8.38	9.38	8.88	-0.00
5 Chrysene-d12	13.16	12.66	13.66	13,16	-0.00
6 Perylene-d12	15.52	15.02	16.02	15.52	-0.00
·					

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT. Data File: \\SV5\C\chem\sv5.i\120710.B\S120706.D

Report Date: 08-Dec-2010 09:38

TestAmerica West Sacramento

RECOVERY REPORT

Client Name: Client SDG: 090498

Sample Matrix: GAS Fraction: SV

Lab Smp Id: MAR231AC G0L020000-

Level: LOW Operator: KT
Data Type: MS DATA SampleType: LCS
SpikeList File: S11JZHCB.SPK Quant Type: ISTD

Sublist File: S11JZHCB.SUB

Method File: \\SV5\C\chem\sv5.i\120710.B\8270F.m Misc Info: 0;AIR;0;S11JZHCB.SUB;S11JZHCB.SPK;1;;8270F.M

CONC

SPIKE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
108 Hexachlorobenzene	100.0	96.85	96.85	70-100

SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
\$ 7 2-Fluorophenol	100.0	77.19	77.19	41-105
\$ 8 Phenol-d5	100.0	83.14	83.14	43-122
\$ 10 1,2-Dichlorobenze	50.00	0.0000	*	60-120
\$ 11 Nitrobenzene-d5	50.00	45.02	90.04	46-118
\$ 12 2-Fluorobiphenyl	50.00	45.86	91.72	58-105
\$ 13 2,4,6-Tribromophen	100.0	109.9	109.94	61-118
\$ 14 Terphenyl-d14	50.00	48.11	96.23	69-110

Data File: \\SV5\C\chem\sv5.i\120710.B\S120706.D Page 1

Report Date: 08-Dec-2010 09:20

TestAmerica West Sacramento

Method 8270C

QC Sample: LCS

Data file : \\SV5\C\chem\sv5.i\120710.B\S120706.D

Lab Smp Id: MAR231AC G0L020000-Inj Date : 07-DEC-2010 22:36

Operator : KT Inst ID: sv5.i Smp Info : MAR231AC G0L020000-447C;3;LCS;;1000;;1000;2 Misc Info: 0; AIR; 0; S11JZHCB.SUB; S11JZHCB.SPK; 1; ; 8270F.M

Comment : SOP SAC-MS-0005

Method : \\SV5\C\chem\sv5.i\120710.B\8270F.m

Meth Date : 08-Dec-2010 09:16 semivoa Quant Type: ISTD

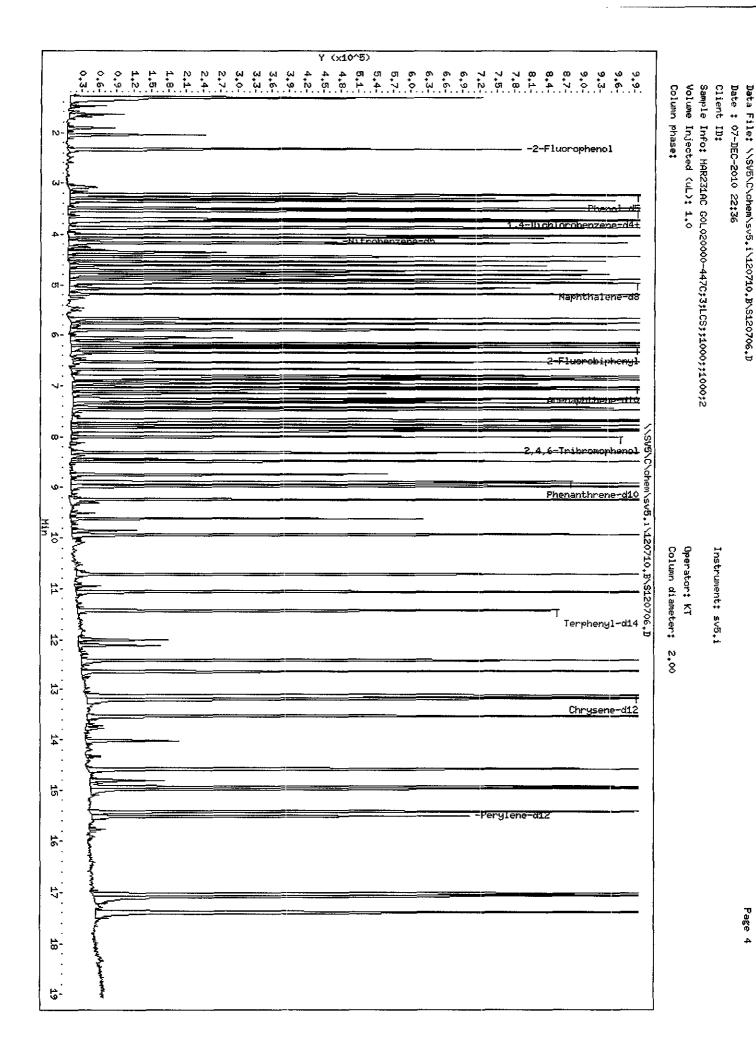
Cal Date : 17-AUG-2010 21:19 Cal File: AP90817D.D

Als bottle: 6

Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: S11JZHCB.SUB

Target Version: 4.14 Processing Host: SV5


Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi) * CpndVariable

Name	Value	Description
DF Uf Vt Vo Vi Cpnd Variable	1.000 1000.000 1000.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL) Local Compound Variable

							CONCENTRA	ATIONS
		QUANT SIG					ON-COLUMN	FINAL
Compo	ounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(ug/L)
# # ###		====	====	=======	=======	==&=0===	======	=======
* 1	. 1,4~Dichlorobenzene-d4	152	3.532	3,532	(1.000)	110216	40.0000	(q)
* 2	Naphthalene-d8	136	4.941	4.941	(1.000)	452013	40.0000	
* 3	Acenaphthene-dl0	164	7.024	7.024	(1.000)	250253	40.0000	
* 4	Phenanthrene-d10	188	8.879	8.879	(1.000)	402633	40.0000	
* 5	Chrysene-d12	240	13.159	13.159	(1.000)	401152	40.0000	
* 6	Perylene-d12	264	15.522	15.522	(1.000)	398287	40.0000	
\$ 7	2-Fluorophenol	112	2.330	2.330	(0.660)	299882	77.1918	77.19
\$ 8	Phenol-d5	99	3.221	3.221	(0.912)	406171	83.1429	83.14
\$ 10	1,2-Dichlorobenzene-d4	152	3.532	3.729	(1.000)	110218	40.6047	40.60
\$ 11	Nitrobenzene-d5	82	4.154	4.154	(0.841)	172361	45.0206	45.02
\$ 12	2-Fluorobiphenyl	172	6.247	6.247	(0.889)	369712	45.8619	45.86
\$ 13	2,4,6-Tribromophenol	330	7.998	7.998	(1.139)	119555	109.942	109.9
\$ 14	Terphenyl-dl4	244	11.439	11.439	(0.869)	380177	48.1138	48.11
108	Hexachlorobenzene	284	8.475	8.475	(0.954)	212588	96.8505	96.85

QC Flag Legend

q - Qualifier signal exceeded ratio warning limit.

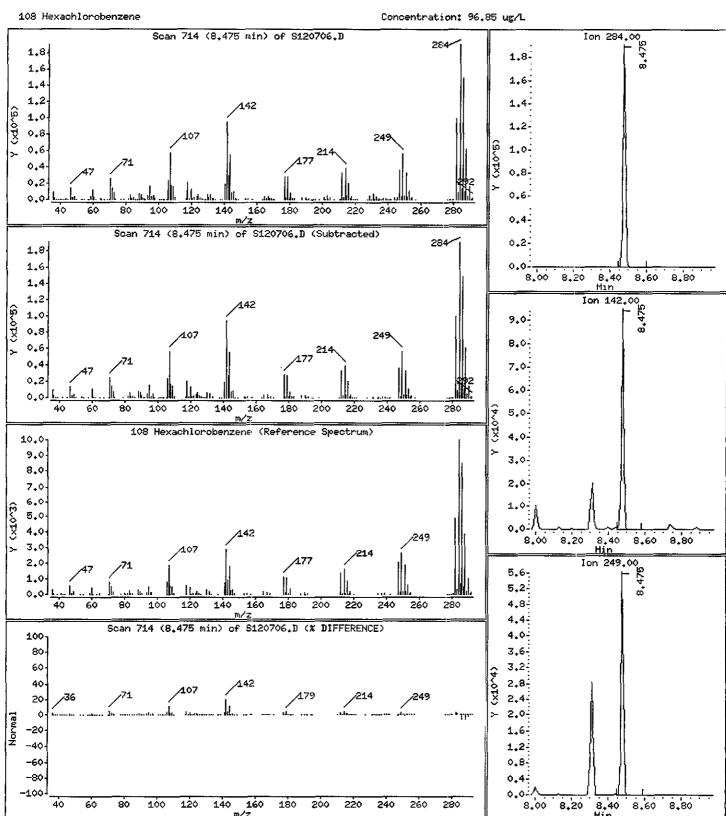
Date : 07-DEC-2010 22:36

Client ID:

Instrument: sv5.i

Sample Info: MAR231AC GOL020000-447C;3;LCS;;1000;;1000;2

Volume Injected (uL): 1.0


Operator: KT

Column phase:

Column diameter: 2.00

108 Hexachlorobenzene

Concentration: 96.85 ug/L

Report Date: 08-Dec-2010 09:38

TestAmerica West Sacramento

Method 8270C

Data file : \\SV5\C\chem\sv5.i\120710.B\S120707.D

Lab Smp Id: MAR231AD G0L020000-Inj Date : 07-DEC-2010 23:01

Operator : KT Inst ID: sv5.i Smp Info : MAR231AD G0L020000-447L;3;LCSD;;1000;;1000;2 Misc Info: 0;AIR;0;S11JZHCB.SUB;S11JZHCB.SPK;1;;8270F.M

Comment : SOP SAC-MS-0005

Method : \\SV5\C\chem\sv5.i\120710.B\8270F.m

Meth Date : 08-Dec-2010 09:16 semivoa Quant 3 Quant Type: ISTD Cal Date : 17-AUG-2010 21:19 Cal File: AP90817D.D

Als bottle: 7 QC Sample: LCSD

Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: S11JZHCB.SUB

Target Version: 4.14 Processing Host: SV5

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi) * CpndVariable

Name	Value	Description
DF Uf Vt Vo Vi Cpnd Variable	1.000 1000.000 1000.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL) Local Compound Variable

						CONCENTRA	RIONS
	QUANT SIG					ON-COLUMN	FINAL
ounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(ug/L)
=======================================	222C	====	======		* ======	======	
. 1,4-Dichlorobenzene-d4	152	3.532	3.532	(1.000)	67642	40.0000	(q)
Naphthalene-d8	136	4.941	4.941	(1.000)	273676	40.0000	
Acenaphthene-d10	164	7.024	7.024	(1.000)	146806	40.0000	
Phenanthrene-d10	188	8.879	8.879	(1.000)	236672	40.0000	
Chrysene-dl2	240	13.159	13.159	(1.000)	231078	40.0000	
Perylene-d12	264	15.512	15.522	(1.000)	228965	40.0000	
2-Fluorophenol	112	2.330	2.330	(0.660)	194258	81.4756	81.48
Phenol-d5	99	3.221	3.221	(0.912)	251713	83.9557	83.96
1,2-Dichlorobenzene-d4	152	Con	npound No	ot Detecte	ed.		
Nitrobenzene-d5	82	4.154	4.154	(0.841)	107460	46.3590	46.36
2-Fluorobiphenyl	172	6.247	6.247	(0.889)	229000	48.4239	48.42
2,4,6-Tribromophenol	330	7.999	7.998	(1.139)	69364	108.734	108.7
Terphenyl-d14	244	11.429	11.439	(0.868)	214041	47.0252	47.02
Hexachlorobenzene	284	8.475	8.475	(0.954)	127882	99.1140	99.11
	ounds 1,4-Dichlorobenzene-d4 Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12 2-Fluorophenol Phenol-d5 1,2-Dichlorobenzene-d4 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14 Hexachlorobenzene	Dunds MASS 1.,4-Dichlorobenzene-d4 152 2. Naphthalene-d8 136 3. Acenaphthene-d10 164 4. Phenanthrene-d10 188 5. Chrysene-d12 240 5. Perylene-d12 264 7. 2-Fluorophenol 112 8. Phenol-d5 99 1.,2-Dichlorobenzene-d4 152 4. Nitrobenzene-d5 82 2.2-Fluorobiphenyl 172 3. 2,4,6-Tribromophenol 330 4. Terphenyl-d14 244	Dounds MASS RT 1.4-Dichlorobenzene-d4 152 3.532 2.Naphthalene-d8 136 4.941 3.Acenaphthene-d10 164 7.024 4.Phenanthrene-d10 188 8.879 5.Chrysene-d12 240 13.159 5.Perylene-d12 264 15.512 7.2-Fluorophenol 112 2.330 8.Phenol-d5 99 3.221 9. Nitrobenzene-d5 82 4.154 2.2-Fluorobiphenyl 172 6.247 3.2,4,6-Tribromophenol 330 7.999 4. Terphenyl-d14 244 11.429	Dounds MASS RT EXP RT 1.4-Dichlorobenzene-d4 152 3.532 3.532 2. Naphthalene-d8 136 4.941 4.941 3. Acenaphthene-d10 164 7.024 7.024 4. Phenanthrene-d10 188 8.879 8.879 5. Chrysene-d12 240 13.159 13.159 5. Perylene-d12 264 15.512 15.522 7. 2-Fluorophenol 112 2.330 2.330 8. Phenol-d5 99 3.221 3.221 9. Nitrobenzene-d5 82 4.154 4.154 1. Nitrobenzene-d5 82 4.354 4.154 2. 2-Fluorobiphenyl 172 6.247 6.247 3. 2, 4, 6-Tribromophenol 330 7.999 7.998 4. Terphenyl-d14 244 11.429 11.439	Dounds MASS RT EXP RT REL RT 1.4-Dichlorobenzene-d4 152 3.532 3.532 (1.000) 2. Naphthalene-d8 136 4.941 4.941 (1.000) 3. Acenaphthene-d10 164 7.024 7.024 (1.000) 4. Phenanthrene-d10 188 8.879 8.879 (1.000) 5. Chrysene-d12 240 13.159 13.159 (1.000) 6. Perylene-d12 264 15.512 15.522 (1.000) 7. 2-Fluorophenol 112 2.330 2.330 (0.660) 8 Phenol-d5 99 3.221 3.221 (0.912) 3. 1,2-Dichlorobenzene-d4 152 Compound Not Detected 4. Nitrobenzene-d5 82 4.154 4.154 (0.841) 2. 2-Fluorobiphenyl 172 6.247 6.247 (0.889) 3. 2,4,6-Tribromophenol 330 7.999 7.998 (1.139) 4. Terphenyl-d14 244 11.429 11.439 (0.868)	MASS RT EXP RT REL RT RESPONSE 1.,4-Dichlorobenzene-d4 152 3.532 3.532 (1.000) 67642 2. Naphthalene-d8 136 4.941 4.941 (1.000) 273676 3. Acenaphthene-d10 164 7.024 7.024 (1.000) 146806 4. Phenanthrene-d10 188 8.879 8.879 (1.000) 236672 5. Chrysene-d12 240 13.159 13.159 (1.000) 231078 5. Perylene-d12 264 15.512 15.522 (1.000) 228965 7. 2-Fluorophenol 112 2.330 2.330 (0.660) 194258 6. Phenol-d5 99 3.221 3.221 (0.912) 251713 6. 1,2-Dichlorobenzene-d4 152 Compound Not Detected. 6. Nitrobenzene-d5 82 4.154 4.154 (0.841) 107460 6. 2-Fluorobiphenyl 172 6.247 (6.247 (0.889) 229000 6. 2,4,6-Tribromophenol 330 7.999 7.998 (1.139) 69364 6. Terphenyl-d14 244 11.429 11.439 (0.868) 214041	Dounds MASS RT EXP RT REL RT RESPONSE (NG) 1.4-Dichlorobenzene-d4 152 3.532 3.532 (1.000) 67642 40.0000 2. Naphthalene-d8 136 4.941 4.941 (1.000) 273676 40.0000 3. Acenaphthene-d10 164 7.024 7.024 (1.000) 146806 40.0000 4. Phenanthrene-d10 188 8.879 8.879 (1.000) 236672 40.0000 5. Chrysene-d12 240 13.159 13.159 (1.000) 231078 40.0000 6. Perylene-d12 264 15.512 15.522 (1.000) 228965 40.0000 7. 2-Fluorophenol 112 2.330 2.330 (0.660) 194258 81.4756 8. Phenol-d5 99 3.221 3.221 (0.912) 251713 83.9557 9. 1,2-Dichlorobenzene-d4 152 Compound Not Detected 152 Compound Not Detected 1. Nitrobenzene-d5 82 4.154 4.154

QC Flag Legend

q - Qualifier signal exceeded ratio warning limit.

Data File: \\SV5\C\chem\sv5.i\120710.B\S120707.D

Report Date: 08-Dec-2010 09:21

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: sv5.i Calibration Date: 07-DEC-2010

Lab File ID: S120707.D Calibration Time: 19:43

Lab Smp Id: MAR231AD G0L020000-

Analysis Type: SV Level: LOW Quant Type: ISTD Sample Type: AIR

Operator: KT

Method File: \\SV5\C\chem\sv5.i\120710.B\8270F.m

Misc Info: 0; AIR; 0; S11JZHCB.SUB; S11JZHCB.SPK; 1;; 8270F.M

Test Mode:

Use Initial Calibration Level 4.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	=======	=======	=======	======
1 1,4-Dichlorobenze	122625	61313	245250	67642	-44.84
2 Naphthalene-d8	530514	265257	1061028	273676	-48.41
3 Acenaphthene-d10	282538	141269	565076	146806	-48.04
4 Phenanthrene-d10	462722	231361	925444	236672	-48.85
5 Chrysene-d12	435850	217925	871700	231078	-46.98
6 Perylene-d12	422284	211142	844568	228965	-45.78

		RT I	JIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	=====
1 1,4-Dichlorobenze	3.53	3.03	4.03	3.53	0.00
2 Naphthalene-d8	4.94	4.44	5.44	4.94	0.00
3 Acenaphthene-d10	7.02	6.52	7.52	7.02	0.00
4 Phenanthrene-d10	8.88	8.38	9.38	8.88	0.00
5 Chrysene-d12	13.16	12.66	13.66	13.16	0.00
6 Perylene-d12	15.52	15.02	16.02	15.51	-0.07

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT. Page 2

Data File: \\SV5\C\chem\sv5.i\120710.B\S120707.D

Report Date: 08-Dec-2010 09:38

TestAmerica West Sacramento

RECOVERY REPORT

Client Name:

Client SDG: 090498

Sample Matrix: GAS

Lab Smp Id: MAR231AD G0L020000-

Fraction: SV

Level: LOW

Operator: KT

SampleType: LCSD Quant Type: ISTD

Data Type: MS DATA

SampleType SpikeList File: S11JZHCB.SPK

Sublist File: S11JZHCB.SUB

Method File: \\SV5\C\chem\sv5.i\\120710.B\\8270F.m

Misc Info: 0; AIR; 0; S11JZHCB. SUB; S11JZHCB. SPK; 1;; 8270F.M

SPIKE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
108 Hexachlorobenzene	100.0	99.11	99.11	70-100
			·	·

SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
\$ 7 2-Fluorophenol	100.0	81.48	81.48	41-105
\$ 8 Phenol-d5	100.0	83.96	83.96	43-122
\$ 10 1,2-Dichlorobenze	50.00	0.0000	*	60-120
\$ 11 Nitrobenzene-d5	50.00	46.36	92.72	46-118
\$ 12 2-Fluorobiphenyl	50.00	48.42	96.85	58-105
\$ 13 2,4,6-Tribromophen	100.0	108.7	108.73	61-118
\$ 14 Terphenyl-d14	50.00	47.02	94.05	69-110

Data File: \\SV5\C\chem\sv5.i\120710.B\S120707.D Page 1

Report Date: 08-Dec-2010 09:21

TestAmerica West Sacramento

Method 8270C

Data file : \\SV5\C\chem\sv5.i\120710.B\S120707.D

Lab Smp Id: MAR231AD G0L020000-

Misc Info: 0;AIR;0;S11JZHCB.SUB;S11JZHCB.SPK;1;;8270F.M

Comment: SOP SAC-MS-0005
Method: \\SV5\C\chem\sv5.i\120710.B\8270F.m
Meth Date: 08-Dec-2010 09:16 semivoa Quant Quant Type: ISTD Cal Date : 17-AUG-2010 21:19 Cal File: AP90817D.D

Als bottle: 7 QC Sample: LCSD

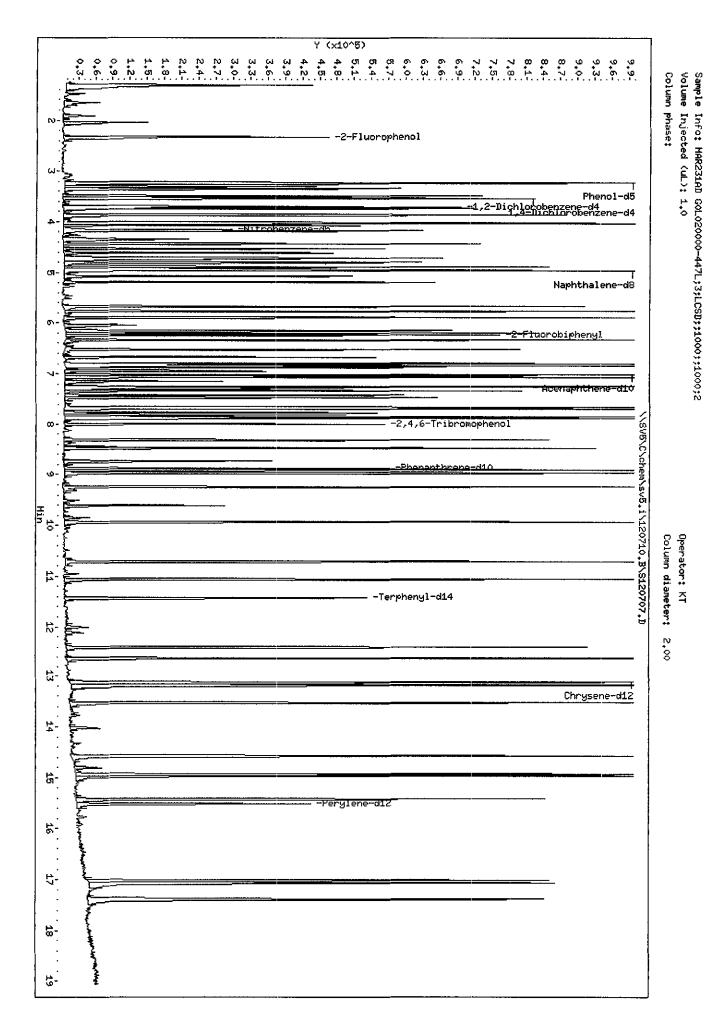
Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: S11JZHCB.SUB

Target Version: 4.14 Processing Host: SV5

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi) * CpndVariable

Name	Value	Description
DF Uf Vt Vo Vi Cpnd Variable	1.000 1000.000 1000.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL) Local Compound Variable


								CONCENTR	ATIONS
			QUANT SIG					ON-COLUMN	FINAL
Com	poı	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(ug/L)
===	==:						=======		
*	1	1,4-Dichlorobenzene-d4	152	3.532	3.532	(1.000)	67642	40.0000	(q)
*	2	Naphthalene-d8	136	4.941	4.941	(1.000)	273676	40.0000	
*	3	Acenaphthene-d10	164	7.024	7.024	(1.000)	146806	40.0000	
*	4	Phenanthrene-d10	188	8.879	8.879	(1.000)	236672	40.0000	
*	5	Chrysene-d12	240	13.159	13.159	(1.000)	231078	40.0000	
*	6	Perylene-d12	264	15.512	15.522	(1.000)	228965	40.0000	
\$	7	2-Fluorophenol	112	2.330	2.330	(0.660)	194258	81.4756	81.48
\$	8	Phenol-d5	99	3.221	3.221	(0.912)	251713	83.9557	83.96
\$	10	1,2-Dichlorobenzene-d4	152	3.750	3.729	(1.062)	157	0.09424	0.09424(QR)
\$	11	Nitrobenzene-d5	82	4.154	4.154	(0.841)	107460	46.3590	46.36
\$	12	2-Fluorobiphenyl	172	6.247	6.247	(0.889)	229000	48.4239	48.42
\$	13	2,4,6-Tribromophenol	330	7.999	7.998	(1.139)	69364	108.734	108.7
\$	14	Terphenyl-d14	244	11.429	11.439	(0.868)	214041	47.0252	47.02
1	80	Hexachlorobenzene	284	8.475	8.475	(0.954)	127882	99.1140	99.11

QC Flag Legend

Q - Qualifier signal failed the ratio test.

R - Spike/Surrogate failed recovery limits.

q - Qualifier signal exceeded ratio warning limit.

Date : 07-DEC-2010 23:01 Data File: \\SV5\C\chem\sv5.i\120710.B\S120707.D

Instrument; sv5.i

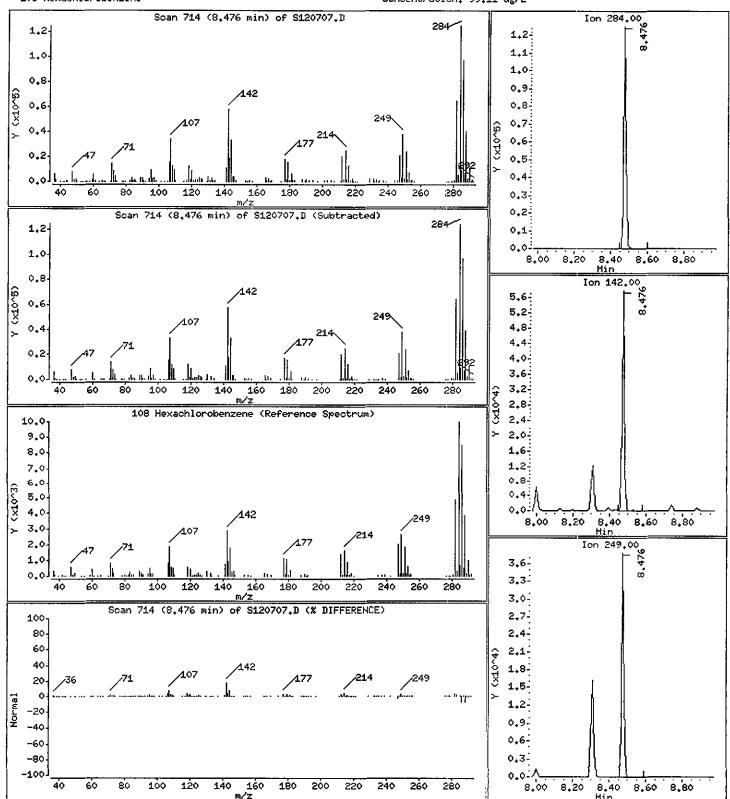
Date : 07-DEC-2010 23:01

Client ID:

Instrument: sv5.i

Sample Info: MAR231AD GOL020000-447L;3;LCSD;;1000;;1000;2

Volume Injected (uL): 1.0


Operator: KT

Column phase:

Column diameter: 2.00

108 Hexachlorobenzene

Concentration: 99,11 ug/L

Data File: \\SV5\C\chem\sv5.i\120710.B\S120708.D Page 1

Report Date: 08-Dec-2010 09:21

TestAmerica West Sacramento

Method 8270C

Data file: \\SV5\C\chem\sv5.i\120710.B\S120708.D Lab Smp Id: MAQQW1AA G0L020446- Client Sm

Client Smp ID: 0336447

Inj Date : 07-DEC-2010 23:25

Operator : KT Inst ID: sv5.i

Smp Info : MAQQW1AA G0L020446-2;0;;;1000;;1000;5 Misc Info: 0;AIR;0;S11JZHCB.SUB;;0;0336447;8270F.M

Misc Into: U;ALK;U,BITGLED...

Comment: SOP SAC-MS-0005

Method: \\SV5\C\chem\sv5.i\120710.B\8270F.m

Meth Date: 08-Dec-2010 09:16 semivoa Quant Type: ISTD

- 17-AUG-2010 21:19 Cal File: AP90817D.D

Als bottle: 8
Dil Factor: 1.00000
Integrator: Falcon

Compound Sublist: S11JZHCB.SUB

Target Version: 4.14 Processing Host: SV5

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi) * CpndVariable

Name	Value	Description
DF Uf Vt Vo Vi Cpnd Variable	1.000 1000.000 1000.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL) Local Compound Variable

								CONC	ENTRA	TIONS
			QUANT SIG					ON-COL	UMN	FINAL
Co	ompo:	unds	REAM	RT	EXP RT	REL RT	RESPONSE	(N	G)	(ug/L)
====	= == == :		====	====	=======================================	*****		=====	==	=======
*	1	1,4-Dichlorobenzene-d4	152	3.532	3.532 (1.000)	86800	40.00	00	(g)
*	2	Naphthalene-d8	136	4.941	4.941 (1.000)	375915	40.00	00	
*	3	Acenaphthene-d10	164	7.024	7.024 (1.000)	207058	40.00	00	
*	4	Phenanthrene-d10	188	8.879	8.879 (1.000)	326779	40.00	00	
*	5	Chrysene-d12	240	13.159	13.159 (1.000)	343258	40.00	00	
*	6	Perylene-d12	264	15.512	15.522 (1.000)	329988	40.00	00	
Ş	7	2-Fluorophenol	112	2.330	2.330 (0.660)	197455	64.53	77	64.54
\$	8	Phenol-d5	99	3.221	3.221 (0.912)	289093	75.14	13	75.14
\$	10	1,2-Dichlorobenzene-d4	152	3.729	3.729 (1.056)	56555	26.45	57	26.46 (qR)
\$	11	Nitrobenzene-d5	82	4.154	4.154 (0.841)	117514	36.90	82	36.91
\$	12	2-Fluorobiphenyl	172	6.247	6.247 (0.889)	248223	37.21	50	37.21
\$	13	2,4,6-Tribromophenol	330	7.998	7.998 (1.139)	92937	103.2	93	103.3
\$	14	Terphenyl-d14	244	11.429	11.439 (0.868)	321471	47.54	59	47.54
	108	Hexachlorobenzene	284	Con	pound Not	Detected	3.			

QC Flag Legend

R - Spike/Surrogate failed recovery limits.

q - Qualifier signal exceeded ratio warning limit.

low sur.

Data File: \\SV5\C\chem\sv5.i\120710.B\S120708.D Page 2

Report Date: 08-Dec-2010 09:21

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: sv5.i Calibration Date: 07-DEC-2010

Lab File ID: S120708.D Calibration Time: 19:43
Lab Smp Id: MAQQW1AA G0L020446- Client Smp ID: 0336447

Analysis Type: SV Level: LOW Quant Type: ISTD Sample Type: AIR

Operator: KT

Method File: \\SV5\C\chem\sv5.i\120710.B\8270F.m
Misc Info: 0;AIR;0;S11JZHCB.SUB;;0;0336447;8270F.M

Test Mode:

Use Initial Calibration Level 4.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
1 1,4-Dichlorobenze	122625	61313	245250	86800	-29.22
2 Naphthalene-d8	530514	265257	1061028	375915	-29.14
3 Acenaphthene-d10	282538	141269	565076	207058	-26.71
4 Phenanthrene-d10	462722	231361	925444	326779	-29.38
5 Chrysene-d12	435850	217925	871700	343258	-21.24
6 Perylene-d12	422284	211142	844568	329988	-21.86
				·	[

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	========	======
1 1,4-Dichlorobenze	3.53	3.03	4.03	3.53	-0.00
2 Naphthalene-d8	4.94	4.44	5.44	4.94	-0.00
3 Acenaphthene-d10	7.02	6.52	7.52	7.02	-0.00
4 Phenanthrene-d10	8.88	8.38	9.38	8.88	-0.00
5 Chrysene-d12	13.16	12.66	13.66	13.16	-0.00
6 Perylene-d12	15.52	15.02	16.02	15.51	-0.07

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: \\SV5\C\chem\sv5.i\120710.B\S120708.D Page 3

Report Date: 08-Dec-2010 09:21

TestAmerica West Sacramento

RECOVERY REPORT

Client Name:

Sample Matrix: GAS

Lab Smp Id: MAQQW1AA G0L020446-Level: LOW

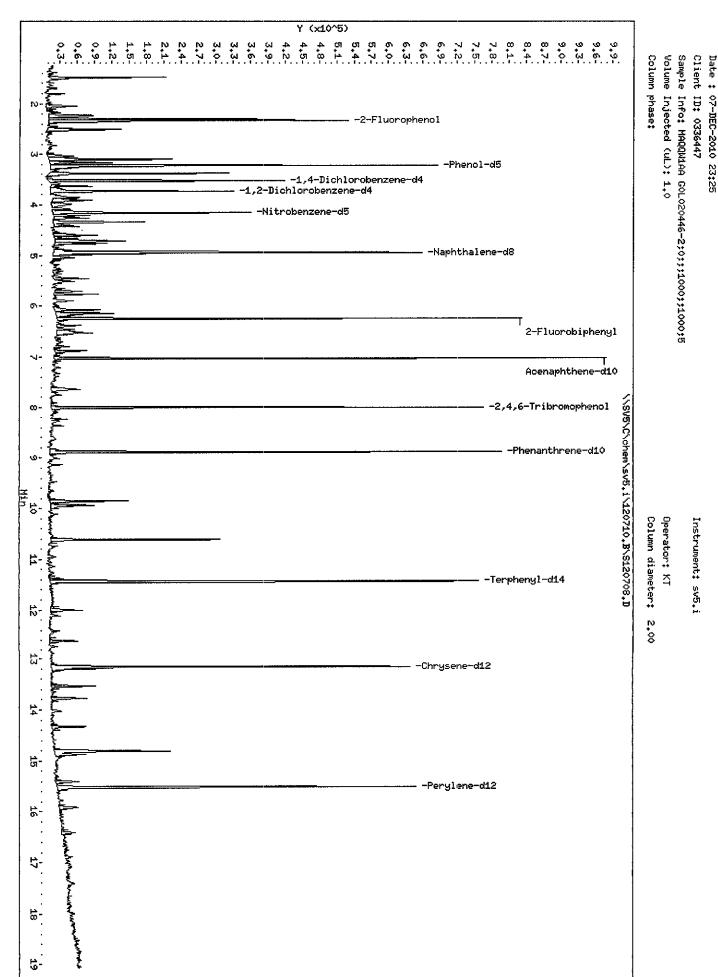
Data Type: MS DATA

SpikeList File:

Sublist File: S11JZHCB.SUB

Method File: \\SV5\C\chem\sv5.i\120710.B\8270F.m Misc Info: 0;AIR;0;S11JZHCB.SUB;;0;0336447;8270F.M

Client SDG: 090498


Fraction: SV

Client Smp ID: 0336447

Operator: KT

SampleType: SAMPLE Quant Type: ISTD

SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	RECOVERED	LIMITS
\$ 7 2-Fluorophenol	100.0	64.54	64.54	41-105
\$ 8 Phenol-d5	100.0	75.14	75.14	43-122
\$ 10 1,2-Dichlorobenzen	50.00	26.46	52.91*	60-120
\$ 11 Nitrobenzene-d5	50.00	36.91	73.82	46-118
\$ 12 2-Fluorobiphenyl	50.00	37.21	74.43	58-105
\$ 13 2,4,6-Tribromophen	100.0	103.3	103.29	61-118
\$ 14 Terphenyl-d14	50.00	47.54	95.09	69-110

Data File: \\SV5\C\chem\sv5.i\120710.B\S120708.D

Data File: \\SV5\C\chem\sv5.i\120710.B\S120709.D Page 1

Report Date: 08-Dec-2010 09:21

TestAmerica West Sacramento

Method 8270C

Data file: \\SV5\C\chem\sv5.i\120710.B\S120709.D Lab Smp Id: MAQQ91AA G0L020446- Client Sm Client Smp ID: 0336447

Inj Date : 07-DEC-2010 23:50 Operator : KT Inst ID: sv5.i

Smp Info : MAQQ91AA G0L020446-6;0;;;1000;;1000;5 Misc Info: 0; AIR; 0; S11JZHCB. SUB; ; 0; 0336447; 8270F. M

Comment : SOP SAC-MS-0005
Method : \\SV5\C\chem\sv5.i\120710.B\8270F.m
Meth Date : 08-Dec-2010 09:16 semivoa Quant Type: ISTD Cal File: AP90817D.D Cal Date : 17-AUG-2010 21:19

Als bottle: 9 Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: S11JZHCB.SUB

Target Version: 4.14 Processing Host: SV5

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi) * CpndVariable

Name	Value	Description			
DF Uf Vt Vo Vi Cpnd Variable	1.000 1000.000 1000.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL) Local Compound Variable			

								CONCENTRA	ATIONS
			QUANT SIG					ON-COLUMN	FINAL
Comp	201	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(ug/L)
====	==	*****	====	====	****		======	======	
*	1	1,4-Dichlorobenzene-d4	152	3.532	3.532	(1.000)	76411	40.0000	(p)
*	2	Naphthalene-d8	136	4.941	4.941	(1.000)	333708	40.0000	
*	3	Acenaphthene-d10	164	7.024	7.024	(1.000)	179123	40.0000	
*	4	Phenanthrene-d10	188	8.879	8.879	(1.000)	288677	40.0000	
*	5	Chrysene-dl2	240	13.159	13.159	(1.000)	287422	40.0000	
*	6	Perylene-dl2	264	15.512	15,522	(1.000)	278686	40.0000	
\$	7	2-Fluorophenol	112	2.330	2.330	(0.660)	185302	68.8002	68.80
\$	8	Phenol-d5	99	3.221	3.221	(0.912)	269495	79.5712	79.57
\$ 2	10	1,2-Dichlorobenzene-d4	152	3.729	3.729	(1.056)	57818	30.7238	30.72(Q)
\$ 3	11	Nitrobenzene-d5	82	4.154	4.154	(0.841)	108081	38.2390	38.24
\$ 1	12	2-Fluorobiphenyl	172	6.247	6.247	(0.889)	233362	40.4433	40.44
\$	13	2,4,6-Tribromophenol	330	7.998	7.998	(1.139)	87430	112.327	112.3
ş :	14	Terphenyl-d14	244	11.439	11.439	(0.869)	275695	48.6969	48.70
10	80	Hexachlorobenzene	284	Con	npound No	ot Detecte	đ.		

QC Flag Legend

Q - Qualifier signal failed the ratio test.

q - Qualifier signal exceeded ratio warning limit.

Data File: \\SV5\C\chem\sv5.i\120710.B\S120709.D Page 2

Report Date: 08-Dec-2010 09:21

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: sv5.i Calibration Date: 07-DEC-2010

Lab File ID: S120709.D Calibration Time: 19:43
Lab Smp Id: MAQQ91AA G0L020446- Client Smp ID: 0336447

Analysis Type: SV Level: LOW Quant Type: ISTD Sample Type: AIR

Operator: KT

Method File: \\SV5\C\chem\sv5.i\120710.B\8270F.m Misc Info: 0;AIR;0;S11JZHCB.SUB;;0;0336447;8270F.M

Test Mode:

Use Initial Calibration Level 4.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	========	========	========	======
1 1,4-Dichlorobenze	122625	61313	245250	76411	-37.69
2 Naphthalene-d8	530514	265257	1061028	333708	-37.10
3 Acenaphthene-d10	282538	141269	565076	179123	-36.60
4 Phenanthrene-d10	462722	231361	925444	288677	-37.61
5 Chrysene-d12	435850	217925	871700	287422	-34.05
6 Perylene-d12	422284	211142	844568	278686	-34.01
1					

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	========	=======	=======	======
1 1,4-Dichlorobenze	3.53	3.03	4.03	3.53	-0.00
2 Naphthalene-d8	4.94	4.44	5.44	4.94	-0.00
3 Acenaphthene-d10	7.02	6.52	7.52	7.02	-0.00
4 Phenanthrene-d10	8.88	8.38	9.38	8.88	-0.00
5 Chrysene-d12	13.16	12.66	13.66	13.16	-0.00
6 Perylene-d12	15.52	15.02	16.02	15.51	-0.07

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: \\SV5\C\chem\sv5.i\120710.B\S120709.D Page 3

Report Date: 08-Dec-2010 09:21

TestAmerica West Sacramento

RECOVERY REPORT

Client Name:

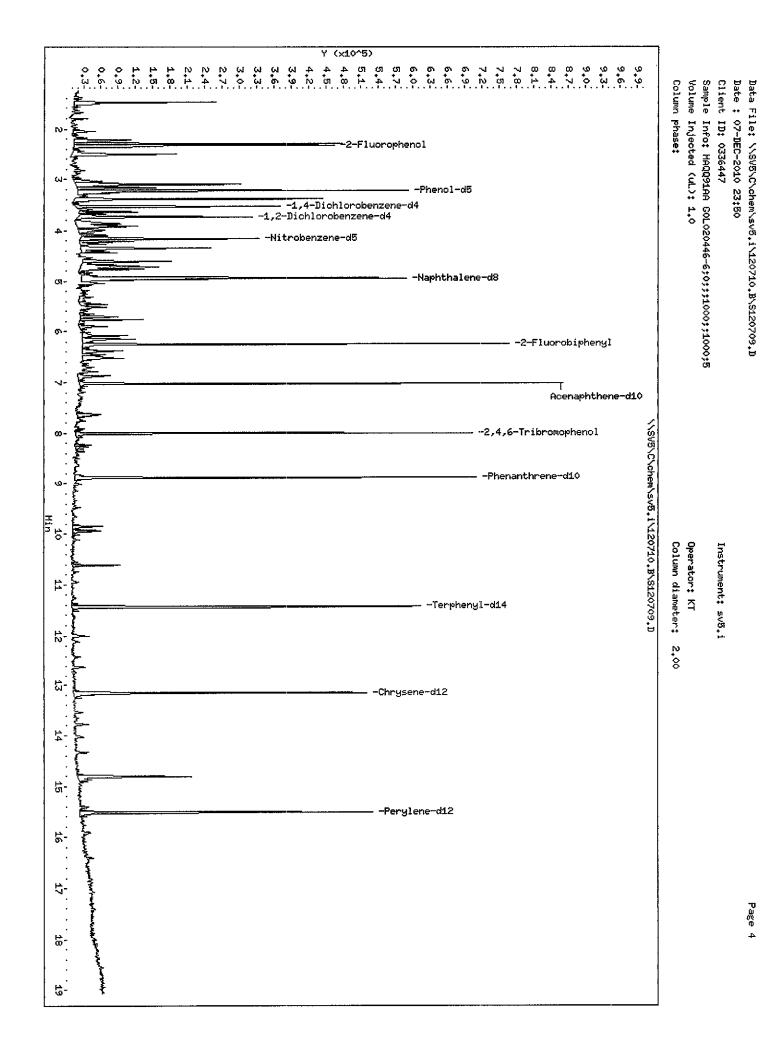
Sample Matrix: GAS

Lab Smp Id: MAQQ91AA G0L020446-Level: LOW Data Type: MS DATA SpikeList File:

Sublist File: S11JZHCB.SUB

Client SDG: 090498

Fraction: SV


Client Smp ID: 0336447

Operator: KT

SampleType: SAMPLE Quant Type: ISTD

Method File: \\SV5\C\chem\sv5.i\120710.B\8270F.m Misc Info: 0;AIR;0;S11JZHCB.SUB;;0;0336447;8270F.M

SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
\$ 7 2-Fluorophenol	100.0	68.80	68.80	41-105
\$ 8 Phenol-d5	100.0	79.57	79.57	43-122
\$ 10 1,2-Dichlorobenzen	50.00	30.72	61.45	60-120
\$ 11 Nitrobenzene-d5	50.00	38.24	76.48	46-118
\$ 12 2-Fluorobiphenyl	50.00	40.44	80.89	58-105
\$ 13 2,4,6-Tribromophen	100.0	112.3	112.33	61-118
\$ 14 Terphenyl-d14	50.00	48.70	97.39	69-110

Data File: \\SV5\C\chem\sv5.i\120710.B\S120710.D Page 1

Report Date: 08-Dec-2010 09:21

TestAmerica West Sacramento

Method 8270C

Data file: \\SV5\C\chem\sv5.i\120710.B\S120710.D Lab Smp Id: MAQRF1AA G0L020446- Client Sm Client Smp ID: 0336447

Inj Date : 08-DEC-2010 00:14

Opérator : KT Inst ID: sv5.i

Smp Info : MAQRF1AA G0L020446-9;0;;;1000;;1000;5 Misc Info: 0;AIR;0;S11JZHCB.SUB;;0;0336447;8270F.M

Misc Inio : 0;A1A,0,52122121 Comment : SOP SAC-MS-0005 Method : \\SV5\C\chem\sv5.i\120710.B\8270F.m Meth Date : 08-Dec-2010 09:16 semivoa Quant Type: ISTD 17-NIG-2010 21:19 Cal File: AP90817D.D Cal Date: 17-AUG-2010 03:16
Cal Date: 17-AUG-2010 21:19
Als bottle: 10
Dil Factor: 1.00000
Integrator: Falcon

Compound Sublist: S11JZHCB.SUB

Target Version: 4.14 Processing Host: SV5

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi) * CpndVariable

Name	Value	Description			
DF Uf Vt Vo Vi Cpnd Variable	1.000 1.000 1000.000 1000.000 1.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL) Local Compound Variable			

								CONCENTR	ations
			QUANT SIG					ON-COLUMN	FINAL
C	oqmo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(ug/L)
=	eees	*	====	====	======		======		======
*	1	1,4-Dichlorobenzene-d4	152	3.532	3.532	(1.000)	73876	40.0000	(q)
*	2	Naphthalene-d8	136	4.941	4.941	(1.000)	312312	40.0000	
*	3	Acenaphthene-dl0	164	7.024	7.024	(1.000)	165572	40.0000	
*	4	Phenanthrene-d10	188	8.879	8.879	(1.000)	266360	40.0000	
*	5	Chrysene-d12	240	13.159	13.159	(1.000)	245918	40.0000	
*	6	Perylene-d12	264	15.512	15.522	(1.000)	237228	40.0000	
\$	7	2-Fluorophenol	112	2.330	2.330	(0.660)	178671	68.6145	68.61
\$	8	Phenol-d5	99	3.221	3.221	(0.912)	256293	78.2698	78.27
\$	10	1,2-Dichlorobenzene-d4	152	3.729	3.729	(1.056)	54103	29.7362	29.74 (QR)
\$	11	Nitrobenzene-d5	82	4.154	4.154	(0.841)	104646	39.5601	39.56
\$	12	2-Fluorobiphenyl	172	6.247	6.247	(0.889)	226309	42.4309	42.43
\$	13	2,4,6-Tribromophenol	330	7.998	7.998	(1.139)	78567	109.201	109.2
\$	14	Terphenyl-d14	244	11.439	11.439	(0.869)	250489	51.7119	51.71
	108	Hexachlorobenzene	284	8.475	8.475	(0.954)	1122	0.77267	0.7727(a)

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation (BLOQ).

Q - Qualifier signal failed the ratio test.

Low surr.

Data File: \\SV5\C\chem\sv5.i\120710.B\S120710.D Report Date: 08-Dec-2010 09:21

QC Flag Legend

R - Spike/Surrogate failed recovery limits.
q - Qualifier signal exceeded ratio warning limit.

Page 2

Data File: \\SV5\C\chem\sv5.i\120710.B\S120710.D

Report Date: 08-Dec-2010 09:21

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: sv5.i Lab File ID: S120710.D

Lab Smp Id: MAQRF1AA G0L020446-

Analysis Type: SV

Quant Type: ISTD

Operator: KT
Method File: \\SV5\C\chem\sv5.i\120710.B\8270F.m
Misc Info: 0;AIR;0;S11JZHCB.SUB;;0;0336447;8270F.M

Test Mode:

Use Initial Calibration Level 4.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 1,4-Dichlorobenze	122625	61313	245250	73876	-39.75
2 Naphthalene-d8 3 Acenaphthene-d10	530514 282538	265257 141269	1061028 565076	312312 165572	-41.13 -41.40
4 Phenanthrene-d10 5 Chrysene-d12	462722 435850	231361 217925	925444 871700	266360 245918	-42.44 -43.58
6 Perylene-d12	422284	211142	844568	237228	-43.82

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=========	========	======
1 1,4-Dichlorobenze	3.53	3.03	4.03	3.53	-0.00
2 Naphthalene-d8	4.94	4.44	5.44	4.94	0.00
3 Acenaphthene-d10	7.02	6.52	7.52	7.02	0.00
4 Phenanthrene-d10	8.88	8.38	9.38	8.88	0.00
5 Chrysene-d12	13.16	12.66	13.66	13.16	0.00
6 Perylene-d12	15.52	15.02	16.02	15.51	-0.07
					l

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Page 3

Calibration Date: 07-DEC-2010

Calibration Time: 19:43

Client Smp ID: 0336447

Level: LOW

Sample Type: AIR

Data File: \\SV5\C\chem\sv5.i\120710.B\S120710.D

Report Date: 08-Dec-2010 09:21

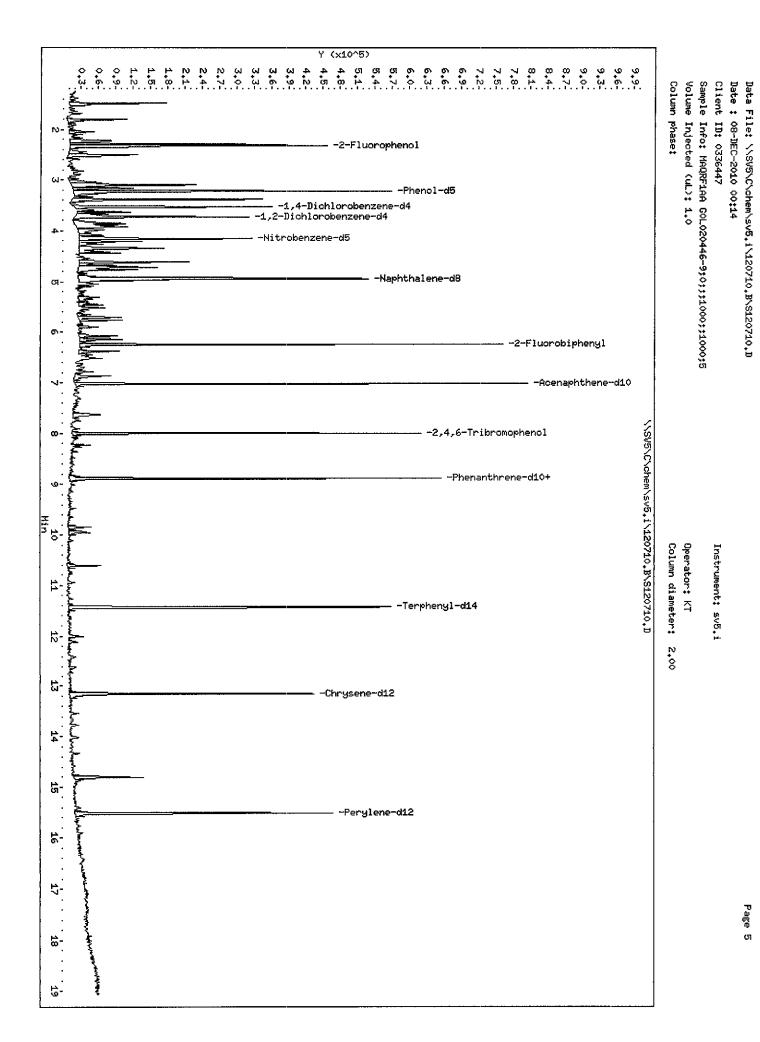
TestAmerica West Sacramento

RECOVERY REPORT

Client Name: Client SDG: 090498

Sample Matrix: GAS Fraction: SV

Lab Smp Id: MAQRF1AA G0L020446- Client Smp ID: 0336447


Level: LOW Operator: KT

Data Type: MS DATA SampleType: SAMPLE SpikeList File: Quant Type: ISTD

Sublist File: S11JZHCB.SUB

Method File: \\SV5\C\chem\sv5.i\120710.B\8270F.m Misc Info: 0;AIR;0;S11JZHCB.SUB;;0;0336447;8270F.M

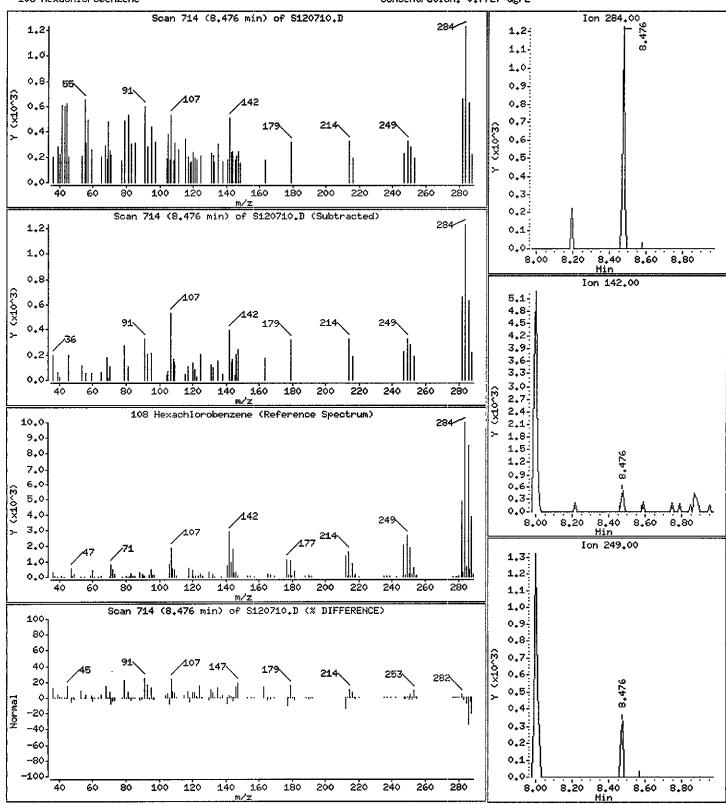
SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
\$ 7 2-Fluorophenol	100.0	68.61	68.61	41-105
\$ 8 Phenol-d5	100.0	78.27	78.27	43-122
\$ 10 1,2-Dichlorobenzen	50.00	29.74	59.47*	60-120
\$ 11 Nitrobenzene-d5	50.00	39.56	79.12	46-118
\$ 12 2-Fluorobiphenyl	50.00	42.43	84.86	58-105
\$ 13 2,4,6-Tribromophen	100.0	109.2	109.20	61-118
\$ 14 Terphenyl-d14	50.00	51.71	103.42	69-110

Date : 08-DEC-2010 00:14

Client ID: 0336447

Sample Info: MAQRF1AA GOLO20446-9;0;;;1000;;1000;5

Volume Injected (uL): 1.0


Column phase:

Instrument: sv5.i

Operator: KT

Column diameter: 2.00

108 Hexachlorobenzene Concentration: 0,7727 ug/L

Initial Calibration

Includes (as applicable):

runlog

standard raw data

statistical summary

ms tune data

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica West Sacramento MS SemiVOA ICAL Checklist Method 8270C

Instrument: SV5 DFTPP Mix ID: 10MSSV0129 Injection Date: 10/02/10 STD Mix IDs: 10MSSV0307-0313 2nd Source Mix ID: 10MSSV0314, 342 Initiator/Date: KT-10/03/10 Reviewer/Date: I: SPCCs The SPCC RRFs must be greater than 0.050. Initiated Reviewed Initiated Reviewed N-nitroso-di-n-propylamine X 2,4-Dinitrophenol \boxtimes Hexachlorocyclopentadiene 4-Nitrophenol II: CCCs The CCC % RSDs must be less than 30% Initiated Reviewed Initiated Reviewed Acenaphthene Phenol N-nitrosodiphenylamine 1,4-Dichlorobenzene Pentachlorophenol 2-Nitrophenol 2.4-Dichlorophenol Fluoranthene Hexachlorobutadiene Di-n-octyl phthalate Benzo(a)pyrene 4-chloro-3-methylphenol 2,4.6-Trichlorophenol Initiated Reviewed III: Other Criteria The custom.rp shows that the average of the average is less than 15% X on the CCV level standard. Avg of AVG:_ Tailing and degradation criteria are met. The Tune Documentation is present and meets criteria All Internal Standards within 50-200% of ICAL mid-point. Calibration History Included. Manual re-integrations are checked/initialed and hardcopies included. Standards analyzed with within 12 hours of Tune time. Retention time correct for Isomers and all other analytes. Linear Regressions >0.990 and intercept < ± (1/2 RL / IS amount) The second source standard meets the SSCS criteria File Name: IV: Non-CCC Compounds Over 15% (Write compound and %D) None V: Second Source Compounds Over 25% (Write compound and %D) None

TestAmerica West Sacramento

GC/MS INSTRUMENT LOG SEMI-VOLATILES

Method Key (MTH Column)
QL = EPA 8270C (WS-MS-0005)
JZ = EPA TO-13A (WS-MS-0005)

Inst ID : sv5.i
Batch ID : 100210.B
ICAL Date: See Calib Report VX = EPA 8270C-SIM (mod) CWM (WS-MS-0003) QI = EPA 8270C-SIM (WS-MS-0008) FX = PAH-SIM Isotope Dilution (WS-MS-0006) See raw data for standard IDs

F9 = EPA 8270C-SIM (mod) 1,4-Dioxane (WS-MS-0011)

Date	Ti	ne	USER	Sample ID	File ID	Vol or	Extra	ıct	Daln	MTH	Comments
l	1			1	1 1	Wt	Vol.	Ļ	l		
	=====		*====	===========	22202012222122121212121222222	*40***			***	***	=======================================
02-OCT-2010	11:	43	KT	Primer	QC001.D	NA	N/	¥.	NA	1	
02-OCT-2010	12:	06	KT	DFTPP 50ug/ml `	DFT1002.D	NA	NA		NA.	1	
02-OCT-2010	12:	27	KT	HSL_005 ug/ml CS-1	HSL1002A.	NA	NA	A	NA.	1	
02-OCT-2010	12:	53	KT	HSL_010 ug/ml CS-2	HSL1002B.	NA	NZ		N/A	1	
02-OCT-2010	13:	18	KT	HSL_020 ug/ml C\$-3	HSL1002C.	NA.	N/	1	NA.	1 i	
02-0CT-2010	13:	44	KT	HSL_050 ug/ml CS-4	HSL1002D.	NA	N2	k.	NA.	1	
02-OCT-2010	14:	09	K'T	HSL_080 ug/ml CS-5	HSL1002E.	NA	NZ	1	NA.	1	
02-0CT-2010	14:	35	KT	HSL_120 ug/ml CS-6	HSL1002F.	NA	N2	.	NA.	1	****
02-OCT-2010	15:	00	KT	HSL_160 ug/ml CS-7	HSL1002G.	NA.	NZ	4	NA.		
02-OCT-2010	16:	11	KT	HSL_050 ug/ml ICV	HSL1002H.	NA	N2	7	NA.	1	
02-OCT-2010	16:	36	KT	[Benzidines ICV 50ug/mL	HSL1002H1	NA	N7		NA.	1 .	

Report Date : 03-Oct-2010 11:10

315 HS

TestAmerica West Sacramento

INITIAL CALIBRATION DATA

17-AUG-2010 17:32 02-OCT-2010 15:00 ISTD Start Cal Date End Cal Date Quant Method

Target Version

4.14 Falcon \\SV5\C\chem\sv5.i\100210.B\8270f.m 03.Oct-2010 11:09 onishim Integrator Method file Last Edit

Calibration Level Level Level

on File Names: \\SV5\C\chem\sv5.i\081710.B\AP90817A.D \\SV5\C\chem\sv5.i\081710.B\AP90817B.D \\SV5\C\chem\sv5.i\081710.B\AP90817B.D \\SV5\C\chem\sv5.i\081710.B\AP90817C.D \\SV5\C\chem\sv5.i\081710.B\AP90817D.D \\SV5\C\chem\sv5.i\081710.B\AP90817E.D \\SV5\C\chem\sv5.i\081710.B\AP90817F.D \\SV5\C\chem\sv5.i\081710.B\AP90817F.D 170m45007

Level

LevelLeve1

	5.0000	10.0000	20.0000	50.0000	80.0000	120.0000	_		Coefficients		*RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	a	Ţm	щ2	or R^2
	160.0000 Tevel 7		1 1 1 1 1 1 1 1 1								
15 N-Nitrosodimethylamine 0.93833 0.88268 0.91070 0.93146 0.9316 0.92154 0.92154	0.92899	0.88268	0.91048	0.91970	0.93146	0.93916	AVRG		0.92154	II V II II II II II	2.
16 Pyridine	1.52623	1.37423	1,59449	1.56610	1.52299	1.53256	AVRG	; ; ; ;	1.54111	1 4 4 4 4 1 4	5.85560
23 Aniline	2.20796	2.15935	2.19988	2,26058	2.29749	2.33400	AVEG	; ; ; ; ; ;	2.25673	; ; ; ;	3.09753
24 Phenol	2.04111	1.96212	2.02834	2.03430	2.06683	2.06089 AV	AVRG		2,03729	(1.80250
Memal country to	3	1	3.4. 5-Trichlosphenck		6 Lavel 3	\$ 3.					

2.7. T-Tribilizations 96680 = るこうとう 8098€ 8 65555

Ŋ Page

TestAmerica West Sacramento

INITIAL CALIBRATION DATA

17-AUG-2010 17:32 02-OCT-2010 15:00 ISTD 4.14 Falcon \\SV5\C\chem\sv5.1\100210.B\8270f.m Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

ı		
	: 03-Oct-2010 11:09 onishim	
-		
•	Ħ	
	쯨	
	d	
-	Ö	
	_	
	5	
•		
	ä	
-	 .	
i		
į	0	
	ᅼ	
	0	
,	1.	
	L	
ŀ	$\overline{\mathbf{o}}$	
	Ō	
ì	1	
_	ω.	
	O	
,		
ľ	. 1	
i	-금	
	ü	
ŀ	st Edit	
į	Ť	
1	O.	

	5.0000	10.000	20.0000	50.0000	80.0000	120.0000			Coefficients	-	&RSD
Compound	Level 1	Level 2	Level 3	Level 4	revel 5	Level 6	Curve	Q	m7	2	or R'2
	160.0000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1					
	Level 7							1			
26 Bis(2-chloroethyl)ether 1.47335	1.47335	1.38252	1,39491	1.43824		-	AVRG		1.42859		2.17028
27 2-Chlorophenol	1.52099	1.55595	1.56903	1.583.68	1,56789	1.58074	AVRG		1.56381		1.32805
28 l,3-Dichlorobenzene	1.72457	1.69173	1.67754	1.73135	1.68641	1.72299	AVRG		1,70337		1.29370
29 1,4-Dichlorobenzene	1.77122	1.79861	2.74013	1,76898	1.78200	1.79288	AVRG		1.78118	1	1.35229
30 Benzyl Alcohol	1,01643	1.03654	0.99182	1.04980	1.07792	1.08952	AVRG		1.05101		3.69696
31 1,2-Dichlorobenzene	1,64691	1.63185	1.60455	1,68061	1.63410	1.64415	AVRG		1.63746		1,45884
32 2-Methylphenol	1.47889	7.38930	1,39110	1.42620	1,45565	1.46154	AVRG		1.43012		2.50558

Report Date: 03-Oct-2010 11:10

TestAmerica West Sacramento

17-AUG-2010 17:32 02-OCT-2010 15:00 ISTD 4.14 Falcon \\SV5\C\chem\sv5.i\100210.B\8270f.m 03-Oct-2010 11:09 onishim Start Cal Date End Cal Date Quant Method Target Version Integrator Method file Last Edit

	5.0000	10.0000	20.0000	50.0000	80.0000	120.0000		Ŏ	Coefficients		\$RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	.q	뒽	Ę	or R72
	160.	* * * * * * * * * * * * * * * * * * *		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
33 2,2'-oxybis(1-Chloxopropane)	2,29602	2.22080	2.28329	2.27928	2.27018	2.27830	AVRG		2.27365		1.08468
34 4-Methylphenol	1.58763	1.48913	1.46270	1,52239	1.52653	1.55886	AVRG		1.51904		2.88378
36 Hexachloroethane	0.60925	0.60836	0.60573	0.61394	0.60427	T8865.0	AVRG		0.60636		1.04319
37 N-Nitrogodinpropylamine	0.94498 0.94498 1.04757	0.97005	1.01302	1.02370	μ. 04700	1.03627	AVRG		1.01180		3.92615
42 Nitrobenzene	0.33901	0.32602	0.32543	0.33083	0.33379	0.33450	AVRG		0.33116		1.48904
44 Isophozone	0.65411	0.62291	0.61160	0.63344	0.63648	0.66468	AVRG		0.63679		3.81109
45 2-Mitrophenol	0.20508	0.18833	0.18840	0.20021	0.20022	0.20702	AVRG		0.19648		4.42274
\$ 1		 1 1 1 1 1 1 1									-

TestAmerica West Sacramento

: 17-AUG-2010 17:32 : 02-OCT-2010 15:00 : ISTD : 4.14 : Falcon : \\SV5\C\chem\sv5.1\100210.B\8270f.m Start Cal Date End Cal Date Quant Method Target Version Integrator Method file Last Edit

1001	: 03-Oct-2010 11:09 onishim	
100101.	9 onish	
֓֝֓֜֜֜֝֓֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	0 11:0	
こう つつ つ	ct-201	
2	03-0	
1111	Edit	

	5.0000	10.0000	20.0000	50.0000	80.0000	120.0000	_		Coefficients	_	*RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	Д	m1	겉	or R^2
	160.0000		-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
46 2,4-Dimethyphenol	0.34459	0.34167	0.34307	0.34912	0.34788	0.35962 AVRG	AVRG		0.34911		2.02786
47 Bis (2-chloroethoxy) methane	0.38545	0.37494	0.38565	0.38249	0.38500	0.39859	AVRG		0,38908		3.10601
49 2,4-Dichlorophenol	0.25434	0.26318	0.27019	0.27037	0.27274		AVRO		0.27010		3.39345
50 Benzoic Acid	0.16747	0.16266	0.17423	0.19357	0.21024	0.22272	AVRG		0.19324		13.25202
51 1,2,4-Trichlorobenzene	0.29430	0.28827	0.28475	0.29747	0.29189	0.29959	AVRG		0.29246		1.75989
52 Naphthalene	1.09939	1.12462	1.07435	1.09325	1.09870	1.13821	AVRG		1.10443		1.89960
54 4-Chloroaniline	0.43867	0,42534	0.43264	0.43910	0.43761	0.44905	AVRG		0.43288	1	3.06843

Report Date : 03-Oct-2010 11:10

TestAmerica West Sacramento

17-AUG-2010 17:32 02-OCT-2010 15:00 ISTD 4.14 Falcon \\SV5\C\chem\sv5.i\100210.B\8270f.m 03-Oct-2010 11:09 onishim Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

Compound	5.0000 Level 1	10.0000 Level 2 }	20.0000 Level 3	50.0000 Level 4	80.0000 Level 5	120.0000 Level 6	Curve	م	Coefficients ml	25	&RSD or R^2
								•			
57 Hexachlorobutadiene	0.14273	0.13812	0.14428	0.14415	0,14385	0.14379 AVRG	AVRG		0.14313		mmetacataba
60 4-Chloro-3-Methylphenol	0.29329	0.28866	0.29079	0.30972	0.30295	0.31766	AVRG	 	0.30164		3.64422
63 2-Methylnaphthalene	0.68483	0.68064	0.68080	0.70067	0,70560	0.71172	aved		0.69378		1.79740
66 Hexachlorocyclopentadiene	0.33186	0.27757	0.28896	0.29704	0.30236	0.32262	AVRG		0.29846		7.64489
69 2,4,6-Trichlorophenol	0.33638	0.29820	0.30223	0.31996	0.32305	0.34225	AVRG		0.31913		3.15654
70 2,4,5-Trichlorphenol	0.36135	0.32892	0.33796	0,36298	0.35236	0.35480	AVRG		0.34380		5.80662
71 2 Chloronaphthalene	1.15096	1.09431	1.10012	1.14181	1.1220	1.14447	AVRG		1.12571		2.05054
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		*							— —		

TestAmerica West Sacramento

17-AUG-2010 17:32 02-OCT-2010 15:00 ISTD 4.14 Falcon \\SV5\C\chem\sv5.1\100210.B\8270f.m 03-Oct-2010 11:09 onishim Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

	5.0000	10.0000	20.0000	50.0000	80.0000	120.0000		3	Coefficients		\$RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	Ω	T T	m Z	or R^2
	160.0000 Level 7)	t : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;								
73 2-Nitzoaniline			0.33397	0.35205	0.34821	0.35794	AVRG		0.34119		5.57334
76 Dimethylphthalate	1.23388	1.25191	1.29803	1.34568	1.31165	1.32891	AVRG		1.29606		3.09317
	1.86531	1.91304	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.01646	1.98204	1.99786	AVRG		1.96037		3.15026
	0.31106	0.27378	0.29890	0.31220	0.31294	0.32140	AVRG		0.30197		5.78579
1 00	0.35362	0.34622	0.35978	0.40036	0.38674	0.39559	AVRG		0.37691		6.06861
81 Acenaphthene	1.25874	1.22468	1.26733	1.27046	1,21141	1.24781	AVRG		1.24787		1.76776
82 2,4-Dinitrophenol	4083	7537	23799	58864	110384		Grano	0.10620	5,32413	-0.71963	1 21866.0
					_	_		_			

Report Date : 03-Oct-2010 11:10

TestAmerica West Sacramento

Start Cal Date End Cal Date Quant Method Target Version Integrator Method file Last Edit

17-AUG-2010 17:32 02-OCT-2010 15:00 ISTD 4.14 Falcon \\SV5\C\chem\sv5.i\100210.B\8270f.m 03-Oct-2010 11:09 onishim

	5.0000	10.0000	20.0000	50.0000	80.0000	120.0000	_		Coefficients	_ -	&RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	Q	III	E	or R°2
	, Å 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1							
93 Dibenzofuran	1.57786 1.71077		. 62124 1.65200	1.69530	1.65117	1.68450 AVRG			1.65612		2.77923
84 4-Nitrophenol	0.12712	0.141	0.15316	0.16076	0.17130	0.16653	AVRG		0.15634		10.90920
86 2,4~Dinitrotoluene	0.34360	0.359	0.38479	0.42154	0.41035		AVRG	 	0.39633		8.61592
91 Fluorene	1.40640	1.33840	1.34292	1.39902	1.38899	1.37835	AVRG		1.37139		2.08557
92 Diethylphthalate	1.38087	1,29889	1.31549	1.37912	1.31873	1.37345	AVRG		1,32699		4.31889
93 4-Chlorophenyl-phenylether	0.54964	0.55917	0.56887	0,59265	0.56708	0.57695	AVRG		0.57019		2,42913
94 4-Nitroaniline	0.33346	0.33747	0.37329	0.38337	0.39216	ZOT68:0	AVRG		0.37361		7.42395
1			- ~				-				_

TestAmerica West Sacramento

Start Cal Date End Cal Date Quant Method Target Version Integrator Method file Last Edit

17-AUG-2010 17:32 02-OCT-2010 15:00 ISTD 4.14 Falcon \\SV5\C\chem\sv5.i\100210.B\8270f.m 03-Oct-2010 11:09 onishim

Compound	5.0000 Level 1	10.0000 Level 2	20.0000 Level 3	50.0000 Level 4	80.0000 Level 5	120.0000 Level 6	Curve	Į ą	Coefficients wl	ZE	\$RSD or R^2
	160.0000 Level 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	·	1	• • • • • • • • • • • • • • • • • • •						-
97 4,6-Dinitro-2-methylphenol		11282	32982 16137	76137	134784	236477 LINR	 	0.10840 0.	0.15581	11 ± 11	0.99840
98 N-Nitrosodiphenylamine	0.57756	0.59736	0,60533	0.60433	0.62172	0.61801	AVRG		0.60628		2.57715
100 Azobenzene	0.77527	0.76965	0.77321	0.79522	0.80064	0.81892	AVRG		0.78660		2.37146
101 4-Bromophenyl-phenylether	0.18964	0.18507	0.19281	0.19931	0.19607	0.20581	AVRG		0.19527		3.48752
108 Hexachloxobenzene	0.22958	0.22084	0.20740	0.21605	0.21731	0.21704	AVRG		0.21807		3.00928
110 Pentachlorophenol	5849	10561	30451	67882	126397	215360	LINE	0.09816	0.14122		0.99845
114 Phenanthrene	1.30347	1.26007	1.25408	1.24163	1.24375	1.25610	AVRG		1.26074		1.64308

TestAmerica West Sacramento

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

17-AUG-2010 17:32 02-OCT-2010 15:00 ISTD 4.14 Falcon \\SV5\C\chem\sv5.i\100210.B\8270f.m 03-Oct-2010 11:09 onishim

	5.0000	10.0000	20.0000	50.0000	80.0000	120.0000			Coefficients	*RSD
Compound	Level 1	Level 2	Level 3	Level 4 [Level 5	Level 6	Curve	đ	Ţw	 or R^2
	160.0000 Level 7	~ — — -	~ -				-			
115 Anthracene	1.25034	1,21759	1.24206	1,25982	1.27529	1.30214	AVRG		1.25955	2.12888
118 Carbazole	1.13211	1.12547	1.13694	1.14260	1.17067	1.18192	AVRG		1.15061	1.87826
120 Di-n-Butylphthalate	1.28492	1,32287	1.36193	1.38164	1.41474	1.43847	AVRG		1.38442	4.97257
126 Fluoranthene	1.03840	1.07611	1.17216	1.10520	1.15861	1.18294	AVRG		1.12969	5.01774
127 Benzidine	0.86381	0.76431	0.75250	0.82658	0.82201	0.86375	AVRG		0.81067	5.60614
128 Pyrene	1,25794	1.23783	1.17078	1.28684	1.25586	1.28463	AVRG		1.25025	3.12172
134 3,3'-dimethylbenzidine	0.65472	0.64388	0.67361	0.70756	0.73630	0.79414	AVRG	,	0.71564	8.88815
										-

TestAmerica West Sacramento

Start Cal Date End Cal Date Quant Method Target Version Integrator Method file Last Edit

17-AUG-2010 17:32 02-OCT-2010 15:00 ISTD 4.14 Falcon \\SV5\C\chem\sv5.1\100210.B\8270f.m 03-Oct-2010 11:09 onishim

	5.0000	10.0000	20.0000	50.0000	80.000				Coefficients		&RSD
+	Level 1 160.0000 Level 7	Level 2	Level 2 Level 3	Level 4	Level 5	revel 6	Curve	മ	9 7	27	or 8,2
i i		0.60187	0.591,42	0.62586	0.61590	0.65233	AVRG		0.62663		3.95034
	1.10169	0.99731	1.03245	1.04489	1,06449	1.10831	AVRG	- — —	1.06548		4.05847
i	1.12246	1.10175	1.06320	1.09705	1.06985	1,12241	AVRG		1.08994		2.59426
:	0.39148	0.37695	0.39090	0.39306	0.40353	0.42717	AVRG	-	0.40189		4.53885
	0.91826	0.80897	0.84032	0.85193	0.84371	0.89539	AVRG	1	0.86316		4.34816
	1.34838	1.23185	1.35627	1.34433	1,39356	1.47616	AVRG		1.37975		6.65055
; ;	0.81012	0.81077	0.82747	0.99930	0.95373	0.91132	AVRG		0,90549		10.05836
					-		<u>'</u> 				

TestAmerica West Sacramento

17-AUG-2010 17:32 02-OCT-2010 15:00 ISTD 4.14 Falcon \\SV5\C\chem\sv5.i\100210.B\8270f.m Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

9 onishim	
11:09	
03-Oct-2010	
Edit	
ast	

	5.0000	10.0000	20.0000	50.0000	80.0000	120.0000	_		Coefficients	-	%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	ρ	m)	 	or R'2
	160.0000 Level 7			1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 					
145 Benzo (k) fluoranthene	1.22939	1.16528	1.20022	1.09895	1.14223	1.19597	AVRG		1.16236		4.27893
147 Benzo (e) pyrene	0.97185	0,92734	0.90757	0.95977	0.96997	0.96929	AVRG	 	0.94425	f	3.22007
148 Benzo (a) pyrene	1.06523	0,97686	0.99402	1.02789	1.07610	1.06275	AVRG		1,02655		4.11137
151 Indeno (1,2,3-cd) pyrene	0.97995	0.73267	0,73671	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.84057	0.93730	AVRG		0.83029		12.15083
152 Dibenzo (a, h) anthracene	0.88099 1.00392	0.84384	0,87256	0.92240	0.95990	1.00944	AVRG		0.92758		16070,7
153 Benzo(g,h,i)perylene	0.96025	0 98457	0.97380	0.99974	1.01731	1.05397	AVRG		1,00427		3.45188
M 162 benzo b,k Fluoranthene Totals	2.03951	1.97605	2.02770	2.09825	2.09596	2.10729	AVRG		2,06785		2.64859
		(10 20 20 20 20 20 20 20 20 20 20 20 20 20

Report Date : 03-Oct-2010 11:10

TestAmerica West Sacramento

17-AUG-2010 17:32 02-OCT-2010 15:00 ISTD 4.14 Falcon \\SV5\C\chem\sv5.1\100210.B\8270f.m 03-Oct-2010 11:09 onishim

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

Compound	5.0000 Level 1	10.0000 Level 2	20.0000 Level 3	50.0000 Level 4	80.0000 Level 5	120.0000 Level 6	Curve	ည် 	Coefficients	E	*RSD or R^2
	160.0000 Level 7			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
\$ 7 2-Fluorophenol	1.43635	1.30436	1 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 .	1.44170	1.43535	1.42292	AVRG		1.40992		3.61494
\$ 8 Phenol-d5	1.83627	1.67335	1.74151	1.79006	1.80863	1.83864	AVRG		1.77296		3.52001
\$ 9 2-Chlorophenol-d4	1.47770	1.55530	1.53916	1.59414	1.57486	1.57967	AVRG		1.55698		2.52388
\$ 10 1,2-Dichloxobenzene-d4	0.95776	0.98111	0.99827	0.98914	0,99518	0.98547	AVRG		0.98513		1.35559
\$ 11 Nitrobenzene-d5	0.33970	0.34256	0.33065	0,34105	0.33606	0.35127	AVRG		0.33879		2,16217
\$ 12 2-Fluorobiphenyl	1.28499	1.26007	1.27668	1.34206	1,25854	1,29723	AVRG		1.28852		2.22622
\$ 13 2,4,6-Tribromophenol	0.15034	0.16527	0.17466	0.17926	0.17825	0.18501	AVRG		0.17381	- , 1 	7.05197
		;	- <u>-</u>								

TestAmerica West Sacramento

17-AUG-2010 17:32 02-OCT-2010 15:00 ISTD 4.14 Falcon \SV5\C\chem\sv5.i\l00210.B\8270f.m

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

onishim	
09 oni	
010 11:	
03-Oct-2010 11:09	
: 03	
: Edit	
Last	

	5.0000	30,0000	10,0000 20,0000	50.0000	80.0000 120.0000	120.0000			Coefficients	62	RED
Compound	Level 1	Level 2	Level 3	Level 4 Level 5 Level 6 Curve	Level 5	Level 6	Curve	Ω _	Ľ	겉	or R^2
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_				
	160.0000		_	•	_		_				_
	Level 7		_		_		_				_
\$ 14 Terphenyl-d14	0.78508	0.78616	0.73917	0.78616 0.73917 0.80441 0.78047	0.78047	0.81889	_		_		_
	0.80107		_	_	_		AVRG		0.78789		3.21384
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1	- 1 4					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
											_

Report Date : 03-Oct-2010 11:10

TestAmerica West Sacramento

INITIAL CALIBRATION DATA

17-AUG-2010 17:32 02-OCT-2010 15:00 ISTD 4.14 Falcon \\SV5\C\chem\sv5.i\100210.B\8270f.m 03-Oct-2010 11:09 onishim

Start Cal Date End Cal Date Quant Method Target Version Integrator Method file Last Edit

Response Response Кевропва Units Ant = b + ml*Rsp + m2*Rsp^2 Amt = b + Rsp/ml Averaged | Amt = Rsp/ml Formula Linear Curve Quad Data File: \\SV5\C\chem\sv5.i\100210.B\8270f.m

Report Date: 04-Oct-2010 10:52

Signal Calibration Report

Method : \\SV5\C\chem\sv5.i\l00210.B\8270f.m
Last Edit: 04-Oct-2010 09:00 onishim
Compound : 82 2,4-Dinitrophenol

Mass: 184.00

Istd Compound: * 3 Acenaphthene-d10

Calibration Formulas

Calibration Mode: by Response

Curve Type: Averaged

Origin: None

Amt = Rsp/m1 m1 = 0.15933171100000

RSD: 26.349

Initial Calibration Table

[tv1]	RT	•	Response	•	Istd Amount	Istd Response	Response Factor
] 2[7.572	5.00000]	4063	7.468			0.10149173965865
2	7.572	10,00000	7537	7.468	40.000	272639	0.11057845722732
] 3]	7.572	20.00000	23799	7.468	40.000	328608	0.14484735612036
[4	7.582	50.00000	58864	7.468	40.000	282538	0.16667209366528
5 J	7.572	89.00000)	110384	7.468	40.000	300315	0.18378036395118
6	7.582]	120.00000	199007		40.000	322596	0.20563077864160
	7.582	160.00000)	265655	7.478	40 000	328259	

Lvl Sublist	Calibration File
1 1_8270STD	\\SV5\C\chem\sv5.i\100210.B\HSL1002A
2 1 8270STD	\\SV5\C\chem\sv5.i\100210.B\HSL1002B
3 1_8270STD	[\\\$V\$\C\chem\sv5.i\100210.B\ESL1002C
4 1_8270STD	}\\\$V5\C\chem\sv5.i\100210.B\HSL1002D
5 1_8270STD	\\SV5\C\chem\sv5.i\100210.B\HSL1002E
6 12 8270STD	\\SV5\C\chem\sv5.i\100210.B\HSL1002F
7 1_8270STD	\\sv5\C\chem\sv5.i\100210.B\H\$L1002G

Continuing Calibration Table

+~~~+~		+-		+	~	+-			+
Ind	RT	1	Amount	İ	Response	1	RT	Istd Amount Istd Response Response Factor	ļ
++-		+-		+		+-			+

1	7.582	50.000	50142	7.468	40.000}	236662	0.16949742670982
2	7.572	50.000	58864	7.468	40.000	282538	0.16667209366528
3	7.582	50.000	56608	7.468	40.000	239304	0.18924213552636
4	7.589	50.000	98553]	7.485[40.000	440855	0.17883975456783
] 5]	7.599	50.000	81881	7.485	40.000	371846	0,17616109894957
[6]	7.599	50.000	55069	7.495	40.000	283828	0.15521794889863
7	7.599	50.000	52896	7.496	40.000	256342	0.16507946415336
8	7.599	50.000	50586	7.495	40.000	224545	0.18022578993075
9	7.610	50.000	31559	7.506	40.000	165705	0.15236233064784
10	7.610	50.000	50181	7.506	40.000	226619	0.17714666466625
11	7.610	50.000	44092	7.506	40.000	201923	0.17468837130986
12	7.620	50.000	81056	7.516	40.000	329174	0.19699247206645
13	7.620	50.000	93793	7.516	40.000	378407	0.19829020076267
14	7.630	50.000	68549	7.516]	40.000	271629	0.20189007801082
15	7.630)	50.000	54835	7.516	40.000	219680	0.19969045884924
16}	7.630	50.000	67628	7.527	40.000	267569	0.20219980640508
17	7.630	50.000	94376	7.527	40.000}	349016	0.21632475301992
18	7.635	50.000	51607	7.532	40.000	209252	0.19730086211840
19	7.635	50.000	62563]	7.531	40.000	260404	0.19220288474831
201	7.646	50.000	80386	7.542	40.000	334425	0.19229662854153
21	7.645	50.000	25473	7.542	40.000	302573	0.06735035842590
22	7.645	50.000		7.542	40.000		0.06320030080034
•	7.646	50.000	68382	7.542	· ·	292758	0.18686286967393
	7.656	50.000	97952	7.552		390143	0.20085353319168
25	7.656	50.000	63647	7.552		289221	0.17605084001507
•	7.666	50.000	79703	7.563		331752	0.19219899201813
27	7.677	50.000]	59624	7.573		245725	
	7.687	50.000	60561	7.583		237909	0.20364425053277
29		50.000	42226	7.583	40.000	172923	0.19535168832370
30	7.687	50.000	51997	7.583		208221	0.19977619932668
	7.697	50.000	51275	7.594	40.000	202822	0.20224630464151
	7.697	50.000	65531	7.594]	40.000	250339	0.20941523294413
] 33]		50.000)					0.17829817371214
++			+				

į

;

;

0.18132826748723	303207	40.000	7.656	68725	50.000	7.759	34
0.17159397016162	308864	40.000	7.666	66249	50.000	7.770	35
0.17718730420274	288883	40.000	7.677	63983	50.000	7.780	36
0.16768825481542	292290	40.000]	7.677	61267	50.000]	7.780	37
0.18773993186061	238922	40.000	7.687	56069	50.000	7.791	38
0.16607652300986	243613	40.000	7.687	50573	50.000	7.791	39
0.17457598682799	256301	40.000	7.687	55930	50.000	7.791	40
0.17457598682799	256301	40.000	7.687	55930	50.000	7.791	41
0.16318468856928	215682	40.000	7.687	43995	50.000	7.791	42
0.16550299002828	269061	40.000	7.697	55663	50.000	7.801	43
0.17294425331452	242418	40.000	7.697	52406	50.000	7.801{	44
0.16110039392417	246748	40.000	7.697	49689	50.000	7.801	45
0.18511044601231	361851	40.000	7.697	83728	50.000	7.801	46
0.17539330629763	316865	40.000	7.697	69470	50.000	7.801	47
0.17636389204488	448001	40.000	7.708	98764	50.000	7.811	48
0.16347771579013	319060;	40.000	7.708	65199	50.000	7.811	49
0.15659134894078	326041	40.000	7.708	63819	50.000	7.811	50
0.17059707131864	325539	40.000	7.708	69420	50.000	7.811	51
0.17990465564459	295770	40.000	7.718	66513	50.000	7.822	52
0.17148617616339	274779	40.000]	7.718	58901	50.000]	7.822	53
0.17622831933281	264752	40.000	7.718	58321	50.000	7.822	54
0.17526620532459	414154	40.000]	7.713	90734		7.816	
0.15195873285965		40.000	7.754	49564	50.000		
0.15935129774969		40.000	7.754	63475	50.000		57
0.14792094504211		40.000	7.785	58884	50.000[7.889	
0.13775255302177		40.000	7.796	52456	50.000	7.889	59
0.12636546114026		40.000]	7.796	44855	50.000	7.889	60
0.12322990014870		40.000	7.785		50.000		
]	l	i	1	+	 	 	
0.17364233986573	_	40.000		_		7.719	lAva l

÷

Ind	Sublist	Calibration File	İ
1 1_82		\\sv5\c\chem\sv5.i\100210.B\HSL1002H	1

2 1_8270STD	\\SV5\C\chem\sv5.i\100210.B\HSL1002D
3]1_8270STD]\\sv5\C\chem\sv5.1\l002l0.B\QC00l
4 1 8270STD	\\SV5\C\chem\sv5.i\l00110.B\HSL1001
5 1_8270STD	\\SV5\C\chem\sv5.i\093010.B\HSL0930
6 1_8270STD	\\sv5\c\chem\sv5.i\092910A.B\HSL0929A
7 11_8270STD	\\SV5\C\chem\sv5.1\092910.B\HSL0929
8 1_8270STD	\\SV5\C\chem\sv5.i\092910.B\QC001
9 1_8270STD	\\SV5\C\chem\sv5.1\092810A.B\HSL0928
10 1_8270STD	\\SV5\C\chem\sv5.i\092810.B\HSL0928
11 1_8270STD	\\SV5\C\chem\sv5.i\092710.B\HSL0927
12 1_8270STD	[\\SV5\C\chem\sv5.i\092510.B\QC001
13 1_8270STD	\\sv5\c\chem\sv5.i\092510.B\HSL0925
14 1_8270\$TD	\\SV5\C\chem\sv5.i\092410.B\QC001
15 1_8270STD	\\SV5\C\chem\sv5.i\092410.B\HSL0924
16 1_8270STD	\\sv5\C\chem\sv5.i\092310A.B\HSL0923A
17 1_8270STD	\\sV5\C\chem\sv5.i\092310A.B\QC001
18 1_8270STD	\\SV5\C\chem\sv5.1\092310.B\QC001
19 1_8270STD	\\SV5\C\chem\sv5.i\\092310.B\\HSL0923
20 1_8270STD	\\sv5\C\chem\sv5.i\092210.B\H8L0922a
21 1_8270STD	\\\$V5\C\chem\sv5.i\092210.B\HSL0922
22 1_8270STD	\\SV5\C\chem\sv5.i\092210.B\QC001
23 1_8270STD	\\SV5\C\chem\sv5.1\092110.B\HSL0921
24 1_8270STD	\\sV5\C\chem\sv5.i\0920l0.B\QC001
25 1_8270STD	\\sv5\C\chem\sv5.i\092010.B\HSL0920
	\\SV5\C\chem\sv5.i\091910a.B\HSL0919a
27 1_8270STD	\\SV5\C\chem\sv5.i\091910.B\HSL0919
28 1_8270STD	\\SV5\C\chem\sv5.i\091910.B\QC001
29 1_8270STD	[\\SV5\C\chem\sv5.i\091710.B\BSL0917
· · -	\\SV5\C\chem\sv5.i\091710.B\QC001
31 1_8270STD	\\SV5\C\chem\sv5.i\091510b.B\KSL0915b
32 1_8270STD	[\\SV5\C\chem\sv5.i\091510b.B\QC003
33 1_8270STD	\\sv5\c\chem\sv5.i\091010.B\ESL0910
34 1_8270STD	\\SV5\C\chem\sv5.i\091010.B\QC001
++	-+

.

•

35 1_8270sTD	\\sv5\c\chem\sv5.i\090910a.B\H5L0909a
36 1_8270STD	\\SV5\C\chem\sv5.i\090910.B\HSL0909
37 1_8270STD	\\SV5\C\chem\sv5.i\090910.B\QC001
38 1_8270STD	\\SV5\C\chem\sv5.i\090810.B\HSL0908
39 1_8270STD	[\\SV5\C\chem\sv5.i\090810.B\Primer
40 1_8270STD	\\sv5\@\chem\sv5.i\090710.B\HSL0907
41 1_8270STD	\\SV5\C\chem\sv5.i\090710.B\HSL0907
42 1_8270STD	\\sv5\c\chem\sv5.i\090110.B\HSL0901
43 1_8270STD	\\SV5\C\chem\sv5.i\083110.B\HSL0831
44 1_8270STD	\\sv5\c\chem\sv5.i\083010.B\QC001
45 1 8270STD	\\sv5\c\chem\sv5.i\083010.B\HSL0830
46 1_8270STD	\\SV5\C\chem\sv5.i\082710.E\QC001
47(1_8270STD	\\sv5\c\chem\sv5.1\082710.B\HSL0827
48 1_8270STD	\\SV5\C\chem\sv5.i\082610.B\HSL0826
49 1_8270STD	\\SV5\C\chem\sv5.i\082610.B\QC001
50 1_8270STD	\\SV5\C\chem\sv5.i\082510.B\QC001
53 1_8270STD	\\SV5\C\chem\sv5.i\082510.B\HSL0825
52 1_8270STD	\\sv5\c\chem\sv5 i\082310B.B\HSL0823
53 1_6270STD	{\\sv5\c\chem\sv5.i\082310B.B\HSL0823H
54 1_8270STD	\\sv5\c\chem\sv5.i\082310B.B\HSL0823D
55 1_8270STD	\\SV5\C\chem\sv5.i\082310A.B\\HSL0823A
56 1_8270STD	[\\SV5\C\chem\sv5.i\092010.B\HSL0820
57\1_8270STD	!\\sv5\c\chen\sv5.1\082010.B\QC001
58 1_8270STD	\\sv5\c\chem\sv5.i\061810A.B\HSL0618A
59 1_8270STD	\\sv5\c\chem\sv5.i\081810.B\HSL0818
60 1_8270STD	\\SV5\C\chem\sv5.i\081710.B\HSL0817D
61 1_8270STD	\\SV5\C\chem\sv5.1\081710.B\HSL0817H
T	

Data File: \\SV5\C\chem\sv5.i\100210.B\8270f.m

Report Date: 04-Oct-2010 10:52

Signal Calibration Report

Method : \\SV5\C\chem\sv5.i\100210.B\8270f.m Last Edit: 04-Oct-2010 09:00 onishim

Compound: 110 Pentachlorophenol
Mass: 266.00
Istd Compound: * 4 Phenanthrene-dl0

Calibration Formulas

Calibration Mode: by Response

Curve Type: Averaged Origin: None

Amt = Rsp/m1 m1 = 0.11930897400000

RSD: 15.221

Initial Calibration Table

								_
•	•	RT	Amount }	Response		•		Response Factor
1	1	9.240	5.00000	5849	9.406	40.000	,	0.09427104739340
	2	9.240	10.00000	10551	9.406		428440	0.09850620857063
1	3	9.240	20,00000	·	9,406	40.000	525834	0.11581982146457
-	4 [9.240	50.00000	-	9.406	40.000	462722	0.11736118014704
İ.	5	9.240	80.00000]	126397			477777]	0.13227614556582
1	6	9.240	120.00000	215360		40.000	515607	0.13922748656761
:	-+- 7	•	160.00000	293184		•	-	0.13770092657303
+	-+-	+	+	~~+		+ <i></i>	+	

4+	<u> </u>
Lvl Sublist	Calibration File
[1 1_8270STD	\\SV5\C\chem\sv5.i\100210.B\HSL1002A
2 1_8270STD	\\SV5\C\chem\sv5.i\100210.E\RSLi002B
3 1_8270STD	\\SV5\C\chem\sv5.i\100210.B\HSL1002C
4 1_8270STD	\\SV5\C\chem\sv5.i\100210.B\HSL1002D
5 1_8270STD	\\SV5\C\chem\sv5.i\100210.B\HSL1002E
6 1 8270STD	\\SV5\C\chem\sv5.i\100210.B\HSL1002F
7 1_8270STD	\\SV5\C\chem\sv5.i\100210.B\HSL1002G

Continuing Calibration Table

++-		+-		+		+-		+	•
[Ind	RT	ĺ	Amount	ı	Response	1	RT	[Istd Amount Istd Response Response Factor	
		4-		4		4			

١	1	9.240	50.000	62906	9.406]	40.000]	380734	0.13217837125132
	2	9.240	50.000	67882	9.406	40.000	462722	0.11736118014704
!	3	9.257	50.000	111129	9.423	40.000	692643	0.12835356742218]
	4	9.257	50.000	88353	9.423	40.000	569627	0.12408541027725
	5	9.267	50.000	65176	9.433	40.000	444572	0.11728313973889
	6]	9.268	50.000	60910	9.433	40.000	402268	0.12113317489833
	7[9.278	50.000	51724	9.433	40.000	342388	0.12085470285174
j	8	9.278	50.000	37406	9.444	40.000[257561	0.11618529202791
1	9	9.278]	50.000	56153	9.444	40.000	367144	0.12235635064171
	20	9.278	50.000	49979	9.444	40.000	316244	0.12643148960929
.	11	9.299	50.000	89278	9.465	40.000	533339	0.13391557714699
	12	9.288	50.000	102299	9 454	40.000	604130	0.13546620760432
] :	13	9.299	50.000]	74887	9,464	40.000	434948	0.13773968382427
1	14)	9.299	50.000	61171	9.465	40.000	350214	0.13973399121680
	15	9.309	50.000	72641	9.475	40.000	436116	0.13325078648800
	16	9.309	50.000	99213	9.475	40.000	545533	0.14549147347640
1	17	9.314	50.000	56050	9.480	40.000	341600	0.13126463700234
]	18	9.314	50.000	67187]	9.480	40.000	410196	0.13103394474836
	19	9.324	50.000	90596	9.490	40.000	530756]	0.13655389670583
1	20	9.324	50.000	32043	9.490	40.000	484990	0.05285552279428
	21	9.324	50.000	22238	9.490	40.000	346959	0.05127522272084
1	-	9.324		81528			•	0.14110744280837
	23	9.335	50.000]	103580	9.511	40.000	589949	0.14045959905009
	24	9.335	50.000	72155	9.501	40.000	446339	0.12932770831140
	25	9.355	50.000]	91662	9.521	40.000]	517550	0.14168602067433
i	26	9.366	50.000	67431	9.532	40.000	396847	0.13593349578049
1	27]	9.366	50.000	71407	9.542	40.000	407176	0.14029707055426
	26	9.366	50.000	49946	9.532	40.000	298933	0.13366473423811
	29	9.366	50.000	58621 	9.542	40.000	335623	0.13973059057335
Ì	30	9.386	50.000	53858	9.552]	40.000	329730	0.13067176174446
-	31	9.387	50.000	69993	9.552	40.000	399673	0.14010053218506
	32	9.459	50.000	87217	9.625	40.000	539077	0.12943160253544
		9.459	50.000	77540	9.625	40.000	458679	0.13524054949104
+-	+-			~~~~		+		

÷

1

34[9.470	50.000	79232	9 646	40.000	482971	0.13124100618878
35	9.480	50.000)	75075	9.656	40.000	465501	0.12902227922174
36	9.480	50.000	69872	9.656	40.000	435300	0.12841167011257
37	9.490]	50.0001	60626	9.656	40.000	378611	0.12810193047746
38	9.490	50.000	60476	9.666	40.000	383533	0.12614507747704
39	9.490	50.000	68275	9.656	40.000	401081	0.13618196823086
40	9.490	50.000	68275]	9.656	40.000	401081	0.13618196823086
41	9.490	50.000	51783	9.666	40.000	337799	0.12263624226241
• •	9.501	50.000	70205	9.677	40.000	425699	0,13193359627342
•	9.511	50.000	[02609	9.677	40.000	361025	0.12794751000591
444	9.501	50.000	61157	9.677	40.000	380328	0.12864054184809
45	9.500	50.000	98266	9.676	40.000	586969	0.13393007126441
46	9.500]	50.000	82460	9.677	40.000	500580	0.13178313156738
1 47	9.511{	50.000	117721	9.687	40.000]	687233	0.13703765680635
48	9.511	50.000	77582	9.687	40.000	485585	0.12781613929590
49	9.511	50.000	77449	9.687	40.000	498103	0.12439033693834
50	9.511	50.000	85917	9.687	40.000	500311	0.13738174855240
51	9.521	50.000	80098	9.697	40.000	460974	0.13900653832971
52	9.521	50.000	71155	9.697	40.000	428920	0.13271472535671
53	9.521	50.000	72603	9.697	40.000	415811	0.13968461632809
54	9.526	50.000	108254	9.702	40.000	650674	0.13309768025155
55	9.568	50.000	64139				•
	9.578	-	85309	9.754	40.000		0.13336564203779
	9.599	50,000	78595	9.785	40.000	486034	0.12936543533991
	9.609	50.000	72755	9.785	40.000	467607	0.12447204597023
59	9.609[50.000	67958	9.785]	40.000	451801	0.12033262431911
	9.609	50.000}	-	9.785	40.000	418038	0.12177840292031
	Ī	ĺ	<u></u>		İ		
	9.411	50.000	72233	9.581	40.000	6967	0.12849428241810
++-		·+			+	+	

[Ind]	Sublist	Calibration File]
1 111_82	776STD	///sv5/c/chem/sv5.i/100210.B/HSL1002H	ì
2 1 82	270STD	\\SV5\C\chem\sv5.i\100210.B\HSL1002D	+
, ,		•	′

3 1_8270STD	\\SV5\C\chem\sv5.i\100110.B\HSL1001	1
4 1_8270STD	\\SV5\C\chem\sv5.i\093010.B\HSL0930	! !
5 1_8270STD	\\sv5\c\chem\sv5.i\092910A.B\HSL0929A	
6 1_8270STD	\\SV5\C\chem\sv5.i\092910.B\HSL0929	! !
7 1_8270STD	\\SV5\C\chem\sv5.i\092910.B\QC001	
8 1_82705TD	\\5V5\C\chem\sv5.1\092810A.B\HSL0928	
9 1_8270STD	[\\SV5\C\chem\sv5.i\092810.B\HSL0928	ļ
10 1_8270STD	\\SV5\C\chem\sv5.i\092710.B\HSL0927	
11 1_8270STD	\\SV5\C\chem\sv5.i\092510.B\QC001	İ
12 1_8270STD	/\\sv5\c\chem\sv5.1\092510.B\HSL0925	1
13 1_8270STD	\\SV5\C\chem\sv5.1\092410.B\QC001	!
14 1_8270STD	\\SV5\C\chem\sv5.i\092410.B\HSL0924	
15 1_8270STD	\\SV5\C\chem\sv5.i\092310A.B\HSL0923A]
16 1_8270STD	[\\SV5\C\chem\sv5.i\092310A.B\QC001	
17 1_8270STD	\\SV5\C\chem\sv5.i\092310.B\QC001]
18 1_8270STD	\\SV5\C\chem\sv5.i\092310.B\HSL0923	,
19 1_8270STD	\\SV5\C\chem\sv5.i\092210.B\HSL0922a	1
20 1_8270STD	\\SV5\C\chem\sv5.i\092210.B\HSL0922	
21 1_8270STD	/\\SV5\C\chem\sv5.i\092210.B\QC001	
22 1_8270STD	\\SV5\C\chem\sv5.i\092110.B\HSL0921	1
23 1_8270STD	\\SV5\C\chem\sv5.i\092010.B\QC001	1
24 1_8270STD	\\SV5\C\chem\sv5.i\092010.B\HSL0920	
) 25]1_8270STD	\\SV5\C\chem\sv5.i\091910a.B\\\\$L0919a]
26 1_8270STD	\\SV5\C\chem\sv5.i\091910.B\HSL0919	
27 1_8270STO	\\SV5\C\chem\sv5.i\091910.B\QC001	l
28 1 8270STD	\\SV5\C\chem\sv5.i\091710.B\H3L0917	
29 1_8270STD	\\\SV5\C\chem\sv5.i\091710.B\QC001	
30 1_8270STD	\\SV5\C\chem\sv5.i\091510b.B\HSL0915b	-
31 1 8270STD	\\SV5\C\chem\sv5.i\091510b.B\QC003	
32 1 8270STD]\\sv5\g\chem\sv5.i\091010.B\HSL0910	!
33 1_8270STD	\\SV5\C\chem\sv5.i\091010.B\QC001	1
34 1_8270STD	\\sv5\c\chem\sv5.i\090910a.B\HSL0909a	+
1 35 1 8270STD	/\\SV5\C\chem\sv5.1\090910 B\HSL0909	+
++		+

36 1_8270STD	\\SV5\C\chem\sv5.i\090910.B\QC001
37 1_8270STD	\\SV5\C\chem\sv5.i\090810.B\HSL0908
38 1_8270STD	\\SV5\C\chem\sv5.1\090810.B\Primer
39 1_8270STD	\\sv5\c\chem\sv5.i\090710.B\HSL0907
40 1_8270STD	\\SV5\C\chem\sv5.1\090710.B\HSL0907
41 1_8270STD	\\sv5\c\chem\sv5.i\090110.B\HSL0901
42 1_8270STD	\\SV5\C\chem\sv5.i\083110.B\HSL0831
43 1_8270STD	\\sv5\c\chem\sv5.i\083010.B\QC001
44 1_8270STD	\\sv5\c\chem\sv5.i\083010.B\HSL0830
45[1_8270STD	\\SV5\C\chem\sv5.i\082710.B\QC001
46 1_8270STD	\\sv5\c\chem\sv5.i\082710.B\HSL0827
47 1_8270STD	\\SV5\C\chem\sv5.i\082610.B\HSL0826
48 1_8270STD	\\SV5\C\chem\sv5.i\082610.B\QC001
49 1_8270STD	\\SV5\C\chem\sv5.i\082519.B\QC001
j 50 j1_8270STD	\\SV5\C\chem\sv5.i\082510.B\HSL0825
51 1_8270STD	\\sv5\c\chem\sv5.i\082310B.B\HSL0823
52 1_8270STD	\\sv5\c\chem\sv5.i\082310B.B\HSL0823H
53 1_8270STD]\\sv5\c\chem\sv5.i\082310B.B\HSL0823D
54 1_8270STD	\\SV5\C\chem\sv5.i\082310A.B\HSL0823A
55 1_8270STD	\\SV5\C\chem\sv5.i\082010.B\HSL0820
56 1_8270STD	[\\sv5\c\chem\sv5.i\082010.B\QC001
57 1_8270STD	\\sv5\c\chem\sv5.i\081810A.B\HSL0818A
58 1_6270STD	\\sv5\c\chem\sv5.i\081810.B\HSL0818
•	\\SV5\C\chem\sv5.i\081710.B\HSL0817D
60 1_6270STD	\\SV5\C\chem\sv5.1\081710.B\HSL0817H
++	***************************************

TAILING FACTOR/DEGRADATION SUMMARY RESULTS

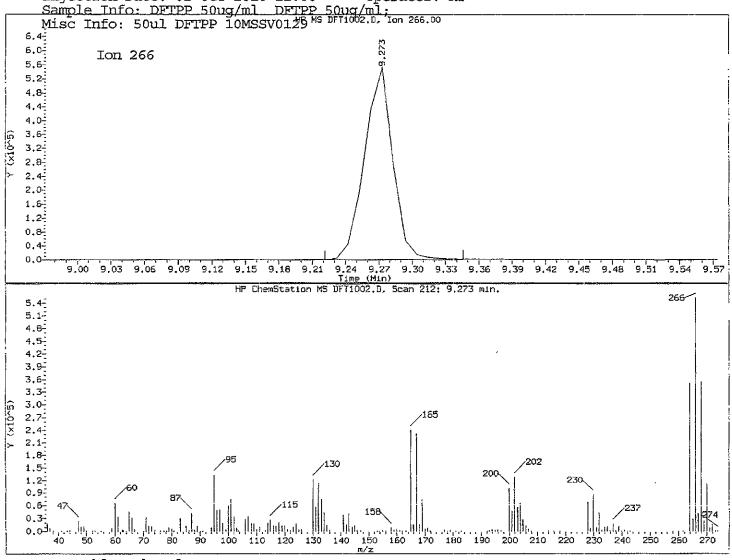
TAILING ANALYSIS SUMMARY

Compound	Tail Factor	Max Allowed Test
Pentachlorophenol Benzidine	0.6825896 0.6244503	1

DDT DEGRADATION BREAKDOWN ANALYSIS SUMMARY

+===========			========+
Compound	Response	%Breakdown	Max Allowed Test
4,4-DDD + DDE	189907	8.9	20.5 PASS
	· 		

Sample //SV5/C/chem/sv5.i/100210.B/DFT1002.D/DFT1002.D


*************** *** PASSED *** ******

TAILING FACTOR/DEGRADATION SAMPLE AND GRAPHIC REPORT

Report Date: 10/03/2010 11:04

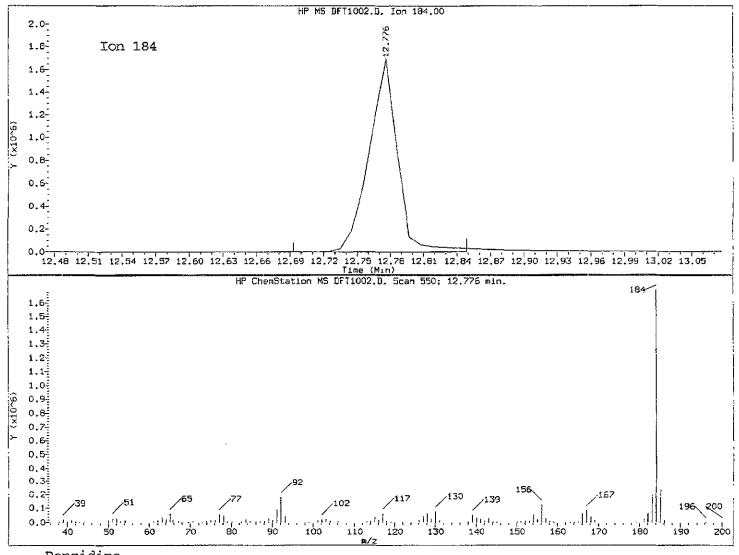
Datafile Analyzed: //SV5/C/chem/sv5.i/100210.B/DFT1002.D/DFT1002.D Method Used: \\SV5\C\chem\sv5.i\100210.B\DFTPP.M\resol.m Inst: sv5

Injection Date: 02-OCT-2010 12:06 Operator: KT

Pentachlorophenol

Exp. RT = 9.387Found RT = 9.273

Tailing factor for Pentachlorophenol OK


Tail Factor = 0.683 Maximum Allowed = 5.0

Datafile Analyzed: //SV5/C/chem/sv5.i/100210.B/DFT1002.D/DFT1002.D Method Used: \\SV5\C\chem\sv5.i\100210.B\DFTPP.M\resol.m Inst: sv5

Injection Date: 02-OCT-2010 12:06 Operator: KT

Sample Info: DFTPP 50ug/ml DFTPP 50ug/ml;

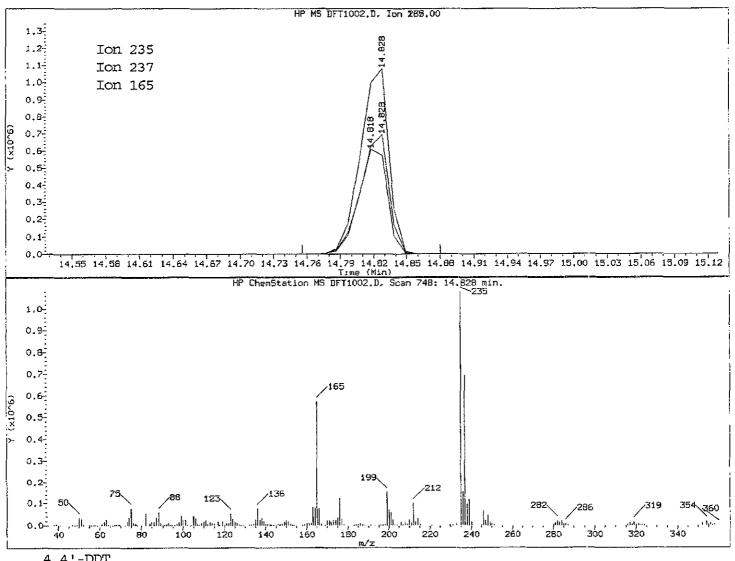
Misc Info: 50ul DFTPP 10MSSV0129

Benzidine

=======

Exp. RT = 12.911Found RT = 12.776

Time2 = 12.77603Timel = 12.74377Time3 = 12.79618Tailing Factor = (Time3 - Time2)/(Time2 - Time1)


Tailing factor for Benzidine OK

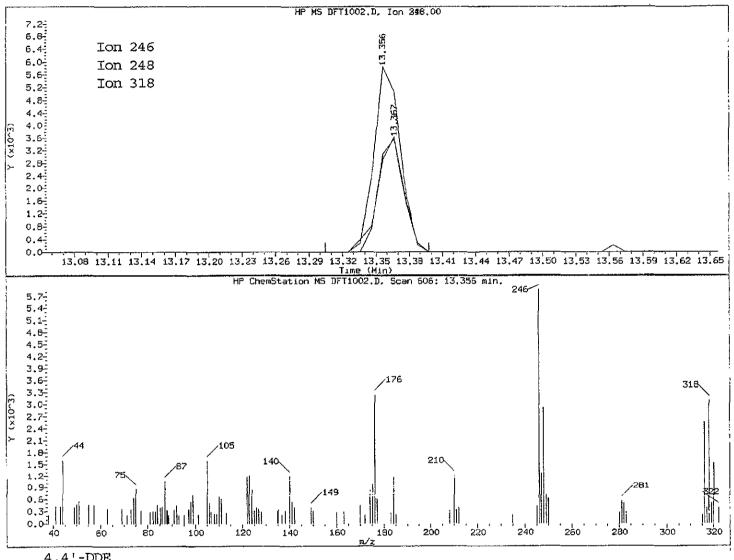
Tail Factor = 0.624 Maximum Allowed = 3.0

Datafile Analyzed: //SV5/C/chem/sv5.i/100210.B/DFT1002.D/DFT1002.D Method Used: \SV5\C\chem\sv5.i\100210.B\DFTPP.M\resol.m Inst: sv5

Injection Date: 02-OCT-2010 12:06 Ope Sample Info: DFTPP 50ug/ml DFTPP 50ug/ml; Operator: KT

Misc Info: 50ul DFTPP 10MSSV0129

4,	4	-DD.7	
==	==	====	:


Exp. RT =14.942 Found RT = 14.828

Mass	Area	Ratio
235	1937042	100.00
237	1226081	63.30
165	1111108	57.36

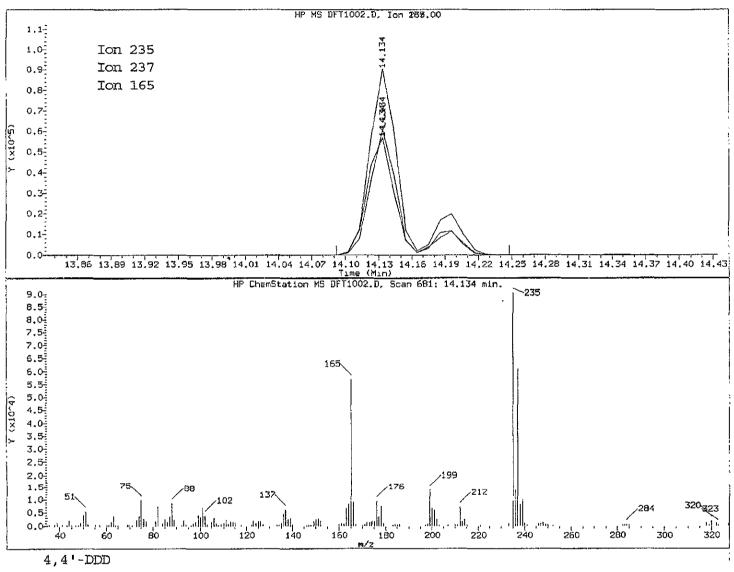
Datafile Analyzed: //SV5/C/chem/sv5.i/100210.B/DFT1002.D/DFT1002.D Method Used: \\SV5\C\chem\sv5.i\100210.B\DFTPP.M\resol.m Inst: sv5

Injection Date: 02-OCT-2010 12:06 Ope Sample Info: DFTPP 50ug/ml DFTPP 50ug/ml; Operator: KT

Misc Info: 50ul DFTPP 10MSSV0129

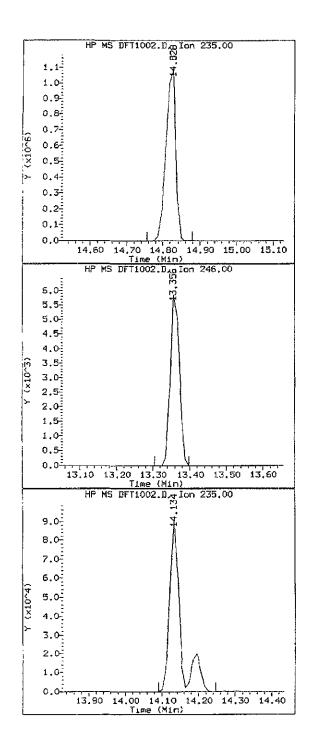
4,4'-DDE =======

Exp. RT = 13.470Found RT = 13.356


Mass	Area	Ratio
246	9630	100.00
248	5964	61.93
318	0	0.00

Datafile Analyzed: //SV5/C/chem/sv5.i/100210.B/DFT1002.D/DFT1002.D Method Used: \SV5\C\chem\sv5.i\100210.B\DFTPP.M\resol.m Inst: sv5

Injection Date: 02-OCT-2010 12:06 Operator: KT


Sample Info: DFTPP 50ug/ml DFTPP 50ug/ml;

Misc Info: 50ul DFTPP 10MSSV0129

#'# _Y	مدرور		
======	===		
Exp.	RT	=	14.248
Found	RT	=	14.134

Mass	Area	Ratio
235	180277	100.00
237	115795	64.23
165	113090	62.73

Compound: 4,4'-DDT Quant Mass: 235 RT: 14.828

Area: 1937042

Compound: 4,4'-DDE Quant Mass: 246

RT: 13.356 Area: 9630

Compound: 4,4'-DDD Quant Mass: 235

RT: 14.134 Area: 180277

DDT DEGRADATION BREAKDOWN ANALYSIS SUMMARY

Compound	Response		Max Allowed Test	Ī
4,4-DDD + DDE	189907	8.9	20.5 PASS	ĺ

Data File: \\SV5\C\chem\sv5.i\100210.B\DFT1002.D

Report Date: 03-Oct-2010 11:04

TestAmerica West Sacramento

Data file: \\SV5\C\chem\sv5.i\100210.B\DFT1002.D Lab Smp Id: DFTPP 50ug/ml Inj Date: 02-OCT-2010 12:06 Operator: KT Inst ID: Smp Info: DFTPP 50ug/ml; Inst ID: sv5.i

Misc Info: 50ul DFTPP 10MSSV0129

Comment

Method : \\SV5\C\chem\sv5.i\100210.B\DFTPP.m

Meth Date: 17-Aug-2010 14:10 scotts Quant Type: ISTD

Cal Date : Cal File:

Als bottle: 96 QC Sample: DFTPP

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.14 Sample Matrix: None

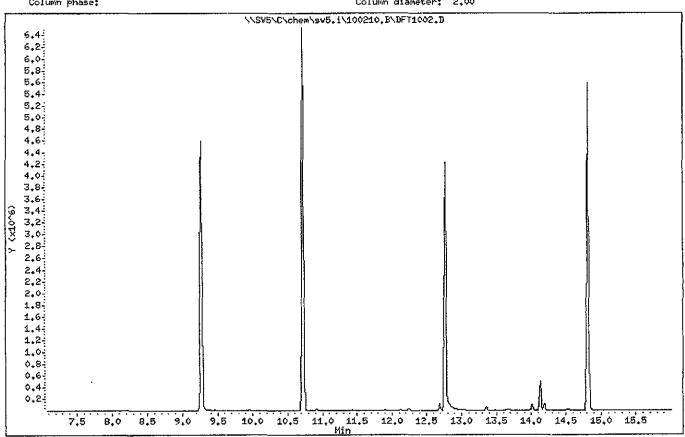
Processing Host: SV5

CONCENTRATIONS

					ON-COL	FINAL		
RT	EXP RT	REL RT	MASS	RESPONSE	(ug/L)	(ug/L)	TARGET RANGE	RATIO
***	=======		====	=======	*****	200293=		erosa
1	dftpp					CAS #:	5074-71-5	
0.000	11.201	(0.000)	198	746688			0.00- 100.00	100.00
0.000	11,201	{ 0.000}	51	320640			30.00- 80.00	42.94
0.000	11.201	(0.000)	68	4826			0.00- 2.00	1.62
0.000	11.201	(0.000)	69	298048			0.00- 0.00	39.92
0.000	11,201	(0.000)	70	1913			0.00- 2.00	0.64
0.000	11.201	(0.000)	127	406528			25.00- 75,00	54.44
0.000	11,201	(0.000)	197	0	0.0	0.0	0.00- 1.00	0.00
0.000	11.201	(0.000)	199	49104			5.00- 9.00	6.58
0.000	11,201	(D.DOO)	275	170816			10.00- 30.00	22.88
0.000	11,201	(D.DOD)	365	20496			0.75- 0.00	2.74
0.000	11.201	{ 0.000}	441	100984			0.01- 99.99	74.22
0.000	11,201	(0.000)	442	702528			40.00- 110.00	94.09
0.000	11.201	(0.000)	443	136064			15.00- 24.00	19.37
								

Date : 02-0CT-2010 12:06

Client ID:


Instrument: sv5.i

Sample Info: DFTPP 50ug/ml;

Operator: KT

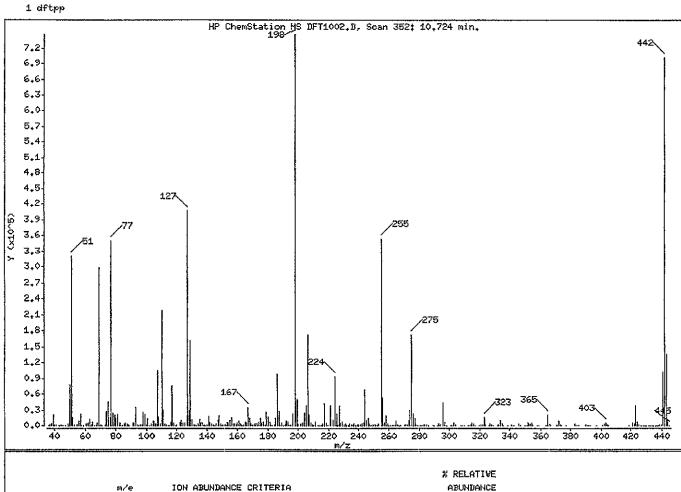
Column phase:

Column diameter: 2.00

Page 2

Date : 02-00T-2010 12:06

Client ID:


Instrument: sv5.i

Sample Info: DFTPP 50ug/al;

Operator: KT

Column phase:

Column diameter: 2.00

m/e ION ABUNDANCE CRITERIA	ABUNDANCE
	l !
l 198 Base Peak, 100% relative abundan	ce l 100.00
1 51 30,00 - 80,00% of mass 198	i 42,94
1 68 Less than 2.00% of mass 69	1 0,65 (1,62)
1 69 Mass 69 relative abundance	I 39₊92
! 70 Less than 2,00% of mass 69	1 0,26 (0,64)
127 25,00 ~ 75,00% of mass 198	l 54 ₊ 44
! 197 Less than 1.00% of mass 198	1 0.00
199 5,00 9,00% of mass 198	l 6,58
275 10.00 - 30.00% of mass 198	l 22₊88
365 Greater than 0.75% of mass 198	1 2,74
441 Present, but less than mass 443	13 ₊ 52
442 40.00 - 110.00% of mass 198	94,09
443 15.00 - 24.00% of mass 442	1 18,22 (19,37)

Date : 02-DCT-2010 12:06

Client ID:

Instrument: sv5.i

Sample Info: DFTPP 50ug/ml;

Operator: KT

Column phase:

Column diameter: 2.00

Data File: DFT1002.D Spectrum: HP ChemStation MS DFT10

Spectrum: HP ChemStation MS DFT1002.D, Scan 352: 10.724 min.

Location of Maximum: 198.00 Number of points: 340

	m/z	٧		カノエ	Y	m/z	Y		m/z	Υ
l	36.10	203	1	130,00	12809	1 219.20	447	ı	321.00	1763 I
!	37,10	1216	1	131.00	2287	221.00	37608	j	322,10	913 I
1	38,10	3314	1	132,00	1225	223,10	9674	ı	323,10	16294
F	39,10	21392	1	133.00	620	224.10	93432	ı	324,10	2245 l
1	40,00	1076	1	134,00	3794	225,10	21544	1	324,80	382
ļ	41,10	949	ŧ	135,10	11378	226,10	1736	1	326,00	507 I
1	43,10	352	1	136,00	4886	227,00	37976	1	327,00	2789 I
ŀ	44,00	922	1	137,00	5203	228.00	4945	l	328,00	1262 I
Į	45,00	428	1	138.00	1265	229,00	7548	Į	329,10	343 1
}	47.00	204	1	139,00	791	230,00	1024	ı	331.90	894 I
1	49,10	2676	1	140.00	2233	231.10	2757	1	333,00	1455 I
1	50.10	77024	1	141,00	17480	232,00	528	Į	334,10	959¢ I
1	51.10	320640	I	142.00	7259	233.00	641	ł	335,00	2774
1	52,10	16189	ı	143.00	3921	234.00	2909	ı	336,00	291 I
1	53,10	963	1	144.00	1375	1 235,00	2419	١	339.00	369 1
1	55.00	1815	,	145,10	829	236,10	1608	1	340,00	399 1
1	56,00	8872	ı	146.00	3251	1 237.00	3192	,	341,00	2042 1
ı	57,00	22504	1	147.00	9463	1 238.00	581	J	342,10	852 (
1	58.00	755	ı	148,00	18744	239,00	1185	ı	343,20	220
1	59,10	372	l	149.00	4031	240,00	1065	ı	346.00	2819
1	61.00	3888	1	150,10	1094	1 241,00	1870	ı	346,90	608
ŧ	62.00	4800	ł	151,20	2277	1 242,00	3682	í	350,30	205 1
1	63,10	11199	1	152,10	1506	1 243,10	4924	1	351,00	283 (
1	64.10	1448	1	153,00	6113	244,10	66488	ı	352,00	5049 (
1	65,10	6509	I	154.00	5445	1 245.10	9865	,	353,10	3110 1
1	66.00	499	Į	155.00	10151	1 246.00	14573	ļ	354,00	5432)
1	67,10	461	ŧ	156.10	14866	247,00	3022	ı	355.00	1087 I
1	68,00	4826	ı	157,10	3676	1 248,10	618	ι	358.00	241 I
í	69,00	298048	I	158,10	3734	249.00	2441	ł	359,00	574 1
!	70.10	1913	1	159,00	2313	I 250₊00	627	1	363.50	249 I
1	71.10	410	1	160.00	5246	1 250,90	1000	1	365,00	20496
1	73,10	2021	f	161,10	8666	1 252,00	756	F	366,00	3166 I
i	74.00	28000	ı	162.00	2863	1 253,10	2603	ŧ	367.00	225 1
1	75.00	45304	ł	163,10	562	255,00	353024	ŀ	370.10	477 1
ŀ	76,10	15795	ı	164,00	1067	1 256,00	51440	ι	370,90	1541, (

Date : 02-00T-2010 12:06

Client ID:

Instrument: sv5.i

Sample Info: DFTPP 50ug/ml;

Operator: KT

Column phase:

Column diameter: 2.00

Data File: DFT1002.D Spectrum: HP ChemStation MS DFT1002.D, Scan 352: 10,724 min. Location of Haximum: 198.00 Number of points: 340

	m/z	Y	m/z	Y	m/z	Y	m/z	
1	77,10	349952	165,00	6962	257.00	4474	372,10	848
ì	78,10	23464	166,00	5717	258,00	19504	373.10	181
1	79.00	20048 (167.00	3 3648	259,10	3695 (373,80	34
1	80.00	14146	168,00	13682	260,00	645	377.10	26
l	81,00	22008	169.00	2802 !	261,10	7 97 I	383,00	262
1	82,00	5822	170.00	1014	262,20	249	383,90	59
1	83,00	5093 1	171.00	1339	263,00	269 (385,00	28
1	84.00	814	172,00	3224	264,10	532 1	390,00	136
ì	85.00	3948 1	173.00	4109	265,00	7904	391.00	75
1	86,00	5985	174.00	7189	266.00	11 81	392,10	66
ı	87,00	2652 (175.10	13638	267,20	204 1	393.20	28
١	88.00	1,078	176.10	4293	267,60	232	397,00	23
١	89,00	472	177,00	6577	270,00	489	400,90	33
1	91,00	5074	178,10	1972	271.00	901 1	402,00	34€
ļ	92,00	5292	179.00	25912	272,10	1129	403,00	556
1		34848	180.00	16984	273.00	10963	404,10	177
1	94,00	2386	181.00	7182	274,00	30 032	405,00	29
1	95.00	749	182.00	1363	275.00	170816	418,90	25
E	96.00	1660	183.00	559	276,10	22944	421.00	540
1	97,10	1007	184,10	2227	277,00	13493	422,00	418
1	98,00	25944	185,10	13301	278,10	2251	423.00	3759
ı	99,00	21688	186.00	97584	279.00	648	424.00	680
ţ	100.00	1844	187,10	27792	281,10	266	425,00	93
ì	101,00	13609	188,10	2556	282,00	217	426,50	25
1	102,10	646	189.00	5094	283.00	1957	427,30	33
ï	103.00	3748	189,90	756	284,00	1097	428,40	20
ŧ	104.00	8390	191.10	2995	285,10	2569	429,20	30
1	105,00	8359	192,00	7909	286,10	444	430,20	27
ı	106.10	3007	193.00	7605	289.00	691	431,10	40
1	107,00	104896	194,10	19 98	290,10	589	431.50	32
1	108.00	17616	195.10	1331	292,10	763	432,20	29
ı	109.00	3545	196.00	22448	293.00	3141	432,50	32
ı	110,00	218112	198,00	746688	294,10	1275	433,30	31
ì	111.00	30736	199.00	49104	296,00	42616	433,70	34
1	112.00	4281	200,00	4038	297.00	6196	434.30	36

Date : 02-OCT-2010 12:06

Client ID:

Instrument: sv5.i

Sample Info: DFTPP 50ug/ml;

Operator: KT

Column phase:

Column diameter: 2.00

Data File: DFT1002.D

Spectrum: HP ChemStation MS DFT1002.D, Scan 352: 10.724 min.

Location of Maximum: 198.00 Number of points: 340

_	m/z	Y		m/z	Y		m/z	Y		かくて	Υ	
1	113,00			201.60		•	298.00			434,90	650	
l	114,40	467	1	203,00	4788	ļ	301.00	504	1	435,90	530	ì
1	115.00	646	1	204.00	23416	ŧ	302.00	695	1	436,50	586	ł
I	116.10	6327	1	205.00	38288	į	303,10	5810	I	436,90	846	1
1	117,00	75520	1	206,10	172352	1	304,00	2035	I	437,50	828	1
+			-+-			+			-			+
1	118,00	5507	Į	207,10	21 328	I	305,10	290	1	438,20	1136	1
ı	119,00	839	1	208,00	5487	1	308+00	764	1	439,30	1287	I
1	120,10	1180	ţ	209.00	2186	ì	309,10	446	1	441.00	100984	ŀ
Į	121.00	807	1	210.00	2002	ı	310.00	839	1	442,00	702528	1
1	122,00	6408	1	211.10	7473	ì	312,20	271	ı	443,00	136064	ļ
+	~~ ~~~		+		••	+			+			+
1	123.00	10302	ı	213,00	410	ļ	312,90	292	ι	444,00	12344	1
ı	124,00	4600	ļ	214,10	372	ŀ	314,00	2431	ţ	445,10	689	Į
ı	125.00	4447	1	215,10	1837	į	315,00	5363	Į			1
ı	127,00	406528	1	216.00	3226	į	316.00	2900	1			I
	128,00			217,00			317,10		-			ŧ
-	129,00		-	218.00	5388	-	319,80	287	-			+ -

AMOUNTS

Report Date: 03-Oct-2010 11:11

TestAmerica West Sacramento

Method 8270C

Data file: \\sv5\c\chem\sv5.i\100210.B\HSL1002A.D Lab Smp Id: HSL_005 ug/ml CS-1 Client Smp Client Smp ID: 8270F.M

Inst ID: sv5.i

Inj Date: 02-OCT-2010 12:27

Operator: KT

Smp Info: HSL 005 ug/ml CS-1;1;;1;;;4

Misc Info: 3;;0;1 8270STD.SUB;10MSSV0307;0;8270F.M

Comment: SOP SAC-MS-0005

Method: \\sv5\c\chem.sv5.i\100210.B\8270f.m

Meth Date: 03-Oct-2010 11:09 onishim Quant Type: ISTD

Cal File: AP90817D.D Cal Date : 17-AUG-2010 21:19

Als bottle: 1 Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 1 8270STD.SUB

Target Version: 4.14

Processing Host: SACP307UM

							22.000	1.0
		QUANT SIG					CAL-AMT	ON-COL
(Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
	2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	11002		=======	=======================================	========	EGESES:	
,	* 1 1,4-Dichlorobenzene-de	152	3.955	3.955	(1.000)	141539	40.0000	(Q)
,	* 2 Naphthalene-d8	136	5.374	5.374	(1.000)	605687	40.0000	
*	* 3 Acenaphthene-d10	164	7.468	7.468	(1.000)	321839	40,0000	
,	* 4 Phenanthrene-d10	168	9.406	9.405	(1.000)	496356	40.0000	
,	* 5 Chrysene-d12	240	13.779	13.779	(1.000)	453007	40.0000	
,	* 6 Perylene-d12	264	16.162	16.162	(1.000)	445119	40,0000	
5	\$ 7 2-Fluorophenol	112	2.742	2.732	(0.693)	25566	5.00000	5.124
5	\$ 8 Phenol-d5	99	3.613	3.613	(0.914)	30471	5.00000	4.857
5	\$ 9 2-Chlorophenol-d4	132	3.758	3.758	(0.950)	26144	5.00000	4.745
:	\$ 10 1,2-Dichlorobenzene-de	152	4.162	4.162	(1.052)	16945	5.00000	4.861
:	\$ 11 Nitrobenzene-d5	82	4.576	4.576	(0.852)	25006	5.00000	4.874 (M)
:	\$ 12 2~Fluorobiphenyl	172	6.680	6.680	(0.895)	51695	5.00000	4.986
5	\$ 13 2,4,6-Tribromophenol	330	8.473	8.473	(1.135)	6048	5.00000	4.325
:	\$ 14 Terphenyl-d14 :	244	12.017	12.017	(0.872)	44456	5.00000	4.982
	15 N-Nitrosodimethylamine	9 74	1.716	1.706	(0.434)	16436	5.00000	5 040 (q)
	16 Pyridine	79	1.737	1.726	(0.439)	29567	5.00000	5.422 (q)
	23 Aniline	93	3,654	3.654	(0.924)	39064	5.00000	4.892(Q)
	24 Phenol	94	3.623	3.623	(0.916)	36112	5.00000	5.009(Q)
	26 Bis(2-chloroethyl)ethe	er 93	3.716	3.716	(0.940)	26067	5.00000	5.157
	27 2-Chlorophenol	128	3.768	3.768	(0.953)	26910	5.00000	4.863
	28 1,3-Dichlorobenzene	146	3.923	3.923	(0.992)	29883	5.00000	4.958
	29 1,4-Dichlorobenzene	146	3.975	3.975	(1.005)	31337	5.00000	4.972
	30 Benzyl Alcohol	108	4.120	4.120	(1.042)	17983	5.00000	4.835
	31 1,2-Dichlorobenzene	146	4.172	4.172	(1.055)	28663	5.00000	4.947
	32 2-Methylphenol	108	4.255	4.255	(1.076)	24914	5.00000	4.923
	33 2,2'-oxybis(1-Chlorop:	ropane) 45	4.297	4,297	(1.086)	40622	5.00000	5.049
	34 4-Methylphenol	108	4.421	4.421	(1.118)	26292	5.00000	4.891
	36 Hexachloroethane	117	4.504	4,504	(1.139)	10779	5.00000	5.024
	37 N-Nitrosodinpropylami	ne 70	4,442	4.442	(1.123)	16719	5.00000	4.670
	42 Nitrobenzene	77	4.597	4.597	(0.855)	24875	5.00000	4.960
	44 Isophorone	82	4.856	4.856	(0.904)	48024	5.00000	4.980
	45 2-Nitrophenol	139	4,960	4.960	(0.923)	14088	5.00000	4.735
	46 2,4-Dimethyphenol	107	5.012	5.012	(0.933)	26089	5.00000	4.935

10-7-10

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002A.D Report Date: 03-Oct-2010 11:11

							AMOUNTS			
		QUANT SIG					CA	L-AMT	O14-	COL
cogmoD	unds	Mass	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
=====		====	to est est	*****	= BECDGET=		==	====	D11 M	
47	Bis(2-chloroethoxy)methane	93	5.126	5.126	(0.954)	31152	5.	00000	5	. 288
49	2,4-Dichlorophenol	162	5.229	5,229	(0.973)	19256	5.	00000	4	708
50	Benzoic Acid	L22	5.084	5.115	(0.946)	12679	5.00000		4	.333
51	1,2,4-Trichlorobenzene	L80	5,322	5,322	(0.990)	22282	5.	00000	5	.032
52	Naphthalene	128	5.395	5.395	(1.004)	83236	5.	00000	4	.977
54	4-Chloroaniline	1.27	5.488	5.488	(1.021)	30853	5.	00000	4	.707
57	Hexachlorobutadiene	225	5.613	5.613	(1.044)	10823	5.	00000	4	.994
60	4-Chloro-3-Methylphenol	107	6.069	6,069	(1.129)	22205	5.	00000	4	.862
63	2-Methylnaphthalene	142	6.203	6.203	(1.154)	51849	5.	00000	4	.936
66	Hexachlorocyclopentadiene	237	6.483	6.483	(0.868)	10813	5.	00000	4	.503
59	2,4,6-Trichlorophenol	196	6.576	6.576	(0.881)	12546	5.	00000	4	.886
70	2,4,5-Trichlorphenol	196	6.628	6.628	(888.0)	12400	5.	00000	4	.483
71	2-Chloronaphthalene	162	6.784	6.784	(0.908)	45713	5.	00000	5	.047
73	2-Nitroaniline	65	6.949	6.949	(0.931)	12703	5.	00000	4	.627
76	Dimethylphthalate	163	7,219	7.229	(0.967)	49639	5.	00000	4	.760
77	Acenaphthylene	1.52	7.281	7.281	(0.975)	75041	5.	00000	4	.758
79	2,6-Dinitrotoluene	165	7,291	7.302	(0.976)	11404	5.	00000	4	.694 (QM)
80	3-Nitroaniline	138	7.447	7.447	(0.997)	14226	5.	00000	4	.691(Q)
81	Acenaphthene	153	7.509	7.509	(1.006)	50639	5.	00000	5	.044
82	2,4-Dinitrophenol	184	7.571	7.572	(1.014)	4083	5.	00000	6	.945 (q)
83	Dibenzofuran	168	7.696	7.706	(1.031)	63477	5.	00000	4	.764
84	4-Nitrophenol	109	7.675	7.675	(1.028)	5114	5.	00000	4	.065 (Q)
86	2,4-Dinitrotoluene	165	7.768	7.768	(1.040)	13823	5.	00000	4	. 335 (q)
91	Fluorene	166	8.131	8.131	(1.089)	54136	5.	00000	4	.906
92	Diethylphthalate	149	8,100	8.100	(1.085)	49177	5.	00000	4	.606
93	4-Chlorophenyl-phenylether	204	8,152	8.152	(1.092)	22112	5.	00000	4	.820
94	4-Nitroaniline	138	8.214	8.214	(1.100)	13415	5.	00000	4	.463
97	4,6-Dinitro-2-methylphenol	198	8.276	8.276	(0.880)	5780	5.	00000	7	', 325 (q)
98	N-Nitrosodiphenylamine	169	8.317	8.317	(0.884)	41998	5.	86000	5	.582
100	Azobenzene	77	8.348	8.348	(0.888)	48101	5.	00000	4	.928
101	4-Bromophenyl-phenylether	248	8.794	8.794	(0.935)	11766	5.	00000	4	.856
108	Hexachlorobenzene	284	8.981	8.981	(0.955)	14244	5.	00000	5	.264
110	Pentachlorophenol	266	9.240	9.240	(0.982)	5849	5.	00000	7	. 264
114	Phenanthrene	178	9.437	9.437	(1,003)	80873	5.	00000	5	.169
115	Anthracene	178	9.499	9.499	(1.010)	77577	5.	00000	4	.963
118	Carbazole	167	9.768	9.768	(1.039)	70241	5.	00000	4	.920
120	Di-n-Butylphtbalate	149	10.463	10.463	(1.112)	79722	5.	00000	4	.641
126	Fluoranthene	202	11.302	11.302	(1.202)	64427	5.	00000	4	.596
127	Benzidine	184	11.571		(0.840)	44267		00000		.822
128	Pyrene	202	11.665	11.665	(0.847)	71230	5.	00000	5	.030
134	3,3'-dimethylbenzidine	212	12.867	12.867	(0.934)	37074	5.	00000	4	.574
136	Butylbenzylphthalate	149	12.991	12,991	(0.943)	36798	5.	00000	5	.185
138	Benzo (a) Anthracene	228	13.758	13.758	(0.998)	62384	5.	00000	5	.170
139	Chrysene	228	13.820	13.831	(1.003)	59618	5.	00000	4	.830
140	3,3'-Dichlorobenzidine	252	13.799	13.799	(1.002)	22168	5.	00000	4	.870
141	bis(2-ethylhexyl)Phthalate	149	14.110		(1.024)	51997	5.	00000	5	.319
142	Di-n-octylphthalate	149	15.157		(1.100)	76353	5.	00000	4	.886
144	Benzo(b) fluoranthene	252	15.572	15.582		45075	5.	00000	4	. 473 (Q)
145	Benzo(k) fluoranthene	252	15.613	15.623	(0.966)	68403	5.	00000	5	. 288 (q)
147	Benzo(e)pyrene	252	15.996	16.007	(0.990)	50295	5.	00000	4	.786
148	Benzo (a) pyrene	252	16.069	16.079	(0.994)	54594	5.	00000	4	.788
151	Indeno(1,2,3-cd)pyrene	276	17.789	17.800	(1.101)	41053	5	00000	4	.443
152	Dibenzo(a,h)anthracene	278	17.841	17.841	(1.104)	49018	5.	00000	4	.749
153	Benzo(g,h,i)perylene	276	18.224	18.235	(1.128)	53428	5.	00000	4	.781

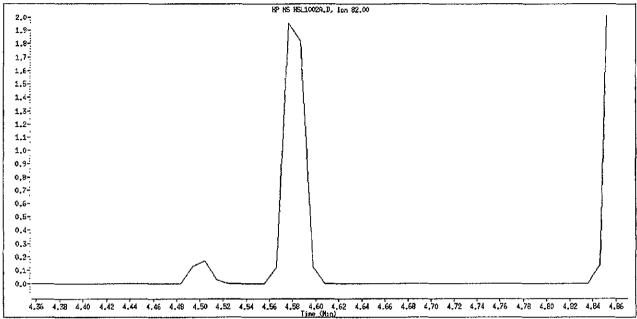
Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002A.D Report Date: 03-Oct-2010 11:11

						amounts			
	QUANT SIG					CAL-AMT	ON-COL		
Compounds	Mass	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)		
	neen	2425	=======	RPESPPES	MARAGEE	======	****		
M 162 benzo b,k Fluoranthene Totals	252				113478	5.00000	4.931(A)		

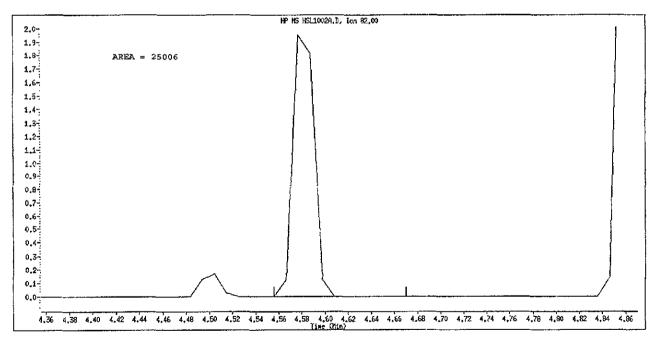
Page 3

QC Flag Legend

- A Target compound detected but, quantitated amount exceeded maximum amount.
 Q Qualifier signal failed the ratio test.
 M Compound response manually integrated.
 q Qualifier signal exceeded ratio warning limit.


Data File Name: HSL1002A.D

Inj. Date and Time: 02-0CT-2010 12:27


Instrument ID: sv5.i Client ID: 8270F.M

Compound Name: Nitrobenzene-d5

CAS #: 4165-60-0 Report Date: 10/03/2010

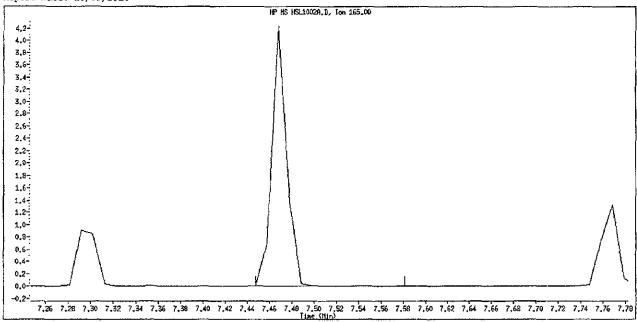
Original Integration

Manual Integration

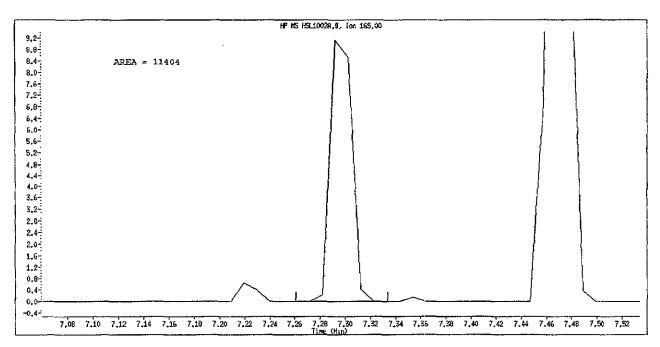
Manually Integrated By: truongk

Manual Integration Reason: Peak Not Found

Data File Name: HSL1002A.D


Inj. Date and Time: 02-00T-2010 12:27

Instrument ID: sv5.i Client ID: 8270F.M


Compound Name: 2,6-Dinitrotoluene

CAS #: 606-20-2

Report Date: 10/03/2010

Original Integration

Manual Integration

Manually Integrated By: truongk
Manual Integration Reason: Wrong Peak

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002A.D Page 1

Report Date: 02-Oct-2010 16:57

TestAmerica West Sacramento

Method 8270C

Data file: \\SV5\C\chem\sv5.i\100210.B\HSL1002A.D Lab Smp Id: HSL_005 ug/ml CS-1 Client Smp Client Smp ID: 8270F.M

Inst ID: sv5.i

Quant Type: ISTD

Cal Date : 17-AUG-2010 21:19 Cal File: AP90817D.D

Als bottle: 1 Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 1 8270STD.SUB

Target Version: 4.14 Processing Host: SV5

								AMOUNTS			
			QUANT SIG					CAL-AMT	ON-COL		
Co	mpo	ands	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)		
	====	· 方面有限的 · · · · · · · · · · · · · · · · · · ·	# DE 0:	2 K E E	•======		F######	2500 0	F		
*	1	1,4~Dichlorobenzene-d4	152	3.955	3.955	(1.000)	141539	40.0000	()	((
*	2	Naphthalene-d8	236	5.374	5.374	(1.000)	605687	40.0000			
*	3	Acenaphthene-d10	164	7.468	7.468	(1.000)	321839	40.0000			
*	4	Phenanthrene-d10	188	9.406	9.405	(1.000)	496356	40.0000			
*	5	Chrysene-d12	240	13.779	13.779	(1.000)	453007	40,0000			
*	6	Perylene-d12	264	16,162	16.162	(1.000)	445119	40.0000			
\$	7	2-Fluorophenol	112	2.742	2,732	(0.693)	25566	5.00000	4.894		
\$	8	Phenol-d5	99	3,613	3.613	(0.914)	30471	5.00000	4.587		
\$	9	2-Chlorophenol-d4	132	3.758	3.758	(0.950)	26144	5.00000	4.616		
\$	10	1,2-Dichlorobenzene-d4	152	4.162	4,162	(1.052)	16945	5.00000	4.793		
\$	1.1	Nitrobenzene-d5	82	Cot	npound No	t Detecte	ed.				
\$	12	2-Fluorobiphenyl	172	6.680	6.680	(0.895)	51695	5.00000	5.015		
\$	13	2,4,6-Tribromophenol	330	8.473	8.473	(1,135)	6048	5,00000	4.760		
\$	1.4	Terphenyl-d14	244	12.017	12.017	(0.872)	44456	5.00000	5.032		
	15	N-Nitrosodimethylamine	74	1.716	1.706	(0.434)	16436	5.00000	4.767 (q		
	16	Pyridine	79	1.737	1.726	(0.439)	29567	5.00000	5.146		
	23	Aniline	93	3.654	3.654	(0.924)	39064	5.00000	4.689(Ç	7)	
	24	Phenol	94	3.623	3.623	(0.916)	36112	5.00000	5.111(0	2)	
	26	Bis(2-chloroethyl)ether	93	3,716	3.716	(0.940)	26067	5.00000	4.856		
	27	2-Chlorophenol	128	3.768	3.768	(0.953)	26910	5.00000	4.813		
	28	1,3-Dichlorobenzene	146	3.923	3.923	(0.992)	29883	5.00000	4.837		
	29	1,4-Dichlorobenzene	146	3.975	3.975	(1.005)	31337	5.00000	5.017		
	30	Benzyl Alcohol	108	4.120	4.120	(1,042)	17983	5.00000	4.681		
	31	1,2-Dichlorobenzene	146	4.172	4,172	(1.055)	28663	5.00000	4.842		
	32	2-Methylphenol	108	4.255	4.255	(1.076)	24914	5.00000	4.770		
	33	2,2'-oxybis(1-Chloropropane)	45	4.297	4.297	(1.086)	40622	5.00000	4.077		
	34	4-Methylphenol	106	4.421	4.421	(1.118)	26292	5.00000	4.723		
	36	Hexachloroethane	117	4.504	4.504	(1.139)	10779	5.00000	4.891		
	37	N-Nitrosodinpropylamine	70	4.442	4.442	(1.123)	16719	5.00000	4.290		
	42	Nitrobenzene	77	4.597	4.597	(0.855)	24875	5.00000	4.659		
	44	Isophorone	62	4.856	4.856	(0.904)	48024	5.00000	4.744		
	45	2-Nitrophenol	139	4.960	4.960	(0.923)	14088	5.00000	4.833		
	46	2,4-Dimethyphenol	107	5.012	5.012	(0.933)	26089	5.00000	4.820		

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002A.D Report Date: 02-Oct-2010 16:57

							AMOUNTS				
		QUANT SIG					CAL-AMT	ON-COL			
Compo	nqa	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)			
B====	· ·	*****		=======	. =======	335355 00	FREERE	KESEER			
47	Bis(2-chloroethoxy)methane	93	5.126	5,126	(0.954)	31152	5.00000	5.169			
49	2,4-Dichlorophenol	162	5.229	5.229	(0.973)	19256	5.00000	4.834			
50	Benzoic Acid	122	5.084	5,115	(0.946)	12679	5.00000	4.202			
51	1,2,4-Trichlorobenzene	180	5.322	5.322	(0.990)	22282	5.00000	5.160			
52	Naphthalene	128	5.395	5.395	(1.004)	83236	5.00000	4.937			
54	4-Chloroaniline	127	5.488	5,488	(1.021)	30853	5.00000	4.652			
57	Hexachlorobutadiene	225	5.613	5.613	(1.044)	10823	5.00000	5.267			
60	4-Chloro-3-Methylphenol	107	6.069	6.069	(1.129)	22205	5.00000	4.844			
63	2-Methylnaphthalene	142	6.203	6.203	(1,154)	51849	5.00000	5.040			
66	Hexachlorocyclopentadiene	237	6.483	6.483	(0.868)	10813	5.00000	4.405			
69	2,4,6-Trichlorophenol	196	6.576	6.576	(0.881)	12546	5.00000	5.149			
70	2,4,5-Trichlorphenol	196	6.628	6.628	(0.888)	12400	5.00000	4.633			
71	2-Chloronaphthalene	162	6.784	6.784	(0.908)	45713	5.00000	5.066			
73	2-Nitroaniline	65	6.949	6.949	(0.931)	12703	5.00000	4.204			
76	Dimethylphthalate	163	7.219	7.229	(0.967)	49639	5.00000	4.763			
77	Acenaphthylene	152	7.281	7,281	(0.975)	75041	5.00000	4.757			
79	2,6-Dinitrotoluene	165	7.468	7.302	(1.000)	39415	5.00000	16.89(Q)			
80	3-Nitroaniline	138	7.447	7.447	(0.997)	14226	5.00000	4.597 (Q)			
81	Acenaphthene	153	7.509	7.509	(1.006)	50639	5,00000	5.038			
82	2,4-Dinitrophenol	184	7.571	7.571	(1.014)	4083	5.00000	5.740 (q)			
63	Dibenzofuran	168	7.696	7.706	(1.031)	63477	5,00000	4.780			
84	4-Nitrophenol	109	7.675	7.675	(1,028)	5114	5.00000	3.785(Q)			
86	2,4-Dinitrotoluene	165	7.768	7.768	(1.040)	13823	5.00000	4.422(q)			
91	Fluorene	166	8.131	8.131	(1.089)	54136	5.00000	4.976			
92	Diethylphthalate	149	8.100	8.100	(1.085)	49177	5.00000	4.514			
93	4-Chlorophenyl-phenylether	204	8.152	8,152	(1.092)	22112	5.00000	4.930			
94	4-Nitroaniline	138	8.214	8.214	(1.100)	13415	5.00000	4.435			
97	4,6-Dinitro-2-methylphenol	198	8.276	8,276	(0.880)	5780	5.00000	8.076 (g)			
98	N-Nitrosodiphenylamine	169	8.317	8.317	(0.884)	41998	5.86000	5.430			
	Azobenzene	77	8.348	8.348	(0.888)	48101	5.00000	4.470			
101	4-Bromophenyl-phenylether	248	8.794	8.794	(0.935)	11766	5.00000	4.905			
	Hexachlorobenzene	284	8.981	8.981	(0.955)	14244	5.00000	5.498			
110	Pentachlorophenol	266	9.240	9.240	(0.982)	5849	5.00000	3.762			
	Phenanthrene	178	9.437	9.437	(1.003)	80873	5.00000	5,224			
115	Anthracene	178	9.499		(1.010)	77577	5.00000	4.979			
118	Carbazole	167	9.768	9.768	(1.039)	70241	5.00000	4.847			
120	Di-n-Butylphthalate	149	10.463	10,463	(1,112)	79722	5,00000	4.549			
126	Fluoranthene	202	11.302	11.302	(1.202)	64427	5.00000	4.624			
127	Benzidine	184	11.571	11.571	(0.840)	44267	5.00000	4.759			
	Pyrene	202	11.665		(0.847)	71230	5.00000	5,029			
	3,3'-dimethylbenzidine	212	12.867	12.867	(0.934)	37074	5.00000	4.644			
	Butylbenzylphthalate	149	12,991	12.991	(0.943)	36798	5.00000	5.084			
	Benzo (a) Anthracene	228	13.758		(0.998)	62384	5.00000	5.220			
	Chrysene	228	13.820		(1.003)	59618	5.00000	4.801			
	3,3'-Dichlorobenzidine	252	13.799		(1.002)	22168	5.00000	5.069			
	bis(2-ethylhexyl)Phthalate	149	14.110		(1.024)	51997	5.00000	5.218			
	Di-n-octylphthalate	149	15.157		(1.100)	76353	5.00000	4.792			
	Benzo (b) fluoranthene	252	15.572		(0.963)	45075	5.00000	4.270(Q)			
	Benzo(k) fluoranthene	252	15.613		(0.966)	68403	5.00000	5.546 (q)			
	Benzo(e)pyrene	252	15.996		(0.990)	50295	5.00000	4.807			
	Benzo (a) pyrene	252	16.069		(0.994)	54694	5.00000	4.761			
	Indeno(1,2,3-cd)pyrene	276	17.789		(1.101)	41053	5.00000	4.039			
	Dibenzo (a, h) anthracene	278		17.841		49018	5.00000	4.706			
	Benzo(g,h,i)perylene	276	18.224		(1.128)	53428	5.00000	4.784			
153	Delizo (8,11,1) per y tene	2,0	10.224	******	, 2 , 220 /	JJ720	5.0000	1.704			

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002A.D

Report Date: 02-Oct-2010 16:57

AMOUNTS
 QUANT SIG
 CAL-AMT
 CN-COL

 Compounds
 MASS
 RT
 EXP RT
 REL RT
 RESPONSE
 (NG)
 (NG)

 M 162 benzo b, k Fluoranthene Totals
 252
 113478
 5.0000
 4.958
 113478 5.00000 4.958(A)

QC Flag Legend

- A Target compound detected but, quantitated amount exceeded maximum amount.

 Q - Qualifier signal failed the ratio test.

 q - Qualifier signal exceeded ratio warning limit.

Page 3

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002A.D

Report Date: 03-Oct-2010 11:11

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: sv5.i

Calibration Date: 02-OCT-2010

Page 1

Lab File ID: HSL1002A.D Lab Smp Id: HSL_005 ug/ml CS-1 Calibration Time: 13:44

Client Smp ID: 8270F.M

Analysis Type: SV

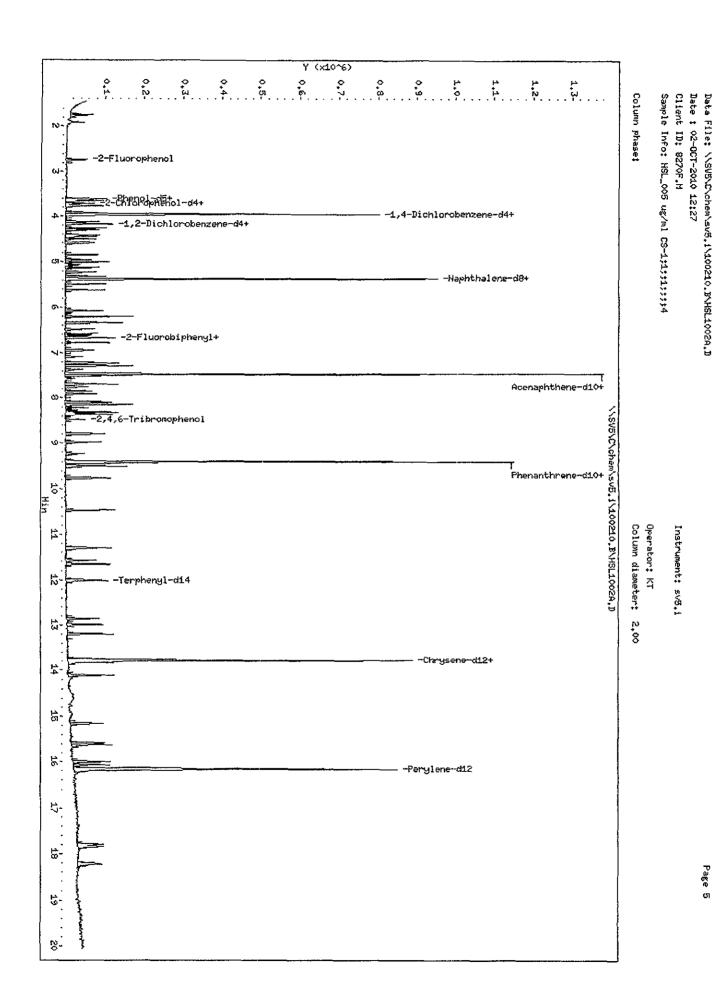
Level: Sample Type:

Quant Type: ISTD

Operator: KT

Method File: \\sv5\c\chem\sv5.i\100210.B\8270f.m Misc Info: 3;;0;1_8270STD.SUB;10MSSV0307;0;8270F.M

Test Mode:


Use Initial Calibration Level 4.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	========	========		======
1 1,4-Dichlorobenze	122625	61313	245250	141539	15.42
2 Naphthalene-d8	530514	265257	1061028	605687	14.17
3 Acenaphthene-d10	282538	141269	565076	321839	13.91
4 Phenanthrene-d10	462722	231361	925444	496356	7.27
5 Chrysene-d12	435850	217925	871700	453007	3.94
6 Perylene-d12	422284	211142	844568	445119	5.41

		RT I	IMIT		
COMPOUND	STANDARD	NDARD LOWER UPPER		SAMPLE	%DIFF
=======================================		=========			======
1 1,4-Dichlorobenze	3.96	3.46	4.46	3.96	0.00
2 Naphthalene-d8	5.37	4.87	5.87	5.37	0.00
3 Acenaphthene-d10	7.47	6.97	7.97	7.47	0.00
4 Phenanthrene-d10	9.41	8.91	9.91	9.41	0.00
5 Chrysene-d12	13.78	13.28	14.28	13.78	0.00
6 Perylene-d12	16.16	15.66	16.66	16.16	0.00

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002B.D Page 1

Report Date: 03-Oct-2010 11:12

TestAmerica West Sacramento

Method 8270C

Client Smp ID: 8270F.M

Inst ID: sv5.i

Data file: \\sv5\c\chem\sv5.i\100210.B\HSL1002B.D
Lab Smp Id: HSL 010 ug/ml CS-2 Client Smp
Inj Date: 02-\overline{\text{OCT}}-2010 12:53

Operator: KT Inst ID: sv
Smp Info: HSL 010 ug/ml CS-2;1;;2;;;4

Misc Info: 3;;0;1 8270STD.SUB;10MSSV0308;0;8270F.M
Comment: SOP SAC-MS-0005

Method: \\sv5\c\chem\sv5.i\100210.B\8270f.m

Meth Date: 03-Oct-2010 11:09 onishim Quant Type:
Cal Date: 17-AUG-2010 21:19 Cal File: A Quant Type: ISTD Cal File: AP90817D.D Cal Date : 17-AUG-2010 21:19

Als bottle: 2 Calibration Sample, Level: 2

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: 1_8270STD.SUB

PTMOMA

Target Version: 4.14

Processing Host: SACP307UM

									AMOUN	ITS	
			QUANT SIG					CAL	-AMT	ON-	-COL
Co	odin.	unds	Mass	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
==	444	*************	-====	***	z======	. ec=====	mm=====	*==	====	24 Se	
*	1	1,4-Dichlorobenzene-d4	152	3.955	3.955	(1.000)	116839	40.	0000		(Q)
*	2	Naphthalene-d8	136	5.364	5.374	(1.000)	493196	40.	0000		
*	3	Acenaphthene-d10	164	7,468	7.468	(1.000)	272639	40.	0000		
*	4	Phenanthrene-d10	188	9,406	9.405	(1.000)	428440	40.	0000		
*	5	Chrysene-d12	240	13.779	13.779	(1.000)	412260	40.	0000		
*	6	Perylene-d12	264	16.162	16.162	(1.000)	419005	40.	0000		
\$	7	2-Fluorophenol	112	2.732	2.732	(0.691)	38100	10.	0000	9	3.251
\$	8	Pheno1-d5	99	3.613	3.613	(0.914)	48878	10,	0000	9	.438
\$	9	2-Chlorophenol-d4	132	3.747	3.758	(0.948)	45430	10.	0000	9	989
\$	10	1,2-Dichlorobenzene-d4	152	4.151	4.162	(1,050)	28658	10.	0000	9	9.959
\$	11	Nitrobenzene-d5	82	4,576	4.576	(0.853)	42237	10.	0000	ג	10.11(QM)
. \$	12	2-Fluorobiphenyl	172	6.680	6.680	(0.895)	85886	10.	0000	9	779
\$	13	2,4,6-Tribromophenol	330	8.473	8.473	(1.135)	11265	10.	0000	9	9.508
\$	14	Terphenyl-d14	244	12.017	12.017	(0.872)	81026	10.	0000	9	9.978
	1.5	N-Nitrosodimethylamine	74	1.706	1.706	(0.431)	25783	10.	0000	9	9.578 (q)
	16	Pyridine	79	1,737	1.726	(0.439)	40141	10.	0000	8	3.917(Q)
	23	Aniline	93	3.654	3.654	(0.924)	63074	10.	0000	9	9.568 (q)
	24	Phenol	94	3.623	3.623	(0.916)	57313	10.	0000	9	9.631(Q)
	26	Bis(2-chloroethyl)ether	93	3.716	3.716	(0.940)	40383	10.	0000	9	9.677
	27	2-Chlorophenol	128	3.768	3.768	(0.953)	45449	10.	0000	9	9.950
	28	1,3-Dichlorobenzene	146	3.913	3.923	(0.990)	49415	10.	.0000	9	9.932
	29	1,4-Dichlorobenzene	146	3.975	3.975	(1.005)	52537	10.	0000	1	10.10
	30	Benzyl Alcohol	108	4.120	4.120	(1.042)	30277	10.	0000	9	9.862
	31	1,2-Dichlorobenzene	146	4.172	4.172	(1.055)	47666	10.	.0000	2	9.966
	32	2-Methylphenol	108	4.255	4.255	(1.076)	40581	10.	0000	9	9.714
	33	2,2'-oxybis(l-Chloropropane)	45	4.297	4.297	(1.086)	64859	10.	0000	9	9.768
	34	4-Methylphenol	108	4.421	4.421	(1.118)	43497	10.	0000	9	9,803
	36	Hexachloroethane	117	4.504	4.504	(1.139)	17770	10	0000	3	10.03
	37	N-Nitrosodinpropylamine	70	4.442	4.442	(1.123)	28335	10.	.0000	5	9.587
	42	Nitrobenzene	77	4.597	4.597	(0.857)	40198	10	0000	9	9.845
	44	Isophorone	82	4.856	4.856	(0.905)	76804	10.	0000	9	9.782
	45	2-Nitrophenol	139	4.960	4.960	(0.925)	23221	10.	.0000	9	9.585
	46	2,4-Dimethyphenol	107	5.012	5.012	(0.934)	42128	10.	.0000	5	9.787

1

							AMOUNTS				
		QUANT SIG					CAL~AMT	ON-COL			
Compo	unds	Mass	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)			
		::===					22222	********			
	Bis (2-chloroethoxy) methane	93	5.126		(0.956)	46230	10.0000	9.636			
	2,4-Dichlorophenol	162	5,229		(0.975)	32450	10.0000	9.744			
	Benzoic Acid	122	5.084		(0.948)	20056	10.0000	8.418			
	1,2,4-Trichlorobenzene	180	5.323		(0.992)	35544	10.0000	9.857			
	Naphthalene	128	5.395		(1.006)	138665	10.0000	10.18			
	4-Chloroaniline	127	5.488		(1.023)	52444	10,0000	9.826			
_	Hexachlorobutadiene	225	5.613		(1.046)	17030	10.0000	9.650			
60	4-Chloro-3-Methylphenol	107	6.069		(1.131)	35592	10.0000	9 570			
63		142	6.203		(1.156)	83922	10.0000	9.811			
	Hexachlorocyclopentadiene	237	6.483		(0.868)	18919	10.0000	9,300			
	2,4,6-Trichlorophenol	196	6.576		(0.881)	20325	10.0000	9.344			
	2,4,5-Trichlorphenol	196	6.618		(0.886)	22419	10.0000	9.567			
	2-Chloronaphthalene	162	6.773		(0.907)	74574	18.0000	9.719			
73	2-Nitroaniline	65	6.950	6.949	(0.931)	21647	10.0000	9.308			
76	Dimethylphthalate	163	7.219		(0.967)	85330	10.0000	9.659			
77	Acenaphthylene	152	7.281	7.281	(0.975)	130392	10.0000	9.758			
79	2,6-Dinitrotoluene	165	7.291	7.302	(0.976)	18661	10.0000	9.067 (QM)			
80	3-Nitroaniline	138	7.447	7.447	(0.997)	23598	10.0000	9.186 (q)			
81	Acenaphthene	153	7.509	7.509	(1.006)	83474	10.0000	9.814			
82	2,4-Dimitrophenol	184	7.571	7.572	(1.014)	7537	10.0000	10.11 (q)			
83	Dibenzofuran	168	7.696	7.706	(1.031)	110503	10.0000	9.789			
84	4-Nitrophenol	109	7.675	7.675	(1.028)	9643	10.0000	9.049 (Q)			
86	2,4-Dinitrotoluene	165	7.768	7.768	(1.040)	24530	10.0000	9.080			
91	Fluorene	166	8.131	8.131	(1.089)	91.225	10.0000	9.759			
92	Diethylphthalate	149	8.100	8.100	(1.085)	88532	10.0000	9.788			
93	4-Chlorophenyl-phenylether	204	8.152	8.152	(1.092)	38113	10.0000	9.807			
94	4-Nitroaniline	138	8.214	8.214	(1,100)	23002	10.0000	9.033			
97	4,6-Dinitro-2-methylphenol	198	8.276	8.276	(0.880)	11282	10.0000	11.10			
98	N-Nitrosodiphenylamine	169	8.317	8.317	(0.884)	74860	11.7000	11.53			
100	Azobenzene	77	8.349	8.348	(0.888)	82437	10.0000	9.784			
101	4-Bromophenyl-phenylether	248	8.794	8.794	(0.935)	19823	10.0000	9.478			
108	Hexachlorobenzene	284	8.981	8.981	(0.955)	23622	10.0000	10.11			
110	Pentachlorophenol	266	9.240	9.240	(0.982)	10551	10.0000	10.90			
114	Phenanthrene	178	9.437	9.437	(1.003)	134966	10.0000	9.995			
115	Anthracene	178	9.499	9.499	(1.010)	130416	10.0000	9.667			
118	Carbazole	167	9.768	9.768	(1.039)	120549	10.0000	9.782			
120	Di-n-Butylphthalate	149	10.463	10.463	(1.112)	141693	10.0000	9.555			
126	Fluoranthene	202	11.302	11.302	(1.202)	115262	10.0000	9.526			
127	Benzidine	184	11.571	11.571	(0.840)	78774	10.9000	9.428			
	Pyrene	202	11.654	11.665	(0.846)	127577	10.0000	9.901			
134	3,3'-dimethylbenzidine	212	12.867	12.867	(0.934)	66361	10.0000	8.997			
136	Butylbenzylphthalate	149	12.991	12.991	(0.943)	62032	10.0000	9.605			
138	Benzo (a) Anthracene	228	13.748	13.758	(0.998)	102788	10.9000	9.360			
139	Chrysene	228	13.820	13.831	(1.003)	113552	10.0000	10.11			
	3,3'-Dichlorobenzidine	252		13.799		38850	10.0000	9.379			
	bis(2-ethylhexyl)Phthalate	149		14.110	(1.024)	83377	10.0000	9.372			
	Di-n-octylphthalate	149		15.167		126961	10.0000	8.928			
	Benzo(b) fluoranthene	252		15.582		84929	10.0000	8.954(Q)			
	Benzo(k) fluoranthene	252		15.623		122065	10.0000	10.02(q)			
	Benzo (e) pyrene	252		16.007		97140	10.0000	9.821			
	Benzo (a) pyrene	252		16.079		102327	10.0000	9.516			
	Indeno(1,2,3-cd)pyrene	276		17.800		76748	10.0000	8.824			
						88393	10.0000	9.097			
	Dibenzo(a, h) anthracene	278		17.841							
153	Benzo(g,h,i)perylene	276	16.224	18.235	(1.128)	103135	10.0000	9.804			

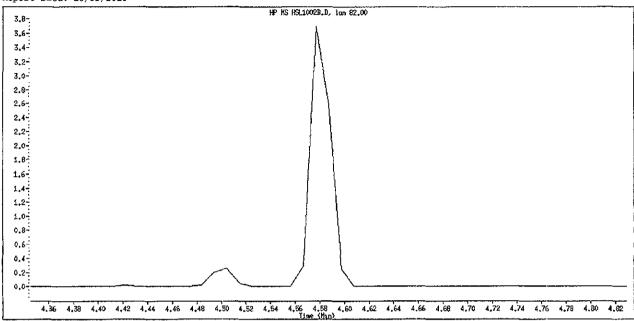
Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002B.D Report Date: 03-Oct-2010 11:12

						amounts					
	QUANT SIG					CAL	~AMT	ON-COL			
Compounds	MASS	RT	EXP RT	RBL RT	response	(NG)	(NG)		
**************	14 M M W	****				===	== =±				
M 162 benzo b,k Fluoranthene Totals	252				206994	10.	0000	9	. 556 (A))	

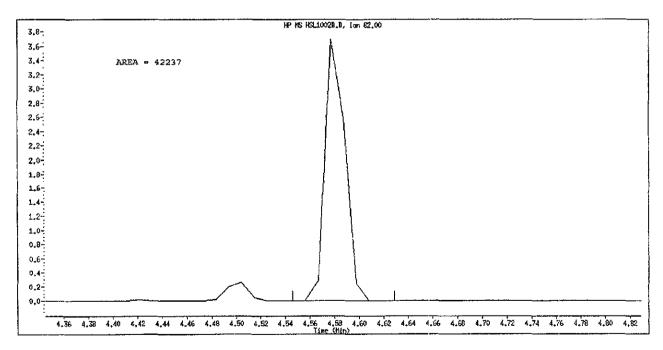
QC Flag Legend

- A Target compound detected but, quantitated amount exceeded maximum amount.
 Q Qualifier signal failed the ratio test.
 M Compound response manually integrated.
 q Qualifier signal exceeded ratio warning limit.

Page 3


Data File Name: HSL1002B.D

Inj. Date and Time: 02-0CT-2010 12:53


Instrument ID: sv5.i Client ID: 8270F.M

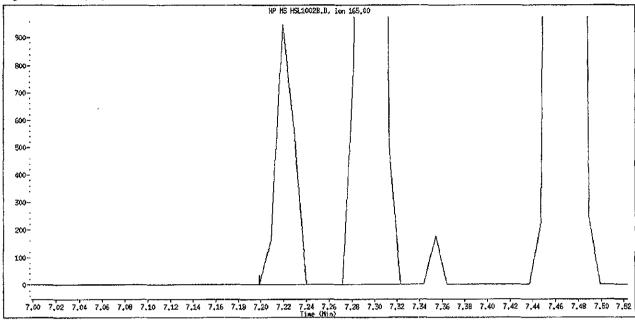
Compound Name: Nitrobenzene-d5

CAS #: 4165-60-0 Report Date: 10/03/2010

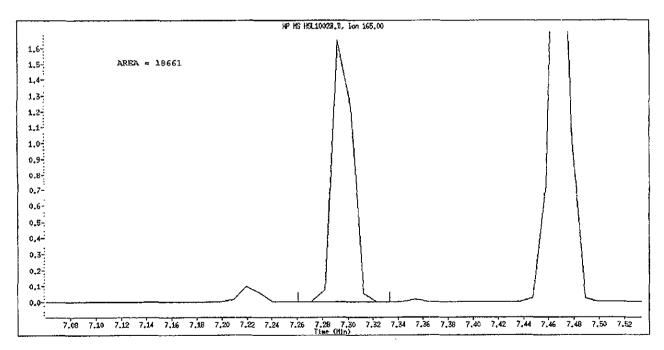
Original Integration

Manual Integration

Manually Integrated By: truongk
Manual Integration Reason: Peak Not Found


Data File Name: HSL1002B.D

Inj. Date and Time: 02-OCT-2010 12:53


Instrument ID: sv5.i Client ID: 8270F.M

Compound Name: 2,6-Dinitrotoluene

CAS #: 606-20-2 Report Date: 10/03/2010

Original Integration

Manual Integration

Manually Integrated By: truongk

Manual Integration Reason: Poor Chromatography

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002B.D

Report Date: 02-Oct-2010 16:57

TestAmerica West Sacramento

Method 8270C

Data file: \\SV5\C\chem\sv5.i\100210.B\HSL1002B.D
Lab Smp Id: HSL_010 ug/ml CS-2 Client Smp
Inj Date: 02-OCT-2010 12:53
Operator: KT Inst ID: s
Smp Info: HSL_010 ug/ml CS-2;1;;2;;;4 Client Smp ID: 8270F.M

Inst ID: sv5.i

Misc Info: 3;;0;1 8270STD.SUB;10MSSV0308;0;8270F.M

Comment : SOP SAC-MS-0005
Method : \\SV5\C\chem\sv5.i\100210.B\8270f.m Method

Meth Date: 02-Oct-2010 16:57 onishim Quant Type: ISTD

Cal File: AP90817D.D Cal Date : 17-AUG-2010 21:19

Als bottle: 2 Calibration Sample, Level: 2

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 1 8270STD.SUB

Target Version: 4.14 Processing Host: SV5

								NUOMA	TS
			QUANT SIG					CAL-AMT	ON-COL
Cc	uib¢:	unds	MASS	RT	BXP RT	REL RT	RESPONSE	(NG)	(NG)
==	===:	*************		6 C M. M	***		*********		= = = = = = = = = = = = = = = = = = =
*	1	1,4-Dichlorobenzene-d4	152	3.955	3.955	(1.000)	116839	40.0000	(Q)
*	2	Naphthalene-d8	136	5.364	5.374	(1.000)	493196	40.0000	
*	3	Acenaphthene-d10	164	7.468	7.468	(1.000)	272639	40.0000	
*	4	Phenanthrene-d10	188	9.406	9.405	(1,000)	428440	40.0000	
*	5	Chrysene-d12	240	13. 7 79	13.779	(1.000)	412260	40.0000	
*	6	Perylene-d12	264	16.162	16.162	(1.000)	419005	40.0000	
\$	7	2-Fluorophenol	112	2,732	2.732	(0.691)	38100	10.0000	8.835
\$	8	Phenol-d5	99	3.613	3.613	(0.914)	48878	10.0000	8.913
\$	9	2-Chlorophenol-d4	132	3.747	3.758	(0.948)	45430	10.0000	9.716
\$	10	1,2-Dichlorobenzene-d4	152	4,151	4.162	(1.050)	28658	10.0000	9.820
\$	11	Nitrobenzene-d5	83	Con	npound No	t Detecte	d.		
\$	12	2-Fluorobiphenyl	172	6.680	6.680	(0.895)	85886	10.0000	9.835
ş	13	2,4,6-Tribromophenol	330	8.473	8.473	(1.135)	11265	10.0000	10.46
\$	14	Terphenyl-d14	244	12.017	12.017	(0.872)	81026	10.0000	10.08
	15	N-Nitrosodimethylamine	74	1.706	1.706	(0.431)	25783	10.0000	9.059
	16	Pyridine	79	1.737	1.726	(0.439)	40141	10.0000	8.464
	23	Aniline	93	3.654	3.654	(0.924)	63074	10.0000	9.172(q)
	24	Phenol	94	3.623	3.523	(0.916)	57313	10.0000	9.827 (Q)
	26	Bis(2-chloroethyl)ether	93	3.716	3.716	(0.940)	40383	10.0000	9.114
	27	2-Chlorophenol	128	3.768	3,768	(0.953)	45449	10.0000	9.848
	28	1,3-Dichlorobenzene	146	3.913	3.923	(0.990)	49415	10.0000	9.689
	29	1,4-Dichlorobenzene	146	3.975	3.975	(1.005)	52537	10.0000	10.19
	30	Benzyl Alcohol	108	4.120	4.120	(1.042)	30277	10.0000	9.547
	31	1,2-Dichlorobenzene	146	4.172	4.172	(1.055)	47666	10.0000	9.755
	32	2-Methylphenol	108	4.255	4.255	(1.076)	40581	10.0000	9.413
	33	2,21-oxybis(1-Chloropropane)	45	4.297	4.297	(1.086)	64869	10.0000	7.886
	34	4-Methylphenol	108	4.421	4,421	(1.118)	43497	10.0000	9.466
	36	Hexachloroethane	117	4.504	4.504	(1.139)	17770	10.0000	9.768
	37	N-Nitrosodinpropylamine	70	4.442	4.442	(1.123)	28335	10.0000	8.809
	42	Nitrobenzene	77	4.597	4.597	(0.857)	40198	10.0000	9.246
	44	Isophorone	82	4.856	4.856	(0.905)	76804	10.0000	9.318
	45	2-Nitrophenol	139	4.960	4.960	(0.925)	23221	10.0000	9.784
	46	2,4-Dimethyphenol	107	5.012	5.012	(0.934)	42128	10.0000	9.559 10-3-10

AMOUNTS

9.811

OTAUM GZG							AMOUN	
_	•	QUANT SIG					CAL-AMT	ON-COL
Compo		MASS	RT	exp rt		response	(NG)	(NG)
	**************************************	====			(0.056)			0.403
	Bis (2-chloroethoxy) methane	93 162	5.126 5.229		(0.956)	46230	10.0000	9.421 10.00
	2,4-Dichlorophenol Benzoic Acid	102	5.084		(0.975) (0.948)	32450	10.0000	8.164
	1,2,4-Trichlorobenzene	180	5.323		(0.948)	20056 35544	10.0000	10.11
	Naphthalene	128	5.325		(1.006)	138665	10.0000	10.12
	4-Chloroaniline	127	5.488		(1.008)	52444	10.0000	9.711
	Hexachlorobutadiene	225	5.400		(1.023)	17030	10.0000	10.18
	4-Chloro-3-Methylphenol	107	6.069		(1.131)	35592	10.0000	9.536
		142	6.203		(1.151)	83922	10.0000	10.02
	2-Methylnaphthalene Hexachlorocyclopentadiene	237	6.483		(0.868)	18919	10.0000	9.098
	2.4,6-Trichlorophenol	196	6.576		(0.881)	20325	10.0000	9.847
	2.4.5-Trichlorphenol	196	6.618		(0.886)	20325	10.0000	9.889
	2-Chloronaphthalene	162	6.773		(0.886)	74574	10.0000	9.756
	2-Nitroaniline	65	6.950		(0.931)	21647	10.0000	8.456
		163	7.219		(0.957)	85330	10.0000	9.665
	Dimethylphthalate	152	7.219		(0.957)	130392	10.0000	9.758
	Acenaphthylene	165	7.219		(0.967)	19698	10.0000	9.963 (Q)
	2,6-Dinitrotoluene 3-Nitroaniline	138	7.447		(0.997)	23598	10.0000	9,002(q)
			7.509		• • • • • •	83474	10.0000	9.804
	Acenaphthene	153	7.571		(1.006) (1.014)		10.0000	
	2,4-Dinitrophenol	184	7.696			7537	10.0000	9,147 (q) 9,824
	Dibenzofuran	168			(1.031)	110503		9.824 8.425 (Q)
	4-Nitrophenol	109	7.675 7.768		(1.028)	9643	10.0000	9.262
	2,4-Dinitrotoluene Fluorene	165 166	8.131		(1.040) (1.089)	24530 91225	10.0000	9.898
		149	8.100		(1.085)	88532	10.0000	9.594
	Diethylphthalate	204	8.152		(1.085)	38113	10.0000	10.03
	4-Chlorophenyl-phenylether 4-Nitroaniline	138	8.214		(1.100)	23002	10.0000	8.977
	4,6-Dinitro-2-methylphenol	198	8.276		(0.880)	11282	10.0000	11,76
	N-Nitrosodiphenylamine	169	8.317		(0.884)	74860	11.7000	11.70
	Azobenzene	77	8.349		(0.888)	82437	10.0000	8.875
		248	8.794		(0.935)	19823	10.0000	9.575
	4-Bromophenyl-phenylether Hexachlorobenzene	284	8.981		(0.955)	23622	10.0000	10.56
	Pentachlorophenol	266	9.240		(0.982)	10551	10.0000	7.861
	Phenanthrene		9.437		(1.003)	134966	10.0000	10.10
	Anthracene	178 178	9.499		(1.003)	130415	10.0000	9.697
	Carbazole	178	9.768		(1.010)	120549	10.0000	9.637
	Di-n-Butylphthalate	149	10.463		(1.112)	141693	10,0000	9.367
	Fluoranthene	202	11.302		(1,202)	115262	10.0000	9,583
	Benzidine	184	11.571		(0.840)	78774	10.0000	9.305
	Pyrene	202		11.665		127577	10.0000	9.897
	3,3'-dimethylbenzidine	212	12.867		(0.934)	66361	10.0000	9.134
	Butylbenzylphthalate	149	12.991		(0.943)	62032	10.0000	9.418
	Benzo (a) Anthracene	228	13.748		(0.998)	102788	10.0000	9.450
	Chrysene	228	13,820		(1.003)	113552	10.0000	10.05
	3,3'-Dichlorobenzidine	252	13.799		(1.003)	38850	10.0000	9.762
	bis(2-ethylhexyl)Phthalate	149	14,110		(1.002)	83377	10.0000	9.194
	Di-n-octylphthalate		15.157		(1.100)	126961	10.0000	8.756
	Benzo (b) fluoranthene	149 252	15.572		(0.963)	84929	10.0000	8.758 8.548 (Q)
			15.613				10.0000	
	Renzo (k) fluoranthene	252	15.613		(0.966) (0.990)	122065	10.0000	10.51(g) 9.863
	Benzo (e) pyrene	252	16.069		(0.990)	97140	10.0000	9.863
	Benzo (a) pyrene	252	17.789		(0.994)	102327 76748	10.0000	9.463 8.022
	Indeno (1,2,3-cd) pyrene	276						
152	Dibenso (a,h) anthracene	278	17.841	17.841	(1.104)	88393	10.0000	9.016

276 18.224 18.235 (1.128) 103135 10.0000

153 Benzo(g,h,i)perylene

						AMOUNTS				
	QUANT SIG					CAI	-AMT	ON-COL		
Compounds	MASS	RT	EXP RT	REL RT	response	(NG)	<	NG)	
######################################	====	**		******	=======	===	====			
M 162 benzo b,k Fluoranthene Totals	252				206994	10.	0000	9	.607 (A)	

QC Flag Legend

- A Target compound detected but, quantitated amount exceeded maximum amount.
 Q Qualifier signal failed the ratio test.
 q Qualifier signal exceeded ratio warning limit.

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002B.D Page 1

Report Date: 03-Oct-2010 11:12

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 02-OCT-2010 Instrument ID: sv5.i

Calibration Time: 13:44 Lab File ID: HSL1002B.D Client Smp ID: 8270F.M Lab Smp Id: HSL 010 ug/ml CS-2

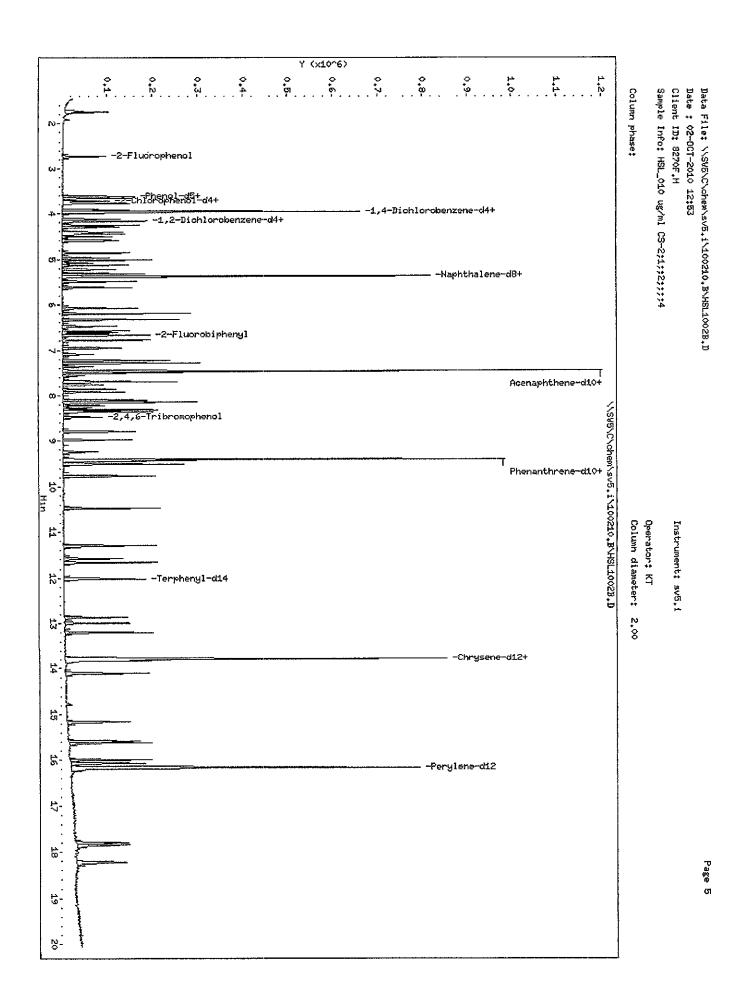
Analysis Type: SV Level: Quant Type: ISTD Sample Type:

Operator: KT

Method File: \\sv5\c\chem\sv5.i\100210.B\8270f.m Misc Info: 3;;0;1 8270STD.SUB;10MSSV0308;0;8270F.M

Test Mode:

Use Initial Calibration Level 4.


COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
	========	========	========	===== = =	======
1 1,4-Dichlorobenze	122625	61313	245250	116839	-4.72
2 Naphthalene-d8	530514	265257	1061028	493196	-7.03
3 Acenaphthene-d10	282538	141269	565076	272639	-3.50
4 Phenanthrene-d10	462722	231361	925444	428440	-7.41
5 Chrysene-d12	435850	217925	871700	412260	-5.41
6 Perylene-d12	422284	211142	844568	419005	-0.78

		RT I	TIMIT		
COMPOUND .	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	=======	========	======
1 1,4-Dichlorobenze	3.96	3.46	4.46	3.96	0.00
2 Naphthalene-d8	5.37	4.87	5.87	5.36	-0.19
3 Acenaphthene-d10	7.47	6.97	7.97	7.47	0.00
4 Phenanthrene-d10	9.41	8.91	9.91	9.41	0.00
5 Chrysene-dl2	13.78	13.28	14.28	13.78	0.00
6 Perylene-d12	16.16	15.66	16.66	16.16	0.00

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

AMOUNTS

Report Date: 03-Oct-2010 11:13

TestAmerica West Sacramento

Method 8270C

Data file: \\sv5\c\chem\sv5.i\100210.B\HSL1002C.D Lab Smp Id: HSL_020 ug/ml CS-3 Client Smp Client Smp ID: 8270F.M

Inj Date : 02-OCT-2010 13:18

Operator : KT Smp Info : HSL_020 ug/ml CS-3;1;;3;;;4 Inst ID: sv5.i

Misc Info: 3;;0;1 8270STD.SUB;10MSSV0309;0;8270F.M

: SOP SAC-MS-0005 Comment

: \\sv5\c\chem\sv5.i\100210.B\8270f.m Method

Meth Date : 03-Oct-2010 11:09 onishim Quant Type: ISTD

Cal File: AP90817D.D Cal Date : 17-AUG-2010 21:19

Als bottle: 3 Calibration Sample, Level: 3

Dil Factor: 1.00000

Compound Sublist: 1_8270STD.SUB Integrator: Falcon

Target Version: 4.14

Processing Host: SACP307UM

							NUOMA	TS
		QUANT SIG					CAL-AMT	OM-COL
Co	pmpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
* :	, = = = = = = = = = = = = = = = = = = =	:===	***	E22222		=======	*****	E: 2 14 14 2 14 14
*	1 1,4-Dichlorobenzene-d4	152	3.954	3.955	(1.000)	145926	40.0000	(Q)
*	2 Naphthalene-d8	136	5.364	5.374	(1.000)	625682	40.0000	
*	3 Acenaphthene-d10	164	7.467	7.468	(1.000)	328608	40.0000	
*	4 Phenanthrene-d10	188	9.405	9,405	(1.000)	525834	40.0000	
*	5 Chrysene-d12	240	13.779	13.779	(1.000)	590727	40.0000	
*	6 Perylene-d12	264	16.162	16.162	(1.000)	619266	40.0000	
\$	7 2-Fluorophenol	112	2.732	2.732	(0.691)	100961	20.0000	19.63
\$	8 Phenol-d5	99	3.612	3.613	(0.914)	127066	20,0000	19.64
\$.	9 2-Chlorophenol-d4	132	3.747	3.758	(0.948)	112302	20.0000	19.77
\$	10 1,2-Dichlorobenzene-d4	152	4.162	4.162	(1.052)	72837	20.0000	20.27(q)
\$	11 Nitrobenzene-d5	82	4.576	4.576	(0.853)	103440	20.0000	19.52
\$	12 2-Fluorobiphenyl	172	6.680	6.680	(0.895)	209764	20.0000	19.82
\$	13 2,4,6-Tribromophenol	330	8.473	8.473	(1.135)	28698	20.0000	20.10
\$	14 Terphenyl-d14	244	12.017	12.017	(0.872)	218324	20.0000	18.76
	15 N-Nitrosodimethylamine	74	1.706	1.706	(0.431)	66431	20.0000	19.76(q)
	16 Pyridine	79	1.726	1.726	(0.437)	116339	20,0000	20.69(Q)
	23 Aniline	93	3.654	3.654	(0.924)	160510	20.0000	19.50
	24 Phenol	94	3.623	3.623	(0.916)	147994	20.0000	19.91
	26 Bis(2-chloroethyl)ether	93	3.716	3.716	(0.940)	101777	20.0000	19.53
	27 2-Chlorophenol	128	3.768	3.768	(0.953)	114481	20.0000	20.07
	28 1,3-Dichlorobenzene	146	3.913	3.923	(0.990)	122398	20,0000	19.70
	29 1,4-Dichlorobenzene	146	3.975	3.975	(1.005)	126965	20.0000	19.54
	30 Benzyl Alcohol	108	4.120	4.120	(1.042)	72366	20.0000	18.87
	31 1,2-Dichlorobenzene	146	4.172	4.172	(1.055)	117073	20.0000	19.60
	32 2-Methylphenol	108	4.255	4.255	(1.076)	101499	20.0000	19.45
	33 2,2'-oxybis(1-Chloropropane)	45	4.296	4.297	(1.086)	166596	20.0000	20.08
	34 4-Methylphenol	108	4.421	4.421	(1.118)	106723	20.0000	19.26
	36 Hexachloroethane	117	4.504	4.504	(1.139)	44196	20.0000	19.98
	37 N-Nitrosodinpropylamine	70	4.441	4.442	(1.123)	73913	20.0000	20.02
	42 Nitrobenzene	77	4.597	4.597	(0.857)	101809	20.0000	19.65
	44 Isophorone	82	4.856	4.856	(0.905)	191333	20.0000	19,21
	45 2-Nitrophenol	139	4.960	4.960	(0.925)	58938	20.0000	19.18
	46 2,4-Dimethyphenol	107	5.011	5.012	(0.934)	107325	20.0000	19.65

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
Compou	ınds	Mass	RT	EXP RT	REL RT	response	(NG)	(NG)
	****************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		======		正对称为证据日本		======
	Bis(2-chloroethoxy)methane	93	5.125		(0.956)	120646	20.0000	19.82
	2,4-Dichlorophenol	162	5.229		(0.975)	84525	20.0000	20.01
	Benzoic Acid	122	5.094		(0.950)	54506	20.0000	18.03
51	1,2,4-Trichlorobenzene	180	5.322		(0.992)	89082	20.0000	19.47
52	Naphthalene	128	5.395		(1.006)	336100	20.0000	19.46
	4-Chloroaniline	127	5.488		(1.023)	135348	20.0000	19.99
	Hexachlorobutadiene	225	5.613		(1.046)	45138	20.0000	20.16
	4-Chloro-3-Methylphenol	107	6.068		(1.131)	90970	20.0000	19.28
	2-Methylnaphthalene	142	6.203		(1.156)	212981	20.0000	19.62
	Hexachlorocyclopentadiene	237	б.483		(0.868)	47478	20,0000	19.36
	2,4,6-Trichlorophenol	196	6.576		(0.881)	49658	20.0000	18.94(Q)
	2,4,5-Trichlorphenol	196	6.628		(0.888)	55529	20.0000	19.66 (QM)
	2-Chloronaphthalene	162	6.784		(0.908)	180754	20.0000	19.54
	2-Nitroaniline	65	6.949		(0.931)	54872	20.0000	19.58
	Dimethylphthalate	163	7.219		(0.967)	213272	20.0000	20.03
	Acenaphthylene	152	7.281		(0.975)	315165	20.0000	19.57
	2,6-Dinitrotoluene	165	7.291		(0.976)	49111	20.0000	19.80 (QM)
	3-Nitroaniline	138	7.447		(0.997)	59114	20.0000	19.09
	Acenaphthene	153	7.509		(1.006)	208228	20.0000	20.31
	2,4-Dinitrophenol	184	7.571		(1.014)	23799	20,0000	19.52
	Dibenzofuran	168	7.695		(1.031)	271431	20.0000	19.95
	4-Nitrophenol	109	7.675		(1.028)	25164	20.0000	19.59(Q)
	2,4-Dinitrotoluene	165	7.768		(1.040)	63223	20.0000	19.42
	Fluorene	166	8.131		(1.089)	220647	20.0000	19.58
	Diethylphthalate	149	8.100		(1.085)	216140	20.0000	19.83
	4-Chlorophenyl-phenylether	204	8.151		(1.092)	93468	20.0000	19.95
	4-Nitroaniline	138	8.214		(1.100)	61333	20.0000	19.98
	4,6-Dinitro-2-methylphenol	198	8.276		(0.880)	32982	20.0000	20.44
	N-Nitrosodiphenylamine	169	8.317		(0.884)	186206	23.4000	23.36
	Azobenzene	7 7	8.348		(0.888)	203290	20.0000	19.66
	4-Bromophenyl-phenylether	248	8.794		(0 935)	50693	20.0000	19.75
	Hexachlorobenzene	284	8.980		(0.955)	54528	20.0000	19.02
	Pentachlorophenol	266	9.240		(0.982)	30451	20.0000	20.33
	Phenanthrene	178	9.436		(1.003)	329718	20.0000	19.89
	Anthracene	178	9.499		(1.010)	326558	20.0000	19.72
	Carbazole	167	9.768		(1.039)	298921	20.0000	19.76
	Di-n-Butylphthalate	149	10.462	10.463		358075	20.0000	19.68
	Fluoranthene	202	11.302	11.302		308182	20.0000	20.75
	Benzidine	184	11.571	11.571		222260	20.0000 20.0000	18.56
	Pyrene	202		11.665		345805		18.73
	3,3'-dimethylbenzidine	212	12.867		(0.934)	198960	20.0000	18.82
	Butylbenzylphthalate	149		12.991		174685	20.0000	18.88
	Benzo (a) Anthracene	228		13.758		304948	20.0000	19.38
	Chrysene	228	13.820			314030	20.0000	19.51
	3,3'-Dichlorobenzidine	252	13.799		(1.002)	115458	20.0000	19.45
	bis(2-ethylhexyl)Phthalate	149	14.110		(1.024)	248201	20.0000 20.0000	19.47
	Di-n-octylphthalate	149	15.157		(1.100)	400592		19.66
	Benzo (b) fluoranthene	252	15.582		(0.964)	256213	20.0000	18.28(Q)
	Benzo(k) fluoranthene	252		15.623		371629	20.0000	20.65(g)
	Benzo(e)pyrene	252	15.996		(0.990)	281015	20.0000	19,22
	Benzo(a) pyrene	252	16.069		(0.994)	307781	20.0000	19.37
	Indeno(1,2,3-cd)pyrene	276	17.789		(1.101)	228110	20.0000	17.74
	Dibenzo(a,h)anthracene	278		17.841		270172	20.0000	18.81
153	Benzo(g,h,i)perylene	276	18.224	18.235	(1.128)	301520	20.6000	19.39

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002C.D Report Date: 03-Oct-2010 11:13

							AMOUN	rs		
	QUANT SIG					CAL	TMA-	ON-	COL	
Compounds	MASS	RT	EXP RT	REL RT	response	(ng)	ſ	NG)	
	****	====			****	===		200		
M 162 benzo b,k Fluoranthene Totals	252				627842	20.	0000	1	9.61(A)	

Page 3

QC Flag Legend

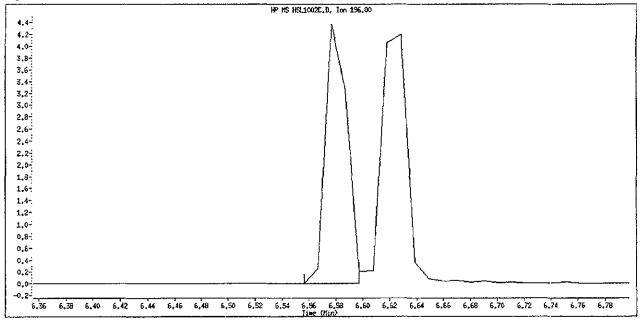
- A Target compound detected but, quantitated amount exceeded maximum amount.

