


LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Northgate Environmental Management, Inc. 1100 Quail Street Ste. 102 New Port beach, CA 92660 ATTN: Ms. Cindy Arnold February 19, 2010

SUBJECT: Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada, Data Validation

Dear Ms. Arnold,

Enclosed are the revised data validation reports for the fractions listed below. The data validation was performed under Stage 2B & 4 guidelines. Please replace the previously submitted report with the enclosed revised report.

# LDC Project # 21768:

# SDG # Fraction

R0903918 Polychlorinated Biphenyls, Polychlorinated Biphenyls as Congeners

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

# LDC Report# 21768A3b

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada

Collection Date: July 17, 2009

LDC Report Date: February 18, 2010

Matrix:

Water

Parameters: Polychlorinated Biphenyls

\*Validation Level: Stage 2B & 4

Laboratory: Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903918

#### Sample Identification

EB071709-GW TR-6B\*\*

\*\*Indicates sample underwent Stage 4 review. \*Changed validation level from Stage 2B to Stage 4 for noted sample

# Introduction

This data review covers 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8082 for Polychlorinated Biphenyls.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

# I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

# II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

### III. Initial Calibration

Initial calibration of multicompound compounds were performed for the primary (quantitation) column as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Retention time windows were evaluated and considered technically acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples on which a Stage 2B review was performed.

# **IV.** Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

Retention time windows were evaluated and considered technically acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples on which a Stage 2B review was performed.

# V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated biphenyl contaminants were found in the method blanks.

Sample EB071709-GW was identified as an equipment blank. No polychlorinated biphenyl contaminants were found in this blank.

# VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

# VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

# VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

# IX. Regional Quality Assurance and Quality Control

Not applicable.

# X. Pesticide Cleanup Checks

# a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

# b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

# XI. Target Compound Identification

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

# XII. Project Quantitation Limit

All project quantitation limits were within validation criteria for samples on which a Stage 4 review was performed.

All compounds reported below the PQL were qualified as follows:

| Sample                      | Finding                               | Flag            | A or P |
|-----------------------------|---------------------------------------|-----------------|--------|
| All samples in SDG R0903918 | All compounds reported below the PQL. | J (all detects) | А      |

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

# XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

# XIV. Field Duplicates

No field duplicates were identified in this SDG.

# Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls - Data Qualification Summary - SDG R0903918

| SDG      | Sample                 | Compound                              | Flag            | A or P | Reason (Code)                      |
|----------|------------------------|---------------------------------------|-----------------|--------|------------------------------------|
| R0903918 | EB071709-GW<br>TR-6B** | All compounds reported below the PQL. | J (all detects) | A      | Project Quantitation Limit<br>(sp) |

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG R0903918

# No Sample Data Qualified in this SDG

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls - Equipment Blank Data Qualification Summary - SDG R0903918

No Sample Data Qualified in this SDG

**Tronox Northgate Henderson** 

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: R0903918

LDC #: 21768A3b

Date:10 /27 /09 Page: \_\_\_\_of\_\_ **Reviewer:** 2nd Reviewer

Laboratory: Columbia Analytical Services

METHOD: GC Polychlorinated Biphenyls (EPA SW 846 Method 8082)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                                |          | Comments                  |
|-------|------------------------------------------------|----------|---------------------------|
| ١.    | Technical holding times                        | A        | Sampling dates: 7/17/09   |
| II.   | GC/ECD Instrument Performance Check            | Ň        | ·                         |
| 111.  | Initial calibration                            | A        | 2 RSD 6202<br>COV/IN 6202 |
| IV.   | Continuing calibration/ICV                     | A        | Ca/w = 202                |
| V.    | Blanks                                         | A        |                           |
| VI.   | Surrogate spikes                               | A        |                           |
| VII.  | Matrix spike/Matrix spike duplicates           | N        | Client Spec.<br>ICS /p    |
| VIII. | Laboratory control samples                     | A        | ics /p                    |
| IX.   | Regional quality assurance and quality control | N        |                           |
| Xa,   | Florisil cartridge check                       | <u>N</u> |                           |
| Xb.   | GPC Calibration                                | N        |                           |
| XI.   | Target compound identification                 | N        |                           |
| XII.  | Compound quantitation and reported CRQLs       | N        |                           |
| XIII. | Overall assessment of data                     | A        |                           |
| XIV.  | Field duplicates                               | N        |                           |
| XV.   | Field blanks                                   | ND       | EB = 1                    |

A = Acceptable N = Not provided/applicable SW = See worksheet Note:

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

MISTON

|    | VV~         | <u>'ur</u> |    |    |  |
|----|-------------|------------|----|----|--|
| 1  | EB071709-GW | 11         | 21 | 31 |  |
| 2  | TR-6B       | 12         | 22 | 32 |  |
| 3  | 91602 MB    | 13         | 23 | 33 |  |
| 4  |             | 14         | 24 | 34 |  |
| 5  |             | 15         | 25 | 35 |  |
| 6  |             | 16         | 26 | 36 |  |
| 7  |             | 17         | 27 | 37 |  |
| 8  |             | 18         | 28 | 38 |  |
| 9  |             | 19         | 29 | 39 |  |
| 10 |             | 20         | 30 | 40 |  |

21768A3bW.wpd

LDC #: 21 768 A3L SDG #: See Cover

TANDAR SHALLANAS

.

#### VALIDATION FINDINGS CHECKLIST

Page: \_ l of \_2 Reviewer: \_ <u>JVC</u> 2nd Reviewer: \_\_\_\_\_

# Method: Pesticides/PCBs (EPA SW 846 Method 8081/8082)

| Validation Area                                                                                                                   | Yes    | No | NA       | Findings/Comments |
|-----------------------------------------------------------------------------------------------------------------------------------|--------|----|----------|-------------------|
| 1 Technical holding times                                                                                                         |        |    |          |                   |
| All technical holding times were met.                                                                                             |        |    |          |                   |
| Cooler temperature criteria was met.                                                                                              | /      |    |          |                   |
| II. GC/ECD Instrument performance check                                                                                           |        |    |          |                   |
| Was the instrument performance found to be acceptable?                                                                            |        |    |          |                   |
| III. Initial calibration                                                                                                          |        |    | <b>-</b> |                   |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                        | /      |    |          |                   |
| Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) $\leq$ 20%?                    | /      | W  | -        |                   |
| Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?                                               |        | /  | •        |                   |
| Did the initial calibration meet the curve fit acceptance criteria?                                                               |        |    | /        | -                 |
| Were the RT windows properly established?                                                                                         | $\sim$ |    |          |                   |
| Were the required standard concentrations analyzed in the initial calibration?                                                    |        | ŀ  |          |                   |
| IV. Continuing calibration                                                                                                        | r      | ~  | r        |                   |
| What type of continuing calibration calculation was performed?%D or%R                                                             | $\leq$ |    |          |                   |
| Were Evaluation mix standards analyzed prior to the initial calibration and sample<br>analysis?                                   |        |    |          | -                 |
| Were endrin and 4,4-DDT breakdowns $\leq$ 15% for individual breakdown in the Evaluation mix standards?                           |        |    | /        |                   |
| Was a continuing calibration analyzed daily?                                                                                      |        |    |          |                   |
| Were all percent differences (%D) $\leq$ 20% or percent recovieries 80-120%?                                                      |        |    |          |                   |
| Were all the retention times within the acceptance windows?                                                                       |        | ł  |          |                   |
| V. Blanks                                                                                                                         |        |    |          |                   |
| Was a method blank associated with every sample in this SDG?                                                                      |        |    |          |                   |
| Was a method blank analyzed for each matrix and concentration?                                                                    |        |    |          |                   |
| Were extract cleanup blanks analyzed with every batch requiring clean-up?                                                         |        | -  | <b> </b> |                   |
| Was there contamination in the method blanks or clean-up blanks? If yes, please see the Blanks validation completeness worksheet. |        | -  |          |                   |
| VI. Surrogate spikes                                                                                                              |        |    |          |                   |
| Were all surrogate %R within the QC limits?                                                                                       | /      | [  | <u> </u> |                   |
| If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?           |        |    |          |                   |
| If any %R was less than 10 percent, was a reanalysis performed to confirm %R?                                                     |        |    |          |                   |
| VII. Matrix spike/Matrix spike duplicates                                                                                         |        |    |          |                   |

# LDC #: 22 21768 Arb VALIDATION FINDINGS CHECKLIST SDG #: See Cover

Page: <u>></u> of <u>></u> Reviewer: <u>\_</u>\_\_\_\_ nd Reviewer: <u>\_</u>\_\_\_\_

| Zna | Reviewer: |   |
|-----|-----------|---|
|     |           | _ |

|                                                                                                                                                                                |          |    |          | /                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|----------|-------------------|
| Validation Area                                                                                                                                                                | Yes      | No | NA       | Findings/Comments |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. |          | 1  |          |                   |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                         |          | /  |          |                   |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                       |          |    |          |                   |
| VIII Laboratory control samples                                                                                                                                                |          |    |          |                   |
| Was an LCS analyzed for this SDG?                                                                                                                                              |          |    |          |                   |
| Was an LCS analyzed per extraction batch?                                                                                                                                      |          |    |          |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                                                               |          |    |          |                   |
| IX. Regional Quality Assurance and Quality Control                                                                                                                             |          |    | ~~~      |                   |
| Were performance evaluation (PE) samples performed?                                                                                                                            |          |    |          |                   |
| Were the performance evaluation (PE) samples within the acceptance limits?                                                                                                     |          |    |          |                   |
| X. Target compound identification                                                                                                                                              |          | [  | I        |                   |
| Were the retention times of reported detects within the RT windows?                                                                                                            |          |    |          |                   |
| XI Compound quantitation/CRQLs                                                                                                                                                 | <b>I</b> |    |          |                   |
| Were compound quantitation and CRQLs adjusted to reflect all sample dilutions, dry<br>weight factors, and clean-up activities applicable to level IV validation?               |          |    |          |                   |
| XII. System performance                                                                                                                                                        |          |    |          |                   |
| System performance was found to be acceptable.                                                                                                                                 |          |    |          |                   |
| XIII: Overall assessment of data                                                                                                                                               |          |    |          |                   |
| Overall assessment of data was found to be acceptable.                                                                                                                         |          |    |          |                   |
| XIV. Field duplicates                                                                                                                                                          |          |    | ~        |                   |
| Field duplicate pairs were identified in this SDG.                                                                                                                             |          | /  | [        |                   |
| Target compounds were detected in the field duplicates.                                                                                                                        |          |    | -        |                   |
| XV. Field blanks                                                                                                                                                               |          | ·/ |          |                   |
| Field blanks were identified in this SDG.                                                                                                                                      |          |    |          |                   |
| Target compounds were detected in the field blanks.                                                                                                                            |          | /  | <u> </u> |                   |

| 21768436 | See Core |
|----------|----------|
| DC #:_   | SDG #:   |

# **Initial Calibration Calculation Verification** VALIDATION FINDINGS WORKSHEET



METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations:

Where: Average CF = sum of the CF/number of standards %RSD = 100 \* (S/X) CF = A/C

S = Standard deviation of calibration factors A = Area of compound C = Concentration of compound 2 || ||

| 2 |         |
|---|---------|
| 5 |         |
|   | factors |
| 5 | n fa    |
|   | oration |
| 3 | calibr  |
| ž | an of   |
| 5 | Mean    |

|   |             |                     |              | Reported | Recalculated       | Reported | Recalculated | Reported | Recalculated |
|---|-------------|---------------------|--------------|----------|--------------------|----------|--------------|----------|--------------|
| # | Standard ID | Calibration<br>Date | Compound     |          | CF<br>( / س) std)  |          | CF (intial)  |          | %RSD         |
|   | 1041        | , / ,               | ( DB- 1761 ) | 3 276 15 | 3 276 +5 327617.63 | 2.964 25 | 2.96405      | 1-80     | 9,80         |
|   |             | 60/01/0             | (Dh-17)      | 4. 5~ 2  | 915161.11          | 3.78~ 1  | 1 ×87.6      | 9.91     | 292          |
|   |             |                     | / /          |          |                    |          |              |          |              |
|   |             |                     |              |          |                    |          |              |          |              |
| 2 |             |                     |              |          |                    |          |              |          |              |
|   |             |                     |              |          |                    |          |              |          |              |
|   |             |                     |              |          |                    |          |              |          |              |
|   |             |                     |              |          |                    |          |              |          |              |
| с |             |                     |              |          |                    |          |              |          |              |
|   |             |                     |              |          |                    |          |              |          |              |
|   |             |                     |              |          |                    |          |              |          |              |
|   |             |                     |              |          |                    |          |              |          |              |
| 4 |             |                     |              |          |                    |          |              |          |              |
|   |             |                     |              |          |                    |          |              |          |              |
|   |             |                     |              |          |                    |          |              |          |              |
|   |             |                     |              |          |                    |          |              |          |              |
|   |             |                     |              |          |                    |          |              |          |              |

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

INICLCrev.wpd

| $\left\{ \right.$ |
|-------------------|
| S                 |
| Ľ                 |
| 7                 |
| ا.<br>#           |
| SDG               |
|                   |

# VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

8 Ø Page: 1 of 2nd Reviewer: Reviewer:\_\_

i.).

# METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Percent difference (%D) = 100 \* (N - C)/N

Where: N = \_\_\_\_\_Initial Calibration Factor or \_\_\_\_\_Nominal Amount (ng) C = \_\_\_\_Calibration Factor from Continuing Calibration Standard or \_\_\_\_Calculated Amount (ng)

| ated         |                          |                    |              |   |   |  |   |   |   |  |  |
|--------------|--------------------------|--------------------|--------------|---|---|--|---|---|---|--|--|
| Recalculated | <b>G</b> %               | 11. 4              | 10,3         |   |   |  |   | _ |   |  |  |
| Reported     | ۵%                       | 11.4               | 10,3         |   |   |  |   |   |   |  |  |
| Recalculated | CF/Conc<br>CCV           | 20 2 6 00          | 339 200      | • |   |  |   |   |   |  |  |
| Reported     | CF/Conc<br>CCV           | 63                 |              |   |   |  |   |   |   |  |  |
|              | Average(CF/<br>CCV Conc  | 296.376 63         | 378.204 L    |   |   |  |   |   |   |  |  |
|              | Compound                 | (1021-84) 1 - 0201 | $(\mu - qq)$ | L |   |  |   |   |   |  |  |
|              | Calibration<br>Date/Time | 7/22/69            | -<br>-       |   |   |  |   |   |   |  |  |
|              | Standard<br>ID           | C(V 20 B           |              |   |   |  |   |   |   |  |  |
|              | #                        | -                  |              |   | 2 |  | ო |   | 4 |  |  |

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 22768 A3b SDG #: Sre Corr

# VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

| Page:         | \_of_) |
|---------------|--------|
| Reviewer:     | JV/    |
| 2nd reviewer: | P      |
|               |        |

#### METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS \* 100

Where: SF = Surrogate Found SS = Surrogate Spiked

#### Sample ID: # つ

Percent Percent Surrogate Surrogate Percent Column Spiked Found Recovery Recovery Difference Surrogate Reported Recalculated Tetrachloro-m-xylene 80 80 79.646 lov Q Tetrachloro-m-xylene DB-1701 93 92.966 93 Decachlorobiphenyl Decachlorobiphenyl

#### Sample ID:

| Surrogate            | Column | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|                      |        |                     |                    | Reported            | Recalculated        |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Decachlorobiphenyl   |        |                     |                    |                     |                     |                       |
| Decachlorobiphenyl   |        |                     |                    |                     |                     |                       |

#### Sample ID:

| Surrogate            | Column | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|                      |        |                     |                    | Reported            | Recalculated        |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Decachlorobiphenyl   |        |                     |                    |                     |                     |                       |
| Decachlorobiphenyl   |        |                     |                    |                     |                     |                       |

#### Sample ID:

| Surrogate            | Column | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|                      |        |                     |                    | Reported            | Recalculated        |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Decachlorobiphenyl   |        |                     |                    |                     |                     |                       |
| Decachlorobiphenyl   |        |                     |                    |                     |                     |                       |

Notes:

| DC #: <u>しまてん</u> 8 みみ<br>SDG #: <u>しまた C</u> かっ Laboratory Control Sample Duplicate Results Verification                                                            | Page: lof )<br>Reviewer: 002<br>2nd Reviewer: |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)                                                                                                             |                                               |
| The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the | were recalculated for the                     |

Ĺ 2 Ĺ • 2 . compounds identified below using the following calculation:

% Recovery = 100\* (SSC-SC)/SA

RPD = I LCS - LCSD I \* 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery

SC = Concentration

Where: SSC = Spiked sample concentration SA = Spike added

LCS/LCSD samples: 9 1602 LCS / D

|              | 5        | oike<br>·         | Spiked        | Sample                   | ГС               | TCS      |          | LCSD             | LCS/     | LCS/LCSD |
|--------------|----------|-------------------|---------------|--------------------------|------------------|----------|----------|------------------|----------|----------|
| Compound     | а<br>Ч   | Added<br>( 45 /L) | Conce<br>( भर | Concentration<br>(45 /L) | Percent Recovery | Recovery | Percent  | Percent Recovery | R        | RPD      |
|              | ,<br>FCS | rcsp              | L CCS         | LCSD                     | Reported         | Recalc.  | Reported | Recalc.          | Reported | Recalc.  |
| gamma-BHC    |          |                   |               |                          |                  |          |          |                  |          |          |
| 4,4'-DDT     |          |                   |               |                          |                  |          |          |                  |          |          |
| Aroclor 1260 | 5, W     | ы.<br>С. С.       | 4.31          | 4.8                      | 12<br>20         | 86       | 96       | 96               | 1        | =        |
|              |          |                   |               | _                        |                  |          |          |                  |          |          |
|              |          |                   |               |                          |                  |          |          |                  |          |          |
|              |          |                   |               |                          |                  |          |          |                  |          |          |
|              |          |                   |               |                          |                  |          |          |                  |          |          |
|              |          |                   |               |                          |                  |          |          |                  |          |          |
|              |          |                   |               |                          |                  |          |          |                  |          |          |
|              |          |                   |               |                          |                  |          |          |                  |          |          |
|              |          |                   |               |                          |                  |          |          |                  |          |          |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 32 21768 + 35 SDG #: \_\_\_\_\_ Correy

# VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

| Page:_        | <u>1 of /</u> |
|---------------|---------------|
| Reviewer:     | JV6           |
| 2nd reviewer: | V             |
|               |               |

#### METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Y N/N/A Y N N/A

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

|   | Example:                              |
|---|---------------------------------------|
|   | Sample I.D                            |
|   | Conc. = ()<br>()                      |
|   | =                                     |
|   |                                       |
|   |                                       |
|   |                                       |
|   |                                       |
|   | · · · · · · · · · · · · · · · · · · · |
|   |                                       |
| • |                                       |

| # | Sample ID | Compound | Reported<br>Concentration<br>( ) | Calculated<br>Concentration<br>( ) | Qualification |
|---|-----------|----------|----------------------------------|------------------------------------|---------------|
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  | -                                  |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |

Note:

# LDC Report# 21768A3c

# Laboratory Data Consultants, Inc. Data Validation Report

| Project/Site Name:          | Tronox LLC Facility, 2009 Phase B Investigation,<br>Henderson, Nevada |
|-----------------------------|-----------------------------------------------------------------------|
| Collection Date:            | July 17, 2009                                                         |
| LDC Report Date:            | February 18, 2010                                                     |
| Matrix:                     | Water                                                                 |
| Parameters:                 | Polychlorinated Biphenyls as Congeners                                |
| *Validation Stage:          | Stage 2B & 4                                                          |
| Laboratory:                 | Columbia Analytical Services, Inc.                                    |
| Sample Delivery Group (SDG) | · R0903918                                                            |

Sample Delivery Group (SDG): R0903918

**Sample Identification** 

EB071709-GW TR-6B\*\*

\*\*Indicates sample underwent Stage 4 review. \*Changed validation Stage from Stage 2B to Stage 4 for noted sample

V:\LOGIN\TRONOXNG\21768A3C.RV1

#### Introduction

This data review covers 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 1668A for Polychlorinated Biphenyls as Congeners.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

# I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

# II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency and all criteria were met.

# III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all compounds were within validation criteria.

# IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 30.0% for unlabeled compounds and less than or equal to 50.0% for labeled compounds.

The ion abundance ratios for all compounds were within validation criteria.

# V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated biphenyls as congeners contaminants were found in the method blanks with the following exceptions:

| Method Blank ID | Extraction<br>Date | Compound                                                                                            | Concentration                                                                                                               | Associated Samples             |
|-----------------|--------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| EQ0900286-01    | 7/30/09            | PCB-1<br>PCB-3<br>PCB-8<br>PCB-11<br>PCB-18+30<br>PCB-17<br>PCB-16<br>PCB-32<br>PCB-26+29<br>PCB-31 | 19.3 pg/L<br>19.5 pg/L<br>124 pg/L<br>1200 pg/L<br>137 pg/L<br>58.4 pg/L<br>57.7 pg/L<br>42.8 pg/L<br>29.7 pg/L<br>144 pg/L | All samples in SDG<br>R0903918 |

| Method Blank ID | Extraction<br>Date | Compound                 | Concentration | Associated Samples |
|-----------------|--------------------|--------------------------|---------------|--------------------|
| EQ0900286-01    | 7/30/09            | PCB-20+28                | 136 pg/L      | All samples in SDG |
| continued)      |                    | PCB-21+33                | 79.9 pg/L     | R0903918           |
|                 |                    | PCB-22                   | 45.8 pg/L     |                    |
|                 |                    | PCB-37                   | 23.0 pg/L     |                    |
|                 |                    | PCB-50+53                | 15.6 pg/L     |                    |
|                 |                    | PCB-45+51                | 24.4 pg/L     |                    |
|                 |                    | PCB-52                   | 142 pg/L      |                    |
|                 |                    | PCB-49+69                | 60.4 pg/L     |                    |
|                 |                    | PCB-48                   | 22.9 pg/L     |                    |
|                 |                    | PCB-44+47+65             | 105 pg/L      |                    |
|                 |                    | PCB-59+62+75             | 8.34 pg/L     |                    |
|                 |                    | PCB-42                   | 23.0 pg/L     |                    |
|                 |                    | PCB-41+71+40             | 44.5 pg/L     |                    |
|                 |                    | PCB-64                   | 43.7 pg/L     |                    |
|                 |                    | PCB-68                   | 7.94 pg/L     |                    |
|                 |                    | PCB-70+61+74+76          | 128 pg/L      |                    |
|                 |                    | PCB-66                   | 65.0 pg/L     |                    |
|                 |                    | PCB-56                   | 22.4 pg/L     |                    |
|                 |                    | PCB-60                   | 13.3 pg/L     |                    |
|                 |                    | PCB-95                   | 88.9 pg/L     |                    |
|                 |                    | PCB-88+91                | 13.5 pg/L     |                    |
|                 |                    | PCB-84                   | 27.2 pg/L     |                    |
|                 |                    | PCB-92                   | 15.0 pg/L     |                    |
|                 |                    | PCB-90+101+113           | 77.4 pg/L     |                    |
|                 |                    | PCB-83+99                | 34.5 pg/L     |                    |
|                 |                    | PCB-86+87+97+108+119+125 | 54.8 pg/L     |                    |
|                 |                    | PCB-85+116               | 8.36 pg/L     |                    |
|                 |                    | PCB-110+115              | 86.3 pg/L     |                    |
|                 |                    | PCB-82                   | 8.62 pg/L     |                    |
|                 |                    | PCB-118                  | 41.2 pg/L     |                    |
|                 |                    | PCB-105                  | 19.0 pg/L     |                    |
|                 |                    | PCB-136                  | 10.6 pg/L     |                    |
|                 |                    | PCB-135+151              | 25.4 pg/L     |                    |
|                 |                    | PCB-147+149              | 48.3 pg/L     |                    |
|                 |                    | PCB-132                  | 24.1 pg/L     |                    |
|                 |                    | PCB-146                  | 6.64 pg/L     |                    |
|                 |                    | PCB-153+168              | 45.7 pg/L     |                    |
|                 |                    | PCB-141                  | 11.4 pg/L     |                    |
|                 |                    | PCB-129+138+163          | 72.0 pg/L     |                    |
|                 |                    | PCB-158                  | 5.25 pg/L     |                    |
|                 |                    | PCB-128+166              | 10.5 pg/L     |                    |
|                 | 1                  | PCB-156+157              | 7.17 pg/L     |                    |
|                 | 1                  | PCB-179                  | 5.99 pg/L     |                    |
|                 |                    | PCB-187                  | 11.9 pg/L     |                    |
|                 |                    | PCB-174                  | 6.47 pg/L     |                    |
|                 |                    | PCB-180+193              | 12.2 pg/L     |                    |
|                 |                    | PCB-202                  | 5.00 pg/L     |                    |
|                 |                    | PCB-201                  | 2.61 pg/L     |                    |
|                 |                    | PCB-198+199              | 22.4 pg/L     |                    |
|                 |                    | PCB-196                  | 4.24 pg/L     |                    |
|                 |                    | PCB-203                  | 9.00 pg/L     |                    |
|                 |                    | PCB-194                  | 6.26 pg/L     |                    |
|                 |                    | PCB-208                  | 13.0 pg/L     |                    |
|                 |                    | PCB-206                  | 33.5 pg/L     |                    |
|                 |                    | PCB-209                  | 11.3 pg/L     |                    |
|                 |                    | Total MonoCB             | 38.9 pg/L     |                    |
|                 |                    | Total DiCB               | 1330 pg/L     |                    |
|                 |                    | Total TriCB              | 754 pg/L      |                    |
|                 |                    | Total TetraCB            | 727 pg/L      |                    |
|                 |                    | Total PentaCB            | 475 pg/L      |                    |
|                 | 1                  | Total HexaCB             | 267 pg/L      | 1                  |
|                 |                    | Total HeptaCB            | 36.5 pg/L     |                    |

| Method Blank ID | Extraction<br>Date | Compound     | Concentration | Associated Samples |
|-----------------|--------------------|--------------|---------------|--------------------|
| EQ0900286-01    | 7/30/09            | Total OctaCB | 49.6 pg/L     | All samples in SDG |
| (continued)     |                    | Total NonaCB | 46.5 pg/L     | R0903918           |

