

a member of The GEL Group INC

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407

P 843.556.8171 F 843.766.1178

www.gel.com

August 28, 2009

Mr. Frank Hagar Northgate Environmental Management, Inc. 1100 Quail St., Suite 102 Newport Beach, California 92660

Re: Tronox Henderson Work Order: 234267

Dear Mr. Hagar:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on July 29, 2009, July 30, 2009 and July 31, 2009. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

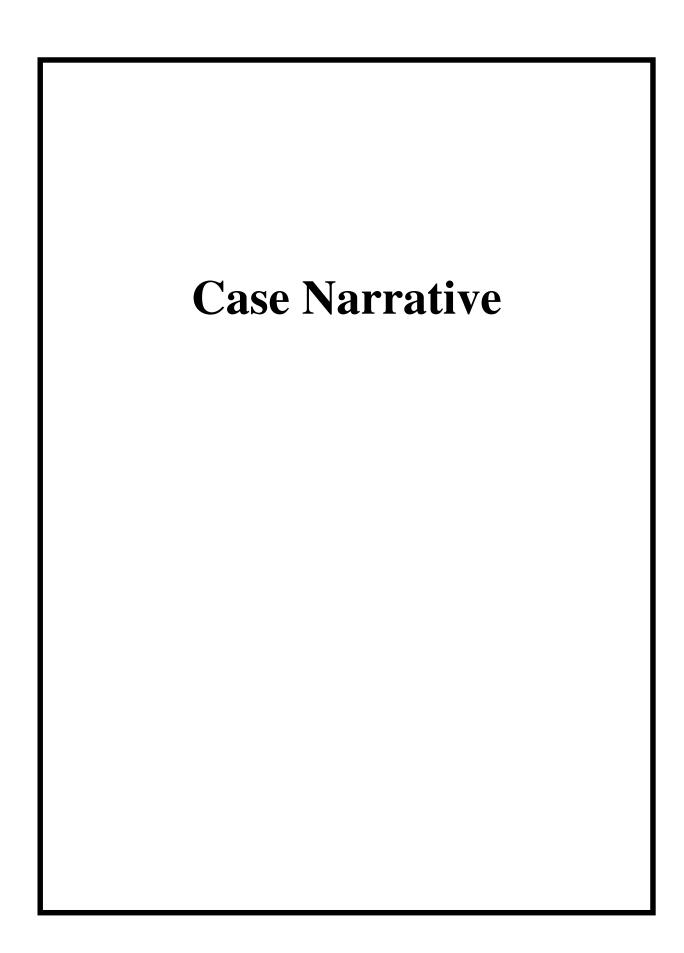
Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4453.

Sincerely,

Edith Kent Project Manager

Edisk M. Kest

Chain of Custody: 2027.001.00438, 2027.001.00440, 2027.001.00451, 2027.001.00455, 2027.001.00469,


2027.001.00472 and 2027.001.00474

Enclosures

Tronox LLC Tronox Henderson SDG:234267

Table of Contents

Case Narrative	1
Chain of Custody and Supporting Documentation	4
Laboratory Certifications	24
Radiological Analysis	26
Sample Data Summary	46
Quality Control Data	68
	74
Raw DataUranium	7 4 75
892901	75 76
892925	101
Thorium	107
892899	108
897494	133
Radium 228	139
891149	140
891394	152
Radium 226	162
892760	163
893450	168
Method Calibration Data	173
Gas Flow Proportional Counter	174
Lucas Cell Counters	258
Lucas 1	259
Lucas 2	282
Lucas 3	302
Lucas 4	322
Lucas 5	337
Lucas 6	358
Alpha Spectroscopy	384
Background and Efficiency Data	836
Runlogs	1036

CASE NARRATIVE for Tronox LLC Tronox Henderson SDG:234267

August 28, 2009

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary

Sample receipt

The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on July 29, 2009, July 30, 2009 and July 31, 2009 for analysis. Shipping container temperatures were checked, documented, and within specifications. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There was a discrepancy between the chain of custody and the sample container for the sample listed on the COC as SA73-28B received on COC# 2027.001.00440 on July 30, 2009. The client e-mailed the lab to rename the sample SA73-30B. Per direction of Cindy Arnold, the lab was instructed to make the correction on the original COC and initial and date the correction. Direction from the client was requested to determine which samples FB072909-SO was associated with. Please see attached e-mail responses on both of these issues.

Items of Note

All samples under this SDG were logged as an open SDG until a sufficient amount of samples were received by the lab. The client was notified that the SDG was closed on July 31, 2009 and the turnaround time would start from then. Please refer to the attached e-mail for further details.

QC Issues

The following samples did not meet the Tronox QA program sample result uncertainty limit of <30% for Ra-226 with the results between 2 and 5 times the MDA and were counted for the maximum time: 234267002, 234267007, 234267009, 234267012, 234267015 and 234267019.. For Ra-226, the lab dup also did not meet the program QA uncertainty requirements. For the Thorium soil analysis the Th-228 result for the method blank was greater than the MDA and did not meet the Tronox QA program required detection limit. The samples were reprepped as a result with comparable results with the exception of sample 234267019 and the Th-230 result for the method blank was greater than the MDA and contract required detection limit. The decision was made to report the results from the original analysis as all other Quality Control criteria and Tronox QA program criteria for tracer yield recoveries, uncertainty requirements, and detection limits were met. The following samples did not meet the Tronox QA program sample result uncertainty limit of <30% for Alpha Spec Uranium with the results between 2 and 5 times the MDA and were counted for the maximum time: 234267006, 234267008, 234267010, 234267012, 234267015, 234267016, 234267017 and 234267019.. The following samples did not meet the Tronox QA program sample tracer yield requirements of 70-120% for Alpha Spec Uranium due to matrix issues: 234267002 and 234267005.. The following samples did not meet the Tronox QA program sample result uncertainty limit of <30% for Alpha Spec Uranium with the results greater than 5 times the MDA and were counted for the maximum time: 234267002, 234267003 and 234267009.. For the Thorium water samples the method blank did not meet the Tronox QA program sample result uncertainty limit of <30% with activity between 2 and 5 times the MDA for Th-230. The LCS did not meet the Tronox QA program sample result uncertainty limit of <30% with activity between 2 and 5 times the MDA for Th-228. Samples were counted the maximum count time to achieve the best possible uncertainties. The LCS did not meet the Tronox QA program tracer yield requirements of 70-120%. With a value of 67.1%, the tracer yield met the GEL standard requirement and both the LCS and LCS dup met the Th230 recovery requirements. All other samples in the batch met the contract tracer yield requirement. For the Uranium soils, the lab dup also did not meet the program QA uncertainty requirements. Please refer to the attached e-mails for further discussion of QA issues.

Sample Identification

The laboratory received the following samples:

Laboratory ID	Client ID
234267001	RSAM7-28B
234267002	SA179-0.5B
234267003	SA179-10B
234267004	SA179-29B
234267005	RSAU4-0.5B
234267006	RSAU4-10B
234267007	RSAU4-20B
234267008	RSAU4-25B
234267009	RSAU4-40B
234267010	RSAU4-50B
234267011	RSAU4-56B
234267012	RSAL6-0.5B
234267013	RSAL6-10B
234267014	RSAL6-28B
234267015	SA73-0.5B
234267016	SA73-10B
234267017	SA73-30B
234267018	FB072909-SO
234267019	SA49-10B
234267020	SA49-20B

Case Narrative

Sample analyses were conducted using methodology as outlined in GEL Laboratories, LLC (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

Data Package


The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Data Package Qualifier Definitions and data from the following fractions: Radiochemistry.

Edish M. Kest

This data package, to the best of my knowledge, is in compliance with technical and administrative requirements.

Edith Kent

Project Manager

334367·1.

Gnorthgate

environmental management, inc.

1100 Quall Street, Suite 102, Newport Beach, CA 92660 (949) 260-9293

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.

2027.001.00440 ರ್ ರ Cooler#

COC No.

¥

QC level Required: Standard | Special EPA Stage 4 Mark one Mark One Mark One z ≻ Z } Z } Lub Blank3 Comments/Lab Sample Receipt Conditions Sample I.D. Š ×/× \ \ \ Z } Stoetni 250 ml Plastic jar 250 ml Plastic jar 250 ml Plastic Jar Sample 0555 12 4 × 1/47) Samples on Ice? Z/X Z/X N/ CT RCP Cert? Rush NJ Reduced Deliverable Package? O0 ni qmeT × Lab Project ID (jab use) 729 Time: 1502 TAT: Standard 30 day If Rush, Date due 7-30-09 × XXX MA MCP Cert? × × × Analyses - help Cel Rednested Ferringer Mark one EOZSZ®N ACCEPTED 24 / AFF II JATION HOSN Frank Hagar Northgate Environmental Management, Inc Phone #: (949)260-9293 ЮH EON SAMPLER NAME AND SIGNATURE 15204 Partick CC Hardcopy report to see additional comments below pevieserqui CC Hardcopy report to PDF Electronic Version Only z z יוברם ארו באבטג (גאמ) 720 1700 Send EDD to frank.hagar@ngem.com Henderson, NV 89009 DATE Send Invoice to: Susan Crowley SAMPLE TIME 2480 7-29-09 0913 UPS COURIER REDEX PRINT Name of SAMPLER: Required invoice information: 1018 GNATURE of SAMPLER: Reimbursement project? Address: PO Box 55 SHIPPING METHOD: (mark as appropriate) 7-29-09 60-62-1 SAMPLE DATE RELINQUISHED BY / AFFILIATION A STATE OF THE STA Site PM Email: | derrick.willis@ngem.com SAMPLE TYPE 9MOD=D BARD=D Ø Ø ø TRONOX LLC. HENDERSON US MAIL State NV Site Address | 560 W. Lake Mead Drive Derrick Willis S စ္တ တ္တ MATRIX CODE Phone/Fax: |949-375-7004 Radionuciides, includes Thorium (isotopic) and Uranium (isotopic) by EML HASL 300 modified(alpha spectroscopy) Required Project Information: 2027.001 29-09 Henderson Site PM Name Project # Site ID #: All PDF reports and EDDs will be uploaded to: Vorthgate Environmental Management, Inc. (A-Z, 0-9 / ,-) Samples IDs MUST BE UNIQUE One Character per box. FULL DIGESTION SPECIFICATION dditlonal Comments/Special Instructions: TP site address provided to labs Lab Name: GEL Laboratories, LLC emk@gel.com cindy.amold@ngem.com Votifications provided to: Address: 2040 Savage Road rank.hagar@ngem.com (843)556-8171 HS 8-28-09 Edith M. Kent Applicable Lab Quote #: SA73-0.5B Chartleston, SC 29407 SA73-10B SA73-28B 8 Required Ship to Lab: ab PM email ab PM:

S northgate

1100 Quall Street, Suite 102, Newport Beach, CA 92660 (949) 260-9293

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.

COC No. 2027.001.00438
Page: 1 of 1
Cooler# 1 of 1

Special EPA Stage 4 Mark one Mark One Z > Z } Z ≻ Lub Blank? Comments/Lab Sample Receipt Conditions Sample I.D. Š N X N/ N/Y intact? 250 ml Plastic jar 250 ml Plastic jar 250 ml Piastic jar 250 ml Plastic Jar 250 ml Plastic Jar Sample JOSÉ Y MED ou Ices Z/X N/Y Z ≻ CT RCP Cert? Samples Rush NJ Reduced Deliverable Package? O0 ni qmaT QC level Required: Standard × 7-19-01 CB-10 Lab Project ID (jab use) TAT: Standard 30 day DATE Signed 7-28 Time, 352 f Rush, Date due ××× × ××× × MA MCP Cert? × × ynalyses Rednested E Partiet Perrimen Selection of the select 802SZ6 Frank Hagar Northgate Environmental Management, Inc HOeV Phone #: (949) 260-9293 ЮН Pare -EONH SAMPLER NAME AND SIGNATURE 42SO4 CC Hardcopy report to see additional comments below 7.81700 Mille × × × × Send EDD to frank.hagar@ngem.com
CC Hardcopy report to PDF Electronic Version Only z z z z TIME #OF CONTAINERS Henderson, NV 89009 Required Involce Information:
Send Invoice to: Susan Crowley
Tronox LLC 7.28-08 0758 SAMPLE TIME 7.28-9 0758 0758 7-28-0857 1260 UPS COURIER FEDEX PEANT Name of SAMPLER: IGNATURE of SAMPLER: Reimbursement project? HIPPING METHOD: (mark as appropriate) Address: PO Box 55 7.28-0 7.28-09 SAMPLE DATE Mill. RELINQUISHED BY / AFFILIATION City/State Site PM Email: | derrick.willis@ngem.com Ø O Ø Ø TRONOX LLC. HENDERSON US MAIL È Site Address 560 W. Lake Mead Drive တ္တ S တ္တ တ္တ S Derrick Wills State MATRIX CODE Phone/Fax: (949) 375-7004 Required Project Information: 2027.001 <u>Radionuciides*</u> includes Thorium (isotopic) and Uranium (isotopic) by EML HASL 300 modified(alpha spectroscopy) MATRIX
WP WATER
WG SURAGE WATER
WM WERTER OC BL P SULDGE
BO OR RESEATE
BW OTHER
AA ANMALTISSUE
GGS Henderson Site PM Name 20.82.7 Project # All PDF reports and EDDs will be uploaded to: Northgate Environmental Management, Inc. FTP site address provided to labs (A-Z, 0-9 / ,-) Samples IDs MUST BE UNIQUE One Character per box. Additional Comments/Special Instructions: FULL DIGESTION SPECIFICATION SAMPLE ID Required Ship to Lab:
Lab Name: GEL Laboratories, LLC emk@gel.com SA179-0.5BMSD Address: 2040 Savage Road SA179-0.5BMS cindy.amold@ngem.com (843) 556-8171 Notifications provided to: rank.hagar@ngem.com Lab PM: Edith M. Kent SA179-0.5B SA179-10B SA179-29B Chartleston, SC 29407 Applicable Lab Quote #: Lab PM email none/Fax: 12 # Mati