 Q Qualifier signal failed the ratio test.

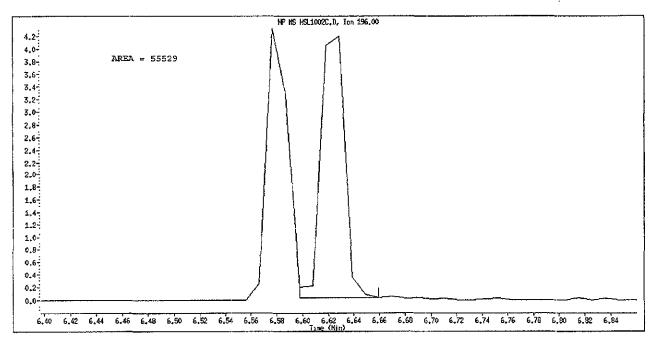
 M Compound response manually integrated.

 q Qualifier signal exceeded ratio warning limit.

Data File Name: HSL1002C.D


Inj. Date and Time: 02-OCT-2010 13:18

Instrument ID: sv5.i Client ID: 8270F.M


Compound Name: 2,4,5-Trichlorphenol

CAS #: 95-95-4

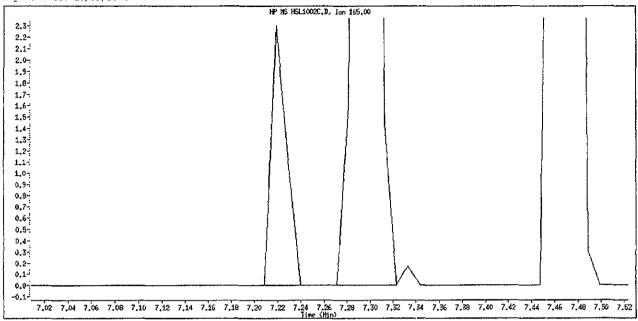
Report Date: 10/03/2010

Original Integration

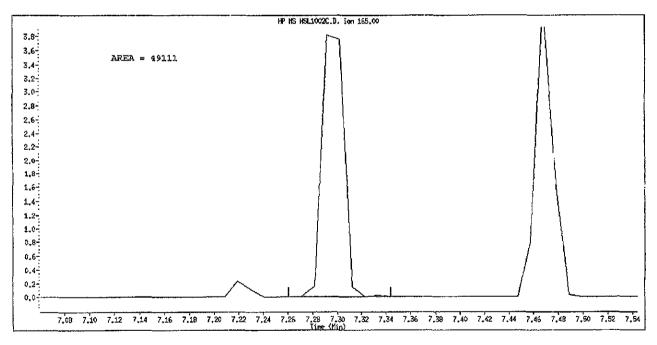
Manual Integration

Manually Integrated By: truongk
Manual Integration Reason: Wrong Peak

Data File Name: HSL1002C.D


Inj. Date and Time: 02-00T-2010 13:18

Instrument ID: sv5.i Client ID: 8270F.M


Compound Name: 2,6-Dinitrotoluene

CAS #: 606-20-2

Report Date: 10/03/2010

Original Integration

Manual Integration

Manually Integrated By: truongk

Manual Integration Reason: Poor Chromatography

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002C.D

Report Date: 02-Oct-2010 16:57

TestAmerica West Sacramento

Method 8270C

Data file: \\SV5\C\chem\sv5.i\100210.B\HSL1002C.D
Lab Smp Id: HSL 020 ug/ml CS-3 Client Smp
Inj Date: 02-OCT-2010 13:18
Operator: KT Inst ID: 8
Smp Info: HSL 020 ug/ml CS-3;1;;3;;;4 Client Smp ID: 8270F.M

Inst ID: sv5.i

Misc Info: 3;;0;1_8270STD.SUB;10MSSV0309;0;8270F.M Comment: SOP SAC-MS-0005 Method: \\SV5\C\chem\sy5 i\100210 B\8270f m

Method : \\SV5\C\chem\sv5.i\100210.B\8270f.m Meth Date : 02-Oct-2010 16:57 onishim Quant 1 Quant Type: ISTD

Cal File: AP90817D.D Cal Date : 17-AUG-2010 21:19

Als bottle: 3 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 1 8270STD.SUB

Target Version: 4.14 Processing Host: SV5

								AMOUN	TS	
			QUANT SIG					CAL-AMT	ON-	COL
Co	oğm	unds	MASS	RT	EXP RT	REL RT	response	(NG)	(NG)
==		¥==#60=00000	====		=======	- ========		2022255	86.98E	k to; so 60 30
*	1	1,4-Dichlorobenzene-d4	152	3.954	3.955	(1.000)	145926	40.0000		(Q)
*	2	Naphthalene-d8	136	5.364	5.374	(1.000)	625682	40.0000		
*	3	Acenaphthene-d10	164	7.467	7.468	(1.000)	328608	40.0000		
*	4	Phenanthrene-d10	188	9.405	9.405	(1.000)	525834	40.0000		
*	5	Chrysene-d12	240	13.779	13.779	(1.000)	590727	40.0000		
*	6	Perylene-d12	264	16.162	16.162	(1.000)	619266	40.0000		
\$	7	2-Fluorophenol	112	2.732	2.732	(0.691)	100961	20.0000	1	18.75
\$	8	Phenol-d5	99	3.612	3.613	(0.914)	127066	20.0000	1	18.55
\$	9	2-Chlorophenol-d4	132	3.747	3.758	(0.948)	112302	20.0000	1	19.23
\$	10	1,2-Dichlorobenzene-d4	152	4.162	4.162	(1.052)	72837	20.0000	1	(g.98(q)
\$	11	Nitrobenzene-d5	82	4.576	4.576	(0.853)	103440	20.0000]	L8.64
\$	12	2-Fluorobiphenyl	172	6.680	6.680	(0.895)	209764	20.0000	1	19.93
\$	13	2,4,6-Tribromophenol	330	8.473	8.473	(1.135)	28698	20.0000	;	22.12
\$	14	Terphenyl-d14	244	12.017	12.017	(0.872)	218324	20.0000	1	18.95
	1.5	N-Nitrosodimethylamine	74	1.706	1.706	(0.431)	66431	20,0000	3	18.69
	16	Pyridine	79	1.726	1.726	(0.437)	116339	20.0000	1	19.64
	23	Aniline	93	3.654	3,654	(0.924)	160510	20.0000	1	18.69
	24	Phenol	94	3.623	3.623	(0.916)	147994	20.0000	2	20.32
	26	Bis(2-chloroethyl)ether	93	3.716	3.716	(0.940)	101777	20.0000	1	18.39
	27	2-Chlorophenol	128	3.768	3.768	(0.953)	114481	20.0000	1	L9.86
	28	1,3-Dichlorobenzene	146	3.913	3.923	(0.990)	122398	20.0000	1	L9.22
	29	1,4-Dichlorobenzene	146	3.975	3.975	(1.005)	126965	20.0000	J	L9.72
	30	Benzyl Alcohol	108	4.120	4.120	(1.042)	72366	20.0000	1	18.27
	31	1,2-Dichlorobehzene	146	4.172	4,172	(1.055)	117073	20.0000	1	L9.18
	32	2-Methylphenol	108	4.255	4.255	(1.076)	101499	20.0000	1	18.85
	33	2,2'-oxybis(1-Chloropropane)	45	4.296	4.297	(1.086)	166596	20.0000		16.22
	34	4-Methylphenol	108	4.421	4.421	(1.118)	106723	20.0000	3	L8.60
	36	Hexachloroethane	117	4.504	4.504	(1,139)	44196	20.0000	:	19.45
	37	N-Nitrosodinpropylamine	70	4.441	4.442	(1.123)	73913	20.0000	:	18.40
	42	Nitrobenzene	77	4.597	4.597	(D.857)	101809	20.0000	:	18.46
	44	Isophorone	82	4.856	4.856	(0.905)	191333	20.0000	:	18.30
	45	2-Nitrophenol	139	4.960	4.950	(0.925)	58938	20.0000		19.57
		2.4-Dimethyphenol	107	5.011		(0.934)	107325	20.0000	;	19.20

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002C.D Report Date: 02-Oct-2010 16:57

							AMOUN	its
		QUANT SIG					CAL-AMT	ON-COL
Compo	ınds	REAM	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
*****	************	52 50 (24 24	====		. ========	##886555	*****	********
47	Bis(2-chloroethoxy) methane	93	5.125	5.126	(0.956)	120646	20.0000	19.38
49	2,4-Dichlorophenol	162	5.229	5.229	(0.975)	84525	20.0000	20.54
50	Benzoic Acid	122	5.094	5.115	(0.950)	54506	20.0000	17.49
51	1,2,4-Trichlorobenzene	180	5.322	5.322	(0.992)	89082	20.0000	19.97
52	Naphthalene	128	5.395	5.395	(1.006)	336100	20.0000	19.30
54	4-Chloroaniline	127	5.488	5.488	(1.023)	135348	20.0000	19.76
57	Hexachlorobutadiene	225	5.613	5.613	(1.046)	45138	20.0000	21.26
60	4-Chloro-3-Methylphenol	107	6.068	6.069	(1.131)	90970	20.0000	19.21
63	2-Methylnaphthalene	142	6,203	6.203	(1.156)	212981	20.0000	20.04
66	Hexachlorocyclopentadiene	237	6.483	6.483	(0.868)	47478	20.0000	18.94
69	2,4,6-Trichlorophenol	196	6.576	6.576	(0.881)	49658	20.0000	19.96 (Q)
70	2,4,5-Trichlorphenol	196	6.576	6.628	(0,881)	49658	20.0000	18.17(Q)
71	2-Chloronaphthalene	162	6.784	6.784	(0.908)	180754	20.0000	19.62
73	2-Nitroaniline	65	6.949	6.949	(0.931)	54872	20.0000	17.78
76	Dimethylphthalate	163	7.219	7.229	(0.967)	213272	20.0000	20.04
77	Acenaphthylene	152	7.281	7,281	(0.975)	315165	20.0000	19.57
79	2,6-Dinitrotoluene	165	7,219	7.302	(0.967)	51125	20.0000	21.45(Q)
80	3-Nitroaniline	138	7.447	7.447	(0.997)	59114	20.0000	18.71
81	Acenaphthene	153	7.509	7.509	(1.006)	208228	20.0000	20.29
82	2,4-Dinitrophenol	184	7.571	7.571	(1.014)	23799	20.0000	19.22
83	Dibenzofuran	168	7.695	7.706	(1.031)	271431	20.0000	20.02
84	4-Nitrophenol	109	7.675	7.675	(1.028)	25164	20.0000	18.24(Q)
86	2,4-Dinitrotoluene	165	7.768	7.768	(1.040)	63223	20.0000	19.81
91	Fluorene	166	8.131	8.131	(1.089)	220647	20.0000	19.86
92	Diethylphthalate	149	8.100	8.100	(1.085)	216140	20.0000	19.43
	4-Chlorophenyl-phenylether	204	8.151	8,152	(1.092)	93468	20.0000	20.41
	4-Nitroaniline	138	8.214		(1,100)	61333	20.0000	19.86
97	4,6-Dinitro-2-methylphenol	198	8.276		(0.880)	32982	20.0000	20.90
	N-Nitrosodiphenylamine	169	8.317		(0.884)	186206	23.4000	22.72
	Azobenzene	77	8.348		(0.888)	203290	20.0000	17.83
	4-Bromophenyl-phenylether	248	8,794		(0.935)	50693	20.0000	19.95
	Hexachlorobenzene	284	8.980		(0.955)	54528	20.0000	19.87
	Pentachlorophenol	266	9.240		(0.982)	30451	20.0000	18.48
	Phenanthrene	178	9.436		(1.003)	329718	20,0000	20.10
	Anthracene	178	9.499		(1.010)	326558	20,0000	19.78
	Carbazole	167	9.768		(1.039)	298921	20.0000	19.47
	Di-n-Butylphthalate	149	10.462		(1.112)	358075	20.0000	19.29
	Fluoranthene	202	11.302	11.302		308182	20.0000	20.88
	Benzidine	184	11.571		(0.840)	222260	20.0000	18.32
	Pyrene	202	11.665		(0.847)	345805	20.0000	18.72
	3,3'-dimethylbenzidine	212	12.867		(0.934)	198960	20.0000	19.11
	Butylbenzylphthalate	149	12.991		(0.943)	174685	20.0000	18.51
	Benzo (a) Anthracene	228	13.758		(0.998)	304948	20.0000	19.57
	Chrysene	228	13.820		(1.003)	314030	20.0000	19.39
	3,3'-Dichlorobenzidine	252	13.799		(1.002)	115458	20.0000	20.25
	•							
	bis (2-ethylhexyl) Phthalate	149	14.110		(1.024)	248201	20.0000 20.0000	19.10
	Di-n-octylphthalate	149	15.157		(1.100)	400592		19,28
	Benzo (b) fluoranthene	252	15.582		(0.964)	256213	20.0000	17.45 (Q)
	Benzo(k) fluoranthene	252	15.613		(0.966)	371629	20.0000	21.66(q)
	Benzo(e)pyrene	252	15.996		(0.990)	281015	20.0000	19.30
	Benzo(a) pyrene	252	16.069		(0.994)	307781	20.0000	19.26
	Indeno(1,2,3-cd)pyrene	276	17.789		(1.101)	228110	20.0000	16.13
	Dibenzo(a,h)anthracene	278	17.841		(1.104)	270172	20.0000	18.64
153	Benzo(g,h,i)perylene	276	18.224	18.235	(1.128)	301520	20.0000	19.41

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002C.D Report Date: 02-Oct-2010 16:57

						AMOUZ	ITS	
	QUANT SIG					CAL-AMT	ON-COL	
Compounds	MASS	RT	exp rt	REL RT	RESPONSE	(NG)	(NG)	
孙风飞双用度动写用部件被求报用报票数量重整型大型次数	# == =			======		======	*****	
M 162 benzo b,k Fluoranthene Totals	252				627842	20.0000	19.72 (7	4)

QC Flag Legend

- A Target compound detected but, quantitated amount exceeded maximum amount.

 Q Qualifier signal failed the ratio test.

 q Qualifier signal exceeded ratio warning limit.

Page 3

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002C.D

Report Date: 03-Oct-2010 11:13

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: sv5.i

Lab File ID: HSL1002C.D

Lab Smp Id: HSL 020 ug/ml CS-3

Analysis Type: SV Quant Type: ISTD

Operator: KT
Method File: \\sv5\c\chem\sv5.i\100210.B\8270f.m Misc Info: 3;;0;1 8270STD.SUB;10MSSV0309;0;8270F.M

Test Mode:

Use Initial Calibration Level 4.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
					======
l 1,4-Dichlorobenze	122625	61313	245250	145926	19.00
2 Naphthalene-d8	530514	265257	1061028	625682	17.94
3 Acenaphthene-d10	282538	141269	565076	328608	16.31
4 Phenanthrene-dl0	462722	231361	925444	525834	13.64
5 Chrysene-d12	435850	217925	871700	590727	35.53
6 Perylene-d12	422284	211142	844568	619266	46.65

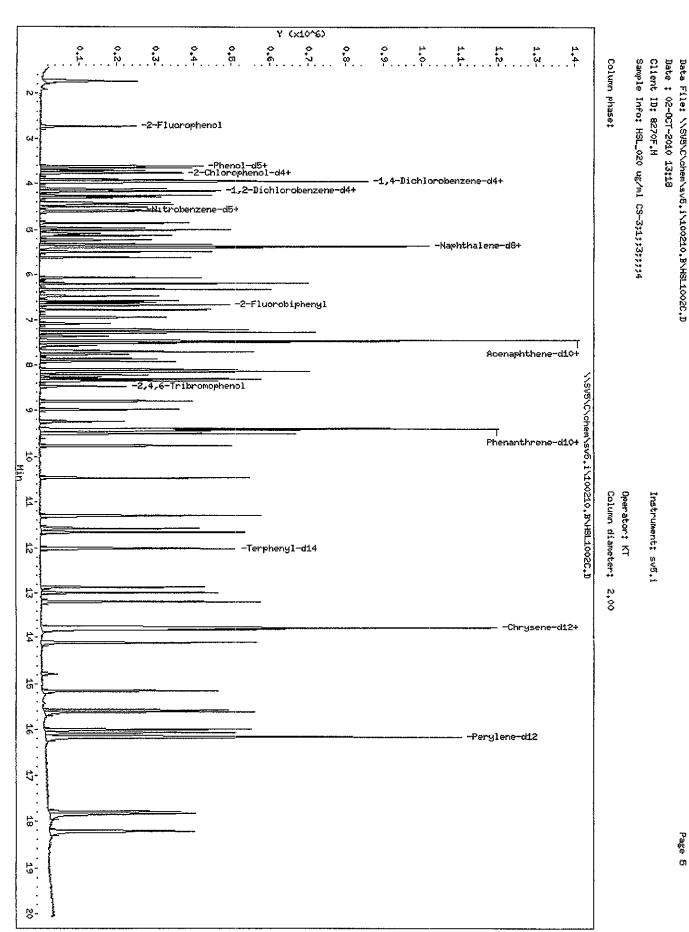
		RT I	TIMIT		
COMPOUND	STANDARD	LOWER	UPPER	Sample	%DIFF
======================================	=======	======	========	=======	======
1 1,4-Dichlorobenze	3.96	3.46	4.46	3.95	-0.00
2 Naphthalene-d8	5.37	4.87	5,87	5.36	-0.20
3 Acenaphthene-d10	7.47	6.97	7.97	7.47	-0.00
4 Phenanthrene-d10	9.41	8.91	9.91	9.41	-0.00
5 Chrysene-dl2	13.78	13.28	14.28	13.78	-0.00
6 Perylene-d12	16.16	15.66	16.66	16.16	-0.00
					<u></u>

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Page 1


Calibration Date: 02-OCT-2010

Calibration Time: 13:44

Client Smp ID: 8270F.M

Level:

Sample Type:

Report Date: 03-Oct-2010 11:14

TestAmerica West Sacramento

Method 8270C

Data file: \\sv5\c\chem\sv5.i\100210.B\HSL1002D.D Lab Smp Id: HSL_050 ug/ml CS-4 Client Smp Client Smp ID: 8270F.M

Inj Date : 02-OCT-2010 13:44

Operator : KT Inst ID: sv5.i

Smp Info : HSL 050 ug/ml CS-4;1;;4;;;4

Misc Info: $3;;\overline{0};1_8270STD.SUB;10MSSV0310;0;8270F.M$

Comment : SOP SAC-MS-0005 Method : \\sv5\c\chem\sv5.i\100210.B\8270f.m

Meth Date: 03-Oct-2010 11:09 onishim Quant Type: ISTD

Cal Date : 17-AUG-2010 21:19 Cal File: AP90817D.D

Als bottle: 4 Calibration Sample, Level: 4

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: 1 8270STD.SUB

Target Version: 4.14

Processing Host: SACP307UM

							AMOUN	
٦.		QUANT SIG MASS	RT	EXP RT	REL RT	RESPONSE	CAL-AMT (NG)	ON-COL
	mpounds	MASS				RESPONSE	(NG)	
==	1 1.4-Dichlorobenzene-d4	152	3.955		(1.000)	122625	40.0000	***
*	2 Naphthalene-d8	136	5.374		(1.000)	530514	40.0000	
*	3 Acenaphthene-d10	164	7.468		(1.000)	282538	40.0000	
*	4 Phenanthrene-d10	188	9.405		(1.000)	462722	40.0000	
*	5 Chrysene-dl2	240	13.779		(1.000)	402722	40.0000	
*	6 Perylene-dl2	264	16.162		(1.000)	435850	40.0000	
s	7 2-Fluorophenol	254 112	2.732		(0.691)	220986	50.0000	51.13
ş S	7 2-Fluorophenoi 8 Phenol-d5	99	3.613			274382	50.0000	50.48
\$		132	3.513		(0.914)	2/4382 244352	50.0000	50.48 51.19
•	9 2-Chlorophenol-d4				(0,950)			-
\$ S	10 1,2-Dichlorobenzene-d4 11 Nitrobenzene-d5	152 82	4.162 4.576		(1.052) (0.852)	151616 226162	50.0000 50.0000	50,20 50.33
⇒ \$		82 172	6.680		(0.852)	473978	50.0000	50.33
\$ \$	12 2-Fluorobiphenyl 13 2,4,6-Tribromophenol	330	8.473		(1.135)	473978 63311	50.0000	52.08 51.57
₽ \$	•	330 244	12.017		(0.872)	438253	50.0000	
Ş	14 Terphenyl-d14 15 N-Nitrosodimethylamine	244 74	1.706		(0.872)	140972	50.0000	51.05 49.90(M)
	16 Pyridine	79	1.726		(0.431)	240053	50.0000	49.90 (M) 50.81 (M)
	23 Aniline	93	3.654		(0.924)	346504	50.0000	50.81 (M)
	24 Phenol	94	3.623		(0.916)	311820	50.0000	49.93
	26 Bis(2-chloroethyl)ether	93	3.023		(0.910)	220455	50.0000	50.34
	27 2-Chlorophenol	128	3.768		(0.953)	242442	50.0000	50.57
	28 1.3-Dichlorobenzene	128	3.923			265384	50.0000	50.57
	*	146	3.943		(0.992) (1.005)	265384	50.0000	49.66
	29 1,4-Dichlorobenzene	108	4.120		(1.042)	160914	50.0000	49.55
	30 Benzyl Alcohol 31 1,2-Dichlorobenzene	108	4.172		(1.042)	257606	50.0000	49.94 51.32
		146	4.172		(1.055)	257606	50.0000	49.86
	32 2-Methylphenol	108 45	4.255		(1.0%)	349371	50.0000	49.86 50.12
	33 2,2'-oxybis(1-Chloropropane)	108	4.421			233354		50.12 50.11
	34 4-Methylphenol			•	(1.118)		50.0000	
	36 Hexachloroethane	117	4.504		(1.139)	94106	50.0000	50.62
	37 N-Nitrosodinpropylamine	70	4.442		(1.123)	156914	50.0000	50.59
	42 Nitrobenzene	77	4.597		(0.855)	219387	50,0000	49.95
	44 Isophorone	82	4.856		(0.904)	420061	50.0000	49,74
	45 2-Nitrophenol	139	4.960		(0.923)	132771	50.0000	50.95
	46 2,4-Dimethyphenol	107	5.012	5.012	(0.933)	231517	50,0000	50.00

						AMOUNTS		
	QUANT SIG					CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)	
· 李林可称最初的特殊之后还是不是是是是是是是是是	HEED			· =======		======	#=====	
47 Bis (2-chloroethoxy) methane	93	5.126		(0.954)	253648	50.0000	49.15	
49 2,4-Dichlorophenol	162	5,229		(0.973)	179296	50.0000	50.05	
50 Benzoic Acid	122	5.115		(0.952)	128366	50.0000	50.08	
51 1,2,4-Trichlorobenzene	180	5.322		(0.990)	197265	50.0000	50.86	
52 Naphthalene	128	5.395		(1.004) (1.021)	724980	50.0000	49.49	
54 4-Chloroaniline	127	5.488			291184	50.0000	50.72	
57 Hexachlorobutadiene 60 4-Chloro-3-Methylphenol	225 107	5.613 6.069		(1.044) (1.129)	95592 205388	50.0000 50.0000	50.36 51.34	
63 2-Methylnaphthalene	142	6.203		(1.154)	454646	50,0000	50.50	
66 Hexachlorocyclopentadiene	237	6.483		(0.868)	104908	50.0000	49.76	
69 2,4,6-Trichlorophenol	196	6.576		(0.881)	113001	50.0000	50.13	
70 2,4,5-Trichlorphenol	196	6.628		(0.888)	128196	50.0000	52.79	
71 2-Chloronaphthalene	162	6.784		(0.908)	403257	50.0000	50.72	
•	65	6.784			124335	50.0000	51.59	
73 2-Nitroaniline				(0.931)				
76 Dimethylphthalate	163	7,229		(0.968)	475258	50.0000	51.91 51.43	
77 Acenaphthylene	152			(D.975)	712158	50.0000		
79 2,6-Dinitrotoluene	165	7.302		(0.978)	110261	50.0000	51.69	
80 3-Nitroaniline	138	7.447		(0.997)	141396	50.0000	53.11	
81 Acenaphthene	153	7.509		(1.006)	448691	50.0000	50.90	
82 2,4-Dinitrophenol	184	7.571		(1.014)	58864	50.0000	47.37	
83 Dibenzofuran	168	7.706		(1.032)	598735	50.0000	51.18	
84 4-Nitrophenol	109	7.675		(1.028)	56777	50.0000	51.41	
86 2,4-Dinitrotoluene	165	7.768		(1.040)	148875	50.0000	53.18	
91 Fluorene	166	8.131		(1.089)	494097	50.0000	51.01	
92 Diethylphthalate	149	8.100		(1.085)	487067	50,0000	51.96	
93 4-Chlorophenyl-phenylether	204	8,152		(1.092)	209308	50.0000	51.97	
94 4-Nitroaniline	138	8,214		(1,100)	135397	50.0000	51.31	
97 4,6-Dinitro-2-methylphenol	198	8,276		(0.880)	76137	50.0000	46.58	
98 N-Nitrosodiphenylamine	169	8.317		(0.884)	409666	58.6000	58.41	
100 Azobenzene	77	8.348		(0.888)	459960	50.0000	50 55	
101 4-Bromophenyl-phenylether	248	8.794		(0.935)	115283	50.0000	51.04	
108 Hexachlorobenzene	284	8.981	8.981	(0.955)	124963	50.0000	49.54	
110 Pentachlorophenol	266	9.240		(0.982)	67882	50.0000	45.48	
114 Phenanthrene	178	9.437	9.437	(1.003)	718164	50.0000	49.24	
115 Anthracene	178	9.499	9.499	(1.010)	728681	50.0000	50.03	
118 Carbazole	167	9.768	9.768	(1.039)	660885	50.0000	49.65	
120 Di-n-Butylphthalate	149	10.463		(1.112)	799142	50.0000	49.90	
126 Fluoranthene	202		11.302		639252	50.0000	48.92	
127 Benzidine	184	11.571	11.571	(0.840)	450332	50.0000	50.98	
128 Pyrene	202	11.665	11.665	(0.847)	701084	50.0000	51.46	
134 3,3'-dimethylbenzidine	212		12.867		385489	50.0000	49.44	
136 Butylbenzylphthalate	149	12.991	12.991	(0.943)	340978	50.0000	49.94	
138 Benzo (a) Anthracene	228	13.758	13.758	(0.998)	569271	50.0000	49.03	
139 Chrysene	228	13.831	13.831	(1.004)	597685	50.0000	50.33	
140 3,3'-Dichlorobenzidine	252	13.799	13.799	(1.002)	217413	50.0000	49.65	
141 bis(2-ethylhexyl)Phthalate	149	14.110	14.110	(1.024)	464144	50.0000	49.35	
142 Di-n-octylphthalate	149	15.167	15.167	(1.101)	732406	50.0000	48.72	
144 Benzo (b) fluoranthene	252	15.582	15.582	(0.964)	527487	50.0000	55.18	
145 Benzo(k) fluoranthene	252		15.623		580084	50.0000	47.2	
147 Benzo (e) pyrene	252		16.007		506622	50.0000	50.82	
148 Benzo (a) pyrene	252		16.079		542578	50.0000	50.06	
151 Indeno(1,2,3-cd)pyrene	276		17.800		447085	50.0000	51.00	
152 Dibenzo (a, h) anthracene	278		17.841		486893	50.0000	49.72	
153 Benzo(g,h,i)perylene	276		18.235		527720	50.0000	49.77	

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002D.D

Report Date: 03-Oct-2010 11:14

AMOUNTS Compounds MASS RT EXP RT REL RT RESPONSE (NG) (NG)

M162 benzo b, k Fluoranthene Totals 252 1107571 1107571 50.0000 50.74(A)

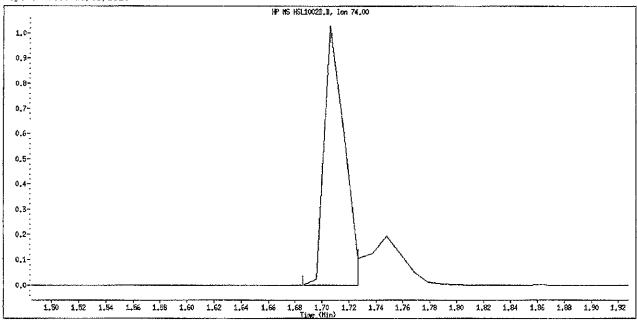
QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

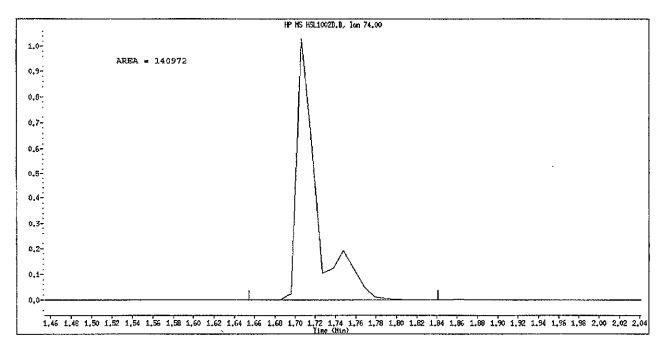
M - Compound response manually integrated.

Page 3

Data File Name: HSL1002D.D


Inj. Date and Time: 02-OCT-2010 13:44

Instrument ID: sv5.i Client ID: 8270F.M

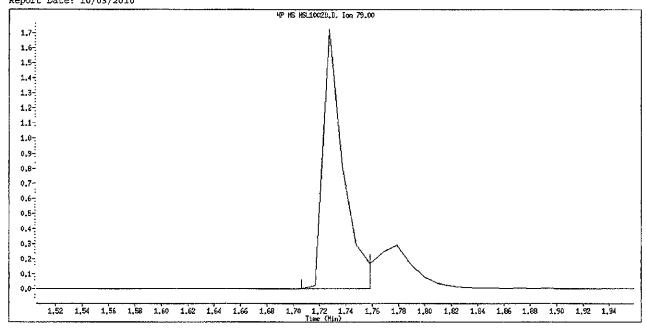

Compound Name: N-Nitrosodimethylamine

CAS #: 62-75-9

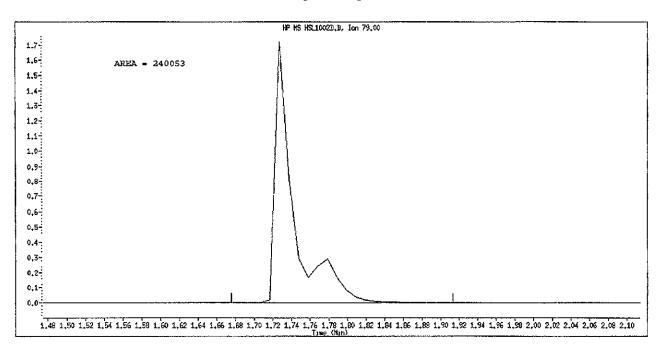
Report Date: 10/03/2010

Original Integration

Manual Integration


Manually Integrated By: truongk
Manual Integration Reason: Poor Chromatography

Data File Name: HSL1062D.D


Inj. Date and Time: 02-OCT-2010 13:44

Instrument ID: sv5.i Client ID: 8270F.M Compound Name: Pyridine

CAS #: 110-86-1 Report Date: 10/03/2010

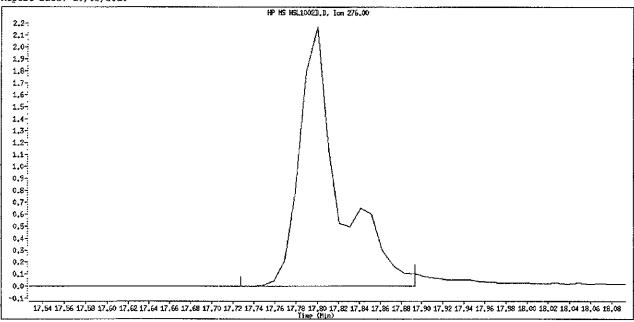
Original Integration

Manual Integration

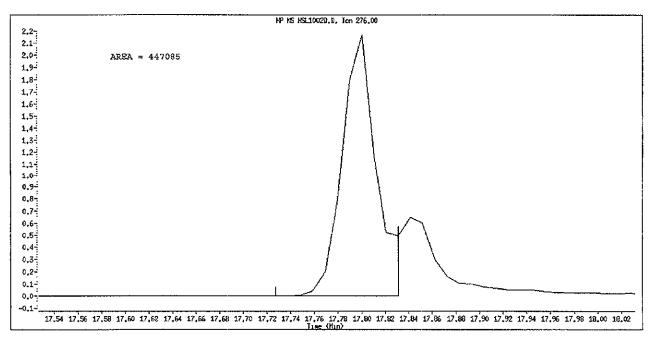
Manually Integrated By: truongk

Manual Integration Reason: Poor Chromatography

Data File Name: HSL1002D.D


Inj. Date and Time: 02-OCT-2010 13:44

Instrument ID: sv5.i Client ID: 8270F.M


Compound Name: Indeno(1,2,3-cd)pyrene

CAS #: 193-39-5

Report Date: 10/03/2010

Original Integration

Manual Integration

Manually Integrated By: truongk

Manual Integration Reason: Poor Chromatography

Report Date: 02-Oct-2010 16:57

Page 1

TestAmerica West Sacramento

Method 8270C

Data file: \\SV5\C\chem\sv5.i\100210.B\HSL1002D.D Lab Smp Id: HSL_050 ug/ml CS-4 Client Smp Client Smp ID: 8270F.M

Inj Date : 02-OCT-2010 13:44

Operator : KT Inst ID: sv5.i

Smp Info : HSL_050 ug/ml CS-4;1;;4;;;4

Misc Info: $3; \overline{0}; 1_8270$ STD.SUB; 10MSSV0310; 0; 8270F.M

: SOP SAT-MS-0005

Method : \\SV5\C\chem\sv5.i\100210.B\8270f.m Meth Date : 02-Oct-2010 16:57 onishim Quant 1 Quant Type: ISTD

Cal Date : 17-AUG-2010 21:19 Cal File: AP90817D.D

Als bottle: 4 Calibration Sample, Level: 4

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: 1 8270STD.SUB

Target Version: 4.14 Processing Host: SV5

								AMOU	NTS
			QUANT SIG					CAL-AMT	ON-COL
Compounds			Mass	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
0160600 0000000000000000000000000000000			====				EE. D. I. S. S. S. S. S. S. S. S. S. S. S. S. S.	######################################	在对解解的原理
*	1	1,4-Dichlorobenzene-d4	152	3.955	3.955	(1.000)	122625	40.0080	
*	2	Naphthalene-d8	136	5.374	5.374	(1.000)	530514	40.0000	
*	3	Acenaphthene-d10	164	7.468	7.468	(1.000)	282538	40,0000	
*	4	Phenanthrene-dl0	188	9,405	9.405	(1.000)	462722	40.0000	
*	5	Chrysene-d12	240	13.779	13.779	(1.000)	435850	40.0000	
*	6	Perylene-d12	264	16.162	16,162	(1.000)	422284	40.0000	
\$	7	2-Fluorophenol	112	2.732	2.732	(0.691)	220986	50,0000	48.83
\$	8	Phenol-d5	99	3,613	3.613	(0.914)	274382	50.0000	47.67
\$	9	2-Chlorophenol-d4	132	3.758	3.758	(0.950)	244352	50.0000	49.80
\$	10	1,2-Dichlorobenzene-d4	152	4.162	4.162	(1.052)	151616	50.0000	49.50
\$	11	Nitrobenzene-d5	82	4.576	4.576	(0.852)	226162	50.0000	48.07
\$	12	2-Fluorobiphenyl	172	6.680	6.680	(0.895)	473978	50.0000	52.38
\$	13	2,4,6-Tribromophenol	330	8.473	8.473	(1.135)	63311	50.0000	56.75
\$	14	Terphenyl-d14	244	12.017	12.017	(0.872)	438253	50.0000	51.56
	15	N-Nitrosodimethylamine	74	1.706	1.706	(0.431)	105836	50.0000	35.43
	16	Pyridine	79	1.726	1.726	(0.437)	182664	50.0000	36,70
	23	Aniline	93	3,654	3.654	(0,924)	346504	50.0000	48.01
	24	Phenol	94	3.623	3.623	(0.916)	311820	50.0000	50.94
	26	Bis(2-chloroethyl)ether	93	3.716	3.716	(0.940)	220455	50.0000	47.40
	27	2-Chlorophenol	128	3.768	3.768	(0.953)	242442	50.0000	50.05
	28	1,3-Dichlorobenzene	146	3.923	3.923	(0.992)	265384	50.0000	49.58
	29	1,4-Dichlorobenzene	146	3,975	3.975	(1.005)	271151	50.0000	50.11
	30	Benzyl Alcohol	108	4.120	4.120	(1.042)	160914	50.0000	48.35
	31	1,2-Dichlorobenzene	146	4.172	4.172	(1.055)	257606	50.0000	50.23
	32	2-Methylphenol	108	4.255	4.255	(1.076)	218610	50.0000	48.31
	33	2,2'-oxybis(1-Chloropropane)	45	4.297	4.297	(1.086)	349371	50.0000	40.48
	34	4-Methylphenol	108	4.421	4.421	(1.118)	233354	50.0000	48.39
	36	Hexachloroethane	117	4.504	4.504	(1.139)	94106	50.0000	49.29
	37	N-Nitrosodinpropylamine	70	4.442	4.442	(1,123)	156914	50.0000	46.48
	42	Nitrobenzene	77	4.597	4.597	(0.855)	219387	50.0000	46.91
	44	Isophorone	82	4.856	4 856	(0.904)	420061	50.0000	47.38
	45	2-Nitrophenol	139	4.960	4.960	(0.923)	132771	50.0000	52,00
	46	2,4-Dimethyphenol	107	5.012	5 012	(0.933)	231517	50.0000	48.84

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002D.D Report Date: 02-Oct-2010 16:57

							NUOMA	ITS
		QUANT SIG					CAL-AMT	ON-COL
Compos	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
=====	FE= 0E048E6E8E6E67=7773=	====				RESERVE	======	======
47	Bis(2-chloroethoxy)methane	93	5.126	5.126	(0.954)	253648	50.0000	48.05
49	2,4-Dichlorophenol	162	5.229	5.229	(0.973)	179296	50.0000	51.39
50	Benzoic Acid	122	5.115	5.115	(0.952)	128366	50.0000	48.58
51	1,2,4-Trichlorobenzene	180	5.322	5.322	(0.990)	197265	50.0000	52.15
52	Naphthalene	128	5.395	5.395	(1.004)	724980	50.0000	49.10
54	4-Chloroaniline	127	5.488	5.488	(1.021)	291184	50.0000	50.12
57	Hexachlorobutadiene	225	5.613	5.613	(1.044)	95592	50.0000	53.11
60	4-Chloro-3-Methylphenol	107	6.069	6.069	(1.129)	205388	50.0000	51.16
63	2-Methylnaphthalene	142	6.203	6.203	(1.154)	464646	50.0000	51.57
66	Hexachlorocyclopentadiene	237	6.483	6.483	(0.868)	104908	50.0000	48.68
69	2,4,6-Trichlorophenol	196	6.576	6.576	(0.881)	113001	50.0000	52.83
70	2,4,5-Trichlorphenol	196	6.628	6.628	(0.888)	128196	50.0000	54.56
71	2-Chloronaphthalene	162	6.784	6.784	(0.908)	403257	50.0000	50.91
73	2-Nitroaniline	65	6.949	6.949	(0.931)	124335	50.0000	46.87
76	Dimethylphthalate	163	7.229	7.229	(0.968)	475258	50.0000	51.95
77	Acenaphthylene	152	7.281	7.281	(0.975)	712158	50.0000	51.43
79	2,6-Dinitrotoluene	165	7.302	7.302	(0.978)	110261	50.0000	53.92
80	3-Nitroaniline	138	7.447	7.447	(0.997)	141396	50.0000	52.05
81	Acenaphthene	153	7.509	7.509	(1,006)	448691	50.0000	50.85
82	2,4-Dinitrophenol	184	7.571	7.571	(1.014)	58864	50.0000	48.70
83	Dibenzofuran	168	7.706	7.706	(1.032)	598735	50.0000	51.36
84	4-Nitrophenol	109	7.675	7.675	(1.028)	56777	50.0000	47.87
86	2,4-Dinitrotoluene	165	7.768	7.768	(1.040)	148875	50.0000	54.24
91	Fluorene	166	8.131	8.131	(1.089)	494097	50,0000	51.73
92	Diethylphthalate	149	8.100	8.100	(1.085)	487067	50.0000	50.93
93	4-Chlorophenyl-phenylether	204	8.152	8.152	(1.092)	209308	50.0000	53.15
94	4-Nitroaniline	138	8.214	8.214	(1.100)	135397	50.0000	50.99
97	4,6-Dinitro-2-methylphenol	198	8.276	8.276	(0.880)	76137	50.0000	46.45
98	N-Nitrosodiphenylamine	169	8.317	8.317	(0.884)	409666	58.6000	56.82
100	Azobenzene	77	8.348	8.348	(0.888)	459960	50.0000	45.85
101	4-Bromophenyl-phenylether	248	8.794	8.794	(0.935)	115283	50.0000	51.56
108	Hexachlorobenzene	284	8.981	8.981	(0.955)	124963	50.0000	51.74
110	Pentachlorophenol	266	9.240	9.240	(0.982)	67882	50.0000	46.83
114	Phenanthrene	178	9,437	9.437	(1.003)	718164	50.0000	49.76
115	Anthracene	178	9.499	9.499	(1.010)	728681	50.0000	50.17
118	Carbazole	167	9.768	9.758	(1.039)	660885	50.0000	48.92
120	Di-n-Butylphthalate	149	10.463	10.463	(1.112)	799142	50.0000	48.91
126	Fluoranthene	202	11.302	11.302	(1.202)	639252	50.0000	49,21
127	Benzidine	184	11.571	11.571	(0.840)	450332	50.0000	50.32
128	Pyrene	202	11.665	11.665	(0.847)	701084	50.0000	51.44
134	3,3'-dimethylbenzidine	212	12.867	12.867	(0.934)	385489	50.0000	50.19
136	Butylbenzylphthalate	149	12.991	12.991	(0.943)	340978	50.0000	48.97
138	Benzo (a) Anthracene	228	13.758	13.758	(0.998)	569271	50.0000	49.51
139	Chrysene	228	13.831	13.831	(1.004)	597685	50.0000	50.03
140	3,3'-Dichlorobenzidine	252	13.799	13.799	(1.002)	217413	50.0000	51.67
141	bis(2-ethylhexyl)Phthalate	149	14.110	14.110	(1.024)	464144	50.0000	48.41
142	Di-n-octylphthalate	149	15.167	15.167	(1.101)	732406	50.0000	47.78
144	Benzo(b) fluoranthene	252	15.582	15.582	(0.964)	527487	50.0000	52.68
145	Benzo(k) fluoranthene	252	15.623	15.623	(0.967)	580084	50.0000	49.57
147	Benzo(e)pyrene	252	16.007	16.007	(0.990)	506622	50.0000	51.04
148	Benzo(a)pyrene	252	16.079	16.079	(0.995)	542578	50.0000	49.78
151	Indeno(1,2,3-cd)pyrene	276	17.800	17.800	(1.101)	564014	50.0000	58.49
	Dibenzo(a,h)anthracene	278	17.841	17.841	(1.104)	486893	50.0000	49.27
	Benzo(g,h,i)perylene	276	18.235	18.235	(1.128)	527720	50.0000	49.81

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002D.D Report Date: 02-Oct-2010 16:57

							AMOUN	rrs		
	QUANT SIG					CAL	-AMT	ON-	COL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	ĺ	NG)	(NG)	
	21111111111	====		*****	FE332505			202	====	
M 162 benzo b,k Fluoranthene Totals	252				1107571	50.	0000	5	1.00 (A)

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002D.D

Report Date: 03-Oct-2010 11:14

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: sv5.i

Lab File ID: HSL1002D.D

Lab Smp Id: HSL 050 ug/ml CS-4 Analysis Type: SV

Quant Type: ISTD

Operator: KT

Method File: \\sv5\c\chem\sv5.i\100210.B\8270f.m Misc Info: 3;;0;1 8270STD.SUB;10MSSV0310;0;8270F.M

Test Mode:

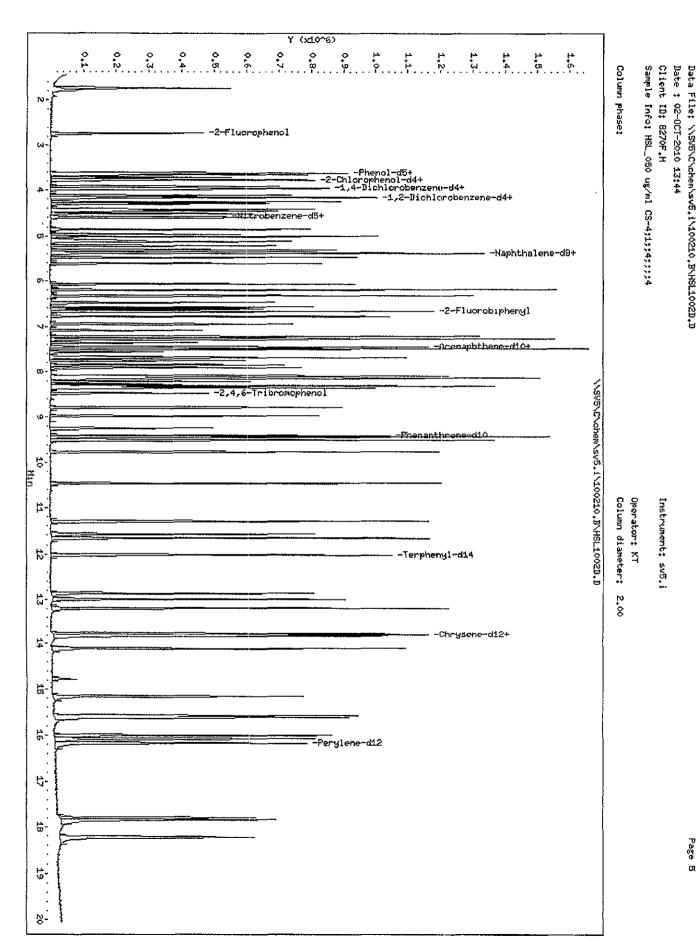
Use Initial Calibration Level 4.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
====================================	========	========	=======	========	======
1 1,4-Dichlorobenze	122625	61313	245250	122625	0.00
2 Naphthalene-d8	530514	265257	1061028	530514	0.00
3 Acenaphthene-d10	282538	141269	565076	282538	0.00
4 Phenanthrene-d10	462722	231361	925444	462722	0.00
5 Chrysene-dl2	435850	217925	871700	435850	0.00
6 Perylene-d12	422284	211142	844568	422284	0.00
					l

		RT I	LIMIT	'	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======		========	========	======
1 1,4-Dichlorobenze	3.96	3.46	4.46	3.96	0.00
2 Naphthalene-d8	5.37	4.87	5.87	5.37	0.00
3 Acenaphthene-d10	7.47	6.97	7.97	7.47	0.00
4 Phenanthrene-d10	9.41	8.91	9.91	9.41	0.00
5 Chrysene-d12	13.78	13.28	14.28	13.78	0.00
6 Perylene-d12	16.16	15.66	16.66	16.16	0.00

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT.


Page 1

Calibration Date: 02-OCT-2010 Calibration Time: 13:44

Client Smp ID: 8270F.M

Level:

Sample Type:

Report Date: 03-Oct-2010 11:15

TestAmerica West Sacramento

Method 8270C

Data file: \\sv5\c\chem\sv5.i\100210.B\HSL1002E.D
Lab Smp Id: HSL 080 ug/ml CS-5 Client Smp
Inj Date: 02-OCT-2010 14:09 Client Smp ID: 8270F.M

Inst ID: sv5.i

: \\sv5\c\chem\sv5.i\100210.B\8270f.m Method

Meth Date: 03-Oct-2010 11:09 onishim Quant Type: ISTD

Cal File: AP90817D.D Cal Date : 17-AUG-2010 21:19

Als bottle: 5 Calibration Sample, Level: 5

Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: 1 8270STD.SUB

Target Version: 4.14

Processing Host: SACP307UM

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Co	ompounds	Mass	RT	EXP RT REL	RT RESPONSE	(NG)	(NG)
==		warr	====		*** ======	2662323	3665332
*	1 1,4-Dichlorobenzene-d4	152	3.954	3.955 (1.00	0) 126989	40.0000	(ਕ੍ਰ) .
*	2 Naphthalene-d8	136	5.374	5.374 (1.00	0) 553454	40.0000	
*	3 Acenaphthene-dl0	164	7.468	7.468 (1.00	0) 300315	40.0000	
*	4 Phenanthrene-dl0	188	9.405	9.405 (1.00	0) 477777	40.0000	
*	5 Chrysene-dl2	240	13.789	13.779 (1.00	0) 486126	40.0000	
*	6 Perylene-d12	264	16.162	16.162 (1.00	0) 482782	40.0000	
\$	7 2-Fluorophenol	112	2.742	2.732 (0.69	3) 364547	80.0000	81,44
\$	8 Phenol-d5	99	3.612	3.613 (0.91	4) 459352	80.0000	81.61
\$	9 2-Chlorophenol-d4	132	3.758	3.758 (0.95	0) 399981	80.0000	80.92
\$	10 1,2-Dichlorobenzene-d4	152	4.162	4.162 (1.05	2) 252754	80.0000	80.82
\$	11 Nitrobenzene-d5	82	4.587	4.576 (0.85	3) 371989	80.0000	79.35
\$	12 2-Fluorobiphenyl	172	6.680	6.680 (0.89	5) 755916	80.0000	78.14
\$	13 2,4,6-Tribromophenol	330	8.483	8.473 (1.13	6) 107063	80.0000	82.04
\$	14 Terphenyl-d14	244	12.017	12.017 (0.87	1) 758812	80.0000	79.25
	15 N-Nitrosodimethylamine	74	1.706	1.706 (0.43		80.0000	80.86 (q)
	16 Pyridine	79	1.726	1.726 (0.43	7) 386806	80,0000	79.06 (Q)
	23 Aniline	93	3.654	3.654 (0.92	4) 583513	80.0000	81.44 (Q)
	24 Phenol	94	3.623	3.623 (0.91	6) 524930	80.0000	81.16(Q)
	26 Bis(2-chloroethyl)ether	93	3.716	3.716 (0.94	0) 362044	80.0000	79.83
	27 2-Chlorophenol	128	3.768	3.768 (0.95		80.0000	80.21
	28 1,3-Dichlorobenzene	146	3.923	3.923 (0.99	2) 428311	80.0000	79.20
	29 1,4-Dichlorobenzene	146	3.975	3.975 (1.00	5) 452588	80.0000	80.04
	30 Benzyl Alcohol	108	4.120	4.120 (1.04	2) 273768	80.0000	82.05
	31 1,2-Dichlorobenzene	146	4.172	4.172 (1.05	5) 415025	80.0000	79.84
	32 2-Methylphenol	108	4.255	4.255 (1.07	6) 369704	80.0000	81.43
	33 2,2'-oxybis(1-Chloropropane)	45	4.296	4,297 (1.08	6) 576575	80.0000	79.88
	34 4-Methylphenol	108	4.421	4.421 (1.11	8) 387704	80.0000	80.39
	36 Hexachloroethane	117	4.504	4.504 (1.13	9) 153472	80.0000	79.72
	37 N-Nitrosodinpropylamine	70	4.442	4.442 (1.12	3) 265916	80.0000	82.78
	42 Nitrobenzene	77	4.597	4,597 (0.85	5) 369479	80.0000	80.64
	44 Isophorone	82	4.856	4.856 (0.90	4) 704520	80.0000	79.96
	45 2-Nitrophenol	139	4.960	4.960 (0.92	3) 221628	80.0000	81.52
	46 2,4-Dimethyphenol	107	5.011	5.012 (0.93	3) 385073	80.0000	79.72 10-3-10

							NUOMA	TS .
		QUANT SIG					CAL-AMT	ON-COL
Сотро	ands	Mass	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
=====	===::==================================	~===	====	========	=======	=====	****	TRRRECA
47	Bis(2-chloroethoxy)methane	93	5 125	5.126	(0.954)	426158	80.0000	79.16
49	2,4-Dichlorophenol	162	5.229	5.229	(0.973)	301897	80.0000	80.78
50	Benzoic Acid	122	5.125	5.115	(0.954)	232711	80.0000	87.04
51	1,2,4-Trichlorobenzene	180	5.322	5.322	(0.990)	323096	80.0000	79.84
52	Naphthalene	128	5.395	5.395	(1.004)	1216155	80.0000	79.58
54	4-Chloroaniline	127	5.488	5.488	(1.021)	484619	80.0000	80.91
57	Hexachlorobutadiene	225	5.613	5.613	(1,044)	159233	80.0000	80.41
60	4-Chloro-3-Methylphenol	107	6.069	6.069	(1.129)	335335	80.0000	80.35
63	2-Methylnaphthalene	142	6.203	6.203	(1.154)	781029	80.0000	81.36
66	Hexachlorocyclopentadiene	237	6.483	6.483	(0.868)	181608	80.0000	81.05
69	2,4,6-Trichlorophenol	196	6.576	6.576	(0881)	194036	80.0000	80.98
70	2,4,5-Trichlorphenol	196	6.628	6.628	(0.888)	211635	80.0000	81.99
71	2-Chloronaphthalene	162	6.784	6.784	(0.908)	668023	80.0000	79.04
73	2-Nitroaniline	65	6.949	6.949	(0.931)	209144	80.0000	81.65
76	Dimethylphthalate	163	7.229	7.229	(0.968)	787815	80.0000	80.96
77	Acenaphthylene	152	7,281	7.281	(0.975)	1190475	80.0000	80.88
79	2,6-Dinitrotoluene	165	7.302	7.302	(0.978)	187961	80.0000	82.91
80	3-Nitroaniline	138	7.457	7.447	(0.999)	232287	80.0000	82.09
81	Acenaphthene	153	7.509	7.509	(1.006)	727612	80.0000	77.66
82	2,4-Dinitrophenol	184	7,571	7.572	(1.014)	110384	80.0000	78.64
83	Dibenzofuran	168	7.705	7.706	(1.032)	991740	80.0000	79.76 (q)
84	4-Nitrophenol	109	7.675	7.675	(1.028)	102888	80.0000	87.65(Q)
86	2,4-Dinitrotoluene	165	7.768	7.758	(1.040)	246471	80.0000	82.83
91	Fluorene	166	8.131	8,131	(1.089)	834271	80.0000	81.03
92	Diethylphthalate	149	8.100	8.100	(1.085)	792071	80.0000	79.50
93	4-Chlorophenyl-phenylether	204	8.151	8,152	(1.092)	340608	80.0000	79.56
94	4-Nitroaniline	138	8,224	8.214	(1.101)	235541	80.0000	83.97
97	4,6-Dinitro-2-methylphenol	198	8.276	8.276	(0.880)	134784	80.0000	76.76
98	N-Nitrosodiphenylamine	169	8.317	8.317	(0.884)	695826	93.7000	96.08
100	Azobenzene	77	8.348	8.348	(0.888)	765053	80.0000	81.43
101	4-Bromophenyl-phenylether	248	8.794	8.794	(0.935)	187352	80.0000	80.33
108	Hexachlorobenzene	284	8.981	8.981	(0.955)	207655	80.0000	79,72
110	Pentachlorophenol	266	9.240	9.240	(0.982)	126397	80.0000	78.86
114	Phenanthrene	178	9,437	9.437	(1.003)	1188468	80.0000	78.92
115	Anthracene	178	9.509	9.499	(1.011)	1218608	80.0000	81.00
118	Carbazole	167	9.768	9.768	(1.039)	1118637	80.0000	81.39
120	Di-n-Butylphthalate	149	10.462	10.463	(1.112)	1351860	80.0000	B1.75
126	Fluoranthene	202	11.302	11.302	(1.202)	1107116	80.0000	82.05
127	Benzidine	184	11.571	11.571	(0.839)	799205	80,0000	61.12
128	Pyrene	202	11.665	11.665	(0.846)	1221015	80.0000	80.36
134	3,3'-dimethylbenzidine	212	12.867	12.867	(0.933)	715866	80.0000	82.31
136	Butylbenzylphthalate	149	12.991	12.991	(0.942)	598812	80.0000	78.63
138	Benzo(a) Anthracene	228	13.758		(0.998)	1034950	80.0000	79.92
139	Chrysene	228		13.831		1040163	80.0000	78.52
	3,3'-Dichlorobenzidine	252		13.799		392335	80.0000	80.33
	bis(2-ethylhexyl)Phthalate	149	14.110		(1.023)	820296	80.0000	78.20
142	Di-n-octylphthalate	149	15.167		(1.100)	1354893	80.0000	80.80
144	Benzo(b) fluoranthene	252	15.582	15.582		920884	80.0000	84.26 (Q)
145	Benzo(k) fluoranthene	252	15.623			1102899	80.0000	78.61(q)
	Велго(e)pyrene	252	16.007		(0.990)	936566	80.0000	82.18
148	Benzo(a)pyrene	252	16.079	16.079	(0.995)	1039045	80.0000	83.86
151	Indeno(1,2,3-cd)pyrene	276	17.799	17.800	(1.101)	811625	80.0000	80.99
152	Dibenzo(a,h)anthracene	278	17.851	17.841	(1.105)	926841	80.0000	82.79
153	Benzo(g,h,i)perylene	276	18.235	18.235	(1.128)	982275	80.0000	81.04

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002E.D Report Date: 03-Oct-2010 11:15

						MUOMA	TS .
	QUANT SIG					CAL-AMT	ON~COL
Compounds	MASS	RT	EXP RT	RKL RT	RESPONSE	(NG)	(NG)
	13=0=	====	======		======	****	ASSESSE
M 162 benzo b,k Fluoranthene Totals	252				2023783	80.0000	81.09(A)

Page 3

- A Target compound detected but, quantitated amount exceeded maximum amount.

 Q Qualifier signal failed the ratio test.

 q Qualifier signal exceeded ratio warning limit.

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002E.D Page 1

Report Date: 02-Oct-2010 16:57

TestAmerica West Sacramento

Method 8270C

Data file: \\SV5\C\chem\sv5.i\100210.B\HSL1002E.D Lab Smp Id: HSL 080 ug/ml CS-5 Client Smp Inj Date: 02-OCT-2010 14:09

Client Smp ID: 8270F.M

Operator : KT Smp Info : HSL_080 ug/ml CS-5;1;;5;;;4 Inst ID: sv5.i

Processing Host: SV5

Misc Info: 3;;0;1 8270STD.SUB;10MSSV0311;0;8270F.M Comment: SOP SAC-MS-0005 Method: \SV5\C\chem\sv5.i\100210.B\8270f.m Meth Date: 02-Oct-2010 16:57 onishim Quant Type: Quant Type: ISTD

Cal File: AP90817D.D Cal Date : 17-AUG-2010 21:19

Als bottle: 5 Calibration Sample, Level: 5

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 1 8270STD.SUB Target Version: 4.14

								AMOUN		
			QUANT SIG					CAL-AMT	ON-	COL
Co	mpo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	{	NG)
ra #4	# # p	. «> » « • » » » » » » » » » » » » » » » » » »	====	====	*****		========	4252===	===	====
*	1	1,4-Dichlorobenzene-d4	152	3.954	3.955	(1.000)	126989	40.0000		(g)
*	2	Naphthalene-d8	136	5.374	5.374	(1.000)	553454	40.0000		
*	3	Acenaphthene-dl0	164	7.468	7.468	(1.000)	300315	40.0000		
*	4	Phenanthrene-dl0	188	9.405	9.405	(1.000)	477777	40.0000		
*	5	Chrysene-d12	240	13.789	13.779	(1.000)	486126	40.0000		
*	6	Perylene-d12	264	16.162	16.162	(1.000)	482782	40.0000		
\$	7	2-Fluorophenol	112	2.742	2.732	(0.693)	364547	80.0000	7	7.78
\$	8	Phenol-d5	99	3.612	3.613	(0.914)	459352	80.0000	7	7.07
\$	9	2-Chlorophenol-d4	132	3.758	3.758	(0.950)	399981	80.0000	7	8.71
\$	10	1,2-Dichlorobenzene-d4	152	4.162	4.162	(1.052)	252754	80.0000	7	9.68
\$	11	Nitrobenzene-d5	82	4.587	4.576	(0.853)	371989	80.0000	7	5.79
\$	1.2	2-Fluorobiphenyl	172	6.680	6.680	(0.895)	755916	80.0000	7	8.58
\$	1.3	2,4,6-Tribromophenol	330	8.483	8.473	(1.136)	107063	80.0000	9	0,29
\$	1.4	Terphenyl-d14	244	12.017	12.017	(0.871)	758812	80.0000	8	0.04
	15	N-Nitrosodimethylamine	74	1.706	1.706	(0.431)	236570	80.0000	7	6.48
	16	Pyridine	79	1.726	1.726	(0.437)	386806	80.0000	7	5.04
	23	Aniline	93	3.654	3.654	(0.924)	583513	80.0000	7	B - 07 (Q)
	24	Phenol	94	3.623	3.623	(0.916)	524930	80.0000	8	2.81(Q)
	25	Bis(2-chloroethyl)ether	93	3.716	3.716	(0.940)	362044	80.0000	7	5.18
	27	2-Chlorophenol	128	3.768	3.768	(0.953)	398210	80.0000	7	9.39
	28	1,3-Dichlorobenzene	146	3.923	3.923	(0.992)	428311	80.0000	7	7.27
	29	1,4-Dichlorobenzene	146	3 975	3.975	(1.005)	452588	80.0000	8	0.76
	30	Benzyl Alcohol	108	4.120	4.120	(1.042)	273768	80.0000	7	9.43
	31	1,2-Dichlorobenzene	146	4.172	4.172	(1.055)	415025	80.0000	7	8.14
	32	2-Methylphenol	108	4.255	4.255	(1.076)	369704	80.0000	7	8.90
	33	2,2'-oxybis(1-Chloropropane)	45	4.296	4.297	(1.086)	576575	80.0000	6	4.50
	34	4-Methylphenol	108	4.421	4.421	(1.118)	387704	80.0000	7	7.63
	36	Hexachloroethane	117	4.504	4.504	(1,139)	153472	80.0000	7	7.62
	37	N-Nitrosodinpropylamine	70	4.442	4.442	(1.123)	265916	80.0000	7	6.06
	42	Nitrobenzene	77	4.597	4.597	(0.855)	369479	80.0000	7	5.74
	44	Isophorone	82	4.856	4.856	(0.904)	704520	80.0000	7	6.17
	45	2-Nitrophenol	139	4.960	4.960	(0.923)	221628	80.0000	8	3.21
	46	2,4-Dimethyphenol	107	5.011	5.012	(0 933)	385073	80.0000	7	7.86
		- -								

						AMOU	NTS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REI	RT RESPONSE	(NG)	(NG)
E E # # #	************		====			=======	:=====
47	Bis(2-chloroethoxy)methane	93	5,125	5.126 (0.95	426158	80.0000	77.39
49	2,4-Dichlorophenol	162	5.229	5.229 (0.97	73) 301897	80.0000	82.94
50	Benzoic Acid	122	5.125	5.115 (0.95	34) 232711	80.0000	84.41
51	1,2,4-Trichlorobenzene	180	5.322	5.322 (0.99	00) 323096	80.0000	81.88
52	Naphthalene	128	5.395	5.395 (1.00	1216155	80.0000	78.94
54	4-Chloroaniline	127	5.488	5.488 (1.02	1) 484619	80.0000	79.97
57	Hexachlorobutadiene	225	5.613	5.613 (1.04	4) 159233	80.0000	84.81
60	4-Chloro-3-Methylphenol	107	6.069	6.069 (1.12	9) 335335	80.0000	80.06
63	2-Methylnaphthalene	142	6.203	6.203 (1.15	781029	80.0000	63.09
66	Hexachlorocyclopentadiene	237	6.483	6.483 (0.86	8) 181608	80.0000	79.29
69	2,4,6-Trichlorophenol	196	6.576	6.576 (0.88	1) 194036	80.0000	85.34
	2,4,5-Trichlorphenol	196	6 628	6.628 (0.88		80.0000	84.74
	2-Chloronaphthalene	162	6.784	6.784 (0.90	•	80.0000	79.34
	2-Nitroaniline	65	6.949	6.949 (0.93	•	80.0000	74.17
-	Dimethylphthalate	163	7,229	7.229 (0.96	-	80.0000	81.01
	Acenaphthylene	152	7.281	7.281 (0.97		80.0000	80.88
	2,6-Dinitrotoluene	165	7.302	7.302 (0.97		80.0000	86.31
	3-Nitroaniline	138		7.447 (0.99			80.44
	Acenaphthene	153	7.457			80.0000 80.0000	
	•		7.509	7.509 (1.00	•		77.58
	2,4-Dinitrophenol Dibenzofuran	184	7.571	7.571 (1.01	,	80.0000	81.10
		168	7.706	7.706 (1.03		80.0000	80.04(q)
	4-Nitrophenol	109	7.675	7.675 (1.02		80.0000	81.61(Q)
	2,4-Dinitrotoluene	165	7.768	7.768 (1.04		80.0000	84.49
	Fluorene	166	8.131	8.131 (1.08		80.0000	82.18
	Diethylphthalate	149	8.100	8.100 (1.08		80.0000	77.92
	4-Chlorophenyl-phenylether	204	8.151	8.152 (1.09	2) 340608	80.0000	81.38
94	4-Nitroaniline	138	8.224	8.214 (1.10	1) 235541	80.0000	83.45
97	4,6-Dinitro-2-methylphenol	198	8.276	8.276 (0.88	0) 134784	80.0000	75.96
98	N-Nitrosodiphenylamine	169	8.317	8.317 (0.88	4) 695826	93.7000	93.46
100	Azobenzene	77	8.348	8.348 (0.88	8) 765053	80.0000	73.86
101	4-Bromophenyl-phenylether	248	8.794	8.794 (0.93	5) 187352	80.0000	81.15
108	Hexachlorobenzene	284	8.981	8.981 (0.95	5) 207655	80.0000	83.28
110	Pentachlorophenol	266	9.240	9.240 (0.98	2) 126397	80.0000	84.45
114	Phenanthrene	178	9.437	9.437 (1.00	3) 1188468	80.0000	79.75
115	Anthracene	178	9.509	9.499 (1.01	1) 1218608	80.0000	81.25
118	Carbazole	167	9.768	9.768 (1.03	9) 1118637	80.0000	80.19
120	Di-n-Butylphthalate	149	10.462	10.463 (1.12	2) 1351860	80.0000	80.14
126	Fluoranthene	202	11.302	11.302 (1.20	2) 1107116	80.0000	82.54
127	Benzidine	184	11.571	11.571 (0.83	9) 799205	80.0000	80.06
128	Pyrene	202	11.665	11.665 (0.84	6) 1221015	80.0000	80.33
	3,3'-dimethylbenzidine	212	12,867	12.867 (0.93		80.0000	83.56
	Butylbenzylphthalate	149	12.991	12.991 (0.94		80.0000	77.10
	Benzo (a) Anthracene	228	13.758	13.758 (0.99		80.0000	80.70
	Chrysene	228	13.830	13.831 (1.00		80.0000	
	3.3'-Dichlorobenzidine	252	13.799	13.799 (1.00		80.0000	78.06
	bis (2-ethylhexyl) Phthalate	149	14.110				83.60
	Di-n-octylphthalate					80.0000	76.71
		149		15.167 (1.10		80.0000	79.24
	Benzo (b) fluoranthene	252		15.582 (0.96		80.0000	80.44 (Q)
	Benzo(k) fluoranthene	252	15.623			80.0000	82.44 (q)
	Benzo(e) pyrene	252	16.007			80.0000	82.53
	Benzo(a) pyrene	252	16.079	16.079 (0.99		80.0000	83.39
	Indeno(1,2,3-cd)pyrene	276	17,799	17.800 (1.10	•	80.0000	73.62
152	Dibenzo(a,h)anthracene	278	17.851	17.841 (1.10	5) 926841	80.0000	82.04
153	Benzo(g,h,i)perylene	276	18.235	18.235 (1.12	8) 982275	80.0000	81.10

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002E.D

Report Date: 02-Oct-2010 16:57

Page 3

- A Target compound detected but, quantitated amount exceeded maximum amount.
- Q Qualifier signal failed the ratio test.
- q Qualifier signal exceeded ratio warning limit.

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002E.D

Report Date: 03-Oct-2010 11:15

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: sv5.i

Lab File ID: HSL1002E.D

Lab Smp Id: HSL 080 ug/ml CS-5

Analysis Type: SV

Quant Type: ISTD

Operator: KT Method File: \\sv5\c\chem\sv5.i\100210.B\8270f.m Misc Info: 3;;0;1_8270STD.SUB;10MSSV0311;0;8270F.M

Test Mode:

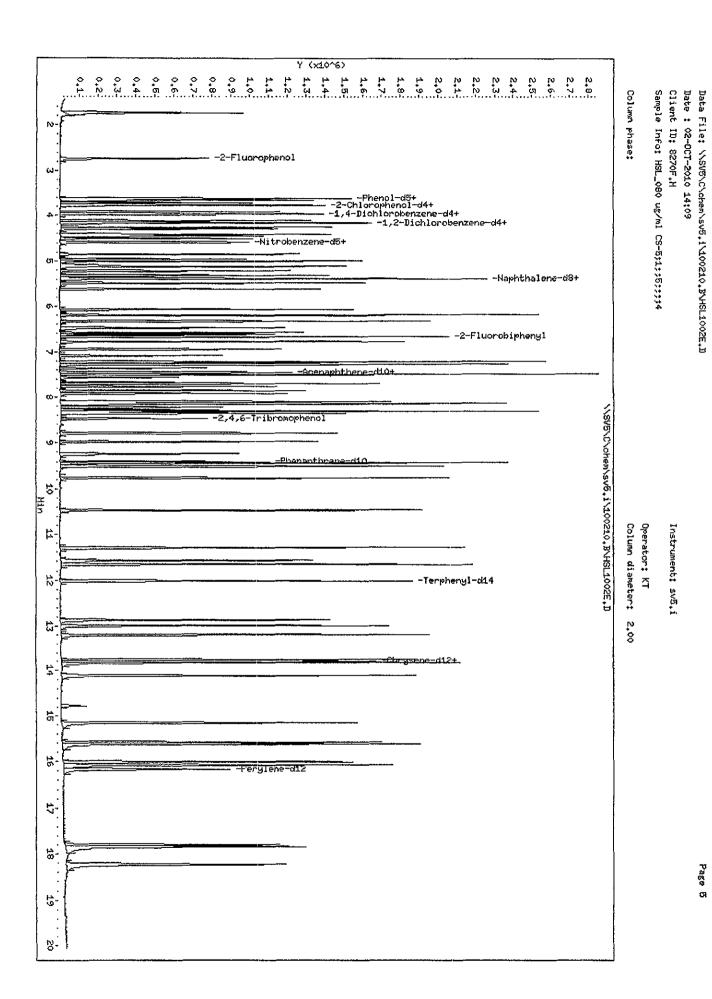
Use Initial Calibration Level 4.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 1,4-Dichlorobenze 2 Naphthalene-d8	122625 530514	61313 265257	245250 1061028	126989 553454	
3 Acenaphthene-d10 4 Phenanthrene-d10	282538 462722		565076 925444	300315 477777	
5 Chrysene-d12 6 Perylene-d12	435850 422284		871700 844568	486126 482782	1

		RT I	IMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	==========	========	\======{
1 1,4-Dichlorobenze	3.96	3.46	4.46	3.95	-0.00
2 Naphthalene-d8	5.37	4.87	5.87	5.37	-0.00
3 Acenaphthene-dl0	7.47	6.97	7.97	7.47	-0.00
4 Phenanthrene-d10	9.41	8.91	9.91	9.41	-0.00
5 Chrysene-dl2	13.78	13.28	14.28	13.79	0.07
6 Perylene-d12	16.16	15.66	16.66	16.16	-0.00
	····	<u> </u>			

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT. Page 1


Calibration Date: 02-OCT-2010

Calibration Time: 13:44

Client Smp ID: 8270F.M

Level:

Sample Type:

Report Date: 03-Oct-2010 11:15

TestAmerica West Sacramento

Method 8270C

Data file: \\sv5\c\chem\sv5.i\100210.B\HSL1002F.D Lab Smp Id: HSL 120 ug/ml CS-6 Client Smp

Client Smp ID: 8270F.M

Inj Date : 02-OCT-2010 14:35

Operator : KT Inst ID: sv5.i

Smp Info : HSL 120 ug/ml CS-6;1;;6;;;4

Misc Info: 3;;0;1 8270STD.SUB;10MSSV0312;0;8270F.M

Comment : SOP SAC-MS-0005

Method : \\sv5\c\chem\sv5.i\100210.B\8270f.m

Meth Date : 03-Oct-2010 11:09 onishim Quant 1

Cal Date : 17-AUG-2010 21:19 Cal Fil Quant Type: ISTD

Cal File: AP90817D.D

Calibration Sample, Level: 6

Als bottle: 6
Dil Factor: 1.00000
Integrator: Falcon
Target Version: 4.14 Compound Sublist: 1_8270STD.SUB

Processing Host: SACP307UM

					JOMA	JNTS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	exp rt ri	el RT Response	(NG)	(NG)	
*****	====	2575				*****	
* 1 1,4-Dichlorobenzene-d4	152	3.955	3.955 (1.6	000) 137751	40.0000	(Q)	
* 2 Naphthalene-d8	136	5.374	5.374 (1.0	000) 591665	40.0000		
* 3 Acenaphthene-d10	164	7.468	7.468 (1.0	000) 322596	40.0000		
* 4 Phenanthrene-d10	188	9.406	9.405 (1.0	000) 515607	40.0000		
* 5 Chrysene-dl2	240	13.789	13.779 (1.0	000) 509570	40.0000		
* 6 Perylene-d12	264	16.173	16.162 (1.0	000) 539588	40.0000		
\$ 7 2-Fluorophenol	112	2.732	2.732 (0.6	588028	120.000	121.1	
\$ 8 Phenol-d5	99	3.613	3.613 (0.9	914) 759824	120.000	124.4	
\$ 9 2-Chlorophenol-d4	132	3.758	3.758 (0.5	950) 652805	120.000	121.7	
\$ 10 1,2-Dichlorobenzene-d4	152	4.162	4.162 (1.4	052) 407247	120.000	120.0	
\$ 11 Nitrobenzene-d5	82	4.587	4.576 (0.8	853) 623501	120.000	124.4	
\$ 12 2-Fluorobiphenyl	172	6.680	6,680 (0.8	895) 1255441	120.000	120.3	
\$ 13 2,4,6-Tribromophenol	330	8.483	8.473 (1.3	136) 179055	120.000	127.7	
\$ 14 Terphenyl-d14	244	12.017	12.017 (0.8	871) 1251844	120.000	124.7	
15 N-Nitrosodimethylamine	74	1.706	1.706 (0.4	431) 388111	120.000	122.3 (g)	
16 Pyridine	79	1,727	1.726 (0.4	437) 633334	120.000	119.3(Q)	
23 Aniline	93	3.654	3.654 (0.5	924) 964533	120.000	124.1(Q)	
24 Phenol	94	3.623	3.623 (0.5	916) 851671	120.000	121.4(Q)	
26 Bis(2~chloroethyl)ether	93	3.716	3.716 (0.9	940) 596323	120.000	121.2	
27 2-Chlorophenol	128	3.768	3.768 (0.9	953) 653244	120.000	121.3	
28 1,3-Dichlorobenzene	146	3.924	3.923 (0.9	992) 712032	120.000	121,4	
29 1,4-Dichlorobenzene	146	3.975	3.975 (1.0	005) 740915	120.000	120.8	
30 Benzyl Alcohol	108	4.120	4.120 (1.0	042) 450249	120.000	124,4	
31 1,2-Dichlorobenzene	146	4.172	4.172 (1.0	055) 679448	120.000	120.5	
32 2-Methylphenol	108	4.255	4.255 (1.0	076) 603987	120.000	122.6	
33 2,2'-oxybis(1-Chloropropane)	45	4.297	4.297 (1.0	086) 941514	120.000	120.2	
34 4-Methylphenol	108	4.421	4.421 (1.	118) 644202	120.000	123.1	
36 Hexachloroethane	117	4.504	4.504 (1.3	139) 245394	120.000	117.5	
37 N-Nitrosodinpropylamine	70	4.452	4.442 (1.3	126) 428242	120.000	122.9	
42 Nitrobenzene	77	4,607	4.597 (0.8	857) 593736	120.000	121.2	
44 Isophorone	\$ 2	4.867	4.856 (0.	906) 1179801	120.000	125.2	<u>.</u>
45 2-Nitrophenol	139	4.960	4.960 (0.5	923) 367467	120.000	1.26 4	1
46 2,4-Dimethyphenol	107	5.012	5.012 (0.5	933) 638328	120.000	123.6	W
46 2,4-Dimethyphenol	107	5.012	5.012 (0.9	933) 638328	120.000	123.6	10-3

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(MG)	(NG)
=====		====	====	======			EE====	2040404
47	Bis(2-chloroethoxy)methane	93	5.126	5.126	(0.954)	707504	120.000	122.9
49	2,4-Dichlorophenol	162	5.229	5.229	(0.973)	500185	120.000	125.2
50	Benzoic Acid	122	5.146	5.115	(0.958)	395333	120.000	138.3
51	1,2,4-Trichlorobenzene	180	5.333	5.322	(0.992)	531764	120.000	122.9
52	Naphthalene	128	5.395	5.395	(1.004)	2020315	120.000	123.7
54	4-Chloroaniline	127	5.488	5.488	(1.021)	797064	120.000	124.5
57	Hexachlorobutadiene	225	5.613	5.613	(1.044)	255231	120.000	120.5
60	4-Chloro-3-Methylphenol	107	6.069	6.069	(1.129)	563840	120.000	126.4
63	2-Methylnaphthalene	142	6.203	6.203	(1.154)	1263302	120.000	123.I
66	Hexachlorocyclopentadiene	237	6.483	6.483	(0.868)	312226	120.000	129.7
69	2,4,6-Trichlorophenol	196	6.587	6.576	(0.882)	331223	1.20.000	128.7
70	2,4,5-Trichlorphenol	196	6.628	6.628	(888.0)	343374	120.000	123.3
71	2-Chloronaphthalene	162	6.784	6.784	(806.0)	1107604	120.000	122.0
73	2-Nitroaniline	65	6.950	6.949	(0.931)	346408	120.000	125.9
76	Dimethylphthalate	163	7.229	7.229	(0.968)	1286101	120.000	123.0
77	Acenaphthylene	152	7,281	7,281	(0.975)	1933504	120.000	122.3
79	2,6-Dinitrotoluene	165	7.302	7.302	(0.978)	311050	120.000	127.7
80	3-Nitroaniline	138	7.457	7.447	(0.999)	382649	120.000	125.9
81	Acenaphthene	153	7.509	7.509	(1.006)	1207516	120,000	120.0
82	2,4-Dinitrophenol	184	7.582	7.572	(1.015)	199007	120.000	124.7
83	Dibenzofuran	168	7.706	7.706	(1.032)	1630240	120.000	122.0(q)
84	4-Nitrophenol	109	7 675	7.675	(1.028)	161169	120.000	127.8(Q)
86	2,4-Dinitrotoluene	165	7.768	7.768	(1.040)	409418	120.000	128.1
91	Fluorene	166	8.131	8.131	(1.089)	1333949	120,000	120.6
92	Diethylphthalate	149	8.110	8.100	(1.086)	1329206	120.000	124.2
	4-Chlorophenyl-phenylether	204	8,152	8.152	(1.092)	558370	120.000	121.4
	4-Nitroaniline	138	8.224		(1.101)	378421	120.000	125.6
97	4,6-Dinitro-2-methylphenol	198	8.286		(0.881)	236477	120.000	122.1
	N-Nitrosodiphenylamine	169	8.317		(0.884)	1123239	141.000	143.7
	Azobenzene	77	8.359		(0.889)	1266722	120.000	124.9
	4-Bromophenyl-phenylether	248	8,794		(0.935)	318358	120.000	126,5
	Hexachlorobenzene	284	8,981		(0.955)	335728	120.000	119.4
	Pentachlorophenol	266	9.240		(0.982)	215360	120.000	122.2
	Phenanthrene	178	9.437		(1.003)	1942962	120.000	119.6
	Antiracene	178	9.509		(1.003)	2014183	120.000	124.0
	Carbatole	167	9.768		(1.031)	1828217	120.000	123.3
	Di-n-Butylphthalate	149	10.463		(1.112)	2225048	120.000	124.7
	Fluoranthene	202	11.302		(1.202)	1829791	120.000	125.6
	Benzidine	184	11.582		(0.840)	1320429	120.000	127.8
	Pyrene	202	11.665		(D.846)	1963825	120.000	127.8
	3,3'-dimethylbenzidine	212	12.877		(D.934)	1214012	120.000	133.2
	Butylbenzylphthalate	149	12.991			997218	120.000	133.2
	Benzo (a) Anthracene	228		13.758		1694281	120.000	
	Chrysene	228			(1.003)			124.8
	3,3'-Dichlorobenzidine	252	13.831 13.799		(1.001)	1715841 653016	120.000	123.6
	bis(2-ethylhexyl)Phthalate						120.000	127.5
	Di-n-octylphthalate	149	14.110	15.167	(1.023)	1368794	120.000	124.5
	Benzo (b) fluoranthene	149	15.167			2256614	120.000	128.4
		252	15.592			1475217	120.000	120.8(Q)
	Benzo(k) fluoranthene	252	15.623			1935987	120.000	123.5(q)
	Benzo(e) pyrene	252	16.007			1569049	120.000	123.2
	Benzo(a) pyrene	252	16.079			1720343	120.000	124.2
	Indeno(1,2,3-cd)pyrene	276	17.810			1517263	120.000	135.5 (M)
	Dibenzo(a,h)anthracene	278	17.851			1634040	120.000	130.6
153	Benzo(g,h,i)perylene	276	18.245	18.235	(1.128)	1706123	120.000	125.9

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002F.D

Report Date: 03-Oct-2010 11:15

Compounds MASS RT EXP RT RESPONSE (NG) (NG)

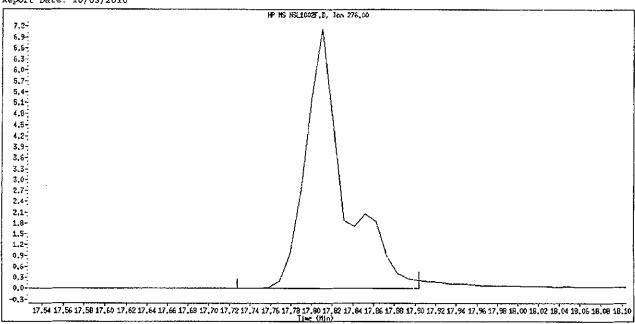
M162 benzo b,k Fluoranthene Totals 252 $\frac{AMOUNTS}{CAL-AMT} ON-COL$ RESPONSE (NG) (NG)

122.3 (A)

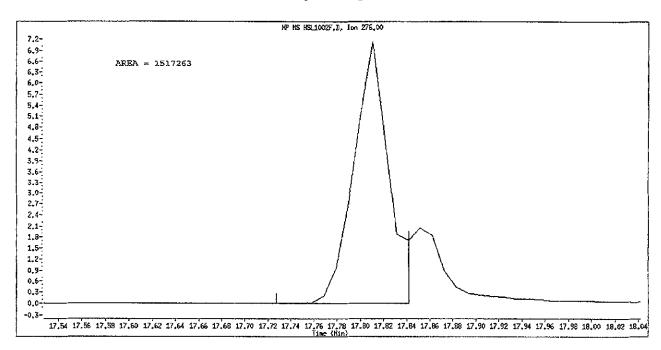
Page 3

- A Target compound detected but, quantitated amount exceeded maximum amount.
- Q Qualifier signal failed the ratio test.
- M Compound response manually integrated.
- q Qualifier signal exceeded ratio warning limit.

Data File Name: HSL1002F.D


Ing. Date and Time: 02-OCT-2010 14:35

Instrument ID: sv5.1 Client ID: 8270F.M


Compound Name: Indeno(1,2,3-cd)pyrene

CAS #: 193-39-5

Report Date: 10/03/2010

Original Integration

Manual Integration

Manually Integrated By: truongk

Manual Integration Reason: Poor Chromatography

TestAmerica West Sacramento

Method 8270C

Data file: \\SV5\C\chem\sv5.i\100210.B\HSL1002F.D Lab Smp Id: HSL_120 ug/ml CS-6 Client Smp Client Smp ID: 8270F.M

Inj Date : 02-OCT-2010 14:35 Operator : KT Smp Info : HSL_120 ug/ml CS-6;1;;6;;;;4 Inst ID: sv5.i

Misc Info: $3; \overline{0}; 1_8270$ STD.SUB; 10MSSV0312; 0; 8270F.M

Comment : SOP SAC-MS-0005

Method : \\SV5\C\chem\sv5.i\\100210.B\\8270f.m

Meth Date : 02-Oct-2010 16:57 onishim Quant 1
Cal Date : 17-AUG-2010 21:19 Cal Fil Quant Type: ISTD

Cal File: AP90817D.D

Als bottle: 6
Dil Factor: 1.00000
Integrator: Falcon Calibration Sample, Level: 6

Compound Sublist: 1 8270STD.SUB

Target Version: 4.14 Processing Host: SV5

								IUOMA	rts	
			QUANT SIG					CAL-AMT	ON-COL	
Co	oqm	unds	Mass	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)	
==	:## =		4===	====			**=====		COURSE	
*	1.	1,4-Dichlorobenzene-d4	152	3.955	3.955	(1.000)	137751	40.0000		(Q)
*	2	Naphthalene-d8	136	5.374	5.374	(1.000)	591665	40.0000		
*	3	Acenaphthene-d10	164	7.468	7.468	(2.000)	322596	40.0000		
*	4	Phenanthrene-d10	188	9.406	9.405	(1.000)	515607	40.0000		
*	5	Chrysene-d12	240	13.789	13.779	(1.000)	509570	40.0000		
*	6	Perylene-d12	264	16.173	16.162	(1.000)	539588	40.0000		
\$	7	2-Fluorophenol	112	2.732	2.732	(0.691)	588028	120.000	115.7	
\$	8	Phenol-d5	99	3.613	3.613	(0.914)	759824	120.000	117.5	
\$	9	2-Chlorophenol-d4	132	3.758	3.758	(0.950)	652805	120.000	118.4	
\$	10	1,2-Dichlorobenzene-d4	152	4.162	4.162	(1.052)	407247	120.000	118.4	
\$	12	Nitrobenzene-d5	82	4.587	4.576	(0.853)	623501	120.000	118.8	
\$	12	2-Fluorobiphenyl	172	6.680	6.680	(0.895)	1255441	120.000	121.5	
\$	13	2,4,6-Tribromophenol	330	8.483	8.473	(1.136)	179055	120.000	140.6	
\$	14	Terphenyl-d14	244	12.017	12.017	(0.871)	1251844	120.000	126.0	
	15	N-Nitrosodimethylamine	74	1.706	1.706	(0.431)	388111	120.000	115.7	
	16	Pyridine	79	1.727	1.726	(0.437)	633334	120.000	113.3	
	23	Aníline	93	3.654	3.654	(0.924)	964533	120.000	119.0	(Q)
	24	Phenol	94	3.623	3.623	(0.916)	851671	120.000	123.8	(Q)
	26	Bis(2-chloroethyl)ether	93	3.716	3.716	(0.940)	596323	120.000	114,2	
	27	2-Chlorophenol	128	3.768	3.768	(0.953)	653244	120.000	120.0	
	28	1,3-Dichlorobenzene	146	3.924	3,923	(0.992)	712032	120.000	118.4	
	29	1,4-Dichlorobenzene	146	3.975	3.975	(1.005)	740915	120.000	121.9	
	30	Benzyl Alcohol	108	4.120	4.120	(1.042)	450249	120.000	120.4	
	31.	1,2-Dichlorobenzene	146	4.172	4.172	(1.055)	679448	120.000	117.9	
	32	2-Methylphenol	108	4.255	4.255	(1.076)	603987	120.000	118.8	
	33	2,2'-oxybis(1-Chloropropane)	45	4.297	4.297	(1.086)	941514	120.000	97.10	
	34	4-Methylphenol	108	4.421	4.421	(1.118)	644202	120.000	118.9	
	36	Hexachloroethane	117	4.504	4.504	(1.139)	245394	120.000	114.4	
	37	N-Nitrosodinpropylamine	70	4.452	4.442	(1.126)	428242	120.000	112.9	
	42	Nitrobenzene	77	4.607	4.597	(0.857)	593736	120.000	113.8	
	44	Isophorone	82	4.867	4.856	(0.906)	1179801	120.000	119.3	
	45	2-Nitrophenol	139	4.960	4.960	(0.923)	367467	120.000	129.0	
	46	2,4-Dimethyphenol	107	5.012	5.012	(0.933)	638328	120.000	120.7	

							AMOUN	rs
		QUANT SIG					CAL-AMT	ON-COL
Compo	nuga	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
======	===在中华 10 2 === = = 中平 14 15 15 15 15 15 15 15 15 15 15 15 15 15	====	****	*******		=:=######	=======	***
47	Bis(2-chloroethoxy)methane	93	5.126	5.126	(0.954)	707504	120.000	120.2
49	2,4-Dichlorophenol	162	5.229	5.229	(0.973)	500185	120.000	128.5
50	Benzoic Acid	122	5.146	5.115	(0.958)	395333	120.000	134.1
51	1,2,4-Trichlorobenzene	180	5.333	5.322	(0.992)	531764	120.000	126.0
52	Naphthalene	128	5.395	5.395	(1.004)	2020315	120.000	122.7
54	4-Chloroaniline	127	5.488	5.488	(1.021)	797064	120.000	123.0
57	Hexachlorobutadiene	225	5.613	5.613	(1.044)	255231	120.000	127.2
60	4-Chloro-3-Methylphenol	107	6.069	6.069	(1.129)	563840	120.000	125.9
63	2-Methylnaphthalene	142	6.203	6.203	(1.154)	1263302	120.000	125.7
66	Hexachlorocyclopentadiene	237	6.483	6.483	(0.868)	312226	120.000	126.9
69	2,4,6-Trichlorophenol	196	6.587	6.576	(0.882)	331223	120.000	135.6
70	2,4,5-Trichlorphenol	196	6.628	6.628	(0.888)	343374	120.000	128.0
71	2-Chloronaphthalene	162	6.784	6.784	(0.908)	1107604	120.000	122.5
73	2-Nitroaniline	65	6.950	6.949	(0.931)	346408	120.000	114.4
76	Dimethylphthalate	163	7.229	7.229	(0.968)	1286101	120.000	123.1
77	Acenaphthylene	152	7.281	7.281	(0.975)	1933504	120.000	122.3
79	2,6-Dinitrotoluene	165	7.302	7.302	(0.978)	311050	120.000	133.0
80	3-Nitroaniline	138	7.457	7.447	(0.999)	382849	120.000	123.4
81	Acenaphthene	153	7.509	7.509	(1.006)	1207616	120.000	119.9
82	2,4-Dinitrophenol	184	7.582	7.571	(1.015)	199007	120.000	127.2
83	Dibenzofuran	168	7.706	7.706	(1.032)	1630240	120.000	122.5 (q)
84	4-Nitrophenol	109	7.675	7.675	(1.028)	161169	120.000	119.0(Q)
6€	2,4-Dinitrotoluene	165	7.768	7.768	(1.040)	409418	120.000	130.6
91	Fluorene	166	8.131	8.131	(1.089)	1333949	120.000	122.3
92	Diethylphthalate	149	8.110	8.100	(1.086)	1329206	120.000	121.7
93	4-Chlorophenyl-phenylether	204	8.152	8.152	(1.092)	558370	120.000	124.2
94	4-Nitroaniline	138	8.224	8.214	(1.101)	378421	120.000	124.8
97	4,6-Dinitro-2-methylphenol	198	8.286	8.276	(0.881)	236477	120.000	120.3
98	N-Nitrosodiphenylamine	169	8.317	8.317	(0.884)	1123239	141.000	139.8
100	Azobenzene	77	8.359	8.348	(0.889)	1266722	120.000	113.3
101	4-Bromophenyl-phenylether	248	8.794	8.794	(0.935)	31,8358	120.000	127.8
108	Hexachlorobenzene	284	8.981	8.981	(0.955)	335728	120.000	124.8
110	Pentachlorophenol	266	9.240	9.240	(0.982)	215360	120.000	133.3
114	Phenanthrene	178	9.437	9.437	(1.003)	1942962	120.000	120.8
115	Anthracene	178	9.509	9.499	(1.011)	2014183	120.000	124,4
118	Carbazole	167	9.768	9.768	(1.039)	1828217	120.000	121.4
120	Di-n-Butylphthalate	149	10.463	10.463	(1.112)	2225048	120.000	122.2
126	Pluoranthene	202	11.302	11.302	(1.202)	1829791	120.000	126.4
127	Benzidine	184	11.582	11.571	(0.840)	1320429	120.000	126.2
128	Pyrene	202	11.665	11.665	(0.846)	1963825	120.000	123.2
134	3,3'-dimethylbenzidine	212	12,877	12.867	(0.934)	1214012	120.000	135.2
136	Butylbenzylphthalate	149	12.991	12.991	(0.942)	997218	120.000	122.5
138	Benzo (a) Anthracene	228	13.758	13.758	(0.998)	1694281	120.000	126.0
139	Chrysene	228	13.831	13.831	(1.003)	1715841	120.000	122.8
140	3,3'-Dichlorobenzidine	252	13.799	13.799	(1.001)	653016	120.000	132.7
141	bis(2-ethylhexyl)Phthalate	149	14.110		(1.023)	1368794	120.000	122.1
	Di-n-octylphthalate	149	15.167		(1.100)	2256614	120.000	125.9
	Benzo (b) fluoranthene	252	15.592	15.582		1475217	120.000	115.3(Q)
	Benzo(k) fluoranthene	252	15.623	15.623		1935987	120.000	129.5(g)
	Benzo (e) pyrene	252	16.007	16.007		1569049	120.000	123.7
	Benzo(a) pyrene	252	16.079	16.079		1720343	120.000	123.5
	Indeno(1,2,3-cd)pyrene	276	17.810	17.800		1867193	120.000	151.5
	Dibenzo(a,h)anthracene	278	17.851	17.841		1634040	120.000	
	Benzo (g, h, i) perylene				-			129.4
103	penzo (g, m, z) perytene	276	18.245	18.235	(1.1∠8)	1706123	120.000	126.0

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002F.D Report Date: 02-Oct-2010 16:57

Page 3

						AMOUNTS				
	QUANT SIG					CAL	-AMT	ON-	COL	
Compounds	MASS	RT	EXP RT	REL RT	response	(NG)	(NG)	
						===	====	===		
M 162 benzo b,k Fluoranthene Totals	252				3411204	120	.000	1	22.9 (A	()

- A Target compound detected but, quantitated amount exceeded maximum amount.
 Q Qualifier signal failed the ratio test.
 q Qualifier signal exceeded ratio warning limit.

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002F.D

Report Date: 03-Oct-2010 11:15

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: sv5.i

Lab File ID: HSL1002F.D

Lab Smp Id: HSL_120 ug/ml CS-6 Analysis Type: SV

Quant Type: ISTD

Operator: KT

Method File: \\sv5\c\chem\sv5.i\100210.B\8270f.m Misc Info: 3;;0;1_8270STD.SUB;10MSSV0312;0;8270F.M

Test Mode:

Use Initial Calibration Level 4.

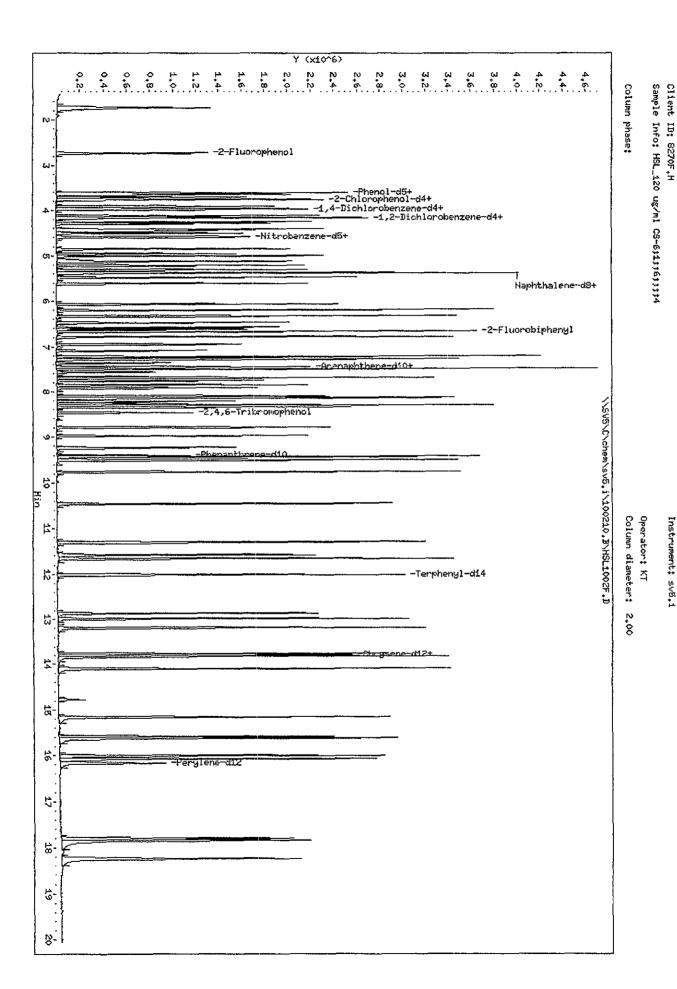
		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
1 1,4-Dichlorobenze	122625	61313	245250	137751	12.34
2 Naphthalene-d8	530514	265257	1061028	591665	11.53
3 Acenaphthene-d10	282538	141269	565076	322596	14.18
4 Phenanthrene-dl0	462722	231361	925444	515607	11.43
5 Chrysene-d12	435850	217925	871700	509570	16.91
6 Perylene-d12	422284	211142	844568	539588	27.78

COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	========	=========	========	======
1 1,4-Dichlorobenze	3.96	3.46	4.46	3.96	0.00
2 Naphthalene-d8	5.37	4.87	5.87	5.37	0.00
3 Acenaphthene-d10	7.47	6.97	7.97	7.47	0.00
4 Phenanthrene-d10	9.41	8.91	9.91	9.41	0.00
5 Chrysene-d12	13.78	13.28	14.28	13.79	0.08
6 Perylene-d12	16.16	15.66	16,66	16.17	0.06
•					

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = \div 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Page 1


Calibration Date: 02-OCT-2010

Calibration Time: 13:44

Client Smp ID: 8270F.M

Level:

Sample Type:

Page 5

Date : 02-00T-2010 14:35

Data File: \\SVS\C\ohem\sv5.i\100210.B\HSL1002F.D

AMOUNTS

Report Date: 03-Oct-2010 11:16

TestAmerica West Sacramento

Method 8270C

Client Smp ID: 8270F.M

Data file: \\sv5\c\chem\sv5.i\100210.B\HSL1002G.D
Lab Smp Id: HSL 160 ug/ml CS-7 Client Smp
Inj Date: 02-OCT-2010 15:00
Operator: KT Inst ID: sv
Smp Info: HSL 160 ug/ml CS-7;1;;7;;;4
Misc Info: 3;;0;1 8270STD.SUB;10MSSV0313;0;8270F.M Inst ID: sv5.i

: SOP SAC-MS-0005 Comment

Method : \\sv5\c\chem\sv5.i\100210.B\8270f.m

Quant Type: ISTD Meth Date: 03-Oct-2010 11:09 onishim Cal File: AP90817D.D Cal Date : 17-AUG-2010 21:19

Als bottle: 7 Calibration Sample, Level: 7

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: 1 8270STD.SUB

Target Version:

Processing Host: SACP307UM

									MUUMA	TS	
			QUANT SIG					CAL-	TMA	OM-	-COT
Co	mpo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	{	NG)	(NG)
***	10 m m			II to the say				EMER		===	====
*	1	1,4-Dichlorobenzene-d4	152	3.954	3.955	(1.000)	141009	40.0	000		(Q)
*	2	Naphthalene-d8	136	5.374	5.374	(1.000)	622461	40.0	000		
*	3	Acenaphthene-d10	164	7,478	7.468	(1.000)	328259	40.0	000		
*	4	Phenanthrene-d10	188	9.405	9.405	(1.000)	532284	40.0	000		
*	5	Chrysene-d12	240	13,789	13.779	(1.000)	539557	40.0	000		
*	6	Perylene-dl2	264	16.172	16.162	(1.000)	560436	40.0	000		
\$	7	2-Fluorophenol	112	2.732	2.732	(0.691)	810154	160.	000	3	163.0(A)
\$	8	Phenol-d5	99	3.623	3,613	(0.916)	1035724	160.	000	3	l65.7(A)
\$	9	2-Chlorophenol-d4	132	3.757	3.758	(0.950)	890073	160.	000	3	L62.2(A)
\$	10	1,2-Dichlorobenzene-d4	152	4.162	4.162	(1.052)	557810	160.	000	1	L60.6(A)
\$	11	Nitrobenzene-d5	82	4.587	4.576	(0.853)	845796	160.	000	1	L60.4(A)
\$	12	2-Fluorobiphenyl	172	6.680	6.680	(0.893)	1707074	160.	000	3	L61.4(A)
\$	13	2,4,6-Tribromophenol	330	8.483	8.473	(1.134)	241468	160.	000	3	L69.3(A)
\$	14	Terphenyl-d14	244	12.017	12.017	(0.871)	1728892	160.	000	3	L62.7(A)
	15	N-Nitrosodimethylamine	74	1.706	1.706	(0.431)	529253	160.	000	3	L62.9 (Aq)
	16	Pyridine	79	1.726	1,726	(0.437)	860850	160.	000	1	158.4 (Q)
	23	Aniline	93	3.654	3.654	(0.924)	1318620	160	000	1	L65.8 (AQ)
	24	Phenol	94	3.633	3.623	(0.919)	1166090	160	000	3	L62.4 (AQ)
	26	Bis(2-chloroethyl)ether	93	3.716	3.716	(0.940)	813702	160.	000	1	161.6(A)
	27	2-Chlorophenol	128	3.768	3.768	(0.953)	885754	160.	000	1	L60.7(A)
	28	1,3-Dichlorobenzene	146	3,923	3,923	(0.992)	972719	160.	000	2	L62.0(A)
	29	1,4-Dichlorobenzene	146	3.975	3.975	(1.005)	1023408	160.	000	1	163.0(A)
	30	Benzyl Alcohol	108	4.120	4.120	(1.042)	617653	160	000	1	L66.7(A)
	31	1,2-Dichlorobenzene	146	4.172	4.172	(1.055)	928919	160	000	1	160.9(A)
	32	2-Methylphenol	108	4.265	4.255	(1.079)	834149	160	000	7	165.4(A)
	33	2,2'-oxybis(1-Chloropropane)	45	4.296	4.297	(1.086)	1290345	160	000	1	L61.0(A)
	34	4-Methylphenol	108	4.421	4.421	(1.118)	895481	160.	000	1	L67.2(A)
	36	Hexachloroethane	117	4.504	4.504	(1.139)	343605	160	000	1	L60.7(A)
	37	N-Nitrosodinpropylamine	70	4.452	4.442	(1.126)	590870	160	000	1	165.6 (A)
	42	Nitrobenzene	77	4.607	4.597	(0.857)	844093	160	000	1	163.8(A)
	44	Isophorone	82	4.866	4.856	(0.906)	1628636	160	000	1	164.4(A)
	45	2-Nitrophenol	139	4.960	4.960	(0.923)	510613	160	000	1	L67.0(A)
	46	2,4-Dimethyphenol	107	5.022	5.012	(0.934)	890994	160.	000	3	164.0(A)
											

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002G.D Report Date: 03-Oct-2010 11:16

							amounts		
		QUANT SIG					CAL-AMI	ON-COL	
Compo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)	
B#====		== :	====	_======		######	======	******	
47	Bis(2-chloroethoxy)methane	93	5.136	5.126	(0.956)	959710	160.000	158.5	
49	2,4-Dichlorophenol	162	5.229	5.229	(0.973)	692405	160.000	164.7(A)	
50	Benzoic Acid	122	5.167	5.115	(0.961)	552251	160.000	183.6(A)	
51	1,2,4-Trichlorobenzene	180	5.333	5.322	(0.992)	724320	160,000	159.2	
52	Naphthalene	128	5.395	5.395	(1.004)	2744968	160.000	159.7	
54	4-Chloroaniline	127	5.488	5.488	(1.021)	1092223	160.000	162.1(A)	
	Hexachlorobutadiene	225	5.612	5.613	(1.044)	360358	160.000	161.8(A)	
60	4-Chloro-3-Methylphenol	107	6.068	6.069	(1.129)	767831	160.000	163.6(A)	
63	2-Methylnaphthalene	142	6.203	6.203	(1.154)	1723402	160.000	159.6	
66	Hexachlorocyclopentadiene	237	6.483	6.483	(0.867)	435738	160.000	177.9(A)	
69	2,4,6-Trichlorophenol	196	6.587	6.576	(0.881)	441685	160.000	168.6(A)	
70	2,4,5-Trichlorphenol	196	6.628	6.628	(0.886)	474468	160.000	168.2(A)	
71	2-Chloronaphthalene	162	6.783	6.784	(0.907)	1511253	160.000	163.6(A)	
73	2-Nitroaniline	65	6.960	6.949	(0.931)	476342	160.000	170.1(A)	
76	Dimethylphthalate	163	7,229	7.229	(0.967)	1710061	160.000	160.8(A)	
77	Acenaphthylene	152	7 291	7.281	(0.975)	2665048	160.000	165.6(A)	
	2,6-Dinitrotoluene	165	7.302	7.302	(0.976)	408436	160.000	164.8(A)	
	3-Nitroaniline	138	7.457	7.447	(0.997)	520002	160.000	168.1(A)	
	Acenaphthene	153	7.509	7.509	(1.004)	1647377	160.000	160.9(A)	
	2,4-Dinitrophenol	184	7.581	7.572	(1.014)	265655	160.000	157.7	
83	Dibenzofuran	168	7.706	7.706	(1.030)	2246304	160.000	165.3(A)	
	4-Nitrophenol	109	7.685	7.675	(1.028)	228516	160.000	178.1(Ag)	
85	2,4~Dinitrotoluene	165	7.778	7 .768	(1.040)	566055	160.000	174.0(A)	
91	Fluorene	166	8.141	8.131	(1,089)	1846653	160.000	164.1(A)	
	Diethylphthalate	149	8.110	8.100	(1.085)	1813127	160.000	166.5(A)	
	4-Chlorophenyl-phenylether	204	8.151	8.152	(1.090)	757562	160.000	161.9(A)	
	4-Nitroaniline	138	8.224	8.214	(1.100)	531151	160.000	173,2(A)	
	4,6-Dinitro-2-methylphenol	198	8.286	8.276	(0.881)	324244	160.000	160.7(A)	
	N-Nitrosodiphenylamine	169	8.328	8.317	(0.885)	1542041	187.000	191.1(A)	
100	Azobenzene	77	8.359	8.348	(0.889)	1646477	160,000	157.3	
101	4-Bromophenyl-phenylether	248	8.804	8.794	(0.936)	421894	160.000	162.4(A)	
108	Hexachlorobenzene	284	8.980	8.981	(0.955)	465305	160.000	160.3(A)	
110	Pentachlorophenol	266	9.250	9.240	(0.983)	293184	160.000	159.9	
114	Phenanthrene	178	9.447	9.437	(1.004)	2695719	160.000	160.7(A)	
	Anthracene	178	9.509		(1.011)	2703105	160.000	161.3(A)	
	Carbazole	167	9.768		(1.039)	2479487	160.000	161.9(A)	
	Di-n-Butylphthalate	149	10.473	10.463		3164666	160.000	171.8(A)	
	Fluoranthene	202	11.312	11.302		2500453	160.000	166.3(A)	
	Benzidine	184	11,582	11.571		1864289	160.000	170.5(A)	
	Pyrene	202	11.664	11.665		2714930	160.000	161.0(A)	
	3.3'-dimethylbenzidine	212	12.877	12.867		1724989	160.000	178.7(A)	
	Butylbenzylphthalate	149		12,991		1401117	160.000	165.8(A)	
	Benzo (a) Anthracene	228		13.758		2393908	160.000	166.5(A)	
	Chrysene	228	13.841	13.831		2422526	160.000	164.8(A)	
	3,3'-Dichlorobenzidine	252	13.810	13.799		915413	160.000	168.9(A)	
	bis(2-ethylhexyl)Phthalate	149	14.110	14.110		1906885	160.000	163.8(A)	
	Di-n-octylphthalate	149	15.167	15.167		3253965	160.000	174.8(A)	
	Benzo (b) fluoranthene	252		15.582		2299398	160.000	181.2 (AQ)	
	Benzo(k) fluoranthene	252		15.623	•	2475935	160.000	152.0(q)	
	Benzo(e)pyrene	252	16.017	16.007		2173628	160.000	164.7(A)	
	Benzo(a)pyrene	252	16.089	16.079		2387962	160.000	166.0(A)	
	Indeno(1,2,3-cd)pyrene	276	17.820	17.800		2196805	160.000	188.8 (AM)	
	Dibenzo(a, h) anthracene	278		17.841		2250528	160 000	173.2(A)	
153	Benzo(g,h,i)perylene	276	18.255	18.235	(1.129)	2332007	160.000	165.7(A)	

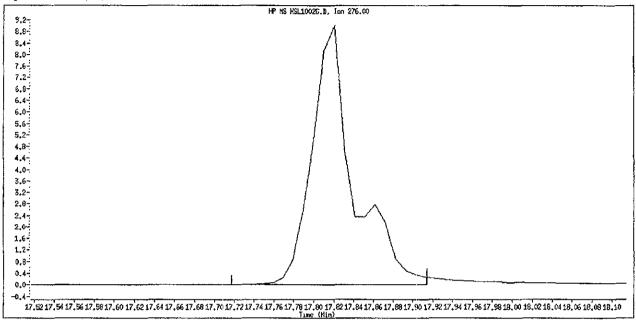
Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002G.D Report Date: 03-Oct-2010 11:16

						AMOUNTS				
	QUANT SIG					CAI	L-AMT	ON-	COL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	-{	NG)	
元 12 22 25 25 25 25 25 25 25 25 25 25 25 25	====	6 222	######################################	*=======		===		====	=====	
M 162 benzo b,k Fluoranthene Totals	252				4775333	160	0.000	2	.64.8 (A)

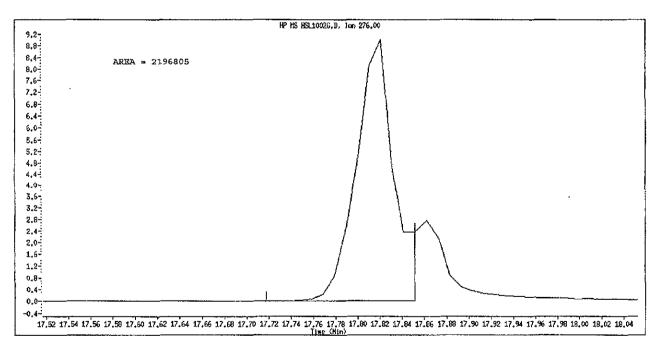
QC Flag Legend

- A Target compound detected but, quantitated amount exceeded maximum amount.
 Q Qualifier signal failed the ratio test.
 M Compound response manually integrated.
 q Qualifier signal exceeded ratio warning limit.

Data File Name: HSL1002G.D


Inj. Date and Time: 02-OCT-2010 15:00

Instrument ID: sv5.i Client ID: 8270F.M


Compound Name: Indeno(1,2,3-cd)pyrene

CAS #: 193-39-5

Report Date: 10/03/2010

Original Integration

Manual Integration

Manually Integrated By: truongk

Manual Integration Reason: Poor Chromatography

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002G.D Page 1

Report Date: 02-Oct-2010 16:57

TestAmerica West Sacramento

Method 8270C

Data file : \\SV5\C\chem\sv5.i\100210.B\HSL1002G.D

Lab Smp Id: HSL 160 ug/ml CS-7 Client Smp ID: 8270F.M

Lab Smp Id: HSL 160 ug/ml CS-7 Client Smp ID: 82
Inj Date : 02-OCT-2010 15:00
Operator : KT Inst ID: sv5.i
Smp Info : HSL 160 ug/ml CS-7;1;;7;;;4
Misc Info : 3;;0;1 8270STD.SUB;10MSSV0313;0;8270F.M
Comment : SOP SAC-MS-0005
Method : \\SV5\C\chem\sv5.i\100210.B\8270f.m
Meth Date : 02-Oct-2010 16:57 onishim Quant Type: ISTD
Cal Date : 17-AUG-2010 21:19 Cal File: AP90817
Als bottle: 7 Calibration Sampl
Dil Factor: 1.00000
Integrator: Falcon Compound Sublist:
Target Version: 4.14

Cal File: AP90817D.D

Calibration Sample, Level: 7

Compound Sublist: 1 8270STD.SUB

Target Version: 4.14 Processing Host: SV5

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
Co	eparoame	Mass	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
==	20 过度 10 10 10 10 10 10 10 10 10 10 10 10 10	20-10-level	神麻吸 帽	6=======		========	5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2.2.2.2.0.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
*	1 1,4-Dichlorobenzene-d4	152	3.954	3.955	(1.000)	141009	40.0000	(Q)
*	2 Naphthalene-d3	136	5.374	5.374	(1.000)	622461	40.0000	
*	3 Acenaphthene-d10	164	7.478	7.468	(1.000)	328259	40.0000	
*	4 Phenanthrene-d10	188	9.405	9.405	(1.000)	532284	40.0000	
*	5 Chrysene-d12	240	13.789	13.779	(1.000)	539557	40.0000	
*	6 Perylene-d12	264	16.172	16.162	(1.000)	560436	40.0000	
\$	7 2-Fluorophenol	112	2,732	2.732	(0.691)	810154	160.000	155.7
\$	8 Phenol-d5	99	3.623	3.613	(0.916)	1035724	160.000	156.5
\$	9 2-Chlorophenol-d4	132	3.757	3.758	(0.950)	890073	160.000	157.7
\$	10 1,2-Dichlorobenzene-d4	1.52	4.162	4.162	(1.052)	557810	160.000	158.4
\$	11 Nitrobenzene-d5	82	4.587	4.576	(0.853)	845796	160.000	153.2
\$	12 2-Fluorobiphenyl	172	6.680	6.680	(0.893)	1707074	160.000	162,4(A)
Ş	13 2,4,6-Tribromophenol	330	8.483	8.473	(1,134)	241468	160.000	186.3 (A)
Ş	14 Terphenyl-d14	244	12.017	12.017	(0.871)	1728892	160,000	164.3(A)
	15 N-Nitrosodimethylamine	74	1.706	1.706	(0.431)	529253	160.000	154.1
	16 Pyridine	79	1.726	1.726	(0.437)	860850	160.000	150.4
	23 Aniline	93	3.654	3.654	(0.924)	1318620	160.000	158.9(Q)
	24 Phenol	94	3.633	3.623	(0.919)	1166090	160.000	165.7(AQ)
	26 Bis(2-chloroethyl)ether	93	3,716	3.716	(0 940)	813702	160.000	152.2
	27 2-Chlorophenol	128	3.768	3.768	(0.953)	885754	160.000	159.0
	28 1,3-Dichlorobenzene	146	3.923	3.923	(0.992)	972719	160.000	158.0
	29 1,4-Dichlorobenzene	146	3.975	3.975	(1.005)	1023408	160.000	164.5(A)
	30 Benzyl Alcohol	108	4.120	4.120	(1.042)	617653	160.000	161.4(A)
	31 1,2-Dichlorobenzene	146	4.172	4,172	(1.055)	928919	160.000	157.5
	32 2-Methylphenol	108	4.265	4.255	(1.079)	834149	160.000	160.3(A)
	33 2,2'-oxybis(1-Chloropropane)	45	4.296	4.297	(1.086)	1290345	160.000	130.0
	34 4-Methylphenol	103	4,421	4.421	(1.118)	895481	160.000	161.5(A)
	36 Hexachloroethane	117	4.504	4.504	(1.139)	343605	160.000	156.5
	37 N-Nitrosodinpropylamine	70	4.452	4.442	(1.126)	590870	160.000	152.2
	42 Nitrobenzene	77	4.607	4.597	(0.857)	844093	160.000	153.8
	44 Isophorone	82	4.866	4.856	(0.906)	1628636	160.000	156.6
	45 2-Nitrophenol	139	4.960	4.960	(0.923)	510613	160.000	170.5(A)
	46 2,4-Dimethyphenol	107	5.022	5.012	(0.934)	890994	160.000	160.2(A)

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002G.D Report Date: 02-Oct-2010 16:57

							AMOUNTS			
		QUANT SIG					CAL-AMT	ON-COL		
Compo	unds	EZAM	RT	exp rt	REL RT	RESPONSE	(NG)	(NG)		
== ====	**************************************	:====				#======	==== ===	:=:::::::::::::::::::::::::::::::::::::		
47	Bis(2-chloroethoxy)methane	93	5.136	5.126	(0.956)	959710	160.000	155.0		
49	2,4-Dichlorophenol	162	5.229	5.229	(0.973)	692405	160.000	169.1(A)		
50	Benzoic Acid	122	5.167	5.115	(0.961)	552251	160.000	178.1(A)		
51	1,2,4-Trichlorobenzene	180	5.333	5.322	(0.992)	724320	160.000	163.2(A)		
52	Naphthalene	128	5.395	5.395	(1.004)	2744968	160.000	158.4		
54	4-Chloroaniline	127	5.488	5.488	(1,021)	1092223	160.000	160.2(A)		
57	Hexachlorobutadiene	225	5.612	5.613	(1.044)	360358	160.000	170.6(A)		
60	4-Chloro-3-Methylphenol	107	6.068	6.069	(1.129)	767831	160.000	163.0(A)		
63	2-Methylnaphthalene	142	6.203	6.203	(1.154)	1723402	160.000	163.0(A)		
66	Hexachlorocyclopentadiene	237	6.483	6.483	(0.867)	435738	160.000	174.0(A)		
69	2,4,6-Trichlorophenol	196	6.587	6.576	(0.881)	441685	160.000	177.7(A)		
70	2,4,5-Trichlorphenol	196	6.628	6.628	(0.886)	474468	160.000	173.8(A)		
71	2-Chloronaphthalenc	162	6.783	6.784	(0.907)	1511253	160.000	164.2(A)		
73	2-Nitroaniline	65	6.960	6 949	(0.931)	476342	160.000	154.5		
76	Dimethylphthalate	163	7.229	7.229	(0.967)	1710061	160.000	160.9(A)		
77	Acenaphthylene	152	7.291	7.281	(0,975)	2665048	160.000	165.6(A)		
79	2,6-Dinitrotoluene	165	7.302	7.302	(0.976)	408436	160.000	171.6(A)		
80	3-Nitroaniline	138	7.457	7.447	(0.997)	520002	160.000	164.8(A)		
81	Acenaphthene	153	7.509	7.509	(1.004)	1647377	160.000	160.7(A)		
82	2,4-Dinitrophenol	184	7.581	7.571	(1.014)	265655	160.000	158.9		
83	Dibenzofuran	168	7.706	7.706	(1.030)	2246304	160.000	165.8(A)		
84	4-Nitrophenol	109	7.685	7.675	(1.028)	228516	160.000	165.8 (Aq)		
86	2,4-Dinitrotoluene	165	7.778	7.768	(1.040)	566055	160.000	177.5(A)		
91	Fluorene	166	8.141	8,131	(1.089)	1.846653	160 000	166.4(A)		
92	Diethylphthalate	149	8.110	8.100	(1.085)	1813127	160.000	163.2(A)		
93	4-Chlorophenyl-phenylether	204	8.151	8.152	(1.090)	757562	160.000	165.6(A)		
94	4-Nitroaniline	138	8.224	8.214	(1.100)	531151	160.000	172.2(A)		
97	4,6-Dinitro-2-methylphenol	198	8.266	8.276	(0.881)	324244	160.000	158.0		
98	N-Nitrosodiphenylamine	169	8.328	8.317	(0.885)	1542041	187.000	185.9(A)		
100	Azobenzene	77	8.359	8.348	(0.889)	1646477	160.000	142.7		
101	4-Bromophenyl-phenylether	248	8.804	8.794	(0.936)	421894	160.000	164.0(A)		
1.08	Hexachlorobenzene	284	8.980	8.981	(0.955)	465305	160.000	167.5 (A)		
110	Pentachlorophenol	266	9.250	9.240	(0.983)	293184	160.000	175.8(A)		
114	Phenanthrene	178	9.447	9.437	(1.004)	2695719	160.000	162.4(A)		
115	Anthracene	178	9.509	9.499	(1.011)	2703105	160.000	161.8(A)		
	Carbazole	167	9.768	9.763	(1.039)	2479487	160.000	159.5		
	Di-n-Butylphthalate	149	10.473		(1.113)	3164666	160.000	168.4(A)		
	Fluoranthene	202	11.312		(1,203)	2500453	160.000	167.3(A)		
	Benzidine	184	11.582		(0.840)	1864289	160.000	168.3(A)		
	Pyrene	202	11.664		(0.846)	2714930	160.000	160.9(A)		
	3,3'-dimethylbenzidine	212	12.877		(0.934)	1724989	160.000	181.4 (A)		
	Butylbenzylphthalate	149	12.991		(0.942)	1401117	160.000	162.5(A)		
	Benzo(a) Anthracene	228	13.768		(0.998)	2393908	160.000	168,2(A)		
	Chrysene	228	13.841		(1.004)	2422526	160.000	163.8(A)		
	3,3'-Dichlorobenzidine	252	13.810		(1.002)	915413	160.000	175.7(A)		
	bis(2-ethylhexyl)Phthalate	149	14.110	14.110	(1.023)	1906885	160.000	160.7(A)		
	Di-n-octylphthalate	149	15.167		(1.100)	3253965	160.000	171.5(A)		
	Benzo(b) fluoranthene	252	15.592		(0.964)	2299398	160.000	173.0(AQ)		
	Benzo(k) fluoranthene	252	15.634	15.623		2475935	160.000	159.4(q)		
	Benzo(e)pyrene	252	16.017		(0.990)	2178628	160.000	165.4(A)		
	Benzo(a)pyrene	252	16.089		(0.995)	2387962	160.000	165.1(A)		
1.51	Indeno(1,2,3-cd)pyrene	276	17.820	17.800	(1.102)	2617878	160.000	204.6(A)		
152	Dibenzo(a,h) anthracene	278	17.862	17.841	(1.104)	2250528	160.000	171.6(A)		
153	Benzo(g,h,i)perylene	276	18.255	18.235	(1.129)	2332007	160.000	165.9(A)		

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002G.D Report Date: 02-Oct-2010 16:57

						AMOUN	TS
	QUANT SIG					CAL-AMT	ON-COL
Compounds	Mass	RT	exp rt	REL RT	RESPONSE	(NG)	(NG)
**************************************	****	====	E = + = + + + +	*****			HEREKYE
M 162 benzo b,k Fluoranthene Totals	252				4775333	160.000	165.7(A)

Page 3

- A Target compound detected but, quantitated amount exceeded maximum amount.

 Q Qualifier signal failed the ratio test.

 q Qualifier signal exceeded ratio warning limit.

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002G.D

Report Date: 03-Oct-2010 11:16

Page 1

Calibration Date: 02-OCT-2010 Calibration Time: 13:44

Client Smp ID: 8270F.M

Level:

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: sv5.i Lab File ID: HSL1002G.D

Lab Smp Id: HSL_160 ug/ml CS-7

Analysis Type: \overline{SV} Quant Type: ISTD

Operator: KT

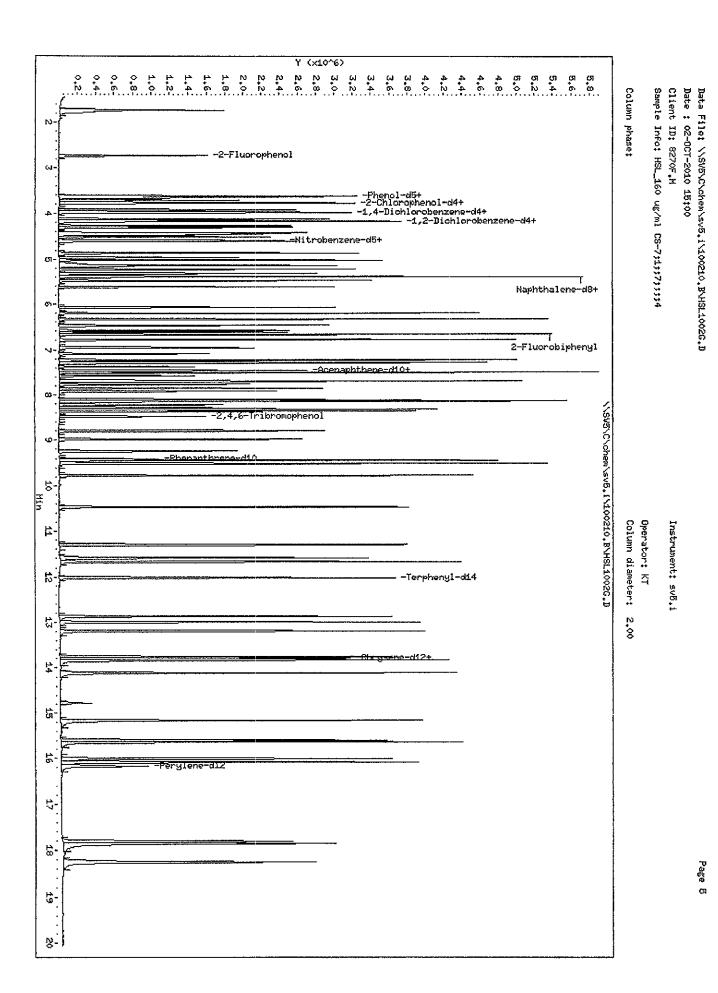
Sample Type:

Method File: \\sv5\c\chem\sv5.i\100210.B\8270f.m Misc Info: 3;;0;1_8270STD.SUB;10MSSV0313;0;8270F.M

Test Mode:

Use Initial Calibration Level 4.

	AREA LIMIT						
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF		
	=======	========	========	========	======		
1 1,4-Dichlorobenze	122625	61313	245250	141009	14.99		
2 Naphthalene-d8	530514	265257	1061028	622461	17.33		
3 Acenaphthene-d10	282538	141269	565076	328259	16.18		
4 Phenanthrene-d10	462722	231361	925444	532284	15.03		
5 Chrysene-d12	435850	217925	871700	539557	23.79		
6 Perylene-d12	422284	211142	844568	560436	32.72		


		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	DIFF
=======================================	=======	=========	========	=======	======
1 1,4-Dichlorobenze	3.96	3.46	4.46	3.95	-0.00
2 Naphthalene-d8	5.37	4,87	5.87	5.37	-0.00
3 Acenaphthene-d10	7.47	6.97	7.97	7.48	0.14
4 Phenanthrene-d10	9.41	8.91	9.91	9.41	-0.00
5 Chrysene-d12	13.78	13.28	14.28	13.79	0.07
6 Perylene-d12	16.16	15.66	16.66	16.17	0.06
		l			

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Page 1

Report Date: 03-Oct-2010 11:20

TestAmerica West Sacramento

CONTINUING CALIBRATION COMPOUNDS

5	1 +				t	1	
I covromm		2250		MIN	•	MAX	l community materials
COMPOUND	RRF / AMOUNT	RF50	RRF50		•	%D / %DRIFT	
[\$ 7 2-Fluorophenol	1.40992	1.41047	1,41047	•	•	•	
\$ 8 Phenol-d5	1.77296	1.74907			:		. ~ .
\$ 9 2-Chlorophenol-d4	1.55698	1.55303			1		, ,
\$ 10 1,2-Dichlorobenzene-d4	0.98513	0.98502		•	•	•	
\$ 11 Nitrobenzene-d5	0.33879	0.32706			•	•	
\$ 12 2-Fluorobiphenyl	1.28852	1.25302			•	*	
\$ 13 2,4,6-Tribromophenol	0.17381	0.17822			•		
\$ 14 Terphenyl-d14	0.78789	0.74054		•	•	•	
15 N-Nitrosodimethylamine	0.92154	0.74034				•	
116 Pyridine	1.54111	1,49084			•	•	
23 Aniline	2.25673	1.90520			•		- :
24 Phenol	2.03729	2.01343			•	•	
26 Bis(2-chloroethyl)ether	1.42859	1.41690		•	•	•	
27 2-Chlorophenol	1.56381	1 57626		•	•	•	
28 1.3-Dichlorobenzene	1.70337	1.74104		•	•		
29 1,4-Dichlorobenzene	1.78118	1.77637		•	:	•	
30 Benzyl Alcohol	1.05101	1.07153		•	•	•	
31 1,2-Dichlorobenzene	1.63746	1.64144			•	-	
32 2-Methylphenol	1.43012	1.41817			•	•	
33 2,2'-oxybis(1-Chloropropane	2.27365	2.14153			•		
	1.51904	1.42403			•	•	
34 4-Methylphenol 36 Hexachloroethane	0.606361	0.62081	· ·		•	•	, .
37 N-Nitrosodinpropylamine	1.01180	0.99863			•	•	: - :
42 Nitrobenzene	0.33116	0.32452		•	•	•	
	0.63679	0.62370			•	•	
44 Isophorone 45 2-Nitrophenol	0.19648	0.82370			,	'	
46 2,4-Dimethyphenol	0.34911	0.33078	•		-	•	
47 Bis(2-chloroethoxy)methane	0.38908	0.37434			:	•	
49 2,4-Dichlorophenol	0.27010	0.26945			•	-	
50 Benzoic Acid	0.19324	0.20284		•	•	•	
51 1,2,4-Trichlorobenzene	0.29246	0.28203			•		
52 Naphthalene	1.10443	1.07116		,	-	•	
54 4-Chloroaniline	0.43288	0.40664			-	•	
57 Hexachlorobutadiene	0.43288	0.14742		,	•	•	
60 4-Chloro-3-Methylphenol	0.30164	0.29442		,	•	•	
63 2-Methylnaphthalene	0.69378	0.71003		•	•	•	
66 Hexachlorocyclopentadiene	0.09376	0.32228			•		
69 2,4,6-Trichlorophenol	0.23046	0.32462		•	=		
70 2,4,5-Trichlorphenol	0.34380	0.34503		•	•	•	
71 2-Chloronaphthalene	1.12571	1.09768		•		•	
•	0.34119	0.32550		•	•	•	, ,
73 2-Nitroaniline 76 Dimethylphthalate	1.29606	1,28355	1.28355	•	•		
1 to presentable property	1 1.23000	1,26335	1.20335	10.010	1 -0.30354	1 30.0000	www.radeoi
l	.1			·	1	l	I

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002H.D

Report Date: 03-Oct-2010 11:20

TestAmerica West Sacramento

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: sv5.i Injection Date: 02-OCT-2010 16:11
Lab File ID: HSL1002H.D Init. Cal. Date(s): 17-AUG-2010 02-OCT-2010
Analysis Type: Init. Cal. Times: 17:32 15:00
Lab Sample ID: HSL_050 ug/ml ICV Quant Type: ISTD
Method: \\sv5\c\chem\sv5.i\l00210.B\8270f.m

	I I		CCAL	MIN		MAX	J
COMPOUND	RRF / AMOUNT	RF50	RRF50		%D / %DRIFT		
77 Acenaphthylene	1,96037	1.90194	1.90194	•	•	•	•
79 2,6-Dimitrotoluene	0.30197	0.30334		•	•	•	
80 3-Nitrozniline	0.37691	0.37836		•	•	•	
81 Acenaphthene	1,24787	1.19989		•	•		•
82 2,4-Dinitrophenol	1 50.000001	48.07731		•	•	0.000e+000	
83 Dibenzofuran	1.65612	1.64309		•	•	•	
84 4-Nitrophenol	0.15634	0.16205		•	•		
86 2,4-Dinitrotoluene	0.39633	0.40639		•	•	•	
91 Fluorene	1.37139	1.36209		,	<u>.</u>		
92 Diethylphthalate	1.32699	1.28445		•		'	
93 4-Chlorophenyl-phenylether	0.57019	0.56986		,	•	•	
94 4-Nitroaniline	0.37361	0.40608		•	•	•	
97 4,6-Dinitro-2-methylphenol	50.00000	48.62001		•	•	0.000e+000	
98 N-Nitrosodiphenylamine	0.60628	0.49086		•		•	•
100 Azobenzene	0.78660	0.77322		-	•		
101 4-Bromophenyl-phenylether	0.19527	0.19536		•	•	:	
108 Hexachlorobenzene	0.21807	0.22026		•	•	•	
110 Pentachlorophenol	50.00000	50.72441		•	•	0.000e+000	
114 Phenanthrene	1.26074	1.20864		•	•	•	•
115 Anthracene	1.25955	1.22825	'	•	•	50.00000	
118 Carbazole	1.15061	1.15083		•	•	•	
120 Di-n-Butylphthalate	1.38442	1.39149		-	•	•	•
126 Fluoranthene	1.12969	1.19302			•	:	-
127 Benzidine	0.81067	0.30175		•	•	50.00000	
128 Pyrene	1.25025	1.13023			•	50.00000	•
134 3,3'-dimethylbenzidine	0.71564	0.26880		1	•	•	
136 Butylbenzylphthalate	0.62663	0.58836		•	•	•	•
138 Benzo(a)Anthracene	1.06548	0.99285	0.99285	0.010	-6.81596	50.00000	Average
139 Chrysene	1.08994	1.04703	1.04703	0.010	-3.93621	50.00000	Average
140 3,31-Dichlorobenzidine	0.40189	0.37691	0.37691	0.010	-6.21534	50.00000	Average
141 bis(2-ethylhexyl)Phthalate	0.86316	0.80149	0.80149	0.010	-7.14468	50.00000	Average
142 Di-n-octylphthalate	1.37975	1.27404	1.27404	0.010	-7.66156	20.00000	Average
144 Benzo(b) fluoranthene	0.90549	0.90498	0.90498	0.010	-0.05663	50.00000	Average
145 Benzo(k) fluoranthene	1.16236	1.22175	1.22175	0.010	5.10982	50.00000	Average
147 Benzo(e)pyrene	0.94425	0.98421	0.98421	10.010	4.23177	50.00000	Average
148 Benzo(a) pyrene	1.02655	0.95393	0.95393	0.010	-7.07365	20.00000	Average
151 Indeno(1,2,3-cd)pyrene	0.83029	0.81846	0.81846	0.010	-1.42489	50.00000	Average
152 Dibenzo(a,h)anthracene	0.92758	0.99090	0.99090	0.010	6.82730	50.00000	Average
153 Benzo(g,h,i)perylene	1.00427	1.08674	1.08674	0.010	8.21177	50.00000	Average
M 162 benzo b,k Fluoranthene Tota	2.06785	2,12673	2.12673	0.010	2.84748	50.00000	Average
	j i		i	1	ı	1	1

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002H.D Page 1

Report Date: 03-Oct-2010 11:20

TestAmerica West Sacramento

Method 8270C

Data file: \\sv5\c\chem\sv5.i\100210.B\HSL1002H.D

Lab Smp Id: HSL_050 ug/ml ICV Client Smp ID: 8270F.M

Inj Date : 02-OCT-2010 16:11

Operator : KT Inst ID: sv5.i

Smp Info : HSL_050 ug/ml ICV;2;;4;;;4

Misc Info: 3;,0;1 8270STD.SUB;10MSSV0314;0;8270F.M Comment: SOP SAC-MS-0005 Method: \\sv5\c\chem\sv5.i\100210.B\8270f.m

Meth Date: 03-Oct-2010 11:20 sv5.i Quant Type: ISTD

Cal Date : 17-AUG-2010 21:19 Cal File: AP90817D.D

Als bottle: 8 Continuing Calibration Sample

Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: 1 8270STD.SUB

Target Version: 4.14

Processing Host: SACP307UM

								AMOUNTS		
			QUANT SIG					CAL-AMT	ON-COL	
Co	ubo.	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)	
* =	===	*****	3CCC	No. 2.5 2.5 400	*****		===== =	□ 24 M ≥ 16 ≥ 16	*****	
*	1	1,4-Dichlorobenzene-d4	152	3.954	3.954	(1.000)	98364	40.0000		
*	2	Naphthalene-d8	136	5.374	5.374	(1.000)	431655	40.0000		
*	3	Acenaphthene-d10	164	7.468	7.468	(1.000)	236662	40.0000		
*	4	Phenanthrene-dl0	188	9.405	9.405	(1.000)	380734	40.0000		
*	5	Chrysene-dl2	240	13.789	13.789	(1.000)	421719	40.0000		
*	б	Perylene-d12	264	16.173	16.173	(1.000)	419419	40.0000		
Ş	7	2-Fluorophenol	112	2.732	2.732	(0.691)	173424	50.0000	50.02	
Ş	8	Phenol-d5	99	3.613	3.613	(0.914)	215057	50.0000	49.33	
\$	9	2-Chlorophenol-d4	132	3.747	3.747	(0.948)	190953	50.0000	49.87	
\$	10	1,2-Dichlorobenzene-d4	152	4.151	4.151	(1.050)	121113	50.0000	49.99	
\$	11	Nitrobenzene-d5	82	4.576	4.576	(0.852)	176474	50.0000	48.27	
\$	12	2-Fluorobiphenyl	172	6.680	6.680	(0,895)	370679	50.0000	48.62	
\$	13	2,4,6-Tribromophenol	330	8.483	8.483	(1.136)	52721	50.0000	51.26	
\$	14	Terphenyl-d14	244	12.017	12.017	(0.871)	390377	50.0000	47.00	
	15	N-Nitrosodimethylamine	74	1.706	1.706	(0.431)	112682	50.0000	49.72(Q)	
	16	Pyridine	79	1.726	1.726	(0.437)	183306	50.0000	48.37	
	23	Aniline	93	3.654	3.654	(0.924)	234254	50.0000	42.21	
	24	Phenol	94	3.623	3.623	(0.916)	247561	50.0000	49.41 (Q)	
	26	Bis(2-chloroethyl)ether	93	3.716	3.716	(0.940)	174215	50.0000	49.59	
	27	2-Chlorophenol	123	3.768	3.768	(0.953)	193809	50.0000	50.40	
	28	1,3-Dichlorobenzene	146	3.913	3.913	(0.990)	214069	50.0000	51.10	
	29	1,4-Dichlorobenzene	146	3.975	3.975	(1.005)	218414	50.0000	49.86	
	30	Benzyl Alcohol	108	4.120	4.120	(1.042)	131750	50,0000	50.98	
	31	1,2-Dichlorobenzene	146	4.172	4.172	(1.055)	201823	50.0000	50.12	
	32	2-Methylphenol	108	4.255	4.255	(1.076)	174371	50.0000	49.58	
	33	2,2'-oxybis(1-Chloropropane)	45	4.296	4.296	(1.086)	263312	50.0000	47.09	
	34	4-Methylphenol	108	4.410	4.410	(1.115)	175092	50.0000	46.87	
	36	Hexachloroethane	117	4.504	4.504	(1.139)	76332	50.0000	51.19	
	37	N-Nitrosodinpropylamine	70	4.442	4.442	(1.123)	122786	50.0000	49.35	
	42	Nitrobenzene	77	4.597	4.597	(0.855)	175102	50.0000	49.00	
	44	Isophorone	82	4.856	4.856	(0.904)	336530	50.0000	48.97	
	45	2-Nitrophenol	139	4.960	4.960	(0.923)	108399	50.0000	51.12	
	46	2,4-Dimethyphenol	107	5.012	5.012	(0.933)	178479	50.0000	47.37	

							amoun	TS
		QUANT SIG					CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
		***	====			=======		722722
47	Bis(2-chloroethoxy)methane	93	5,126	5.126	(0.954)	201982	50.0000	48.10
19	Z,4-Dichlorophenol	162	5.229	5.229	(0.973)	145389	50.0000	49.88
50	Benzoic Acid	122	5.115	5.115	(0.952)	109446	50.0000	52.48
51	1,2,4-Trichlorobenzene	180	5.322	5.322	(0.990)	152177	50.0000	48.22
52	Naphthalene	128	5.395	5.395	(1.004)	577964	50.0000	48.49
54	4-Chloroaniline	127	5.488	5.488	(1.021)	219411	50.0000	46.97
57	Hexachlorobutadiene	225	5.613	5,613	(1.044)	79543	50.0000	51.50
60	4-Chloro-3-Methylphenol	107	6.069	6.069	(1.129)	158858	50.0000	48.80
63	2-Methylnaphthalene	142	6.203	6.203	(1,154)	383110	50.0000	51.17
66	Hexachlorocyclopentadiene	237	6.483	6.483	(0.868)	95339	50.0000	53.99
69	2,4,6-Trichlorophenol	196	6.587	6.587	(0.882)	96032	50.0000	50.86
70	2,4,5-Trichlorphenol	196	6.628	6.628	(0.888)	102070	50.0000	50.18
71	2-Chloronaphthalene	162	6.784	6.784	(0.908)	324725	50.0000	48.76
73	2-Nitroaniline	65	6.949	6.949	(0.931)	96293	50.0000	47.70
76	Dimethylphthalate	163	7,229	7.229	(0.968)	379709	50.0000	49.52
77	Acenaphthylene	152	7.281	7.281	(0.975)	562646	50.0000	48.51
79	2,6-Dinitrotoluene	165	7.302	7.302	(0.978)	89736	50.0000	50.23
80	3-Nitroaniline	138	7.457	7.457	(0.999)	111929	50.0000	50.19
81	Acenaphthene	153	7.509	7.509	(1.006)	354961	50.0000	48.08
82	2,4-Dinitrophenol	184	7.582	7.582	(1.015)	50142	50.0000	48.08
83	Dibenzofuran	168	7,706	7.706	(1.032)	486071	50.0000	49.61
94	4-Nitrophenol	109	7,675	7.675	(1.028)	47938	50.0000	51.82(Q)
	2,4-Dinitrotoluene	165	7.768	7.768	(1.040)	120220	50,0000	51.27
91	Fluorene	166	8.131	8.131	(1.089)	402944	50.0000	49.66
92	Diethylphthalate	149	8.100	8,100	(1.085)	379976	50.0000	48.40
	4-Chlorophenyl-phenylether	204	8.152		(1.092)	168579	50.0000	49.97
	4-Nitroaniline	138	8.214		(1.100)	120129	50.0000	54.34
-	4,6-Dinitro-2-methylphenol	198	8.276		(0.880)	65675	50.0000	48.62
	N-Nitrosodiphenylamine	169	8.317		(0.884)	273788	58.6000	47.44
	Azobenzene	77	8.359		(0.889)	367990	50.0000	49.15
	4-Eromophenyl-phenylether	248	8.804		(0.936)	92973	50.0000	50.02
	Hexachlorobenzene	284	8.981		(0.955)	104824	50.0000	50.50
	Pentachlorophenol	266	9.240		(0.982)	62906	50.0000	50.72
	Phenanthrene	178	9.437		(1.003)	575211	50,0000	47.93
	Anthracene	178	9.509		(1.003)	584548	50.0000	48.76
	Carbazole	167	9.768		(1.039)	547701	50.0000	50.01
	Di-n-Butylphthalate	149	10.473		(1.113)	662234	50.0000	50.26
	Fluoranthene	202	11.302		(1.202)	567781	50.0000	52.80
	Benzidine					159069	50.0000	18.61
	Pyrene	184 202	11.582	11.582		593801	50.0000	45.20
	3,3'-dimethylbenzidine	212		12.877		141696	50.0000	18.78
	Butylbenzylphthalate	149		12.991		310154	50.0000	46.95
	Benzo (a) Anthracene			13.758		523382	50.0000	
		228		13.758			50.0000	46.59
	Chrysene	228				551943	50.0000	48.03
	3,3'-Dichlorobenzidine	252		13.799		198689		46.89
	bis (2-ethylhexyl) Phthalate	149		14.110		422505	50.0000	46.43
	Di-n-octylphthalate	149		15.167		671608	50.0000	46.17
	Benzo (b) fluoranthene	252		15.582		474456	50.0000	49.97(Q)
	Benzo(k) fluoranthene	252	15.623		(0.966)	640533	50.0000	52.55
	Benzo (e) pyrene	252		16.007		515993	50.0000	52.12
	Benzo (a) pyrene	252	16.079		(0.994)	500123	50.0000	46.46
	Indeno(1,2,3-cd)pyrene	276		17.810		429096	50.0000	49.29
152	Dibenzo(a,h)anthracene	278	17.851	17.851		519505	50.0000	53.41
153	Benzo(g,h,i)perylene	276	18.235	18.235	(1.127)	569749	50.0000	54.10

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002H.D Report Date: 03-Oct-2010 11:20

							AMOUN	TS	
	QUANT SIG					CAL	-AMT	ON-	COP
Compounds	mass	RT	EXP RT	REL RT	RESPONSE	(NG)	(NG)
	====		=======	20234#K#	######################################	====	ERRE	-2 MI	
M 162 benzo b,k Fluoranthene Totals	252				1114989	50.	0000		

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: \\SV5\C\chem\sv5.i\100210.B\HSL1002H.D

Report Date: 02-Oct-2010 17:02

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: sv5.i Lab File ID: HSL1002H.D

Lab Smp Id: HSL_050 ug/ml ICV

Analysis Type: SV

Quant Type: ISTD

Operator: KT

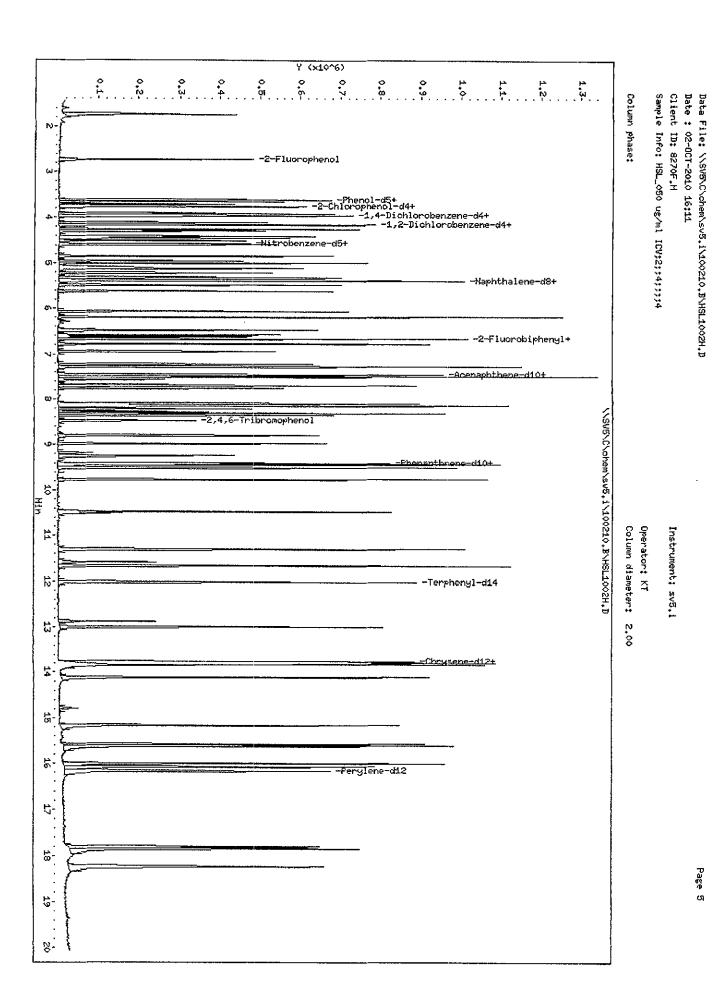
Calibration Date: 02-OCT-2010

Calibration Time: 13:44 Client Smp ID: 8270F.M

Level: Sample Type:

Method File: \\SV5\C\chem\sv5.i\100210.B\8270f.m Misc Info: 3;;0;1 8270STD.SUB;10MSSV0314;0;8270F.M

Test Mode:


Use Initial Calibration Level 4.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========			======	======
1 1,4-Dichlorobenze	122625	61313	245250	98364	-19.78
2 Naphthalene-d8	530514	265257	1061028	431655	-18.63
3 Acenaphthene-d10	282538	141269	565076	236662	-16.24
4 Phenanthrene-d10	462722	231361	925444	380734	-17.72
5 Chrysene-d12	435850	217925	871700	421719	-3.24
6 Perylene-d12	422284	211142	844568	419419	-0.68

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
1 1,4-Dichlorobenze	3.95	3.45	4.45	3.95	0.00
2 Naphthalene-d8	5.37	4.87	5.87	5.37	0.00
3 Acenaphthene-d10	7.47	6.97	7.97	7.47	0.00
4 Phenanthrene-d10	9.41	8.91	9.91	9.41	0.00
5 Chrysene-d12	13.79	13.29	14.29	13.79	0.00
6 Perylene-d12	16.17	15.67	16.67	16.17	0.00
	l		l i	l	l

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002H1.D Page 3

Report Date: 03-Oct-2010 11:13

TestAmerica West Sacramento

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: sv5.i

Injection Date: 02-OCT-2010 16:36
Init. Cal. Date(s): 17-AUG-2010 02-OCT-2010
Init. Cal. Times: 17:32 15:00 Lab File ID: HSL1002H1.D

Analysis Type: Init. Cal. Times:
Lab Sample ID: Benzidines ICV 50ug Quant Type:
Method: \\sv5\c\chem\sv5.i\100210.B\8270f.m

1	1			CCAL	MIN	<u> </u>	MAX	
[COMPOUND	RRF	TRUUOMA \	RF50	RRF50	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
201222222222222222222222				*********		========		=======
127 Benzidine	1	0.81067	0.92336	0.92336	0.010	13.89989	50.00000	Averaged
134 3,3'-dimethylbenzidine	1	0.71564	0.78974	0.78974	0.010	10.35398	50.00000	Averaged
140 3,3'-Dichlorobenzidine	1	0.40189	0.42433	0.42433	0.010	5.58428	50.00000	Averaged
l						l	1	l

10-3-10

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002H1.D

Report Date: 03-Oct-2010 11:13

TestAmerica West Sacramento

Page 1

Method 8270C

Data file: \\sv5\c\chem\sv5.i\100210.B\HSL1002H1.D Lab Smp Id: Benzidines ICV 50ug Client Smp Client Smp ID: 8270F.M

Inst ID: sv5.i

Comment: SOP SAC-MS-0005

Method: \\sv5\c\chem\sv5.i\\100210.B\\8270f.m

Meth Date: 03-Oct-2010 11:13 truongk Quant T

Cal Date: 17-AUG-2010 21:19 Cal Fil

Als bottle: 9 Continu Quant Type: ISTD Cal File: AP90817D.D

Continuing Calibration Sample

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: BenzICV.SUB

Target Version: 4.14

Processing Host: SACP307UM

							AMOUN	TS
		QUANT SIG					CAL-AMT	OM-COF
Compo	unds	MASS	RT	EXP RT	REL RT	response	(NG)	(NG)
=====		2222	====		********	*****		*****
* 1	1,4-Dichlorobenzene-d4	152	3.954	3.954	(1.000)	115503	40.0000	
* 2	Naphthalene-d8	136	5.364	5.364	(1.000)	480485	40.0000	
* 3	Acenaphthene-d10	164	7,468	7.468	(1.000)	254190	40.0000	
* 4	Phenanthrene-d10	188	9.405	9.405	(1.000)	405333	40.0000	
* 5	Chrysene-dl2	240	13,779	13.779	(1.000)	378068	40.0000	
* 6	Perylene-dl2	264	16.162	16.162	(1.000)	372382	40.0000	
127	Benzidine	184	11.571	11.571	(0.840)	436364	50.0000	56.95
134	3,3'-dimethylbenzidine	212	12.867	12.867	(0.934)	373217	50.0000	55.18
140	3,3'-Dichlorobenzidine	252	13.799	13.799	(1.002)	200534	50.0000	52.79

Data File: \\sv5\c\chem\sv5.i\100210.B\HSL1002H1.D

Report Date: 03-Oct-2010 11:13

Page 2

Calibration Date: 02-OCT-2010

Calibration Time: 13:44

Client Smp ID: 8270F.M

Level:

TestAmerica West Sacramento

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: sv5.i

Lab File ID: HSL1002H1.D

Lab Smp Id: Benzidines ICV 50ug

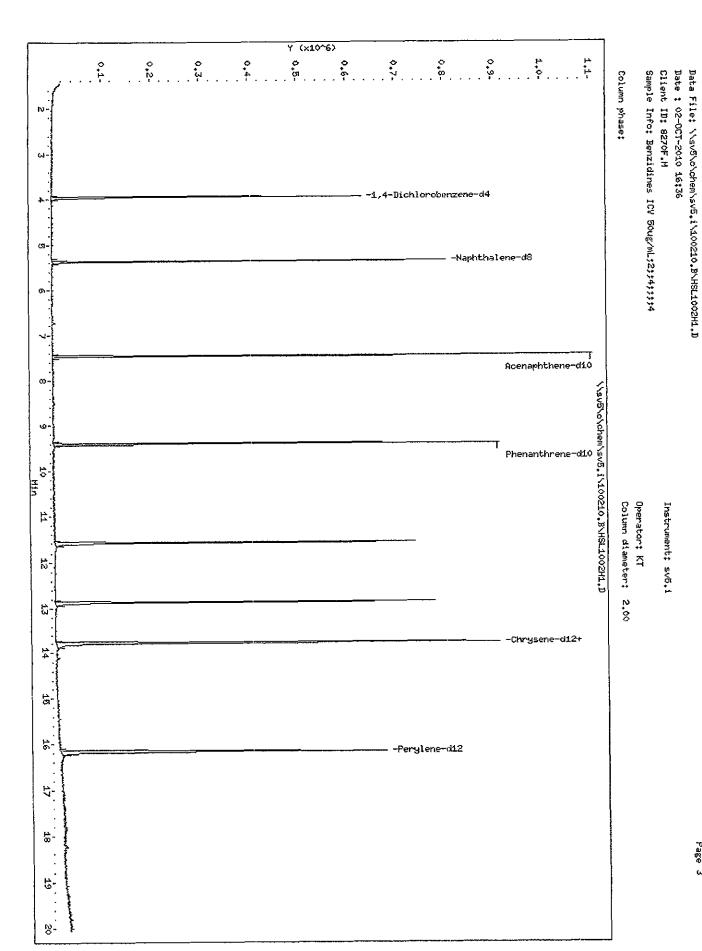
Analysis Type: SV Quant Type: ISTD

Operator: KT

Sample Type:

Method File: \\sv5\c\chem\sv5.i\100210.B\8270f.m Misc Info: 3;;0;BenzICV.SUB;10MSSV0342;0;8270F.M

Test Mode:


Use Initial Calibration Level 4.

		AREA	LIMIT	· · · ·	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	=======	========	
1 1,4-Dichlorobenze	122625	61313	245250	115503	-5.81
2 Naphthalene-d8	530514	265257	1061028	480485	-9.43
3 Acenaphthene-d10	282538	141269	565076	254190	-10.03
4 Phenanthrene-d10	462722	231361	925444	405333	-12.40
5 Chrysene-d12	435850	217925	871700	378068	-13.26
6 Perylene-d12	422284	211142	844568	372382	-11.82
	·				

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	======	=======	========	======
1 1,4-Dichlorobenze	3.95	3.45	4.45	3.95	0.00
2 Naphthalene-d8	5.36	4.86	5.86	5.36	0.00
3 Acenaphthene-dl0	7.47	6.97	7.97	7.47	0.00
4 Phenanthrene-d10	9.41	8.91	9.91	9.41	0.00
5 Chrysene-d12	13.78	13.28	14.28	13,78	0.00
6 Perylene-d12	16.16	15.66	16.66	16.16	0.00
					!

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

INITIAL CALIBRATION DATA

Start Cal Date : 17-AUG-2010 17:32 End Cal Date : 02-OCT-2010 15:00

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : Falcon

Method file : \\SV5\C\chem\sv5.i\100210.B\8270f.m

Last Edit : 03-Oct-2010 11:07 sv5.i

Curve Type : Average

Calibration File Names:

Level 1: \\SV5\C\chem\sv5.i\081710.B\AP90817A.D Level 2: \\SV5\C\chem\sv5.i\081710.B\AP90817B.D Level 3: \\SV5\C\chem\sv5.i\081710.B\AP90817C.D Level 4: \\SV5\C\chem\sv5.i\081710.B\AP90817D.D Level 5: \\SV5\C\chem\sv5.i\081710.B\AP90817E.D Level 6: \\SV5\C\chem\sv5.i\081710.B\AP90817F.D Level 7: \\SV5\C\chem\sv5.i\081710.B\AP90817G.D

!								<u> </u>
	160.000		<u> </u>		1			j L
<u> </u>	Level 7	} !	 	l 1	 	} 	 1	
15 N-Nitrosodimethylamine	0.92899	0.88268	0.91048	0.91970	0.93146	0.93916	• • • • • • • • • • • • • • • • • • •	
	0.93833	•		}	 		0.92154	2.162
le Pyridine	1.67117	1.37423	1.59449	1.56610	1.52299	1.53256		
	1.52623						1.54111	5.856
23 Aniline	2,20796	2.15935	2.19988	2.26058	2,29749	2.33400		
1	2.33783	•	1	1 2.20030		2,33400	2.25673	3.098
24 Phenol	2.04111	1.96212	2.02834		2.06683			~~ ~~
24 Phenoi	2.04111		2.02834	2.03430 	2.06683	2.06089 	2.03729	1.802
26 Bis(2-chloroethyl)ether	1.47335	1.38252	1.39491	1.43824	1.42549	1.44300	i	!
	1.44264		!	1			1.42859	2.170
27 2-Chlorophenol	1.52099	1.55595	1.56903		1.56789	 1.58074	 	,
i i	1.57029		ĺ		i İ		1.56381	1.328
	-							
28 1,3-Dichlorobenzene	1.68903	•	1.67754	1.73135	1.68641	1.72299		1 204
	1.72457	 	 	1 	 	[1.70337 	1.294
29 1,4-Dichlorobenzene	1.77122	1.79861	1.74013	1.76898	1.78200	1.79288		1
I	1.81444	1	1	i	l		1.78118	1.352

INITIAL CALIBRATION DATA

Start Cal Date : 17-AUG-2010 17:32
End Cal Date : 02-OCT-2010 15:00
Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : Falcon
Method file : \\SV5\C\chem\sv5.i\100210.B\8270f.m
Last Edit : 03-Oct-2010 11:07 sv5.i
Curve Type : Average

	5.000	10.000	20.000	50.000	80.000	120.000	 	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
]]		
	160.000		 -	ļ i	ļ	[i	ļ	ļ ,
	Level 7	***	 	! ! n=======	 	 	 =======	} ======
30 Benzyl Alcohol	1.01643	,		1	1	1	ŧ	1
•	1.09506	•		· Į	Į	· [1.05101	3.69
]				
31 1,2-Dichlorobenzene	1.62008	•	1.60455	1.68061	1.63410	1.64415		
	1.64691	[[} !	 ! -	 !	1.63746]4:
32 2-Methylphenol	1.40818	1.38930	1.39110	1.42620	1.45565	1.46154	 	
	1.47889		İ	, J			1.43012	2.5
	1							
33 2,2'-oxybis(1~Chloropropane)	2.29602	•	2.28329	2.27928	2.27018	2.27830	,	
	2.28770	•	 	! ! 	 	 	2.27365	1.0
34 4-Methylphenol	1.48606	!	1.46270	1.52239	•	1.55886		
	1.58763	}	}			}	1.51904	2.8
				J				
36 Hexachloroethane	0.60925	•	0.60573	0.61394	0.60427	0.59381	•	
	0.60919	 	 	} !] [0.60636	1.0
37 N-Nitrosodinpropylamine	0.94498	0.97005	1.01302	1.02370	 1.04700	1.03627	! 	1 - 1
· ·	1.04757			Į		I	1.01180] 3.9
								
42 Nitrobenzene	0.32855	•	0.32543	0.33083	0.33379	0.33450	'	\
	0.33901	! 	 	 	 	1 	0.33116] 1.4
44 Isophorone	0.63431	0.62291	0.61160	0.63344	0.63648	0.66468		
_	0.65411	})	, }	}	; }	0.63679	2.8
						{		
45 2-Nitrophenol	0.18608		0.18840	0.20021	0.20022	0.20702	•	ŀ
	0.20508	 	 	 	 	1 }	0.19648	4.4
46 2,4-Dimethyphenol	0.34459	0.34167	0.34307	0.34912	0.34788	0.35962	 	
	0.35785	•					0.34911	, 2.0
					}		- 	
	l	l	Ì	l]	l	l <u></u> _	l <u></u> _

INITIAL CALIBRATION DATA

Start Cal Date : 17-AUG-2010 17:32

Start Cal Date : 17-AUG-2010 17:32
End Cal Date : 02-OCT-2010 15:00
Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : Falcon
Method file : \\SV5\C\chem\sv5.i\100210.B\8270f.m
Last Edit : 03-Oct-2010 11:07 sv5.i
Curve Type : Average

Compound	•	10.000 Level 2	20.000 Level 3	50.000 Level 4	80.000 Level 5	120.000 Level 6	<u>'</u>	% RSD
	160.000 Level 7	ļ			 			
47 Bis (2-chloroethoxy) methane	0.41146	0.37494	0.38565		0.38500		0.38908	
49 2,4-Dichlorophenol	0.25434	0.26318	[0.27037	0.27274	0.28180	0.27010	3.39
50 Benzoic Acid	0.16747	•	0.17423	0.19357	0.21024	0.22272	 0.19324	13.25
51 1,2,4-Trichlorobenzene	0.29430	İ	0.28475	 0.29747 	0.29189	0.29959	0.29246	 1.76
52 Naphthalene	1.09939	1.12462	1.07435	1.09325		1.13821	1.10443	 1.90
54 4-Chloroaniline	0.40751	0.42534	0.43264	0.43910	0.43781	0.44905	0.43288	3.06
57 Hexachlorobutadiene	0.14295	•	 0.14428 	0.14415	0.14385	0.14379	0.14313	1.58
60 4-Chloro-3-Methylphenol	0.29329	•	0.29079	0.30972	0.30295	0.31766	 0.30164	3.64
63 2-Methylnaphthalene	0.68483	•	 0.68080 	0.70067	 0.70560: 	0.71172	0.69378	1.79
66 Hexachlorocyclopentadiene	0.26878	•	 0.28896	0.29704	0.30236	0.32262	 0.29846	 7.64
69 2,4,6-Trichlorophenol	0.31186	•	 0.30223	0.31996	0.32305	0.34225	 0.31913	 5.15
	.	 	 		 		 	

INITIAL CALIBRATION DATA

Start Cal Date : 17-AUG-2010 17:32 End Cal Date : 02-OCT-2010 15:00

Quant Method : ISTD Origin : Disabled Target Version : 4.14 : Falcon Integrator

Method file : \\SV5\C\chem\sv5.i\100210.B\8270f.m Last Edit : 03-Oct-2010 11:07 sv5.i Curve Type : Average

Compound	5.000 Level 1	Level 2	Level 3	50.000 Level 4	Level 5	120.000 Level 6	RRF	% RSD
	 160.000 Level 7		========		<u></u>		 	*5****
70 2,4,5-Trichlorphenol	0.30823	0.32892		,	0.35236	0.35480	0.34380	5.80
71 2-Chloronaphthalene	1.13629		1.10012	1.14181	1.11220	1.14447	1.12571	2.05
73 2-Nitroaniline	0.31576		0.33397	0.35205	0.34821	0.35794	0.34119	5.5
76 Dimethylphthalate	1.23388	ļ	1.29803	1.34568	1.31165	1.32891	1.29606	3.0
77 Acenaphtbylene	1.86531	İ	1.91818	2.01646	1.98204	1.99786	1.96037	3.1
79 2,6-Dinitrotoluene	0.28347	•	0.29890	0.31220	0.31294	0.32140	0.30197	5.7
80 3-Nitroanıline	0.35362	,	0.35978	0.40036	0.38674	0.39559	0.37691	6.0
81 Acenaphthene	1.25874	•	1.26733	1.27046	1,21141	1.24781	1.24787	1.7
82 2,4-Dinitrophenol	0.10149	•	0.14485	0.16667	0.18378	0.20563	0.15933	26.3
83 Dibenzofuran	1.57786	•	1.65200	1.69530		1.68450	1.65612	2.7
84 4-Nitrophenol	0.12712	•	0.15316	0.16076	0.17130	0.16653	0.15634	10.9
	}							

INITIAL CALIBRATION DATA

Start Cal Date : 17-AUG-2010 17:32 End Cal Date : 02-OCT-2010 15:00 Quant Method : ISTD Origin : Disabled

Target Version : 4.14
Integrator : Falcon
Method file : \\SV5\C\chem\sv5.i\100210.B\8270f.m
Last Edit : 03-Oct-2010 11:07 sv5.i
Curve Type : Average

	5.000	10.000	20.000	50.000	80.000	120.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	rrf	% RSD
			<i></i>				ļ	
	160.000							
	Level 7	M&BE3#===	 	 				
86 2,4-Dinitrotoluene	1 0.34360	1	•	'	'	•	,	
•	0.43110	•)			0.39633	8.6
						[
91 Fluorene	1.34567		1.34292	1.39902	1.38899	1.37835	J	
	1.40640	 		ļ <u>l</u>	 	·	1.37139	2.0
92 Diethylphthalate	1,22240	!	1.31549	 1,379 1 2		1.37345	!	
Ja Dacon, spinensance	1.38087		1 2.32345	1 2.37312	1.52075	1.5.545	1.32699	4.3
	·			<i></i> -		 		
93 4-Chlorophenyl-phenylether	0.54964	0.55917	0.56887	0.59265	0.56708	0.57695	ĺ	
	0.57695	1	1	1		1	0.57019	2.4
94 4-Nitroaniline	0.33346	•	0.37329	0.38337	0.39216	0.39102	0.37361	7.4
	.	 	 	 	 	: :		7.3
97 4,6-Dinitro-2-methylphenol	0.09316	0.10533	0.12545	0.13163	0.14105	0.15288	ļ	
	0.15229	ľ		l j		ļ <u></u>	0.12883	17.7
								•
98 N-Nitrosodiphenylamine	0.57756	<u>'</u>	0.60533	0.60433	0.62172	0.61801		
	0.61968	 !	 	 	 - -	 	0.60628	2.5
100 Azobenzene	0.77527	0.76965	0.77321	0.79522	0.80064	0.81892		
	0.77331			i I			0.78660	2.3
	.							
101 4-Bromophenyl-phenylether	0.18964	•	0.19281	0.19931	0.19607	0.20581	•	
	0.19815		<u>.</u>	1		İ	0.19527	3.4
108 Hexachlorobenzene	0.22958	0.22054	0.20740	 0.21605	0.21731	0.21704		
100 MENGCHIOLODEHSEHG	0.21854	•	0.20740 	0.21605 	0.21/31	0.21/04	0.21807	3.0
				 		 		~
110 Pentachlorophenol	0.09427	0.09851	0.11582	0.11736	0.13228	0.13923	j	
	0.13770	j	i	! !]	0.11931	15.2
	-							
	.		li	l				

INITIAL CALIBRATION DATA

Start Cal Date : 17-AUG-2010 17:32

End Cal Date : 17-A0G-2010 17:32
End Cal Date : 02-OCT-2010 15:00
Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : Falcon
Method file : \\SV5\C\chem\sv5.i\100210.B\8270f.m
Last Edit : 03-Oct-2010 11:07 sv5.i
Curve Type : Average

	5.000	10.000	20.000	50.000	80.000	120.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	PRF	% RSD
	160.000 Level 7	z=uwag===			35658 ##==	 	 	
114 Phenanthrene	1.30347	1.26007	'		'	,	•	1,643
115 Anthracene	1.25034	1.21759	1.24206	1.25982	1.27529		1.25955	2,129
118 Carbazole	1.13211		1.13694	1.14260	1.17067	1.18192	1.15061	1,878
120 Di-n-Butylphthalate	1.28492			1.38164	1.41474	j	1.38442)	
126 Fluoranthene	1.03840		1.17216	1.10520	1.15861	1.18294	1.12969	5.018
127 Benzidine	0.78175		0.75250	0.82658	0.82201	0.86375	0.81067	5.606
128 Pyrene	1.25791		1.17078	1,28684	1.25586	1.28463	1.25025	3.122
134 3,3'-dimethylbenzidine	0.65472		0.67361	0.70756	0.73630	0.79414	0.71564	8,688
136 Butylbenzylphthalate	0.64984	,	0.59142	0.62586	0.61590	0.65233	D.62663	3.950
138 Benzo(a)Anthracene	1.10169	0.99731	1.03245	1.04489	1.06449	1.10831	1.06548	4.058
139 Chrysene	1.05284		 1.06320 	1.09705	1.06985	1.12241	1.08994	2.594
	·-	 			********	 		

INITIAL CALIBRATION DATA

Start Cal Date : 17-AUG-2010 17:32
End Cal Date : 02-OCT-2010 15:00
Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : Falcon
Method file : \\SV5\C\chem\sv5.i\100210.B\8270f.m
Last Edit : 03-Oct-2010 11:07 sv5.i
Curve Type : Average

Compound	5.000 Level 1	10.000	20.000	50.000	80.000	120.000	RRF	* RSD
Compound						 	ARF	* 1.30
	160.000		ĺ			{	ا	
	Level 7		 					
140 3,3'-Dichlorobenzidine	0.39148		0.39090	0.39906	0.40353			
	0.42415		ļ :	!	1		0.40189	4.53
141 bis(2-ethylhexyl)Phthalate	0.91826	0.80897	0.84032	0.85193	0.84371	0.89539		
"	0.88354		ĺ			1	0.86316	4.34
142 Di-n-octylphthalate	1.34838	1.23185	1.35627	1.34433	1.39356	i 1.47616		
	1.50770	•					1.37975	6.65
144 Benzo(b) fluoranthene		0.81077	0.82747	0.99930	 0.95373	0.91132	 	
144 Benzo (B) LI doranthene	1.02572		0.82141	0.99930	. 0.95313	0.91132	0.90549	10.05
145 Benzo(k) fluoranthene	1.22939 1.10447	•	1.20022 	1.09895	1.14223 	1.19597 	1.16235	4.27
		, 	, 	, 	, 	, 		
147 Benzo(e)pyrene	0.90394	•	0.90757	0.95977	0.96997	0.96929	0.94425	 3.22
			 		; !	 		
148 Benzo(a)pyrene	0.98300		0.99402	1.02789	1.07610	1.06275	•	4.13
	1.06523	* 	[{	 	! 		1.02655	4.11
151 Indeno(1,2,3-cd)pyrene	9.73783	•	0.73671	0.84698	0.84057	0.93730		
	0.97995				 	 	0.83029	12.15
152 Dibenzo(a,h)anthracene	0.88099	0.84384	0.87256	0.92240	0.95990	1.00944		
	1.00392	1	}	j	} !	1	0.92758	7.07
153 Benzo(g,h,i)perylene	0.96025	0.98457	0.97380	0.99974	1.01731	1.05397	***	+ -
	1.04026		-			İ	1.00427	3.45
162 benzo b,k Fluoranthene Totals	2.03951	1.97605	 2.02770	2.09825	2.09596	2.10729		
TOE SOLD SYN THOUSANDER TO CALL	2.13019						2.06785	2.64
	========= 			22462622 	**************************************		*********	==== ==

INITIAL CALIBRATION DATA

Start Cal Date : 17-AUG-2010 17:32

End Cal Date : 02-OCT-2010 15:00
Quant Method : ISTD
Origin : Disabled
Target Version : 4.14

Integrator : Falcon
Method file : \\SV5\C\chem\sv5.i\100210.B\8270f.m
Last Edit : 03-Oct-2010 11:07 sv5.i
Curve Type : Average

Compound	5.000 Level 1	10.000 Level 2	20.000 Level 3			120.000 Level 6		% RSD
	160.000 Level 7							
7 2-Fluorophenol	1.44503	1.30436	 1.38373 					
8 Phenol-d5	1.72227	1.67335	1.74151	1.79006	1.80863	1.83864	1.77296	3.52
9 2-Chlorophenol-d4	1.47770		1.53916	1.59414	1.57486	1.57967	1.55698	2.52
10 1,2-Dichlorobenzene-d4	0.95776		0.99827	0.98914	0.99518	0.98547	0.98513	1.35
ll Nitrobenzene-d5	0.33028		0.33065	0.34105	0.33606	0 35127	0.33879	2.16
22 2-Fluorobiphenyl	1.28499		1.27668	1.34206	1.25854	1,29723	1.28852	2.22
13 2,4,6-Tribromophenol	0.15034		0.17466	0.17926	0.17825	0.18501	0.17381	7.05
14 Terphenyl-dl4	0.78508		0.73917	0.80441	0.78047	0.81889	0.78789	3,21

Sample Extraction/Preparation Log Copies and Checklists

TestAmerica West Sacramento Organic Prep Log 8270 Air

UZ.	., o Ali	
Interna	al COC:	¬ s
Delivered to Inst.:	12/7/10	
Inst Receipt:		
Batch: 03364 MS Run #:	147	
Prep Date: 12/2/20	010	1111011
Method: JZ TC)-13	KNOH*
Matrix: S All	R	

Box#	Air Tox # 291	Toct	N m	MA'N	A Principal
Shared QC Batch:	1/1/4	16211			_
Shares	VA /A	THELEADED	N ENVIRON	VMENTAL TEST	166
QC With:	1)/4		rep Reag	ents	164
		Reagent	Supplier	Lot #	
		1:1 DCM:Acetone	NA	N/A	
		DCM	Baker	J38503	
K		Na2SO4	Baker	N/A	
•					

Extraction: 11 SOXHLET (NONE,Na2SO4)
QC: 3W AMBIENT AIR TESTING

SAC: JZ - S - 11 - 3W

WS-OP-0006

Soxhlet time on:		0 soxhle	et time off: 9:1	05 [3/10]			
			Extraction T				
Sample ID	Suff	Work Order	Extraction Hold Time Expires	Sample size	Final \	/olume	Analysis Hold
ļ	<u> </u>				tmL	Other	Time Expires
G0L020000 - 447	В	MAR231AA	12/6/2010	1.0	V		1/8/2011
G0L020000 - 447	С	MAR231AC	12/6/2010	1.0			1/8/2011
G0L020000 - 447	L	MAR231AD	12/6/2010	1.0	1		1/8/2011
G0L020446 - 2		MAQQW1AA	12/6/2010	1.0	V		1/8/2011
G0L020446 - 6		MAQQ91AA	12/7/2010	1.0	V		1/9/2011
G01 020446 - 9	1	MAORF1AA	12/7/2010	1.0		<u> </u>	1/9/2011

Impinger

XAD / PUF / PUF-XAD

Comments/NCMs: QC Media: sup Zsv 19056/P101910

	ID .	Spike Exp Date:	Spiked By:	Witnessed By:	Date:
Surrogate Spike All Samples	500ml/10A1ROPE/ABN	4/4/11	ECF	TP.	12/2/10
Spike Mix LCS/LCSD /MS/MS ECF 17/2/10	1.0ml/10080309/csm	5/23/11	1CF	10	12/2/10
Pre-Spike Standard MB only All Samples AC 4 (2/2/10)	250M/10AI 10128/1,2	4 4/19/11	ECF	TP	12/2/10
Internal Standard All Samples	20m/ 10m/2500138	1-19-11	4	UMN	12-7-10
Soxhlet Extraction Analyst/Date	EC \$ 12/2/10	Concentration Analyst/Date	ECT 11/1/10	KD Analyst/Date	Ect 12/6/10
Liq Liq Extraction Analyst/Date	N/A	KD Temp _ \$	5°C	Review Analyst/Date	ellerifo

* RUSH*

TestAmerica Laboratories, Inc. EXTRACTION BENCH WORKSHEET

Run Date: Time: 12/07/10 12:39:27

12/06/10 COMMENTS: 12/06/10 COMMENTS: 12/06/10 COMMENTS: 12/07/10 COMMENTS: G0L020446-002 12/06/10 12/09/10 MAQQW-1-AA COMMENTS: I AKHA 12/07/10 COMMENTS: Reviewer/Date: Concentrationist: Extractionist: EXTR MEDIA: 12/09/10 Blank Check MS/MSD 12/09/10 SUP2SV19056/P101910 0/00/00 0/00/00 0/00/00 DUE LARSONE 403162 LOT#, MSRUN#/ WORK ORDER NAMKH TEV G0L020000-447 MAR23-1-ACC G0L020000-447 MAR23-1-AAB G0L020446-009 MAQRF-1-AA G0L020446-006 MAQQ9-1-AA G0L020000-447 MAR23-1-ADL 403162 erica I + I + Ierica X. Weights/Volumes
Spike & Surrogate Worksheet
Vial contains correct volume
Labels, greenbars, worksheets
computer batch: correct & all r
Anomalies to Extraction Method 12/07/10 × FLGS larson Ŋ Ø Ħ Ħ larson EXT 14 11 11 11 11 1 HIM JZJΖ Z_{Γ} JZ Z_{Γ} JΖ MATRIX AIR AIR AIR AIR AIR AIR 1.0Sample 1.00mL 1.0Sample 1.00mL 1.0Sample 1.00mL 1.0Sample 1.00mL 1.0Sample 1.00mL 1.0Sample 1.00mL WT/VOL match Semivolatile Organics SOXHLET (NONE, Na2SO4) TINI NA X X X X Z PH"S ADJI QC BATCH: N X Z Z NΑ NA ADJ2 N NA Z X NA NA DCM MOM DCM SOLVENTS EXTRACTION VOL EXCHANGE DOM DCM M D D 0336447 by GCMS in Air 700.0 700.0 700.0 700.0 700.0 700.0 11111 PREP Expanded Deliverable
COC Completed
Bench Sheet Copied
Package Submitted to AnalyticalGroup
Bench Sheet Copied per COC (TO-13A) DATE: 먑 12/02/10 12/03/10 0 o . o 0 1.0ML/100P0309/8270 500UL/10AIR0125/ABN 250UL/10AIR0128/1,2-DCB 500UL/10AIR0125/ABN SURR 500UL/10AIR0125/ABN 500UL/10AIR0125/ABN SURR SURROGATE ID 1.0ML/100P0309/8270 500UL/10AIR0125/ABN 500UL/10AIR0125/ABN SURR 17:00 17:00 SURR MIX SURR MIX SURR

ፍጠጀ⇔

11 11 11

RUSH C EPA 600 D CLIENT REQ

שמ

C = CLP D = EXP.DEL) MS/MSD

NUMBER OF WORK ORDERS

H

σ

West Sacramento

Preparation Data Review Checklist

.7		_
/6/10~ NCI	M: Y (N))
12/1/10		-
Spike Witness	Reviewer	
	NA	
	NA	
	NA	
NA		•
NA	V	air
NA		soy
NA		,
NA		
		
NA		
NA		
NA		
NA		
17/72	1,5	
	4 —	
<u></u>		
···.		
	NA NA NA NA NA NA NA NA NA NA NA NA NA N	/6/10 NCM: Y N 12/7/10 Spike Witness Reviewer NA NA NA NA NA NA NA NA NA NA NA NA NA

Batch: 0336447 Method ID: Semivolatile Organics by GCMS in Air (TO-13A)

NCM: Y N			
A. Calibration/Instrument Run QC	Analyst	Reviewer	N/A
1. ICAL or ICAL Summary and CCV included.			
2. ICAL, CCV Criteria met.			
3. Peaks correctly ID'd by data system.	7		
4. Copy of logbook for ICAL included			
5. Tune criteria (including tailing factor and breakdown) met			
and copy included.			
6. Method Number is identified on data.			
B. QA/QC	AND RESIDENCE OF THE		
1. Method blank, LCS/LCSD and MS/SD frequencies met.		./	
2. LCS/LCSD and MB data is included.		/	
3. LCS/LCSD and MB data are within control limits. If not,			
NCM is present in Clouseau.			
4. MS/MSD data complete.			
5. Holding Times were met.		/	
6. All samples within tune time.		/	
C. Sample Analysis	0.0000000000000000000000000000000000000		
1. Logbook copies for all injections made, including ICV	_		
standards and ICAL.			
2. Logbooks/prep sheets properly filled out.			
3. Manual Integrations reviewed and appropriate.		/	
4. All raw data for samples is included (applies to unused data		/	
as well)			
5. All analytes correctly reported.			
6. Correct reporting limits used. (based on client request, prep			
factors, and dilutions)			
7. Spectra present for all positives.			<u></u>
D. Documentation			general y
1. Are all nonconformances documented appropriately?			
2. Quantims entry correct, including dates and times.		_/	
3. Appropriate footnotes used.			
Analyst: _ \(\frac{1}{2} \) Date:	12/8/0		
2 nd Level Reviewer:	12/9/1	, ,	
Comments:	7		

AIR, TO-9, Dioxins/Furans

Raw Data Package

Run/Batch Data

Includes (as applicable):

runlogs

continuing calibration standards
interference/performance check standards
continuing calibration blanks
method blanks

lcs

ms/sd

sample raw data

ms tune data

Rec

92.2

n

n

n

n

n

n

n

n

n

n

n

n

77.3

Quantitation Summary TestAmerica West Sacramento Run text: MAVWM-1-AA Sample text: MAVWM-1-AA :G0L020446-1MB Run #8 Filename: 07DE104D5 S: 3 I: 1 Results: 07DE104D5T09 Acquired: 7-DEC-10 12:09:14 Processed: 7-DEC-10 Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Factor 1:1600.000 Factor 2:20.000 Sample size: 0.50 SAMP 12/8/10 RTName Resp RA RRF EDL Conc 13C-1,2,3,4-TCDD 142776800 0.79 y 19:55 85.497 13C-2,3,7,8-TCDF 161760600 0.79 y 19:19 1.23 3686.396 2.787 2,3,7,8-TCDF * n NotFnd 0.99 5.235 Total TCDF * n NotFnd 0.99 5.235 13C-2,3,7,8-TCDD 122835300 0.81 y 20:07 0.91 3802.334 6:836 2,3,7,8-TCDD * n NotFnd 0.98 1.915 Total TCDD * n NotFnd 0.98 1.915 37C1-2,3,7,8-TCDD 66322400 1.00 y 20:09 1.33 1628.661 1.532

95.1 n n 101.8 13C-1,2,3,7,8-PeCDF 128187600 1.58 y 25:11 0.88 4099.393 6.374102.5 n 1,2,3,7,8-PeCDF * n NotFnd 1.08 2.022 n 2,3,4,7,8-PeCDF * n NotFnd 1.05 2.082 n Total F2 PeCDF * n NotFnd 1.06 2.052 Total F1 PeCDF 14633 0.47 n 19:31 1.06 2.196 0.43013C-1,2,3,7,8-PeCDD 91607500 1.61 y 27:35 0.66 3883.713 3.040 97.1 n 1,2,3,7,8-PeCDD 11309 0.63 n 27:40 0.93 0.5343.552 Total PeCDD 48001 2.01 n 25:09 0.93 2-265 3.552 13C-1,2,3,7,8,9-HxCDD 88518000 1.26 y 33:22 74.762 n 13C-1,2,3,4,7,8-HxCDF 80451300 0.49 y 32:15 1.04 3479.637 1-947 87.0 n 1,2,3,4,7,8-HxCDF 16078 0.42 n 32:17 1.22 0.6571.332 n 8358 0.23 n 32:22 1.28 1,2,3,6,7,8-HxCDF 0.3241.265 n 30629 0.91 n 32:56 1.23 2,3,4,6,7,8-HxCDF 1_235 1.314 n 1,2,3,7,8,9-HxCDF 16606 0.61 n 33:33 1.10 0.7521.476 1-342 Total HxCDF 71671 0.42 n 32:17 1.21 2,967 1.476

13C-1,2,3,6,7,8-HxCDD 72559600 1.16 y 33:06 0.83 3946.676 1.304 98.7 1,2,3,4,7,8-HxCDD 22202 1.43 n 33:03 1.04 1.1802.056 1,2,3,6,7,8-HxCDD 19092 1.14 y 33:07 1.16 0.905 1.834 30866 0.94 n 33:23 1.18 1,2,3,7,8,9-HxCDD 1.440 1.804 Total HxCDD 126951 1.35 y 32:54 1.13 6.2051-892 2.056 7 3230.475 80.8 13C-1,2,3,4,6,7,8-HpCDF 65056400 0.44 y 34:52 0.91 14.885 64360 1.52 n 34:51 1.35 2.940 J.Q 1,2,3,4,6,7,8-HpCDF 1.986 * n NotFnd 1.09 1,2,3,4,7,8,9-HpCDF 2.445

13C-1,2,3,4,6,7,8-HpCDD 59684300 1.05 y 35:41 0.83 3262.797 11.326 81.6 1,2,3,4,6,7,8-HpCDD 38593 0.98 y 35:42 1.07 2:413 2.670 Total HpCDD 111489 3.25 n 34:52 1.07 6-972 27661 2.670 6180.709

2.940

2.192

7.330

64360 1.52 n 34:51 1,22

84787200 0.89 y 38:14 0.62

Total HpCDF

13C-OCDD

Run Text: MAVWM-1-AA Sample text: MAVWM-1-AA :G0L020446-1MB

Name: Total TCDF F:1 Mass: 303.902 305.89 Run: 8 File: 07DE104D5 S:3 Acq:7-DEC-10 12:09:14 F:1 Mass: 303.902 305.899 Mod? no #Hom:0

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

mount: * of which * named and * unnamed Conc: * of which * named and * unnamed Amount:

R.T. Ratio Conc. Area S/N >? Mod? Name

> 1 NotF₁ * n * * n n * n n

Totals Results TestAmerica West Sacramento Page 2 of 9

Run Text: MAVWM-1-AA Sample text: MAVWM-1-AA :G0L020446-1MB

Name: Total TCDD F:1 Mass: 319.897 321.894 Mod? no #Hom:0

Run: 8 File: 07DE104D5 S:3 Acq:7-DEC-10 12:09:14

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

Amount: Conc: * of which * named and * unnamed * of which * named and * unnamed

Name # R.T. Ratio Conc. Area S/N >? Mod?

> 1 NotF₁ * n * * n n

Totals Results TestAmerica West Sacramento Page 3 of 9

Run Text: MAVWM-1-AA Sample text: MAVWM-1-AA :G0L020446-1MB

Name: Total F2 PeCDF F:2 Mass: 339.860 341.857 Mod? no #Hom:0 Run: 8 File: 07DE104D5 S:3 Acq:7-DEC-10 12:09:14

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

Amount: * of which * named and Conc: * of which * named and * unnamed* unnamed

R.T. Ratio Conc. Area S/N >? Mod? Name

> 1 NotFi * n * * n n

* n n

Totals Results TestAmerica West Sacramento Page 4 of 9

Run Text: MAVWM-1-AA Sample text: MAVWM-1-AA :G0L020446-1MB Name: Total F1 PeCDF F:1 Mass: 339.860 341.857 Mod? no #Hom:1 Run: 8 File: 07DE104D5 S:3 Acq:7-DEC-10 12:09:14

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

Amount: 0.215 of which * named and 0.215 unnamed Conc: 0.430 of which * named and 0.430 unnamed

R.T. Ratio Conc. Area Name S/N >? Mod?