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

| Sample  | Compound                 | Reported<br>Concentration | Modified Final<br>Concentration |
|---------|--------------------------|---------------------------|---------------------------------|
|         |                          | 219 pg/L                  | 219U pg/L                       |
| TR-6B** | PCB-8                    | 1020 pg/L                 | 1020U pg/L                      |
|         | PCB-11                   | 103 pg/L                  | 103U pg/L                       |
|         | PCB-18+30                | 43.3 pg/L                 | 43.3U pg/L                      |
|         | PCB-17                   | 57.7 pg/L                 | 57.7U pg/L                      |
|         | PCB-16                   | 27.2 pg/L                 | 27.2U pg/L                      |
|         | PCB-32                   | 33.3 pg/L                 | 33.3U pg/L                      |
|         | PCB-26+29                | 112 pg/L                  | 112U pg/L                       |
|         | PCB-31                   | 94.7 pg/L                 | 94.7U pg/L                      |
|         | PCB-20+28                | 68.1 pg/L                 | 68.1U pg/L                      |
|         | PCB-21+33                | 45.3 pg/L                 | 45.3U pg/L                      |
|         | PCB-22                   | 115 pg/L                  | 115U pg/L                       |
|         | PCB-52                   | 40.1 pg/L                 | 40.1U pg/L                      |
|         | PCB-49+69                | 75.6 pg/L                 | 75.6U pg/L                      |
|         | PCB-44+47+65             | 21.4 pg/L                 | 21.4U pg/L                      |
|         | PCB-41+71+40             | 23.2 pg/L                 | 23.2U pg/L                      |
|         | PCB-64                   | 88.9 pg/L                 | 88.9U pg/L                      |
|         | PCB-70+61+74+76          | 38.4 pg/L                 | 38.4U pg/L                      |
|         | PCB-66                   | 18.1 pg/L                 | 18.1U pg/L                      |
|         | PCB-56                   | 9.94 pg/L                 | 9.94U pg/L                      |
|         | PCB-60                   |                           | 89.3U pg/L                      |
|         | PCB-95                   | 89.3 pg/L                 | 11.6U pg/L                      |
|         | PCB-88+91                | 11.6 pg/L                 | 27.1U pg/L                      |
|         | PCB-84                   | 27.1 pg/L                 | 18.0U pg/L                      |
|         | PCB-92                   | 18.0 pg/L                 | 95.4U pg/L                      |
|         | PCB-90+101+113           | 95.4 pg/L                 | 41.2U pg/L                      |
|         | PCB-83+99                | 41.2 pg/L                 | 74.7U pg/L                      |
|         | PCB-86+87+97+108+119+125 | 74.7 pg/L                 | 9.89U pg/L                      |
|         | PCB-85+116               | 9.89 pg/L                 | 119U pg/L                       |
|         | PCB-110+115              | 119 pg/L                  | 79.4U pg/L                      |
|         | PCB-118                  | 79.4 pg/L                 | 42.6U pg/L                      |
|         | PCB-105                  | 42.6 pg/L                 | 11.4U pg/L                      |
|         | PCB-136                  | 11.4 pg/L                 | 30.4U pg/L                      |
|         | PCB-135+151              | 30.4 pg/L                 | 66.9U pg/L                      |
|         | PCB-147+149              | 66.9 pg/L                 | 41.1U pg/L                      |
|         | PCB-132                  | 41.1 pg/L                 | 14.4U pg/L                      |
|         | PCB-146                  | 14.4 pg/L                 | 67.6U pg/L                      |
|         | PCB-153+168              | 67.6 pg/L                 | 17.0U pg/L                      |
|         | PCB-141                  | 17.0 pg/L                 | 118U pg/L                       |
|         | PCB-129+138+163          | 118 pg/L                  | 11.9U pg/L                      |
|         | PCB-158                  | 11.9 pg/L                 | 18.6U pg/L                      |
|         | PCB-128+166              | 18.6 pg/L                 | 17.1U pg/L                      |
|         | PCB-156+157              | 17.1 pg/L                 | 5.31U pg/L                      |
|         | PCB-179                  | 5.31 pg/L                 | 19.9U pg/L                      |
|         | PCB-187                  | 19.9 pg/L                 | · -                             |
|         | PCB-174                  | 13.7 pg/L                 | 13.7U pg/L<br>28.2U pg/L        |
|         | PCB-180+193              | 28.2 pg/L                 | 23.1U pg/L                      |
|         | PCB-198+199              | 23.1 pg/L                 |                                 |
|         | PCB-196                  | 8.98 pg/L                 | 8.98U pg/L<br>13.4U pg/L        |
|         | PCB-203                  | 13.4 pg/L                 | 10.40 pg/c                      |
|         |                          |                           |                                 |

|                   | Concentration | Concentration                                                                     |
|-------------------|---------------|-----------------------------------------------------------------------------------|
|                   | 18.8 pg/L     | 18.8U pg/L                                                                        |
|                   | 15.1 pg/L     | 15.1U pg/L                                                                        |
|                   |               |                                                                                   |
|                   | 48.2 pg/L     | 48.2U pg/L                                                                        |
| _                 | 24.7 pg/L     | 24.7U pg/L                                                                        |
| В                 | 1550 pg/L     | 1550U pg/L                                                                        |
| B                 | 584 pg/L      | 584U pg/L                                                                         |
| aCB               | 430 pg/L      | 430U pg/L                                                                         |
| taCB              | 608 pg/L      | 608U pg/L                                                                         |
| aCB               | 414 pg/L      | 414U pg/L                                                                         |
| otaCB             | 89.7 pg/L     | 89.7U pg/L                                                                        |
| aCB               | 64.3 pg/L     | 64.3U pg/L                                                                        |
| haCB              | 63.3 pg/L     | 63.3U pg/L                                                                        |
|                   |               |                                                                                   |
|                   | 30.1 pg/L     | 30.1U pg/L                                                                        |
|                   | 31.9 pg/L     | 31.9U pg/L                                                                        |
|                   | 112 pg/L      | 112U pg/L                                                                         |
|                   | 1080 pg/L     | 1080U pg/L                                                                        |
| 30                | 68.2 pg/L     | 68.2U pg/L                                                                        |
|                   | 29.9 pg/L     | 29.9U pg/L                                                                        |
|                   | 35.4 pg/L     | 35.4U pg/L                                                                        |
|                   | 19.8 pg/L     | 19.8U pg/L                                                                        |
|                   | 80.4 pg/L     | 80.4U pg/L                                                                        |
| 28                | 84.5 pg/L     | 84.5U pg/L                                                                        |
| 33                | 55.6 pg/L     | 55.6U pg/L                                                                        |
|                   | 35.9 pg/L     | 35.9U pg/L                                                                        |
|                   | 92.0 pg/L     | 92.0U pg/L                                                                        |
| 69                | 35.9 pg/L     | 35.9U pg/L                                                                        |
| 47+65             | 71.8 pg/L     | 71.8U pg/L                                                                        |
| 71+40             | 29.1 pg/L     | 29.1U pg/L                                                                        |
| 71+40             | 26.8 pg/L     | 26.8U pg/L                                                                        |
| 61+74+76          | 98.2 pg/L     | 98.2U pg/L                                                                        |
| 01+/4+/0          |               | 43.4U pg/L                                                                        |
|                   | 43.4 pg/L     |                                                                                   |
|                   | 21.0 pg/L     | 21.0U pg/L                                                                        |
|                   | 10.5 pg/L     | 10.5U pg/L                                                                        |
| -                 | 70.3 pg/L     | 70.3U pg/L                                                                        |
| 91                | 11.2 pg/L     | 11.2U pg/L                                                                        |
|                   | 22.3 pg/L     | 22.3U pg/L                                                                        |
|                   | 13.4 pg/L     | 13.4U pg/L                                                                        |
| 101+113           | 70.1 pg/L     | 70.1U pg/L                                                                        |
| 99                | 31.6 pg/L     | 31.6U pg/L                                                                        |
| 87+97+108+119+125 | 49.9 pg/L     | 49.9U pg/L                                                                        |
| 116               | 5.00 pg/L     | 5.00U pg/L                                                                        |
| +115              | 76.0 pg/L     | 76.0U pg/L                                                                        |
|                   | 10.3 pg/L     | 10.3U pg/L                                                                        |
|                   | 42.6 pg/L     | 42.6U pg/L                                                                        |
|                   | 16.8 pg/L     | 16.8U pg/L                                                                        |
|                   | 9.77 pg/L     | 9.77U pg/L                                                                        |
| +151              | 22.5 pg/L     | 22.5U pg/L                                                                        |
| +149              | 48.5 pg/L     | 48.5U pg/L                                                                        |
|                   | 19.7 pg/L     | 19.7U pg/L                                                                        |
|                   | 7.79 pg/L     | 7.79U pg/L                                                                        |
|                   |               | 43.3U pg/L                                                                        |
|                   |               | 12.5U pg/L                                                                        |
| +138+163          |               | 61.0U pg/L                                                                        |
|                   |               | 5.93U pg/L                                                                        |
|                   |               |                                                                                   |
|                   | 1             | 10.3U pg/L                                                                        |
|                   | 1             | 8.03U pg/L                                                                        |
|                   | 6.38 pg/L     | 6.38U pg/L                                                                        |
| 335               | 9+138+163     | 12.5 pg/L   9+138+163 61.0 pg/L   3 5.93 pg/L   3+166 10.3 pg/L   5+157 8.03 pg/L |

| Sample                  | Compound                                                                                                                                                | Reported<br>Concentration                                                                                                              | Modified Final<br>Concentration                                                                                                          |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| EB071709-GW (continued) | PCB-187<br>PCB-174<br>PCB-180+193<br>PCB-202<br>PCB-198+199<br>PCB-196<br>PCB-203<br>PCB-203<br>PCB-194<br>PCB-208<br>PCB-206                           | 12.9 pg/L<br>9.48 pg/L<br>18.0 pg/L<br>7.02 pg/L<br>22.2 pg/L<br>4.27 pg/L<br>11.7 pg/L<br>7.72 pg/L<br>13.9 pg/L<br>39.0 pg/L         | 12.9U pg/L<br>9.48U pg/L<br>18.0U pg/L<br>7.02U pg/L<br>22.2U pg/L<br>4.27U pg/L<br>11.7U pg/L<br>7.72U pg/L<br>13.9U pg/L<br>39.0U pg/L |
|                         | PCB-209<br>Total MonoCB<br>Total DiCB<br>Total TriCB<br>Total TetraCB<br>Total PentaCB<br>Total HexaCB<br>Total HeptaCB<br>Total OctaCB<br>Total NonaCB | 12.1 pg/L<br>62.0 pg/L<br>1190 pg/L<br>410 pg/L<br>432 pg/L<br>432 pg/L<br>263 pg/L<br>263 pg/L<br>65.0 pg/L<br>52.8 pg/L<br>56.8 pg/L | 12.1U pg/L<br>62.0U pg/L<br>1190U pg/L<br>410U pg/L<br>432U pg/L<br>432U pg/L<br>263U pg/L<br>65.0U pg/L<br>52.8U pg/L<br>56.8U pg/L     |

Sample EB071709-GW was identified as an equipment blank. No polychlorinated dioxin/dibenzofuran contaminants were found in this blank with the following exceptions:

| Equipment Blank ID | Sampling<br>Date | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                | Concentration                                                                                                                                                                                                                                                                                                                                                                                     | Associated Samples |
|--------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| EB071709-GW        | 7/17/09          | PCB-1<br>PCB-3<br>PCB-3<br>PCB-3<br>PCB-11<br>PCB-18+30<br>PCB-17<br>PCB-16<br>PCB-32<br>PCB-31<br>PCB-20+28<br>PCB-21+33<br>PCB-22+33<br>PCB-22<br>PCB-52<br>PCB-49+69<br>PCB-44+47+65<br>PCB-49+69<br>PCB-44+47+65<br>PCB-41+71+40<br>PCB-64<br>PCB-70+61+74+76<br>PCB-66<br>PCB-66<br>PCB-56<br>PCB-66<br>PCB-77<br>PCB-95<br>PCB-88+91<br>PCB-84<br>PCB-92<br>PCB-90+101+113<br>PCB-85+99<br>PCB-86+87+97+108+119+125<br>PCB-85+116 | 30.1 pg/L<br>31.9 pg/L<br>112 pg/L<br>1080 pg/L<br>68.2 pg/L<br>29.9 pg/L<br>35.4 pg/L<br>35.4 pg/L<br>80.4 pg/L<br>84.5 pg/L<br>35.9 pg/L<br>35.9 pg/L<br>35.9 pg/L<br>29.1 pg/L<br>29.1 pg/L<br>29.1 pg/L<br>29.8 pg/L<br>98.2 pg/L<br>43.4 pg/L<br>21.0 pg/L<br>3.47 pg/L<br>3.47 pg/L<br>22.3 pg/L<br>11.2 pg/L<br>22.3 pg/L<br>13.4 pg/L<br>31.6 pg/L<br>31.6 pg/L<br>49.9 pg/L<br>5.00 pg/L | TR-6B**            |

| Equipment Blank ID         | Sampling<br>Dat <del>e</del> | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Associated Samples |
|----------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| EB071709-GW<br>(continued) | 7/17/09                      | PCB-110+115<br>PCB-82<br>PCB-118<br>PCB-105<br>PCB-136<br>PCB-135+151<br>PCB-144<br>PCB-147+149<br>PCB-132<br>PCB-146<br>PCB-153+168<br>PCB-153+168<br>PCB-153+168<br>PCB-153+168<br>PCB-130<br>PCB-137<br>PCB-164<br>PCB-129+138+163<br>PCB-158<br>PCB-128+166<br>PCB-156+157<br>PCB-167<br>PCB-167<br>PCB-167<br>PCB-167<br>PCB-179<br>PCB-183<br>PCB-174<br>PCB-183<br>PCB-174<br>PCB-180+193<br>PCB-177<br>PCB-180+193<br>PCB-198+199<br>PCB-198+199<br>PCB-198+199<br>PCB-202<br>PCB-198+199<br>PCB-203<br>PCB-194<br>PCB-204<br>PCB-205<br>PCB-207<br>PCB-206<br>PCB-207<br>PCB-206<br>PCB-207<br>PCB-206<br>PCB-209<br>Total MonoCB<br>Total DiCB<br>Total TriCB<br>Total TriCB<br>Total TetraCB<br>Total HeptaCB<br>Total HeptaCB<br>Total NonaCB | 76.0 pg/L<br>10.3 pg/L<br>42.6 pg/L<br>16.8 pg/L<br>9.77 pg/L<br>22.5 pg/L<br>2.68 pg/L<br>19.7 pg/L<br>19.7 pg/L<br>19.7 pg/L<br>19.7 pg/L<br>12.5 pg/L<br>2.84 pg/L<br>3.60 pg/L<br>2.79 pg/L<br>61.0 pg/L<br>5.93 pg/L<br>10.3 pg/L<br>2.38 pg/L<br>10.3 pg/L<br>2.38 pg/L<br>10.3 pg/L<br>2.38 pg/L<br>10.3 pg/L<br>2.38 pg/L<br>10.3 pg/L<br>2.38 pg/L<br>10.9 pg/L<br>5.53 pg/L<br>9.48 pg/L<br>18.0 pg/L<br>4.54 pg/L<br>18.0 pg/L<br>22.2 pg/L<br>4.27 pg/L<br>11.7 pg/L<br>7.72 pg/L<br>13.9 pg/L<br>3.84 pg/L<br>3.90 pg/L<br>13.9 pg/L<br>3.84 pg/L<br>3.90 pg/L<br>12.1 pg/L<br>3.90 pg/L<br>11.0 pg/L<br>4.10 pg/L<br>4.10 pg/L<br>4.10 pg/L<br>4.10 pg/L<br>4.10 pg/L<br>4.263 pg/L<br>4.10 pg/L<br>4.263 pg/L<br>6.38 pg/L<br>6.38 pg/L<br>5.8 pg/L | TR-6B**            |