SAMPLE RECEIPT & REVIEW FORM

Clie	nt: KEFF NORTH	6-A	R		SDG/ARCOC/Work Order: 234247.
Rece	eived By: MK				Date Received: 749 79
Susp	ected Hazard Information	Yes	S _o	*If C the R	ounts > x2 area background on samples not marked "radioactive", contact adiation Safety Group of further investigation.
COC	/Samples marked as radioactive?		1		mum Counts Observed*:
Class	ified Radioactive II or III by RSO?		V		
COC	/Samples marked containing PCBs?	<u> </u>	/		
	oed as a DOT Hazardous?		1	Hazza	rd Class Shipped: UN#:
Samp	les identified as Foreign Soil?				
	Sample Receipt Criteria	Yes	NA	N _o	Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	/			Circle Applicable: seals broken damaged container leaking container other (describe)
2	Samples requiring cold preservation within $0 \le 6$ deg. C?		\		ice bags blue ice dry ice none other (describe)
3	Chain of custody documents included with shipment?	V			
4	Sample containers intact and sealed?				Circle Applicable: seals broken damaged container leaking container other (describe)
5	Samples requiring chemical preservation at proper pH?		1/	I	ample ID's, containers affected and observed pH: f Preservation added, Lot#:
6	VOA vials free of headspace (defined as < 6mm bubble)?		V		sample ID's and containers affected:
7	Are Encore containers present?				f yes, immediately deliver to Volatiles laboratory)
8	Samples received within holding time?	/			d's and tests affected:
u	Sample ID's on COC match ID's on bottles?				ample ID's and containers affected:
	Date & time on COC match date & time on bottles?				ample ID's affected:
11	Number of containers received match number indicated on COC?	1		S	ample ID's affected:
12	COC form is properly signed in relinquished/received sections?	1			
Comm	ents:			1×	FX 7968 1391 8210 Date
	PM (or PMA) review: Initia	12		<u> </u>	

2342107/

S northgate environmental management, inc. 1100 Quall Street, Sulte 102, Newport Beach, CA 92660 (949) 269-5293

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.

2027.001.00474 . 1 of 1 of COC No. Page: Cooler#

Commented Property	ab Name:	пс		TRONOX LLC. HENDERSON	ENDER	NOS	ice to:	Susan Crowley Tronox L.L.C	, s					TAT	Standar	TAT: Standard 30 day	×	Rush		Mark One
Sile Address 60 to tube based loves Colored Broadward Special Broadward Spec	Address:	2040 Savage Road	Project #	2027.001			PO Box 5							If Ru	sh, Date	que			-	
State Contraction Contra	Shartleston		Address	560 W. Lake Mes	d Drive			tenderson, N	V 89009	Phone #:	(849)2	60-9293		ğ	ed Red	uired: Sta	Indard	Spe		e 4 Mark one
Single Day Name Stories (200 Day Name Stories (200 Day (190	ab PM:	Edith M. Kent			l		Reimbursement project	L L	Non-rei	imbursement	oroject?		Mark one	T	educed	Deliverab	le Packaç	- - - 	+	$\frac{1}{1}$
Provide to lates Provided to lates Provi	hone/Fax:	(843)556-8171	Site PM Name	Derrick	Wills			rank Hagar I rank.hagar@i	Vorthgate En	vironmental	Vanageme	out, Inc		MA	ACP Cer	4	CTR	CP Cert?	-	Mark One
Sile Part Email:	ab PM em≀	@gel.com		149-375-7004			CC Hardcopy repor	rtto PDF	Electronic V	'erslon Only				9	Project	D (lab us	ٳ			
Sample S	pplicable L		Site PM Email:	derrick.wi	llis@n		CC Hardcopy repor		additional co	mments bek	*			\perp		1		1	11	
Solution	- S	e C	ğ		30				SA	(NVA)		Preserve	tives							
SO G 7729/2009 714 1		haracter per box. (A-Z, 0-9 / ,-) i Ds MUST BE UNIQUE	1		IOO XIBITAM		SAMPLE DATE	SAMPLE TIN		FIBLD FILTERED:	≯ O\$ZH	нсі	N=28208	Sednes	1300	ST HOPEN STORY			Comme	nts/Lab
SO G 7729/2009 8:14 1 N X		SAU4-0.5B			SO	g	7/29/2009	7:14	-		×			<u> </u>	×	×	\vdash	250 m	l Plastic jar	į
SO G 7729/2009 B:14 1 N X		SAU4-10B			တ္တ	g	7/29/2009	7:44	-		×			<u> </u>	┿~	+	-	250 m	I Plastic jar	
SO G 7729/2009 6:20 1 N X X X X X Z50 ml Pleasic jer		SAU4-20B			တ္တ	စ	7/29/2009	8:14	1	\vdash	×	_			+-	-	-	250 m	l Plastic jar	
SO G 7/29/2009 S20 1 N X X X X		SAU4-25B			စွ	9	7/29/2009	8:45	-	1-	×	-			1	+	-	250 m	I Plastic jar	
SO G 7/29/2009 10.45 1 N X X X X X Z20 mi Plastic jar		SAU4-40B			တ္တ	9	7/29/2009	9:20	-		×	_			+-	+-		250 m	1 Plastic Jar	
SO G 7/29/2009 10:46 1 N X X X X X Z50 millossic per Z50 m		SAU4-50B			တ္တ	9		10:15	-		×				⊢-	⊹ —	-	250 m	I Plastic Jar	
SHEWER FEDEX SH		SAU4-56B			80	9		10:45	1		×				├	-		250 m	I Plastic jar	
Sample Receipt Conditions [Actific OPANA Brown NGCM 20-Jul 16:30 7/4/4 [Actific open 10 open	ec																			
PLILICATE DE PAY AND SALVAN NGCM 20-Jul 16:30 76 720 0835 216 Y/N Y/N SALVAN COURIER FEDEX SAMMER DATE OF SAMME	5.	000							_			\downarrow		4	$\frac{1}{2}$		+			
SHANKS IT. TO COUNTER FEDEX SHANKS IS SHANKS IT. TO COUNTER FEDEX SHANKS IT. TO COUNTE	2	7 30 06							\downarrow		+	+		+	\downarrow		1			
Structure provided with the provided by the provided with the provided by th	= 2										-	-		+	+		+			
SHANKS ITT OD AND BE SAMPLER FEDEX SHANKS ITT OD AND BE SAMPLER UPS COURIER FEDEX SHANKS ITT OD AND BANKS ITT OD AND BENEVING AND STANKS ITT ON YIN YIN SHANKS ITT OD AND BANKS ITT OD AND BANKS ITT OD AND BENEVING AND STANKS ITT OD A	~								-						+		ŀ			
WANTE BEOWN, NGGM 28-Jul 16:30 7/4 (20 7-30-07 0835 216 Y/N) Y/N SHIPINGE TO DE MANTE REDEX PROTESTING COURTER FEDEX SHIPINGE TO DE MANTE GRANDER FEDEX SHIP	ddiflonal (Commenta/Special Instructions:			BCL C.	ALL LIPRY AS	NaMiWaa	DA	_	A 251 19		40.00						mple Rec	elpt Condit	ons
OPS COURIER FEDEX PRIVING ASAMPLE: US MAIL SEMANTIFICATION OF ANY OF A	ULL DIG Radionuc	SESTION SPECIFICATION ? <u>lides*</u> Includes Thorium (isotopic) and t	Uranium (Isotop	ic) by EML	1	W Bri	9 BROWN, NE			74/4	4	1/4	9	70.	7.3			N V	H	\ ₹
SULPTING ET 1 OD COLLET STANDON CHANGE BY AND SUCKNITURES STANDON CHANGE BY AND SULPTING CHANGE BY AND SULPTING CHANGE BY AND SUCKNITURE CHANGE BY BY AND SULPTING CHANGE BY	IASL 30(0 modified(alpha spectroscopy)						+	+		.				_	`		Y/N		Y/N
SALAPPING HT. TO D. COLINER FEDEX PRINT Name of SAMPLER: Dana P/Bip/An PANT NAME OF SAMPLER: Dana P/Bip/An	II PDF re	sports and EDDs will be uploaded to:						-	-									Y/N		N/A
SHAPING MET OD AGAR SEAT ON THE PROTECTION OF THE SHAPE SHAP	Vorthgate TP site a	e Environmental Management, Inc. Indress provided to labo							_							-		Y/N	\forall	Y/N
US MAIL Stand SAMPLER OF SAMPLER	lotificatio indy.amo	nns provided to:			UPS	as ()	FEDEX PRINT Name of		THER NATE	MOIS GIVE								sə i	əld	suk?
	ank.hage	ar@ngem.com			US MA	H.	SIGNATURE	SAMPLER:	Dana		4	DAT	peugls :		Time:	Cr. 4	T	ampl	ms2	l8 qh

SAMPLE RECEIPT & REVIEW FORM

Clien	1: Kerr Northante			S	DG/ARCOC/Work Order: 2343(67.
Recei	ved By:				Date Received: 7-30 09
Suspe	ected Hazard Information	Yes	N ₀		ounts > x2 area background on samples not marked "radioactive", contact idiation Safety Group of further investigation.
COC	Samples marked as radioactive?			/	num Counts Observed*:
Class	fied Radioactive II or III by RSO?				
COC	Samples marked containing PCBs?		√		
Shipp	ed as a DOT Hazardous?		\mathcal{L}	Mazar	d Class Shipped: UN#:
Samp	les identified as Foreign Soil?		Y		
	Sample Receipt Criteria	Yes	NA	Š	Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping containers received intact and sealed?				Circle Applicable: seals broken damaged container leaking container other (describe)
2	Samples requiring cold preservation within $0 \le 6$ deg. C?		1		ice bags blue ice dry ice none other (describe)
3	Chain of custody documents included with shipment?				
4	Sample containers intact and sealed?				Circle Applicable: seals broken damaged container leaking container other (describe)
5	Samples requiring chemical preservation at proper pH?			11	ample ID's, containers affected and observed pH: Preservation added, Lot#:
6	VOA vials free of headspace (defined as < 6mm bubble)?				ample ID's and containers affected:
7	Are Encore containers present?				f yes, immediately deliver to Volatiles laboratory)
8	Samples received within holding time?				d's and tests affected:
9	Sample ID's on COC match ID's on bottles?				ample ID's and containers affected:
10	Date & time on COC match date & time on bottles?	/			ample ID's affected:
11	Number of containers received match number indicated on COC?			S	ample ID's affected:
12	COC form is properly signed in relinquished/received sections?				· · · · · · · · · · · · · · · · · · ·
Comr	nents:				FX 7968 1821 7125
	PM (or PMA) review: Initi	als		\mathcal{N}	Date Date

Snorthgate

1100 Quail Street, Sulte 102, Newport Beach, CA 92660 (949) 260-9293 environmental management, inc.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.

2027.001.00451 --o o COC No. Page: Cooler#

Requir	Required Ship to Lab:	Required Project Information:	ct Informatios	ë		Required Invoice Information:	se inform	ation:														
Lab Na	Lab Name: GEL Laboratories, LLC	Site ID #:	TRONOX LLC. HENDERSON	LC. HEN	DERSON	Send Invoice to:		Susan Crowley Tronox LLC						1	T: Sta	TAT: Standard 30 day	30 day	×	Rush		Σ	Mark One
Addres	Address: 2040 Savage Road	Project #	2027.001	_		Address: PO Box 55	lox 55							트	Rush, L	If Rush, Date due	e e					
Chartle	Chartleston, SC 29407	Site Address 560 W. Lake Mead Drive	560 W. Lak	e Mead L	Orive	City/State	Hend	Henderson, NV 89009		Phone #:	(949)2	(949)260-9293		ğ	C level	Requir	QC level Required: Standard	ndard		ecial EPA	Special EPA Stage 4 Mark one	ark one
Lab PM:	M: Edith M. Kent	City Henderson	son	State	ž	Relmbursement project?	project?	×	lon-relmbi	Non-reimbursement project?	oroject?		Mark one) Redu	ced De	NJ Reduced Deliverable Package?	e Pack	age?			
Phone/Fax:	/Fax: (843)556-8171	Site PM Name		Derrick Willis	s	Send EDD to		Frank Hagar Northgate Environmental Management, Inc frank.hagar@ngem.com	ate Envir	onmental	Manage	ement, Ir	2	Ž	MA MCP Cert?	Cent?		CT RC	CT RCP Cert?	<i>ر</i> ۔	Σ	Mark One
Lab PN	Lab PM email emk@gel.com	Phone/Fax:	949-375-7004	4		CC Hardcopy report to PDF Electronic Version Only	y report	to PDF Electr	onic Vers	slon Only				تا	ıb Proj	ect ID	Lab Project ID (lab use)	(e) (c)	L			
Applice	Applicable Lab Quote #:	Site PM Email:		derrick.willis@r	@ngem.com	m CC Hardcopy report to see additional comments below	y report	to see additic	onal com	ments bet	Mo Mo											
			MATRIX	-					S	(N/A		Preservatives	sevije	pə	•	\						
TEM #	SAMPLE ID One Character per box. (A-Z, 0-9 / -) Samples IDs MUST BE UNIQUE	DRINKING WATER GROUND WATER WASH WATER WATER FROOKST SOL. OIL WINDE AMBENTAIR SPEAK SOL OAR SOL OAR SOL OAR	WYP WYTER WO SURFACE WATER WW MATER CO. E C C. RINSEATE SW OTHER A ARMAL TISSUE A ARMAL TISSUE A C. RINSEATE SW OTHER A ARMAL TISSUE A C. RINSEATE A C. RINSEATE SW OTHER A C. RINSEATE SW OTHER SW OTHER A C. RINSEATE SW OTHER A C. RINSEATE SW OTHER A C. RINSEATE SW OTHER SW OTHER S	* 8 8 8 8 8 € E	SAMPLE TYPE	SAMPLE DATE		SAMPLE TIME	#OF CONTAINER	HELD FILTERED? (NO3	IO HOS	SOSSSS lonerine	ther Request	Analyses	SEL-MUNDER 1. EOEAC	SES TRANSPAR 1 EDEN SES ON DES DE SOUND SES SES TRANSPER 1 EDEN SES T			og g	Comments/Lab	ab
.1	RSAL6-0.5B			ŭ	So	7-28-08		150/	-		н	Н	N .		×	×		\downarrow	250	250 ml Plastic jar	Inple 1.D.	
2	RSAL6-10B			ğ	9 08	D- 62 1		3/11	-	z	-				×	×		<u> </u>	250	250 ml Plastic jar	jar	
3	RSAL6-28B			ந	SO	60-62-6	_	1150	-	z					×	×	-		250	250 ml Plastic jar	jar	
V																		_				
- 5				<u> </u>																		
9																						
7	À	62-L 3	-00																			
8																						
6							,															
10											_											
11											_											
12																						
13	,																		_			
Addit	Additional Comments/Special Instructions:			ĸ	RELINQUISHEI	AQUISHED BY / AFFILIATION		DATE	TIME /	ACCEPTED PY / AFFILIATION	DPYIA	VEFILIATI	NO			DATE	TIME		mple F	eceipt (Sample Receipt Conditions	s
FULI	FULL DIGESTION SPECIFICATION Redinmelides* Includes Therium (isotonic) and Uranium (isotonic)	motonic) and Hranius	m (feotopic	<u>ا ا</u>	100		المر	1221	82	×	3	Y	1	73	$\overline{}$	7.2001	2550 1		011 JE	\vdash	N/W	Q
by E	by EML HASL 300 modified(alpha spectroscopy)	ectroscopy)				ackslash				•					-	•			√/N		Y/N	Y/N
A P	All PDF reports and EDDs will be unloaded to:	ded to:		[Z / ≻	_	Y/N	√/N
Nort	Northgate Environmental Management, Inc.	, Inc.									j				\neg				ν/ν -	_	Y/N	Y/N
FTP	FTP site address provided to labs Notifications provided to:			-S		ING METHOD: (mark as appropriate)	priate)	SAMPLER NAME AND SIGNATURE	NAME /	AND SIGN	VATURE	144										νKS
cindy	cindy.amold@ngem.com frank bagar@ngem.com			<u>5</u>	UPS COUR	COURIER FEDEX PORT	PRINT Name of SAMPLER:		Doug Danis	l,	1015		3		بدر بما هر			П	ni qm	ice?	intact	p Blaı
	windyal @ ligallicolli			<u></u>	US MAIL	HADIO	AI URE DI SH	WINDER	12/2		W		DATE Signed		5	7 29 Time: 150	20	┨		uo		'nΤ
ı					:			:		١		ì							İ			