1 19:31 0.475 n 0.430 8895 1.597 n n 18736 2.485 n n

Totals Results TestAmerica West Sacramento Page 5 of 9

Run Text: MAVWM-1-AA Sample text: MAVWM-1-AA :G0L020446-1MB

Name: Total PeCDD F:2 Mass: 355.855 357.852 Mod? no #Hom:4

Run: 8 File: 07DE104D5 S:3 Acq:7-DEC-10 12:09:14

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

Amount: 1.132 of which 0.267 named and 0.866 unnamed Conc: 2.265 of which 0.534 named and 1.731 unnamed

R.T. Ratio Conc. Area S/N >? Mod? Name 1 25:09 2.009 n 0.573 9569 1.219 n n 4763 1.287 n n 2 25:28 1.605 y 0.654 8537 1.385 n n 5318 1.654 n n 1,2,3,7,8-PeCDD 3 27:40 0.631 n 0.534 6874 0.969 n n 10892 3.598 y n 4 28:01 1.695 y 0.504 6723 1.083 n n 3967 1.091 n n Run Text: MAVWM-1-AA Sample text: MAVWM-1-AA :G0L020446-1MB

Name: Total HxCDF F:3 Mass: 373.821 375.818 Mod? no #Hom:4 Run: 8 File: 07DE104D5 S:3 Acq:7-DEC-10 12:09:14

Tables: Run: 07DE104D5 Analyte: TO9 Cal: T090721104D5 Results: 07DE104Dn

Amount: 1.484 of which 1.484 named and * unnamed Conc: 2.967 of which 2.967 named and * unnamed

Name	#	R.T.	Ratio	Conc.	Area	S/N >3	P Mo	đ?
1,2,3,4,7,8-HxCDF	1	32:17	0.415 n	0.657	8900 21446	1.352 3.479	n Y	n n
1,2,3,6,7,8-HxCDF	2	32:22	0.233 n	0.324	4627 19890	0.796 4.840	n Y	n n
2,3,4,6,7,8-HxCDF	3	32:56	0.911 n	1,235	16955 18611	2.037 5.412	n Y	n n
1,2,3,7,8,9-HxCDF	4	33:33	0.613 n	0.752	9193 14991	1.422 4.298	n Y	n n

Totals Results TestAmerica West Sacramento Page 7 of 9

Run Text: MAVWM-1-AA Sample text: MAVWM-1-AA :G0L020446-1MB

Name: Total HxCDD F:3 Mass: 389.816 391.813 Mod? no #Hom:5

Run: 8 File: 07DE104D5 S:3 Acq:7-DEC-10 12:09:14

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

Amount: 3.102 of which 1.763 named and 1.340 unnamed Conc: 6.205 of which 3.525 named and 2.680 unnamed 2.680 unnamed

Name	#	R.T.	Ratio	Conc	Area	S/N >3			
	1	32:54	1.349 y	2.210	25950 19238	5.794 1.145	y n	n n	2 peaks < ED each · 12/8/10 hrs
1,2,3,4,7,8-HxCDD	2	33:03	1.432 n	1.180	14195 9912	4.526 1.338	-	n n	, .
1,2,3,6,7,8-HxCDD	3	33:07	1.139 y	0.905	10165 8927	3.449 1.266	-	n n	
	4	33:12	0.596 n	0.470	5316 8927	1.622 1.266		n n	
1,2,3,7,8,9-HxCDD	5	33:23	0.942 n	1.440	17086 18132	3.282 2.785	-	n n	

Totals Results TestAmerica West Sacramento Page 8 of 9

Run Text: MAVWM-1-AA Sample text: MAVWM-1-AA :G0L020446-1MB Name: Total HpCDF F:4 Mass: 407.782 409.779 Mod? no #Hom:1 Run: 8 File: 07DE104D5 S:3 Acq:7-DEC-10 12:09:14

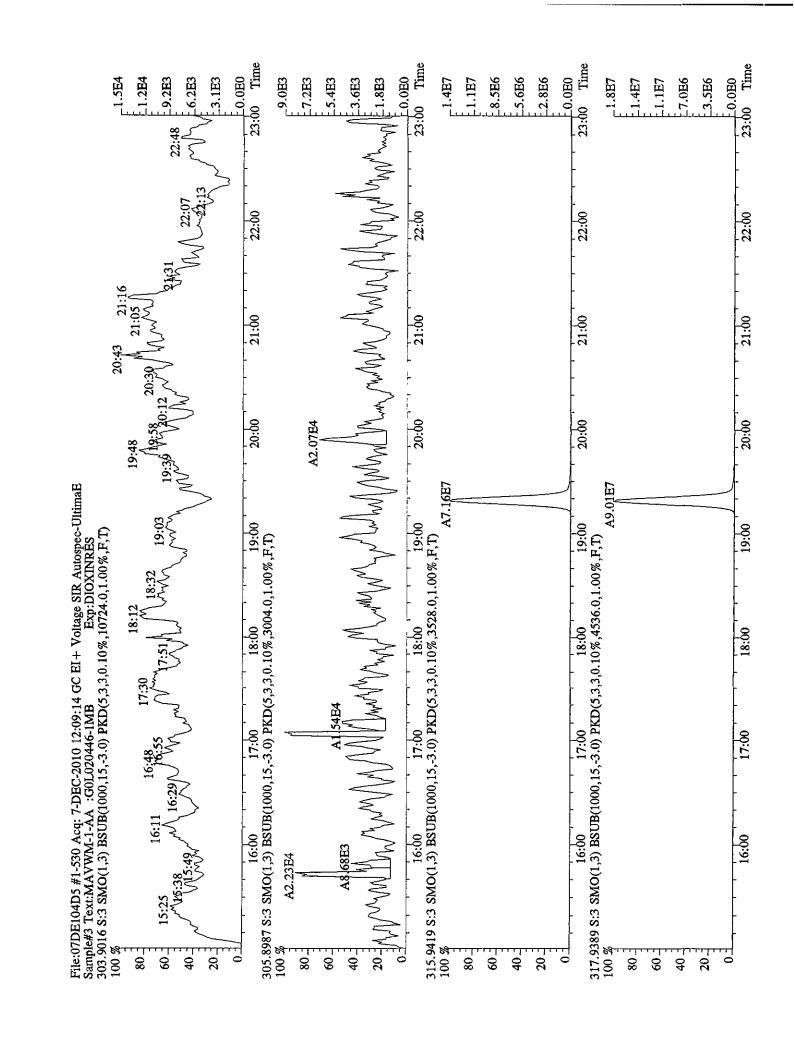
Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

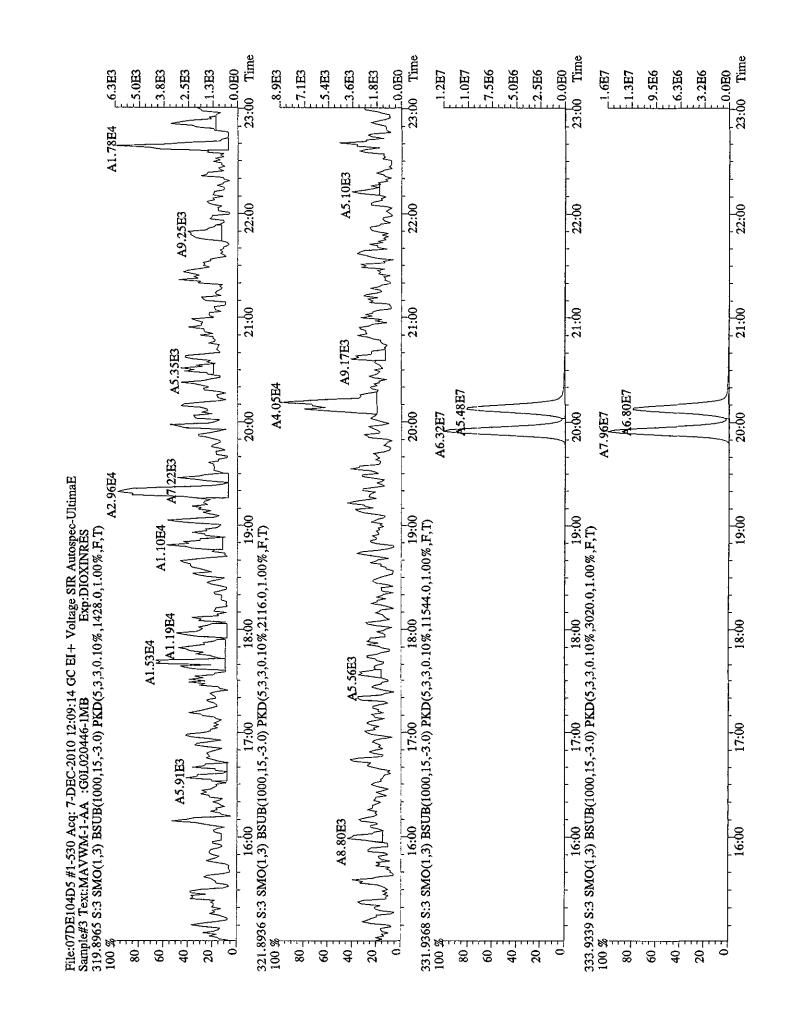
nount: 1.470 of which 1.470 named and * unnamed Conc: 2.940 of which 2.940 named and * unnamed

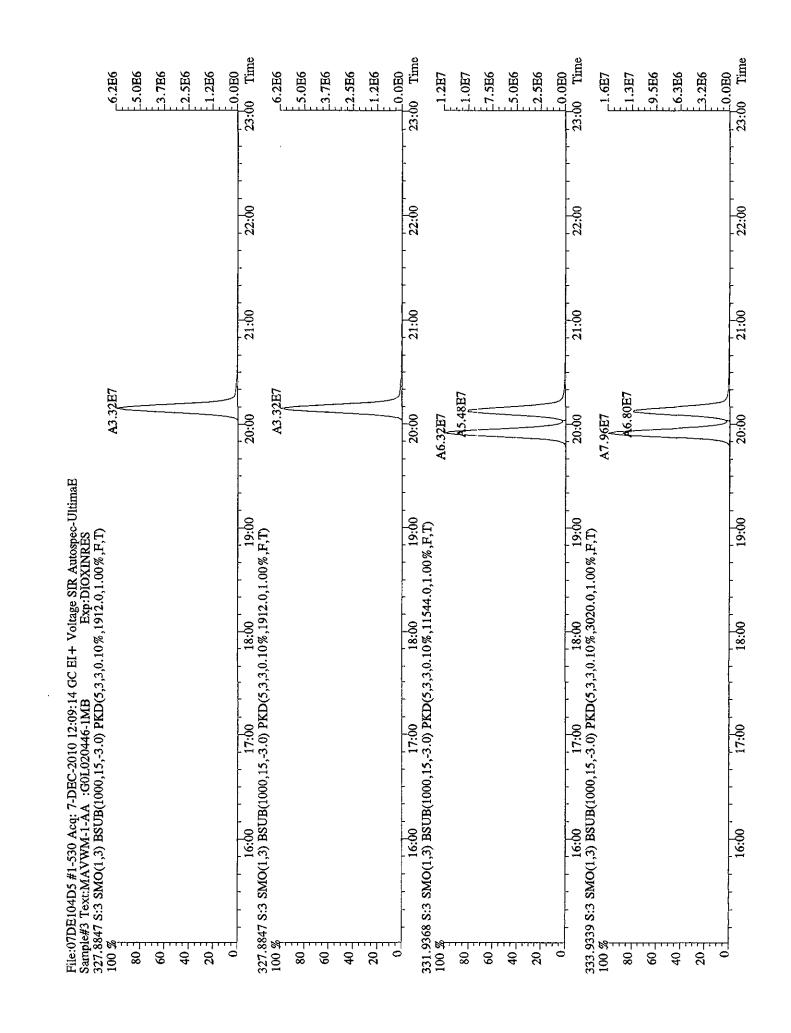
R.T. Ratio Conc. Area S/N >? Mod? Name 1,2,3,4,6,7,8-HpCDF 1 34:51 1.524 n 2.940 48084 5.423 y n 31549 5.485 y n

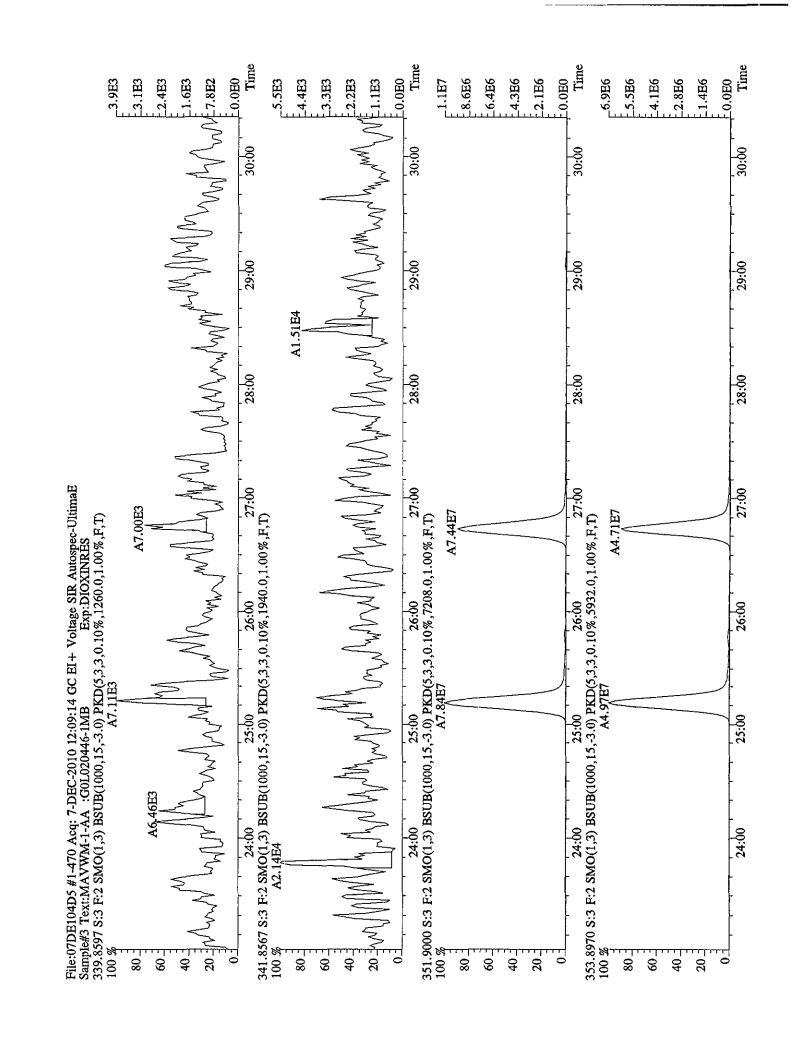
Totals Results TestAmerica West Sacramento Page 9 of 9

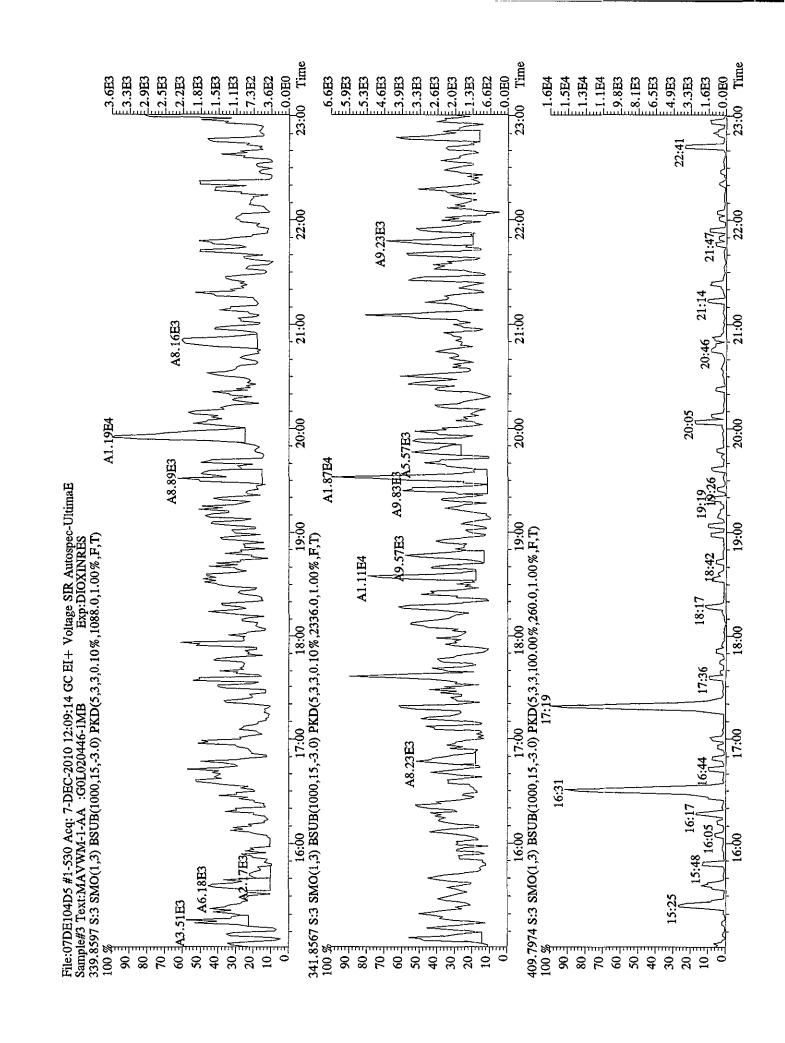
Run Text: MAVWM-1-AA Sample text: MAVWM-1-AA :G0L020446-1MB

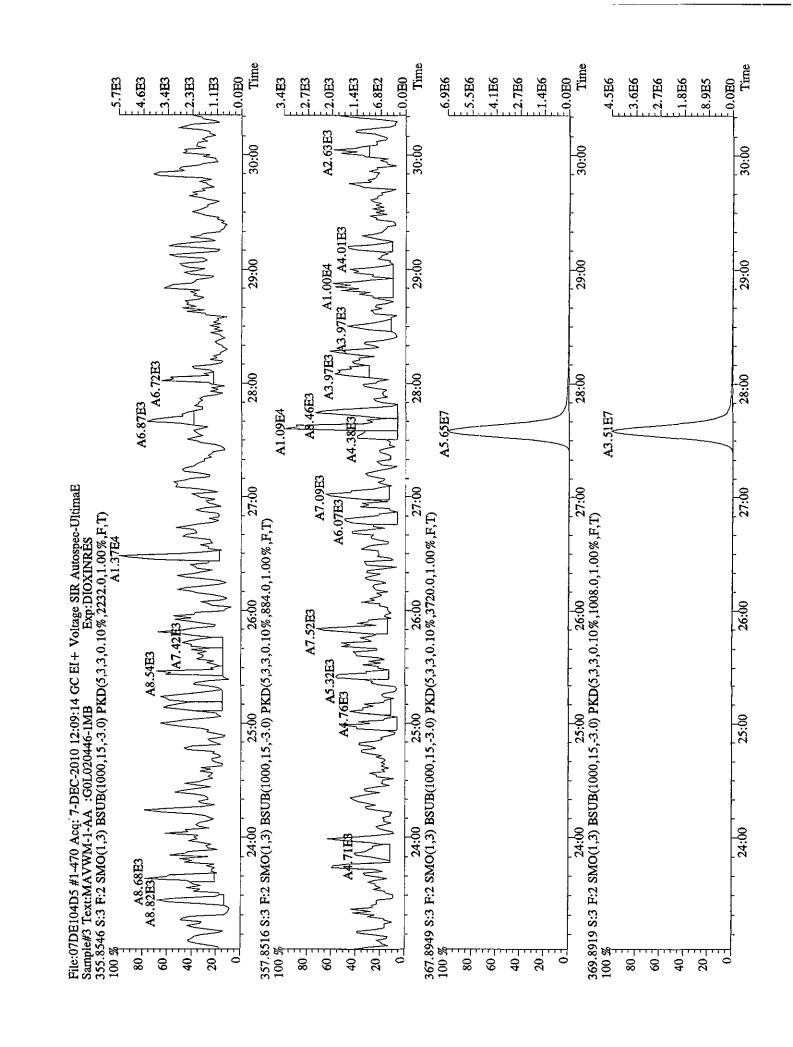

Amount: 3.486 of which 1.207 named and 2.279 unnamed

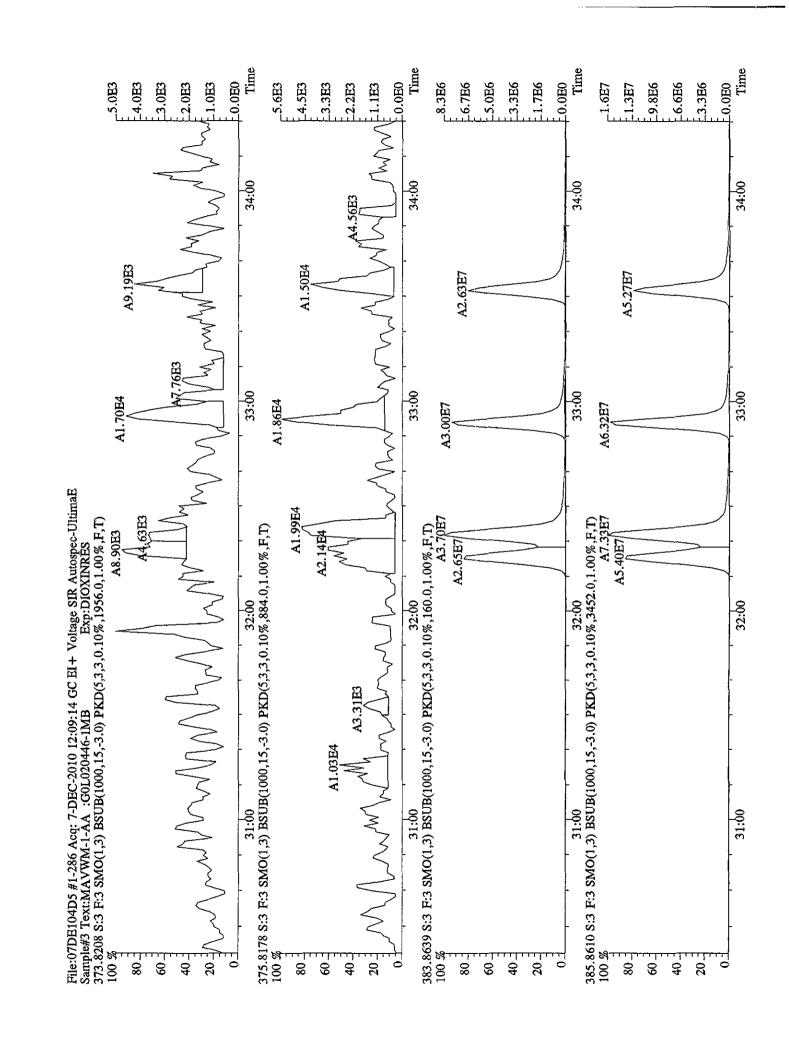

Name: Total HpCDD F:4 Mass: 423.777 425.774 Mod? no #Hom:4 Run: 8 File: 07DE104D5 S:3 Acq:7-DEC-10 12:09:14

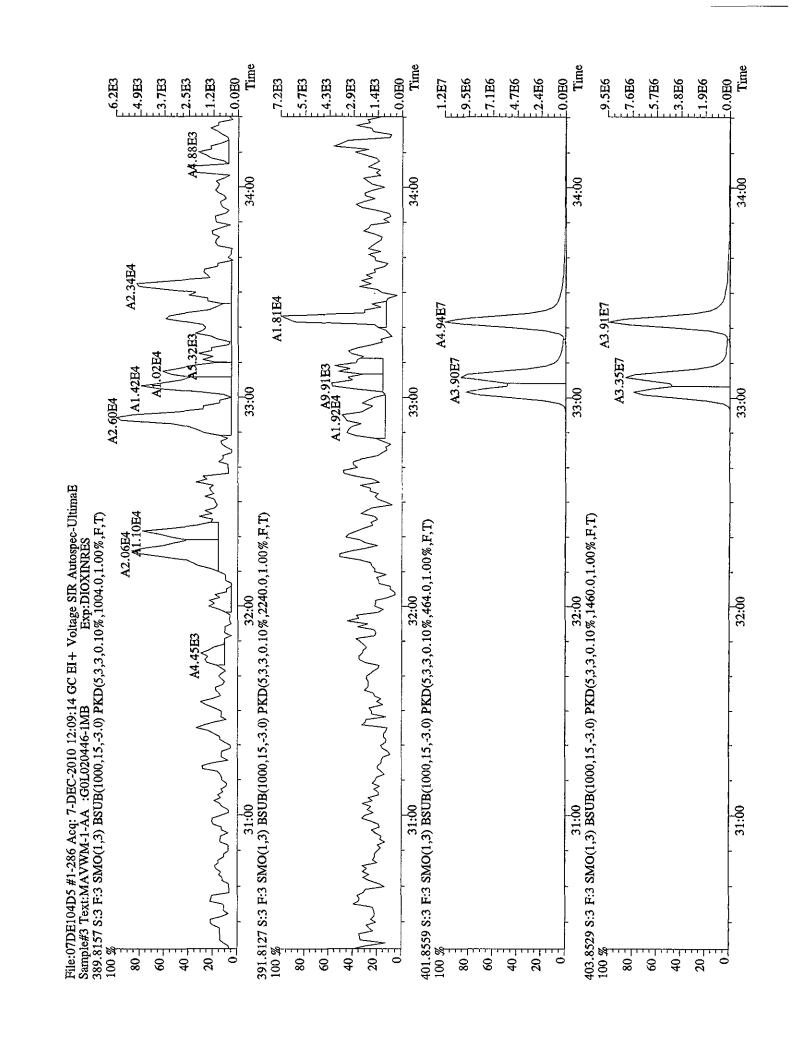

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

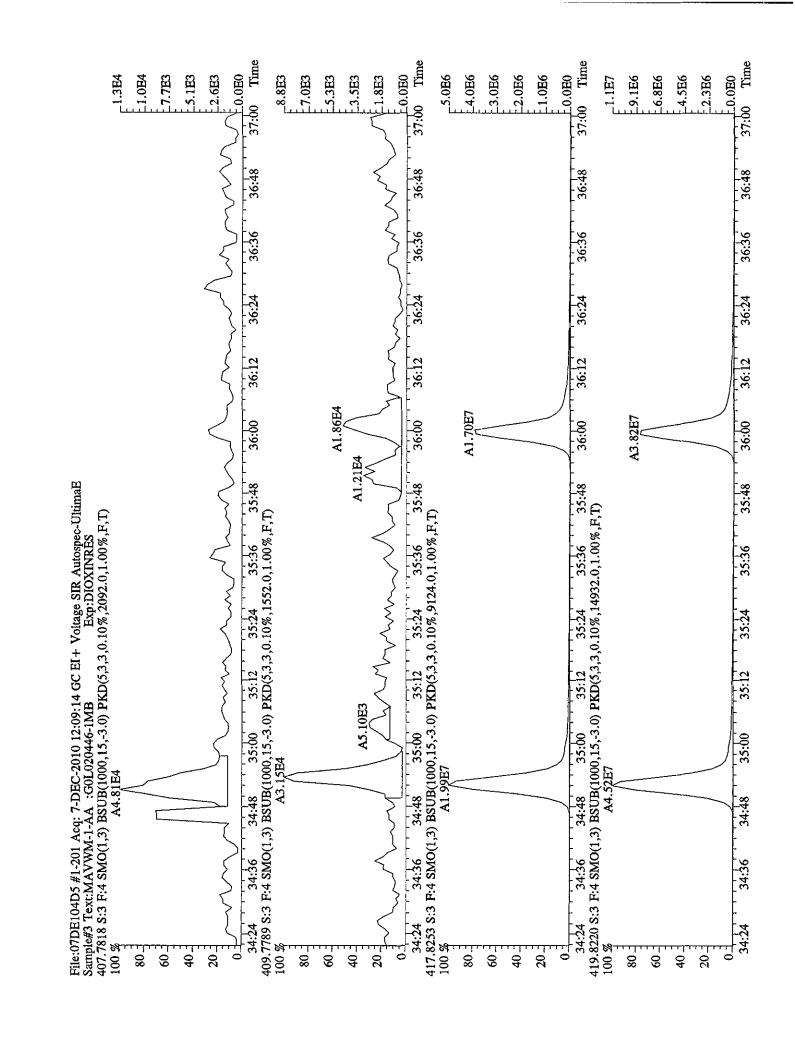

Conc:	6.972 of v	which	2.413 n	amed and	4.559	unnamed			
Name	#	R.T.	Ratio	Concy	Area	S/N >?	Мс	d?	
	1	34:52	3.248 n	1.043	26556	4.388	У	n	
					8177	2.349	n	n	
	2	35:07	1.339(n)(2.766	29041	4.093	У	n	
					21683	3.916	Y	n	
1,2,3,4,6,7,8-H	ipCDD 3	35:42	0.981 y	2.413	19110	2.331	n	n	126
				/	19483	4.404	У		<em< td=""></em<>
	4	36:00	4.824 n	0 /749	28329	2.372	n	n	

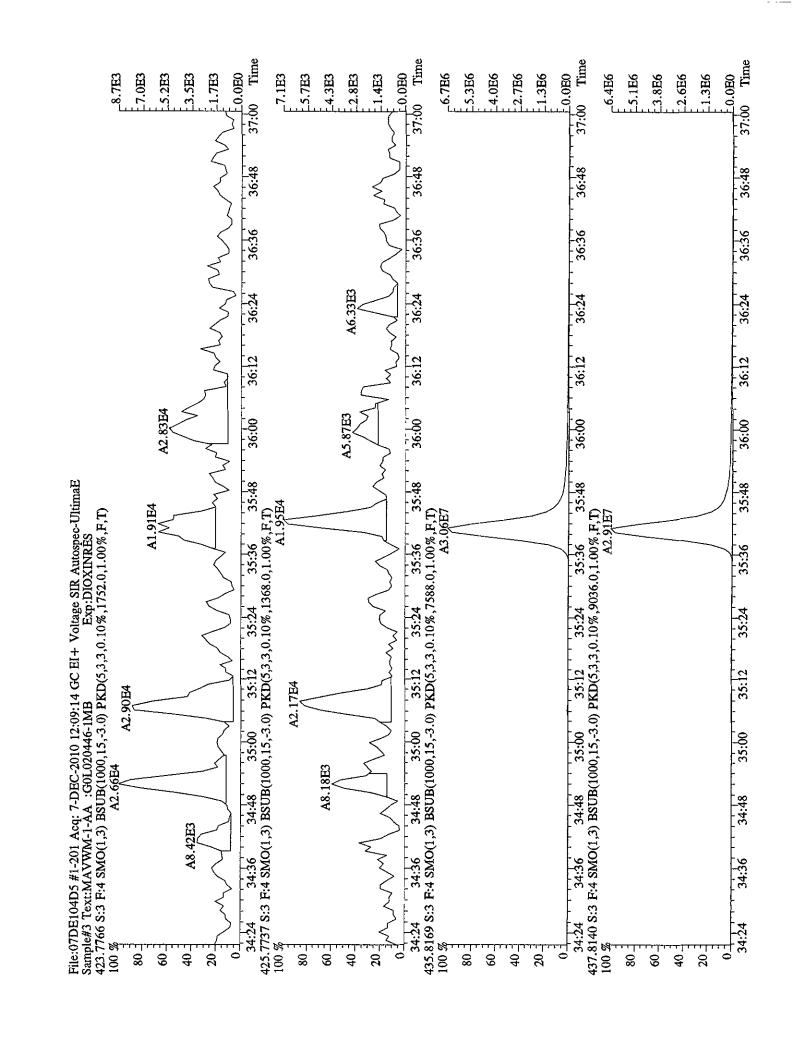

5873 1.083 n n

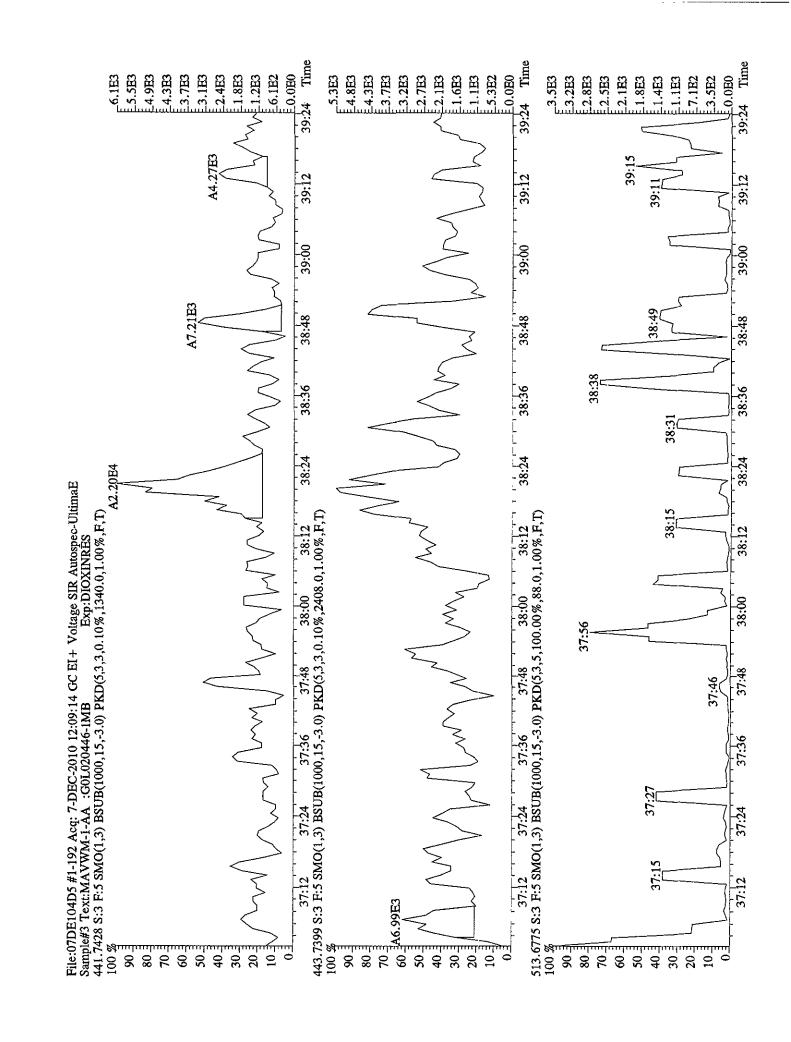


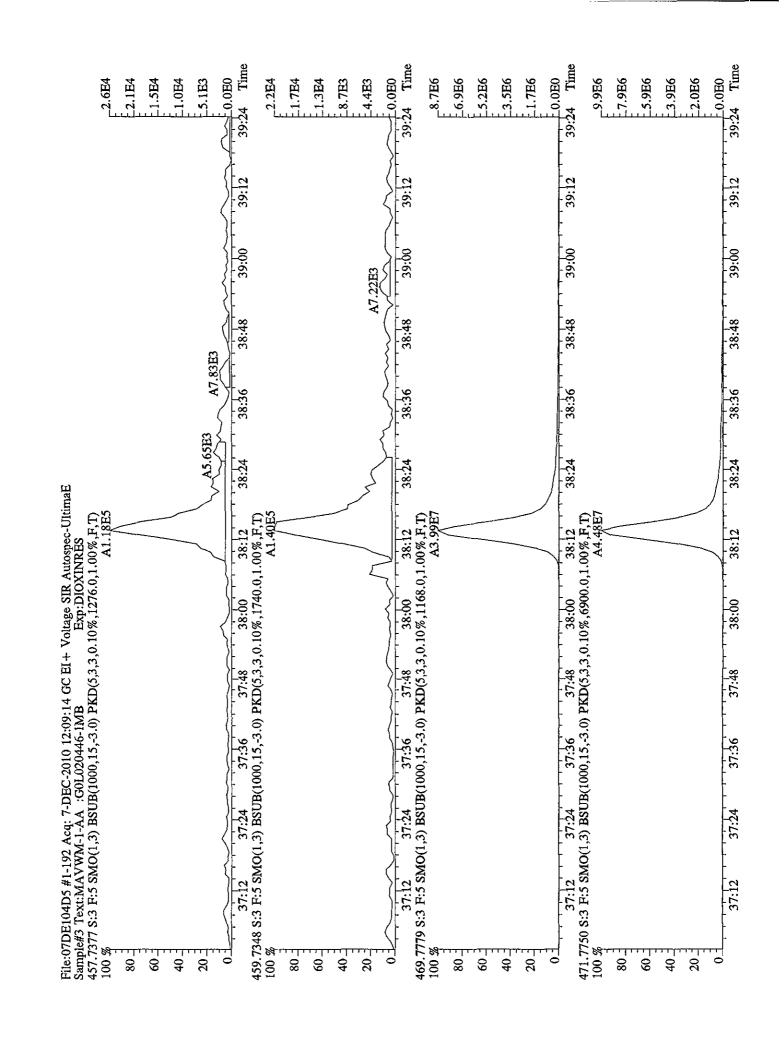


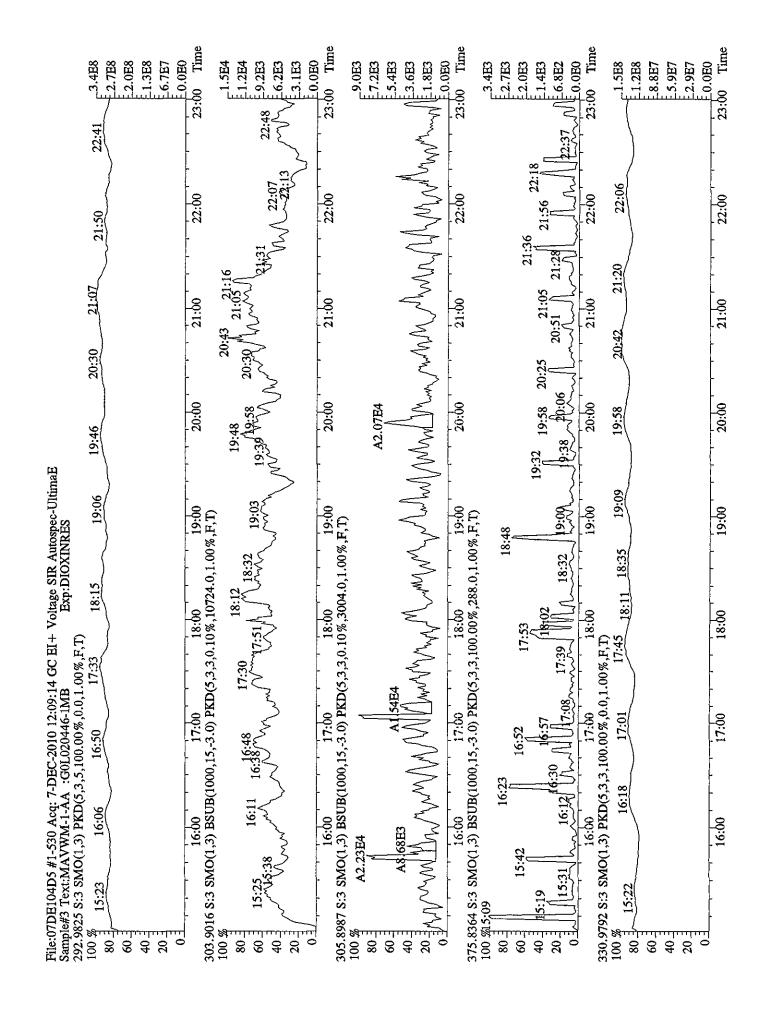


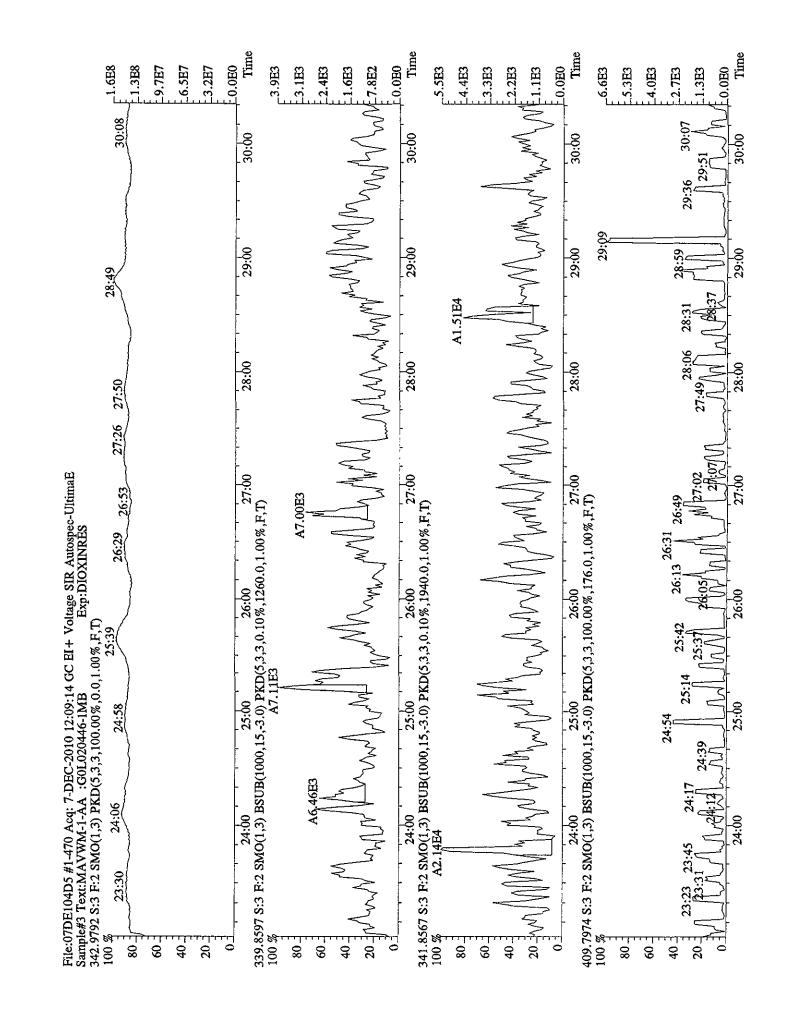


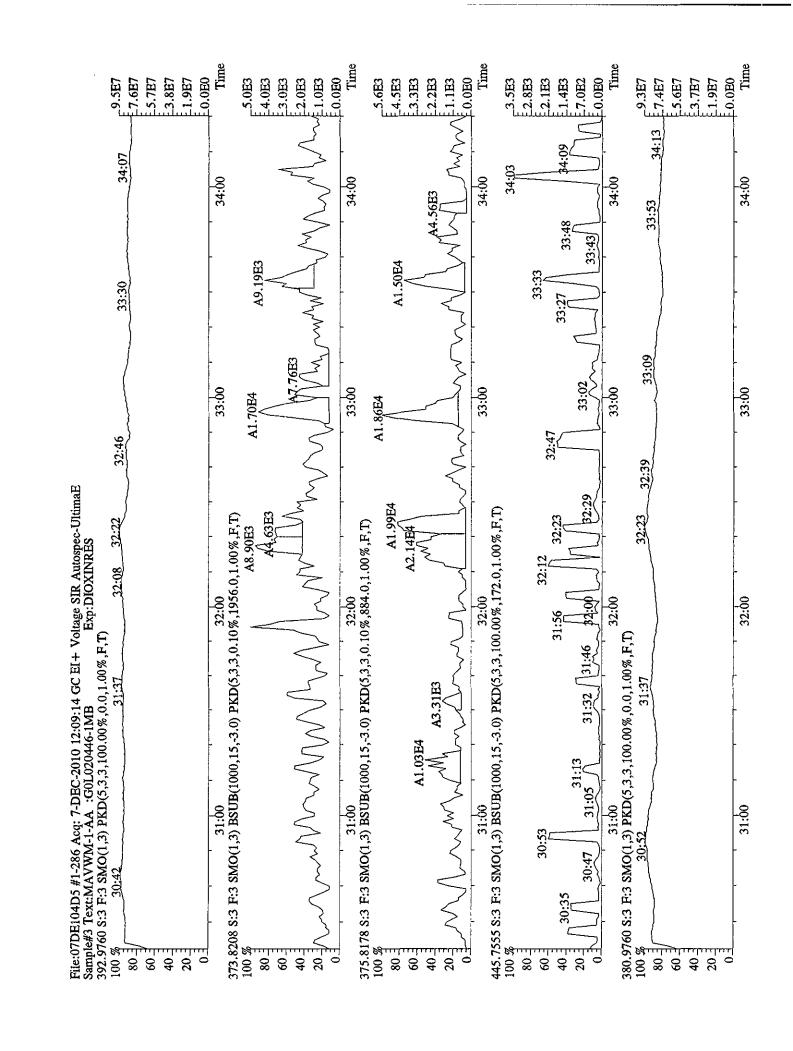


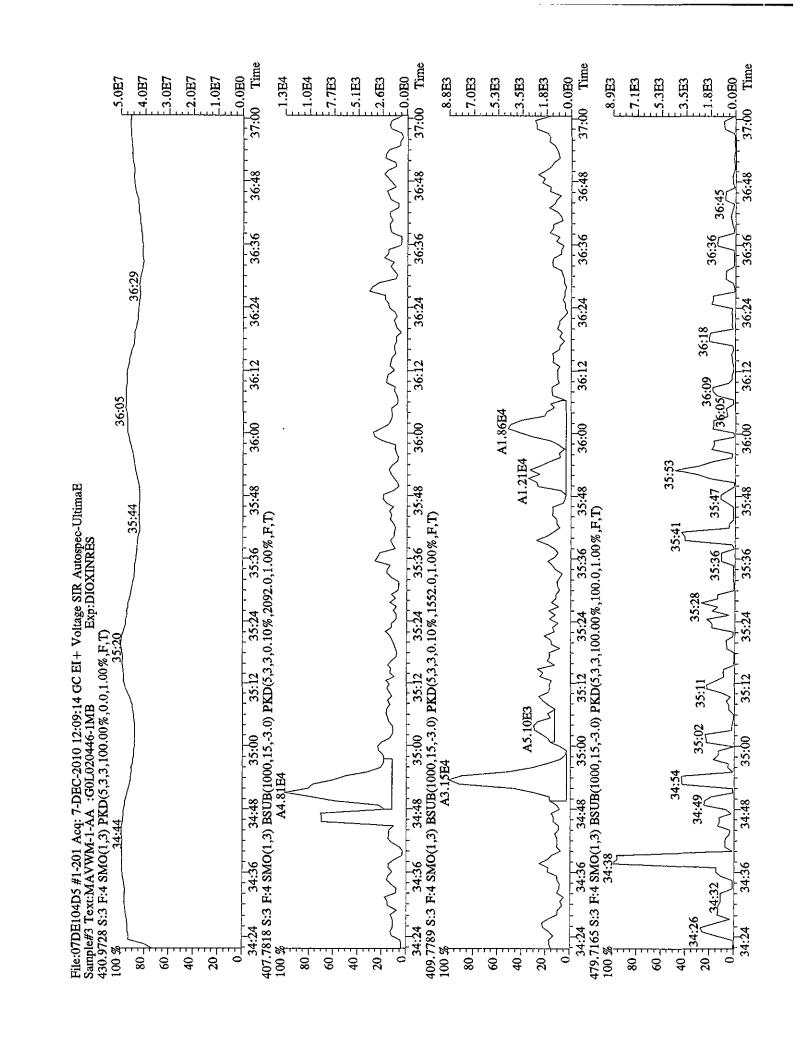


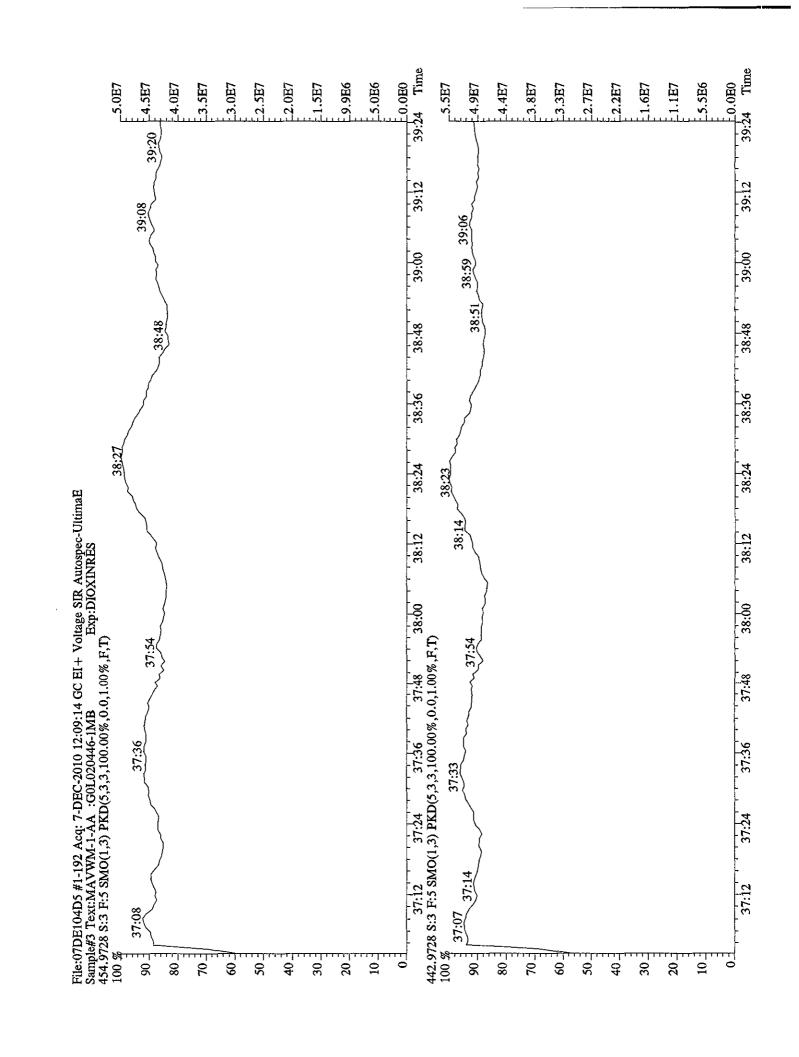


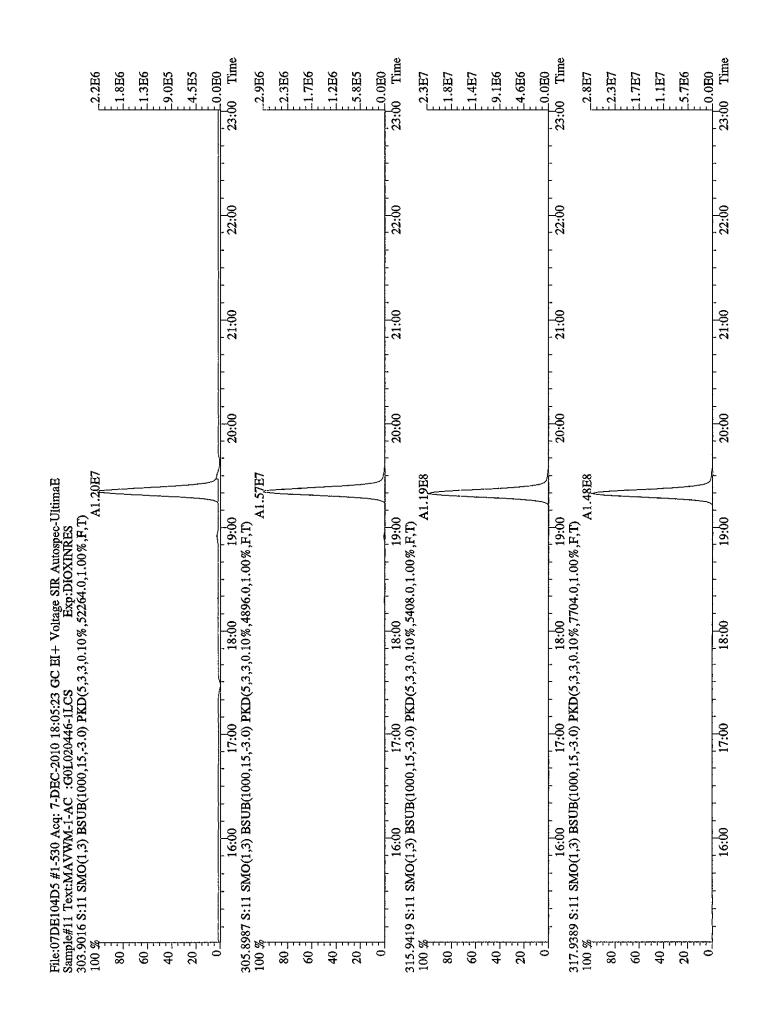


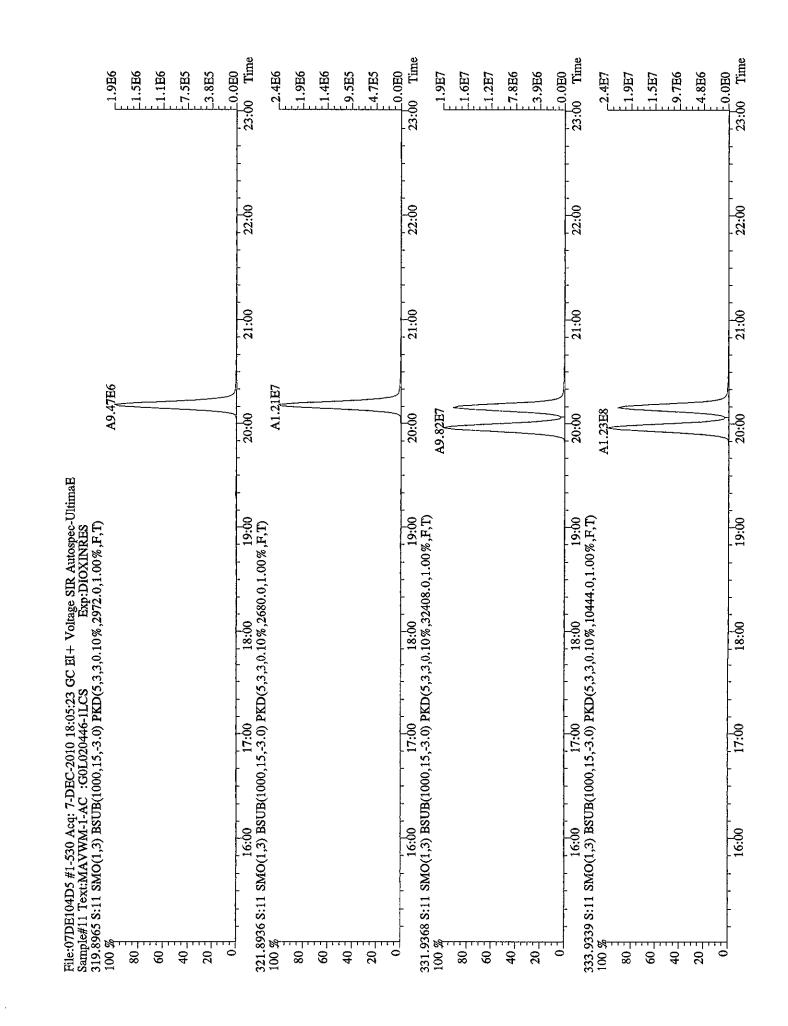


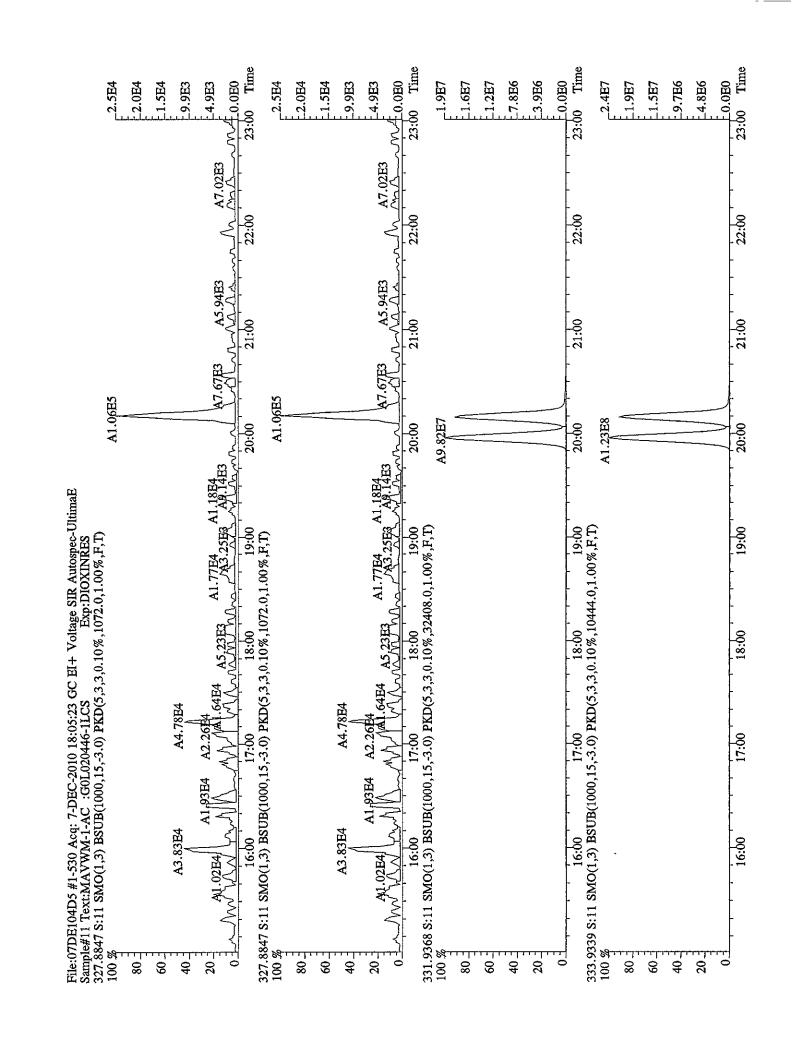




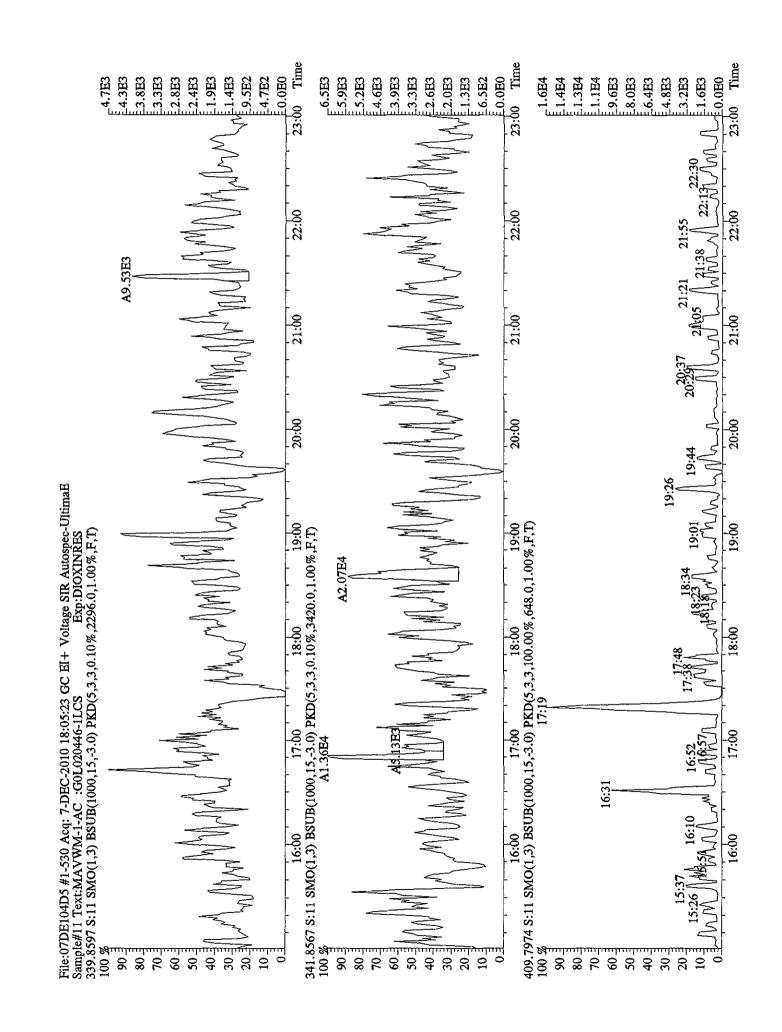


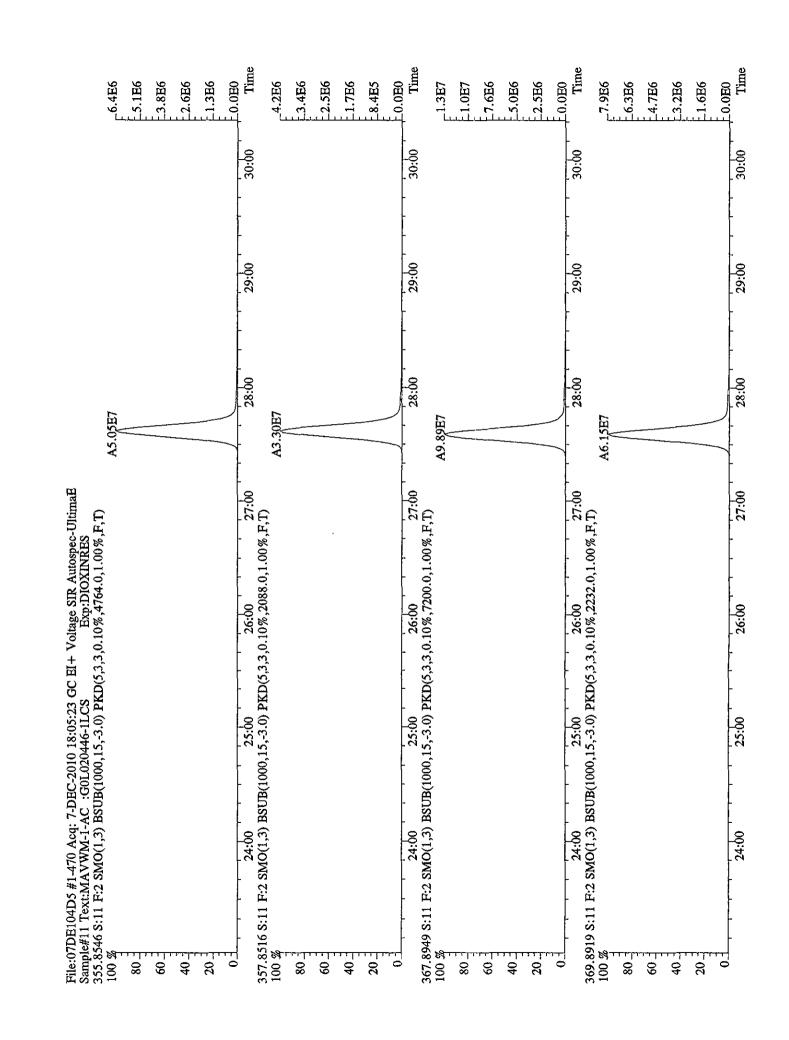


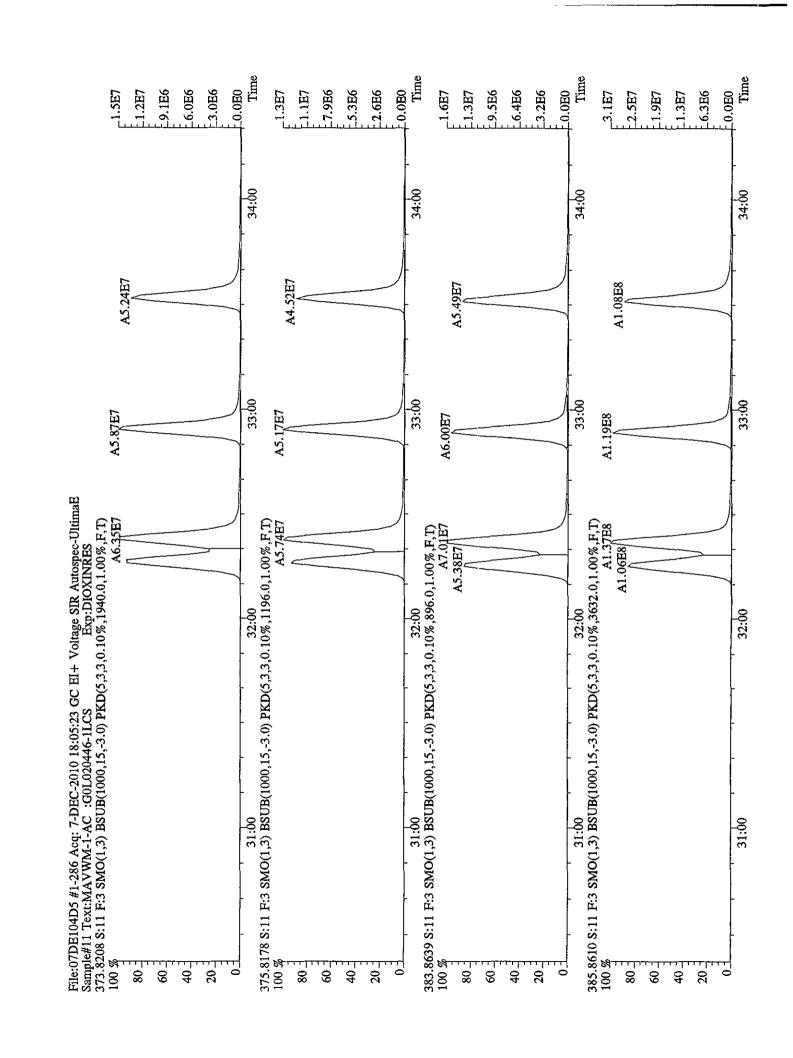


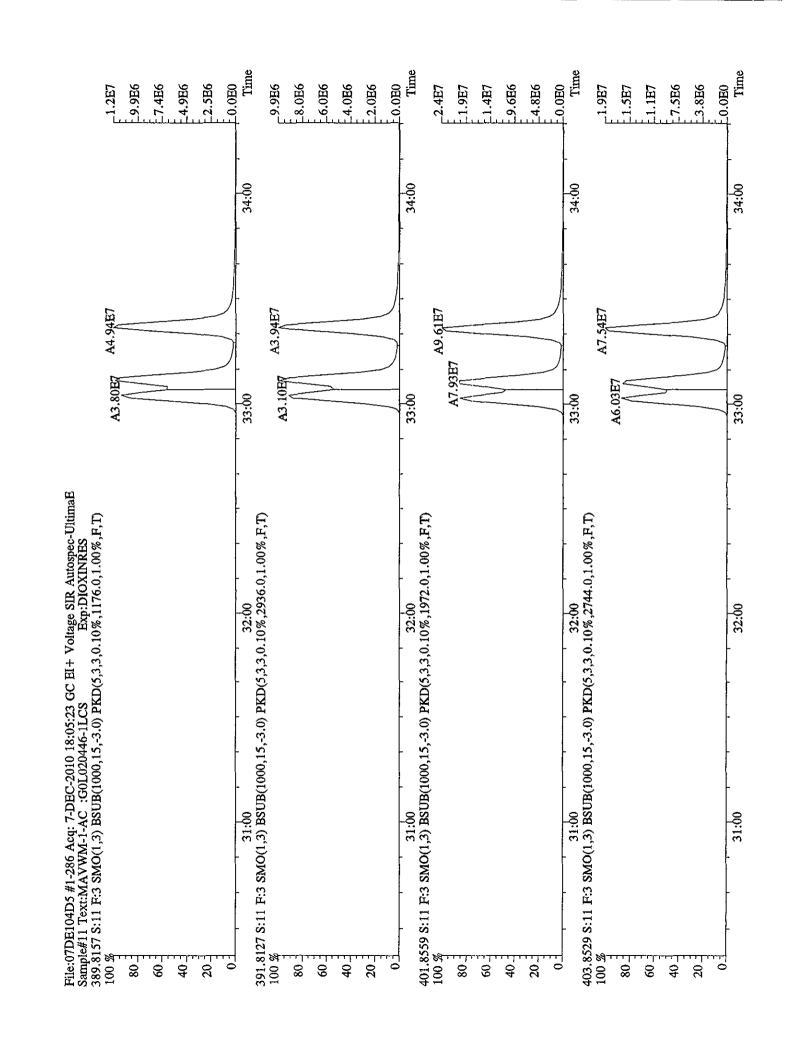


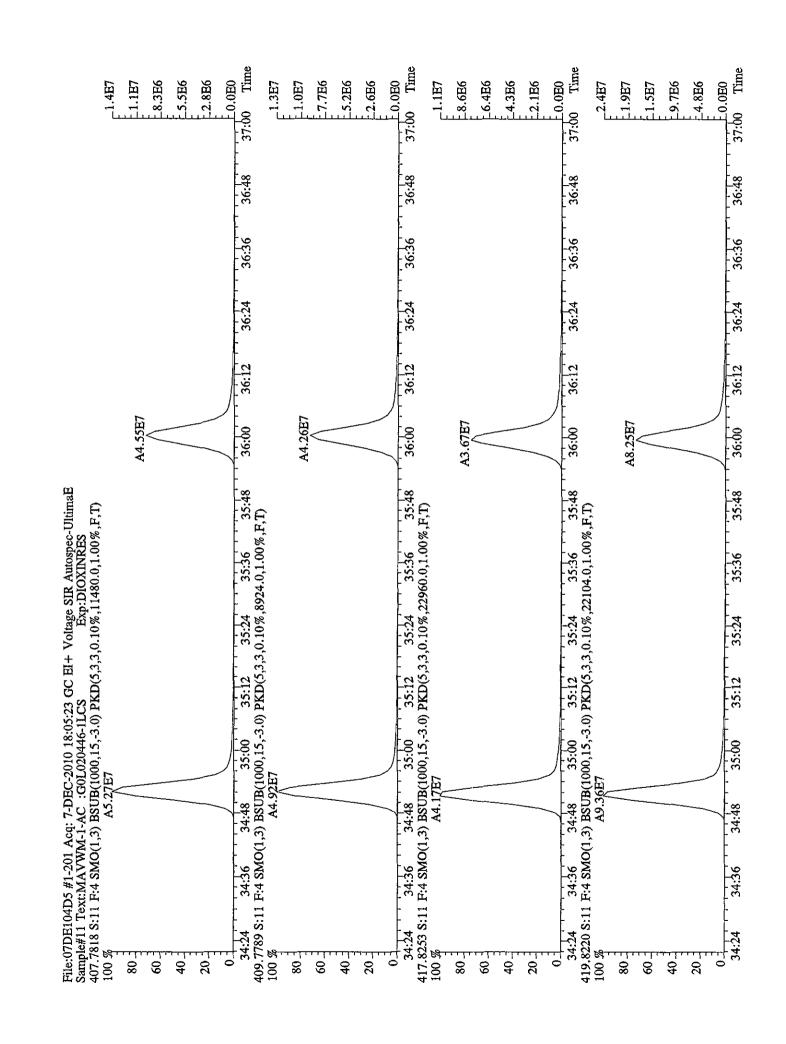
Run text: MAVWM-1-AC Sample text: MAVWM-1-AC :GOLO20446-1LCS Run #9 Filename: 07DE104D5 S: 11 I: 1 Results: 07DE104D5TO9 Acquired: 7-DEC-10 18:05:23 Processed: 8-DEC-10 07:53:18 Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5

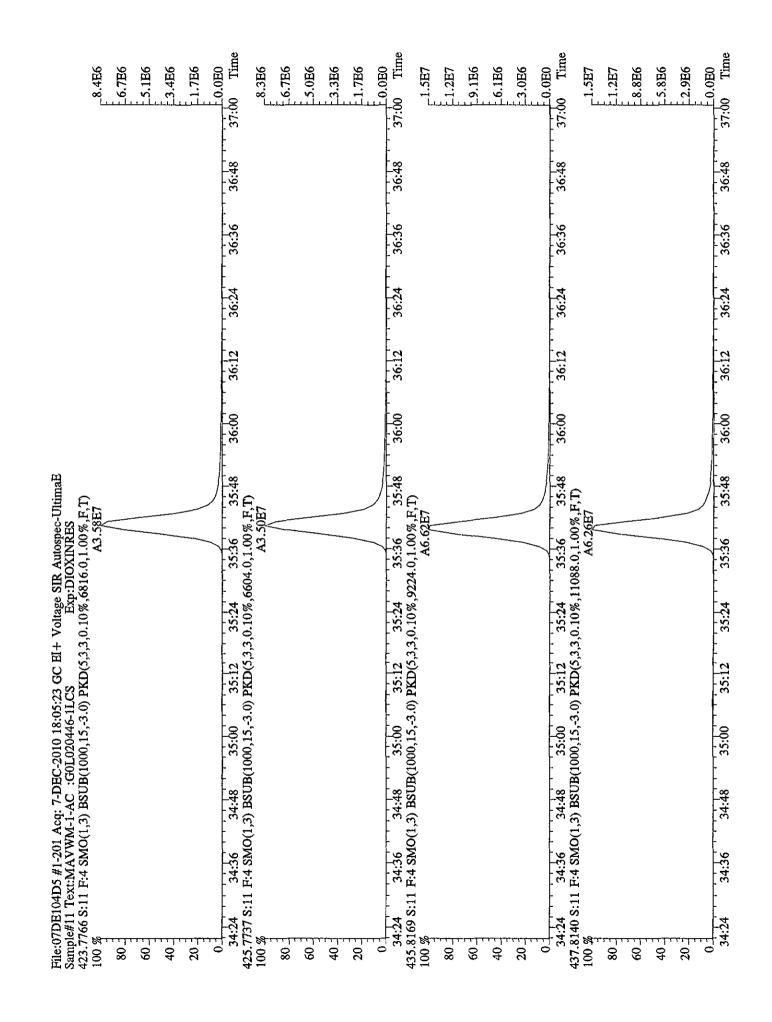

Run: 07DE104D5	Analyte: To	J9		Cal	: TO90721104D5			
Factor 1: 1600.000	Factor 2:	20.000	S	ample	size: 0.500000SAMP	12/8/12 Was		
Name	Resp	RA	RT	RRF	Conc	EDL	Rec	М
13C-1,2,3,4-TCDD	220776888	0.80 y	19:58	-	132.21	-	_	n
13C-2,3,7,8-TCDF	266905008	0.80 y	19:20	1.23	3933.60	2.94	98.3	n
2,3,7,8-TCDF		_				13.49		n
Total TCDF		_				13.49	_	n
13C-2,3,7,8-TCDD	202024984	0.81 y	20:09	0.91	4044.23	13.03	101.1	n
2,3,7,8-TCDD	21524076	0.79 y	20:11	0.98	433.33	1.73	_	n
Total TCDD	21567886	4.34 n	19:20	0.98	434,21	1.73	_	n
_								
37C1-2,3,7,8-TCDD	212326	1.00 y	20:10	1.33	3.17	0.49	0.2	n
13C-1,2,3,7,8-PeCDF	227246136	1.57 y	25:12	0.88	4699.74	6.34	117.5	n
1,2,3,7,8-PeCDF	126940572	1.56 y	25:13	1.08	2075.37	3.25	-	n
2,3,4,7,8-PeCDF	120299288	1.57 y	26:46	1.05	2025.19	3.34	_	n
Total F2 PeCDF	249811710	1.95 n	23:36	1.06	4143.22	3.29	_	n
Total F1 PeCDF	*	* n	NotFnd	1.06	*	1.98	-	n
120 1 2 2 5 0 5-055	160410006	1 63	00.00	0.66	4200 10	2.02	4400	
13C-1,2,3,7,8-PeCDD		-				3.93	110.0	n
1,2,3,7,8-PeCDD		_				4.32	-	n
Total PeCDD	83511182	1.53 у	27:37	0.93	2250.05	4.32	-	n
13C-1,2,3,7,8,9-HxCDD	171502496	1.27 y	33:22	-	144.85	-	-	n
13C-1,2,3,4,7,8-HxCDF	159555412	D E1 7	22.15			1.22	89.0	~
1,2,3,4,7,8-HxCDF		_				0.77		n
								n
1,2,3,6,7,8-HxCDF							-	n
2,3,4,6,7,8-HxCDF						0.76	-	n
1,2,3,7,8,9-HxCDF		_				0.85	-	n
Total HxCDF	435216821	0.88 n	31:13	1.21	9026.68	0.77	-	n
13C-1,2,3,6,7,8-HxCDD	141045740	1.28 y	33:07	0.83	3959.66	1.60	99.0	n
1,2,3,4,7,8-HxCDD	68963676	1.23 y	33:03	1.04	1885.66	1.30	_	n
1,2,3,6,7,8-HxCDD	91762548	1.29 y	33:07	1.16	2238.02	1.16	_	n
1,2,3,7,8,9-HxCDD	88801804	1.25 y	33:22	1.18	2131.12	1.14	-	n
Total HxCDD	249528028	1.23 y	33:03	1.13	6254.80	1.20	-	n
13C-1,2,3,4,6,7,8-HpCDF	135358240	0.45 v	34:51	0.91	3469.14	13.93	86.7	n
1,2,3,4,6,7,8-HpCDF	101879392	_			2237.12	5.22	-	n
1,2,3,4,7,8,9-HpCDF		_			2380.02	6.42	_	n
Total HpCDF		_			4617.14	5.76	_	n
TOCAL TIPODI	107743044	1.07 y	34.32	1.22	4017.11	5.70	_	11
13C-1,2,3,4,6,7,8-HpCDD		_			3633.60	6.91	90.8	n
1,2,3,4,6,7,8-HpCDD	70757112	_			2050.75	5.04	-	n
Total HpCDD	70997471	0.89 у	35:07	1.07	2057.71	5.04	-	n
13C-OCDD	204124856	0.91 17	38.13	0.62	7680.07	13.70	96.0	n
OCDF					4230.45	9.09	J0.0 -	n
OCDD		_			4061.15	13.90	_	
OCDD	1242/0032	0.50 y	20:13	1.∠∪	4001.10	13.50	_	n

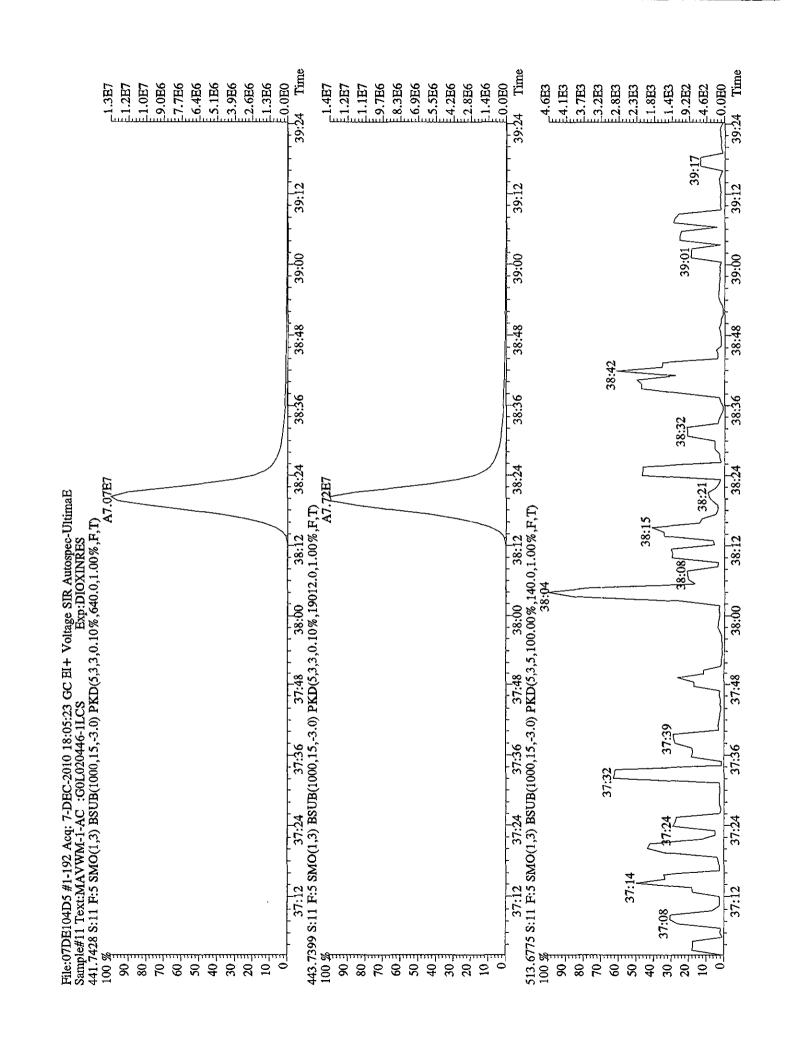


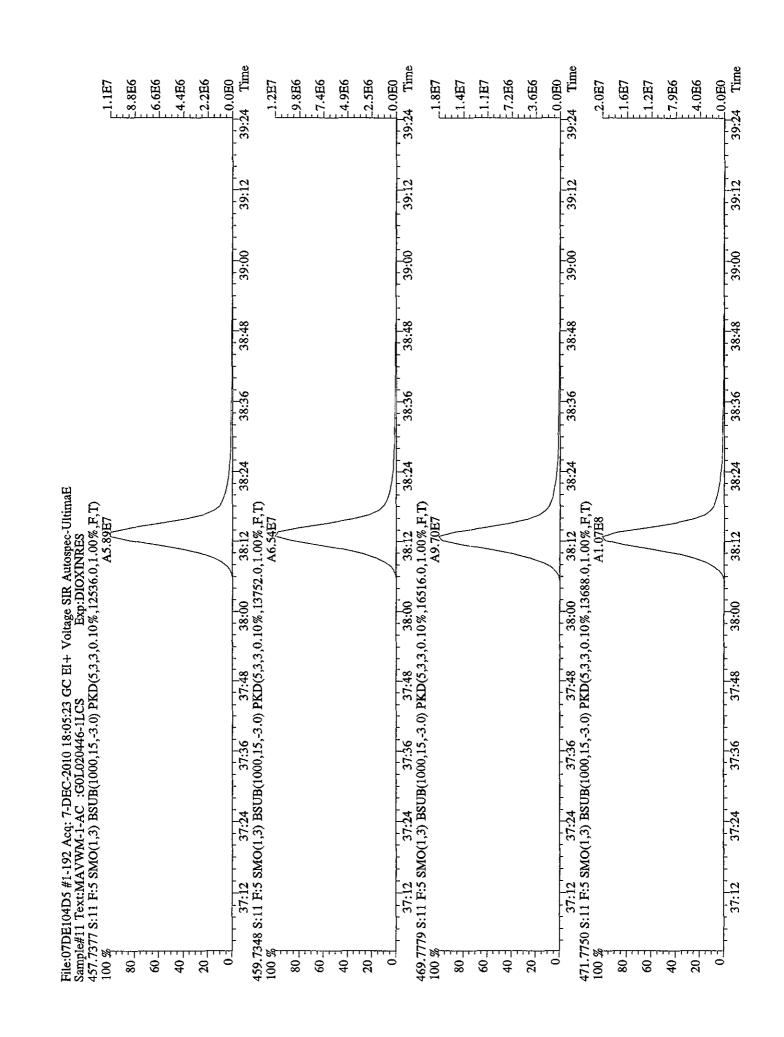


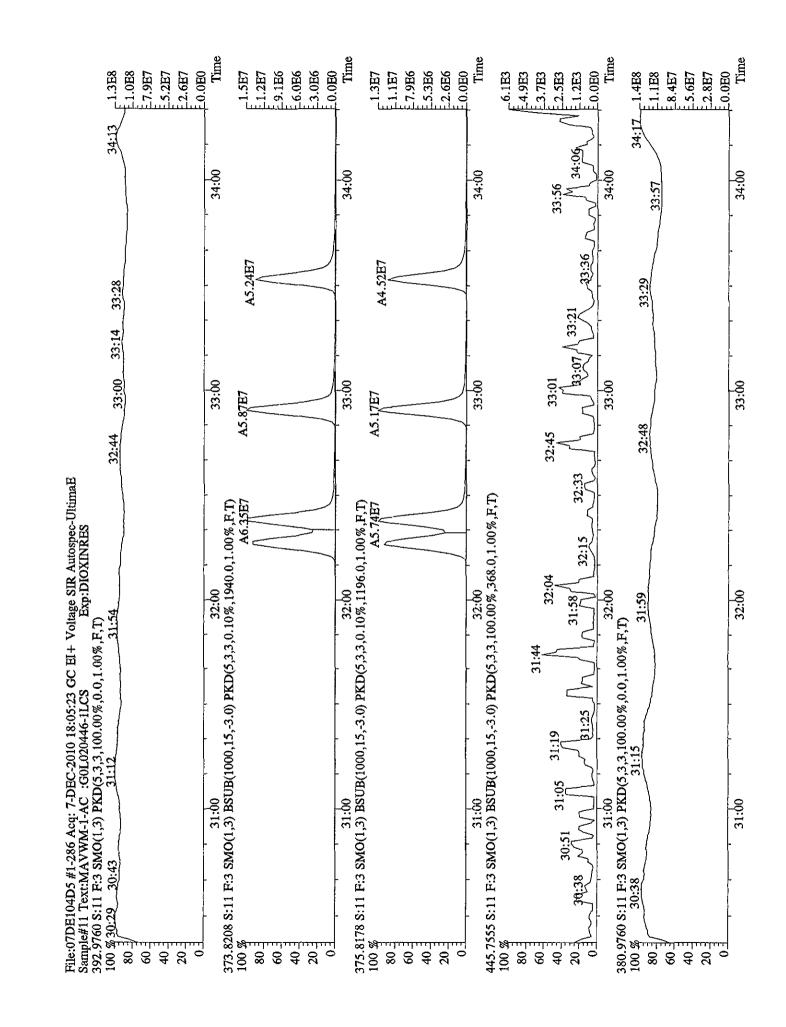


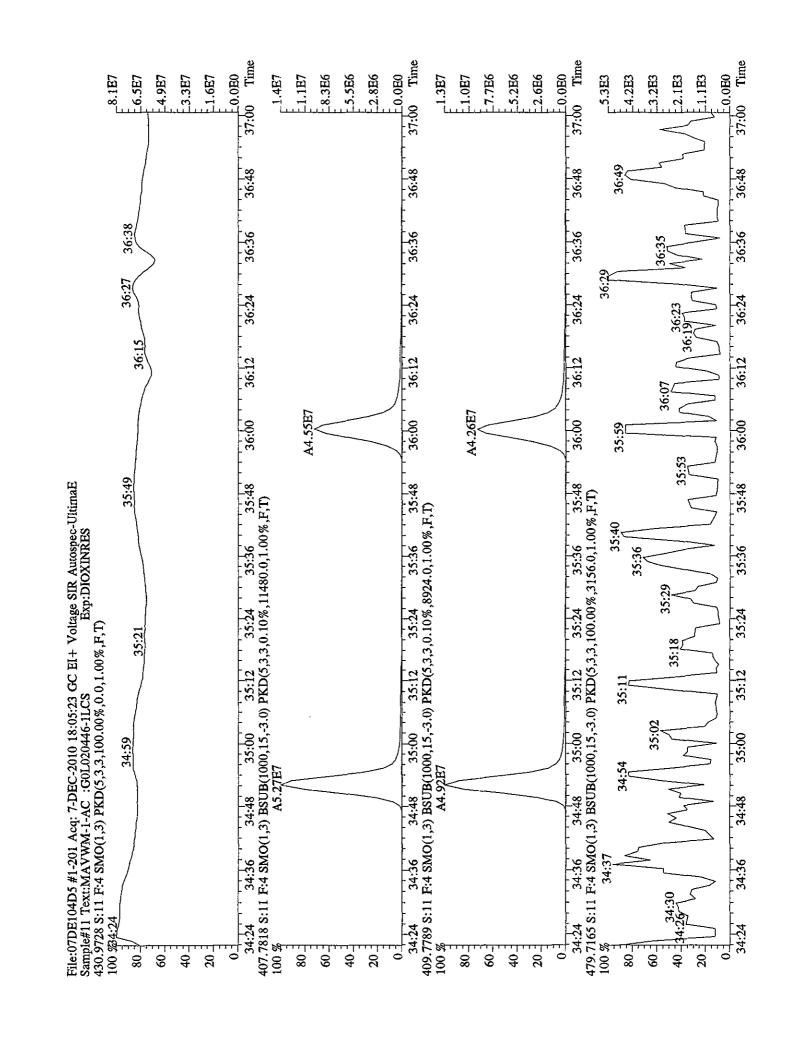


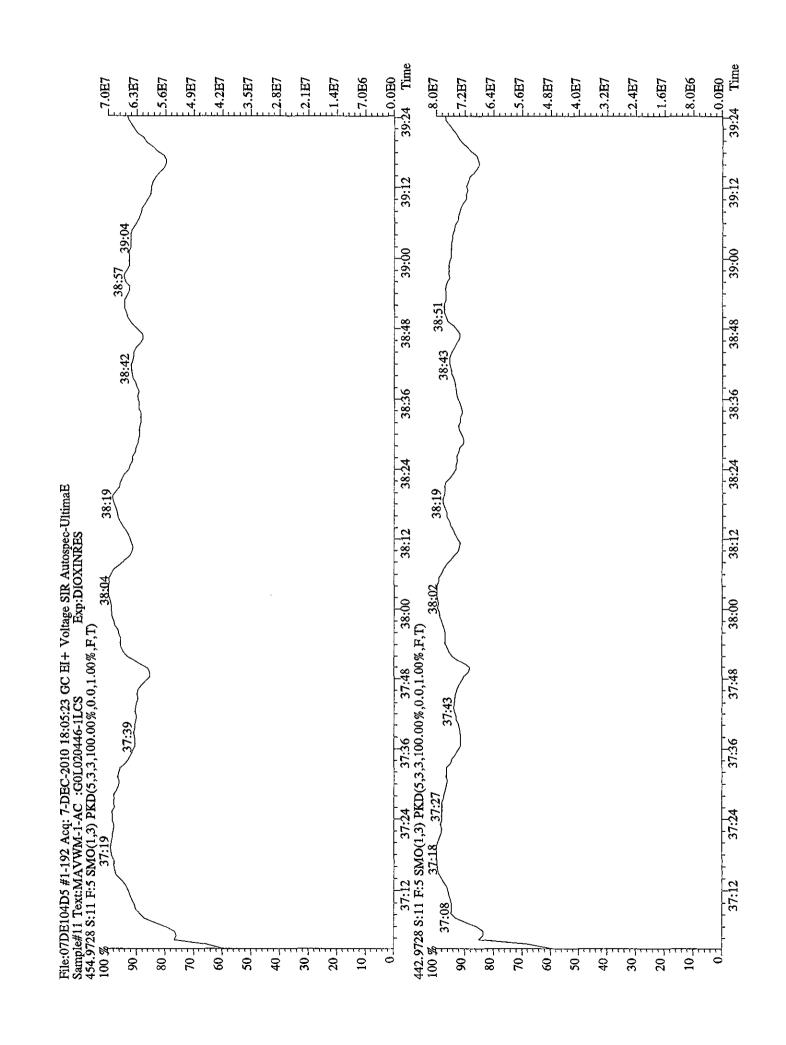


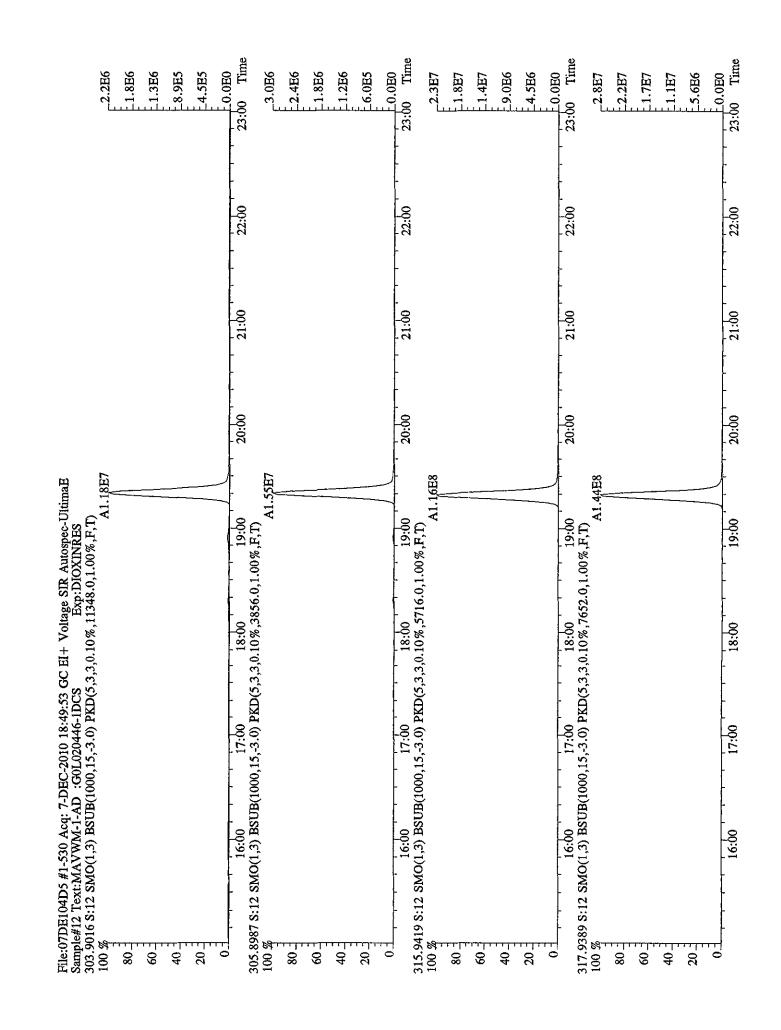


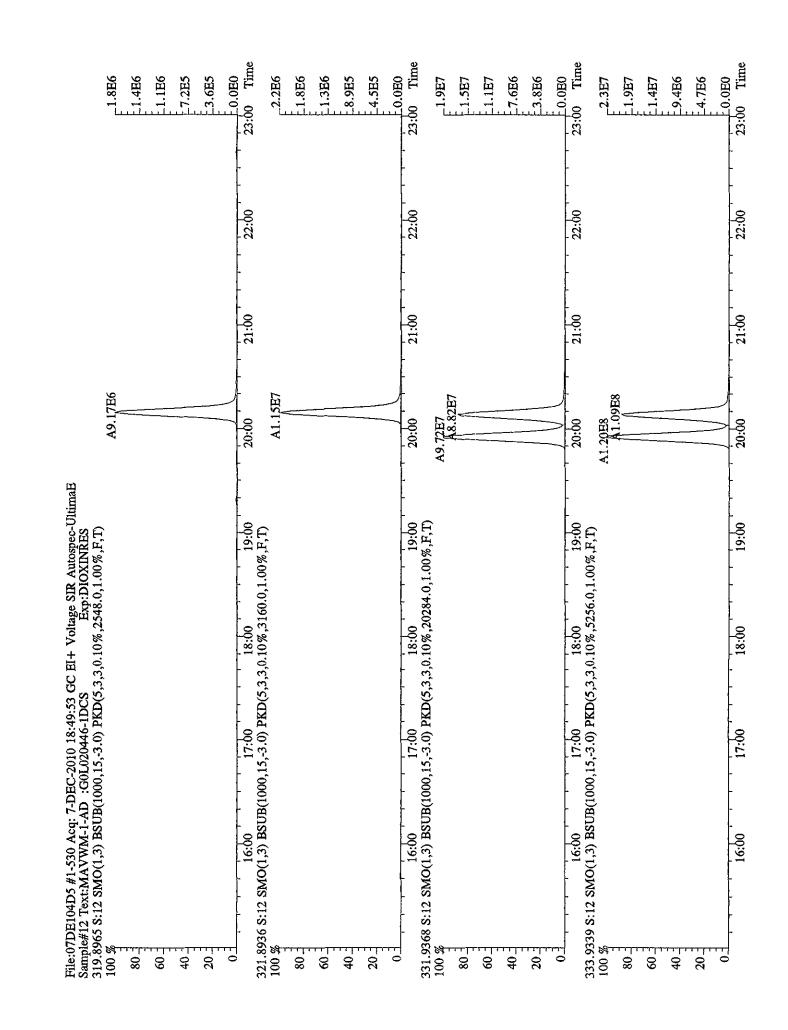


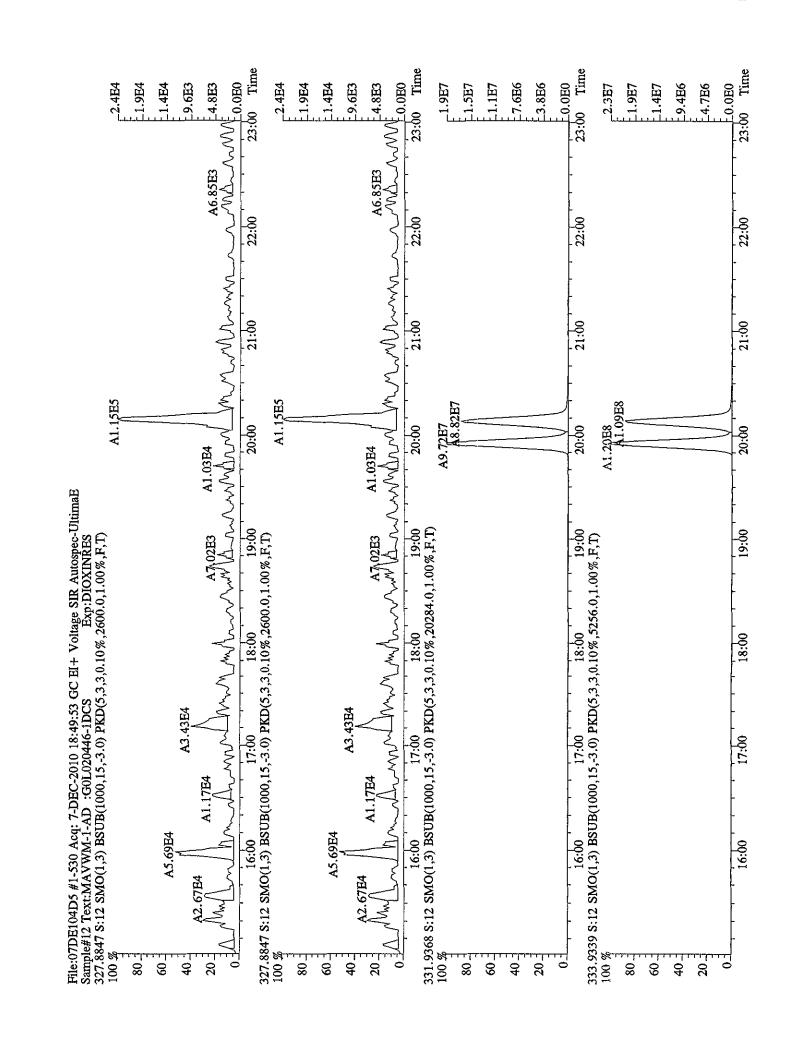


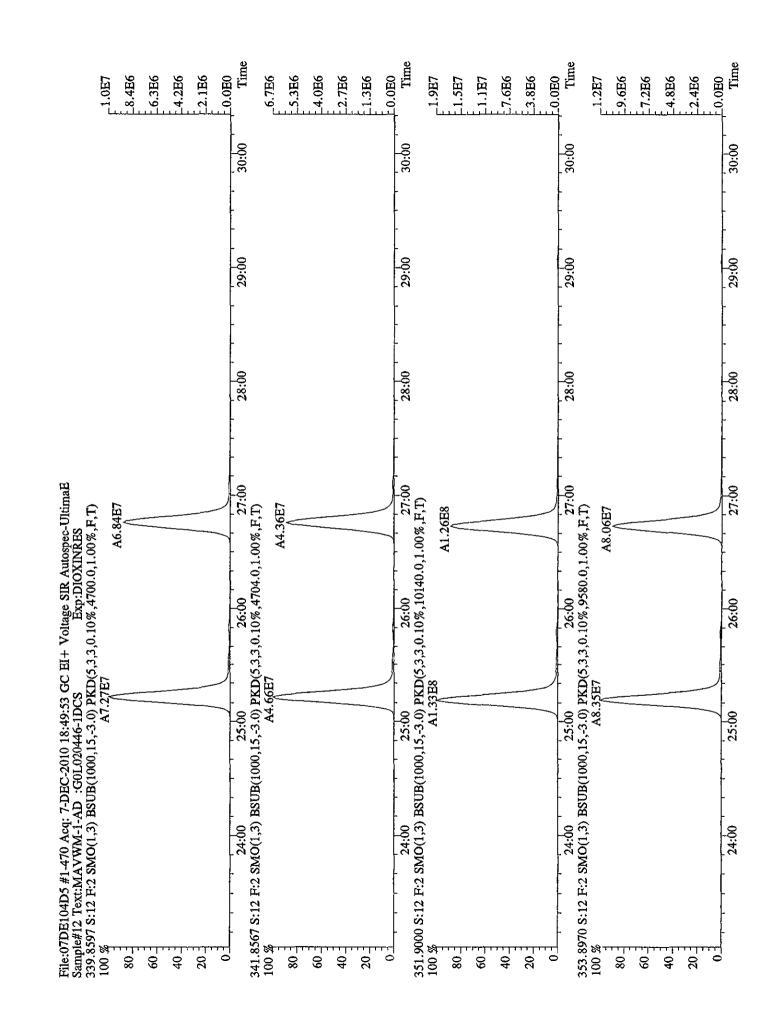


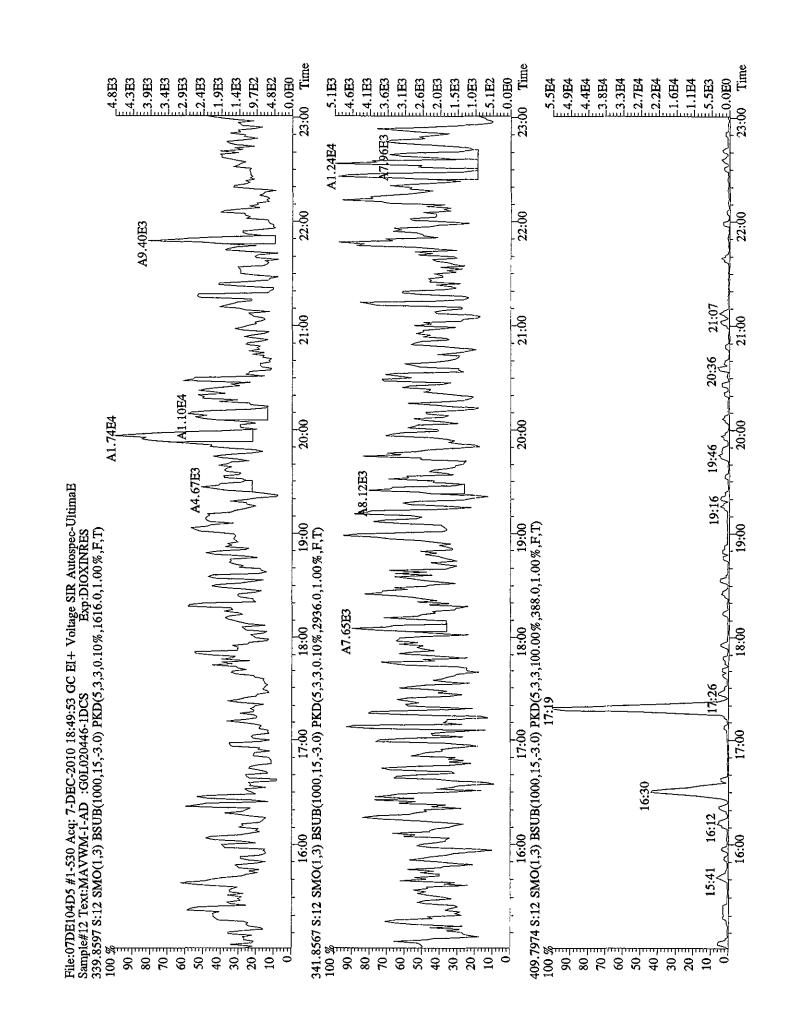


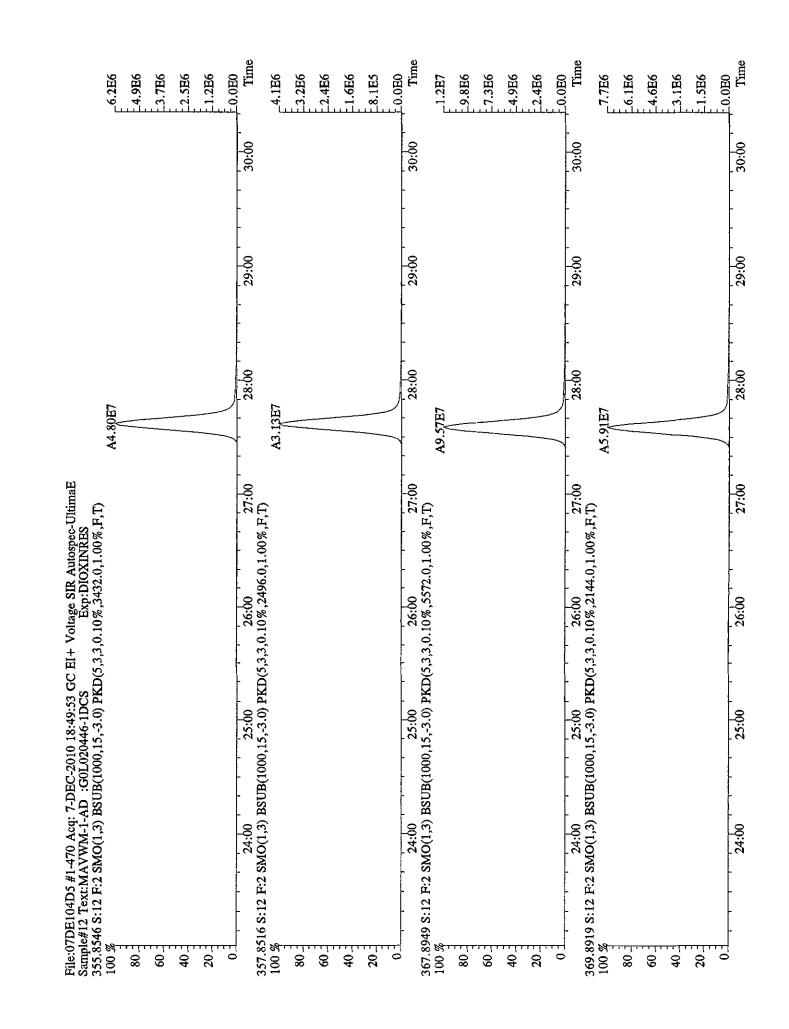


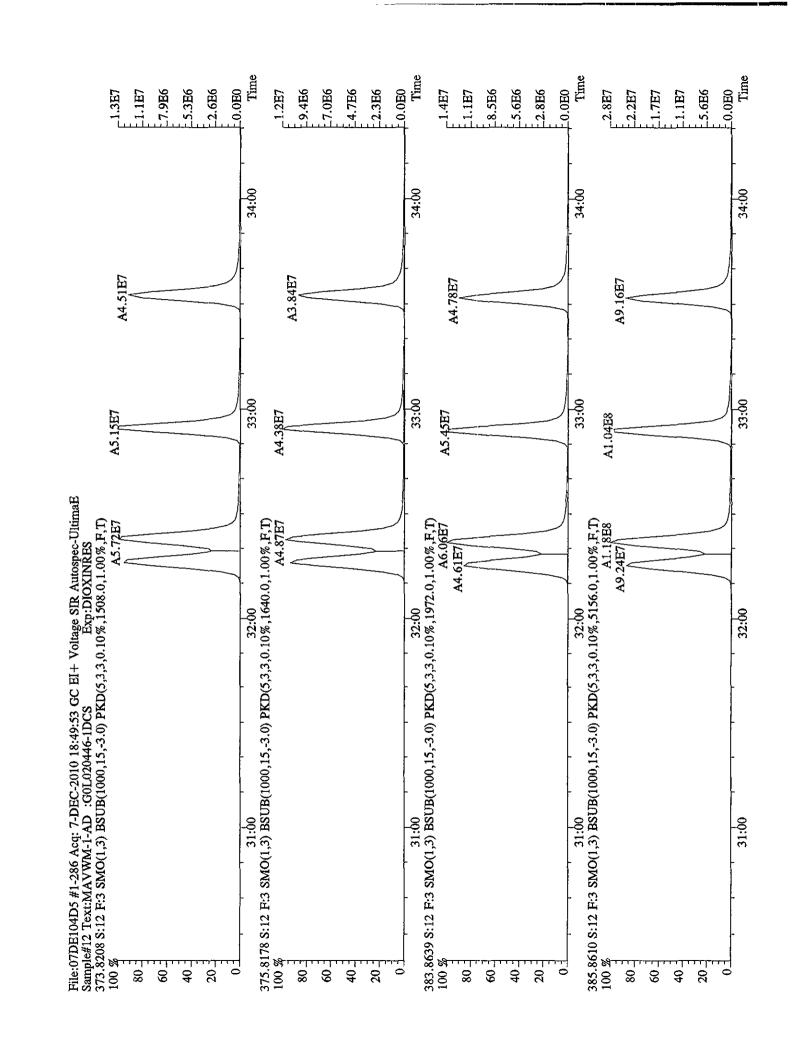


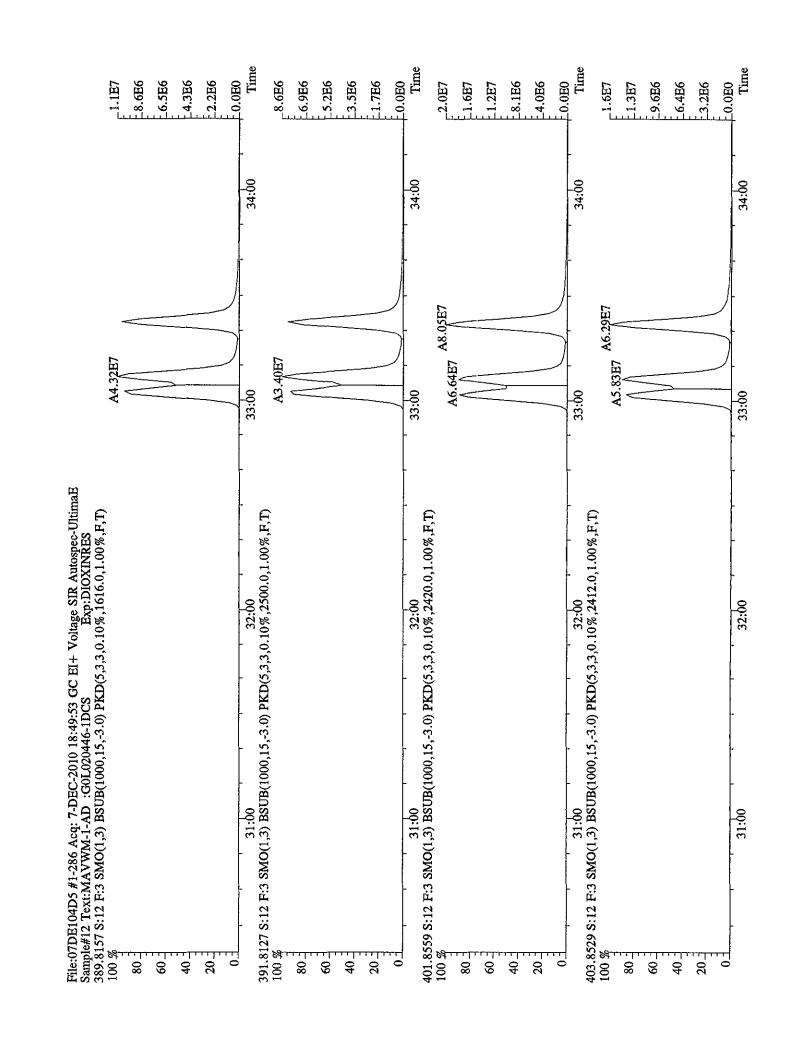

Run text: MAVWM-1-AD Sample text: MAVWM-1-AD :GOL020446-1DCS Run #10 Filename: 07DE104D5 S: 12 I: 1 Results: 07DE104D5T09

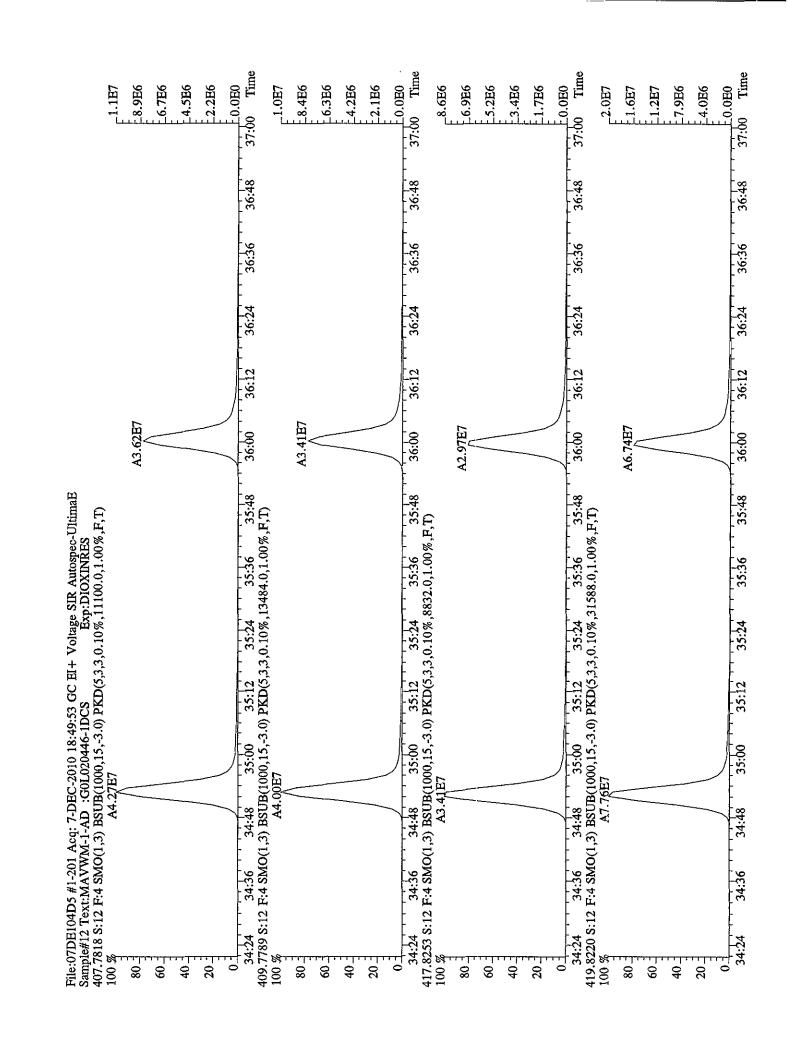

Acquired: 7-DEC-10 18:49:53 Processed: 8-DEC-10 07:53:19
Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5
Factor 1: 1600.000 Factor 2: 20.000 Sample size: 0.500000SAMP

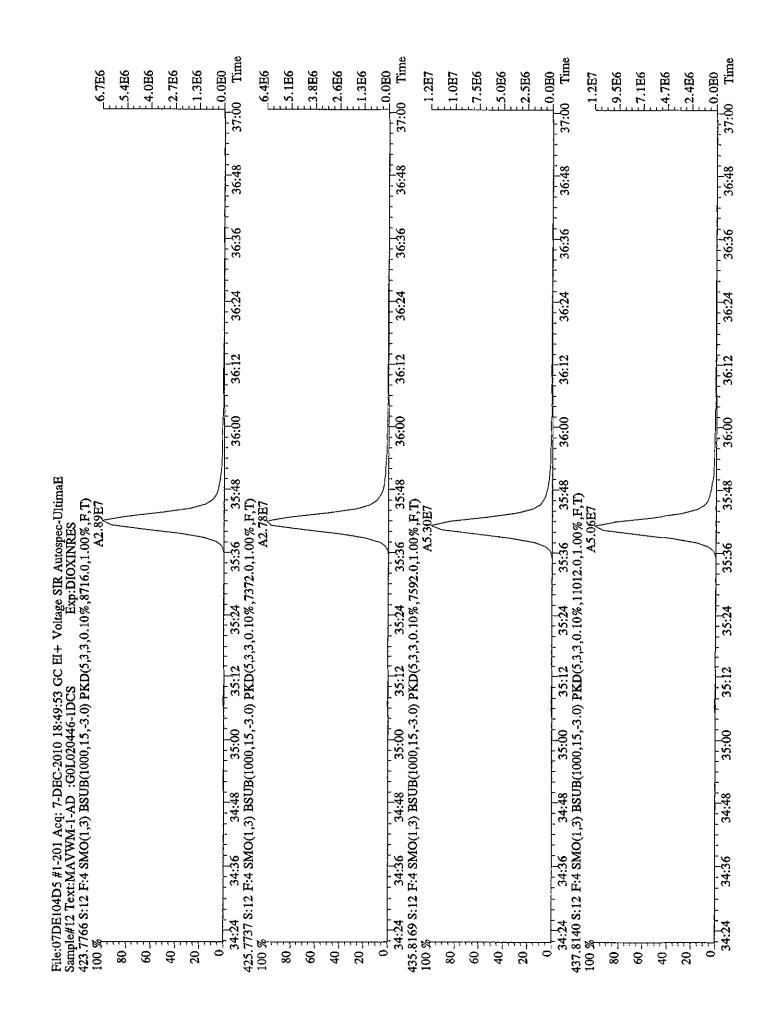

Factor 1: 1600.000	Factor 2: 20.000		Sample Size: 0.500000S			AMP Y~		
Name	Resp F	AS	RT	RRF	Conc	EDL	Rec	М
13C-1,2,3,4-TCDD	217646008 0.8	31 y	19:56	-	130.33	-	-	n
13C-2,3,7,8-TCDF	259869712 0.8	31 y	19:19	1.23		3.09	97.1	n
2,3,7,8-TCDF	27306931 0.7	'6 y	19:20	0.99	422.64	3.63	-	n
Total TCDF	27680068 0.3	8 n	18:18	0.99	428.41	3.63	-	n
13C-2,3,7,8-TCDD						8.01	100.2	n
2,3,7,8-TCDD	20672333 0.8	0 у	20:09	0.98	426.15	1.87	-	n
Total TCDD	20806521 0.8	6 у	18:51	0.98	428.91	1.87	-	n
37C1-2,3,7,8-TCDD	229456 1.0	00 У	20:09	1.33	3.51	1.26	0.2	n
13C-1,2,3,7,8-PeCDF	216153656 1.5	9 y	25:11	0.88	4534.64	6.39	113.4	n
1,2,3,7,8-PeCDF	119293228 1.5	66 y	25:13	1.08	2050.43	3.38	_	n
2,3,4,7,8-PeCDF	111996160 1.5	57 y	26:46	1.05	1982.17	3,48	_	n
Total F2 PeCDF	233499175 1.6	8 y	23:36	1.06	4071.13	3.43	-	n
Total F1 PeCDF	7682 0.5	8 n	19:27	1.06	0.13	1.66	-	n
13C-1,2,3,7,8-PeCDD	154850632 1.6	32 y	27:35	0.66	4306.61	3.31	107.7	n
1,2,3,7,8-PeCDD	79269660 1.5	3 y	27:37	0.93	2212.56	3.86	_	n
Total PeCDD	79269660 1.5	3 y	27:37	0.93	2212.56	3.86	-	n
13C-1,2,3,7,8,9-HxCDD	143413824 1.2	8 y	33:22	-	12/8/10 Mes 121.13	-	-	n
13C-1,2,3,4,7,8-HxCDF	138545424 0.5	0 v	32:15			2.26	92.5	n
1,2,3,4,7,8-HxCDF	89331488 1.1					0.86	-	n
1,2,3,6,7,8-HxCDF	105856768 1.1	_				1464.251 0.81	_	
2,3,4,6,7,8-HxCDF	95360580 1.1	_				0.85	_	
1,2,3,7,8,9-HxCDF								n
Total HxCDF	374165457 1.1	_					_	n
120 1 2 2 6 7 6 4.000	104700040 1 1	A	22-06	0.00	47.06.46	1 02	104 7	
13C-1,2,3,6,7,8-HxCDD	124700948 1.1	_						n
1,2,3,4,7,8-HxCDD	59993930 1.2	-			1855.41	1.48	-	n
1,2,3,6,7,8-HxCDD	77214388 1.2				2130.03	1.32	-	n
1,2,3,7,8,9-HxCDD	73045130 1.2	-			1982.75	1.30	-	n
Total HxCDD	210253448 1.2	3 y	33:03	1.13	5968.19	1.36	-	n
13C-1,2,3,4,6,7,8-HpCDF	111685080 0.4	_			3423.04	14.72	85.6	n
1,2,3,4,6,7,8-HpCDF	82718964 1.0	_			2201.39	7.73	_	n
1,2,3,4,7,8,9-HpCDF	70336460 1.0	_			2303.83	9.51	-	n
Total HpCDF	153055424 1.0	7 y	34:53	1.22	4505.22	8.52	-	n
13C-1,2,3,4,6,7,8-HpCDD	103533768 1.0	5 у	35:41	0.83	3493.43	7.46	87.3	n
1,2,3,4,6,7,8-HpCDD	56669096 1.0	4 y	35:42	1.07	2042.93	7.40	-	n
Total HpCDD	56994577 1.0	7 y	35:07	1.07	2054.66	7.40	-	n
13C-OCDD	155882152 0.9	1 y	38:14	0.62	7013.66	6.15	87.7	n
OCDF	112077828 0.9	_			4197.58	8.25	-	n
OCDD	93724116 0.9				4010.61	1.56	_	n
		-				· - •		

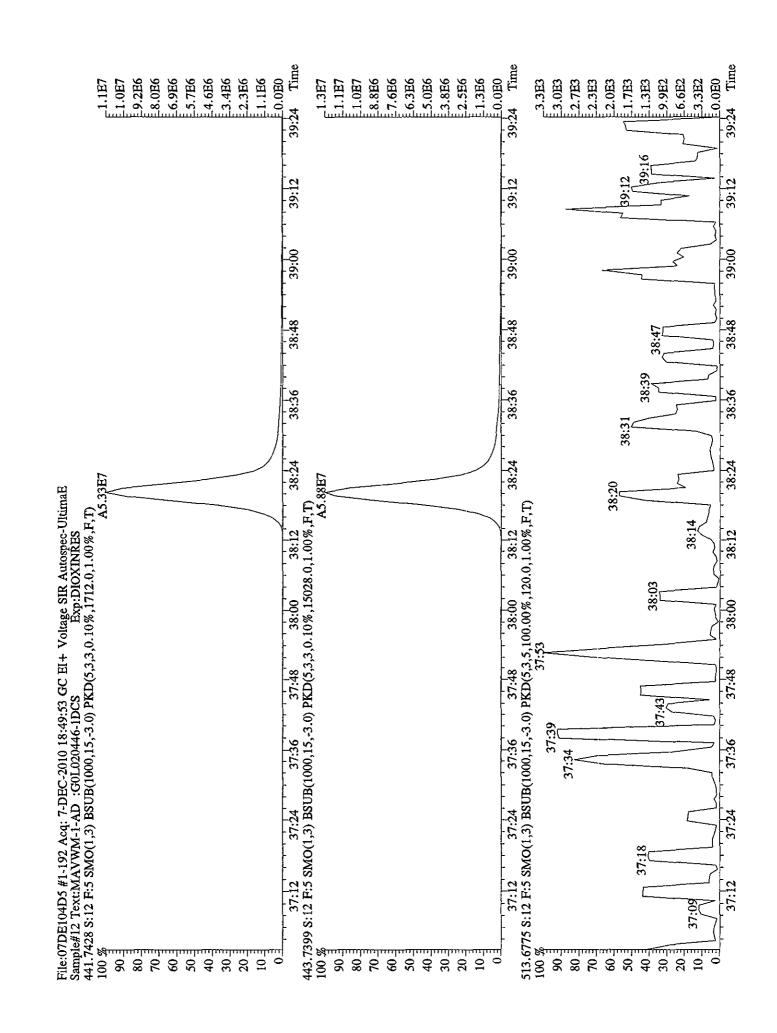


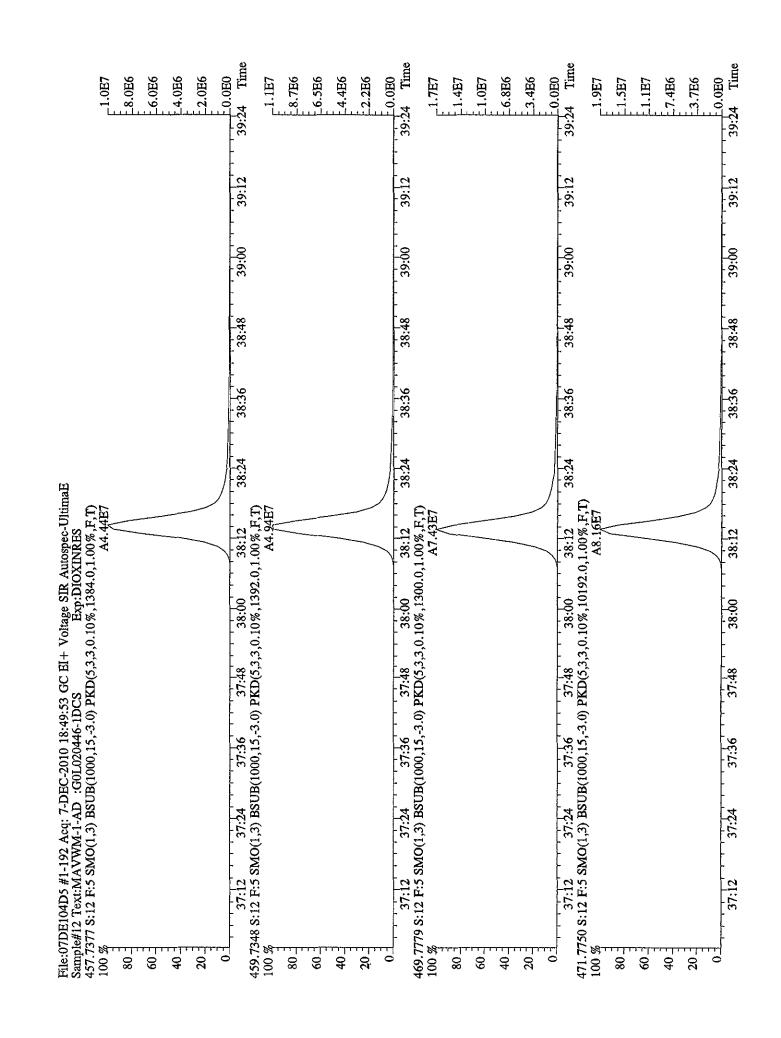


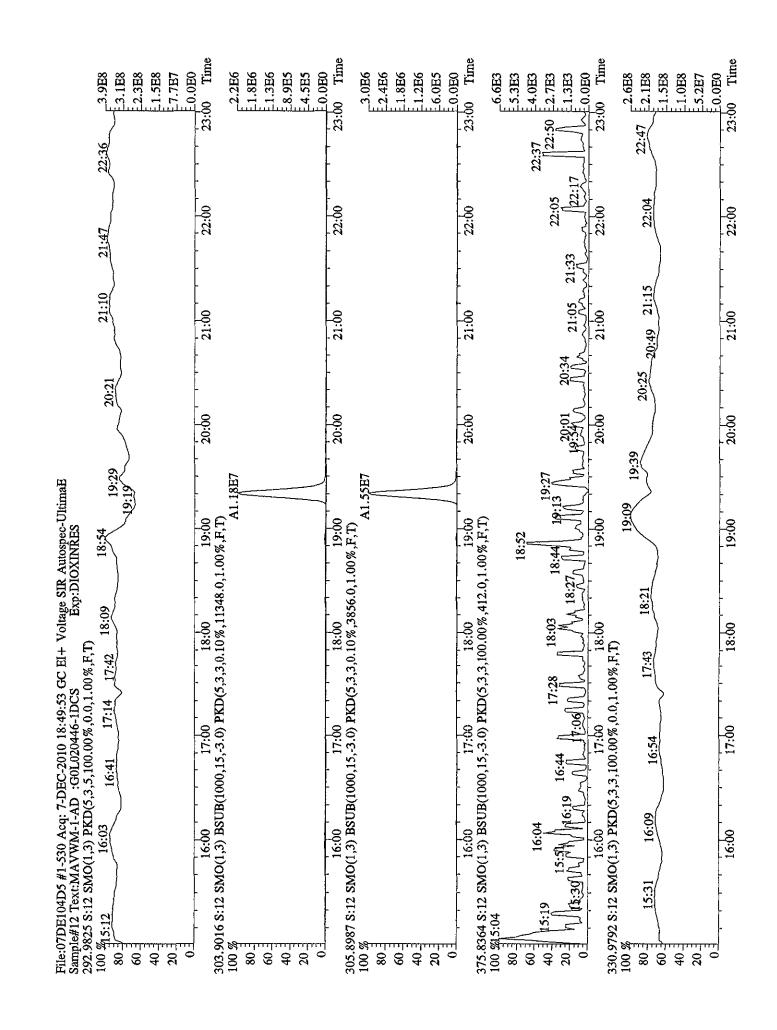


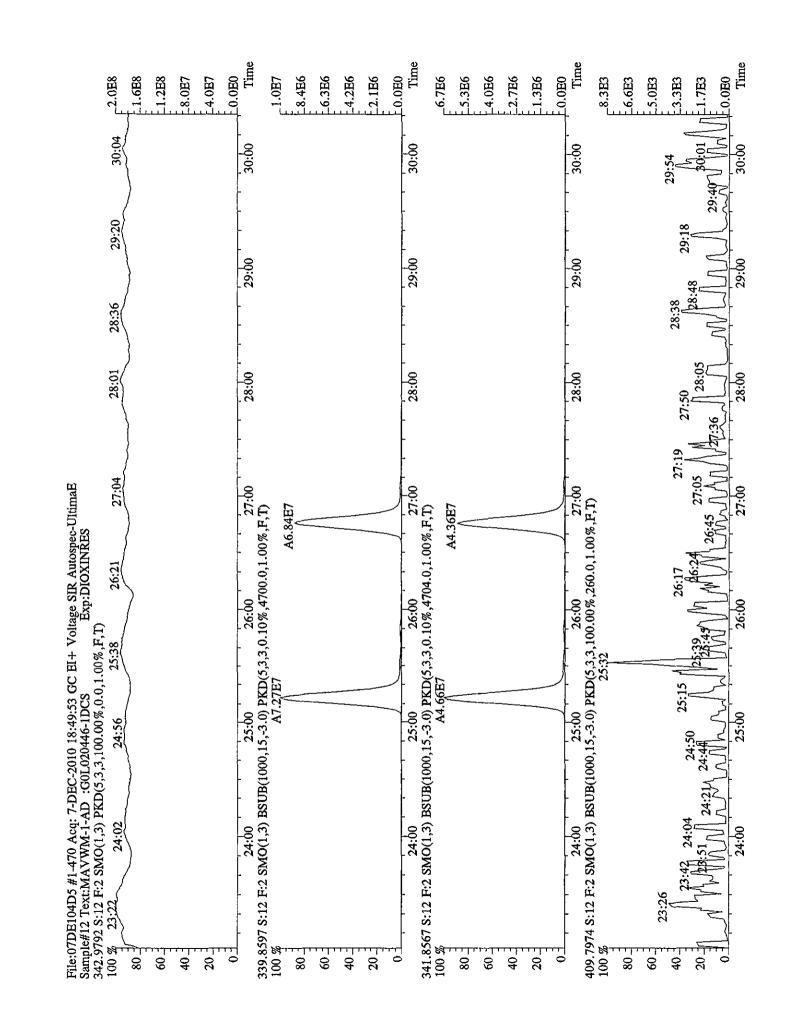


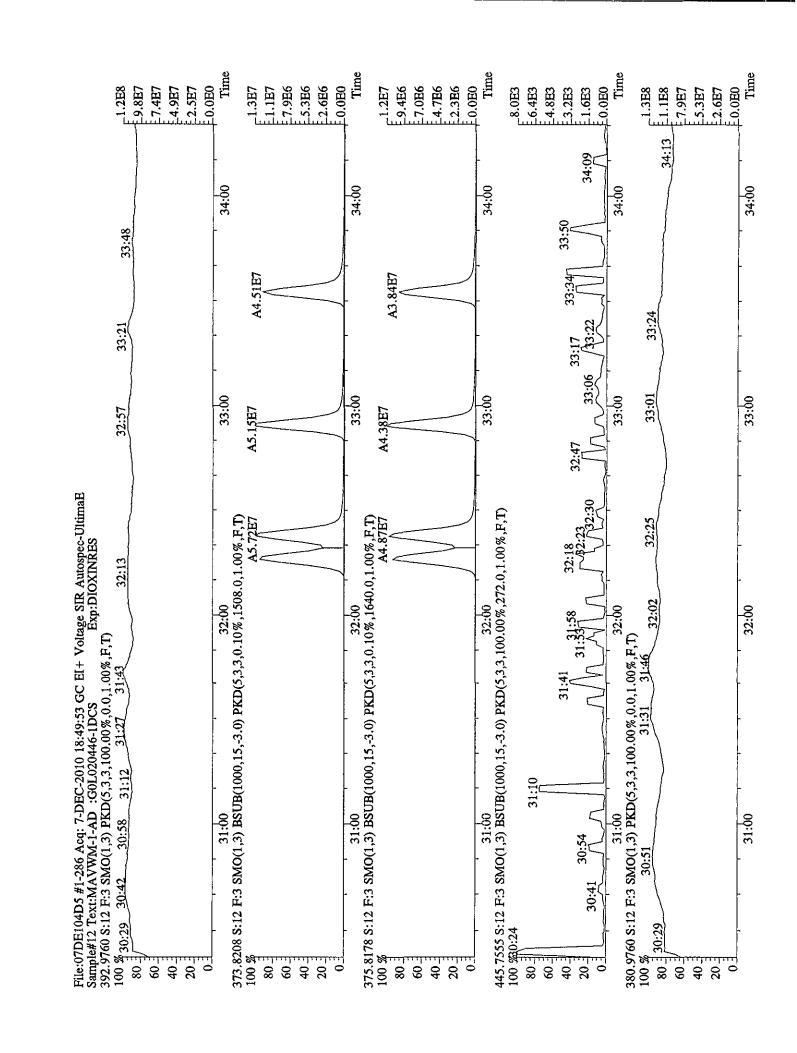


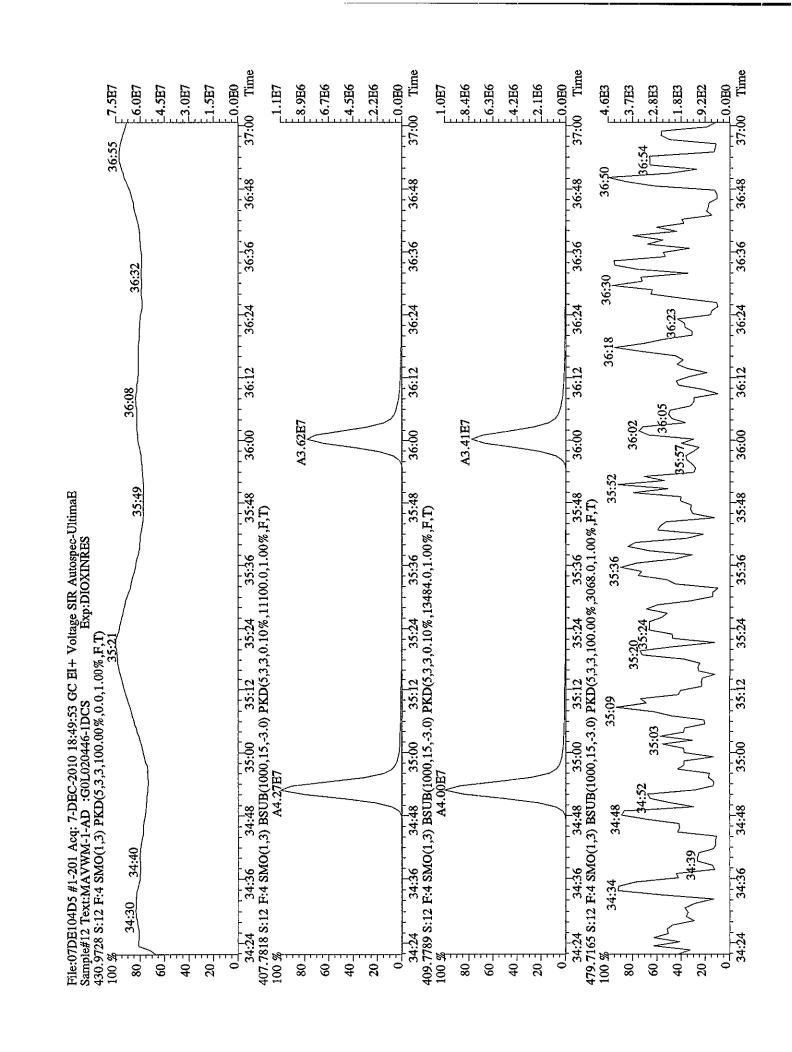


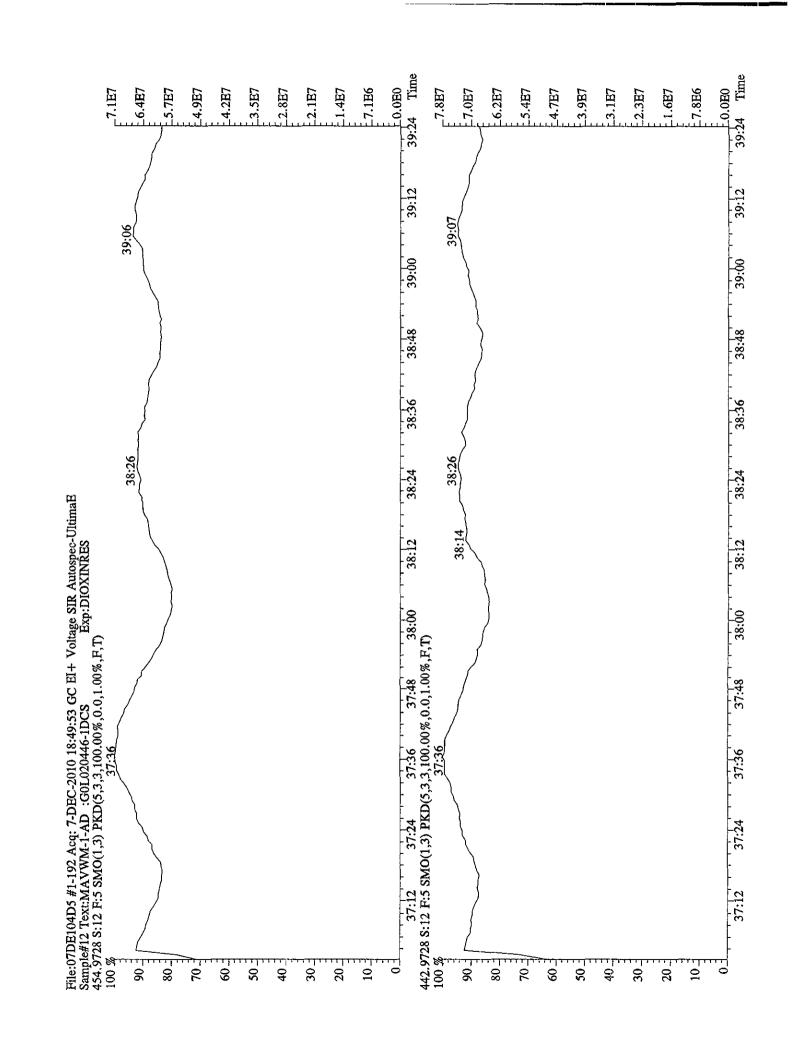












Sample text: MAQQV-1-AA :G0L020446-1 Run text: MAQQV-1-AA

Run #14 Filename: 07DE104D5 S: 17 I: 1 Results: 07DE104D5T09 Acquired: 7-DEC-10 22:32:36 Processed: 8-DEC-10 07:53:23

Run: 07DE104D5 Cal: T090721104D5

Analyte: TO9 12/8/10 Factor 1:1600.000 Factor 2:20.000 Sample size: 0.50 SAMP Me Name Resp RA RT RRF EDL Conc Rec М 13C-1,2,3,4-TCDD 234024000 0.80 y 19:55 140.138 n 93.9 13C-2,3,7,8-TCDF 270061000 0.80 y 19:19 1.23 3754.814 3.252n 2,3,7,8-TCDF 246414 0.90 n 19:21 0.99 3 - 6.70 3.930 Total TCDF 529309 0.69 y 17:26 0.99 7.883 3.930 n 13C-2,3,7,8-TCDD 210367500 0.80 y 20:08 0.91 3972.858 8.204 99.3 n 2.572 2,3,7,8-TCDD * n NotFnd 0.98 Total TCDD * n NotFnd 0.98 2.572 37Cl-2,3,7,8-TCDD 112756600 1.00 y 20:09 1.33 1616.802 2.315 101.1 5.741 13C-1,2,3,7,8-PeCDF 200921200 1.57 y 25:11 0.88 3920.095 98.0 n * * n NotFnd 1.08 4.085 1,2,3,7,8-PeCDF n * * n NotFnd 1.05 2,3,4,7,8-PeCDF 4.206 n 199204 1.28 n 23:36 1.06 3.737 Total F2 PeCDF 4.145 49258 0.60 n 21:47 1.06 2.610 Total F1 PeCDF 0.924 4,206 13C-1,2,3,7,8-PeCDD 133653100 1.64 y 27:35 0.66 3456.944 4.642 86.4 n 1,2,3,7,8-PeCDD * * n NotFnd 0.93 5.853 Total PeCDD * n NotFnd 0.93 5.853 13C-1,2,3,7,8,9-HxCDD 127143600 1.29 y 33:21 -107.385 n 13C-1,2,3,4,7,8-HxCDF 105737200 0.51 y 32:15 1.04 3183.947 12.817 79.6 n 1,2,3,4,7,8-HxCDF 198459 1.15 y 32:15 1.22 6.168 **3** 1.797 120100 1.56 n 32:23 1-28 1.54 1,2,3,6,7,8-HxCDF 3.545 360 2.92 1.706 2,3,4,6,7,8-HxCDF * * n NotFnd 1.23 1.773 33797 1.52 n 33:35 1.10 1.991 1,2,3,7,8,9-HxCDF 1 - 16423...756 Total HxCDF 763495 1.10 y 30:59 1.21 1.811 12/8/10 Mas 17.5641 13C-1,2,3,6,7,8-HxCDD 101805500 1.29 y 33:06 0.83 3855.183 3:749 96.4 * n NotFnd 1.04 2.707 1,2,3,4,7,8-HxCDD * n 1,2,3,6,7,8-HxCDD * * n NotFnd 1.16 2.415 n 1,2,3,7,8,9-HxCDD * n NotFnd 1.18 2.376 n * n NotFnd 1.13 2.491 Total HxCDD 2.707 13C-1,2,3,4,6,7,8-HpCDF 94933900 0.45 y 34:51 0.91 3281.971 20.621 82.0 n 14.556 JQB 464924 1.40 n 34:51 1.35 1.904 1,2,3,4,6,7,8-HpCDF n 1,2,3,4,7,8,9-HpCDF 120428 0.95 y 36:00 1.09 4.641 **5** 2.343 Total HpCDF 857400 1.40 n 34:51 1.22 28.595 2.101 3357,008 12,905 83.9 88203400 1.06 y 35:40 0.83 13C-1,2,3,4,6,7,8-HpCDD n 5.155 1,2,3,4,6,7,8-HpCDD 60859 0.68 n 35:40 1.07 2:575 Total HpCDD 189784 0.73 n 35:06 1.07 8.031 5.155 13C-OCDD 129466700 0.91 y 38:12 0.62 6570.572 7.377 82.1 n OCDF 1578861 0.90 y 38:21 1.37 71.197 🍸 3.735

OCDD 364594 1.07 n 38:13 1.20 18.785 **TQB** 3.409 - n

Run Text: MAQQV-1-AA Sample text: MAQQV-1-AA :G0L020446-1

Name: Total F1 PeCDF F:1 Mass: 339.860 341.857 Mod? no #Hom:1

Run: 14 File: 07DE104D5 S:17 Acq: 7-DEC-10 22:32:36

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

Amount: 0.462 of which * named and 0.462 unnamed Conc: 0.924 of which * named and 0.924 unnamed

R.T. Ratio Conc. Area S/N >? Mod? Name

1 21:47 0.598 n 0.924 29941 1.760 n n

50052 2.435 n n

Totals Results TestAmerica West Sacramento Page 5 of 9

Run Text: MAQQV-1-AA Sample text: MAQQV-1-AA :G0L020446-1

Name: Total PeCDD F:2 Mass: 355.855 357.855 Run: 14 File: 07DE104D5 S:17 Acq: 7-DEC-10 22:32:36 F:2 Mass: 355.855 357.852 Mod? no #Hom:0

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

mount: * of which * named and * unnamed Conc: * of which * named and * unnamed Amount:

Name # R.T. Ratio Conc. Area S/N >? Mod?

> 1 NotFa * n * * n n

Run Text: MAQQV-1-AA Sample text: MAQQV-1-AA :G0L020446-1

Name: Total HxCDF F:3 Mass: 373.821 375.818 Mod? no #Hom:9 Run: 14 File: 07DE104D5 S:17 Acq: 7-DEC-10 22:32:36

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

	which which		named and	6.440 12.879	unnamed unnamed			(123678 HC
Name	# R.T.	Ratio	Conc.	Area	S/N >?	Мо	d?		PKG.
	1 30:59	1.100 y	3.025	50595 45980	3.581 5.155	y y			
	2 31:14	0.889 n	5.444	96207 1082 4 1	7.109 10.502	у У			
	3 31:50	1.070 y	1.691	27903 26076	2.292 2.040	n n			
1,2,3,4,7,8-HxCDF	4 32:15	1.153 y	6.168	1062 74 92185	7.793 10.229	у У			. حود فا
1,2,3,6,7,8-HxCDF	5 32:23	1.555 n	3.545	* 2.927 83374 53616	7.416 6.742	У		7	12.564
	6 32:39	1.461 n	1.201	25019 17122	1.983 2.737	n n			·
	7 32:50	1.633 n	0.791	18404 11272	1.810 1.361	n n			
	8 33:31	0.851 n	0.126	12835 15088	1.553 1.551		n n		
1,2,3,7,8,9-HxCDF	9 33:35	1.516 n	1.164	22868 15088	2.159 1.551	n n	n n		

Totals Results TestAmerica West Sacramento Page 7 of 9

Run Text: MAQQV-1-AA Sample text: MAQQV-1-AA :G0L020446-1

Name: Total HxCDD F:3 Mass: 389.816 391.813 Mod? no #Hom:0

Run: 14 File: 07DE104D5 S:17 Acq: 7-DEC-10 22:32:36

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

Amount:	* of which	* named and	* unnamed
Conc:	* of which	* named and	* unnamed

R.T. Ratio Conc. Area S/N >? Mod? Name 1 NotF₁ * n * * n n

Run Text: MAQQV-1-AA Sample text: MAQQV-1-AA :G0L020446-1

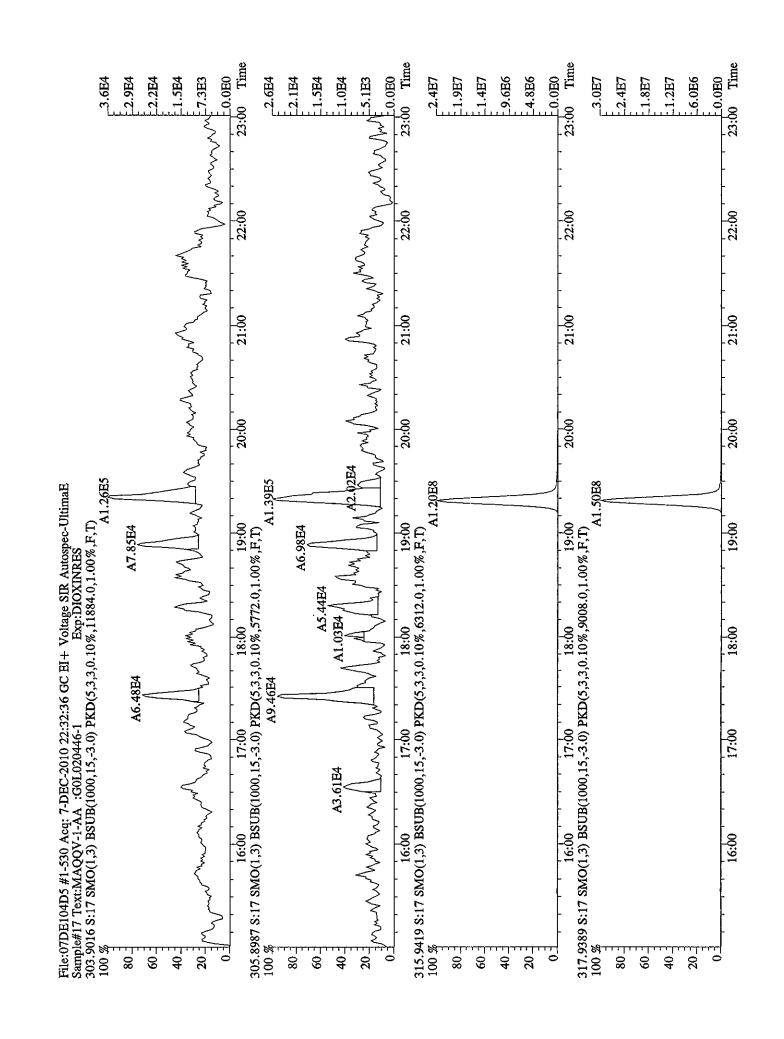
Name: Total HpCDF F:4 Mass: 407.782 409.779 Run: 14 File: 07DE104D5 S:17 Acq: 7-DEC-10 22:32:36 F:4 Mass: 407.782 409.779 Mod? no #Hom:4

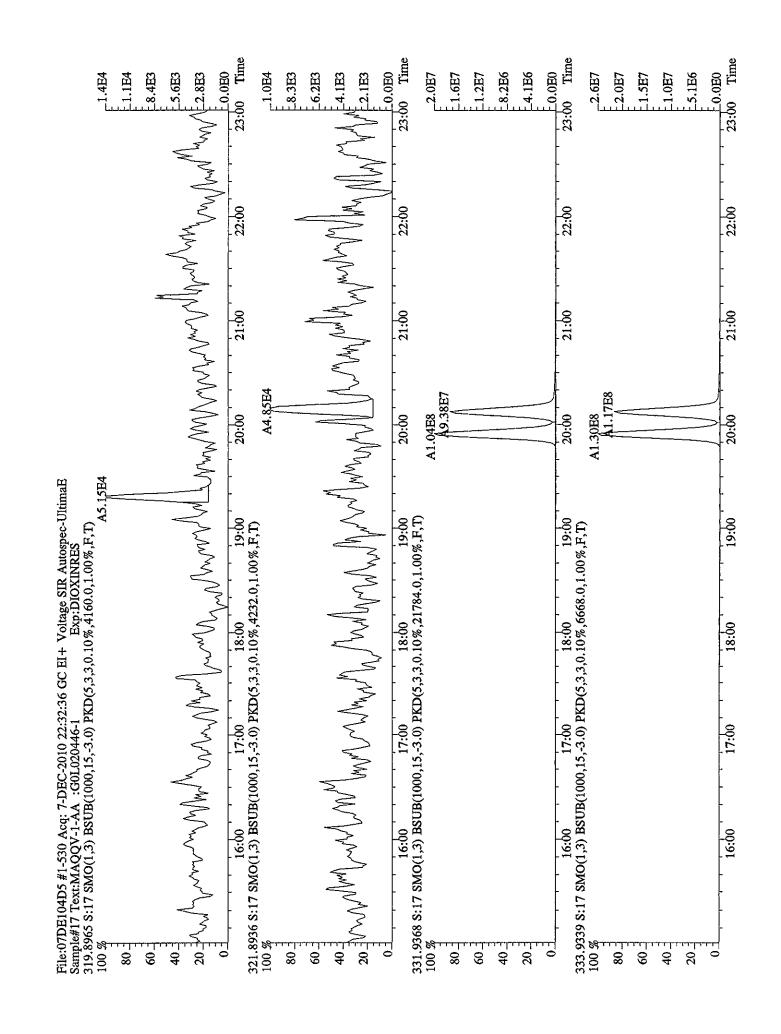
Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

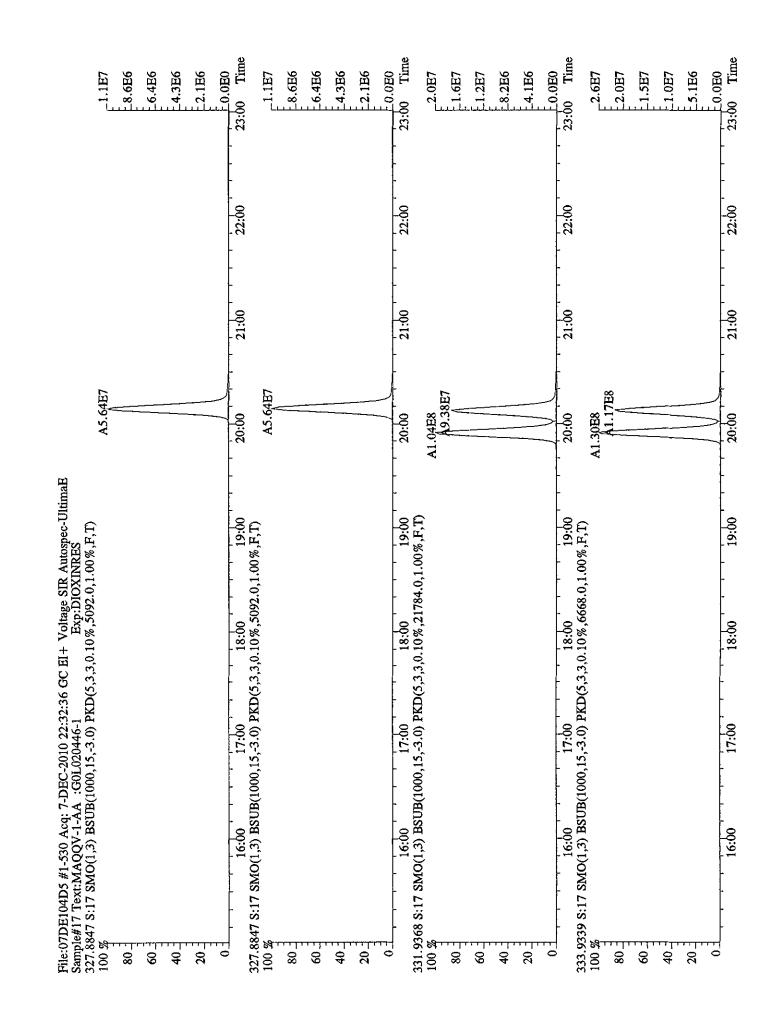
Amount: 14.298 of which 9.598 named and 4.699 unnamed Conc: 28.595 of which 19.197 named and 9.399 unnamed

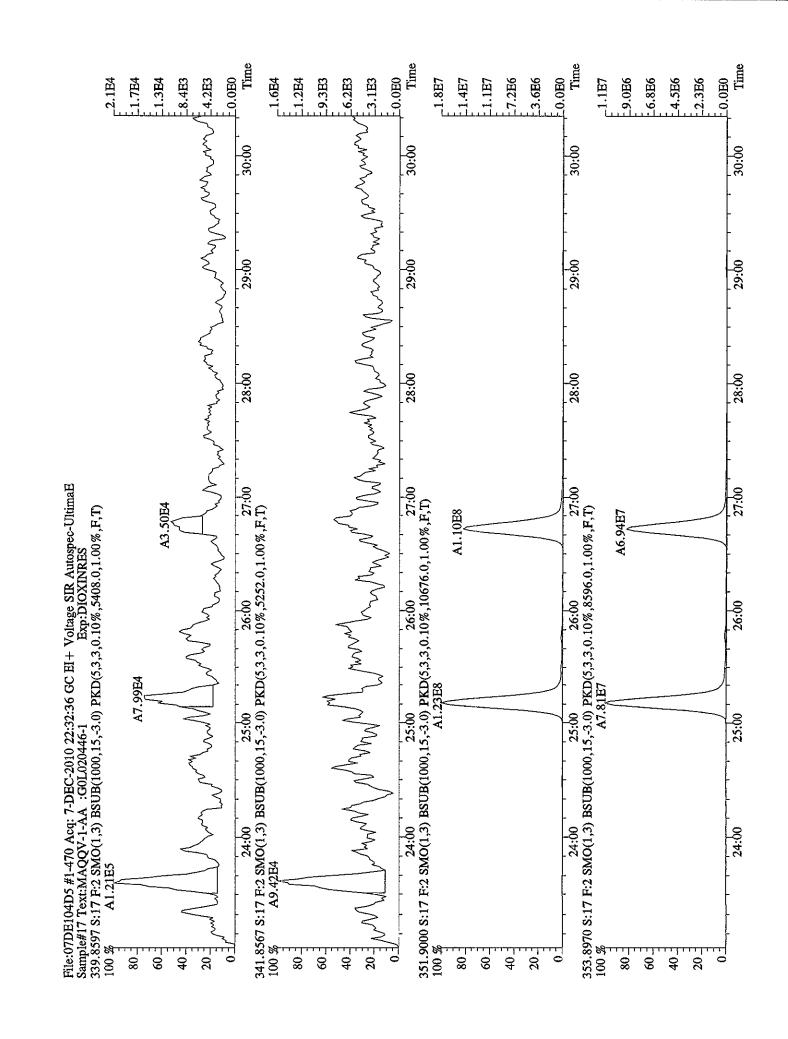
Name	#	R.T.	Ratio	Conc.	Area	S/N >	? Mo	d?
1,2,3,4,6,7,8-HpCDF	1	34:51	1.395 n	14.556	318003 227904	26.442 27.041	У У	n n
	2	35:04	1.191 y	4.366	68692 57671	5.102 6.052	y Y	n n
	3	35:11	1.461 n	5.033	104347 71414	7.543 8.759	у У	n n
1,2,3,4,7,8,9-HpCDF	4	36:00	0.946 y	4.641	58553 61875	3.962 7.709	У У	n n

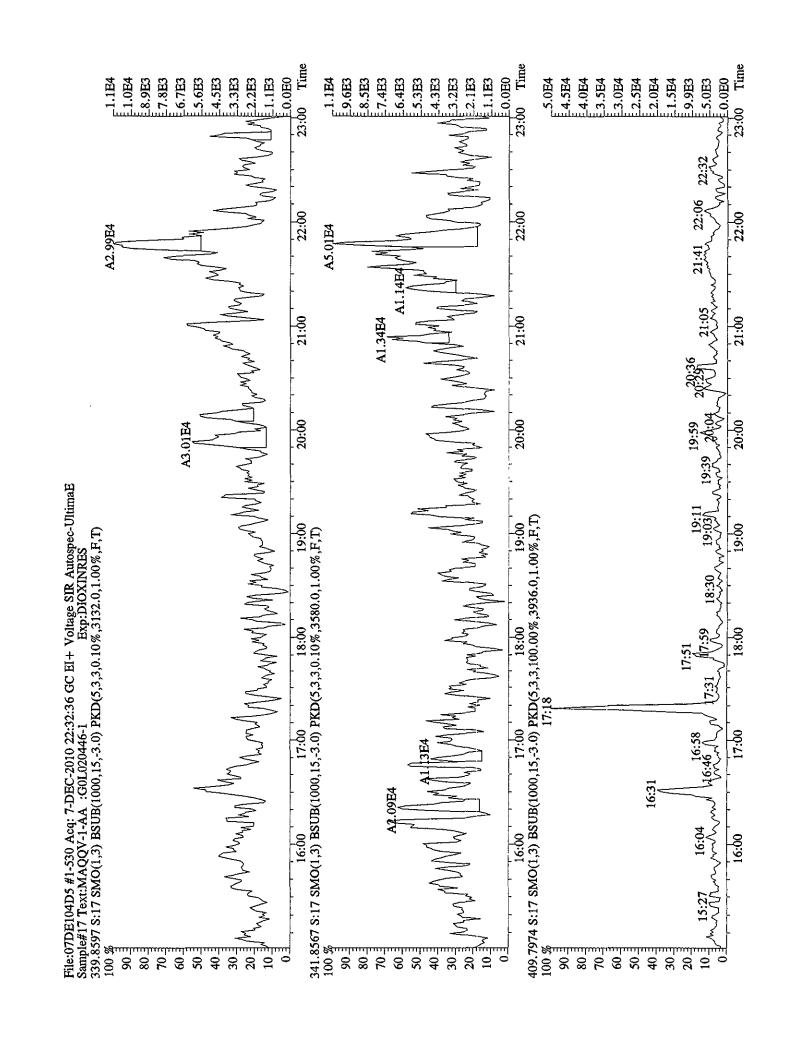
Totals Results TestAmerica West Sacramento Page 9 of 9

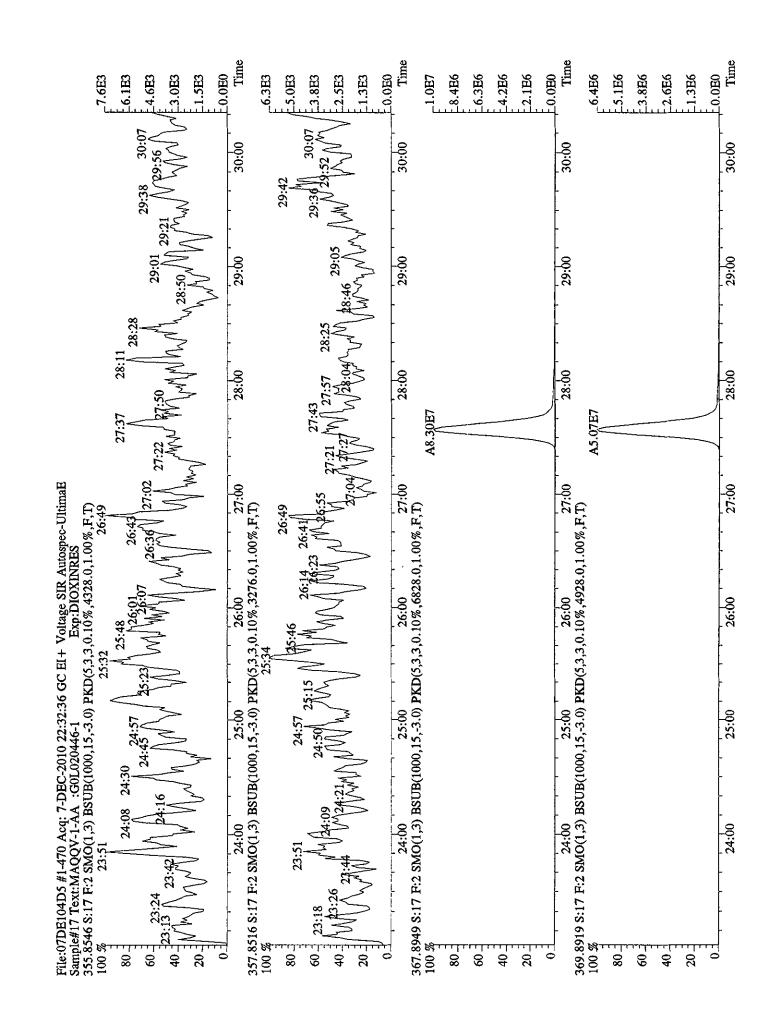

Run Text: MAQQV-1-AA Sample text: MAQQV-1-AA :G0L020446-1

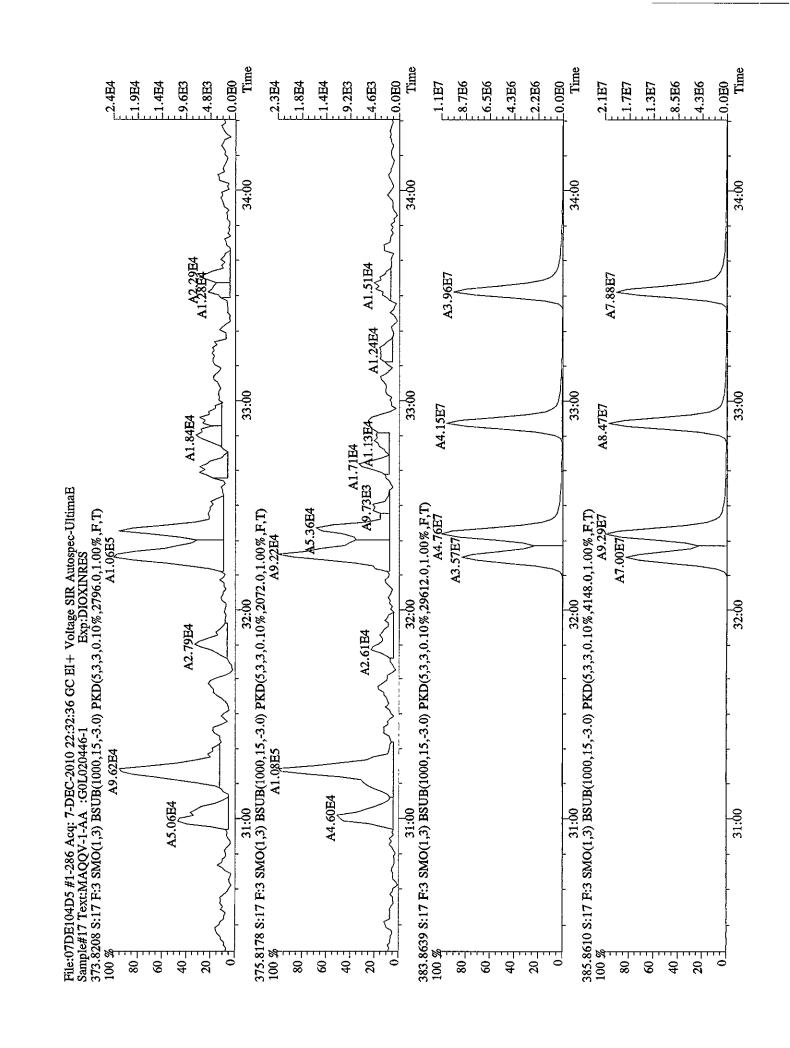

Name: Total HpCDD F:4 Mass: 423.777 425.774 Mod? no #Hom:3 Run: 14 File: 07DE104D5 S:17 Acq: 7-DEC-10 22:32:36

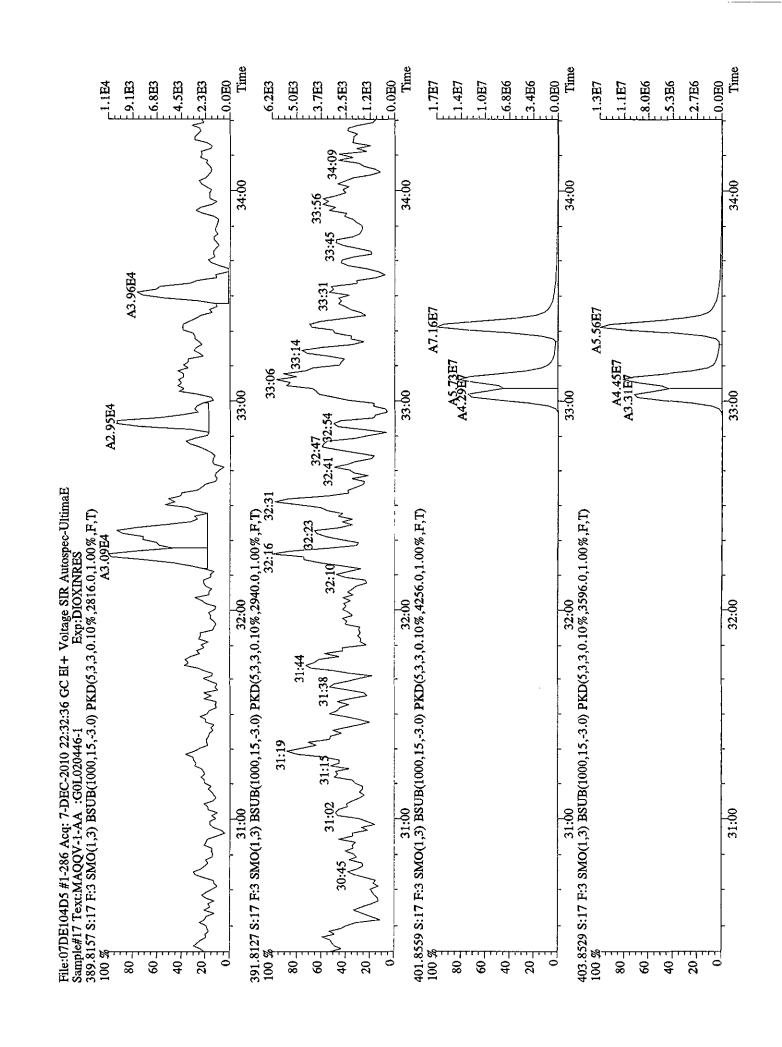

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

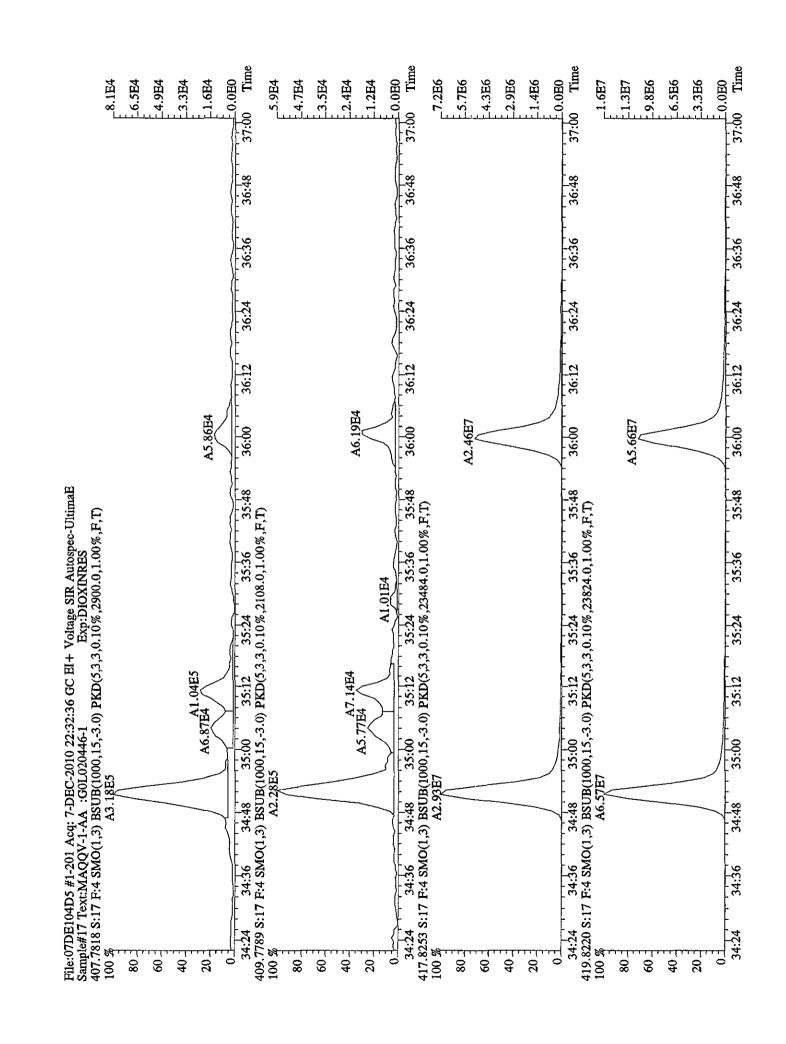

Amount: 4.015 of which 1.288 named and 2.728 unnamed Conc: 8.031 of which 2.575 named and 5.456 unnamed

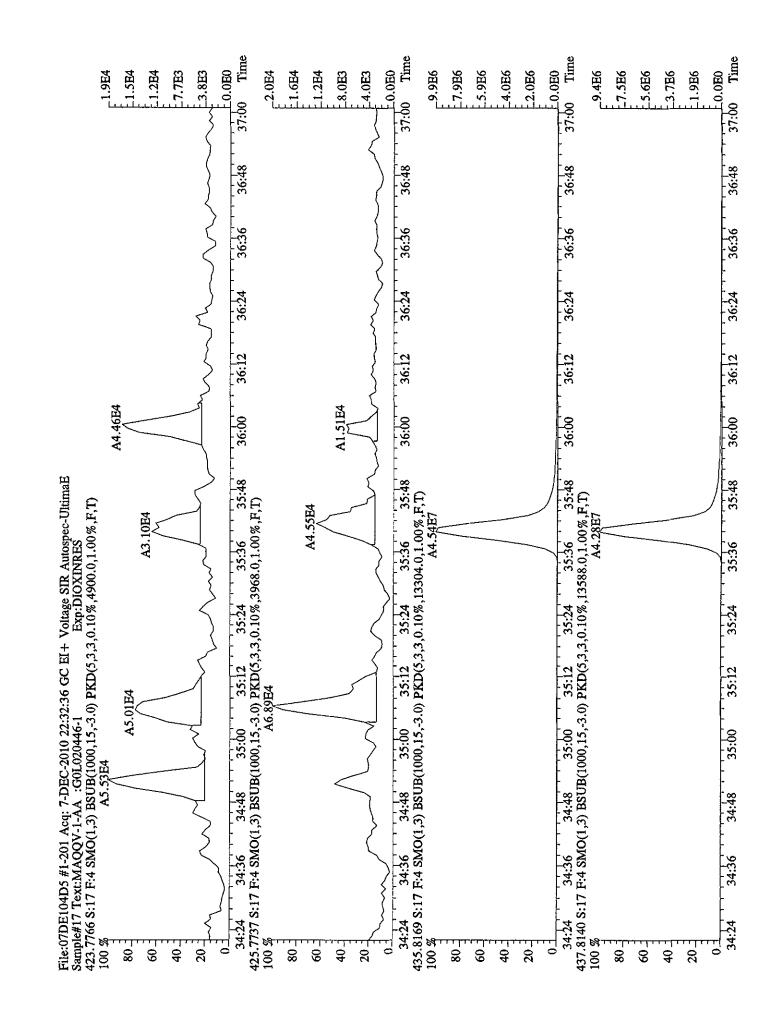

Name	#	R.T.	Ratio	Conc.	Area	S/N >?	Мо	đ?
	1	35:06	0.726 n	4.155	50056 68906	2.122 4.371	n Y	n n
1,2,3,4,6,7,8-HpCDD	2	35:40	0.682 n	2.5/15	31026 454 7 5	1.557 2.460	n n	
	3	36:00	2.960 n	1.301	44594 15068	2.558 1.304		n n

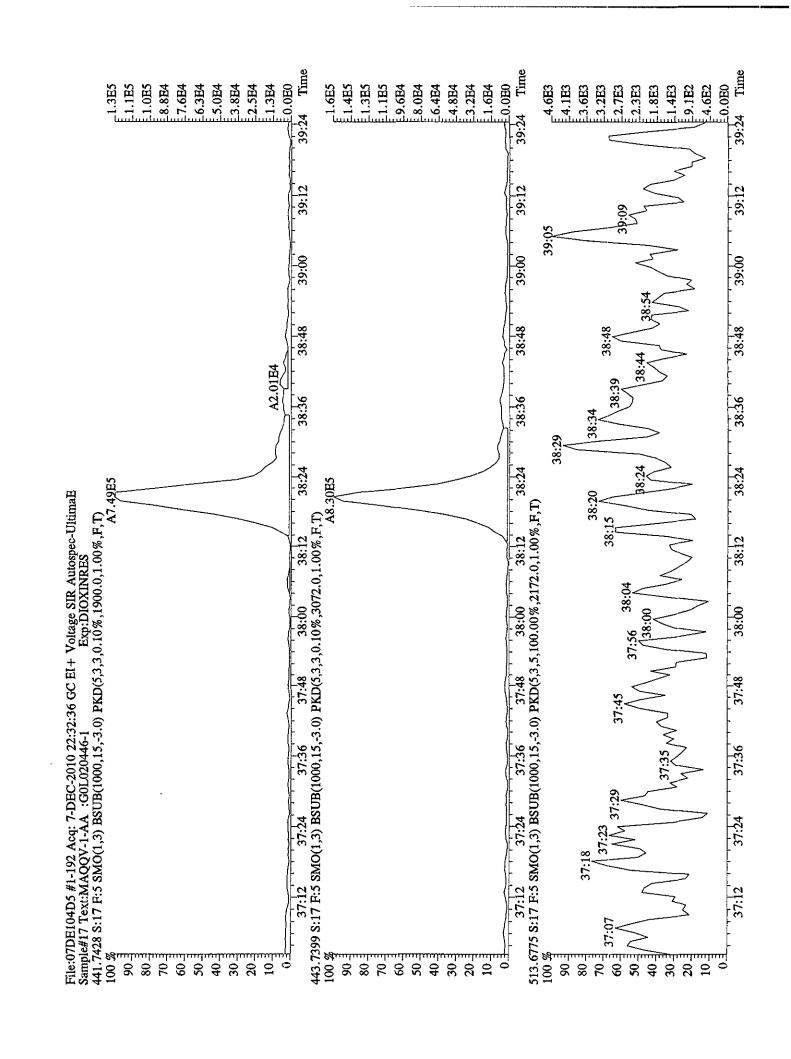


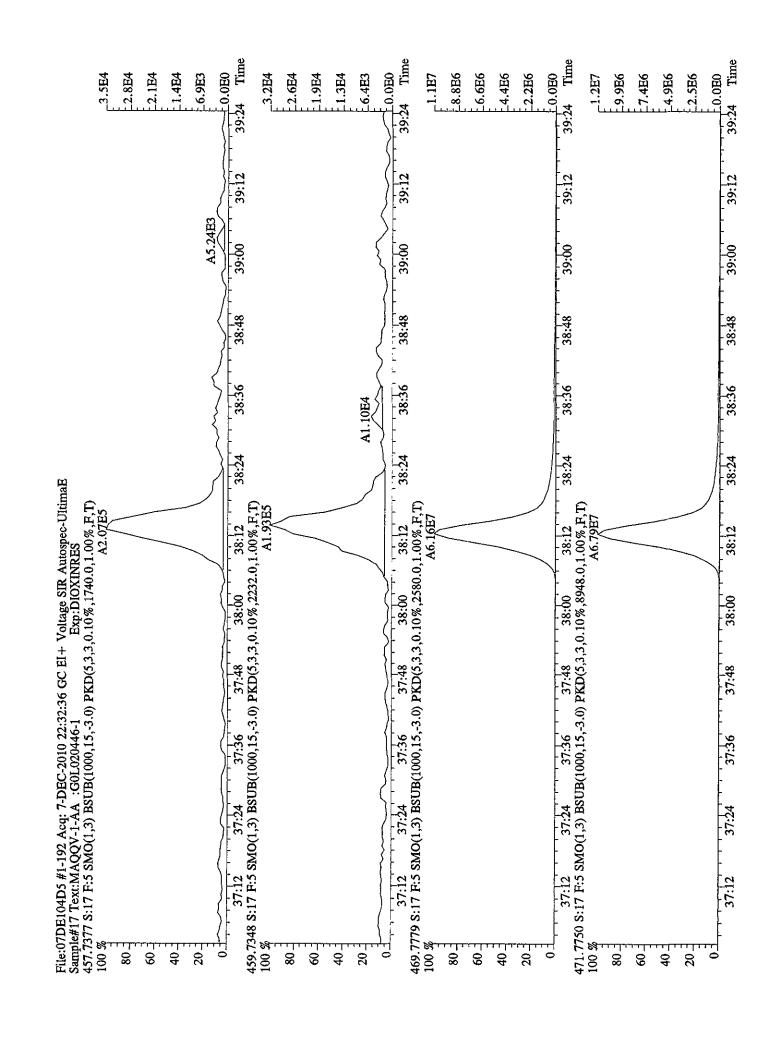


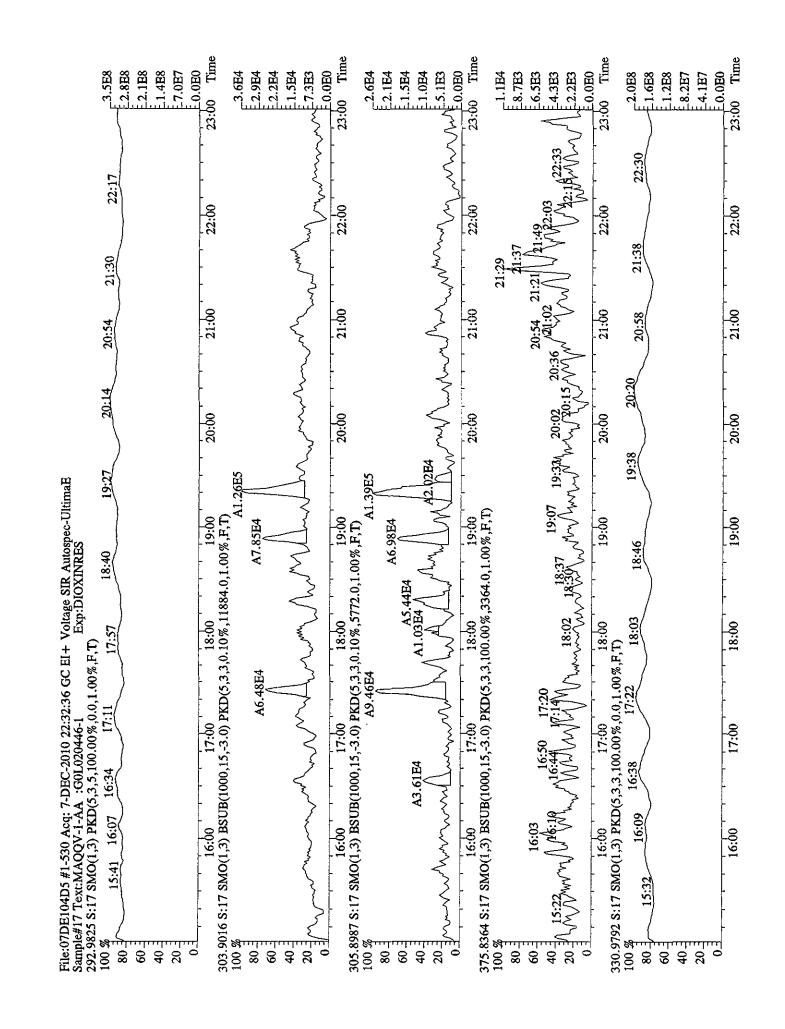


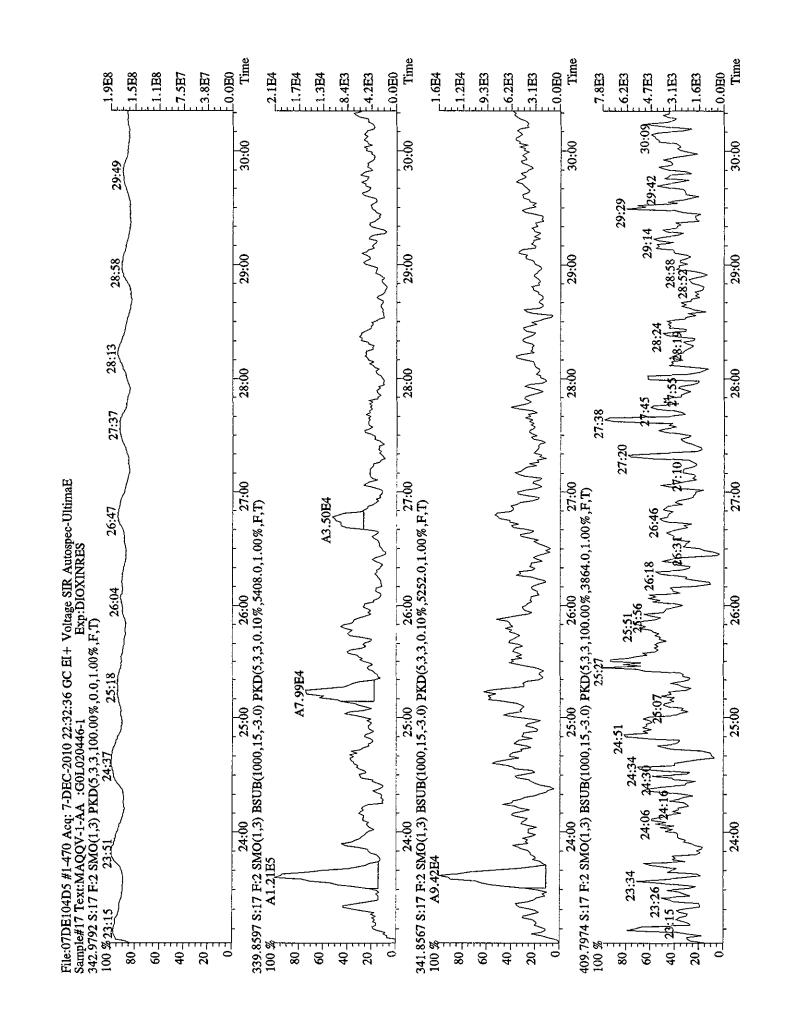


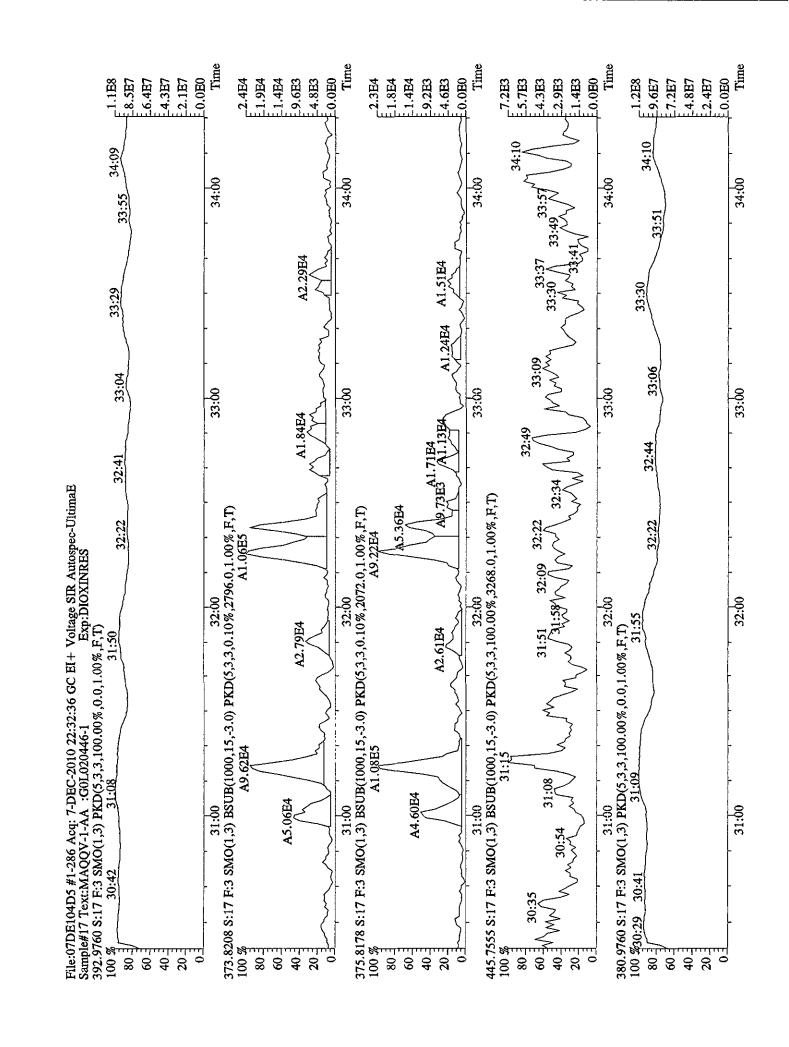


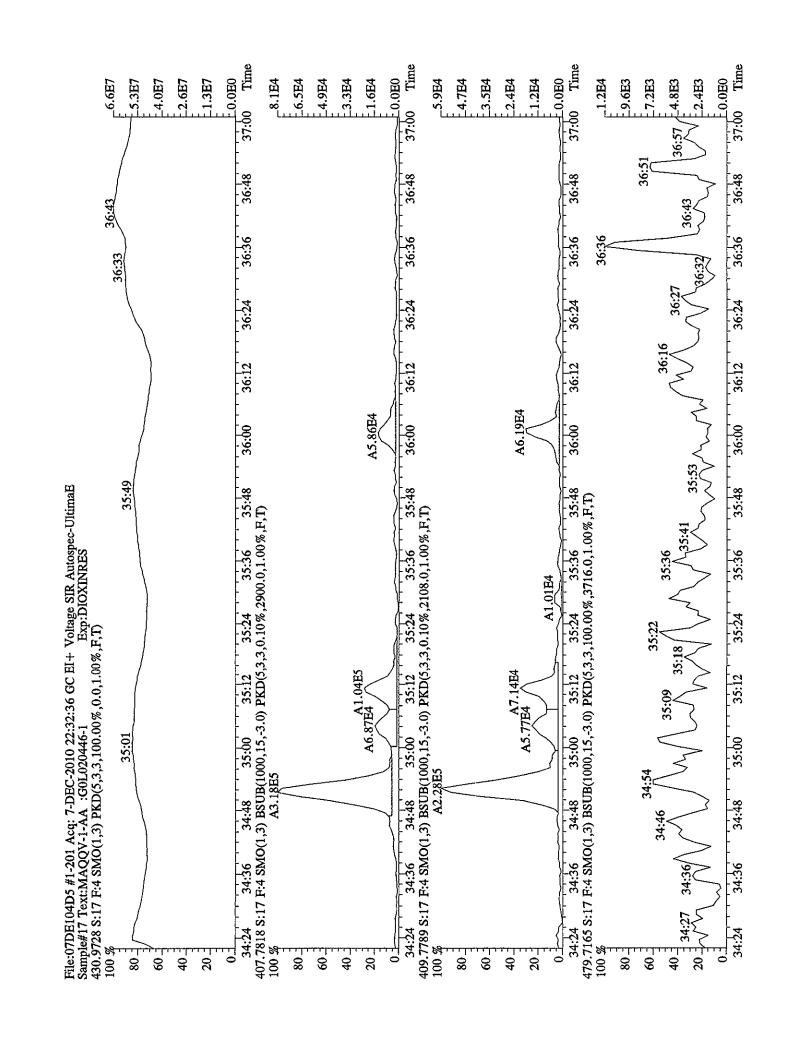


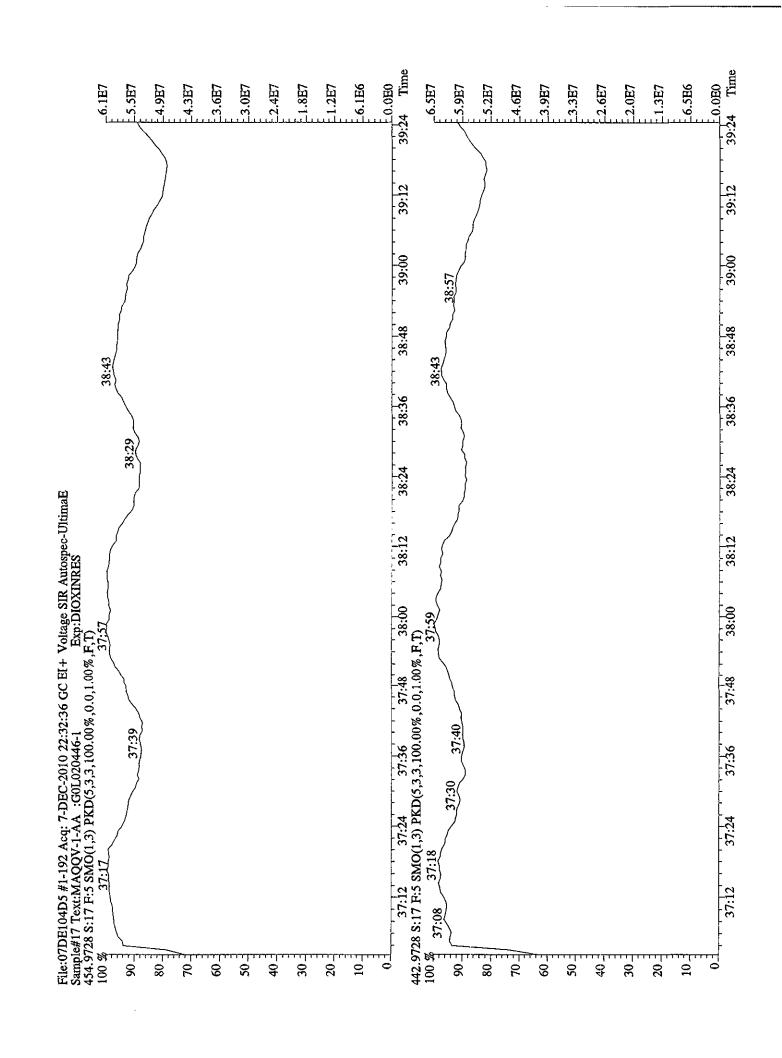












Run text: MAQQ6-1-AA Sample text: MAQQ6-1-AA :G0L020446-5

Run #15 Filename: 07DE104D5 S: 18 I: 1 Results: 07DE104D5T09 Acquired: 7-DEC-10 23:17:05 Processed: 8-DEC-10 07:53:24 Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5

12/8/10 Mg Factor 1:1600.000 Factor 2:20.000 Sample size: 0.50 SAMP

140001 1.1000.000	ruccor z	. 20.00		ump±c	5126. 0.50		18110 1.59	
Name	Resp	RA	RT	RRF	Conc	EDL	Rec	M
13C-1,2,3,4-TCDD	209684700	0.82	y 19:56	-	125.563	-	_	n
13C-2,3,7,8-TCDF	234409000	0.81	7 19:18	1.23	3637.429	5 .475	90.9	n
2,3,7,8-TCDF	*	* 1	n NotFnd	0.99	*	7.502	_	n
Total TCDF	176370	0.68	y 18:55	0.99	3.0 26	7.502	-	n
13C-2,3,7,8-TCDD	186141200	0.80	y 20:08	0.91	3923.381		98.1	n
2,3,7,8-TCDD	*	* 1	n NotFnd	0.98	*	5.665	-	n
Total TCDD	65695	0.46 1	17:54	0.98	1 43 5	5.665	-	n
37Cl-2,3,7,8-TCDD	100185200	1.00	y 20:09	1.33	1623.509	4.320	101.5	n
13C-1,2,3,7,8-PeCDF		-	-		4725.113		118.1	n
1,2,3,7,8-PeCDF	*		n NotFnd		*		-	n
2,3,4,7,8-PeCDF			n NotFnd		*	3.000	-	
Total F2 PeCDF			n 23:38		4 <u>.464</u>		-	n
Total F1 PeCDF	*	* 1	n NotFnd	1.06	*	6 ,-33 5 9,680	· -	n
13C-1,2,3,7,8-PeCDD	146589400	1.61	y 27:34	0.66	4231.648			n
1,2,3,7,8-PeCDD	*	*]	n NotFnd	0.93	*	13.926	_	n
Total PeCDD	*	* 1	n NotFnd	0.93	*	13.926	-	n
13C-1,2,3,7,8,9-HxCDD	150089300	1.25	y 33:22	-	126.765	-	-	n
13C-1,2,3,4,7,8-HxCDF	130205800	0.51	y 32:15	1.04	3321.338	3.665	83.0	n
1,2,3,4,7,8-HxCDF			y 32:16		9.746	ゴ ノ 3.545	_	n
1,2,3,6,7,8-HxCDF			y 32:22			6.042 J 3.367	_	n
2,3,4,6,7,8-HxCDF			32:55		3 523	3.498	-	n
1,2,3,7,8,9-HxCDF	*	* 1	n NotFnd	1.10	*	3.929	-	n
Total HxCDF	1403893	1.49	n 31:01	1.21		3.573	_	n
13C-1,2,3,6,7,8-HxCDD	127325100	1.26	v 33:06	0.83			102.1	n
1,2,3,4,7,8-HxCDD			n NotFnd					
1,2,3,6,7,8-HxCDD			n NotFnd		*		_	n
1,2,3,7,8,9-HxCDD	*		n NotFnd		*		_	n
Total HxCDD	99843		n 31:45		2 .78 3		.J	n
120 1 2 2 4 6 7 9 UnCDE	102077700	0 45 -	24.50	0 01	2989.434	· ·	74.7	n
1.3C-1,2,3,4,6,7,8-HpCDF			n 34:52				/4./	n
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	183968					3 .643	_	n
Total HpCDF	1453256				44.768		_	n
Total hpcbr	1433230	1.20	1 34.33	1.22	44.700	3.200		
13C-1,2,3,4,6,7,8-HpCDD	91738300				2957.757		73.9	n
1,2,3,4,6,7,8-HpCDD			n 35:42				-	n
Total HpCDD	291898	1.20	n 35:07	1.07	11.876	✓ 4.489	-	n
13C-OCDD	142102700	0.92	y 38:14	0.62	6109.310	10.024	76.4	n
OCDF			y 38:20				-	n

Run Text: MAQQ6-1-AA Sample text: MAQQ6-1-AA :G0L020446-5

Name: Total TCDF F:1 Mass: 303.902 305.899 Mod? no #Hom:1

Run: 15 File: 07DE104D5 S:18 Acq: 7-DEC-10 23:17:05

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

Amount: 1.513 of which * named and 1.513 unnamed Conc: 3.026 of which * named and 3.026 unnamed

Name # R.T. Ratio Conc. Area S/N >? Mod?