Sample concentrations were compared to concentrations detected in the equipment blanks as required by the QAPP. No sample data was qualified with the following exceptions:

| Sample  | Compound                 | Reported<br>Concentration | Modified Final<br>Concentration |
|---------|--------------------------|---------------------------|---------------------------------|
| TR-6B** | PCB-3                    | 103 pg/L                  | 103U pg/L                       |
|         | PCB-8                    | 219 pg/L                  | 219U pg/L                       |
|         | PCB-11                   | 1120 pg/L                 | 1120U pg/L                      |
|         | PCB-18+30                | 103 pg/L                  | 103U pg/L                       |
|         | PCB-17                   | 43.3 pg/L                 | 43.3U pg/L                      |
|         | PCB-16                   | 57.7 pg/L                 | 57.7U pg/L                      |
|         | PCB-32                   | 27.2 pg/L                 | 27.2U pg/L                      |
|         | PCB-31                   | 112 pg/L                  | 112U pg/L                       |
|         | PCB-20+28                | 94.7 pg/L                 | 94.7U pg/L                      |
|         | PCB-21+33                | 68.1 pg/L                 | 68.1U pg/L                      |
|         | PCB-22                   | 45.3 pg/L                 | 45.3U pg/L                      |
|         | PCB-52                   | 115 pg/L                  | 115U pg/L                       |
|         | PCB-49+69                |                           | 40.1U pg/L                      |
|         | PCB-44+47+65             | 40.1 pg/L                 | • •                             |
|         |                          | 75.6 pg/L                 | 75.6U pg/L                      |
|         | PCB-41+71+40             | 21.4 pg/L                 | 21.4U pg/L                      |
|         | PCB-64                   | 23.2 pg/L                 | 23.2U pg/L                      |
|         | PCB-70+61+74+76          | 88.9 pg/L                 | 88.9U pg/L                      |
|         | PCB-66                   | 38.4 pg/L                 | 38.4U pg/L                      |
|         | PCB-56                   | 18.1 pg/L                 | 18.1U pg/L                      |
|         | PCB-60                   | 9.94 pg/L                 | 9.94U pg/L                      |
|         | PCB-95                   | 89.3 pg/L                 | 89.3U pg/L                      |
|         | PCB-88+91                | 11.6 pg/L                 | 11.6U pg/L                      |
|         | PCB-84                   | 27.1 pg/L                 | 27.1U pg/L                      |
|         | PCB-92                   | 18.0 pg/L                 | 18.0U pg/L                      |
|         | PCB-90+101+113           | 95.4 pg/L                 | 95.4U pg/L                      |
|         | PCB-83+99                | 41.2 pg/L                 | 41.2U pg/L                      |
|         | PCB-86+87+97+108+119+125 | 74.7 pg/L                 | 74.7U pg/L                      |
|         | PCB-85+116               | 9.89 pg/L                 | 9.89U pg/L                      |
|         | PCB-110+115              | 119 pg/L                  | 119U pg/L                       |
|         | PCB-118                  | 79.4 pg/L                 | 79.4U pg/L                      |
|         | PCB-105                  | 42.6 pg/L                 | 42.6U pg/L                      |
|         | PCB-136                  | • •                       | 11.4U pg/L                      |
|         |                          | 11.4 pg/L                 |                                 |
|         | PCB-135+151              | 30.4 pg/L                 | 30.4U pg/L                      |
|         | PCB-147+149              | 66.9 pg/L                 | 66.9U pg/L                      |
|         | PCB-132                  | 41.1 pg/L                 | 41.1U pg/L                      |
|         | PCB-146                  | 14.4 pg/L                 | 14.4U pg/L                      |
|         | PCB-153+168              | 67.6 pg/L                 | 67.6U pg/L                      |
|         | PCB-141                  | 17.0 pg/L                 | 17.0U pg/L                      |
|         | PCB-129+138+163          | 118 pg/L                  | 118U pg/L                       |
|         | PCB-158                  | 11.9 pg/L                 | 11.9U pg/L                      |
|         | PCB-128+166              | 18.6 pg/L                 | 18.6U pg/L                      |
|         | PCB-156+157              | 17.1 pg/L                 | 17.1U pg/L                      |
|         | PCB-179                  | 5.31 pg/L                 | 5.31U pg/L                      |
|         | PCB-187                  | 19.9 pg/L                 | 19.9U pg/L                      |
|         | PCB-183                  | 7.79 pg/L                 | 7.79U pg/L                      |
|         | PCB-174                  | 13.7 pg/L                 | 13.7U pg/L                      |
|         | PCB-180+193              | 28.2 pg/L                 | 28.2U pg/L                      |
|         | PCB-170                  | 14.8 pg/L                 | 14.8U pg/L                      |
|         | PCB-198+199              | 23.1 pg/L                 | 23.1U pg/L                      |
|         | PCB-196                  | 8.98 pg/L                 | 8.98U pg/L                      |
|         | PCB-203                  | 13.4 pg/L                 | 13.4U pg/L                      |
|         | PCB-194                  | 18.8 pg/L                 | 18.8U pg/L                      |
|         | PCB-208                  | 15.1 pg/L                 | 15.1U pg/L                      |
|         | PCB-206                  | 48.2 pg/L                 | 48.2U pg/L                      |
|         | PCB-208                  |                           | 24.7U pg/L                      |
|         |                          | 24.7 pg/L                 | 1 10                            |
|         | Total DiCB               | 1550 pg/L                 | 1550U pg/L                      |
|         | Total TriCB              | 584 pg/L                  | 584U pg/L                       |
|         | Total TetraCB            | 430 pg/L                  | 430U pg/L                       |
|         | Total PentaCB            | 608 pg/L                  | 608U pg/L                       |
|         | Total HexaCB             | 414 pg/L                  | 414U pg/L                       |
|         | Total HeptaCB            | 89.7 pg/L                 | 89.7U pg/L                      |
|         | Total OctaCB             | 64.3 pg/L                 | 64.3U pg/L                      |
|         | Total NonaCB             | 63.3 pg/L                 | 63.3U pg/L                      |

# VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

# VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

# VIII. Regional Quality Assurance and Quality Control

Not applicable.

# IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits with the following exceptions:

| Sample       | Internal Standards                                                                                                                                    | %R (Limits)                                                                            | Compound                                                            | Flag                                    | A or P |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|--------|
| EB071709-GW  | <sup>13</sup> C-PCB-1<br><sup>13</sup> C-PCB-3<br><sup>13</sup> C-PCB-4<br><sup>13</sup> C-PCB-54                                                     | 20 (25-150)<br>21 (25-150)<br>23 (25-150)<br>23 (25-150)                               | PCB-1 thru 14<br>PCB-40 thru 76<br>PCB-78 thru 80                   | J (all detects)<br>UJ (all non-detects) | Ρ      |
| TR-6B**      | <sup>13</sup> C-PCB-1<br><sup>13</sup> C-PCB-3<br><sup>13</sup> C-PCB-4<br><sup>13</sup> C-PCB-15<br><sup>13</sup> C-PCB-19<br><sup>13</sup> C-PCB-54 | 19 (25-150)<br>19 (25-150)<br>22 (25-150)<br>24 (25-150)<br>23 (25-150)<br>22 (25-150) | PCB-1 thru 36<br>PCB-38 thru 76<br>PCB-78 thru 80                   | J (all detects)<br>UJ (all non-detects) | Ρ      |
| EQ0900286-01 | <sup>13</sup> C-PCB-1<br><sup>13</sup> C-PCB-3<br><sup>13</sup> C-PCB-4<br><sup>13</sup> C-PCB-19<br><sup>13</sup> C-PCB-54                           | 13 (25-150)<br>16 (25-150)<br>19 (25-150)<br>21 (25-150)<br>23 (25-150)                | PCB-1 thru 14<br>PCB-16 thru 36<br>PCB-38 thru 76<br>PCB-78 thru 80 | J (all detects)<br>UJ (all non-detects) | Ρ      |

# X. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

# XI. Project Quantitation Limit

All project quantitation limits were within validation criteria for samples on which a Stage 4 review was performed.

All compounds reported below the PQL were qualified as follows:

| Sample                      | Finding                               | Flag            | A or P |
|-----------------------------|---------------------------------------|-----------------|--------|
| All samples in SDG R0903918 | All compounds reported below the PQL. | J (all detects) | A      |

All compounds reported as EMPC were qualified as follows:

| Sample                      | Finding                                                                    | Flag             | A or P |
|-----------------------------|----------------------------------------------------------------------------|------------------|--------|
| All samples in SDG R0903918 | All compounds reported as estimated maximum possible concentration (EMPC). | JK (all detects) | A      |

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

# XII. System Performance

The system performance was acceptable validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

# XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

# XIV. Field Duplicates

No field duplicates were identified in this SDG.

# Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls as Congeners - Data Qualification Summary - SDG R0903918

| SDG      | Sample                 | Compound                                          | Flag                                    | A or P | Reason (Code)                      |
|----------|------------------------|---------------------------------------------------|-----------------------------------------|--------|------------------------------------|
| R0903918 | EB071709-GW            | PCB-1 thru 14<br>PCB-40 thru 76<br>PCB-78 thru 80 | J (all detects)<br>UJ (all non-detects) | Ρ      | Internal standards (%R) (i)        |
| R0903918 | TR-6B**                | PCB-1 thru 36<br>PCB-38 thru 76<br>PCB-78 thru 80 | J (all detects)<br>UJ (all non-detects) | Р      | Internal standards (%R) (i)        |
| R0903918 | EB071709-GW<br>TR-6B** | All compounds reported below the PQL.             | J (all detects)                         | A      | Project Quantitation Limit<br>(sp) |
| R0903918 | EB071709-GW<br>TR-6B** | All compounds reported as<br>EMPC                 | JK (all detects)                        | A      | Project Quantitation Limit<br>(k)  |

# Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls as Congeners - Laboratory Blank Data Qualification Summary - SDG R0903918

| SDG      | Sample  | Compound                     | Modified Final<br>Concentration | A or P | Code |
|----------|---------|------------------------------|---------------------------------|--------|------|
|          |         |                              | 219U pg/L                       | А      | bl   |
| R0903918 | TR-6B** | PCB-8                        | 1020U pg/L                      |        |      |
|          |         | PCB-11<br>PCB-18+30          | 103U pg/L                       |        |      |
|          |         |                              | 43.3U pg/L                      |        |      |
|          |         | PCB-17                       | 57.7U pg/L                      |        |      |
|          |         | PCB-16                       | 27.2U pg/L                      |        |      |
|          |         | PCB-32                       | 33.3U pg/L                      |        |      |
|          |         | PCB-26+29<br>PCB-31          | 112U pg/L                       |        |      |
|          |         | PCB-20+28                    | 94.7U pg/L                      |        |      |
|          |         | PCB-20+20<br>PCB-21+33       | 68.1U pg/L                      |        |      |
|          |         | PCB-21+33                    | 45.3U pg/L                      |        |      |
|          |         | PCB-22<br>PCB-52             | 115U pg/L                       |        |      |
|          |         | PCB-49+69                    | 40.1U pg/L                      |        |      |
|          |         | PCB-49+69<br>PCB-44+47+65    | 75.6U pg/L                      |        |      |
|          |         | PCB-44+47+65<br>PCB-41+71+40 | 21.4U pg/L                      |        | [    |
|          |         | PCB-41+71+40                 | 23.2U pg/L                      |        |      |
|          |         | PCB-04<br>PCB-70+61+74+76    | 88.9U pg/L                      |        |      |
|          |         | PCB-66                       | 38.4U pg/L                      | 1      |      |
|          |         | PCB-56                       | 18.1U pg/L                      |        |      |
|          |         | PCB-60                       | 9.94U pg/L                      |        |      |
|          |         | PCB-95                       | 89.3U pg/L                      |        |      |
|          |         | PCB-85+91                    | 11.6U pg/L                      |        |      |
|          |         | PCB-84                       | 27.1U pg/L                      |        |      |
|          |         | PCB-92                       | 18.0U pg/L                      |        |      |
|          |         | PCB-90+101+113               | 95.4U pg/L                      |        |      |
|          |         | PCB-83+99                    | 41.2U pg/L                      |        |      |
|          |         | PCB-86+87+97+108+119+125     | 74.7U pg/L                      |        |      |
|          |         | PCB-85+116                   | 9.89U pg/L                      | 1      |      |
|          |         | PCB-110+115                  | 119U pg/L                       |        |      |
|          |         | PCB-118                      | 79.4U pg/L                      |        |      |
|          |         | PCB-105                      | 42.6U pg/L                      |        |      |
|          |         | PCB-136                      | 11.4U pg/L                      |        |      |
|          |         | PCB-135+151                  | 30.4U pg/L                      |        |      |
|          |         | PCB-147+149                  | 66.9U pg/L                      |        | 1    |
|          |         | PCB-132                      | 41.1U pg/L                      | 1      |      |
|          |         | PCB-146                      | 14.4U pg/L                      |        |      |
|          |         | PCB-153+168                  | 67.6U pg/L                      |        | 1    |
|          |         | PCB-141                      | 17.0U pg/L                      |        |      |
|          |         | PCB-129+138+163              | 118U pg/L                       |        |      |
|          |         | PCB-158                      | 11.9U pg/L                      |        |      |
|          |         | PCB-128+166                  | 18.6U pg/L                      |        | 1    |
|          |         | PCB-156+157                  | 17.1U pg/L                      |        |      |
|          |         | PCB-179                      | 5.31U pg/L                      |        |      |
|          |         | PCB-187                      | 19.9U pg/L                      |        |      |
|          |         | PCB-174                      | 13.7U pg/L                      | 1      |      |
|          |         | PCB-180+193                  | 28.2U pg/L                      | 1      |      |
|          |         | PCB-198+199                  | 23.1U pg/L                      |        |      |
|          |         | PCB-196                      | 8.98U pg/L                      |        |      |
|          |         | PCB-203                      | 13.4U pg/L                      |        |      |
|          |         |                              |                                 |        |      |
|          |         |                              |                                 |        |      |