1.400ch60

Snorthgate

environmental management, inc.

1100 Quall Street, Sulte 102, Newport Beach, CA 92650 (949) 260-9293

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.

2027.001.00440 **₹** COC No. Cooler#

Mark One Mark One Special EPA Stage 4 Mark one **E** N } Z } N ≻ Lub Blank3 Comments/Lab Sample Receipt Conditions Sample I.D. S E Z } Z } N / N Stoetni 250 ml Plastic Jar 250 ml Plastic Jar 250 ml Plastic jar Sample ou ice? 4 × 1/40 Z/× N/Y Z/N CT RCP Cert? Rush NJ Reduced Deliverable Package? O0 ni qmeT × QC level Required: Standard 855 Lab Project ID (jab use) 729 Time: 1502 TAT: Standard 30 day f Rush, Date due 7-30-09 ××× × ××× MA MCP Cert? Analyses Reduested 181 Pakrick Ferringel Mark one DATE Signed EOZSZ81 HOs rank Hagar Northgate Environmental Management, Inc (949)260-9293 ıcı EON SAMPLER NAME AND SIGNATURE 15204 CC Hardcopy report to see additional comments below nubreserved × × × CC Hardcopy report to PDF Electronic Version Only Phone #: z z z 729/1700 Send EDD to frank.hagar@ngem.com Henderson, NV 89009 DATE Susan Crowley Tronox LLC SAMPLE TIME 3480 5160 JPS COURIER REDEX PRINT NAME OF SAMPLER: IGNATURE of SAMPLER: Required invoice information: 8101 80-62-6 Relmbursement project? HPPING METHOD: (mark as appropriate) Address: PO Box 55 7-29-09 40-62-1 Send Involce to: SAMPLE DATE RELINQUISHED BY / AFFILIATION City/State A Property of the Property of Site PM Email: derrick.willis@ngem.com SAMPLE TYPE G=GRAB C=COMP ø O Ø TRONOX LLC. HENDERSON US MAIL State NV Site Address 560 W. Lake Mead Drive တ္တ င္တ တ္တ Derrick Willis **BOOD XISTAM** * \$ \$ # \$ 5 £ Phone/Fax: |949-375-7004 2027.001 Radionucildes* includes Thorium (isotopic) and Uranium (isotopic) Required Project Information: MATRIX
wp water
wo sulracewater
ww water oc
if sulcote
so or present
sw orner
A A Armal, nasue
os 29-08 City Henderson Site PM Name Project # by EML HASL 300 modified(alpha spectroscopy) All PDF reports and EDDs will be uploaded to: Northgate Environmental Management, Inc. = TP site address provided to labs (A-Z, 0-9 / ,-) Samples IDs MUST BE UNIQUE One Character per box. FULL DIGESTION SPECIFICATION dditional Comments/Special Instructions: SAMPLE ID Lab Name: GEL Laboratories, LLC ab PM email emk@gel.com cindy.amold@ngem.com frank.hagar@ngem.com Votifications provided to: 2040 Savage Road (843)556-8171 Edith M. Kent SA73-0.5B pplicable Lab Quote #: Chartleston, SC 29407 SA73-10B SA73-28B Required Ship to Lab: hone/Fax: ab PM: Address: # W3LI

SAMPLE RECEIPT & REVIEW FORM

Clien	t: KERP NORTHEAT	6		SI	OG/ARCOC/Work Order: 3343671.
Recei	t: Kerr Northers				ate Received: 7-30 09
Suspe	ected Hazard Information	Yes	No	*If Cou	ints > x2 area background on samples not marked "radioactive", contact liation Safety Group of further investigation.
COC/	Samples marked as radioactive?		Z	Maxim	um Counts Observed*: CAm Zo
Classi	ified Radioactive II or III by RSO?				,
COC/	Samples marked containing PCBs?		1		
	ed as a DOT Hazardous?		1	Mazard	Class Shipped: UN#:
Samp	les identified as Foreign Soil?		V		
	Sample Receipt Criteria	Yes	NA	Š	Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	V			Circle Applicable: seals broken damaged container leaking container other (describe)
2	Samples requiring cold preservation within $0 \le 6$ deg. C?				ice bags blue ice dry ice none other (describe)
3	Chain of custody documents included with shipment?	/			
4	Sample containers intact and sealed?	/			Circle Applicable: seals broken damaged container leaking container other (describe)
5	Samples requiring chemical preservation at proper pH?			If 1	mple ID's, containers affected and observed pH: Preservation added, Lot#:
6	VOA vials free of headspace (defined as < 6mm bubble)?		1		mple ID's and containers affected:
7	Are Encore containers present?				yes, immediately deliver to Volatiles laboratory)
8	Samples received within holding time?	/			s and tests affected:
9	Sample ID's on COC match ID's on bottles?		,	√	mple ID's and containers affected: **ECL Beloc/
10	Date & time on COC match date & time on bottles?	/	/_		mple ID's affected:
11	Number of containers received match number indicated on COC?				
12	COC form is properly signed in relinquished/received sections?	/			
Comm	ments: * SA 73 - 28 * L8" CROSSED ON WRITTEN ABOVE IT SA73-38B	Bt	- Aav	the D	LABEL ON the container HAS the "30" FX 7968 1832 2377
L	DM (or DM A) review: Initi			115	Date 730.09

Snorthgate

1100 Quall Street, Sulte 102, Newport Beach, CA 92660

(949) 260-9293

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.

 nt
 COC No.
 2027.001.00469

 ate.
 Page:
 1 of

 Cooler #
 \ of
 \ \ \ of

Special EPA Stage Mark one Mark One Mark One **₹** Z } Z } Z ≻ Tựb Blank Comments/Lab 2 L Poly Clear/RSAJ6-19B 2 L Poly Clear/RSAJ6-19B Sample Receipt Conditions Sample 1.D. S S Z } infact? Sample @/ <u>≻</u> ou Ice; Y/N CT RCP Cert? gambles Rush NJ Reduced Deliverable Package? نام م Temp in OC QC level Required: Standard × 0835 1802 Lab Project ID (lab use) Time: 1 502 TAT: Standard 30 day If Rush, Date due 729 7-30-09 MA MCP Cert? 0.406/1.50e × × لبدر، ره مر 7.29 Analyses A.K Rednested E Mark one lonsitiel DATE Signed Na2S2O3 ACCEPTED BY / AFFILIATION Frank Hagar Northgate Environmental Management, Inc HOB (949)260-9293 Doug Dowie - 1-2ths, ck IOI EONH × × SAMPLER NAME AND SIGNATURE Non-reimbursement project? 12504 CC Hardcopy report to |see additional comments below CC Hardcopy report to PDF Electronic Version Only Phone #: z z FIELD FILTERED? (Y/N) B TIME 700/1502 #OF CONTAINERS Henderson, NV 89009 1/2 DATE 7425 Send Invoice to: Susan Crowley SAMPLE TIME 1425 Tronox LLC Required invoice information: PRINT Name of SAMPLER: SIGNATURE of SAMPLER: Reimbursement project? į Address: PO Box 55 SHIPPING METHOD: (mark as appropriate) 7-29-09 60-62-7 Send EDD to SAMPLE DATE RELINOUISHED BY / AFFILIATION UPS COURIER REDEX City/State Site PM Email: |derrick.willis@ngem.com SAMPLE TYPE G=GRAB C=COMP O Ø TRONOX LLC. HENDERSON US MAIL ≥ Site Address 560 W. Lake Mead Drive Derrick Willis **BOOD XINTAM** ≥ ≥ State Phone/Fax: 949-375-7004 Required Project Information: 2027.001 60-62-1 Henderson Site PM Name EMSL HASL 300* - DOE EMSL HASL 300 modified (alpha spectroscopy) Thorlum (Isotopic) and Uranium (Isotopic) Valid Matrix Codes
MATRIX
DRINGNS WATER WP
GROUND WATER WG
WASTE WATER W Project # Site ID #: cindy.arnold@ngem.com & frank.hagar@ngem.com 충 All PDF reports and EDDs will be uploaded to: One Samples IDs MUST BE UNIQUE Northgate Environmental Management, Inc. Field Blank Associated with Area II Additional Comments/Special Instructions: FULL DIGESTION SPECIFICATION Character per box. FTP site address provided to labs (A-Z, 0-9 / ,-) Lab Name: GEL Laboratories, LLC emk@gel.com 2040 Savage Road Notifications provided to: (843)556-8171 FB072909-SO FB072909-SO Edith M. Kent SAMPLE ID Applicable Lab Quote #: Chartleston, SC 29407 Required Ship to Lab: Lab PM emall Phone/Fax: Lab PM: ITEM # 13

SAMPLE RECEIPT & REVIEW FORM

Clie	nt: KER-NORTH	cat	0		SDG/ARCOC/Work Order: 23-126-14-
Rece	eived By:	<u>u 11 / </u>			Date Received: 7-30-09
Susp	ected Hazard Information	Yes	ž	*If	Counts > x2 area background on samples not marked "radioactive", contact
<u> </u>	/Samples marked as radioactive?	+~	-	4	Radiation Safety Group of further investigation.
	sified Radioactive II or III by RSO?	-	-	Max	cimum Counts Observed*: Cyn Do
_	/Samples marked containing PCBs?	+	17	1	
	ped as a DOT Hazardous?	1	7	Maz	ard Class Shipped: UN#:
Samp	oles identified as Foreign Soil?				
	Sample Receipt Criteria	Yes	X A	°Z	Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	1			Circle Applicable: seals broken damaged container leaking container other (describe)
2	Samples requiring cold preservation within $0 \le 6$ deg. C?		'		Preservation Method: ice bags blue ice dry ice aone other (describe)
3	Chain of custody documents included with shipment?	/			
4	Sample containers intact and sealed?				Circle Applicable: seals broken damaged container leaking container other (describe)
5	Samples requiring chemical preservation at proper pH?				Sample ID's, containers affected and observed pH: If Preservation added, Lot#:
6	VOA vials free of headspace (defined a < 6mm bubble)?	s	1		Sample ID's and containers affected:
7	Are Encore containers present?			/	(If yes, immediately deliver to Volatiles laboratory)
8	Samples received within holding time?	6/			Id's and tests affected:
9	Sample ID's on COC match ID's on bottles?	/			Sample ID's and containers affected:
10	Date & time on COC match date & time on bottles?				Sample ID's affected:
11	Number of containers received match number indicated on COC?	/		,	Sample ID's affected:
12	COC form is properly signed in relinquished/received sections?	1		<u> </u>	
Com	nents:				FX 7978 0555 4043
	-				1 / 10170 0333 1010
					who loo
	PM (or PMA) review: Init	ials _	YY	S	Date

Gnorthgate

1100 Quall Street, Suite 102, Newport Beach, CA 92680 (949) 260-9293 environmental management, inc.

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.