1 18:55 0.676 y 3.026 71109 1.149 n n 105261 2.223 n n

Totals Results TestAmerica West Sacramento Page 2 of 9

Run Text: MAQQ6-1-AA Sample text: MAQQ6-1-AA :G0L020446-5

Name: Total TCDD F:1 Mass: 319.897 321.894 Mod? no #Hom:1

Run: 15 File: 07DE104D5 S:18 Acq: 7-DEC-10 23:17:05

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D $_{\overline{1}}$

Amount: 0.718 of which * named and 0.718 unnamed Conc: 1.435 of which * named and 1.435 unnamed

Name # R.T. Ratio Conc. Area S/N >? Mod?

1 17:54 0.463 n 1.435 28579 1.141 n n 61707 1.678 n n

Totals Results TestAmerica West Sacramento Page 3 of 9

Run Text: MAQQ6-1-AA :GOL020446-5

Name: Total F2 PeCDF F:2 Mass: 339.860 341.857 Mod? no #Hom:1

Run: 15 File: 07DE104D5 S:18 Acq: 7-DEC-10 23:17:05

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

Amount: 2.232 of which * named and 2.232 unnamed Conc: 4.464 of which * named and 4.464 unnamed

Name # R.T. Ratio Conc. Area S/N >? Mod?

1 23:38 2.602 n 4.464 262243 2.638 n n

100770 1.491 n n

Totals Results TestAmerica West Sacramento Page 4 of 9

Run Text: MAQQ6-1-AA Sample text: MAQQ6-1-AA :GOL020446-5

Name: Total F1 PeCDF F:1 Mass: 339.860 341.857 Mod? no #Hom:0 Run: 15 File: 07DE104D5 S:18 Acq: 7-DEC-10 23:17:05

Tables: Run: 07DE104D5 Analyte: TO9 Cal: T090721104D5 Results: 07DE104D7

Amount: * of which * named and * unnamed Conc: * of which * named and * unnamed Amount:

R.T. Ratio Conc. Area S/N >? Mod? Name

1 NotF₁ * n * * * n n

* n n

Totals Results TestAmerica West Sacramento Page 5 of 9

Run Text: MAQQ6-1-AA Sample text: MAQQ6-1-AA :G0L020446-5

Name: Total PeCDD F:2 Mass: 355.855 357.852 Run: 15 File: 07DE104D5 S:18 Acq: 7-DEC-10 23:17:05 F:2 Mass: 355.855 357.852 Mod? no #Hom:0

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

Amount: Conc:

R.T. Ratio Conc. Area S/N >? Mod? Name

> 1 NotF₁ * n * * * n n * * n n

28,985

Run Text: MAQQ6-1-AA Sample text: MAQQ6-1-AA :G0L020446-5

Name: Total HxCDF F:3 Mass: 373.821 375.818 Mod? no #Hom:6

Run: 15 File: 07DE104D5 S:18 Acq: 7-DEC-10 23:17:05

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

Amount: 17.568 of which 9.769 named and 7.800 unnamed Conc: 35.137 of which 19.537 named and 15.600 unnamed

Name	#	R.T.	Ratio	Conc.	Area	S/N >?	Mo	d?
	1	31:01	1.491 n	4.456	116618 78192	4.132 3.096	У У	n n
	2	31:13	1.212 y	8.741	188264 155338	5.512 5.819	У	n
1,2,3,4,7,8-HxCDF	3	32:16	1.191 y	9.746	209931	7.591	У	n n
				6.042	176234	7.919	У	n
1,2,3,6,7,8-HxCDF	4	32:22	1.245 y	7 269	168185 135052	5.920 6.286	y Y	n n
	5	32:42	0.984 n	2,403	52291 53130	1.911 1.662	n n	n n
2,3,4,6,7,8-HxCDF	6	32:55	0.793 n	2 /523	56064	1.456	n	n
-,-,-,-,-	•	32.00		= · • - •	70680	1.913	n	n

Totals Results TestAmerica West Sacramento Page 7 of 9

Run Text: MAQQ6-1-AA Sample text: MAQQ6-1-AA :G0L020446-5

Name: Total HxCDD Name: Total HxCDD F:3 Mass: 389.816 391.813 Mod? no #Hom:2 Run: 15 File: 07DE104D5 S:18 Acq: 7-DEC-10 23:17:05

Tables: Run: 07DE104D5 Analyte: TO9 Cal: T090721104D5 Results: 07DE104D7

Amount: 1.391 of which * named and 1.391 unnamed Conc: 2.783 of which * named and 2.783 unnamed

Name	#	R.T.	Ratio	Conc.	Area	S/N >?	, Wo	d?
	1	31:45	1.599 n	1.233	31590 19750	1.264 0.966		
	2	32:31	1.566 n	1.550	38883 24823	1.597 1.638		

Totals Results TestAmerica West Sacramento Page 8 of 9

Sample text: MAQQ6-1-AA :G0L020446-5 Run Text: MAQQ6-1-AA

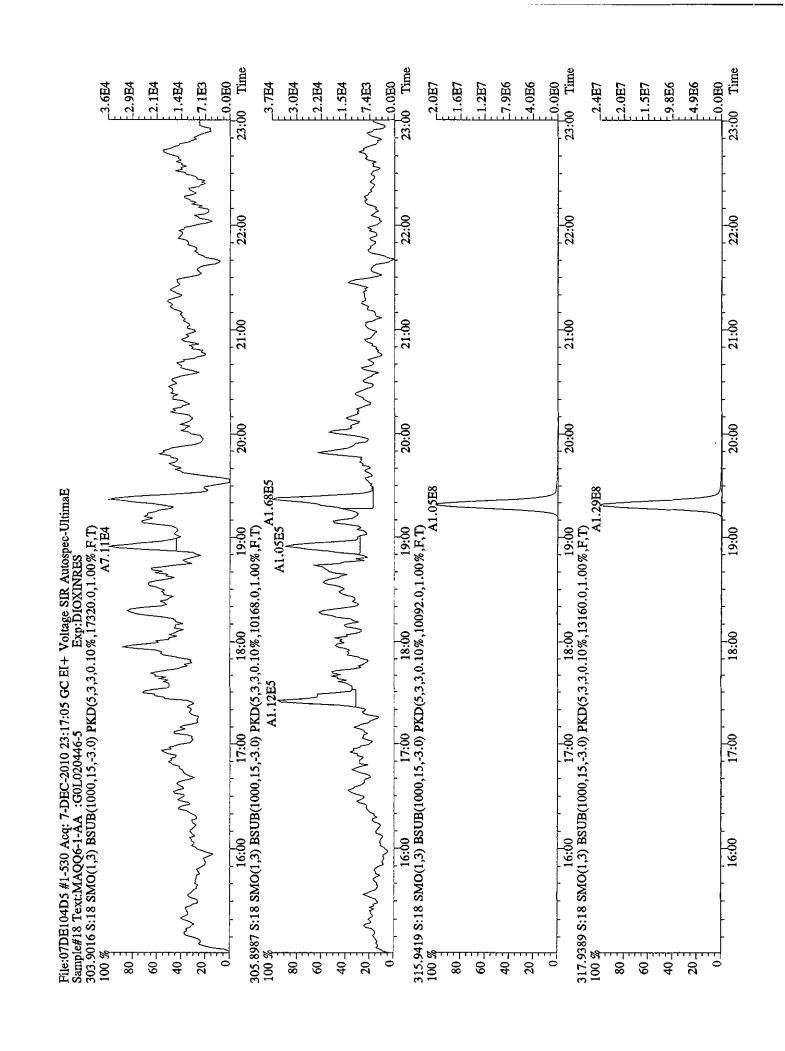
Name: Total HpCDF F:4 Mass: 407.782 409.779 Mod? no #Hom:4 Run: 15 File: 07DE104D5 S:18 Acq: 7-DEC-10 23:17:05

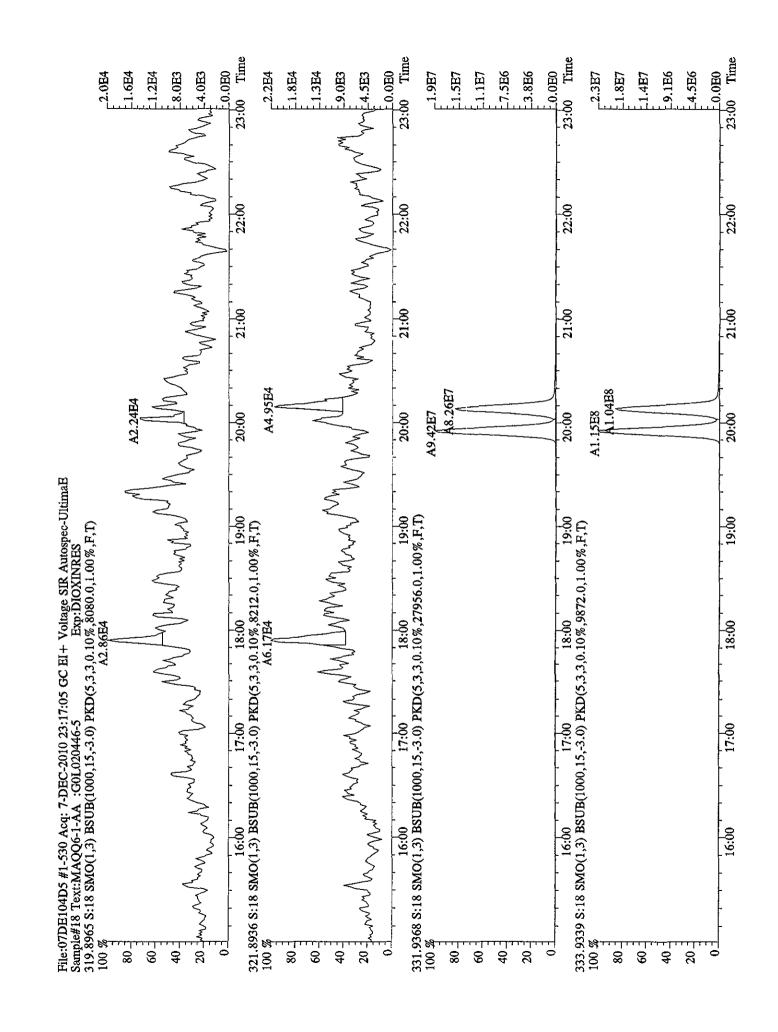
Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

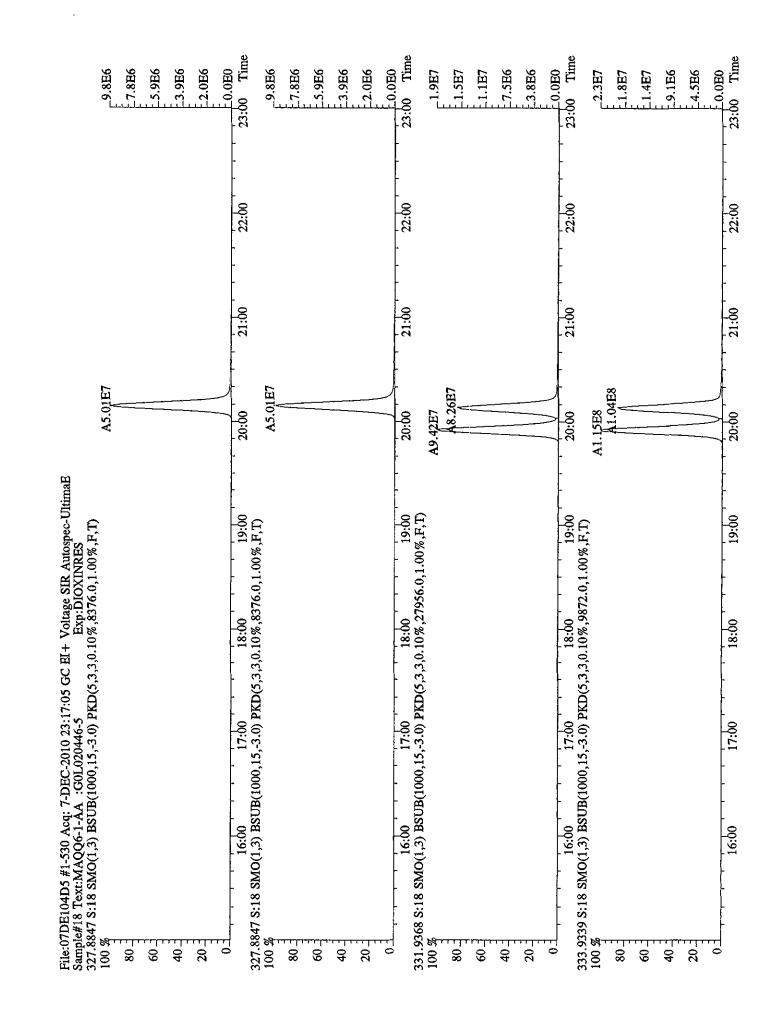
Amount: 22.384 of which 15.897 named and 6.487 unnamed Conc: 44.768 of which 31.794 named and 12.974 unnamed

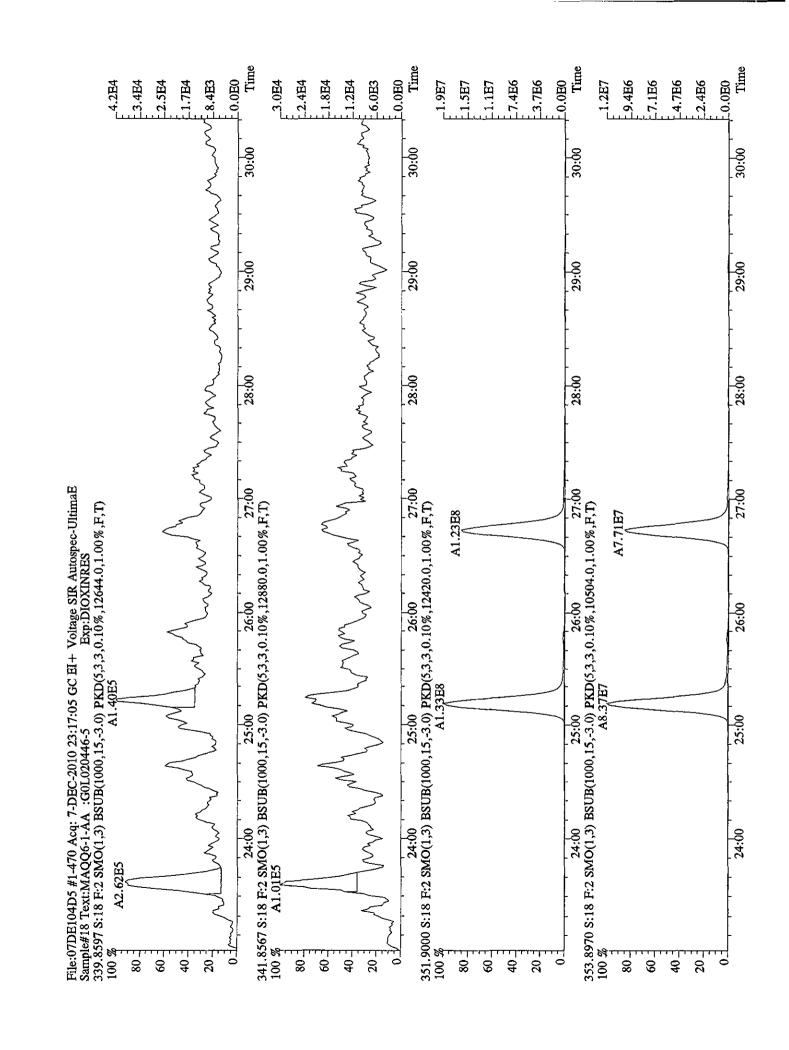
Name	#	R.T.	Ratio	Conc.	Area	s/N >?	Мо	d?
1,2,3,4,6,7,8-HpCDF	1	34:53	1.262 n	25.201	535424 424258	24.638 27.047	y Y	n n
	2	35:05	1.219 n	4.141	77023 631 7 3	4.694 4.544	У	n n
	3	35:11	1.036 y	8.833	139873 135056	7.346 8.416	Y Y	n n
1,2,3,4,7,8,9-HpCDF	4	36:00	1.273 n	6.593	114785 90180	6.272 5.857	У	n n

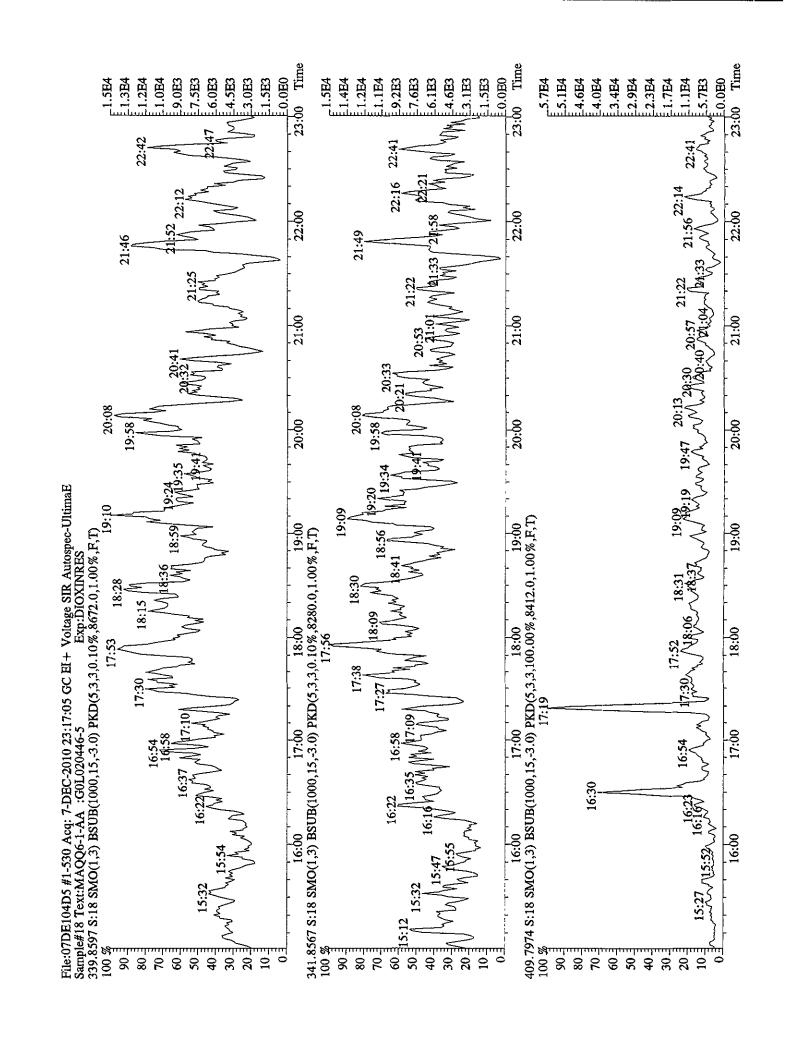
Totals Results TestAmerica West Sacramento Page 9 of 9

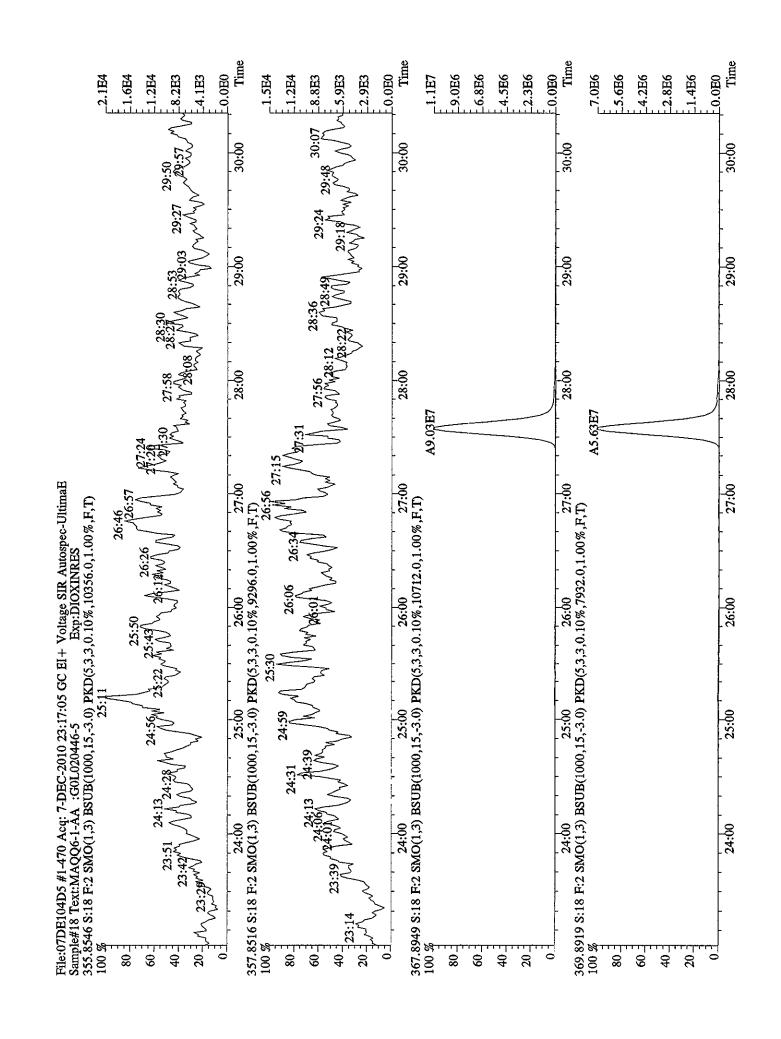

Run Text: MAQQ6-1-AA Sample text: MAQQ6-1-AA :G0L020446-5

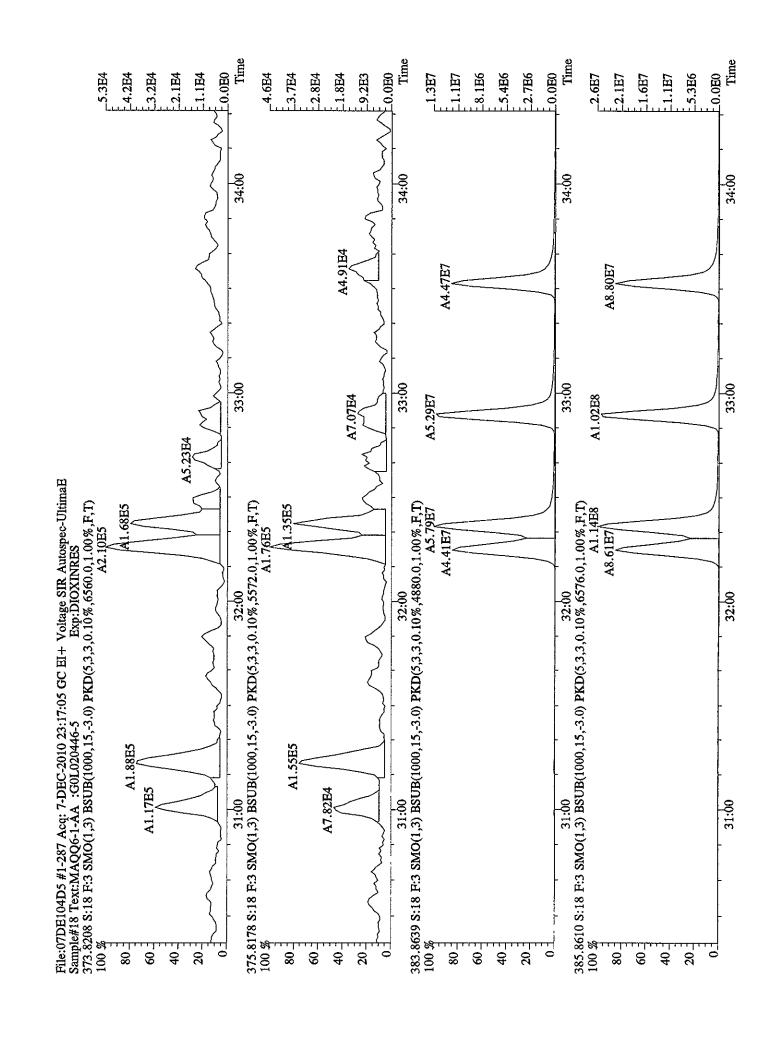

Name: Total HpCDD F:4 Mass: 423.777 425.774 Mod? no #Hom:2 Run: 15 File: 07DE104D5 S:18 Acq: 7-DEC-10 23:17:05

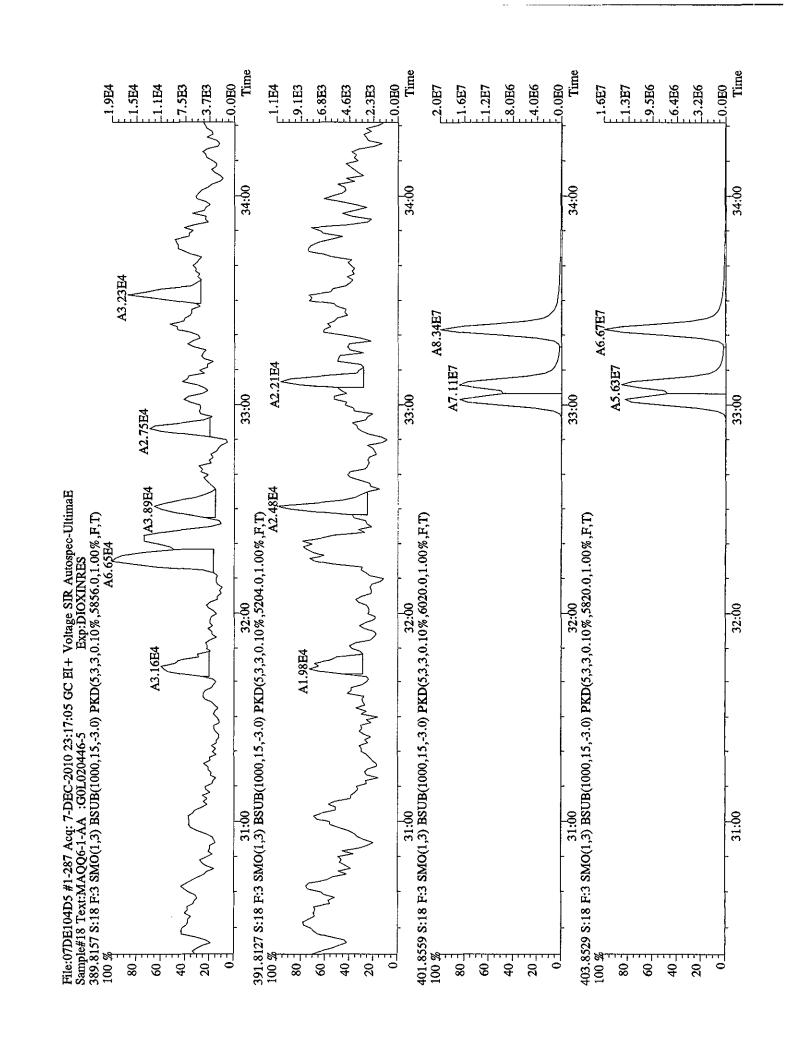

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D $\overline{\eta}$

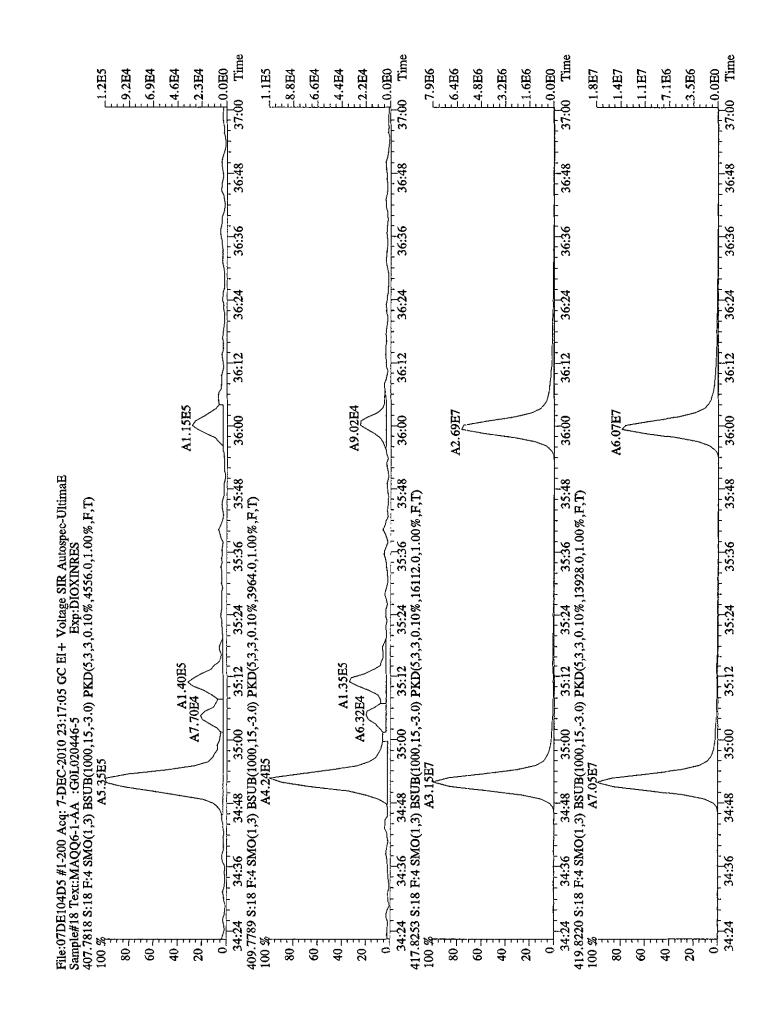

Amount: 5.938 of which 2.622 named and 3.316 unnamed Conc: 11.876 of which 5.245 named and 6.631 unnamed

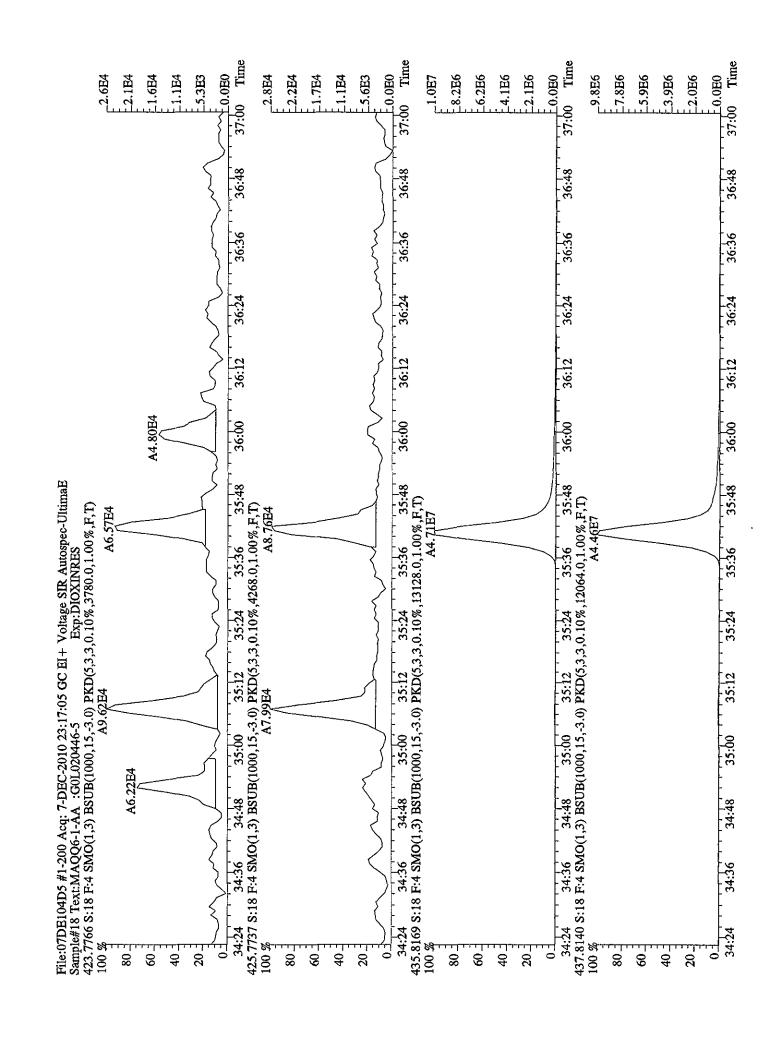

Name	#	R.T.	Ratio	Conc.	Area	S/N >	? Mo	d?
	1	35:07	1.204 n	6.631	96167 79898	6.434 5.672	-	
1,2,3,4,6,7,8-HpCDD	2	35:42	0.750 n	5.245	65717 87570	5.227 5.585	_	

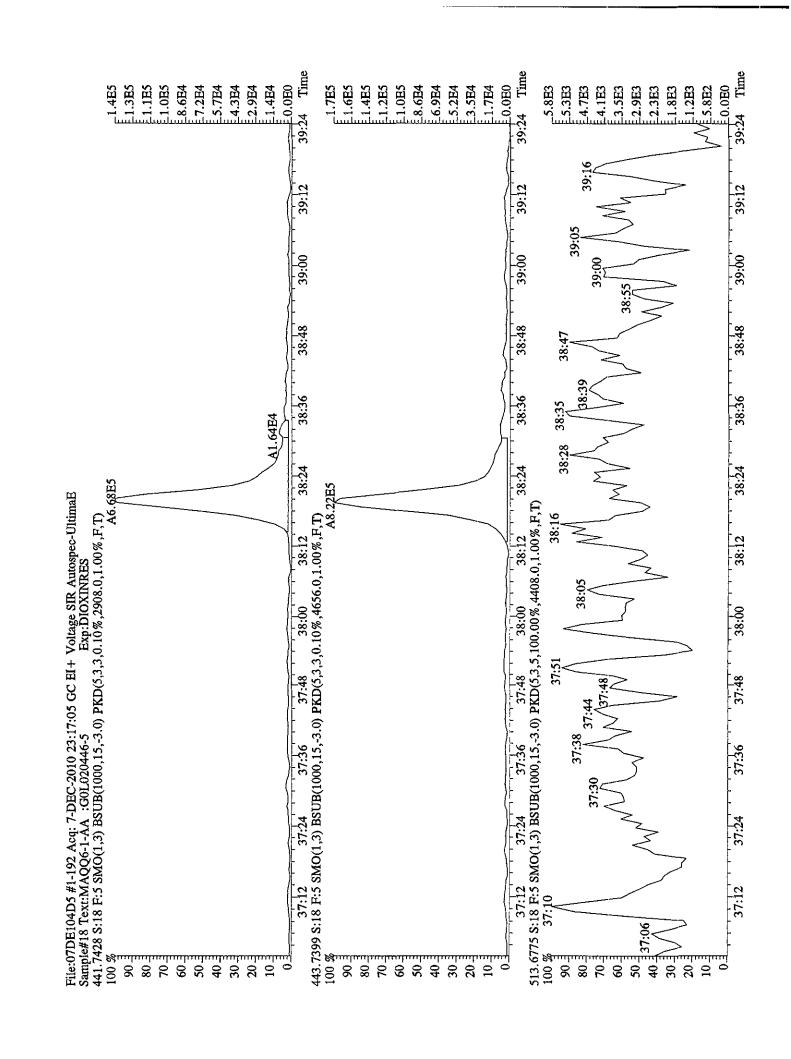


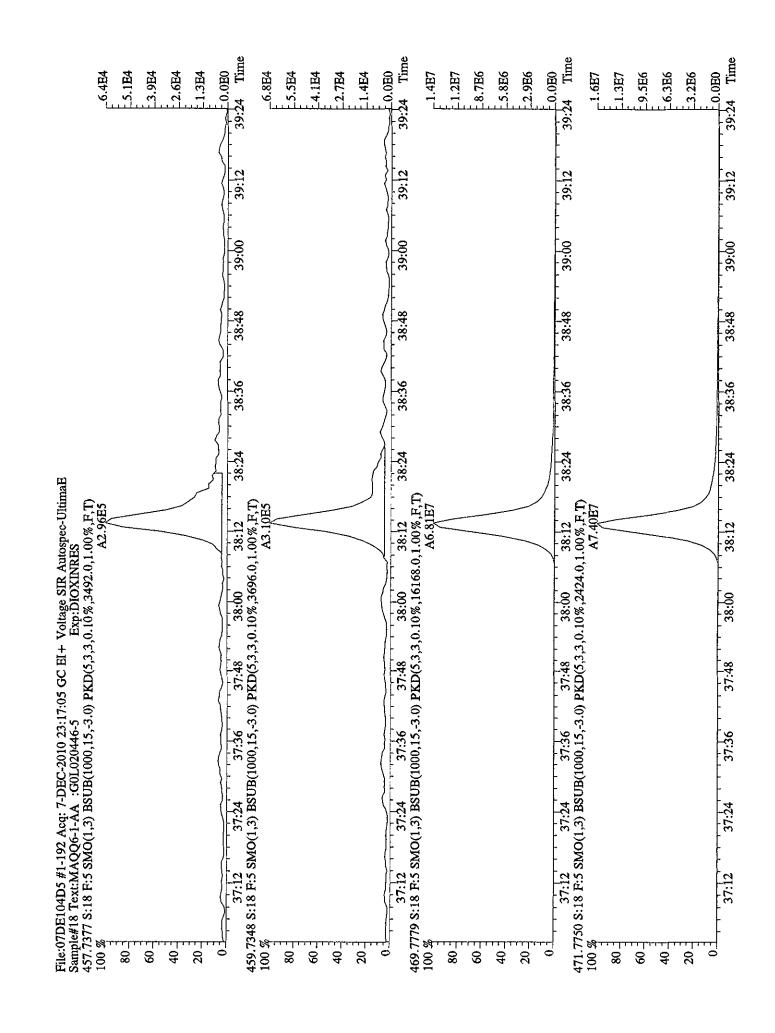


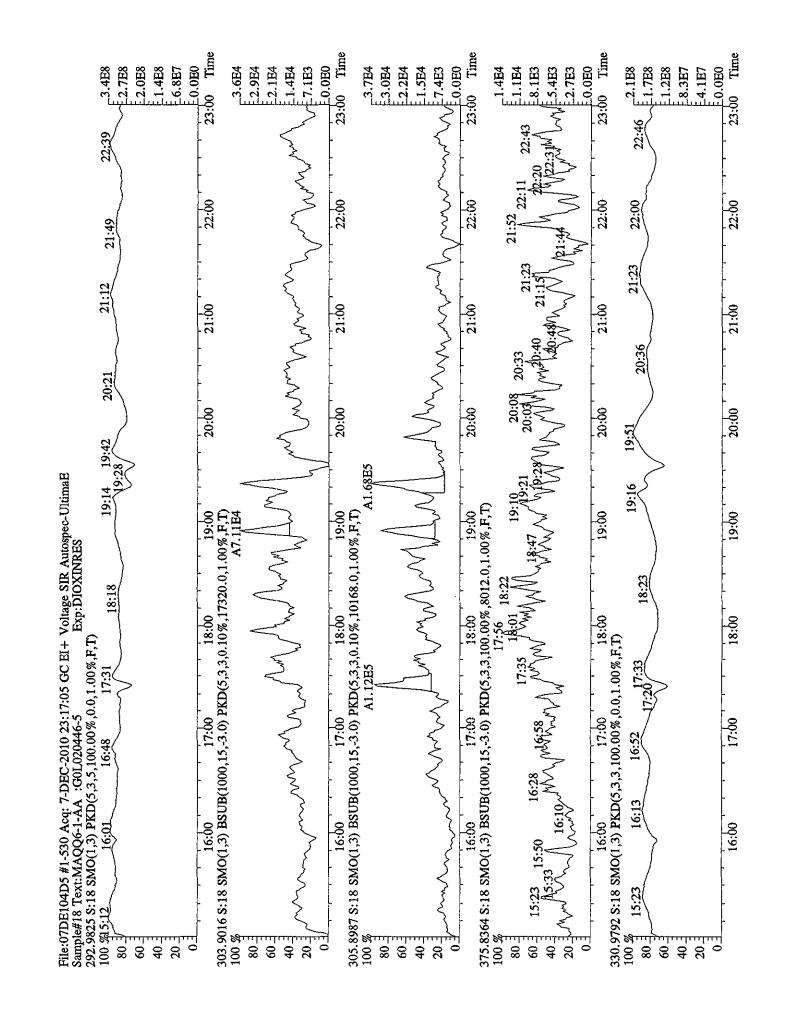


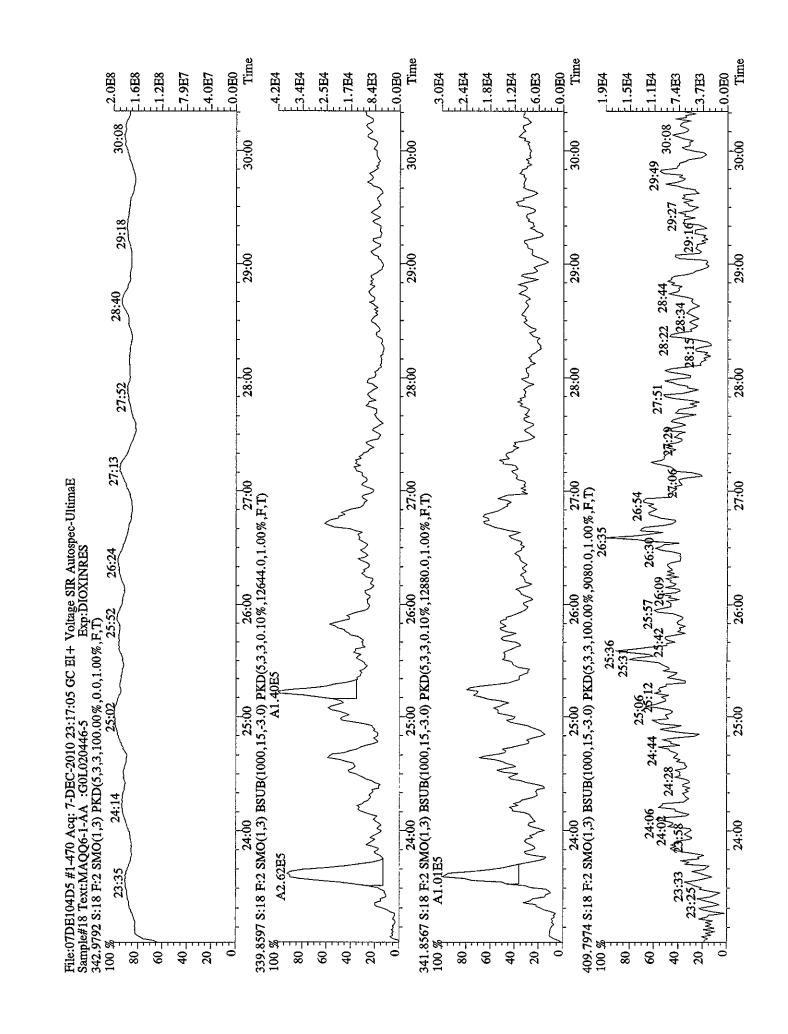


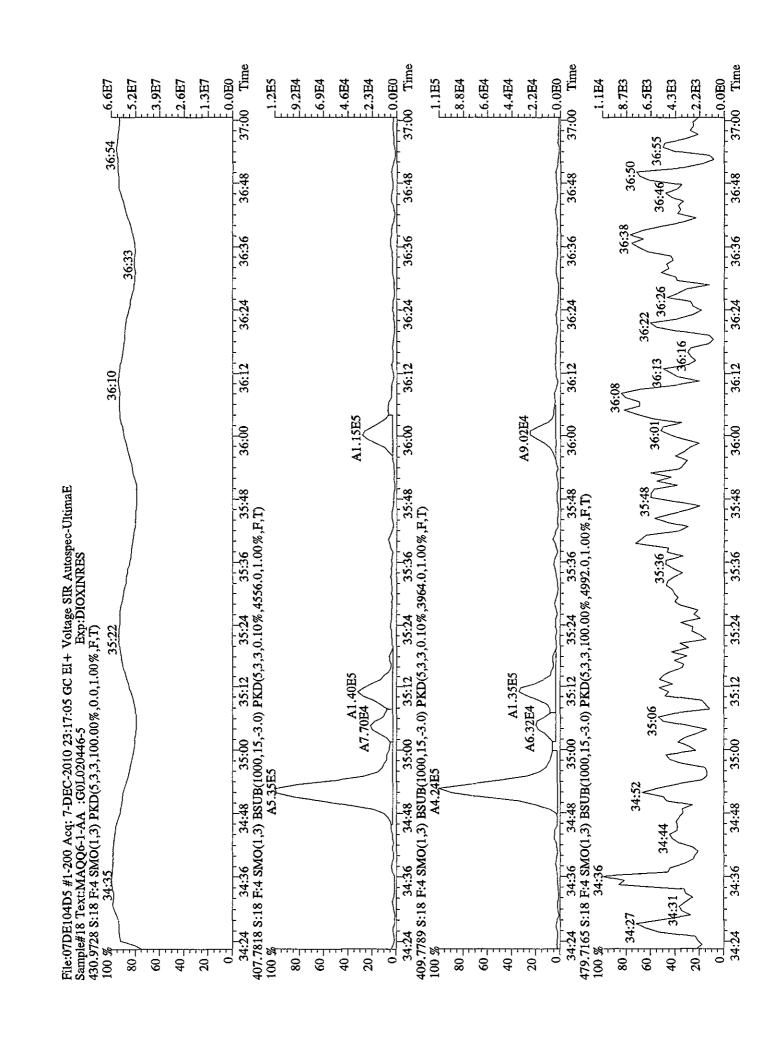


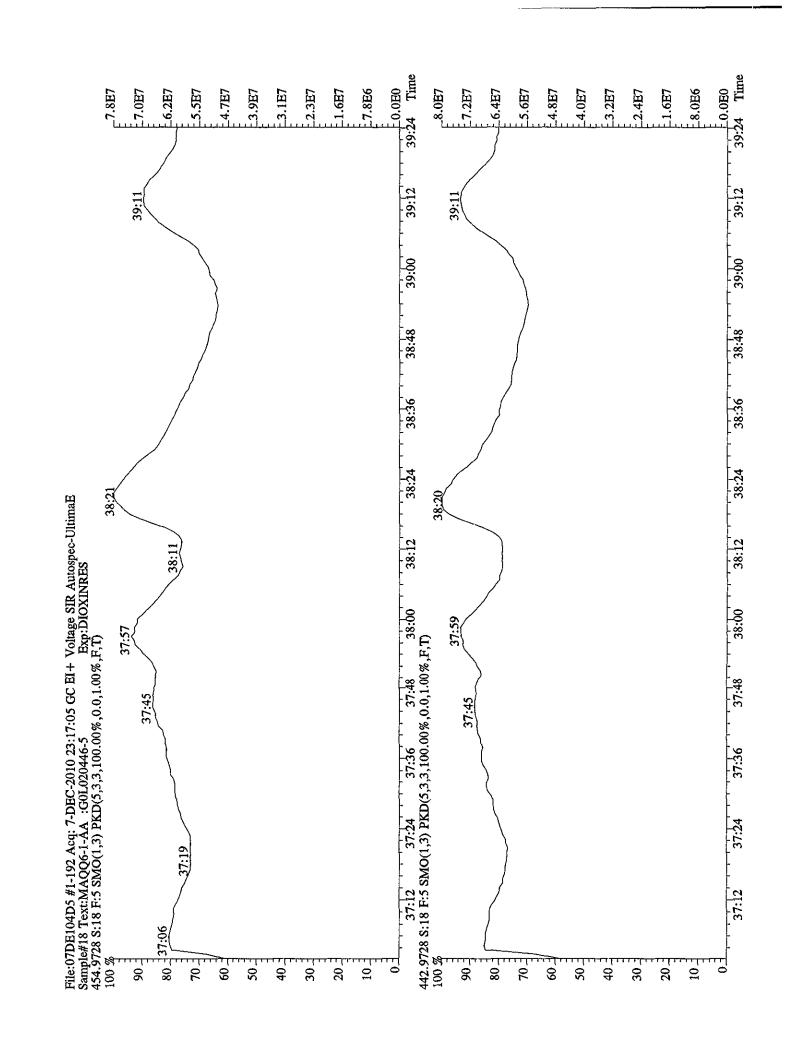












Run text: MAQRD-1-AA Sample text: MAQRD-1-AA :G0L020446-8

Run #16 Filename: 07DE104D5 S: 19 I: 1 Results: 07DE104D5T09

Acquired: 8-DEC-10 00:01:34 Processed: 8-DEC-10 07:53:25 Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5

Factor 1:1600.000 Factor 2:20.000 Sample size: 0.50 SAMP

18/10 Mes

						<i>F</i>	بحى	
Name	Resp	RA	RT	RRF	Conc	EDL	Rec	М
13C-1,2,3,4-TCDD	217132900	0.81	y 19:55	-	130.023	-	-	n
13C-2,3,7,8-TCDF	251640000	0.80	y 19:19	1.23	3770.865	5 932	94.3	n
2,3,7,8-TCDF			_			_		n
Total TCDF			y 17:24			38.584 7.617	-	n
13C-2,3,7,8-TCDD	190470900	0.81	y 20:07	0.91	3876.928	1 4.27 0	96.9	n
2,3,7,8-TCDD			n NotFnd			6.465	-	n
Total TCDD	*		n NotFnd			6.465	_	n
10001				0.50		0.100		
37Cl-2,3,7,8-TCDD	100861400	1.00	y 20:09	1.33	1597.313	5.495	99.8	n
13C-1,2,3,7,8-PeCDF			-				105.1	n
1,2,3,7,8-PeCDF			y 25:12				-	n
2,3,4,7,8-PeCDF						カレ 7.591	-	n
Total F2 PeCDF			-			7.480	-	n
Total F1 PeCDF	234980	2.03	n 21:47	1.06	4 -432	50.439 6.790	-	n
13C-1,2,3,7,8-PeCDD	140450600	1.60	y 27:34	0.66	3915.360	9. 514	97.9	n
1,2,3,7,8-PeCDD			n NotFnd			11.682	_	n
Total PeCDD	140614	1.35	y 25:51	0.93	4.3 27	11.682	-	n
13C-1,2,3,7,8,9-HxCDD	126742400	1.27	y 33:22	-	107.046	_	-	n
13C-1,2,3,4,7,8-HxCDF	115083000	0.56	y 32:16	1.04	3476.336	7.097	86.9	n
1,2,3,4,7,8-HxCDF	1461160		22 4 5	1 00	41 703		-	
1,2,3,6,7,8-HxCDF	971383 181989	1.04	n 32:23	1 -28	1.54 26.344	JQ 3Q 5 517	-	y
2,3,4,6,7,8-HxCDF	181989	1.55	n 32:53	1.23	5 . 12 8	al.846 5.733	-	Ÿ
1,2,3,7,8,9-HxCDF	204259	1.30	y 33:36	1.10	6.465	D- 6.439	_	У
Total HxCDF	6450908	1.12	y 31:01	1.21	148 1 184-199		-	У
						184 164-5810		
13C-1,2,3,6,7,8-HxCDD			_			7.654	97.4	n
1,2,3,4,7,8-HxCDD			n NotFnd			6.056	-	n
1,2,3,6,7,8-HxCDD			n NotFnd		* .	5.402	_	n
1,2,3,7,8,9-HxCDD	*		n NotFnd		*	5.315	-	n
Total HxCDD	222091	0.93	n 32:16	1.13	7. 684	5.572	-	n
13C-1,2,3,4,6,7,8-HpCDF	97516000	0.45	y 34:52	0.91	3381.908	16.048	84.5	n
1,2,3,4,6,7,8-HpCDF	3444470	1.18	y 34:52	1.35	104.987	为 3.525	_	n
1,2,3,4,7,8,9-HpCDF	847545	1.12	y 36:01	1.09	31.795	J 4.338	-	n
Total HpCDF	6063005	1.18	y 34:52	1.22		~ .	-	n
120 1 0 2 4 C 7 0 TW CDD	0050000	. 05	- 25 40	0 00	2222 222		24 5	
13C-1,2,3,4,6,7,8-HpCDD	88533300		_				84.5	n
1,2,3,4,6,7,8-HpCDD			y 35:41			-	_	n
Total HpCDD	453441	3.66	n 34:52	1.07	1 9.116 1 6.6 52	4.493	-	n
13C-OCDD	131675000	0.89	y 38:13	0.62	6703.799	12.794	83.8	n
OCDF	4498740	0.90	y 38:21	1.37	199.463		-	n

OCDD 484918 0.90 y 38:13 1.20 24.565 JB 4.110 - n

Run text: MAQRD-1-AA Sample text: MAQRD-1-AA :G0L020446-8

Run #16 Filename: 07DE104D5 S: 19 I: 1 Results: 07DE104D5TO9

Acquired: 8-DEC-10 00:01:34 Processed: 8-DEC-10 07:53:25
Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5
Factor 1:1600.000 Factor 2:20.000 Sample size: 0.50 SAMP

Name	Resp	RA		RT	RRF		Conc	EDL	Rec	M
13C-1,2,3,4-TCDD	217132900	0.81	У	19:55	-		130.023	-	-	n
13C-2,3,7,8-TCDF	251640000	0.80	У	19:19	1.23		3770.865	5.932	94.3	n
2,3,7,8-TCDF	992444	0.79	У	19:20	0.99		15.863	7.617	_	n
Total TCDF	3022600	0.86	У	17:24	0.99		4 9.31 1	38.589 √7.617	-	n
13C-2,3,7,8-TCDD	190470900	0.81	У	20:07	0.91		3876.928	14 .27 9	96.9	n
2,3,7,8-TCDD	*	*	n	NotFnd	0.98		*	6.465	_	n
Total TCDD	*	*	n	NotFnd	0.98		*	6.465	-	n
37Cl-2,3,7,8-TCDD	100861400	1.00	У	20:09	1.33		1597.313	5.495	99.8	n
13C-1,2,3,7,8-PeCDF	199877200	1.56	У	25:11	0.88		4203.092	12.575	105.1	n
1,2,3,7,8-PeCDF	865178	1.48	У	25:12	1.08		16.082	J 7.372	_	n
2,3,4,7,8-PeCDF	503904	1.64	У	26:44	1.05		9.645	Dr 7.591	_	n
Total F2 PeCDF							7 4.03 3	, 7.480	-	n
Total F1 PeCDF	234980	2.03	n	21:47	1.06		4 _432	50.434 6.790	-	n
13C-1,2,3,7,8-PeCDD	140450600	1.60	У	27:34	0.66		3915.360	9 .51 4	97.9	n
1,2,3,7,8-PeCDD	*	*	n	NotFnd	0.93		*	11.682	-	n
Total PeCDD	140614	1.35	Y	25:51	0.93		4 .32 7	11.682	-	n
13C-1,2,3,7,8,9-HxCDD	126742400	1.27	У	33:22	-		107.046	-	-	n
13C-1,2,3,4,7,8-HxCDF	115083000	0.56	У	32:16	1.04		3476.336	7.097	86.9	n
1,2,3,4,7,8-HxCDF	1389092	1.12	У	32:17	1.22		39.665	5.809	_	n
1,2,3,6,7,8-HxCDF	889833	1.01	n	32:23	1 :28	L≾4	24.132	5.517	_	n
2,3,4,6,7,8-HxCDF	449976	1.23	У	32:52	1.23		12.680	5.733	-	n
1,2,3,7,8,9-HxCDF	300119	1.38	У	33:36	1,10		9.499	6.439	-	n
Total HxCDF	6068683	1.12	У	31:01	1.21		173.464	5.855	-	n
	102557600	1.30	У	33:07	0.83		3895.957	7.654	97.4	n
1,2,3,4,7,8-HxCDD			n	NotFnd	1.04		*	6.056	-	n
1,2,3,6,7,8-HxCDD			n	NotFnd	1.16		*	5.402	-	n
1,2,3,7,8,9-HxCDD				NotFnd			*	5.315	-	n
Total HxCDD	222091	0.93	n	32:16	1.13		7.684	5.572	-	n
13C-1,2,3,4,6,7,8-HpCDF	97516000		_				3381.908	16.048	84.5	n
1,2,3,4,6,7,8-HpCDF	3444470		-				104.987		_	n
1,2,3,4,7,8,9-HpCDF	847545		_				31.795	J 4.338	-	n
Total HpCDF	6063005	1.18	У	34:52	1.22		196.345	3.889	-	n
13C-1,2,3,4,6,7,8-HpCDD	88533300	1.07	У	35:40	0.83		3380.230	8.870	84.5	n
1,2,3,4,6,7,8-HpCDD	239554	1.16	У	35:41	1.07		10.099	J 4.493	-	n
Total HpCDD	453441	3.66	n	34:52	1.07		1 9.11 6	lio.652 4.493	-	n
13C-OCDD	131675000	U 80	٧,	38.12	0.62		6703. 7 99	12.794	02 0	*
OCDF	4498740		_				199.463	√ 6.213	83.8	n
OCDI	1170/40	0.50	1	JU. 21	ر د		*>>.403	₩ U.ZIS	_	n

OCDD 484918 0.90 y 38:13 1.20 24.565 JB 4.110 - n

Run Text: MAQRD-1-AA Sample text: MAQRD-1-AA :G0L020446-8

Name: Total TCDF F:1 Mass: 303.902 305.899 Mod? no #Hom:5

Run: 16 File: 07DE104D5 S:19 Acq: 8-DEC-10 00:01:34

Tables: Run: 07DE104D5 Analyte: TO9 Cal: T090721104D5 Results: 07DE104D7

24.156 of which 7.931 named and 48.311 of which 15.863 named and Amount: 16.224 unnamed Conc: 32.449 unnamed

Name R.T. Ratio Conc. Area S/N >? Mod? 17:24 0.863 y (397696 4.063 460638 6.488 18:17 0.700 y 172677 2.145 246588 3.860 0.338 n 82236 1.441 n n 243007 3.454 253993 3.084 y n 309528 5.181 0.793 2,3,7,8-TCDF 15.863 439018 4.384 y n 6.938 y n 553426

Totals Results TestAmerica West Sacramento Page 2 of 9

Run Text: MAQRD-1-AA Sample text: MAQRD-1-AA :G0L020446-8

Name: Total TCDD F:1 Mass: 319.897 321.894 Mod? no #Hom:0

Name: Total TCDD F:1 Mass: 319.89/ 321.8 Run: 16 File: 07DE104D5 S:19 Acq: 8-DEC-10 00:01:34

Tables: Run: 07DE104D5 Analyte: TO9 Cal: T090721104D5 Results: 07DE104D7

* of which named and Amount: * unnamed Conc: * of which named and * unnamed

Name R.T. Ratio Conc. Area S/N >? Mod?NotFa n

Totals Results TestAmerica West Sacramento Page 3 of 9

Run Text: MAQRD-1-AA Sample text: MAQRD-1-AA :G0L020446-8

Name: Total F2 PeCDF F:2 Mass: 339.860 341.857 Mod? no #Hom:6

Run: 16 File: 07DE104D5 S:19 Acq: 8-DEC-10 00:01:34

Tables: Run: 07DE104D5 Analyte: TO9 Cal: T090721104D5 Results: 07DE104D7

Amount: 37.017 of which 12.863 named and 24.153 unnamed 25.726 named and Conc: 74.033 of which 48.307 unnamed

Name	#	R.T.	Ratio	Conc.	Area	s/n >?	Мс		,
	1	23:22	1.552	у 6.183	199357 128464	3.592 2.755	У	n n	KET LS:N
	2	23:37	1.523	y 34.358	1099772	14.851	У	n	
1,2,3,7,8-PeCDF	3	25:12	1.480	y 16.082	721977 516307	9.974 7.394	У	n n	
1,2,5,7,6 2002	J		2.100	7 20.002	348871	5.630	Y		
	4	25:50	1.653	y 6.622	218770 132352	3.138 1. <u>9</u> 81	y n	n n	
2,3,4,7,8-PeCDF	5	26:44	1.639	9.645	312981	3.848	У	n	PV
					190923	2.265	n	n	
	6	27:02	0.849	n 1.144	36879 43422	1.085 0.932	n n	n n	50.439
Totals Results	Tes	tAmeric	a West	Sacramento		Page	4	of :	
Run Text: MAQRD-1-AA			Sam	mple text: MAQI	RD-1-AA :(30L020446-	8		
Name: Total F1 PeCDF Run: 16 File: 07DE104I)5			ass: 339.860 34 8-DEC-10 00:01:		od? no	#HC	m:1	
Tables: Run: 07DE104D						sults: 07	DE1	.04D	ī
Amount: 2.216 c				* named and * named and		unnamed unnamed			
Name	#	R.T.	Ratio	Conc.	Area	S/N >?	Мо	d?	
	1	21:47	2.032	n 4432	187288 92149	3.433 2. <u>25</u> 7	y n	n n	

Totals Results TestAmerica West Sacramento Page 5 of 9

Sample text: MAQRD-1-AA :G0L020446-8 Run Text: MAQRD-1-AA

Name: Total PeCDD F:2 Mass: 355.855 357.8 Run: 16 File: 07DE104D5 S:19 Acq: 8-DEC-10 00:01:34 F:2 Mass: 355.855 357.852 Mod? no #Hom:1

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

nount: 2.164 of which Conc: 4.327 of which Amount: * named and 2.164 unnamed * named and 4.327 unnamed

Name # R.T. Ratio Conc. Area S/N >? Mod? 1 25:51 1.351 y 4.327 80804 2.090 n n 59809 1.537 n n Totals Results TestAmerica West Sacramento Page 6 of 9

R.T. Ratio Conc. Area S/N >? Mod?

Run Text: MAQRD-1-AA Sample text: MAQRD-1-AA :G0L020446-8

Name: Total HxCDF F:3 Mass: 373.821 375.818 Run: 16 File: 07DE104D5 S:19 Acq: 8-DEC-10 00:01:34 F:3 Mass: 373.821 375.818 Mod? no #Hom:10

Name

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

Amount:	86.732 of which	42.988 named and	43.744	unnamed
Conc:	173.464 of which	85.976 named and	87.488	unnamed

2100				001101		-, -		
	1	31:01	1.124 y	21.576		9.824 8.734	-	
	2	31:13	1.114 y	40.743	745935 669631	17.544 16.176	у У	
	3	31:37	0.804 n	4.518	86893 108059		n n	
	4	31:50	1.007 n	6.063		3.334 3.445	y y	n n (i
1,2,3,4,7,8-HxCDF	5	32:17	1.118 y	39.665	733367 655725	18.656 16.754	у У	
1,2,3,6,7,8-HxCDF	6	32:23	1.013 n	24.132	492586 486412	14.901 14.678	y y	
	7	32:29	1.491 n	7.200	166568 111683	4.839 3.778	y Y	
	8	32:42	1.146 y	7.387	137050 119605	3.149 2.572	y n	
2,3,4,6,7,8-HxCDF	9	32:52	1.230 y	12.680	248209 201767	4.788 3.816	y Y	
1,2,3,7,8,9-HxCDF	10	33:36	1.383 y	9.499	1 74 162 125957	3.189 2.537	y n	

Totals Results TestAmerica West Sacramento Page 7 of 9

Sample text: MAQRD-1-AA :G0L020446-8 Run Text: MAQRD-1-AA

Name: Total HxCDD F:3 Mass: 389.816 391.8 Run: 16 File: 07DE104D5 S:19 Acq: 8-DEC-10 00:01:34 F:3 Mass: 389.816 391.813 Mod? no #Hom:2

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

Amount:	3.842 of which	<pre>* named and</pre>	3.842	unnamed
Conc:	7.684 of which	* named and	7.684	unnamed

Name	#	R.T.	Ratio	Conc.	Area	S/N >?	Mod?
	7	32.16	0 929 n	4 439	71014	2 222	n n

Run Text: MAQRD-1-AA Sample text: MAQRD-1-AA :G0L020446-8

Name: Total HxCDF F:3 Mass: 373.821 375.818 Mod? yes #Hom:12 Run: 16 File: 07DE104D5 S:19 Acq:8-DEC-10 00:01:34

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D $_{\overline{1}}$

Amount: Conc:	92.100 184.199				named and named and	52.270 104.539	unnamed unnamed			
Name		#	R.T.	Ratio	Conc.	Area	s/N >?	Мо	d?	
		1.	31:01	1.124 y	21.576	396665 352984		_	n n	(1-2)
		2	31:13	1.114 y	40.743	745935 669631	17.544 16.176	-	n n	(ON)
		3	31:37	1.144 y	6.670	123668 108059			У n	
		4	31:50	1.258 y	7.527	145704 115815		-	y n	
1,2,3,4,7,8-H	xCDF	5	32:17	1.116 y		770597 690571	19.059 17.182	~	У	
1,2,3,6,7,8-H	xCDF	6	32:23	1.038 n	21.696 26.344	537730 518241	15.304 15.105	_	У	
		7	32:29	1.264 y	9.172	177924 140734			у У	
		8	32:42	1.091 y	8.551	155020 142090		_	У	
		9	32:52	0.975 n	6.928	133250 136697	4.891 4.048	-	У	
2,3,4,6,7,8-H	xCDF	10	32:53	1.549 n	5/128		4.215 3.229	У	У	KEM
		11	33:32	1.266 y	3.272	65474 51697	2.365 1.865		У	
1,2,3,7,8,9-н	xCDF	12	33:36	1.300 y	6.465	115432 88827	3.235 2.679	y n	У	DV Ser <5:N
					•	.1				the <5:N

				76402	2.472	n	n
2	32:31	1.470 n	3.246		2.102 1.773		

Totals Results TestAmerica West Sacramento

Page 8 of 9

Run Text: MAQRD-1-AA :GOL020446-8

Name: Total HpCDF F:4 Mass: 407.782 409.779 Mod? no #Hom:4

Run: 16 File: 07DE104D5 S:19 Acq: 8-DEC-10 00:01:34

Tables: Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D7

Amount: 98.172 of which 68.390 named and 29.782 unnamed Conc: 196.344 of which 136.781 named and 59.563 unnamed

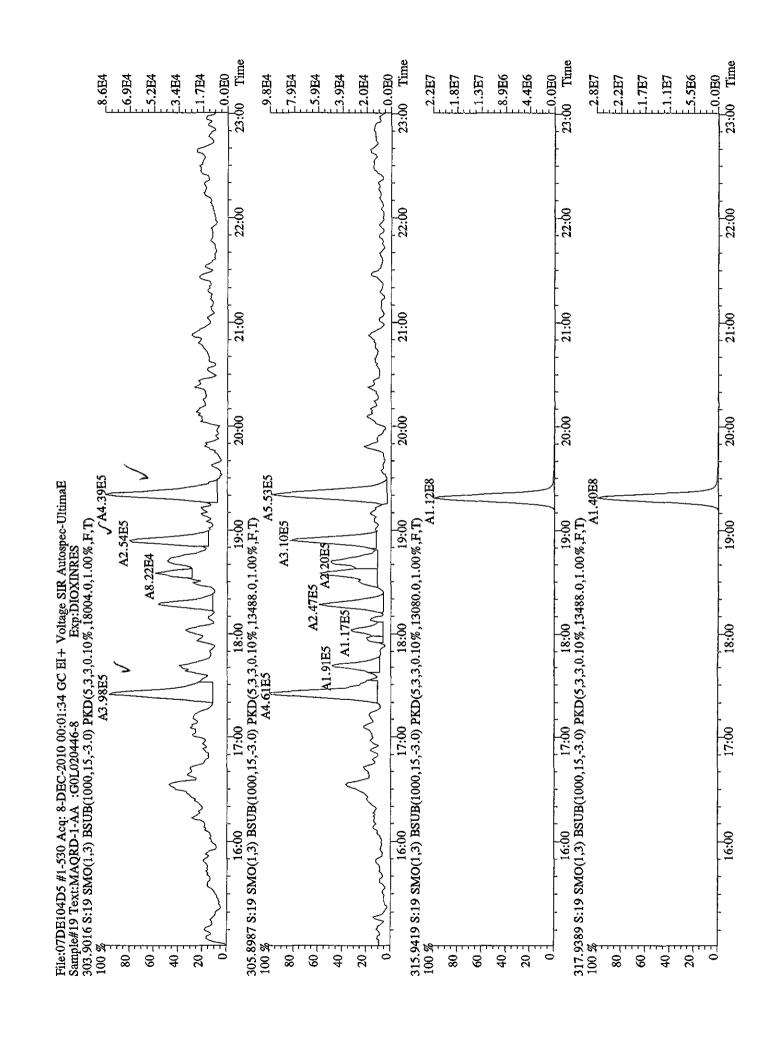
Name R.T. Ratio Conc. Area S/N >? Mod?1,2,3,4,6,7,8-HpCDF 1 34:52 1.181 y 104.986 1864878 100.088 y n 1579588 76.308 y n 2 35:04 1.177 y 23.114 371502 20.485 y n 315750 14.411 y n 35:11 1.288 n 36.449 684088 32.241 y n 531244 23.941 1,2,3,4,7,8,9-HpCDF 4 36:01 1.115 y 31.794 446859 22.987 y n 400686 17.870 y n

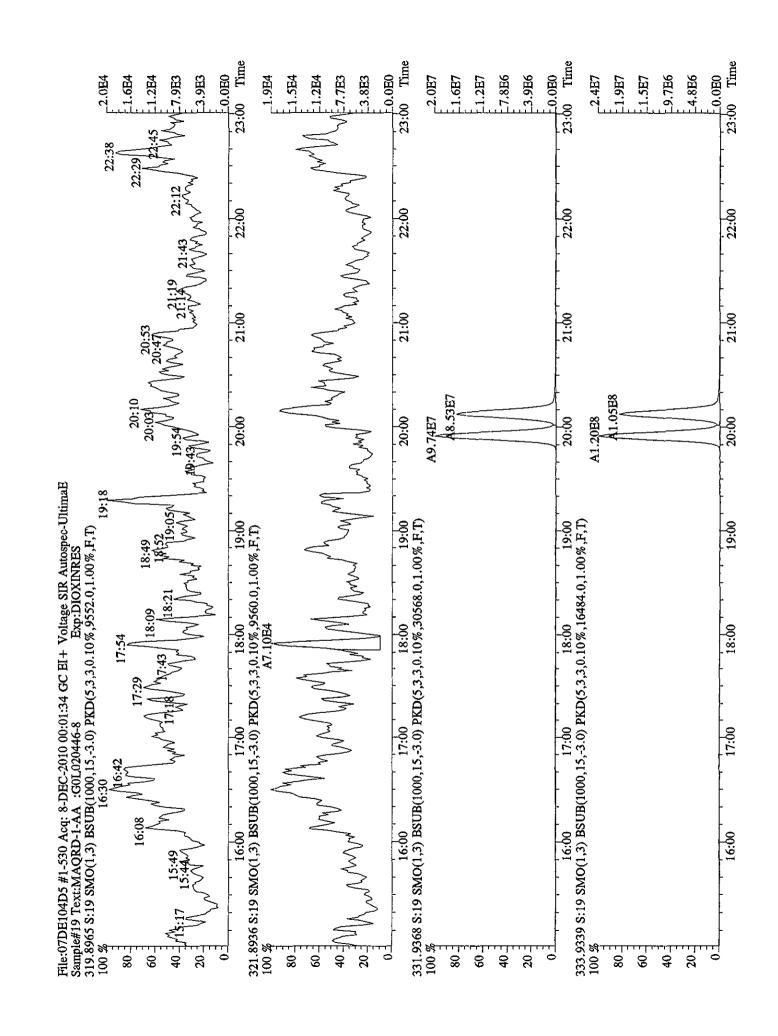
Totals Results TestAmerica West Sacramento Page 9 of 9

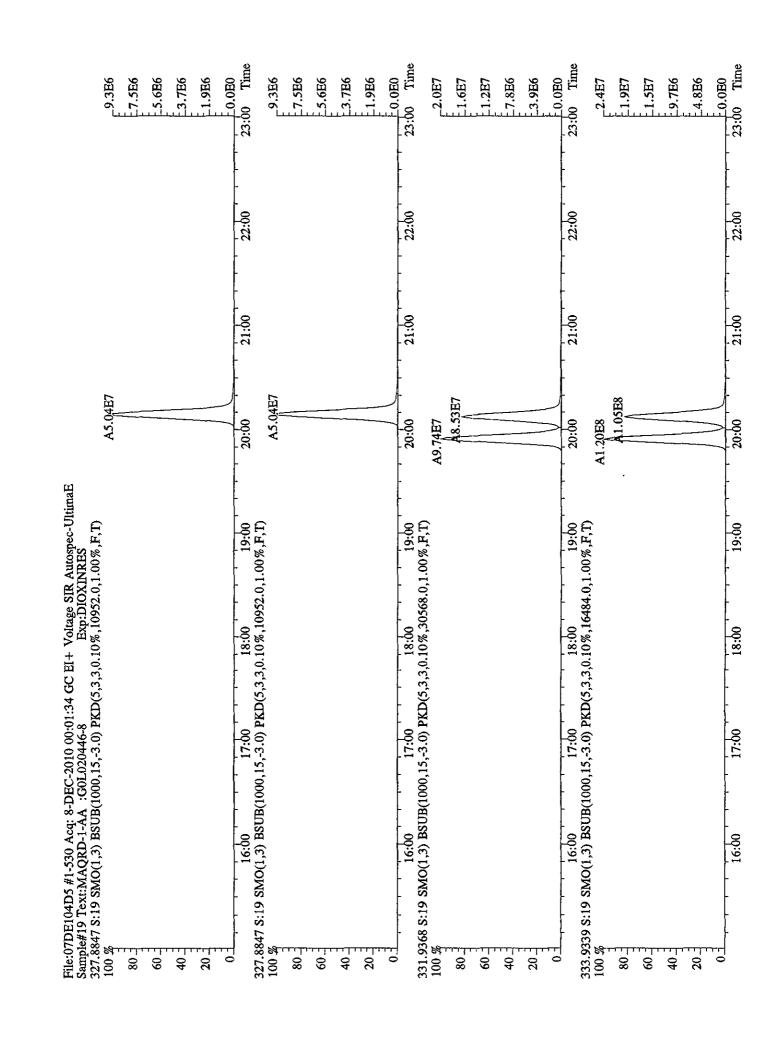
Run Text: MAQRD-1-AA :GOL020446-8

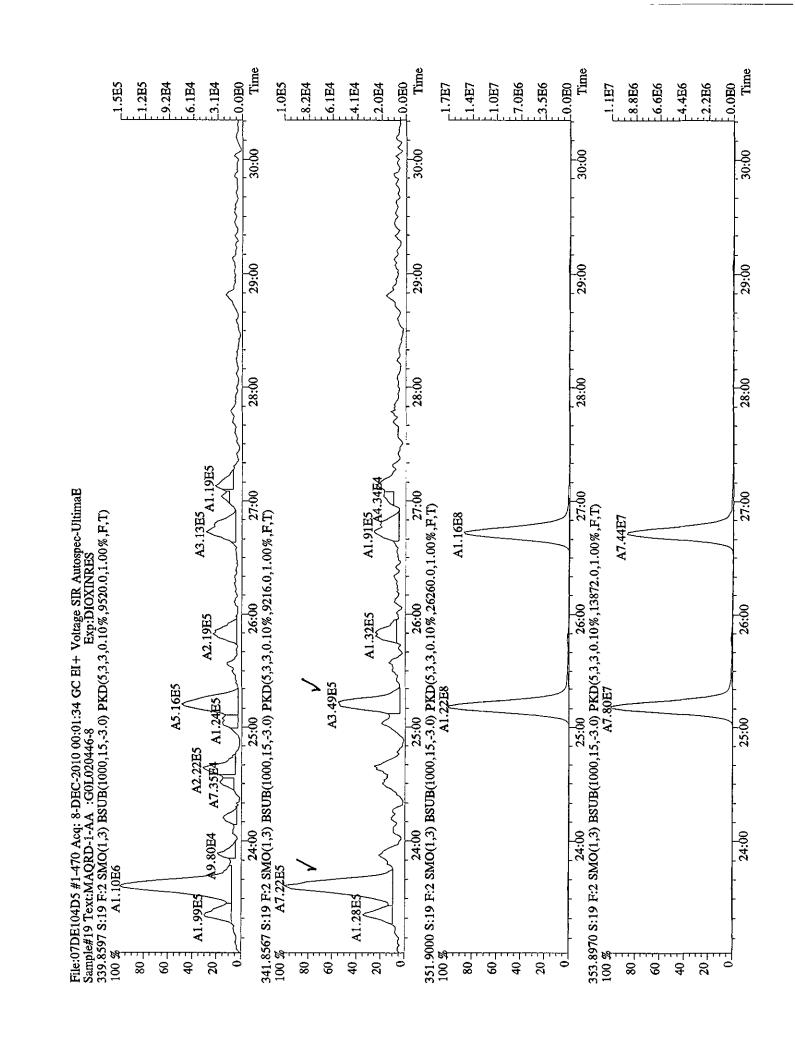
Name: Total HpCDD F:4 Mass: 423.777 425.774 Mod? no #Hom:4

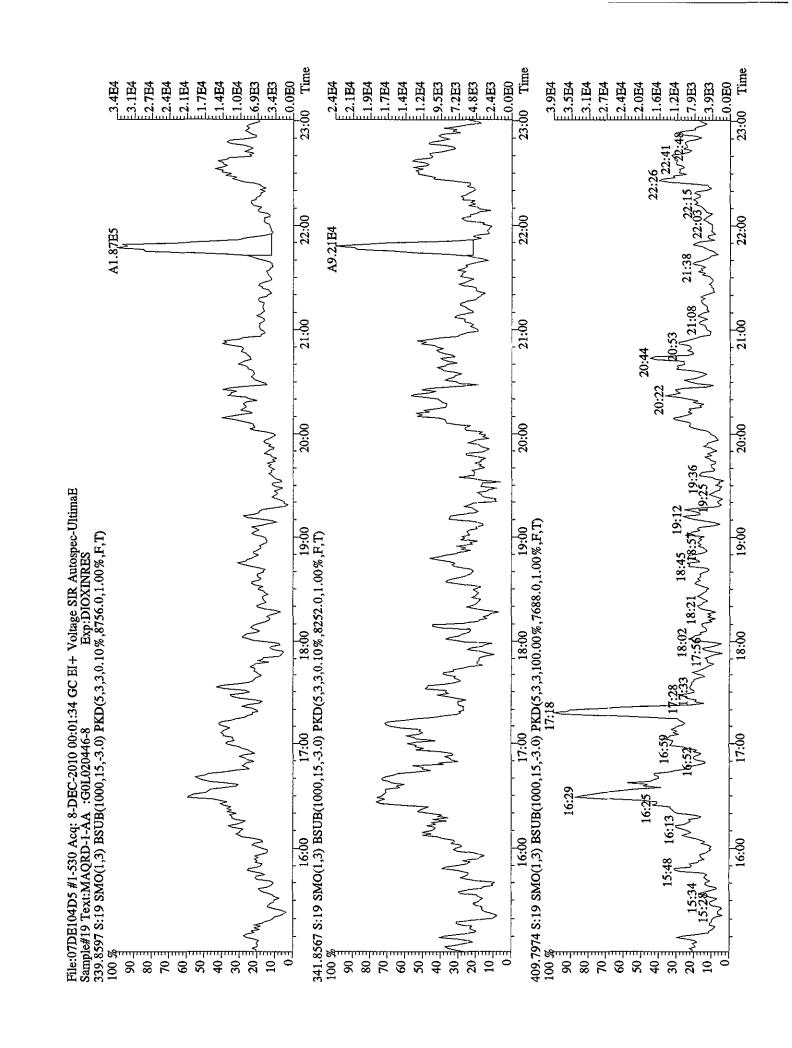
Run: 16 File: 07DE104D5 S:19 Acq: 8-DEC-10 00:01:34

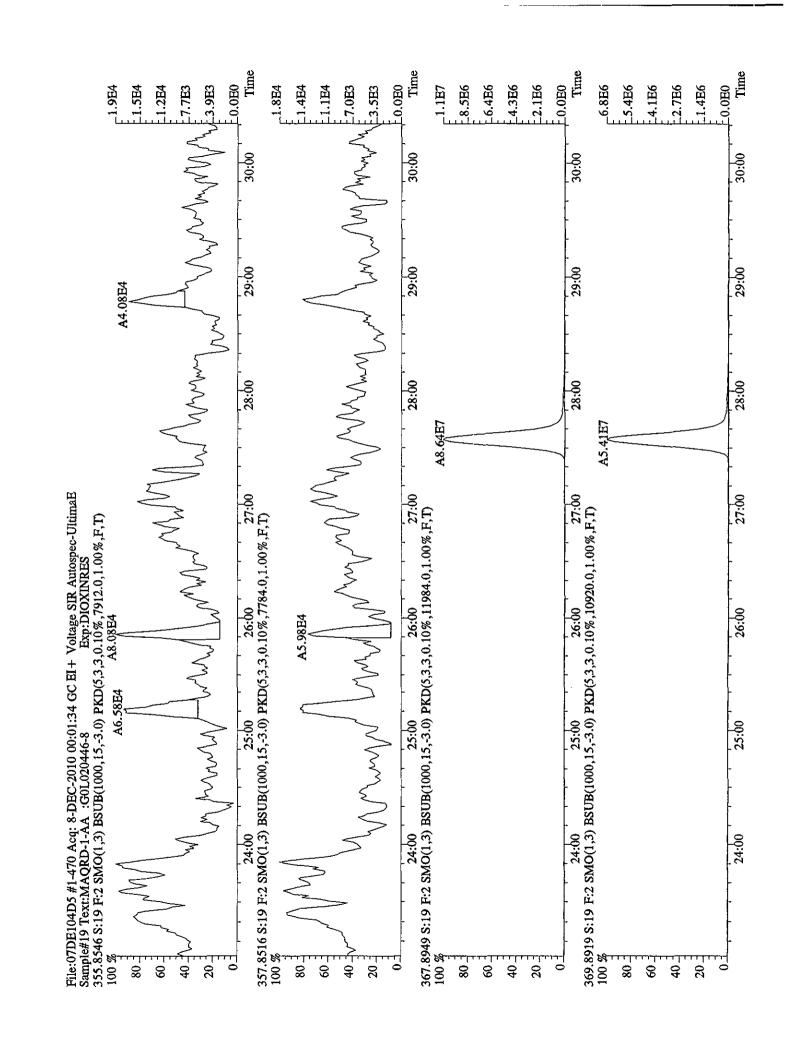

Tables: Run: 07DE104D5 Analyte: TO9 Cal: T090721104D5 Results: 07DE104D7

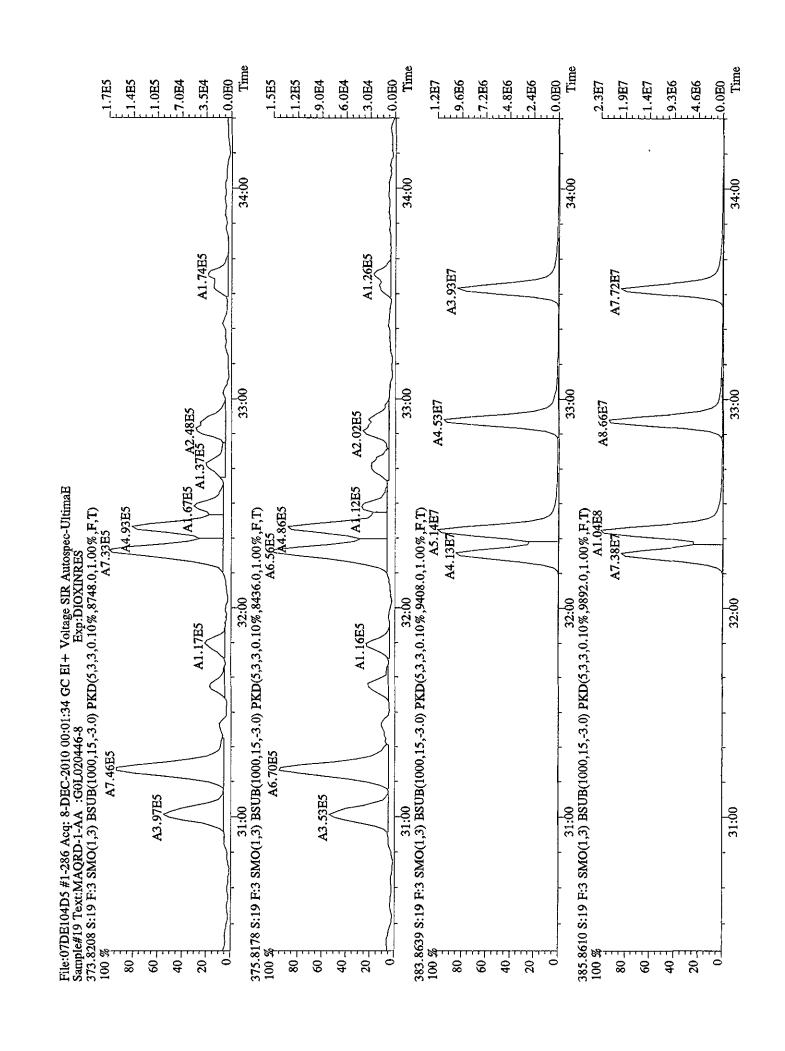

9.558 of which 5.050 named and Amount: 4.509 unnamed 19.116 of which 10.099 named and Conc: 9.017 unnamed Name R.T. Ratio Conc. Area S/N >? Mod?3.631 34:52 3.665 n 54673 y n 14919 1.393 2 35:07 1.279 n 6.553 97493 6.044 y n 76201 5.459 1,2,3,4,6,7,8-HpCDD 3 35:41 1.157 y 6.152 10.099 128504 y n

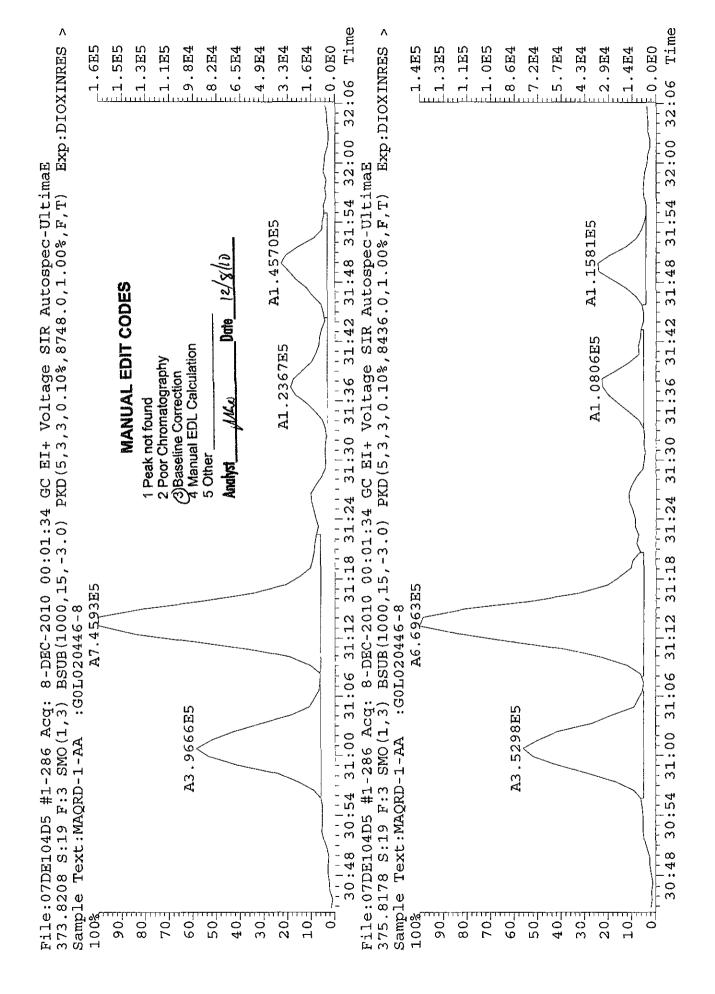

111050 6.386 y n

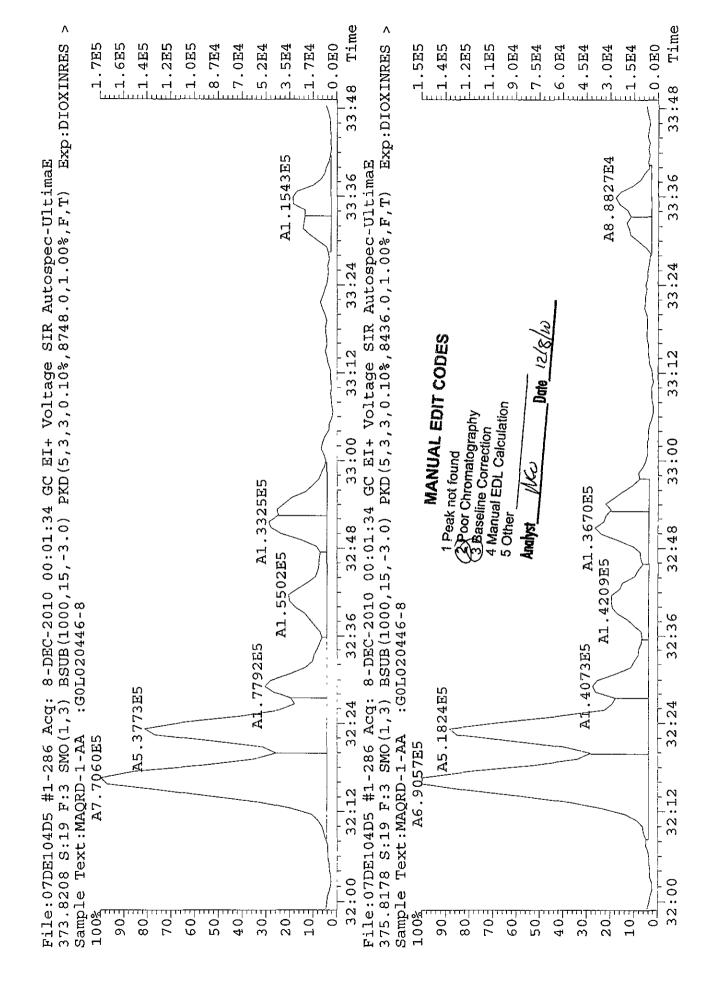

4 36:00 3.522 n 1.181 48346 3.511 y n 13727 1.249 n n

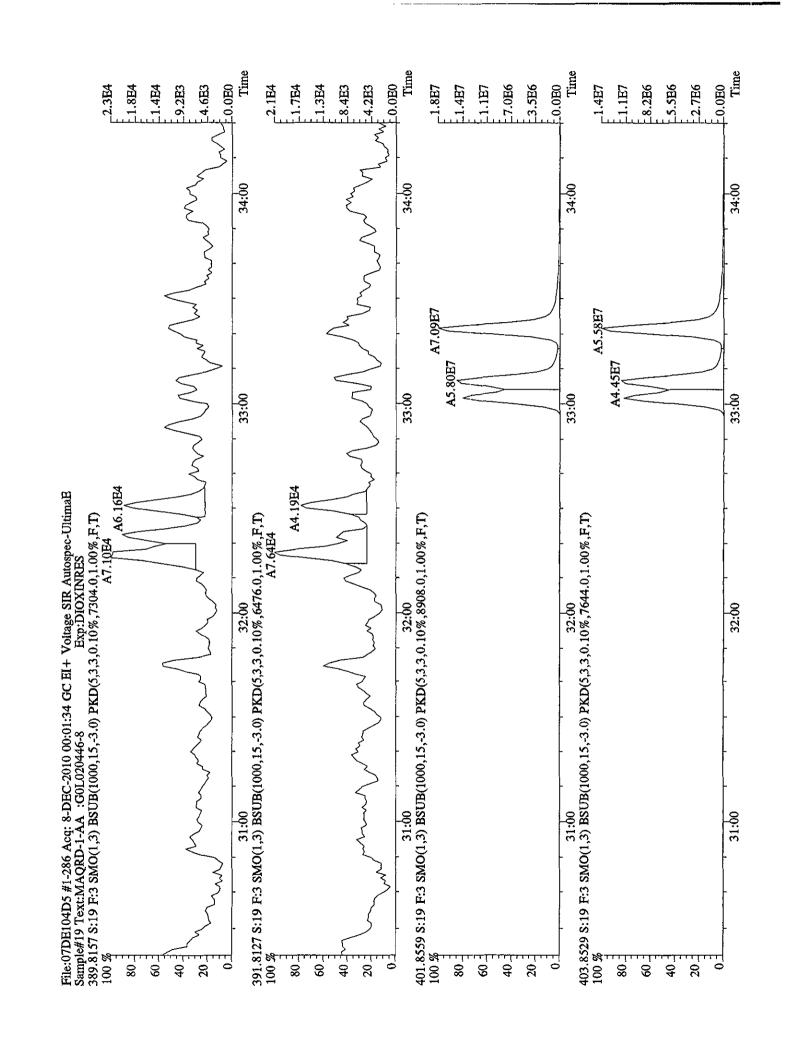

(W.652)

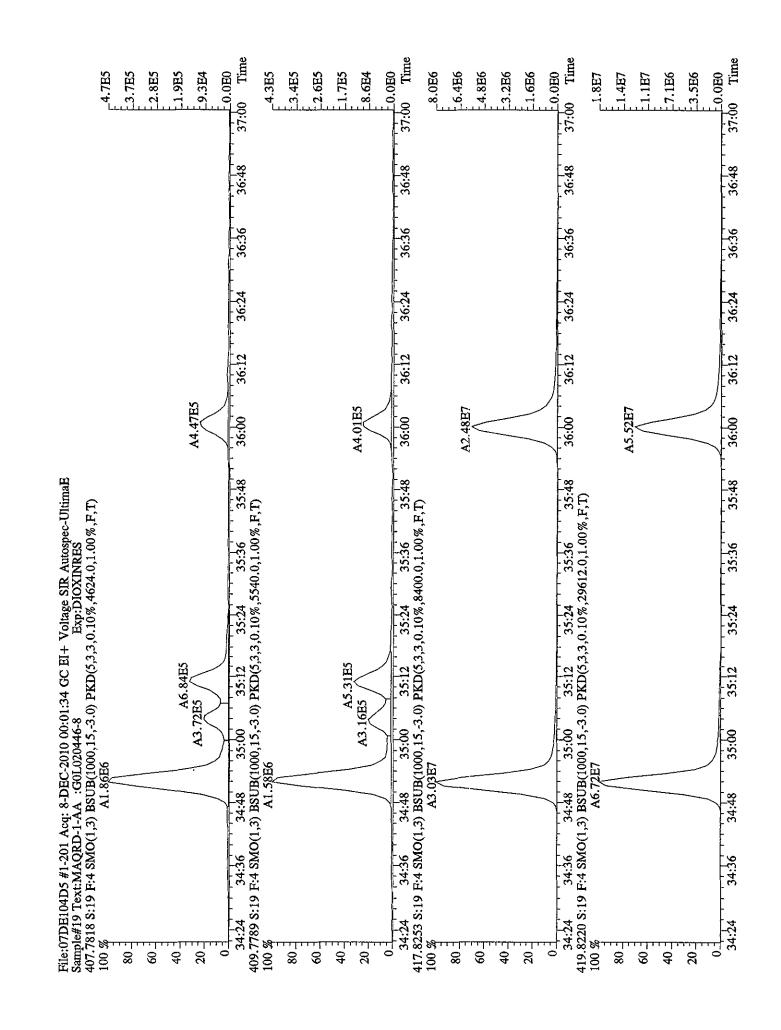


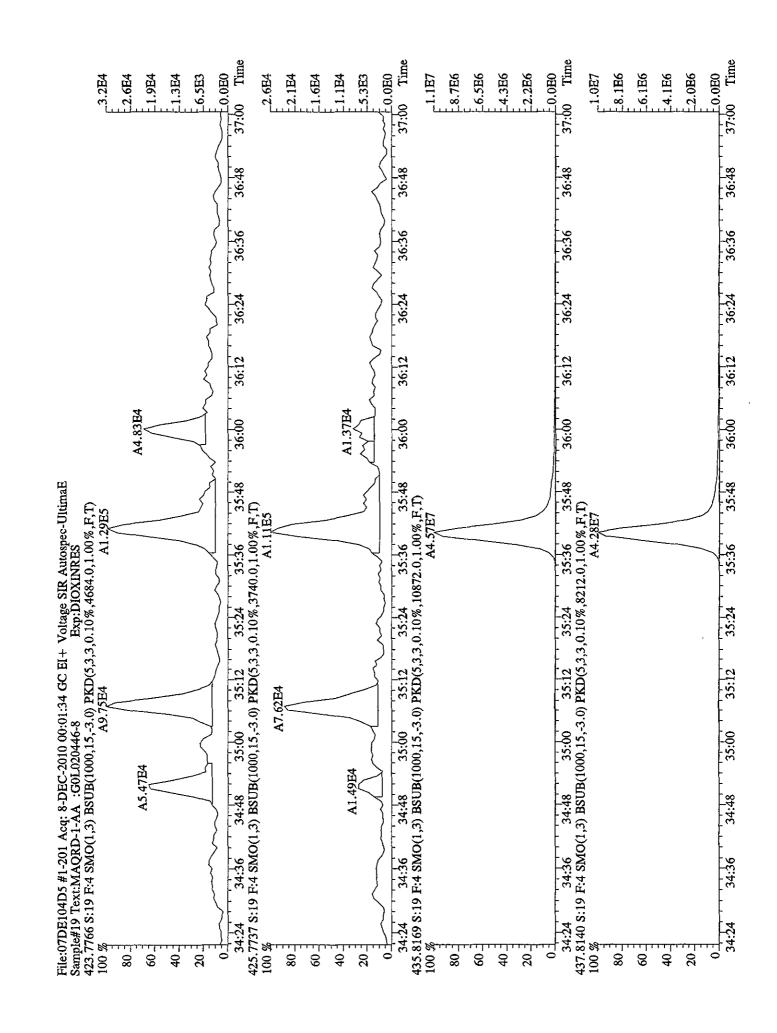


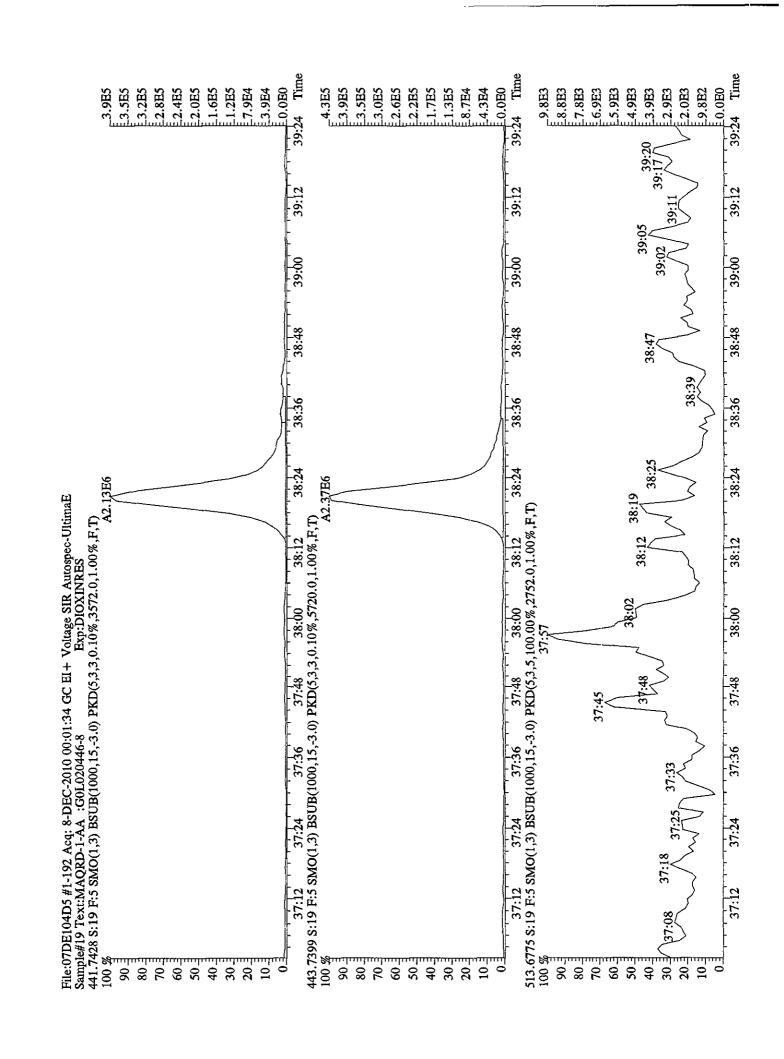


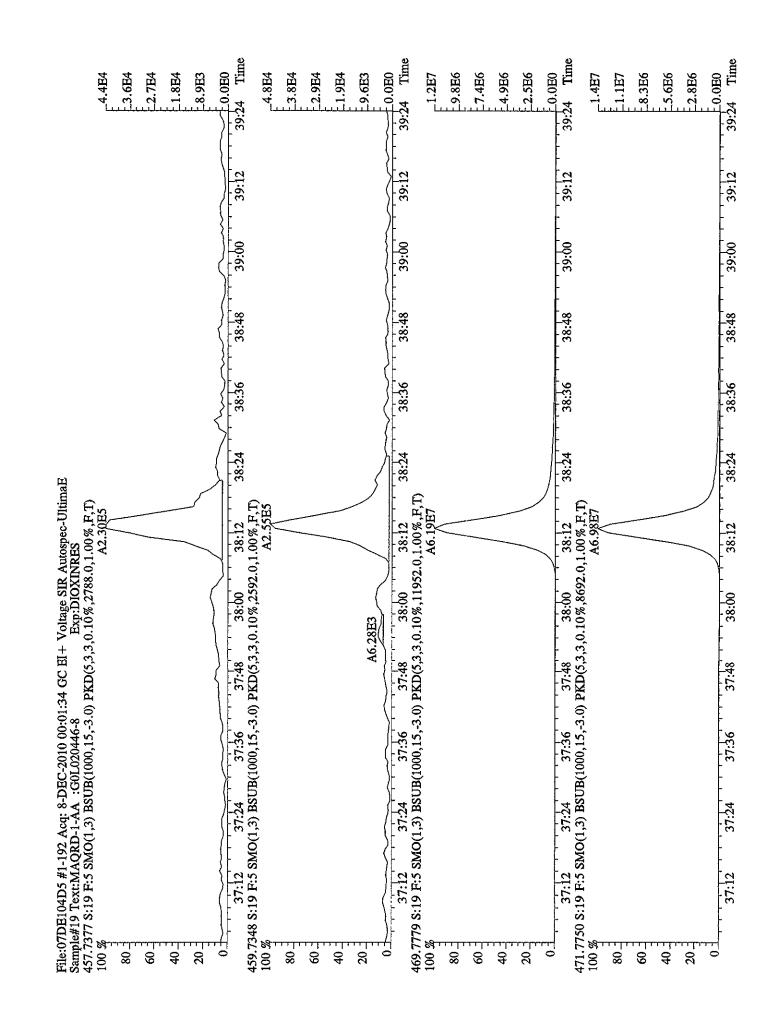


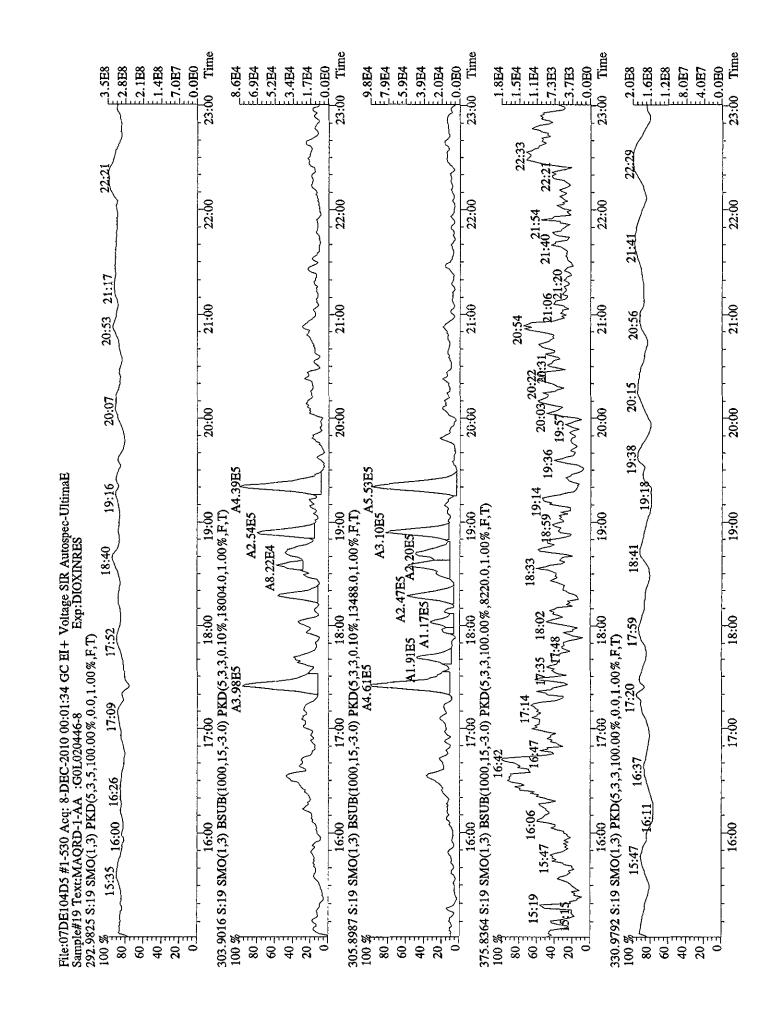


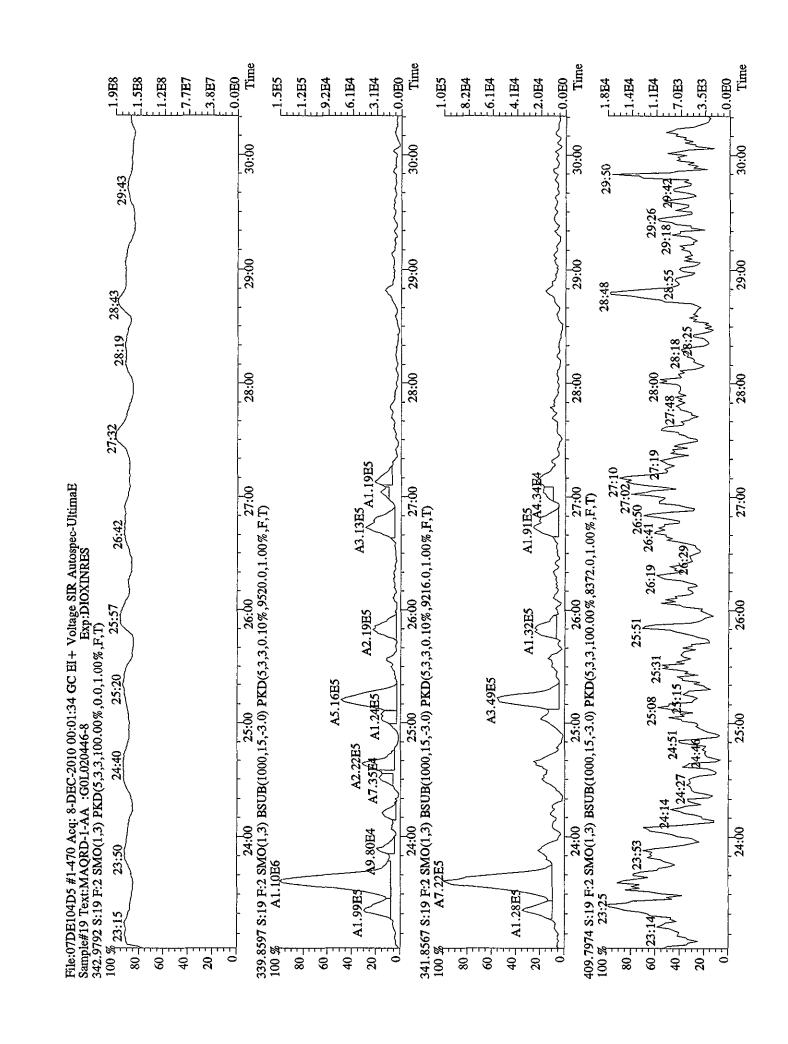


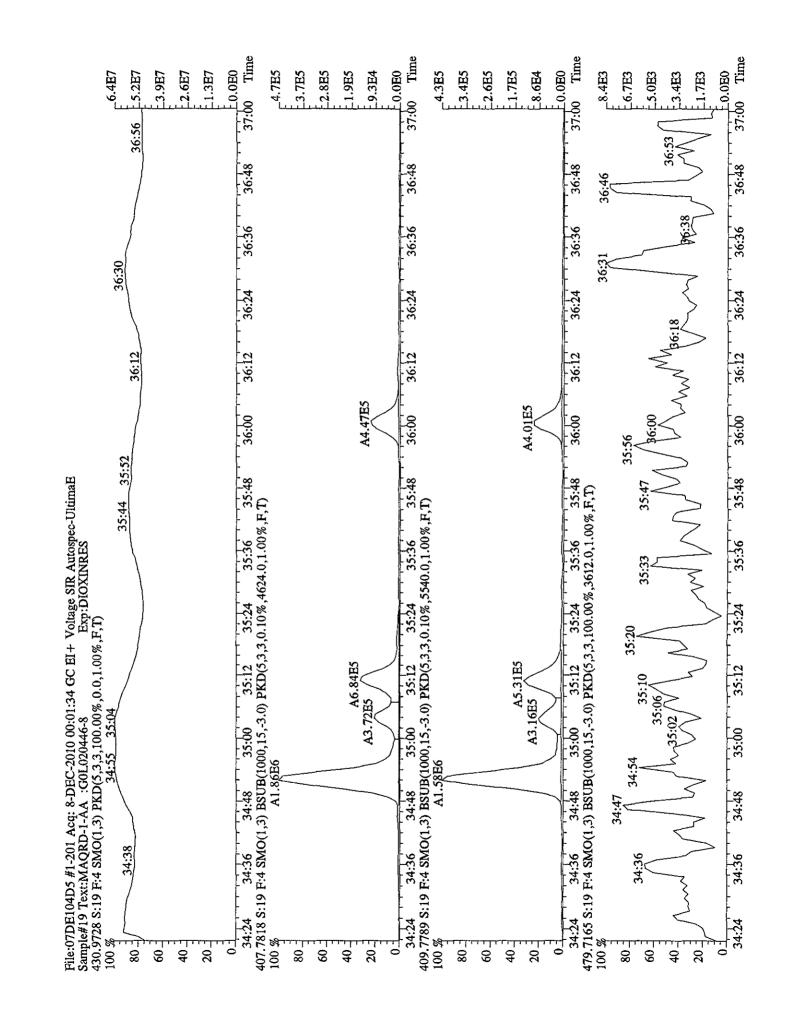


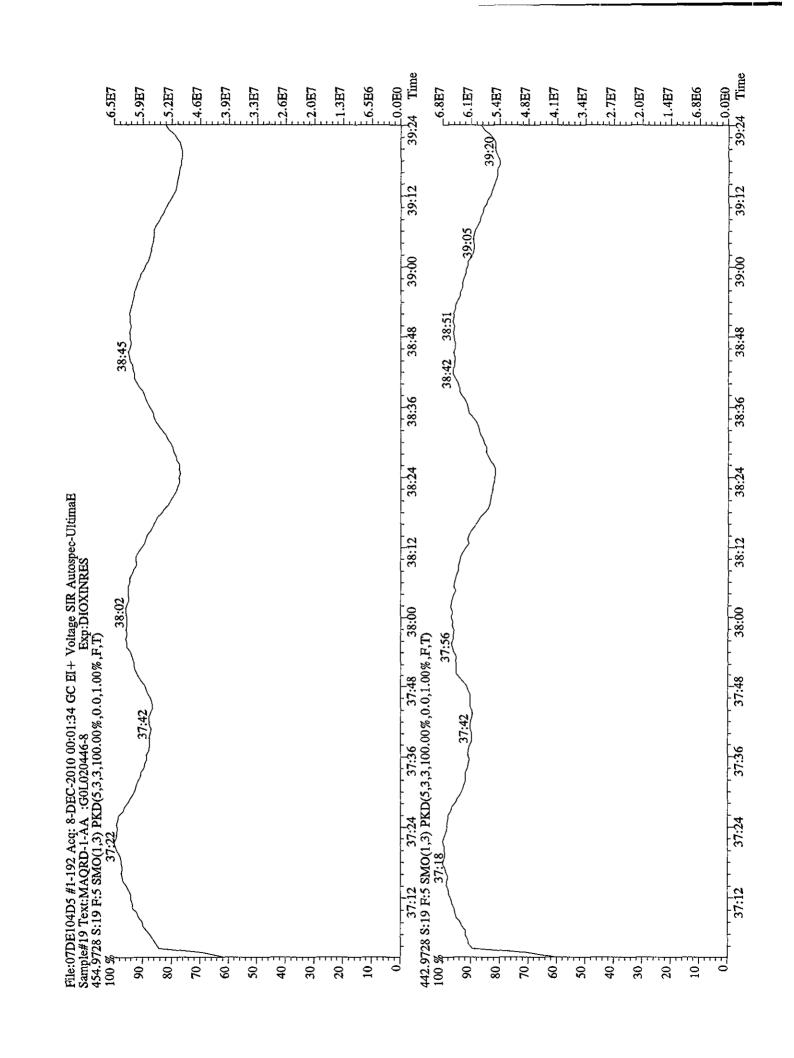












Test America – West Sacramento

Daily Calibration Checklist Dioxin Methods

Method ID 109	Associated ICAL TO9	272104D5
Column ID DB5	Instrument ID	4-D5
STD ID STIZOT, STIZOTA	STD Solution 10 to	XNY61
Analyzed by As	Date Analyzed 12-0	07~10
Std. Pkg. By As	Date Std. Pkg. Assembled_	12-08-10
Std. Pkg. Reviewed By NF-	Date Std. Pkg. Reviewed_	12-08-10
DAILY STANDARD PACKAGE	INITIATED	REVIEWED
Standard, CPSM, and Solvent Blank present?	✓	V
Copy of log-file and Beginning Static Resolution present?	<i></i>	· /
CPSM blow up present?	✓	· V
Curve Summary present?		/
Summary of Method criteria present or documented below?	~	V
Daily standard within method specified limits?*	~ (D)	() V
Analyte retention times correct?		/
Isotopic ratios within limits?	J	. /
CPSM valley ≤ method specified limits?**	<i>'</i>	V
Are chromatographic windows correct?	V	V
Samples analyzed within 12 hrs of daily standard?	V	. 🗸
Manual reintegration's checked and hardcopies included?	NA .	MA-
Ending Standard present?	V	V .
Ending Static Resolutions present	<i></i>	V
Absolute retention times for 13C12-1,2,3,4-TCDD and 13C12-	AM	
1,2,3,7,8,9-HxCDD are within +/- 15 seconds of the retention	i I	. IA
times in the Initial Calibration? (required for all 1613B samples)	
COMMENTS:		· · · · · · · · · · · · · · · · · · ·
① Ending std > 20 1/ D for	1,2,3,6,7,8-HXCDF	< 25 / D
1126 Ava. RRF = 1.55	Dec NCM # 07-0	0117736

Method 23: See Method 23 Daily Standard Criteria, Table 5.

Method 1613B: See, Method 1613B or Method 1613B Tetras Daily Standard Criteria,

Method 1613B/8290/TO9 CPSM Criteria: 25% valley between 2378 TCDF (DB-225)/TCDD (DB-5) and its closest eluters normalized to the 2378 peak.

^{*} Method 8290/TO9/M0023A: (beginning) ≤ 20% from curve RRFs for native analytes, ≤ 30% from curve RRFs for labeled compounds.

Method 8290/TO9/M0023A: (ending) \leq 25% from curve RRFs for native analytes, \leq 35% from curve RRFs for labeled compounds.

^{**} Method 23/0023A CPSM Criteria: 25% valley between 2378 TCDF (DB-225)/TCDD (DB-5) and its closest eluters normalized to the smallest peak of the triplet

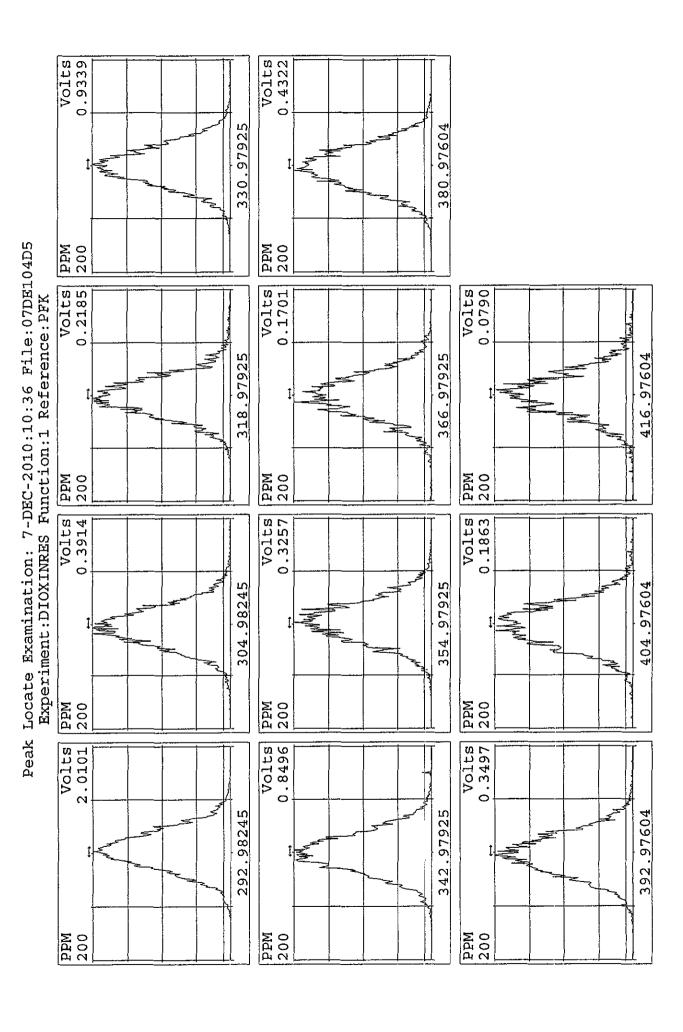
Run text: ST1207 File text: ST1207 :CS3 10DXN461

Run #6 Filename 07DE104D5 S: 2 I: 1

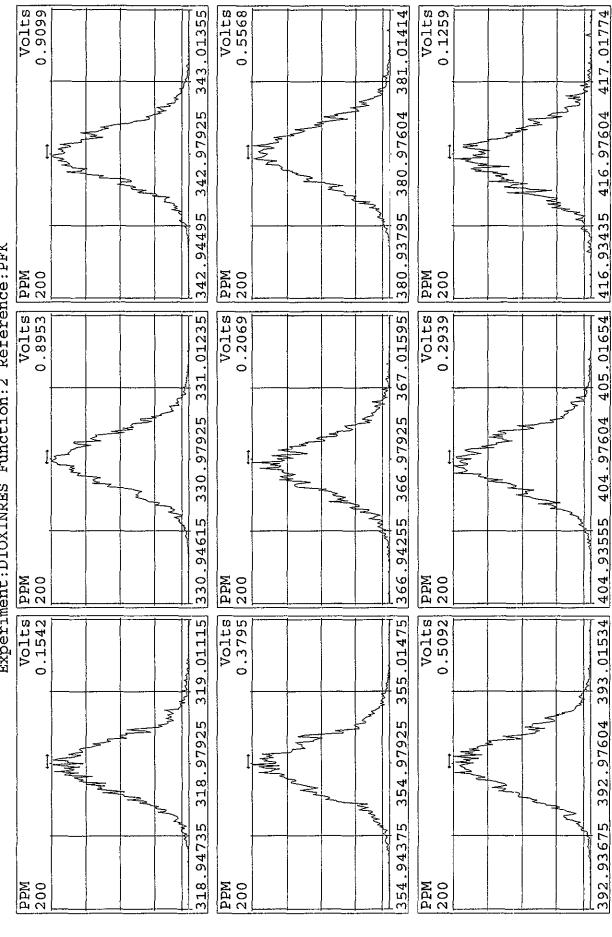
Acquired: 7-DEC-10 11:24:44 Processed: 7-DEC-10 14:06:03 Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results Results: 07DE104D58290

Name	Resp	RA	RT	RRF	Amount	Dev'n	Mod?
13C-1,2,3,4-TCDD	123978300	0.80 y	19:55	-	100.00	-	n
13C-2,3,7,8-TCDF	176013000	0.81 y	19:19	1.42	100.00	15.5	n
2,3,7,8-TCDF	17940790	0.79 y	19:21	1.02	10.00	2.5	n
Total TCDF	18088949	0.99 n	18:18	1.02	10.00	2.5	n
13C-2,3,7,8-TCDD	121635500	0.81 y	20:08	0.98	100.00	8.4	n
2,3,7,8-TCDD	12608320	0.77 y	20:09	1.04	10.00	5.4	n
Total TCDD	12744050	2.73 n	16:57	1.04	10.00	5.4	n
37Cl-2,3,7,8-TCDD	15712060	1.00 y	20:09	1.29	10.00	-2.6	n
13C-1,2,3,7,8-PeCDF	133059600	_	25:11	1.07	100.00	22.5	n
1,2,3,7,8-PeCDF	74513300	_	25:13		50.00	4.0	n
2,3,4,7,8-PeCDF			26:46		50.00	-1.2	n
Total F2 PeCDF	144330112		23:37		100.00	1.5	n
Total F1 PeCDF	*	* n	NotFnd	1.08	100.00	1.5	n
13C-1,2,3,7,8-PeCDD	92480800	_	27:35		100.00	12.9	n
1,2,3,7,8-PeCDD	48245400		27:37		50.00	12.7	n
Total PeCDD	48420345	1.59 y	27:37	1.04	50.00	12.7	n
120 1 2 2 2 2 2 3 7 7-000	50020000	1 07	22.22		100.00		_
13C-1,2,3,7,8,9-HxCDD	78038800	1.27 y	33;42	_	100.00	-	n
13C-1,2,3,4,7,8-HxCDF	83357100	0.50 v	32:15	1.07	100.00	2.2	n
1,2,3,4,7,8-HxCDF	52834700	1.14 y		1.27	50.00	4.1	n
1,2,3,4,7,8-HXCDF	64329600	_	32:23		50.00	20.4	n
2,3,4,6,7,8-HxCDF	54027100	_	32:54		50.00	5.1	n
1,2,3,7,8,9-HxCDF	46506000	_	33:33		50.00	1.6	n
Total HxCDF	217800052		31:15	1.31	200.00	8.1	n
TOTAL TIMEDI	21/000052	1.13 Y	34.13	1.51	200.00	0.1	**
13C-1,2,3,6,7,8-HxCDD	75602700	1.29 y	33:06	0.97	100.00	16.6	n
1,2,3,4,7,8-HxCDD	32693000		33:03		50.00	-16.6	n
1,2,3,6,7,8-HxCDD	43259700	_	33:07	1.14	50.00	-1.6	n
1,2,3,7,8,9-HxCDD	40812100	1.23 y		1.08	50.00	-8.6	n
Total HxCDD	116764800	1.18 y	_	1.03	150.00	-8.7	
10001 Insupp	110,01000	1,1 0 <i>j</i>	33.03	2.03	230.00	•	
13C-1,2,3,4,6,7,8-HpCDF	62057700	0.43 y	34:52	0.80	100.00	-12.6	n
1,2,3,4,6,7,8-HpCDF	46538000	1.07 y		1.50	50.00	11.4	n
1,2,3,4,7,8,9-HpCDF	39187800	-	36:00	1.26	50.00	15.5	n
Total HpCDF	86167690	1.07 y		1.38	100.00	13.3	n
Total lipedi	00107030	#. 0 / J	31133	2.50	100.00	25.5	
13C-1,2,3,4,6,7,8-HpCDD	57827100	1.07 y	35:41	0.74	100.00	-10.4	n
1,2,3,4,6,7,8-HpCDD	32078900	1.04 y		1.11	50.00	3.5	n
Total HpCDD	32264754	1.00 y		1.11	50.00	3.5	n
100a1 1.pobb	02201,01	y	20.00	_,	20.00	3.3	
13C-OCDD	79772600	0.89 y	38:13	0.51	200.00	-17.5	n
OCDF	58710400	0.94 y		1.47	100.00	7.4	n
OCDD	48140100	0.91 y		1.21	100.00	0.6	n
V CDB		I	,				

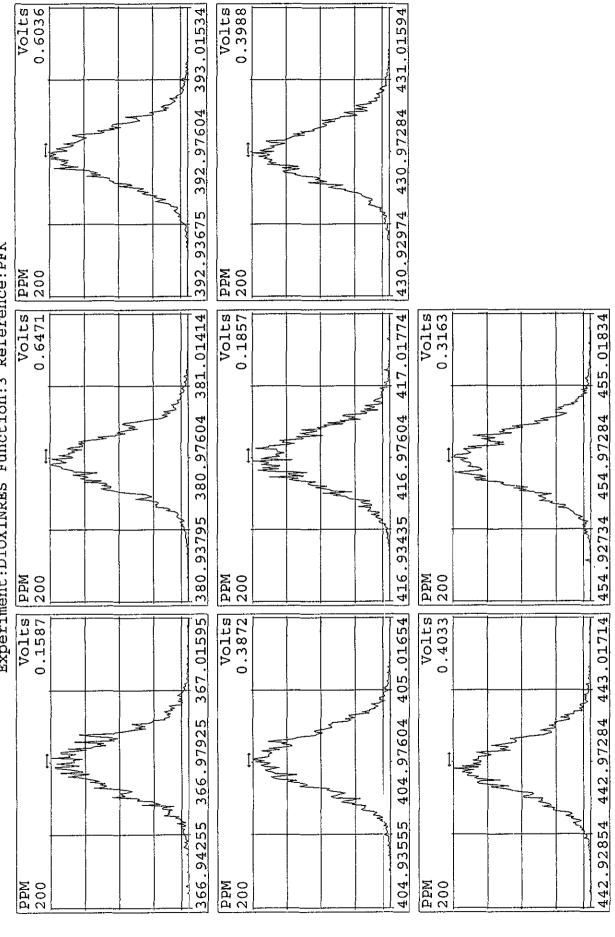
Run text: ST1207A File text: ST1207A :CS3 10DXN461

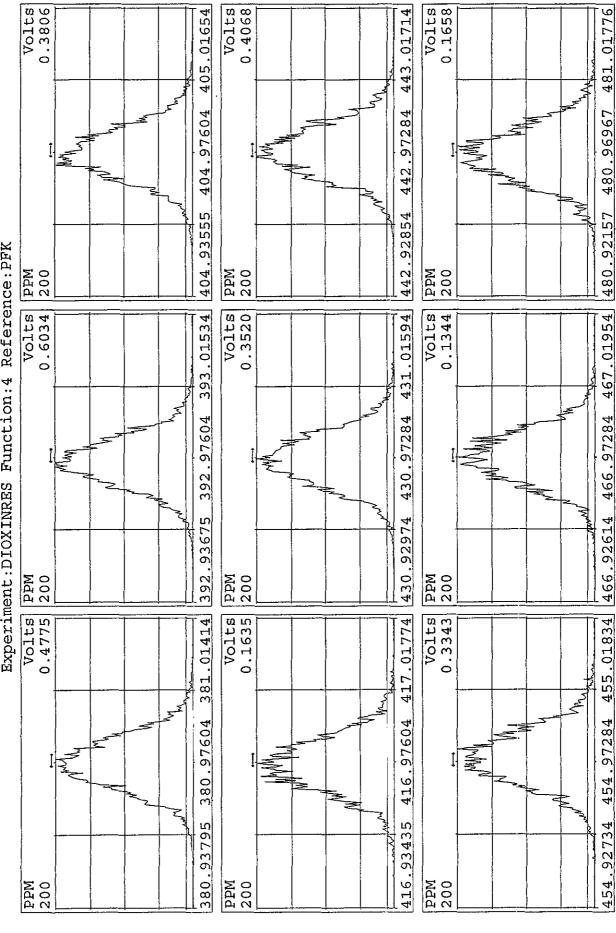

Run #11 Filename 07DE104D5 S: 13 I: 1

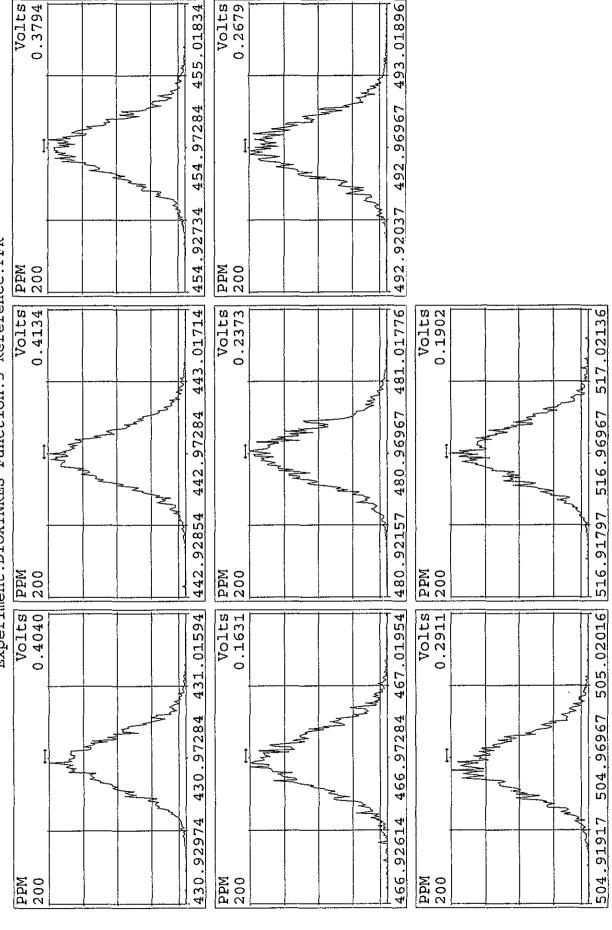
Acquired: 7-DEC-10 19:34:22 Processed: 8-DEC-10 07:53:20 Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D5TO9


Name	Resp	RA	RT	RRF	Amount	Dev'n	Mod?
13C-1,2,3,4-TCDD	249289184	0.80 y	19:55	-	100.00	-	n
13C-2,3,7,8-TCDF	321371584	0.80 y	19:19	1.29	100.00	4.9	n
2,3,7,8-TCDF	33798574	0.76 y	19:19	1.05	10.00	5.8	n
Total TCDF	34245287	0.64 n	18:17	1.05	10.00	5.8	n
13C-2,3,7,8-TCDD	230944520	0.80 y	20:07	0.93	100.00	2.4	n
2,3,7,8-TCDD	24056850	0.78 y	20:09	1.04	10.00	5.9	n
Total TCDD	24218671	1.57 n	16:56	1.04	10.00	5.9	n
37Cl-2,3,7,8-TCDD	28904410	1.00 y	20:09	1.25	10.00	-5.6	n
13C-1,2,3,7,8-PeCDF	237248744	1.57 y	25:11	0.95	100.00	8.6	n
1,2,3,7,8-PeCDF	133809932	1.59 y	25:13	1.13	50.00	4.8	n
2,3,4,7,8-PeCDF	123414344	1.56 y	26:46	1.04	50.00	-0.5	n
Total F2 PeCDF	259552935	1.10 n	23:37	1.08	100.00	2.2	n
Total F1 PeCDF	*	* n	NotFnd	1.08	100.00	2.2	n
13C-1,2,3,7,8-PeCDD	162820396	1.60 y	27:35	0.65	100.00	-1.2	n
1,2,3,7,8-PeCDD	85649256	1.54 y	27:37	1.05	50.00	13.7	n
Total PeCDD	85649256	1.54 y	27:37	1.05	50.00	13.7	n
13C-1,2,3,7,8,9-HxCDD	138467840	1.29 y	33:22	_	100.00	-	n
13C-1,2,3,4,7,8-HxCDF	145460228	0.51 y	32:16	1.05	100.00	0.5	n
1,2,3,4,7,8-HxCDF	97072752	1.22 y	32:17	1.33	50.00	9.6	n
1,2,3,6,7,8-HxCDF	113191368	1.09 y	32:22	1.56	50.00	21.4	n 🛧
2,3,4,6,7,8-HxCDF	92166940	1.18 y	32:55	1.27	50.00	2.7	n
1,2,3,7,8,9-HxCDF	81483412	1.16 y	33:33	1.12	50.00	2.0	n
Total HxCDF	384092320	1.48 n	31:13	1.32	200.00	9.3	n
13C-1,2,3,6,7,8-HxCDD	119134728	_	33:06	0.86	100.00	3.6	n
1,2,3,4,7,8-HxCDD	59134082	_	33:03	0.99	50.00	-4.3	n
1,2,3,6,7,8-HxCDD	72612384	_	33:07	1.22	50.00	4.8	n
1,2,3,7,8,9-HxCDD	74198934	_	33:23	1.25	50.00	5.4	n
Total HxCDD	205945400	1.41 y	33:03	1.15	150.00	2.2	n
13C-1,2,3,4,6,7,8-HpCDF	114558776					-9.1	n
	86160904	_			50.00	11.8	n
1,2,3,4,7,8,9-HpCDF	70581288	_			50.00	12.7	n
Total HpCDF	157688853	1.06 y	34:52	1.37	100.00	12.2	n
13C-1,2,3,4,6,7,8-HpCDD	104599816	_	35:40		100.00	-8.6	n
1,2,3,4,6,7,8-HpCDD	58171288	_	35:41		50.00	3.8	n
Total HpCDD	58502073	0.90 y	35:08	1.11	50.00	3.8	n
13C-OCDD	151995728	_	38:14		200.00	-11.5	n
OCDF	111081248	-	38:22		100.00	6.7	n
OCDD	91575692	0.91 y	38:14	1.20	100.00	0.5	n

Data file	Smp	Work Order	Sample ID	FV-uL	Method/Matrix	Box	Size	υ
07DE104D5	1	CP1207	DB-5 CPSM 10LRES076				1.00000	
07DE104D5	2	ST1207	CS3 10DXN461				1.00000	
07DE104D5	3	MAVWM-1-AA	G0L020446-1MB	20	TO9/AIR	30	0.50000	SAM
07DE104D5	4	MAV34-1-AA	G0L040422-2	20	8290/SOLID		15.04000	g.
07DE104D5	5	MAV35-1-AA	G0L040422-3	20	8290/SOLID		15.06000	g
07DE104D5	6	MAV36-1-AA	G0L040422-4	20	8290/SOLID		15.05000	g.
07DE104D5	7	MAV37-1-AA	G0L040422-5	20	8290/SOLID		15.03000	9
07DE104D5	8	MATLN-1-AA	G0L030456-1	20	8290/SOLID		15.08000	9 .
07DE104D5	9	MATLN-1-AD	G0L030456-1MS	20	8290/SOLID		15.01000	9
07DE104D5	10	MATLN-1-AE	G0L030456-1MSD	20	8290/SOLID		15.04000	9
07DE104D5	11	MAVWM-1-AC	G0L020446-1LCS	20	TO9/AIR	30	0.50000	SAM
07DE104D5	12	MAVWM-1-AD	G0L020446-1DCS	20	TO9/AIR		0.50000	SAM
07DE104D5	13	ST1207A	CS3 10DXN461		•		1.00000	
07DE104D5	14	CP1207A	DB-5 CPSM 10LRES076				1.00000	
07DE104D5	15	ST1207B	CS3 10DXN461				1.00000	•
07DE104D5	16	MAXGD-1-AA	G0L030524-1MB	20	8290/SOLID	31	10.00000	3 .
07DE104D5	17	MAQQV-1-AA	G0L020446-1	20	TO9/AIR	30	0.50000	SAM
07DE104D5	18	MAQQ6-1-AA	G0L020446-5	20	TO9/AIR		0.50000	SAM
07DE104D5	19	MAQRD-1-AA	G0L020446-8	20	TO9/AIR		0.50000	SAM
07DE104D5	20	MAT63-1-AD	G0L030524-1	20	8290/SOLID	31	10.98000	<u>C</u> r
07DE104D5	21	MAFFX-1-AA	G0K220529-10 (25X)	20	8290/WASTE	25	0.10000	g
07DE104D5	22	MAT9E-1-AF	F0L030530-1	20	8290/SOLID	31	10.03500	Ġ
'DE104D5	23	MAT9K-1-AM	F0L030530-2	20	8290/SOLID		10.48500	Ĉi
J/DE104D5	24	MAT9K-1-AN	F0L030530-2MS	20	8290/SOLID		10.21500	Ç!
07DE104D5	25	MAT9K-1-AP	F0L030530-2MSD	20	8290/SOLID		10.00500	덜
07DE104D5	26	MAT9M-1-AF	F0L030530-3	20	8290/SOLID		10.49500	덜
07DE104D5	27	MAT9Q-1-AF	F0L030530-4	20	8290/SOLID		10.37500	ζί
07DE104D5	28	MAXGD-1-AC	G0L030524-1LCS	20	8290/SOLID	31	10.00000	Ĉl.
07DE104D5	29	ST1207C	CS3 10DXN461				1.00000	
07DE104D5	30						1.00000	
07DE104D5	31						1.00000	
07DE104D5	32						1.00000	
07DE104D5	33		AS 12-07-10				1.00000	


Loghe 1/18/10


Peak Locate Examination: 7-DEC-2010:10:37 File:07DE104D5 Experiment:DIOXINRES Function:2 Reference:PFK


Peak Locate Examination: 7-DEC-2010:10:37 File:07DE104D5 Experiment:DIOXINRES Function:3 Reference:PFK

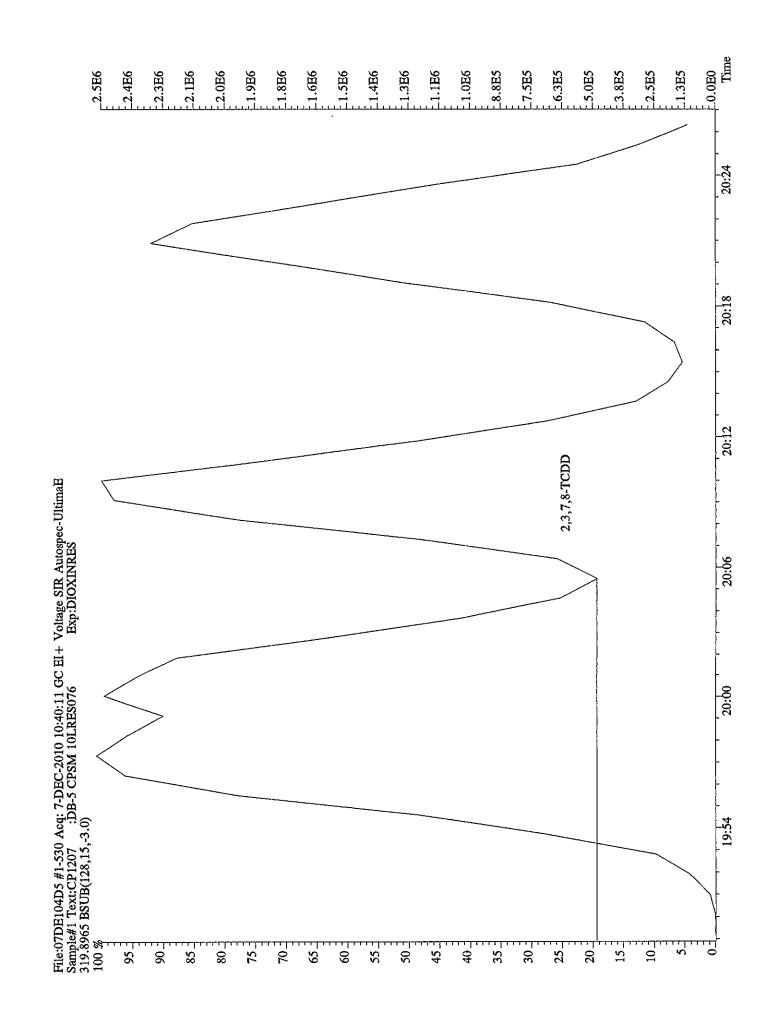
Peak Locate Examination: 7-DEC-2010:10:37 File:07DE104D5 Experiment:DIOXINRES Function:4 Reference:PFK

Peak Locate Examination: 7-DEC-2010:10:37 File:07DE104D5 Experiment:DIOXINRES Function:5 Reference:PFK

Volts 380.97604 380.97604 380.97604 PPM 200

SIRLM Examination: 7-DEC-2010:19:30 File:07DE104D5 Experiment:DIOXINRES Function:6

Volts 0.6282 304.98251 304.98251 304.98251 PPM 200

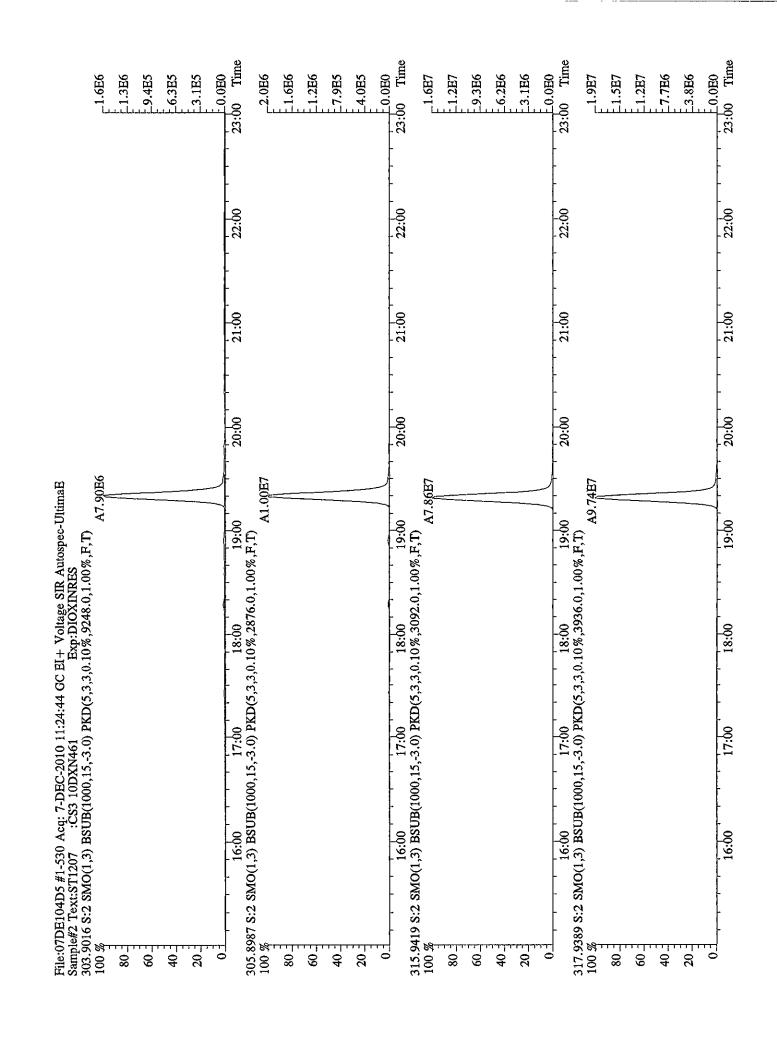

SIRLM Examination: 7-DEC-2010:19:31 File:07DE104D5 Experiment:DIOXINRES Function:7

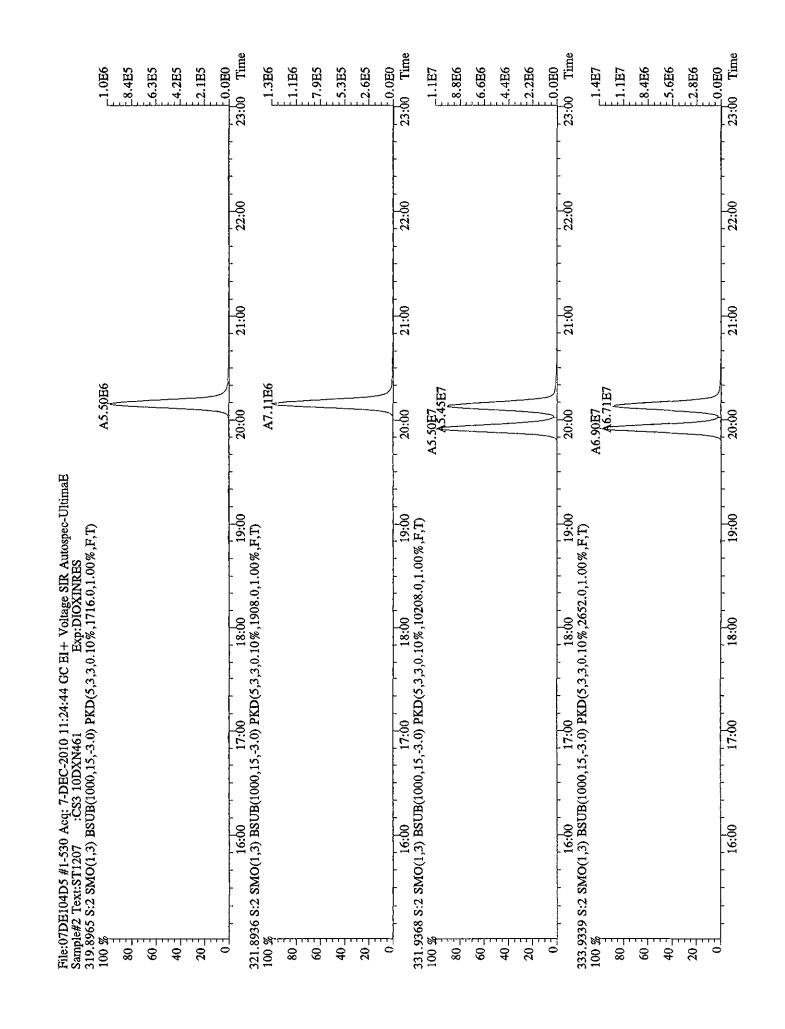
Volts 380.97604 380.97604 380.97604 PPM 200

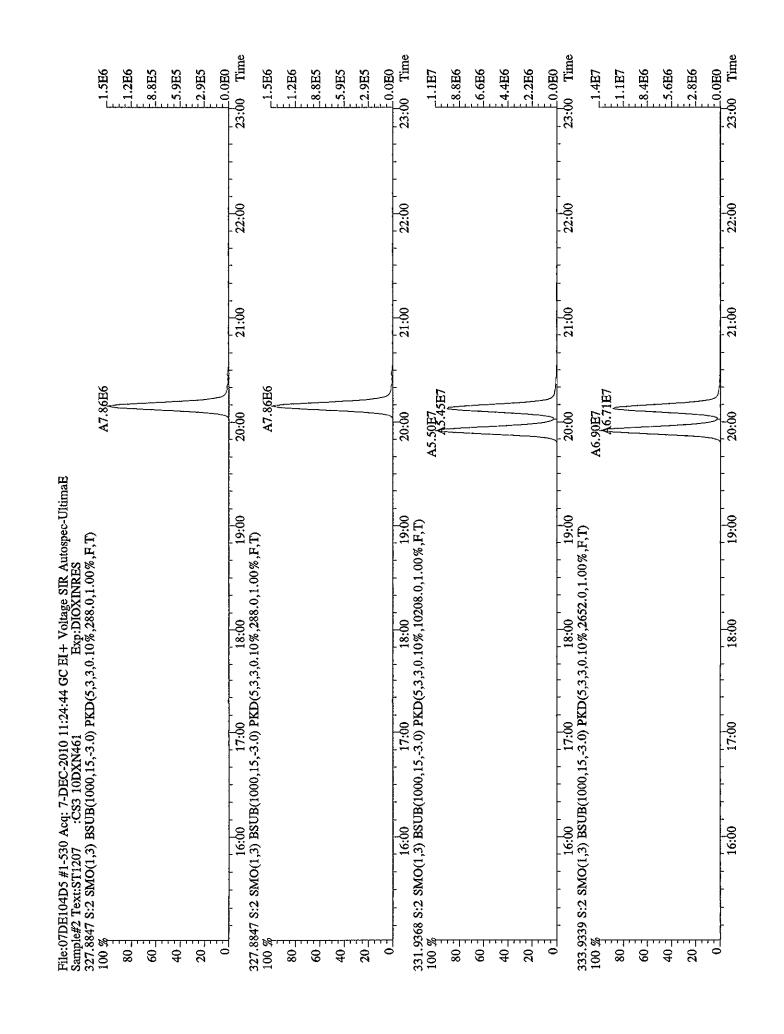
SIRLM Examination: 7-DEC-2010:20:14 File:07DE104D5 Experiment:DIOXINRES Function:6

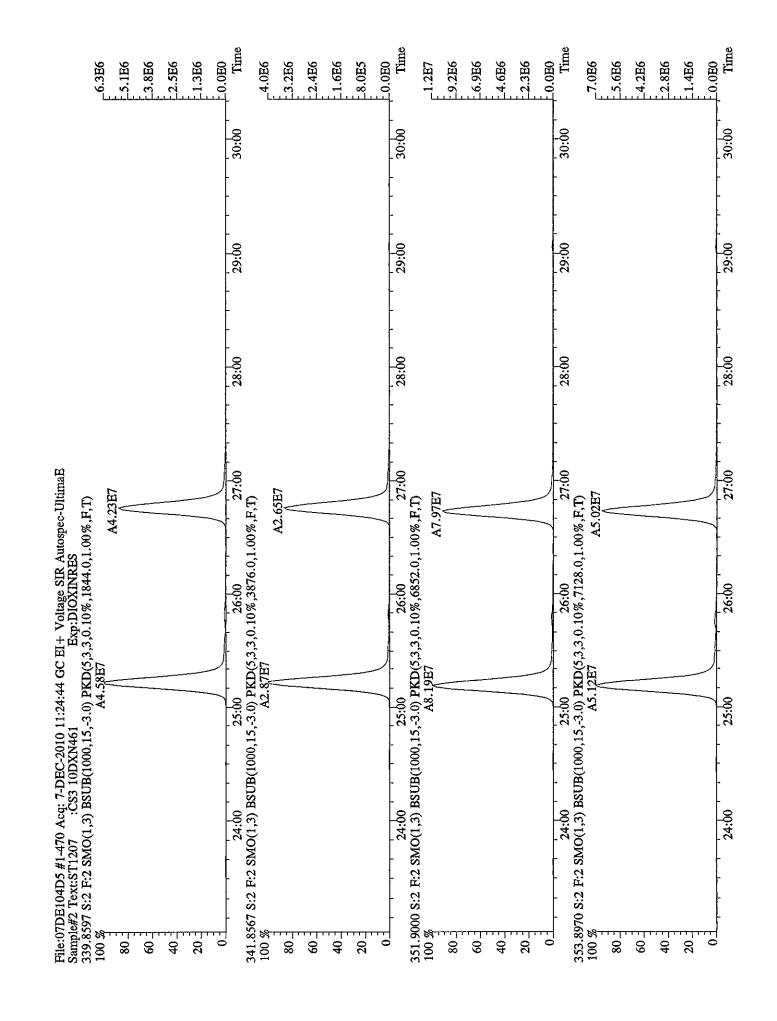
Volts 0.5777 380.97604 304.98251 380.97604 PPM 200

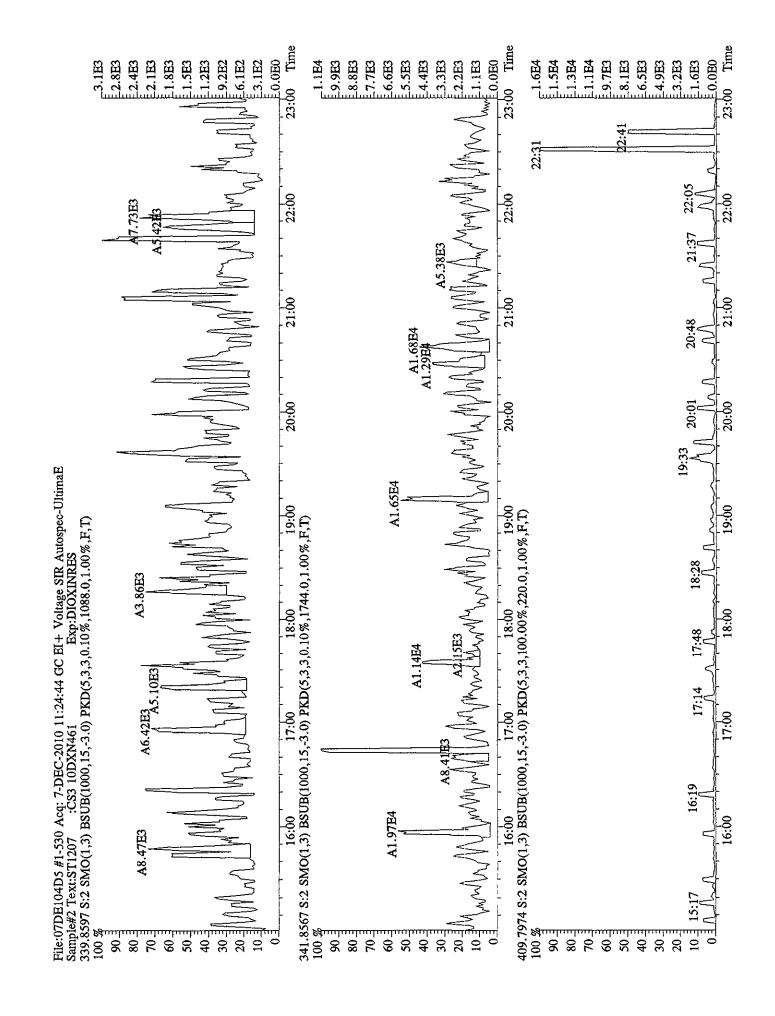
SIRLM Examination: 7-DEC-2010:20:16 File:07DE104D5 Experiment:DIOXINRES Function:7

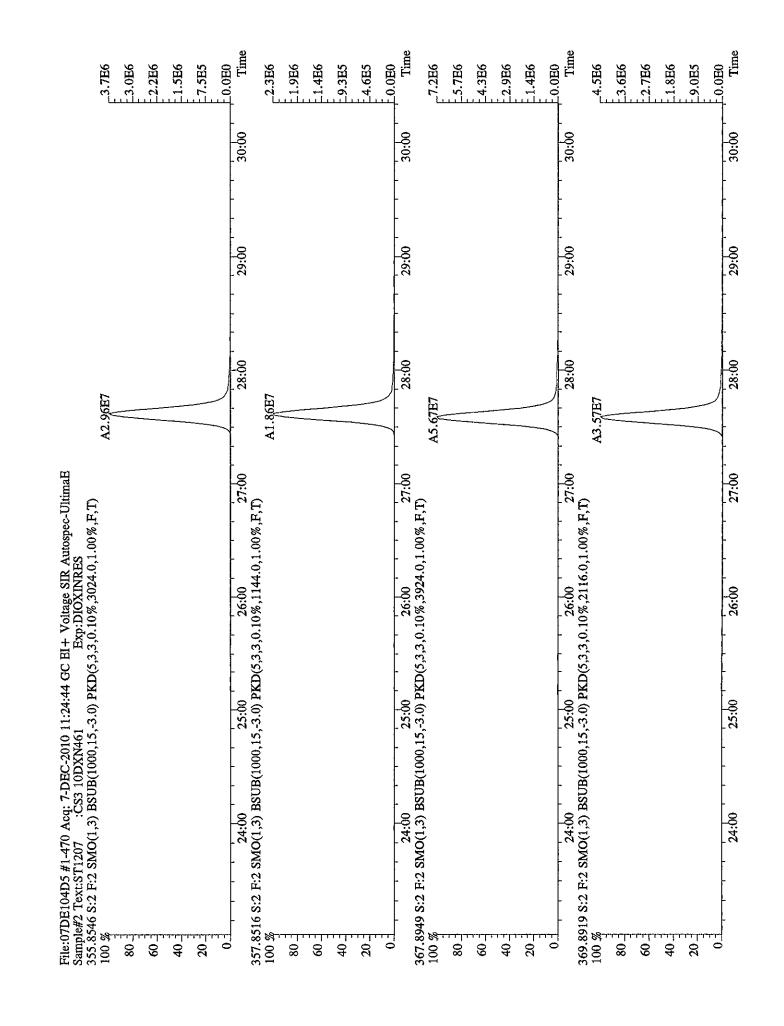

Cal: T090721104D5 Analyte: T09 Run: 07DE104D5

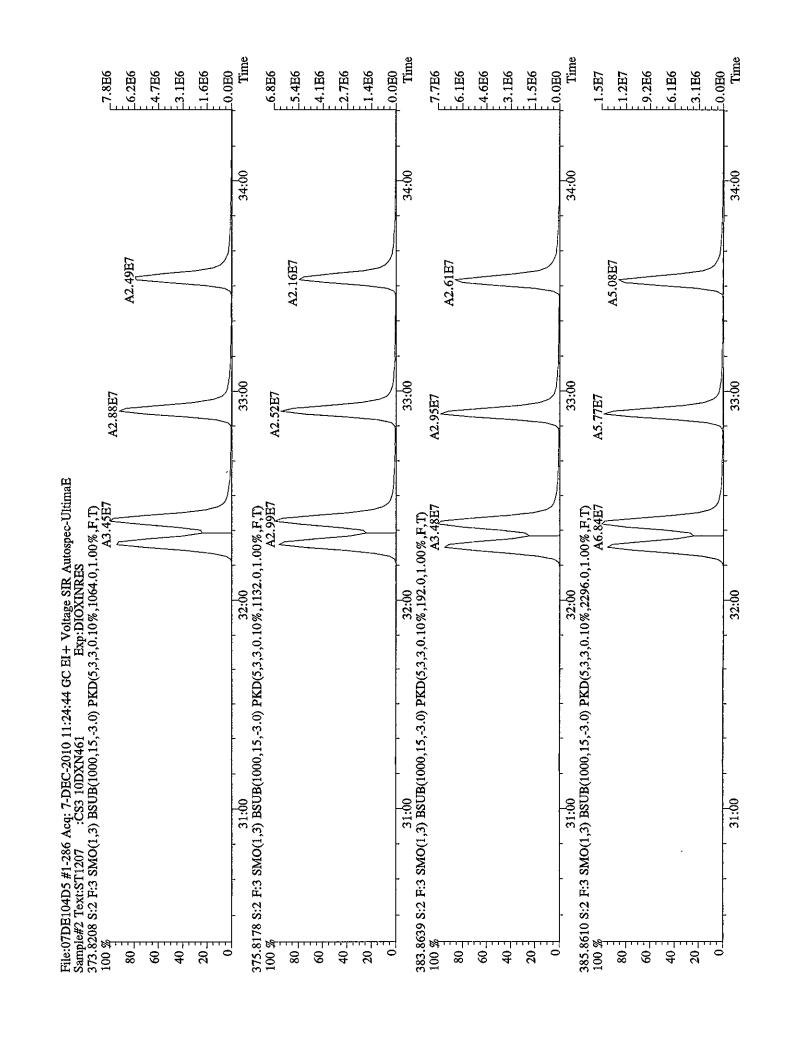

ST0721C :CS-3 10DXN336

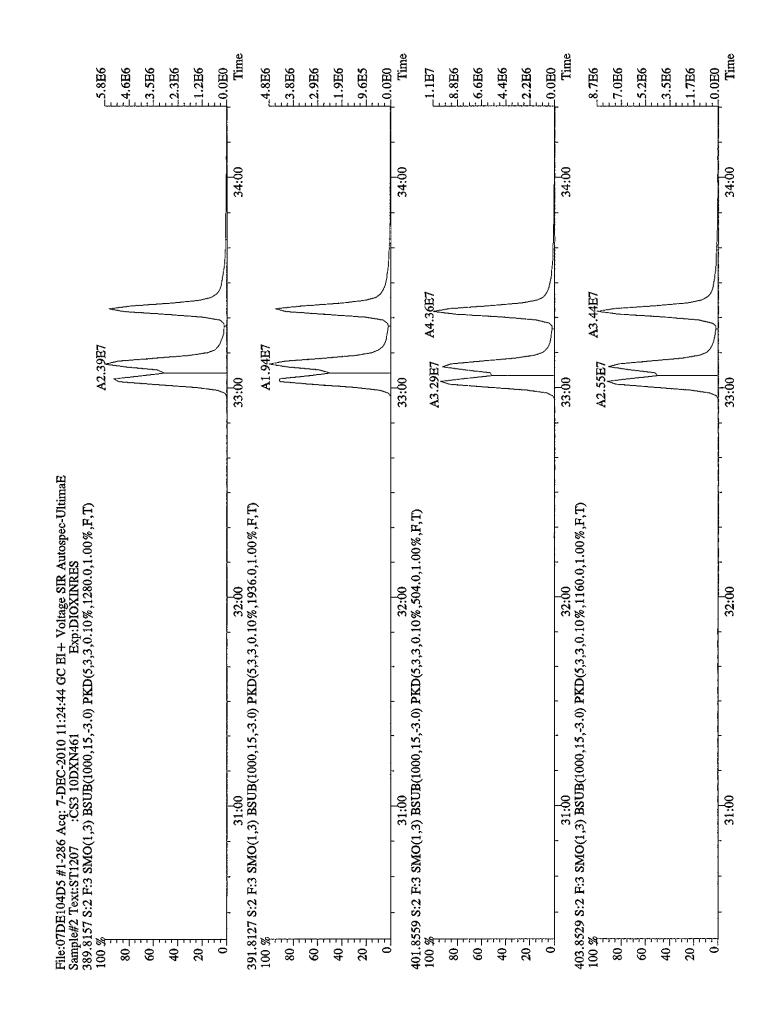

ST0721B :CS-2 10DXN334 ST0721E :CS-4 10DXN337 ST0721A :CS-1 10DXN342 ST0721D :CS-5 10DXN339

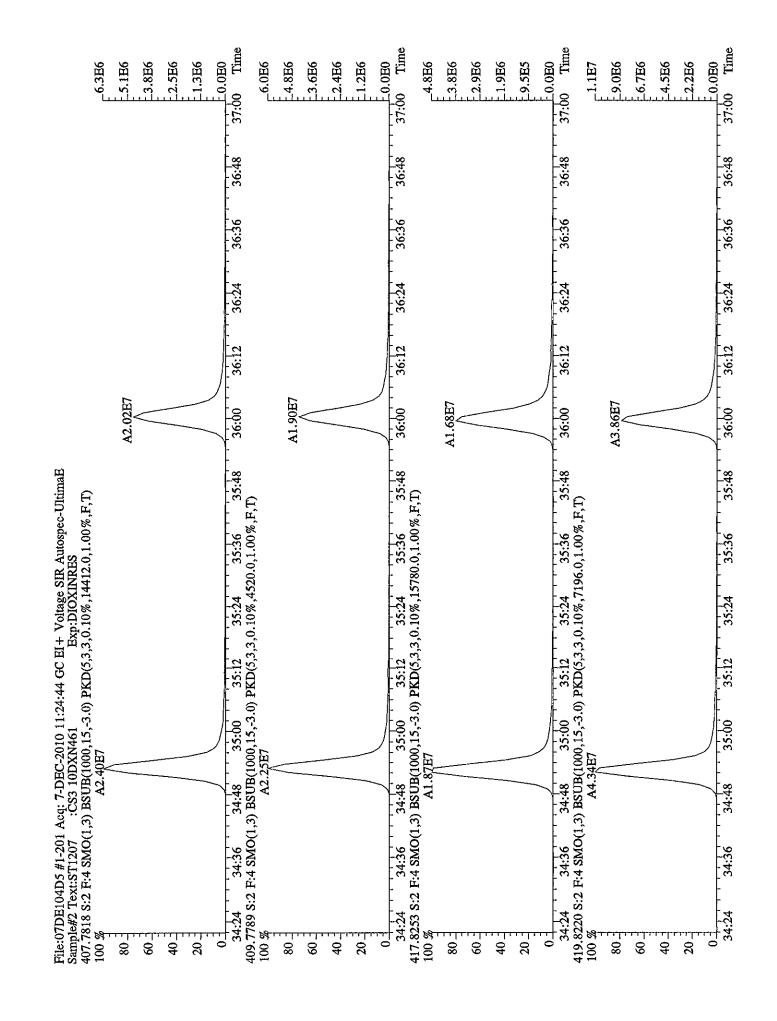

				21JL10A4D5 S4	21JL10A4D5 S5	21JL10A4D5 S6	21JI10A4D521JI10A4D521JI10A4D521JI10A4D521JI10A4D5 S4 S5 S6 S7 S8	21JL10A4D5 S8
Name	Mean	S. D.	%RSD	RRF1	RRF2	RRF3	RRF4	RRF5
13C-1,2,3,4-TCDD	1	1	o% I	ı	1	I	•	
13C-2,3,7,8-TCDF	1.229	0.154	12 .0 %	1.30	1.31	1.39	1.03	1.11
2,3,7,8-TCDF	0.995	0.037	3.68 %	1.03	96.0	0.98	0.97	1.03
Total TCDF	0.995	0.037	3.68 %	1.03	96.0	0.98	0.97	1.03
13C-2,3,7,8-TCDD	0.905	0.029	ທ ເນ ໝ	0.92	0.92	0.94	0.88	0.87
2,3,7,8-TCDD	0.983	0.032	3.24 %	0.98	0.94	0.97	1.01	1.02
Total TCDD	0.983	0.032	3.24 %	0.98	0.94	0.97	1.01	1.02
37Cl-2,3,7,8-TCDD	1.326	0.015	1.12 %	1.33	1.31	1.32	1.35	1.32
13C-1,2,3,7,8-PeCDF	0.876	0.018	2.08	0.86	06.0	0.86	0.89	0.87
1,2,3,7,8-PeCDF	1.077	0.042	3.92 %	1.03	1.04	1.08	1.11	1.12
2,3,4,7,8-PeCDF	1.046	0.040	3.80 %	1.00	1.02	1.08	1.04	1.09
Total F2 PeCDF	1.061	0.039	3.67 %	1.01	1.03	1.08	1.08	1.10
Total F1 PeCDF	1.061	0.039	3.67 %	1.01	1.03	1.08	1.08	1.10
13C-1,2,3,7,8-PeCDD	0.661	0.010	1.45 %	0.65	99.0	0.67	0.67	0.65
1,2,3,7,8-PeCDD	0.925	0.038	4.09 %	0.89	0.88	0.94	0.95	0.97
Total PeCDD	0.925	0.038	4.09 %	0.89	0.88	0.94	0.95	0.97
13C-1,2,3,7,8,9-HxCDD	ı	1	o / e	1	i	ı	į	ı
13C-1,2,3,4,7,8-HxCDF	1.045	0.067	6.44 %	1.03	1.15	0.98	1.00	1.07
1,2,3,4,7,8-HXCDF	1.217	0.012	1.02 %	1.21	1.20	1.22	1.22	1.23
1,2,3,6,7,8-HXCDF	1.282	0.089	6.95 %	1.19	1.22	1.41	1.33	1.26
2,3,4,6,7,8-HXCDF	1.233	0.080	6.49 %	1.19	1.15	1.35	1.27	1.21
1,2,3,7,8,9-HxCDF	1.098	0.096	8.73 %	1.08	0.99	1.25	1.10	1.06
Total HXCDF	1.208	0.066	5.43	1.17	1.14	1.31	1.23	1.19
13C-1,2,3,6,7,8-HxCDD	0.831	0.055	% 89 %	0.84	0.83	0.92	0.77	0.79
1,2,3,4,7,8-HxCDD	1.037	0.122	H .8	06.0	0.99	0.97	1.17	1.16

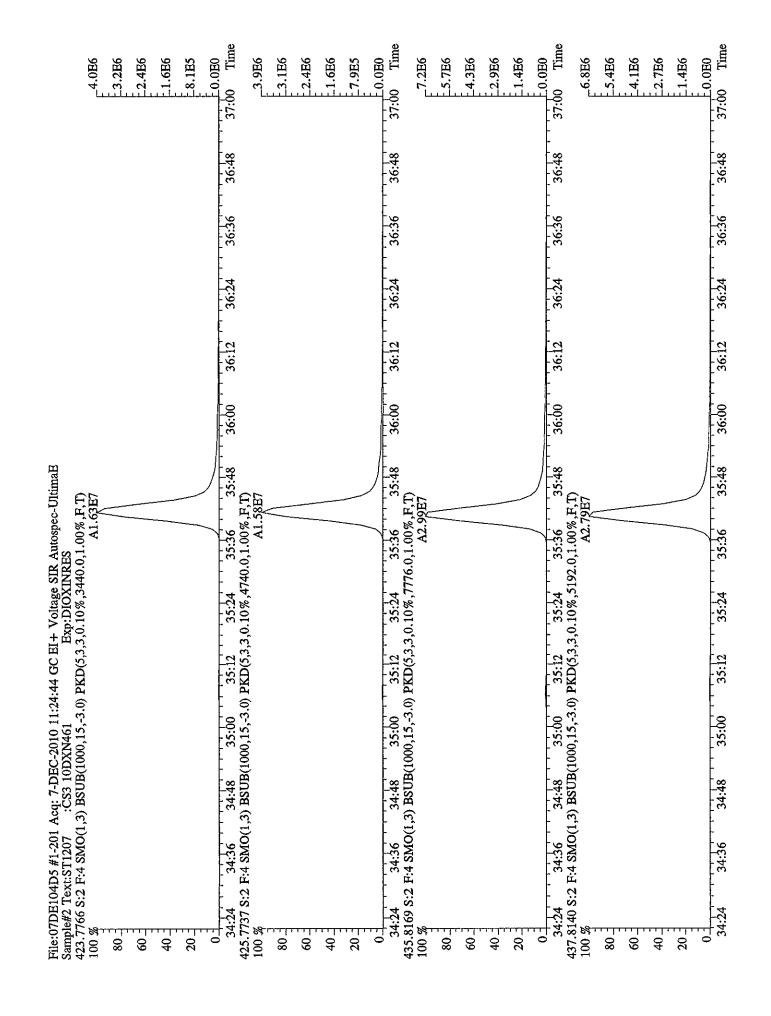

1.21	0.86 1.38	1.13	1.26	0.79	1.10	1.10	0.59	1.41	1.19
т . Ф [1.35	1.13	1.24	0.76	1.09	1.09	09.0	1.39	1.17
1.06	1.35	1.11	1.23	0.83	1.07	1.07	0.63	1.35	1.16
1.12	1.34	1.09	1.21	0.85	1.03	1.03	0.63	1.35	1.17
1.06	1.31	1.01	1.16	0.89	1.07	1.07	0.66	1.36	1.31
υ ι ω ι ω ι	1.99 %	4.49 %	3.05 %	5.98 %	2.61%	2.61 %	4.60 %	1.98 %	4 8 8 4 %
	0.051	0.049	0.037	0.049	0.028	0.028			0.066
1.127	0.910 1.346	1.093	1.220	0.827	1.072	1.072	0.620	1.370	1,199
Total HxCDD	13C-1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	Total HpCDF	13C-1,2,3,4,6,7,8-HpCDD	1,2,3,4,6,7,8-HpCDD	Total HpCDD	13C-0CDD	OCDF	OCDO
	1.127 0.067 5.93% 1.06 1.12 1.06 1.18	1.127 0.067 5.93 % 1.06 1.12 1.06 1.18 0.910 0.051 5.65 % 0.99 0.91 0.92 0.87 1.346 0.027 1.99 % 1.31 1.34 1.35 1.35	1.127 0.067 5.93% 1.06 1.12 1.06 1.18 0.910 0.051 5.65% 0.99 0.91 0.92 0.87 1.346 0.027 1.99% 1.31 1.34 1.35 1.35 1.093 0.049 4.49% 1.01 1.09 1.11 1.13	1.127 0.067 5.93 % 1.06 1.12 1.06 1.18 0.910 0.051 5.65 % 0.99 0.91 0.92 0.87 1.346 0.027 1.99 % 1.31 1.34 1.35 1.35 1.093 0.049 4.49 % 1.01 1.09 1.11 1.13 1.220 0.037 3.05 % 1.16 1.21 1.23 1.24	0.910 0.051 5.65 % 0.99 0.91 0.92 0.87 1.346 0.027 1.99 % 1.01 1.34 1.35 1.35 1.35 1.220 0.037 3.05 % 1.16 1.21 1.21 1.23 1.24 0.85 0.89 0.85 0.89 0.76	0.910 0.051 5.65 % 0.99 0.91 0.92 0.87 1.346 0.027 1.99 % 1.31 1.34 1.35 1.35 1.093 0.049 4.49 % 1.01 1.09 1.11 1.13 1.13 1.220 0.037 3.05 % 1.16 1.21 1.23 1.24 0.827 0.049 5.98 % 0.89 0.85 0.83 0.76 1.072 0.028 2.61 % 1.07 1.03 1.07 1.09	0.910 0.051 5.65 % 0.99 0.91 0.92 0.87 1.34 0.027 1.99 % 1.01 1.03 1.35 1.35 1.35 1.35 1.220 0.037 3.05 % 1.16 1.21 1.21 1.23 1.24 0.827 0.049 5.98 % 0.89 0.85 0.83 0.76 1.072 0.028 2.61 % 1.07 1.03 1.07 1.09 1.07 1.09	0.910 0.067 5.93 % 1.06 1.12 1.06 1.18 0.910 0.051 5.65 % 0.99 0.91 0.92 0.87 1.346 0.027 1.99 % 1.31 1.34 1.35 1.35 1.093 0.049 4.49 % 1.01 1.09 1.11 1.13 1.220 0.037 3.05 % 1.16 1.21 1.23 1.24 0.827 0.049 5.98 % 0.89 0.85 0.83 0.76 1.072 0.028 2.61 % 1.07 1.03 1.07 1.09 1.072 0.028 2.61 % 1.07 1.03 1.07 1.09 0.620 0.029 4.60 % 0.66 0.63 0.63 0.60	0.910 0.067 5.93 % 1.06 1.12 1.06 1.18 0.910 0.051 5.65 % 0.99 0.91 0.92 0.87 1.346 0.027 1.99 % 1.31 1.34 1.35 1.35 1.093 0.049 4.49 % 1.01 1.09 1.11 1.13 1.220 0.037 3.05 % 1.16 1.21 1.23 1.24 0.827 0.049 5.98 % 0.89 0.85 0.83 0.76 1.072 0.028 2.61 % 1.07 1.03 1.07 1.09 1.072 0.028 2.61 % 1.07 1.03 1.07 1.09 0.620 0.029 4.60 % 0.66 0.63 0.63 0.60 1.370 0.027 1.98 % 1.36 1.35 1.35 1.35