| SDG        | Sample              | Compound                     | Modified Final<br>Concentration | A or P | Code |
|------------|---------------------|------------------------------|---------------------------------|--------|------|
| D.000004.0 |                     | PCB-194                      | 18.8U pg/L                      | Α      | bl   |
| R0903918   | TR-6B** (continued) | PCB-208                      | 15.1U pg/L                      |        |      |
|            |                     | PCB-206                      | 48.2U pg/L                      |        |      |
|            |                     | PCB-200                      | 24.7U pg/L                      |        |      |
|            |                     | Total DiCB                   | 1550U pg/L                      |        |      |
|            |                     | Total TriCB                  | 584U pg/L                       |        |      |
|            |                     | Total TetraCB                | 430U pg/L                       | 1      |      |
|            |                     | Total PentaCB                | 608U pg/L                       |        |      |
|            |                     | Total HexaCB                 | 414U pg/L                       |        | ļ    |
|            |                     | Total HeptaCB                | 89.7U pg/L                      |        |      |
|            |                     | Total OctaCB                 | 64.3U pg/L                      |        |      |
|            |                     | Total NonaCB                 | 63.3U pg/L                      |        |      |
|            |                     |                              |                                 | 1      |      |
| R0903918   | EB071709-GW         | PCB-1                        | 30.1U pg/L                      | A      | bl   |
|            |                     | PCB-3                        | 31.9U pg/L                      |        |      |
|            |                     | PCB-8                        | 112U pg/L                       |        | 1    |
|            |                     | PCB-11                       | 1080U pg/L                      |        |      |
|            |                     | PCB-18+30                    | 68.2U pg/L                      |        | 1    |
|            |                     | PCB-17                       | 29.9U pg/L                      |        |      |
|            |                     | PCB-16                       | 35.4U pg/L                      |        |      |
|            |                     | PCB-32                       | 19.8U pg/L                      |        |      |
|            |                     | PCB-31                       | 80.4U pg/L                      |        |      |
|            |                     | PCB-20+28                    | 84.5U pg/L                      |        |      |
|            |                     | PCB-21+33                    | 55.6U pg/L<br>35.9U pg/L        | 1      |      |
|            |                     | PCB-22                       | 92.0U pg/L                      |        |      |
|            |                     | PCB-52                       | 35.9U pg/L                      |        |      |
|            |                     | PCB-49+69                    | 71.8U pg/L                      |        |      |
|            |                     | PCB-44+47+65<br>PCB-41+71+40 | 29.1U pg/L                      |        |      |
|            |                     | PCB-41+71+40                 | 26.8U pg/L                      |        |      |
|            |                     | PCB-04<br>PCB-70+61+74+76    | 98.2U pg/L                      |        |      |
|            |                     | PCB-66                       | 43.4U pg/L                      |        |      |
|            |                     | PCB-56                       | 21.0U pg/L                      |        |      |
|            |                     | PCB-60                       | 10.5U pg/L                      |        |      |
|            |                     | PCB-95                       | 70.3U pg/L                      |        |      |
|            |                     | PCB-88+91                    | 11.2U pg/L                      |        |      |
|            |                     | PCB-84                       | 22.3U pg/L                      |        |      |
|            |                     | PCB-92                       | 13.4U pg/L                      |        |      |
|            |                     | PCB-90+101+113               | 70.1U pg/L                      |        |      |
|            |                     | PCB-83+99                    | 31.6U pg/L                      |        |      |
|            |                     | PCB-86+87+97+108+119+125     | 49.9U pg/L                      | 1      |      |
|            |                     | PCB-85+116                   | 5.00U pg/L                      |        |      |
|            |                     | PCB-110+115                  | 76.0U pg/L                      |        |      |
|            |                     | PCB-82                       | 10.3U pg/L                      |        |      |
|            |                     | PCB-118                      | 42.6U pg/L                      |        |      |
|            |                     | PCB-105                      | 16.8U pg/L                      |        |      |
|            |                     | PCB-136                      | 9.77U pg/L                      |        |      |
|            |                     | PCB-135+151                  | 22.5U pg/L                      |        | 1    |
|            |                     | PCB-147+149                  | 48.5U pg/L                      |        | 1    |
|            |                     | PCB-132                      | 19.7U pg/L                      |        |      |
|            |                     | PCB-146                      | 7.79U pg/L                      |        |      |
|            |                     | PCB-153+168                  | 43.3U pg/L                      |        |      |
|            |                     | PCB-141                      | 12.5U pg/L                      |        | 1    |
|            |                     | PCB-129+138+163              | 61.0U pg/L                      |        |      |
|            |                     | PCB-158                      | 5.93U pg/L                      | 1      |      |
|            |                     | PCB-128+166                  | 10.3U pg/L                      |        |      |
|            |                     | PCB-156+157                  | 8.03U pg/L                      |        |      |
|            |                     | PCB-179                      | 6.38U pg/L                      |        |      |
|            |                     | 1                            |                                 | 1      |      |

| SDG      | Sample                     | Compound                                                                                                                                                                                                                                                                                                                       | Modified Final<br>Concentration                                                                                                                                                                                                                      | A or P | Code |
|----------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| R0903918 | EB071709-GW<br>(continued) | PCB-187<br>PCB-174<br>PCB-180+193<br>PCB-202<br>PCB-198+199<br>PCB-196<br>PCB-203<br>PCB-208<br>PCB-206<br>PCB-206<br>PCB-209<br>Total MonoCB<br>Total DiCB<br>Total DiCB<br>Total TriCB<br>Total TetraCB<br>Total TetraCB<br>Total TetraCB<br>Total HeptaCB<br>Total HeptaCB<br>Total HeptaCB<br>Total OctaCB<br>Total NonaCB | 12.9U pg/L<br>9.48U pg/L<br>18.0U pg/L<br>7.02U pg/L<br>22.2U pg/L<br>11.7U pg/L<br>11.7U pg/L<br>13.9U pg/L<br>13.9U pg/L<br>12.1U pg/L<br>62.0U pg/L<br>1190U pg/L<br>410U pg/L<br>432U pg/L<br>432U pg/L<br>263U pg/L<br>52.8U pg/L<br>52.8U pg/L | A      | bl   |

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls as Congeners - Equipment Blank Data Qualification Summary - SDG R0903918

| SDG      | Sample  | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Modified Final<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                                                         | A or P | Code |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| R0903918 | TR-6B** | PCB-3<br>PCB-8<br>PCB-11<br>PCB-18+30<br>PCB-17<br>PCB-16<br>PCB-32<br>PCB-31<br>PCB-20+28<br>PCB-21+33<br>PCB-22<br>PCB-49+69<br>PCB-44+47+65<br>PCB-44+47+65<br>PCB-44+47+65<br>PCB-44+47+65<br>PCB-44+47+65<br>PCB-44+47+65<br>PCB-44+47+65<br>PCB-64<br>PCB-70+61+74+76<br>PCB-66<br>PCB-66<br>PCB-66<br>PCB-56<br>PCB-66<br>PCB-56<br>PCB-88+91<br>PCB-88+91<br>PCB-84<br>PCB-92<br>PCB-86+87+97+108+119+125<br>PCB-85+116<br>PCB-110+115<br>PCB-118 | 103U pg/L<br>219U pg/L<br>1120U pg/L<br>103U pg/L<br>43.3U pg/L<br>57.7U pg/L<br>27.2U pg/L<br>112U pg/L<br>94.7U pg/L<br>68.1U pg/L<br>45.3U pg/L<br>115U pg/L<br>40.1U pg/L<br>23.2U pg/L<br>23.2U pg/L<br>23.2U pg/L<br>23.2U pg/L<br>38.4U pg/L<br>38.4U pg/L<br>38.4U pg/L<br>18.1U pg/L<br>9.94U pg/L<br>11.6U pg/L<br>27.1U pg/L<br>18.0U pg/L<br>95.4U pg/L<br>41.2U pg/L<br>74.7U pg/L<br>19.89U pg/L<br>119U pg/L<br>79.4U pg/L<br>79.4U pg/L | A      | be   |

| SDG      | Sample              | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Modified Final<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A or P | Code |
|----------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| R0903918 | TR-6B** (continued) | PCB-105<br>PCB-136<br>PCB-135+151<br>PCB-147+149<br>PCB-132<br>PCB-146<br>PCB-153+168<br>PCB-153+168<br>PCB-153+168<br>PCB-158+166<br>PCB-158+166<br>PCB-156+157<br>PCB-179<br>PCB-187<br>PCB-187<br>PCB-187<br>PCB-183<br>PCB-174<br>PCB-180+193<br>PCB-174<br>PCB-180+193<br>PCB-196<br>PCB-203<br>PCB-194<br>PCB-208<br>PCB-209<br>Total DiCB<br>Total TriCB<br>Total TetraCB<br>Total TetraCB<br>Total HeptaCB<br>Total HeptaCB<br>Total OctaCB<br>Total NonaCB | 42.6U pg/L<br>11.4U pg/L<br>30.4U pg/L<br>66.9U pg/L<br>41.1U pg/L<br>14.4U pg/L<br>67.6U pg/L<br>17.0U pg/L<br>17.0U pg/L<br>18.6U pg/L<br>17.1U pg/L<br>5.31U pg/L<br>19.9U pg/L<br>13.7U pg/L<br>28.2U pg/L<br>13.7U pg/L<br>23.1U pg/L<br>23.1U pg/L<br>13.4U pg/L<br>13.4U pg/L<br>13.4U pg/L<br>15.1U pg/L<br>48.2U pg/L<br>15.1U pg/L<br>48.2U pg/L<br>24.7U pg/L<br>584U pg/L<br>430U pg/L<br>430U pg/L<br>430U pg/L<br>608U pg/L<br>414U pg/L<br>89.7U pg/L<br>63.3U pg/L<br>63.3U pg/L | A      | be   |

# Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

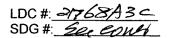
LDC #: 21768A3c VALIDA SDG #: R0903918 Laboratory: Columbia Analytical Services

Stage 2B/4

| Date:         | 10 /27/09 |
|---------------|-----------|
| Page:_        | <u></u>   |
| Reviewer:     | 2         |
| 2nd Reviewer: |           |

METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.


|             | Validation Area                                |     | Comments                |
|-------------|------------------------------------------------|-----|-------------------------|
| I.          | Technical holding times                        | A   | Sampling dates: 7/17/09 |
| 11.         | GC/MS Instrument performance check             | Ă   |                         |
| <u>III.</u> | Initial calibration                            | A   |                         |
| IV.         | Routine calibration/I                          | A   |                         |
| V.          | Blanks                                         | In  |                         |
| VI.         | Matrix spike/Matrix spike duplicates           | N   | dieud sperfred          |
| VII.        | Laboratory control samples                     | A   | Lest                    |
| VIII.       | Regional quality assurance and quality control | N,  |                         |
| IX.         | Internal standards                             | m   |                         |
| <b>X</b> .  | Target compound identifications                | N   |                         |
| XI.         | Compound quantitation and CRQLs                | S₩  | AILZHDEMEULAS - JE(E)   |
| XII.        | System performance                             | N   |                         |
| XIII.       | Overall assessment of data                     | A   |                         |
| XIV.        | Field duplicates                               | N.  |                         |
| XV.         | Field blanks                                   | The | 4B=/                    |

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: XX -ove IV

| 1  | EB071709-GW W                         | 11 | ER0900286-01                           | 21 | U=20031<br>U=20019                    | 31   |
|----|---------------------------------------|----|----------------------------------------|----|---------------------------------------|------|
| 2  | TR-6B +++ 1                           |    |                                        | 22 | 1220019                               | 32   |
| 3  | 1                                     | 13 |                                        | 23 | -                                     | 33   |
| 4  |                                       | 14 |                                        | 24 |                                       | 34   |
| 5  |                                       | 15 |                                        | 25 |                                       | 35   |
| 6  | · · · · · · · · · · · · · · · · · · · | 16 | ······································ | 26 |                                       | 36   |
| 7  |                                       | 17 |                                        | 27 | · · · · · · · · · · · · · · · · · · · | 37   |
| 8  |                                       | 18 | -<br>                                  | 28 |                                       | 38 . |
| 9  |                                       | 19 |                                        | 29 |                                       | 39   |
| 10 |                                       | 20 |                                        | 30 |                                       | 40   |