2027.001.00472 COC No. Page: Cooler#

Lab Idaille.	GEL Laboratories, LLC	Site ID #:	TRONOX LLC. HEND	HENDER	ERSON	Send Invoice to:	Susan Crowley	wley					TAT	TAT: Standard 30 day	\vdash	X Rush	-	2	Mark One
Address: 2	2040 Savage Road	Project#	2027.001			Address: PO Box 55	1.55							FRiish Date due	1		1	1	
Chartleston, SC 29407	, SC 29407	Site Address 560 W. Lake Mead Drive	160 W. Lake M	lead Drive		City/State	Henderson, NV 89009	NV 89009	Phone #:		(949) 260-9293	5	00	OC level Required: Standard	od: Stands	L	Charles Epa Grant Alated	Stage 4 h	
	Edith M. Kent	City Henderson	S	State NV		Reimbursement project?	oject?	Non-	-relmburser	Non-reimbursement project?) - -	Mark one	Т	N.I. Reduced Deliverable Bostons	iverable D			orana + IX	Mark
Phone/Fax:	(843) 556-8171	Site PM Name		Derrick Willis		Send FDD to	Frank Hagar Northgate	Frank Hagar Northgate Environmental Management, Inc	• Environn	nental Mar	agement,		MA	MA MCP Cert?		CT RCP Carr	1	-	Mark One
Lab PM email	emk@gel.com	Phone/Fax: (949) 375-7004	949) 375-7004			CC Hardcopy report to	eport to Pr	PDF Electronic Version Only	ic Version	200			1	1		-		1	
Applicable Lab Quote #:	ab Quote #:	Site PM Email:	derrick.willis@ngem.com	/illis@ng	em.com	CC Hardcopy report to	eport to	see additional comments below	l commen	its below				Lab Project ID (jab use)	(ap nse)	$\frac{1}{1}$			
		\$ 3						F	┝	L	Preser	Preservatives	T	\					
# M3T!	SAMPLE ID One Character per box. (A-Z, 0-9 / ,-) Samples IDs MUST BE UNIQUE	DEGRAMMENT WE WE WE WASTE WATER WHO SE SOLD WITH WE WASTE WATER WHO WE WASTE WATER WHO WE WASTE WAS	WATER WE WE WATER WE WATER OAT IN WATER OF SERVINGE STATE OF TOTHER OT THE WATER OT THE WATER OT THE WATER OF	MATRIX CODE	SAMPLE TYPE G=GRAB C=COA	SAMPLE DATE	SAMPLE TIME	Ä ————————————————————————————————————	THE PIETEREDS (7	Devieserved	103	lonsrite	Requeste	SEE UNDER O FOEN	SEE UNION SEED TO NEOTO TO SEED TO SEE		, lo	/ Comments/Lab	Lab
SA	SA49-10B			S	9	7.30-09	1//4	10	┿	n ×	Н	»W	\	8 2 2			San	Sample I.D.	
SA2	SA49-20B			S	9	7.30.6	2114	-		+				۲ >		8	250 ml Plastic jar	in line	
3 SA	SA49-32B			8	,	7-30-09	-		+	\top	#	†	+	<	+	1 29	250 ml Plastic jar	<u>a</u>	
4 v				3				+	+	1 1				× × ×		52	250 ml Plastio jar	a	
9								+		+	+	+							
7	4	7-30-0	کو					-	_						-	+			
80																-			
s								-		-									
= ==								+	+			1		$\frac{1}{1}$	+	+			
12								+		+	1		$\frac{1}{4}$		+	1			
13								-	+		\pm		\pm		1	+			
Additional Co	Additional Comments/Special Instructions:			RELINOL	NOUISHED BY / AFFILIATION	FFILIATION		DATE TIME		ACCEPTED BY / AFFILIATION	/ AFFILIATI	NO		DATE	TIME	Sample	Sample Receipt Conditions	ondition	
Radionuci	Radionuciides* includes Thorium (isotopic) and Uranium (isotopic)) and Uranium (i	sotopic)	B		W	60	120/100	9	19	n	8	7	131-09	0380	1 >56	S	├	R.
Dy EMIL HA	by EML HASL 300 modified(alpha spectroscopy)	copy)				$\left \cdot \right $	+	-	4	·						Z / ≻	├	┝) z ≻
All PDF rep	All PDF reports and EDDs will be uploaded to:						+	+	4							N/Y	\vdash	Y/N	N/Y
FTP site ad	FTP site address provided to labs			Nidelina	, doi:			-								Y/N	-	Y/N	Y/N
Notification cindy.amok	Notifications provided to: cindy.amold@ngem.com			UPS	SOURIER (COURIER FEDEX PRINT Name of SAMPLER:	SAMPLE	SAMPLER NAME AND SIGNATURE	JAKE AND SIG	SIGNATUR	TURE					O0 ni			guk?
frank.hagai	frank.hagar@ngem.com			US MAIL	ا.	SIGNATURE	SIGNATURE of SAMPLER:	1/2	V	IJ٨i		Ē	7	Time: 15	7	due	'eol i Sam intac	ostni	18 qi
										1		`)	?	_		uo		ıΤ

GEL Laboratories LLC

SAMPLE RECEIPT & REVIEW FORM

Clier	nt: KERPNORTH	Ale	5		SDG/ARCOC/Work Order: 2342671.
Rece	ived By: M/				Date Received: 7-3/9
Susp	ected Hazard Information	Yes	ž		Counts > x2 area background on samples not marked "radioactive", contact Radiation Safety Group of further investigation.
-	/Samples marked as radioactive?		V	Max	imum Counts Observed*: Cym 20
	ified Radioactive II or III by RSO?	<u> </u>	1		
	Samples marked containing PCBs?	<u> </u>	/	<u>_</u>	
	ed as a DOT Hazardous?	 	/	Haz	ard Class Shipped: UN#:
Samp	les identified as Foreign Soil?	<u> </u>			
	Sample Receipt Criteria	Yes	NA	ν̈́	Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	/			Circle Applicable: seals broken damaged container leaking container other (describe)
2	Samples requiring cold preservation within $0 \le 6$ deg. C?				Preservation Method: ice bags blue ice dry ice none other (describe)
3	Chain of custody documents included with shipment?				
4	Sample containers intact and sealed?				Circle Applicable: seals broken damaged container leaking container other (describe)
5	Samples requiring chemical preservation at proper pH?		✓	/	Sample ID's, containers affected and observed pH: If Preservation added, Lot#:
6	VOA vials free of headspace (defined as < 6mm bubble)?		1		Sample ID's and containers affected:
7	Are Encore containers present?			<u> </u>	(If yes, immediately deliver to Volatiles laboratory)
8	Samples received within holding time?				Id's and tests affected:
u	Sample ID's on COC match ID's on bottles?				Sample ID's and containers affected:
10	Date & time on COC match date & time on bottles?				Sample ID's affected:
	Number of containers received match number indicated on COC?	/			Sample ID's affected:
12	COC form is properly signed in relinquished/received sections?	V			
Comm	DM (or DMA) roviovy Initia			F;	X 7978 0955 6729 Date 7:31:09

Subject: Important - Sample ID Change 7/29/09

From: "Vivian Willis" <vivian.willis@verdant-solutions.com>

Date: Thu, 30 Jul 2009 11:03:08 -0700

To: <emk@gel.com>, <Heather.Shaffer@gel.com>, "Janice Jaeger" <jjaeger@caslab.com>, <Michael.Phillips@testamericainc.com>, <Team.Kent@GEL.com>, <ledrosa@alpha-analytical.com>, <RandyG@alpha-analytical.com>, <Eric.Middleditch@testamericainc.com>

CC: <Cindy.Arnold@ngem.com>, <Frank.Hagar@ngem.com>, <Derrick.Willis@ngem.com>

Due to lithology problems one of yesterdays soil samples was collected at a deeper depth. The COCs were not altered to reflect this change, however, the sample labels should have been corrected

Soil sample SA73-28B, as listed on the COCs (collected on 7/29/09) needs to be renamed SA73-30B.

The COC numbers vary for each lab but include: 2027.001.0443 (Alpha), 2027.001.0442 (TestAmerica), 2027.001.0441 (Columbia), and 2027.001.0440 (GEL).

Verdant Solutions, Inc.

1000 Bristol Street North, Suite 17-165, Newport Beach, CA 92660

Main: 949.922.9730 | Fax: 949.209.2070 | Email: vivian.willis@verdant-solutions.com

CONFIDENTIALITY NOTICE:

This e-mail and its attachments from Verdant Solutions, Inc. may contain information that is confidential and/or privileged and is intended for the sole use of the individual/s or entity named above. Any disclosure, copying, sharing, distribution, dissemination, or use of this information by any other person than the intended recipient is prohibited. If you have received this e-mail in error, please notify the sender via e-mail at info@verdant-solutions.com.

From: carnold@ngem.com [mailto:carnold@ngem.com]

Sent: Thursday, July 30, 2009 9:34 AM

To: Heather.Shaffer@gel.com; Cindy.Arnold@ngem.com; Frank.Hagar@ngem.com; Derrick.Willis@ngem.com;

vivian.willis@verdant-solutions.com

Cc: emk@gel.com

Subject: VIVIAN => RE: COC#2027.001.00451, GEL SDG 234267, Please verify sample ID

Heather, Please include Vivian on your post for delivery issues. Frank is vacationing and working some....and Vivian may be able to assist on these issues. I've added her e-mail. Cindy

----- Original Message ----- On 7/30/2009 4:20 PM Heather Shaffer wrote:

For sample ID SA73-28B (as listed on the COC) - the label on the container has the "28" crossed out and "30" written on the label above where the "28" was crossed out. Please verify the correct sample ID.

Thanks!

Heather Shaffer Project Manager Assistant GEL Laboratories, LLC 2040 Savage Road Charl

CONFIDENTIALITY NOTICE: This e-mail and any files t ransmitted with it are the property of The GEL Group, Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by The GEL Group, Inc. and its affiliates.

of 2 8/28/2009 7:54 AM

Subject: RE: COC#2027.001.00469, Field Blank received

From: "Vivian Willis" <vivian.willis@verdant-solutions.com>

Date: Thu, 30 Jul 2009 10:38:14 -0700

To: "'Heather Shaffer'" <Heather.Shaffer@gel.com>, "'Cindy Arnold'" <Cindy.Arnold@ngem.com>, "'Frank

Hagar'" <Frank.Hagar@ngem.com>, "'Derrick Willis'" <Derrick.Willis@ngem.com>

CC: "'Edie Kent'" <emk@gel.com>

Heather,

The "-SO" at the end of the sample ID indicates that it is a soil sample. Please place the field blank in the same SDG as the soil samples it came with, SA73 and RSAL6. The associated COCs numbers are 2027.001.00451 and 2027.001.00440.

Thank You!

Vivian WillisData Management

Verdant Solutions, Inc.

1000 Bristol Street North, Suite 17-165, Newport Beach, CA 92660

Main: 949.922.9730 | Fax: 949.209.2070 | Email: vivian.willis@verdant-solutions.com

CONFIDENTIALITY NOTICE:

This e-mail and its attachments from Verdant Solutions, Inc. may contain information that is confidential and/or privileged and is intended for the sole use of the individual/s or entity named above. Any disclosure, copying, sharing, distribution, dissemination, or use of this information by any other person than the intended recipient is prohibited. If you have received this e-mail in error, please notify the sender via e-mail at info@verdant-solutions.com.

From: Heather Shaffer [mailto:Heather.Shaffer@gel.com]

Sent: Thursday, July 30, 2009 9:46 AM
To: Cindy Arnold; Frank Hagar; Derrick Willis
Cc: Edie Kent; vivian.willis@verdant-solutions.com
Subject: COC#2027.001.00469, Field Blank received

We received FB072909-SO under COC 2027.001.00469. I do not see anywhere on the chain of custody that notes if this is to be associated with a soil sample ID; it only says "Field Blank Associated with Area II". Could someone please verify if this sample needs to be reported under a soil SDG or water SDG?

Thanks!

__

Heather Shaffer Project Manager Assistant GEL Laboratories, LLC 2040 Savage Road

Charleston, SC (USA) 29407 Main: 843.556.8171 x 4505

Fax: 843.766.1178

E-mail: heather.shaffer@gel.com

Web: www.gel.com

CONFIDENTIALITY NOTICE: This e-mail and any files transmitted with it are the property of The GEL Group, Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files

transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by The GEL Group, Inc. and its affiliates.

20

2 of 2 8/28/2009 7:55 AM

Subject: GEL Closed SDG 234267

From: Heather Shaffer <Heather.Shaffer@gel.com>

Date: Fri, 31 Jul 2009 11:48:48 -0400

To: Cindy Arnold < Cindy. Arnold@ngem.com>, Frank Hagar < Frank. Hagar@ngem.com>, Edie Kent

<emk@gel.com>, Derrick Willis <Derrick.Willis@ngem.com>

CC: Heather Shaffer <hea01394@gel.com>

With today's receipts, we closed water SDG 234267. Attached is a list of the samples in the SDG. As soon as we have completed the login review, you will receive the full receipt package for this SDG.

--

Heather Shaffer Project Manager Assistant GEL Laboratories, LLC 2040 Savage Road

Charleston, SC (USA) 29407 Main: 843.556.8171 x 4505

Fax: 843.766.1178

E-mail: heather.shaffer@gel.com

Web: www.gel.com

pm_sample_query.show_group-4.xls

Content-Type: application/msexcel

Content-Encoding: base64

1 of 1 8/28/2009 7:46 AM

Subject: SDG 234267 QC Issues - Alpha Spec Th, Alpha Spec U, Ra-226

From: Edie Kent <emk@gel.com> **Date:** Fri, 28 Aug 2009 17:15:22 -0400

To: Cindy Arnold <Cindy.Arnold@ngem.com>, Frank Hagar <Frank.Hagar@ngem.com>, Derrick Willis

<Derrick.Willis@ngem.com>, Team Kent <Team.Kent@gel.com>

CC: Martha Harrison < Martha. Harrison@gel.com>

The following are the QC issues regarding this SDG for Alpha Spec Th, Alpha Spec U and Ra $226\colon$

Ra 226 Issues:

The following samples do not meet the Tronox QA program sample result uncertainty limit of <30% with activity between 2 and 5 times the MDA and were counted for the maximum possible count time: SA179-0.5B (234267002), RSAU4-20B (234267007), RSAU4-40B (234267009), RSAL6-0.5B (234267012), SA73-0.5B (234267015), SA49-10B (234267019), and the lab dup.