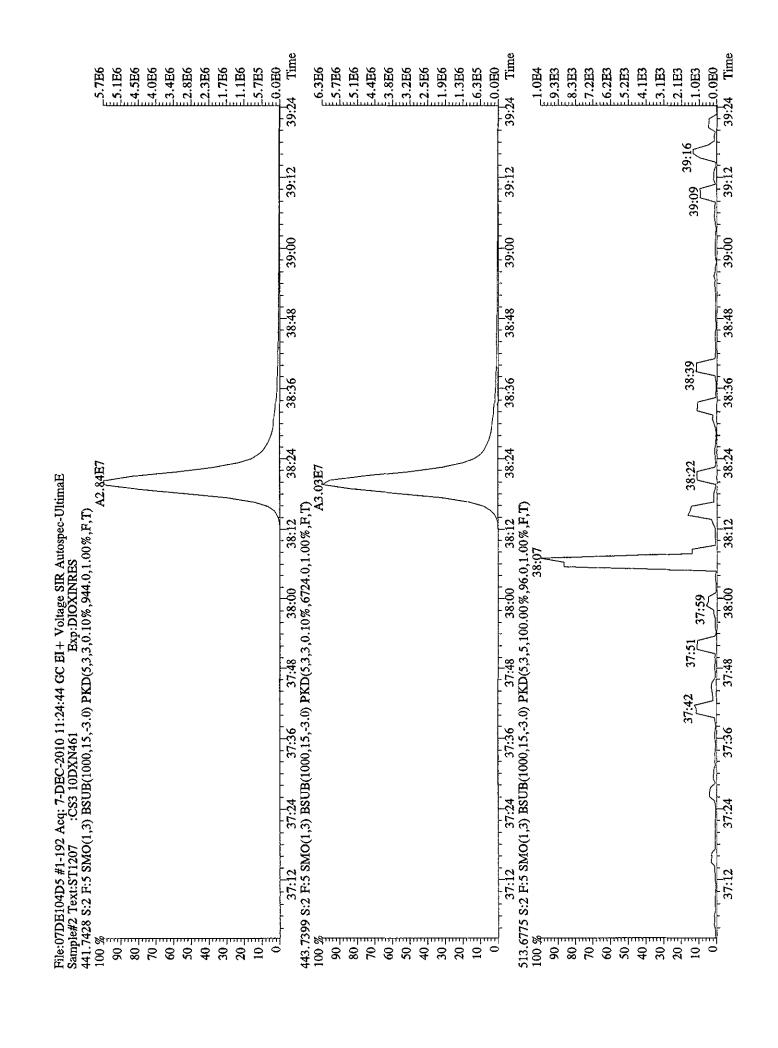


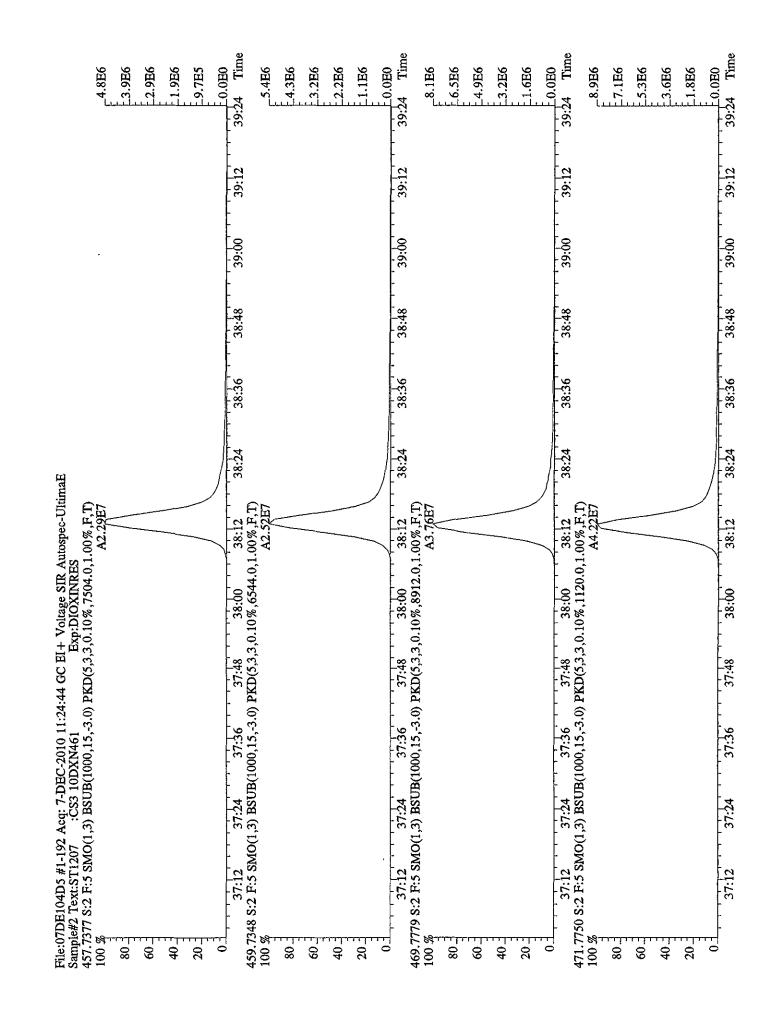


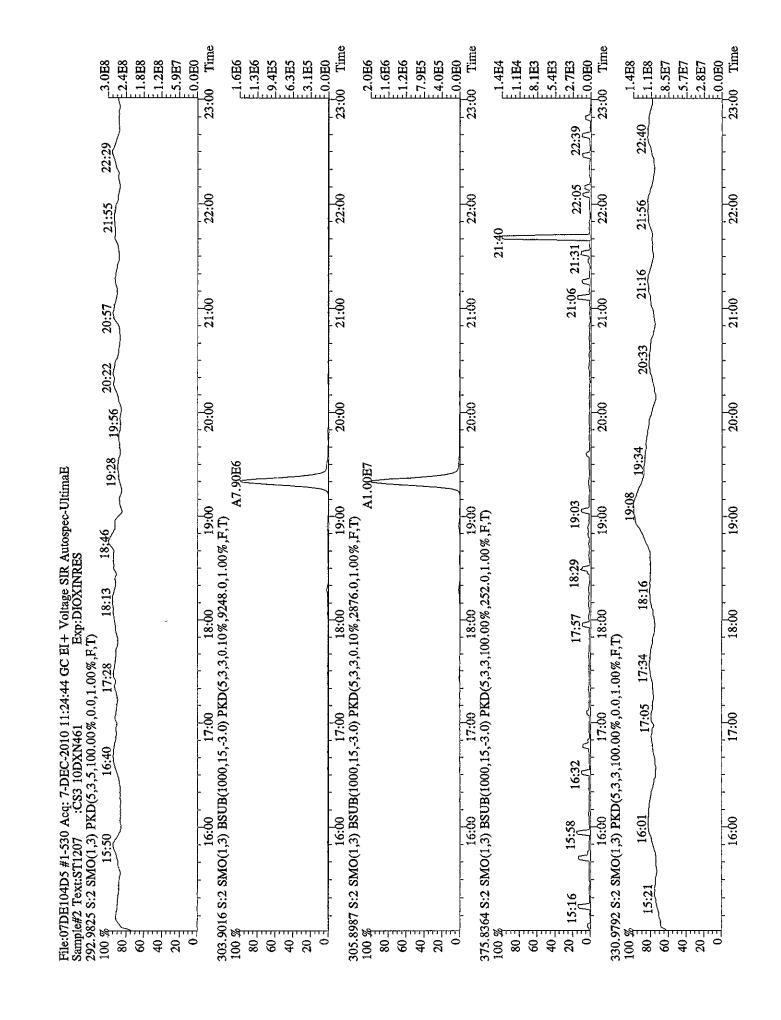


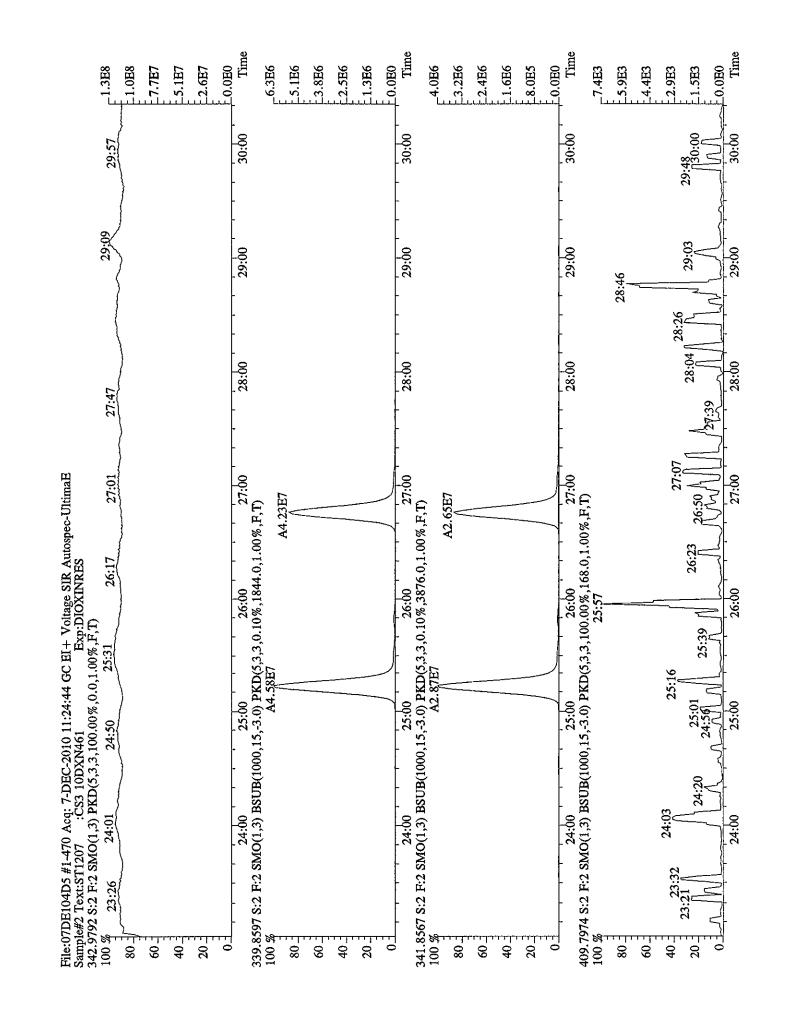




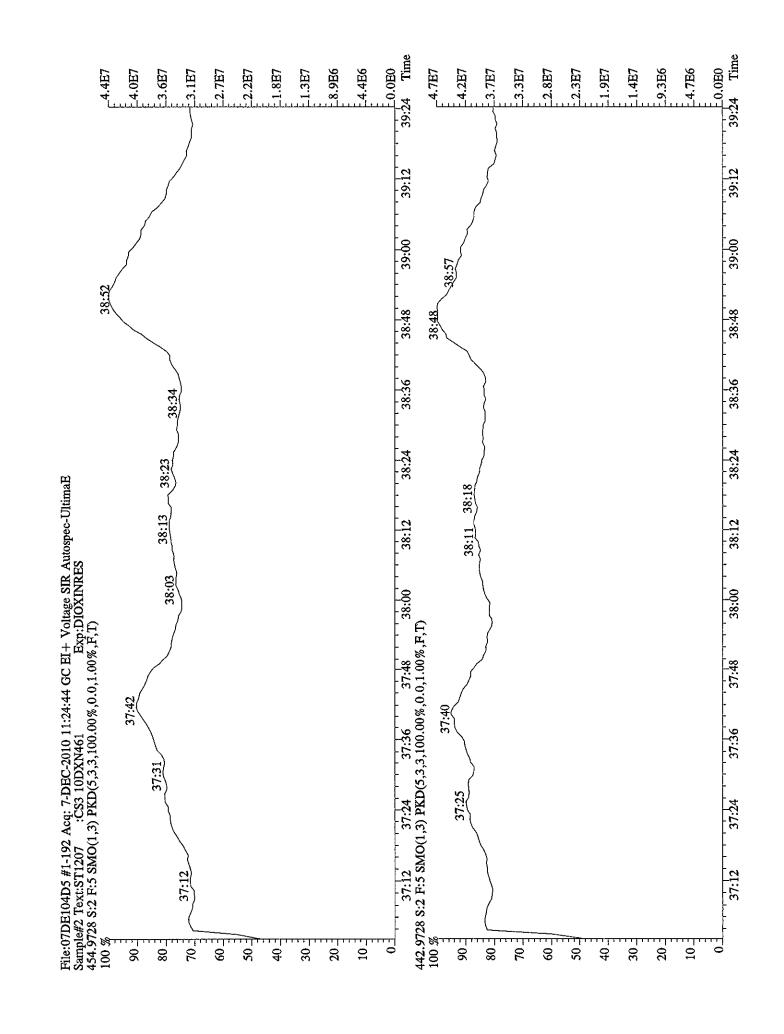


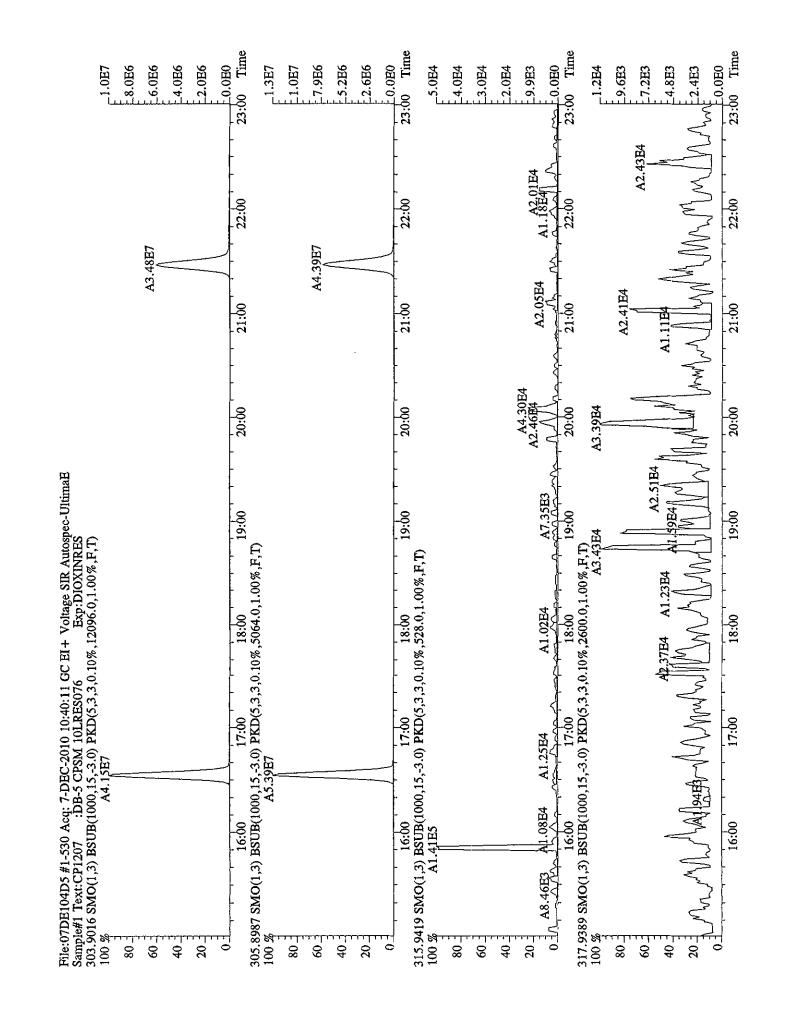


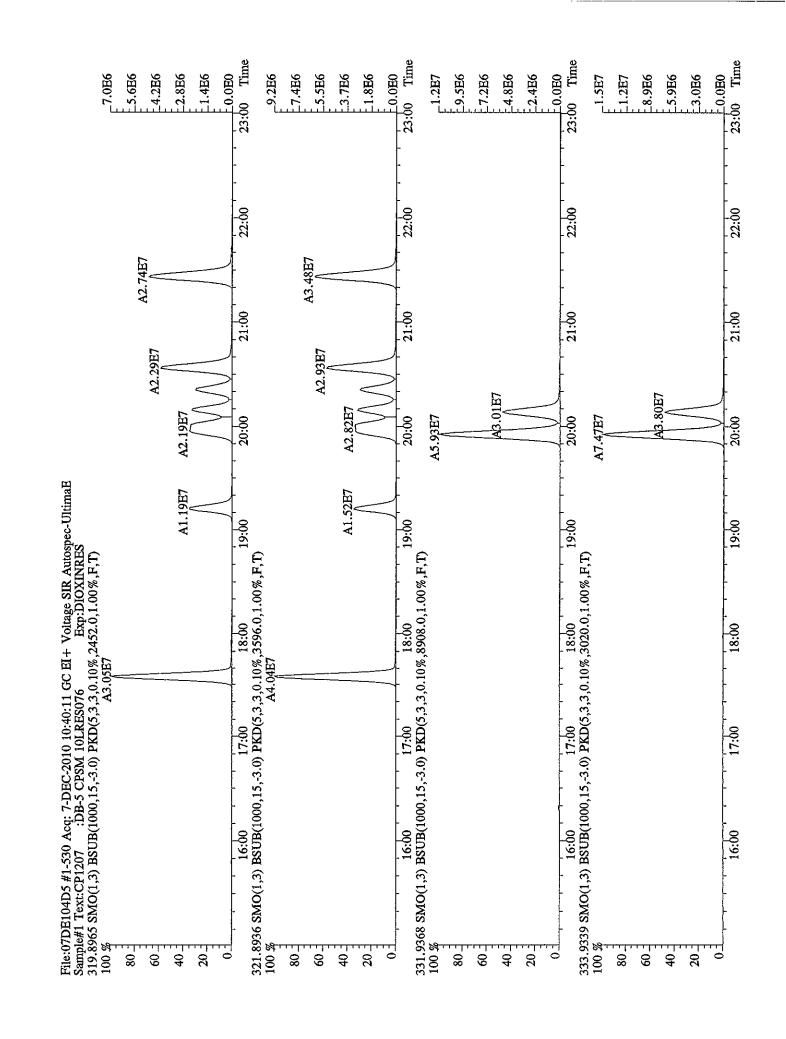


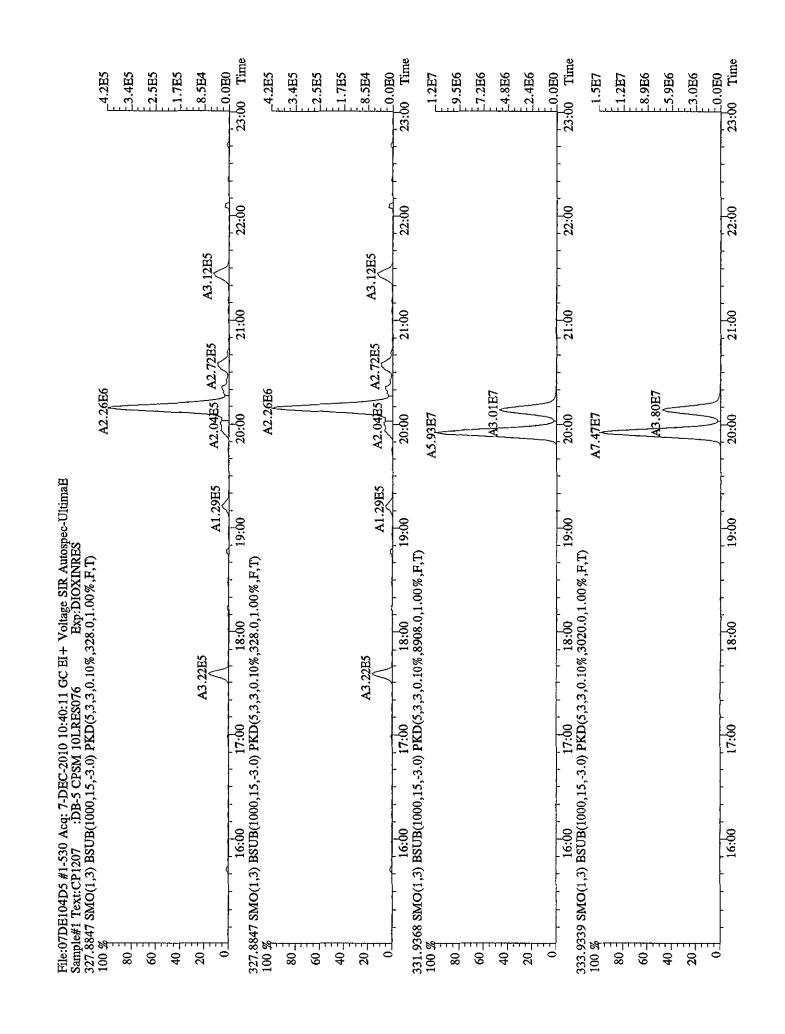


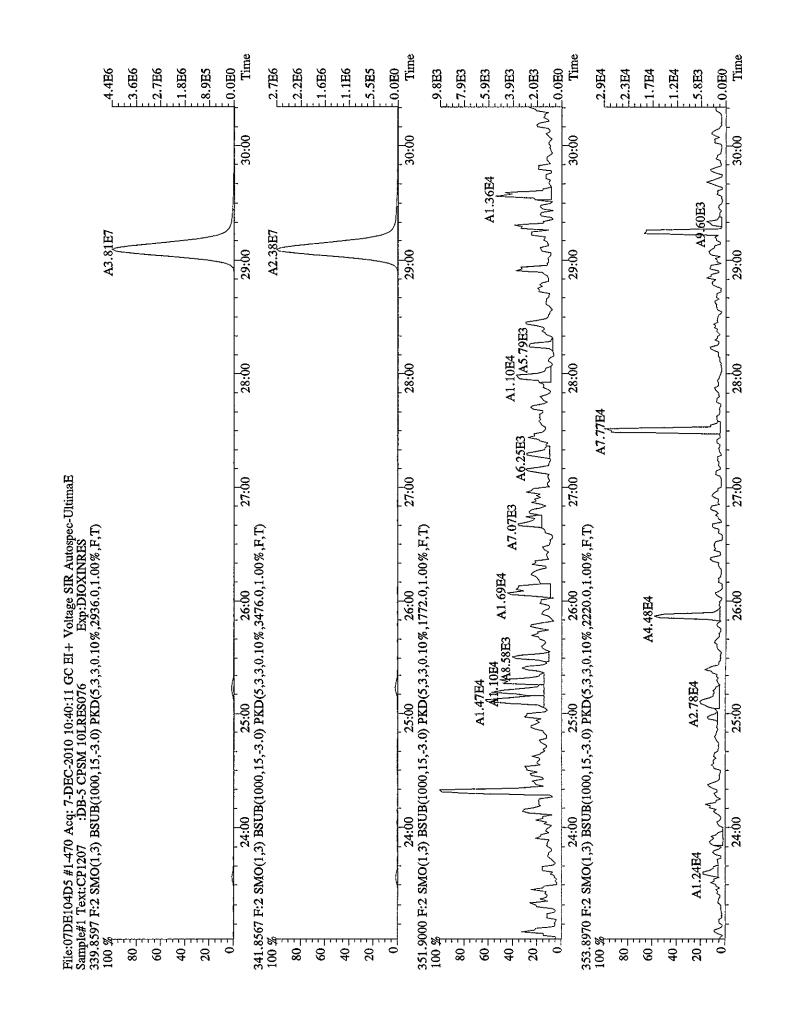


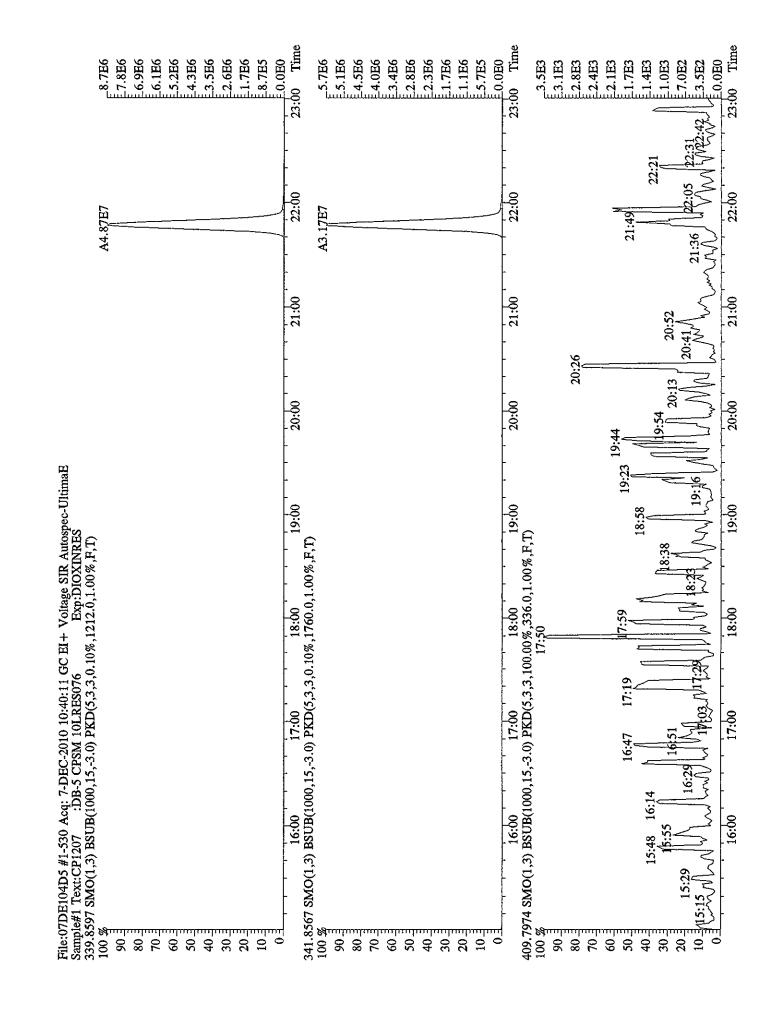


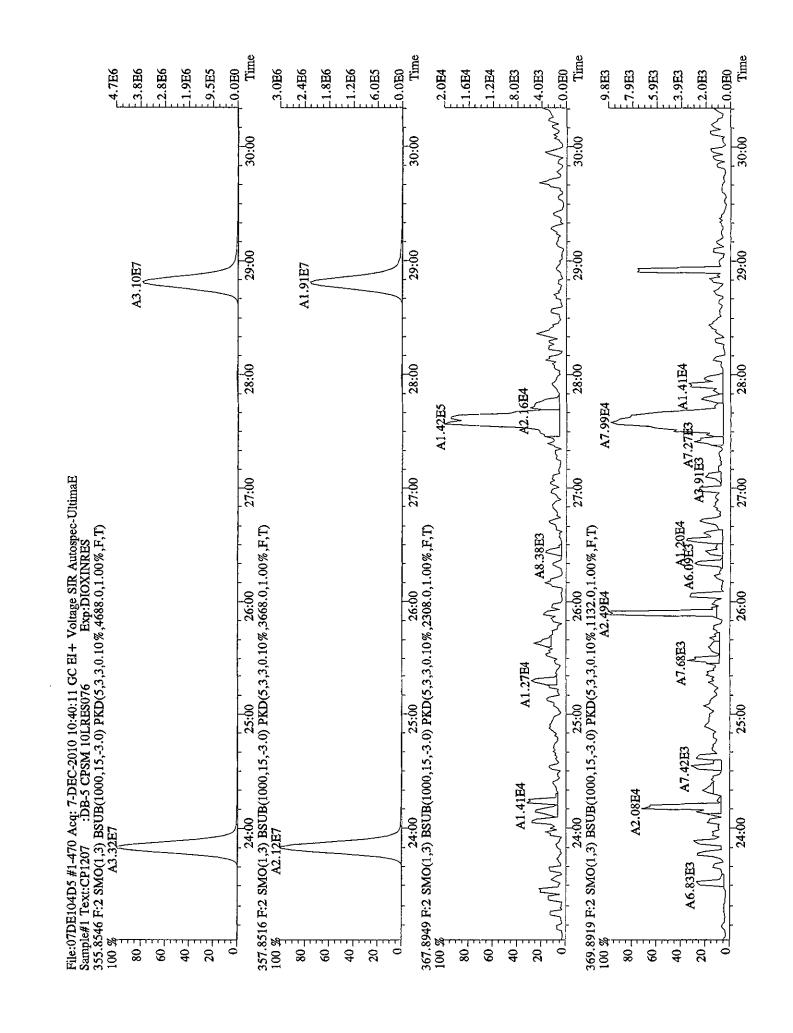


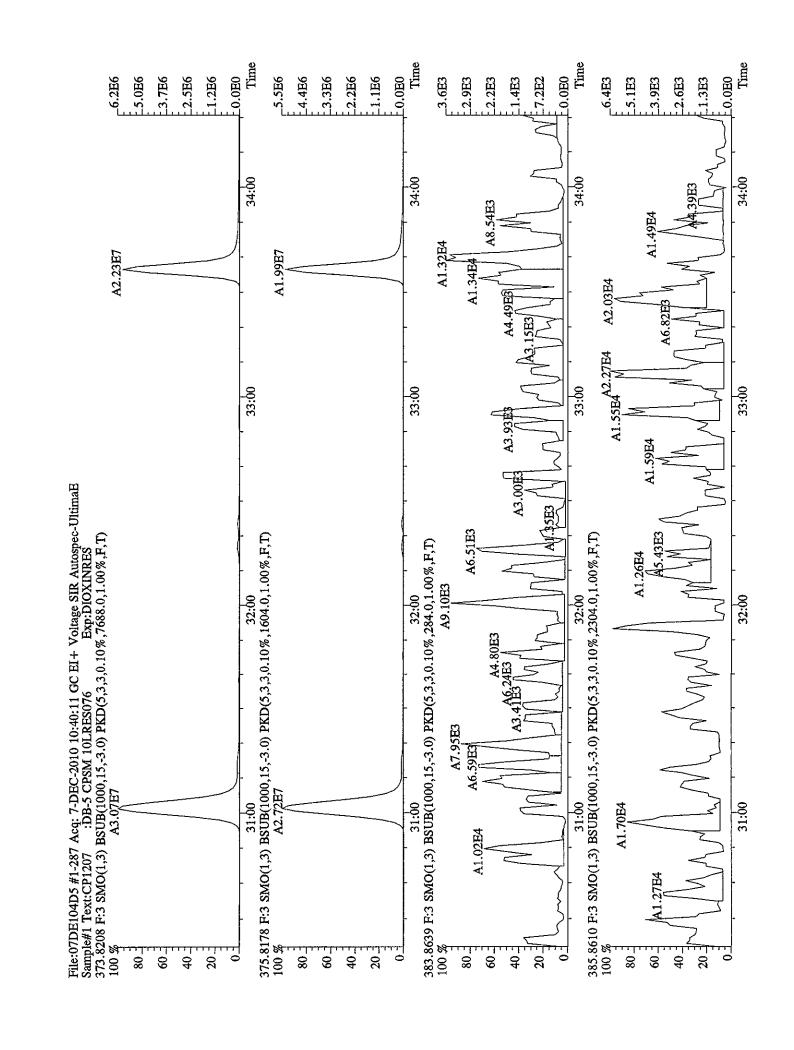


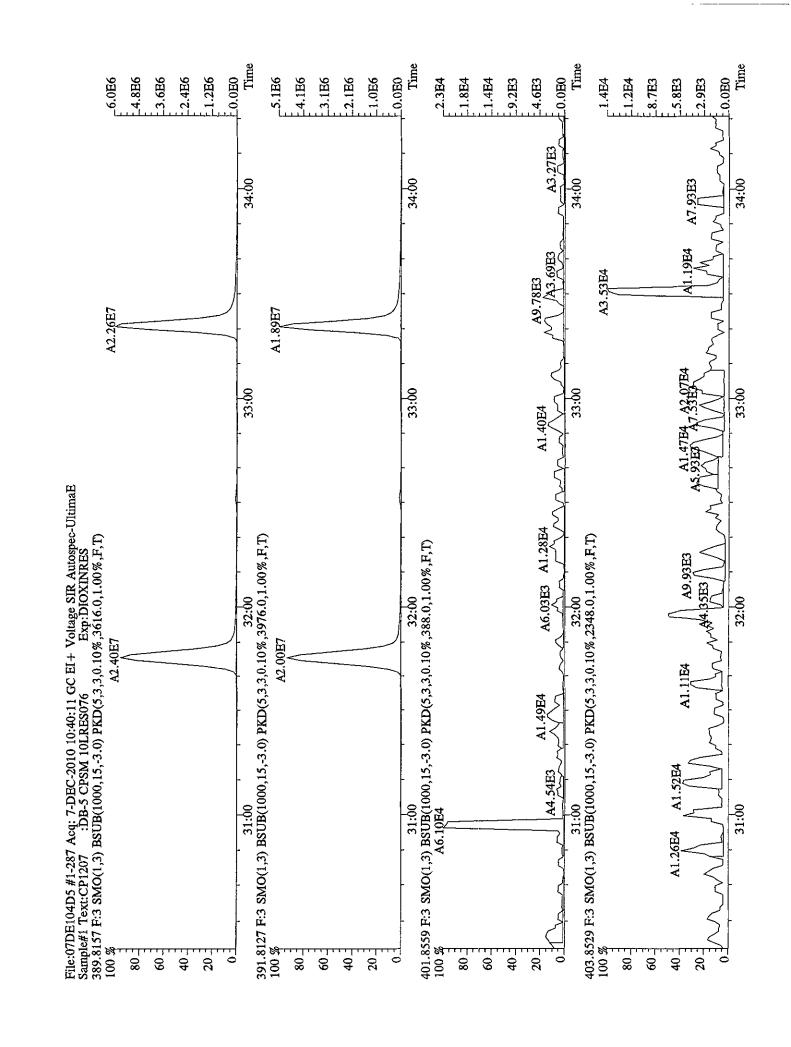


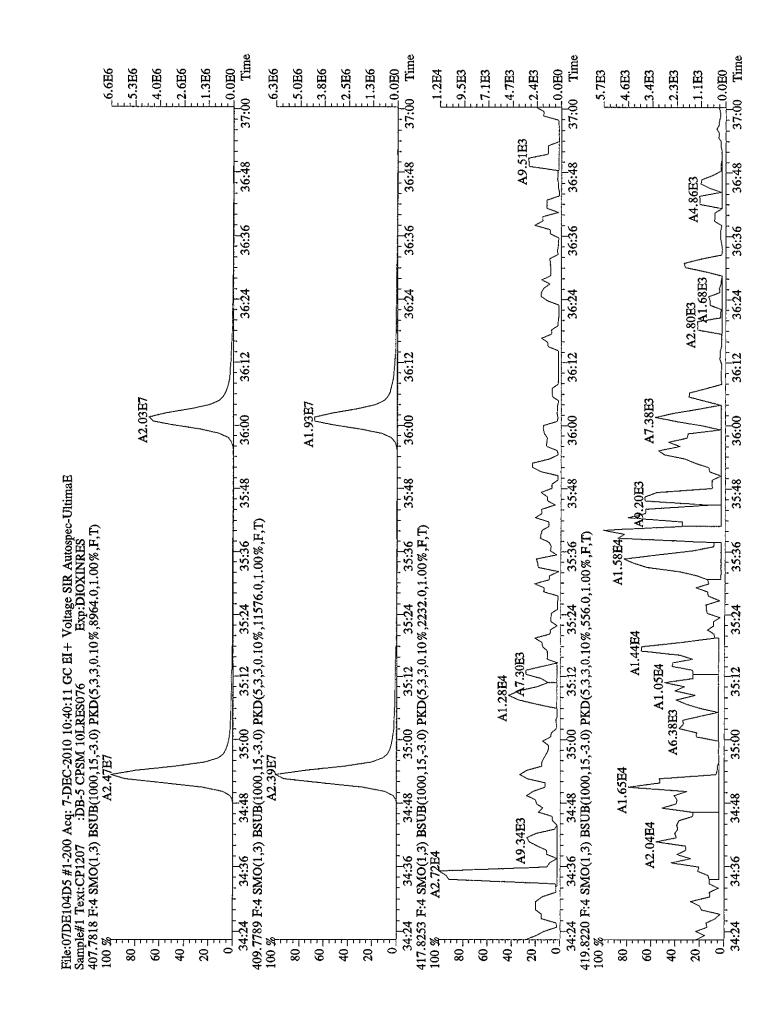


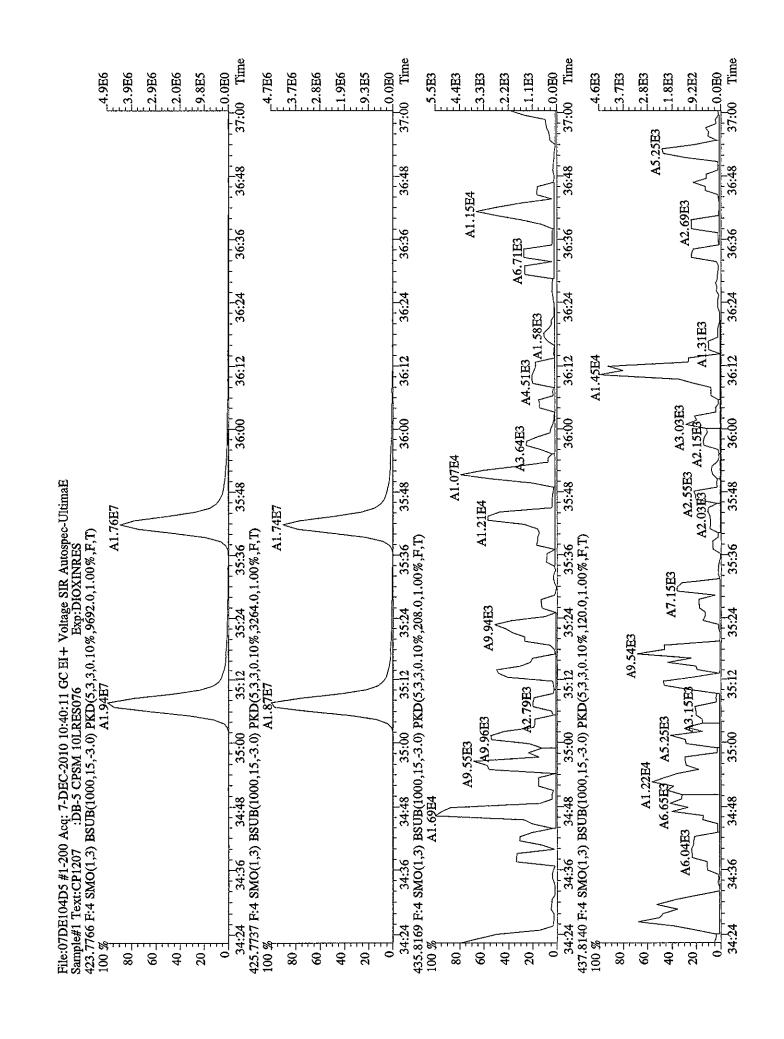


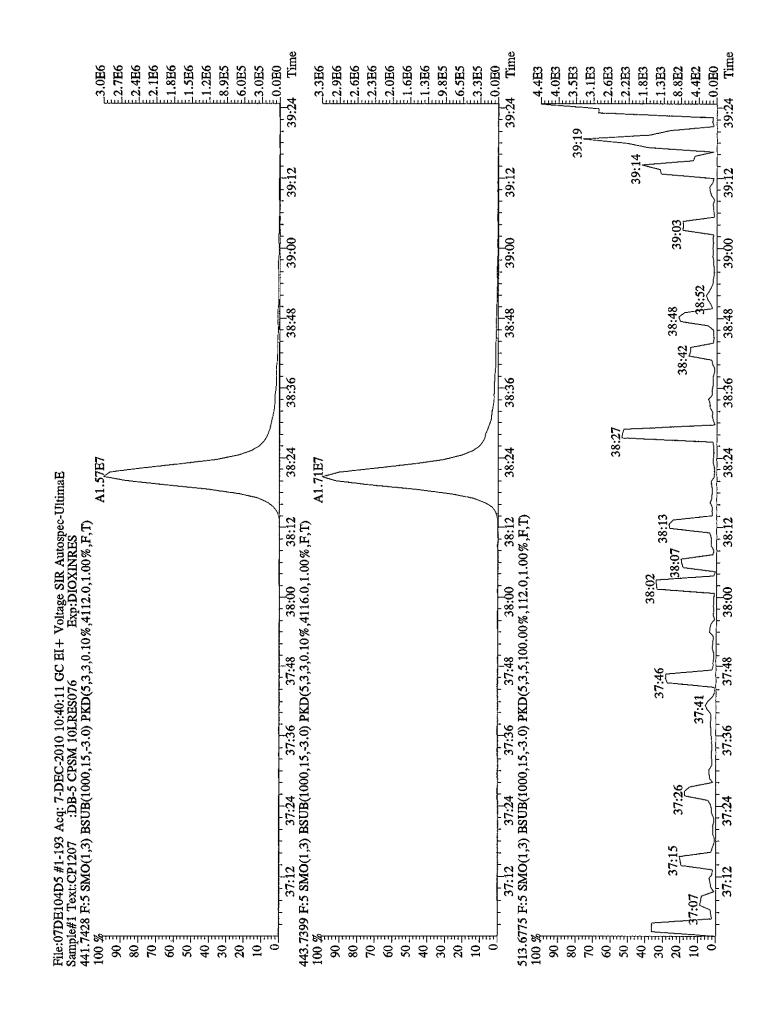


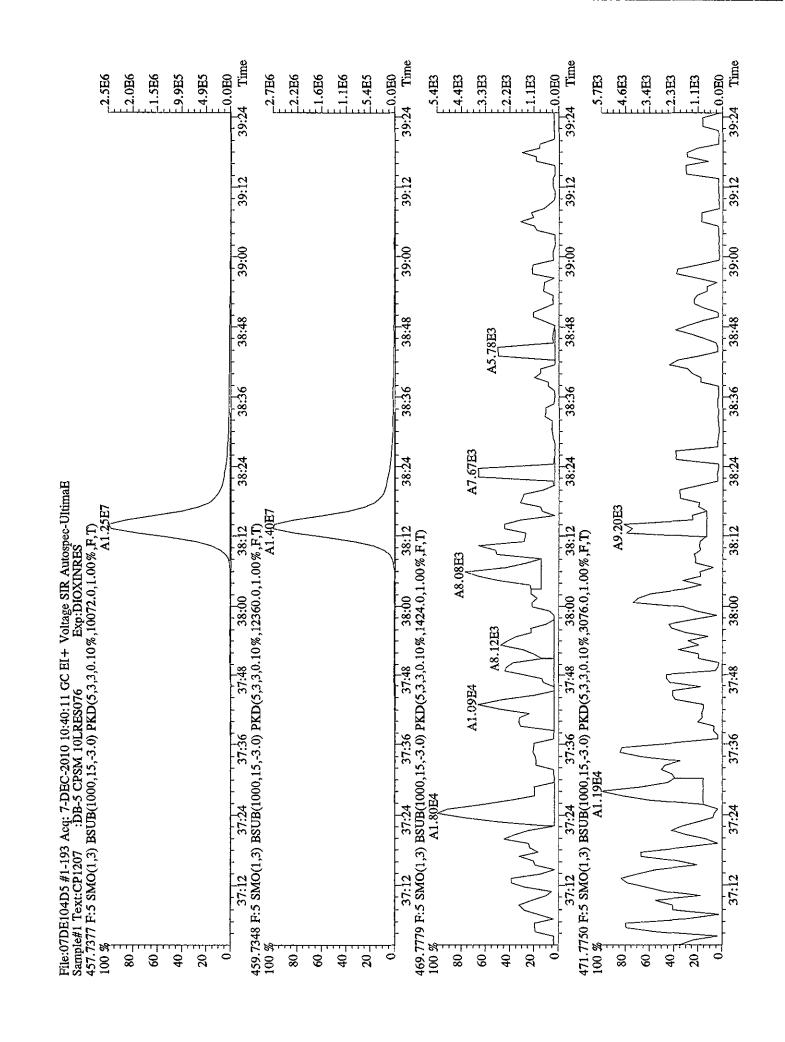


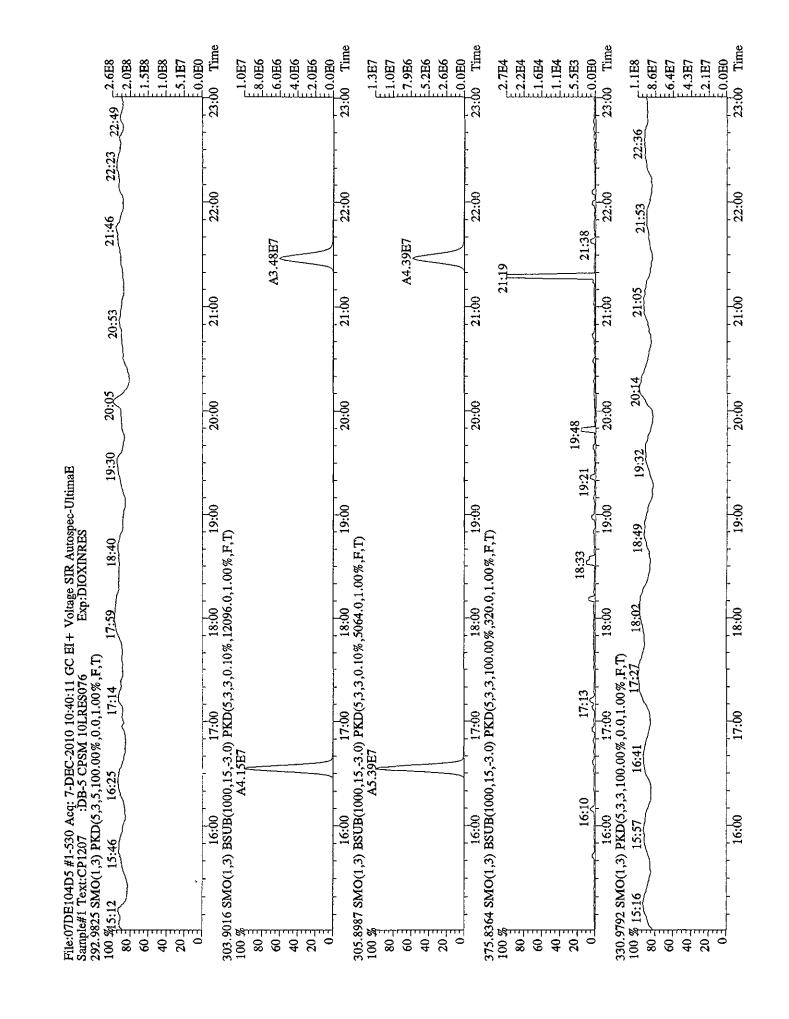


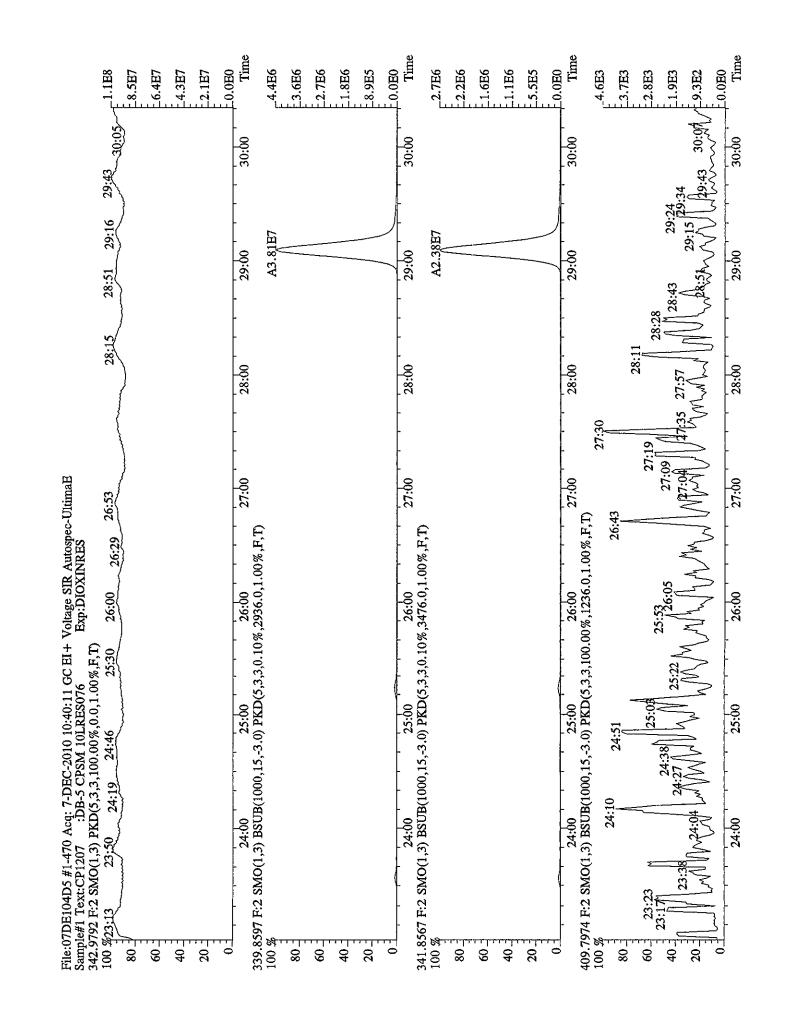


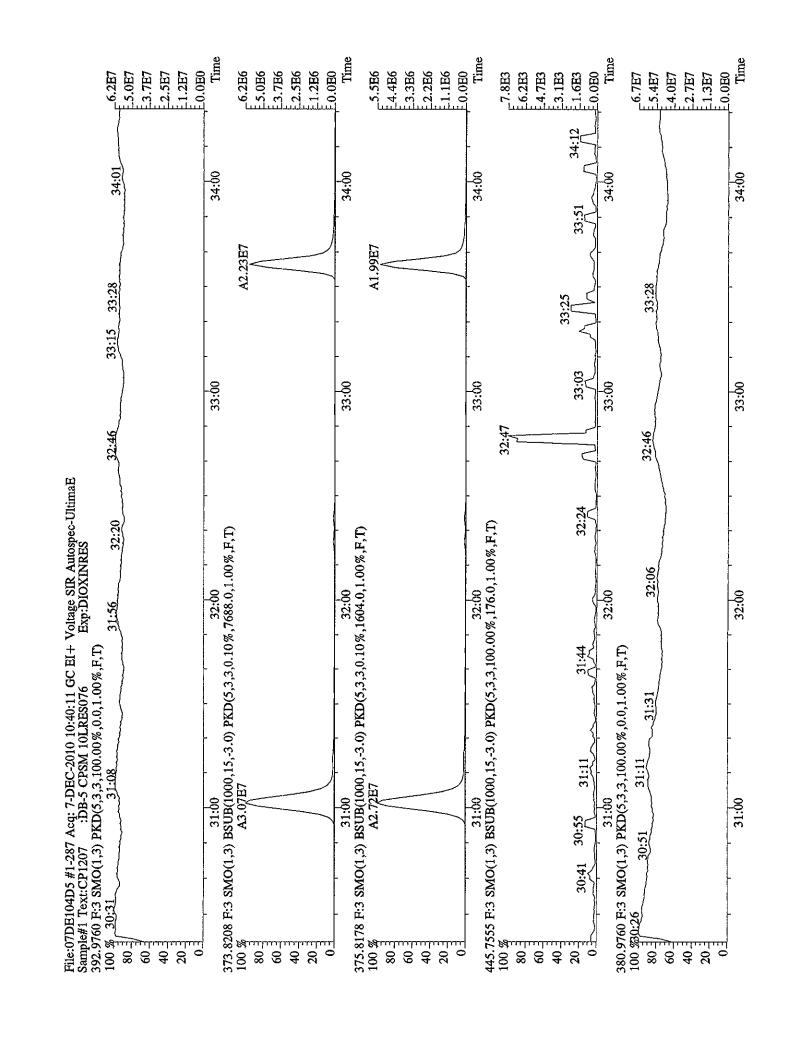


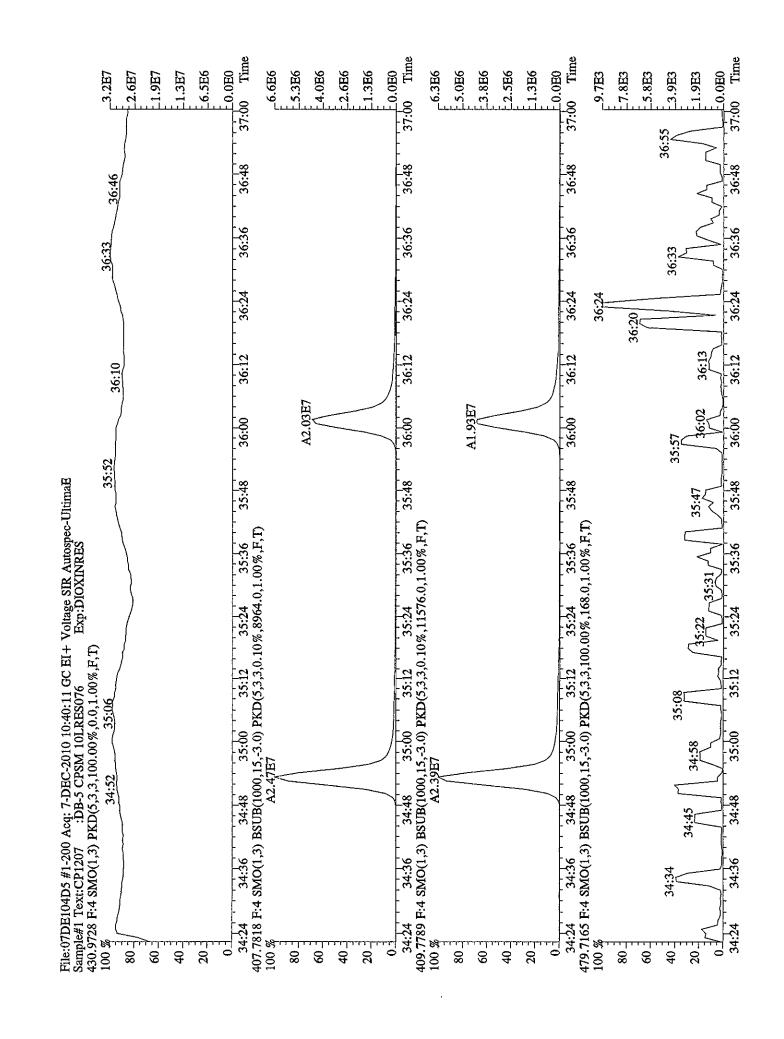


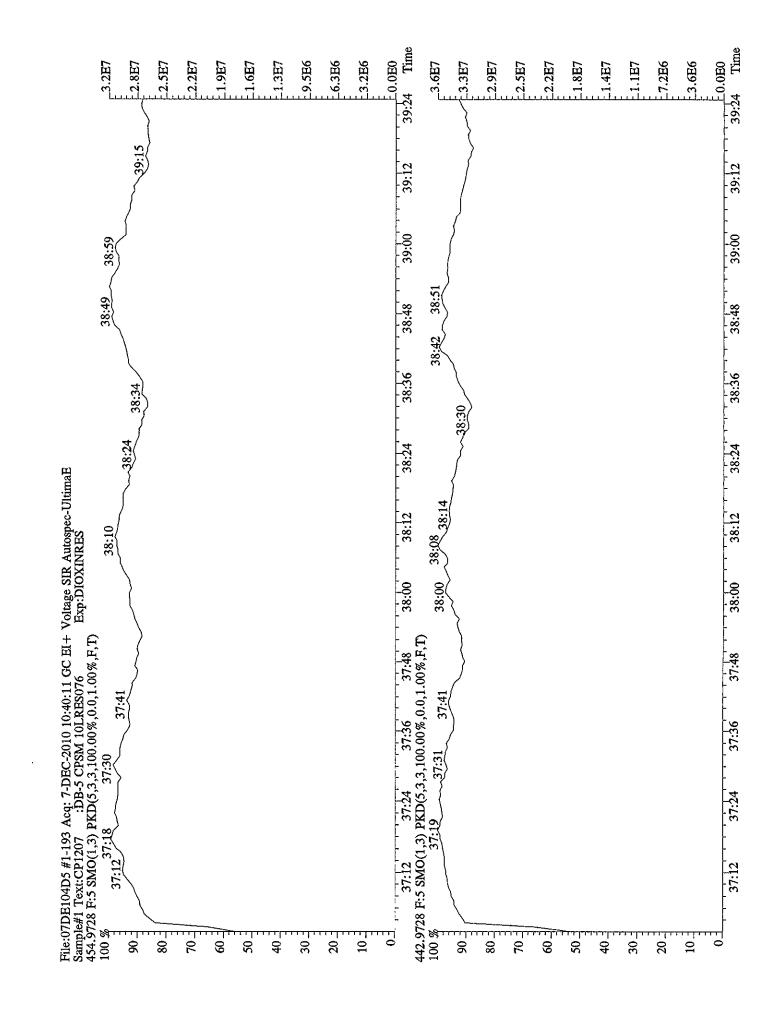


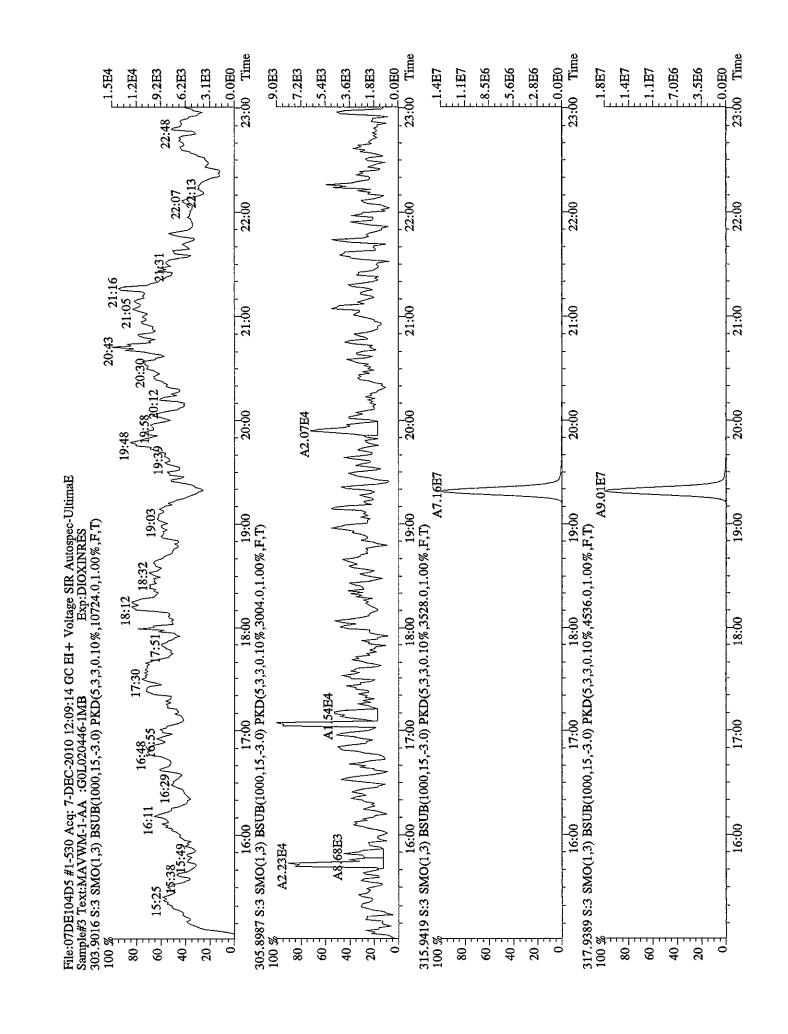


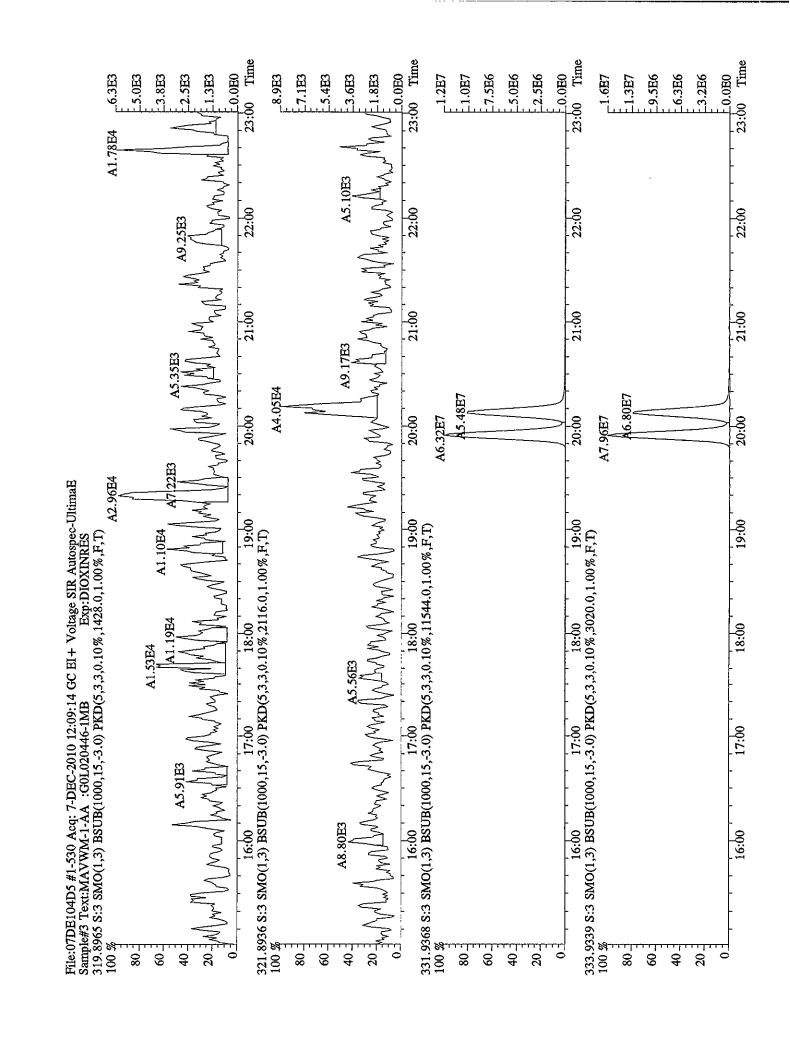


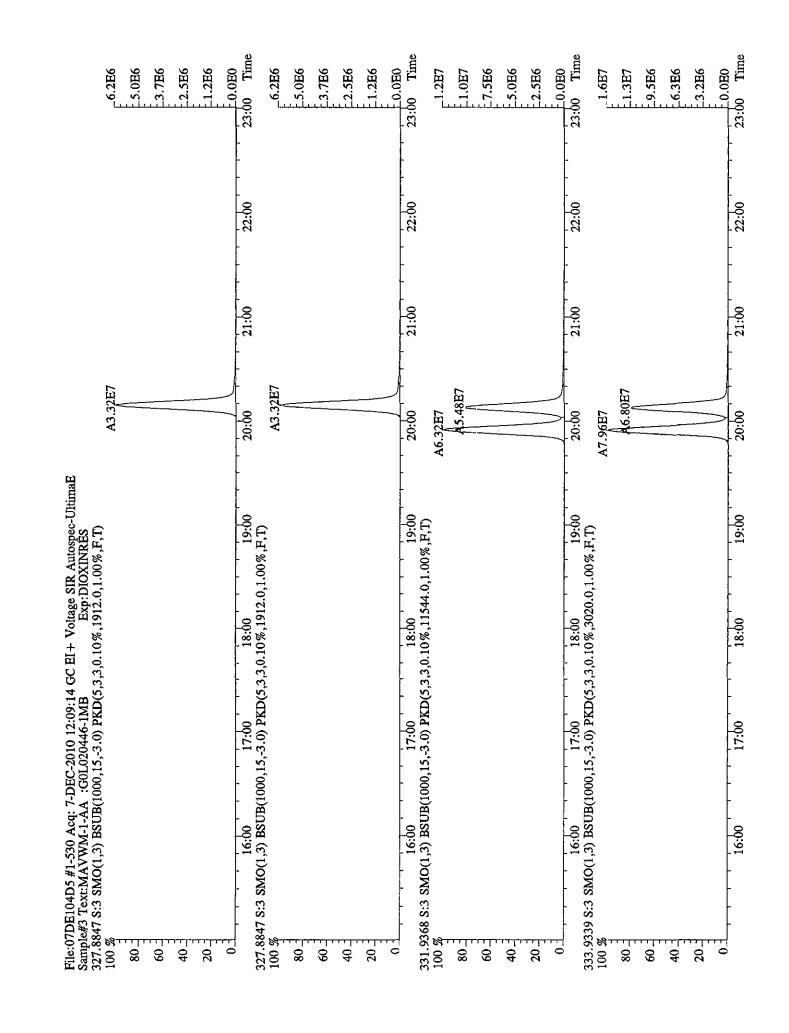


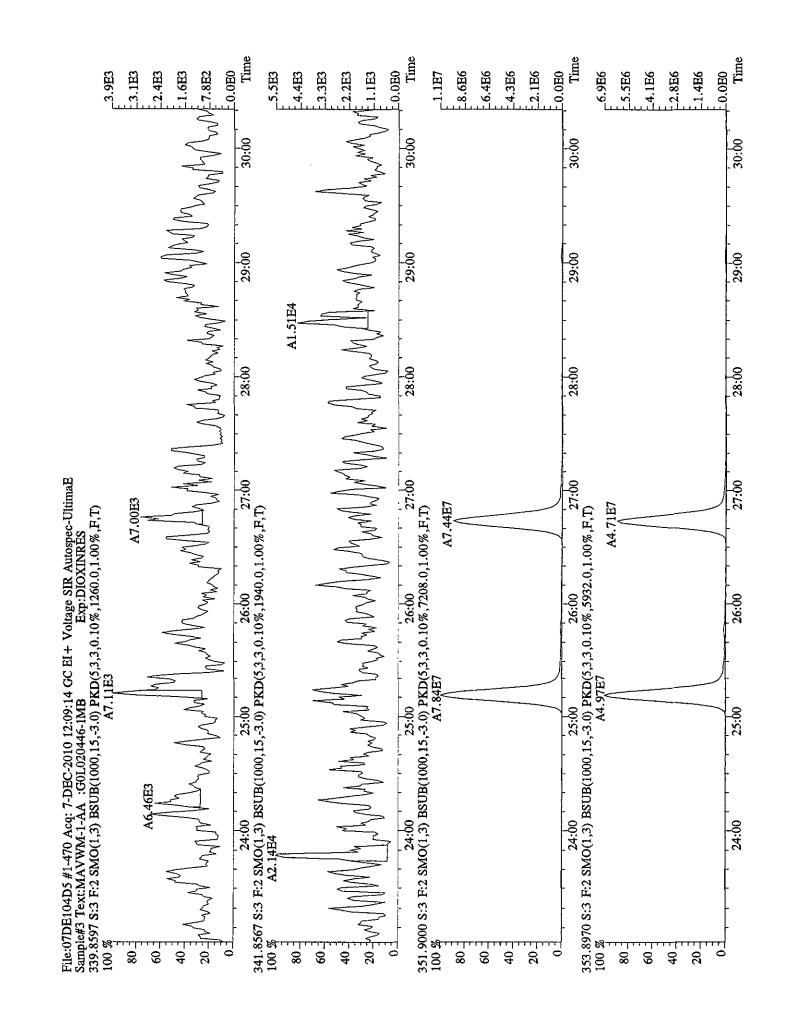


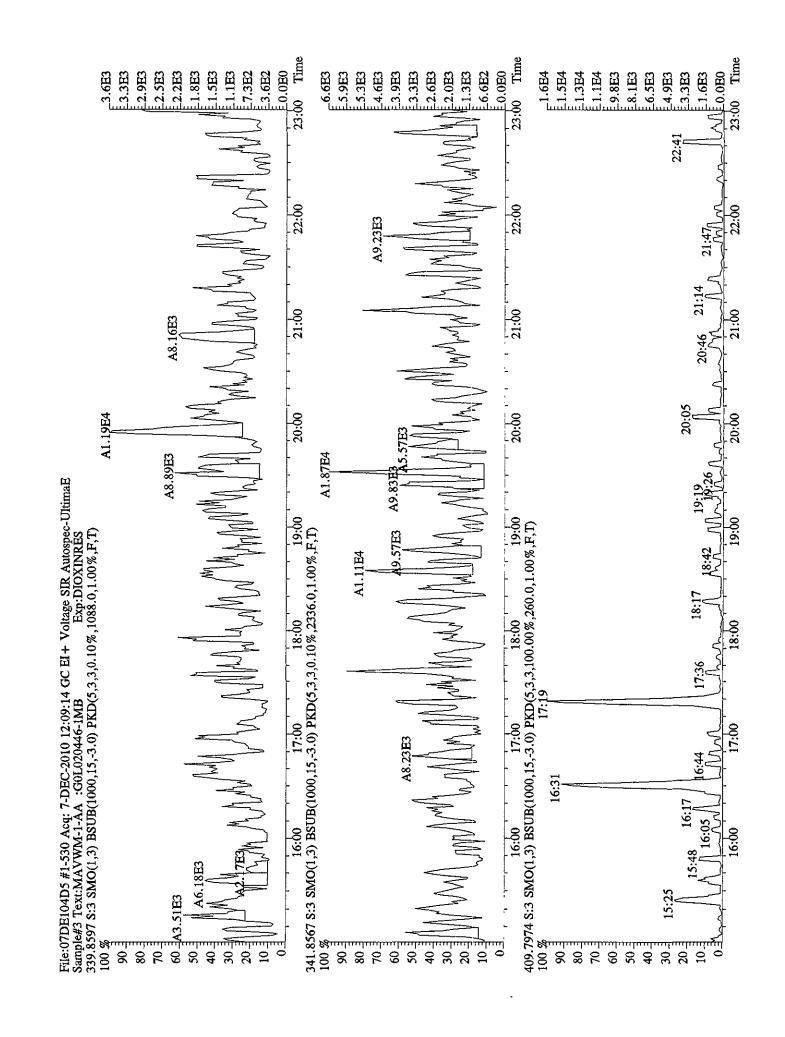


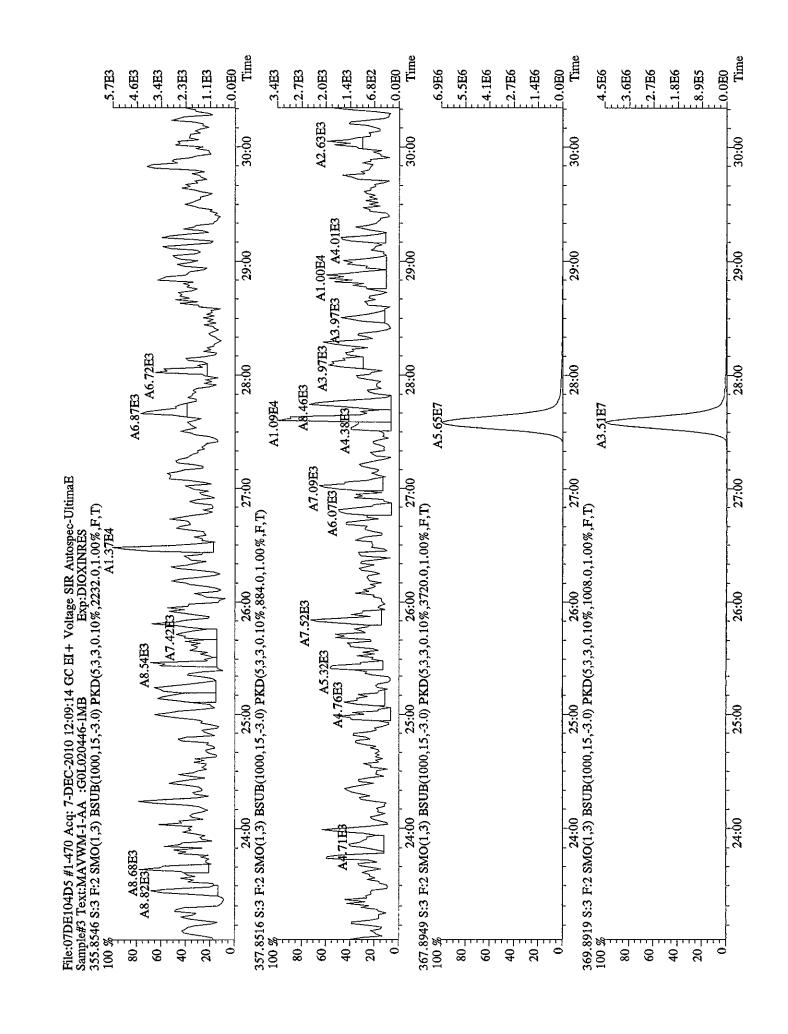


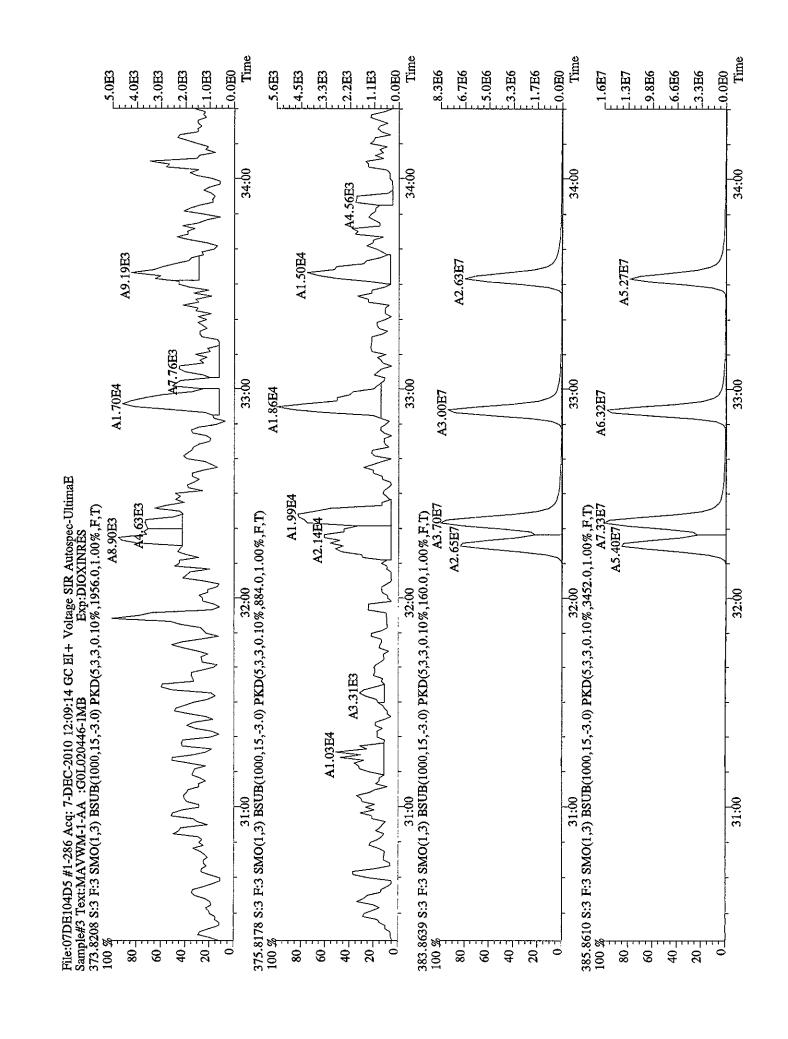


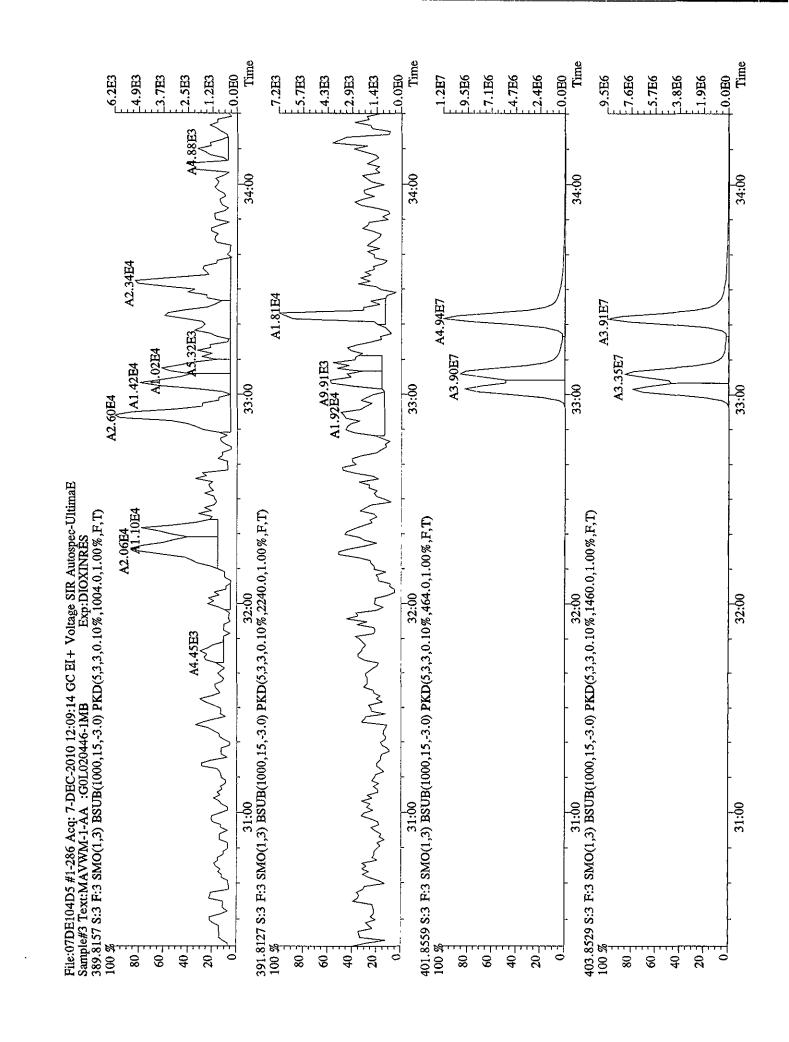


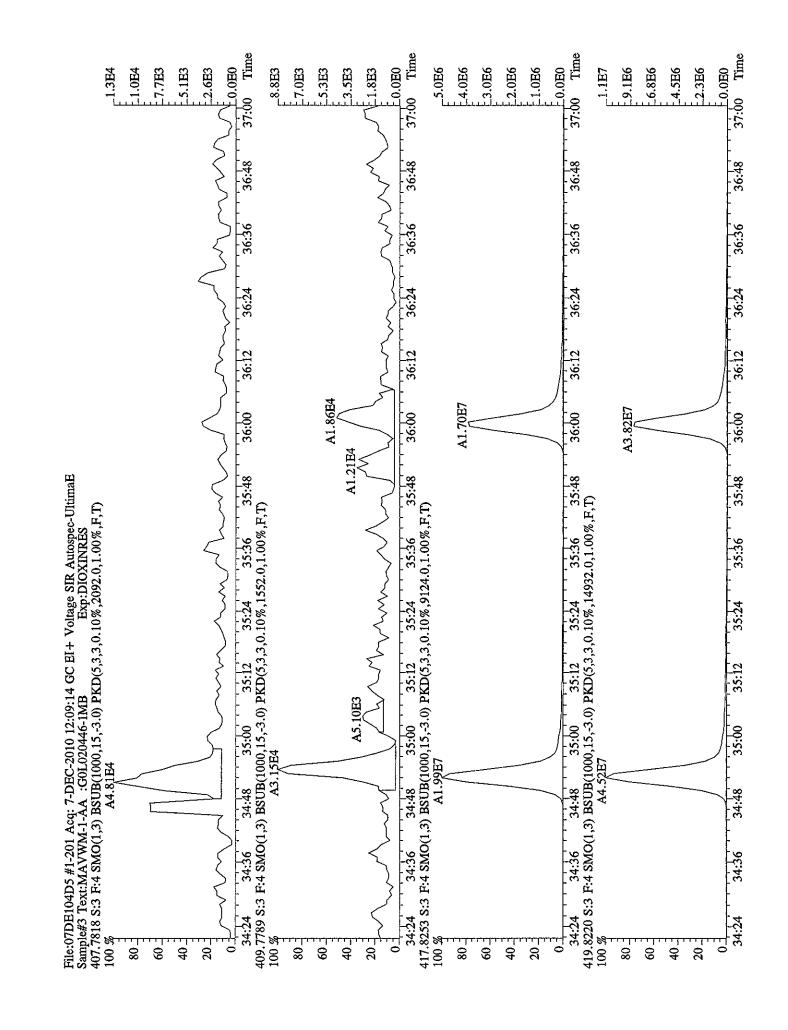


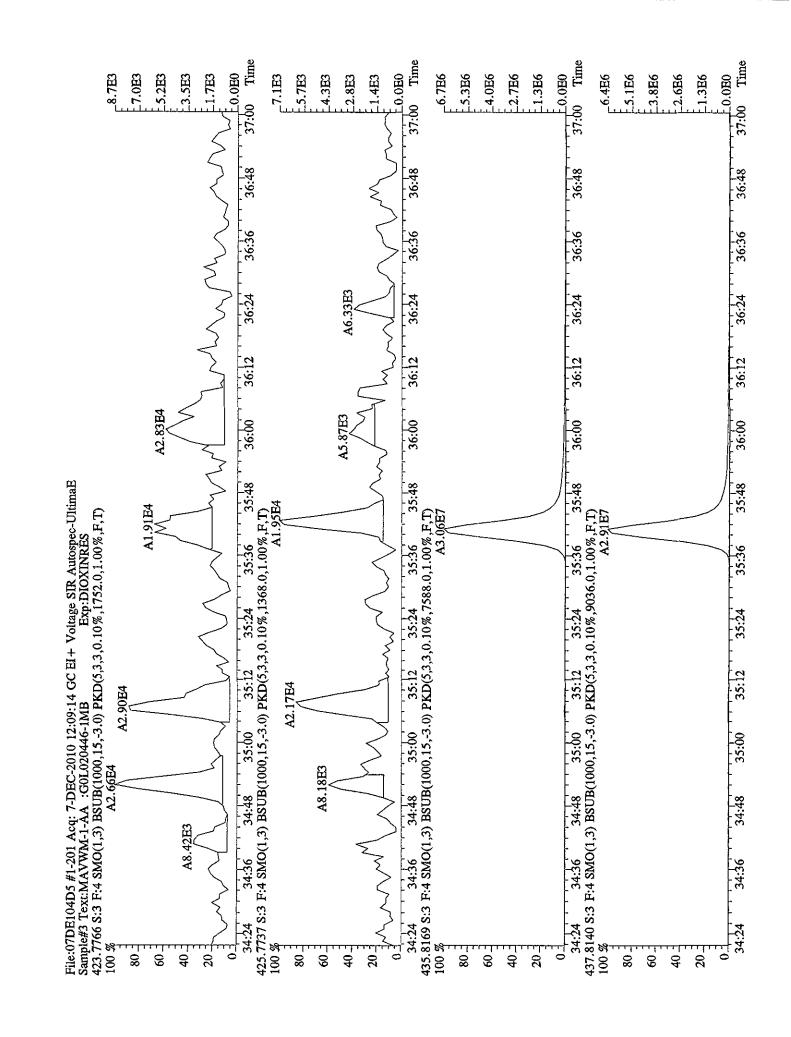


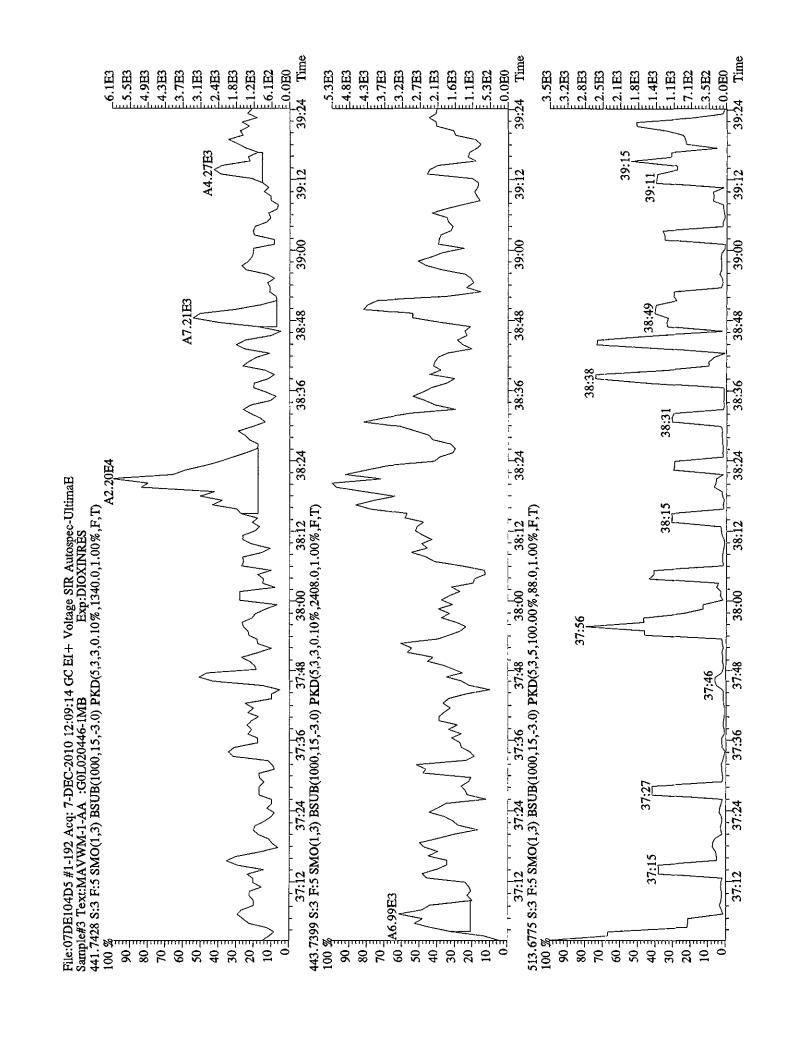


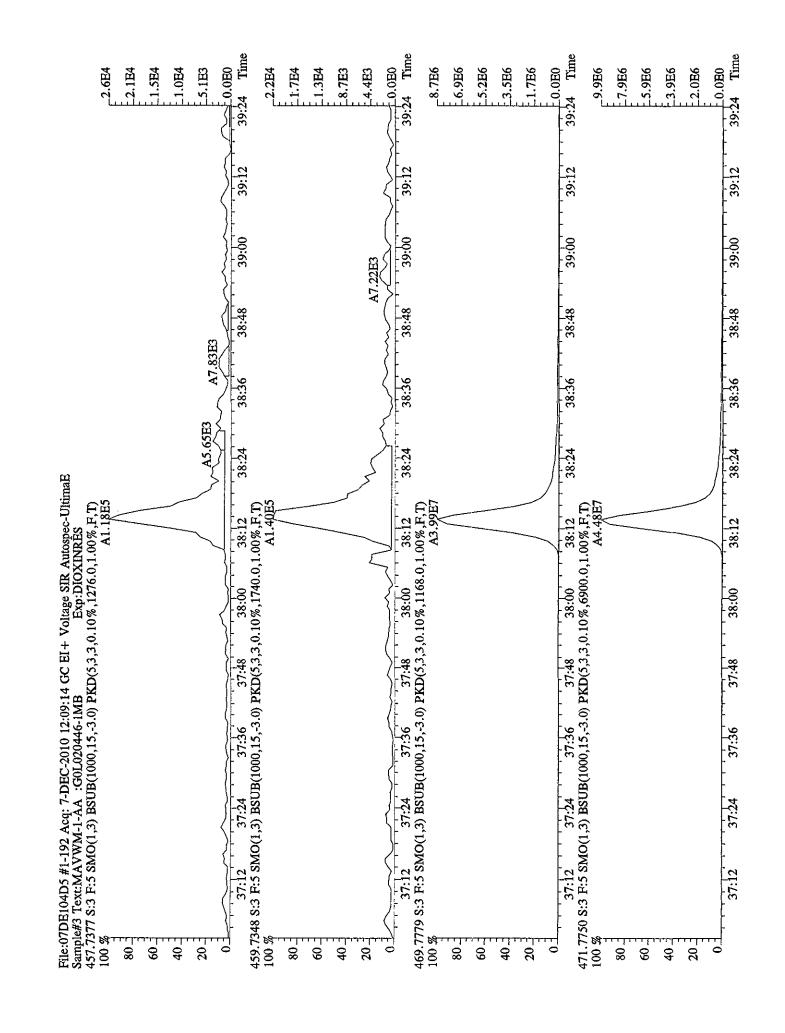


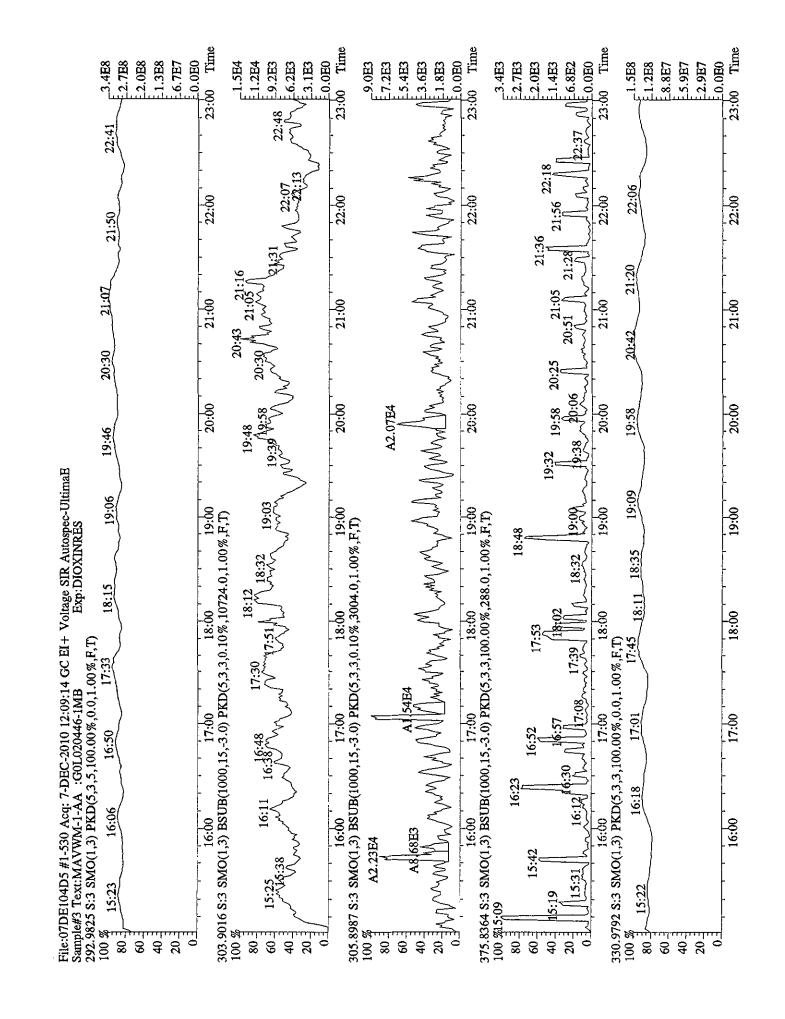


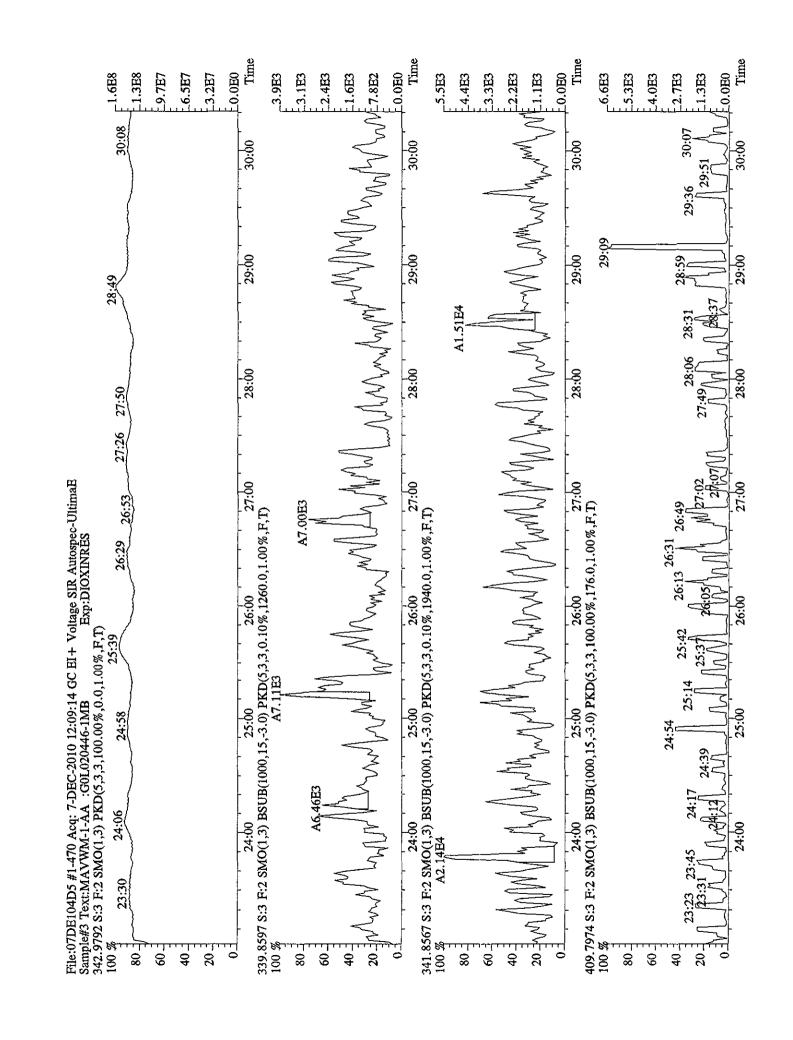


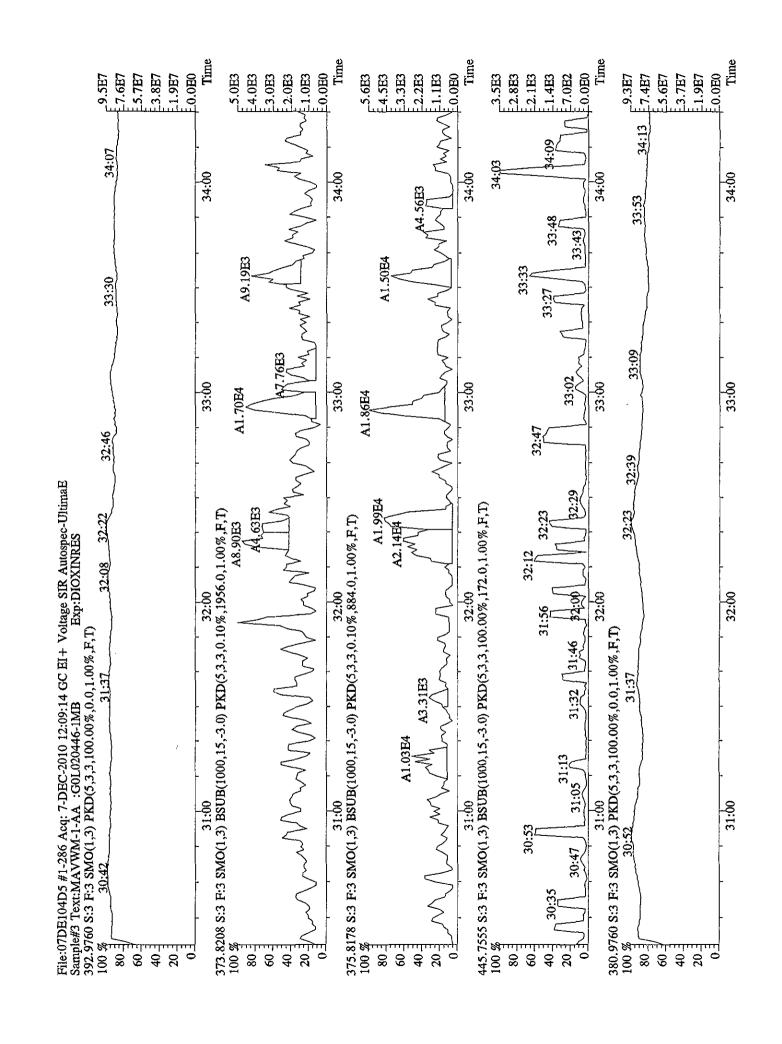


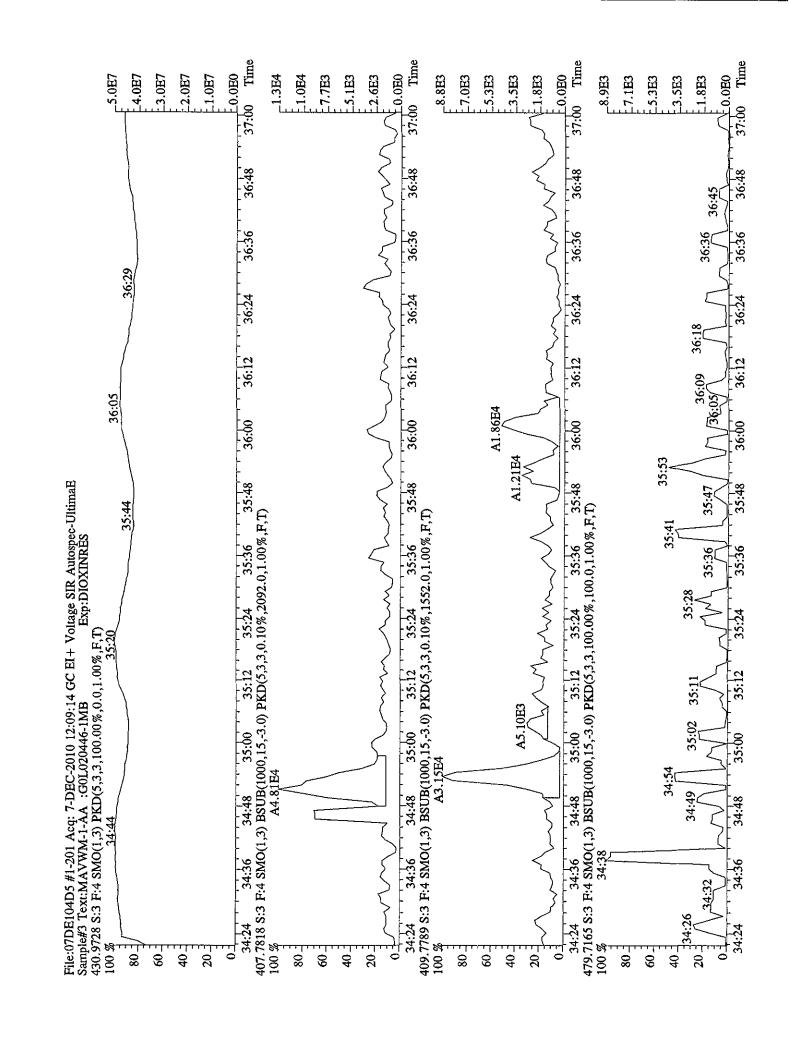


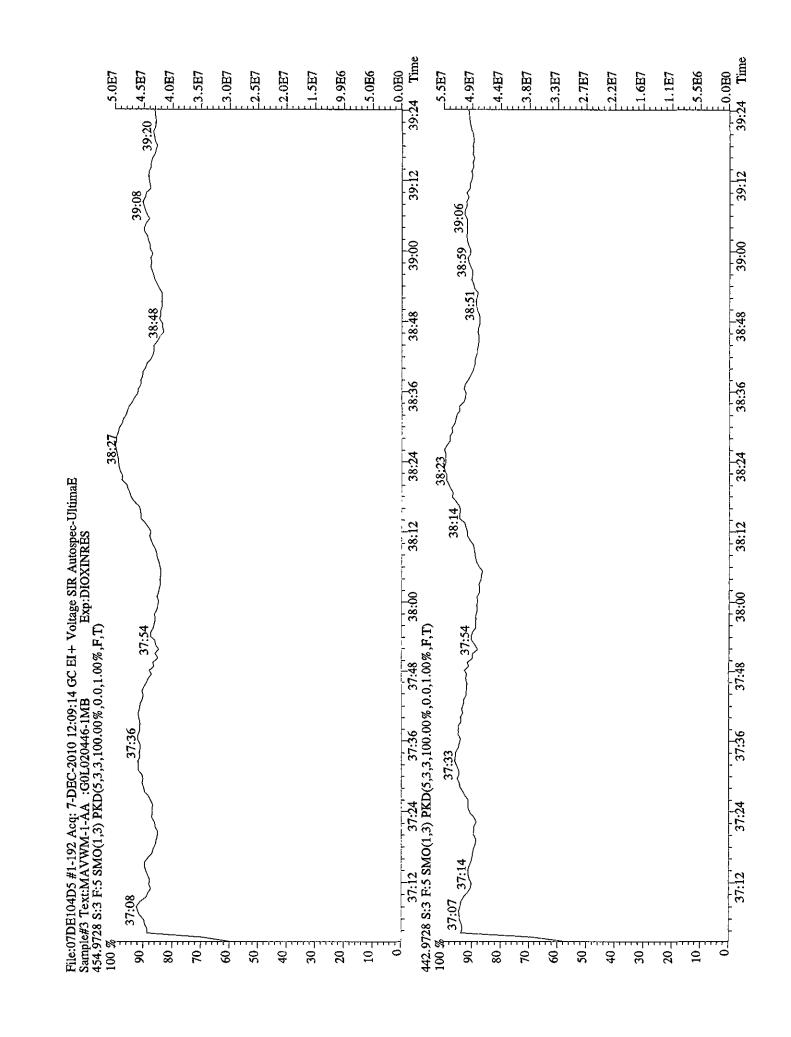


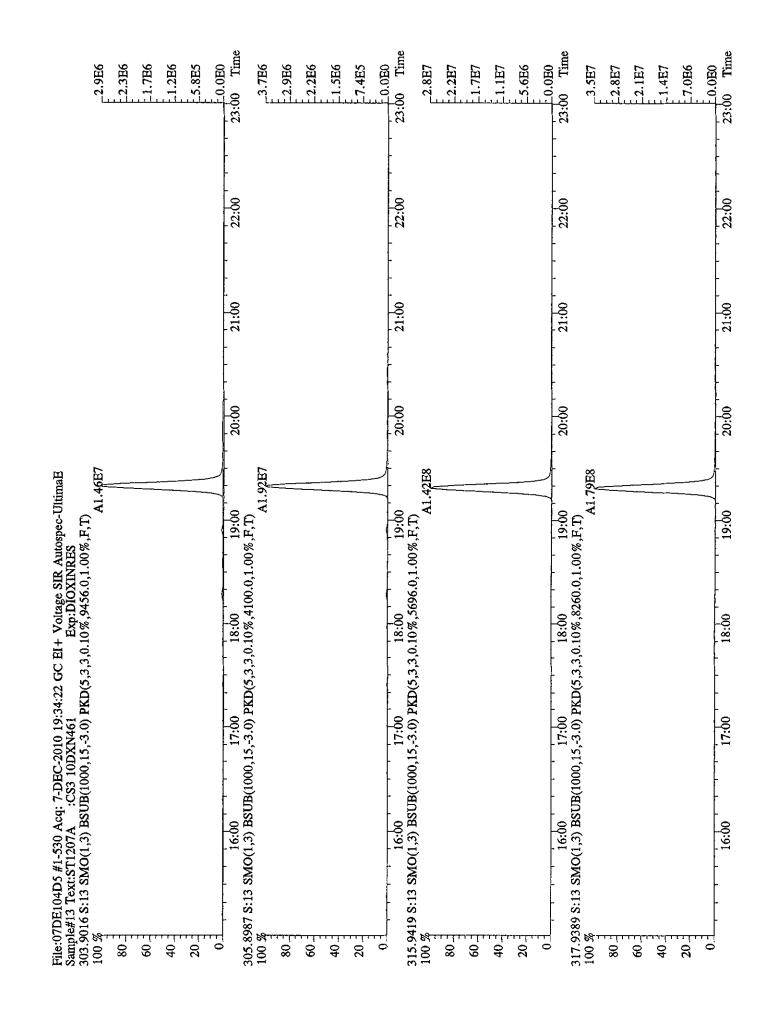


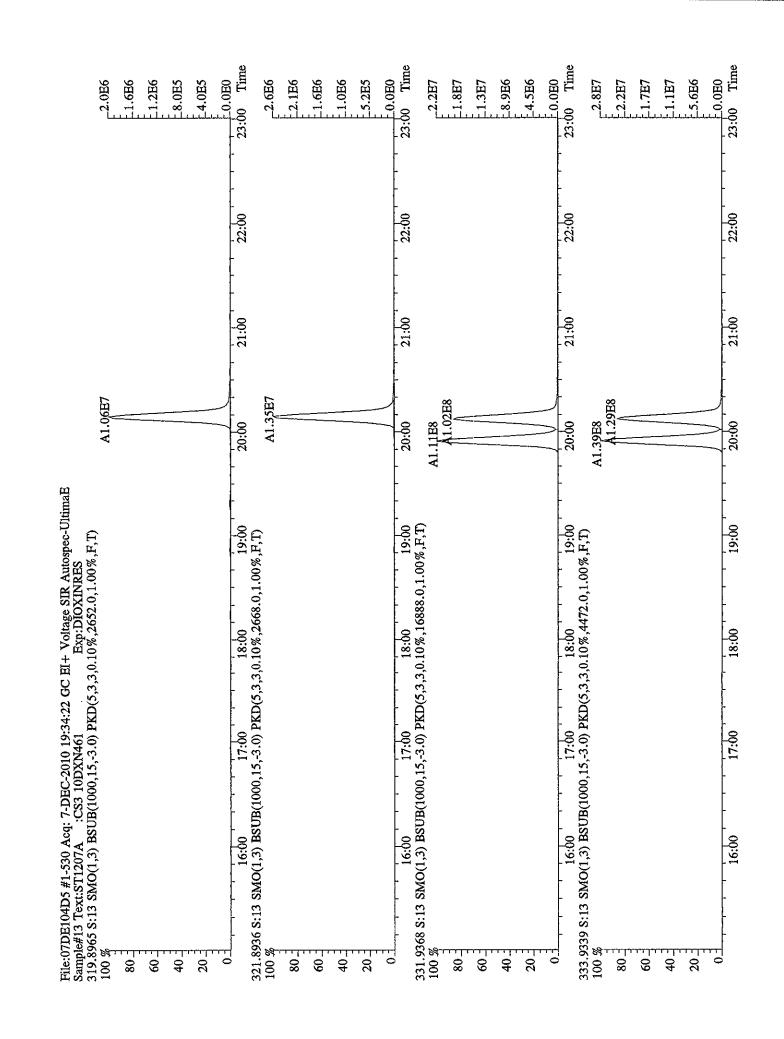


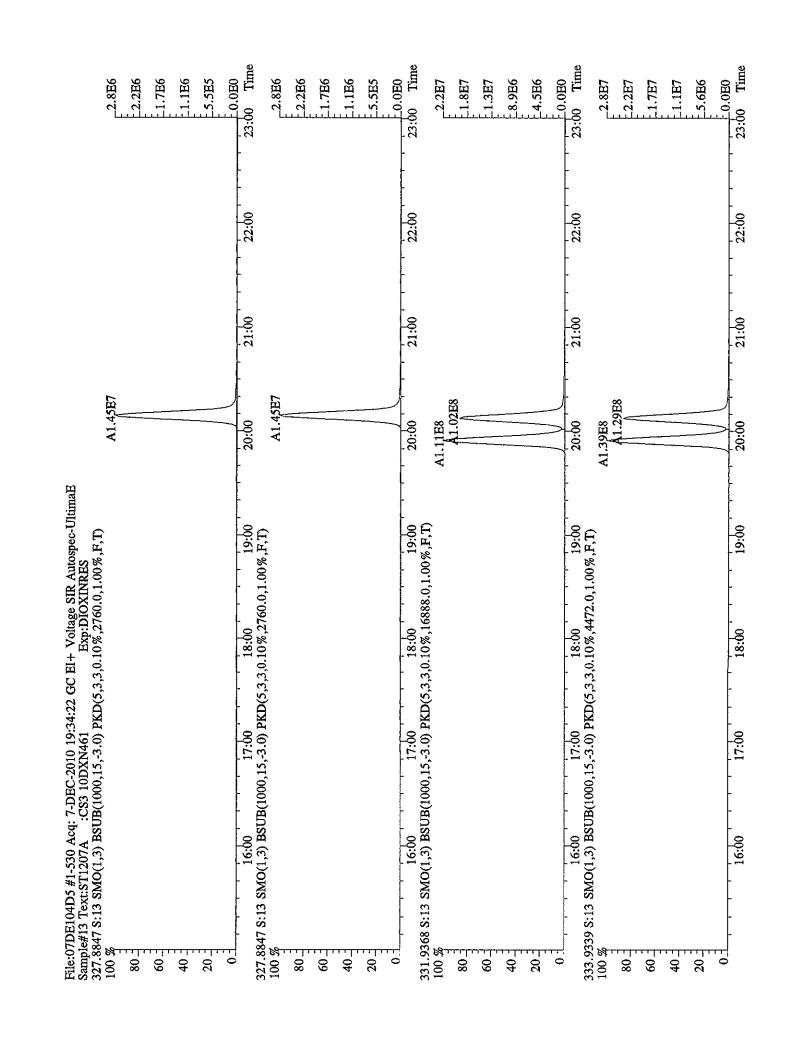


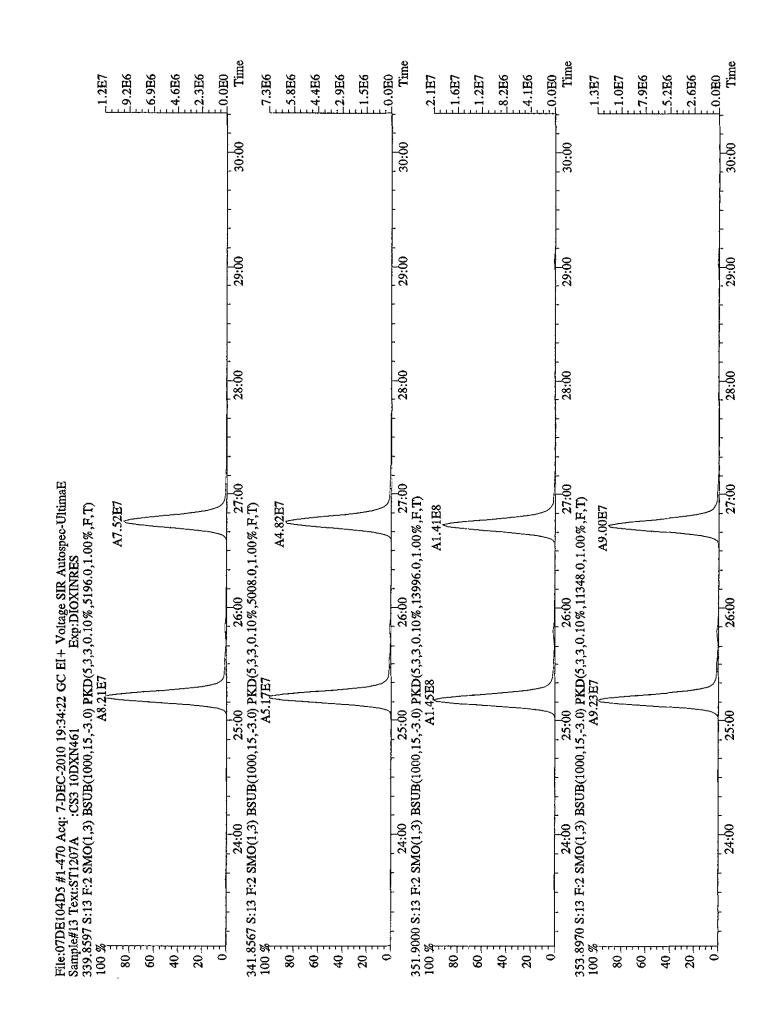


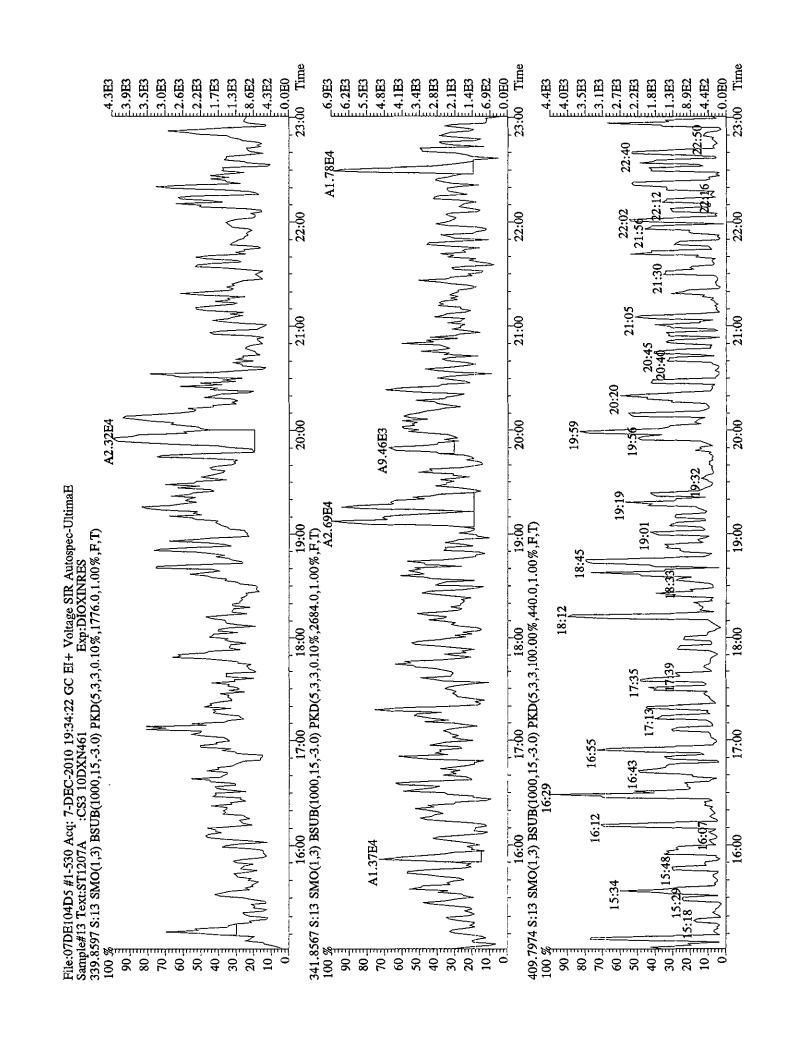


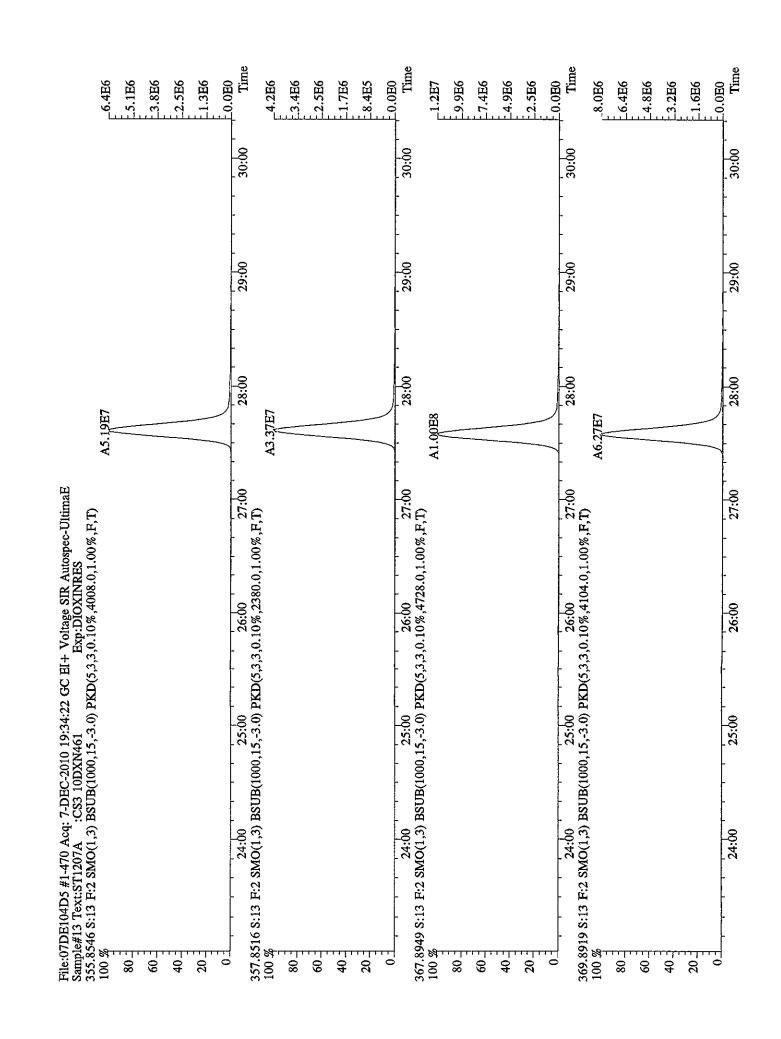


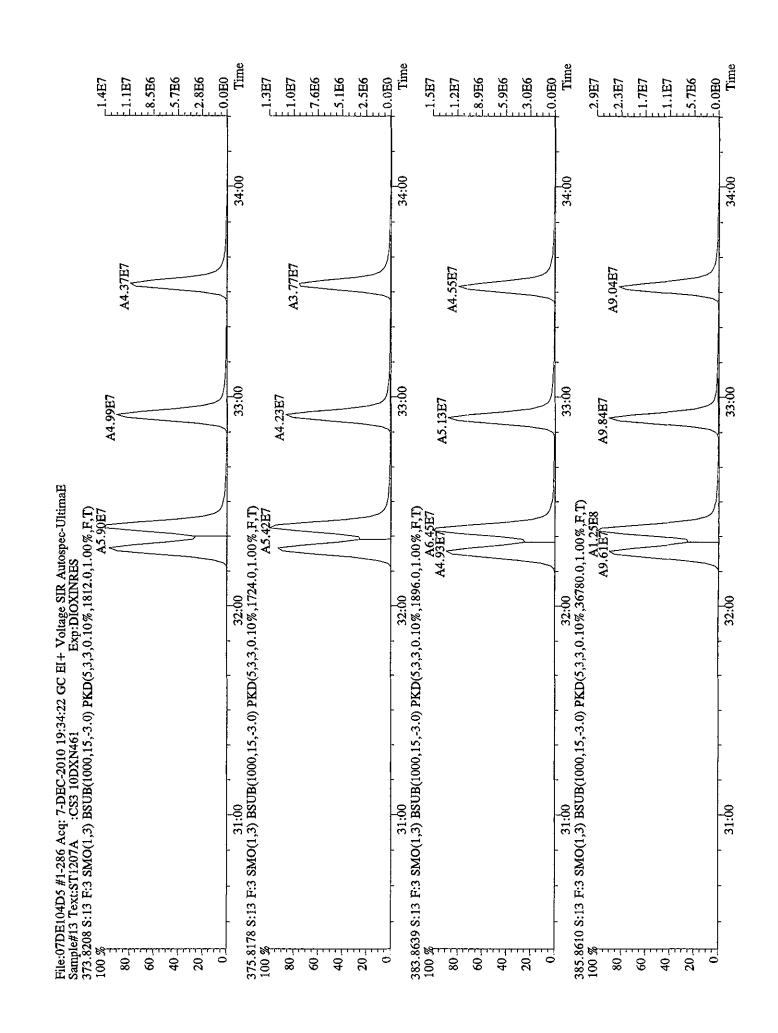


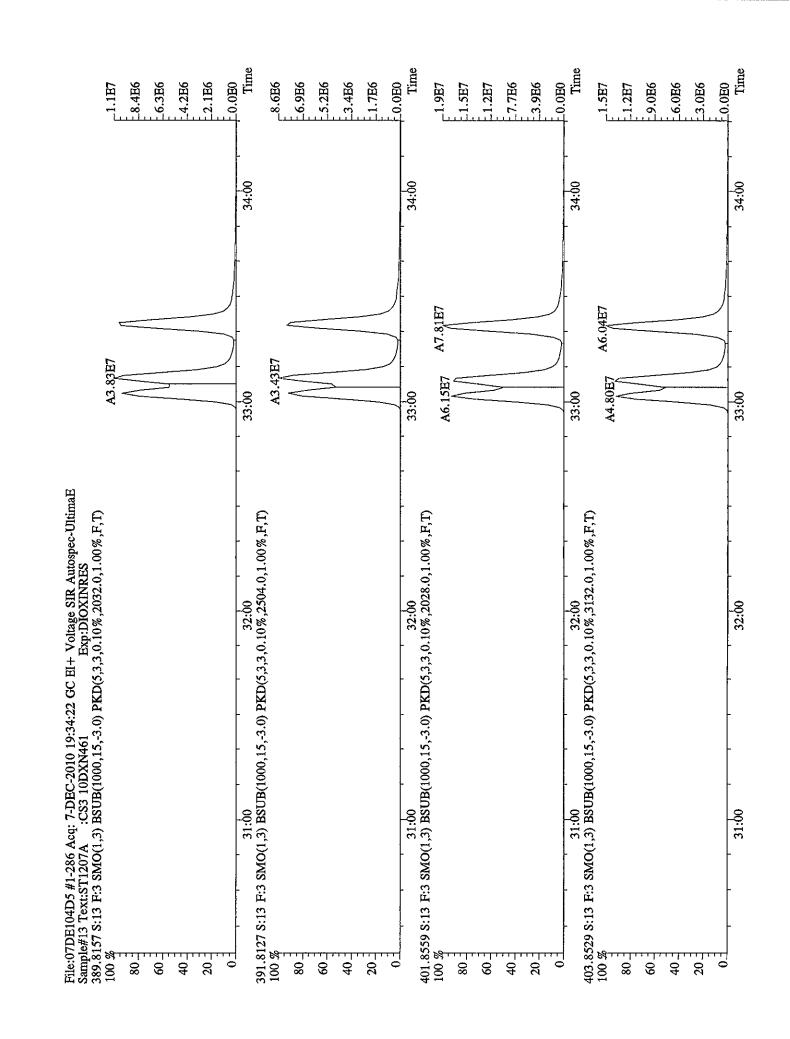


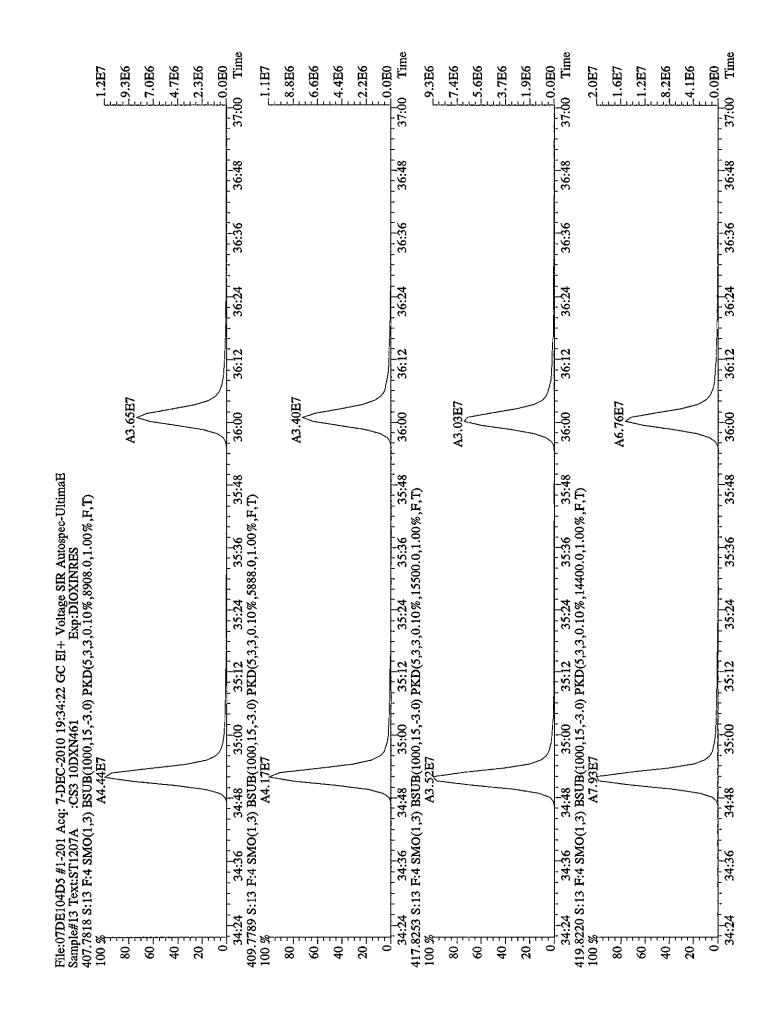


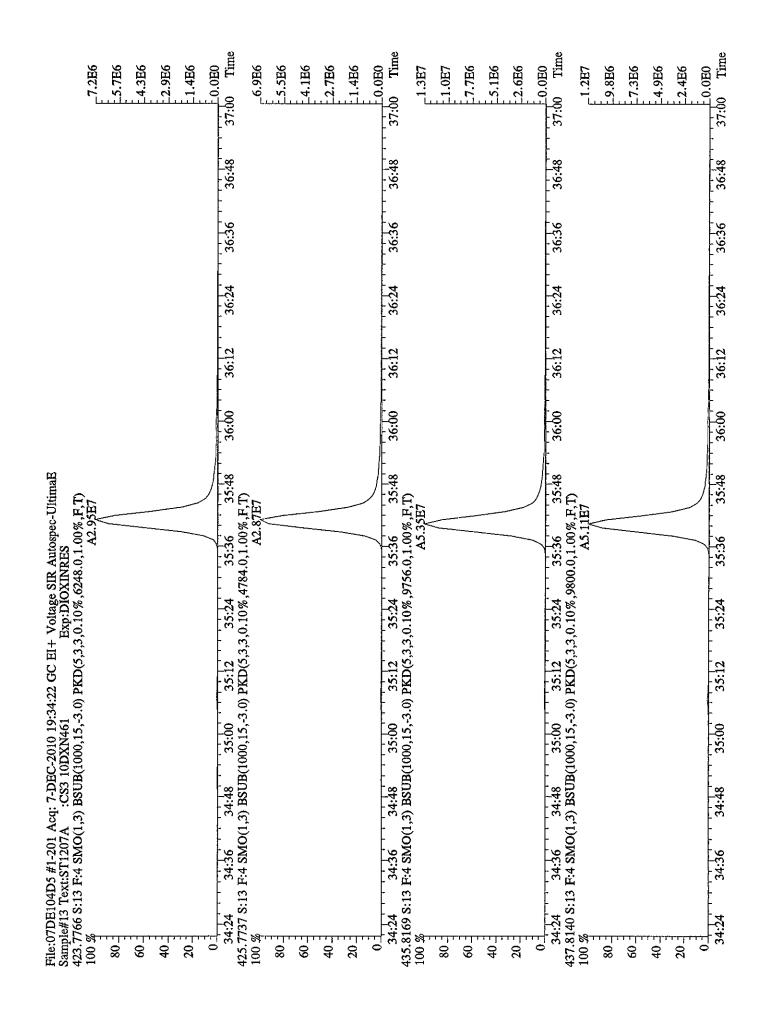


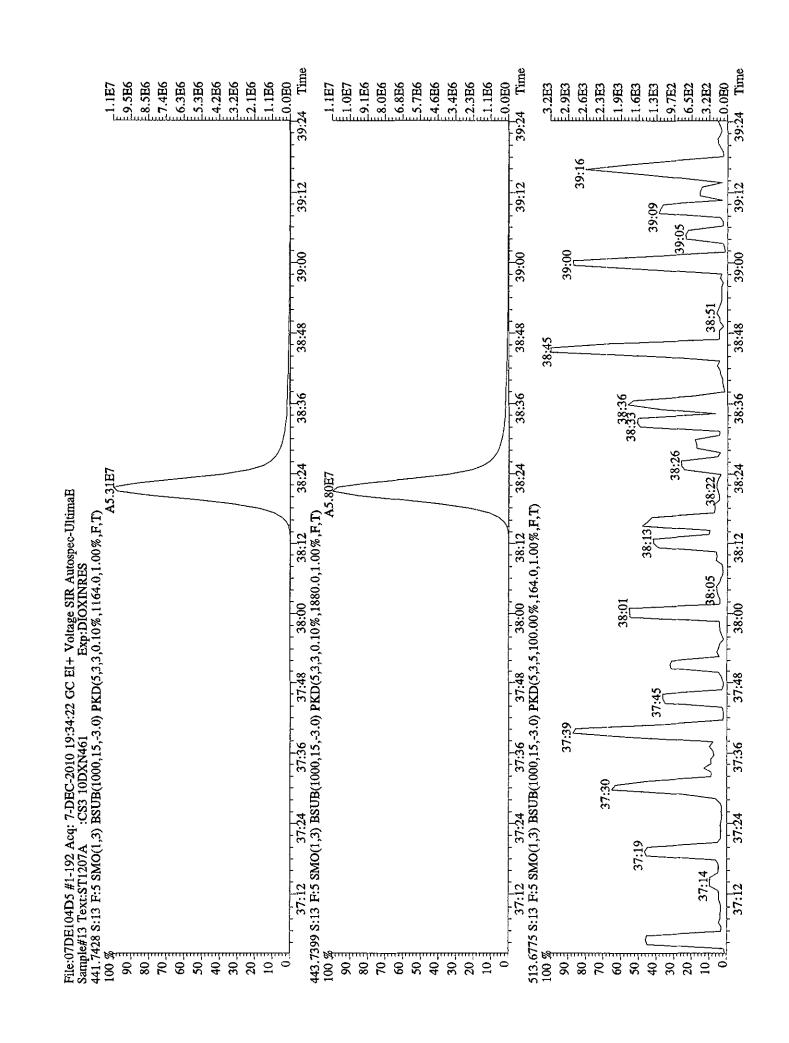


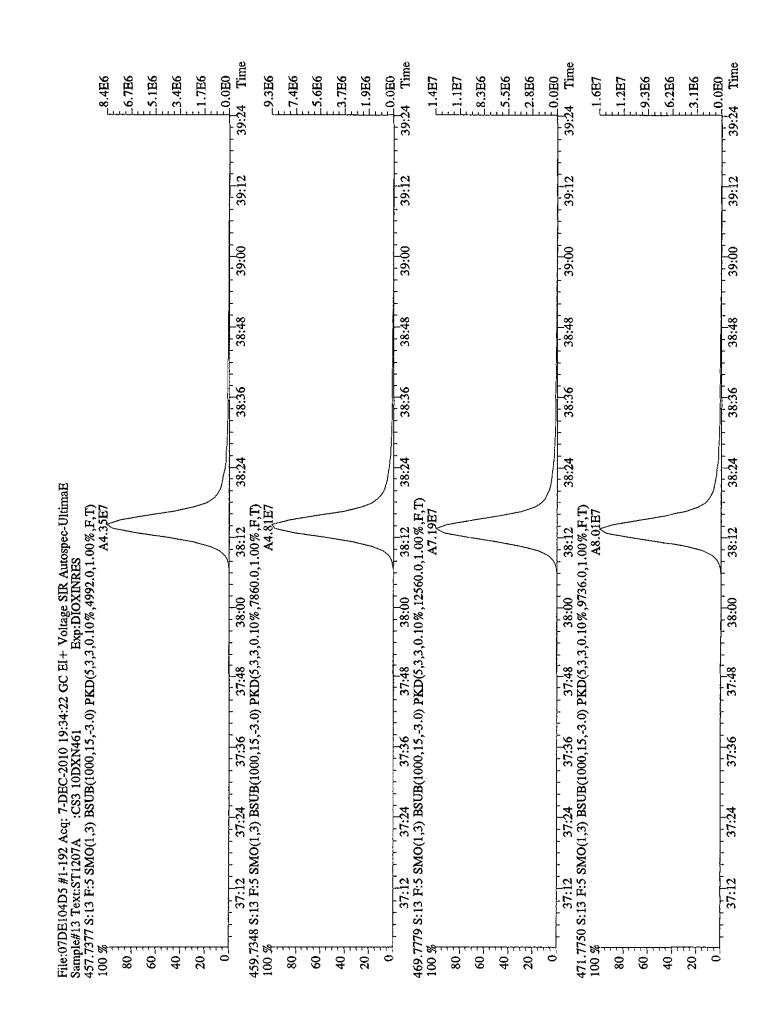


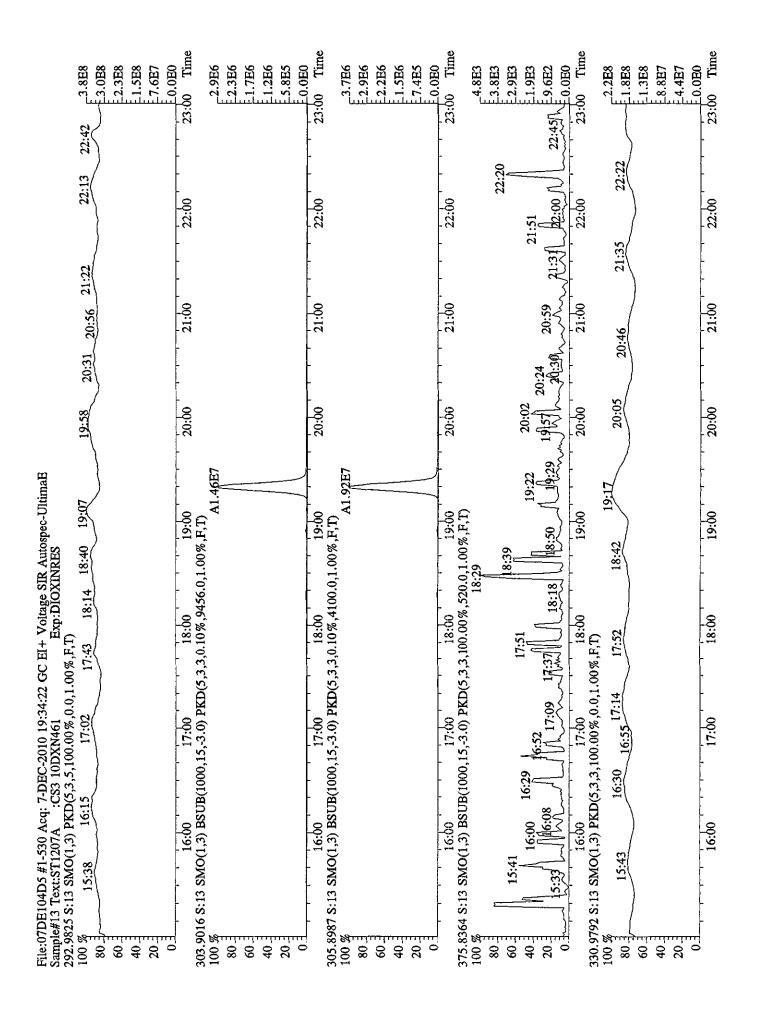


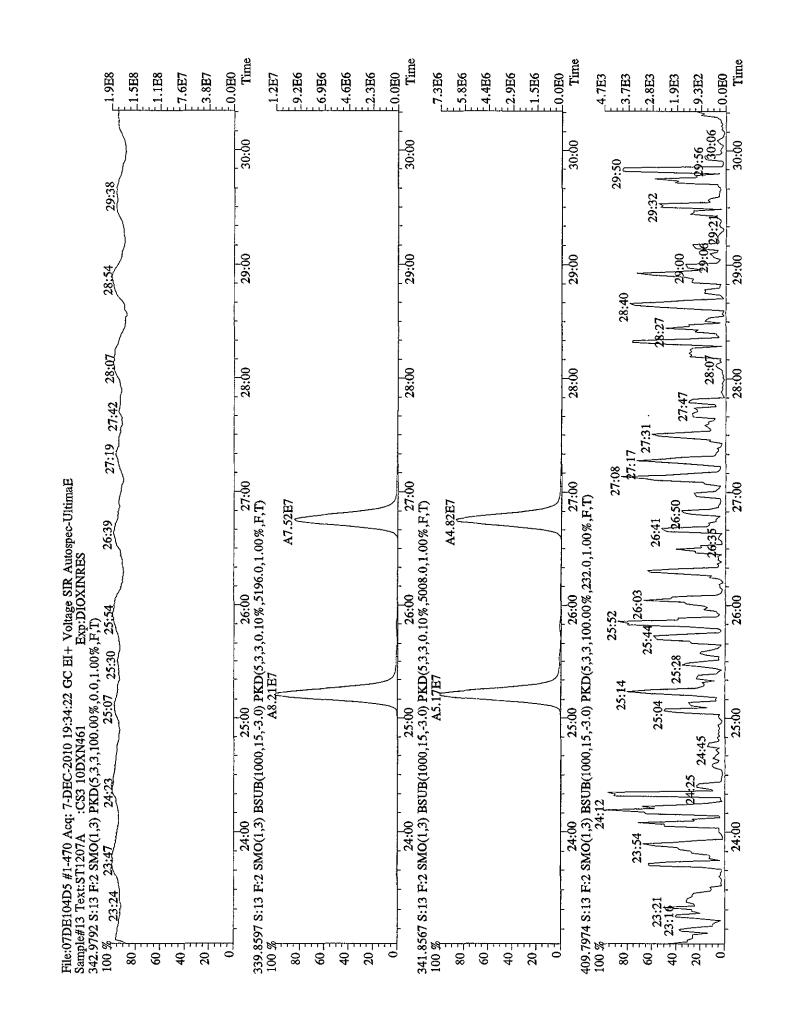


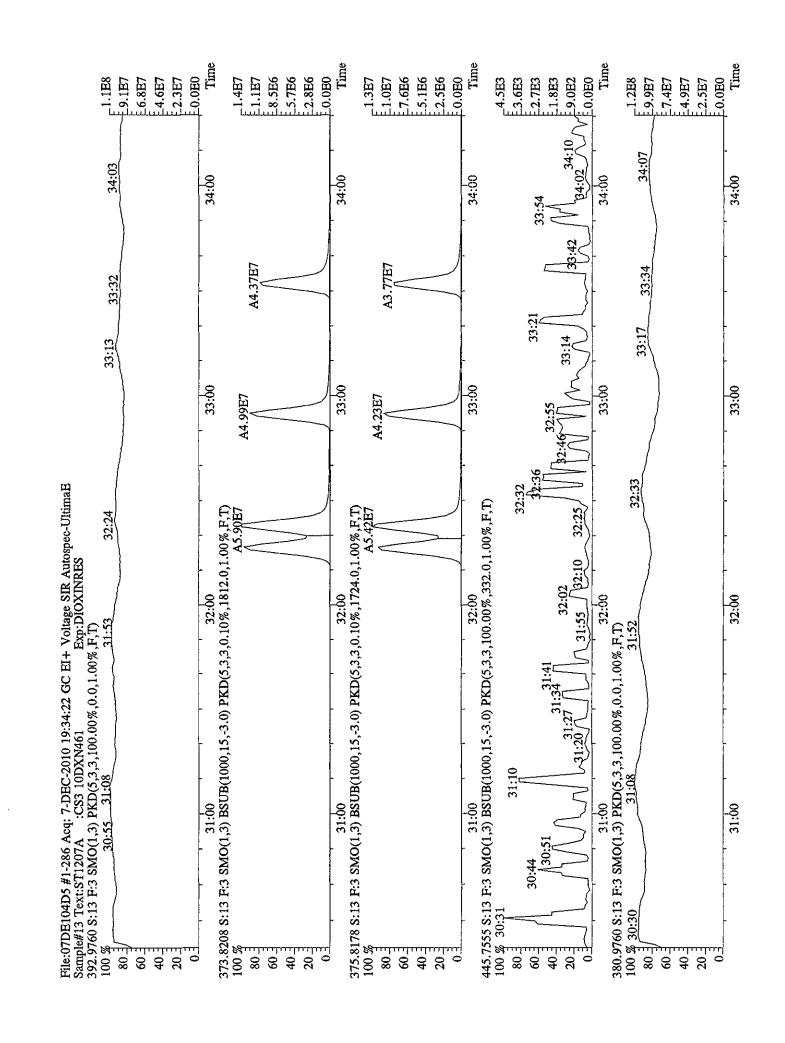


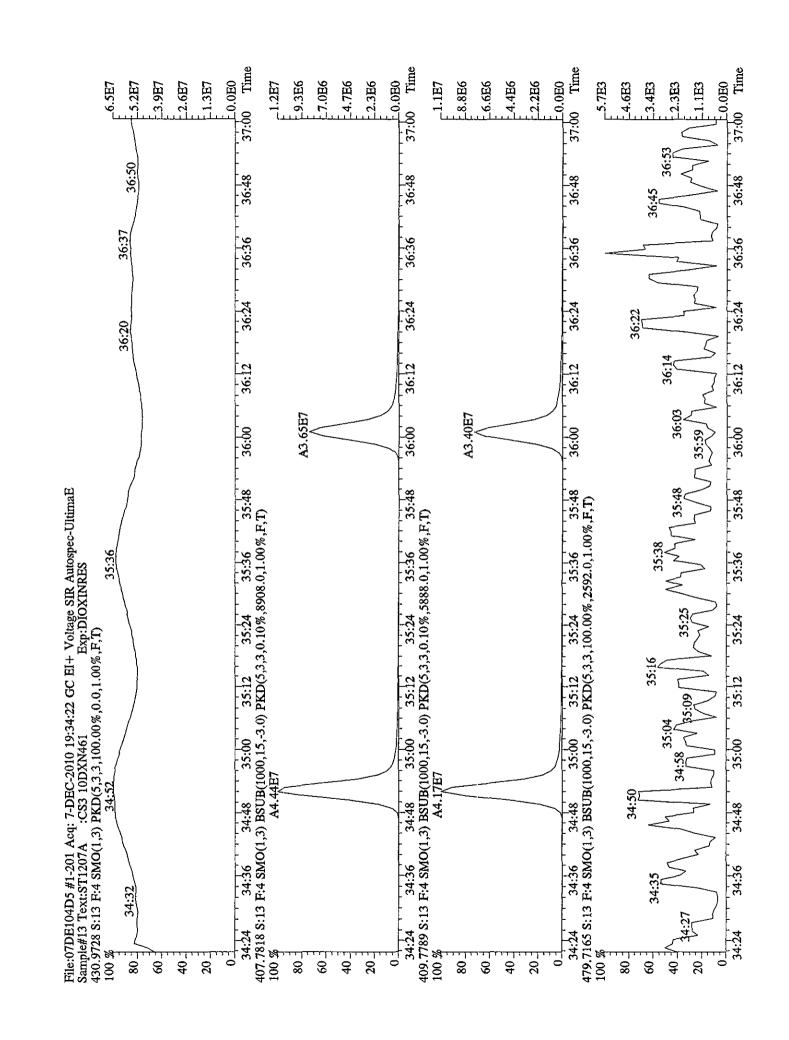


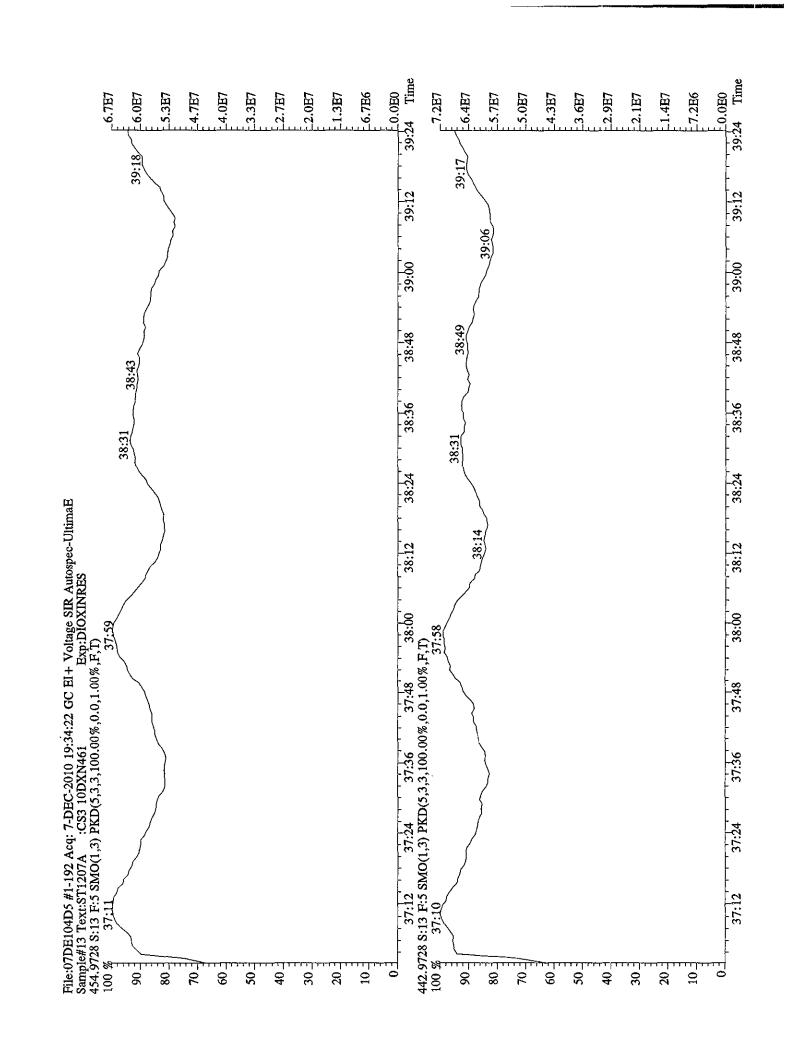












Test America - West Sacramento

Daily Calibration Checklist Dioxin Methods

Method m 109	Associated ICAL, 109 C	772110 405			
Column ID DB5	nstrument ID AD5				
STD ID ST1207 B ST1207C	STD Solution 10 D×1	N461			
Analyzed by Az	Date Analyzed 12-07-	-10 오 12-08-10			
Std. Pkg. By	Date Std. Pkg. Assembled_	12-08-10			
Std. Pkg. Reviewed By NK-	Date Std. Pkg. Reviewed 12-08-10				
DAILY STANDARD PACKAGE	INITIATED	REVIEWED			
Standard, CPSM, and Solvent Blank present?	J	V			
Copy of log-file and Beginning Static Resolution present?	/	. /			
CPSM blow up present?		· v			
Curve Summary present?	. /	✓			
Summary of Method criteria present or documented below?		V			
Daily standard within method specified limits?*	1 (1)	O V			
Analyte retention times correct?	/	√			
Isotopic ratios within limits?	✓ ·	√ .			
CPSM valley ≤ method specified limits?**	/	V			
Are chromatographic windows correct?	✓ /	V			
Samples analyzed within 12 hrs of daily standard?	/	. 1			
Manual reintegration's checked and hardcopies included?		· /			
Ending Standard present?	/	V			
Ending Static Resolutions present	✓	V.			
Absolute retention times for 13C12-1,2,3,4-TCDD and 13C12-1,2,3,7,8,9-HxCDD are within +/- 15 seconds of the retention times in the Initial Calibration? (required for all 1613B samples	NA E)	M			
COMMENTS:					

Method 23: See Method 23 Daily Standard Criteria, Table 5.

Method 1613B: See, Method 1613B or Method 1613B Tetras Daily Standard Criteria,

Method 1613B/8290/TO9 CPSM Criteria: 25% valley between 2378 TCDF (DB-225)/TCDD (DB-5) and its closest cluters normalized to the 2378 peak.

^{*} Method 8290/TO9/M0023A: (beginning) ≤ 20% from curve RRFs for native analytes, ≤ 30% from curve RRFs for labeled compounds.

Method 8290/TO9/M0023A: (ending) ≤ 25% from curve RRFs for native analytes, ≤ 35% from curve RRFs for labeled compounds.

^{**} Method 23/0023A CPSM Criteria: 25% valley between 2378 TCDF (DB-225)/TCDD (DB-5) and its closest eluters normalized to the smallest peak of the triplet

Run text: ST1207B File text: ST1207B :CS3 10DXN461

Run #13 Filename 07DE104D5 S: 15 I: 1

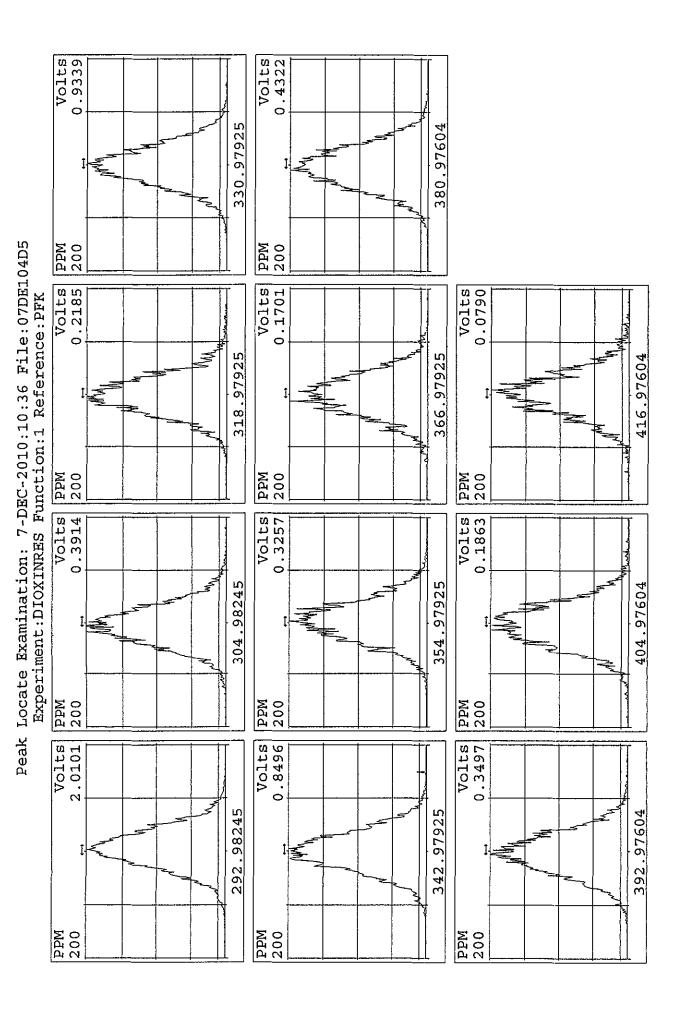
Acquired: 7-DEC-10 21:03:21 Processed: 8-DEC-10 07:53:22 Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D5TO9

Name	Resp	RA	RT	RRF	Amount	Dev'n	Mod?
13C-1,2,3,4-TCDD	222813352	0.80 y	19:55	-	100.00	••	n
13C-2,3,7,8-TCDF	314538272	-	19:19	1.41	100.00	14.8	n
2,3,7,8-TCDF	32931696	0.79 y	19:19	1.05	10.00	5.3	n
Total TCDF	3341482 7	0.95 n	18:17	1.05	10.00	5.3	n
13C-2,3,7,8-TCDD	215938592	-	20:07	0.97	100.00	7.1	n
2,3,7,8-TCDD	22726580	_	20:09	1.05	10.00	7.0	n
Total TCDD	23073246	2.72 n	16:57	1.05	10.00	7.0	n
37C1-2,3,7,8-TCDD	27974458	1.00 у	20:09	1.30	10.00	-2.3	n
13C-1,2,3,7,8-PeCDF	222146680	1.56 y	25:11	1.00	100.00	13.8	n
1,2,3,7,8-PeCDF	125461396	_	25:12	1.13	50.00	4.9	n
2,3,4,7,8-PeCDF	114999028	1.56 y	26:46	1.04	50.00	-1.0	n
Total F2 PeCDF	244988586	1.35 y	23:37	1.08	100.00	2.0	n
Total F1 PeCDF	*	* n	Not Fnd	1.08	100.00	2.0	n
13C-1,2,3,7,8-PeCDD	147739076	_	27:35	0.66	100.00	0.3	n
1,2,3,7,8-PeCDD	79040572	1.54 y	27:37	1.07	50.00	15.6	n
Total PeCDD	79114248	1.30 n	25:31	1.07	50.00	15.6	n
13C-1,2,3,7,8,9-HxCDD	122475976	1.28 y	33:22	-	100.00	-	n
13C-1,2,3,4,7,8-HxCDF	124413440	_	32:16	1.02	100.00	-2.8	n
1,2,3,4,7,8-HxCDF	81165036	_	32:17	1.30	50.00	7.2	n
1,2,3,6,7,8-HxCDF	95426936	_	32:22	1.53	50.00	19.7	n
2,3,4,6,7,8-HxCDF	80268920	_	32:55	1.29	50.00	4.6	n
1,2,3,7,8,9-HxCDF	71363172	_	33:33	1.15	50.00	4.5	n
Total HxCDF	328448576	1.18 y	31:14	1.32	200.00	9.2	n
13C-1,2,3,6,7,8-HxCDD	106880300	_	33:06	0.87	100.00	5.0	n
1,2,3,4,7,8-HxCDD	48862404		33:02	0.91	50.00	-11.8	n
1,2,3,6,7,8-HxCDD	69052934	_	33:07	1.29	50.00	11.1	n
1,2,3,7,8,9-HxCDD	66200664	_	33:23	1.24	50.00	4.8	n
Total HxCDD	184116002	1.21 y	33:02	1.15	150.00	1.9	n
13C-1,2,3,4,6,7,8-HpCDF	101045982	_			100.00		n
	75200028				50.00	10.6	n
1,2,3,4,7,8,9-HpCDF		-			50.00	12.0	n
Total HpCDF	137972790	1.08 Y	34:53	1.36	100.00	11.2	n
13C-1,2,3,4,6,7,8-HpCDD		_	35:40		100.00	-10.7	n
1,2,3,4,6,7,8-HpCDD	50075074	_			50.00	3.4	n
Total HpCDD	50371855	0.85 n	35:08	1.11	50.00	3.4	n
13C-OCDD	127514060	0.91 y	38:15	0.52	200.00	-16.0	n
OCDF	96263948	0.91 y	38:22	1.51	100.00	10.2	n
OCDD	77970416	0.91 y	38:15	1.22	100.00	2.0	n

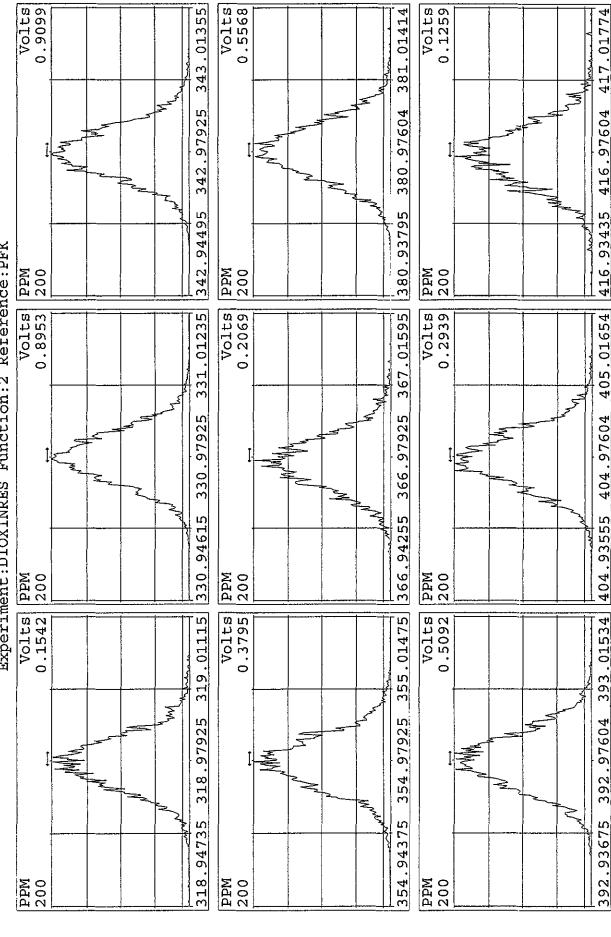
Run text: ST1207C File text: ST1207C :CS3 10DXN461

Run #17 Filename 07DE104D5 S: 29 I: 1
Acquired: 8-DEC-10 07:26:46 Processed: 8-DEC-10 09:00:36
Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D5TO9

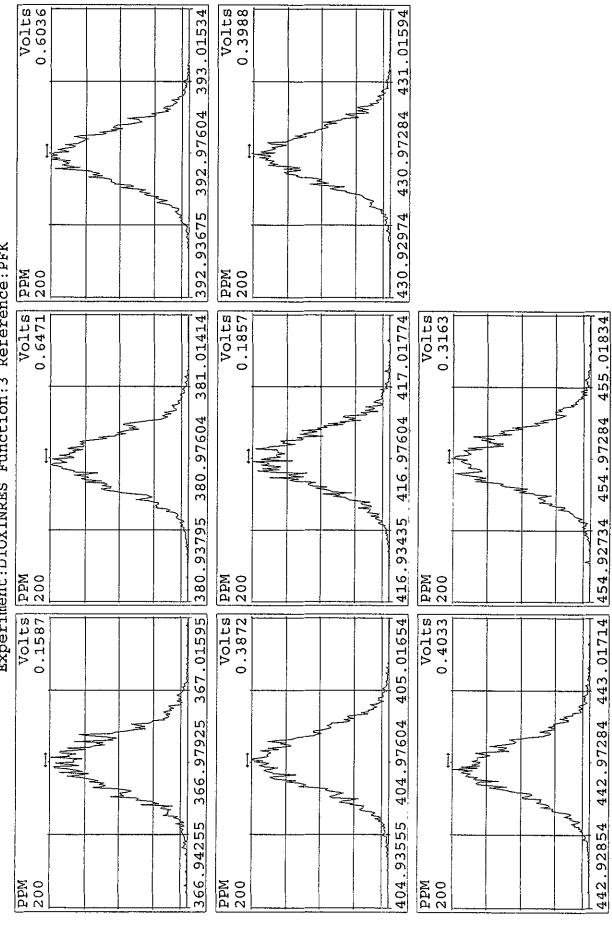
	_				_		_
Name	Resp	RA	RT	RRF	Amount	Dev'n	Mod?
13C-1,2,3,4-TCDD	213215496	0.81 y	19:55		100.00		n
13C-2,3,7,8-TCDF	287925320	0.81 y	19:19	1.35	100.00	9.8	.
2,3,7,8-TCDF	30076573	0.78 y		1.04	10.00	5.0	n
Total TCDF	30671972	0.76 y		1.04	10.00		n
TOCAL TODA	306/19/2	U.76 y	TO:T\	1.04	10.00	5.0	n
13C-2,3,7,8-TCDD	208175384	0.81 y	20:07	0.98	100.00	7.9	n
2,3,7,8-TCDD	21961753	0.77 y		1.05	10.00	7.3	n
Total TCDD	22094651	0.73 y		1.05	10.00	7.3	n
						, , ,	
37C1-2,3,7,8-TCDD	27137796	1.00 y	20:09	1.30	10.00	-1.7	n
		-					
13C-1,2,3,7,8-PeCDF	207097944	1.58 y	25:11	0.97	100.00	10.9	n
1,2,3,7,8-PeCDF	117000700	1.59 y	25:13	1.13	50.00	4.9	n
2,3,4,7,8-PeCDF	108287168	1.57 y	26:46	1.05	50.00	0.0	n
Total F2 PeCDF	227153762	1.96 n	23:36	1.09	100.00	2.5	n
Total F1 PeCDF	*	* n	NotFnd	1.09	100.00	2.5	n
13C-1,2,3,7,8-PeCDD	135549800	1.67 y	27:34	0.64	100.00	-3.8	n
1,2,3,7,8-PeCDD	73941266	1.53 y	27:37	1.09	50.00	17.9	n
Total PeCDD	73941266	1.53 y	27:37	1.09	50.00	17.9	n
13C-1,2,3,7,8,9-HxCDD	113121160	1.26 y	33:22	-	100.00	-	n
13C-1,2,3,4,7,8-HxCDF	110690792	0.50 y		0.98	100.00	-6.3	n
1,2,3,4,7,8-HxCDF	71835186	1.21 y		1.30	50.00	6.6	n
1,2,3,6,7,8-HxCDF	85814208	1.10 y	32:22	1.55	50.00	21.0	n T
2,3,4,6,7,8-H x CDF	76426872	1.14 y	32:55	1.38	50.00	12.0	n
1,2,3,7,8,9-HxCDF	65754280	1.15 y	33:32	1.19	50.00	8.2	n
Total HxCDF	299974778	0.85 n	31:13	1.35	200.00	12.2	n
120 1 2 2 6 7 0 11-000	07242148	1 20	22.06	0.86	100 00	2 5	-
13C-1,2,3,6,7,8-HxCDD	97243148 47560400	1.28 y		0.88	100.00 50.00	3.5	n
1,2,3,4,7,8-HxCDD		1.24 y		1.26		-5.7	Y
1,2,3,6,7,8-HxCDD	61071800	1.27 y			50.00	8.0	У
1,2,3,7,8,9-HxCDD	61073100	1,27 y		1.26	50.00	6.3	n
Total HxCDD	169705300	1.24 Y	33:02	1.16	150.00	3.2	У
13C-1,2,3,4,6,7,8-HpCDF	92573958	0.43 y	34:52	0.82	100.00	-10.1	n
1,2,3,4,6,7,8-HpCDF	69849984	1.07 y		1.51	50.00	12.1	n
1,2,3,4,0,7,8-HpCDF	57425612	_	36:01		50.00	13.5	n
Total HpCDF	127275596	1.00 y 1.07 y		1.37	100.00	12.7	n
TOCAL HPCDF	12/2/5596	1.07 y	34:33	1.37	100.00	12.7	11
13C-1,2,3,4,6,7,8-HpCDD	82815052	1.07 y	35:40	0.73	100.00	-11.4	n
1,2,3,4,6,7,8-HpCDD	46457622	1.01 y		1.12	50.00	4.7	n
Total HpCDD	46717767	1.11 y		1.12	50.00	4.7	n
rocar inpobb	20,2,,0,	~ · ~ * y	JJ.00	2	50.00	± • ·	••
13C-OCDD	120042476	0.91 y	38:14	0.53	200.00	-14.4	n
OCDF	90032364	0.92 y		1.50	100.00	9.5	n
OCDD	73397864	0.90 y		1.22	100.00	2.0	n
	· -	- 4					

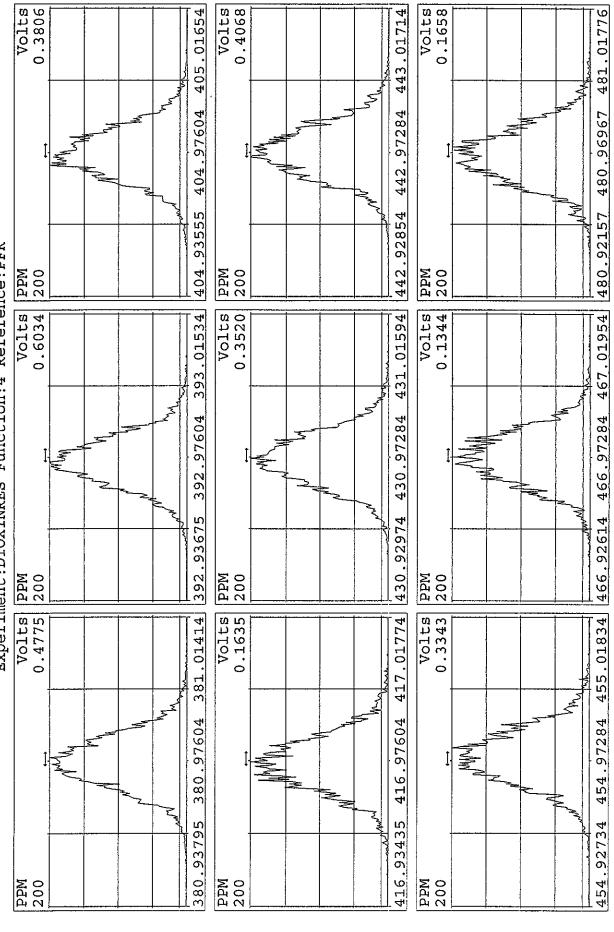

Kun text: ST1207C File text: ST1207C :CS3 10DXN461
Run #17 Filename 07DE104D5 S: 29 I: 1

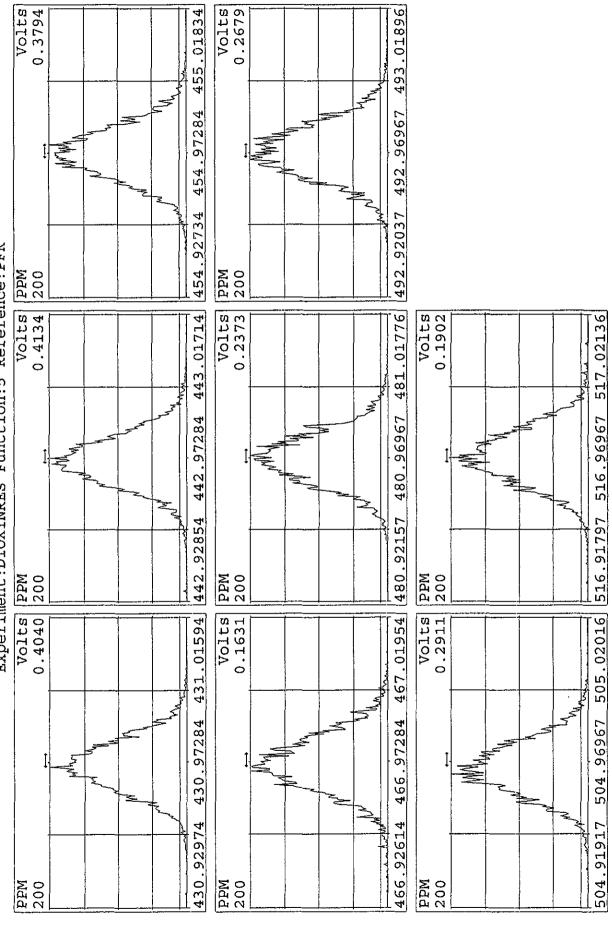
Acquired: 8-DEC-10 07:26:46 Processed: 8-DEC-10 09:00:36 Run: 07DE104D5 Analyte: TO9 Cal: TO90721104D5 Results: 07DE104D5TO9


Name	Resp	RA	RT	RRF	Amount	Dev'n	Mod?
13C-1,2,3,4-TCDD	213215496	0.81 y	19:55	-	100.00	_	n
13C-2,3,7,8-TCDF	287925320	_	19:19		100.00	9.8	n
2,3,7,8-TCDF	30076573	0.78 y		1.04	10.00	5.0	n
Total TCDF	30671972	0.76 y	18:17	1.04	10.00	5.0	n
13C-2,3,7,8-TCDD	208175384	0.81 y			100.00	7.9	n
2,3,7,8-TCDD	21961753	0.77 y		1.05	10.00	7.3	n
Total TCDD	22094651	0.73 y	18:51	1.05	10.00	7.3	n
2701-2 2 7 0 mann	27127706	1 00 **	20.00	1 20	10.00	1 17	
37C1-2,3,7,8-TCDD	27137796	1.00 y	20:09	1.30	10.00	-1.7	n
13C-1,2,3,7,8-PeCDF	207097944	1.58 y	25 - 11	0.97	100.00	10.9	n
1,2,3,7,8-PeCDF	117000700	1.59 y		1.13	50.00	4.9	n
2,3,4,7,8-PeCDF	108287168	1.57 y		1.05	50.00	0.0	n
Total F2 PeCDF	227153762	1.96 n		1.09	100.00	2.5	n
Total F1 PeCDF	*		NotFnd	1.09	100.00	2.5	n
# - P - P - P - P - P - P - P - P - P -		•				5	••
13C-1,2,3,7,8-PeCDD	135549800	1.67 y	27:34	0.64	100.00	-3.8	n
1,2,3,7,8-PeCDD	73941266	1.53 y			50.00	17.9	n
Total PeCDD	73941266	1.53 y	27:37	1.09	50.00	17.9	n
		-					
13C-1,2,3,7,8,9-HxCDD	113121160	1.26 y	33:22	-	100.00	~	n
13C-1,2,3,4,7,8-HxCDF	110690792	_	32:16		100.00	-6.3	n
1,2,3,4,7,8-HxCDF	71835186	1.21 y	32:17	1.30	50.00	6.6	n
1,2,3,6,7,8-HxCDF	85814208	-	32:22	1.55	50.00	21.0	n
	76426872	-	32:55	1.38	50.00	12.0	n
1,2,3,7,8,9-HxCDF	65754280	-	33:32	1.19	50.00	8.2	n
Total HxCDF	299974778	0.85 n	31:13	1.35	200.00	12.2	n
13C-1,2,3,6,7,8-HxCDD	97243148	1.28 y	22.06	0.86	100.00	2 5	~
1,2,3,4,7,8-HxCDD	44285208	$1.44(\tilde{n})$		0.86	50.00	3.5 -12.2	n n
1,2,3,4,7,8-HxCDD	60389242	1.13 y	33:07	1.24	50.00	6.8	n
1,2,3,6,7,8-HXCDD	61073050	1.13 y 1.27 y	33:07	1.24	50.00	6.3	n
Total HxCDD	165747500	1.27 y 1.44 n	33:22	1.14	150.00	0.8	n
Total Incoo	103/4/500	T.11	55.02	T • T #	150.00	0.0	11
13C-1,2,3,4,6,7,8-HpCDF	92573958	0.43 y	34:52	0.82	100.00	-10.1	n
1,2,3,4,6,7,8-HpCDF	69849984	_	34:53	1.51	50.00	12.1	n
1,2,3,4,7,8,9-HpCDF	57425612	_	36:01	1.24	50.00	13.5	n
Total HpCDF	127275596	_	34:53	1.37	100.00	12.7	n
13C-1,2,3,4,6,7,8-HpCDD	82815052	1.07 y	35:40	0.73	100.00	-11.4	n
1,2,3,4,6,7,8-HpCDD	46457622	1.01 y	35:41	1.12	50.00	4.7	n
Total HpCDD	46717767		35:08	1.12	50.00	4.7	n
-		*					
13C-OCDD	120042476	0.91 y	38:14	0.53	200.00	-14.4	n
OCDF	90032364		38:21	1.50	100.00	9.5	n
OCDD	73397864	0.90 y	38:14	1.22	100.00	2.0	n

Data file	Smp	Work Order	Sample ID	FV-uL	Method/Matrix	Box	Size	Ü
07DE104D5	1	CP1207	DB-5 CPSM 10LRES076				1.00000	
07DE104D5	2	ST1207	CS3 10DXN461				1.00000	
07DE104D5	3	MAVWM-1-AA	G0L020446-1MB	20	TO9/AIR	30	0.50000	SAM
07DE104D5	4	MAV34-1-AA	G0L040422-2	20	8290/SOLID		15.04000	ā.
07DE104D5	5	MAV35-1-AA	G0L040422-3	20	8290/SOLID		15.06000	Ġ.
07DE104D5	6	MAV36-1-AA	G0L040422-4	20	8290/SOLID		15.05000	g
07DE104D5	7	MAV37-1-AA	G0L040422-5	20	8290/SOLID		15.03000	Ċ.
07DE104D5	8	MATLN-1-AA	G0L030456-1	20	8290/SOLID		15.08000	<u>ā</u>
07DE104D5	9	MATLN-1-AD	G0L030456-1MS	20	8290/SOLID		15.01000	Ĝ
07DE104D5	10	MATLN-1-AE	G0L030456-1MSD	20	8290/SOLID		15.04000	Çi
07DE104D5	11	MAVWM-1-AC	G0L020446-1LCS	20	TO9/AIR	30	0.50000	SAM
07DE104D5	12	MAVWM-1-AD	G0L020446-1DCS	20	TO9/AIR		0.50000	SAM
07DE104D5	13	ST1207A	CS3 10DXN461				1.00000	
07DE104D5	14	CP1207A	DB-5 CPSM 10LRES076				1.00000	
07DE104D5	15	ST1207B	CS3 10DXN461				1.00000	
07DE104D5	16	MAXGD-1-AA	G0L030524-1MB	20	8290/SOLID	31	10.00000	Ĝ
07DE104D5	17	MAQQV-1-AA	G0L020446-1	20	TO9/AIR	30	0.50000	SAM
07DE104D5	18	MAQQ6-1-AA	G0L020446-5	20	TO9/AIR		0.50000	SAM
07DE104D5	19	MAQRD-1-AA	G0L020446-8	20	TO9/AIR		0.50000	SAM
07DE104D5	20	MAT63-1-AD	G0L030524-1	20	8290/SOLID	31	10.98000	Ġ.
07DE104D5	21	MAFFX-1-AA	G0K220529-10 (25X)	20	8290/WASTE	25	0.10000	Ĝ
07DE104D5	22	MAT9E-1-AF	F0L030530-1	20	8290/SOLID	31	10.03500	_
'DE104D5	23	MAT9K-1-AM	F0L030530-2	20	8290/SOLID		10.48500	g
_/DE104D5	24	MAT9K-1-AN	F0L030530-2MS	20	8290/SOLID		10.21500	~
07DE104D5	25	MAT9K-1-AP	F0L030530-2MSD	20	8290/SOLID		10.00500	-
07DE104D5	26	MAT9M-1-AF	F0L030530-3	20	8290/SOLID		10.49500	~
07DE104D5	27	MAT9Q-1-AF	F0L030530-4	20	8290/SOLID		10.37500	_
07DE104D5	28	MAXGD-1-AC	G0L030524-1LCS	20	8290/SOLID	31	10.00000	Ĝ.
07DE104D5	29	ST1207C	CS3 10DXN461				1.00000	
07DE104D5	30						1.00000	
07DE104D5	31						1.00000	
07DE104D5	32						1.00000	
07DE104D5	33		AS 12-07-10				1.00000	


Logfile 116


Peak Locate Examination: 7-DEC-2010:10:37 File:07DE104D5 Experiment:DIOXINRES Function: 2 Reference:PFK


Peak Locate Examination: 7-DEC-2010:10:37 File:07DE104D5 Experiment:DIOXINRES Function: 3 Reference:PFK

Peak Locate Examination: 7-DEC-2010:10:37 File:07DE104D5 Experiment:DIOXINRES Function:4 Reference:PFK

Peak Locate Examination: 7-DEC-2010:10:37 File:07DE104D5 Experiment:DIOXINRES Function:5 Reference:PFK

Volts 1.0323 380.97604 380.97604 380.97604 PPM 200

SIRLM Examination: 7-DEC-2010:19:30 File:07DE104D5 Experiment:DIOXINRES Function:6

Volts 0.6282 304.98251 304.98251 304.98251 PPM 200

SIRLM Examination: 7-DEC-2010:19:31 File:07DE104D5 Experiment:DIOXINRES Function:7

Volts 0.9015 380.97604 380.97604 380.97604 PPM 200

SIRLM Examination: 7-DEC-2010:20:14 File:07DE104D5 Experiment:DIOXINRES Function:6

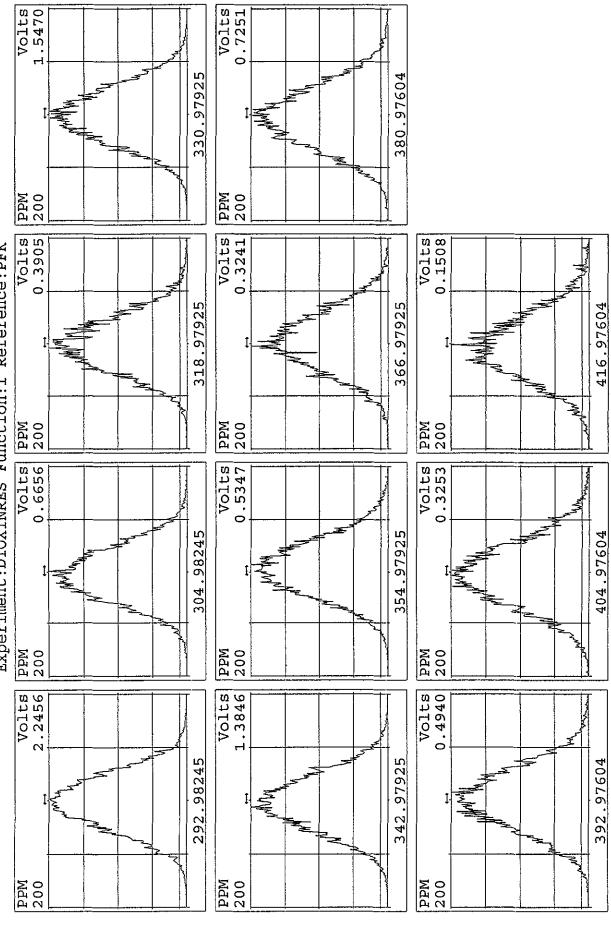
Volts 0.5777 380.97604 SIRLM Examination: 7-DEC-2010:20:16 File:07DE104D5 Experiment:DIOXINRES Function:7 304.98251 380.97604 PPM 200

Volts 0.9074 380.97604 380.97604 380.97604 PPM 200

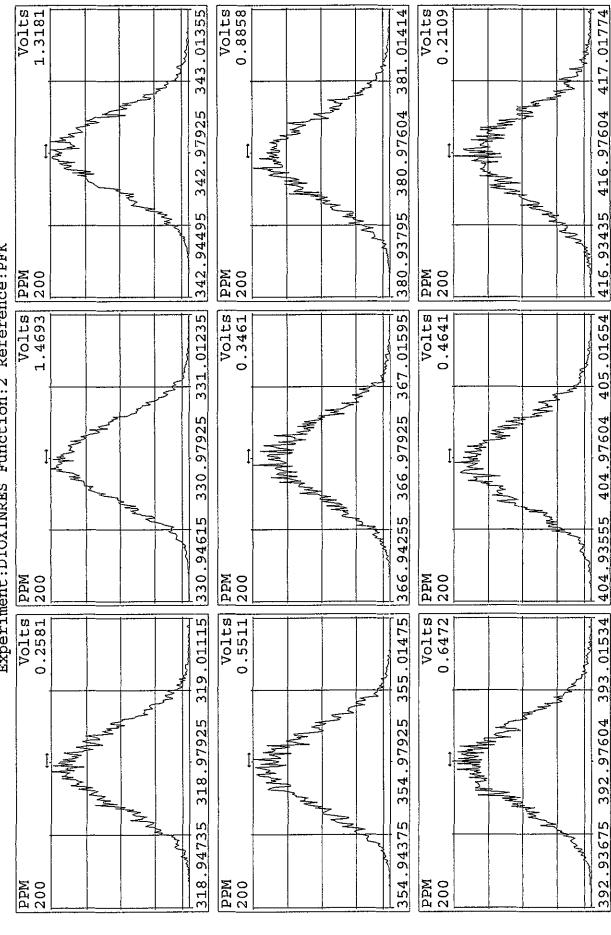
SIRLM Examination: 7-DEC-2010:20:59 File:07DE104D5 Experiment:DIOXINRES Function:6

Volts 0.6793 380.97604 304.98251 380.97604 PPM 200

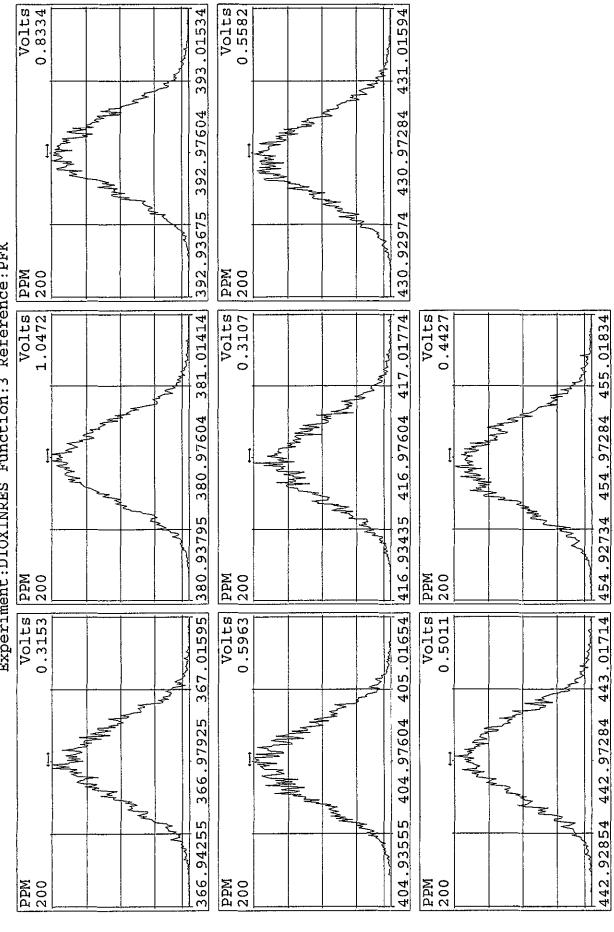
SIRLM Examination: 7-DEC-2010:21:00 File:07DE104D5 Experiment:DIOXINRES Function:7

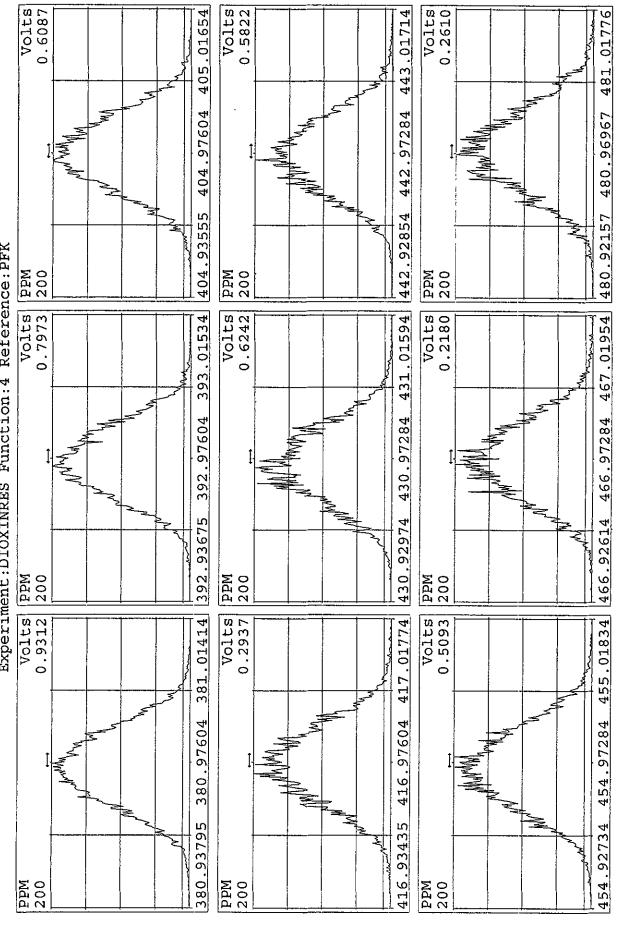

Volts 0.8942 380.97604 380.97604 380.97604 PPM 200

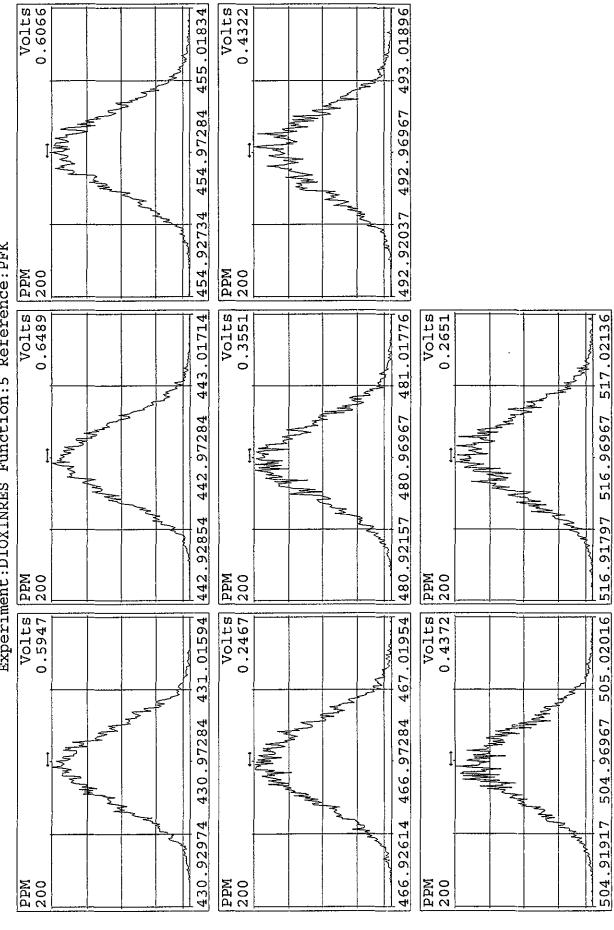
SIRLM Examination: 7-DEC-2010:21:43 File:07DE104D5 Experiment:DIOXINRES Function:6

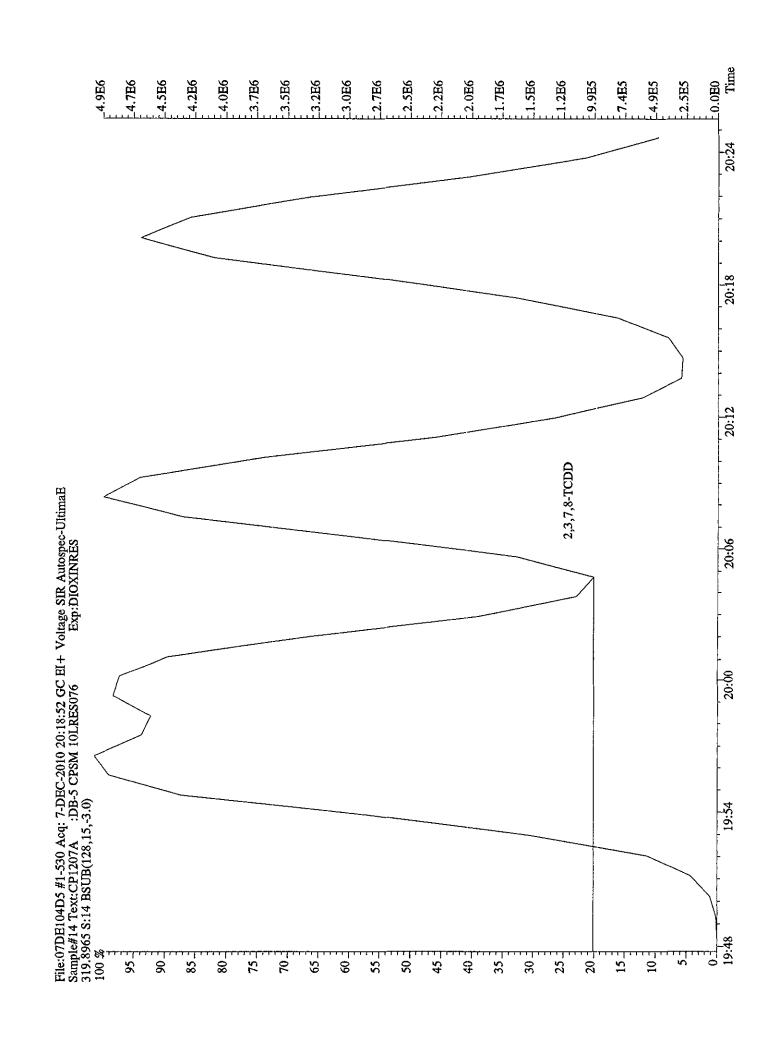

Volts 0.5241 380.97604 304.98251 380.97604 PPM 200

SIRLM Examination: 7-DEC-2010:21:45 File:07DE104D5 Experiment:DIOXINRES Function:7


Peak Locate Examination: 8-DEC-2010:08:16 File:07DE104D5ENDRES Experiment:DIOXINRES Function:1 Reference:PFK

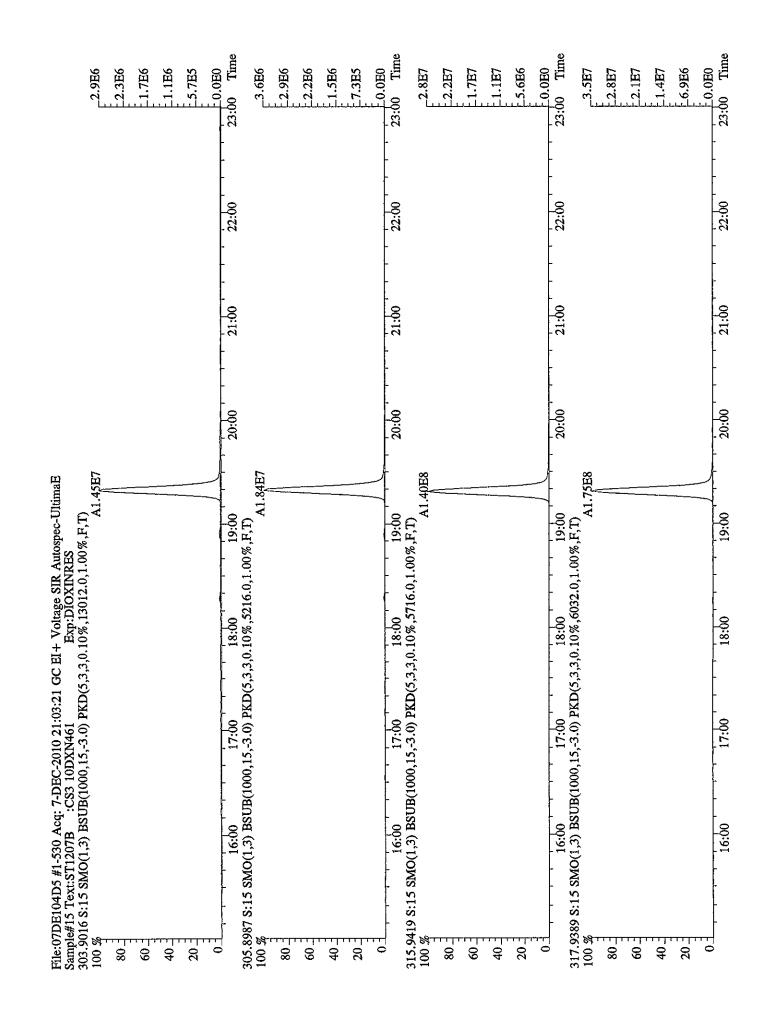

Peak Locate Examination: 8-DEC-2010:08:16 File:07DE104D5ENDRES Experiment:DIOXINRES Function:2 Reference:PFK

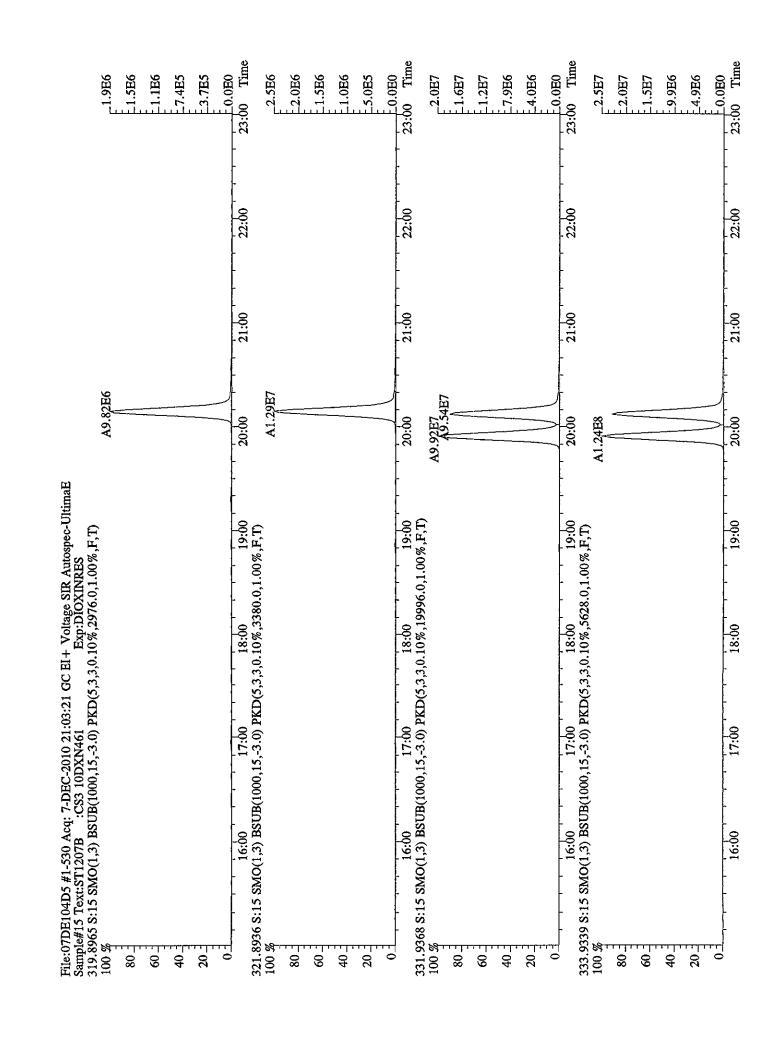

Peak Locate Examination: 8-DEC-2010:08:16 File:07DE104D5ENDRES Experiment:DIOXINRES Function:3 Reference:PFK

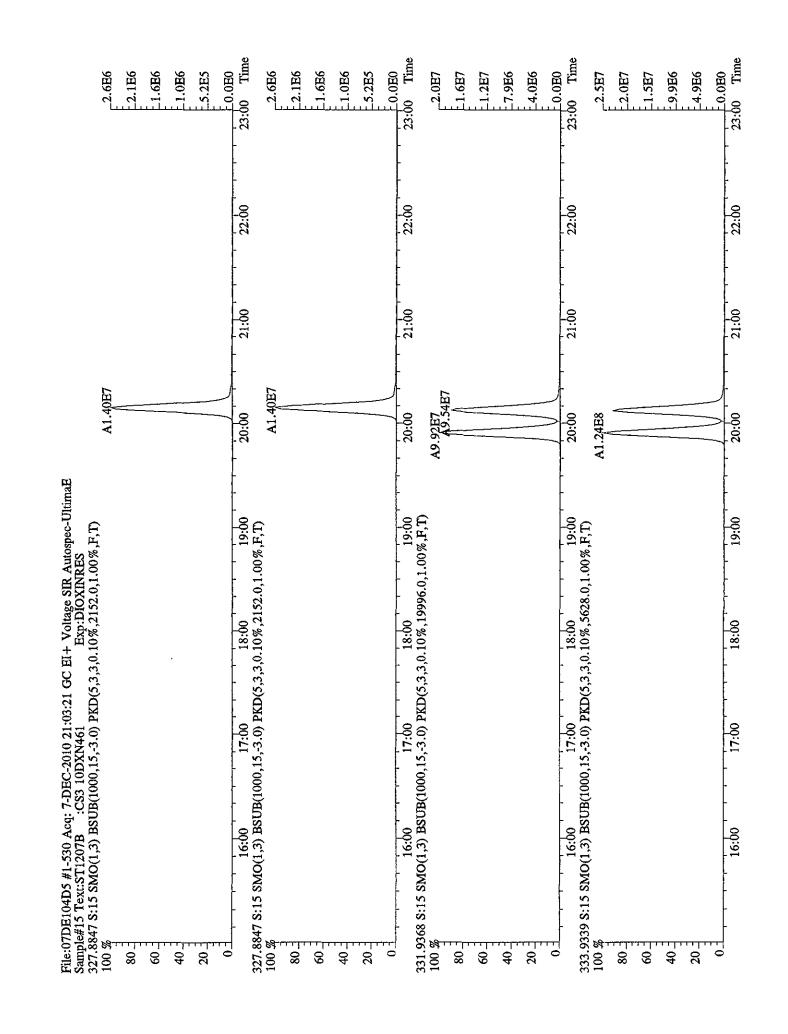


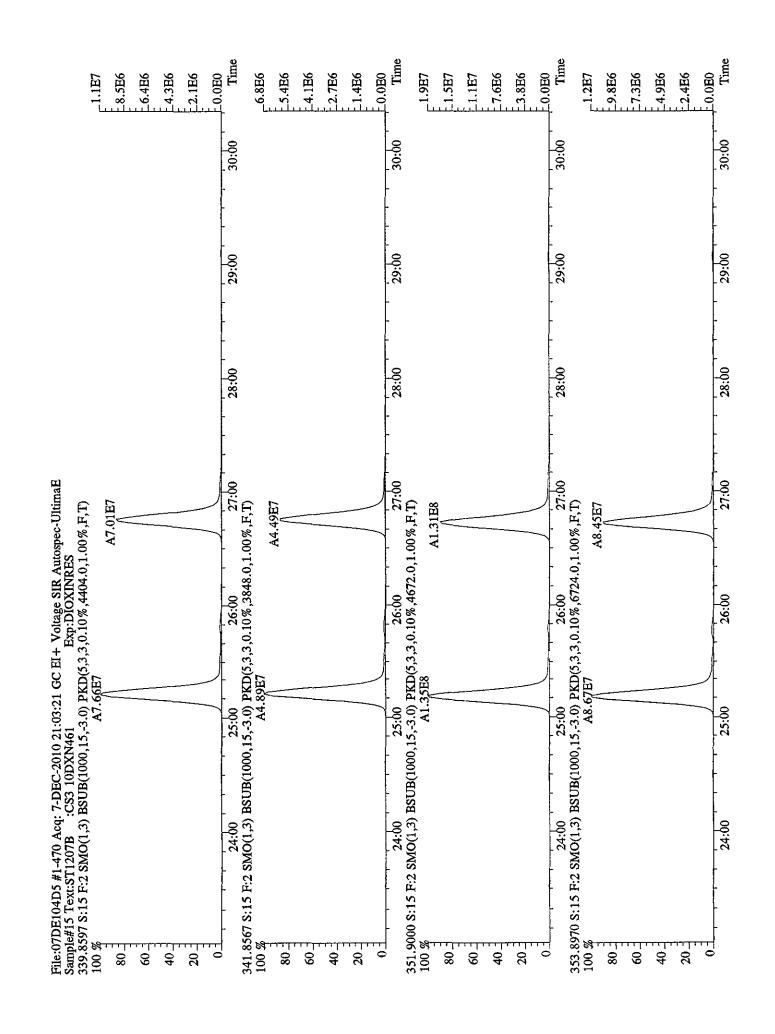
Peak Locate Examination: 8-DEC-2010:08:17 File:07DE104D5ENDRES Experiment:DIOXINRES Function:4 Reference:PFK

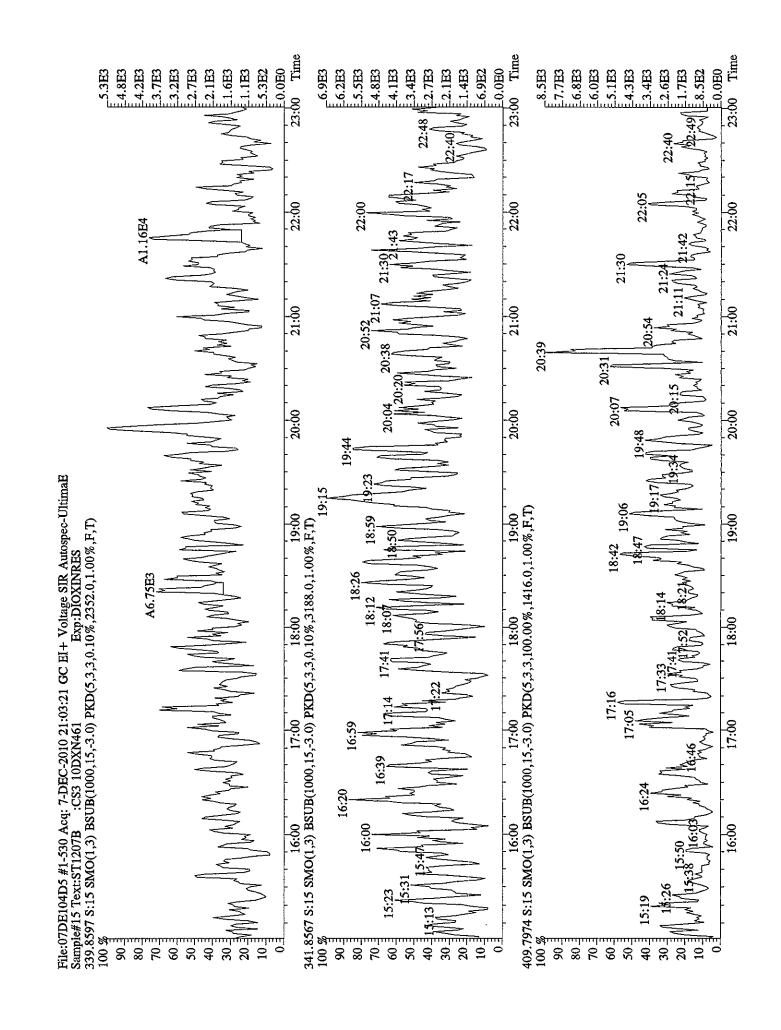
Peak Locate Examination: 8-DEC-2010:08:17 File:07DE104D5ENDRES Experiment:DIOXINRES Function:5 Reference:PFK

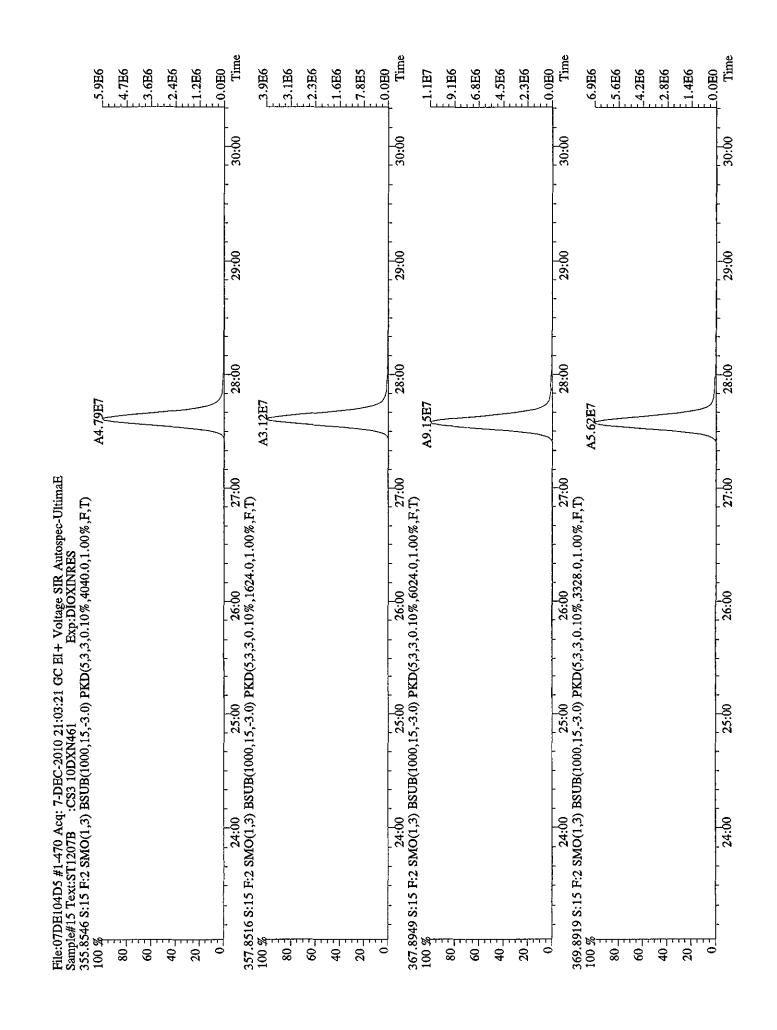


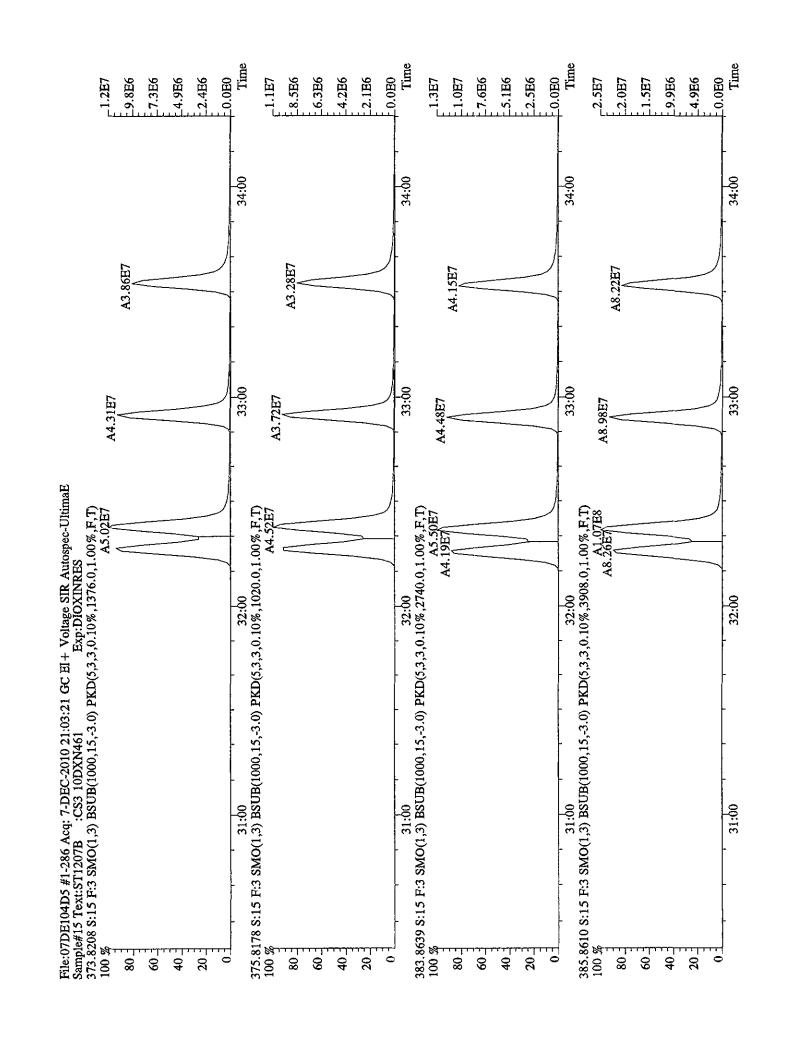


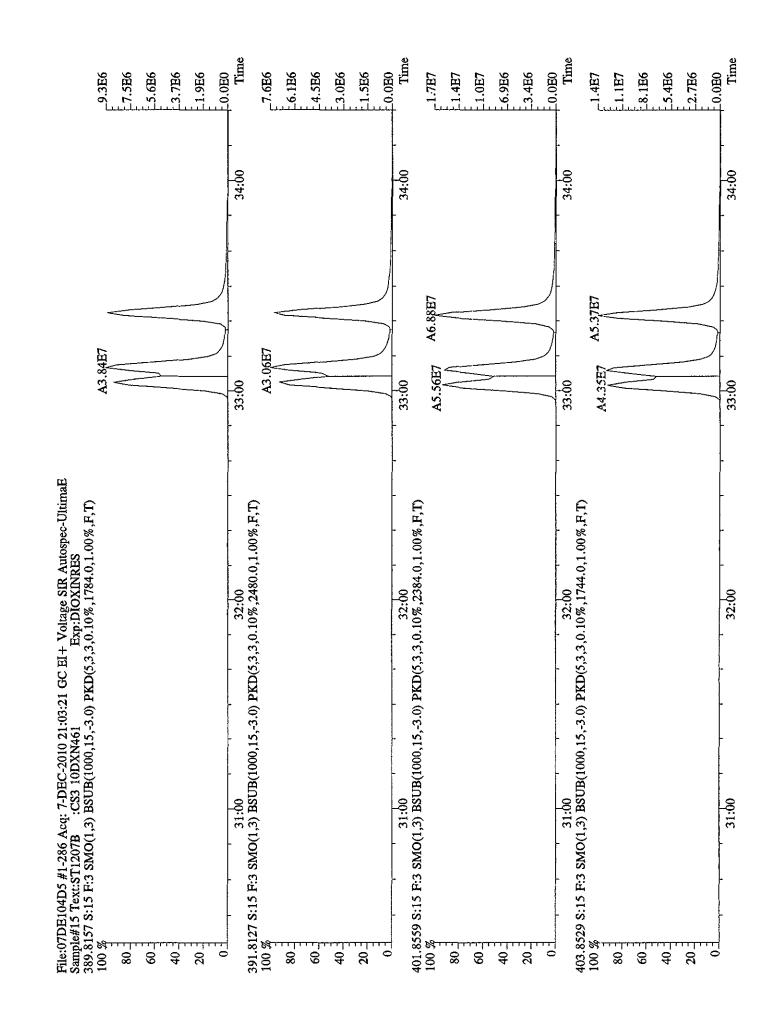

Cal: T090721104D5 Run: 07DE104D5 Analyte: TO9

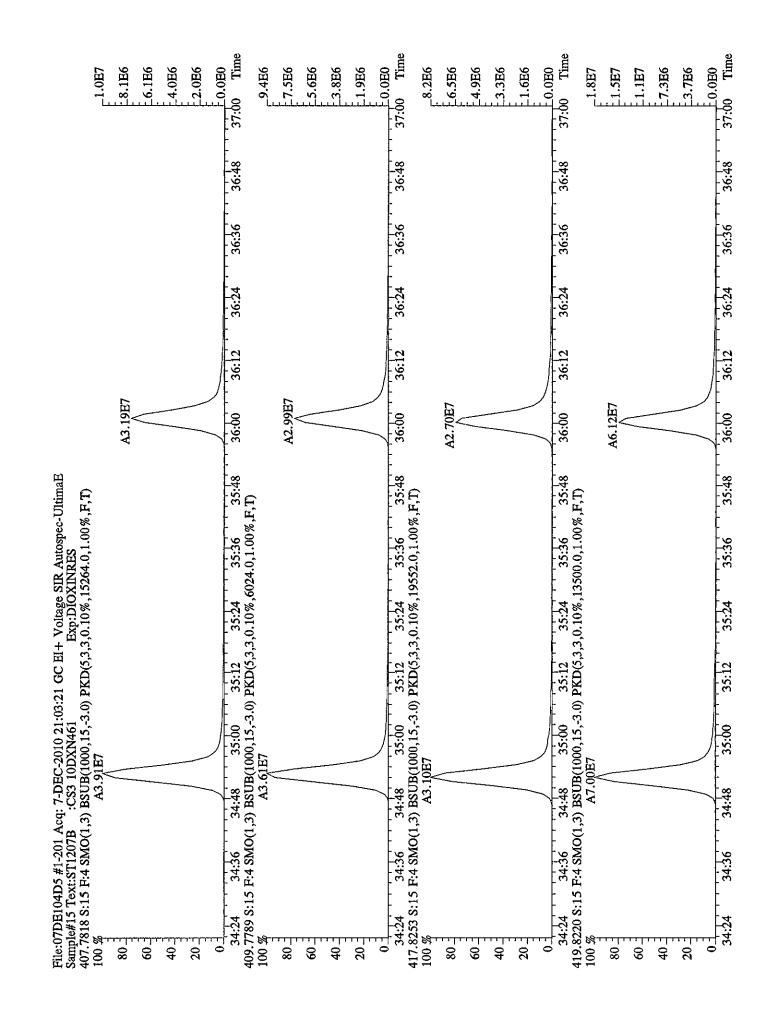

ST0721C : CS-3 10DXN336 ST0721B :CS-2 10DXN334 ST0721A :CS-1 10DXN342

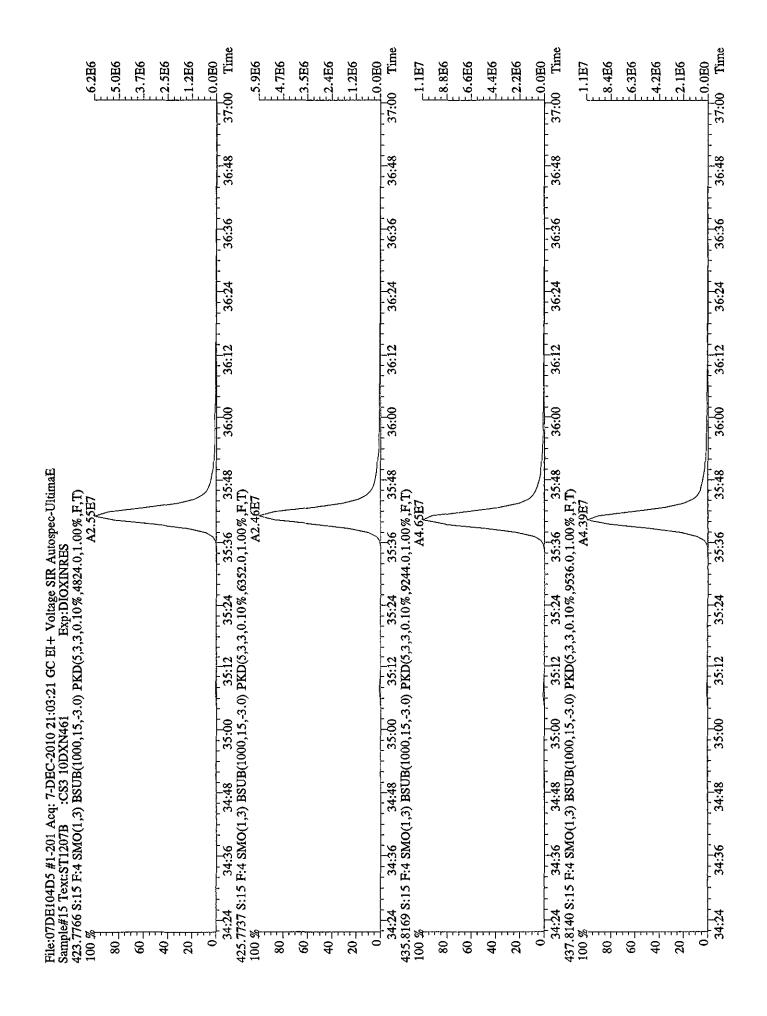

1.23	1.24	1.21	0.86	1.38	1.13	1.26	0.79	1.10	1.10	0.59	1.41	1.19
1.12	1.25	1.18	0.87	1.35	1.13	1.24	0.76	1.09	1.09	09.0	1.39	1.17
1.10	1.12	1.06	0.92	1.35	1.11	1.23	0.83	1.07	1.07	0.63	1.35	1.16
1.23	1.16	1.12	0.91	1.34	1.09	1.21	0.85	1.03	1.03	0.63	1.35	1.17
1.14	1.15	1.06	66.0	1.31	1.01	1.16	0.89	1.07	1.07	99.0	1.36	1.31
5.18 %	4.86 %	5.93 %		1.99 %		3.05 %		2.61 %	2.61 %		1.98 %	
0.060	0.057	0.067	0.051	0.027	0.049	0.037	0.049	0.028	0.028	0.029	0.027	0.066
1.163	1.182	1.127	0.910	1.346	1.093	1.220	0.827	1.072	1.072	0.620	1.370	1.199
1,2,3,6,7,8-HxCDD	1,2,3,7,8,9-HxCDD	Total HxCDD	13C-1,2,3,4,6,7,8-HpCDF	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	Total HpCDF	13C-1,2,3,4,6,7,8-HpCDD	1,2,3,4,6,7,8-HpCDD	Total HpCDD	13C-OCDD	OCDF	OCDD