## VALIDATION FINDINGS CHECKLIST

0

Page: /of > Reviewer: 9 2nd Reviewer: A

| Method: HRGC/HRMS | Polychlorinated  | Biphenvls     | (EPA Method | 1668) |
|-------------------|------------------|---------------|-------------|-------|
|                   | i orychiorniateu | DIDITICITY IS |             | 10000 |

| Validation Area                                                                                                                                                                | Yes              | No | NA       | Findings/Comments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|----------|-------------------|
| I. Technical holding times                                                                                                                                                     |                  |    |          |                   |
| All technical holding times were met.                                                                                                                                          |                  |    |          |                   |
| Cooler temperature criteria was met.                                                                                                                                           |                  | [  | <u> </u> |                   |
| II. GC/MS Instrument performance check                                                                                                                                         |                  |    |          |                   |
| Was PFK exact mass 380.9760 verified?                                                                                                                                          | $\left  \right $ | •  |          |                   |
| Were the retention time windows established for all homologues?                                                                                                                |                  |    |          |                   |
| Is the static resolving power at least 10,000 (10% valley definition)?                                                                                                         |                  | ļ  |          |                   |
| Was the mass resolution adequately check with PFK?                                                                                                                             |                  |    |          |                   |
| III. Initial calibration                                                                                                                                                       |                  | I  |          |                   |
| Was the initial calibration performed at 5 concentration levels?                                                                                                               |                  |    |          |                   |
| Were all percent relative standard deviations (%RSD) $\leq 20\%$ for unlabeled and labeled standards?                                                                          |                  |    |          |                   |
| Did all calibration standards meet the Ion Abundance Ratio criteria?                                                                                                           |                  |    |          |                   |
| Was the signal to noise ratio for each target compound $\geq$ 2.5 and for each recovery and internal standard $\geq$ 10?                                                       | /                |    |          |                   |
| IV. Continuing calibration                                                                                                                                                     |                  |    |          |                   |
| Was a routine calibration performed at the beginning of each 12 hour period?                                                                                                   | 6                |    |          |                   |
| Were all percent differences (%D) $\leq$ 30% for unlabeled and $\leq$ 50% for labeled standards?                                                                               |                  |    |          |                   |
| Did all routine calibration standards meet the Ion Abundance Ratio criteria?                                                                                                   |                  |    |          |                   |
| V Blanks                                                                                                                                                                       |                  |    |          |                   |
| Was a method blank associated with every sample in this SDG?                                                                                                                   |                  |    |          |                   |
| Was a method blank performed for each matrix and concentration?                                                                                                                |                  |    |          |                   |
| Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.                                                                 |                  |    |          |                   |
| VI. Matrix spike/Matrix spike duplicates                                                                                                                                       |                  |    |          |                   |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. |                  | <  |          |                   |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                       |                  |    | <        |                   |
| VII. Laboratory control samples                                                                                                                                                |                  |    |          |                   |
| Was an LCS analyzed for this SDG?                                                                                                                                              | $\langle$        |    |          |                   |
| Was an LCS analyzed per extraction batch?                                                                                                                                      | $\square$        |    |          |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                                                               | $\langle$        |    |          |                   |

LDC#<u>21768A3</u> SDG#:<u>Gerennen</u>

## VALIDATION FINDINGS CHECKLIST

e

2

| Validation Area                                                                                                                                                                                                      | Yes      | No       | NA       | Findings/Comments |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|-------------------|
| VIII. Regional Quality Assurance and Quality Control                                                                                                                                                                 |          |          |          |                   |
| Were performance evaluation (PE) samples performed?                                                                                                                                                                  |          | <        | <u>†</u> |                   |
| Were the performance evaluation (PE) samples within the acceptance limits?                                                                                                                                           |          |          |          |                   |
| IX. Internal standards                                                                                                                                                                                               |          |          |          |                   |
| Were internal standard recoveries within the 25-150% criteria?                                                                                                                                                       |          | /        |          |                   |
| Was the minimum S/N ratio of all internal standard peaks $\geq$ 10?                                                                                                                                                  |          |          |          |                   |
| X. Target compound identification                                                                                                                                                                                    |          |          | -        |                   |
| For polychlorinated biphenyl congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?                              | /        |          | <br>     |                   |
| For polychlorinated biphenyl congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration? | /        |          |          |                   |
| For other polychlorinated biphenyl congeners, were the retention times of the two<br>quantitation peaks within RT established in the performance check solution?                                                     | <        |          |          |                   |
| Did compound spectra contain all characteristic ions listed in the table attached?                                                                                                                                   |          |          | <u> </u> |                   |
| Was the Ion Abundance Ratio for the two quantitation ions within criteria?                                                                                                                                           | 4        | <b> </b> | ļ        |                   |
| Was the signal to noise ratio for each target compound and labeled standard $\geq$ 2.5?                                                                                                                              | (        | <br>     |          |                   |
| Does the maximum intensity of each specified characteristic ion coincide within <u>+</u> 2 seconds (includes labeled standards)?                                                                                     | (        | ļ        | <u> </u> |                   |
| Was an acceptable lock mass recorded and monitored?                                                                                                                                                                  | 1/       |          |          |                   |
| XI. Compound quantitation/CRQLs                                                                                                                                                                                      | r        | T T      |          |                   |
| Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?                                                                                        | 1        |          |          |                   |
| Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and<br>dry weight factors applicable to level IV validation?                                                                           | /        |          |          |                   |
| XII. System performance                                                                                                                                                                                              |          |          |          |                   |
| System performance was found to be acceptable.                                                                                                                                                                       |          | t        |          |                   |
| XIII. Overall assessment of data                                                                                                                                                                                     |          |          |          |                   |
| Overall assessment of data was found to be acceptable.                                                                                                                                                               |          | 1        |          |                   |
| XIV. Field duplicates                                                                                                                                                                                                | 1        | 1        |          | T                 |
| Field duplicate pairs were identified in this SDG.                                                                                                                                                                   |          | /        | 1        |                   |
| Target compounds were detected in the field duplicates.                                                                                                                                                              |          |          | 1        | 1                 |
| XV. Field blanks                                                                                                                                                                                                     |          | 1        |          |                   |
| Field blanks were identified in this SDG.                                                                                                                                                                            | 1        |          |          |                   |
| Target compounds were detected in the field blanks.                                                                                                                                                                  | <u> </u> |          |          |                   |

SDG #: See Cover LDC #: 21768A3c

# VALIDATION FINDINGS WORKSHEET

Page: 1 of 1

2nd Reviewer: Reviewer:

<u>Blanks</u>

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".  $\begin{array}{r} \hline V & N \\ \hline V & N \\ \hline V & N \\ \hline W & Was a method blank performed for each matrix and whenever a sample extraction was performed? We was the method blank contaminated? If yes, please see qualification below.$ 

| Blank extraction date: <u>7/30/09</u><br>Conc. units: pg/L |              | Blank analysis date: | 8/5/09<br>Alsociate | A/sociated samples: All Waters | (B) |
|------------------------------------------------------------|--------------|----------------------|---------------------|--------------------------------|-----|
| Composind                                                  | Blank ID     |                      | •                   | Sample Identification          |     |
|                                                            | EChonn286-01 | 5×                   |                     |                                |     |
| PCB 1                                                      | 19.3         | 96.5                 | 1                   | 30.1/U                         |     |
| PCB 3                                                      | 19.5         | 97.5                 | ,                   | 31.9/U                         |     |
| PCB 8                                                      | 124          | 620                  | 219/U               | 112/U                          |     |
| PCB 11                                                     | 1200         | 6000                 | 1020/U              | 1080/U                         |     |
| PCBs 18+30                                                 | 137          | 685                  | 103/U               | 68.2/U                         |     |
| PCB 17                                                     | 58.4         | 292                  | 43.3/U              | 29.9/U                         |     |
| DCR 16                                                     | 57.7         | 288.5                | 57.7/U              | 35.4/U                         |     |
| PCR 32                                                     | 42.8         | 214                  | 27.2/U              | 19.8/U                         |     |
| DCRs 06+20                                                 | 29.7         | 148.5                | 33.3/U              |                                |     |
| DCR 34                                                     | 144          | 720                  | 112/U               | 80.4/U                         |     |
| DCBc 20+28                                                 | 136          | 680                  | 94.7/U              | 84.5/U                         |     |
| PCBs 21+33                                                 | 79.9         | 399.5                | 68.1/U              | 55.6/U                         |     |
| PCB 22                                                     | 45.8         | 229                  | 45.3/U              | 35.9/U                         |     |
| PCB 37                                                     | 23.0         | 115                  |                     |                                |     |
| PCBs 50+53                                                 | 15.6         | 78                   |                     |                                |     |
| PCBs 45+51                                                 | 24.4         | 122                  |                     |                                |     |
| PCB 52                                                     | 142          | 710                  | 115/U               | 92.0/U                         |     |
| PCBs 49+69                                                 | 60.4         | 302                  | 40.1/U              | -35./U                         |     |
| PCB 48                                                     | 22.9         | 114.5                |                     | 15.7                           |     |
| PCBs 44+47+65                                              | 105          | 525                  | 75.6/U              | 71.8/U                         |     |
| PCBs 59+62+75                                              | 8.34         | 41.7                 |                     |                                |     |
|                                                            |              |                      |                     |                                |     |

V:\Pei\Tronox\21768AMB.wpd

100 A A A A A

|                           |       |       |       |         |         |            |  |   | ·                 |
|---------------------------|-------|-------|-------|---------|---------|------------|--|---|-------------------|
| PCBc 41±71±40             | 20.02 | 2226  | ۰<br> | 111     | 11/1 00 |            |  |   |                   |
| PCB 64                    | 43.7  | 218.5 |       | 23.2/11 | 26.8/11 |            |  |   |                   |
| PCB 68                    | 7.94  | 39.7  |       |         |         |            |  |   |                   |
| PCBs 70+61+74+76          | 128   | 640   | 8     | 88.9/U  | 98.2/U  |            |  |   |                   |
| PCB 66                    | 65.0  | 325   | 3     | 38.4/U  | 43.4/U  |            |  |   |                   |
| PCB 56                    | 22.4  | 112   |       | 18.1/U  | 21.0/U  |            |  |   | :                 |
| PCB 60                    | 13.3  | 66.5  | 6     | 9.94/U  | 10.5/U  |            |  |   |                   |
| PCB 95                    | 88.9  | 444.5 |       | 89.3/U  | 70.3/U  |            |  |   | •                 |
| PCBs 88+91                | 13.5  | 67.5  | -     | 11.6/U  | 11.2/U  |            |  |   |                   |
| PCB 84                    | 27.2  | 136   |       | 27.1/U  | 22.3/U  |            |  |   |                   |
| PCB 92                    | 15.0  | 75    |       | 18.0/U  | 13.4/U  |            |  |   |                   |
| PCBs 90+101+113           | 77.4  | 387   | 6     | 95.4/U  | 70.1/U  |            |  |   |                   |
| PCBs 83+99                | 34.5  | 172.5 | 4     | 41.2/U  | 31.6/U  |            |  |   |                   |
| PCBs 86+87+97+108+119+125 | 54.8  | 274   | 7     | 74.7/U  | 49.9/U  |            |  |   | j                 |
| PCBs 85+116               | 8.36  | 41.8  | 5     | 9.89/U  | 5.00/U  |            |  |   |                   |
| PCBs 110+115              | 86.3  | 431.5 |       | 119/U   | 76.0/U  |            |  |   |                   |
| PCB 82                    | 8.62  | 43.1  |       |         | 10.3/U  |            |  |   |                   |
| PCB 118                   | 41.2  | 206   |       | 79.4/U  | 42.6/U  |            |  |   | -                 |
| PCB 105                   | 19.0  | 95    | 4     | 42.6/U  | 16.8/U  | 1942)<br>1 |  | S | the second second |
| PCB 136                   | 10.6  | 53    |       | 11.4/U  | 9.77/U  |            |  |   |                   |
| PCBs 135+151              | 25.4  | 127   |       | 30.4/U  | 22.5/U  | -          |  |   |                   |
| PCBs 147+149              | 48.3  | 241.5 |       | 66.9/U  | 48.5/U  |            |  |   |                   |
| PCB 132                   | 24.1  | 120.5 | 4     | 41.1/U  | 19.7/U  |            |  |   |                   |
| PCB 146                   | 6.64  | 33.2  | ~     | 14.4/U  | 7.79/U  |            |  |   |                   |
| PCBs 153+168              | 45.7  | 228.5 |       | 67.6/U  | 43.3/U  |            |  |   |                   |
| PCB 141                   | 11.4  | 57    |       | 17.0/U  | 12.5/U  |            |  |   | :                 |
| PCBs 129+138+163          | 72.0  | 360   |       | 118/U   | 61.0/U  |            |  |   |                   |
| PCB 158                   | 5.25  | 26.25 |       | 11.9/U  | 5.93/U  |            |  |   | 1                 |
| PCBs 128+166              | 10.5  | 52.5  |       | 18.6/U  | 10.3/U  |            |  |   |                   |
| PCBs 156+157              | 7.17  | 35.85 |       | 17.1/U  | 8.03/U  |            |  |   |                   |
|                           | ·     |       |       |         |         |            |  |   |                   |