Soil Thorium Issues:

The Th-228 result for the method blank was greater than the MDA and did not meet the Tronox QA program required detection limit. The samples were repreped as a result. The results from the reanalysis were comparable to the original samples results with the exception of sample 234267019 which exhibited poor resolution on the reanalysis. For the reanalysis, the Th-230 result for the method blank was greater than the MDA and did not meet the Tronox QA program required detection limit. Both sets of data were evaluated by the laboratory and the decision was made to report the results from the original analysis as all other Quality Control criteria and Tronox QA program criteria for tracer yield recoveries, uncertainty requirements, and detection limits were met.

Water Thorium Issues:

The method blank did not meet the Tronox QA program sample result uncertainty limit of <30% with activity between 2 and 5 times the MDA for Th-230. The LCS did not meet the Tronox QA program sample result uncertainty limit of <30% with activity between 2 and 5 times the MDA for Th-228. Samples were counted the maximum count time to achieve the best possible uncertainties.

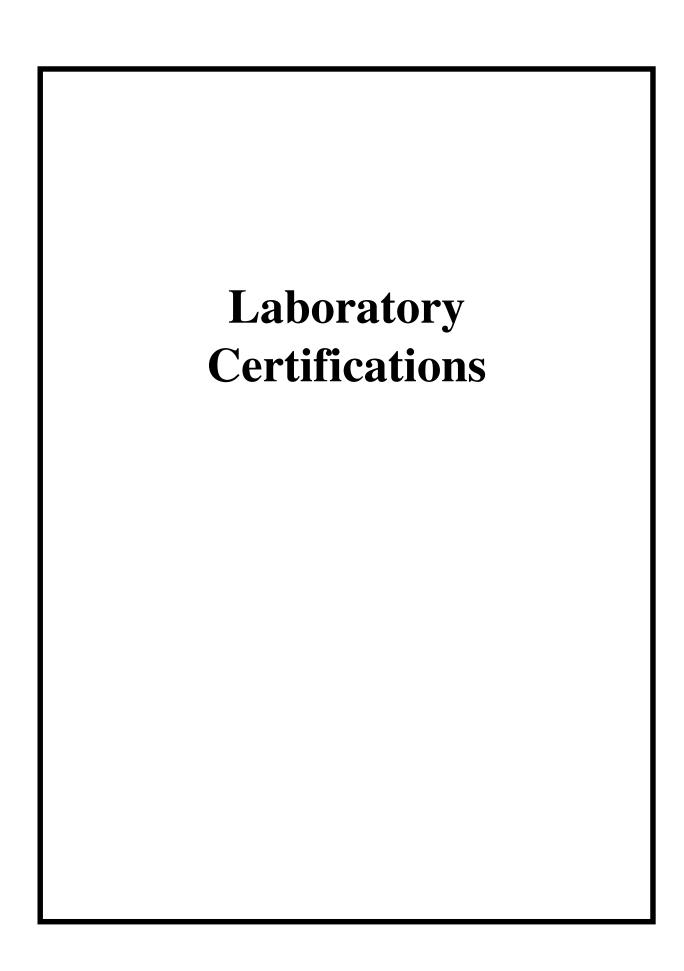
The LCS did not meet the Tronox QA program tracer yield requirements of 70-120%. With a value of 67.1%, the tracer yield met the GEL standard requirement and both the LCS and LCS dup met the Th230 recovery requirements. All other samples in the batch met the contract tracer yield requirement.

*Soil Uranium Issues: *

The following samples do not meet the Tronox QA program sample result uncertainty limit of <30% with activity between 2 and 5 times the MDA for U235/236 and were counted for the maximum possible count time: RSAU4-10B (234267006), RSAU4-25B (234267008), RSAU4-50B (234267010), RSAL6-0.5B (234267012), SA73-0.5B (234267015), SA73-10B (234267016), SA73-30B (234267017), SA49-10B (234267019), and the lab dup.

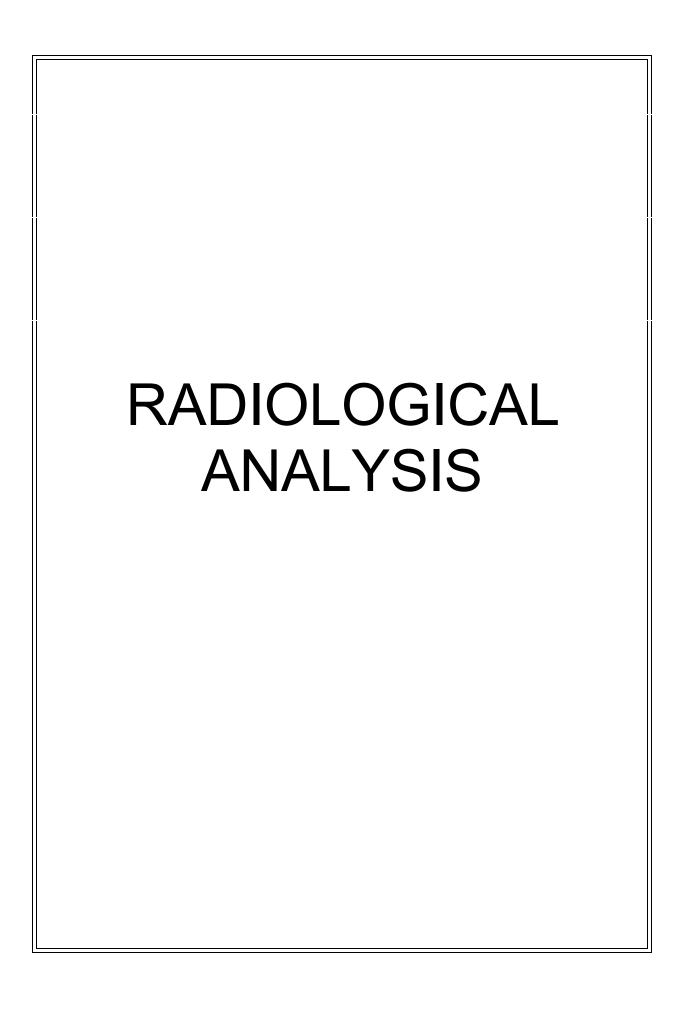
The following samples do not meet the Tronox QA program sample result uncertainty limit of <30% with activity greater than 5 times the MDA for U235/236 and were counted for the maximum possible count time: SA179-0.5B (234267002), SA179-10B (234267003), RSAU4-40B (234267009).

The following samples did not meet the Tronox QA program tracer yield requirements of 70-120% due to matrix: SA179-0.5B (234267002), RSAU4-0.5B (234267005). However, the samples did mee the GEL standard requirements with values of 60.0 and 121% respectively. The blank and LCS met the contract yield recovery requirements.


This will be noted in the case narrative.

Edie

Edith M. Kent Project Manager GEL Laboratories, LLC 2040 Savage Road


Charleston, SC (USA) 29407 Direct: 843.769.7385 x4453

Main: 843.556.8171
Fax: 843.766.1178
E-mail: emk@gel.com
Web: www.gel.com

List of current GEL Certifications as of 28 August 2009

State	Certification
Arizona	AZ0668
Arkansas	88-0651
CLIA	42D0904046
California – NELAP	01151CA
Colorado	GEL
Connecticut	PH-0169
Dept. of Navy	NFESC 413
EPA Region 5	WG-15J
Florida – NELAP	E87156
Georgia	E87156 (FL/NELAP)
Georgia DW	967
Hawaii	N/A
ISO 17025	2567.01
Idaho	SC00012
Illinois – NELAP	200029
Indiana	C-SC-01
Kansas – NELAP	E-10332
Kentucky	90129
Louisiana – NELAP	03046
Maryland	270
Massachusetts	M-SC012
Nevada	SC00012
New Jersey – NELAP	SC002
New Mexico	FL NELAP E87156
New York – NELAP	11501
North Carolina	233
North Carolina DW	45709
Oklahoma	9904
Pennsylvania – NELAP	68-00485
South Carolina	10120001/10120002
Tennessee	TN 02934
Texas – NELAP	T104704235-07B-TX
U.S. Dept. of Agriculture	S-52597
Utah – NELAP	GEL
Vermont	VT87156
Virginia	00151
Washington	C1641
•	•

Radiochemistry Case Narrative Tronox LLC (KERR) SDG 234267

Method/Analysis Information

Product: Alphaspec Th, Solid

Analytical Method: DOE EML HASL-300, Th-01-RC Modified

Prep Method: Dry Soil Prep

Analytical Batch Number: 892899

Prep Batch Number: 889936

Comple ID	Client ID
Sample ID	0114114 122
234267001	RSAM7-28B
234267002	SA179-0.5B
234267003	SA179-10B
234267004	SA179-29B
234267005	RSAU4-0.5B
234267006	RSAU4-10B
234267007	RSAU4-20B
234267008	RSAU4-25B
234267009	RSAU4-40B
234267010	RSAU4-50B
234267011	RSAU4-56B
234267012	RSAL6-0.5B
234267013	RSAL6-10B
234267014	RSAL6-28B
234267015	SA73-0.5B
234267016	SA73-10B
234267017	SA73-30B
234267019	SA49-10B
234267020	SA49-20B
1201899547	Method Blank (MB)
1201899548	234267002(SA179-0.5B) Sample Duplicate (DUP)
1201899549	234267002(SA179-0.5B) Matrix Spike (MS)
1201899550	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on a "dry weight" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-038 REV# 12.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volumes in this batch.

Designated QC

The following sample was used for QC: 234267002 (SA179-0.5B).

QC Information

Refer to Non-Conformance Report.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Sample Re-prep/Re-analysis

The Method Blank 1201899547 (MB) was recounted due to a high Th-228 blank result. Reporting original count. Samples were reprepped due to the high Th-228 blank result. The reanalysis had a Th-230 blank result greater than the MDA and detection limit. After evaluating both sets of data, reporting results from the original analysis. Refer to NCR.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. The following NCR was generated for this SDG: NCR 727630 was generated due to Method Blank contamination. 1. The Th-228 result for the Method Blank 1201899547 is greater than the MDA and the detection limit. 1. Samples were reprepped due to the high Th-228 blank result. The reanalysis has comparable sample results to the original analysis, with the exception of sample 234267019 which exhibits poor resolution on the reanalysis. The reanalysis has a Th-230 blank result greater than the MDA and detection limit. After evaluating both sets of data, reporting results from the original analysis in which all other Quality Control Criteria, client tracer yield recoveries, uncertainty requirements, and detection limits are met. Group leader consulted and Project Manager notified.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

The sample and the duplicate, 1201899548 (SA179-0.5B) and 234267002 (SA179-0.5B), did not meet the relative percent difference requirement for Th-230, however they do meet the relative error ratio requirement with a value of 1.94.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Alphaspec Th, Liquid

Analytical Method: DOE EML HASL-300, Th-01-RC Modified

Analytical Batch Number: 897494

Sample ID	Client ID
234267018	FB072909-SO
1201911149	Method Blank (MB)
1201911150	Laboratory Control Sample (LCS)
1201911151	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-038 REV# 12.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

A laboratory control sample and a laboratory control sample duplicate, 1201911150 (LCS) and 1201911151 (LCSD), were run with the batch instead of a sample duplicate due to limited sample volume.

QC Information

Refer to Non-Conformance Report.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Sample Re-prep/Re-analysis

Samples were reprepped due to low carrier/tracer yield. Samples were reprepped due to high recovery.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. The following NCR was generated for this SDG: NCR 727516 was generated due to Failed Recovery for Surrogate or Tracer and Other. 1. The laboratory control sample duplicate, 1201909631, tracer yield is slightly below the client requirement of 70 - 120%. 2. Sample 1201911149 has Thorium-230 activity between two and five times the MDA and uncertainty greater than 30% of that respective activity. Sample 1201911150 has Thorium-228 activity between two and five times the MDA and uncertainty greater than 30% of that respective activity. 1. With a value of 67.1%, the tracer yield meets the GEL standard requirement and both the LCS and LCSD meet the Th230 recovery requirements. All other samples meet the client's tracer yield requirement. Group leader consulted, project manager notified. Reporting results. 2. Samples were all counted the maximum count time of 1000 minutes to achieve the best possible uncertainties. PM notified, reporting results.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

The Th230 blank result is greater than the MDC but less than the detection limit.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Alphaspec U, Solid

Analytical Method: DOE EML HASL-300, U-02-RC Modified

Prep Method: Dry Soil Prep

Analytical Batch Number: 892901

Prep Batch Number: 889936

Sample ID	Client ID
234267001	RSAM7-28B
234267002	SA179-0.5B
234267003	SA179-10B
234267004	SA179-29B
234267005	RSAU4-0.5B
234267006	RSAU4-10B
234267007	RSAU4-20B
234267008	RSAU4-25B
234267009	RSAU4-40B
234267010	RSAU4-50B
234267011	RSAU4-56B
234267012	RSAL6-0.5B
234267013	RSAL6-10B
234267014	RSAL6-28B
234267015	SA73-0.5B
234267016	SA73-10B
234267017	SA73-30B
234267019	SA49-10B
234267020	SA49-20B
1201899551	Method Blank (MB)
1201899552	234267002(SA179-0.5B) Sample Duplicate (DUP)
1201899553	234267002(SA179-0.5B) Matrix Spike (MS)
1201899554	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on a "dry weight" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-011 REV# 17.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 234267002 (SA179-0.5B).