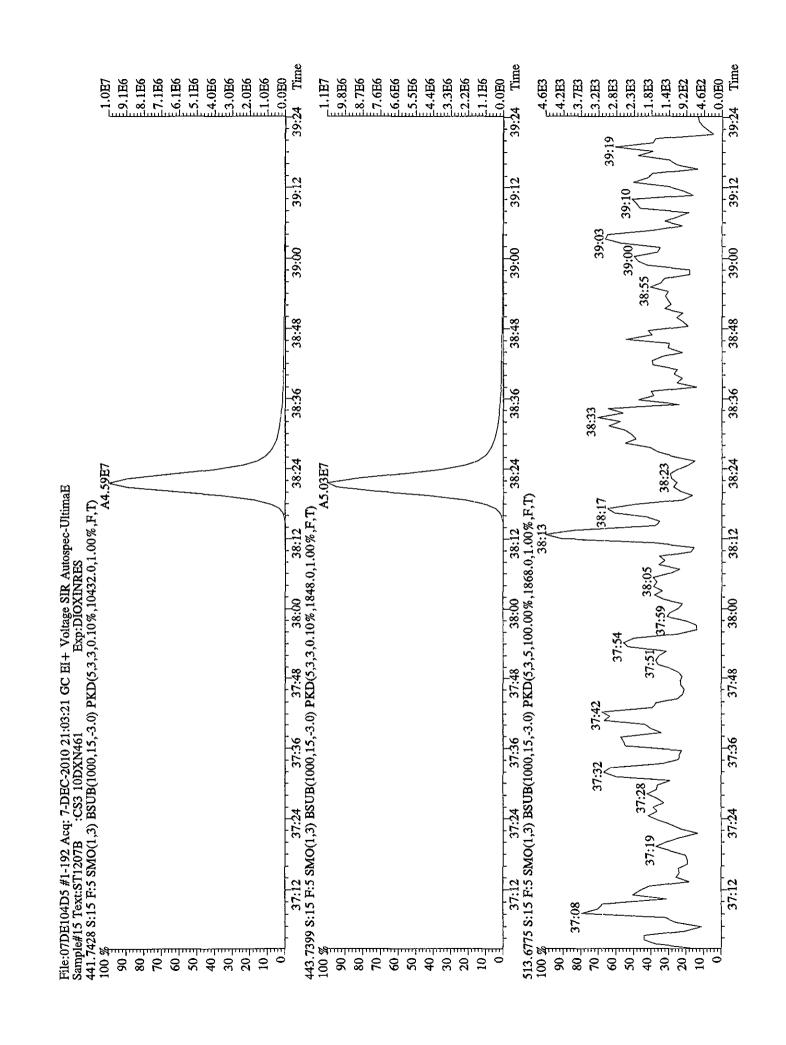


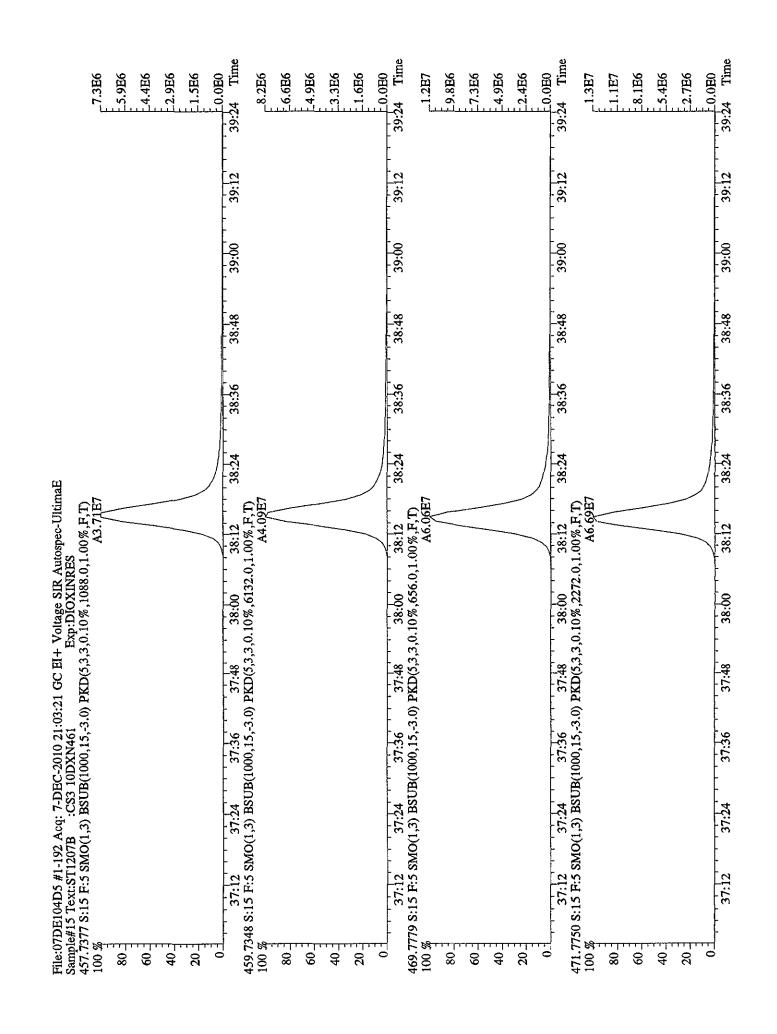


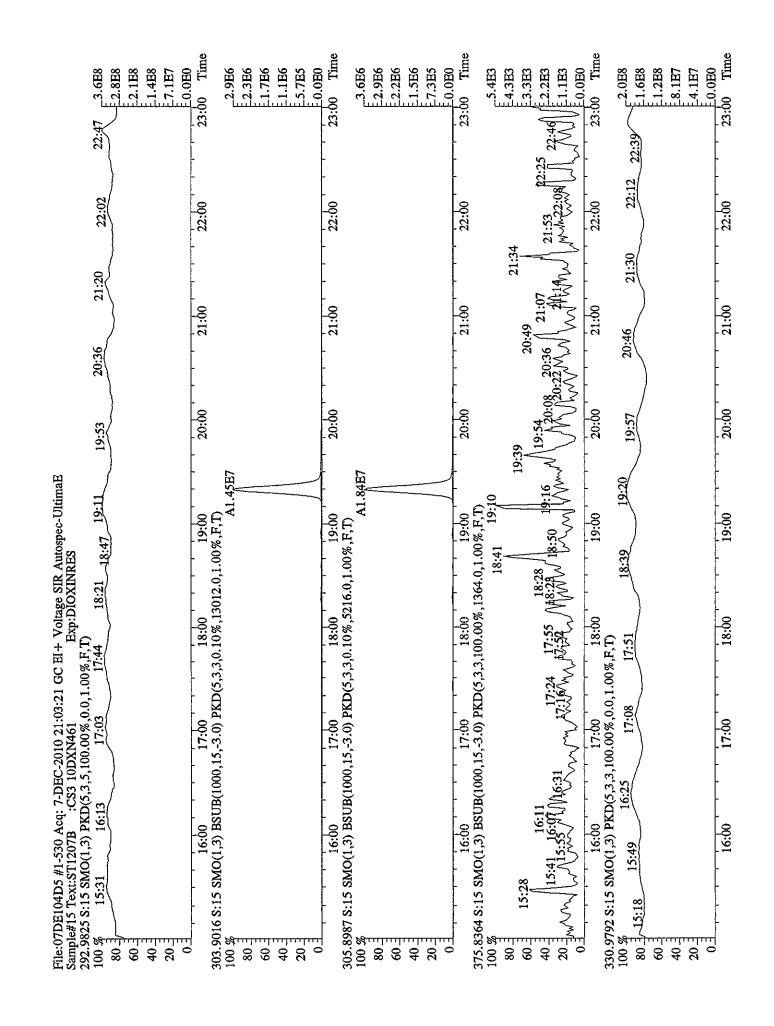


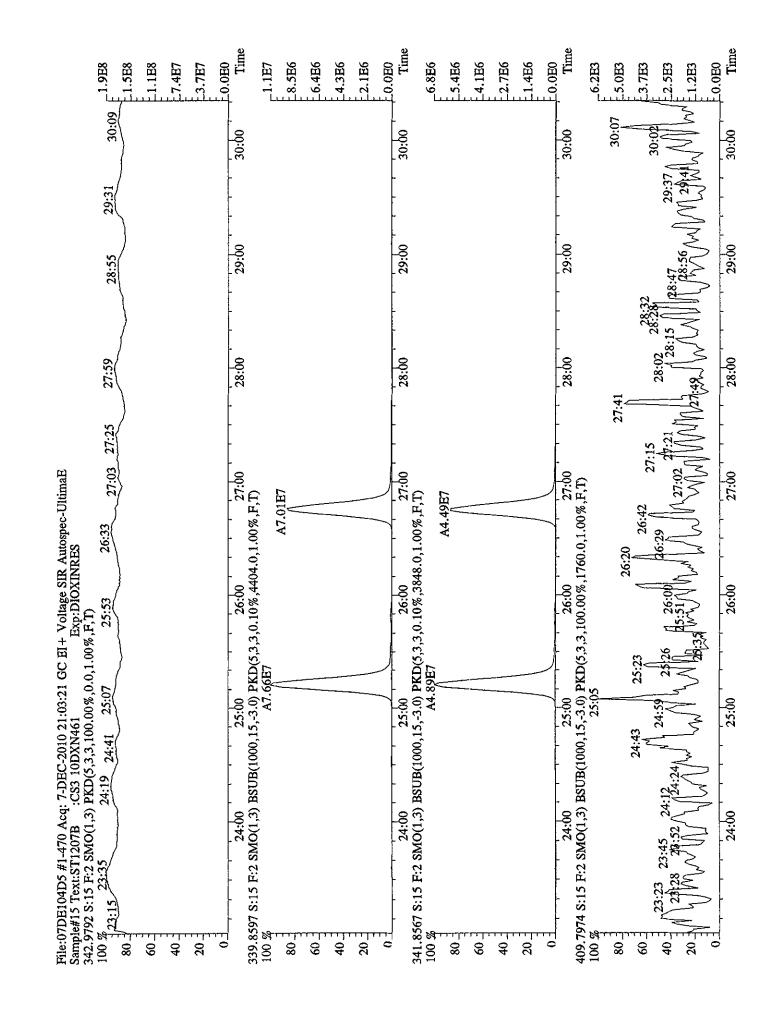


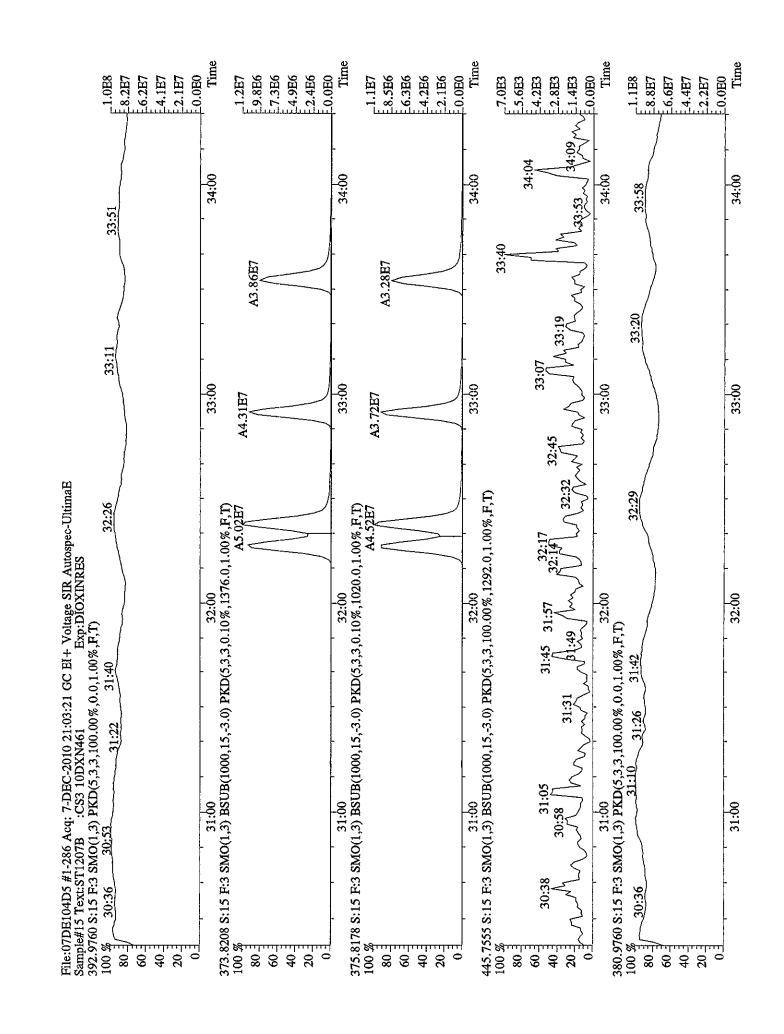


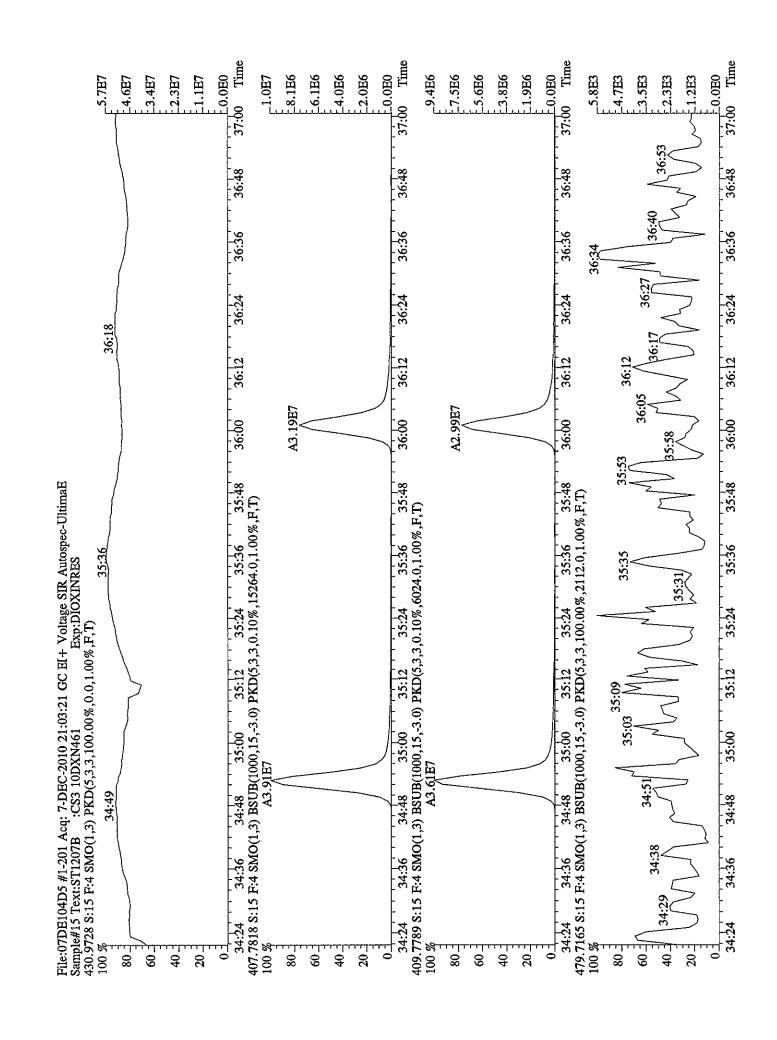


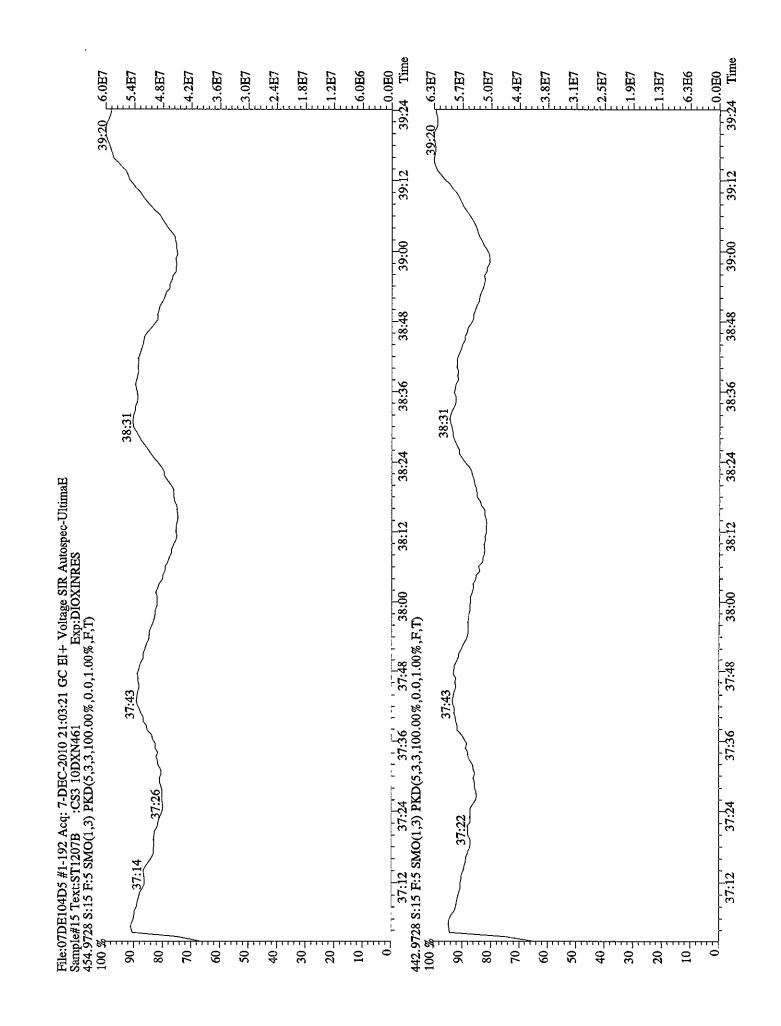


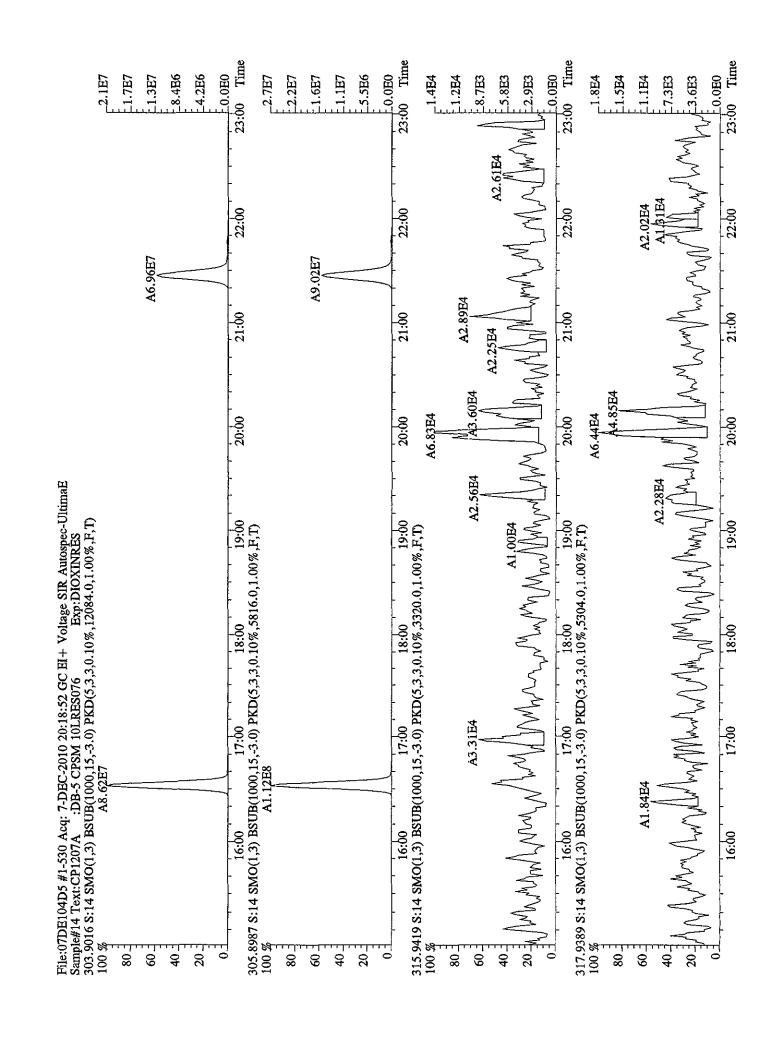




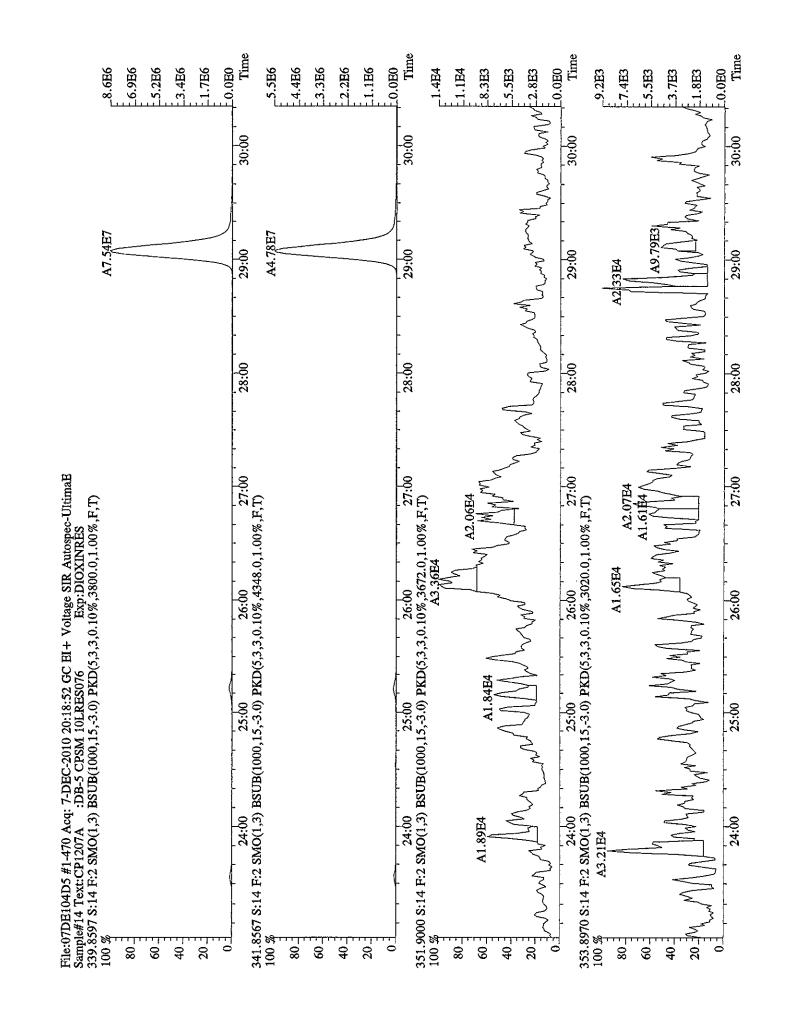


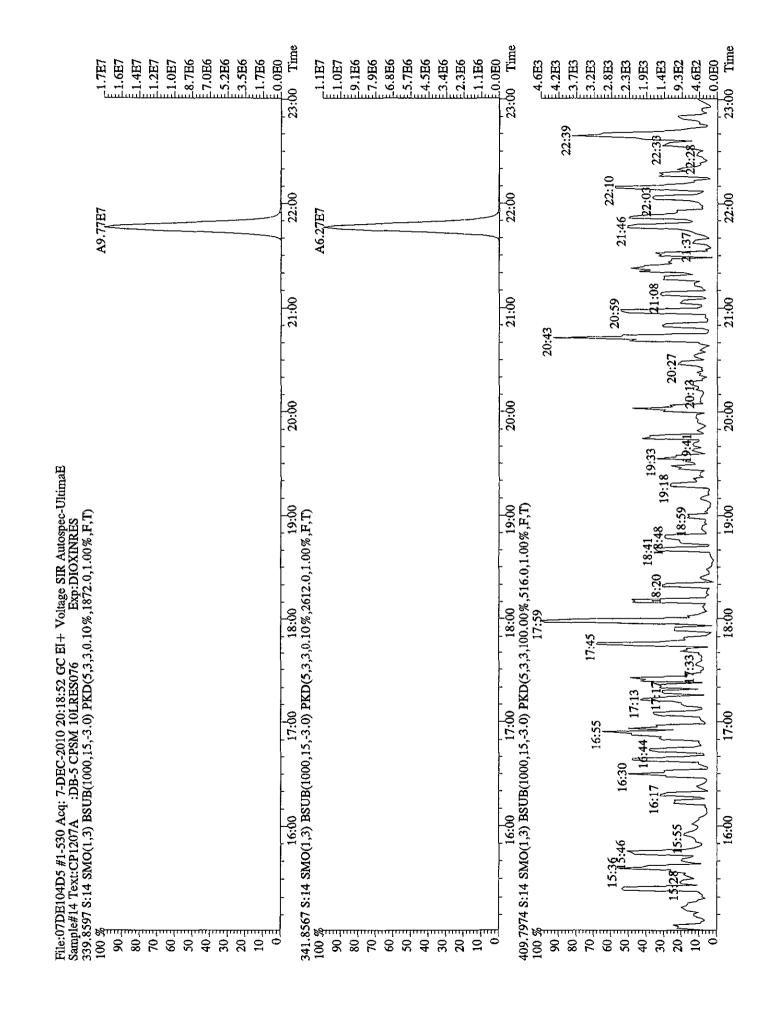


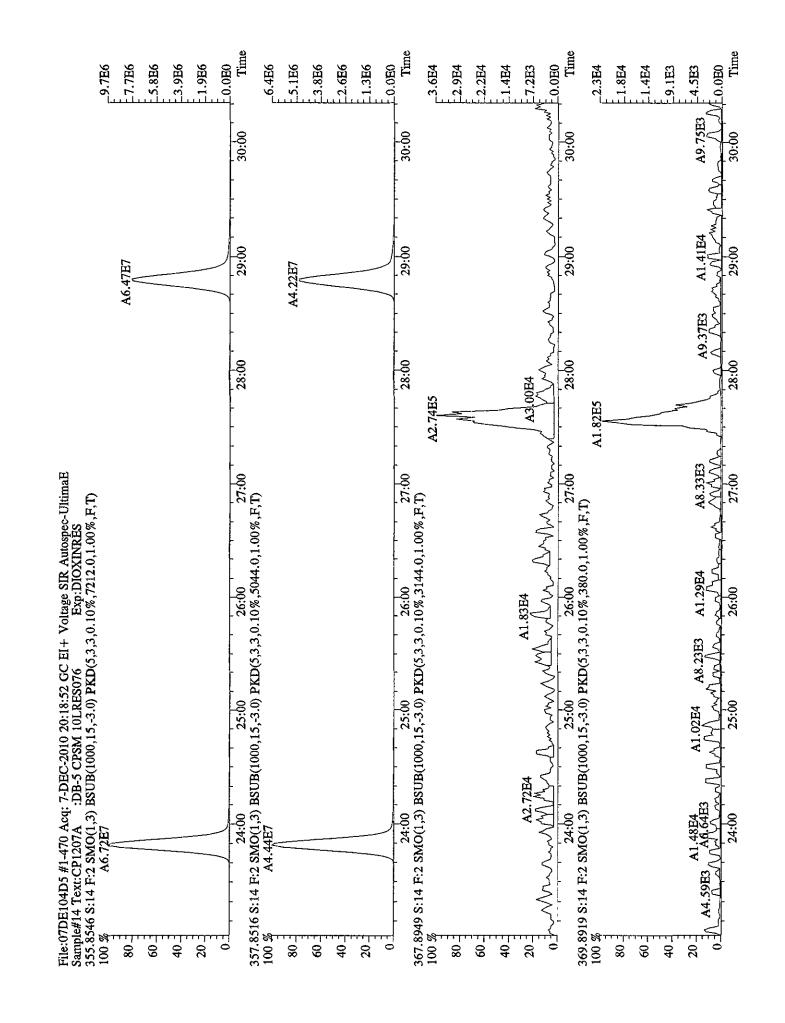


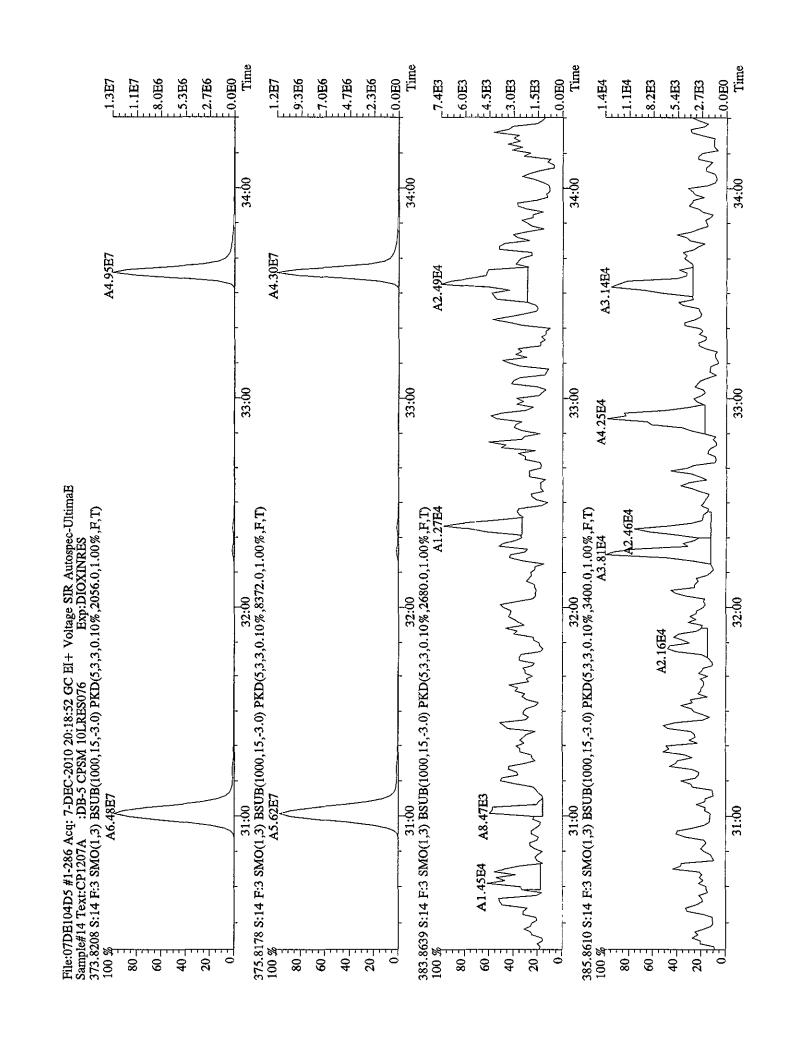


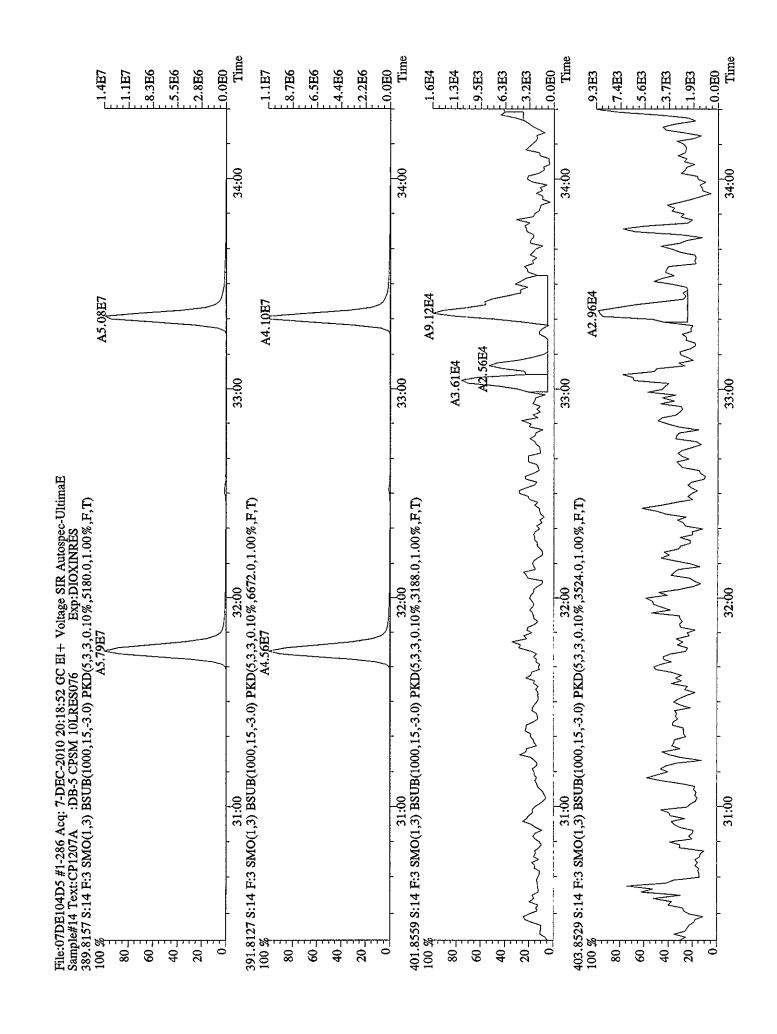


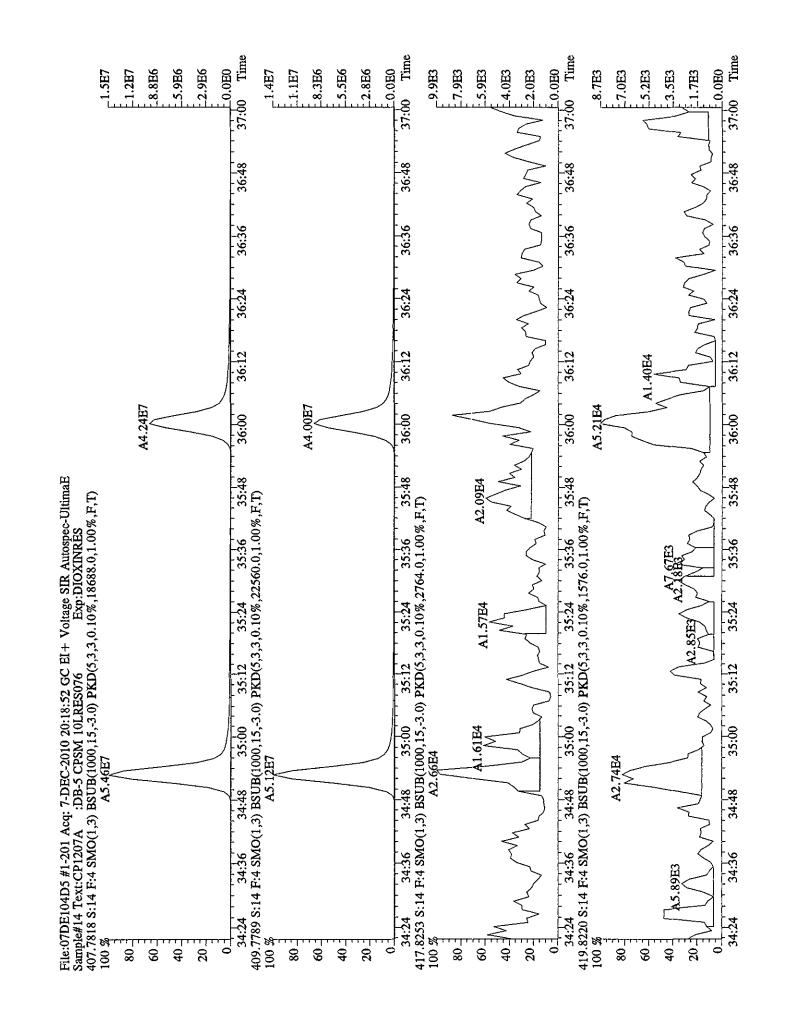


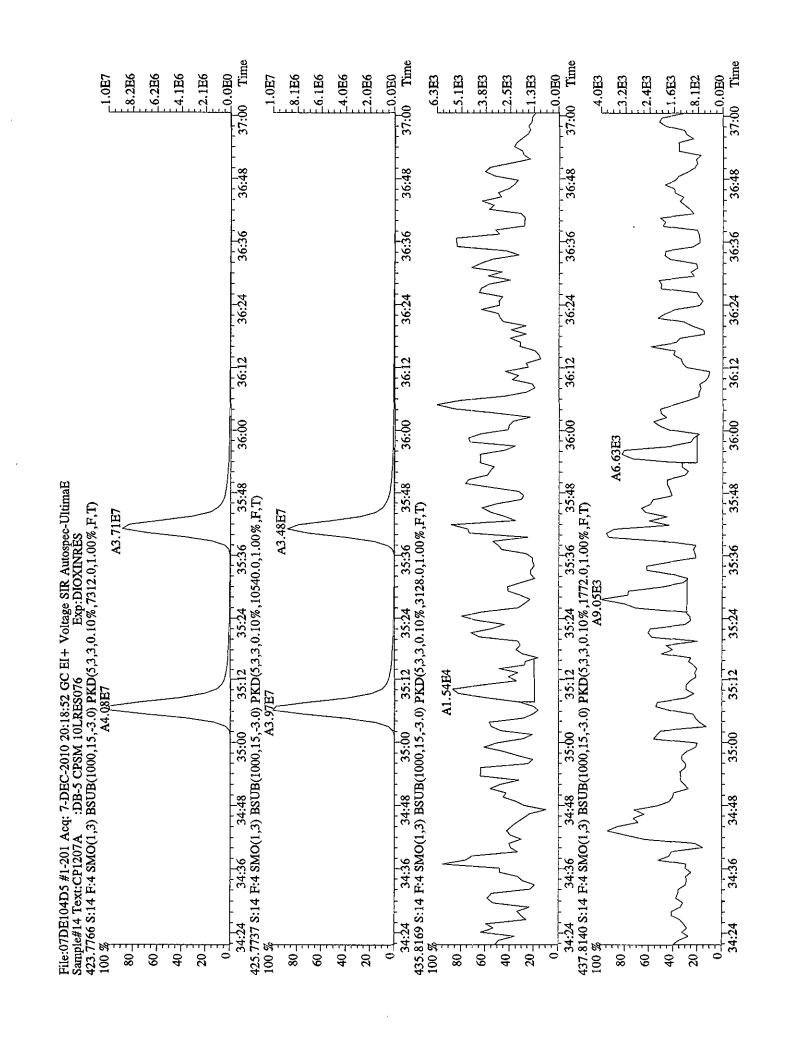


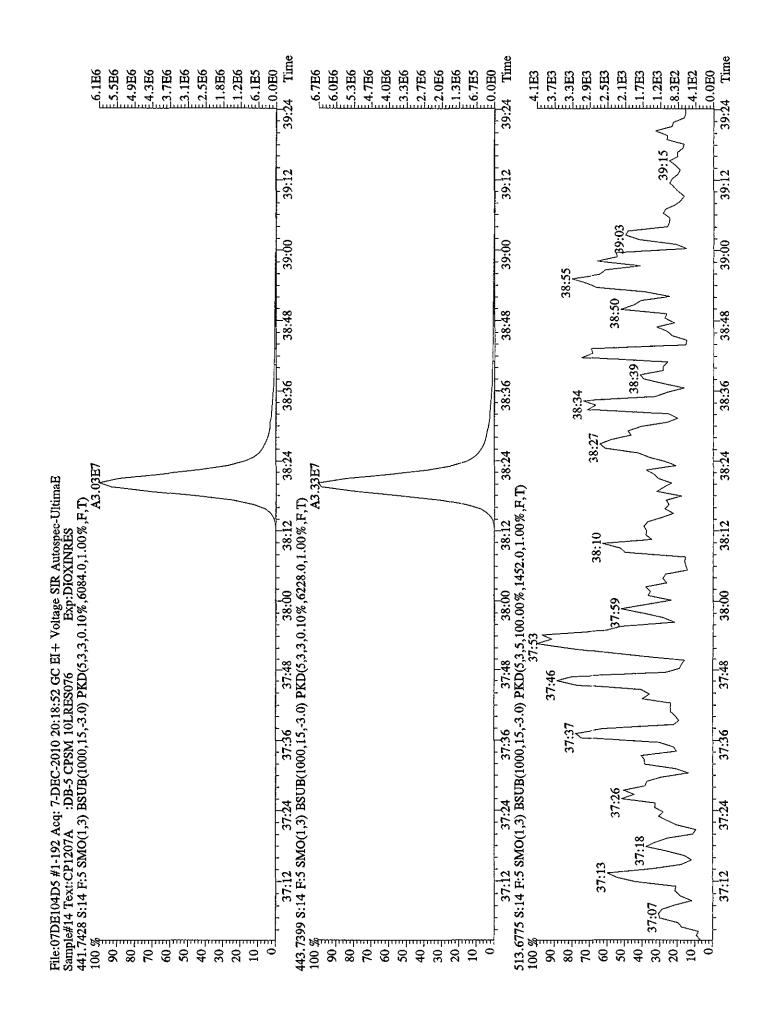


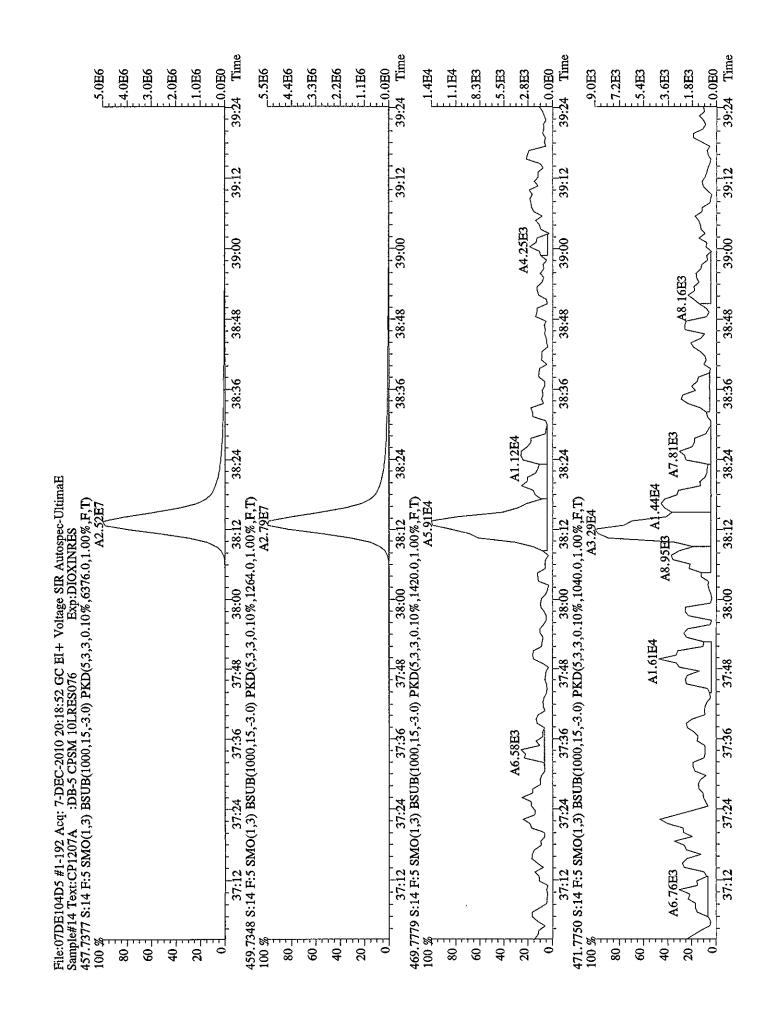


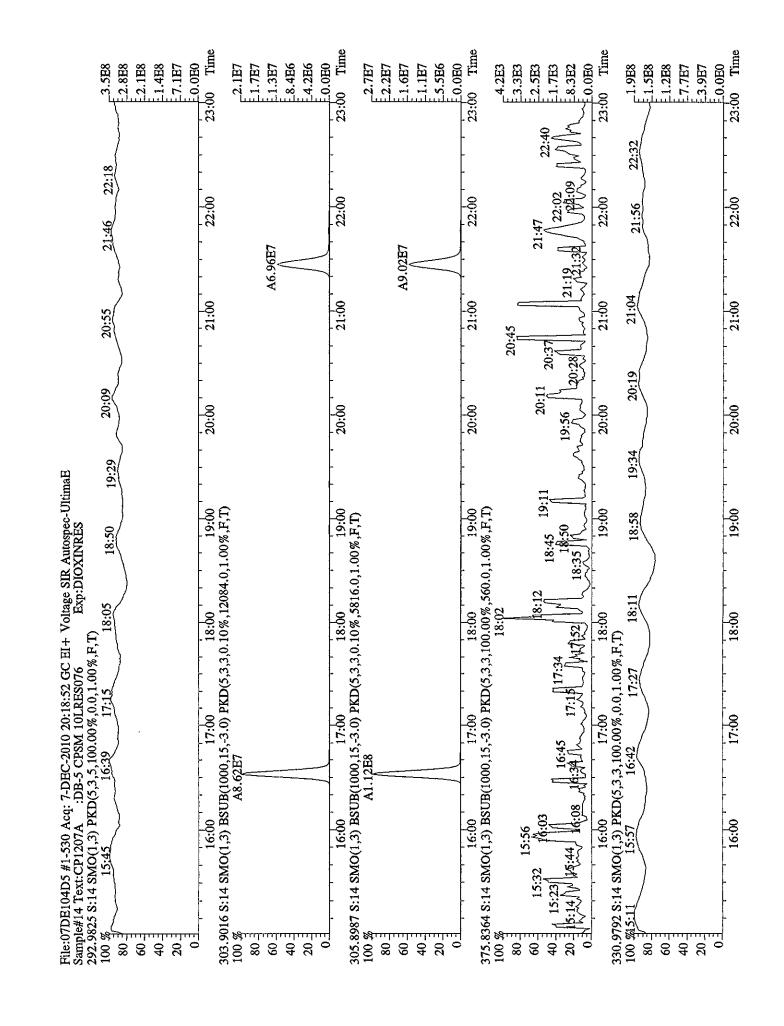


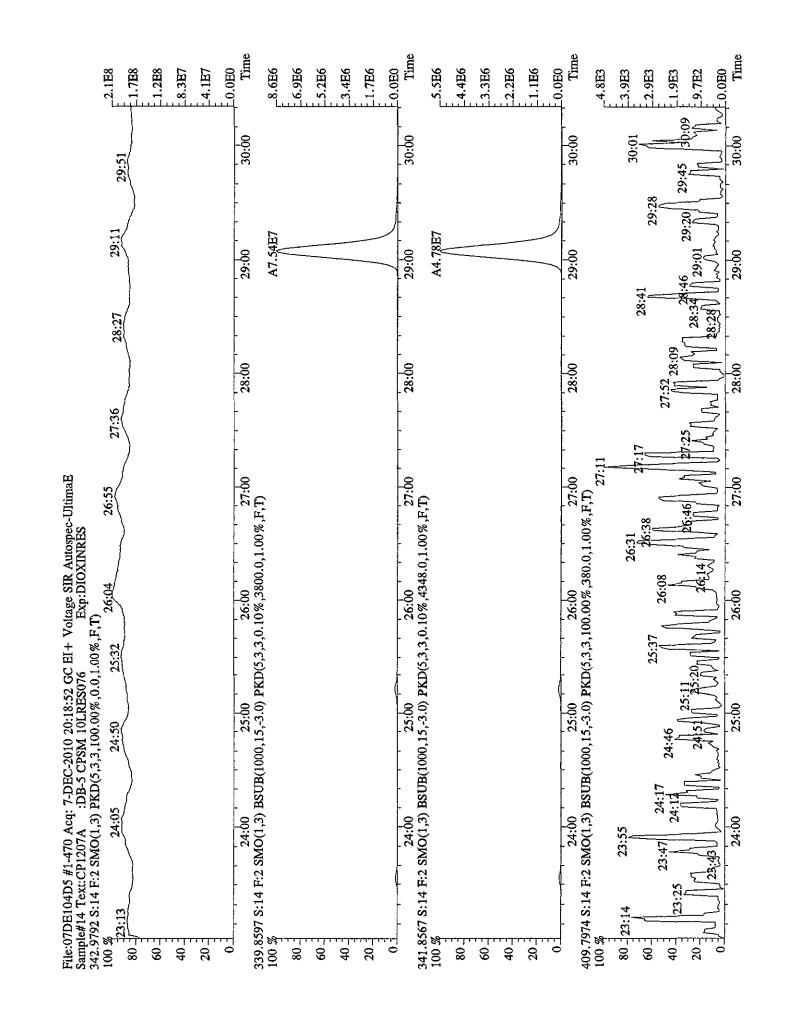


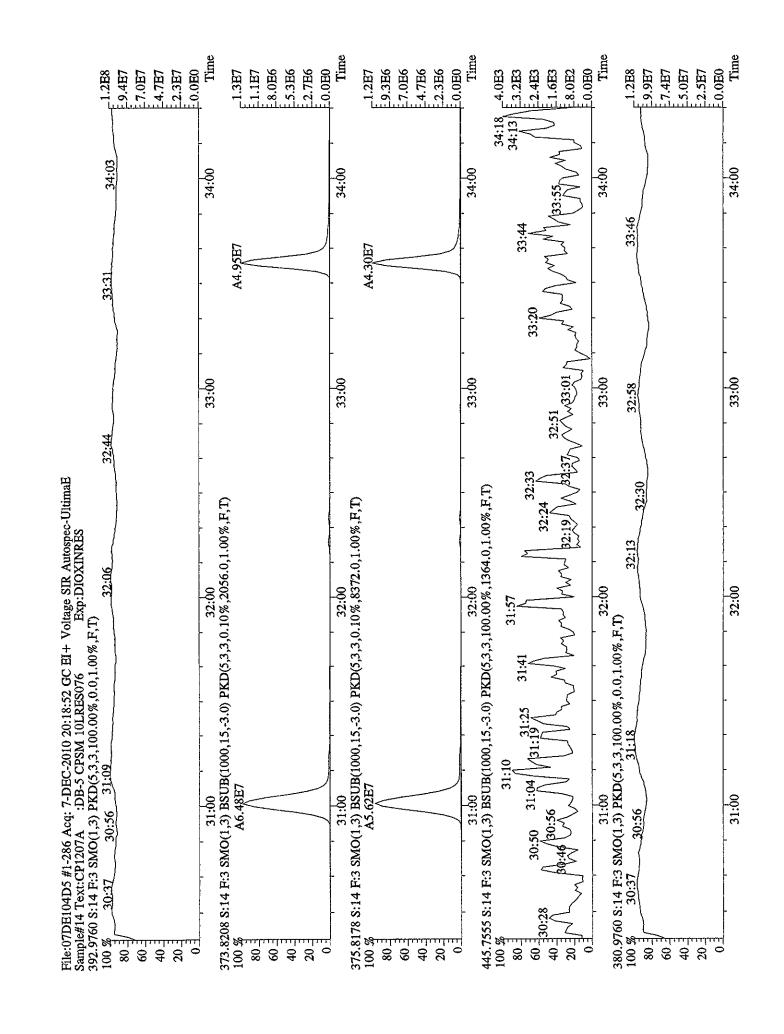


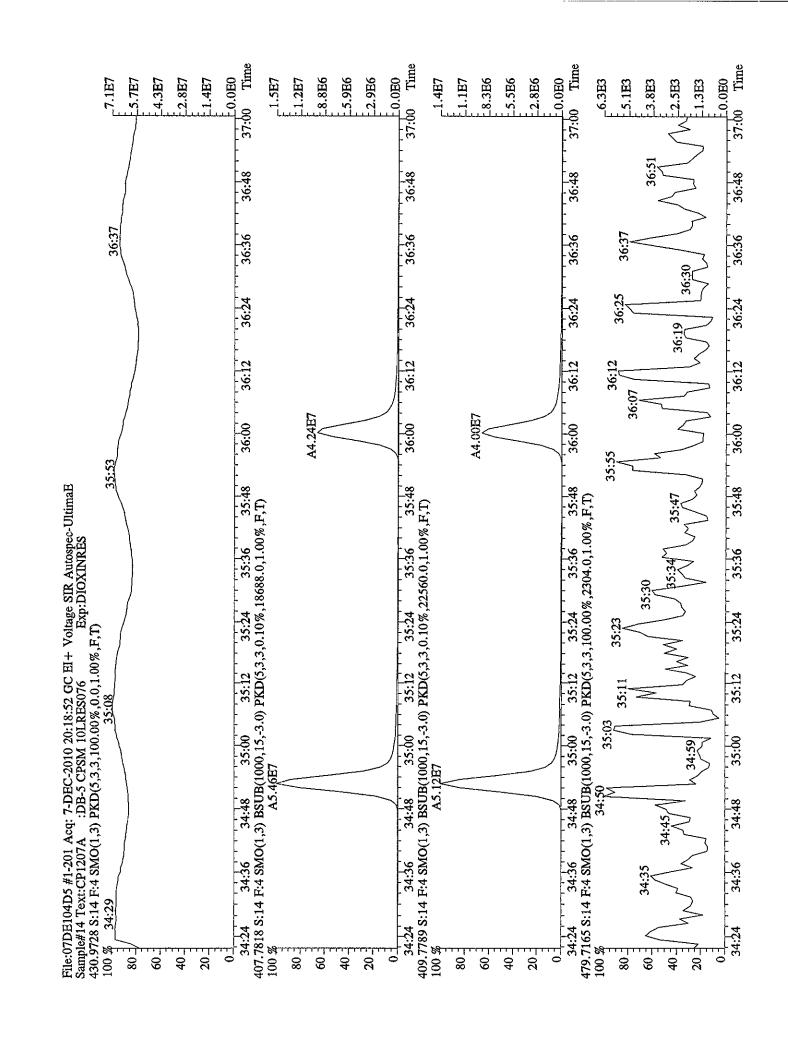


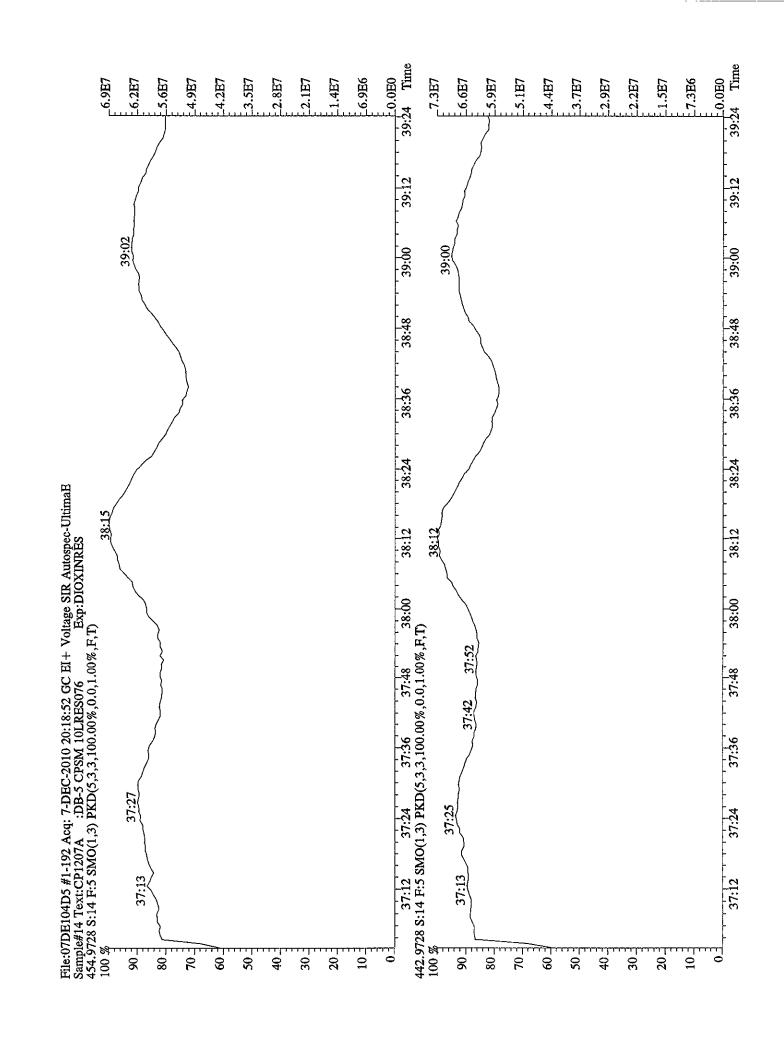


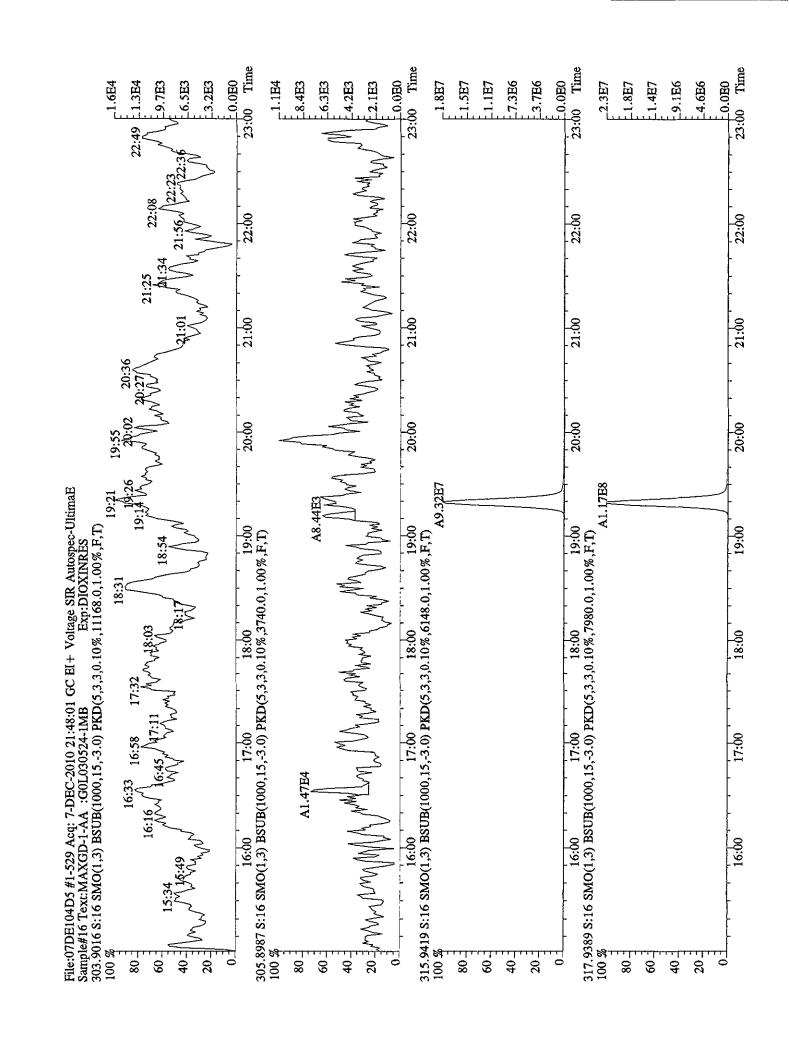


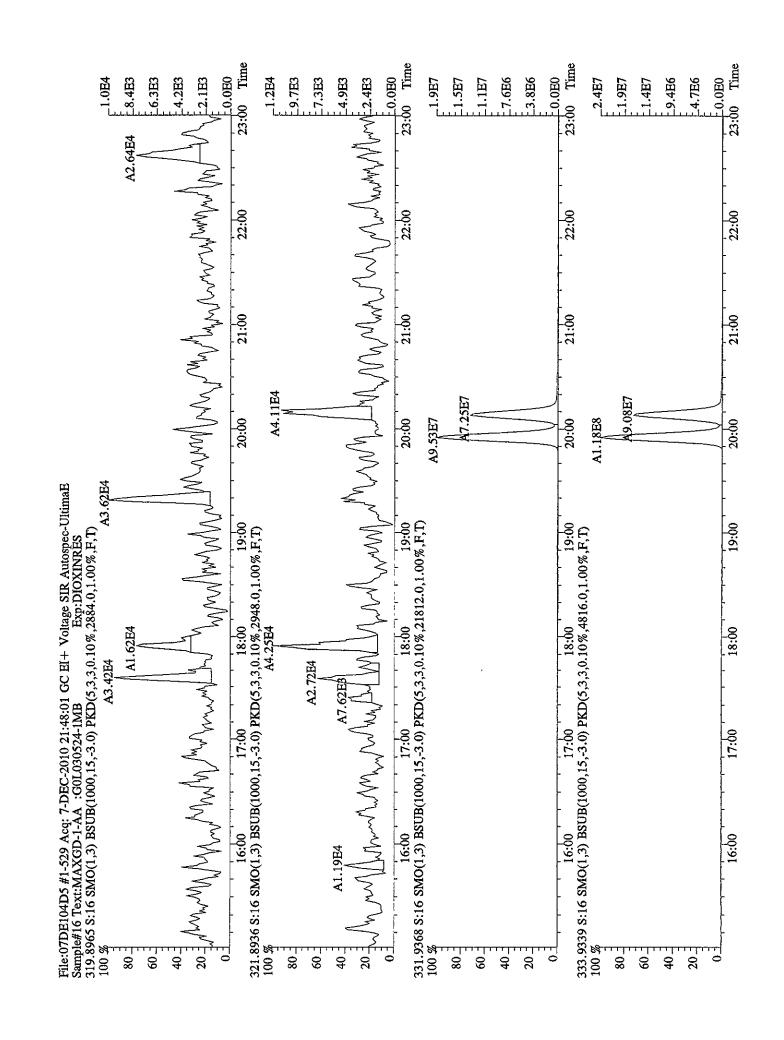


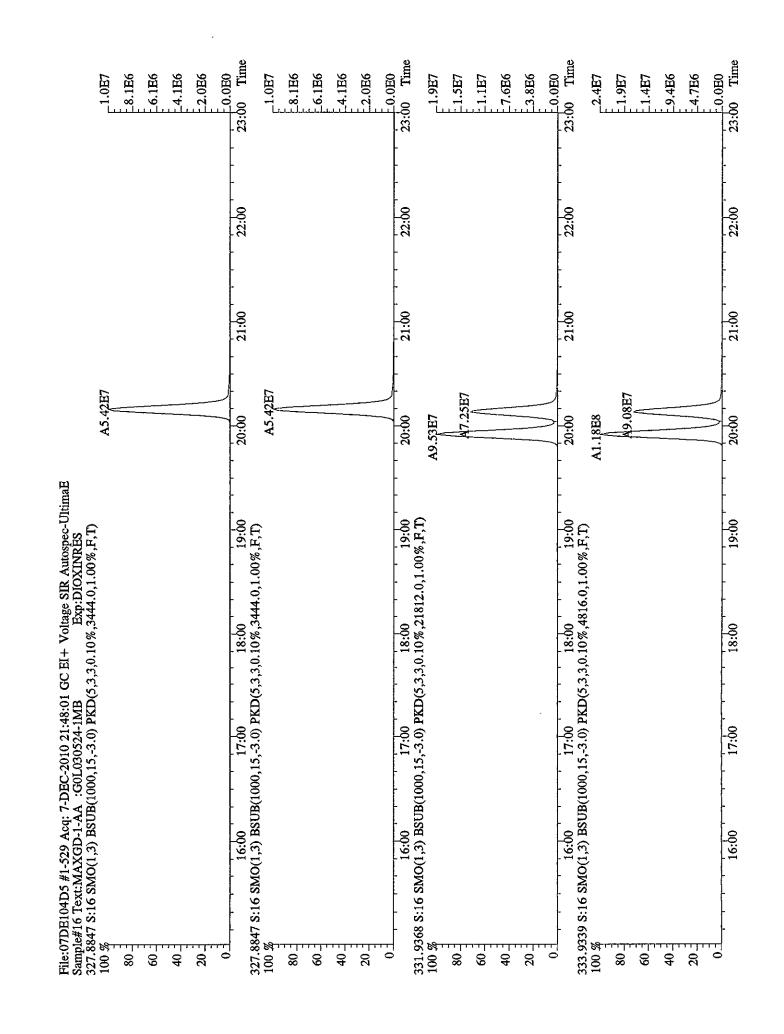


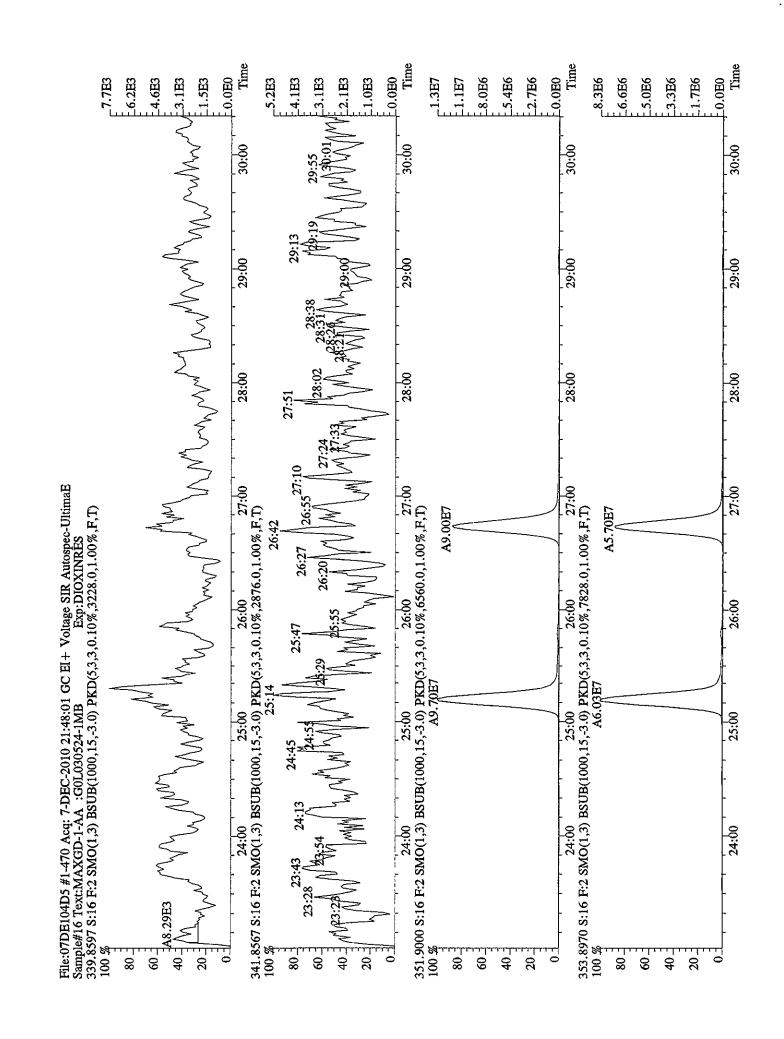


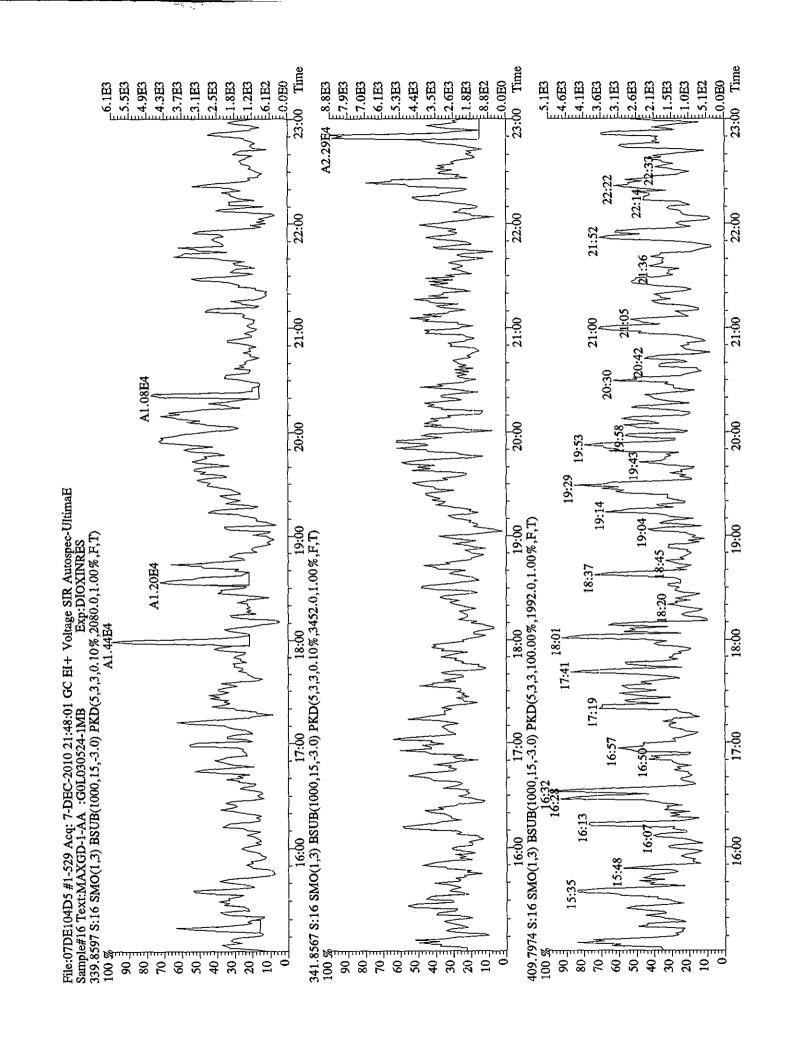


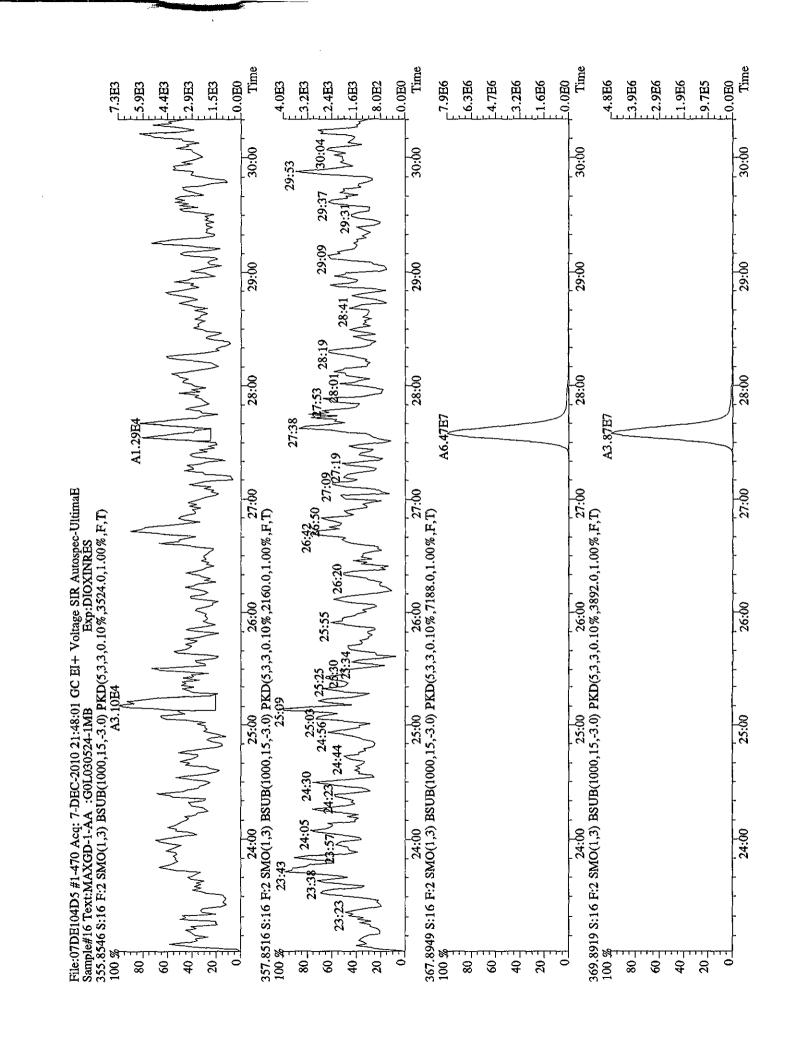


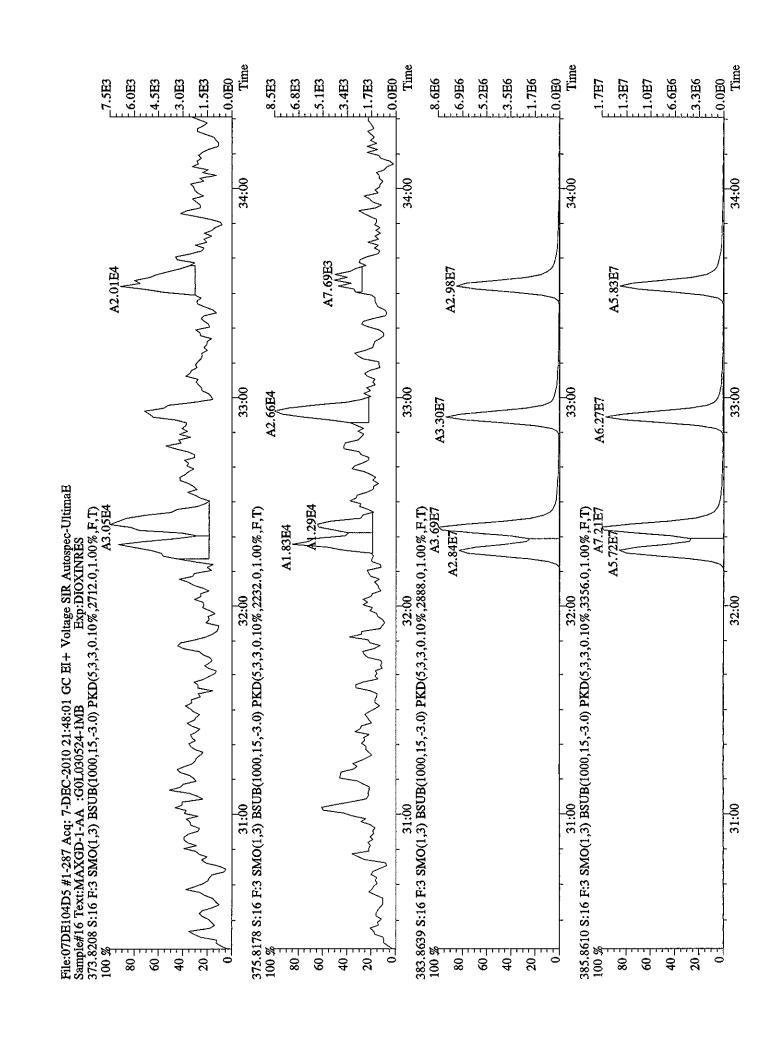


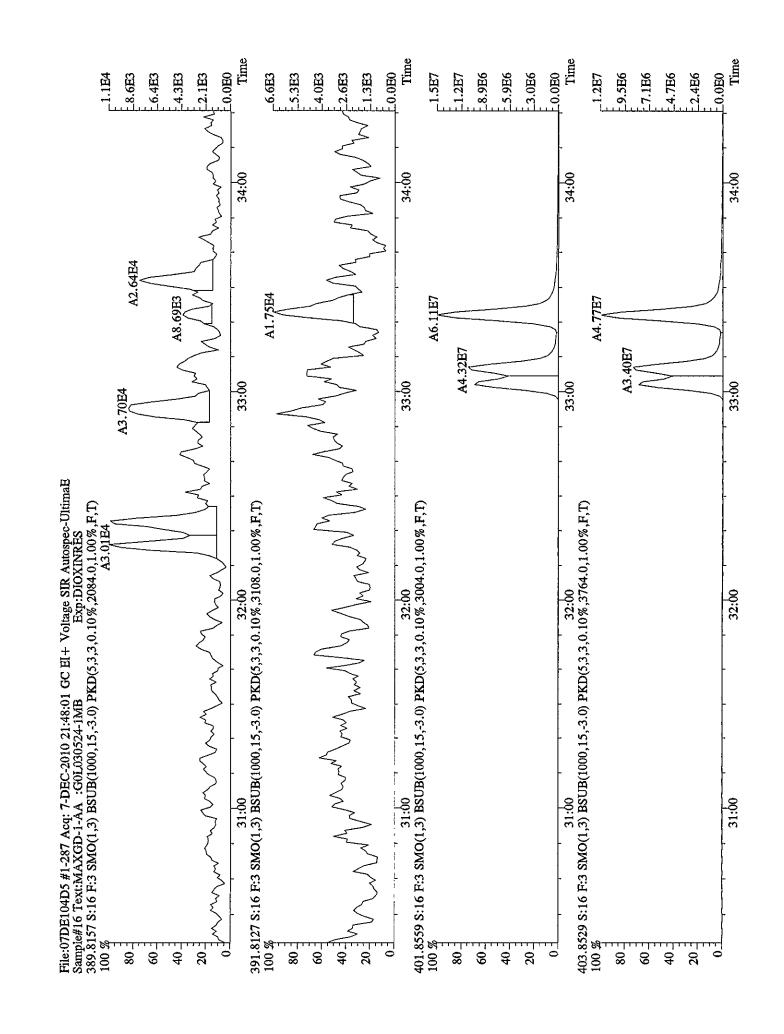


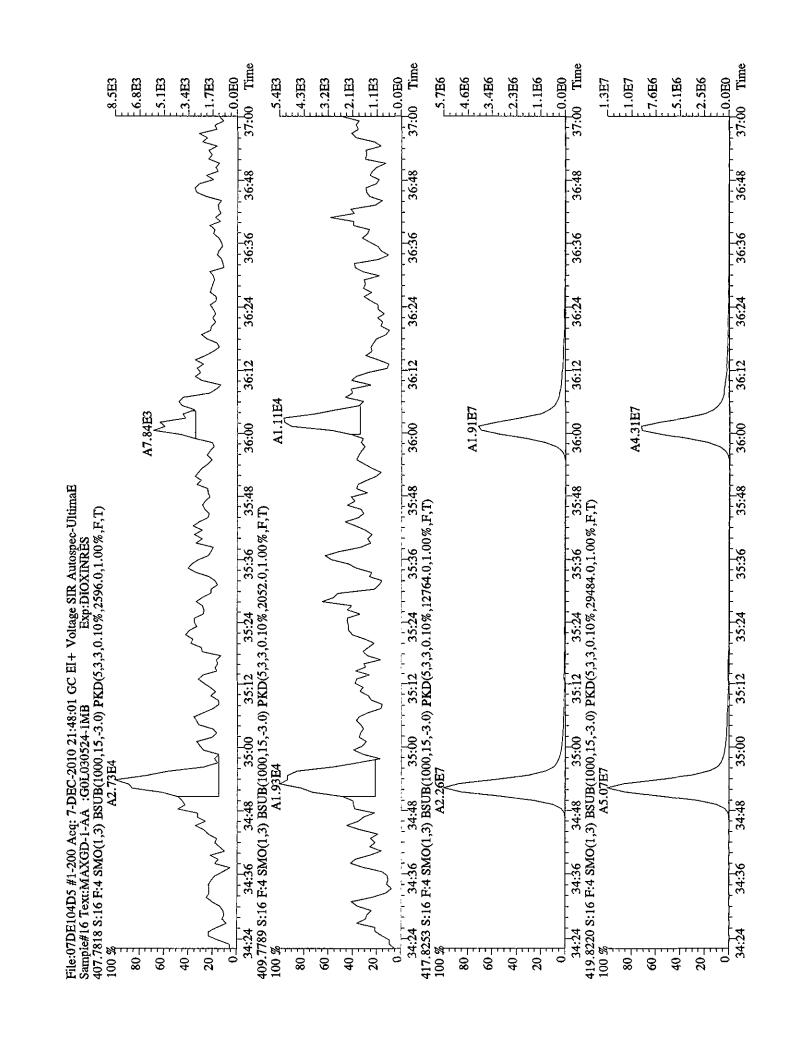


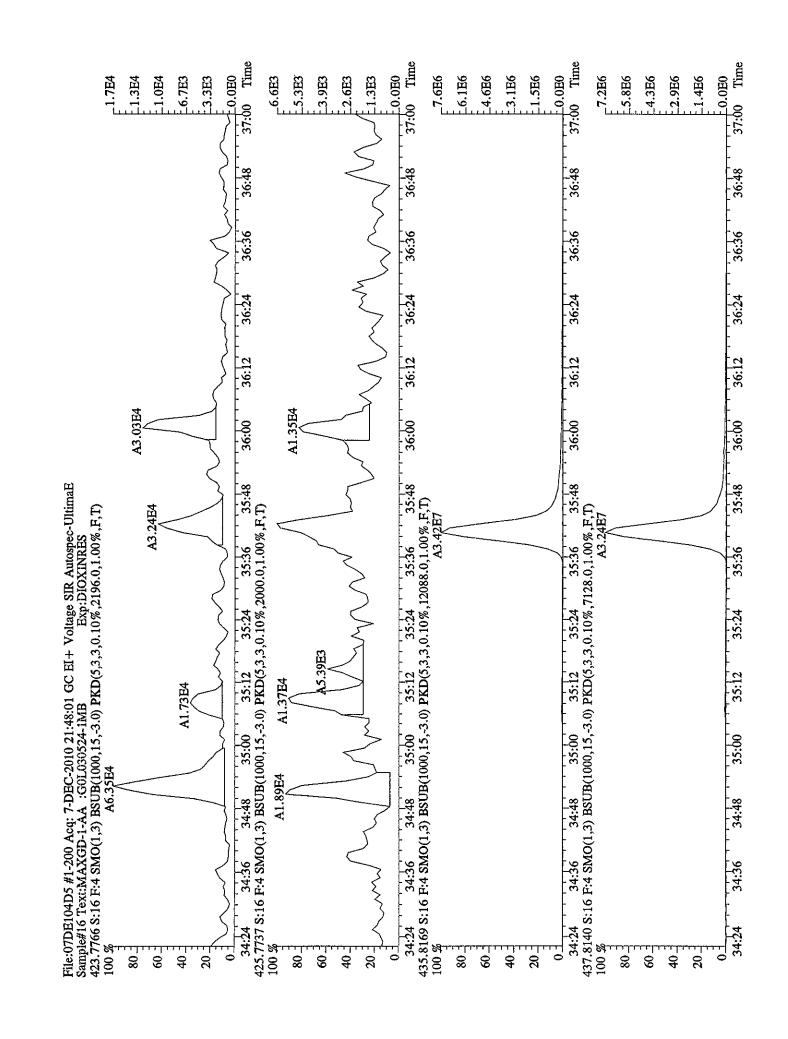


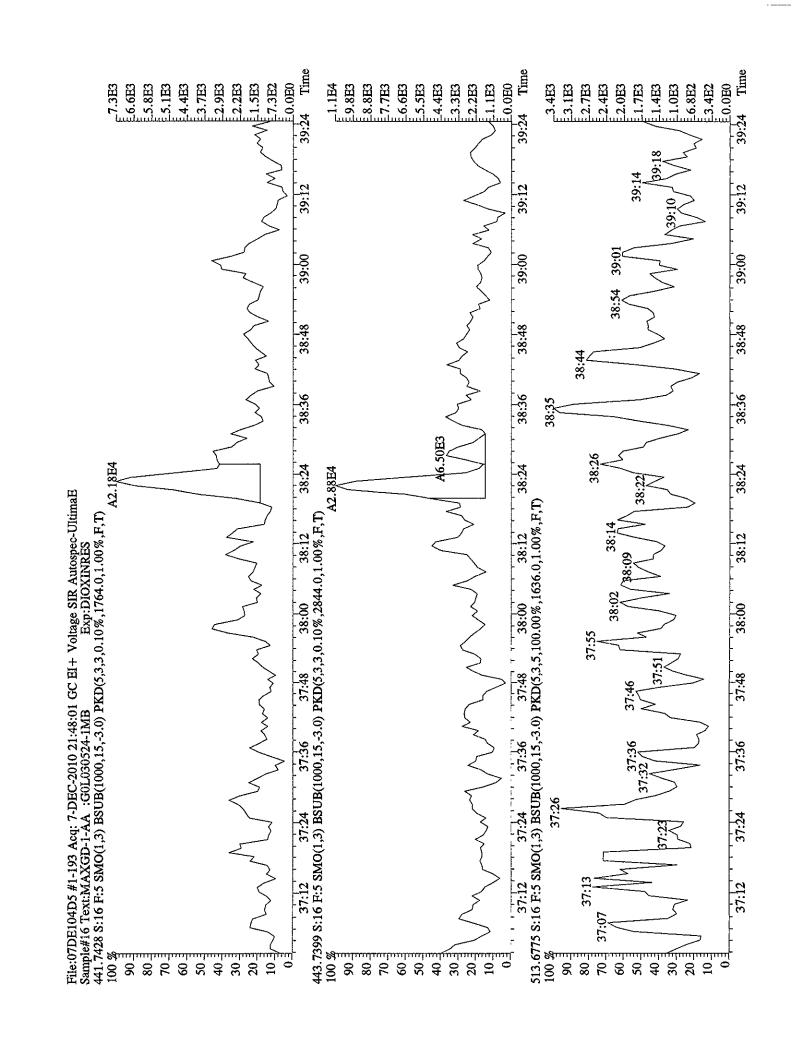


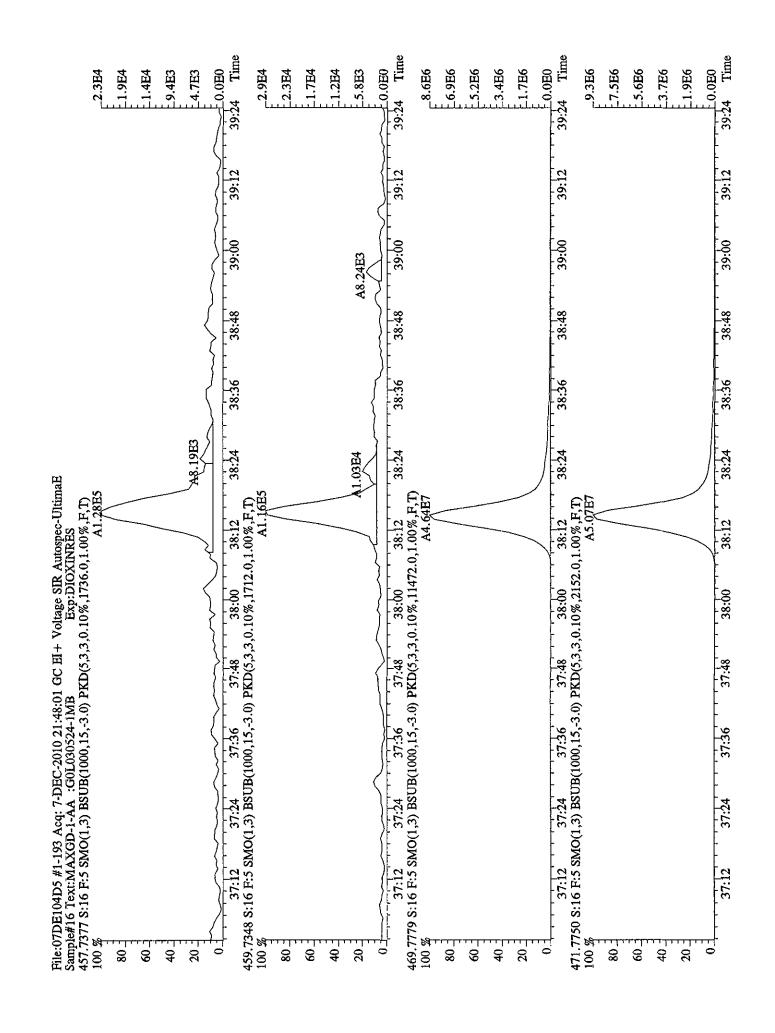


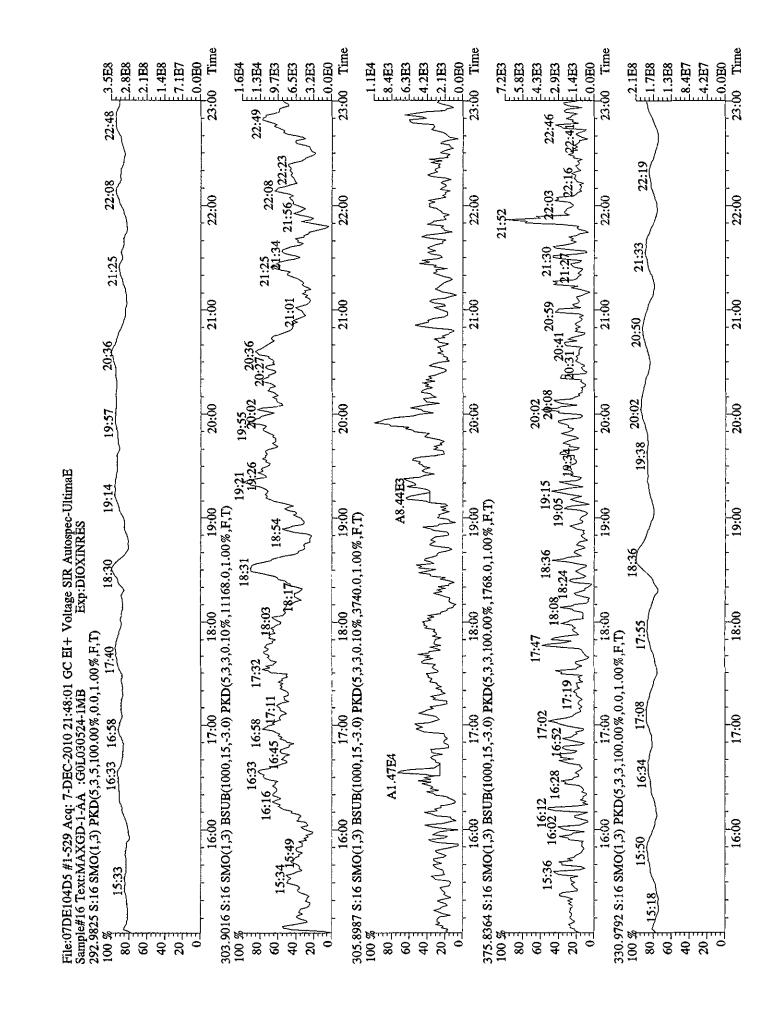


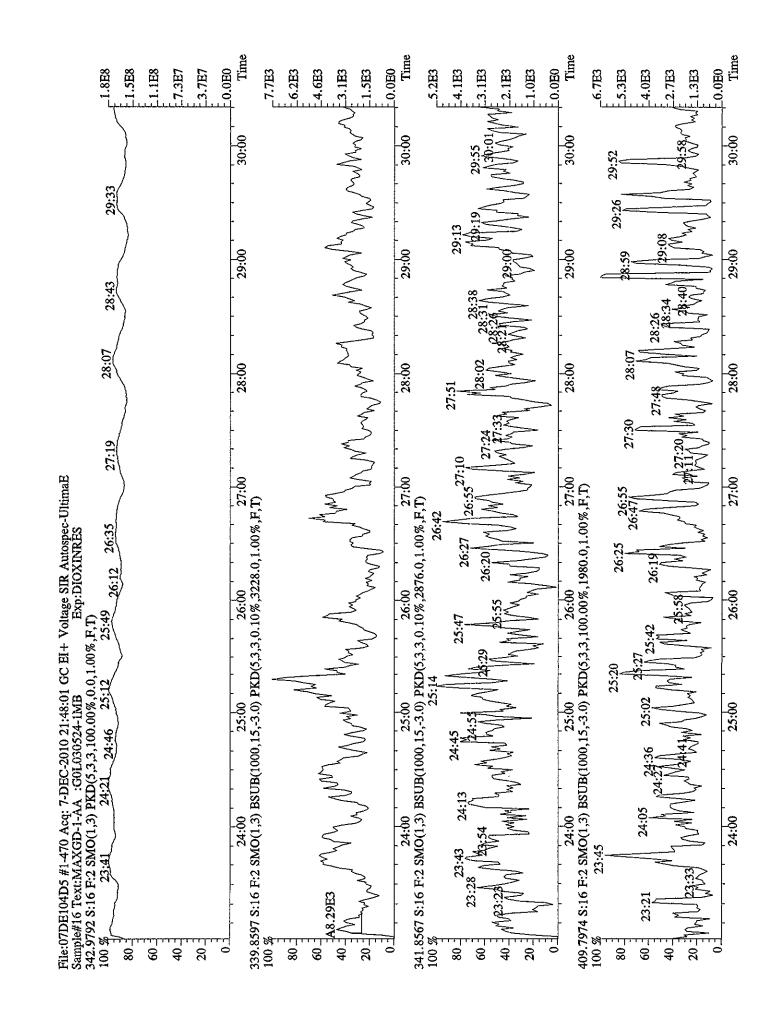


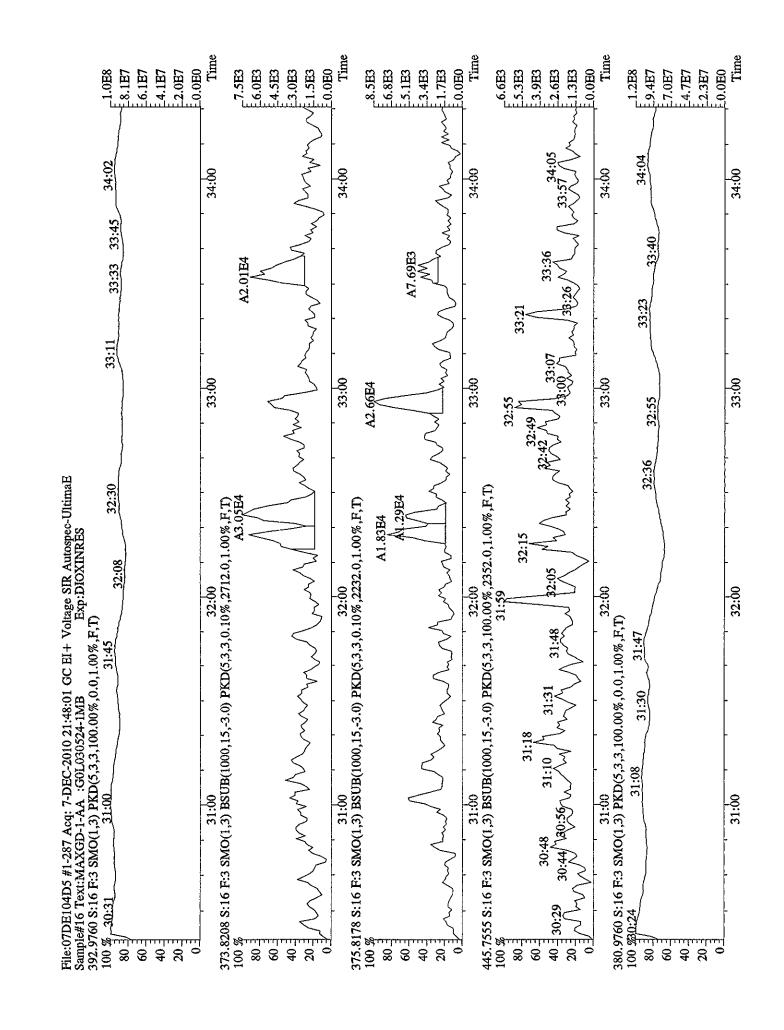


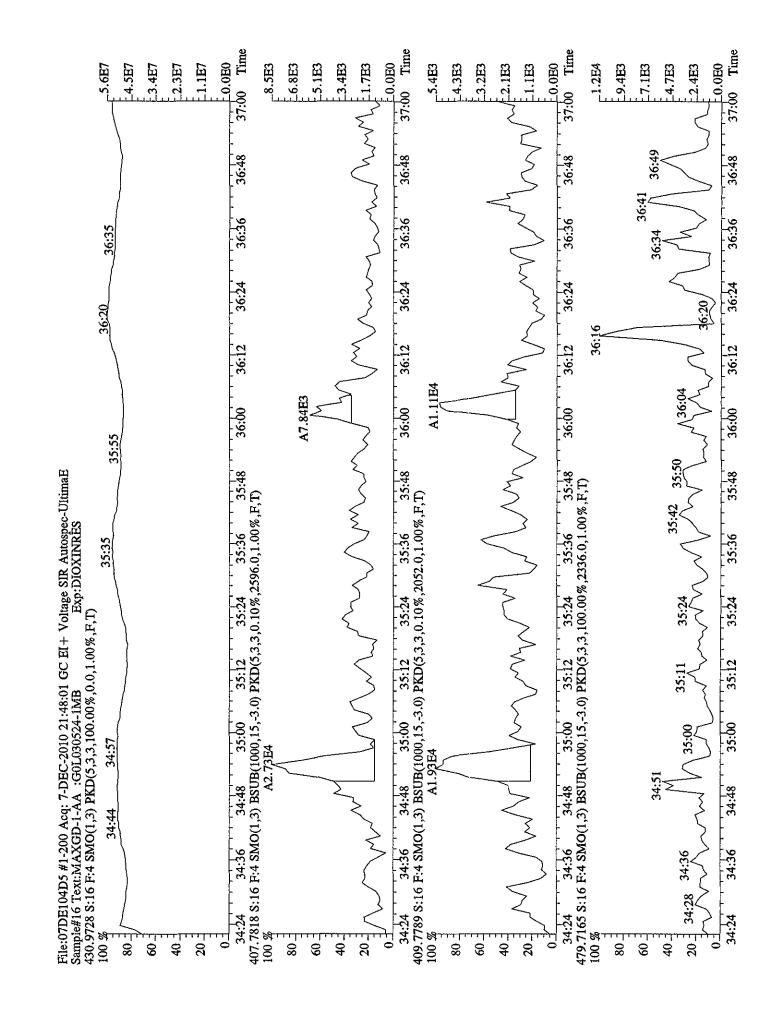


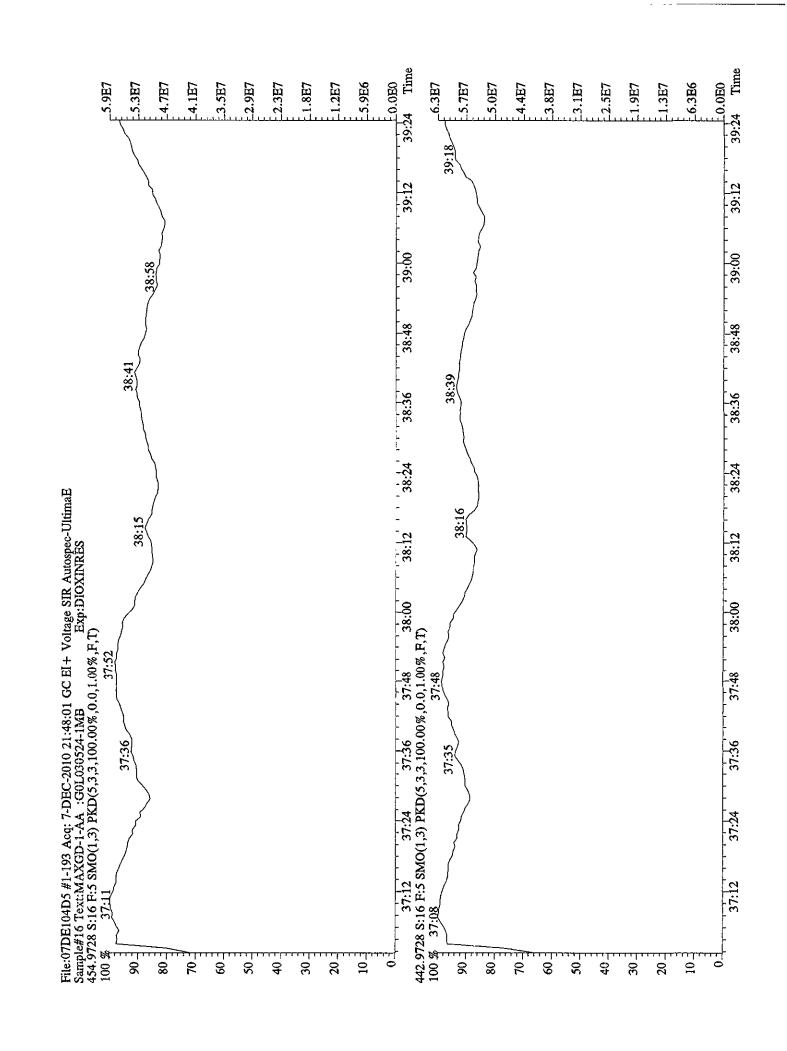


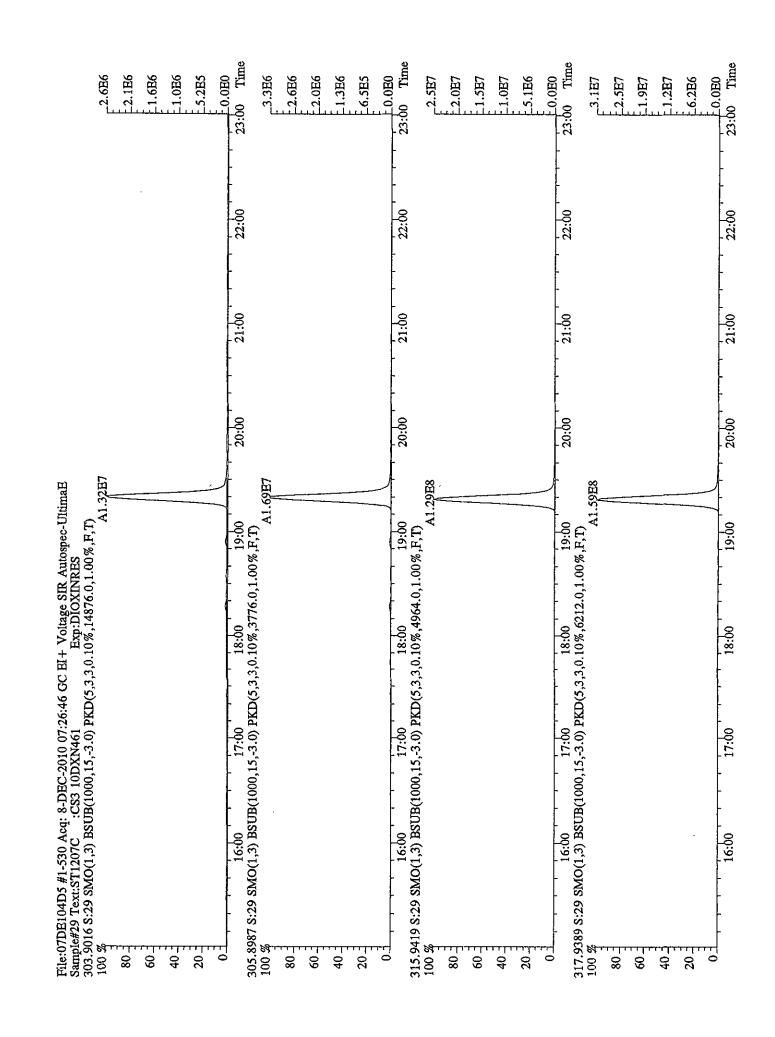


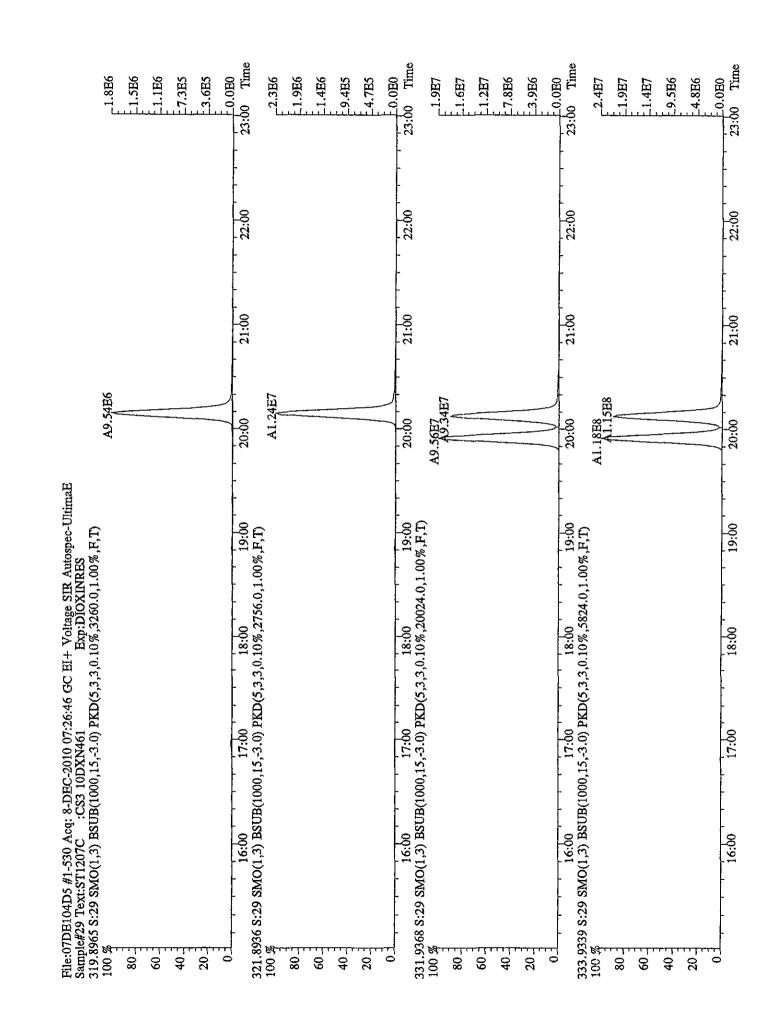


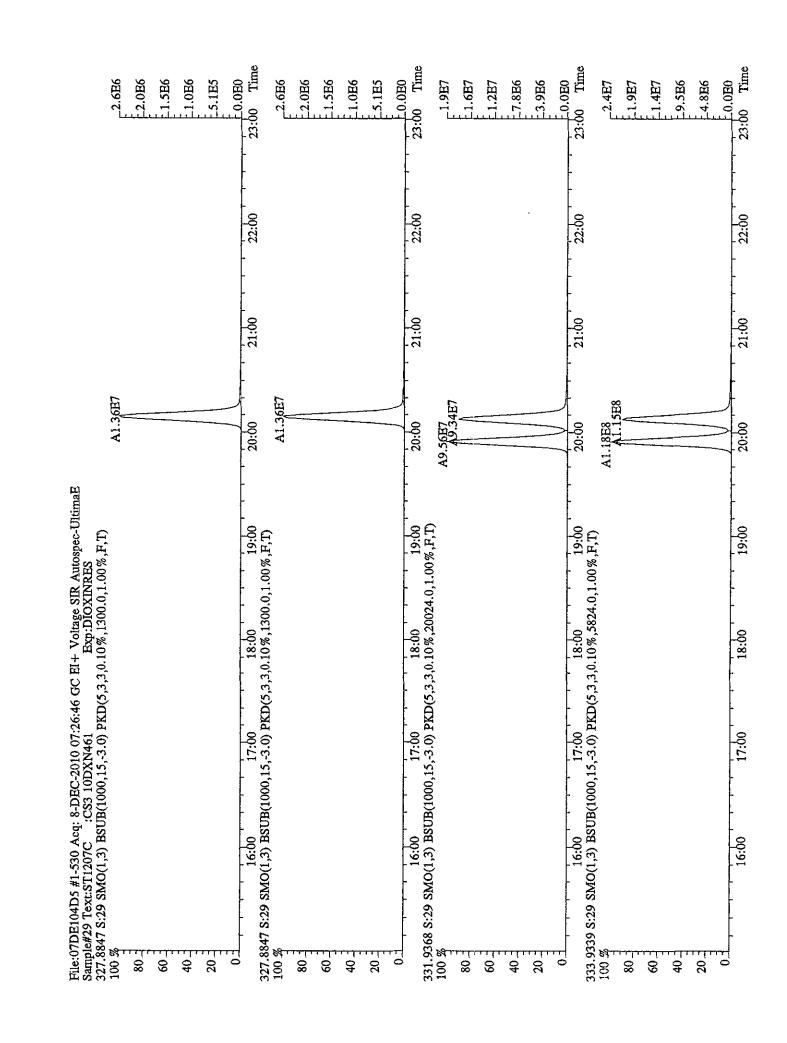


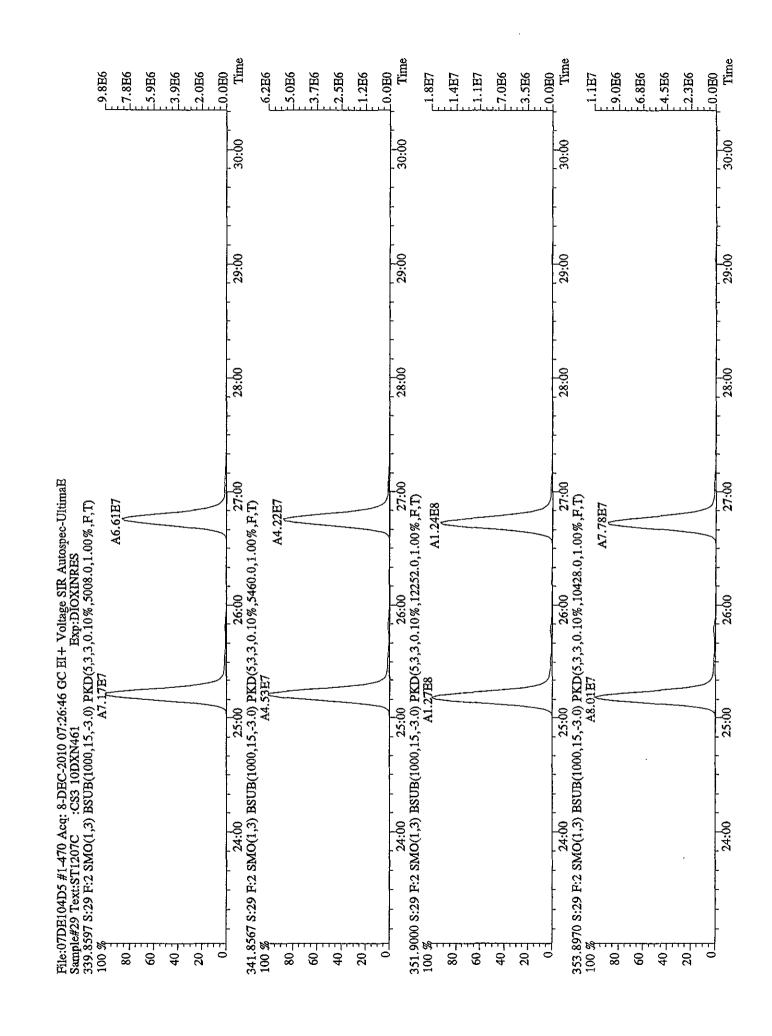


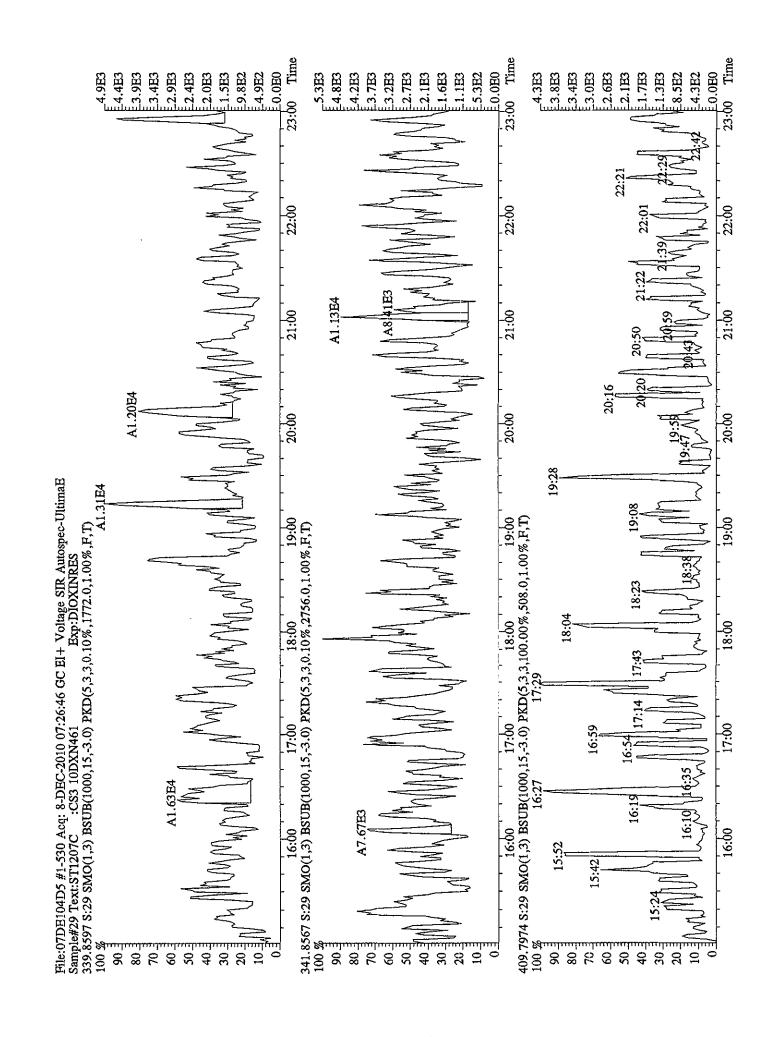


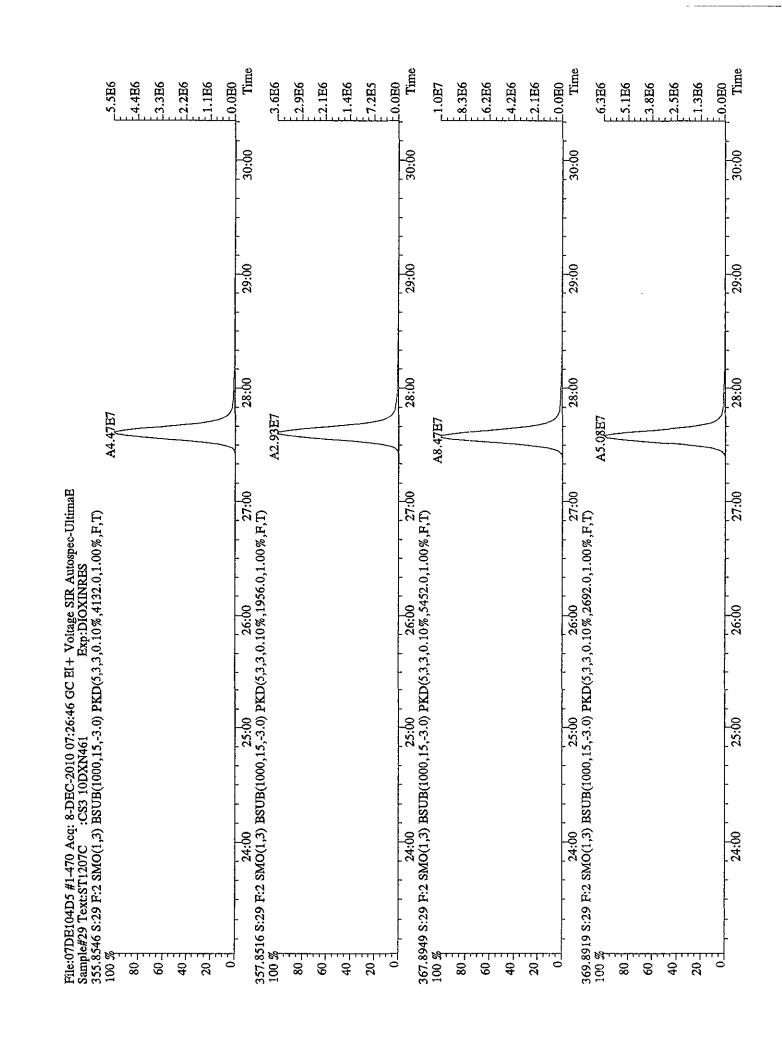


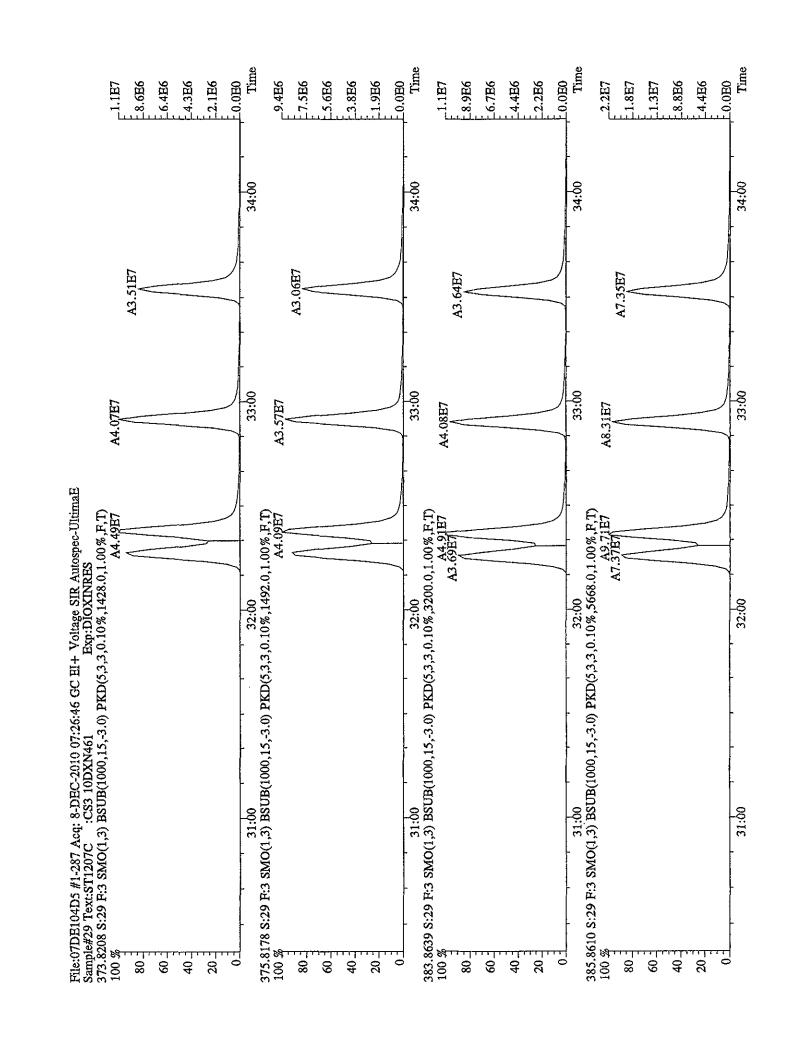


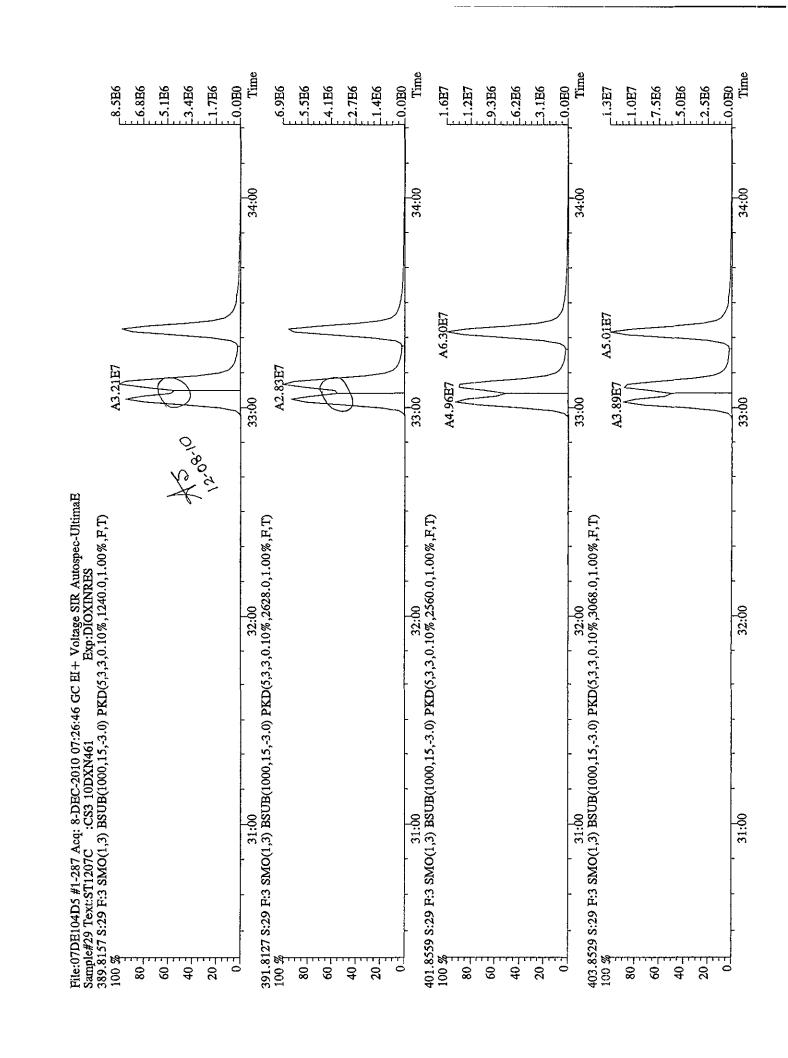


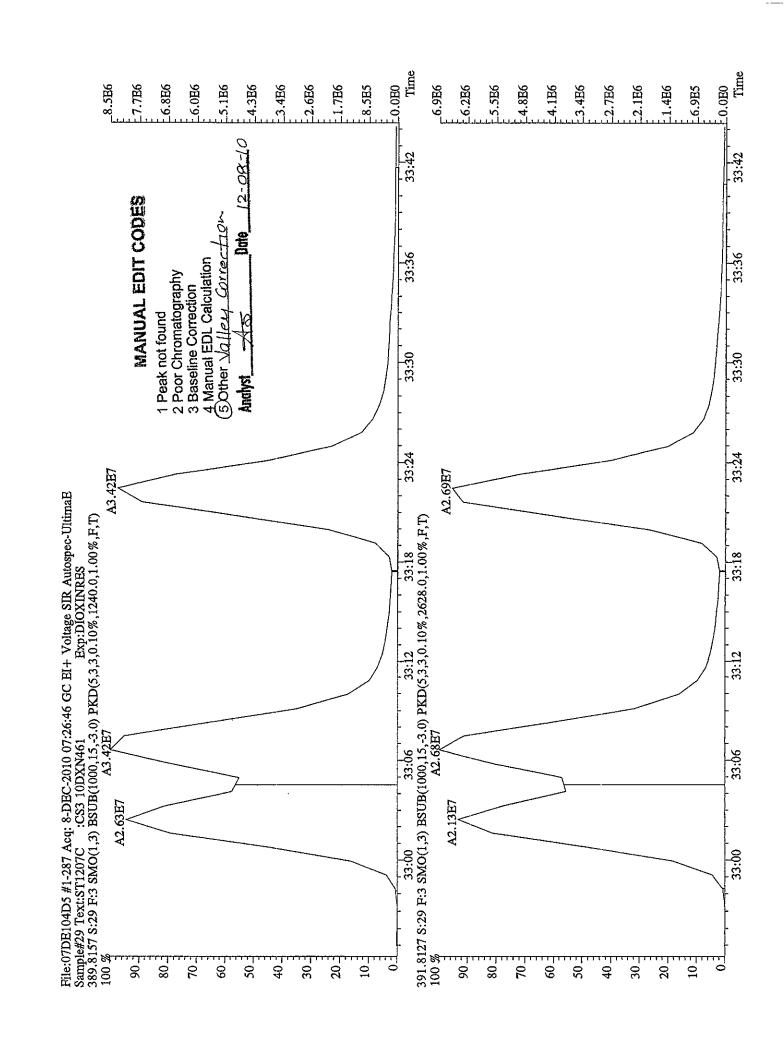


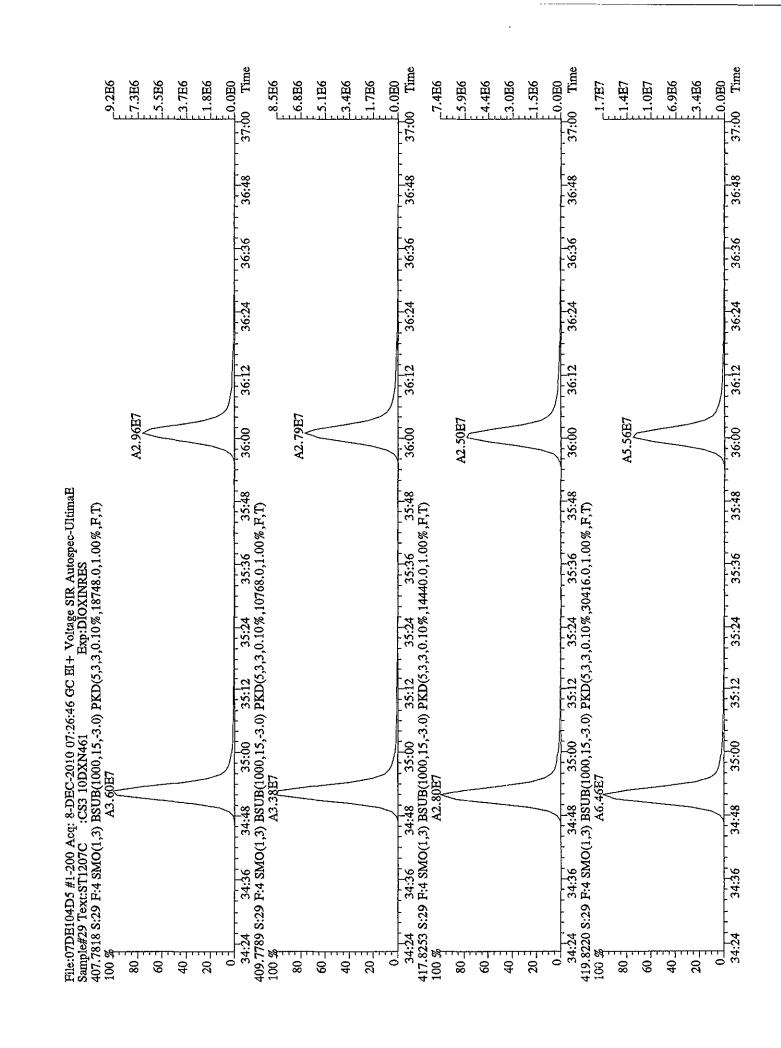


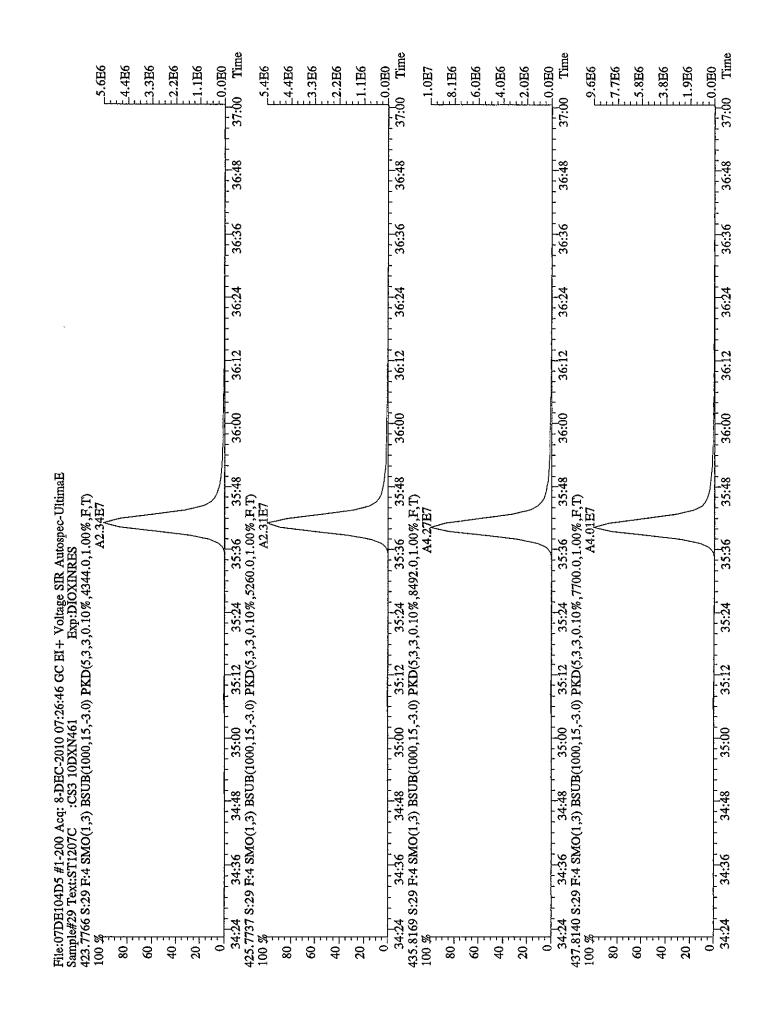


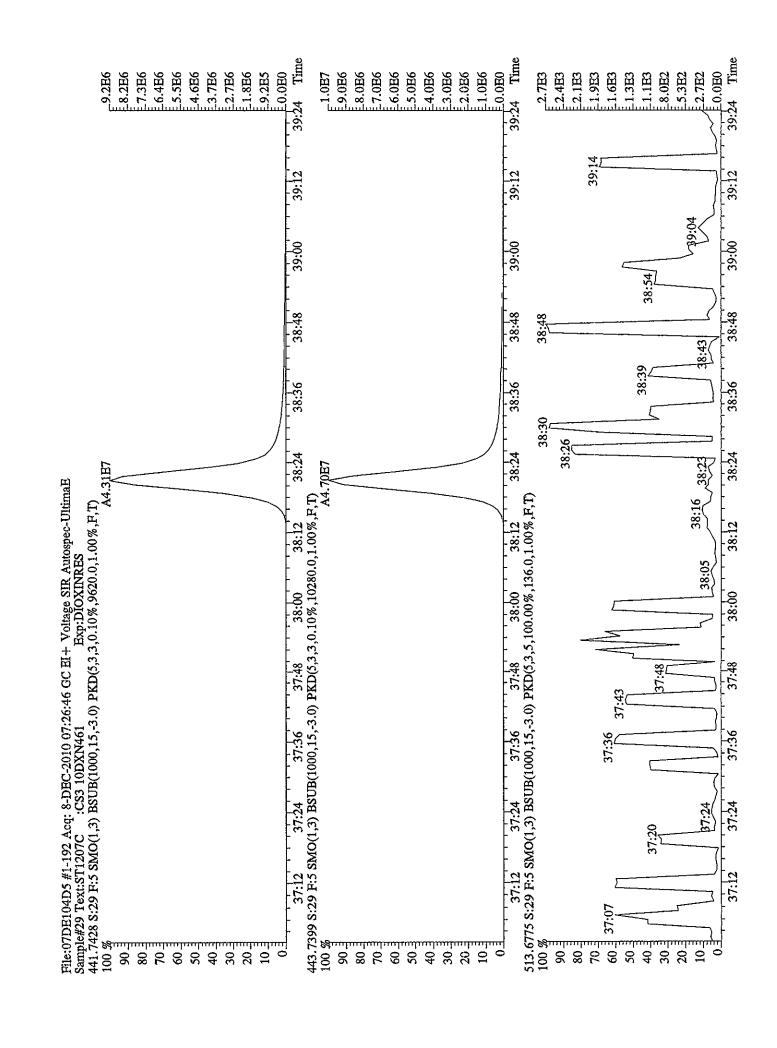


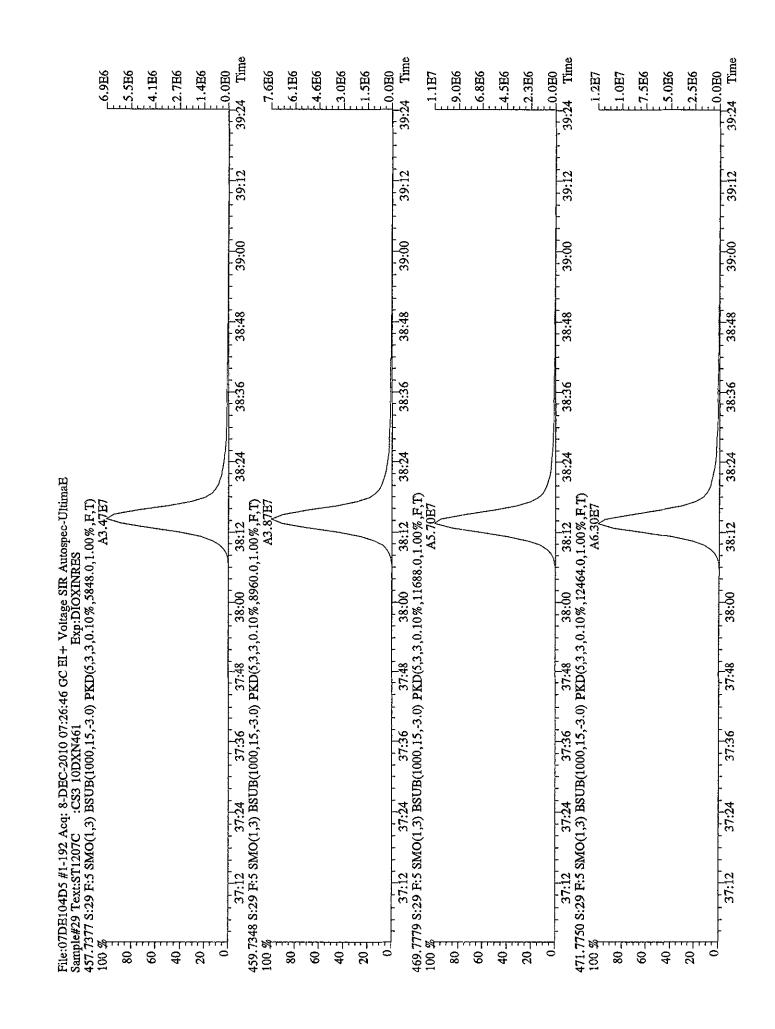


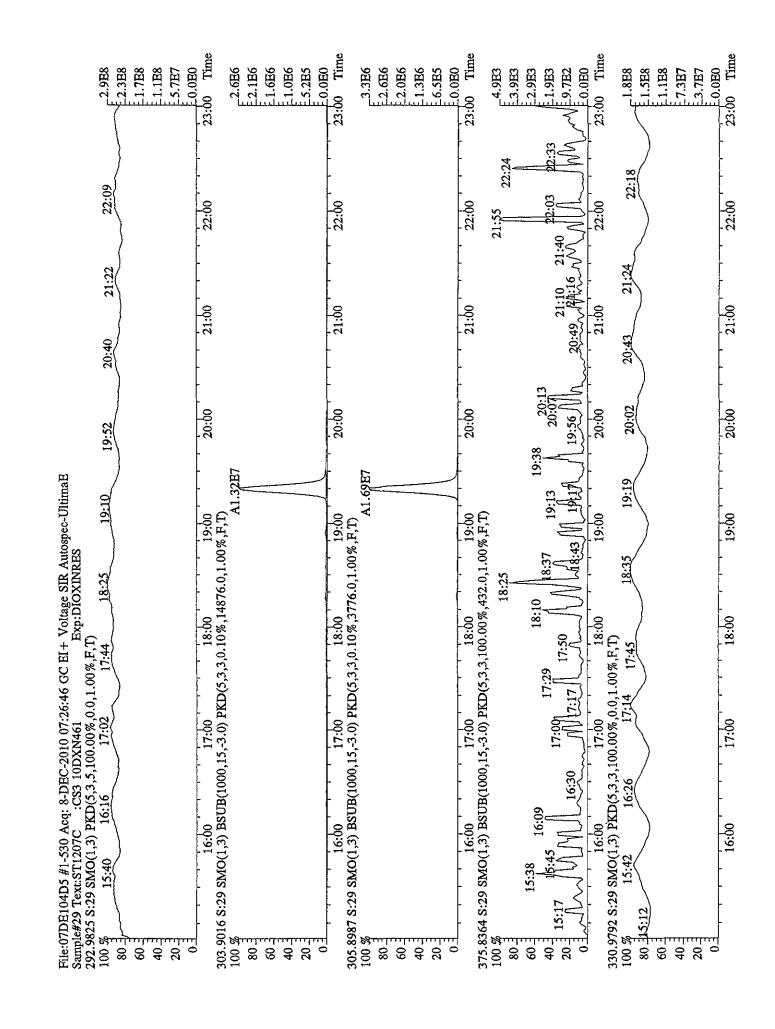


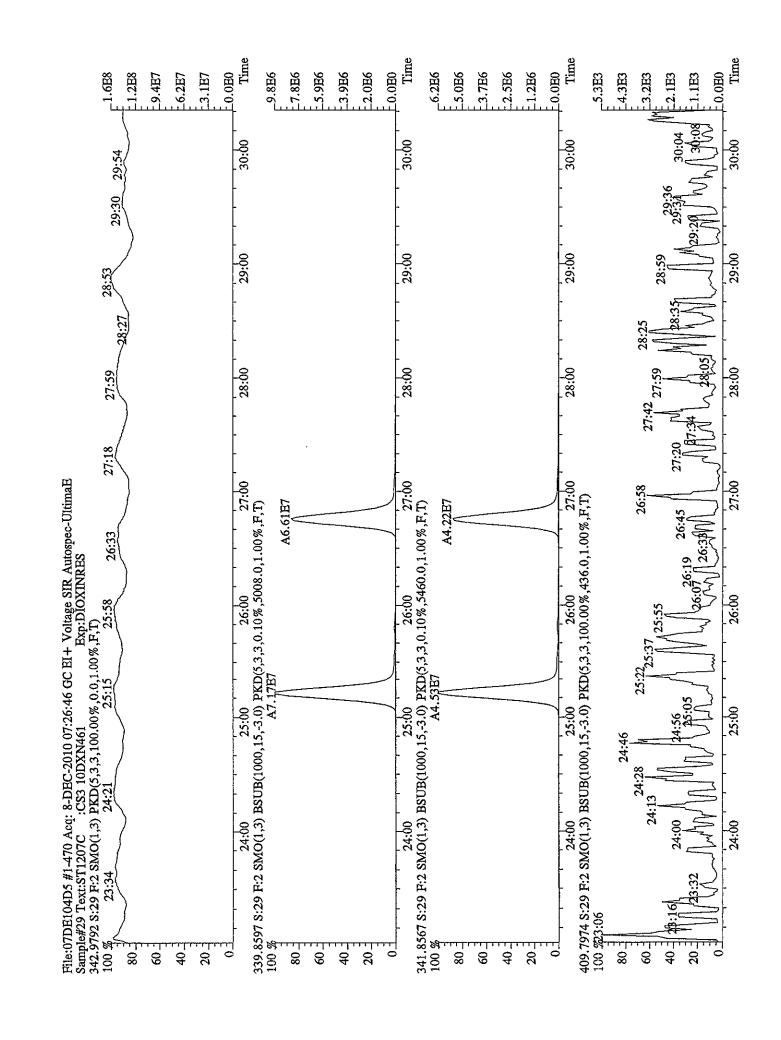


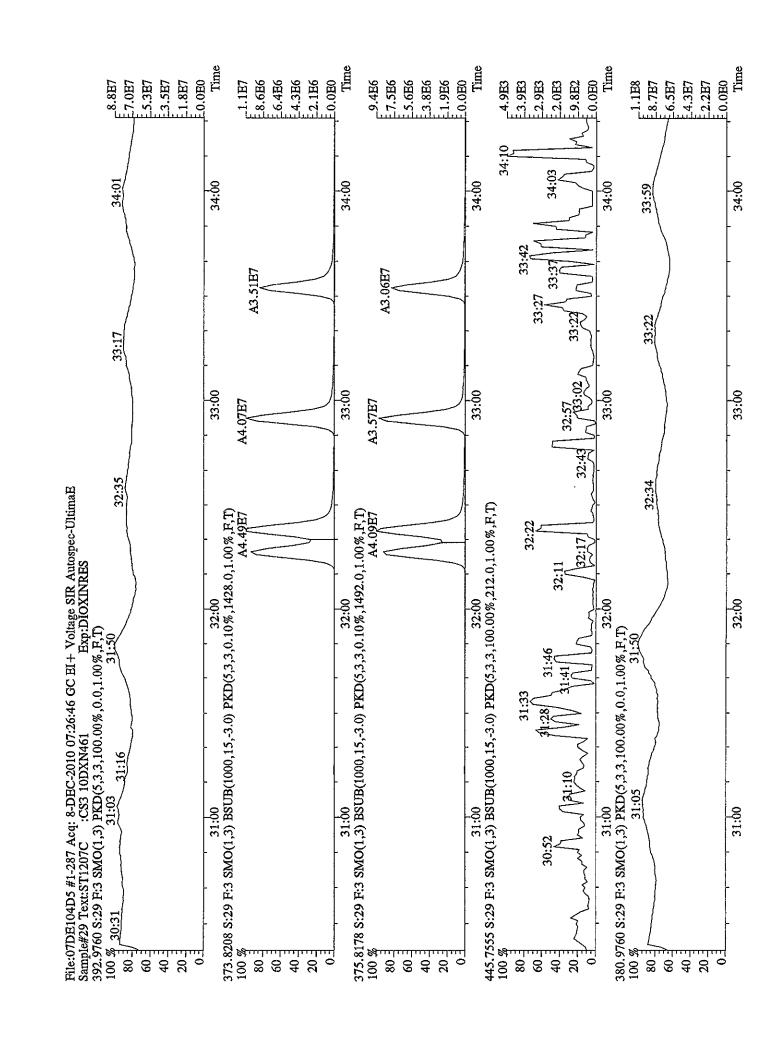


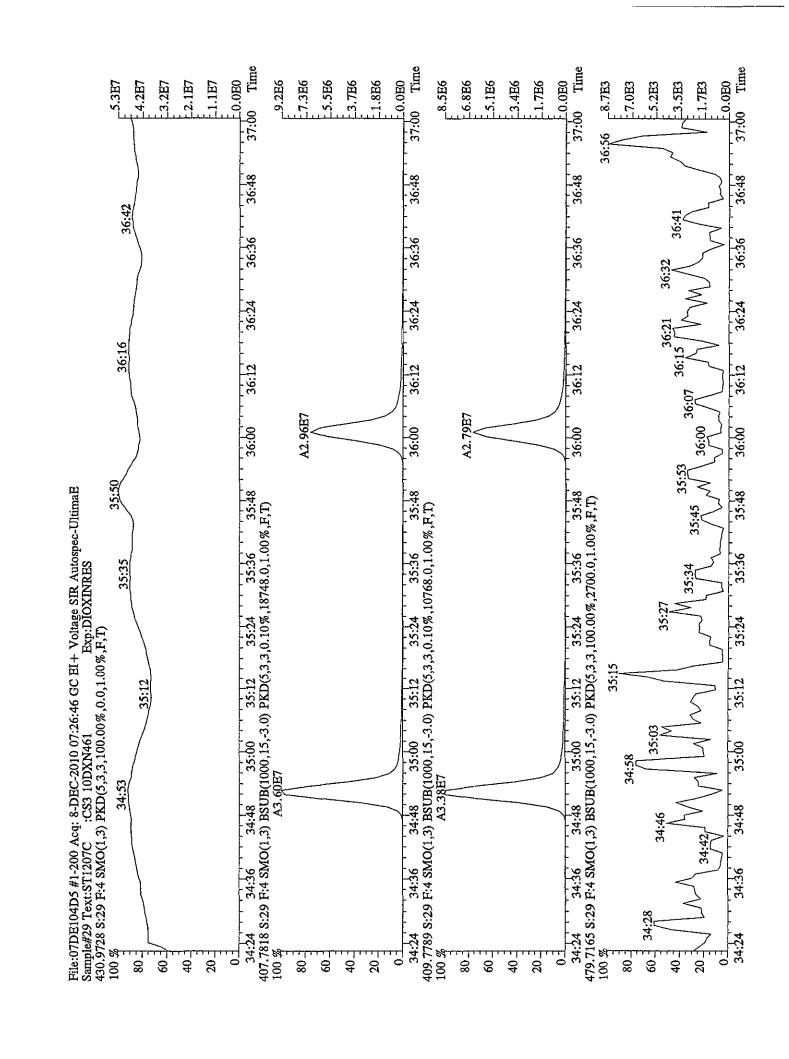


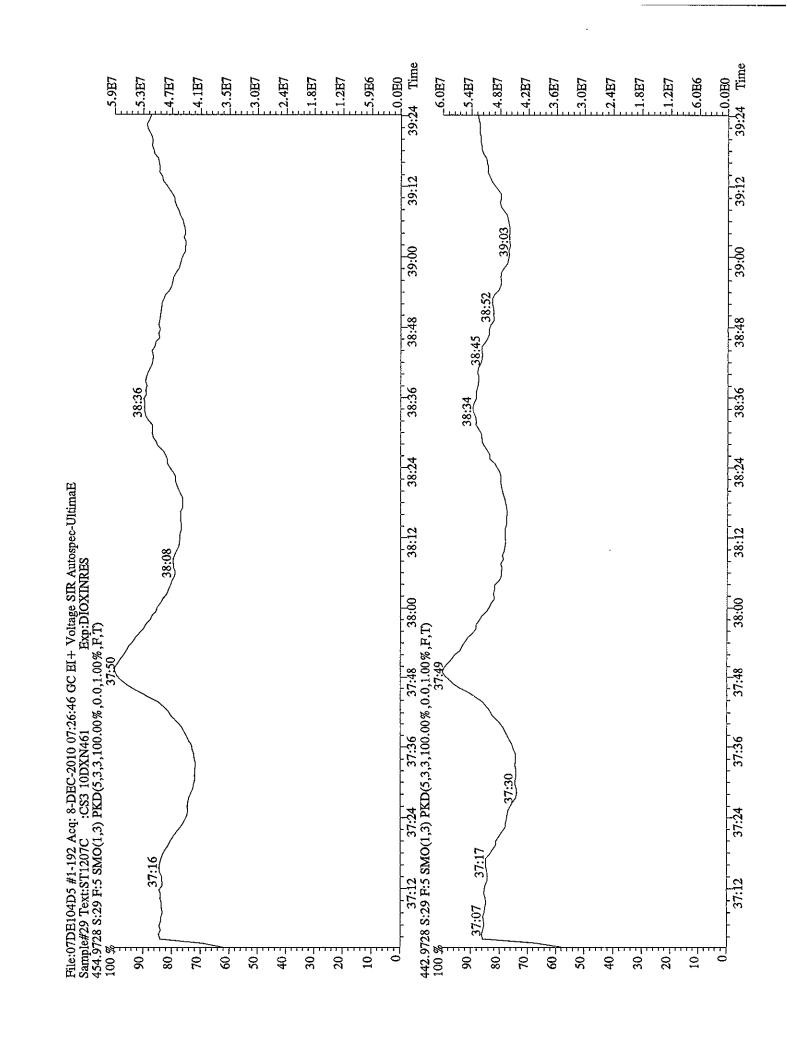












Initial Calibration

Includes (as applicable):
runlog
standard raw data
statistical summary

ms tune data

Test America - West Sacramento

ICAL ID 8290, 1613, 0023A, 23,	T09, Tetras 0721104.05
Method ID 8290,1613,0023A,23,T09,Te-	trao Date Scanned
Column ID DB5	Instrument ID 405
STD ID's STO721A-> STO721E	STD Solution (10.0xN) 334,336,337,339,342
GC Program OCDD	Multiplier Setting 4-10 KV
Analyzed By Kss	Date Analyzed 07-21-10
Prepared By kss	Date Prepared 07-22-10
Reviewed By JRB	Date Reviewed 7/22/10
MEANING SILENDER (MINISTER)	A STRUCTURE STRU
Curve summary present?	V V
Hardcopies of chromatograms for CS1-CS5 present?	<u> </u>
Copy of log-file present?	
Static resolution check present?	<u> </u>
Target file RT's correct?	V V
%RSD within method-specified limits?*	
Signal-to-noise criteria met?	
Isotopic ratios within limits?	
High point free of saturation?	
Are chromatographic windows correct?	
Manual reintegration's checked and hardcopies included?	
COMMENTS:	
Method 8290/TO9/M0023A: %RSD ≤20% for natives, ≤30% for labe Method 1613B: %RSD≤ 20% natives, ≤30% labeled compounds; S/N Method 23: %RSD ≤ values specified in Table 5, Method 23; S/N ≥ 20% natives, ≤30% labeled compounds; S/N ≥ 20% natives specified in Table 5, Method 23; S/N ≥ 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% natives specified in Table 5, Method 20% nat	N≥10

Run: 1555098D2 Analyte: TO9

Cal: T090721104D5

ST0721A :CS-1 10DXN342 ST0721B :CS-2 10DXN334 ST0721D :CS-5 10DXN339 ST0721E :CS-4 10DXN337

CS-2 10DXN334 ST0721C :CS-3 10DXN336

				54	35	36	87	88
Name	Mean	.B. D.	\$RSD	RRF1	RRF2	RRF3	RRF4	RRF5
13C-1,2,3,4-TCDD	1	ı	o/r-	1	1	t	ı	ſ
13C-2,3,7,8-TCDF	1.229	0.154	12.5 %	1.30	1.31	1.39	1.03	1,11
2,3,7,8-TCDF	0,995	0.037	3,68 %	1.03	96.0	0.98	0.97	1.03
Total TCDF	0.995	0.037	3.68 %	1.03	96.0	0.98	0.97	1.03
13C-2,3,7,8-TCDD	0.905	0.029	3.72	0.92	0.92	0.94	0.88	0.87
2,3,7,8-TCDD	0.983	0.032	3.24 %	0.98	0.94	0.97	1,01	1.02
Total TCDD	0.983	0.032	3.24 %	86.0	0.94	0.97	1.01	1.02
37C1-2,3,7,8-TCDD	1,326	0.015	1.12 %	1.33	1,31	1.32	35	1.32
13C-1,2,3,7,8-PeCDF	0.876	0.018	7,08	0.86	06.0	0.86	0.89	0.87
1,2,3,7,8-PeCDF	1.077	0.042	3.92 %	1.03	1.04	1.08	1.11	1.12
2,3,4,7,8-PeCDF	1,046	0.040	3.80 %	1.00	1.02	1.08	1.04	1.09
Total F2 PecDF	1.061	0.039	3.67 %	1.01	1.03	1.08	1,08	1.10
Total F1 PeCDF	1.061	0.039	3.67 %	1.01	1.03	1.08	. O.	1.10
13C-1,2,3,7,8-PeCDD	0,661	0.010	ы Д	0.65	0.66	0.67	0,67	0.65
1,2,3,7,8-PeCDD	0.925	0.038	4.09 %	0.89	0.88	0.94	0.95	0.97
Total PecDD	0.925	0.038	4.09 %	0.89	0.88	0.94	0.95	0.97
13C-1,2,3,7,8,9-HxCDD	•	4	ò¢ I	ı	•	•	ŧ	,
13C-1,2,3,4,7,8-HxCDF	1.045	0.067	& 4,	1.03	1,15	0.98	1.00	1.07
1,2,3,4,7,8-HXCDF	1.217	0.012	1.02 %	1.21	1.20	1.22	1.22	1.23
1,2,3,6,7,8-HXCDF	1.282	0.089	6.95 %	1.19	1.22	1.41	1.33	1.26
2,3,4,6,7,8-HXCDF	1.233	0.080	6.49 %	1.19	1.15	1.35	1.27	1.21
1,2,3,7,8,9-HXCDF	1.098	960.0	8.73 %	1.08	66.0	1.25	1.10	1.06
Total HxCDF	1,208	0.066	5.43 %	1.17	1.14	1.31	1.23	1.19
13C-1,2,3,6,7,8-HXCDD	0.831	0,055	6.68	0.84	0.83	0.92	0.77	0.79
	1	•	6	•	0	0	ì	1

1.23	1.24	1.21	0.86	1.38	1.13	1.26	0.79	1.10	1.10	0.59	1.41	1.19
1.12	1.25	 8	0.87	1.35	1.13	1.24	0.76	1.09	1.09	09.0	1.39	1.17
1.10	1.12	1.06	0.92	1.35	1.11	1.23	0.83	1.07	1.07	0.63	1,35	1.16
1.23	1.16	1.12	0.91	1.34	1.09	1.21	0.85	1.03	1.03	0.63	1.35	1.17
1.14	1.15	1.06	0.99	1.31	1.01	1.16	0.89	1.07	1.07	0,66	1.36	1.31
5,18 %	4.86 %	5.93 %	5,65 %	7.99 %	4.49 %	3.05 %	5,98	2.61 %	2.61	4.60 %	1,98 %	5.48 %
0.060	0.057	0.067	0.051	0.027	0.049	0.037	0.049	0.028	0.028	0.029	0.027	0.066
1,163	1.182	1.127	0.910	1.346	1.093	1.220	0.827	1.072	1.072	0.620	1.370	1.199
1,2,3,6,7,8-HXCDD	1,2,3,7,8,9-HxCDD	Total HxCDD	13C-1,2,3,4,6,7,8-HpCDF	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	Total MpCDF	13C-1,2,3,4,6,7,8-HpCDD	1,2,3,4,6,7,8-HpCDD	Total HpCDD	13C-OCDD	OCDE	ocdd

Run #1 Filename 21JL10A4D5 S: 4 I: 1

Acquired: 21-JUL-10 16:48:00 Processed: 22-JUL-10 12:01:10 Run: 15SE098D2 Analyte: TO9 Cal: TO90721104D5

Comments:

Sample text: ST0721A :CS-1 10DXN342

Name	Resp	RA	RT	RRF		Mod?
13C-1,2,3,4-TCDD	311991000	0.79 y	20:01	-	100.00	n
13C-2,3,7,8-TCDF	406871000	0.79 v	19:24	1,3041	100.00	n
2,3,7,8-TCDF	2100786	-		1.0327	0.50	n
Total TCDF	~	- n		1,0327	0.50	n
13C-2,3,7,8-TCDD	286692000	0.78 y	20:13	0.9189	100.00	n
2,3,7,8-TCDD	1410323	-		0.9839	0.50	n
Total TCDD		- n		0.9839	0.50	n
37C1-2,3,7,8-TCDD	1900202	1.00 y	20:14	1.3256	0.50	n
13C-1,2,3,7,8-PeCDF	267161000	1.54 y	25:17	0.8563	100.00	n
1,2,3,7,8-PeCDF	6866350	1.58 y	25:19	1.0280	2.50	'n
2,3,4,7,8-PeCDF	6654750	1.57 y	26:51	0.9964	2.50	n
Total F2 PeCDF	-	- n	=	1.0122	5.00	n
Total F1 PeCDF	-	- n	-	1.0122	5.00	n
13C-1,2,3,7,8-PeCDD	202489300	1.56 y	27:41	0.6490	100.00	n
1,2,3,7,8-PeCDD	4490250	_		0.8870	2.50	n
Total PeCDD	_	- n		0.8870	2.50	n
13C-1,2,3,7,8,9-HxCDD	216693700	1.31 у	33:22	-	100.00	n
13C-1,2,3,4,7,8-HxCDF	223118900	0.51 y	32:16	1.0297	100.00	n
1,2,3,4,7,8-HxCDF	6768610	_		1.2135	2.50	n
1,2,3,6,7,8-HxCDF	6624500	_		1.1876	2.50	n
2,3,4,6,7,8-HxCDF	6618550	1.19 y	32:54	1.1866	2.50	n
1,2,3,7,8,9-HxCDF	6028420	1.13 y	33:32	1.0808	2.50	n
Total HxCDF	-	- n	_	1.1671	10.00	n
13C-1,2,3,6,7,8-HxCDD	182168900	1.32 y	33:06	0.8407	100.00	Y 🗸
1,2,3,4,7,8-HxCDD	4087150			0.8974	2.50	n
1,2,3,6,7,8-HxCDD	51.84140	1,31 y	33:07	1.1383	2.50	n
1,2,3,7,8,9-HxCDD	5222820	1,27 y	33:22	1.1468	2.50	n
Total HxCDD	-	- n		1.0609	. 7.50	n
13C-1,2,3,4,6,7,8-HpCDF	214578400	0.43 v	34:53	0.9902	100.00	n
1,2,3,4,6,7,8-HpCDF	7009400			1.3066	2.50	n
1,2,3,4,7,8,9-HpCDF	5421290			1.0106	2.50	n
Total HpCDF	-	- n		1.1586	5.00	n
120 1 2 2 4 6 7 0 15-000	100017460	1 02	2 E . 4 D	0 0019	100 00	~
13C-1,2,3,4,6,7,8-HpCDD	193217400			0.8917	100.00	n ·
1,2,3,4,6,7,8-HpCDD	5159640	_		1.0682	2.50	n
Total HpCDD	-	- n	_	1.0682	2.50	n
13C-OCDD	284075000	0.88 y	38:16	0.6555	200.00	n
OCDF	9640820	0.93 y	38:23	1.3575	5.00	n

Run #1 Filename 21JL10A4D5 S: 4 I: 1

Acquired: 21-JUL-10 16:48:00 Processed: 22-JUL-10 12:01:10

Run: 15SE098D2 Analyte: TO9 Cal: T090721104D5

Comments:

Sample text: ST0721A :CS-1 10DXN342

Sample text: S10/21A :t	.5-1 10DAN342					
, Name	Resp	RA	RT	RRF		Mod?
13C-1,2,3,4-TCDD	311991000	0.79 y	20:01	-	100.00	n
13C-2,3,7,8-TCDF	406871000	0.79 y	19:24	1.3041	100.00	Ω
2,3,7,8-TCDF	2100786	0.70 y	19:25	1.0327	0.50	n
Total TCDF	~	- n	-	1.0327	0.50	n
13C-2,3,7,8-TCDD	286692000	0.78 y	20:13	0.9189	100.00	n
2,3,7,8-TCDD	1410323	0.86 y	20:14	0.9839	0.50	n
Total TCDD	~	- n	_	0.9839	0.50	n
37C1-2,3,7,8-TCDD	1900202	1.00 y	20:14	1.3256	0.50	n
13C-1,2,3,7,8-PeCDF	267161000	1.54 y	25:17	0.8563	100.00	n
1,2,3,7,8-PeCDF	6866350	_		1.0280	2.50	n
2,3,4,7,8-PeCDF	6654750	1.57 y	26:51	0.9964	2.50	n
Total F2 PeCDF	_	- n	-	1.0122	5.00	n
Total F1 PeCDF	-	- n	-	1.0122	5.00	n
13C-1,2,3,7,8-PeCDD	202489300	-		0.6490	100.00	n
1,2,3,7,8-PeCDD	4490250	1.47 y	27:43	0.8870	2.50	n
Total PeCDD	-	- n	-	0.8870	2.50	n
13C-1,2,3,7,8,9-HxCDD	216693700	1.31 y	33:22	-	100.00	n
13C-1,2,3,4,7,8-HxCDF	223118900	_		1.0297	100.00	n
1,2,3,4,7,8-HxCDF	6768610	_		1.2135	2.50	n
1,2,3,6,7,8~HxCDF	6624500	_		1.1876	2.50	n
2,3,4,6,7,8-HxCDF	6618550	_		1.1866	2.50	n
1,2,3,7,8,9-HxCDF	6028420	1.13 y	33:32	1.0808	2.50	n
Total HxCDF	-	- n	-	1.1671	10.00	n
13C-1,2,3,6,7,8-HxCDD	183007300			0.8445	100.00	n
1,2,3,4,7,8-HxCDD	4087150	_		0.8933	2.50	n
1,2,3,6,7,8-HxCDD	5184140	-		1.1331	2.50	n
1,2,3,7,8,9-HxCDD	5222820	_		1.1416	2.50	n
Total HxCDD	-	- n	-	1.0560	7.50	n
13C-1,2,3,4,6,7,8-HpCDF	214578400	_	34:53	0.9902	100.00	n
1,2,3,4,6,7,8-HpCDF	7009400	_	34:54	1.3066	2.50	n
1,2,3,4,7,8,9-HpCDF	5421290	1.00 y	36:03	1.0106	2.50	n
Total HpCDF	-	- n	-	1.1586	5.00	n
13C-1,2,3,4,6,7,8-HpCDD	193217400	_	35:42	0.8917	100.00	n
1,2,3,4,6,7,8-HpCDD	5159640	1.03 y	35:43	10682	2.50	n
Total HpCDD	-	- n	-	1.0682	2.50	n
13C-OCDD	284075000	0.88 v	38:16	0.6555	200.00	n
OCDF	9640820			1.3575	5.00	n
		- 4			- · · ·	

Run #2 Filename 21JL10A4D5 S: 5 I: 1

Acquired: 21-JUL-10 17:33:53 Processed: 22-JUL-10 12:01:11

Run: 15SE098D2 Analyte: TO9 Cal: TO90721104D5

Comments:

Sample text: ST0721B :CS-2 10DXN334

Name	Resp	RA		RT	RRF		Mod?
13C-1,2,3,4-TCDD	346133000	0.79	У	20:01	-	100.00	n
13C-2,3,7,8-TCDF	454963000	0.79	v	19:25	1.3144	100.00	n
2,3,7,8-TCDF	8692490		-		0.9553	2.00	n
Total TCDF	0050150	-	-		0.9553	2.00	n
					0.3000	2.00	**
13C-2,3,7,8-TCDD	317456000	0.78	У	20:14	0.9172	100.00	n
2,3,7,8-TCDD	5958260	0.78	У	20:15	0.9384	2.00	n
Total TCDD	-	-	n	-	0.9384	2.00	n .
37C1-2,3,7,8-TCDD	8349040	1.00	Y	20:15	1.3150	2.00	n
13C-1,2,3,7,8-PeCDF	311858000	1.53	У	25:17	0.9010	100.00	n
1,2,3,7,8-PeCDF	32375300	1.57	y	25:19	1.0381	10.00	n
2,3,4,7,8-PeCDF	31788800	1.54	У	26:52	1.0193	10.00	n
Total F2 PeCDF	-	-	n		1.0287	20.00	n
Total F1 PeCDF	-	-	n	-	1.0287	20.00	n
13C-1,2,3,7,8-PeÇDD	228833100	1 55	v	27 - 41	0.6611	100.00	n
1,2,3,7,8-PeCDD	20211030				0.8832	10.00	n
Total PeCDD			-		0.8832	10.00	n
13C-1,2,3,7,8,9-HxCDD	250231000	1.31	У	33:22	-	100.00	n
13C-1,2,3,4,7,8-HxCDF	286839800	0.51	У	32:16	1.1463	100.00	n
1,2,3,4,7,8-HxCDF	34391700	1.17	У	32:17	1.1990	10.00	n
1,2,3,6,7,8-HxCDF	34994300	1.19	<u>-</u>	32:24	1.2200	10.00	n
2,3,4,6,7,8-HxCDF	32979800	1.17	y	32:55	1.1498	10.00	n
1,2,3,7,8,9-HxCDF	28460200	1.20	У	33:33	0.9922	10.00	n
Total HxCDF	_	-	n	-	1.1402	40.00	n
13C-1,2,3,6,7,8-HxCDD	207728500	1.31	v	33:06	0.8301	100.00	n
1,2,3,4,7,8-HxCDD	20528920			33:03	0.9883	10.00	n
1,2,3,6,7,8-HxCDD	25476800		_	33:07	1.2264	10.00	n
1,2,3,7,8,9-HxCDD	24026200	1.28	_		1.1566	10.00	n
Total HxCDD	-	-	-	-	1.1238	30.00	n
13C-1,2,3,4,6,7,8-HpCDF	227576800	Λ 42	4 P	34:53	0.9095	100.00	~
1,2,3,4,6,7,8-HpCDF	30499500			34:54	1.3402	10.00	n
1,2,3,4,7,8,9-HpCDF	24758800		_	36:03	1.0879	10.00	n
Total HpCDF	24/30000	T. U.L	-	50:05	1.2141	20.00	n D
TOTAL APEDI	_		11		T-21-4	20.00	n
13C-1,2,3,4,6,7,8-HpCDD	212760000			35:42	0.8503	100.00	n
1,2,3,4,6,7,8-HpCDD	21862400	1.02	У	35:43	1.0276	10.00	n
Total HpCDD	-	-	n	_	1.0276	10.00	n
13C-OCDD	316775000	0.88	v	38:16	0.6330	200.00	r.
OCDF	42624800		_	38:23	1.3456	20.00	n
OCDD	37017600		-	38:17	1.1686	20.00	n
0000	5,02,000	2.02	ı	20.11	1	m0,00	4.4

Run #3 Filename 21JL10A4D5 S: 6 I: 1

Acquired: 21-JUL-10 18:18:56 Processed: 22-JUL-10 12:01:11

Run: 15SE098D2 Analyte: TO9 Cal: TO90721104D5

Comments:

Sample text: ST0721C :CS-3 10DXN336

Name	Resp	RA	RT	RRF		Mod?
13C-1,2,3,4-TCDD	297616000	0.80 y	20:00	-	100.00	n
13C-2,3,7,8-TCDF	414416000	0.80 V	19:23	1.3925	100.00	n
2,3,7,8-TCDF	40815800	_		0.9849	10.00	n
Total TCDF	-	- n		0.9849	10.00	n
13C-2,3,7,8-TCDD	279542000	0.79 y	20:13	0.9393	100.00	n
2,3,7,8-TCDD	27062400	0.80 y	20:15	0.9681	10.00	n
Total TCDD		- n		0.9681	10.00	n
37Cl-2,3,7,8-TCDD	36762200	1.00 y	20:14	1.3151	10.00	n
13C-1,2,3,7,8-PeCDF	256521000	1.55 y	25:18	0.8619	100.00	n
1,2,3,7,8-PeCDF	138997400	1.55 y	25:20	1.0837	50.00	n
2,3,4,7,8-PeCDF	138743000	1.55 y	26:53	1.0817	50.00	n
Total F2 PeCDF	_	- n	-	1.0827	100.00	n
Total F1 PeCDF	-	- n	-	1.0827	100.00	n
13C-1,2,3,7,8-PeCDD	199400100	1.58 y	27:43	0.6700	100.00	n
1,2,3,7,8-PeCDD	93821800	1.53 y	27:44	0.9410	50.00	n
Total PeCDD	-	- n	-	0.9410	50.00	n
13C-1,2,3,7,8,9-HxCDD	211830200	1.30 y	33:22	-	100.00	n
13C-1,2,3,4,7,8~HxCDF	206662600	0.51 y	32:17	0.9756	100.00	n
1,2,3,4,7,8-HxCDF	125916200	_		1.2186	50.00	n
1,2,3,6,7,8-HxCDF	145591100	-		1.4090	50.00	n
2,3,4,6,7,8~HxCDF	139989400	1.18 y	32:55	1,3548	50.00	n
1,2,3,7,8,9~HxCDF	129462400	1.18 y	33:33	1.2529	50.00	n
Total HxCDF		- n	-	1.3088	200.00	n
13C-1,2,3,6,7,8~HxCDD	194269900	1.31 y	33:07	0.9171	100.00	n
1,2,3,4,7,8~HxCDD	94117900	1.23 y	33:03	0.9689	50.00	n
1,2,3,6,7,8-HxCDD	106981800	1.27 y	33:08	1.1014	50.00	n
1,2,3,7,8,9~HxCDD	108772200	1.25 y	33:23	1.1198	50.00	n
Total HxCDD	-	- n	-	1.0634	150.00	n
13C-1,2,3,4,6,7,8-HpCDF	194898500	0.43 y	34:53	0.9201	100.00	n
1,2,3,4,6,7,8-HpCDF	131367000	1.01 y	34:54	1.3481	50.00	n
1,2,3,4,7,8,9-HpCDF	108439900			1.1128	50.00	n
Total HpCDF	-	- n	-	1.2304	100.00	n
13C-1,2,3,4,6,7,8-HpCDD	176478000	1.04 v	35:43	0.8331	100.00	n
1,2,3,4,6,7,8-HpCDD	94723500			1.0735	50.00	n
Total HpCDD	-	- n		1.0735	50.00	n
13C-OCDD	266609000	n 89 ··	38:16	0.6293	200.00	n
OCDF	179957800		38:16	1.3500	100.00	n n
OCDP	154054800	-		1.1557	100.00	
OCDD	124024000	0.90 Y	20:10	1.1337	100.00	n

Run #5 Filename 21JL10A4D5 S: 8 I: 1

Acquired: 21-JUL-10 19:49:00 Processed: 22-JUL-10 12:01:13

Run: 15SE098D2 Analyte: TO9 Cal: TO90721104D5

Comments:

Sample text: ST0721E :CS-4 10DXN337

bumpie coxe. Givibio .e	D 1 102411327					
Name	Resp	R.A.	ŔŦ	RRF		Mod?
13C-1,2,3,4-TCDD	363554000	0.80 y	20:01	-	100.00	n
13C-2,3,7,8-TCDF	402416000	-	19:24	1.1069	100.00	n
2,3,7,8-TCDF	166293900	0.77 y	19:25	1.0331	40.00	n
Total TCDF		- n	-	1.0331	40.00	n
13C-2,3,7,8-TCDD	314971000	_	20:13	0.8664	100.00	n
2,3,7,8~TCDD	127934900	-	20:15	1.0154	40.00	n
Total TCDD	-	- n	-	1.0154	40.00	n
7701 3 7 7 9 7700	166729600	1 00 **	20:15	1.3234	40.00	n
37C1-2,3,7,8-TCDD	100/23000	1.00 y	20:15	1.3234	40.00	11
13C-1,2,3,7,8-PeCDF	317818000	1.53 v	25:17	0.8742	100.00	n
1,2,3,7,8-PeCDF	712080000	_		1.1203	200.00	n
2,3,4,7,8-PeCDF	692103000	_	26:51	1.0888	200.00	n
Total F2 PeCDF		- n		1.1045	400.00	n
Total F1 PeCDF		- n	_	_	400.00	n
10002 12 1001				_,_,		 -
13C-1,2,3,7,8-PeCDD	237598000	1.55 y	27:40	0.6535	100.00	n
1,2,3,7,8-PeCDD	458679000		27:43	0.9652	200.00	n
Total PeCDD	· -	- n	_	0.9652	200.00	n
13C-1,2,3,7,8,9-HxCDD	248923000	1.30 y	33:22		100.00	n
13C-1,2,3,4,7,8-HxCDF	267009400	_	32:16	1.0727	100.00	n
1,2,3,4,7,8-HxCDF	658410000	-	32:17	1.2329	200.00	n
1,2,3,6,7,8-HxCDF	673142000		32:24	1.2605	200.00	n
2,3,4,6,7,8-HxCDF	645815000			1.2093	200.00	n
1,2,3,7,8,9-HxCDF	567208000	1.17 y	33:33	1.0621	200.00	n
Total HxCDF	-	- n	-	1.1912	800.00	n
			22.00	A 5000	7.00.00	
13C-1,2,3,6,7,8-HxCDD	197349200	-		0.7928	100.00	n
1,2,3,4,7,8-HxCDD	458143000	-	33:03	1.1607	200.00	УУ
1,2,3,6,7,8-HxCDD	484675000		33:07	1.2280	200.00	Y 🗸
1,2,3,7,8,9-HxCDD	488147000	_	33:23	1.2368	200.00	n
Total HxCDD	-	- n	-	1.2085	600.00	n
120 1 2 2 4 6 7 0 11-022	214761200	0 42	24.52	0.8628	100 00	<u>~</u>
13C-1,2,3,4,6,7,8-HpCDF	214761200				100.00	n
1,2,3,4,6,7,8-HpCDF	593215000		34:54	1.3811	200.00 200.00	n
1,2,3,4,7,8,9-HpCDF	485366000			1.1300		n
Total HpCDF	**	- n	-	1.2556	400.00	n
13C-1,2,3,4,6,7,8-HpCDD	197451500	1 05 12	35:42	0.7932	100.00	n
1,2,3,4,6,7,8-HpCDD	435214000	-	35:43	1.1021	200.00	n
Total HpCDD	- OOOFTGOOF	- n		1.1021	200.00	n
total inperb	_	11		2.1021	200.00	**
13C-OCDD	291770000	0.90 v	38:16	0.5861	200.00	n
OCDF	820312000	-		1.4058	400.00	n
		1		- · · · ·		

Run #5 Filename 21JL10A4D5 S: 8

Acquired: 21-JUL-10 19:49:00 Processed: 22-JUL-10 12:01:13

I: 1

Run: 15SE098D2 Analyte: TO9 Cal: T090721104D5

Comments:

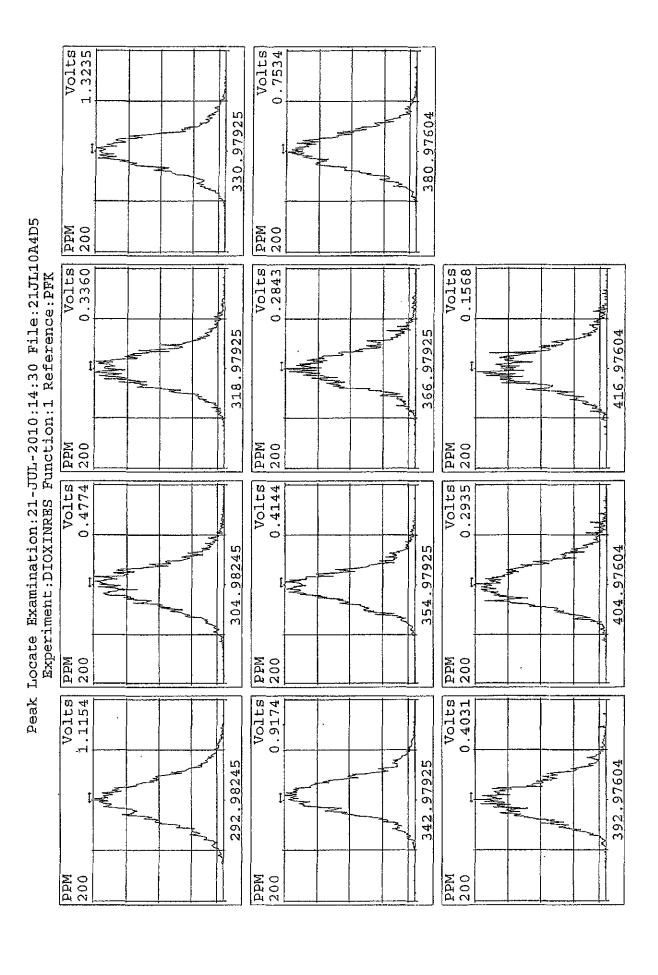
Sample text: ST0721E :CS-4 10DXN337

bumpre cexet broverb .c	5 1 100111357					
Name	Resp	RA	RT	RRF		Mod?
13C-1,2,3,4-TCDD	363554000	0.80 y	20:01	-	100.00	n
13C-2,3,7,8-TCDF	402416000	0.79 y	19:24	1.1069	100.00	n
2,3,7,8-TCDF	166293900	0.77 y	19:25	1.0331	40.00	n
Total TCDF	-	- n		1.0331	40.00	n
13C-2,3,7,8-TCDD	314971000	0.80 y	20:13	0.8664	100.00	n
2,3,7,8-TCDD	127934900	0.78 y	20:15	1.0154	40.00	n
Total TCDD	-	- n	-	1.0154	40.00	n
37C1-2,3,7,8-TCDD	166729600	1.00 y	20:15	1.3234	40.00	n
13C-1,2,3,7,8-PeCDF	317818000			0.8742	100.00	n
1,2,3,7,8-PeCDF	712080000	-		1.1203	200.00	n
2,3,4,7,8-PeCDF	692103000	1.53 y	26:51	1.0888	200.00	n
Total F2 PeCDF	-	- n	_	1.1045	400.00	n
Total F1 PeCDF	~	- n	-	1.1045	400.00	n
13C-1,2,3,7,8-PeCDD	237598000	1.55 y	27:40	0.6535	100.00	n
1,2,3,7,8-PeCDD	458679000	1.50 y	27:43	0.9652	200.00	n
Total PeCDD	<u>.</u> .	- n	-	0.9652	200.00	n
13C-1,2,3,7,8,9-HxCDD	248923000	1.30 y	33:22	_	100.00	n
13C-1,2,3,4,7,8-HxCDF	267009400	0.51 y	32:16	1.0727	100.00	n
1,2,3,4,7,8-HxCDF	658410000	1.16 y	32:17	1.2329	200.00	n
1,2,3,6,7,8-HxCDF	673142000	1.18 y	32:24	1.2605	200.00	n
2,3,4,6,7,8-HxCDF	645815000	1.17 y	32:54	1.2093	200.00	n
1,2,3,7,8,9-HxCDF	567208000	1.17 y	33:33	1.0621	200.00	\mathbf{n}
Total HxCDF	~	- n	-	1.1912	800.00	n
13C-1,2,3,6,7,8-HxCDD	197349200	1.31 y	33:06	0.7928	100.00	n
1,2,3,4,7,8-HxCDD	422231040	1.45(n)	33:03	1.0698	200.00	n
1,2,3,6,7,8-HxCDD	481044000	1.12 y	33:07	1.2188	200.00	n
1,2,3,7,8,9-HxCDD	488146000	1.26 y	33:23	1.2368	200.00	n
Total HxCDD	~	- n	_	1.1751	600.00	n
13C-1,2,3,4,6,7,8-HpCDF	214761200	0.43 v	34:53	0.8628	100.00	n
1,2,3,4,6,7,8-HpCDF	593215000		34;54	1.3811	200.00	n
1,2,3,4,7,8,9-HpCDF	485366000		36:03	1.1300	200.00	n
Total HpCDF	•	- n	-	1.2556	400.00	n
13C-1,2,3,4,6,7,8-HpCDD	197451500	1.05 W	35:42	0.7932	100.00	n
1,2,3,4,6,7,8-HpCDD	435214000	_	35:43	1.1021	200.00	n
Total HpCDD	-	- n	-	1.1021	200.00	n
·						
13C-OCDD	291770000	_	38:16	0.5861	200.00	n
OCDF	820312000	_	38:23	1.4058	400.00	n
OCDD	694943000	0.90 y	38:16	1.1909	400.00	n

Run #4 Filename 21JL10A4D5 S: 7 I: 1

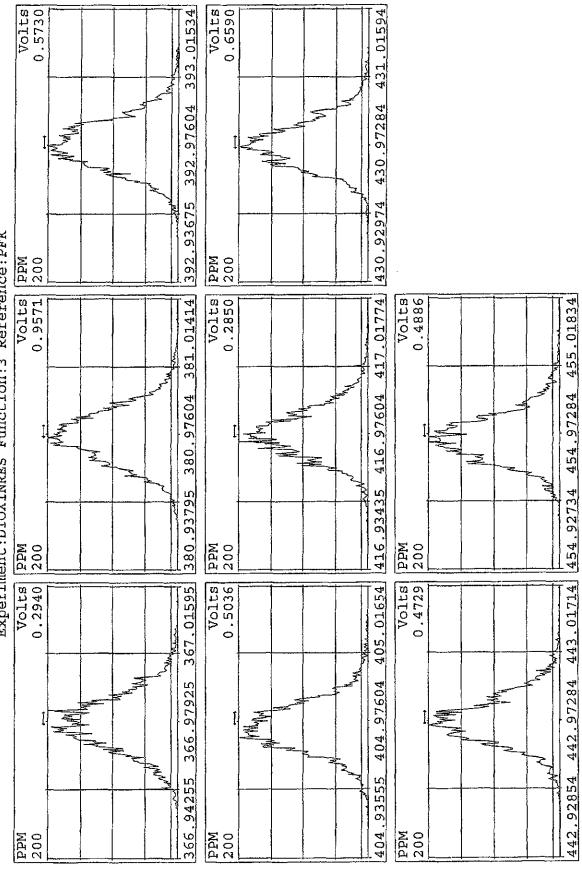
Acquired: 21-JUL-10 19:03:58 Processed: 22-JUL-10 12:01:12

Run: 15SE098D2 Analyte: TO9 Cal: TO90721104D5


Comments:

Sample text: ST0721D :CS-5 10DXN339

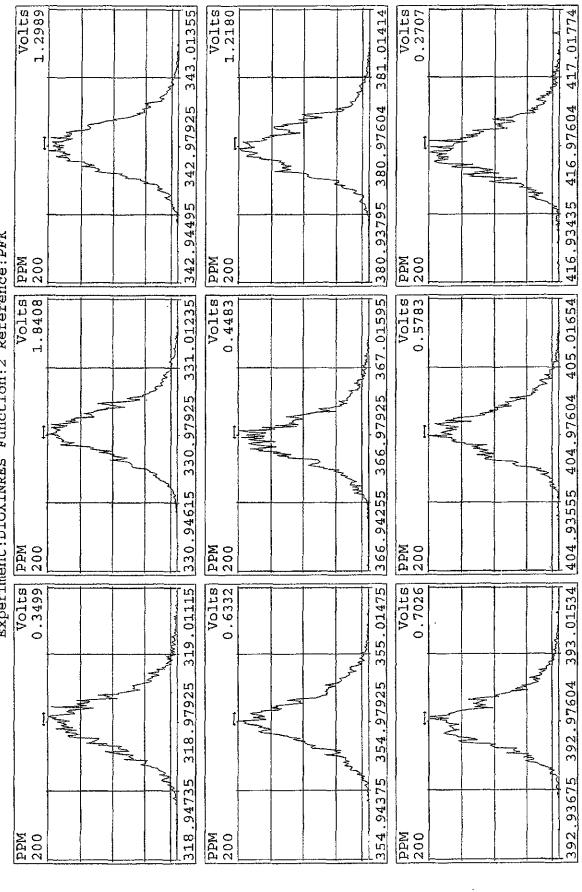
	0 0 101111007					
Name	Resp	RA	RT	RRF		Mod?
13C-1,2,3,4-TCDD	350659000	0.80 y	20:02	-	100.00	n
13C-2,3,7,8-TCDF	360772000	0.79 y	19:24	1.0288	100.00	n
2,3,7,8-TCDF	697458000			0.9666	200.00	n
Total TCDF	-	- n		0.9666	200.00	n
13C-2,3,7,8-TCDD	309835000	0.78 y	20:14	0.8836	100.00	n
2,3,7,8-TCDD	626791000	0.79 y	20:16	1.0115	200.00	n
Total TCDD	-	- n	<u> </u>	1.0115	200.00	n
37C1-2,3,7,8-TCDD	837356000	1.00 y	20:15	1.3513	200.00	n
13C-1,2,3,7,8~PeCDF	310980000	_		0.8868	100.00	n
1,2,3,7,8~PeCDF	3461250000			1.1130	1000.00	n
2,3,4,7,8-PeCDF	3239400000	1.52 y	26:52	1.0417	1000.00	n
Total F2 PeCDF	-	- D		1.0773	2000.00	n
Total F1 PeCDF	-	- n	. -	1.0773	2000.00	n,
127-1 2 2 7 0 DoCDD	235100700	1 66 1	27.42	0.6705	100.00	n
1.3C-1,2,3,7,8-PeCDD	2235314000			0.9508	1000.00	n
1,2,3,7,8-PeCDD	2235314000	-		0.9508	1000.00	
Total PeCDD	-	- n		0.9500	1000.00	n
13C-1,2,3,7,8,9-HxCDD	256316000	1.29 y	33:22	~	100.00	n
13C-1,2,3,4,7,8-HxCDF	256243600	0.51 y	32:16	0.9997	100.00	n
1,2,3,4,7,8-HxCDF	3131920000	1.15 y	32:17	1.2222	1000.00	n
1,2,3,6,7,8-HxCDF	3410730000	1.19 y	32:24	1.3311	1000.00	\mathbf{n}
2,3,4,6,7,8-HxCDF	3245730000	1.18 y	32:55	1.2667	1000.00	n
1,2,3,7,8,9-HxCDF	2825950000	1.18 y	33:33	1.1028	1000.00	n
Total HxCDF	-	- n		1.2307	4000.00	n
13C-1,2,3,6,7,8-HxCDD	198188400	-		0.7732	100.00	n
1,2,3,4,7,8-HxCDD	2319900000	-			1000.00	n
1,2,3,6,7,8-HxCDD	2219442000			1.1199	1000.00	n
1,2,3,7,8,9-HxCDD	2474590000	1.26 y	33:23	1.2486	1000.00	n
Total HxCDD	•	- n	-	1.1797	3000.00	n
13C-1,2,3,4,6,7,8-HpCDF	222373600	0.44 v	34:54	0.8676	100.00	n
1,2,3,4,6,7,8-HpCDF	3008480000			1.3529	1000.00	n
1,2,3,4,7,8,9-HpCDF	2503650000			1.1259	1000.00	n.
Total HpCDF	2303030000	- n		1.2394	2000.00	
Total Apent	~	- 11	, –	1.2333	2000.00	n
13C-1,2,3,4,6,7,8-HpCDD	196025300	1.04 y	35:42	0.7648	100.00	rı
1,2,3,4,6,7,8-HpCDD	2131190000	1.02 y	35:43	1.0872	1000.00	n
Total HpCDD		- n	_	1.0872	1000.00	rı
13C-OCDD	305368000			0.5957	200.00	\mathbf{n}
OCDF	4252770000	_		1.3927	2000.00	n
OCDD	3562830000	0.90 y	38:16	1.1667	2000.00	n


ata file	Smp	Work Order	Sample ID	FV-uL	Method/Matrix	Box	Size	ט
21JL10A4D5	1	CP0721	DB-5 CPSM 3732-08				1.00000	
21JL10A4D5	2	SB0721	Solvent Blank C-14				1.00000	
21JL10A4D5	3	ST0721	CS-0.2 10DXN333 (Notused)	sensite esty	w only		1.00000	
21JL10A4D5	4	ST0721A	CS-1 10DXN342				1.00000	
21JL10A4D5	5	ST0721B	CS-2 10DXN334				1.00000	
21JL10A4D5	6	ST0721C	CS-3 10DXN336				1.00000	
21JL10A4D5	7	ST0721D	CS-5 10DXN339				1.00000	
21JL10A4D5	8	ST0721E	CS-4 10DXN337				1.00000	
21JL10A4D5	9	ST0721F	2nd Source 10DXN340				1.00000	
21JL10A4D5	10						1.00000	
21JL10A4D5	11						1.00000	
21JL10A4D5	1.2						1.00000	
21JL10A4D5	13		KSS 07-21-10				1.00000	

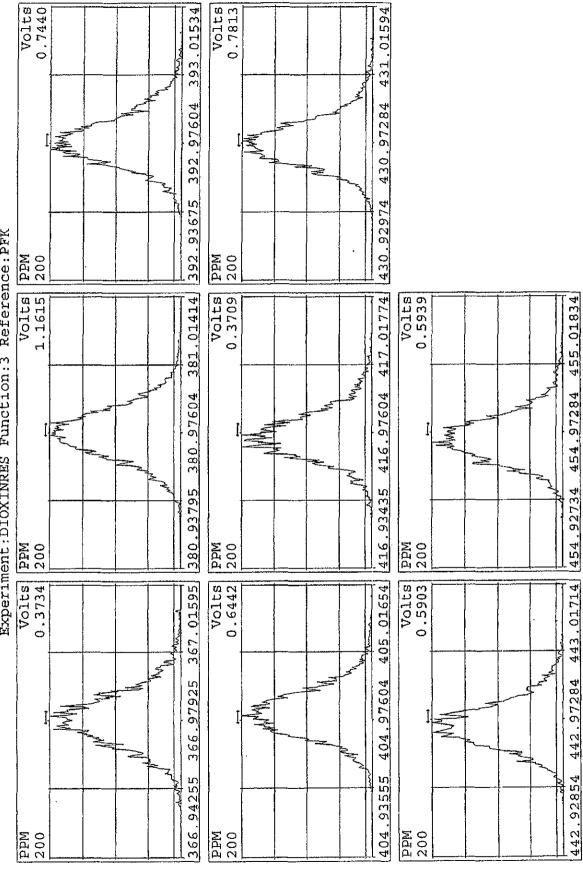
be but v'd
NE 7/22/10

Volts 0.2217 Volts 0.9800 Volts 0.9829 343.01355 381.01414 417.01774 416.97604 342.97925 380.97604 Peak Locate Examination:21-JUL-2010:14:31 File:21JL10A4D5 Experiment:DIOXINRES Function:2 Reference:PFK 416.93435 342 94495 380.93795 PPM 200 PPM 200 PPM 200 Volts Volts Volts 405.01654 331.01235 367.01595 404.97604 330.97925 366.97925 1 3 330.94615 366.94255 404.93555 PPM 200 PPM 200 PPM 200 Volts 0.2768 Volts Volts 0.5296 393.01534 319.01115 355.01475 392.97604 318.97925 354.97925 .94735 54.94375 392,93675 318. PPM 200 200 PPM 200 PPM

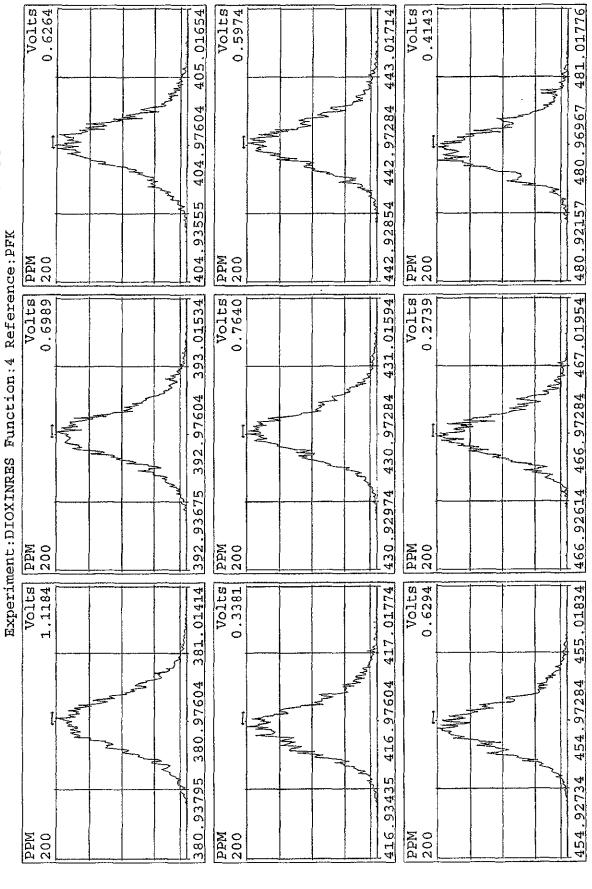
Peak Locate Examination:21-JUL-2010:14:31 File:21JL10A4D5 Experiment:DIOXINRES Function:3 Reference:PFK

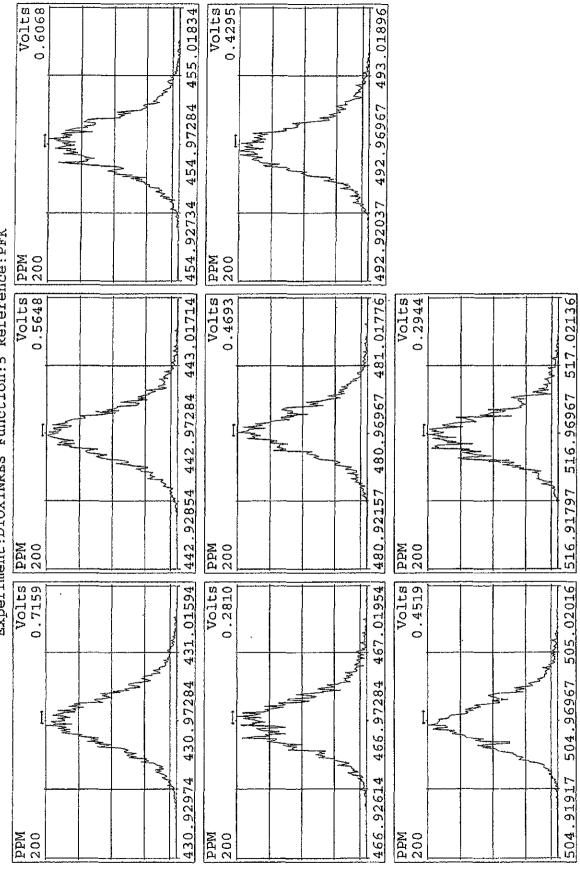


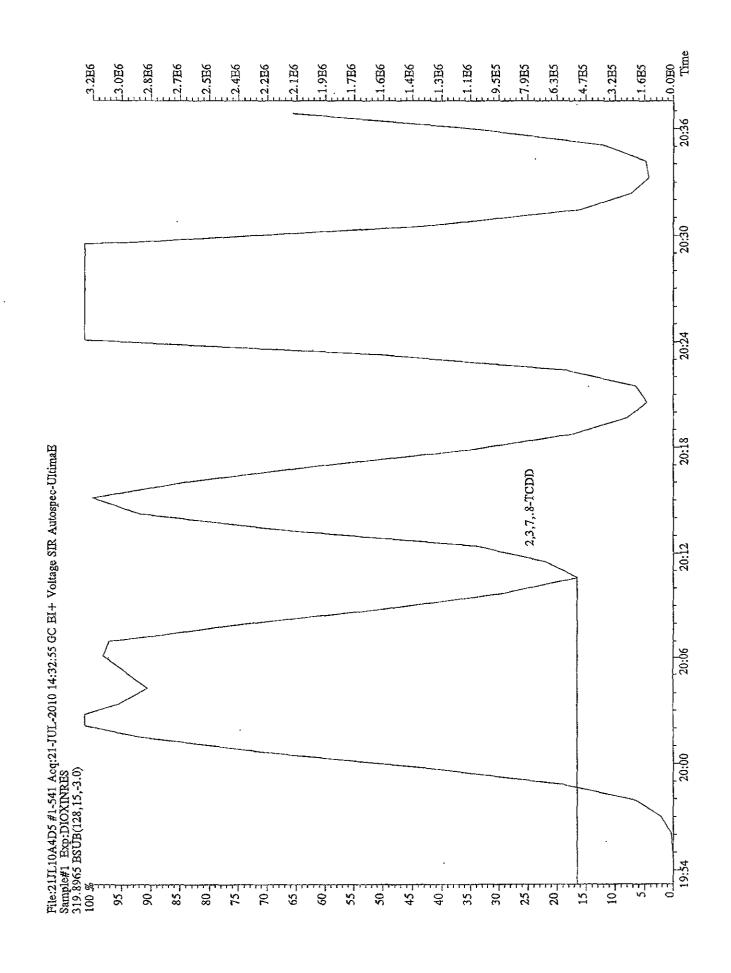
Volts 0.5384 Volts 481.01776 405.01654 Volts 0.5464 443.01714 480.96967 404.97604 442.97284 Peak Locate Examination:21-JUL-2010:14:31 File:21JL10A4D5 Experiment:DIOXINRES Function:4 Reference:PFK 404.93555 442.92854 480.92157 PPM 200 PPM 200 PPM 200 Volts 0.5965 Volts 0.2409 467.01954 Volts 0.6526 393.01534 431.01594 3 466.97284 392.97604 430.97284 ₹ 392,93675 430.92974 466.92614 PPM 200 PPM 200 PPM 200 Volts 0.9083 Volts 0.5177 Volts 0.2801 455.01834 417.01774 381,01414 416.97604 454.97284 380.97604 416.93435 454.92734 380,93795 PPM 200 PPM PPM 200 200


Volts 0.5053 Volts 0.3834 493.01896 455.01834 .97284 492,96967 454. Peak Locate Examination:21-JUL-2010:14:31 File:21JL10A4D5 Experiment:DIOXINRES Function:5 Reference:PFK 454.92734 492.92037 PPM 200 PPM 200 Volts 0.5222 Volts 0.4211 Volts 0.2897 443.01714 481.01776 517.02136 516,96967 442.97284 480.96967 516.91797 442.92854 480.92157 PPM 200 PPM 200 PPM 200 Volts 0.2591 Volts Volts 0.4094 505.02016 431,01594 467.01954 504.96967 466.97284 430.97284 430.92974 466,92614 504.91917 Mad 200 PPM 200 PPM 200