V:\Pei\Tronox\21768AMB.wpd

and the second second second

Nic -

|                                                                                                        |                 |                      |                  | :                       |                     |                                                                                                                 |
|--------------------------------------------------------------------------------------------------------|-----------------|----------------------|------------------|-------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                                                        | ç,              | 20.05                | 5.31/U           | 6.38/U                  |                     |                                                                                                                 |
| PCB 179                                                                                                | 88.C            |                      |                  | 12.9/U                  |                     | • .                                                                                                             |
| PCB 187                                                                                                | 11.9            | 59.5                 | 19.9/0           |                         |                     | .,                                                                                                              |
| PCB 174                                                                                                | 6.47            | 32.35                | 13.7/U           | 9.48/U                  |                     | ,*****                                                                                                          |
| PCBs 180+193                                                                                           | 12.2            | 61                   | 28.2/U           | 18.0/U                  |                     |                                                                                                                 |
| PCB 202                                                                                                | 5.00            | 25                   |                  | 7.02/U                  |                     |                                                                                                                 |
|                                                                                                        | 2.61            | 13.05                |                  |                         |                     |                                                                                                                 |
| PCB 201                                                                                                | 22.4            | 112                  | 23.1/U           | 22.2/U                  |                     |                                                                                                                 |
|                                                                                                        | 4.24            | 21.2                 | 8.98/U           | 4.27/U                  |                     |                                                                                                                 |
| PCB 190                                                                                                | 00.6            | 45                   | 13.4/U           | 11.7/U                  |                     |                                                                                                                 |
| PCB 203                                                                                                | 6.26            | 31.3                 | 18.8/U           | 7.72/U                  |                     | -                                                                                                               |
| PCB 184                                                                                                | 13.0            | 65                   | 15.1/U           | 13.9/U                  |                     | - 1 · · · · · · · · · · · · · · · · · ·                                                                         |
|                                                                                                        | 33.5            | 167.5                | 48.2/U           | 39.0/U                  |                     |                                                                                                                 |
| PCB 200                                                                                                | 11.3            | 56.5                 | 24.7/U           | 12.1/U                  |                     |                                                                                                                 |
| Total MonoCB                                                                                           | 38.9            | 194.5                | 1                | 62.0/U                  |                     |                                                                                                                 |
|                                                                                                        | 1330            | 6650                 | 1550/U           | 1190/U                  |                     |                                                                                                                 |
| Total TriCR                                                                                            | 754             | 3770                 | 584/U            | 410/U                   |                     |                                                                                                                 |
| Total TetraCB                                                                                          | 727             | 3635                 | 430/U            | -                       |                     | <br>                                                                                                            |
| Total PentaCB                                                                                          | 475             | 2375                 | 608/U            | 419/U                   |                     |                                                                                                                 |
| Total HavaCR                                                                                           | 267             | 1335                 | 414/U            | 263/U                   |                     |                                                                                                                 |
| Total HentaCR                                                                                          | 36.5            | 182.5                | 89.7/U           | 65.0/U                  |                     |                                                                                                                 |
| Total OctaCB                                                                                           | 49.6            | 248                  | 64.3/U           | 52.8/U                  |                     | <br>                                                                                                            |
|                                                                                                        | 46.5            | 232.5                | L 63.3/1         | 1 56.8/IL               |                     |                                                                                                                 |
| CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: | r QUALIFIED. AI | LL RESULTS NOT 0     | CLED WERE QUALIF | IED BY THE F<br>d. "U". | OLLOWING STATEMENT: | e e constante de la constante d |
| All contaminants within five times                                                                     | the method blan | K concentr/auori wei |                  |                         |                     | 1                                                                                                               |
|                                                                                                        |                 |                      |                  |                         |                     | and an an and an and an and an an an and an                                 |
|                                                                                                        |                 |                      |                  |                         | :                   |                                                                                                                 |
|                                                                                                        |                 |                      |                  |                         |                     | ан анс Манга <sup>на</sup><br>Стана                                                                             |
|                                                                                                        |                 |                      |                  |                         |                     |                                                                                                                 |
|                                                                                                        |                 |                      |                  |                         |                     |                                                                                                                 |
|                                                                                                        |                 |                      |                  |                         |                     |                                                                                                                 |
| -                                                                                                      |                 |                      |                  |                         |                     | ••                                                                                                              |
|                                                                                                        |                 |                      |                  |                         |                     |                                                                                                                 |

V:\Pei\Tronox\21768AMB.wpd

(1) A set of the se

| LUC #: <u>21/68A3c</u><br>SDG #: <u>R0903918</u>                                                                                                                                                            | •                                                  | >                                                                                         | ALIDATION FINDI<br>Field I                    | VALIDATION FINDINGS WORKSHEET<br><u>Field Blanks</u>                              | Page: 101  <br>Reviewer: 7-<br>2nd Reviewer: 6 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|
| METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668                                                                                                                                                            | CB Congeners                                       | (EPA Method 16                                                                            | 68)                                           |                                                                                   |                                                |
| Please see qualifications below for all questions answered "N". N<br>Blank units: <u>pg/L</u> Associated sample units: <u>pg</u><br>Field blank type: (circle one) Field Blank / Rinsate / Other: <u>EB</u> | elow for all ques<br>Associate<br>e) Field Blank / | or all questions answered "N<br>Associated sample units:_<br>eld Blank / Rinsate / Other: | N". Not applicable que<br>: <u>pg/L</u><br>EB | . Not applicable questions are identified as "N/A".<br>pg/L Associated Samples: 2 | lae<br>(Bei                                    |
| Compound                                                                                                                                                                                                    | Blank ID                                           |                                                                                           |                                               | Sample Identification                                                             |                                                |
|                                                                                                                                                                                                             | EB071709-GW                                        | (5X)                                                                                      | ~                                             |                                                                                   |                                                |
| PCB 1                                                                                                                                                                                                       | 30.1                                               | 150.5                                                                                     |                                               |                                                                                   |                                                |
| PCB 3                                                                                                                                                                                                       | 31.9                                               | 159.5                                                                                     | 103/U                                         |                                                                                   |                                                |
| PCB 8                                                                                                                                                                                                       | 112                                                | 560                                                                                       | 219/U                                         |                                                                                   |                                                |
| PCB 11                                                                                                                                                                                                      | 1080                                               | 5400                                                                                      | 1120/U                                        |                                                                                   |                                                |
| PCBs 18+30                                                                                                                                                                                                  | 68.2                                               | 341                                                                                       | 103/U                                         |                                                                                   |                                                |
| PCB 17                                                                                                                                                                                                      | 29.9                                               | 149.5                                                                                     | 43.3/U                                        |                                                                                   |                                                |
| PCB 16                                                                                                                                                                                                      | 35.4                                               | 177                                                                                       | 57.7/U                                        |                                                                                   |                                                |
| PCB 32                                                                                                                                                                                                      | 19.8                                               | 66                                                                                        | 27.2/U                                        |                                                                                   |                                                |
| PCB 31                                                                                                                                                                                                      | 80.4                                               | 402                                                                                       | 112/U                                         |                                                                                   |                                                |
| PCBs 20+28                                                                                                                                                                                                  | 84.5                                               | 422.5                                                                                     | 94.7/U                                        |                                                                                   |                                                |
| PCBs 21+33                                                                                                                                                                                                  | 55.6                                               | 278                                                                                       | 68.1/U                                        |                                                                                   |                                                |
| PCB 22                                                                                                                                                                                                      | 35.9                                               | 179.5                                                                                     | 45.3/U                                        |                                                                                   |                                                |
| PCB 52                                                                                                                                                                                                      | 92.0                                               | 460                                                                                       | 115/U                                         |                                                                                   |                                                |
| PCBs 49+69                                                                                                                                                                                                  | 35.9                                               | 179.5                                                                                     | 40.1/U                                        |                                                                                   |                                                |
| PCBs 44+47+65                                                                                                                                                                                               | 71.8                                               | 359                                                                                       | 75.6/U                                        |                                                                                   |                                                |
| PCBs 41+71+40                                                                                                                                                                                               | 29.1                                               | 145.5                                                                                     | 21.4/U                                        |                                                                                   |                                                |
| PCB 64                                                                                                                                                                                                      | 26.8                                               | 134                                                                                       | 23.2/U                                        |                                                                                   |                                                |
| PCBs 70+61+74+76                                                                                                                                                                                            | 98.2                                               | 491                                                                                       | 88.9/U                                        |                                                                                   |                                                |
| PCB 66                                                                                                                                                                                                      | 43.4                                               | 217                                                                                       | 38.4/U                                        |                                                                                   |                                                |
| PCB 56                                                                                                                                                                                                      | 21.0                                               | 105                                                                                       | 18.1/U                                        |                                                                                   |                                                |
| PCB 60                                                                                                                                                                                                      | 10.5                                               | 52.5                                                                                      | 9.94/U                                        |                                                                                   |                                                |
| PCB 77                                                                                                                                                                                                      | 3.47                                               | 17.35                                                                                     |                                               |                                                                                   | ····                                           |
| PCB OF                                                                                                                                                                                                      | 70.3                                               | 351.5                                                                                     | 89.3/U                                        |                                                                                   |                                                |

n nodine or en stadiotes

Page: lot

| PCBs 88+91                | 11.2 | 56    | 11.6/U  |            |  |  |
|---------------------------|------|-------|---------|------------|--|--|
| DCB 84                    | 22.3 | 111.5 | 27.1/U  | <u>ر</u>   |  |  |
|                           | 13.4 | 67    | 18.0/U  | /n         |  |  |
| PCD 32                    | 70.4 | 350.5 | 95.4/U  |            |  |  |
| PCD5 807101110            | 316  | 158   | 41.2/U  | 0/         |  |  |
| PCBS 83+99                | 0.10 | 249.5 | 74.7/U  | ,n         |  |  |
| PCBS 80+8/+8/+100+118+120 |      | 25    | U/68.6  |            |  |  |
| PCBs 85+116               | 00.6 | 62    | 744     | 11         |  |  |
| PCBs 110+115              | 76.0 | 380   |         |            |  |  |
| PCB 82                    | 10.3 | 51.5  |         |            |  |  |
| PCB 118                   | 42.6 | 213   | 79.4/U  | NU         |  |  |
| PCB 105                   | 16.8 | 84    | 42.6/U  | <u>»/u</u> |  |  |
| PCB 136                   | 9.77 | 48.85 | 11.4/U  | 4/U        |  |  |
| PCBs 135+151              | 22.5 | 112.5 | 30.4/U  | 4/0        |  |  |
| PCB 144                   | 2.68 | 13.4  |         |            |  |  |
| DOB: 147±140              | 48.5 | 242.5 | 66.     | 66.9/U     |  |  |
| PCB 14/7-148              | 19.7 | 98.5  | 41.     | 41.1/U     |  |  |
| PCB 132                   | 67.7 | 38.95 | 14      | 14.4/U     |  |  |
| DCBc 153+168              | 43.3 | 216.5 | 67      | 67.6/U     |  |  |
| DCB 414                   | 12.5 | 62.5  | 17      | 17.0/U     |  |  |
| DCB 130                   | 2.84 | 14.2  |         |            |  |  |
| PCB 137                   | 3.60 | 18    |         |            |  |  |
| PCB 164                   | 2.79 | 13.95 |         |            |  |  |
| <u> </u>                  | 61.0 | 305   |         | 118/U      |  |  |
| PCB 158                   | 5.93 | 29.65 |         | 11.9/U     |  |  |
| PCBs 128+166              | 10.3 | 51.5  | Ψ       | 18.6/U     |  |  |
| PCB 167                   | 2.38 | 11.9  |         |            |  |  |
| PCBs 156+157              | 8.03 | 40.15 |         | 17.1/U     |  |  |
| PCB 179                   | 6.38 | 31.9  | ی<br>ای | 5.31/U     |  |  |
| PCB 187                   | 12.9 | 64.5  | ÷       | 19.9/U     |  |  |
|                           |      |       |         |            |  |  |

|               |      | t. / t |        |          |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------|------|--------|--------|----------|---|---|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCB 177       | 4.54 | 22.7   |        |          |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCBs 180+193  | 18.0 | 06     | 28.2/U |          |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCB 170       | 8.13 | 40.65  | 14.8/U |          |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCB 202       | 7.02 | 35.1   |        |          |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCBs 198+199  | 22.2 | 111    | 23.1/U |          |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCB 196       | 4.27 | 21.35  | 8.98/U | 2        |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCB 203       | 11.7 | 58.5   | 13.4/U | 5        |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCB 194       | 7.72 | 38.6   | 18.8/U | 0        |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCB 208       | 13.9 | 69.5   | 15.1/U | <u></u>  |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCB 207       | 3.84 | 19.2   |        |          |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCB 206       | 39.0 | 195    | 48.2/U | <u>۷</u> |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCB 209       | 12.1 | 60.5   | 24     | 24.7/U   |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total MonoCB  | 62.0 | 310    |        |          |   |   |  | and a second sec |
| Total DiCB    | 1190 | 5950   | 15     | 1550/U   |   |   |  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Total TriCB   | 410  | 2050   | 2      | 584/U    |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total TetraCB | 432  | 2160   | 4      | 430/U    | - |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total PentaCB | 419  | 2095   | ğ      | 608/U    |   | - |  | 1. Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | 263  | 1315   | 4      | 414/U    |   |   |  | • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total HeptaCB | 65.0 | 325    | Ж      | 89.7/U   |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total OctaCB  | 52.8 | 264    | 9<br>9 | 64.3/U   |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total NonaCB  | 56.8 | 284    | .G     | 63 3/1)  |   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

ł

And the second second

V:\Pei\Tronox\FQC\21768A3c\_EB\_Area 4\_GW.wpd

April Martin Commission Stationary

. . . . . . . . . .