QC Information

Refer to Non-Conformance Report.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Sample Re-prep/Re-analysis

Sample 234267002 (SA179-0.5B) was recounted due to low carrier/tracer yield. Samples 234267005 (RSAU4-0.5B), 234267009 (RSAU4-40B) and 234267016 (SA73-10B) were recounted due to high carrier/tracer yield.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. The following NCR was generated for this SDG: NCR 726292 was generated due to Failed Recovery for Surrogate or Tracer and Other. 1. Samples 234267002, 234267003 and 234267009 have Uranium-235/236 activity greater than five times the MDA and uncertainty greater than 30% of that activity. Samples 234267006, 234267008, 234267010, 234267012, 234267015, 234267016, 234267017, 234267019 and 1201899552 have Uranium-235/236 activity between two and five times the MDA and uncertainty greater than 30% of that respective activity. 2. Samples 234267002 and 234237005 do not meet the KERR tracer yield requirement of 70 - 120%, however they do meet the GEL standard requirements with values of 60.0 and 121%, respectively. 1. Samples were all counted the maximum count time of 1000 minutes to achieve the best possible uncertainties. PM notified, reporting results. 2. The method blank and laboratory control sample do meet the KERR tracer yield requirements. PM notified, reporting results.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

The sample and the duplicate, 1201899552 (SA179-0.5B) and 234267002 (SA179-0.5B), did not meet the relative percent difference requirement for U233/234, U235 or U238, however they do meet the relative error ratio requirement with values of 2.12, 0.707 and 2.75, respectively.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Alphaspec U, Liquid

Analytical Method: DOE EML HASL-300, U-02-RC Modified

Analytical Batch Number: 892925

Sample ID	Client ID
234267018	FB072909-SO
1201899628	Method Blank (MB)
1201899629	Laboratory Control Sample (LCS)
1201899630	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-011 REV# 17.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

A laboratory duplicate was not run with the analytical batch since it was designated by the client as a field QC. A laboratory control sample duplicate 1201899630 (LCSD) was analyzed for precision.

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Gas Flow Radium 228

Analytical Method: EPA 904.0/SW846 9320 Modified

Prep Method: Dry Soil Prep

Analytical Batch Number: 891149

Prep Batch Number: 889936

Sample ID	Client ID
234267001	RSAM7-28B
234267002	SA179-0.5B
234267003	SA179-10B
234267004	SA179-29B
234267005	RSAU4-0.5B
234267006	RSAU4-10B
234267007	RSAU4-20B
234267008	RSAU4-25B
234267009	RSAU4-40B
234267010	RSAU4-50B
234267011	RSAU4-56B
234267012	RSAL6-0.5B
234267013	RSAL6-10B
234267014	RSAL6-28B
234267015	SA73-0.5B
234267016	SA73-10B
234267017	SA73-30B
234267019	SA49-10B
234267020	SA49-20B
1201895425	Method Blank (MB)
1201895426	234267002(SA179-0.5B) Sample Duplicate (DUP)
1201895427	234267002(SA179-0.5B) Matrix Spike (MS)
1201895428	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on a "dry weight" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-009 REV# 15.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 234267002 (SA179-0.5B).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Sample Re-prep/Re-analysis

Samples 1201895426 (SA179-0.5B), 234267003 (SA179-10B), 234267007 (RSAU4-20B), 234267012 (RSAL6-0.5B), 234267013 (RSAL6-10B), 234267014 (RSAL6-28B), 234267015 (SA73-0.5B), 234267016 (SA73-10B), 234267017 (SA73-30B) and 234267019 (SA49-10B) recounted due to activity being between 2 to 5 times MDA and uncertainty being greater than 30% of the activity. Samples counted max count time. Samples 234267013 (RSAL6-10B) and 234267014 (RSAL6-28B) were re-eluted due to high MDAs.

Chemical Recoveries

All chemical recoveries meet the required acceptance limits for this sample set.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

The blank result 1201895425 (MB) is greater than the MDC but less than the detection limit. Sample 1201895426 (SA179-0.5B) and 234267013 (RSAL6-10B) activity is between 2 to 5 times MDA and the uncertainty is greater than 30% of the activity. Sample counted max count time.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: GFPC, Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified

Analytical Batch Number: 891394

Sample ID	Client ID
234267018	FB072909-SO
1201896008	Method Blank (MB)
1201896009	Laboratory Control Sample (LCS)
1201896010	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-009 REV# 15.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

A laboratory duplicate was not run with the analytical batch since it was designated by the client as a field QC. A laboratory control sample duplicate 1201896010 (LCSD) was analyzed for precision.

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Sample Re-prep/Re-analysis

Samples were reprecipitated and recounted due to high blank activity.

Chemical Recoveries

All chemical recoveries meet the required acceptance limits for this sample set.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Lucas Cell, Ra226, liquid

Analytical Method: EPA 903.1 Modified

Analytical Batch Number: 892760

Sample ID	Client ID
234267018	FB072909-SO
1201899206	Method Blank (MB)
1201899207	Laboratory Control Sample (LCS)
1201899208	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-008 REV# 12.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

A laboratory duplicate was not run with the analytical batch since it was designated by the client as a field QC. A laboratory control sample duplicate 1201899208 (LCSD) was analyzed for precision.

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Lucas Cell, Ra226, solid

Analytical Method: EPA 903.1 Modified

Prep Method: Dry Soil Prep

Analytical Batch Number: 893450

Prep Batch Number: 889936

Sample ID	Client ID
234267001	RSAM7-28B
234267002	SA179-0.5B
234267003	SA179-10B
234267004	SA179-29B
234267005	RSAU4-0.5B
234267006	RSAU4-10B
234267007	RSAU4-20B
234267008	RSAU4-25B
234267009	RSAU4-40B
234267010	RSAU4-50B
234267011	RSAU4-56B
234267012	RSAL6-0.5B
234267013	RSAL6-10B
234267014	RSAL6-28B
234267015	SA73-0.5B
234267016	SA73-10B
234267017	SA73-30B
234267019	SA49-10B
234267020	SA49-20B
1201900978	Method Blank (MB)
1201900979	234267002(SA179-0.5B) Sample Duplicate (DUP)
1201900980	234267002(SA179-0.5B) Matrix Spike (MS)
1201900981	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on a "dry weight" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-008 REV# 12.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 234267002 (SA179-0.5B).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Sample Re-prep/Re-analysis

Sample 1201900981 (LCS) was recounted due to high recovery.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. The following NCR was generated for this SDG: NCR 726872 was generated due to Other. 1. Samples 234267002, 234267007, 234267009, 234267012, 234267015, 234267019, and 1201900979 have activity between 2 and 5 times the MDA. Uncertainty is greater than 30 percent and samples counted the maximum count time. 1. Reporting results

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

_5/20/09

Originator's Name:

26-AUG-09

Joseph Moulden

NCR Report No.: 726292

Revision No.:

COMPANY - WIDE NONCONFORMANCE REPORT					
Mo.Day Yr. 26-AUG-09	Division: Radiochemistry	Type: Process			
Instrument Type: ALPHA SPECTROMETER	Test / Method: DOE EML HASL-300, U-02-RC	Matrix Type: Solid	Client Code: KERR		
Batch ID: 892901	Sample Numbers: See Below				
Potentially affected work order(s)((SDG): 234267				
Application Issues:					
Failed Recovery for Surrogate or Tra	acer				
Other					
Specification and Requirements Nonconformance Description:		NRG Disposition:			
than 30% of that activity. Samples 234267012, 234267015, 23426701 1201899552 have Uranium-235/23 the MDA and uncertainty greater the Samples 234267002 and 23423	nes the MDA and uncertainty greater 234267006, 234267008, 234267010, 6, 234267017, 234267019 and 6 activity between two and five times an 30% of that respective activity. 7005 do not meet the KERR tracer wever they do meet the GEL standard	achieve the best possible up achieve the best possible up 2. The method blank and la	aboratory control sample do meet the KERR PM notified, reporting results.		

Data Validator/Group Leader:

26-AUG-09

Eric Brimstin

GEL Laboratories LLC Form GEL-NCR

NCR Report No.: 726872 Revision No.: 2

COMPANY - WIDE NONCONFORMANCE REPORT Mo.Day Yr. 27-AUG-09 **Quality Criteria:** Division: Type: Specifications Process Radiochemistry **Client Code:** Instrument Type: Test / Method: Matrix Type: LSC EPA 903.1 Modified Solid **KERR** Batch ID: Sample Numbers: 893450 See Below Potentially affected work order(s)(SDG): 234267 **Application Issues:** Other **Specification and Requirements** NRG Disposition: Nonconformance Description: 1. Samples 234267002, 234267007, 234267009, 234267012, 1. Reporting results 234267015, 234267019, and 1201900979 have activity between 2 and 5 times the MDA. Uncertainty is greater than 30 percent and samples counted the maximum count time.

Originator's Name: Data Validator/Group Leader:

Takesha Mungo 27-AUG-09 Lesley Anderson 27-AUG-09

GEL Laboratories LLC Form GEL-NCR

NCR Report No.: 727516 Revision No.: 1

COMPANY - WIDE NONCONFORMANCE REPORT				
Mo.Day Yr.	Division:	Quality Criteria:	Type:	
28-AUG-09	Radiochemistry	Specifications	Process	
Instrument Type:	Test / Method:	Matrix Type:	Client Code:	
ALPHA SPECTROMETER	DOE EML HASL-300, Th-01-RC	Liquid	KERR	
Batch ID: 897494	Sample Numbers: See below			

Potentially affected work order(s)(SDG): 234267,234414

Application Issues:

Failed Recovery for Surrogate or Tracer

Other	
Specification and Requirements Nonconformance Description:	NRG Disposition:
 The laboratory control sample duplicate, 1201909631, tracer yield is slightly below the client requirement of 70 - 120%. Sample 1201911149 has Thorium-230 activity between two and five times the MDA and uncertainty greater than 30% of that respective activity. Sample 1201911150 has Thorium-228 activity between two and five times the MDA and uncertainty greater than 30% of that respective activity. 	 With a value of 67.1%, the tracer yield meets the GEL standard requirement and both the LCS and LCSD meet the Th230 recovery requirements. All other samples meet the client's tracer yield requirement. Group leader consulted, project manager notified. Reporting results. Samples were all counted the maximum count time of 1000 minutes to achieve the best possible uncertainties. PM notified, reporting results.

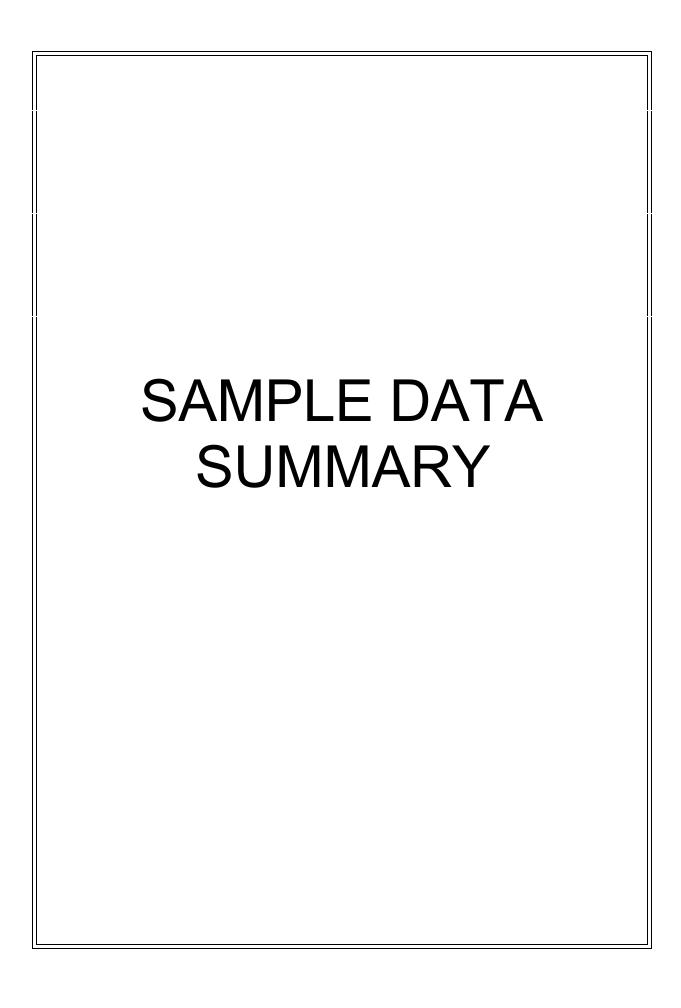
Originator's Name:

Joseph Moulden 28-AUG-09

Data Validator/Group Leader:

Joseph Moulden

GEL Laboratories LLC Form GEL-NCR


NCR Report No.: 727630

Revision No.: 1

	COMPANY - WIDE NON	CONFORMANCE REPOR	RT		
Mo.Day Yr. 28-AUG-09	Division: Radiochemistry	Quality Criteria: Specifications	Type: Process		
Instrument Type: ALPHA SPECTROMETER	Test / Method: DOE EML HASL-300, Th-01-RC	Matrix Type: Solid	Client Code: KERR		
Batch ID: 892899	Modified Sample Numbers: See Below				
Potentially affected work order((s)(SDG): 234267				
Application Issues:					
Method Blank contamination					
Specification and Requirements Nonconformance Description:	S	NRG Disposition:			
1. The Th-228 result for the Met the MDA and the detection limit.	hod Blank 1201899547 is greater than	reanalysis has comparable exception of sample 234267 reanalysis. The reanalysis h MDA and detection limit. Aft results from the original ana client tracer yield recoveries	d due to the high Th-228 blank result. The sample results to the original analysis, with the ro19 which exhibits poor resolution on the las a Th-230 blank result greater than the lar evaluating both sets of data, reporting llysis in which all other Quality Control Criteria, s, uncertainty requirements, and detection limits sulted and Project Manager notified.		

Data Validator/Group Leader: Originator's Name:

Jessica Downey 28-AUG-09 Scott Moreland 28-AUG-09

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

KERR003 Tronox LLC

Client SDG: 234267 GEL Work Order: 234267

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

6/28/09

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the detection limit.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Edith Kent.