Volts Volts 0.9921 380.97604 330.97925 INE_ Peak Locate Examination:21-JUL-2010:21:39 File:RESCHK21JL10A4D5 Experiment:DIOXINRES Function:1 Reference:PFK PPM 200 PPM 200 Volts 0.3600 Volts 0.4618 Volts 0.1892 416.97604 318.97925 366.97925 PPM 200 PPM 200 PPM 200 Volts 0.6756 Volts 0.5701 Volts 0.3787 MANA 404.97604 354.97925 304.98245 1 PPM 200 PPM 200 PPM 200 Volts Volts Volts 1.3133 392.97604 292.98245 342.97925 PPM 200 PPM 200 PPM 200


Peak Locate Examination:21-JUL-2010:21:40 File:RESCHK21JL10A4D5 Experiment:DIOXINRES Function:2 Reference:PFK


Peak Locate Examination:21-JUL-2010:21:40 File:RESCHK21JL10A4D5 Experiment:DIOXINRES Function:3 Reference:PFK



Peak Locate Examination: 21-JUL-2010: 21:41 File: RESCHK21JL10A4D5

Peak Locate Examination:21-JUL-2010:21:44 File:RESCHK21JL10A4D5 Experiment:DIOXINRES Function:5 Reference:PFK

1,2,3,4,7,8,9-HpCDF

'n

Ω

n

483.90 96.37

973.82

2.38

2.02

Sample text: ST0721F :2nd Source 10DXN340 Run text: ST0721F Run #6 Filename: 21JL10A4D5 S: 9 I: 1 Results: 21JL10A4D51613SS 20:34:02 Processed: 22-JUL-10 10:21:57 Acquired: 21-JUL-10

Analyte: 1613 Cal: 16130721104D5 Run: 21JL10A4D5 souled & 200/500/1000

Factor 2: 20.000 Sample size: 1.000000 Factor 1: 800.000 1/23/10,000 Name RA RT RRF Conc EDL Resp Rec М 13C-1,2,3,4-TCDD 307629000 0.78 y 20:01 92.11 n 413901000 0.78 y 19:24 1.23 2188.90 0.92 109.4 13C-2,3,7,8-TCDF n 188.67 94.37 38830800 0.76 y 19:25 0.99 2,3,7,8-TCDF 0.48 n Total TCDF 39472107 1.33 n 17:31 0.99 191.78 0.48 n 13C-2,3,7,8-TCDD 294375000 0.78 y 20:13 0.91 2114.60 2.32 105.7 n 190.1395% 27522700 0.81 y 20:14 0.98 2,3,7,8-TCDD 0.52 n Total TCDD 27522700 0.81 y 20:14 0.98 190.13 0.52 n 37C1~2,3,7,8-TCDD 76164600 1.00 y 20:14 1.20 412.65 0.41 103.2 2244.44 13C-1,2,3,7,8-PeCDF 302436000 1.54 y 25:17 0.88 1.40 n 476.31 45.37 1,2,3,7,8-PeCDF 77546500 1.54 y 25:19 1.08 1.04 n 271363000 1.54 y 26:49 0.88 2003.66 13C-2,3,4,7,8-PeCDF 1.40 100.2 n 68923500 1.55 y 26:51 1.04 488.17 97.6% 2,3,4,7,8-PeCDF 1.32 n 149591746 1.40 y 23:44 1.06 Total F2 PeCDF 985.04 1.17 n Total F1 PeCDF * n NotFnd 1.06 1.08 n 1840.17 0.85 92.0 13C-1,2,3,7,8-PeCDD 187042900 1.56 y 27:41 0.66 n 475.77 95% 1,2,3,7,8-PeCDD 41178400 1.55 y 27:43 0.93 1.23 n Total PeCDD 41347624 2.76 n 25:18 0.93 477.73 1.23 13C-1,2,3,7,8,9-HxCDD 186030000 1.31 y 33:22 78.56 У 13C-1,2,3,4,7,8-HxCDF 197163100 0.50 y 32:16 1.04 2028.83 4.92 101.4 n 523.47 10477 62815000 1.17 y 32:17 1.22 1,2,3,4,7,8-HxCDF 1.49 249545100 0.52 y 32:22 1.19 2251.50 13C-1,2,3,6,7,8-HxCDF 4.31 112.6 IJ 458.58 917 / 1,2,3,6,7,8-HxCDF 64154700 1.18 y 32:24 1.12 1.45 n 13C-2,3,4,6,7,8-HxCDF 228157700 0.51 y 32:54 1.12 2184.24 4.58 109.2 n 469.19 93.8% 1.35 2,3,4,6,7,8-HxCDF 61275400 1.15 y 32:54 1.14 r. 13C-1,2,3,7,8,9-HxCDF 202978100 0.52 y 33:31 1.02 2140.44 5.04107.0 482.01 96.4% 1,2,3,7,8,9-HxCDF 54870000 1.19 y 33:32 1.12 1.58 Total HxCDF 243548785 1.21 y 31:03 1.15 1936.68 1.46 103.4 168448700 1.31 y 33:02 0.88 2067.53 1.23 13C-1,2,3,4,7,8-HxCDD \mathbf{y}^{r} 479.5795.9% 39583500 1.24 y 33:03 0.98 1.14 1,2,3,4,7,8-HxCDD 11 13C-1,2,3,6,7,8-HxCDD 171613300 1.31 y 33:06 0.83 2221.03 1.29 111.1 У 454.27 90.8% 45328400 1.28 y 33:07 1.16 0.97 1,2,3,6,7,8-HxCDD ۲٦ 465.05 93 % 0.97 45402600 1.24 y 33:22 1.15 1,2,3,7,8,9-HxCDD 11 Total HxCDD 130450140 4.93 n 32:18 1.09 1400.35 1.02 107.7 182370400 0.43 y 34:53 0.91 2154.51 6.23 13C-1,2,3,4,6,7,8-HpCDF 13 473.20 94.6 % 58068900 1.00 y 34:54 1.35 1.73 'n 1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 150417500 0.43 y 36:02 0.76 2122.83 7.45 106.1

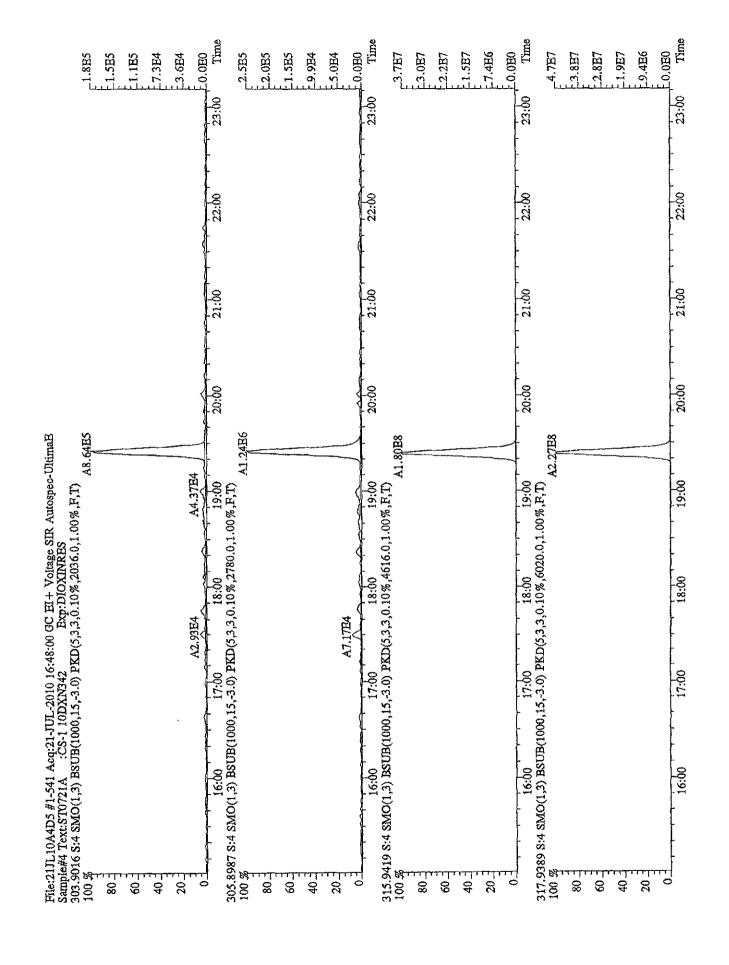
47489800 1.02 y 36:03 1.30

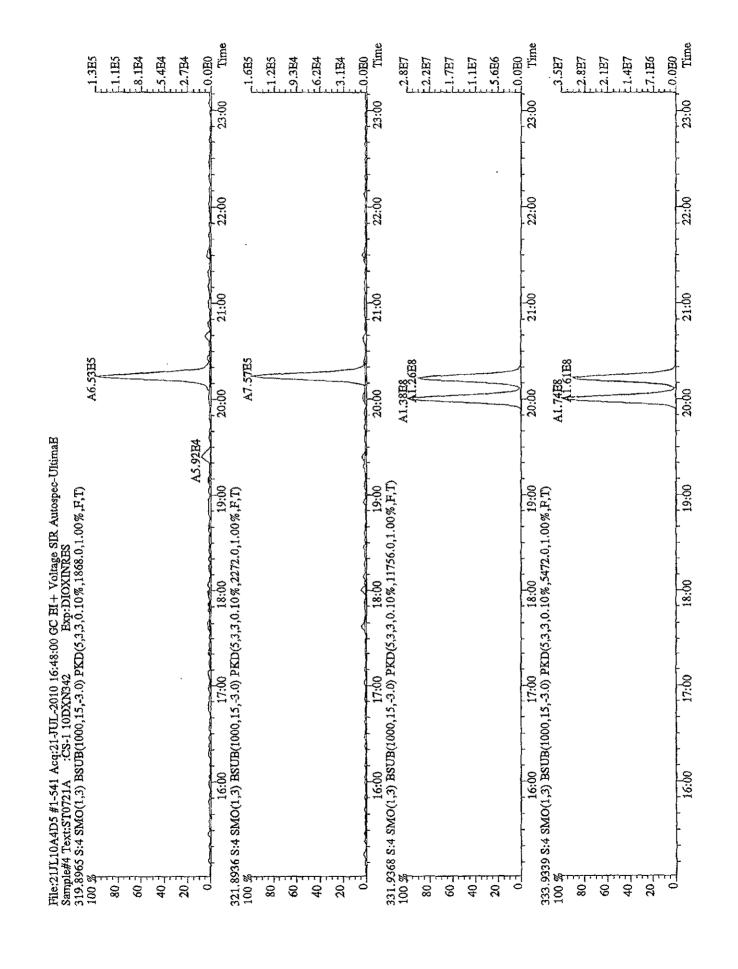
Total HpCDF 107404819 1.00 y 34:54 1.33

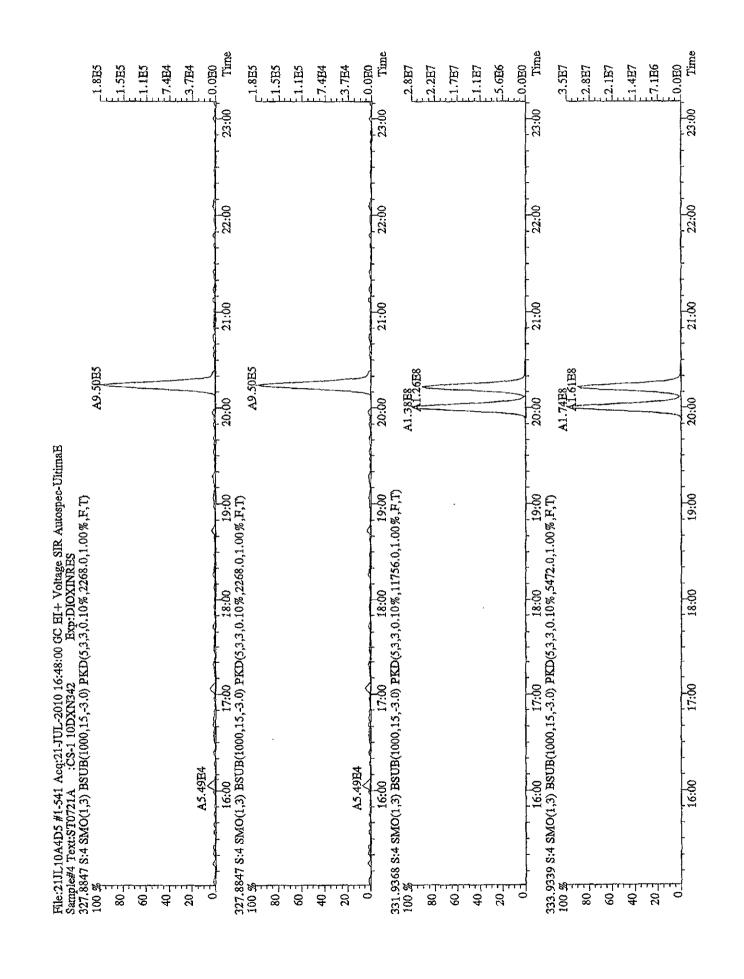
161779300 0.96 y	35:42 0.83			5.07	105.2	n
42052300 1.04 y	35:43 1.07	485.09	977	1.80	~	\mathbf{n}
43164489 1.03 y	35:09 1.07	497.92		1.80	~	n
265623000 0.89 y	38:16 0.62	4606.72	art	4.74	115.2	n
85350600 0.91 y	38:23 1.37	937.96	93.87.	1.38	-	n
74923500 0.91 y	38:16 1.20	940.76	94 %,	1.58	~	n
	42052300 1.04 y 43164489 1.03 y 265623000 0.89 y 85350600 0.91 y	42052300 1.04 y 35:43 1.07 43164489 1.03 y 35:09 1.07 265623000 0.89 y 38:16 0.62 85350600 0.91 y 38:23 1.37	42052300 1.04 y 35:43 1.07 485.09 43164489 1.03 y 35:09 1.07 497.92 265623000 0.89 y 38:16 0.62 4606.72 85350600 0.91 y 38:23 1.37 937.96	43164489 1.03 y 35:09 1.07 497.92 265623000 0.89 y 38:16 0.62 4606.72 85350600 0.91 y 38:23 1.37 937.96 93.8%.	42052300 1.04 Y 35:43 1.07 485.09 977 1.80 43164489 1.03 Y 35:09 1.07 497.92 1.80 265623000 0.89 Y 38:16 0.62 4606.72 85350600 0.91 Y 38:23 1.37 937.96 93.87 1.38	42052300 1.04 y 35:43 1.07 485.09 977 1.80 - 43164489 1.03 y 35:09 1.07 497.92 1.80 - 265623000 0.89 y 38:16 0.62 4606.72 4.74 115.2 85350600 0.91 y 38:23 1.37 937.96 93.87 1.38 -

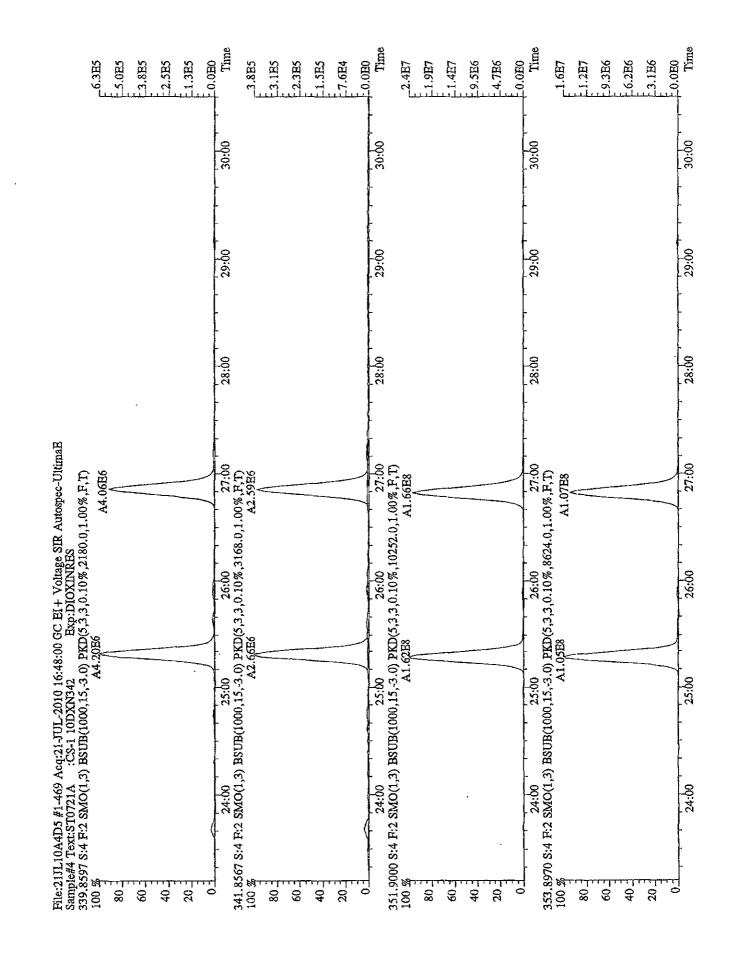
ı

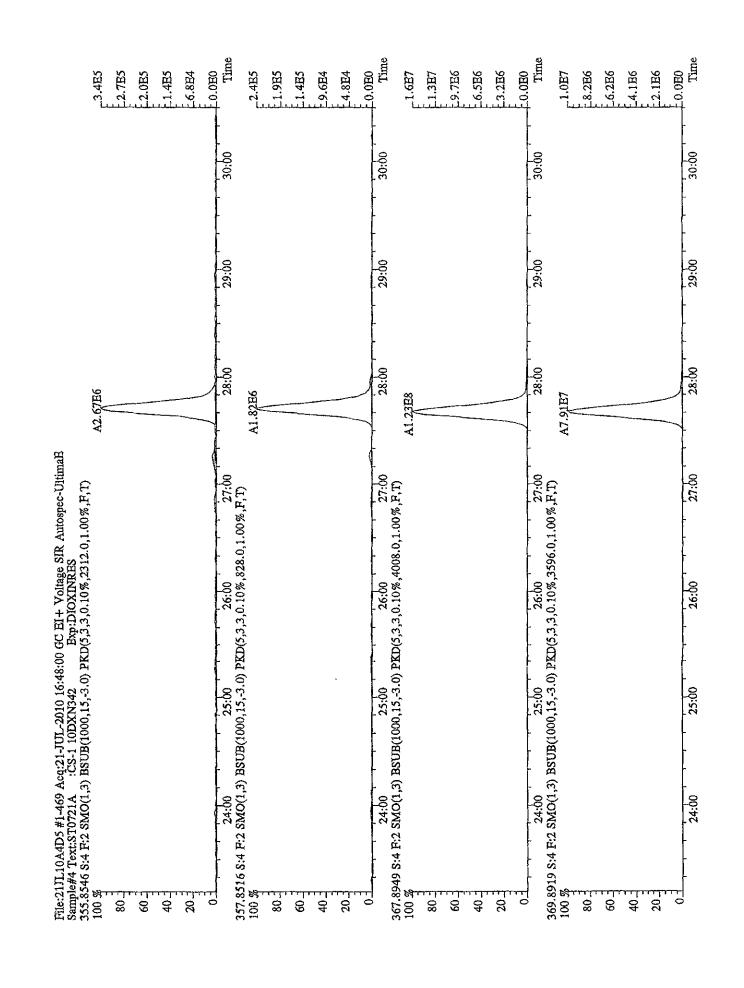
Run text: ST0721F Sample text: ST0721F :2nd Source 10DXN340

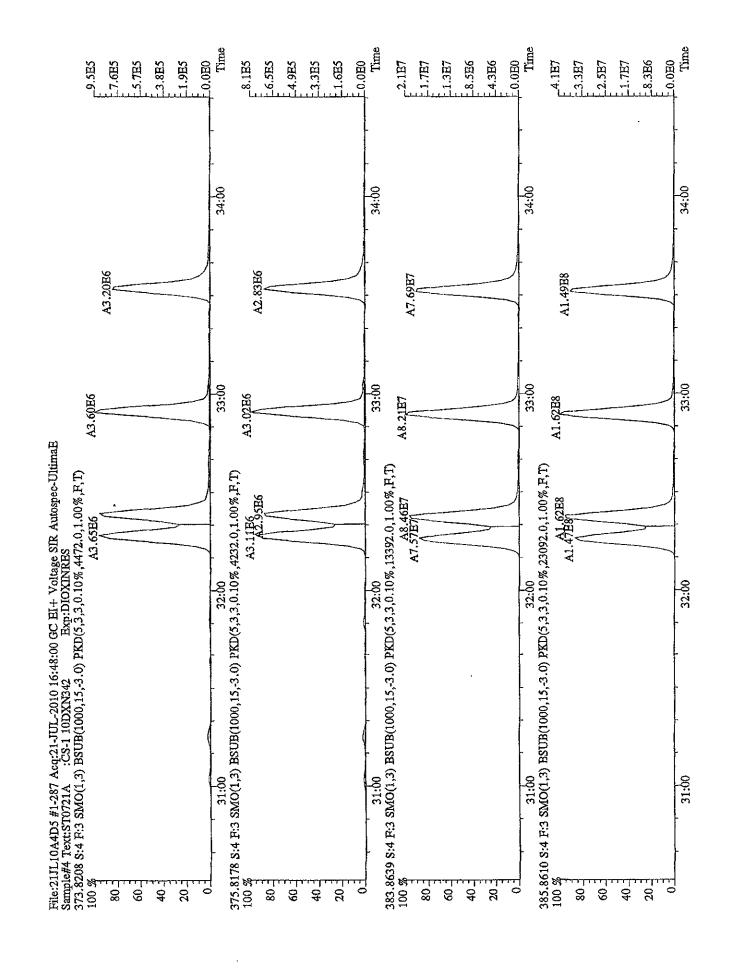

Run #6 Filename: 21JL10A4D5 S: 9 I: 1 Results: 21JL10A4D51613SS

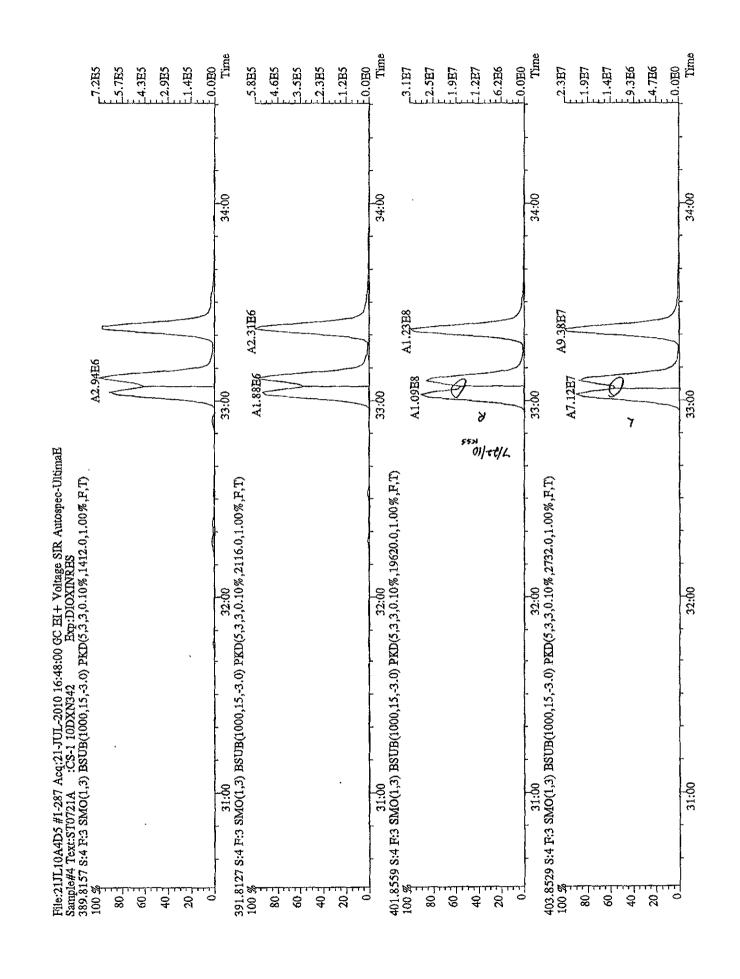

Acquired: 21-JUL-10 20:34:02 Processed: 22-JUL-10 10:21:57
Run: 21JL10A4D5 Analyte: 1613 Cal: 16130721104D5
Factor 1: 800.000 Factor 2: 20.000 Sample size: 1.000000

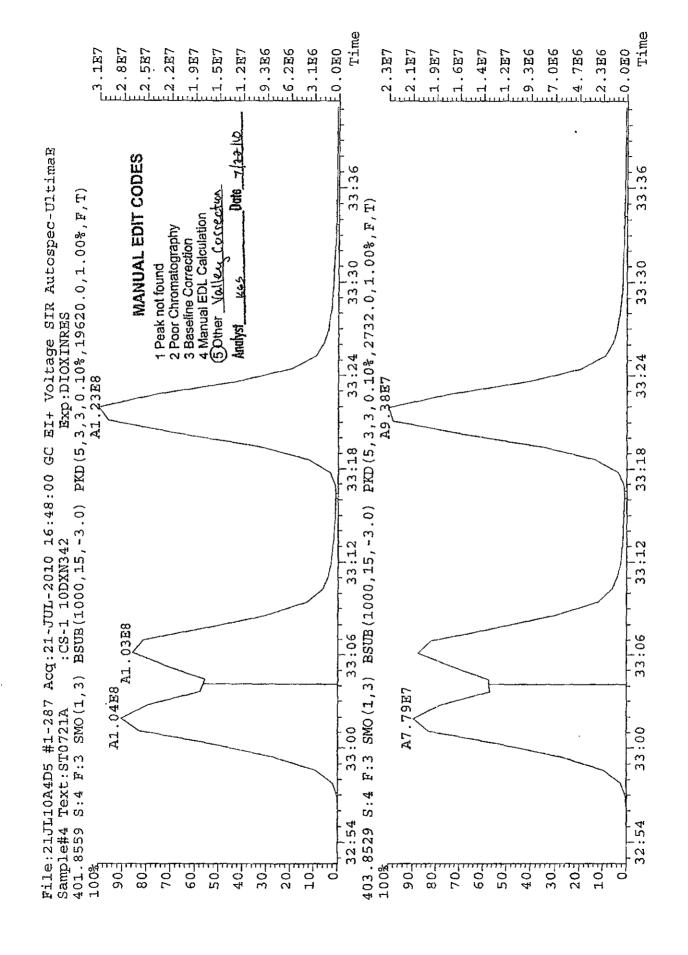

Name	Resp	RA		RT	RRF	Conc	EDL	Rec	M
13C-1,2,3,4-TCDD	307629000	0.78	У	20:01	-	92.11	-	~	n
13C-2,3,7,8-TCDF	413901000	0.78	v	19:24	1.23	2188.90	0.92	109.4	n
2,3,7,8-TCDF						188.67	0.48		n
Total TCDF						191.78	0.48	~	n
13C-2,3,7,8-TCDD	294375000	0.78	У	20:13	0.91	2114.60	2.32	105.7	n
2,3,7,8-TCDD	27522700	0.81	y	20:14	0.98	190.13	. 0.52	~	n
Total TCDD	27522700	0.81	y	20:14	0.98	190.13	0.52	~	n
			_						
37C1-2,3,7,8-TCDD	76164600	1.00	У	20:14	1.20	412.65	0.41	103.2	n
13C-1,2,3,7,8-PeCDF	302436000	1.54	v	25:17	0.88	2244.44	1.40	112.2	n
1,2,3,7,8-PeCDF	77546500						1.04		n
13C-2,3,4,7,8-PeCDF	271363000						1.40	100.2	n
2,3,4,7,8-PeCDF	68923500						1.32	-	n
Total F2 PeCDF	149591746						1.17	_	n
Total F1 PeCDF	*	*	n	NotFnd	1.06	*	1.08	_	n
13C-1,2,3,7,8-PeCDD	187042900	1.56	Y	27:41	0.66	1840.17	0.85	92.0	n
1,2,3,7,8-PeCDD	41178400	1.55	У	27:43	0.93	475.77	1.23	_	n
Total PeCDD	41347624	2.76	n	25:18	0.93	477.73	1.23	_	n
		_							
13C-1,2,3,7,8,9-HxCDD	186073000	1.31	У	33;22	-	78.58	-	-	n
13C-1,2,3,4,7,8-HxCDF	197163100	0.50	У	32:16	1.04	2028.36	4.92	101.4	п
1,2,3,4,7,8-HxCDF	62815000	1.17	У	32:17	1.22	523.47	1.49	_	n
13C-1,2,3,6,7,8-HxCDF	249545100	0.52	У	32:22	1.19	2250.98	4.31	112.5	n
1,2,3,6,7,8-HxCDF	64154700					458.58	1.45	-	n
13C-2,3,4,6,7,8-HxCDF	228157700		-			2183.74	4.58	109.2	n
2,3,4,6,7,8-HxCDF	61275400	1.15	Y	32:54	1.14	469.19	1.35	-	n
13C-1,2,3,7,8,9-HxCDF	202978100		_			2139,94	5.04	107.0	n
1,2,3,7,8,9-HxCDF	54870000						1.58	-	n
Total HxCDF	243548785	1.21	Y	31:03	1.15	1936.68	1.46	-	n
130 1 3 3 1 B A W ODD	152040000	1 60		22 02	0.00		7 22	03.0	_
13C-1,2,3,4,7,8-HxCDD	151949728					1864.59	1.23	93.2	n
1,2,3,4,7,8-HxCDD	39583500		-4	33:03		531.65	1.26	-	n
13C-1,2,3,6,7,8-HxCDD	170186500			33:06		2202.05	1.29	110.1	n
1,2,3,6,7,8-HxCDD	45328400			33:07		458.08	0.97	-	rı
1,2,3,7,8,9-HxCDD	45402600		~			490.93	1.03	-	Γl
Total HxCDD	130450140	4.93	n	32:18	1.09	1482.19	1.08	-	ŗι
13C-1,2,3,4,6,7,8-HpCDF	182370400	0.43	У	34:53	0.91	2154.02	6.23	107.7	L)
1,2,3,4,6,7,8-HpCDF	58068900	1.00	У	34:54	1.35	473.20	1.73	-	m
13C-1,2,3,4,7,8,9-HpCDF	150417500	0.43	Y	36:02		2122.34	7.45	106.1	Υì
1,2,3,4,7,8,9-HpCDF	47489800	1.02	У	36:03	1.30	483.90	2.38	-	n
Total HpCDF	107404819	1.00	У	34:54	1.33	973.82	2.02	-	1.7

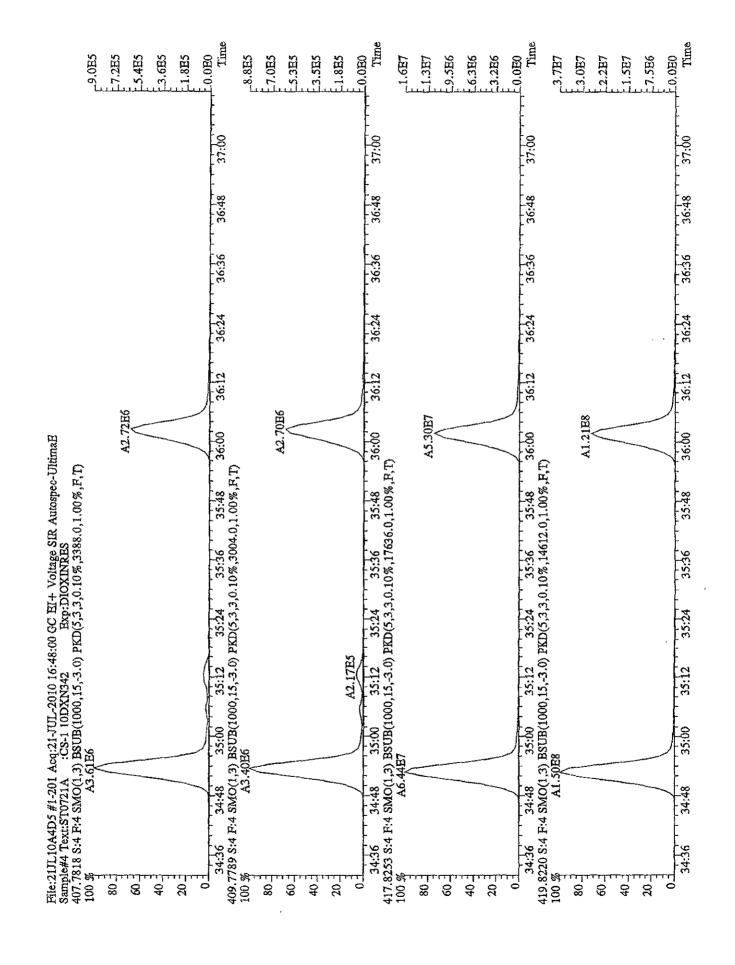

13C-1,2,3,4,6,7,8-HpCDD	161779300 0.96 y	35:42 0.83	2103.64	5.07	105.2	n
1,2,3,4,6,7,8-HpCDD	42052300 1.04 y	35:43 1.07	485.09	1.80	_	n
Total HpCDD	43164489 1.03 y	35:09 1.07	497.92	1.80	-	n
13C-OCDD	265623000 0.89 y	38:16 0.62	4605.66	4.74	115.1	n
OCDF	85350600 0.91 y	38:23 1.37	937.95	1.38	-	n
OCDD	74923500 0.91 y	38:16 1.20	940.76	1.58	-	n

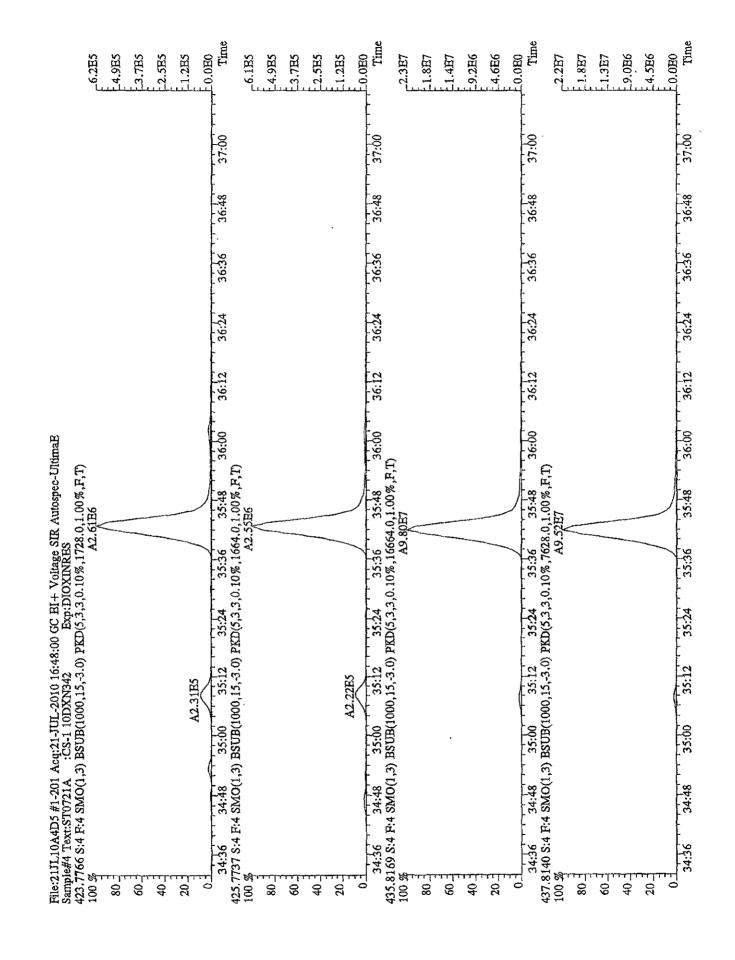

.