.

and a second and a second as a second as A THE PARTY OF THE

SDG # Sec COMP LDC #:2176843-

## VALIDATION FINDINGS WORKSHEET Internal Standards

ŏ Reviewer: Page:

METHOD: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668) Please)see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Are all internal standard recoveries were within the 25-150% criteria?

|                                                                                                                            |                         | 29     |          |       | <br>) ( | <u>^</u>  |   |      | - · · |         |      |  |                         | , ( | (              |      | Recovery Standards |            |             |                         |     |                            |     |                              |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------|--------|----------|-------|---------|-----------|---|------|-------|---------|------|--|-------------------------|-----|----------------|------|--------------------|------------|-------------|-------------------------|-----|----------------------------|-----|------------------------------|
|                                                                                                                            | :overy (Limit: 25-150%) | 1-52)  | <u> </u> | 1 . 1 |         | 19 (      |   | 22 ( | 24 (  | el<br>W | 22   |  | m t                     | 8   |                | 23 ( |                    | ۲.<br>۲.   |             | W.                      | ž   | i di                       | . 0 | Ä                            |
| Are all internal standard recoveries were within the 2010<br>Was the S/N ratio all internal standard peaks <u>&gt;</u> 10? | ference Compound        | BC-P0B |          |       |         | 13.6-7081 | - | 4    | S     | 61      | V SZ |  | 220910286-01 (3 C-POB 1 | -   | - <del> </del> | V 54 | Internal Standards |            |             |                         |     |                            |     |                              |
| N/N/A Are all internal sta<br>N/N/A Was the S/N ratio                                                                      | Date Lab ID/Reference   |        |          |       |         |           | × |      |       |         |      |  | 282 JA0'                | 8 I |                |      |                    | 13C_DCR_77 | 13C-PCB-105 | <sup>13</sup> C-PCB-118 | ┝╾┽ | E. <sup>13</sup> C-PCB-156 | +   | G. 1 <sup>13</sup> C-PCB-169 |

INTST.16A

54-5 ( <sup>1</sup> -

a stars of



# VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

of / 7 Page: Reviewer:\_\_\_ 2nd Reviewer:\_\_

METHOD: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF =  $(A_{\omega})(C_{\omega})/(A_{\omega})(C_{\omega})$ average RRF = sum of the RRFs/number of standards %RSD = 100 \* (S/X)

A<sub>x</sub> = Area of compound, A<sub>x</sub> C<sub>x</sub> = Concentration of compound, C<sub>u</sub> S = Standard deviation of the RRFs, X

 $A_{s} = Area of associated internal standard$  $und, <math>C_{s} = Concentration of internal standard$ s RRFs, X = Mean of the RRFs

| Recalculated | %RSD        | <u>c</u> , 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                   | )<br>)<br>)<br>)          | 04.0                        | 667                                |                       |  |                    |                                    |                                    |                                    | Ī |                                  |                                    |                                    |                      |                                                                                                                |  |
|--------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|-----------------------------|------------------------------------|-----------------------|--|--------------------|------------------------------------|------------------------------------|------------------------------------|---|----------------------------------|------------------------------------|------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|--|
| Reca         | *           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                   | $\downarrow$              | n                           | 1                                  |                       |  |                    |                                    |                                    |                                    |   |                                  |                                    |                                    |                      |                                                                                                                |  |
| Reported     | %RSD        | <ul><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li><li>✓</li>&lt;</ul> | 0                   | 0.00                      | 070                         | 001                                | 100                   |  |                    |                                    |                                    |                                    |   |                                  |                                    |                                    |                      |                                                                                                                |  |
| Recalculated | RRF<br>Adj  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | No.                       | 90                          |                                    | 100                   |  |                    |                                    |                                    |                                    |   |                                  |                                    |                                    |                      | يعالي معرفين ومعرفين والمعرفين والمعرفين والمعرفين والمعرفين والمعرفين والمعرفين والمعرفين والمعرفين والمعرفين |  |
| Reported     | <u> </u>    | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                   | 1.08                      | 201                         | ×                                  | .0%                   |  |                    |                                    |                                    |                                    |   |                                  |                                    |                                    |                      |                                                                                                                |  |
| Decelection  | Average RRF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.44                | 20.1                      | 10-                         |                                    | 0.00                  |  |                    |                                    |                                    |                                    |   |                                  |                                    |                                    |                      |                                                                                                                |  |
|              | Average RRF | (INIXIAI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40                  | 1.06                      |                             | < <i>i</i> , <i>i</i>              | 06.0                  |  |                    |                                    |                                    |                                    |   |                                  |                                    |                                    |                      |                                                                                                                |  |
|              |             | Compound (Reference Internal Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PCB-77 (1ªC-PCB-77) | 5/1/0/ 200105 AD DOB 1051 | PCB-105 (eut-and-o) 201-804 | PCB-156 ( <sup>13</sup> C-PCB-156) | PCB-186 (**C-PCB-180) |  | PCB-77 ("C-PCB-77) | PCB-105 ( <sup>13</sup> C-PCB-105) | PCB-156 ( <sup>13</sup> C-PCB-156) | PCB-180 ( <sup>13</sup> C-PCB-180) |   | PCB-77 ( <sup>11</sup> C-PCB-77) | PCB-105 ( <sup>13</sup> C-PCB-105) | DCR.156 ( <sup>11</sup> C.PCB-156) | PCB-180 ( C-LCB-180) |                                                                                                                |  |
|              | Calibration | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>            | 5/1/0/                    |                             | \<br>\                             |                       |  |                    |                                    |                                    |                                    |   |                                  |                                    |                                    |                      |                                                                                                                |  |
|              |             | Standard ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 7, -              | Ct e                      |                             |                                    |                       |  |                    |                                    |                                    |                                    |   |                                  |                                    |                                    |                      |                                                                                                                |  |
|              |             | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Γ.                  | -                         |                             |                                    |                       |  | N                  |                                    |                                    |                                    | T | 0                                |                                    |                                    |                      |                                                                                                                |  |

Comments: Refer to Initial Calibration findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

C:\WPDOCS\WRK\PCB\INICLC.16A

LDC #2176843< SDG # 20 COND

## **Routine Calibration Results Verification** VALIDATION FINDINGS WORKSHEET

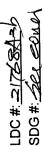
Ъ 2nd Reviewer: Page: Reviewer:

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668A)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave. RRF - RRF)/ave. RRF RRF = (A<sub>3</sub>)(C<sub>16</sub>)/(A<sub>8</sub>)(C<sub>3</sub>)

ave. RRF = initial calibration average RRF RRF = continuing calibration RRF  $A_x$  = Area of compound,  $A_s$   $C_x$  = Concentration of compound,  $C_s$ Where:


 $A_{is}$  = Area of associated internal standard  $C_{is}$  = Concentration of internal standard

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the Recalculated **0**% Reported ۵° I 0 Recalculated m Ŋ 4R2 RRF (CC) d d 3 ٩ 95. ß 5 À 5 45.5 Ø 50.2 Reported 4.87 95.4 RRF CC 46. 10 25 40. 4 8 Ą 95. ß Average RRF (initial) Q 1.05 06.0 40. 0.90 5 40. 96.0 00 40. 0 D 50. 0. Compound (Reference Internal Standard) PCB 1454"3C-PCB 1454 (556 PCB KS (13C-PCB 107) 156 PCB (20 (13C-PCB 195) (2) PCB 105 (<sup>13</sup>C-PCB 105) PCB 189 (<sup>13</sup>C-PCB 189) PCB 189 (<sup>13</sup>C-PCB 189) PCB 105 (13C-PCB 105) PCB 189 (<sup>13</sup>C-PCB 189) PCB 105 (<sup>13</sup>C-PCB 105) PCB 77 (<sup>13</sup>C-PCB 77) PCB 77 (<sup>13</sup>C-PCB 77) PCB 77 (<sup>13</sup>C-PCB 77) 160 1001 Calibration Date ٥ 8151 51 6 L 120055N Standard ID H22003H 1122001 2 ო # ---

V:\VALIDATION WORKSHEETS\1668A\CONCLC 1668.DOC

**recalculated** 

results.





METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668A)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 \* SSC/SA Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCS - LCSD I \* 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recoveryLCSD = Laboratory control sample duplicatepercent recovery

þ 50 LCS ID: ZA PORT 86

e

|          |               |       |               | -        | č                |         |                  | C       | rcs/I    | LCS/LCSD     |
|----------|---------------|-------|---------------|----------|------------------|---------|------------------|---------|----------|--------------|
|          | Spi           | ike   | Spiked :      | Sample L |                  | 0       |                  |         |          |              |
| Compound | Added<br>(DS/ | ded ( | Concentration | tration  | Percent Recovery | ecovery | Percent Recovery | ecovery | RI       | RPD          |
|          |               |       |               |          |                  |         |                  | Decalc  | Reported | Recalculated |
|          | rcs<br>r      | LCSD  | rcs           | LCSD     | Reported         | Recalc. | Reported         | Vecale. |          |              |
| PCB 1    | 0241          | 0201  | 12            | 970      | 97               | 76      | 97               | 97      | 0        |              |
| PCB 42.  |               |       |               |          |                  |         |                  |         |          | (            |
| PCB 37   | (au)          | 10001 | 1090          | 1000     | 601              | 109     | 001              | 201     | 6        | 6            |
| PCB 54   | 1             | 2     | 1020          | 100      | 102              | 201     | 99               | 99      | M        | Μ            |
|          |               |       | et a          | 945      | 100              | 12      | 94               | Å       | 00       | Ø            |
|          |               |       |               | get      | X                | X       | 95               | 95      | 01       |              |
|          |               |       | 12/1          |          | 44               | 4       | 8                | 88      | 1        | 00           |
| PCB 130  |               |       | 831           | 878      | R                | 8       | 98               | 98      | (7)      | 5            |
| PCB 208  |               |       | add           | 201      | .001             | 201     | 011              | 011     | a1       | 01           |
| PCB 209  |               |       | 0101          | 0001     | 101              | 101     | 100              | (Ld)    |          |              |
|          |               |       |               |          |                  |         |                  |         |          |              |

Comments: Refer to Laboratory Control Sample findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the results. <u>recalculated</u>

|            |                              |       | Analyta              | Substance |
|------------|------------------------------|-------|----------------------|-----------|
| Descriptor | Accurate mass <sup>(a)</sup> |       |                      |           |
|            |                              | W     | C12 H6 35Cl4         | TCB       |
| ~          | 289.9224                     |       | C12 HE 35C13 37C14   | TCB       |
|            | 291.9194                     | M+2   |                      |           |
|            | 301 0676                     | Ž     | 13C12 H6 35Cl4       |           |
|            |                              | 0.4M  | 1 3C12 H6 35Cl3 37Cl | PeCB      |
|            | 303.9597                     |       |                      | PaCB      |
|            | 375 BRN4                     | M+2   | C12 H5 35CH 3/CI     |           |
|            |                              | M+4   | C12 H5 35Cl3 37Cl2   | rece      |
|            | C/ 18.125                    |       | C7 E11               | PFK       |
|            | [292.9825]                   | LOCK  |                      |           |
|            |                              |       |                      |           |
| ç          | 375 BRN4                     | M+2   | C12 H5 35CI4 3/CI    |           |
| ٧          |                              | M+4   | C12 H5 35Cl3 37Cl2   | Pece      |
|            | C//O//27                     |       | 13C12 H5 35CIA 37CI  | PeCB      |
|            | 337.9207                     | NIT Z |                      | DACR      |
|            | 330 0178                     | M+4   | 13C12 H5 35CI3 3/CI2 |           |
|            |                              | M+2   | C12 H4 35CI5 37CI    | HXCB      |
|            | 308.64 I D                   |       | C12 HA 35C14 37C12   | HXCB      |
|            | 361.8385                     | N1+4  |                      | HVCB      |
|            | 371 8817                     | M+2   | 13C12 H4 35CI5 3/CI  |           |
|            |                              | M+4   | 13C12 H4 35Cl4 37Cl2 | HXCB      |
|            | 3/ 3.0/ 00                   | CTW   | C12 H3 35Cl6 37Cl    | HpCB      |
|            | 393.8025                     |       |                      | HDCB      |
|            | 395 7996                     | M+4   | C12 H3 32012 3/ 012  |           |
|            | 406 8428                     | M+2   | 13C12 H3 35Cl6 37Cl  |           |
|            |                              | V+A   | 13C12 H3 35CI5 37CI2 | HPCB      |
|            | 40/.8396                     |       | C9F13                | PFK       |
|            | [354.9892]                   | FUCK  | 2                    |           |
|            |                              | M+4   | 13C12 35CI10 37CI2   | DCB       |
| n          | 508.1Z28                     | N 4 6 | 13C12 35C19 37C13    |           |
|            | 511.7199                     |       |                      |           |
|            | 513.7170                     | M+8   |                      | DEK       |
|            | [442.9728]                   | Lock  | C10 F1/              | -         |
|            |                              |       |                      |           |
|            |                              |       |                      |           |

S = internal/recovery standard

H = 1.007825C = 12.000000 $^{13}C = 13.003355$ F = 18.9984

<sup>35</sup>Cl = 34.968853 <sup>37</sup>Cl = 36.965903

V:\Validation Worksheets\1668A\TCI table.wpd

1411 a. .

LDC #-2176843-SDG #: <u>Ler CONE</u>

| Page:         | <u></u> |
|---------------|---------|
| Reviewer:     | 9       |
| 2nd reviewer: | -t-     |

 $\mathbf{N}_{i}$ 

## METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668A)

o

N N/A N N/A

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

| Concentr        | ation | $= (A_{*})(I_{*})(DF) (A_{*})(RRF)(V_{o})(%S)$                              |
|-----------------|-------|-----------------------------------------------------------------------------|
| A <sub>x</sub>  | =     | Area of the characteristic ion (EICP) for the compound to be measured       |
| A <sub>is</sub> | =     | Area of the characteristic ion (EICP) for the specific<br>internal standard |
| ls              | =     | Amount of internal standard added in nanograms (ng)                         |
| Vo              | =     | Volume or weight of sample extract in milliliters (ml) or grams (g).        |
| RRF             | =     | Relative Response Factor (average) from the initial<br>calibration          |
| Df              | =     | Dilution Factor.                                                            |

%S = Percent solids, applicable to soil and solid matrices only.

Example: Sample I.D. <u>2</u>, <u>POBI</u>:

 $Conc. = \frac{808|e+B_1(2000)(}{(7.494e+03)(1.115)(1.10)(})$  $= 753.^2 P5/2$ 

Calculated Reported Concentration Concentration Qualification ) ) ( ( Compound Sample ID #