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

Newport Beach, California 92660 Report Date: August 28, 2009

Contact: Mr. Frank Hagar
Project: Tronox Henderson

Client Sample ID: Sample ID:

Matrix: SO

Collect Date: 28-JUL-09 12:55 Receive Date: 29-JUL-09 Collector: Client

1.47

+/-0.394

+/-0.448

RSAM7-28B

234267001

Project: KERRHenderson Client ID: KERR003

			Circiit								
Parameter	Qualifier	Result	Uncertainty	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Alpha Spec Analys	is										
Alphaspec Th, Solid "Dry	Weight Corrected"										
Thorium-228		1.03	+/-0.196	0.102	0.050	pCi/g		KXM 08/19/09 4	1229 8	392899	1
Thorium-230		8.38	+/-0.544	0.0276	0.050	pCi/g					
Thorium-232		1.03	+/-0.192	0.0703	0.100	pCi/g					
Alphaspec U, Solid "Dry	Weight Corrected"										
Uranium-233/234		9.21	+/-0.383	0.0317	0.040	pCi/g		KXM 08/19/09 4	2120 8	392901	2
Uranium-235/236		0.440	+/-0.0941	0.0392	0.040	pCi/g					
Uranium-238		7.59	+/-0.348	0.0458	0.040	pCi/g					
Rad Gas Flow Proportion	onal Counting										
Gas Flow Radium 228 "L	Ory Weight Correcte	d"									

The following Prep Methods were performed

Lucas Cell, Ra226, solid "Dry Weight Corrected"

Radium-228

Radium-226

Rad Radium-226

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Pren	Dry Soil Pren GL-RAD-A-021	CXC1	07/31/09	1/25	889936

0.449

0.260

0.500

0.500

pCi/g

pCi/g

JXC5 08/12/09 1402 891149 3

KSD1 08/26/09 1250 893450 4

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			75.2	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			86.9	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			79.1	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

Newport Beach, California 92660 Report Date: August 28, 2009

Contact: Mr. Frank Hagar
Project: Tronox Henderson

Client Sample ID: SA179-0.5B Sample ID: 234267002

Matrix: SO

Collect Date: 28-JUL-09 07:58
Receive Date: 29-JUL-09
Collector: Client

Project: KERRHenderson Client ID: KERR003

Parameter	Qualifier	Result	Uncertainty	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Alpha Spec Analysis											
Alphaspec Th, Solid "Dry We	gight Corrected'	,									
Thorium-228		2.06	+/-0.268	0.0273	0.050	pCi/g		KXM 08/19/09 4	1229 8	892899	1
Thorium-230		0.936	+/-0.184	0.0871	0.050	pCi/g					
Thorium-232		1.85	+/-0.258	0.101	0.100	pCi/g					
Alphaspec U, Solid "Dry Wei	ght Corrected"										
Uranium-233/234		1.22	+/-0.144	0.0416	0.040	pCi/g		KXM 08/25/09 4	1407 8	892901	2
Uranium-235/236	(0.0805	+/-0.0407	0.0161	0.040	pCi/g					
Uranium-238		1.22	+/-0.144	0.0416	0.040	pCi/g					
Rad Gas Flow Proportional	Counting										
Gas Flow Radium 228 "Dry	Weight Correcte	ed"									
Radium-228		0.785	+/-0.342	0.432	0.500	pCi/g		JXC5 08/12/09	1432 8	891149	3
Rad Radium-226						1 0					
Lucas Cell, Ra226, solid "Dr	y Weight Corre	cted"									
Radium-226		0.492	+/-0.162	0.144	0.500	pCi/g		KSD1 08/26/09	1250 8	393450	4

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Pren	Dry Soil Prep GL-RAD-A-021	CXC1	07/31/09	1435	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			78.5	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			60.0	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			91.7	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

Newport Beach, California 92660 Report Date: August 28, 2009

Contact: Mr. Frank Hagar Project: **Tronox Henderson**

> Client Sample ID: Sample ID: SA179-10B 234267003

SO Matrix:

Collect Date: 28-JUL-09 08:37 Receive Date: 29-JUL-09 Collector: Client

KERRHenderson KERR003 Client ID:

Project:

Parameter	Qualifier F	Result	Uncertainty	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Alpha Spec Analysis											
Alphaspec Th, Solid "Dry We	eight Corrected"										
Thorium-228	1.	11	+/-0.211	0.149	0.050	pCi/g		KXM 08/19/09 4	1229 8	92899	1
Thorium-230	4.	47	+/-0.400	0.102	0.050	pCi/g					
Thorium-232	1.	26	+/-0.218	0.113	0.100	pCi/g					
Alphaspec U, Solid "Dry Wei	ight Corrected"										
Uranium-233/234	3.	98	+/-0.226	0.0407	0.040	pCi/g		KXM 08/19/09 4	2120 8	92901	2
Uranium-235/236	0.1	72	+/-0.0531	0.0313	0.040	pCi/g					
Uranium-238	3.	42	+/-0.209	0.0317	0.040	pCi/g					
Rad Gas Flow Proportional	l Counting										
Gas Flow Radium 228 "Dry	Weight Corrected"										
Radium-228	2.	10	+/-0.410	0.551	0.500	pCi/g		JXC5 08/12/09	1924 8	91149	3
Rad Radium-226						1 0					
Lucas Cell, Ra226, solid "Dr	y Weight Corrected	"									
Radium-226	2.	39	+/-0.348	0.168	0.500	pCi/g		KSD1 08/26/09	1250 8	93450	4

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	CXC1	07/31/09	1435	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			72.8	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			107	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			84.3	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

Newport Beach, California 92660

Contact: Mr. Frank Hagar
Project: Tronox Henderson

Client Sample ID: Sample ID:

Matrix: SO

Collect Date: 28-JUL-09 09:21
Receive Date: 29-JUL-09
Collector: Client

SA179-29B

234267004

Report Date: August 28, 2009

Project: KERRHenderson Client ID: KERR003

Parameter	Qualifier Res	sult Uncertain	nty DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Alpha Spec Analysis										
Alphaspec Th, Solid "Dry Wei	ight Corrected"									
Thorium-228	1.28	+/-0.201	0.0874	0.050	pCi/g		KXM 08/19/09 4	1229 8	892899	1
Thorium-230	1.71	+/-0.230	0.0756	0.050	pCi/g					
Thorium-232	1.28	+/-0.197	0.0237	0.100	pCi/g					
Alphaspec U, Solid "Dry Weig	ght Corrected"									
Uranium-233/234	1.41	+/-0.130	0.034	0.040	pCi/g		KXM 08/19/09 4	2120 8	892901	2
Uranium-235/236	0.0456	+/-0.0279	0.0291	0.040	pCi/g					
Uranium-238	1.28	+/-0.124	0.0295	0.040	pCi/g					
Rad Gas Flow Proportional	Counting									
Gas Flow Radium 228 "Dry W	Veight Corrected"									
Radium-228	0.823	+/-0.334	0.453	0.500	pCi/g		JXC5 08/12/09	1425 8	891149	3
Rad Radium-226					1 6					
Lucas Cell, Ra226, solid "Dry	Weight Corrected"									
Radium-226	1.08	+/-0.267	0.221	0.500	pCi/g		KSD1 08/26/09	1250 8	893450	4

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	CXC1	07/31/09	1435	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			87.1	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			117	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			85.6	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

Newport Beach, California 92660 Report Date: August 28, 2009

KERRHenderson KERR003

Project: Client ID:

Contact: Mr. Frank Hagar
Project: Tronox Henderson

Client Sample ID: Sample ID:

234267005

RSAU4-0.5B

Matrix: SO

Collect Date: 29-JUL-09 07:14 Receive Date: 30-JUL-09

Collector: Client

			Chent								
Parameter	Qualifier	Result	Uncertainty	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Alpha Spec Analys	sis										
Alphaspec Th, Solid "Dry	y Weight Corrected'	"									
Thorium-228		2.02	+/-0.248	0.102	0.050	pCi/g		KXM 08/19/09 4	1229 8	92899	1
Thorium-230		1.15	+/-0.185	0.0583	0.050	pCi/g					
Thorium-232		1.55	+/-0.216	0.0843	0.100	pCi/g					
Alphaspec U, Solid "Dry	Weight Corrected"										
Uranium-233/234		0.768	+/-0.0844	0.029	0.040	pCi/g		KXM 08/25/09 4	1407 8	92901	2
Uranium-235/236	(0.0524	+/-0.0268	0.0279	0.040	pCi/g					
Uranium-238		0.829	+/-0.0876	0.029	0.040	pCi/g					
Rad Gas Flow Proporti	onal Counting										
Gas Flow Radium 228 "I	Dry Weight Correcte	ed"									
Radium-228	, ,	1.39	+/-0.388	0.445	0.500	pCi/g		JXC5 08/12/09	1425 8	91149	3
Rad Radium-226						1 0					
Lucas Cell, Ra226, solid	"Dry Weight Corre	cted"									
Radium-226		0.926	+/-0.273	0.224	0.500	pCi/g		KSD1 08/26/09	1250 8	93450	4

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	CXC1	07/31/09	1435	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			92.8	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			121	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			87.4	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

1100 Quail St., Suite 102 Address:

Newport Beach, California 92660 Report Date: August 28, 2009

KERRHenderson KERR003

Project:

Client ID:

Contact: Mr. Frank Hagar Project: **Tronox Henderson**

> Client Sample ID: RSAU4-10B Sample ID: 234267006

SO Matrix:

Collect Date: 29-JUL-09 07:44 30-JUL-09

Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	, DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Alpha Spec Analysi	is										
Alphaspec Th, Solid "Dry	Weight Corrected"										
Thorium-228		1.70	+/-0.232	0.134	0.050	pCi/g		KXM 08/19/09 4	1229 8	392899	1
Thorium-230		1.49	+/-0.211	0.0835	0.050	pCi/g					
Thorium-232		1.16	+/-0.193	0.122	0.100	pCi/g					
Alphaspec U, Solid "Dry	Weight Corrected"										
Uranium-233/234		1.30	+/-0.124	0.037	0.040	pCi/g		KXM 08/19/09 4	2120 8	392901	2
Uranium-235/236	0.	.0669	+/-0.0326	0.0285	0.040	pCi/g		•			
Uranium-238		1.09	+/-0.112	0.00902	0.040	pCi/g					
Rad Gas Flow Proportion	onal Counting					1 0					
Gas Flow Radium 228 "D	Ory Weight Corrected	d''									
Radium-228		1.27	+/-0.378	0.480	0.500	pCi/g		JXC5 08/12/09	1432 8	391149	3
Rad Radium-226						1 0					
Lucas Cell, Ra226, solid	"Dry Weight Correct	ted"									
Radium-226		0.994	+/-0.221	0.132	0.500	pCi/g		KSD1 08/26/09	1250 8	393450	4

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Pren	Dry Soil Pren GL-RAD-A-021	CXC1	07/31/09	1/25	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			92.9	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			115	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			93.5	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

Newport Beach, California 92660

Contact: Mr. Frank Hagar Project: **Tronox Henderson**

Client Sample ID: Sample ID:

RSAU4-20B 234267007

SO

Matrix: Collect Date: 29-JUL-09 08:14 Receive Date: 30-JUL-09

Collector: Client

KERRHenderson KERR003 Project: Client ID:

Report Date: August 28, 2009

Parameter	Qualifier Res	sult Uncertainty	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Alpha Spec Analysis										
Alphaspec Th, Solid "Dry W	Veight Corrected"									
Thorium-228	1.68	+/-0.237	0.124	0.050	pCi/g		KXM 08/19/09 4	1229 89	92899	1
Thorium-230	1.89	+/-0.243	0.0243	0.050	pCi/g					
Thorium-232	1.82	+/-0.241	0.0897	0.100	pCi/g					
Alphaspec U, Solid "Dry W	eight Corrected"									
Uranium-233/234	1.60	+/-0.143	0.0401	0.040	pCi/g		KXM 08/19/09	2120 89	92901	2
Uranium-235/236	0.0524	+/-0.0326	0.0386	0.040	pCi/g					
Uranium-238	1.35	+/-0.131	0.025	0.040	pCi/g					
Rad Gas Flow Proportion	al Counting									
Gas Flow Radium 228 "Dry	Weight Corrected"									
Radium-228	1.78	+/-0.361	0.491	0.500	pCi/g		JXC5 08/12/09	1925 89	91149	3
Rad Radium-226					1 - 8					
Lucas Cell, Ra226, solid "D	ry Weight Corrected"									
Radium-226	0.792	+/-0.254	0.243	0.500	pCi/g		KSD1 08/26/09	1320 89	93450	4

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Pren	Dry Soil Pren GL-RAD-A-021	CXC1	07/31/09	1/25	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			87.2	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			105	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			95.1	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

Newport Beach, California 92660

Contact: Mr. Frank Hagar
Project: Tronox Henderson

Client Sample ID: Sample ID:

Matrix: SO

Collect Date: 29-JUL-09 08:45
Receive Date: 30-JUL-09
Collector: Client

mple ID: RSAU4-25B Project: KERRHenderso

RSAU4-25B Project: KERRHenderson 234267008 Client ID: KERR003

Report Date: August 28, 2009

Parameter	Qualifier	Result	Uncertainty	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Alpha Spec Analysis											
Alphaspec Th, Solid "Dry We	gight Corrected"										
Thorium-228		1.26	+/-0.205	0.149	0.050	pCi/g		KXM 08/19/09 4	1618 8	92899	1
Thorium-230		3.87	+/-0.335	0.0719	0.050	pCi/g					
Thorium-232		1.48	+/-0.209	0.0719	0.100	pCi/g					
Alphaspec U, Solid "Dry Wei	ght Corrected"										
Uranium-233/234		3.21	+/-0.204	0.067	0.040	pCi/g		KXM 08/19/09 4	2120 8	92901	2
Uranium-235/236	(0.134	+/-0.0471	0.0311	0.040	pCi/g					
Uranium-238		3.21	+/-0.202	0.0315	0.040	pCi/g					
Rad Gas Flow Proportional	Counting										
Gas Flow Radium 228 "Dry	Weight Corrected	d''									
Radium-228	_	1.49	+/-0.408	0.467	0.500	pCi/g		JXC5 08/12/09	1419 8	91149	3
Rad Radium-226											
Lucas Cell, Ra226, solid "Dr	y Weight Correct	ted"									
Radium-226	-	1.89	+/-0.324	0.192	0.500	pCi/g		KSD1 08/26/09	1320 8	93450	4