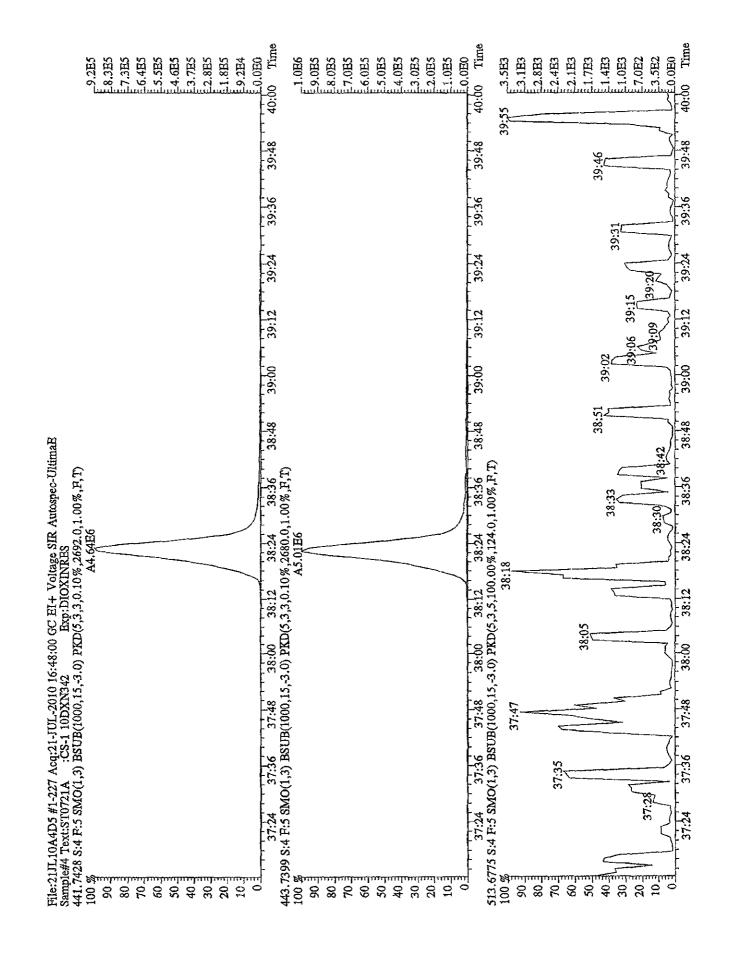


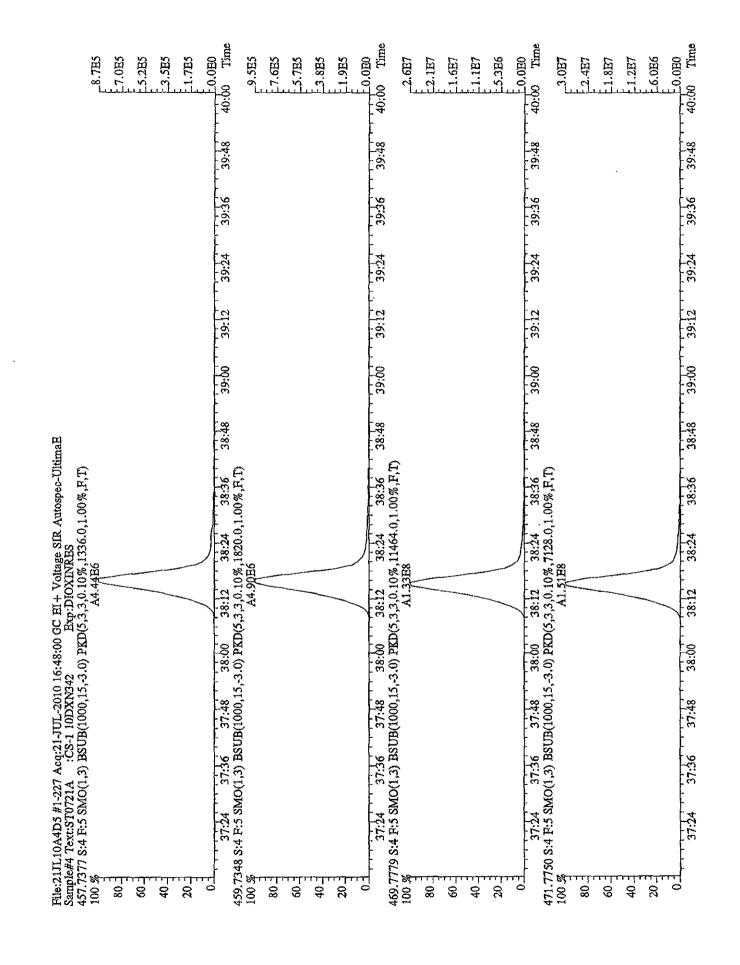


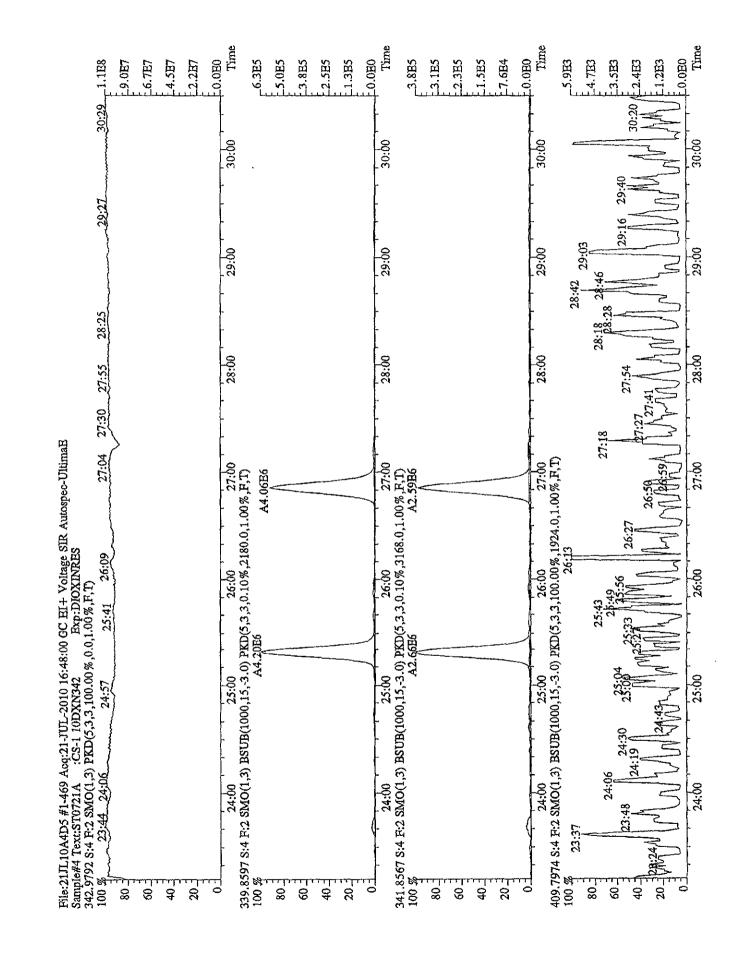


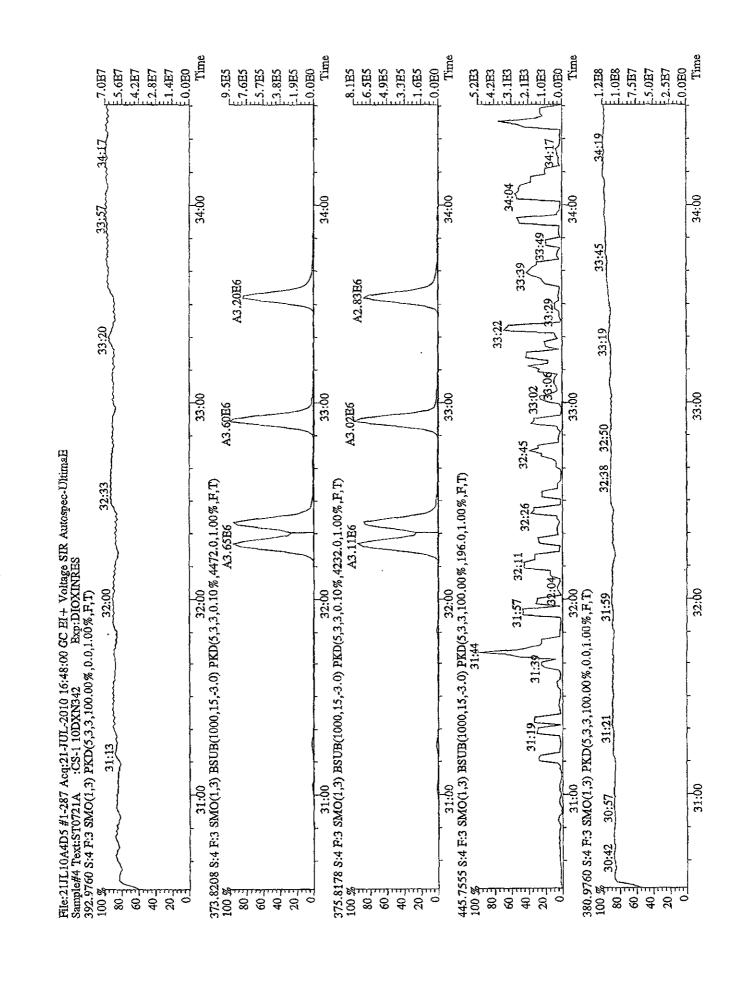


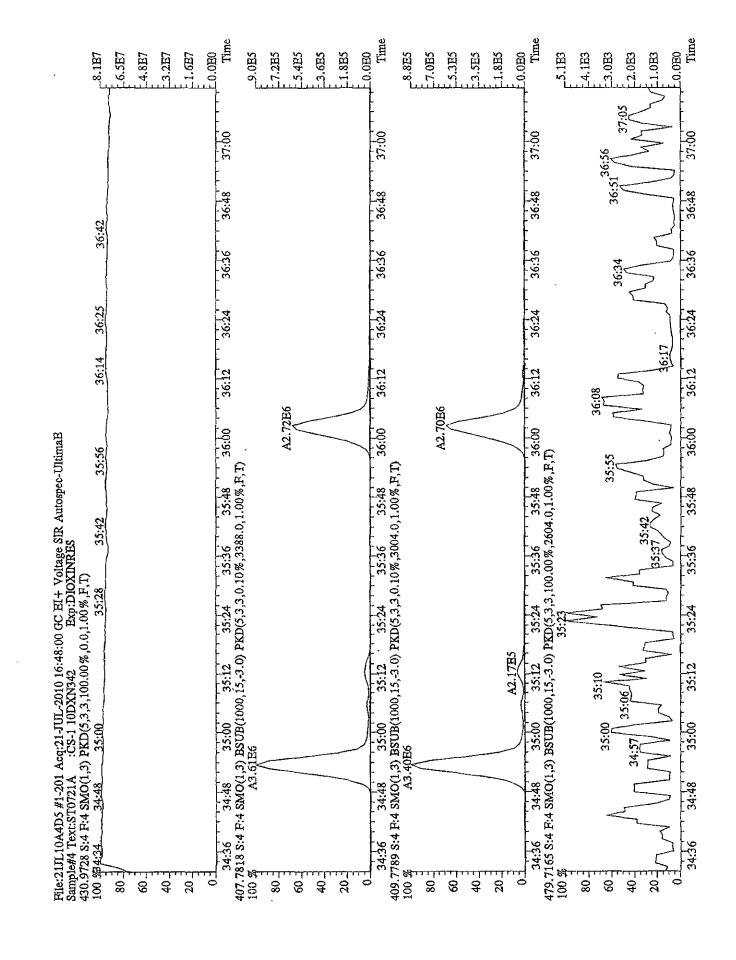


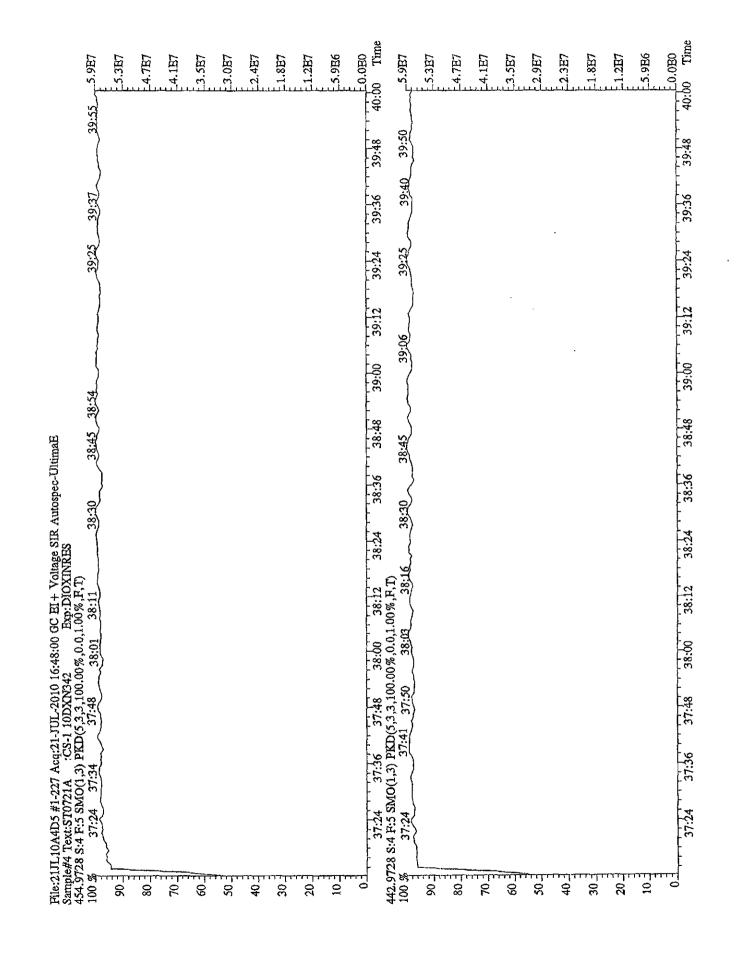


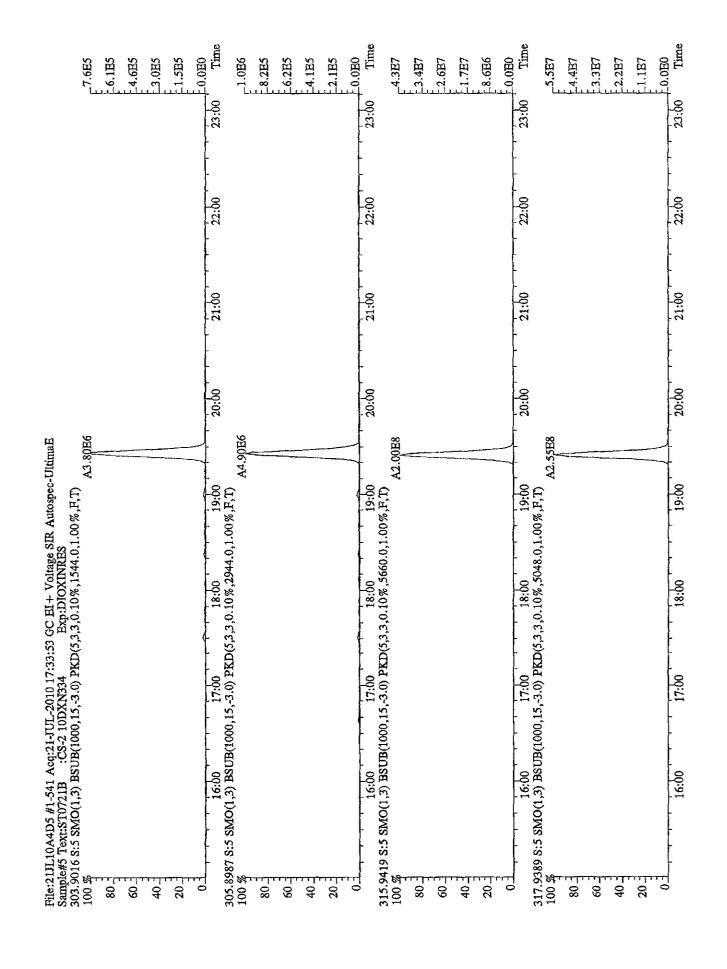


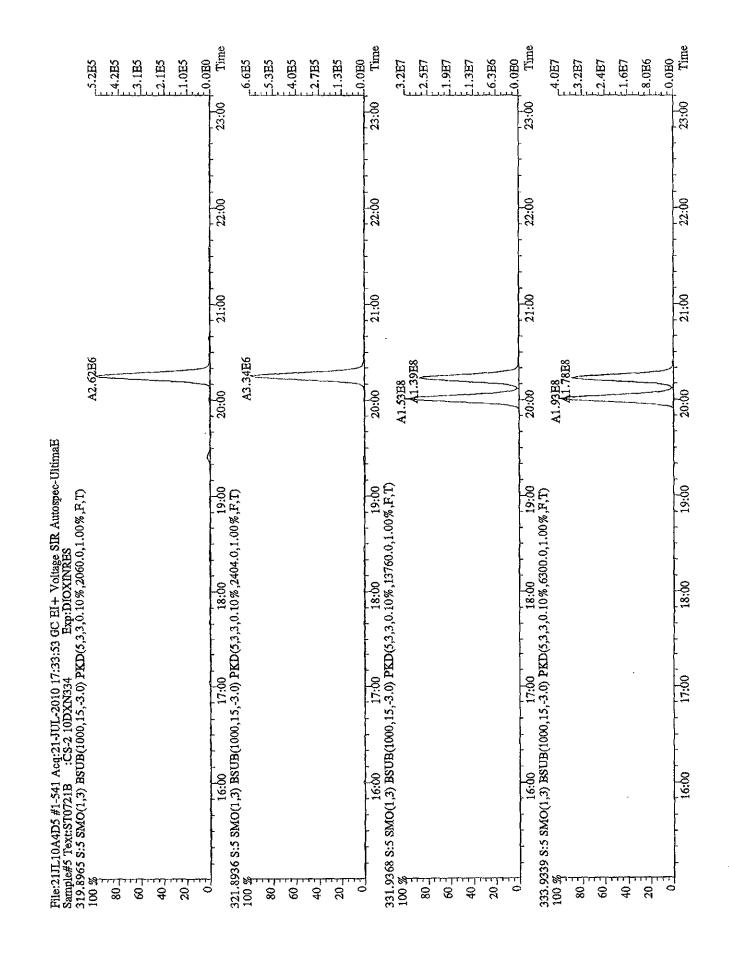


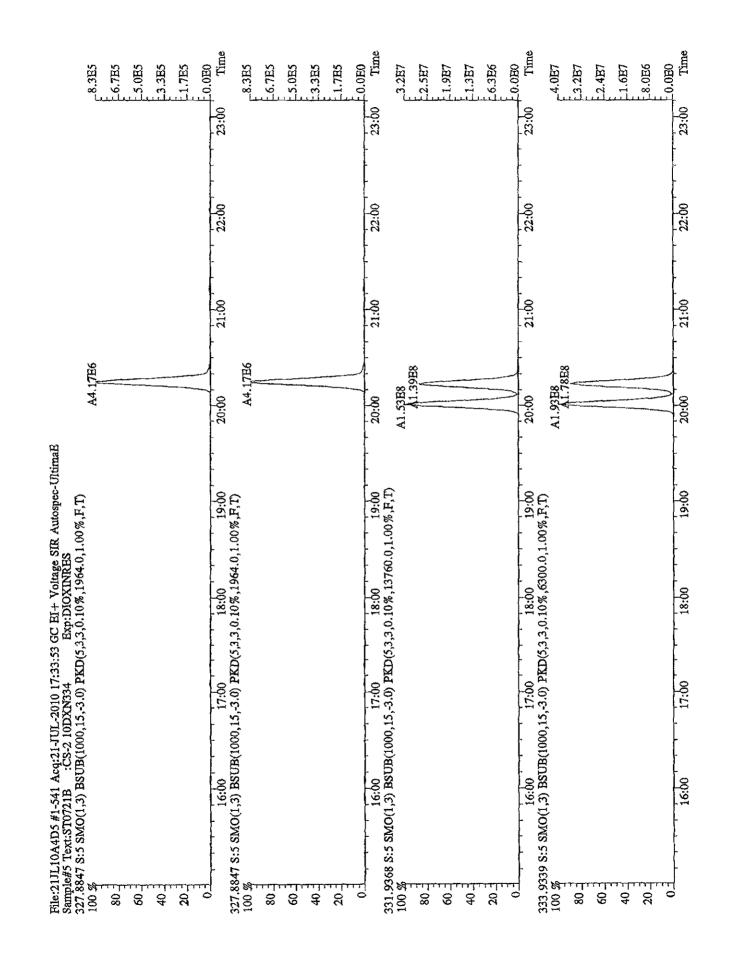


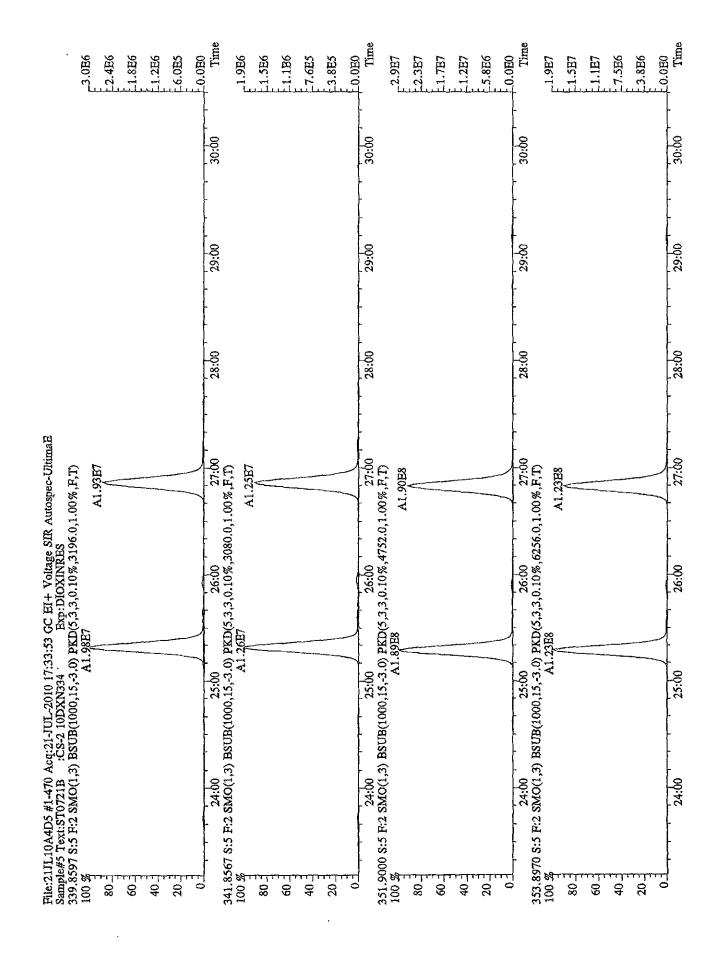


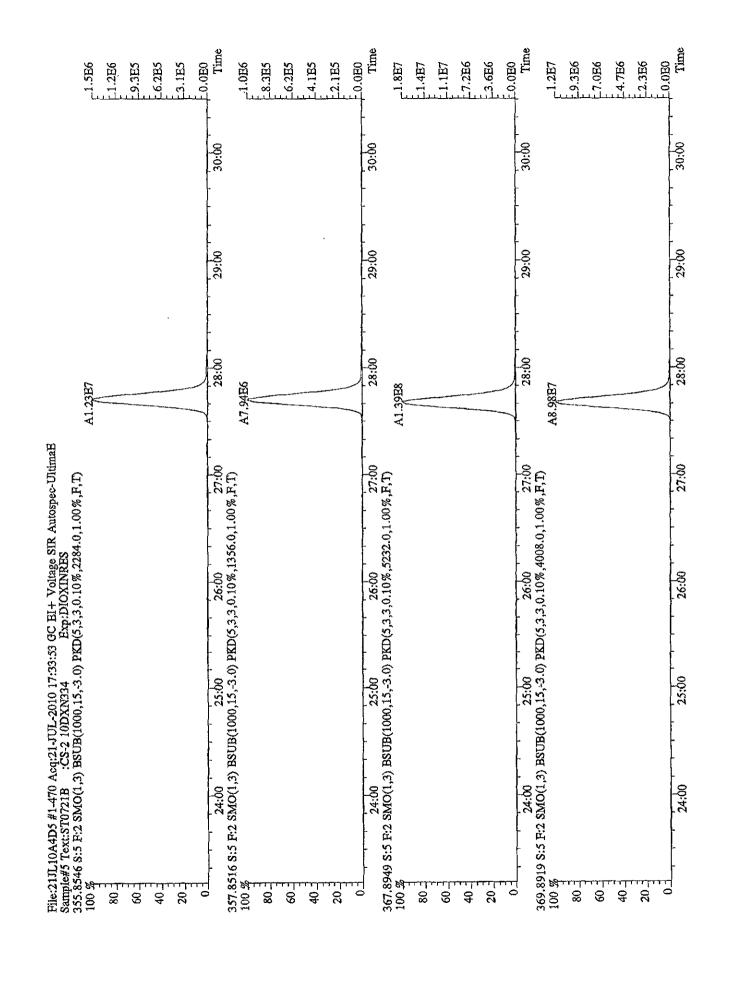


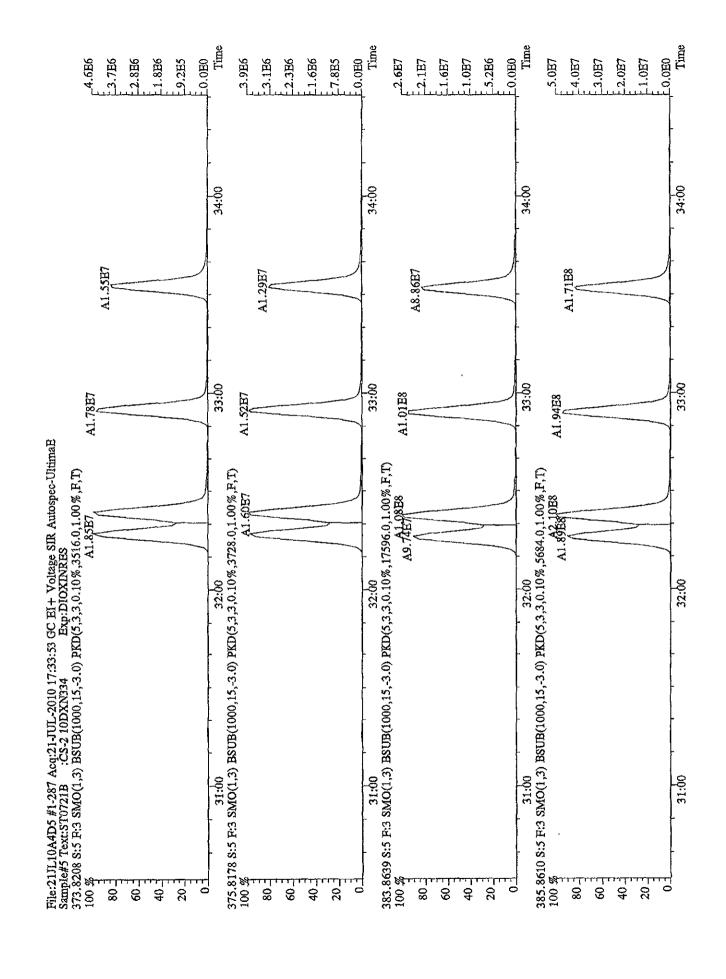


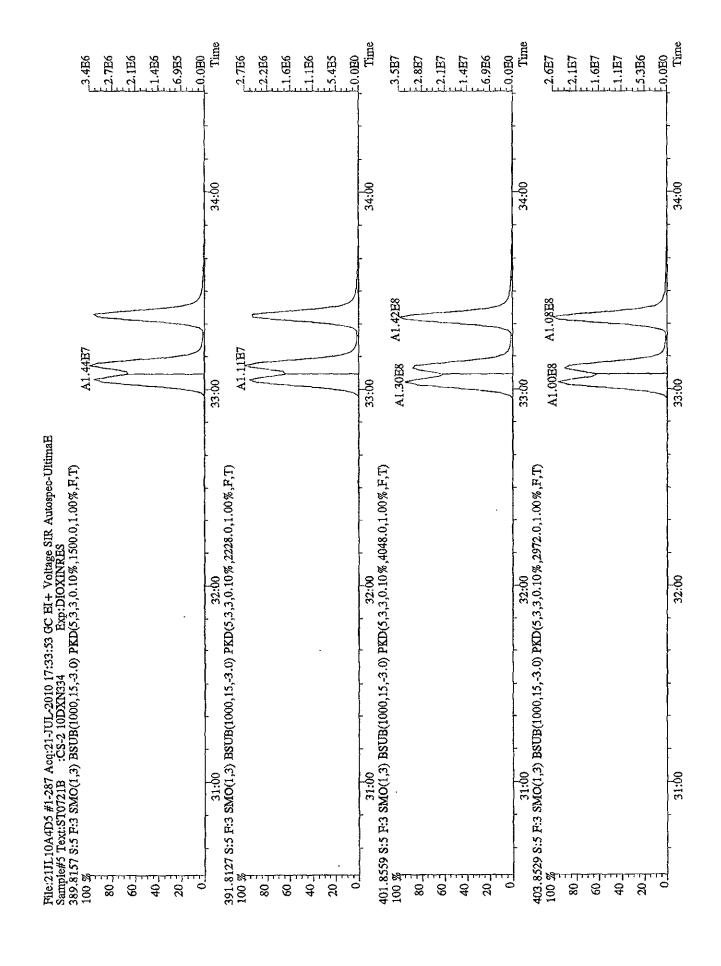


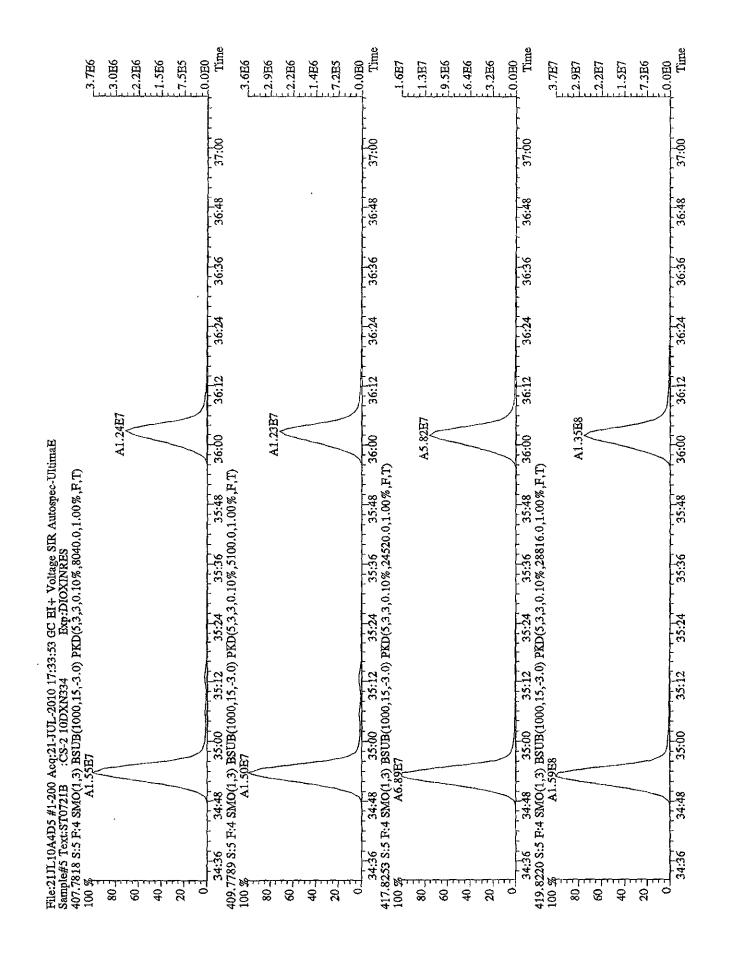


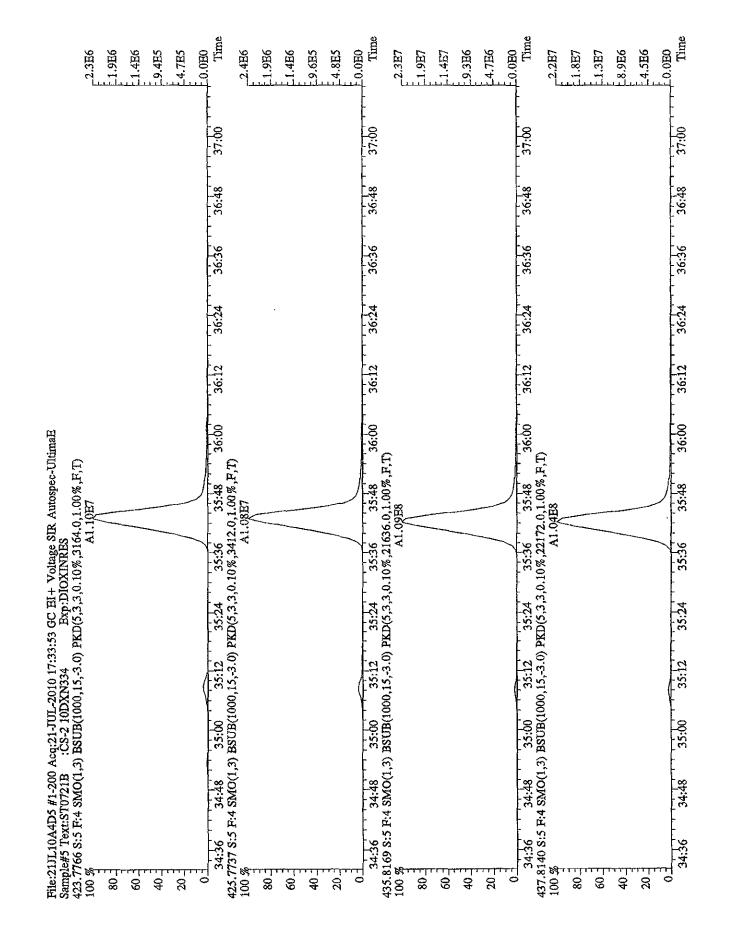


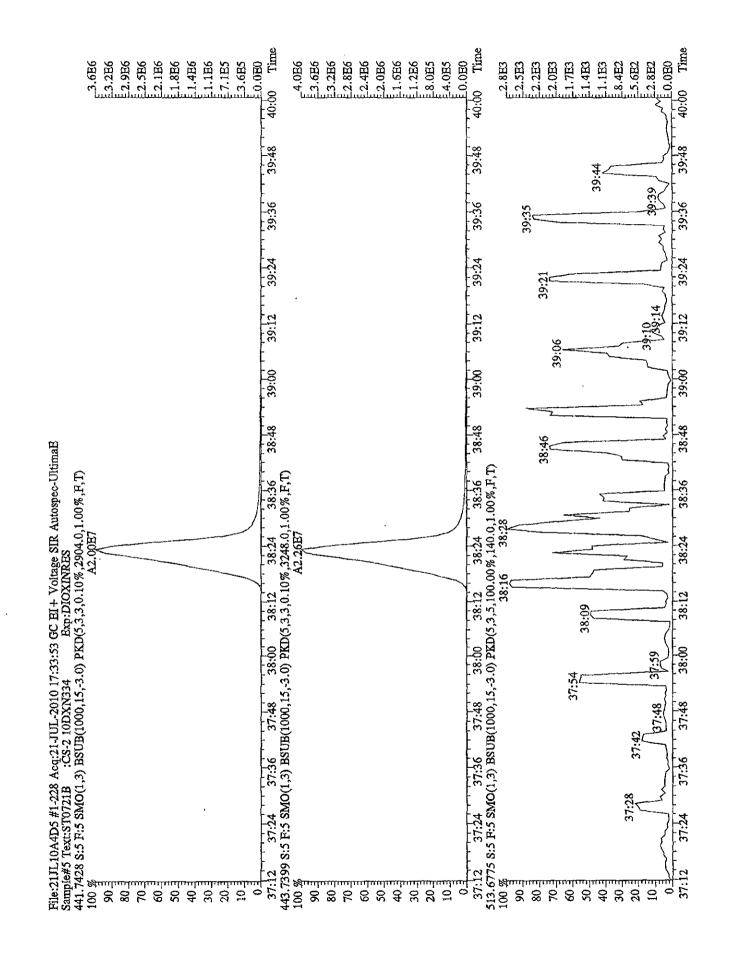


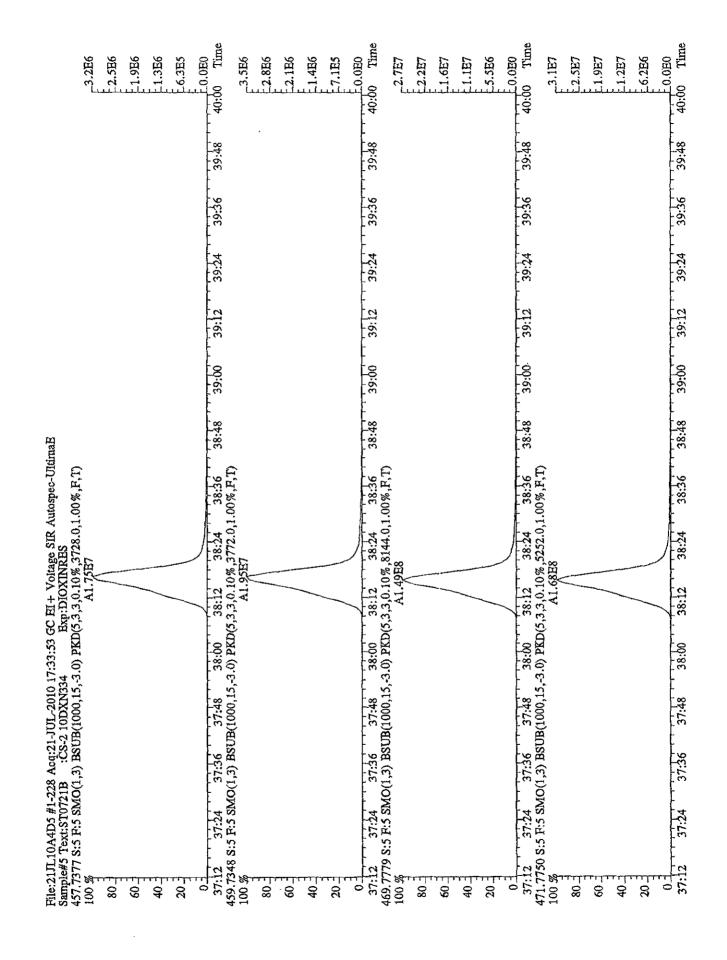


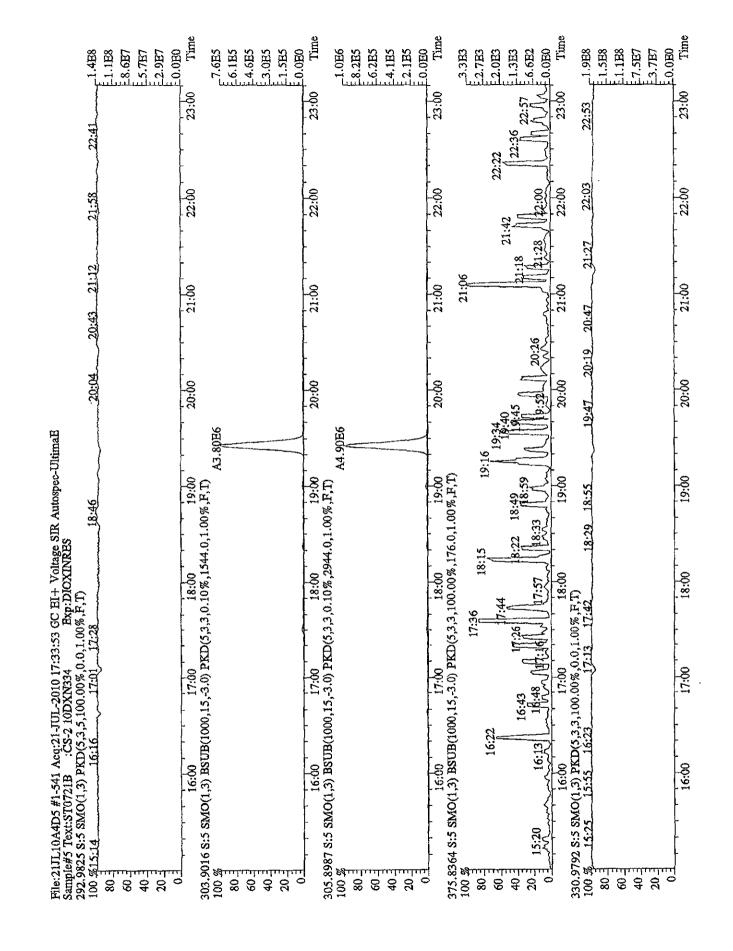


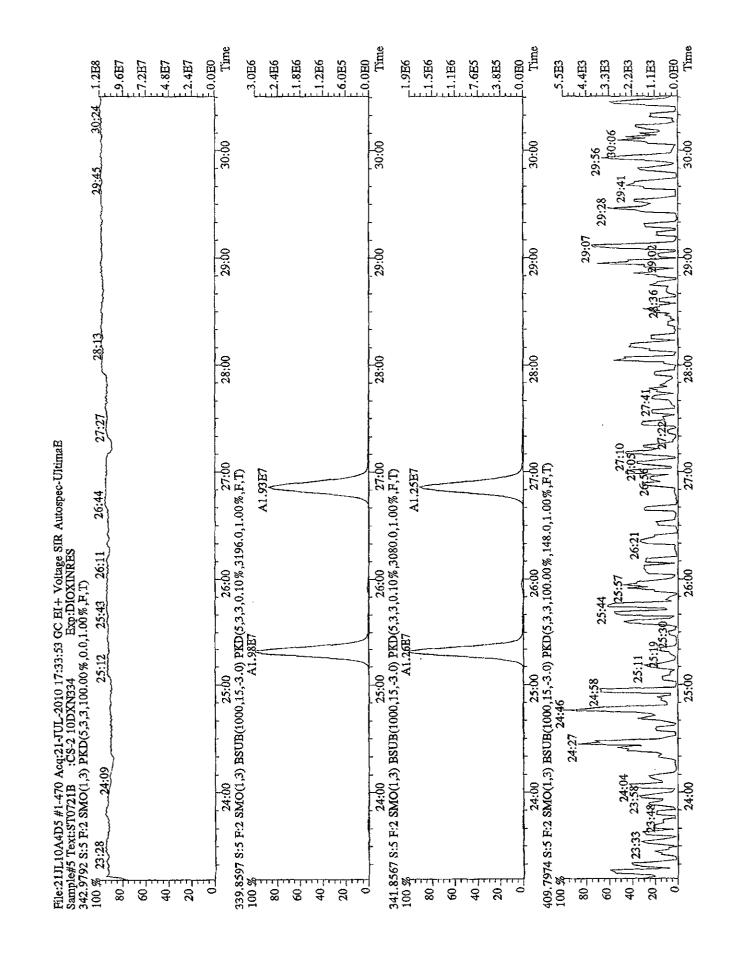


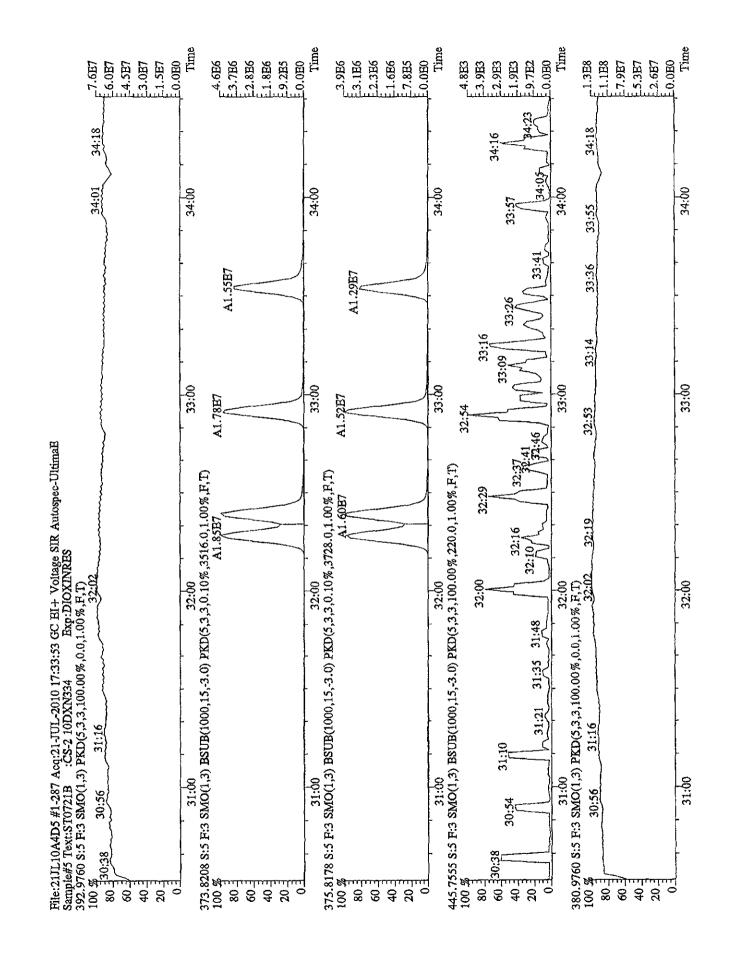


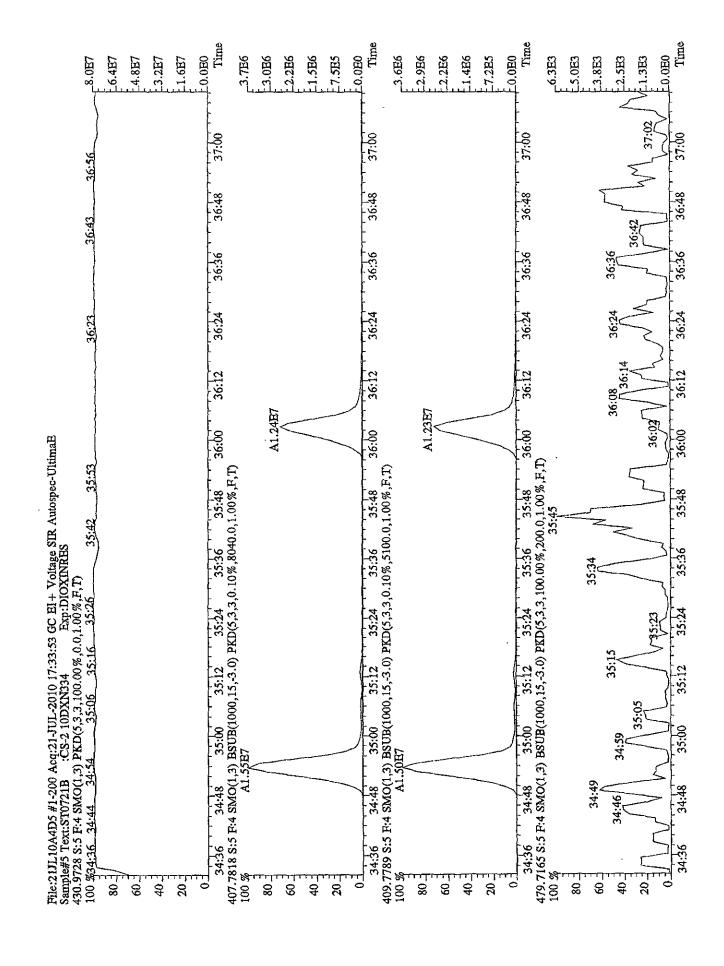


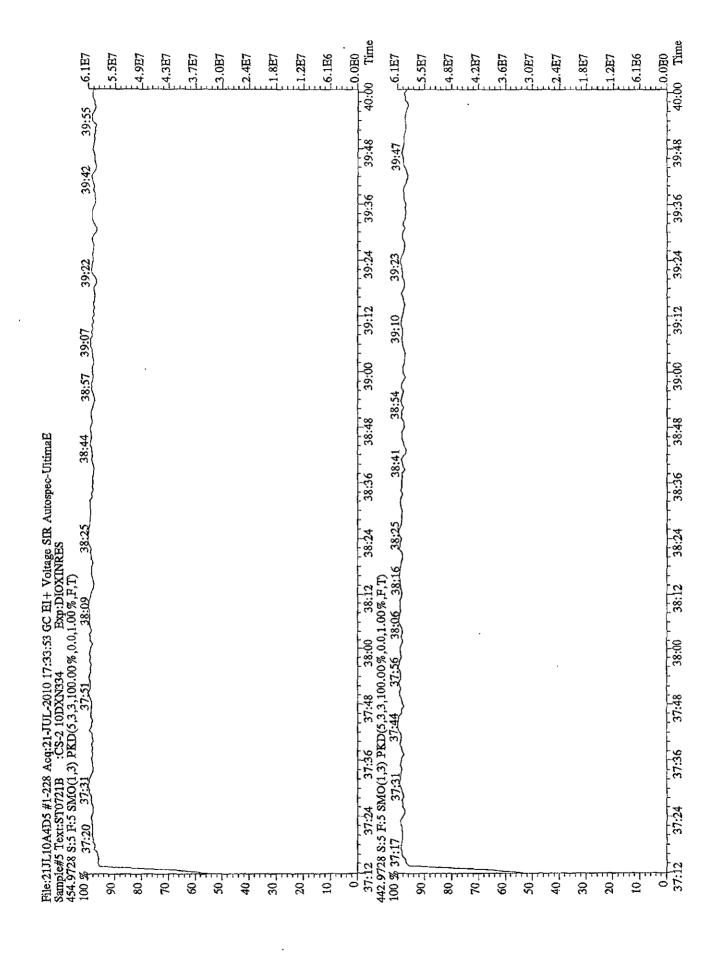


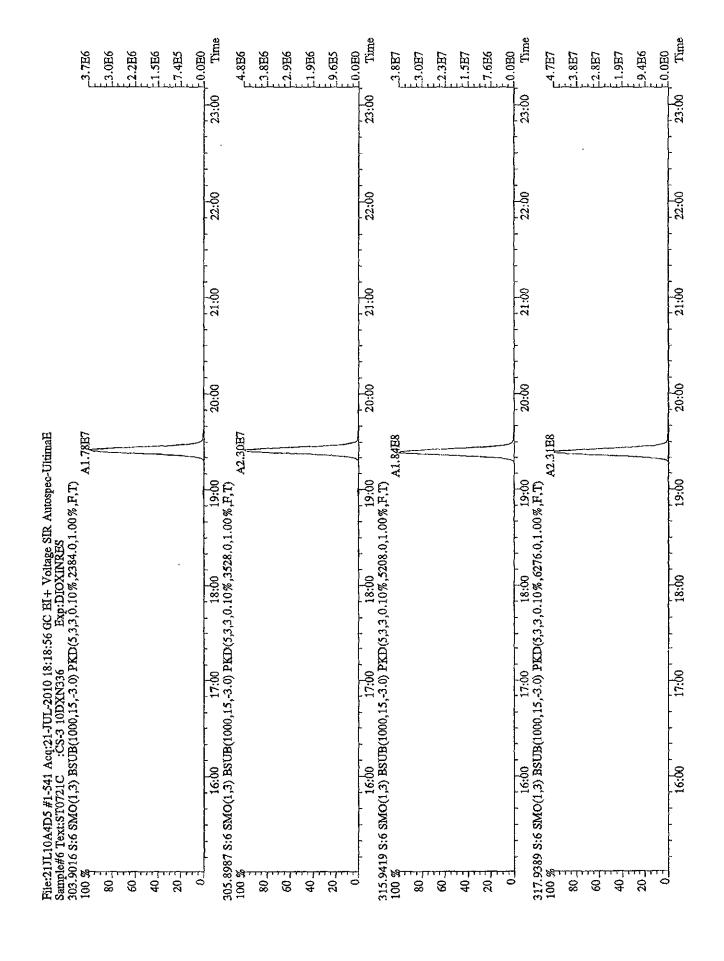


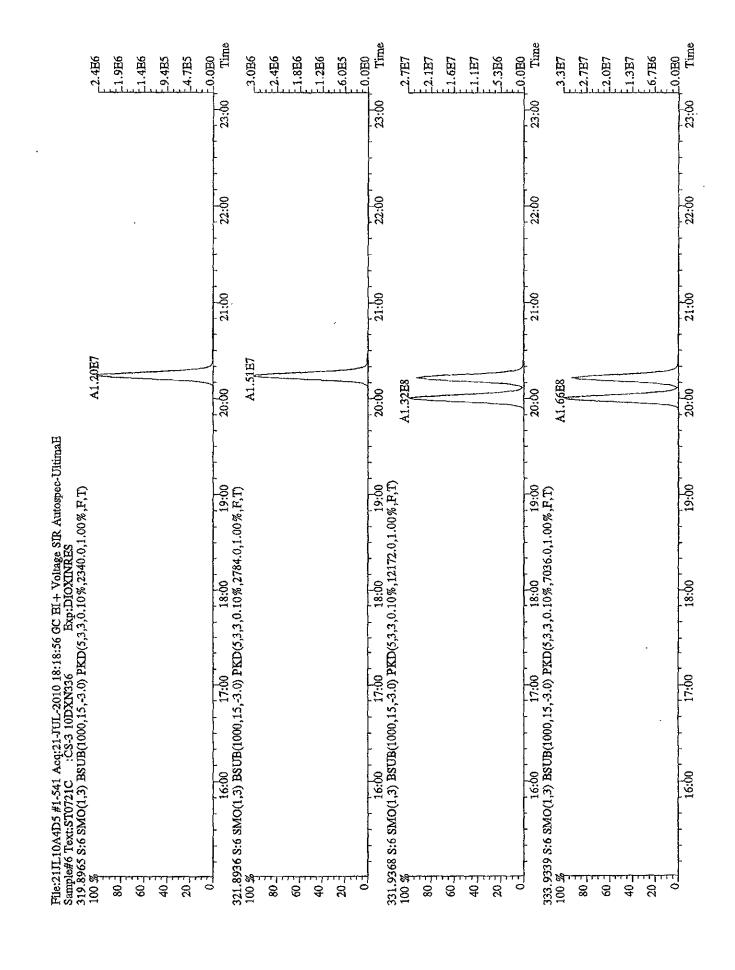


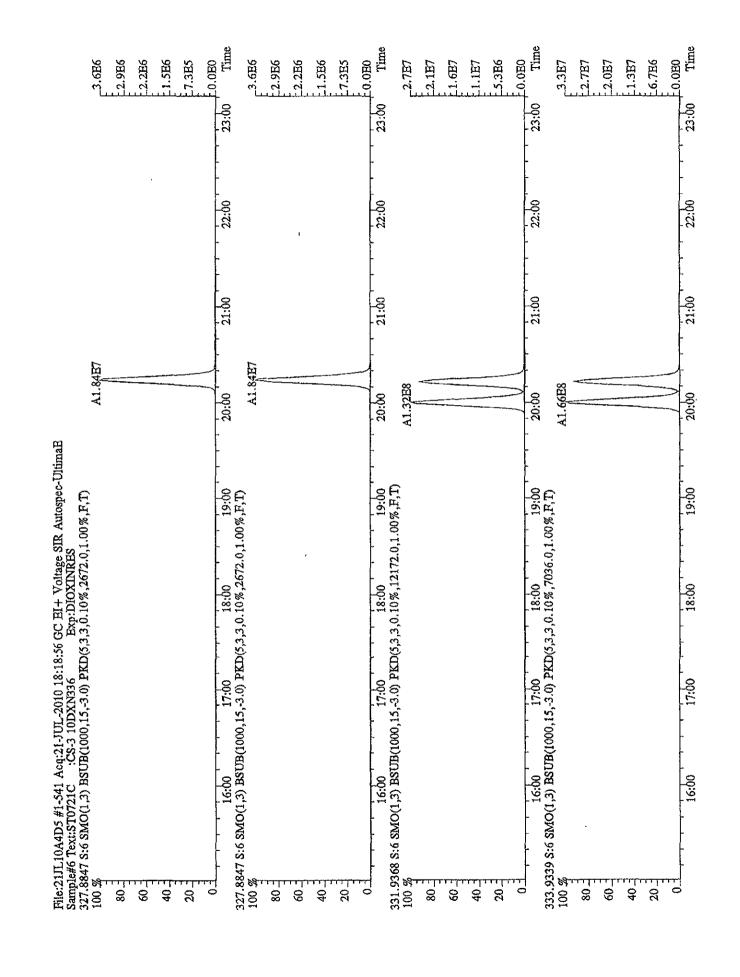


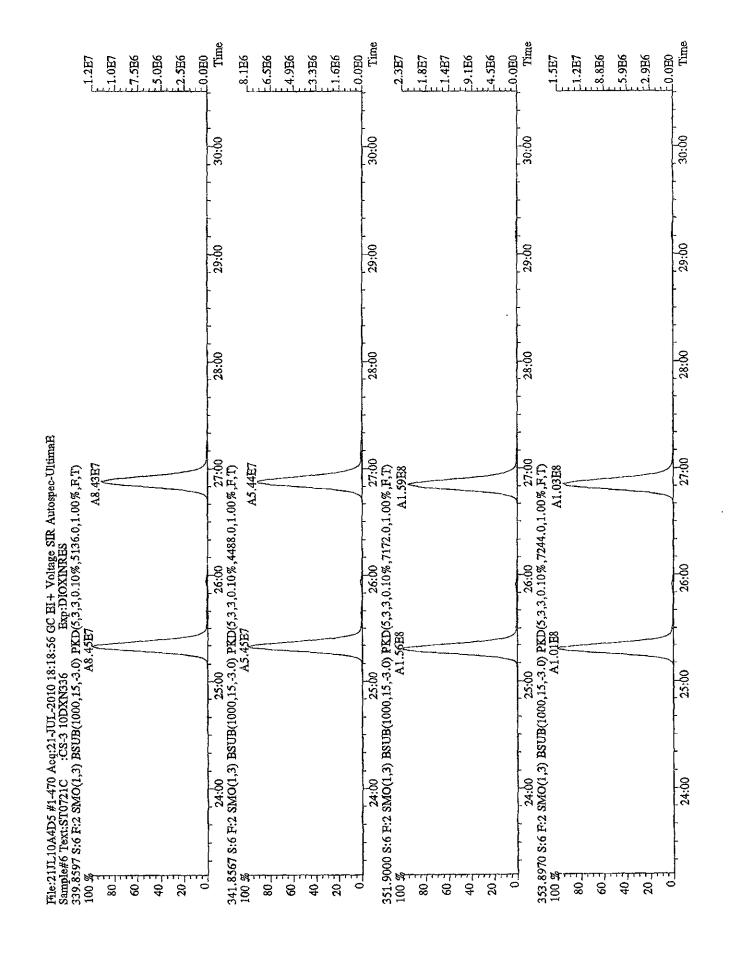


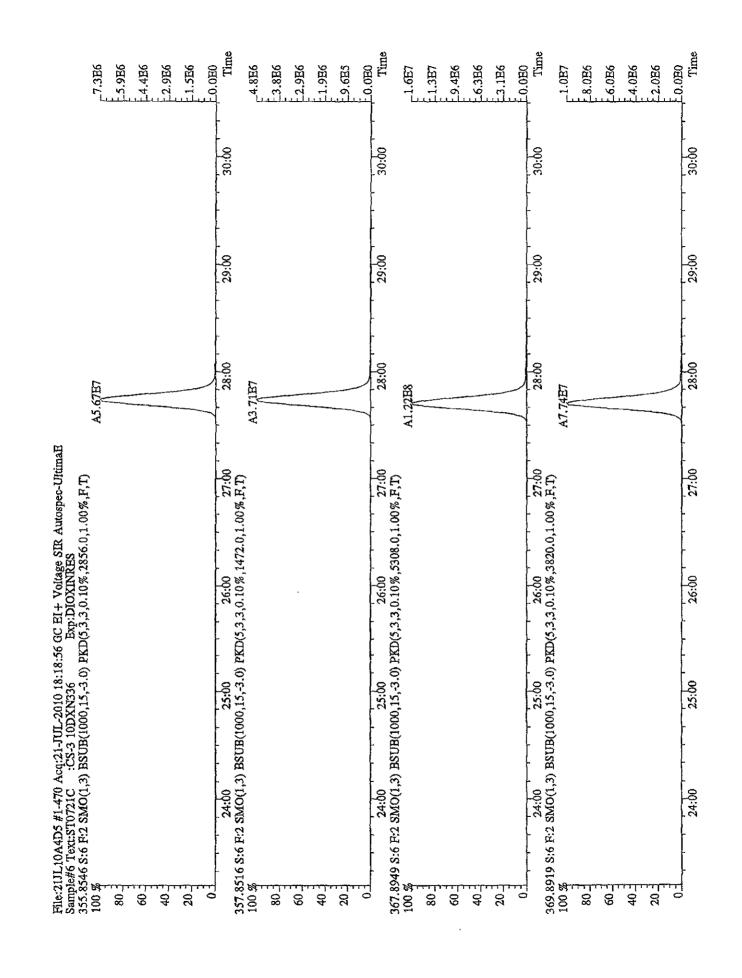


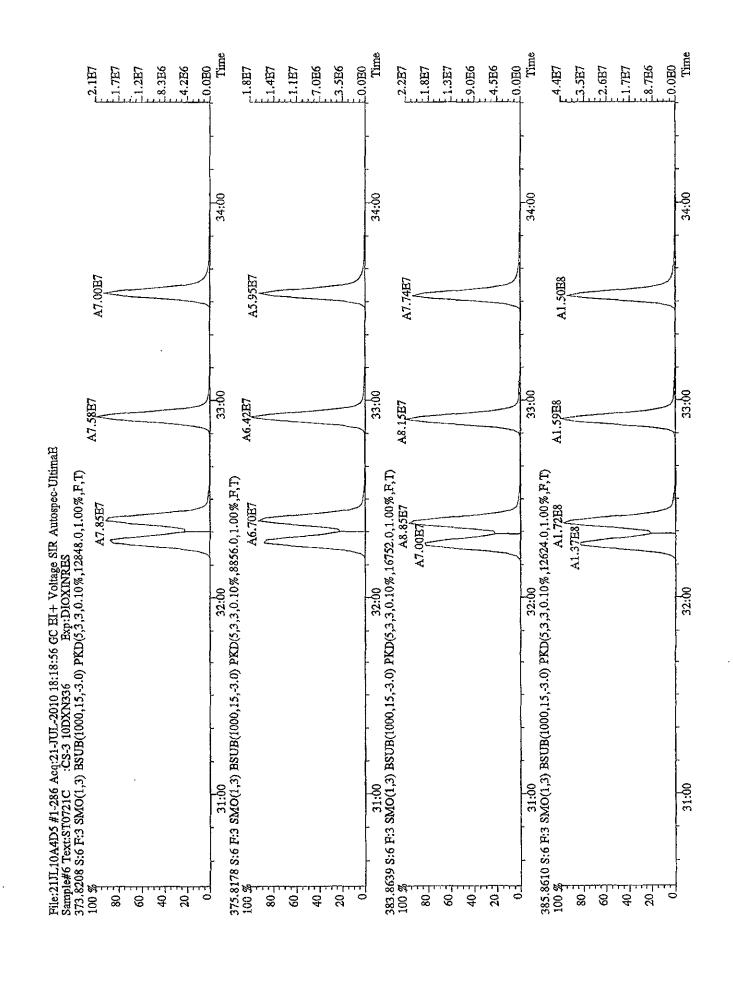


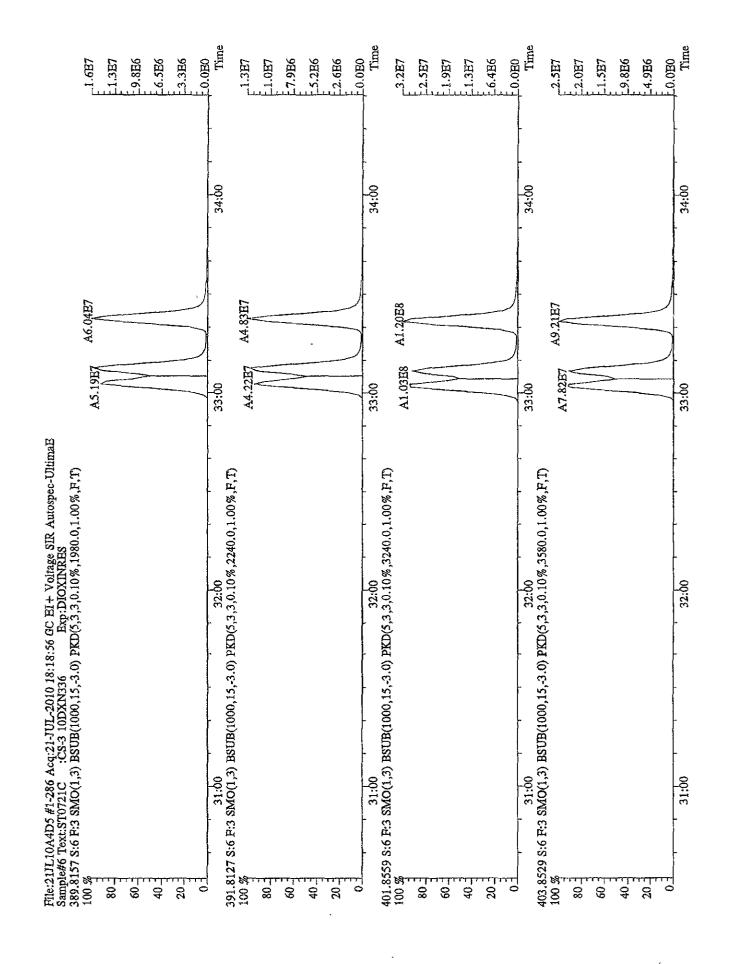


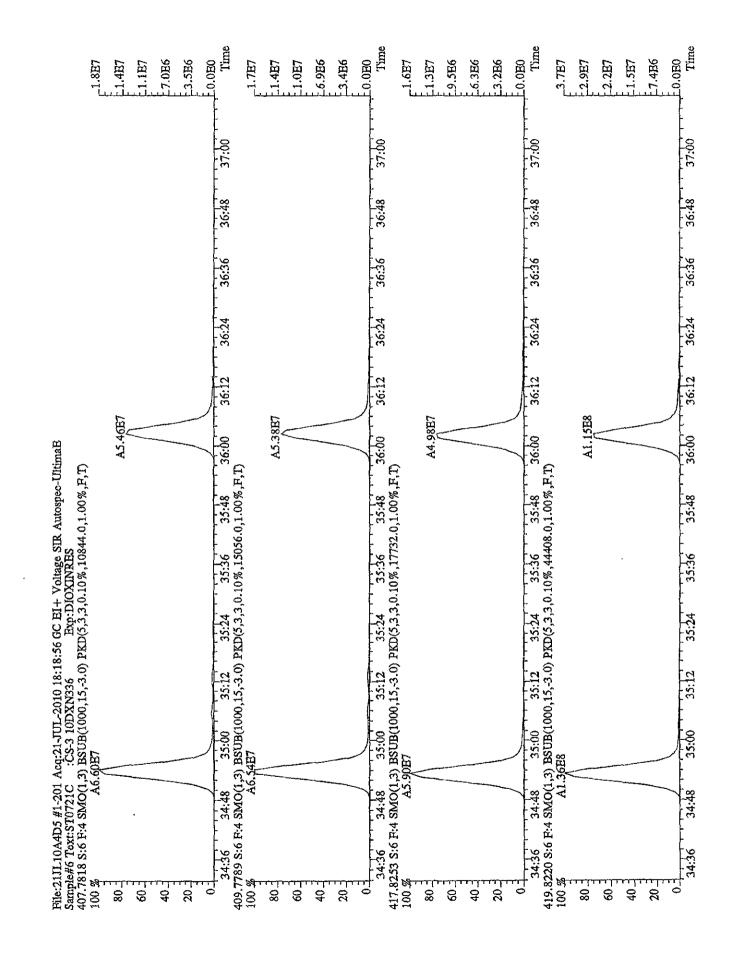


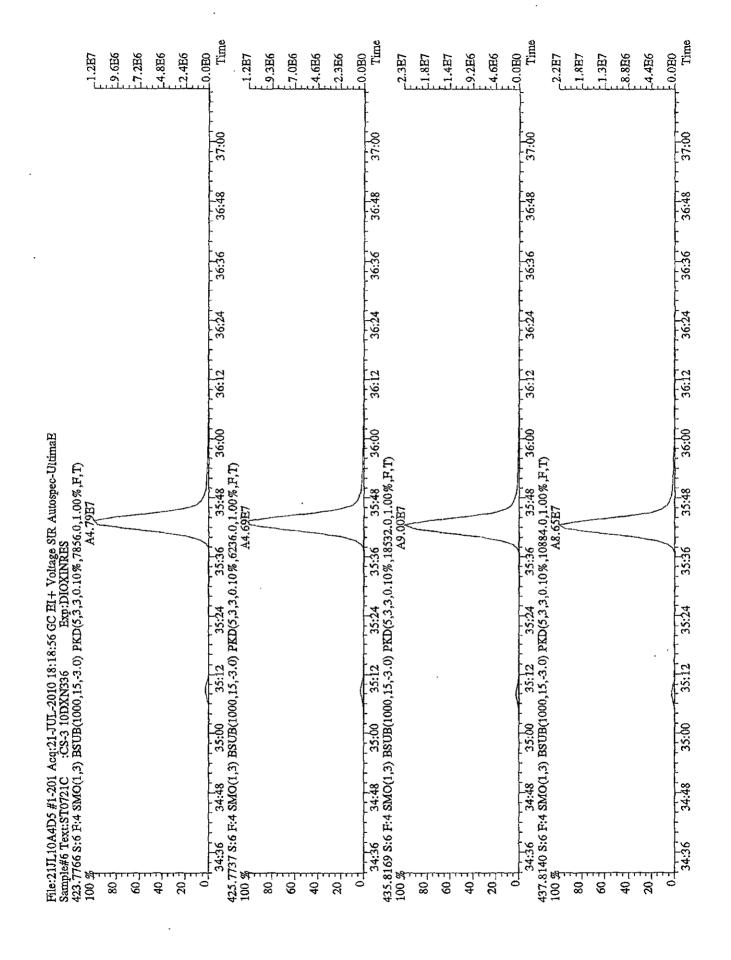


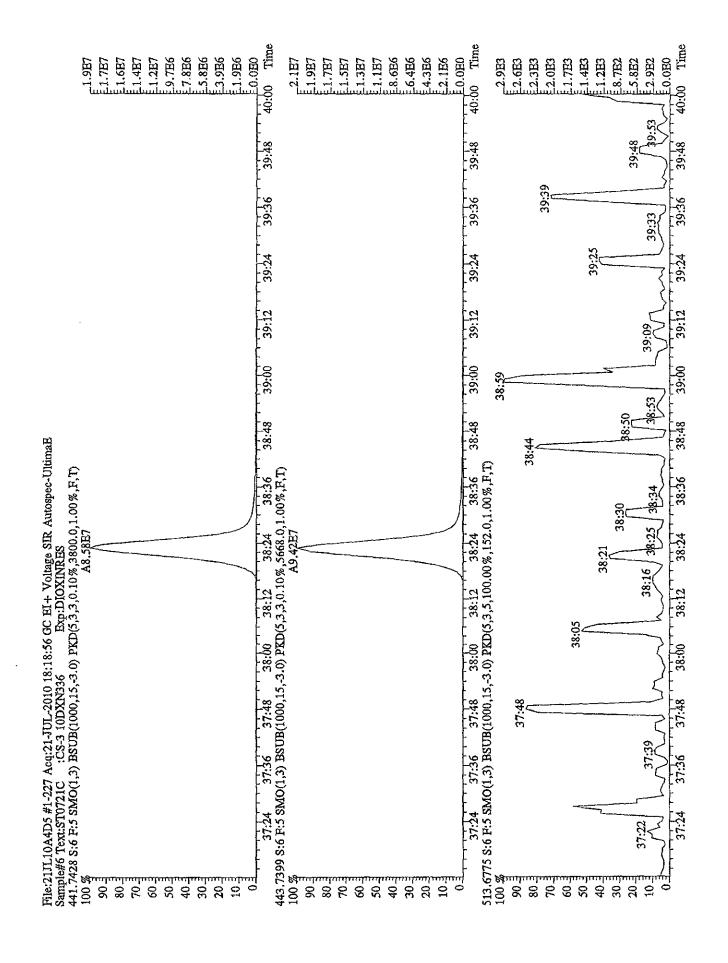


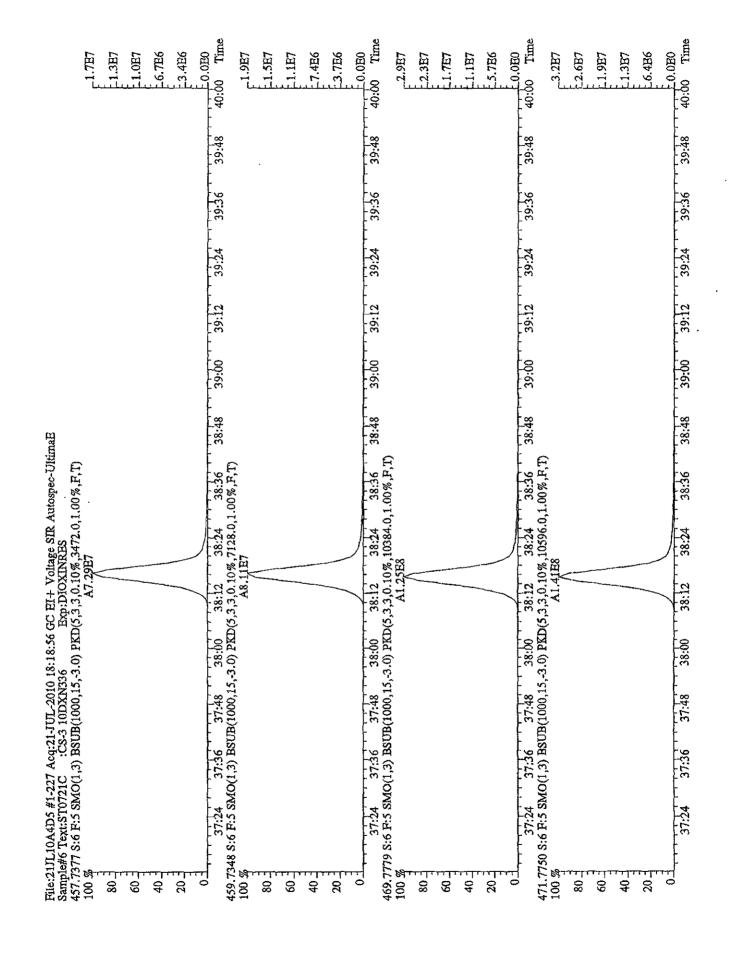


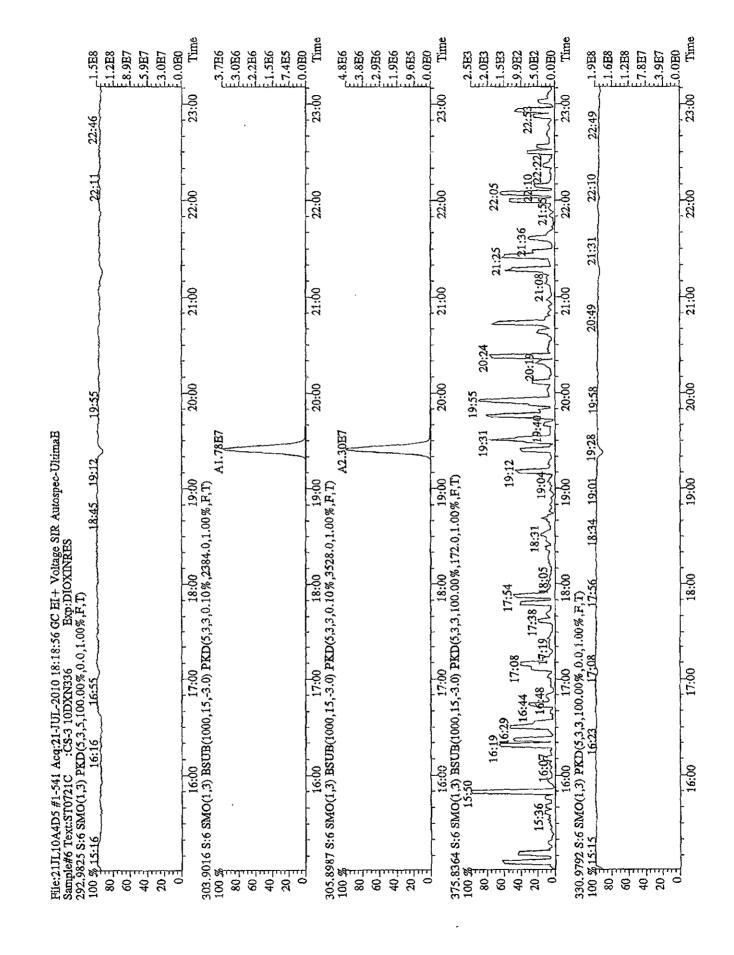


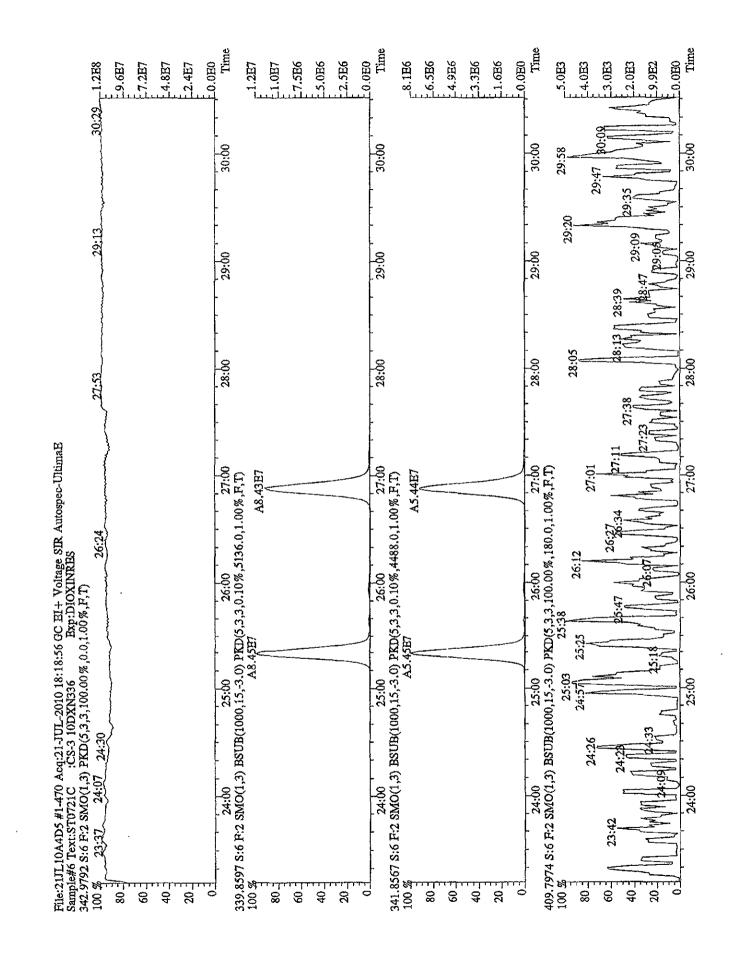


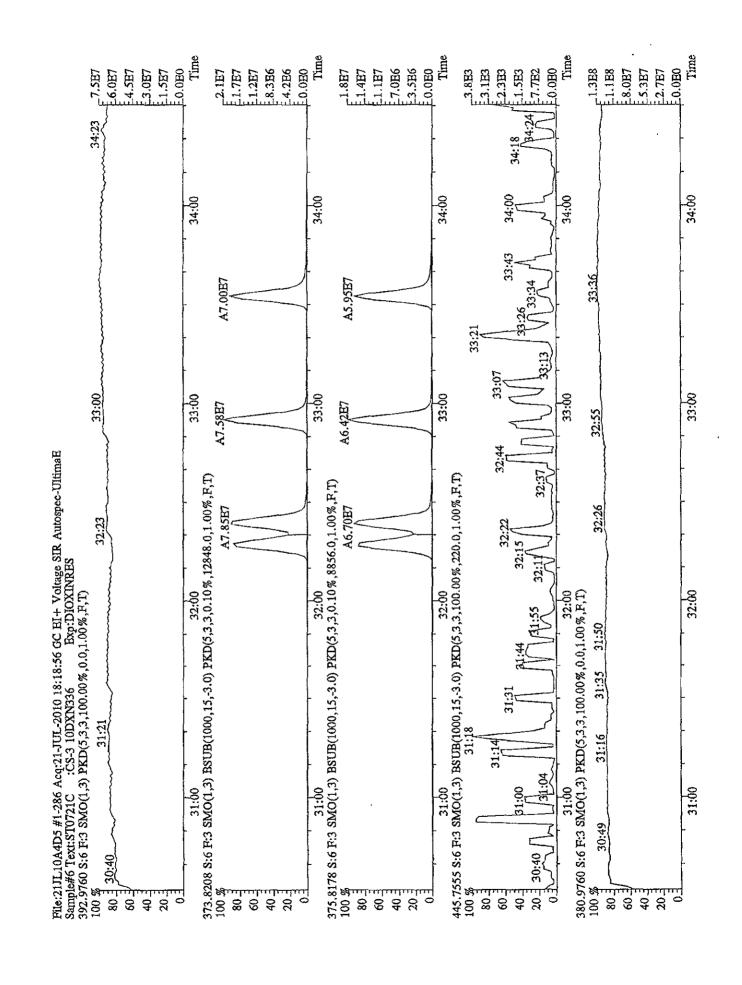


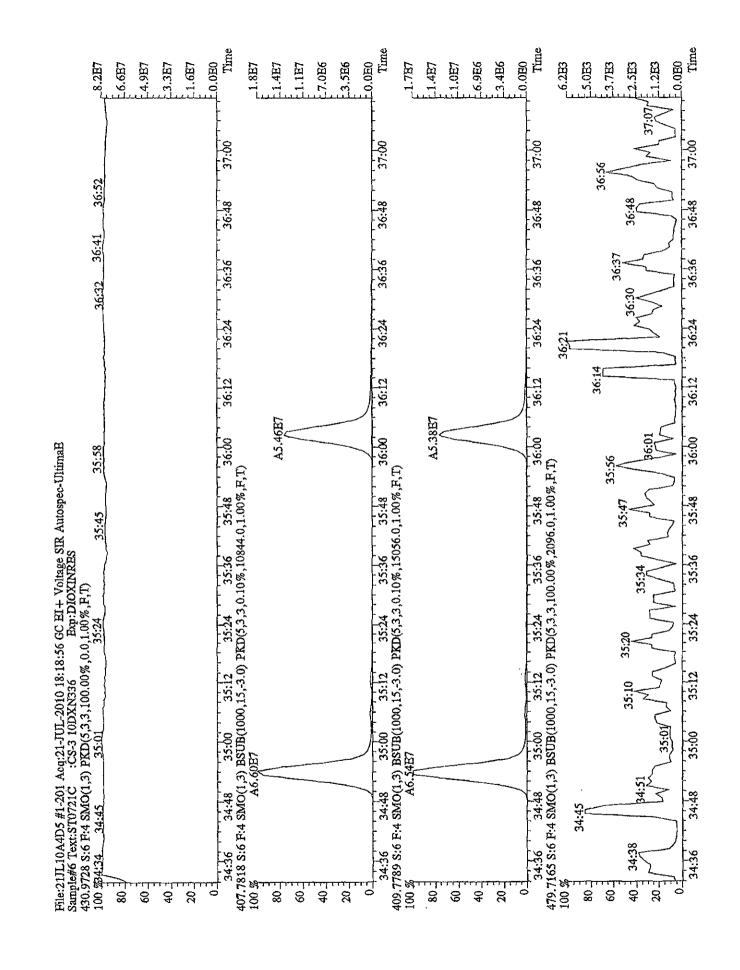


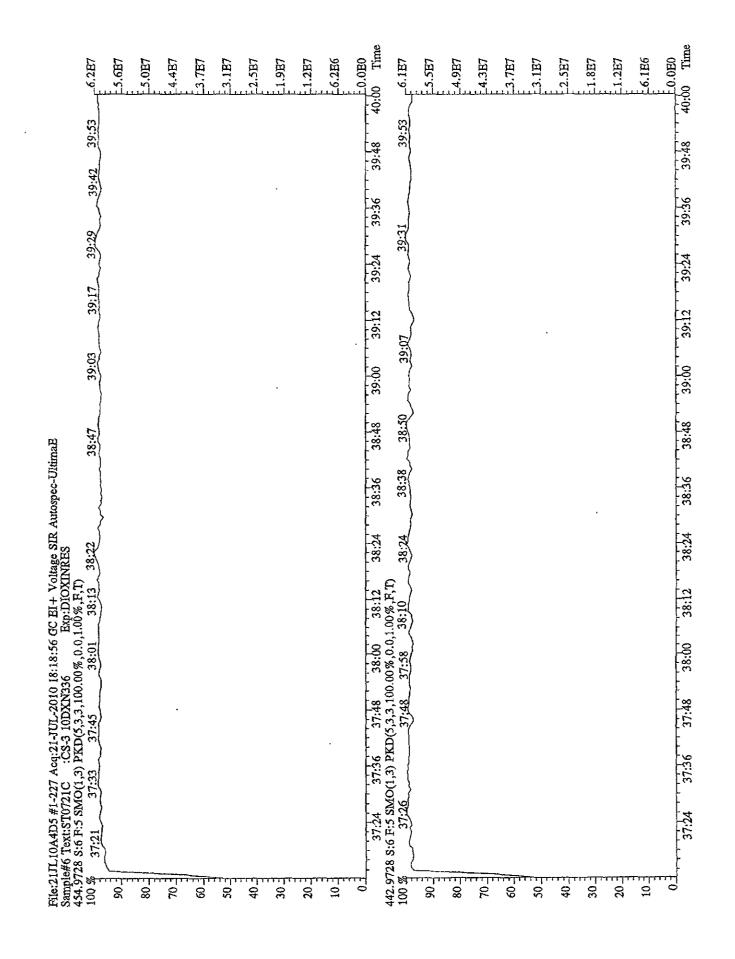


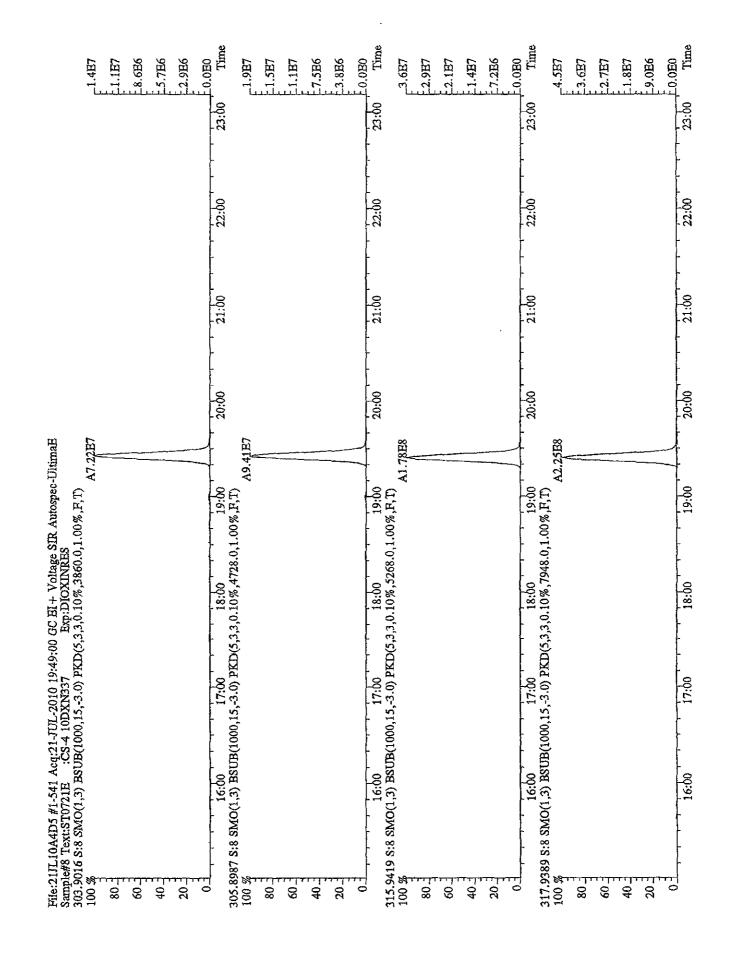


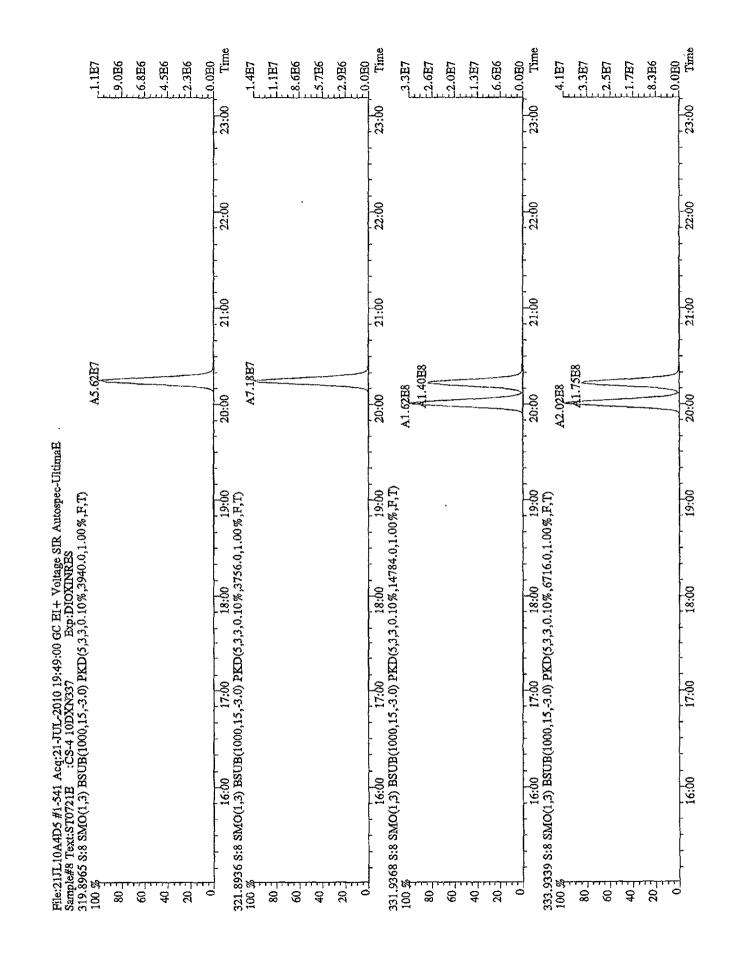


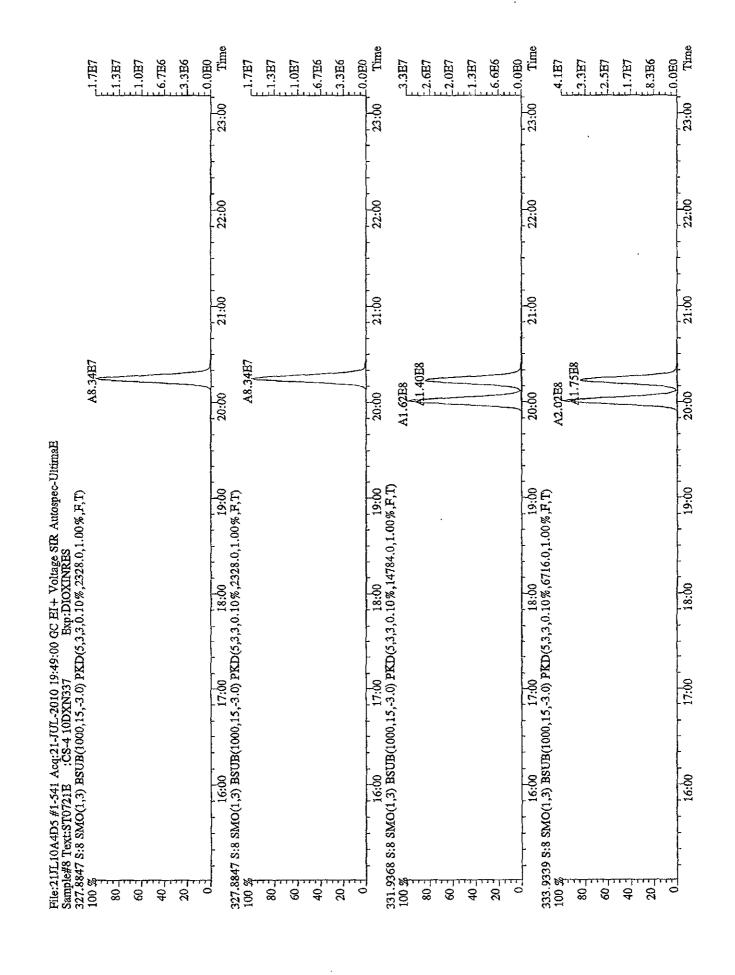


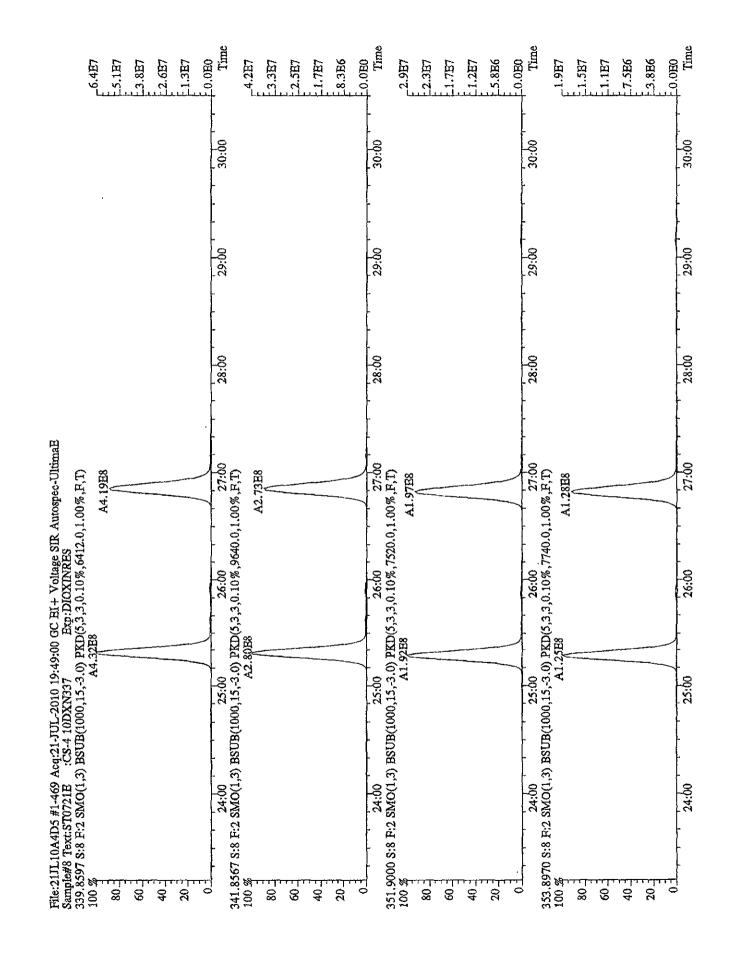


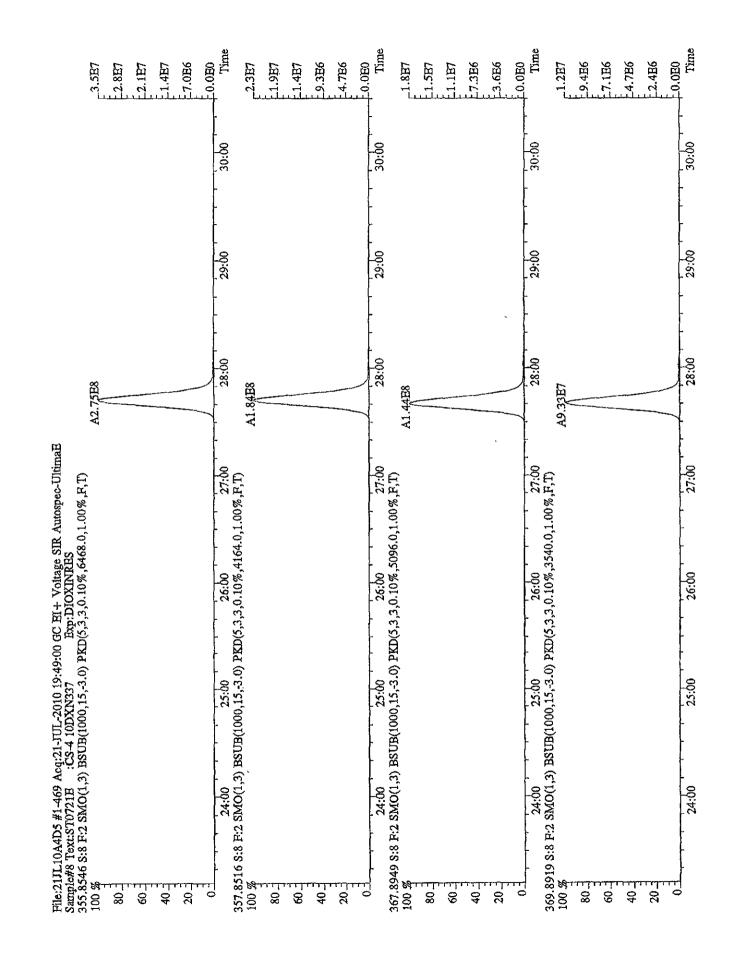


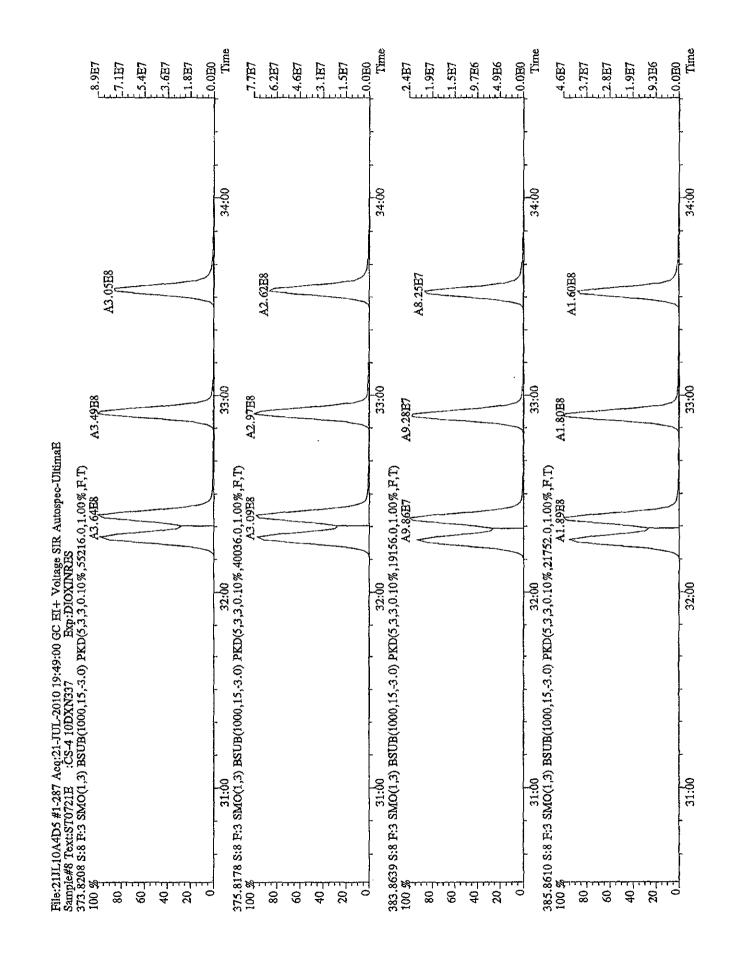


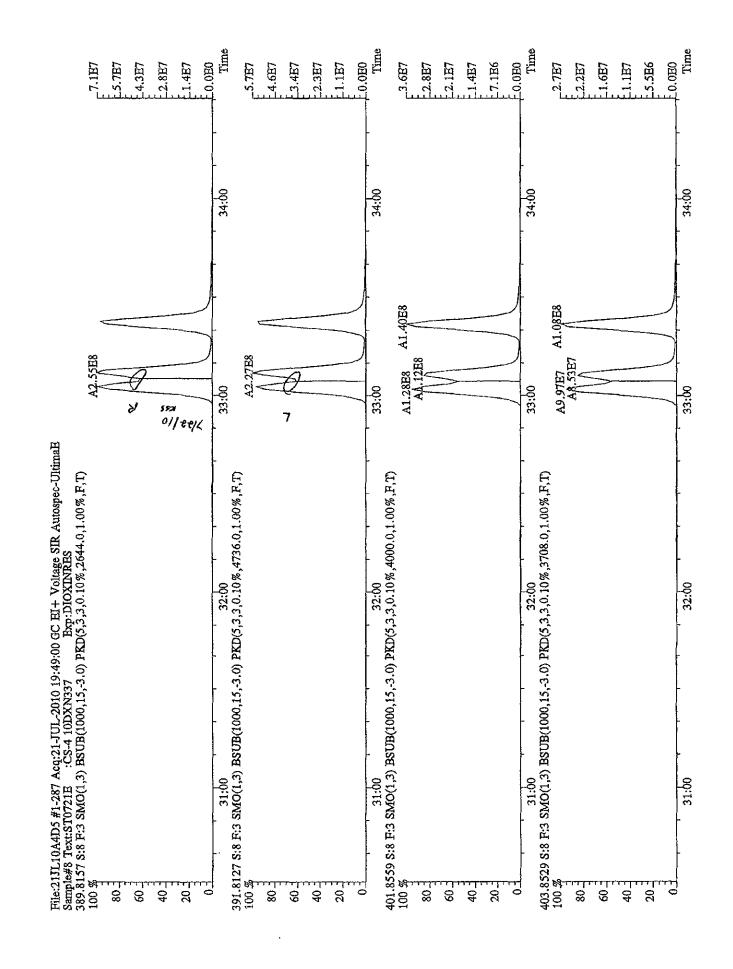


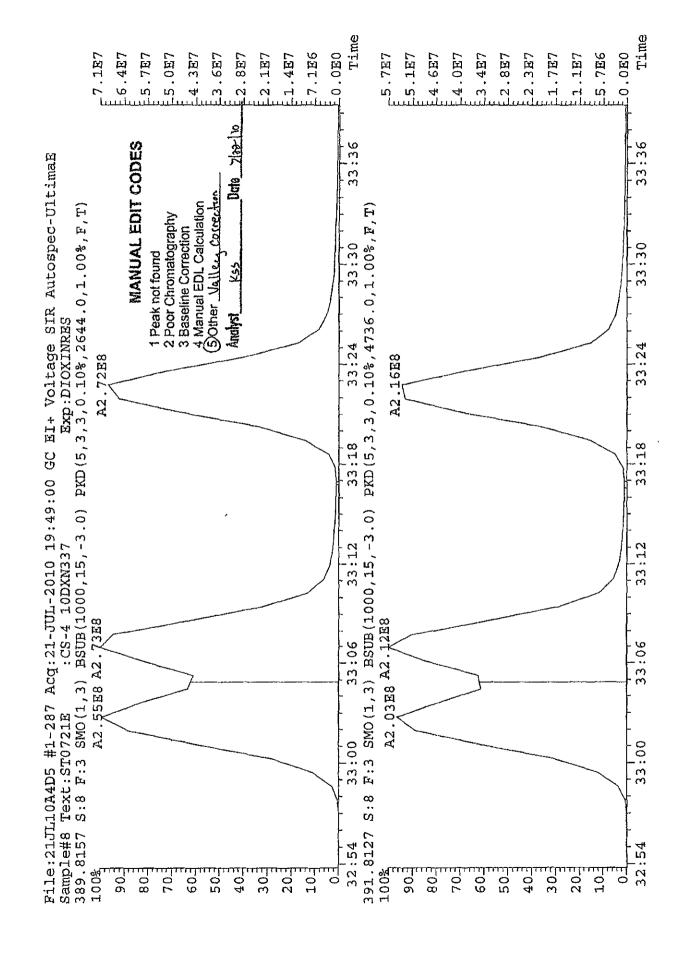


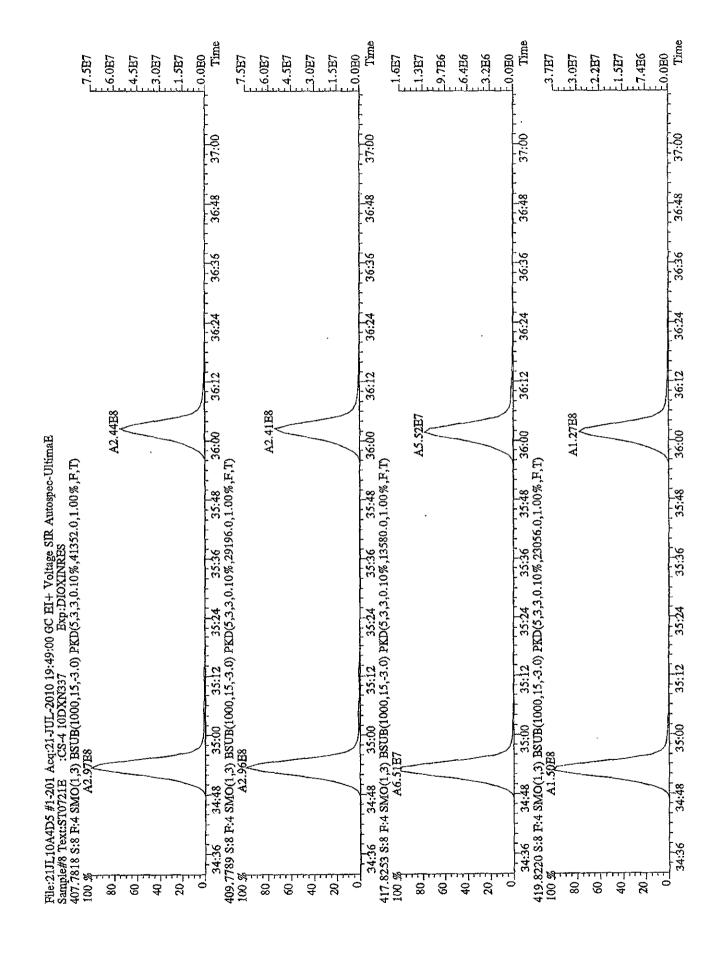


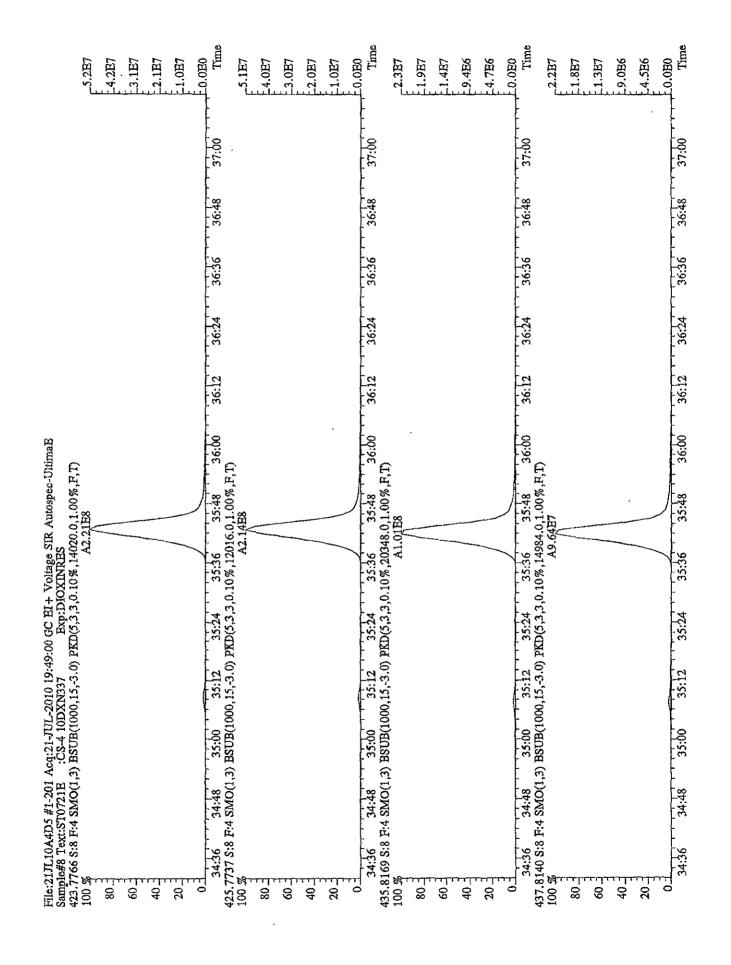


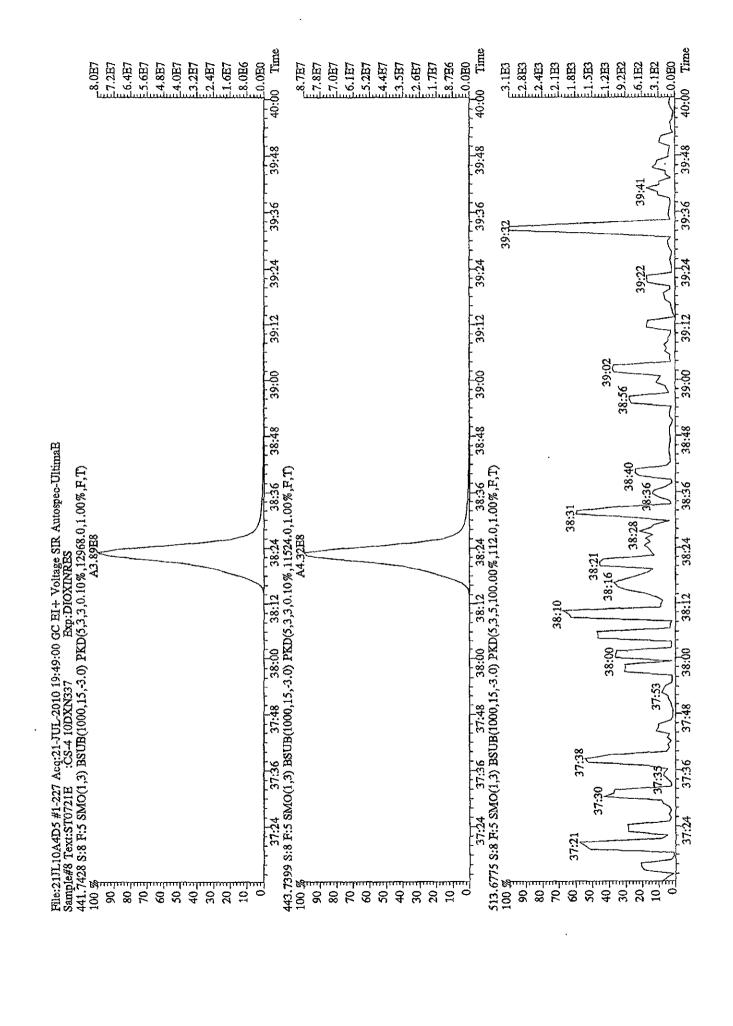


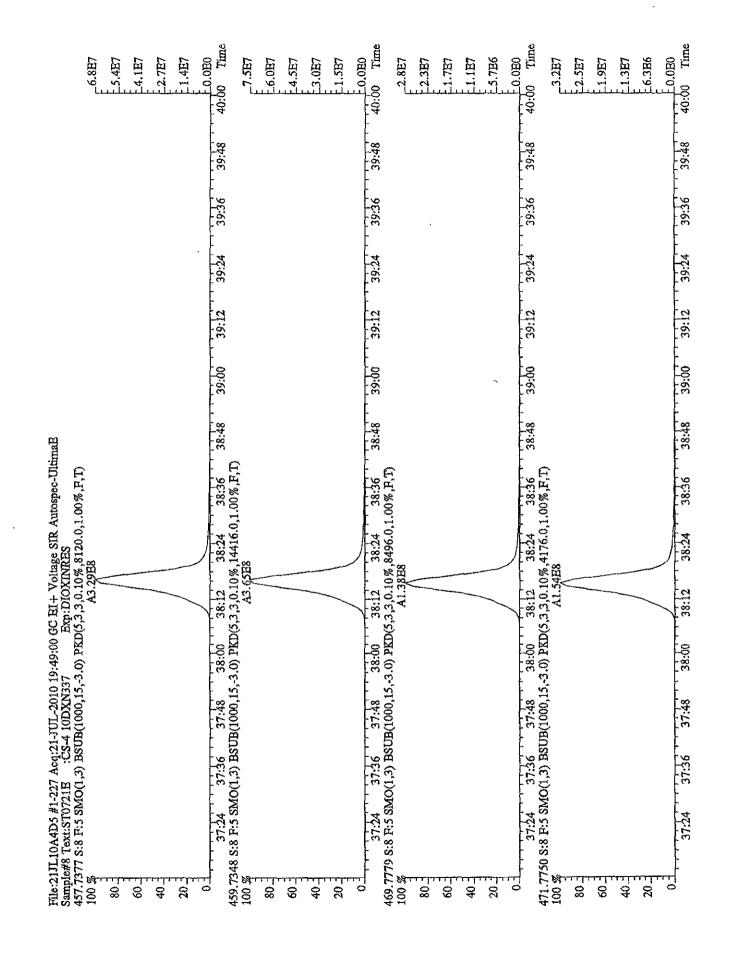


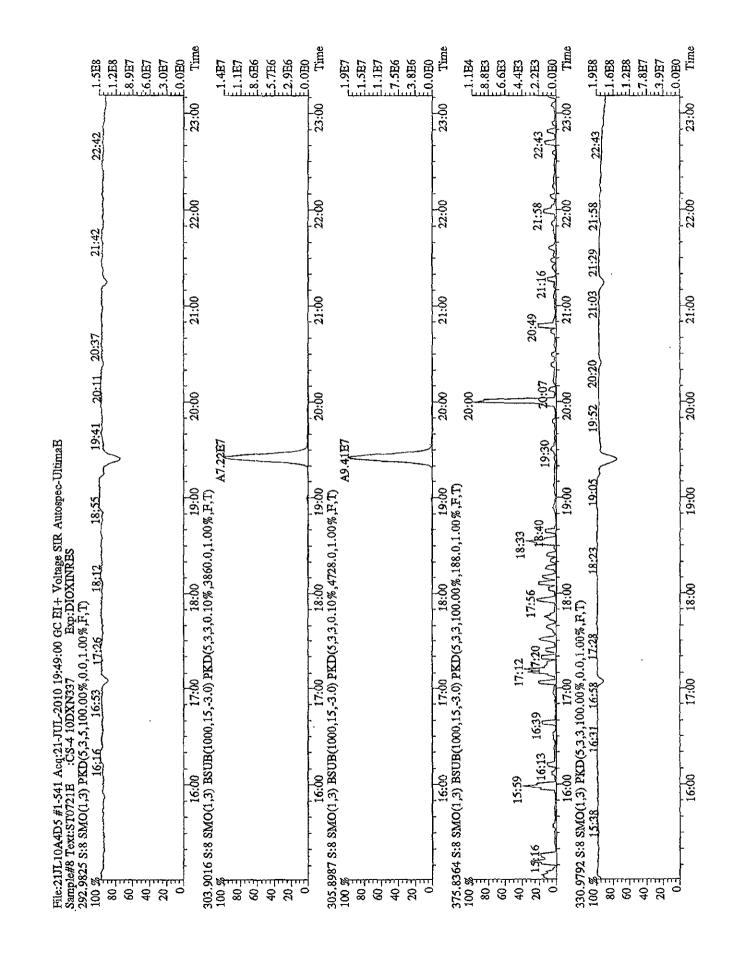


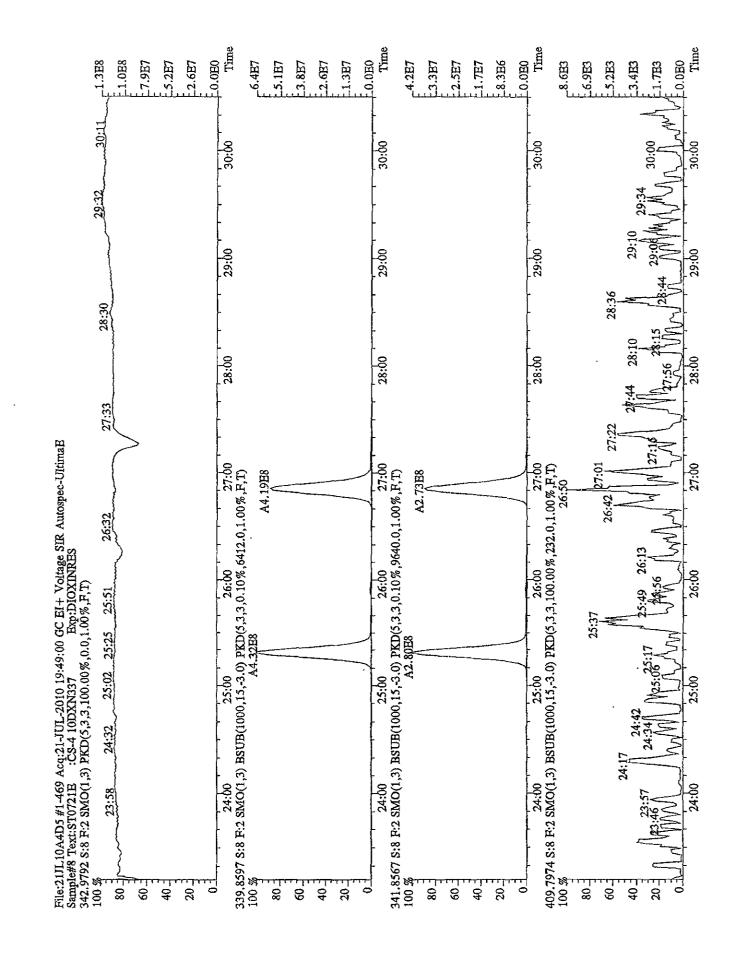


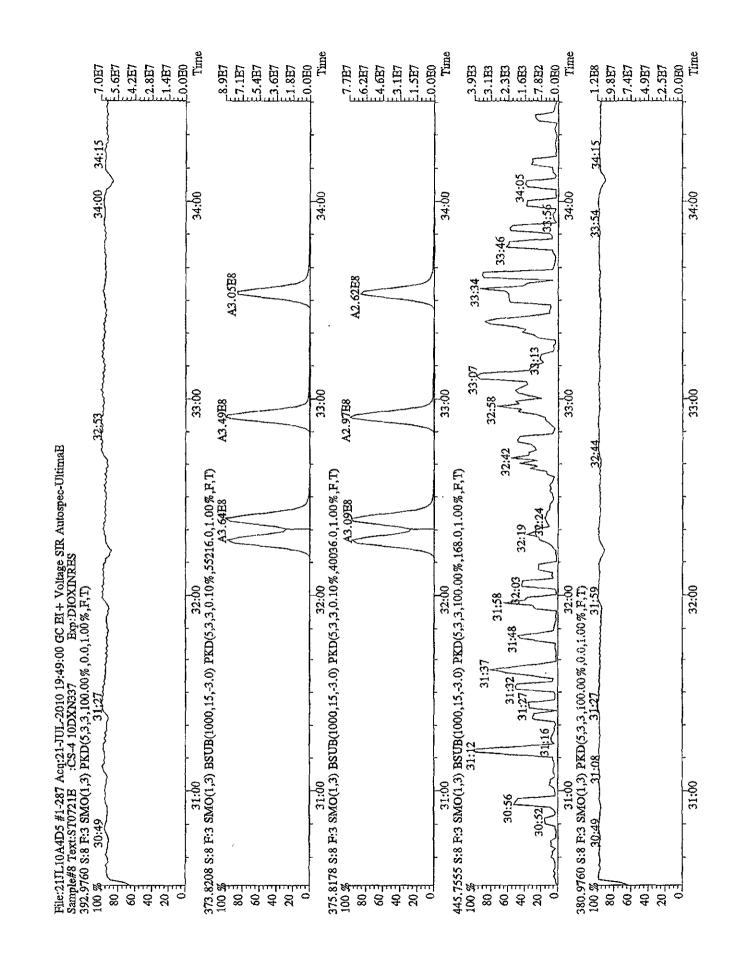


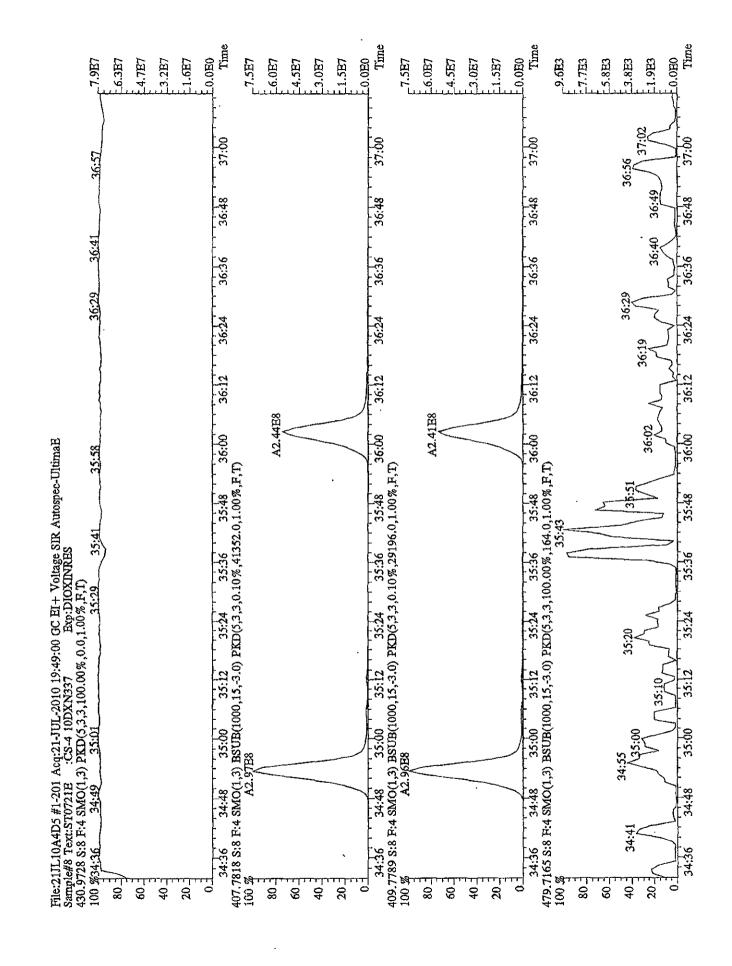


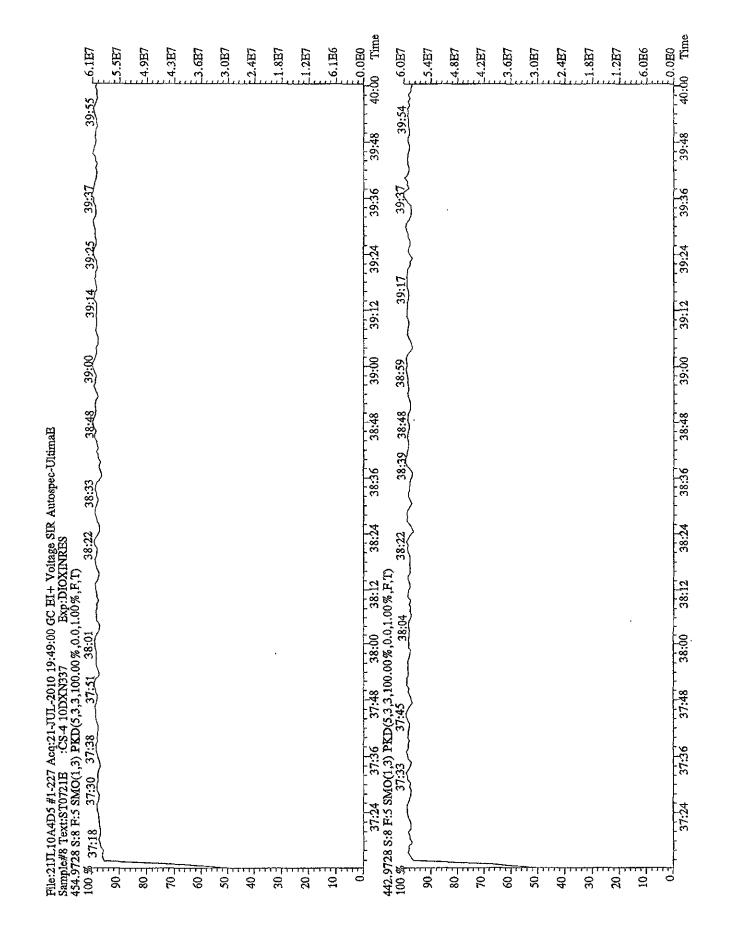


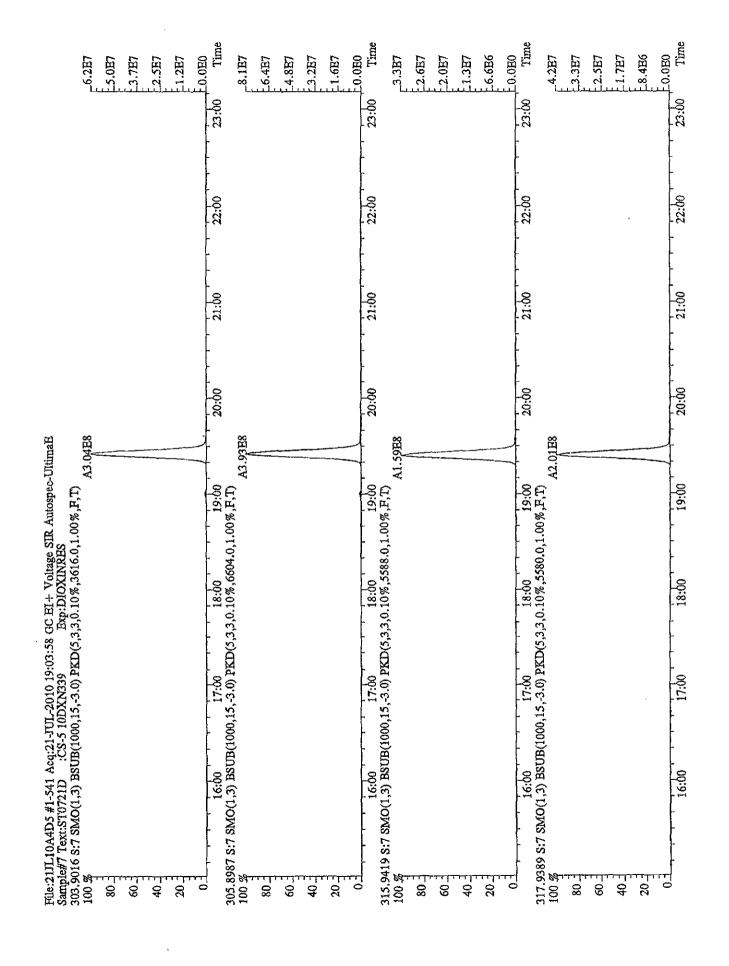


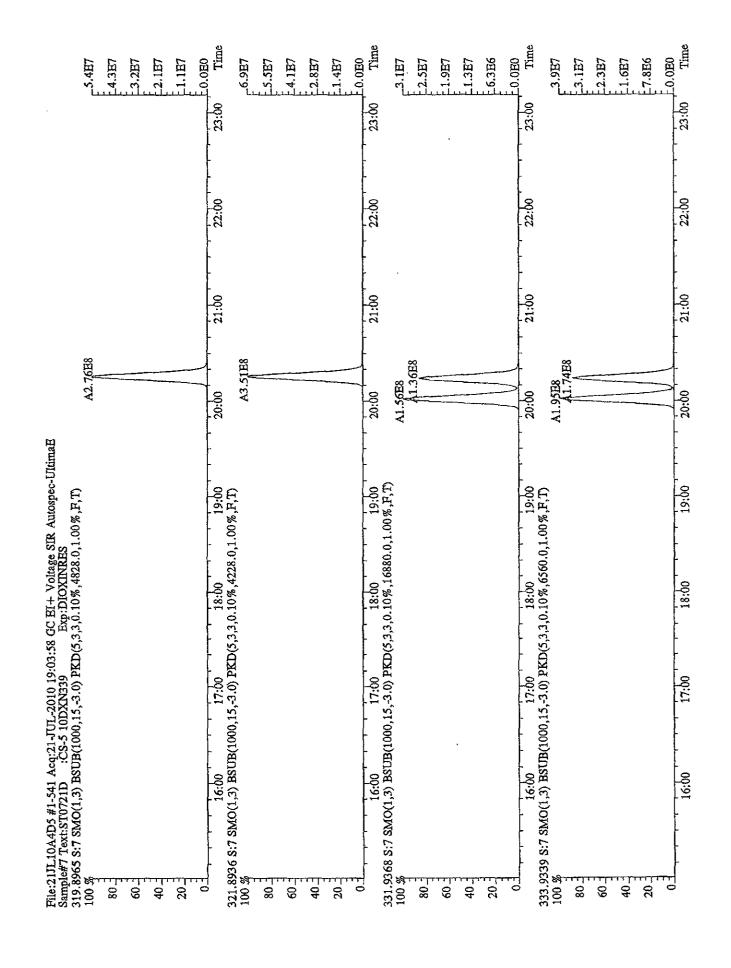


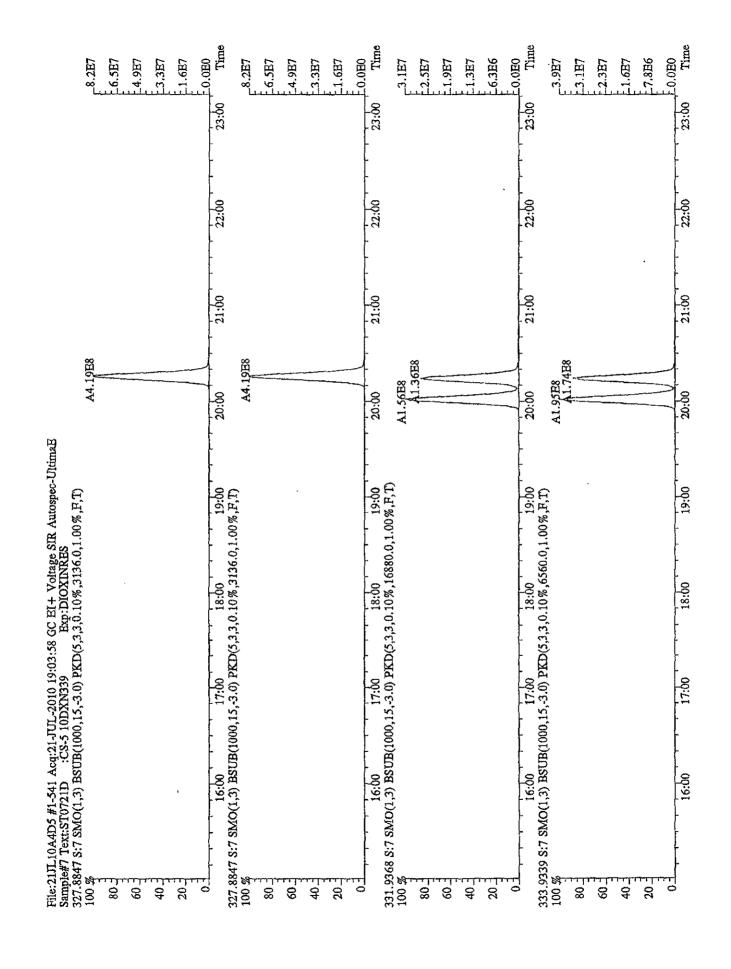


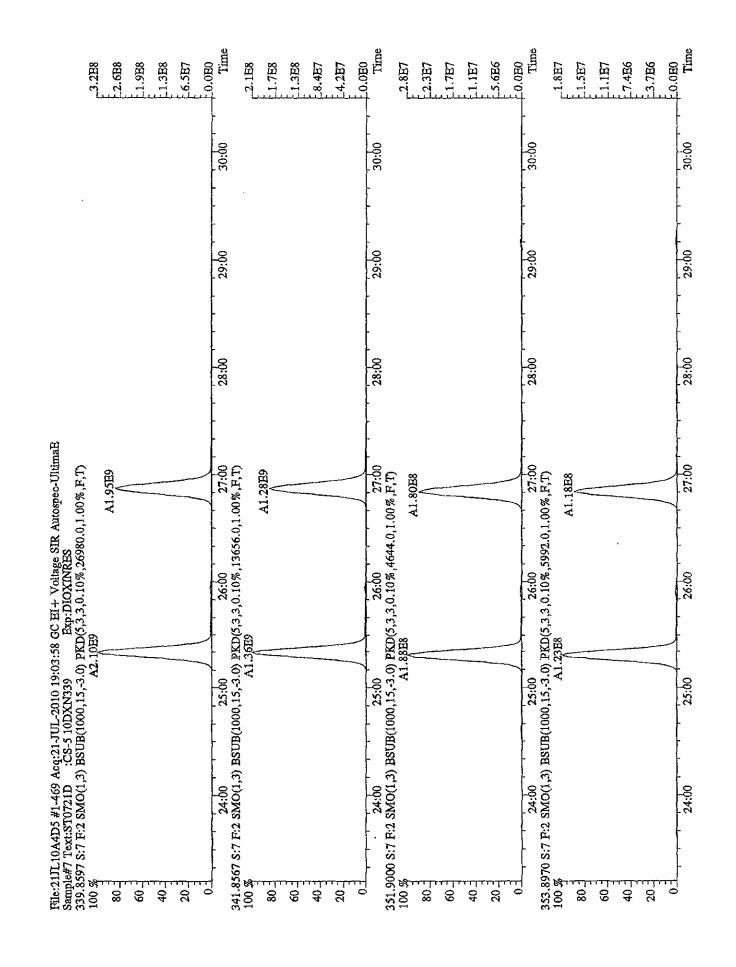


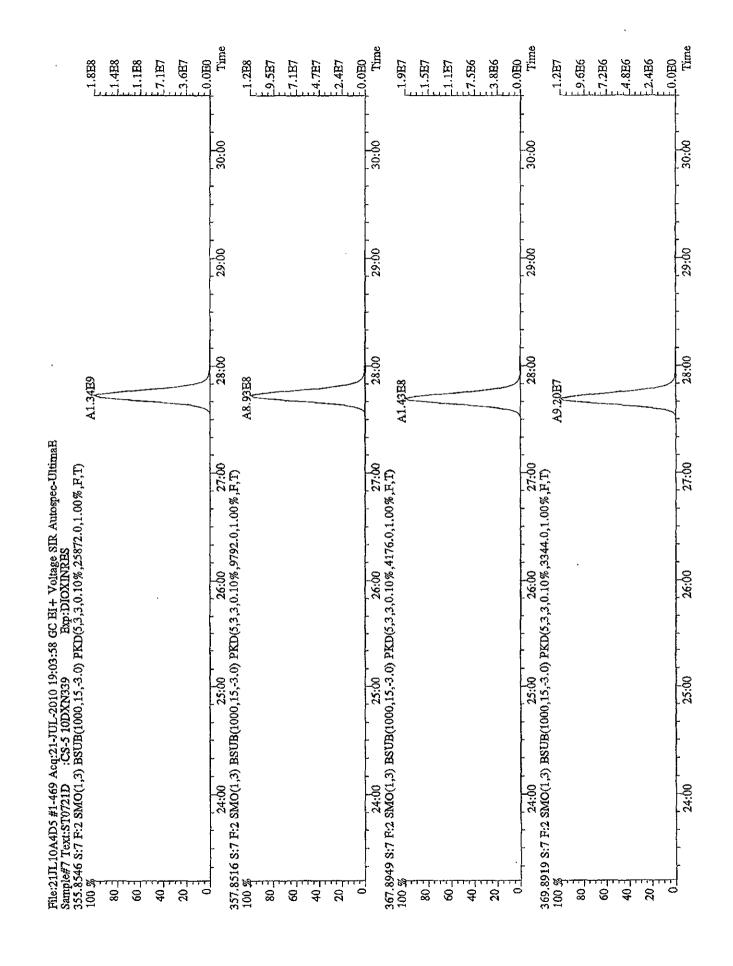


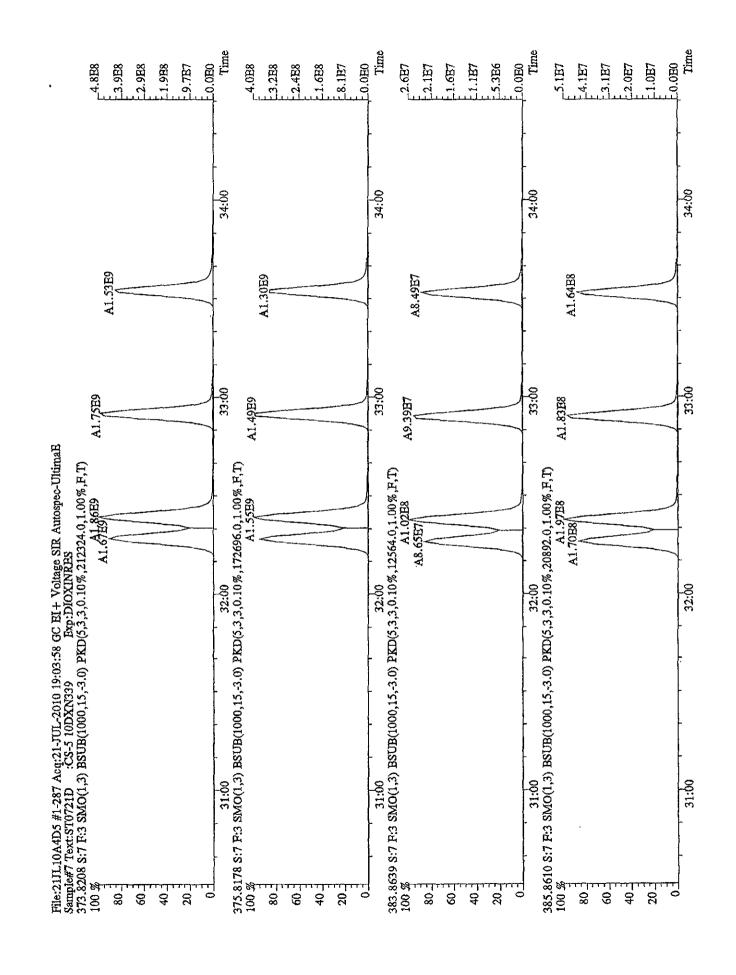


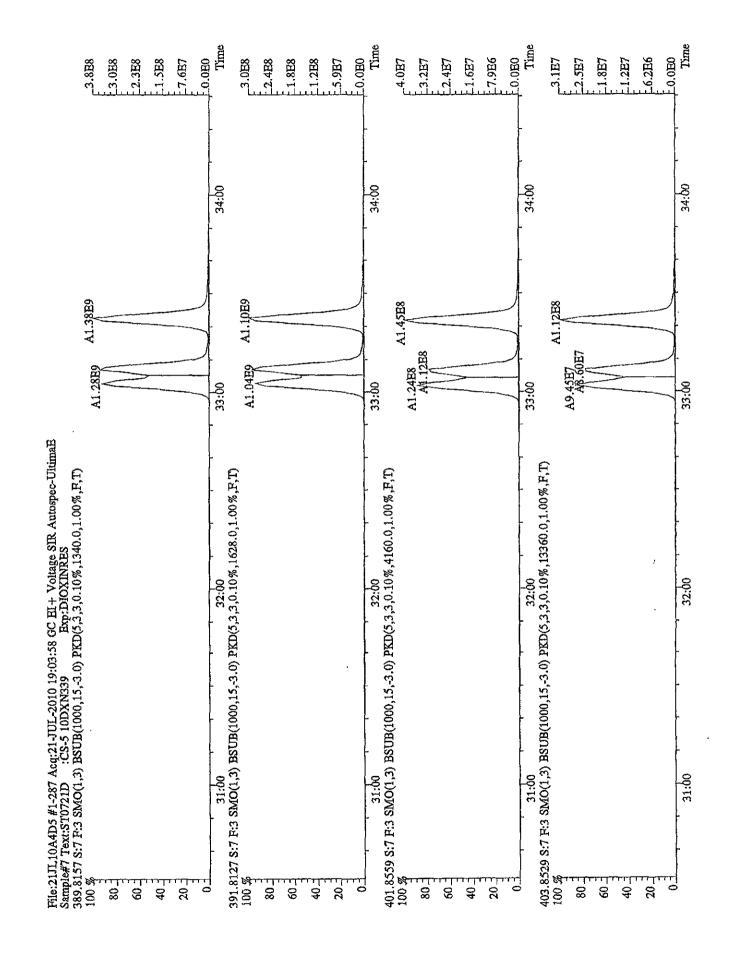


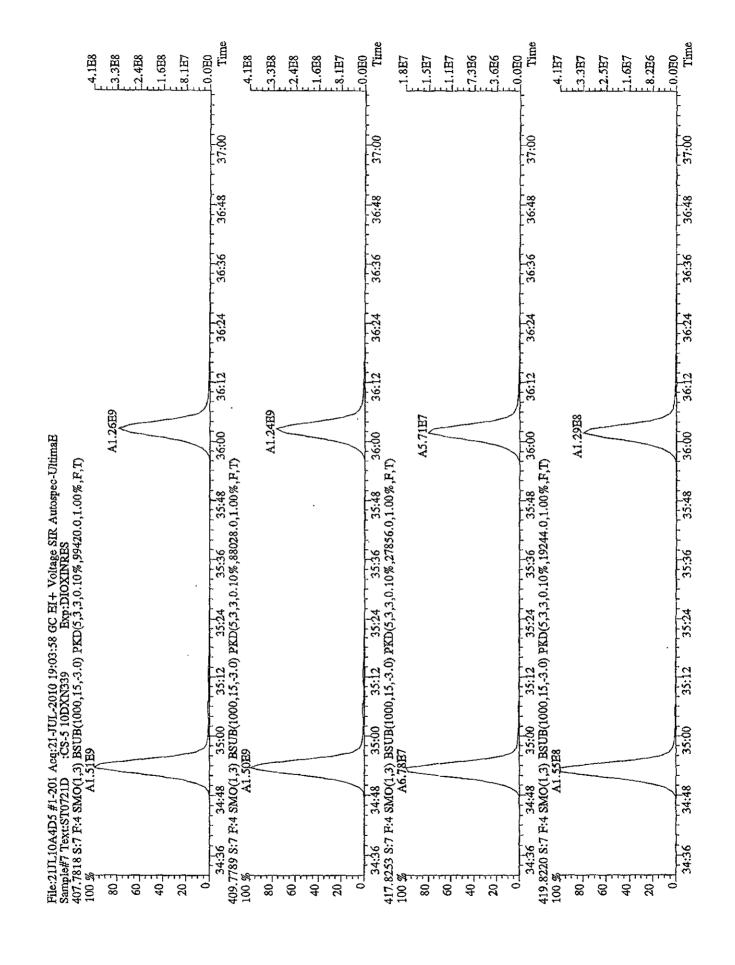


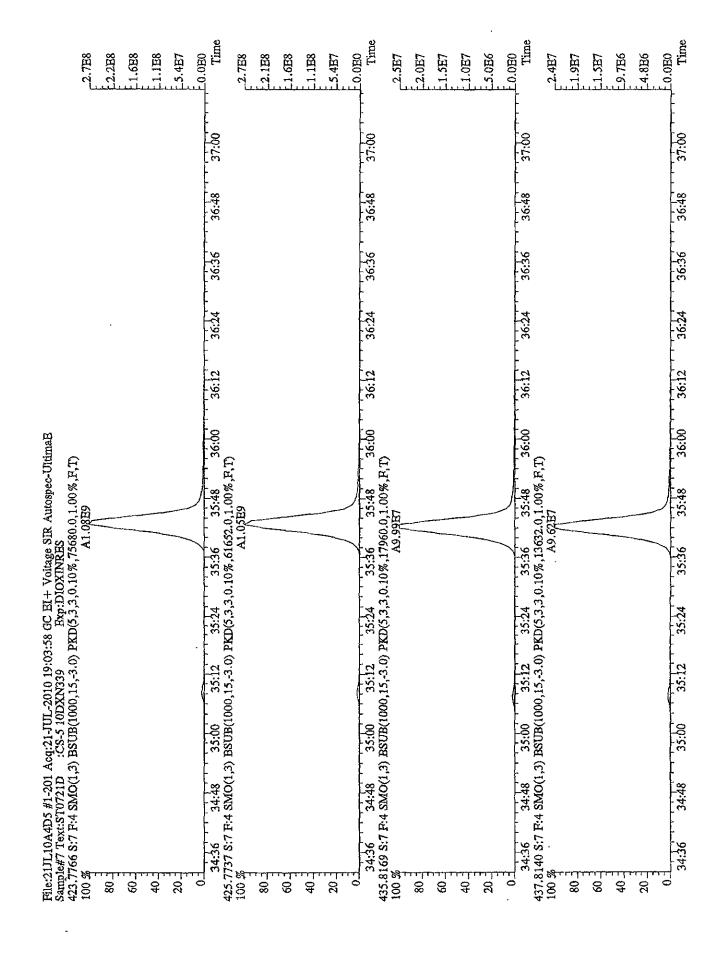


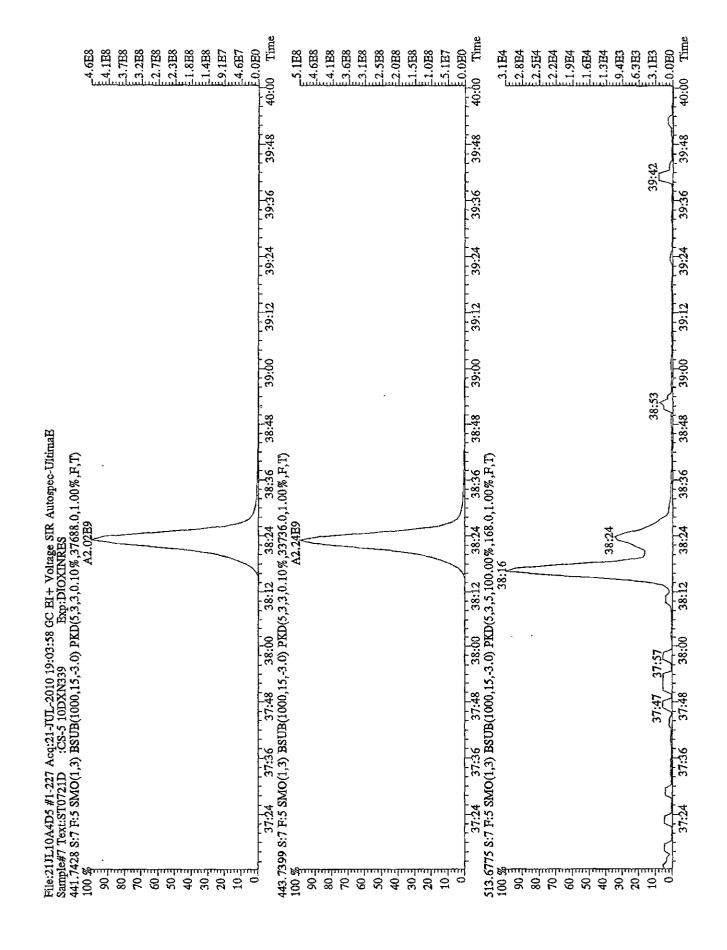


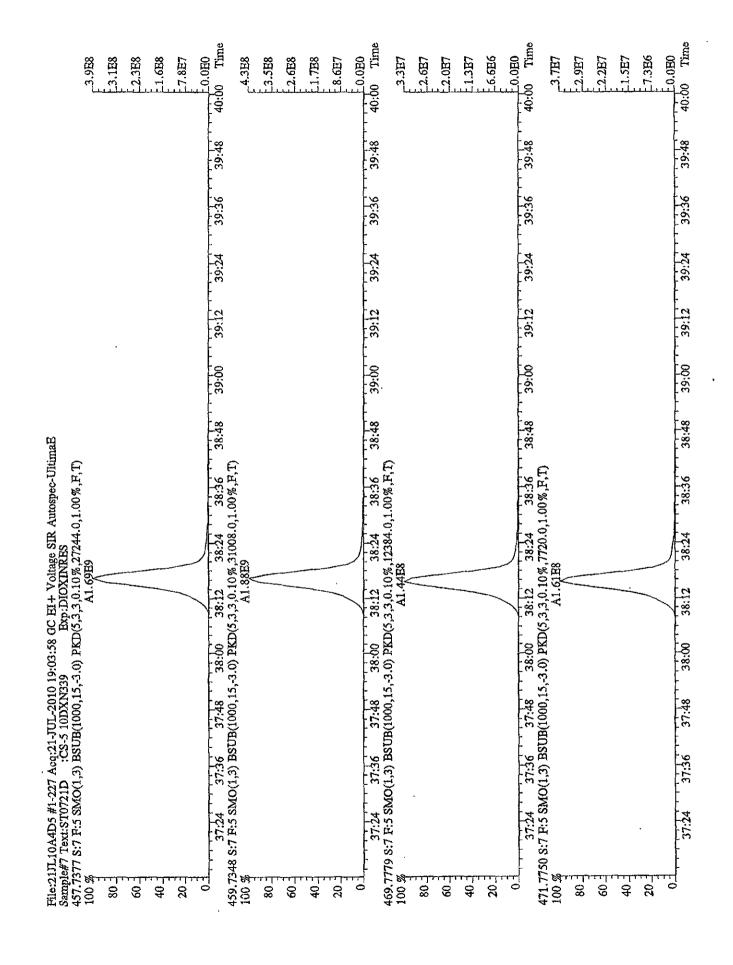


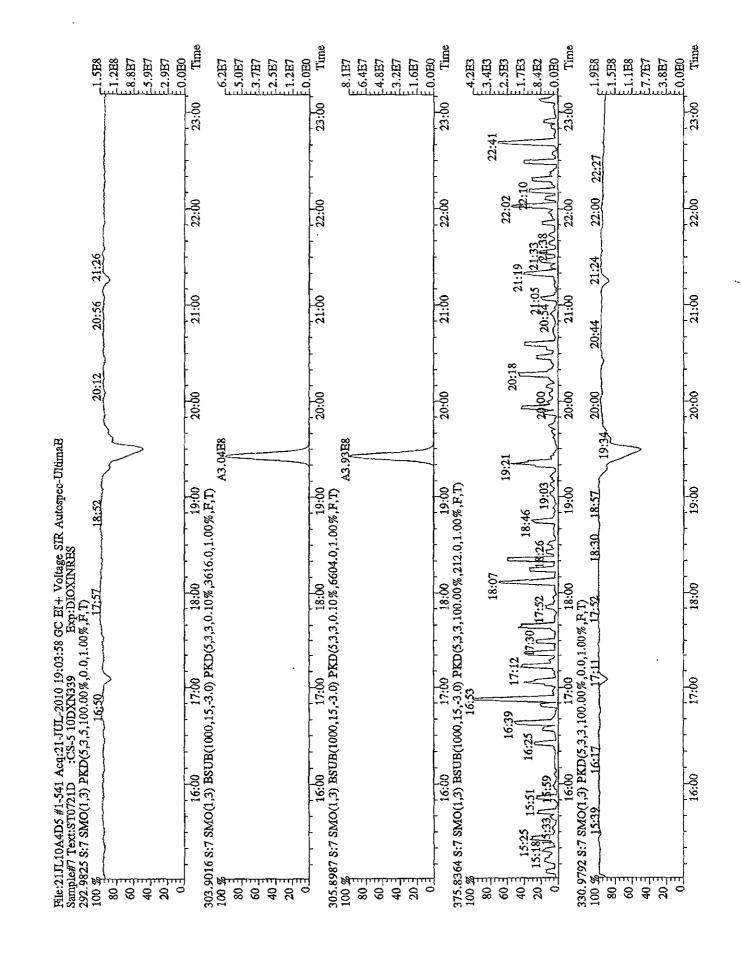


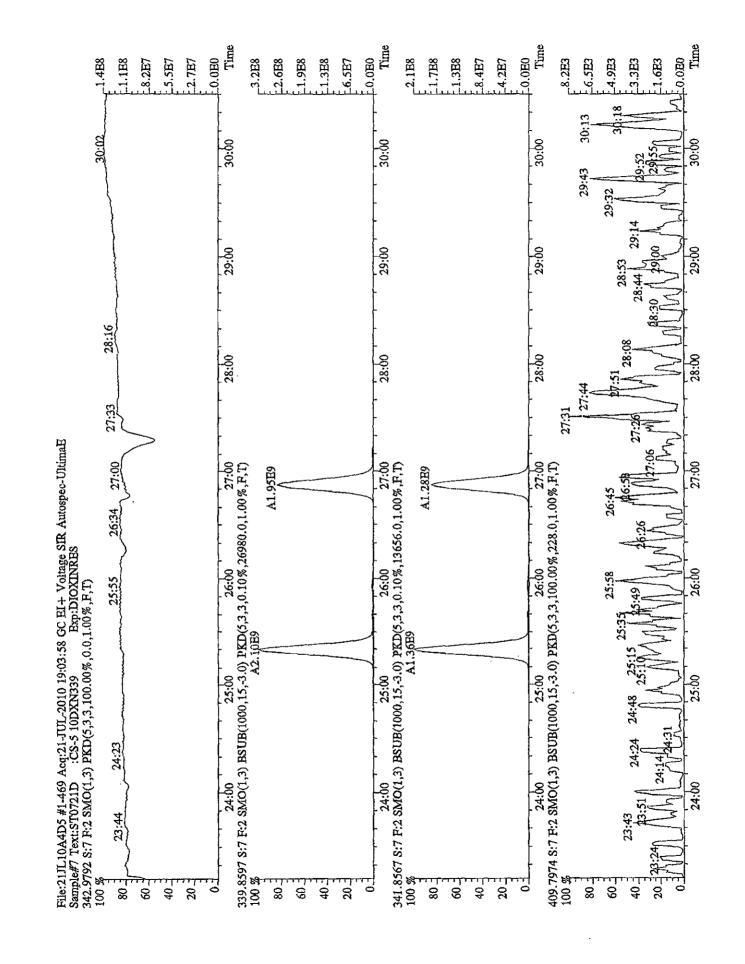


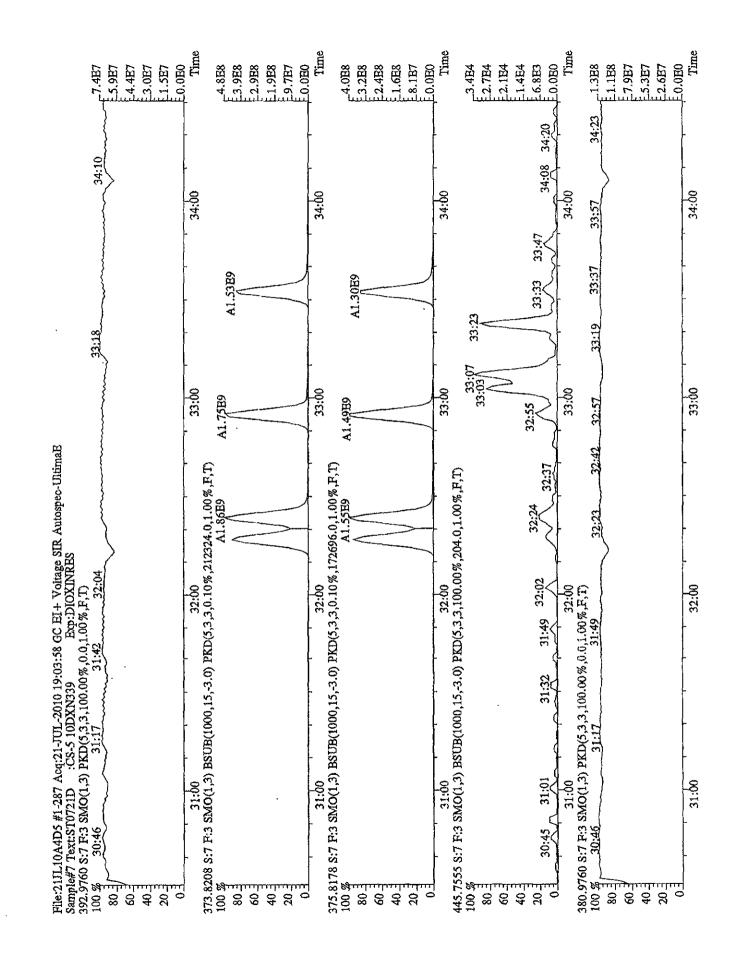


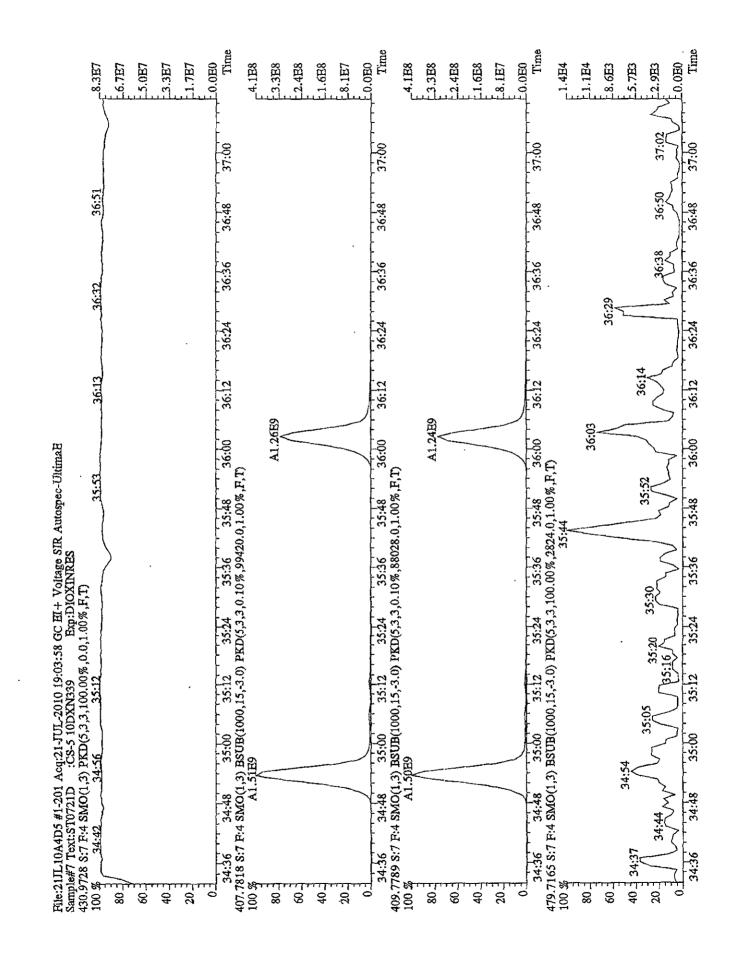


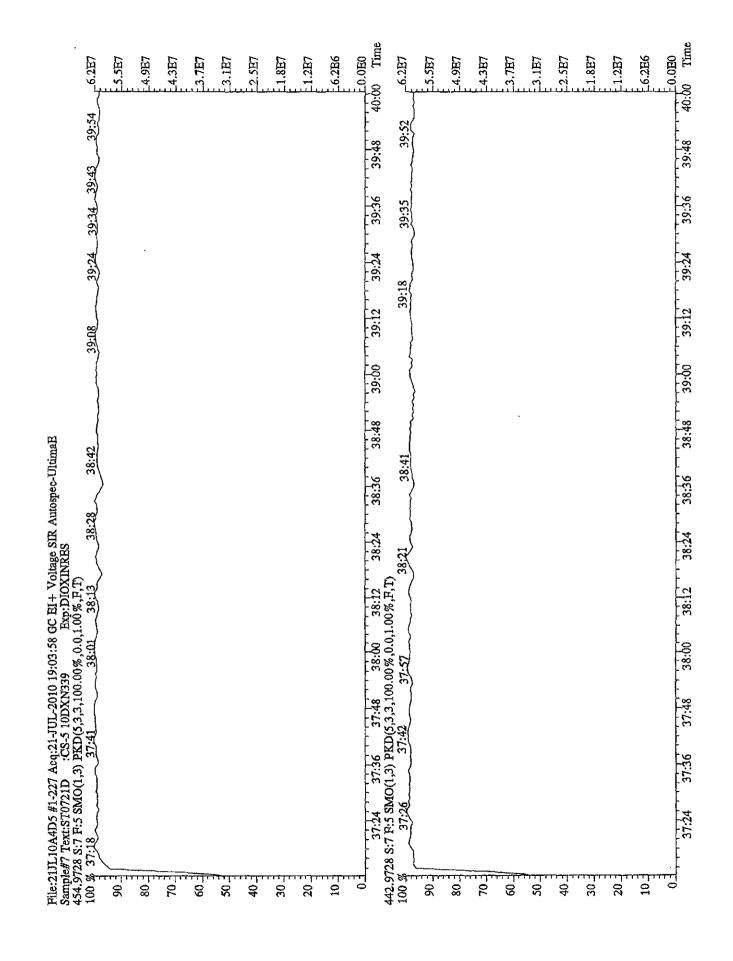


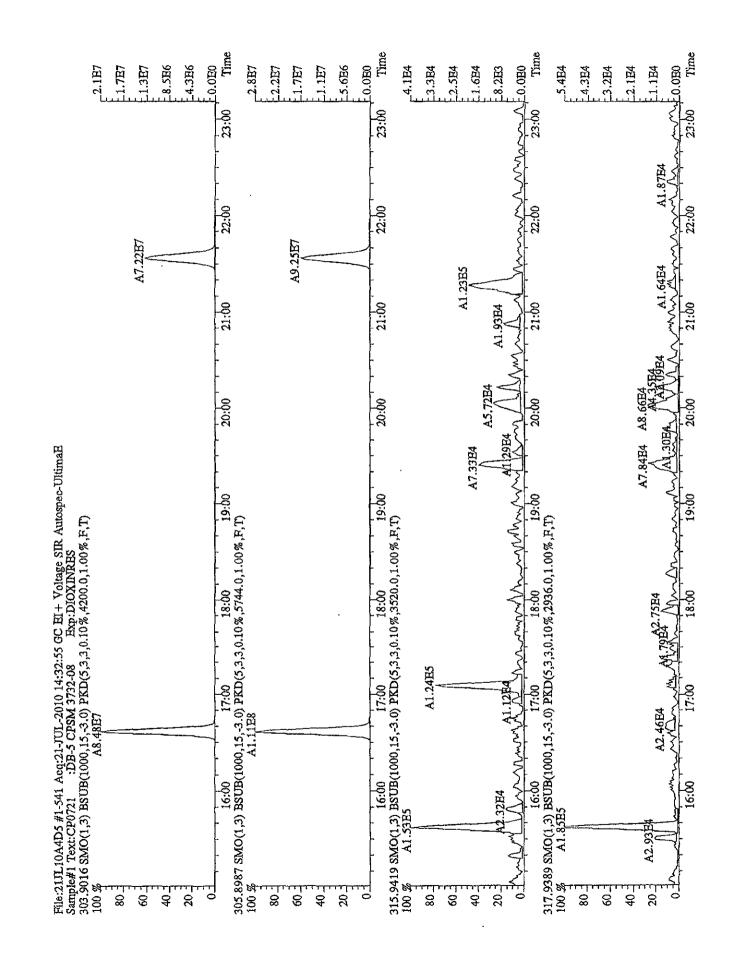


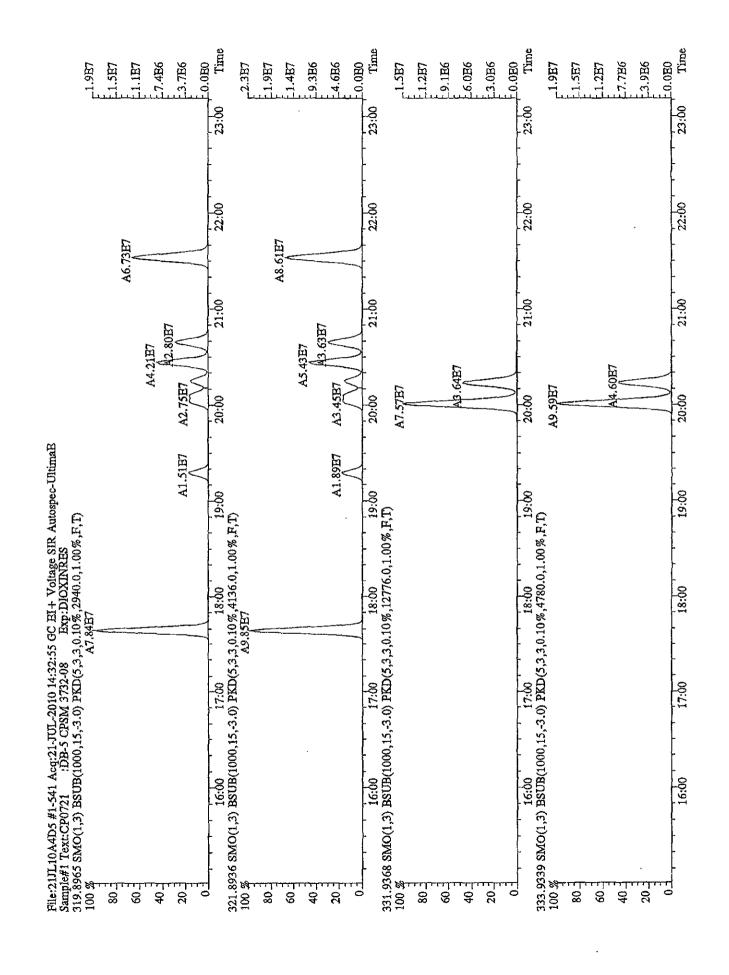


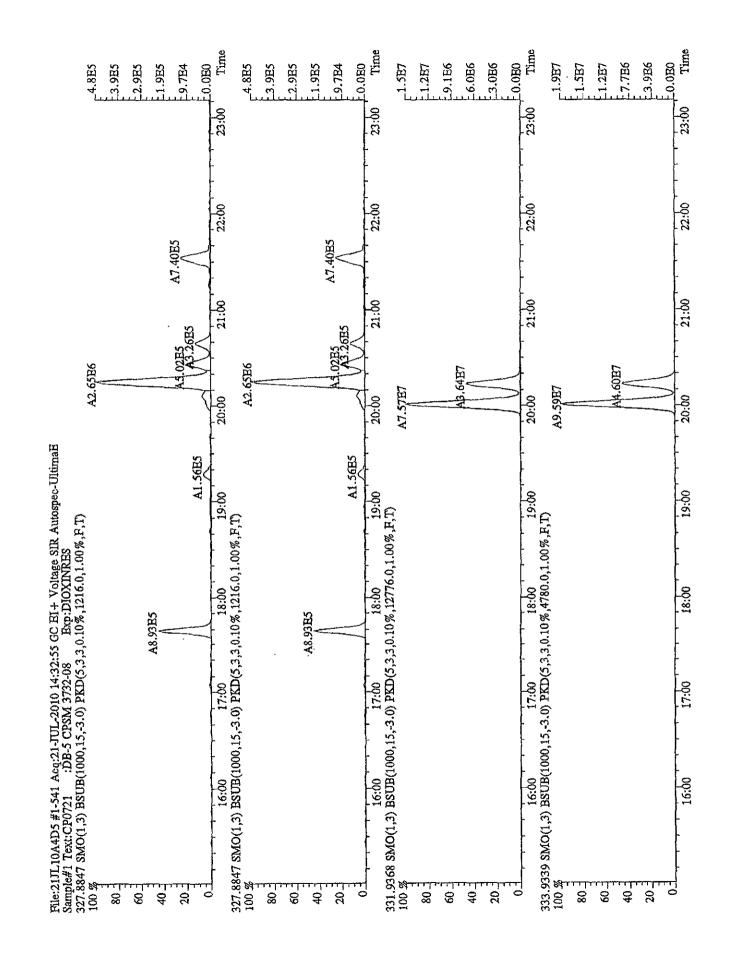


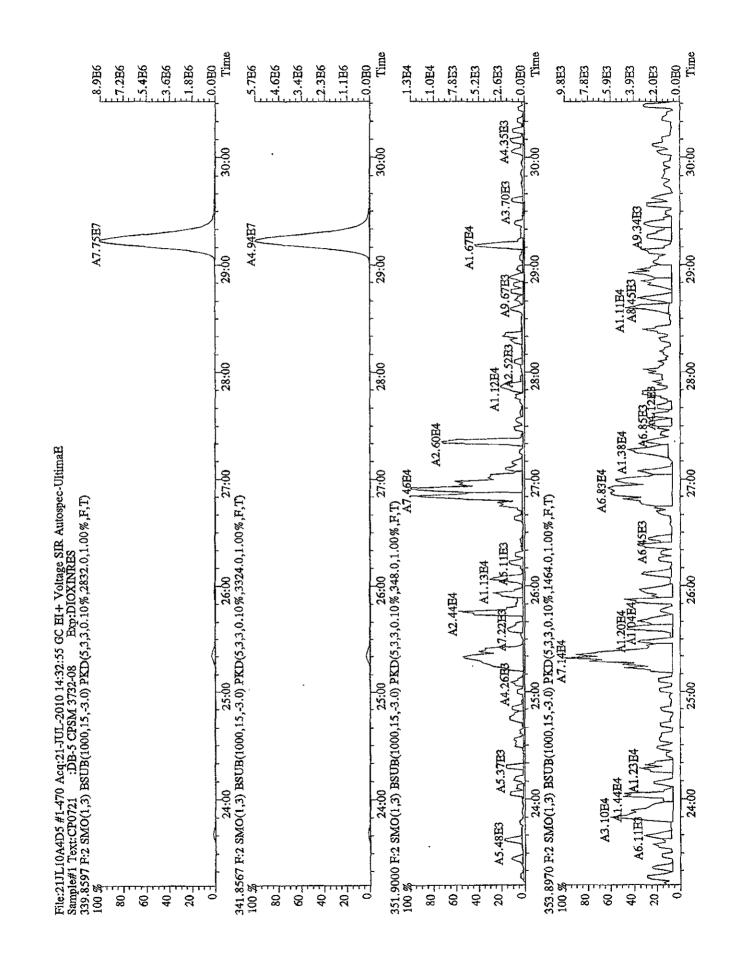


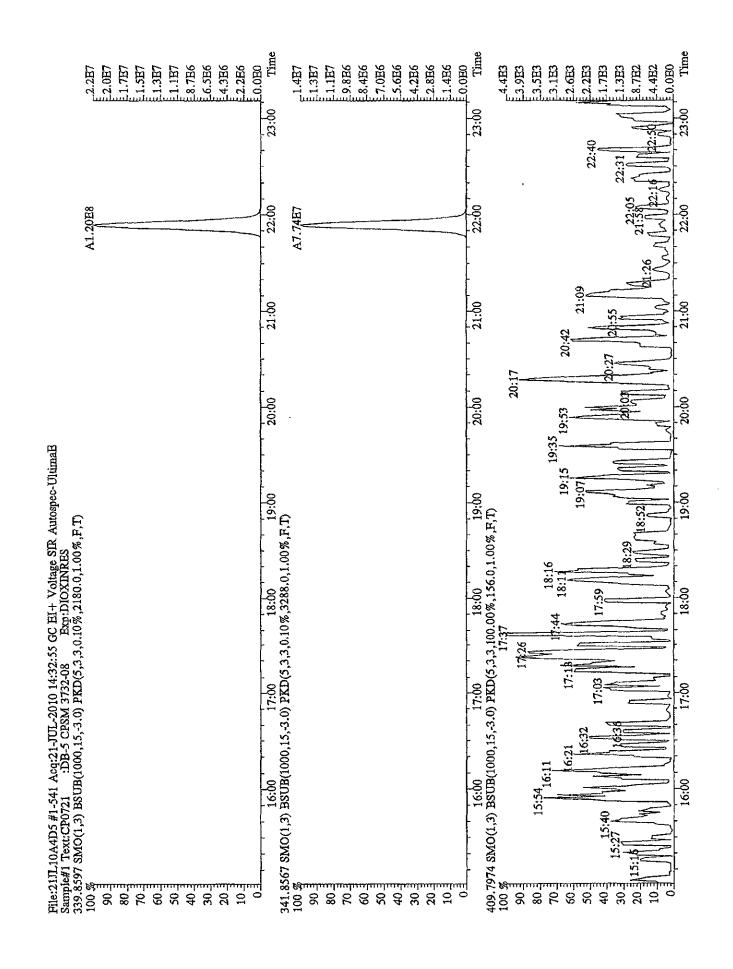


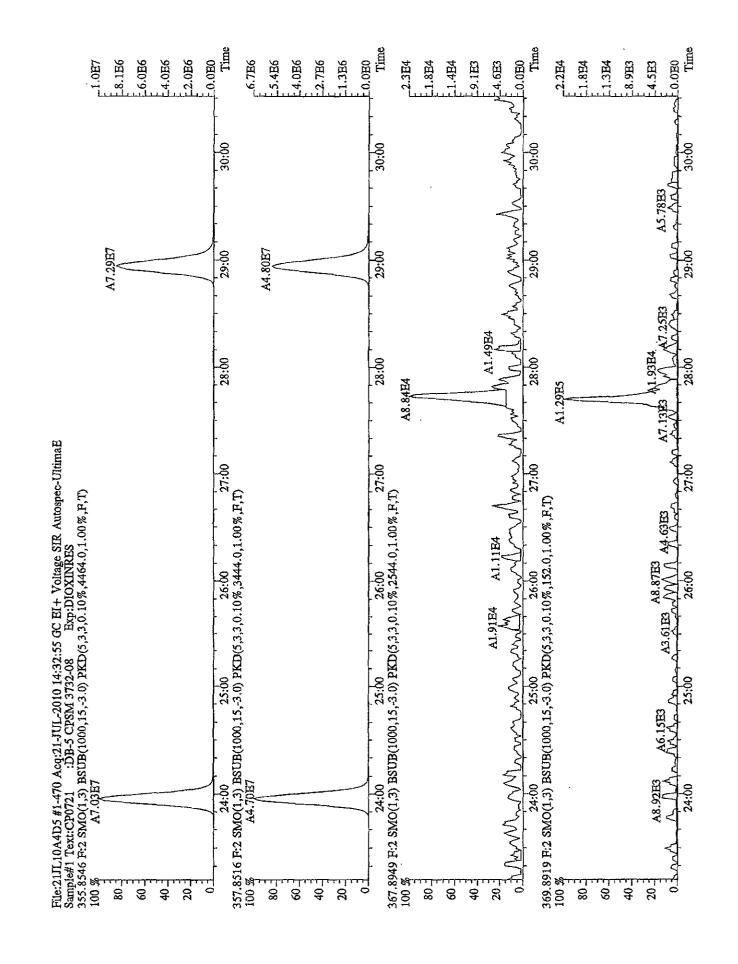


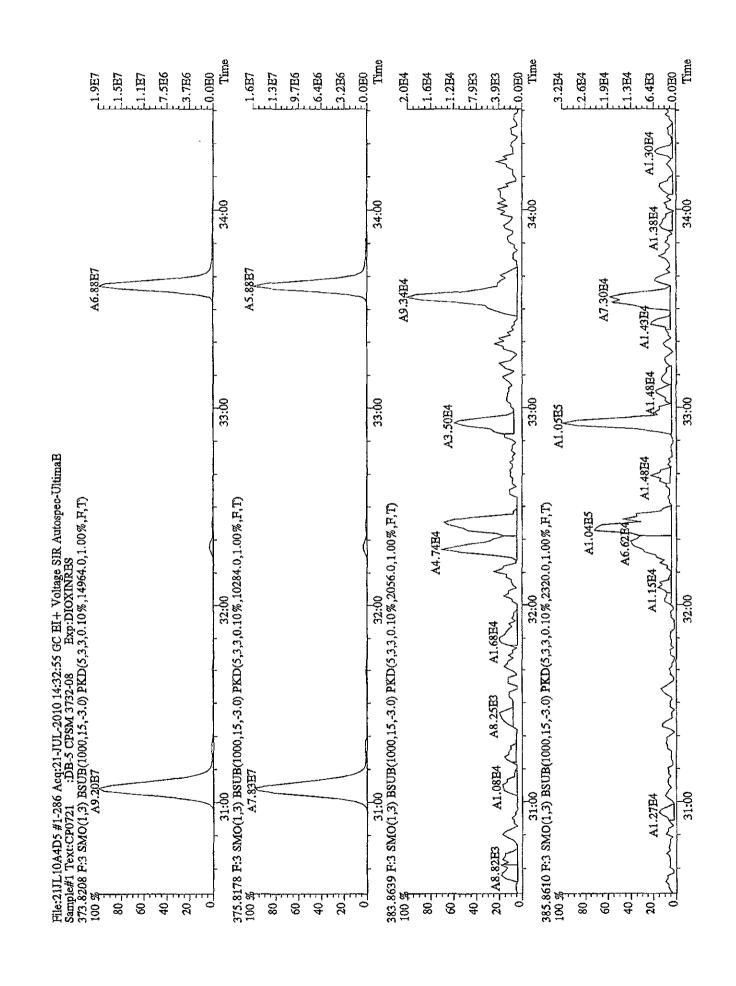


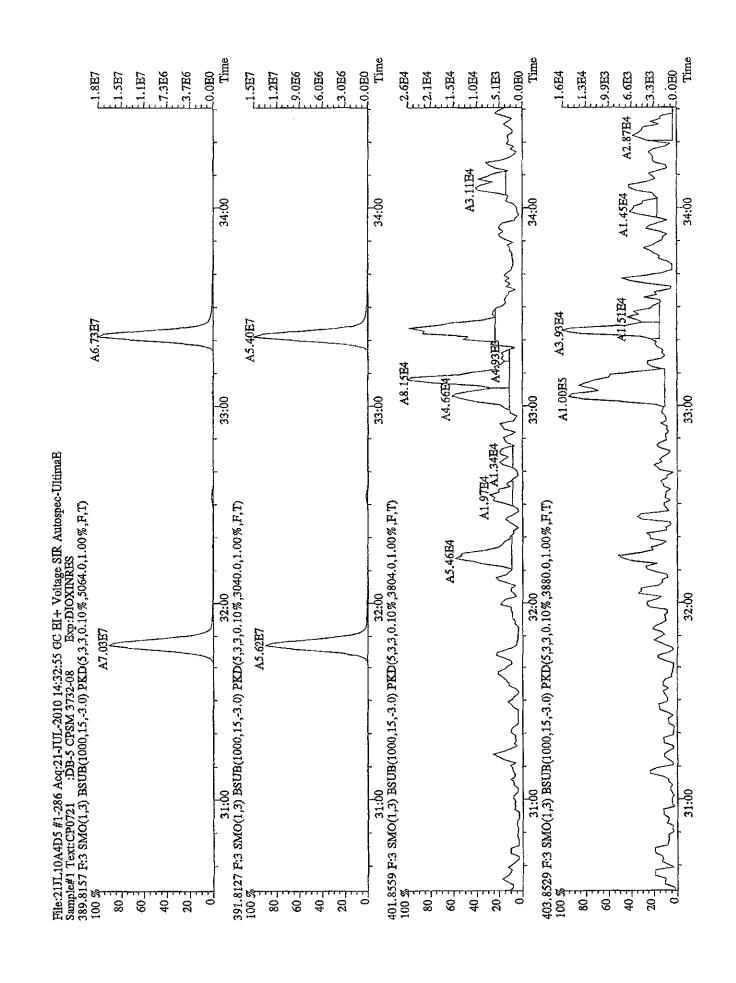


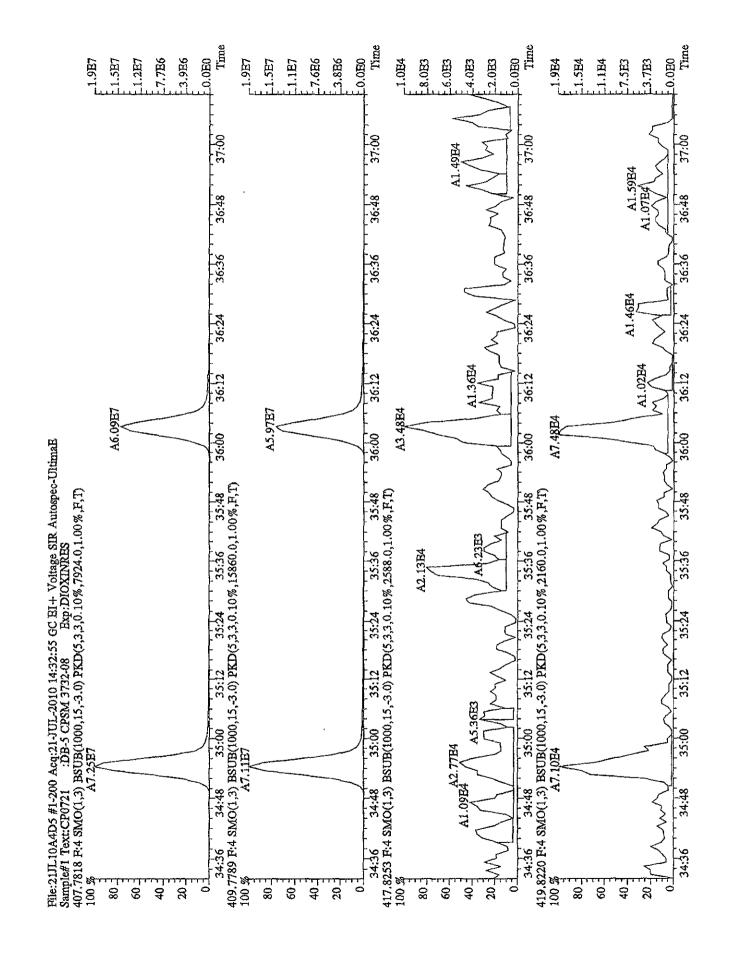


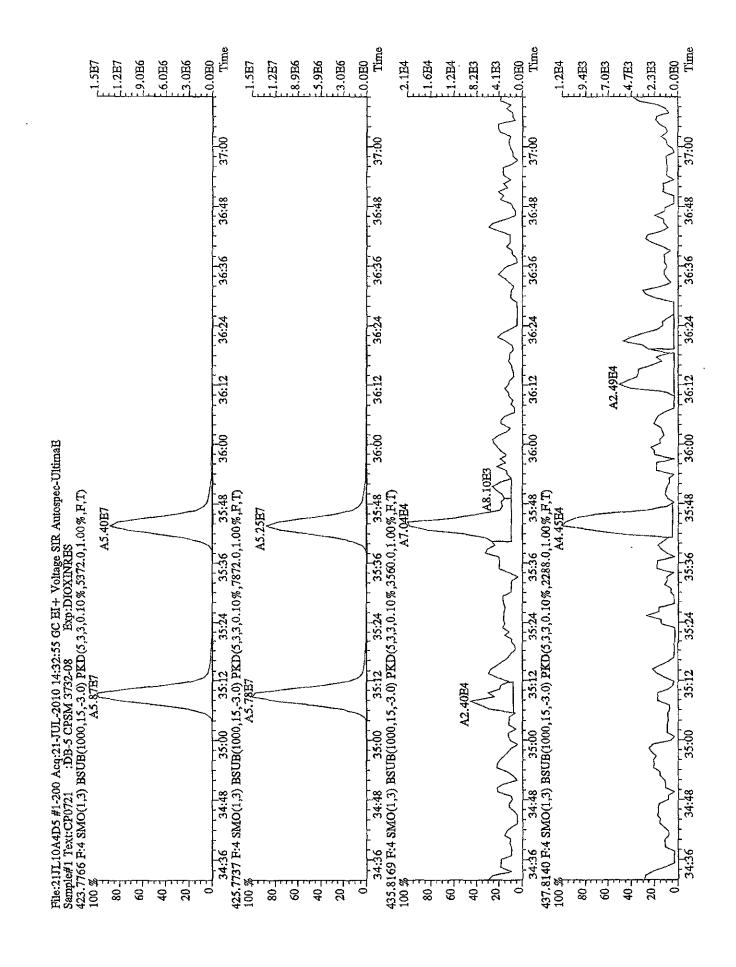


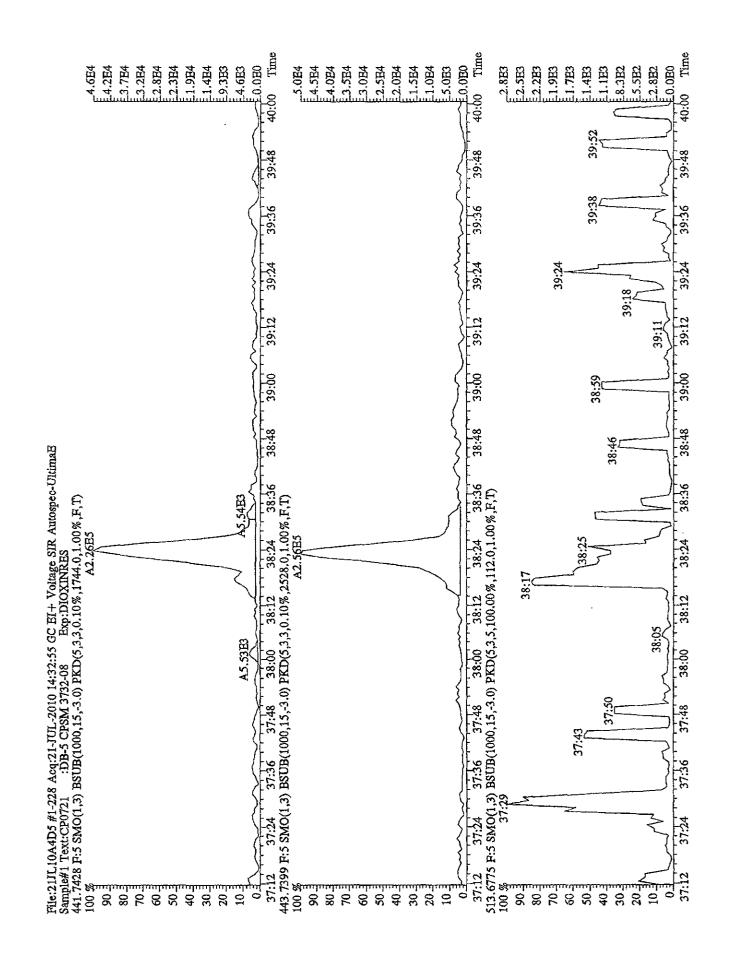


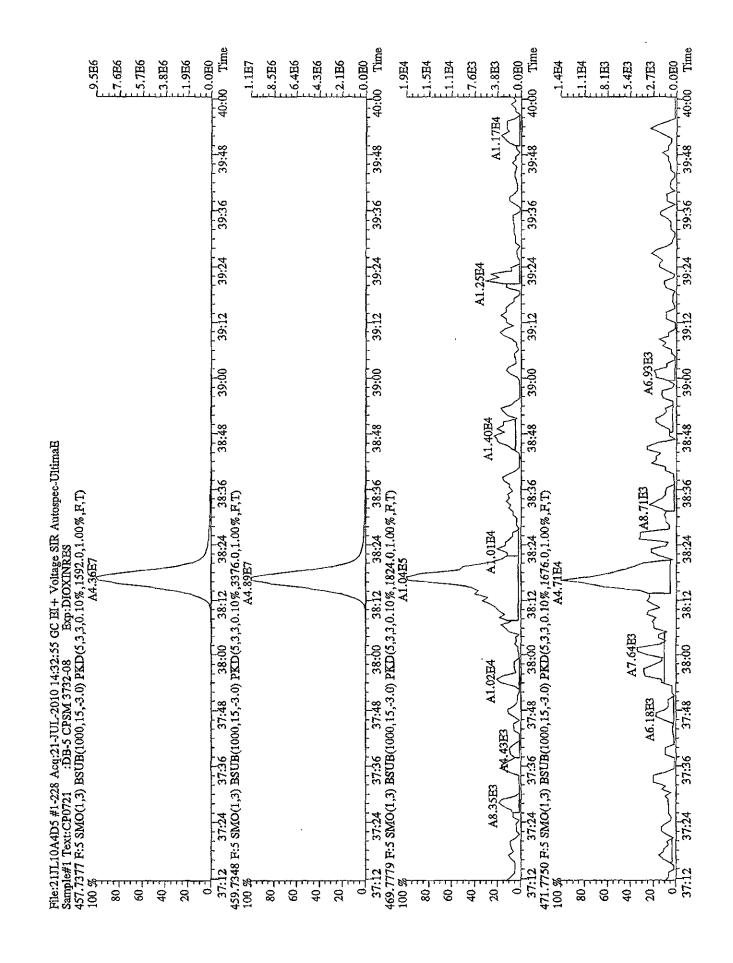


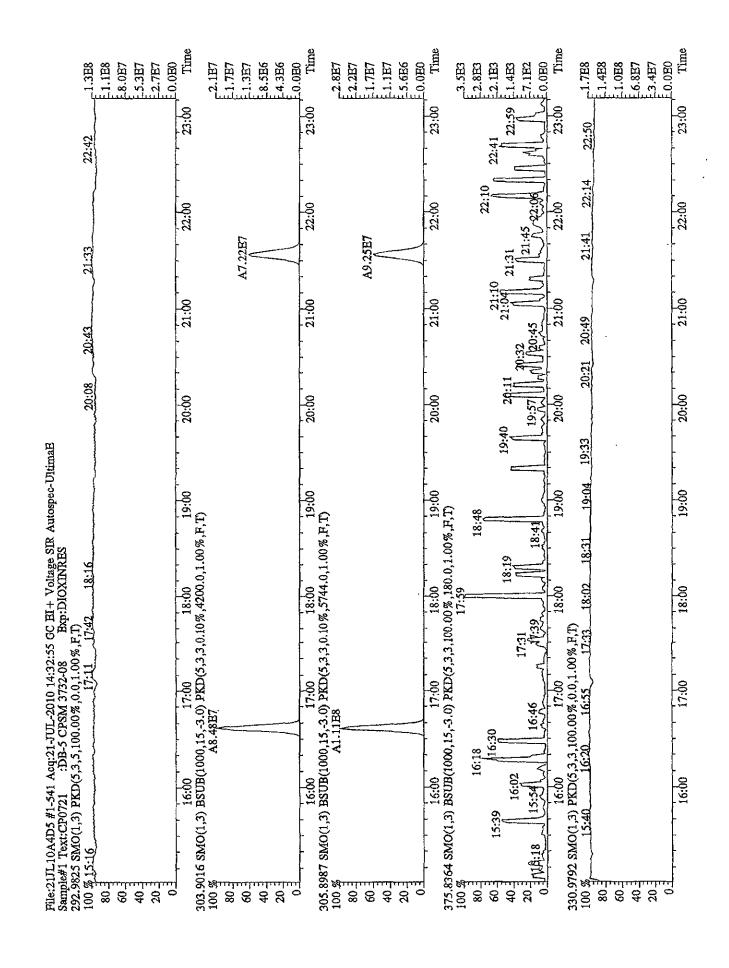


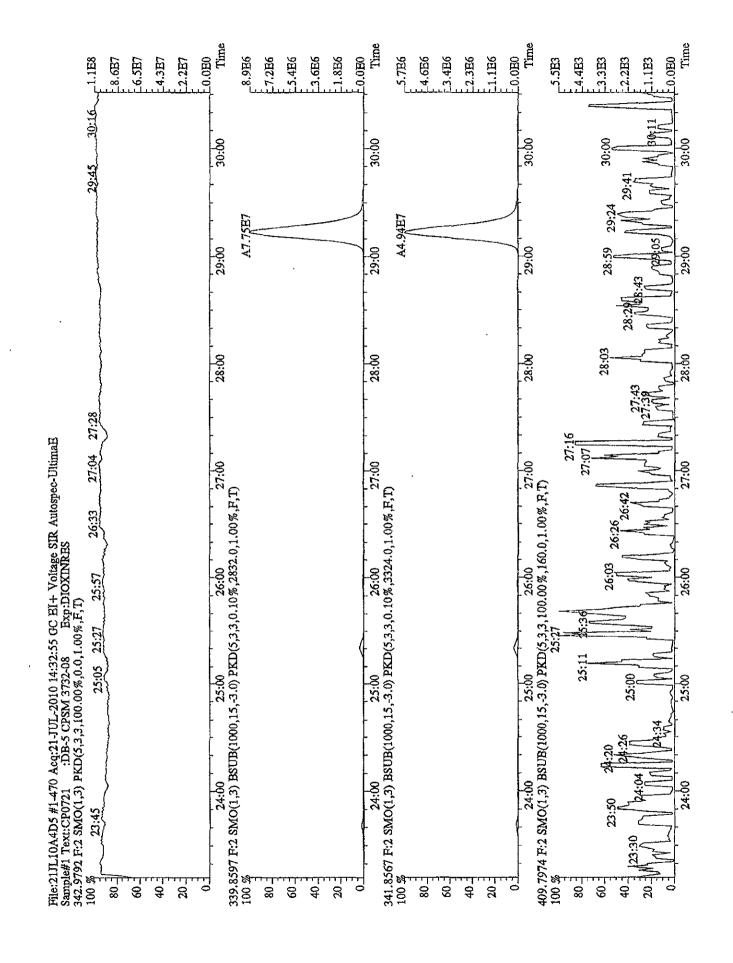


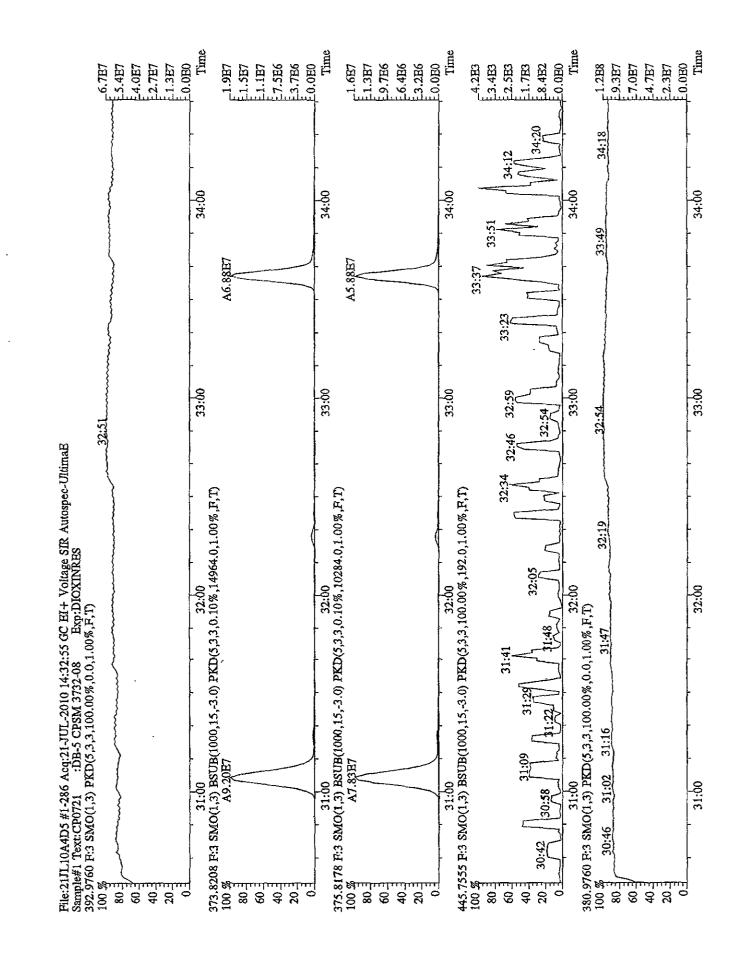


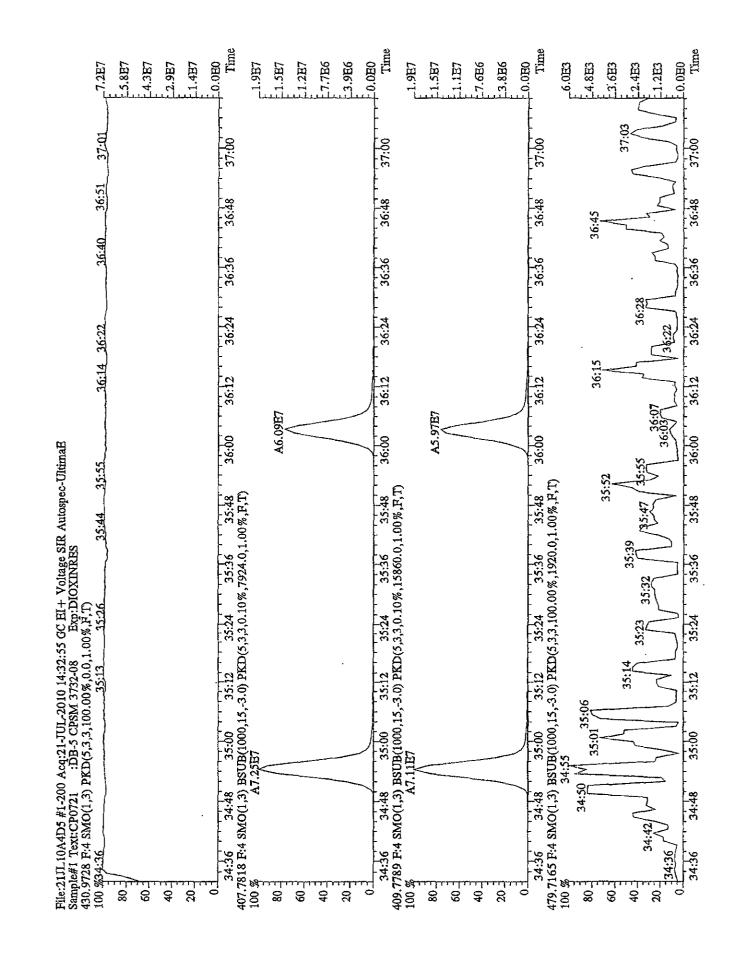

ļ

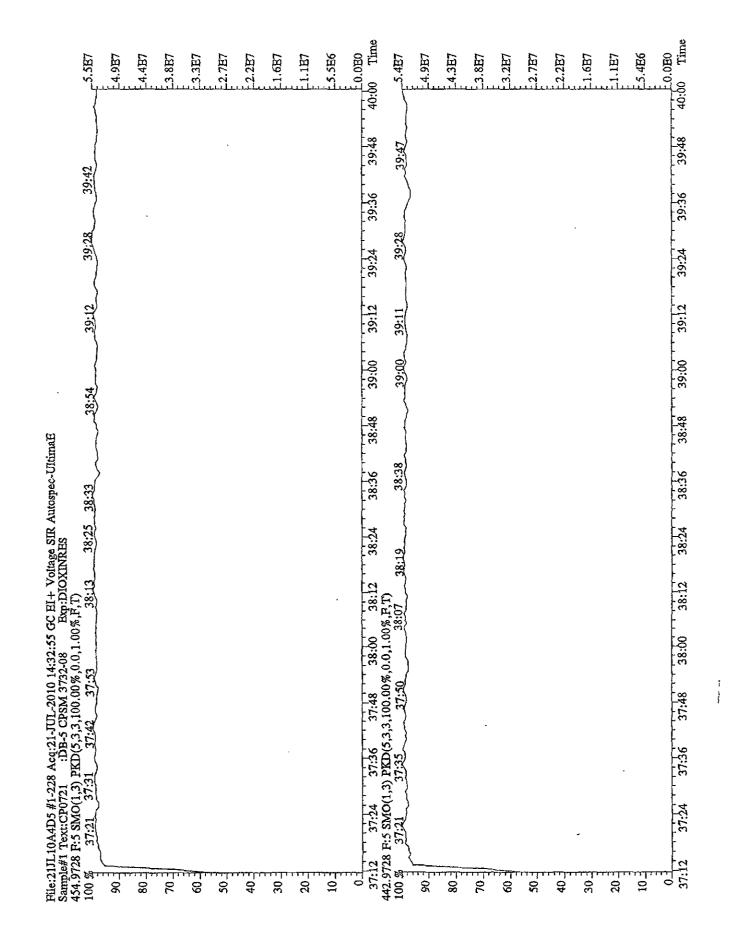


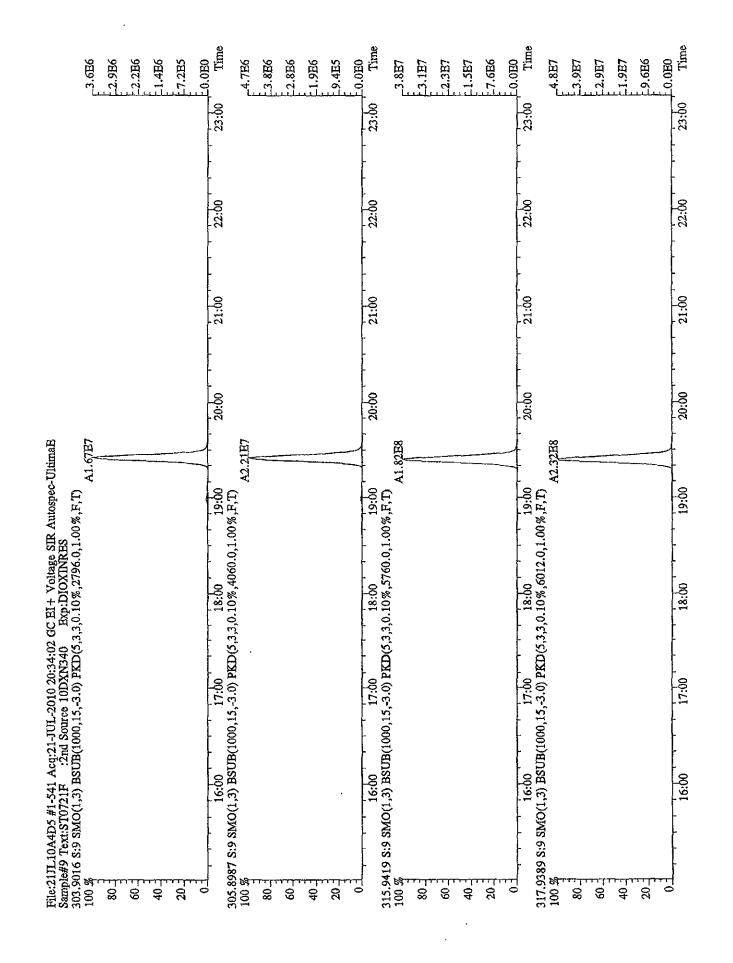


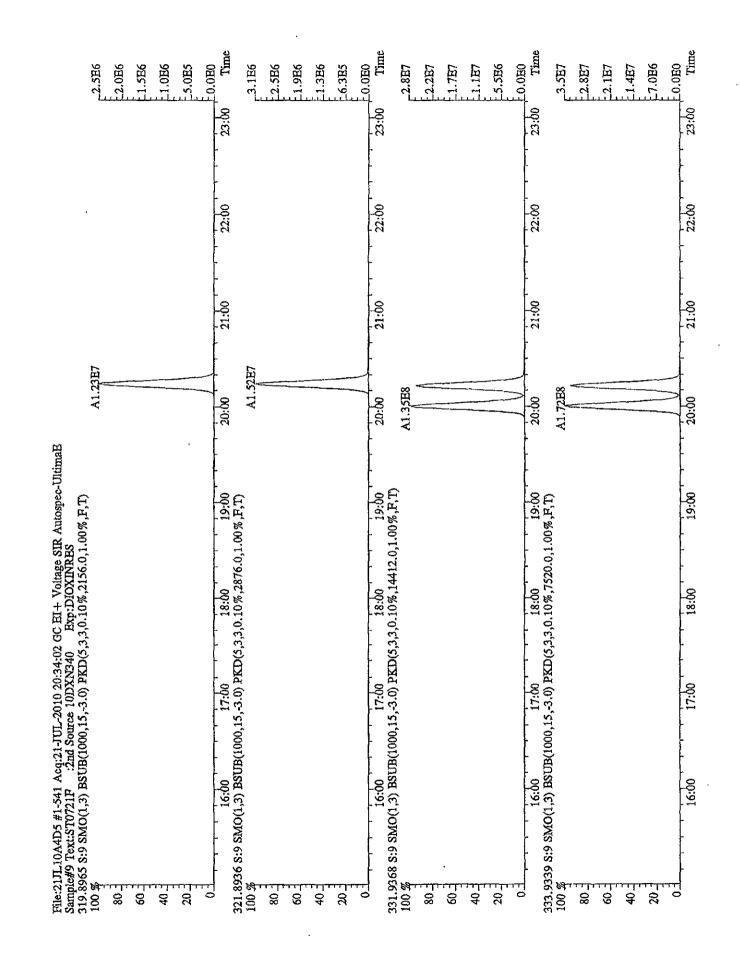


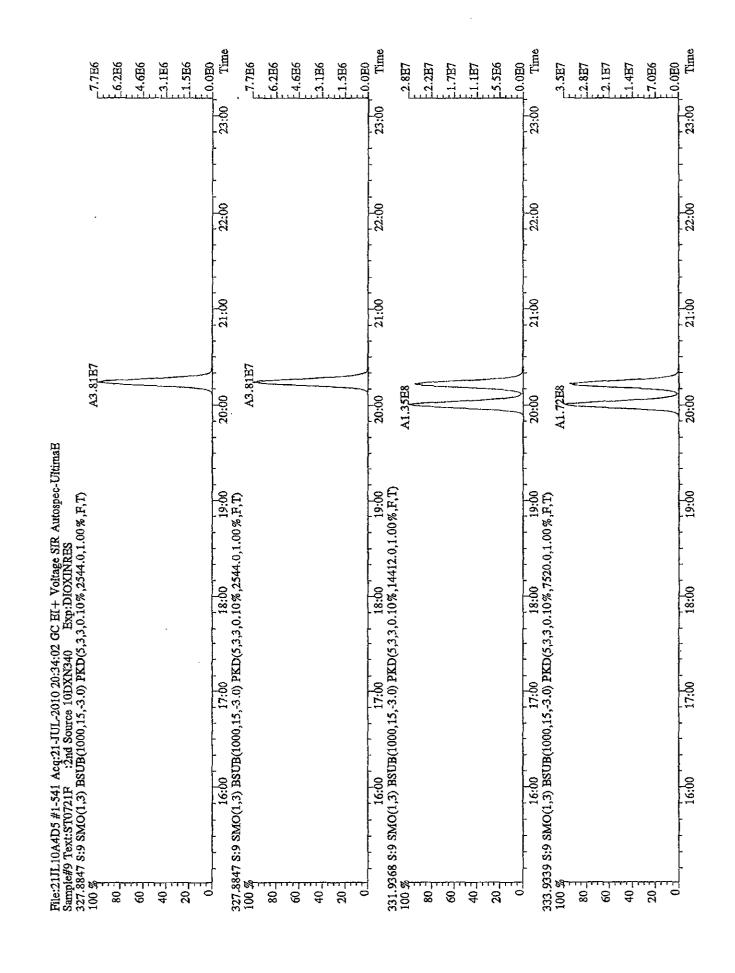


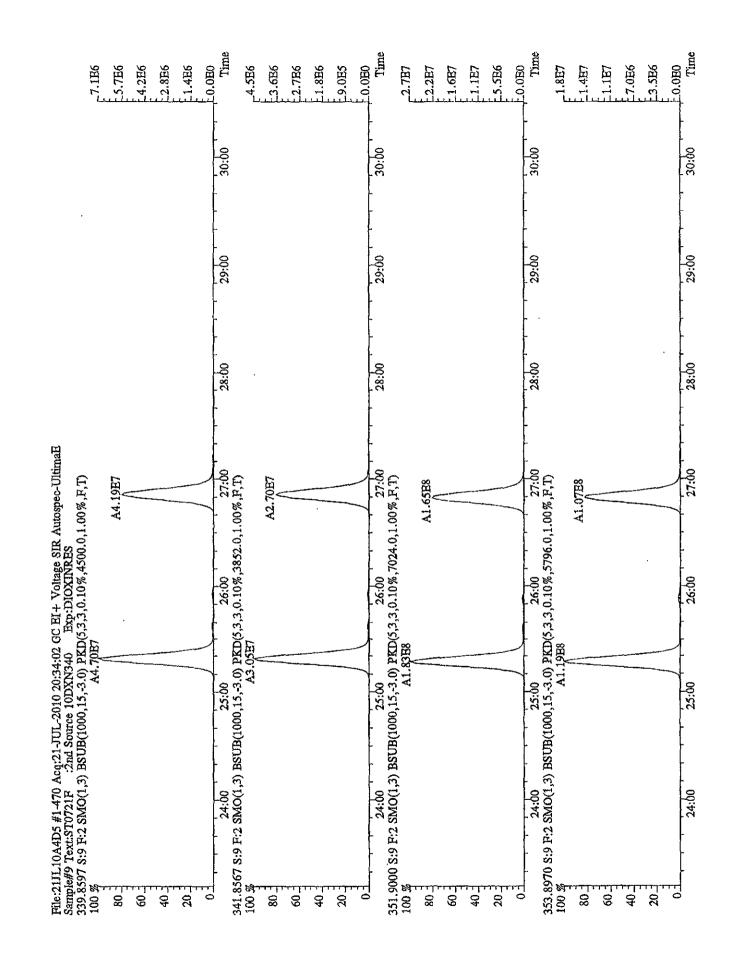


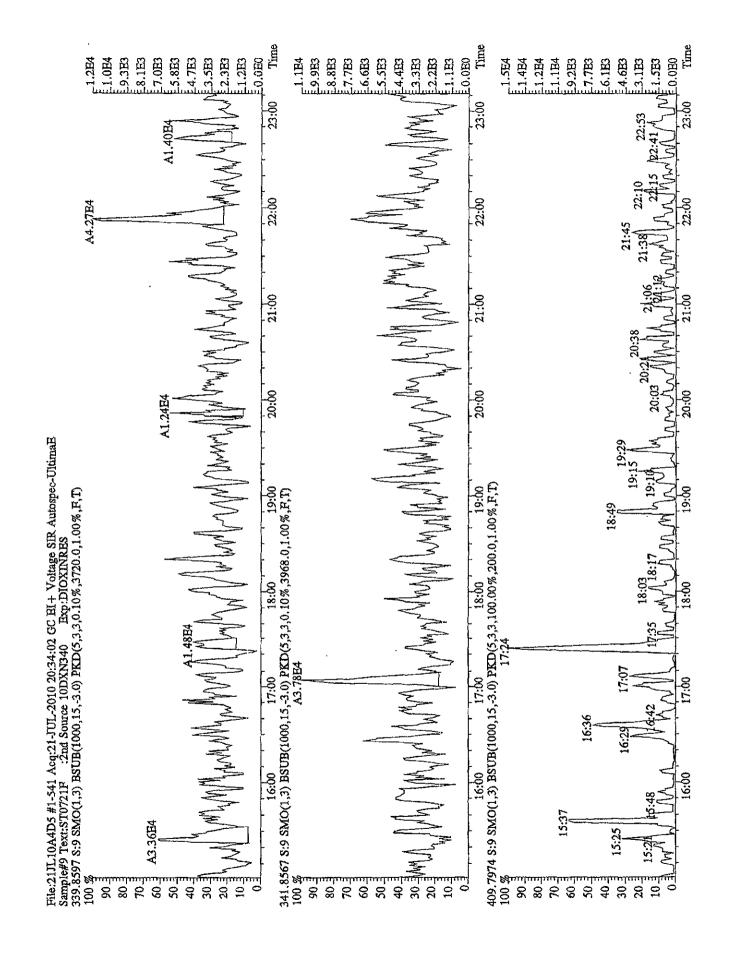


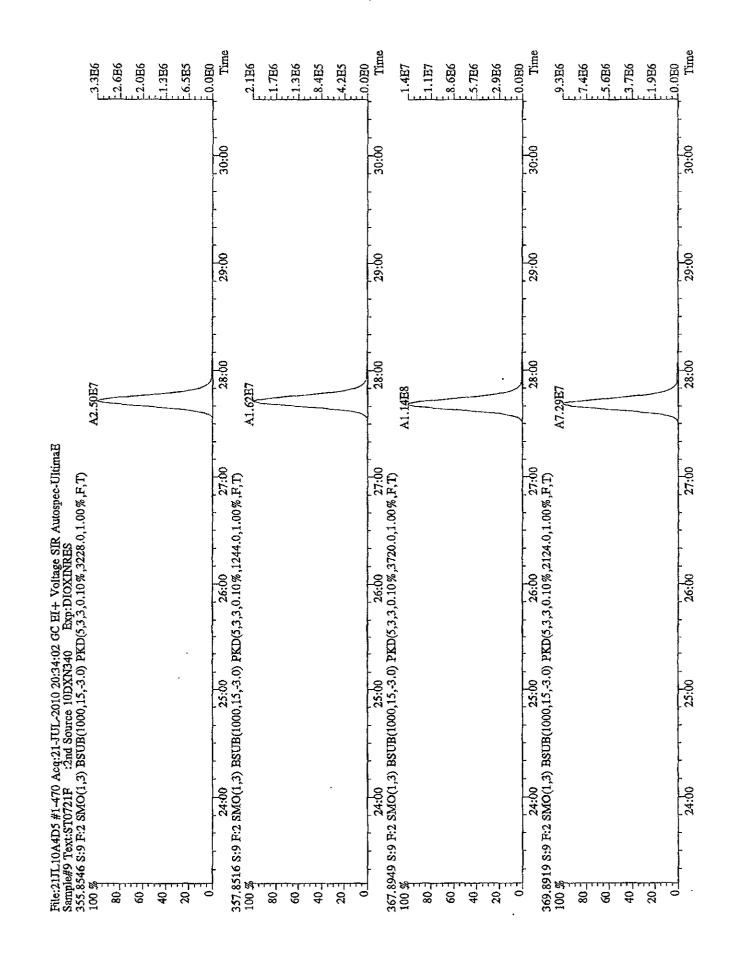


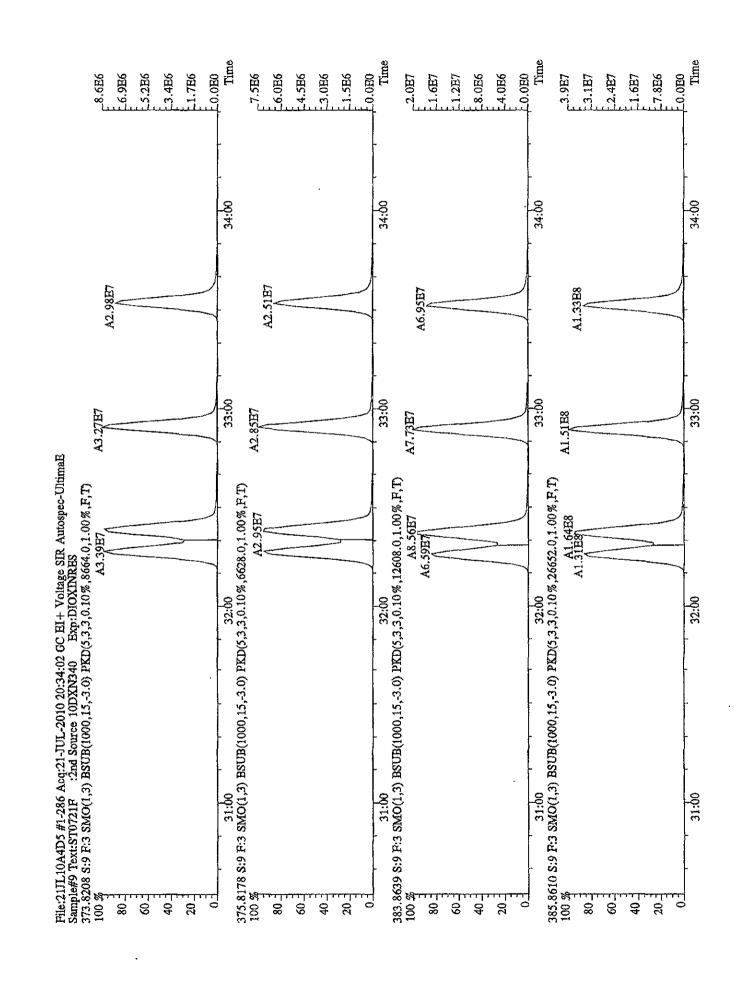


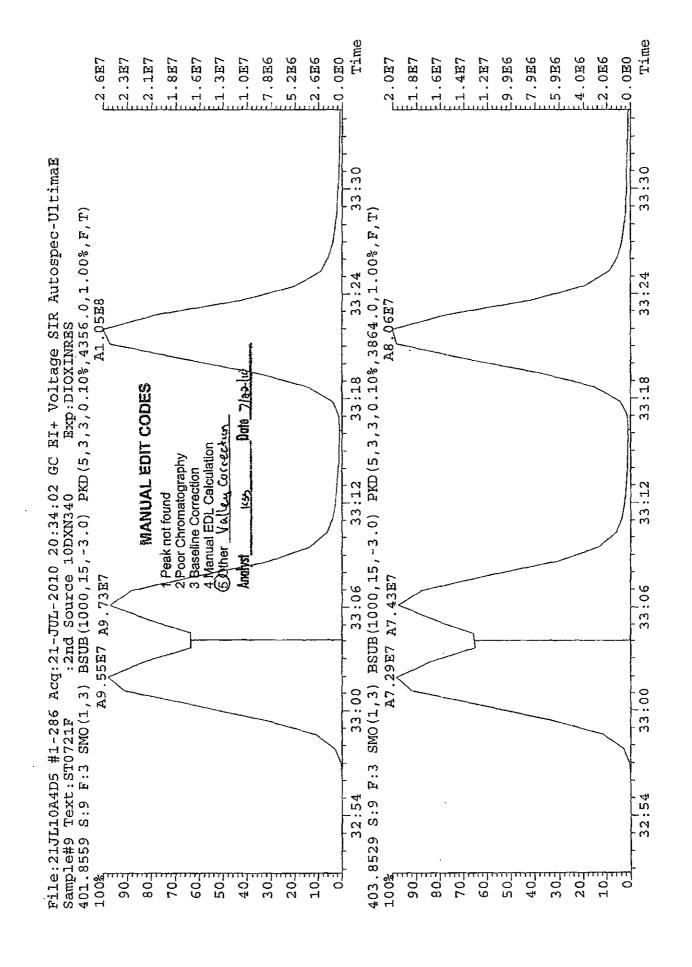


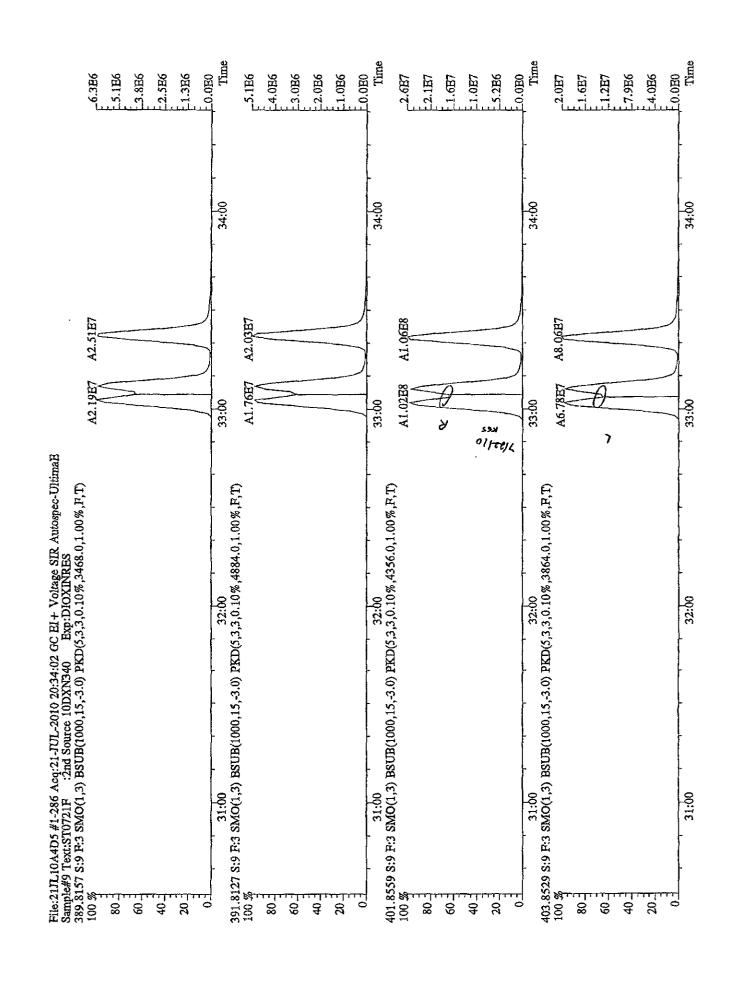


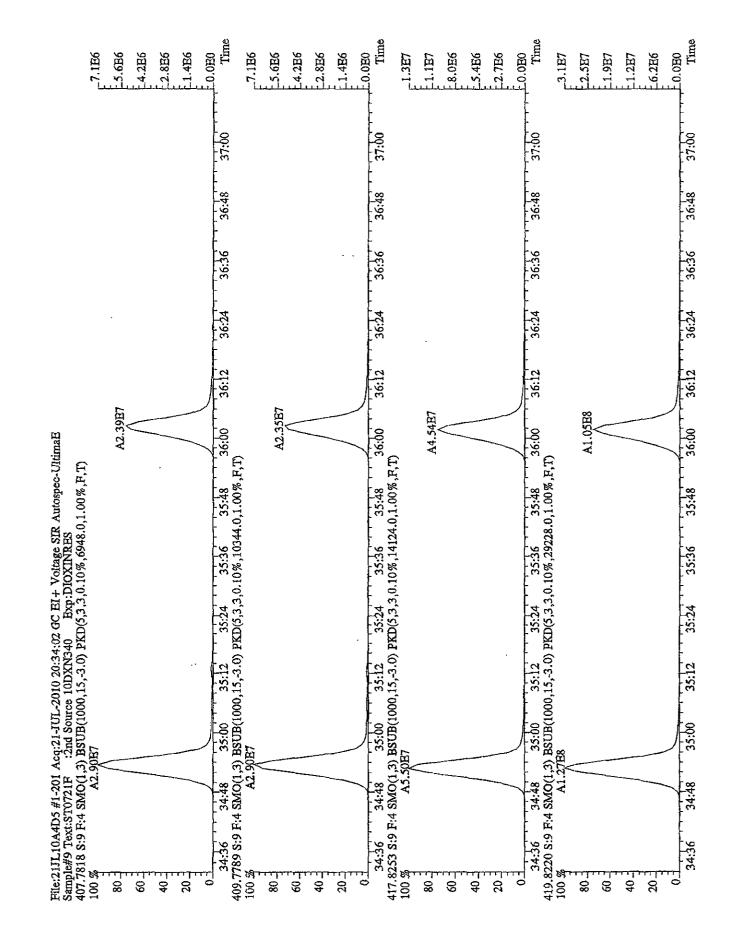


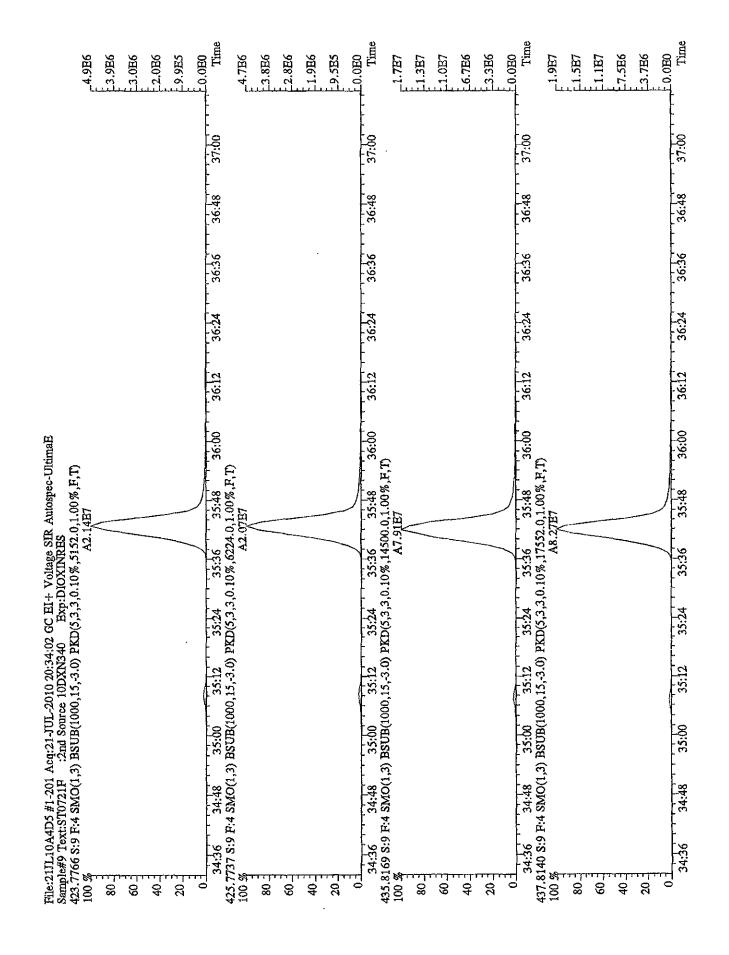


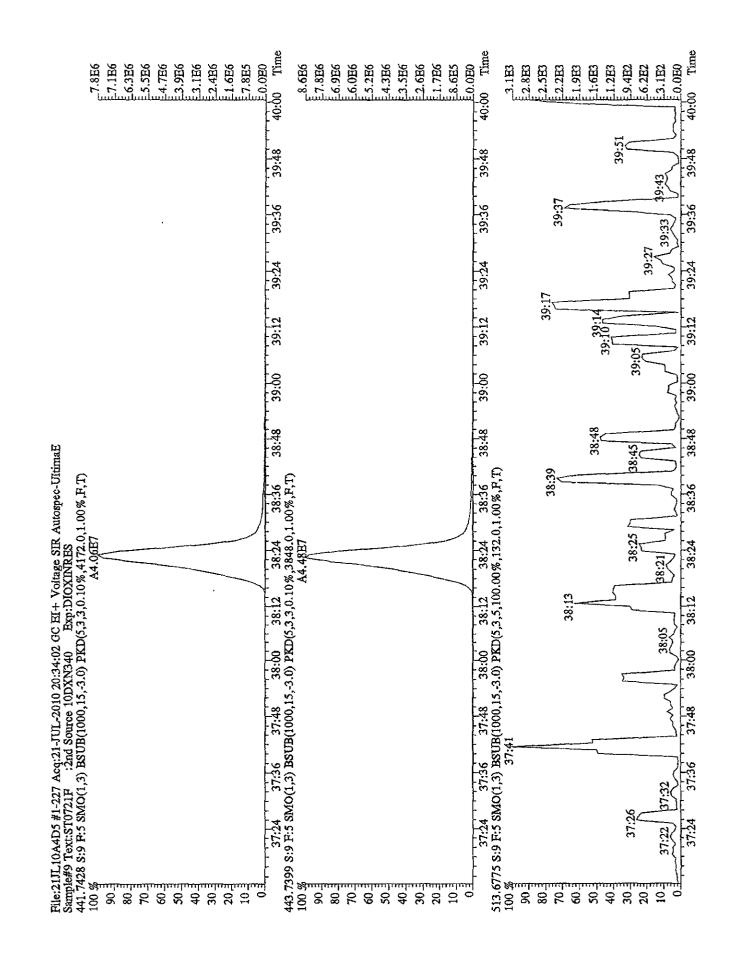


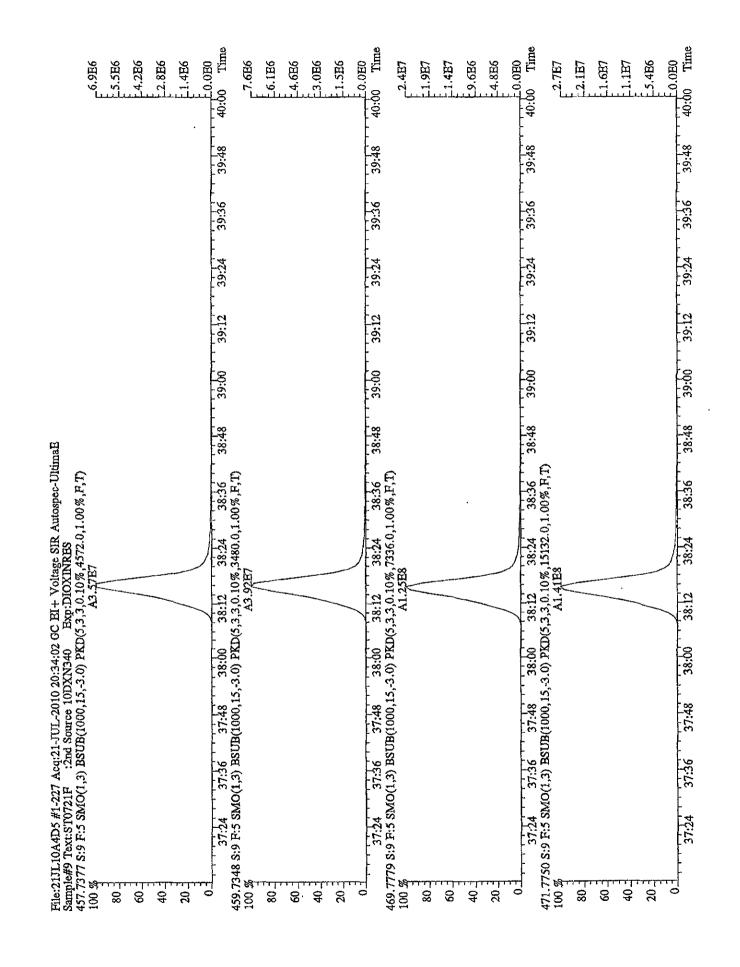


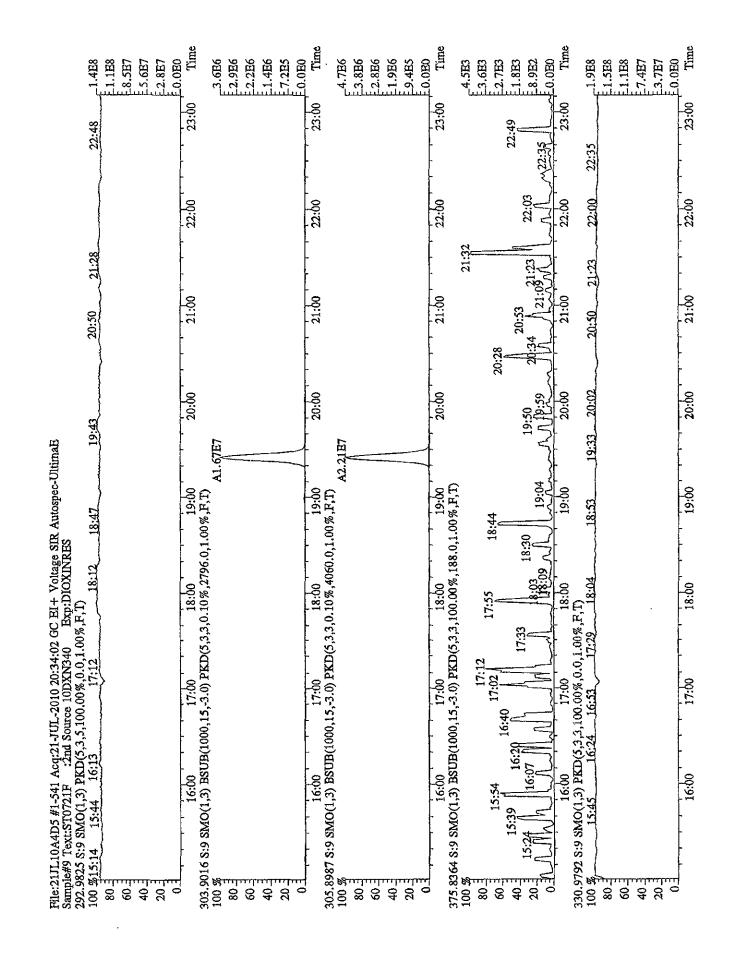


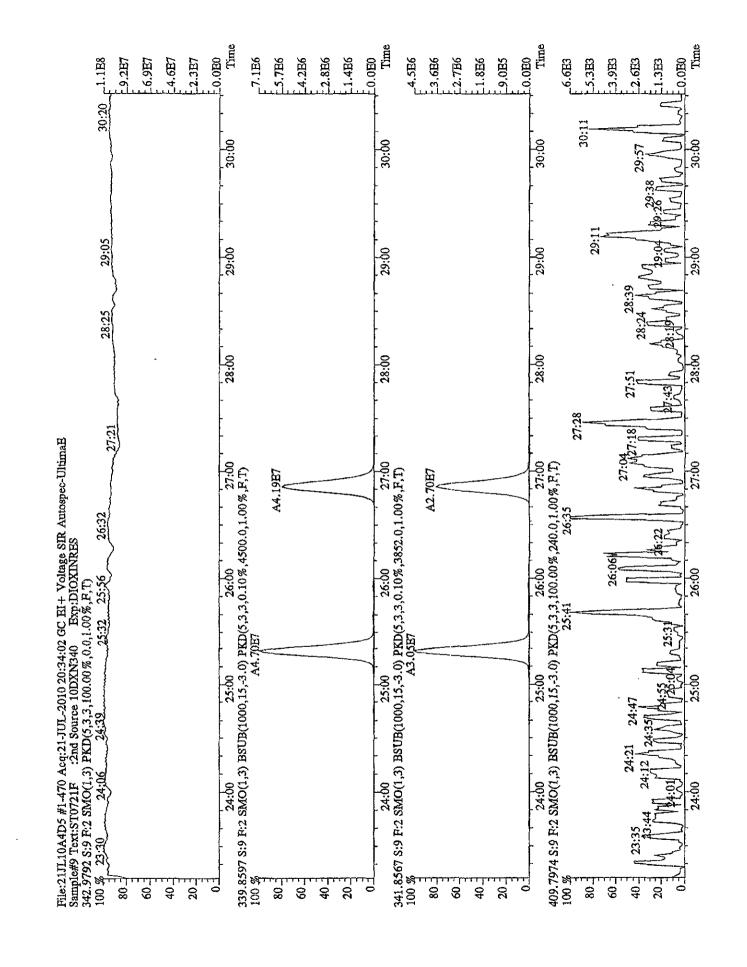


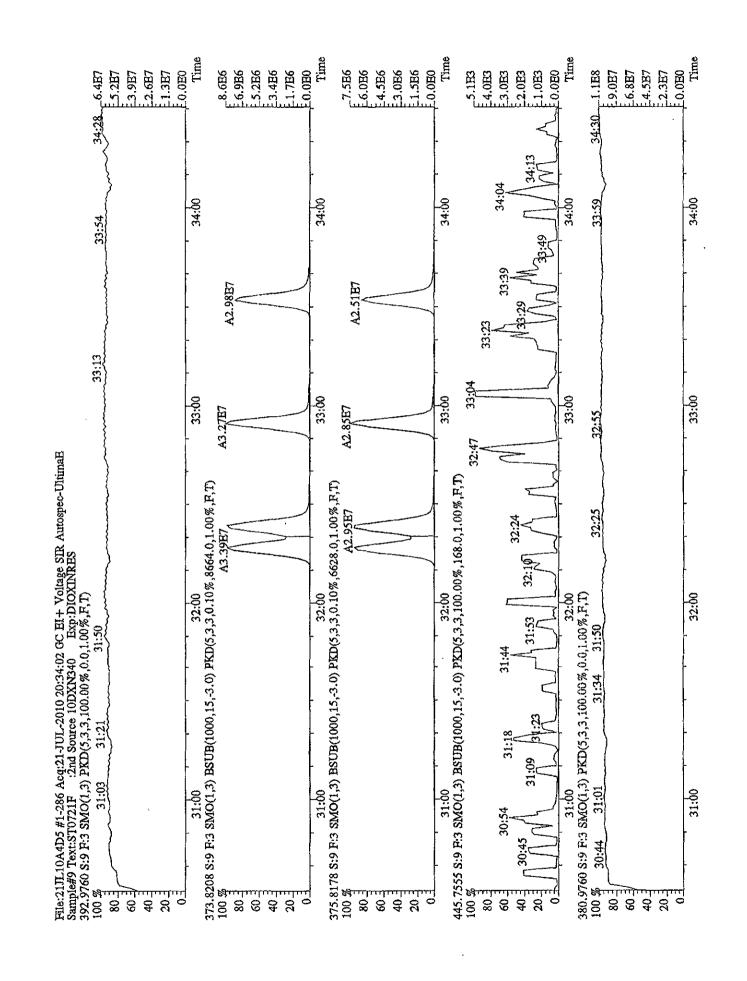


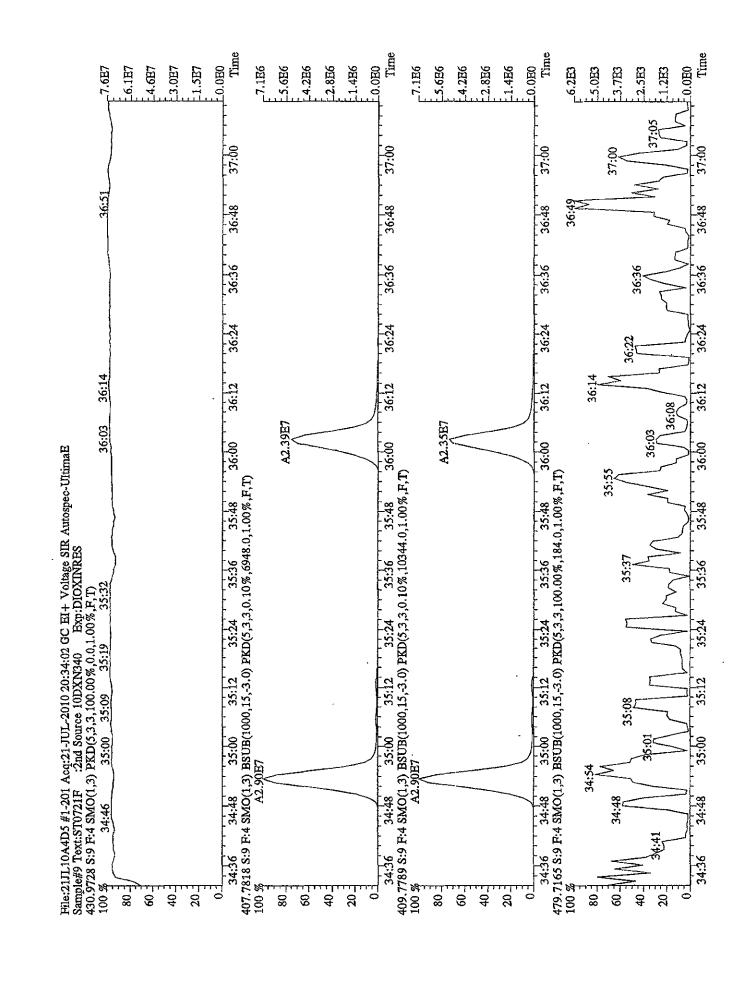


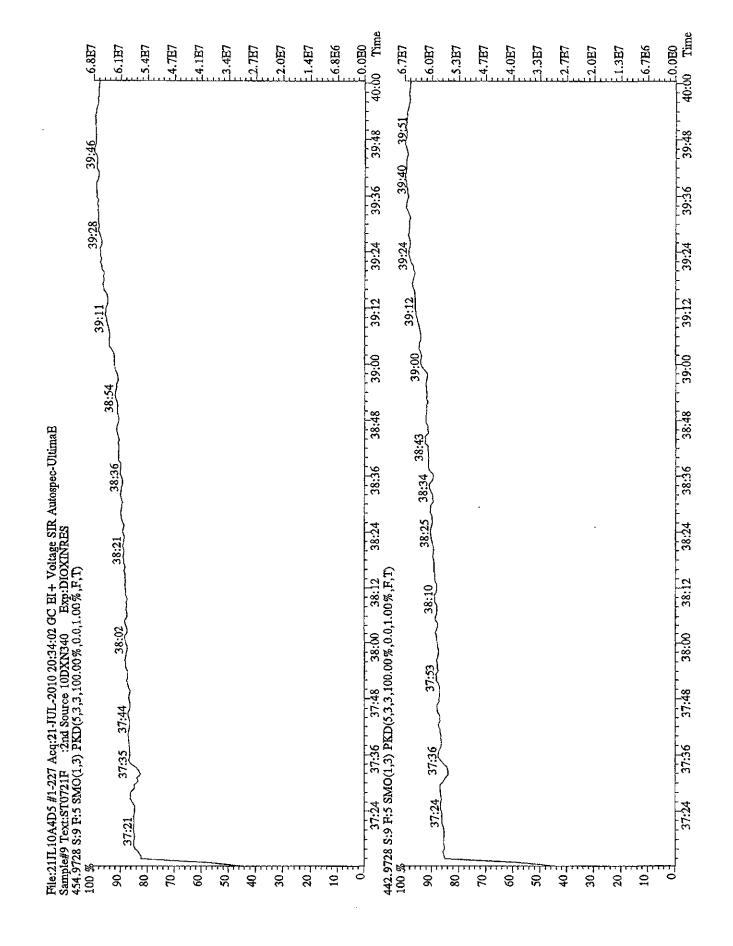












<u>Sample Extraction/Preparation Log</u> <u>Copies and Checklists</u>

TestAmerica West Sacramento High Resolution Prep Log

01 N 20 Lot #

> Baker Baker Baker

ž ¥

20% DCM:Hexane 65% DCM:Hexane l≨ l≸

1:1 DCM:Cyclohexane

DCM:Hexane:Benzene

Prep Reagents Supplier

> Reagent Toluene Hexane H2S04

Shared QC Batch:__

Batch: 0337382

MS Run #:

Prep Date: 12/3/2010

3

Box#

Shares QC With:

4022-101 3

Whatman

5% Carbon:Silica Gel

Acid Alumina

Silica Gel

Rotovap ₽

Round Bottom ID

O 141 O

Dioxin/Furan Air Extraction 1216 W Internal COC: Delivered to Inst.: Inst Receipt:

Method: IK TO-9

Matrix: S AIR

Extraction: 11 SOXHLET (NONE, Na2SO4)

QC: 3W AMBIENT AIR TESTING

SAC: IK - S - 11 - 3W

Soxhlet time off: 12:00 Soxhlet time on: 17:15

Extraction ID Analysis Hold Time Expires 1/12/2011 1/12/2011 1/12/2011 1/12/2011 1/12/2011 1/12/2011 Other Final Volume 0 20uL Extraction Hold Sample size Time Expires 1.0 0. . 9 1.0 1.0 **Extraction Table** 12/6/2010 12/7/2010 12/7/2010 12/6/2010 12/6/2010 12/6/2010 MAVWM1AC MAVWM1AD MAVWM1AA MAQQV1AA MAQQ61AA **MAQRD1AA** Work Order Suff ω G0L030000 - 382 GOL030000 - 382 G0L030000 - 382 G0L020446 - 1 GOL020446 - 5 G01.020446 - 8 Sample ID

Comments/NCMs: .

Date:	12/3/10	12/3/10	01/2/20	12[6]10	D2 Analyst/Date	
Witnessed By:	d	1/1	4	\$	IFB Analyst/Date	1) 12/10/10
Spiked By:	£2,4	101	405	O	Option C Analyst/Date	
Spike Exp Date:	12/16/10	9/2/11	1/14/11	11/82/01	Split/Archive //z_Analyst/Date	T.L 12/06/10
Qi	2,0ml/10DXN463/paily 15	100ml/100XN431/ 5240/1613	200 M/100XN429/70-9	20,00 100KN JAS	ECT 148/10	
	Internal Standard All Samples	Spike Mix LCS/LCS/PARO/MS>	Pre-Spike Standard MB4c94c5p	Recovery Standard All Samples	Soxhlet Extraction Analyst/Date	

CAECORACION ENE NTO I AN DIAMIN Air win

いっと しょくい

101010010 A.X1.ED DRA

ON EAD DIFFORM ARAC

. . (

See attached sheet for sample volumes recorded from scale

α	5
ŭ	
C	>
ζ	נ גי
C	
õ	4

Run Date: 12/06/10 Time: 14:59:13	Expanded Deliverable COC Completed X Bench Sheet Copied Package Submitted to AnalyticalGroup Bench Sheet Copied Bench Sheet Copied	PREP DATE: 12/03/10 17:00 COMP DATE: 12/06/10 17:00		S XCHANGE VOL SURROGATE ID	C14 20.0 2.0ML IS10DXN463	C14 20.0 2.0ML IS10DXN463	C14 20.0 2.0ML IS10DXN463	C14 20.0 200.0UL 10DXN429 2.0ML IS10DXN463	C14 20.0 100.0UL 10DXN431 2.0ML IS10DXN463	C14 20.0 100.0UL 10DXN431 2.0ML IS10DXN463	
stAmerica Laboratories, Inc. EXTRACTION BENCH WORKSHEET		* * * *	Dioxins/Furans, HRGC/HRMS (TO-9) SOXHLET (NONE, Na2SO4)	PH"S SOLVENTS TADJI ADJ2 EXTRACTION VOL EXCHANGE	NA NA TOL 750.0	NA NA TOL 750.0	NA NA TOL 750.0	NA NA TOL 750.0	NA NA TOL 750.0	NA NA TOL 750.0	
TestAmerica La EXTRACTIO	natch		Dioxii SOXHII	MATRIX WI/VOL INIT	AIR 1 20.00uL	AIR 1 20.00uL	AIR 1 20.00uL	AIR 1 . NA 20.00uL	AIR 1 20.00uL	AIR 1 20.00uL	
RQC058	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Extractionist: 403162 erica X. larson Concentrationist: 006625 Elizabeth Nguyen	Reviewer/Date: NGUYENE / 12/06/10	EXTR ANL LOT#, MSRUN#/ TEST EXPR DUE WORK ORDER FLGS EXT MTH	GOLO20446-001 GOMMENTS:	GOLO20446-005 COMMENTS:	GOLO20446-008 COMMENTS:	GOLO30000-382 COMMENTS: 11 IK	GOL030000-382 COMMENTS:	GOL030000-382 COMMENTS:	

R = RUSH C = CLP E = EPA 600 D = EXP.DEL) M = CLIENT REQ MS/MSD

West Sacramento

Preparation Data Review Checklist

rep Date: 12 03 10 Holding Times: 12	06/10 NC	M: Y
A. Spike Witness/Batch setup	Spike Witness	Reviewe
Holding times checked? NCMs filed as appropriate	/	-
2. QAS checked for QC instructions (LCS, LCSD, MS,MSD, etc)		
Amount of samples in hood match amount of samples on bench sheet. Sample IDS match.		NA
Worksheets have been checked for required spiking compounds	/	
5. Spiking volumes are correctly documented		
6. Std ID numbers on spike labels match numbers on bench sheet	/	∖ NA
7. Expiration dates have been checked	/	
8. Calibration expiration dates on pipettors have been checked	/	\ NA
9. Spiker and spike witness have signed and dated bench sheet		
B. Weights and Volumes		\
Recorded weights are in anticipated range	NA	
2. Balance upload or raw data for weights is included	NA	
3. Weights and volumes have been transcribed correctly to LIMS.	NA	
4. Weights are not targeted to meet exact weights.	NA	
Each weight or volume measurement is a unique record (no dittos or line downs)	NA	
C. Standards and Reagents		`
Lot numbers for all reagents, including clean up stages, are recorded.	NA	
Are dates and analysts for cleanups recorded?	NA	
3. Are correct IDs used for standards? Are expiration dates to day/month/year, when listed?	NA	
D. Documentation		
Are all nonconformances documented appropriately?	NA	
QuantIMs entry correct, including dates and times.	NA	
3. Are all fields completed?	NA	
Spike witness: Date:	2/03/10	

TestAmerica West Sacramento

Data Checklist HRGCMS/LRGCMS Analyses

THE LEADER IN ENVIRONMENTAL TESTING

Batch #: 033	7382 Method	d ID: <u>Dioxins/</u>	Furans, HRGC/l	HRMS (TO-9)	
Data Analyst: Date initiated: Reviewer: Date reviewed:	DB-5 MG2 2/8/40 MW-6/6 2/8/2010		<u>DB-2</u> 2	25 NA	
QA/QC verification	on:	Initiated DB-5	Reviewed DB-5	Initiated DB-225	Reviewed DB-225
recovery criteria? -Internal standard re -lon ratios within +		/ / / O NA	T T T T T T T T T T T T T T T T T T T	(High Res Only)	(High Res Only
Sample Analysis	:	Initiated DB-5	Reviewed DB-5	Initiated DB-225 (High Res Only)	Reviewed DB-225
specify: -DL's below TDL / Leta -All positives reported greater than method -Correct RRF's used -Internal standard all for method? -Target analytes are -Dilution/splitting of -Have dilution calculates a manual calculates a manual calculates a manual calculates -Are retention times -Manual integrations	s used? If RL's are used CL (please circle)? d at levels od blank DL's? If for method? mounts correct not saturated? extract taken into account? ations been verified? ulation for the sequence(s) (RT) correct?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		(riigh Res Only)	(High Res Only
* Recovery limits: NCASI 551: Method 8290: Method 1613: Method 23: PCBs: Method 8280: DFLM01.0: Method 1614 *** Lower recoveries are	40-120%*** 40-135%*** 25-150%*** 40-130%***(Cl4-Cl6), 25-130% 25-150%*** 40-120%*** 25-150%*** 25-150%*** acceptable if I.S. S/N ≥10:1 and DL²	, ,,	. ,	**RPD limi 50% 20% 50% 50% 50%	ts:

O 1 D= 1 D= 100 1111

AIR, Metals by ICPMS (As and Mn)

Raw Data Package

<u>ICPMS</u>

ICP-MS Data Review Checklist Level I and Level II

THE LEADER IN ENVIRONMENTAL TESTING

Instrument ID ((Circle one): M01 (M02)		nod 60					
		SOP SA	AC-MT-	0001				
File Number	Batch Numbers	Date	Analyst					
101207A2	101207AZ 336286, 12-07-10							
Lot Numbers らのに んのに	:190601,	402020446	YES	NO	NA			
Copy of analysis prof	tocol used included?							
2. ICVs & CCVs within	10% of true value or recal and rerun	?						
3. ICB & CCBs < repor	ting limit or recal and rerun?							
4. 10 samples or less a	_							
5. All parameters within								
6. LCS/LCSD within lim	_							
7. Prep blank value < 1	_							
	tensities for samples (unless followed 6 of the Calibration Blank intensities	· · · · · · · · · · · · · · · · · · ·	/					
9. Appropriate dilution	factors applied to data?		_					
10. Matrix spike and spil	ke dup within customer defined limits	5?			/			
11. Each batch checked	for presence of internal standard in	samples?						
12. Anomalies entered L	ising Clouseau?	·						
COMMENTS:								
		1						
REVIEWED BY: DATE:	MTZ D	ATA ENTERED BY: DATE:	S4 12-7-	10				

Dataset Report

Perkin Elmer M02 SOP No. SAC-MT-0001 Method: 6020,200.8

User Name: metal

Computer Name: SACP1223

Dataset File Path: e:\elandata\dataset\101207a2\

Report Date/Time: Tuesday, December 07, 2010 14:13:29

The Dataset

		ine Dat	aset	
Batch ID	Sample ID	Date and Time	Read Type	Description
	•	E 06:49:13 Tue 07-Dec-10	Sample	
	AUTOLENS SHAR	GF06:53:04 Tue 07-Dec-10	Sample	
	DAILY SHARGRAV	/E 07:34:13 Tue 07-Dec-10	Sample	
	Rinse 2X	09:12:39 Tue 07-Dec-10	Sample	
	Blank	09:15:34 Tue 07-Dec-10	Blank	
	Standard 1	09:18:24 Tue 07-Dec-10	Standard #1	
	ICV	09:20:59 Tue 07-Dec-10	Sample	
	ICV	09:25:16 Tue 07-Dec-10	Sample	
	ICB	10:24:20 Tue 07-Dec-10	Sample	
	LLSTD1	10:26:59 Tue 07-Dec-10	Sample	LLSTD@10X o o + Al
	LLSTD2	10:29:38 Tue 07-Dec-10	Sample	LLSTD@5X
	ICSA	10:32:16 Tue 07-Dec-10	Sample	
	ICSAB	10:34:53 Tue 07-Dec-10	Sample	
	Rinse	11:11:19 Tue 07-Dec-10	Sample	
336286	MARD8B	11:17:36 Tue 07-Dec-10	Sample	G0L020000-286 BLK 7
336286	MARD8C	11:20:11 Tue 07-Dec-10	Sample	GOL.020000-286 LCS 4 don't use
336286	MARD8L	11:22;45 Tue 07-Dec-10	Sample	G0L020000-286 LCSD
000200		11:25:24 Tue 07-Dec-10	Sample	V
	CCV 1 CCB 1 >Rescal	11:50:24 Tue 07-Dec-10	Sample >	1 IS
	CCV 2	12:03:37 Tue 07-Dec-10	Sample	
	CCB 2	12:06:16 Tue 07-Dec-10	Sample	•
	LLSTD1	12:08:56 Tue 07-Dec-10	Sample	LLSTD@10X
335251	MAPEVB	12:23:45 Tue 07-Dec-10	Sample	GOL010000-251 BLK)
335251/53	MAPEVO	12:26:21 Tue 07-Dec-10	Sample	G0L010000-251 LCS
		12:28:56 Tue 07-Dec-10	Sample	G0L010000-251 LCSD
335253/51	MAPE7L		•	G0K190601-3
335251	MAA80	12:31:29 Tue 07-Dec-10	Sample	1 0 - 4 1
335251	MAA80P5	12:34:01 Tue 07-Dec-10	Sample	G0K190601-3 5X
335251	MAA80Z	12:36:33 Tue 07-Dec-10	Sample	G0K190601-3 PS
335251	MAA81	12:39:06 Tue 07-Dec-10	Sample	G0K190601-4
335251	MAKDV	12:41:39 Tue 07-Dec-10	Sample	G0K240587-1
335251	MAKD2	12:44:12 Tue 07-Dec-10	Sample	G0K240587-2
	CCV 3	12:46:51 Tue 07-Dec-10	Sample	
	CCB 3	12:49:31 Tue 07-Dec-10	Sample	
	CCV 4	12:55:08 Tue 07-Dec-10	Sample	
	CCB 4	12:57:47 Tue 07-Dec-10	Sample	001 000000 000 0116
336286	MARD8B	13:00:24 Tue 07-Dec-10	Sample	GOL.020000-286 BLK } GOL.020000-286 LCS rp~ As
336286	MARD8C	13:02:59 Tue 07-Dec-10	Sample	001 000000 000 1 000
336286	MARD8L	13:05:33 Tue 07-Dec-10	Sample	G0L020000-286 LCSD J
340010	MAWLKB	13:08:09 Tue 07-Dec-10	Sample	G0L060000-10 BLK
340010	MAWLKC	13:10:44 Tue 07-Dec-10	Sample	G0L060000-10 LCS
340010	MAWLKL	13:13:20 Tue 07-Dec-10	Sample	GOLOGODO-10 LCSD } report As, Mn
340010	MAML1	13:15:54 Tue 07-Dec-10	Sample	G0K300434-2
340010	MAML1P5	13:18:28 Tue 07-Dec-10	Sample	G0K300434-2 5X
340010	MAML1Z	13:21:03 Tue 07-Dec-10	Sample	G0K300434-2 PS
340010	MAML6	13:23:37 Tue 07-Dec-10	Sample	G0K300434-3
	CCV 5	13:26:17 Tue 07-Dec-10	Sample	
	CCB 5	13:28:56 Tue 07-Dec-10	Sample	

341211 341211 341211 341211 341211 341211 341211 341211	MA0J7B MA0J7C MA0J7L MAQQ1 MAQQ1P5 MAQQ1Z MAQQ4 MAQRA MAQRA CCV 6 CCB 6	13:39:35 Tue 07-Dec-10 13:42:11 Tue 07-Dec-10 13:44:47 Tue 07-Dec-10 13:47:22 Tue 07-Dec-10 13:49:58 Tue 07-Dec-10 13:52:33 Tue 07-Dec-10 13:55:09 Tue 07-Dec-10 13:57:44 Tue 07-Dec-10 14:00:19 Tue 07-Dec-10 14:02:57 Tue 07-Dec-10	Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample	G0L070000-211 BLK G0L070000-211 LCS G0L070000-211 LCSD G0L020446-3 G0L020446-3 5X G0L020446-3 PS G0L020446-4 G0L020446-7 G0L020446-10		mp~ 4	As, Mo	^
--	---	--	--	---	--	-------	--------	---

41 MAML1

42 MAML1P5

43 MAML1Z

44 MAML6

45 CCV 5

46 CCB 5

47 MA0J7B

48 MA0J7C

G0K300434-2

G0K300434-2

G0K300434-3

G0L070000

G0L070000

G0K300434

0340010

0340010

0340010

0340010

0341211

0341211

2A

2A

2A

2A

Method: 6020 (SOP: SAC-MT-001) Instrument: M02 Reported: 12/07/10 14:26:16

2 3 4 5 6 7 8	Sample ID Rinse 2X Blank Standard1 ICV ICV ICB LLSTD1 LLSTD2 ICSA ICSAB	Lot No.	Batch		2.0 1.0 1.0 1.0	12/07/10 09:15 12/07/10 09:18 12/07/10 09:20	Comment	Q
2 3 4 5 6 7 8	Blank Standard1 ICV ICV ICB LLSTD1 LLSTD2 ICSA				1.0 1.0 1.0	12/07/10 09:15 12/07/10 09:18 12/07/10 09:20		
3 4 5 6 7 8	Standard1 ICV ICV ICB LLSTD1 LLSTD2 ICSA				1.0	12/07/10 09:18 12/07/10 09:20		
4 5 6 7 8	ICV ICV ICB LLSTD1 LLSTD2 ICSA				1.0	12/07/10 09:20		
5 6 7 8	ICV ICB LLSTD1 LLSTD2 ICSA						······································	
6 7 8	ICB LLSTD1 LLSTD2 ICSA				1.0			
7 8	LLSTD1 LLSTD2 ICSA					12/07/10 09:25		
8	LLSTD2 ICSA			1 1	1.0	12/07/10 10:24		
_ [ICSA				1.0	12/07/10 10:26		
-			1		1.0	12/07/10 10:29		
9	ICSAB	1			1.0	12/07/10 10:32		
10		·			1.0	12/07/10 10:34		
11	Rinse				1.0	12/07/10 11:11		
12	MARD8B	G0L020000	0336286	2A	1.0	12/07/10 11:17	· · · · · · · · · · · · · · · · · · ·	
13	MARD8C	G0L020000	0336286	2A	1.0	12/07/10 11:20		
14	MARD8L	G0L020000	0336286	2A	1.0	12/07/10 11:22		E
15	CCV 1				1.0	12/07/10 11:25		
16	CCB 1				1.0	12/07/10 11:50		
19	CCV 2				1.0	12/07/10 12:03		
20 (CCB 2				1.0	12/07/10 12:06		
21	LLSTD1				1.0	12/07/10 12:08		
22 1	MAPEVB	G0L010000	0335251	2A	1.0	12/07/10 12:23		
23 ī	MAPEVC	G0L010000	0335251	2A	1.0	12/07/10 12:26		
24	MAPE7L	G0L010000	0335253	2A	1.0	12/07/10 12:28		
25 T	MAA80	G0K190601-3	0335251	2A	1.0	12/07/10 12:31		
26 T	MAA80P5	G0K190601	0335251		5.0	12/07/10 12:34		
27 T	MAA80Z	G0K190601-3	0335251		1.0	12/07/10 12:36		
28 Î	MAA81	G0K190601-4	0335251	2A	1.0	12/07/10 12:39	· · · · · · · · · · · · · · · · · · ·	
29 T	MAKDV	G0K240587-1	0335251	2A	1.0	12/07/10 12:41		
30 ī	MAKD2	G0K240587-2	0335251	2A	1.0	12/07/10 12:44		
31 🛭	CCV 3				1.0	12/07/10 12:46		
32 🛚	CCB 3				1.0	12/07/10 12:49		
33 (CCV 4				1.0	12/07/10 12:55		
34 🛚	CCB 4				1.0	12/07/10 12:57		
35 <u>I</u>	MARD8B	G0L020000	0336286	2A	1.0	12/07/10 13:00		
36 [i	MARD8C	G0L020000	0336286	2A	1.0	12/07/10 13:02		
37 [I	MARD8L	G0L020000	0336286	2A	1.0	12/07/10 13:05		
38 🗓	MAWLKB	G0L060000	0340010	2A	1.0	12/07/10 13:08		
	MAWLKC	G0L060000	0340010	2A	1.0	12/07/10 13:10		
40 [MAWLKL	G0L060000	0340010	2A	1.0	12/07/10 13:13		

1.0

5.0

1.0

1.0

1.0

1.0

1.0

1.0

12/07/10 13:15

12/07/10 13:18

12/07/10 13:21

12/07/10 13:23

12/07/10 13:26

12/07/10 13:28

12/07/10 13:39

12/07/10 13:42

TAL West Sac

RUN SUMMARY

Met	hod: 6020 (SC	OP: SAC-MT-001)	, Ì	nstrume	ent. M02	Reported: 12/07/10 14:26:16		
File ID: 101207A2						Analys	t; hargraves		
#	Sample ID	Lot No.	Batch		DF	Analyzed Date	Comment	Q	
49	MA0J7L	G0L070000	0341211	2A	1.0	12/07/10 13:44			
50	MAQQ1	G0L020446-3	0341211	2A	1.0	12/07/10 13:47			
51	MAQQ1P5	G0L020446	0341211		5.0	12/07/10 13:49	· · · · · · · · · · · · · · · · · · ·		
52	MAQQ1Z	G0L020446-3	0341211		1.0	12/07/10 13:52			
53	MAQQ4	G0L020446-4	0341211	2A	1.0	12/07/10 13:55	-		
54	MAQRA	G0L020446-7	0341211	2A	1.0	12/07/10 13:57			
55	MAQRH	G0L020446-10	0341211	2A	1.0	12/07/10 14:00	, , , , , , , , , , , , , , , , , , , ,		
56	CCV 6				1.0	12/07/10 14:02	· · · · · · · · · · · · · · · · · · ·	E	
57	CCR 6		1	1 1	1.0	12/07/10 14:05			

INTERNAL STANDARD SUMMARY

Method: 6020 (SOP: SAC-MT-001) M02 (M02) Reported: 12/07/10 14:26:16

File ID: 101207A2 Analyst: hargraves

Germanium

			Germanium	
#	Sample ID	Analyzed Date		Q
1	Rinse 2X	12/07/10 09:12	95.6	
2	Blank	12/07/10 09:15	100.0	✓
3	Standard1	12/07/10 09:18	99.6	Ø
4	ICV	12/07/10 09:20	99.1	V
5	ICV	12/07/10 09:25	99.9	7
6	ICB	12/07/10 10:24	103.4	Ø
7	LLSTD1	12/07/10 10:26	105.9	V
8	LLSTD2	12/07/10 10:29	106.7	V
9	ICSA	12/07/10 10:32	91.2	V
10	ICSAB	12/07/10 10:34	97.1	\checkmark
11	Rinse	12/07/10 11:11	126.2	abla
12	MARD8B	12/07/10 11:17	122.5	V
13	MARD8C	12/07/10 11:20	114.4	abla
14	MARD8L	12/07/10 11:22	103.9	$ \mathbf{V} $
15	CCV 1	12/07/10 11:25	119.3	abla
16	CCB 1	12/07/10 11:50	133.6	
19	CCV 2	12/07/10 12:03	102.5	\checkmark
20	CCB 2	12/07/10 12:06	100.8	V
21	LLSTD1	12/07/10 12:08	103.8	
22	MAPEVB	12/07/10 12:23	94.3	\checkmark
23	MAPEVC	12/07/10 12:26	87.2	abla
24	MAPE7L	12/07/10 12:28	81.7	$\mathbf{\Lambda}$
25	MAA80	12/07/10 12:31	79.5	$ \overline{\mathbf{A}} $
26	MAA80P5	12/07/10 12:34	96.1	
27	MAA80Z	12/07/10 12:36	82.6	\checkmark
28	MAA81	12/07/10 12:39	80.7	
29	MAKDV	12/07/10 12:41	85.3	V
30	MAKD2	12/07/10 12:44	86.8	V
31	CCV 3	12/07/10 12:46	94.8	
32	CCB 3	12/07/10 12:49	99.0	
33	CCV 4	12/07/10 12:55	96.7	
34	CCB 4	12/07/10 12:57	103.2	
35	MARD8B	12/07/10 13:00	97.4	
36	MARD8C	12/07/10 13:02	86.2	
37	MARD8L	12/07/10 13:05	81.1	
38	MAWLKB	12/07/10 13:08	79.0	
39	MAWLKC	12/07/10 13:10	80.8	
40	MAWLKL	12/07/10 13:13	79.6	
	MAML1	12/07/10 13:15	80.0	
42	MAML1P5	12/07/10 13:18	90.0	
43	MAML1Z	12/07/10 13:21	77.6	
44	MAML6	12/07/10 13:23	78.6	
45	CCV 5	12/07/10 13:26	91.9	
46	CCB 5	12/07/10 13:28	95.0	
47	MA0J7B	12/07/10 13:39	91.8	
48	MA0J7C	12/07/10 13:42	82.1	✓

TAL West Sac

INTERNAL STANDARD SUMMARY

Met	hod: 6020 (SC	OP: SAC-MT-001)	M02 (M02)	Reported: 12/07/10 14:26:16
ile l	D: 101207	7A2		unalyst: hargraves
			Germa	anium
#	Sample ID	Analyzed Date		Q
49	MA0J7L	12/07/10 13:44		80.6 ☑
50	MAQQ1	12/07/10 13:47		79.0 ☑
51	MAQQ1P5	12/07/10 13:49		86.1
52	MAQQ1Z	12/07/10 13:52		79.3 ☑
53	MAQQ4	12/07/10 13:55		77.4
54	MAQRA	12/07/10 13:57		80.6
55	MAQRH	12/07/10 14:00		85.8 ☑
56	CCV 6	12/07/10 14:02		93.4
57	CCB 6	12/07/10 14:05		97.2 ☑

TAL-W.Sacramento Elan 6000 ICPMS M02

Quantitative Method Report

File Name:

0006020-SH.mth

File Path:

E:\elandata\Method\0006020-SH.mth

Timing Parameters

Sweeps/Reading:

50

Readings/Replicate: Number of Replicates: 1 3

Tuning File:

default.tun

Optimization File:

default.dac

QC Enabled:

Yes

Settling Time:

Normal

Analyte	Mass	Scan Mode	MCA Channels	Dwell Time	Integration Time
Al	26.982	Peak Hopping	j 1	14.0 ms	700 ms
Ca	43.956	Peak Hopping	1	14.0 ms	700 ms
Mn	54.938	Peak Hopping	j 1	14.0 ms	700 ms
As	74.922	Peak Hopping	1	20.0 ms	1000 ms
Ge-1	71.922	Peak Hopping	1	14.0 ms	700 ms

Signal Processing

Detector Mode:

Dual

Measurement Units:

Counts

AutoLens: Spectral Peak Processing: On

Signal Profile Processing:

Average Average

Blank Subtraction:

After Internal Standard

Baseline Readings:

0

Smoothing:

Yes, Factor 5

Equations

Analyte

Mass

Corrections

As 74.922 -3.1278 * Se 77 + 1.0177 * Se 78

Calibration Information

Analyte	Mass	Curve Type	Sample Units	Std Units	Std 1	Std 2	Std 3	Std 4
Αl	26.982	Linear Thru Zero	ug/L	ug/L	5.1e+003			
Ca	43.956	Linear Thru Zero	ug/L	ug/L	5.1e+003			
Mn	54.938	Linear Thru Zero	ug/L	ug/L	100			
As	74.922	Linear Thru Zero	ug/L	ug/L	100			
Ge-1	71.922	Linear Thru Zero	ug/L	ug/L				

Report Date/Time: Tuesday, December 07, 2010 14:09:40

Page 1

TAL-W. SACRMENTO – Perkin Elmer Elan 6000 ICPMS, M02 – Methods 6020, 200.8

AIR TOX Standards - 4 % HNO3, 0.5 % HCl

Standards for run:

Tuning standard: 4075-25B

Internal standard: 4075-22C

Blank, CCBs: <u>3185-42D</u>

Standard 1, CCVs: 4075-21E

ICV: 4075-20D

ICSA: 4075-27B

ICSAB: <u>4075-27C</u>

File Number: ______101207A2 _____

Instrument Tuning Report

File Name:

default.tun

Sample Information

Sample Date/Time: Tuesday, December 07, 2010 06:49:13

Sample ID: TUNE SHARGRAVE

Analyte	Exact Mass	Meas. Mass	Mass DAC	Meas. Pk. Width	Res. DAC	Custom Res.
Li	7.016	7.027	1580	0.738	2040	
Be	9.012	9.029	2080	0.700	2035	
Mg	23.985	23.979	5728	0.726	2003	
Co	58.933	58.878	14249	0.724	1958	
In	114.904	114.829	27899	0.733	1937	
Ce	139.905	139.929	33978	0.729	1985	
TI	204.975	204.979	49692	0.727	2189	
Pb	207.977	207.979	50425	0.723	2210	
U	238.050	238.028	57638	0.740	2360	

Report Date/Time:

Tuesday, December 07, 2010 06:51:07

Elan 6000 Instrument Optomization Report

Path e:\elandata\Optimize

File Name e:\elandata\Optimize\default.dac

Sample Information

Sample Date/Time: Tuesday, December 07, 2010 07:34:13

Sample ID: DAILY SHARGRAVE

Parameter Settings

Nebulizer Gas Flow	0.92
Lens Voltage	9.00
ICP RF Power	1100.00
Analog Stage Voltage	-2000.00
Pulse Stage Voltage	1350.00
Discriminator Threshold	70.00
AC Rod Offset	-7.00
Service DAC 1	60.00
Quadrupole Rod Offset	0.00

AutoLens Calibration

Date: 06:53:04 Tue 07-Dec-10

Sample Filename: AUTOLENS SHARGRAVE.003
Dataset Pathname: e:\elandata\Dataset\101207a2\

Lens Voltage Start: 5.50 Lens Voltage End: 10.00 Lens Voltage Step: 0.25

Slope: 0.02126968 Intercept: 6.53696030

Analyte	e Mass	Optimum Voltage	Maximum Intensity	# Points
Be	9.010	6.8	3281.1	19
Co	58.935	7.8	86613.6	19
In	114.903	9.0	328775.0	19

Dual Detector Calibration

Date: 08:01:56 Tue 07-Dec-10
Sample Filename: DAILY SHARGRAVE.1097

Dataset Pathname: dual detector calibration\

Points Acquired: 37
Lens Vol Start: -3.00
Lens Vol End: 15.00
Lens Vol Step: 0.50

Analyte	Mass	Gain	N(max)
Li	6.015	10129.15	1235998078.193
Li	7.016	9449.89	1324842000.392
Be	9.012	8857.80	1413399228.860
В	11.009	9146.06	1368852249.810

Report Date/Time: Tuesday, December 07, 2010 08:08:10

TAL-W.SACRAMENTO - Perkin Elmer Elan 6000 ICPMS, M02 - Methods 6020, 200.8

Na	22.990	9118.55	1372981536.992
Mg	23.985	8534.23	1466986957.713
Mg	24.986	8369.25	1495905758.665
Al	26.982	7911.93	1582369824.835
Si	27.977	8973.22	1395219571.285
Р	30.994	7287.08	1718055165.115
K	38.964	7100.33	1763243847.627
Ca	42.959		
Ca	43.956	6971.61	1795798956.472
Sc	44.956	7080.85	1768093466.146
٧	50.944	6876.33	1820682362.555
Cr	51.941	6628.40	1888781365.139
Fe	53.940	6525.67	1918515148.090
Mn	54.938	6554.76	1910002204.770
Fe	56.935	6424.60	1948697279.431
Co	58.933	6269.19	1997004380.979
Ni	59.933	6081.55	2058620450.330
Cu	62.930	5973.72	2095780633.374
Сш	64.928	5888.17	2126231105.985
Zn	67.925	5952.75	2103161748.568
Ge	71.922	6127.47	2043191900.987
As	74.922	6124.98	2044023708.276
Se	77.917	6122.66	2044797442.453
Br	78.918		
Se	81.917	6050.71	2069114669.712
Sr	87.906		
Мо	96.906	6128.33	2042906515.828
Ag	106.905	5534.60	2262061270.648
Ag	108.905	5536.88	2261130679.220
Cd	110.904	5626.11	2225268192.020
Cd	113.904	5627.50	2224719836.750
in	114.904	5658.70	2212451551.812
Sn	117.902	5649.45	2216076556.491
Sb	120.904	5651.19	2215394633.559
Ba	134.906	5526.61	2265330490.437
Нο	164.930		
Tm	168.934	5351.68	2339377359.067
TI	204.975	5104.08	2452862601.143
Pb	207.977	5100.71	2454483234.194
U	238.050	5062.74	2472892833.787

Daily Performance Report

Sample ID: DAILY SHARGRAVE

Sample Date/Time: Tuesday, December 07, 2010 07:34:13

Sample Description:

Sample File:

Method File: E:\elandata\Method\000daily.mth

Dataset File: e:\elandata\dataset\101207a2\DAILY SHARGRAVE.006

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: e:\elandata\Optimize\default.dac

Number of Replicates: 5 Dual Detector Mode: Dual

Summary

	Analyte	MassNet	t Intens. Mean	Net Intens. RSD
	Mg	24	39582.557	0.225
	Rh	103	227757.567	0.697
	Pb	208	271660.442	0.525
[>	Ba	138	316167.621	0.392
L	Ba++	69	0.014	2.345
Γ>	Ce	140	407072.164	0.396
L	CeO	156	0.033	4.799
	Bkgd	220	2.286	34.233
	Li	7	13654.536	2.149
	Be	9	3772.211	2.677
	Co	59	98556.798	0.485
	ln	115	356144.422	0.429
	TI	205	411132 717	1.234

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: Rinse 2X

Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 09:12:39

Method File: E:\elandata\Method\0006020-SH.mth

Dataset File: e:\elandata\dataset\101207a2\Rinse 2X.007

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 6 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 Al		378104.740	ug/L	0.000
	44 Ca		3039.059	ug/L	0.000
1	55 Mn		6805.315	ug/L	0.000
1	75 As		5300.785	ug/L	0.000
<u> </u> >	72 Ge-1		755369.417	ug/L	0.000

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
ł	Ca	44	
1	Mn	55	
1	As	75	
>	Ge-1	72	

Report Date/Time: Tuesday, December 07, 2010 09:13:06

Page 1

Sample ID: Rinse 2X

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: Blank

Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 09:15:34

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\Blank.008

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 5 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI		91619.527	ug/L	
ł	44 Ca		3216.147	ug/L	
	55 Mn		2860.643	ug/L	
ł	75 As		5747.158	ug/L	
_>	72 Ge-1		790209.635	ug/L	

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
ſ	A!	27	
	Ca	44	
	Mn	55	
	As	75	
_>	Ge-1	72	

Report Date/Time: Tuesday, December 07, 2010 09:16:01

Page 1

Sample ID: Blank

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: Standard 1
Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 09:18:24

Method File: E:\elandata\Method\0006020-SH.mth

Dataset File: e:\elandata\dataset\101207a2\Standard 1.009

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 4 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
[27 AI	5100.000000	1.545	14503124.094	ug/L	91619.527
	44 Ca	5100.000000	1.114	655965.802	ug/L	3216.147
1	55 Mn	100.000000	0.927	704528.576	ug/L	2860.643
1	75 As	100.000000	0.939	96528.759	ug/L	5747.158
L>	72 Ge-1			787378.408	ug/L	790209.635

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
1	Mn	55	
1	As	75	
Ĺ>	Ge-1	72	

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: ICV
Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 09:25:16

Method File: E:\elandata\Method\0006020-SH.mth Dataset File: e:\elandata\dataset\101207a2\ICV .011

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 3 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Ţ	27 AI	743.588271	0.760	2197458.404	ug/L	91619.527
1	44 Ca	761.281671	0.856	100857.325	ug/L	3216.147
1	55 Mn	77.635827	1.570	548743.825	ug/L	2860.643
1	75 As	81.596677	0.174	79997.895	ug/L	5747.158
L >	72 Ge-1			789143.453	ug/L	790209.635

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	A!	27	
	Ca	44	
	Mn	55	
1	As	75	
L>	Ge-1	72	99.865

Report Date/Time: Tuesday, December 07, 2010 09:25:41

Page 1 Sample ID: ICV

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: ICB Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 10:24:20

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\ICB.012

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 5 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI	-4.317916	10.910	82056.718	ug/L	91619.527
	44 Ca	9.068673	2.906	4530.947	ug/L	3216.147
	55 Mn	-0.011123	73.964	2876.317	ug/L	2860.643
	75 As	0.410560	66.541	6334.551	ug/L	5747.158
<u>_</u> >	72 Ge-1			817166.369	ug/L	790209.635

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
1	Ca	44	
	Mn	55	
	As	75	
>	Ge-1	72	103.411

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: LLSTD1

Sample Description: LLSTD@10X

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 10:26:59

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\LLSTD1.013

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 71 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 Al	17.091767	5.323	148354.452	ug/L	91619.527
1	44 Ca	52.030498	3.923	10481.959	ug/L	3216.147
1	55 Mn	0.715607	3.326	8365.495	ug/L	2860.643
1	75 As	1.106023	1.564	7155.287	ug/L	5747.158
>	72 Ge-1			837042.468	ug/L	790209.635

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
	As	75	
L>	Ge-1	72	105.927

Report Date/Time: Tuesday, December 07, 2010 10:27:25

Page 1

Sample ID: LLSTD1

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: LLSTD2

Sample Description: LLSTD@5X

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 10:29:38

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\LLSTD2.014

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 72 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI	66.838139	0.888	300021.708	ug/L	91619.527
1	44 Ca	99.835983	2.159	17112.980	ug/L	3216.147
1	55 Mn	1.705385	2.700	15863.749	ug/L	2860.643
1	75 As	2.237674	8.661	8307.267	ug/L	5747.158
Ĺ>	72 Ge-1			843216.075	ug/L	790209.635

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
İ	Ca	44	
1	Mn	55	
	As	75	
1>	Ge-1	72	106.708

Report Date/Time: Tuesday, December 07, 2010 10:30:03

Page 1

Sample ID: LLSTD2

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: ICSA Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 10:32:16

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\ICSA .015

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 2 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analy	te Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI	97070.591213	4.249	250931943.094	ug/L	91619.527
	44 Ca	101021.709241	3.318	11829049.317	ug/L	3216.147
j	55 Mn	6.220860	3.749	42529.990	ug/L	2860.643
j	75 As	1.129956	58.484	6176.103	ug/L	5747.158
L>	72 Ge-1			720572.478	ug/L	790209.635

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
	As	75	
_>	Ge-1	72	91.188

Report Date/Time: Tuesday, December 07, 2010 10:32:41

Page 1

Sample ID: ICSA

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: ICSAB
Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 10:34:53

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\ICSAB.016

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 1 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyt	e Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI	92107.819166	0.457	253685266.589	ug/L	91619.527
	44 Ca	98661.893241	0.553	12306507.364	ug/L	3216.147
ł	55 Mn	100.843584	1.172	692172.885	ug/L	2860.643
	75 As	105.260552	1.795	98693.864	ug/L	5747.158
L>	72 Ge-1			767178.960	ug/L	790209.635

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
	As	75	
L>	Ge-1	72	97.085

Report Date/Time: Tuesday, December 07, 2010 10:35:18

Page 1

Sample ID: ICSAB

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: Rinse

Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 11:11:19

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\Rinse.017

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 6 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI	71.514890	1.236	371606.938	ug/L	91619.527
	44 Ca	7.342333	15.114	5250.167	ug/L	3216.147
ļ	55 Mn	0.454851	3.967	7653.936	ug/L	2860.643
-	75 As	0.511864	22.020	7842.901	ug/L	5747.158
L>	72 Ge-1			997449.908	ug/L	790209.635

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	·
	Ca	44	
1	Mn	55	
1	As	75	
>	Ge-1	72	126.226

Report Date/Time: Tuesday, December 07, 2010 11:11:46

Page 1

Sample ID: Rinse

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: MARD8B

Sample Description: G0L020000-286 BLK

Batch ID: 336286

Sample Date/Time: Tuesday, December 07, 2010 11:17:36

Method File: E:\elandata\Method\0006020-SH.mth

Dataset File: e:\elandata\dataset\101207a2\MARD8B.018

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 100 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI	-24.567215	0.566	26882.704	ug/L	91619.527
	44 Ca	190.055925	2.965	33829.384	ug/L	3216,147
1	55 Mn	-0.012615	67.446	3393.571	ug/L	2860.643
1	75 As	1.390648	5.953	8590.648	ug/L	5747.158
	72 Ge-1			967882.665	ug/L	790209.635

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
	As	75	
<u> </u> >	Ge-1	72	122.484

Report Date/Time: Tuesday, December 07, 2010 11:18:03

Page 1

Sample ID: MARD8B

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: MARD8C

Sample Description: G0L020000-286 LCS

Batch ID: 336286

Sample Date/Time: Tuesday, December 07, 2010 11:20:11

Method File: E:\elandata\Method\0006020-SH.mth

Dataset File: e:\elandata\dataset\101207a2\MARD8C.019

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 86 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI	803.970332	1.435	2711679.148	ug/L	91619.527
l	44 Ca	1005.777932	1.782	151384.609	ug/L	3216.147
	55 Mn	178.656276	2.761	1441454.789	ug/L	2860.643
	75 As	183.788282	1.809	198059.339	ug/L	5747.158
L>	72 Ge-1			903751.385	ug/Ł	790209.635

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
	As	75	
<u>_</u> >	Ge-1	72	114.369

Report Date/Time: Tuesday, December 07, 2010 11:20:37

Page 1

Sample ID: MARD8C

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: MARD8L

Sample Description: G0L020000-286 LCSD

Batch ID: 336286

Sample Date/Time: Tuesday, December 07, 2010 11:22:45

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\MARD8L.020

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 87 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI	819.309454	2.328	2508958.618	ug/L	91619.527
	44 Ca	1005.629929	1.870	137539.916	ug/L	3216.147
1	55 Mn	182.871238	1.956	1340841.602	ug/L	2860.643
	75 As	187.705790	1.723	183676.615	ug/L	5747.158
L>	72 Ge-1			821051.065	ug/L	790209.635

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
ĺ	As	75	
>	Ge-1	72	103.903

Report Date/Time: Tuesday, December 07, 2010 11:23:11

Page 1

Sample ID: MARD8L

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: CCV 1
Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 11:25:24

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\CCV 1.021

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 4 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 Al	4704.520412	0.952	16030226.356	ug/L	91619.527
	44 Ca	4894.713792	1.889	754014.074	ug/L	3216.147
	55 Mn	97.820745	1.895	825341.729	ug/L	2860.643
1	75 As	101.283227	2.860	116971.805	ug/L	5747.158
Ĺ>	72 Ge-1			943099.344	ug/L	790209.635

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
	As	75	
>	Ge-1	72	119.348

Report Date/Time: Tuesday, December 07, 2010 11:25:50

Page 1

Sample ID: CCV 1

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: CCB 1 Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 11:50:24

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\CCB 1.025

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 5 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
F	27 Al	-29.747050	0.051	9698.052	ug/L	91619.527
	44 Ca	-0.348102	144.847	4237.078	ug/L	3216.147
	55 Mn	-0.278783	1.724	1199.113	ug/L	2860.643
1	75 As	0.713673	50.514	8548.720	ug/L	5747.158
>	72 Ge-1			1055614.610	ug/L	790209.635

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
1	Ca	44	
1	Mn	55	
1	As	75	
>	Ge-1	72	133.587

Report Date/Time: Tuesday, December 07, 2010 11:50:50

Page 1

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: BLK RECAL

Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 11:50:24

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\CCB 1.025

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 5 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI		9698.052	ug/L	·
-	44 Ca		4237.078	ug/L	
	55 Mn		1199.113	ug/L	
	75 As		8548.720	ug/L	
_>	72 Ge-1		1055614.610	ug/L	

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
	As	75	
>	Ge-1	72	

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: STD1 RECAL

Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 11:25:24

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\CCV 1.021

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 4 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas, Intens, Mean	Sample Unit	Blank Intensity
ſ	27 AI	5100.000000	0.946	16030226.356	ug/L	9698.052
ļ	44 Ca	5100.000000	1.889	754014.074	ug/L	4237.078
	55 Mn	100.000000	1.890	825341.729	ug/L	1199.113
	75 As	100.000000	2.880	116971.805	ug/L	8548.720
_>	72 Ge-1			943099.344	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
-	Mn	55	
	As	75	
>	Ge-1	72	

Report Date/Time: Tuesday, December 07, 2010 12:21:49

Page 1

Sample ID: STD1 RECAL

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: CCV 2
Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 12:03:37

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\CCV 2.026

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 4 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 Al	5073.274368	1.561	18282350.692	ug/L	9698.052
-	44 Ca	5042.541562	2.834	854598.565	ug/L	4237.078
	55 Mn	97.044717	2.854	918128.007	ug/L	1199.113
J	75 As	98.848480	2.433	132670.491	ug/L	8548.720
L >	72 Ge-1			1081582.543	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
	As	75	
>	Ge-1	72	102.460

Analyst: SHargrave
Sample ID: CCB 2
Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 12:06:16

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\CCB 2.027

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 5 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 Al	4.491008	1.942	25689.767	ug/L	9698.052
{	44 Ca	3.731183	19.687	4891.549	ug/L	4237.078
	55 Mn	0.048524	10.375	1660,550	ug/L	1199.113
	75 As	-0.051471	507.244	8549.255	ug/L	8548.720
L>	72 Ge-1			1063915.140	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	·
]	Ca	44	
1	Mn	55	
	As	75	
<u></u>	Ge-1	72	100.786

Report Date/Time: Tuesday, December 07, 2010 12:21:57

Page 1

Sample ID: CCB 2

SOP No. SAC-MT-0001 Analyst: SHargrave Sample ID: LLSTD1

Sample Description: LLSTD@10X

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 12:08:56

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\LLSTD1.028

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 71 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
ſ	27 AI	50.195283	1.026	193274.699	ug/L	9698.052
	44 Ca	52.996870	1.288	13456.548	ug/L	4237.078
	55 Mn	1.054725	1.337	11346.776	ug/L	1199.113
}	75 As	0.488712	44.280	9493.869	ug/L	8548.720
را_	72 Ge-1			1095550.560	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
1	Mn	55	
1	As	75	
i >	Ge-1	72	103.783

Report Date/Time: Tuesday, December 07, 2010 12:21:59

Page 1

Sample ID: LLSTD1

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: CCV 3
Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 12:46:51

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\CCV 3.038

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 4 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 Al	4973.962003	0.360	16599974.270	ug/L	9698.052
	44 Ca	5032.375064	0.442	790139.601	ug/L	4237.078
)	55 Mn	98.698521	0.025	865037.932	ug/L	1199.113
	75 As	101.410857	0.718	125857.110	ug/L	8548.720
L>	72 Ge-1			1001215.977	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
1	Mn	55	
1	As	75	
[>	Ge-1	72	94.847

Report Date/Time: Tuesday, December 07, 2010 12:47:17

Page 1

Sample ID: CCV 3

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: CCB 3
Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 12:49:31

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\CCB 3.039

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 5 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean (Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 Al	5.332247	1.164	28157.830	ug/L	9698.052
	44 Ca	4.915177	17.786	4994.293	ug/L	4237.078
	55 Mn	0.044176	6.731	1590.199	ug/L	1199.113
	75 As	0.080988	605.092	8556.678	ug/L	8548.720
1>	72 Ge-1			1044768.752	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
	As	75	
حا	Ge-1	72	98.973

Report Date/Time: Tuesday, December 07, 2010 12:49:58

Page 1

Sample ID: CCB 3

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: CCV 4
Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 12:55:08

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\CCV 4.041

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 4 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 Al	5079.885051	0.820	17282350.653	ug/L	9698.052
+	44 Ca	5068.248774	0.360	811193.077	ug/L	4237.078
1	55 Mn	99.129489	0.557	885693.990	ug/L	1199.113
	75 As	101,122438	0.560	127965.915	ug/L	8548.720
L>	72 Ge-1			1020660.828	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
	As	75	
5	Ge-1	72	96.689

Report Date/Time: Tuesday, December 07, 2010 12:55:33

Page 1

Sample ID: CCV 4

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: CCB 4
Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 12:57:47

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\CCB 4.042

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 5 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 Al	5.359257	4.783	29449.997	ug/L	9698.052
	44 Ca	3.894593	15.595	5033.990	ug/L	4237.078
1	55 Mn	0.047765	24.296	1690.558	ug/L	1199.113
į	75 As	-0.296235	173.161	8439.853	ug/L	8548.720
L>	72 Ge-1			1089732.021	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
1	Ca	44	
	Mn	55	
1	As	75	
L>	Ge-1	72	103.232

Report Date/Time: Tuesday, December 07, 2010 12:58:14

Page 1

Sample ID: CCB 4

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: CCV 5
Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 13:26:17

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\CCV 5.053

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 4 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas, Intens, Mean	Sample Unit	Blank Intensity
Γ	27 AI	5026.028379	0.533	16256534.086	ug/L	9698.052
	44 Ca	5028.073322	0.481	765124.403	ug/L	4237.078
1	55 Mn	98.019486	0.224	832600.681	ug/L	1199.113
1	75 As	99.424763	1.224	119746.827	ug/L	8548.720
Ĺ>	72 Ge-1			970352.462	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
1	Ca	44	
1	Mn	55	
	As	75	
[>	Ge-1	72	91.923

Report Date/Time: Tuesday, December 07, 2010 13:26:43

Page 1

Sample ID: CCV 5

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: CCB 5 Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 13:28:56

Method File: E:\elandata\Method\0006020-SH.mth Dataset File: e:\elandata\dataset\101207a2\CCB 5.054

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 5 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI	5.007182	3.738	25941.101	ug/L	9698.052
	44 Ca	6.003347	9.073	4964.936	ug/L	4237.078
	55 Mn	0.057063	11.714	1640.212	ug/L	1199.113
Į	75 As	-0.270393	85.379	7805.398	ug/L	8548.720
L>	72 Ge-1			1003171.648	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
1	Ca	44	
	Mn	55	
	As	75	
<u> </u> >	Ge-1	72	95.032

Report Date/Time: Tuesday, December 07, 2010 13:29:23

Page 1

Sample ID: CCB 5

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: MA0J7B

Sample Description: G0L070000-211 BLK

Batch ID: 341211

Sample Date/Time: Tuesday, December 07, 2010 13:39:35

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\MA0J7B.055

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 97 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI	-1.674885	2.255	3493,959	ug/L	9698.052
1	44 Ca	110.990191	4.927	20657.479	ug/L	4237.078
	55 Mn	0.083276	9.675	1805.256	ug/L	1199.113
	75 As	0.687294	74.291	8610.453	ug/L	8548.720
>	72 Ge-1			969194.669	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Ai	27	
	Ca	44	
	Mn	55	
	As	75	
>	Ge-1	72	91.813

Report Date/Time: Tuesday, December 07, 2010 13:40:02

Page 1

Sample ID: MA0J7B

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: MA0J7C

Sample Description: G0L070000-211 LCS

Batch ID: 341211

Sample Date/Time: Tuesday, December 07, 2010 13:42:11

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\MA0J7C.056

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 92 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 Al	926.407101	0.821	2683748.672	ug/L.	9698.052
	44 Ca	1077.161811	0.516	149178.317	ug/L	4237.078
1	55 Mn	188.209408	0.600	1427443.132	ug/L	1199.113
	75 As	189.419141	0.583	197480.009	ug/L	8548.720
حا	72 Ge-1			866981.565	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
ſ	Al	27	
	Ca	44	
	Mn	55	
	As	75	
_>	Ge-1	72	82.131

Report Date/Time: Tuesday, December 07, 2010 13:42:38

Page 1

Sample ID: MA0J7C

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: MA0J7L

Sample Description: G0L070000-211 LCSD

Batch ID: 341211

Sample Date/Time: Tuesday, December 07, 2010 13:44:47

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\MA0J7L..057

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 93 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
F	27 AI	898.171425	0.698	2553363.871	ug/L	9698.052
	44 Ca	1044.999717	1.223	142109.429	ug/L	4237.078
	55 Mn	182.846582	1.591	1360658.917	ug/L	1199.113
	75 As	183.219349	2.366	187616.841	ug/L	8548.720
L>	72 Ge-1			850778.441	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
	As	75	
_>	Ge-1	72	80.596

Report Date/Time: Tuesday, December 07, 2010 13:45:16

Page 1

Sample ID: MA0J7L

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: MAQQ1

Sample Description: G0L020446-3

Batch ID: 341211

Sample Date/Time: Tuesday, December 07, 2010 13:47:22

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\MAQQ1.058

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 21 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI	431.865128	4.633	1206548.619	ug/L	9698.052
	44 Ca	3079.629883	3.856	403760.491	ug/L	4237.078
)	55 Mn	2366.193740	4.090	17239376.488	ug/L	1199.113
1	75 As	1.659924	35.271	8349.686	ug/L	8548.720
<u> </u>	72 Ge-1			834032.616	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
1	As	75	
1>	Ge-1	72	79.009

Report Date/Time: Tuesday, December 07, 2010 13:47:49

Page 1

Sample ID: MAQQ1

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: MAQQ1P5

Sample Description: G0L020446-3 5X

Batch ID: 341211

Sample Date/Time: Tuesday, December 07, 2010 13:49:58

Method File: E:\elandata\Method\0006020-SH.mth

Dataset File: e:\elandata\dataset\101207a2\MAQQ1P5.059

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 22 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI	99.580922	3.382	309637.385	ug/L	9698.052
	44 Ca	667.884495	2.605	98290.667	ug/L	4237.078
	55 Mn	495.266384	1.950	3933833.577	ug/L	1199.113
	75 As	0.279839	12.389	7651.759	ug/L	8548.720
>	72 Ge-1			908486.992	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
1	Mn	55	
	As	75	
_>	Ge-1	72	86.062

Report Date/Time: Tuesday, December 07, 2010 13:50:24

Page 1

Sample ID: MAQQ1P5

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: MAQQ1Z

Sample Description: G0L020446-3 PS

Batch ID: 341211

Sample Date/Time: Tuesday, December 07, 2010 13:52:33

Method File: E:\elandata\Method\0006020-SH.mth

Dataset File: e:\elandata\dataset\101207a2\MAQQ1Z.060

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 23 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
ſ	27 Al	1332.603957	0.629	3725075.760	ug/L	9698.052
1	44 Ca	3896.572711	0.915	512442.241	ug/L	4237.078
1	55 Mn	2446.656842	0.203	17911155.102	ug/L	1199.113
1	75 As	193.244141	1.123	194433.605	ug/L	8548.720
L>	72 Ge-1			837354.485	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
1	Mn	55	
	As	75	
حا	Ge-1	72	79.324

Report Date/Time: Tuesday, December 07, 2010 13:53:00

Page 1

Sample ID: MAQQ1Z

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: MAQQ4

Sample Description: G0L020446-4

Batch ID: 341211

Sample Date/Time: Tuesday, December 07, 2010 13:55:09

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\MAQQ4.061

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 24 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
F	27 AI	315.807342	1.809	867419.502	ug/L	9698.052
	44 Ca	2424.184050	1.658	312413.433	ug/L	4237.078
)	55 Mn	53.669916	2.189	384405.713	ug/L	1199.113
	75 As	0.976692	22.182	7544.391	ug/L	8548.720
<u> </u> >	72 Ge-1			817445.987	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
1	Ca	44	
1	Mn	55	
	As	75	
<u> </u>	Ge-1	72	77.438

Report Date/Time: Tuesday, December 07, 2010 13:55:35

Page 1

Sample ID: MAQQ4

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: MAQRA

Sample Description: G0L020446-7

Batch ID: 341211

Sample Date/Time: Tuesday, December 07, 2010 13:57:44

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\MAQRA.062

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 25 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 Al	289.345973	2.178	827626.466	ug/L	9698.052
1	44 Ca	2266.541213	1.181	304184.501	ug/L	4237.078
1	55 Mn	637.932498	1.780	4743992.846	ug/L	1199.113
	75 As	1.018331	10.808	7893.062	ug/L	8548.720
.>	72 Ge-1			850632.375	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
	As	75	
[>	Ge-1	72	80.582

Report Date/Time: Tuesday, December 07, 2010 13:58:11

Page 1

Sample ID: MAQRA

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: MAQRH

Sample Description: G0L020446-10

Batch ID: 341211

Sample Date/Time: Tuesday, December 07, 2010 14:00:19

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\MAQRH.063

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 26 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI	277.212526	3.651	844100.611	ug/L	9698.052
	44 Ca	2907.604665	3.548	414183.930	ug/L	4237.078
1	55 Mn	104.181445	4.047	825218.805	ug/L	1199.113
1	75 As	0.943288	35.316	8318.125	ug/L	8548.720
! >	72 Ge-1			905564.390	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
1	Mn	55	
1	As	75	
>	Ge-1	72	85.786

Report Date/Time: Tuesday, December 07, 2010 14:00:44

Page 1

Sample ID: MAQRH

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: CCV 6

Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 14:02:57

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\CCV 6.064

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 4 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
Γ	27 AI	5007.314494	1.361	16448305.771	ug/L	9698.052
	44 Ca	5059.087468	1.600	781781.047	ug/L	4237.078
	55 Mn	98.706963	1.953	851439.090	ug/L	1199.113
Ì	75 As	100.323121	1.732	122639.342	ug/L	8548.720
>	72 Ge-1			985652.394	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
1	As	75	
_>	Ge-1	72	93.372

SOP No. SAC-MT-0001 Analyst: SHargrave

Sample ID: CCB 6
Sample Description:

Batch ID:

Sample Date/Time: Tuesday, December 07, 2010 14:05:37

Method File: E:\elandata\Method\0006020-SH.mth
Dataset File: e:\elandata\dataset\101207a2\CCB 6.065

Tuning File: e:\elandata\Tuning\default.tun

Optimization File: E:\elandata\Optimize\default.dac

Autosampler Position: 5 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL):

Sample Result Summary

	Mass Analyte	Conc. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
F	27 AI	4.996164	4.862	26476,632	ug/L	9698.052
Ì	44 Ca	4.589086	23.484	4847.512	ug/L	4237.078
1	55 Mn	0.046032	16.648	1576.529	ug/L	1199.113
}	75 As	-0.292716	80.800	7954.606	ug/L	8548.720
[>	72 Ge-1			1025671,799	ug/L	1055614.610

Internal Standard Recoveries

	Analyte	Mass	Int Std % Recovery
Γ	Al	27	
	Ca	44	
	Mn	55	
	As	75	
L>	Ge-1	72	97.163

Report Date/Time: Tuesday, December 07, 2010 14:06:04

Page 1

Sample ID: CCB 6

Method: 6020 (SOP: SAC-MT-001) Instrument: M02 Reported: 12/07/10 14:26:16

File ID: 101207A2 Analyst: hargraves # Sample ID Lot No. Batch DF Analyzed Date Comment Q 1 Rinse 2X 12/07/10 09:12 П 2.0 Blank 12/07/10 09:15 2 1.0 3 Standard1 1.0 12/07/10 09:18 **ICV** 12/07/10 09:20 4 1.0 5 ICV 1.0 12/07/10 09:25 П ICB 12/07/10 10:24 6 1.0 LLSTD1 12/07/10 10:26 7 1.0 LLSTD2 12/07/10 10:29 8 1.0 **ICSA** 9 1.0 12/07/10 10:32 **ICSAB** 12/07/10 10:34 10 1.0 Rinse 12/07/10 11:11 11 1.0 MARD8B G0L020000 0336286 12/07/10 11:17 12 2A 1.0 13 MARD8C G0L020000 0336286 2A 1.0 12/07/10 11:20 MARD8L G0L020000 0336286 2A 12/07/10 11:22 14 1.0 15 CCV 1 1.0 12/07/10 11:25 16 CCB 1 12/07/10 11:50 1.0 CCV 2 12/07/10 12:03 19 1.0 20 CCB₂ 1.0 12/07/10 12:06 21 LLSTD1 12/07/10 12:08 1.0 22 MAPEVB G0L010000 0335251 2A 1.0 12/07/10 12:23 MAPEVC G0L010000 0335251 2A 12/07/10 12:26 23 1.0 G0L010000 MAPE7L 0335253 12/07/10 12:28 24 2A 1.0 **MAA80** 12/07/10 12:31 25 G0K190601-3 0335251 2A 1.0 26 MAA80P5 G0K190601 0335251 5.0 12/07/10 12:34 \Box 27 MAA80Z 0335251 12/07/10 12:36 G0K190601-3 1.0 12/07/10 12:39 28 MAA81 G0K190601-4 0335251 2A 1.0 MAKDV G0K240587-1 0335251 2A 12/07/10 12:41 29 1.0 MAKD2 0335251 2A 12/07/10 12:44 30 G0K240587-2 1.0 CCV 3 12/07/10 12:46 31 1.0 32 CCB 3 1.0 12/07/10 12:49 12/07/10 12:55 33 CCV 4 1.0 CCB 4 12/07/10 12:57 34 1.0 35 MARD8B G0L020000 0336286 2A 1.0 12/07/10 13:00 MARD8C G0L020000 0336286 2A 1.0 12/07/10 13:02 П MARD8L 37 G0L020000 0336286 2A 12/07/10 13:05 1.0 G0L060000 MAWLKB 0340010 2A 12/07/10 13:08 38 1.0 MAWLKC G0L060000 0340010 12/07/10 13:10 39 2A 1.0 MAWLKL 12/07/10 13:13 40 G0L060000 0340010 2A 1.0 41 MAML1 G0K300434-2 0340010 2A 1.0 12/07/10 13:15 42 MAML1P5 G0K300434 0340010 5.0 12/07/10 13:18 MAML1Z G0K300434-2 0340010 12/07/10 13:21 43 1.0 44 MAML6 G0K300434-3 0340010 2A 1.0 12/07/10 13:23 CCV 5 1.0 12/07/10 13:26 45 CCB 5 12/07/10 13:28 46 1.0 47 MA0J7B G0L070000 0341211 2A 1.0 12/07/10 13:39 12/07/10 13:42 MA0J7C G0L070000 0341211 2A

TAL West Sac

RUN SUMMARY

·	3	
Method: 6020 (SOP: SAC-MT-001)	Instrument: M02	Reported: 12/07/10 14:26:16

ile I	D: 10120	7A2				Analyst: I	nargraves	
#	Sample ID	Lot No.	Batch		DF	Analyzed Date	Comment	Q
49	MA0J7L	G0L070000	0341211	2A	1.0	12/07/10 13:44		
50	MAQQ1	G0L020446-3	0341211	2A	1.0	12/07/10 13:47		$\neg \neg$
51	MAQQ1P5	G0L020446	0341211		5.0	12/07/10 13:49		
52	MAQQ1Z	G0L020446-3	0341211		1.0	12/07/10 13:52		
53	MAQQ4	G0L020446-4	0341211	2A	1.0	12/07/10 13:55	-	
54	MAQRA	G0L020446-7	0341211	2A	1.0	12/07/10 13:57		
55	MAQRH	G0L020446-10	0341211	2A	1.0	12/07/10 14:00		
56	CCV 6				1.0	12/07/10 14:02		
57	CCB 6				1.0	12/07/10 14:05		

INTERNAL STANDARD SUMMARY

Method: 6020 (SOP: SAC-MT-001) M02 (M02) Reported: 12/07/10 14:26:16

File ID: 101207A2

Analyst: hargraves

Germanium

			Germanium	
#	Sample ID	Analyzed Date		Q
1	Rinse 2X	12/07/10 09:12	95.6	
2	Blank	12/07/10 09:15	100.0	
3	Standard1	12/07/10 09:18	99.6	Ø
4	ICV	12/07/10 09:20	99.1	Ø
5	ICV	12/07/10 09:25	99.9	Ø
6	ICB	12/07/10 10:24	103.4	Ø
7	LLSTD1	12/07/10 10:26	105.9	M
8	LLSTD2	12/07/10 10:29	106.7	
9	ICSA	12/07/10 10:32	91.2	
10	ICSAB	12/07/10 10:34	97.1	
11	Rinse	12/07/10 11:11	126.2	Ø
12	MARD8B	12/07/10 11:17	122.5	⊻
13	MARD8C	12/07/10 11:20	114.4	
14	MARD8L	12/07/10 11:22	103.9	
15	CCV 1	12/07/10 11:25	119.3	
16	CCB 1	12/07/10 11:50	133.6	
19	CCV 2	12/07/10 12:03	102.5	\square
20	CCB 2	12/07/10 12:06	100.8	\square
21	LLSTD1	12/07/10 12:08	103.8	
22	MAPEVB	12/07/10 12:23	94.3	
23	MAPEVC	12/07/10 12:26	87.2	
24	MAPE7L	12/07/10 12:28	81.7	
25	MAA80	12/07/10 12:31	79.5	
26	MAA80P5	12/07/10 12:34	L	
27	MAA80Z	12/07/10 12:36	82.6	
28	MAA81	12/07/10 12:39	80.7	
29	MAKDV	12/07/10 12:41	85.3	
30	MAKD2	12/07/10 12:44	86.8	
31	CCV 3	12/07/10 12:46	94.8	
32	CCB 3	12/07/10 12:49	99.0	
33	CCV 4	12/07/10 12:55	96.7	
34	CCB 4	12/07/10 12:57	103.2	
35	MARD8B	12/07/10 13:00	97.4	
36		12/07/10 13:02	86.2	
37		12/07/10 13:05	81.1	
38	MAWLKB	12/07/10 13:08	79.0	
39	MAWLKC	12/07/10 13:10	80.8	
40	MAWLKL	12/07/10 13:13	79.6	
41		12/07/10 13:15	80.0	
42		12/07/10 13:18	90.0	
43	MAML1Z	12/07/10 13:21	77.6	
44		12/07/10 13:23	78.6	
45		12/07/10 13:26	91.9	
46		12/07/10 13:28	95.0	
47		12/07/10 13:39	91.8	
48	MA0J7C	12/07/10 13:42	82.1	M

INTERNAL STANDARD SUMMARY

/ 11	. **********		114117171717	TYTHIND COMMENT
Met	nod: 6020 (SC	P: SAC-MT-001)	M02 (M02)	Reported: 12/07/10 14:26:16
ile II	D: 101207	7A2	An	alyst: hargraves
			German	nium
#	Sample ID	Analyzed Date		C
49	MA0J7L	12/07/10 13:44		80.6
50	MAQQ1	12/07/10 13:47		79.0
51	MAQQ1P5	12/07/10 13:49		86.1
52	MAQQ1Z	12/07/10 13:52		79.3
53	MAQQ4	12/07/10 13:55		77.4
54	MAQRA	12/07/10 13:57		80.6
55	MAQRH	12/07/10 14:00		85.8
56	CCV 6	12/07/10 14:02		93.4
57	CCB 6	12/07/10 14:05		97.2

CALIBRATION CHECK SUMMARY

Method: 6020 (SOP	: SAC-MT-001)	M02	Rep	orted: 12/07/10 14:26:	:55
Method: 6020	Instrument: M02	Bat	ch: 101207A2		
Sample ID	Туре	Fil	le - Sequence	Analyzed Date	Q
ICV	ICV		101207A2, 4	12/07/2010 09:20:59	
ICV	ICV		101207A2, 5	12/07/2010 09:25:16	
ICB	ICB		101207A2, 6	12/07/2010 10:24:20	
ICSA	ICSA		101207A2, 9	12/07/2010 10:32:16	
ICSAB	ICSAB		101207A2, 10	12/07/2010 10:34:53	
CCV 1	CCV		101207A2, 15	12/07/2010 11:25:24	
CCB 1	CCB		101207A2, 16	12/07/2010 11:50:24	
CCV 2	CCV		101207A2, 19	12/07/2010 12:03:37	
CCB 2	ССВ		101207A2, 20	12/07/2010 12:06:16	
CCV 3	ccv		101207A2, 31	12/07/2010 12:46:51	
CCB 3	ССВ		101207A2, 32	12/07/2010 12:49:31	
CCV 4	ccv		101207A2, 33	12/07/2010 12:55:08	
CCB 4	ССВ		101207A2, 34	12/07/2010 12:57:47	
CCV 5	ccv		101207A2, 45	12/07/2010 13:26:17	
CCB 5	CCB .		101207A2, 46	12/07/2010 13:28:56	
CCV 6	ccv		101207A2, 56	12/07/2010 14:02:57	
CCB 6	CCB		101207A2, 57	12/07/2010 14:05:37	

CALIBRATION REPORT

TAL West Sac					LIDICA	11014		<u> </u>
Method: 6020 (SOP: SAC-MT-001))	1	M02		Reporte	ed: 12/07/	10 14:2	6:55
Department: 120 (Metals)						So	ource: M	etEdit
Sample: ICV (ICV)		Mu	it: 1.00	Dilf:	1.00	Divs:	1.0	00_
Instrument: ICPMS M02	Chann	nel 262						
File: 101207A2 #4		Method	16020_					
Acquired: 12/07/2010 09:20:59		M	02					
Calibrated: 12/07/2010 09:15:34					1	Units: ug/	Ľ	
CASN Analyte Name	M/S	Area	Found		Т	rue	%R	Q
7429-90-5 Aluminum	27	2727202	938.26		800	.00	117	
7439-96-5 Manganese	55	564887	80.568		80.0	000	101	
7440-38-2 Arsenic	75	79894	82.186		80.6	000	103	
CASN ISTD Name	M/S	Area	Amount					Q
7440-56-4 Germanium	72	783241						Ø

Reviewed by: Date:

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	`	M02			Reported: 12/07/10 14:26:55				
Department: 120 (Metals)	<u> </u>				··		ource: M	etEdi	
Sample: ICV (ICV)		Mu	it: 1.00	Diff:	1.00	Divs:	1.0	00	
Instrument: ICPMS M02			el 262						
File: 101207A2 # 5			6020_						
Acquired: 12/07/2010 09:25:16		M	02						
Calibrated: 12/07/2010 09:15:34						Units: ug/	L		
CASN Analyte Name	M/S	Area	Found		T	rue	%R	Q	
7429-90-5 Aluminum	27	2197458	743.59		800	.00	92.9		
7439-96-5 Manganese	55	548744	77.636		80.0	000	97.0		
7440-38-2 Arsenic	75	79998	81.597		80.0	000	102		
CASN ISTD Name	M/S	Area	Amount					Q	
7440-56-4 Germanium	72	789143			~ ~~			V	

Reviewed by: Date: TestAmerica, Inc.

BLANK REPORT

Method: 6020 (SOP: SAC-MT-001)		M02				Reported: 12/07/10 14:26:55					
Department: 120 (Metals)							Source	e: MetEd			
Sample: ICB		Mu	lt: 1.00	Dilf:	1.0	0 [ivs:	1.000			
Instrument: ICPMS M02		Chann	el 262								
File: 101207A2 #6		Method	6020_								
Acquired: 12/07/2010 10:24:20		MC)2								
Calibrated: 12/07/2010 09:15:34						Units	: ug/L				
CASN Analyte Name	M/S	Area	Amount		RL	MDL	%RSD) G			

CASN_	Analyte Name	M/S	Area	Amount	RL	MDL	%RSD	Q
7429-90-5	Aluminum	27	82057	-4.3179	50.0	2.1	0.0	
7439-96-5	Manganese	55	2876	-0.01112	1.0	0.083	0.0	
7440-38-2	Arsenic	75	6335	0.41056	2.0	0.50	0.0	
CASN	ISTD Name	M/S	Area	Amount				Q
7440-56-4	Germanium	72	817166					Ø

Reviewed by: Date:

CASN ISTD Name

7440-56-4 Germanium

IDB Reports

CALIBRATION REPORT

Q Ø

Version: 6.02,068

Method: 6020 (SOP: SAC-MT-001)	M02			Reported: 12/07/10 14:26:55				
Department: 120 (Metals)					So	ource: Mo	etEdi		
Sample: ICSA	Mul	t: 1.00	Dilf:	1.00	Divs:	1.00	00		
Instrument: ICPMS M02		Chann	el 262						
File: 101207A2 #9		Method	6020_						
Acquired: 12/07/2010 10:32:16		MC	2						
Calibrated: 12/07/2010 10:26:59					ι	Jnits: ug/	L		
CASN Analyte Name	M/S	Area	Found		Tr	ue	%R	Q	
7429-90-5 Aluminum	27	50931943	97071		1000	000	97.1		
7439-96-5 Manganese	55	42530	6.2209				*		
7440-38-2 Arsenic	75	6176	1.1300				*		

Area

720572

Amount

M/S

Reviewed by: Date: TestAmerica, Inc.

7440-56-4 Germanium

CALIBRATION REPORT

図

					(LIDIO (1)		<u> </u>	
Method: 6020 (SOP: SAC-MT-001))	M02			Reported: 12/07/10 14:26:55			
Department: 120 (Metals)				<u></u>		Soul	rce: Me	etEdi
Sample: ICSAB		Mı	ılt: 1.00	Dilf:	1.00	Divs:	1.00	00
Instrument: ICPMS M02		Chanr	nel 262					
File: 101207A2 # 10		Method	6020_					
Acquired: 12/07/2010 10:34:53		M	02					
Calibrated: 12/07/2010 10:26:59					Ur	nits: ug/L		
CASN Analyte Name	M/S	Area	Found		Tru	e '	%R	Q
7429-90-5 Aluminum	27	53685267	92108		10010	0 !	92.0	Ø
7439-96-5 Manganese	55	692173	100.84		100.0	0	101	
7440-38-2 Arsenic	75	98694	105.26		100.0	0	105	\square
CASN ISTD Name	M/S	Area	Amount					Q

767179

72

Reviewed by: Date:

IDB Reports TestAmerica, Inc. Version: 6.02.068

7440-56-4 Germanium

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	•	M02				Reported: 12/07/10 14:26:55				
Department: 120 (Metals)				· · · · · · · · · · · · · · · · · · ·		Soi	ırce: Me	etEdit		
Sample: CCV1 (CCV)		Mu	it: 1.00	Dilf:	1.00	Divs:	1.00	00		
Instrument: ICPMS M02	,	Chann	el 262							
File: 101207A2 # 15		Method	6020_							
Acquired: 12/07/2010 11:25:24		M	02							
Calibrated: 12/07/2010 10:26:59					U	nits: ug/L				
CASN Analyte Name	M/S	Area	Found		Tro	ue	%R	Q		
7429-90-5 Aluminum	27	16030226	4704.5		5100	0.0	92.2			
7439-96-5 Manganese	55	825342	97.821		100.6	30	97.8			
7440-38-2 Arsenic	75	116972	101.28		100.0	00	101			
CASN ISTD Name	M/S	Area	Amount					Q		

943099

72

Reviewed by: Date:

TestAmerica, Inc.

CASN

7440-56-4 Germanium

ISTD Name

BLANK REPORT

Q

Method: 6020 (SOP: SAC-MT-001) Reported: 12/07/10 14:26:55 M02 Department: 120 (Metals) Source: MetEdit Sample: CCB 1 Mult: 1.00 Dilf: 1.00 1.000 Divs: Instrument: ICPMS M02 Channel 262 File: 101207A2 # 16 Method 6020_ M02 Acquired: 12/07/2010 11:50:24 Calibrated: 12/07/2010 11:25:24 Units: ug/L M/S RL Q CASN Analyte Name MDL %RSD Area Amount 7429-90-5 Aluminum 27 9698 -29.747 50.0 2.1 0.0 7439-96-5 Manganese 55 1199 -0.27878 1.0 0.083 0.0 75 7440-38-2 Arsenic 8549 0.71367 2.0 0.50 0.0

Area

1055615

Amount

M/S

7440-56-4 Germanium

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	·	` I	M02		Reported: 12/07/10 14:26:5				
Department: 120 (Metals)					<u></u>		urce: M	etEdi	
Sample: CCV 2 (CCV)		Mu	ılt: 1.00	Dilf:	1.00	Divs:	1.0	00	
Instrument: ICPMS M02 File: 101207A2 # 19 Acquired: 12/07/2010 12:03:37 Calibrated: 12/07/2010 11:50:24		Method	nel 262 1 6020_ 02		ţ	Jnits: ug/	L		
CASN Analyte Name	M/S	Area	Found		Tı	rue	%R	Q	
7429-90-5 Aluminum	27	18282351	5073.3		510	0.0	99.5		
7439-96-5 Manganese	55	918128	97.045		100	.00	97.0		
7440-38-2 Arsenic	75	132670	98.848		100	.00	98.8		
CASN ISTD Name	M/S	Area	Amount					Q	

1081583

CASN ISTD Name

7440-56-4 Germanium

BLANK REPORT

Q Q

Method: 6020 (SOP: SAC-MT-001))	M02			Reported: 12/07/10 14:26:55				
Department: 120 (Metals)							Source	: MetEdi	
Sample: CCB 2		Mι	ılt: 1.00	Dilf:	1.0	00 [Divs:	1.000	
Instrument: ICPMS M02		Chanr	nel 262				·		
File: 101207A2 #20		Method 6020_							
Acquired: 12/07/2010 12:06:16		М	02						
Calibrated: 12/07/2010 11:50:24						Units	: ug/L		
CASN Analyte Name	M/S	Area	Amount		RL	MDL	%RSD	Q	
7429-90-5 Aluminum	27	25690	4.4910		50.0	2.1	0.0		
7439-96-5 Manganese	55	1661	0.04852		1.0	0.083	0.0		
7440-38-2 Arsenic	75	8549	-0.05147		2.0	0.50	0.0		

Area

1063915

Amount

M/S

72

Reviewed by: Date: TestAmerica, Inc.

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	M	M02			Reported: 12/07/10 14:26:5					
Department: 120 (Metals)		w1.	. <u> </u>		So	urce: Me	- tEdi			
Sample: CCV 3 (CCV)	Mult	: 1.00	Dilf:	1.00	Divs:	1.00	0			
Instrument: ICPMS M02	Channe	l 262								
File: 101207A2 #31	Method (6020_								
Acquired: 12/07/2010 12:46:51	MO	2								
Calibrated: 12/07/2010 11:50:24				I	Units: ug/l	-				
CASN Analyte Name M/	S Area	Found		Т	rue	%R	Q			

CASN	Analyte Name	M/S	Area	Found	True	%R	Q
7429-90-5	Aluminum	27	16599974	4974.0	5100.0	97.5	
7439-96-5	Manganese	55	865038	98.699	100.00	98.7	
7440-38-2	Arsenic	75	125857	101.41	100.00	101	
CASN	ISTD Name	M/S	Area	Amount			Q
7440-56-4	Germanium	72	1001216				\square

Reviewed by: Date:

BLANK REPORT

7712 77031 000								<u> </u>	
Method: 6020 (SOP: SAC-MT-001)	Method: 6020 (SOP: SAC-MT-001)					Reported: 12/07/10 14:26:			
Department: 120 (Metals)							Source:	MetEdi	
Sample: CCB 3	ample: CCB 3			Dilf:	1.0	0 D	ivs: '	1.000	
Instrument: ICPMS M02 File: 101207A2 # 32 Acquired: 12/07/2010 12:49:31		Method	iel 262 1 6020_ 02						
Calibrated: 12/07/2010 11:50:24					Units: ug/L				
CASN Analyte Name	M/S	Area	Amount		RL	MDL	%RSD	Q	
7429-90-5 Aluminum	27	28158	5.3322	·	50.0	2.1	0.0		
7439-96-5 Manganese	55	1590	0.04418		1.0	0.083	0.0		
7440-38-2 Arsenic	75	8557	0.08099		2.0	0.50	0.0		
CASN ISTD Name	M/S	Area	Amount					Q	
7440-56-4 Germanium	72	1044769						Ø	

CALIBRATION REPORT

CHI TTGGE GGG					TEIDIO (11014		<u> </u>	
Method: 6020 (SOP: SAC-MT-001)		1	M02		Reporte	Reported: 12/07/10 14:26:55			
Department: 120 (Metals)		17.7.	-			s	ource: M	etEdi	
Sample: CCV 4 (CCV)	Sample: CCV 4 (CCV)				1.00	Divs:	1.0	00	
Instrument: ICPMS M02		Chanr	el 262		7,134,0				
File: 101207A2 #33		Method	6020_						
Acquired: 12/07/2010 12:55:08	M	02							
Calibrated: 12/07/2010 11:50:24					I				
CASN Analyte Name	M/S	Area ·	Found		Т	rue	%R	Q	
7429-90-5 Aluminum	27	17282351	5079.9		510	0.0	99.6		
7439-96-5 Manganese	55	885694	99.129		100	.00	99.1		
7440-38-2 Arsenic	75	127966	101,12		100	.00	101		
CASN ISTD Name	M/S	Area	Amount					Q	
7440-56-4 Germanium	72	1020661						\Box	

BLANK REPORT

TAL West Sac						BLAN	IK KEI	PORI
Method: 6020 (SOP: SAC-MT-001)	· .		M02		Rep	orted: 12	2/07/10, 1	4:26:55
Department: 120 (Metals)							Source	: MetEdi
Sample: CCB 4		Mι	ılt: 1.00	Dilf:	1.00) D	ivs:	1.000
Instrument: ICPMS M02		Chanr	nel 262					
File: 101207A2 # 34		Method	1 6020_					
Acquired: 12/07/2010 12:57:47	M	02						
Calibrated: 12/07/2010 11:50:24					Units: ug/L			
CASN Analyte Name	M/S	Area	Amount		RL	MDL	%RSD	Q
7429-90-5 Aluminum	27	29450	5.3593		50.0	2.1	0.0	_
7439-96-5 Manganese	55	1691	0.04777		1.0	0.083	0.0	
7440-38-2 Arsenic	75	8440	-0.29624		2.0	0.50	0.0	
CASN ISTD Name	M/S	_Area	Amount					Q
7440-56-4 Germanium	72	1089732						Ø

7440-56-4 Germanium

CALIBRATION REPORT

Ø

		····							
Method: 6020 (SOP: SAC-MT-001)	,		M02		Reported: 12/07/10 14:26:58				
Department: 120 (Metals)						Sc	ource: M	etEdi	
Sample: CCV 5 (CCV)	Mi	ılt: 1.00	Dilf:	1.00	Divs:	1.0	00		
Instrument: ICPMS M02	Chanr	nel 262							
File: 101207A2 # 45	Method	6020_							
Acquired: 12/07/2010 13:26:17	М	02							
Calibrated: 12/07/2010 11:50:24						Jnits: ug/	L		
CASN Analyte Name	M/S	Area	Found		T	rue	%R	Q	
7429-90-5 Aluminum	27	16256534	5026.0		510	0.0	98.5		
7439-96-5 Manganese	55	832601	98.019		100	.00	98.0		
7440-38-2 Arsenic	75	119747	99.425		100	.00	99.4		
CASN ISTD Name	M/S	Area	Amount					Q	

970352

CASN ISTD Name

7440-56-4 Germanium

BLANK REPORT

Method: 6020 (SOP: SAC-MT-001)	:	M02	·	Reported: 12/07/10 14:2				
Department: 120 (Metals)							Source: MetEdit		
Sample: CCB 5	Mu	ilt: 1.00	Dilf:	1.0	00 E	ivs:	1.000		
Instrument: ICPMS M02		Chanr	el 262						
File: 101207A2 #46	Method	16020_							
Acquired: 12/07/2010 13:28:56		М	02						
Calibrated: 12/07/2010 11:50:24						Units	: ug/L		
CASN Analyte Name	M/S	Area	Amount		RL	MDL	%RSD	Q	
7429-90-5 Aluminum	27	25941	5.0072		50.0	2,1	0.0	,	
7439-96-5 Manganese	1640	0.05706		1.0	0.083	0.0			
7440-38-2 Arsenic	7805	-0.27039		2.0	0.50	0.0			

Area

1003172

Amount

M/S

CASN ISTD Name

7440-56-4 Germanium

CALIBRATION REPORT

Q Ø

Method: 6020 (SOP: SAC-MT-001)	N	102		Reported: 12/07/10 14:			6.55	
Department: 120 (Metals)	•					Sc	ource: M	etEdi
Sample: CCV 6 (CCV)	Mul	t: 1.00	Dilf:	1.00	Divs:	1.0	00	
Instrument: ICPMS M02		Channe	el 262					
File: 101207A2 #56	Method	6020_						
Acquired: 12/07/2010 14:02:57		MC	2					
Calibrated: 12/07/2010 11:50:24						Units: ug/	L.	
CASN Analyte Name	M/S	Area	Found		Τ	rue	%R	Q
7429-90-5 Aluminum	27	16448306	5007.3		510	0.0	98.2	
7439-96-5 Manganese	55	851439	98.707		100	.00	98.7	
7440-38-2 Arsenic	122639	100.32		100	.00	100		

Area

985652

Amount

M/S

BLANK REPORT

									
Method: 6020 (SOP: SAC-MT-001)	ı	M02		Rep	Reported: 12/07/10 14:26:			
Department: 120 (Metals)							Source	: MetEdit	
Sample: CCB 6	Mu	ılt: 1.00	Dilf:	1.0	0 D	ivs:	1.000		
Instrument: ICPMS M02		Chanr	nel 262						
File: 101207A2 # 57		Method	6020_						
Acquired: 12/07/2010 14:05:37		М	02						
Calibrated: 12/07/2010 11:50:24						Units	: ug/L		
CASN Analyte Name	M/S	Агеа	Amount		RL	MDL	%RSD	Q	
7429-90-5 Aluminum	27	26477	4.9962		50.0	2.1	0.0		
7439-96-5 Manganese	55	1577	0.04603		1.0	0.083	0.0		
7440-38-2 Arsenic	75	7955	-0.29272		2.0	0.50	0.0		
CASN ISTD Name	M/S	Area	Amount					Q	
7440-56-4 Germanium	72							\square	

Date: Reviewed by: TestAmerica, Inc.

SERIAL DILUTION

Department: 120 (Metals) Source: MetEx	TAL West Sac					SERI	ML DI	LUII	
Sample: MAQQ1P5 Serial Dilution: 5.00 Sample Dilution: 1.00 Instrument: ICPMS M02 Channel 262 File: 101207A2 # 51 Method 6020_ Acquired: 12/07/2010 13:49:58 M02 Matrix: AIR Calibrated: 12/07/2010 11:50:24 Units: ug/L CASN Analyte Name M/S Area Dilution Sample %Diff. MDL Flag 7429-90-5 Aluminum 27 309637 497.90 431.87 15.3 * 7439-96-5 Manganese 55 3933834 2476.3 2366.2 4.65 0.14 4.7 7440-38-2 Arsenic 75 7652 1.3992 1.6599 15.7 0.41 NC CASN ISTD Name M/S Area Amount	Method: 6020 (SOP: SAC-MT-001))				Reported: 12/07/10 14:27:55			
Instrument: ICPMS M02	Department: 120 (Metals)						Soi	urce: Me	 etEdit
File: 101207A2 # 51	Sample: MAQQ1P5	Se	rial Dilution:	5.00	Sample I	Dilution:	1.00		
7429-90-5 Aluminum 27 309637 497.90 431.87 15.3 * 7439-96-5 Manganese 55 3933834 2476.3 2366.2 4.65 0.14 4.7 7440-38-2 Arsenic 75 7652 1.3992 1.6599 15.7 0.41 NC CASN ISTD Name M/S Area Amount	File: 101207A2 # 51 Method 6020_ Acquired: 12/07/2010 13:49:58 M02							-	
7439-96-5 Manganese 55 3933834 2476.3 2366.2 4.65 0.14 4.7 7440-38-2 Arsenic 75 7652 1.3992 1.6599 15.7 0.41 NC CASN ISTD Name M/S Area Amount Amount 4.65 0.14 4.7	CASN Analyte Name	M/S	Area	Dilution	Sample	%Diff.	MDL	Flag	Q
7440-38-2 Arsenic 75 7652 1.3992 1.6599 15.7 0.41 NC CASN ISTD Name M/S Area Amount	7429-90-5 Aluminum	27	309637	497.90	431.87	15.3		*	
CASN ISTD Name M/S Area Amount	7439-96-5 Manganese	55	3933834	2476.3	2366.2	4.65	0.14	4.7	\square
	7440-38-2 Arsenic	75	7652	1.3992	1.6599	15.7	0.41	NC	\square
7440-56-4 Germanium 72 908487	CASN ISTD Name	M/S	Area	Amount					Q
	7440-56-4 Germanium	72	908487						

^{*} Analyte not requested for this batch, no MDL.

NC : Serial dilution concentration < 100 X MDL.

E : Difference greater than Limit (10%)

SAMPLE SPIKE

Method: 6020 (SOP: SAC-MT-001) M02 Reported: 12/07/10 14:28:03

Department: 120 (Metals) Source: MetEdit

Sample: MAQQ1Z Spike Dilution: 1.00 Sample Dilution: 1.00

 Instrument:
 ICPMS M02
 Channel 262

 File:
 101207A2 # 52
 Method 6020_

Acquired: 12/07/2010 13:52:33 M02 Matrix: AIR Calibrated: 12/07/2010 11:50:24 Units: ug/L

CASN	Analyte Name	M/S	Area	Amount	Sample	%Rec.	Spike	_Flag_	Q_
7429-90-5	Aluminum	27	3725076	1332.6	431.87	90.1	1000		Ø
7439-96-5	Manganese	55	17911155	2446.7	2366.2	40.2	200	*	
7440-38-2	Arsenic	75	194434	193.24	1.6599	95.8	200		
CASN	ISTD Name	M/S	Area	Amount					Q
7440-56-4	Germanium	72	837354						Ø

Sample Preparation Log

TestAmerica - West Sacramento Metals - Air Toxics - Preparation Log

Date: 7-Dec-10 Analyst: JZ Matrix: AIR

Fraction: Filter SOP: WS-IP-0010 Method: ICPMS

LOT ID		Workorder		Volume Received	Volume Removed	Initial Prep Volume	Final Prep Volume	Batch	Prep Factor	
G0L070000	211	маој7в	2A	NA	NA	NA	100 mL	341211	1.2	
G0L070000	211	MA0J7C	2A	NA	NA	NA	100 mL	341211	1.2	
G0L070000	211	MA0J7L	2A	NA	NA	NA	100 mL	341211	1.2	
G0L020446	3	MAQQ1	2A	9 inches	0.75 inches	0.75 inches	100 mL	341211	1.2	
G0L020446	4	MAQQ4	2A	9 inches	0.75 inches	0.75 inches	100 mL	341211	1.2	
G0L020446	7	MAQRA	2A	9 inches	0.75 inches	0.75 inches	100 mL	341211	1.2	
G0L020446	10	MAQRH	2A	9 inches	0.75 inches	0.75 inches	100 mL	341211	1.2	

West Sacramento Metals Spiking Documentation Form

Lot #(s):	606020446				
Batch Number:	034/211	EPA Analytical Method ID:	6020	Spiked Date:	12/7/10
MS Sample(s):	NA	EPA Prep Method ID:	W3-Il-00i0	Hot Plate Microwave ID:	Net I
Analyst Initial/Date:	12 12/67/10	Witness Initial/Date:	TP 12/2/10	Hot Plate Temp	Initial: 930c Final: 930c
Correct Folder ID Witness:	NA	Digestion Cup Lot # Filter Paper Lot #	1008257 390428	Thermometer ID: Fin Vol Cup Lot	100811

Check If Used	Bottle Name	Elements	Stock Concentration (mg/L)	Tracking Number	LCS/LCSD Volume Spiked	MS/SD Volume Spiked	Expiration Date
		Ca, Mg Al, As, Ba, Se, Sn, Tl	5,000 200				
	ICP Part 1 5% HNO ₃	Fe,Mo,Ti Sb,Co,Pb,Mn,Ni,V,Zn Cu Cr ,Be,Cd Aq	100 50 25 20 5		ment the desired that the second of		
	ICP Part 2 2% HN0 ₃	K,Na P,S B,LI,Sr	5,000 1,000 100				
		B,LI,O)	100		 -		
	Si H20/Tr HF	Si	1,800	and the same of th			J2 12/7/10
		AI,K,Mg,Ca,Na,Fe,P,B	500				
	TACA-1 5% HN0₃	As,Be,Cd,Cr,Co,Cu,Pb, Mn,Ni,Se,U,V,Zn,Ba,Li Sr	100	3184-6-5	200.41	NA	8/31/11
		Ag,Tl	25				
	TACA-2 5% HN0 ₃	Mo, Sb, Sn, Tī	100	3189-4-4	200 UI	NA	8/31/11
	Misc. Elements						12 8/11/16

Prep Reagents:

Check If Used	Reagent	Supplier	Lot Number	Check If Used	Reagent	Supplier	Lot Number
	70% HNO ₃	Mallinckrodt			30% H ₂ O₂ ·	Mallinckrodt	
<	37% HCI	Mallinckrodt			49% HF	Fisher	
/	3M HNO ₃	ln-House	4028-32-1		1:1 HCI	In-House	12/1/10

ICP matrix spike and LCS: For final volumes of 100ml, add 1mL from bottles ICP Part 1, ICP Part 2. Add 1ml of Silica (Si) when requested. ICPMS matrix spike and LCS: For final volumes of 100ml, add 0.2 mL each of TACA-1 and TACA-2.

Amount to spike is as listed above for final volumes of 100ml. If a different final volume is used, increase or decrease the amount you spike proportionally.

West Sacramento

Preparation Data Review Checklist

Prep Batch(es) 634 (21)	Test: 6020		
Prep Date: 12/7/10	Holding Times:	5/29/11 5/30/11 NCI	VI: Y 🕪
		1 2	
A. Spike Witness/Batch setup		Spike Witness	Reviewer
1. Holding times checked? NCMs filed as	s appropriate		
2. QAS checked for QC instructions (LCS, I	_CSD, MS,MSD, etc)	— .	
Amount of samples in hood match amount sheet. Sample IDS match.	nt of samples on bench	-	NA
Worksheets have been checked for required compounds	ired spiking	_	1
5. Spiking volumes are correctly documented	ed .		
6. Std ID numbers on spike labels match nu		-	NA
7. Expiration dates have been checked			
8. Calibration expiration dates on pipettors	have been checked		NA
9. Spiker and spike witness have signed an			
B. Weights and Volumes		·· '	
Recorded weights are in anticipated range	16	NA	NA
2. Balance upload or raw data for weights is	 	NA	NA
3. Weights and volumes have been transcri		NA	
4. Weights are not targeted to meet exact w		NA	NA
Each weight or volume measurement is a dittos or line downs)	······································	NA	1
C. Standards and Reagents			
Lot numbers for all reagents, including cl recorded.	ean up stages, are	NA	/
2. Are dates and analysts for cleanups reco	rded?	NA	Na
Are correct IDs used for standards? Are day/month/year, when listed?		NA	1
D. Documentation			
Are all nonconformances documented a		NA NA	NA
2. QuantiMs entry correct, including dates	and times.	NA NA	
Are all fields completed?		NA NA	
Spike witness:		12/7/10	
2 nd Level Reviewer: SH	Date:	12/9/	10
Comments:			
		······································	***************************************

AIR, TSP-Total Suspended Particulates

Raw Data Package

TestAmerica West Sacramento

Air Toxics Laboratory

PARTICULATE ANALYSIS

LEVEL 1 & 2 REVIEW CHECKLIST

LAB NUMBERS: 60/020446 (3,4,7,10) Batch #: 034	11297	
ANALYSIS: (circle) TSP/PM10 or METHOD 5	•	
DATE: 12/67/10 ANALYST: 12		
LEVEL 1 ANALYSIS REVIEW 1. Samples are in good condition. 2. Sample filter number matches the folder or petri ID number. 3. Desiccator temperature and % humidity criteria in control. 4. Balance calibration criteria met. 5. Beginning and ending calibration sample bracket weights are in calibration. 6. Samples reached stable weight. 7. Samples exceeded 5 consecutive final weighings. LEVEL 1 DATA REVIEW 1. Benchsheet is complete.	YES NO	NA
 QAS or QAPP consulted and followed for client specifics. Data entered in properly. Copy of spreadsheet or logbook raw data entry attached to data package. Analyst observations, HTV's, Anomalies properly documented and attached to data package. Completed By & Date: 12/07/ 		
LEVEL 2 REVIEW: 1. Level 1 checklist complete and verified. 2. Deviations, Anomalies, Holding times checked and approved. 3. Reanalysis documented and chemist notified. 4. Client specific criteria met. 5. Data entry checked and released in Quantims. 6. Indication on benchsheet or spreadsheet on review and released (dated & signed). Completed By & Date: Comments: Pesicake 2 A		

RQC050

TestAmerica Laboratories, Inc. Run Date: 12/07/10 WET CHEM BATCHSHEET

Time: 14:26:46

TestAmerica West Sacramen

PRODUCTION FIGURES - WET CHEM

	MPLE IMBER QC	RE-RUN MATRIX	RE-RUN OTHER	MISC NUMBER	TOTAL HOURS	EXPANDED DELIVERABLE
METHOD: QC BATCH #: PREP DATE:	12/02/10 11:15		INITIALS:		(APP B) DATA EN	ALS JZ
COMP DATE: USER: Work Order	12/06/10 18:20 PHOMSOPT Lab Number	Struc		p. Analys		
MAQQ1-1-AA	G-0L020446-003	XX S 88		M 12/67/		292010B
MAQQ4-1-AA MAORA-1-AA	G-0L020446-004 G-0L020446-007	XX S 88		м <u>12/67/1</u> м <u>12/07/1</u>		292010B 302010B
MAQRH-1-AA	G-0L020446-010	XX S 88		M 12/07/10		302010B
		Control	Limits	,		

WEST SACRAMENTO

TestAmerica
AIR TOXICS GRAVIMETRIC ANALYSES

					112910jz1010	MAK08			112910jz1010	MAK09	113010jz1230	MAML1	113010jz1230	MAML6	120210jz1115	MAQQ4	120210jz1115	MAQRA	120210jz1115	MAQRH	120210jz1115	MAQQ1	112910jz1010	MAK04			Lab ID	
wt 5g	* 3	5.	≨	50	75	tron111010-	74	tron111010-	73	tron111010-	72	tron111010-	71	tron111010-	70	tron111010-	69	tron111010-	68	tron111010-	67	tron111010-	66	tron111010-	×	5g	Filter ID	
5.0001 110110skv1128	1128	£ 0001	110110skv1128	5,0001	110110skv1128	4.4545	110110skv1127	4.5735	110110skv1127	4.5577	110110skv1126	4.5504	110110skv1126	4.5539	110110skv1125	4.5572	110110skv1125	4.5467	110110skv1124	4.5551	110110skv1124	4.5565	110110skv1123	4.5511	110110skv1123	4.9999	date/time initials	Initial Weight (g)
5.0001 5.0000 110110skv1128 110110skv1923	110110skv1923	5 0000 P	110110sky1923	5 0000	110110skv1922	4.4543	110110skv1922	4.5730	110110skv1922	4.5572	110110skv1921	4.5500	110110skv1921	4.5539	110110skv1920	4.5571	110110skv1920	4.5464	110110skv1919	4.5546	110110skv1919	4.5564	110110skv1919	4.5507	110110skv1918	4.9998	date/time initials	Initial Weight (g)
4.9998 120610jz1048	4.9996 120210jz1039	10000	113010iz1245	4 0005	113010jz1243	4.5166	!		113010jz1242	4.6235	120210jz1037	4.5713	120210jz1036	4.6496	120610jz1047	4.5841	120610jz1045	4.5832	120610jz1042	4.5859	120610jz1040	4.5996	113010jz1240	4.5630	120610jz1038	4.9998	date/time initials	Final Weight (g)
4.9998 120610jz1820	4.9998 120210jz1735	12011021	120110171100	4 0006	120110jz1058	4.5163			120110jz1057	4.6227	120210jz1733	4.5714	120210jz1732	4.6498	120610jz1819	4.5840	120610jz1812	4.5834	120610jz1817	4.5861	120610jz1808	4.5999	120110jz1056	4.5629	120610jz1802	5.0000	date/time initials	Final Weight (g)
		120210121031	120210171031	A 0006					120210jz1023	4.6222																	date/time initials	Final Weight (g)
									****																		date/time initials	Final Weight (g)
																											date/time initials	Final Weight (g)
																											date/time initials	Final Weight (g)
-0.0002	-0.0002		-0.0004	2004	(0.0620		Z O		0.0650		0.0214		0.0959		0.0269		0.0370		0.0315		0.0435		0.0122				Wt of Particulate
															7	\		7	,	7	•	7					Check	Initial Wts Stablity

TestAmerica Laboratories, Inc. Inorganics Batch Review QC Batch 0341297

Date 12/07/2010 Time 13:28:19

Method Code:AO Particulates in Air, Suspended "TSP HiVol" (APP B) Analyst:Thep Phomsopha

endosmons decreases	Josmons de	ын							
Work Order Result Units	Result	Units	ויםר/ביו	Prep Anal.	Total PSRL Solids Flac	R/R	Rounded C	led Output	<u>.</u>
WW-T-TAN	0.0435	g	0.0005	12/02-12/07/10	. 00 N	14/14	0.0435	0.0005	1.00
MAQQ4-1-AA 0.0269 g	0.0269	φ	0.0005	12/02-12/07/10	.00 N		0.0269	0 0005	1 00
MACABATA	0 0 0 0	ľ)				0.00	0.0000	1.00
Fundada - 1 = 44 0.03/0 0	0.03/0	ıΩ	0.0005	12/02-12/07/10	.00 N	_	0.0370	0.0005	1.00
MAQRH-1-AA 0.0315	0.0315	g	0.0005	12/02-12/07/10	.00 N		0_0315	0 000л	1 .
Notes:									H .

TOTAL # SAMPLE # QC # MATRIX # OTHER # MISC # HOURS . 0

TEST

THE LEADER IN ENVIRONMENTAL TESTING

Balance Calibration Check Log TestAmerica West Sacramento

T	т		_		T.	<u></u>	T	T_	·		т-	-		т		
0, 1000 P=Pass, F= Fail	0.7000	0, 2000	0.7000	0,2000	0.2000	6,7600	0.2000	0,2000	0. 2000	0.39	0.2ve	0,2000	0,2000	Denomination (g)	Working WT	
O. 1499 The observed weigh	0.1999	0, 2000	0,700	0.1996	0.1996	0,1999	0.1998	0,2001	0,200	0 2002	0.2001	0.2003	0.1996	WEIGHT (9)	OBSERVED	SEI3
0,399.5	0.1995	0,1995	0,1995	0.1995	0,1995	0, 1995	0.1995	0,1995	0.1995	S.32. O	0.1955	0,1995	0.1995	Lower (g)	-	WEIGHT #1
P=Pass, F= Fail. The observed weight must be with in the listed tolerances in order to pass. If railbration check values fall outside accountant in the hadron is considered to be set of colorances.	0,2005	0, 2005	0. 2005	0.7005	0.2005	0.7005	6.7005	0.2005	0.7005	0.2005	0.1015	0.2005	0,2005	(g) Upper (g)	7	
IO . O	10.0	10.0	10.0	100	10.0	10,0	10.0	10,0	10.00	0,09	0.0	10.000	10,000	Denomination (g)	Marking MT	
10.0000	40000.01	10.0004	10.0004	9,9999	9,9983	<i>a. 9999</i>	10,0000	9,9997	10.0004	10.001	10,0005	10.0001	10.0002	WEIGHT (g)	VVEIGH	(# 上口の日/W
9,9000	9,9000	9.9000	9,9000	9.9000	9.9000	9,9000	9.9000	9,9000	9,9000	a cas 1000 माडी	0.900	9,9000	10-1 a 4000	Acceptance limits * Lower (g) Upp	1	±5
10.0100	10.0100 11/5/10 904	0010,01	10,0100	10.0100	10,0100 11/1/10 80st	10,0100	10,0100	10.0100	10.0100	15,0100	10.0100 1010 W	10,100	_ [Upper (g)	3	
10/18/10	11/5/10	11/4/10	11/3/10		11/1/10	ropolo	10/28/co	10/27/10 8CH	10/resta	ध्रिश्च	10/12/10	10/24/10	10/2/10		DATE	
20%	427	203	ESL	433		504	804	F235	202	2	2	200	CH		Z T	
110-40 203 01/8/11	110-10	11/4/10 804 QA-011	11/3/10 802 04-011	110- FO FOS 01/2/11	110-70	10,0100 ropolo 504 QA-011	10.0100 10/28/6 854 QA-011	QA-01	10.0100 10/16/20 2010/01	のカノラ	11 ~ AV	10/24/10 SCA QA-011	10/2/10 ECH QA-011		WEIGHT ID	
P	Ø	0	ð	Ó	σ	Ÿ	ď	Ð	P	Ø	+	ъ	or	٤	p/F	

Denomination	Range	Denomination	Range
0.2000	0.1995 - 0 2005	10	9.9000 - 10.100
0.5000	1	20	19.8000 - 20.200
1	0.9900 - 1.0100	50	49.5000 - 50.500
2	1.9800 - 2.0200	100	99.0000 - 101.000
51	4.9500 - 5.0500		

*3 When performing Method 1664A, the following Class 1 weights and tolerances must be used (in grams).

Calibration range is (±) 10% for 2 mg weight and (±) 0.5% for 1 g weight. The above	Denomination 0.9020	Range 0.0018 - 0.0022
Calibration range is (±) 10% for 2 mg weight and (±) 0.5% for 1 g weight. The above	0.0020	0.0018 - 0.0022
Calibration range is (±) 10% for 2 mg weight and (±) 0.5% for 1 g weight. The above		0.9950 - 1.0050
	Calibration range is (±) 10% for 2 mg weight	and (±) 0.5% for 1 g weight. The above

Calibration range is (+/-) 1% for top loading balances. The above tolerances have been rounded to meet balance read out capability.

5/7/2008 ERS QA-140T4

Balance # ID QA-045

b) Attach a sign instructing others not to use the balance (see front of logbook).
 c) Notify the QA department.
 2 Balance Tolerances (grams);

<u> Test</u>America

THE LEADER IN ENVIRONMENTAL TESTING

Balance Calibration Check Log TestAmerica West Sacramento

	····	 	_,	· · · ·		_,	· ,	<u>, `</u>					
							0. 2000	0.2wo	0.2000	0,2000	0,2000	Working WT Denomination (g)	
							0.2002	0.200	8. 2000	0,2002	0,2001	OBSERVED WEIGHT (g)	WEIG
							0,1995	<u>ः </u> २२८/	0.1995	0.1995	0:1995	Acceptar Lower (g)	WEIGHT #1
							0.2005	0.2cm5	0.2005	0.2005	0.2005	Acceptance limits ² (g) Upper {g}	
		,					10.0000 10.0003 9.9000	10.000U	10.000	16.0000 9,9995	10.0000	Working WT Denomination (g)	
							10.0003	6.900) + FRAP. P	10.000 9.999 4 9.900	2 6666	9,9994	OBSERVED WEIGHT (g)	WEIGHT #2
							<u> </u>		1	9.9000	9.4000	Acceptance limits ² Lower (g) Upp	T #2
,							10.1000 12/1/10 32	ति राष्ट्रिता विक्या का	10.100 1210 8	16.1000 121/16 12	10.1000	e limits ^{"2} Upper (g)	
						1	12/11/10	12/3/2	12/2/12	12/1/10	11/30/10	DATE	
									Z	J2	22	NI.	
							QA 0/1	08-N	\$-1	Q# 011	110 AD	WEIGHT ID	
							P	6	ð	P	P	. *:	D/IC

P=Pass, F= Fail. The observed weight must be with in the listed tolerances in order to pass. If calibration check values fall outside acceptance limits, the balance is considered to be out of calibration.

a) Do not move or use the balance

b) Attach a sign instructing others not to use the balance (see front of logbook).

c) Notify the QA department.

2 Balance Tolerances (grams):

Denomination	Range	Denomination	Range
0,2000	0.1995 - 0.2005	10	9,9000 - 10,100
0.5000	0.4995 - 0.5005	20	19.8000 - 20.200
	0 9900 - 1 0100	50	49 5000 - 50 500
2	1.9800 - 2 0200	100	99.0000 - 101.000
5	4.9500 - 5.0500		

*3 When performing Method 1664A, the following Class 1 weights and tolerances must be used (in grams).

	4
Denomination	Range
0.0020	0.0018 - 0.0022
	0.9950 - 1.0050
Calibration range is (±) 10% for 2 mg weight and (±) 0.5% for 1 g weight. The above	it and (±) 0.5% for 1 g weight. The above
tolerances have been modified to meet balance read out capability.	ance read out capability.

Calibration range is (+/-) 1% for top loading balances. The above tolerances have been rounded to meet balance read out capability.

5/7/2008 ERS QA-140T4

Balance # ID QA-045

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica West Sacramento **Air Toxics**

Desiccator Humidity/Temperature Logbook

	=	-5.	T	1	1_	_	₹≔	1	بند	1	T	.1	23170FF	-	1	1	Т :
Ab Lir Fo	/8/i0	710	1/5/10	1/5/10	Vilio	18/10	hlio	10/1/10	10/20/10	18/28/10	ofethe	0/zú/10	1271	10/24	ofetho	Date	Desic
Abbreviations: Limits: Foot Notes:	20x	8	ECT.	set	203	733	43	202	325	2004	202	502	2	2	200	Init	Desiccator#
	66	B	72	69	68	65	F	S. 8	89	S.	67	68	59	ئے	70	T	
T = Tempera RH 33±5% l = Desiccan	78	ઝ	88	23	88	78	78	34	33	34	23	22	22	32	33	RH	, '
T = Temperature (°F) RH 33±5% 1 = Desiccant Changed	-	1	7	1	7	}	١	1	1	1	1	1	,	ì	(FZ	
e (°F) hanged	66	70	72	69	60	62	66	20	6	E.C.	83	63	্ব		17	T	
	29	7 9	27	22	36	34	32	8	229	22	28	28	26	32	28	RH	2
RH = Ten: 2 =	1	1	0	1	Co	j	1	ì	١	1	1	1	•	1	1	EZ.	
RH = Relative Temperature 2 = Desiccate	67	旦	74	70	70	6	67	66	67	6	69	70	70	77	72	7	
ive Hur re 22± ator < 2	25	华	28	43	47	T	7:	40	727	38	22	200	4	3	35	RH	ယ
RH = Relative Humidity (%) Temperature 22±5 °C or 71.6±9°F 2 = Desiccator < 28% Humidity	i	(10)	1	(3)				í	١)	1	١	1	i	1	FN	
%) 171.6± midity	66	76	72	69	8	62	65	65	eş.	S	6.8	S	63	Ü,	7/	Ţ	
F90F	32	3	79	8	53	29	8	29	29	29	A	28	35	Ē	37	RH	4
H	1	ı	1	1	}	1	1	ĵ	1	1	Ī	١	ì	(-)	1	7	
FN = Foot Note	67	70	73	8	69	E	66	66	R	63	B	69	<u>ئ</u>	4	7)	T	
ot Note	35	ਨ੍ਹ	33	32	29	29	29	29	29	3	23	28	Ž,	7	33	RH	5
	1	ı		ł	1	1	1	1	١	1	1	1	ì	0	1	FN	
	68	구	73	70	70	63	33	83	53	83	70	70	4	نہ	7	Ť	
	36	31	37	37	37	36	35	35	34	34	34	S3	35	3	35	RH	6
	1	1	İ)	-	1	1	j		\	İ	1	*	í	7	EN	
	68	4	\mathbb{Z}	07	70	66	68	66	E	66	Ø	70	4	4	77	Ŧ	
	33	32	32		25	22	32	32	12	31	15	32	7	22	3)	RH	7
	1	1		1	(1)	1	1	Ì	1	1	-	,	1	FN	
l	83	t,	75	72	77	82	68	83	CS	82	70	70	17	73	7:3	Ţ	A
37	R	75	43	49	49	57	83	49	84	E	30	48	3	K	F	RH	Amb
•	38 20 W/V																
	9/01																

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica West Sacramento Air Toxics

Desiccator Humidity/Tempcrature Logbook

						_				_	·		_			
A١								:	123 01/1/21	12/6/10	D.8.10	17/2/10	12/1/10	11.20.10 Sy	Date	Desic
Abbreviations:		 							733	196/0 ECT 6732	2	9/2/10 ECf	11/10 CCY	2	Init	Desiccator#
]									2	4	5	20	64	SS	ĭ	
T = Ter									66 34	32	في	3	64 31	14	RH	<u>, , , , , , , , , , , , , , , , , , , </u>
T = Temperature (°F)		<u> </u>			}				1	1	1	1	i	,	NE	
e (°F)							 		67 36	CG 37	68 33	SA	65 33	S 3	H	
									36	75	33	65 33	22	क्ष	RH	2
RH =									1	\	j)	7	3	3	
RH = Relative Humidity (%)									68	6930	25	66	E	(3	T	
ve Hun									8	84	to 57 (5) (2) 27	28	22	X	RH	ယ
nidity (i			1	1	(b))	1	•	FN	
3									67	8	57	E	53	99	Ţ	
									36	30	724	23	33	33	RH	4
Ŋ			- -						ì	١	1	1	1	1	SE.	
FN = Foo				-					67 34	63	68	CD ES	66	66	T	
Foot Note				}		,			34	68 35	68 32	65 32	3	C6 29	RH	Ω
			-						1	1	•	١	Ĭ	ŀ	FZ	
									70	70	7	83	CV	89	Ţ	
									34	34	\mathcal{S}	33	33	떦	RH	6
										1	1	1)	٩	FN	
									63	70	K)	68	68	68	T	
									32	32	X	32	32	32	RH	7
									}	1	١		Í	1	FN	
							 		76	0%	ि	83	63	88	Т	Amb
									38	47	36	32	જા	ス	RH	пb

QA-374 RE 12/10/09

Limits:
Foot Notes:

RH 33±5% 1 = Desiccant Changed

Temperature 22±5 °C or 71.6±9°F 2 = Desiccator < 28% Humidity

LOGBOOK #3850

PAGE 20

RDR150

Analytical Results Batch Review/Release

12/07/10 16:16:02

Requested By: VALMORES

Batch Lot	:/Sample ID	Analysis Cod	le W/O#	Group	Message
0341297					Release Requested
0341297					Successfully Released