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	CXC1	07/31/09	1435	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			90.4	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			107	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			82.6	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

1100 Quail St., Suite 102 Address:

Newport Beach, California 92660

Contact: Mr. Frank Hagar Project: **Tronox Henderson**

> Client Sample ID: Sample ID:

RSAU4-40B 234267009

SO Matrix:

Collect Date: 29-JUL-09 09:20 Receive Date: 30-JUL-09 Collector: Client

KERRHenderson KERR003 Project: Client ID:

Report Date: August 28, 2009

Parameter	Qualifier Re	esult	Uncertainty	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Alpha Spec Analysis											
Alphaspec Th, Solid "Dry We	eight Corrected"										
Thorium-228	1.5	0	+/-0.209	0.127	0.050	pCi/g		KXM 08/19/09 4	1619 8	392899	1
Thorium-230	2.2	0 -	+/-0.242	0.0658	0.050	pCi/g					
Thorium-232	1.5	1 .	+/-0.202	0.076	0.100	pCi/g					
Alphaspec U, Solid "Dry Wei	ight Corrected"										
Uranium-233/234	2.0	5	+/-0.132	0.017	0.040	pCi/g		KXM 08/25/09 4	1407 8	892901	2
Uranium-235/236	0.11	0 +	/-0.0341	0.00825	0.040	pCi/g					
Uranium-238	2.0	2	+/-0.132	0.0246	0.040	pCi/g					
Rad Gas Flow Proportional	l Counting										
Gas Flow Radium 228 "Dry	Weight Corrected"										
Radium-228	0.91	0 .	+/-0.376	0.485	0.500	pCi/g		JXC5 08/12/09	1402 8	891149	3
Rad Radium-226						1 0					
Lucas Cell, Ra226, solid "Dr	y Weight Corrected"										
Radium-226	0.76	9 .	+/-0.231	0.226	0.500	pCi/g		KSD1 08/26/09	1320 8	393450	4

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Pren	Dry Soil Prep GL-RAD-A-021	CXC1	07/31/09	1435	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			99.1	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			118	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			74.2	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

Newport Beach, California 92660 Report Date: August 28, 2009

Project:

Client ID:

KERRHenderson

KERR003

Contact: Mr. Frank Hagar
Project: Tronox Henderson

Client Sample ID: RSAU4-50B Sample ID: 234267010

Matrix: SO

Collect Date: 29-JUL-09 10:15 Receive Date: 30-JUL-09 Collector: Client

Parameter Qualifier Result Uncertainty DLRL Units DF AnalystDate **Time Batch Method** Rad Alpha Spec Analysis Alphaspec Th, Solid "Dry Weight Corrected" Thorium-228 1.61 +/-0.2130.111 0.050 KXM 08/19/09 1619 892899 pCi/g Thorium-230 2.27 +/-0.2470.076 0.050 pCi/g Thorium-232 1.52 +/-0.2010.0526 0.100 pCi/g Alphaspec U, Solid "Dry Weight Corrected" Uranium-233/234 2.84 +/-0.1960.0527 0.040 pCi/g KXM 08/19/09 2120 892901 Uranium-235/236 +/-0.0501 0.0408 0.040 0.136 pCi/g Uranium-238 0.0264 0.040 2.55 +/-0.184 pCi/g **Rad Gas Flow Proportional Counting** Gas Flow Radium 228 "Dry Weight Corrected" Radium-228 0.635 +/-0.3140.448 0.500 pCi/g JXC5 08/12/09 1441 891149 Rad Radium-226 Lucas Cell, Ra226, solid "Dry Weight Corrected" Radium-226 1.36 +/-0.2710.199 0.500 pCi/g KSD1 08/26/09 1320 893450

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Pren	Dry Soil Pren GL-RAD-A-021	CXC1	07/31/09	1/25	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			100	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			105	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			94.1	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

> Newport Beach, California 92660 Report Date: August 28, 2009

> > Project:

Client ID:

KERRHenderson

KERR003

Contact: Mr. Frank Hagar Project: **Tronox Henderson**

> Client Sample ID: RSAU4-56B Sample ID: 234267011

SO Matrix:

Collect Date: 29-JUL-09 10:45 Receive Date: 30-JUL-09 Collector:

Client

Parameter Qualifier Result Uncertainty DLRL Units DF AnalystDate **Time Batch Method** Rad Alpha Spec Analysis Alphaspec Th, Solid "Dry Weight Corrected" Thorium-228 1.28 +/-0.2110.147 0.050 KXM 08/19/09 1619 892899 pCi/g Thorium-230 2.52 +/-0.2770.0238 0.050 pCi/g Thorium-232 1.13 +/-0.1910.0977 0.100 pCi/g Alphaspec U, Solid "Dry Weight Corrected" Uranium-233/234 0.785 +/-0.1010.0437 0.040 pCi/g KXM 08/19/09 2120 892901 Uranium-235/236 0.0242 +/-0.025 0.0386 0.040 U pCi/g Uranium-238 0.040 0.792 +/-0.1000.0312 pCi/g **Rad Gas Flow Proportional Counting**

Gas Flow Radium 228 "Dry Weight Corrected"

Radium-228 1.59 +/-0.4210.428 0.500 pCi/g JXC5 08/12/09 1455 891149 Rad Radium-226 Lucas Cell, Ra226, solid "Dry Weight Corrected" Radium-226 1.25 +/-0.237 0.123 0.500 pCi/g KSD1 08/26/09 1320 893450

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Pren	Dry Soil Prep GL-RAD-A-021	CXC1	07/31/09	1435	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			86.7	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			107	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			88.6	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

Newport Beach, California 92660 Report Date: August 28, 2009

Contact: Mr. Frank Hagar Project: **Tronox Henderson**

Client Sample ID: Sample ID:

RSAL6-0.5B 234267012

SO Matrix:

Collect Date: 29-JUL-09 10:51 Receive Date: 30-JUL-09 Collector: Client

KERRHenderson KERR003 Project: Client ID:

Parameter	Qualifier	Result	Uncertainty	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Alpha Spec Analysis											
Alphaspec Th, Solid "Dry W	eight Corrected"										
Thorium-228		1.99	+/-0.273	0.168	0.050	pCi/g		KXM 08/19/09 4	1619 8	892899	1
Thorium-230		1.16	+/-0.201	0.0841	0.050	pCi/g		•			
Thorium-232		1.92	+/-0.256	0.0671	0.100	pCi/g					
Alphaspec U, Solid "Dry We	eight Corrected"										
Uranium-233/234		1.52	+/-0.116	0.0176	0.040	pCi/g		KXM 08/19/09 4	2120 8	892901	2
Uranium-235/236		0.088	+/-0.0339	0.0314	0.040	pCi/g					
Uranium-238		1.21	+/-0.104	0.022	0.040	pCi/g					
Rad Gas Flow Proportion	al Counting										
Gas Flow Radium 228 "Dry	Weight Corrected	d"									
Radium-228		1.05	+/-0.525	0.851	0.500	pCi/g		JXC5 08/12/09	1925 8	391149	3
Rad Radium-226						1 0					
Lucas Cell, Ra226, solid "D	ry Weight Correc	ted"									
Radium-226	-	0.511	+/-0.178	0.180	0.500	pCi/g		KSD1 08/26/09	1320 8	393450	4

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Pren	Dry Soil Prep GL-RAD-A-021	CXC1	07/31/09	1435	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			76.2	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			103	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			87.9	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

Newport Beach, California 92660

Contact: Mr. Frank Hagar
Project: Tronox Henderson

Client Sample ID: Sample ID:

Sample ID: 234267013 Matrix: SO

Collect Date: 29-JUL-09 11:15
Receive Date: 30-JUL-09
Collector: Client

RSAL6-10B

Report Date: August 28, 2009

Project: KERRHenderson Client ID: KERR003

		Chem								
Qualifier	Result	Uncertainty	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
İs										
Weight Corrected"										
	1.70	+/-0.272	0.199	0.050	pCi/g		KXM 08/19/09 4	1619 89	2899	1
	1.45	+/-0.237	0.108	0.050	pCi/g					
	1.64	+/-0.251	0.0932	0.100	pCi/g					
Weight Corrected"										
	2.02	+/-0.133	0.0217	0.040	pCi/g		KXM 08/19/09 4	2120 89	2901	2
	0.120	+/-0.0359	0.00839	0.040	pCi/g					
	2.22	+/-0.140	0.0278	0.040	pCi/g					
onal Counting										
ry Weight Corrected	d''									
, 0		+/-0.361	0.435	0.500	pCi/g		JXC5 08/14/09	0959 89	1149	3
					1 - 8					
"Dry Weight Correct	ted"									
	0.970	+/-0.234	0.164	0.500	pCi/g		KSD1 08/26/09	1355 89	3450	4
	is Weight Corrected" Weight Corrected" onal Counting Ory Weight Corrected	Weight Corrected" 1.70 1.45 1.64 Weight Corrected" 2.02 0.120 2.22	Weight Corrected"	Weight Corrected" 1.70	Weight Corrected" 1.70 +/-0.272 0.199 0.050 1.45 +/-0.237 0.108 0.050 1.64 +/-0.251 0.0932 0.100 Weight Corrected" 2.02 +/-0.133 0.0217 0.040 0.120 +/-0.0359 0.00839 0.040 2.22 +/-0.140 0.0278 0.040 onal Counting Dry Weight Corrected" 1.05 +/-0.361 0.435 0.500	Weight Corrected" 1.70 +/-0.272 0.199 0.050 pCi/g 1.45 +/-0.237 0.108 0.050 pCi/g 1.64 +/-0.251 0.0932 0.100 pCi/g Weight Corrected" 2.02 +/-0.133 0.0217 0.040 pCi/g 0.120 +/-0.0359 0.00839 0.040 pCi/g 2.22 +/-0.140 0.0278 0.040 pCi/g pry Weight Corrected" 1.05 +/-0.361 0.435 0.500 pCi/g	Weight Corrected" 1.70 +/-0.272 0.199 0.050 pCi/g 1.45 +/-0.237 0.108 0.050 pCi/g 1.64 +/-0.251 0.0932 0.100 pCi/g Weight Corrected" 2.02 +/-0.133 0.0217 0.040 pCi/g 0.120 +/-0.0359 0.00839 0.040 pCi/g 2.22 +/-0.140 0.0278 0.040 pCi/g pry Weight Corrected" 1.05 +/-0.361 0.435 0.500 pCi/g	Weight Corrected" 1.70	Weight Corrected" 1.70 +/-0.272 0.199 0.050 pCi/g KXM 08/19/09 1619 89 1.45 +/-0.237 0.108 0.050 pCi/g 1.64 +/-0.251 0.0932 0.100 pCi/g Weight Corrected" 2.02 +/-0.133 0.0217 0.040 pCi/g KXM 08/19/09 2120 89 0.120 +/-0.0359 0.00839 0.040 pCi/g 2.22 +/-0.140 0.0278 0.040 pCi/g pry Weight Corrected" 1.05 +/-0.361 0.435 0.500 pCi/g JXC5 08/14/09 0959 89	Weight Corrected" 1.70

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Pren	Dry Soil Prep GL-RAD-A-021	CXC1	07/31/09	1435	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			71.4	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			106	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			84.2	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

1100 Quail St., Suite 102 Address:

Newport Beach, California 92660 Report Date: August 28, 2009

Contact: Mr. Frank Hagar Project: **Tronox Henderson**

> Client Sample ID: Sample ID: RSAL6-28B 234267014

SO Matrix:

Collect Date: Receive Date: 30-JUL-09 Collector: Client

29-JUL-09 11:50

KERRHenderson KERR003

Project: Client ID:

Parameter	Qualifier	Result	Uncertainty	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Alpha Spec Analysi	is										
Alphaspec Th, Solid "Dry	Weight Corrected"										
Thorium-228		1.29	+/-0.211	0.119	0.050	pCi/g		KXM 08/19/09 4	1619 8	392899	1
Thorium-230		3.60	+/-0.339	0.0248	0.050	pCi/g					
Thorium-232		1.13	+/-0.190	0.0248	0.100	pCi/g					
Alphaspec U, Solid "Dry	Weight Corrected"										
Uranium-233/234		3.00	+/-0.158	0.0435	0.040	pCi/g		KXM 08/19/09 4	2120 8	892901	2
Uranium-235/236		0.182	+/-0.0429	0.0079	0.040	pCi/g					
Uranium-238		2.85	+/-0.153	0.0262	0.040	pCi/g					
Rad Gas Flow Proportion	onal Counting										
Gas Flow Radium 228 "L	Ory Weight Correcte	d''									
Radium-228	, 0	0.644	+/-0.299	0.405	0.500	pCi/g		JXC5 08/14/09	1000 8	891149	3
Rad Radium-226						1 0					
Lucas Cell, Ra226, solid	"Dry Weight Correc	cted"									
Radium-226		1.28	+/-0.239	0.107	0.500	pCi/g		KSD1 08/26/09	1355 8	393450	4

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Pren	Dry Soil Pren GL-RAD-A-021	CXC1	07/31/09	1/25	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			80.1	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			106	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			90.5	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

1100 Quail St., Suite 102 Address:

Newport Beach, California 92660 Report Date: August 28, 2009

KERRHenderson KERR003

Project: Client ID:

Contact: Mr. Frank Hagar Project: **Tronox Henderson**

> Client Sample ID: Sample ID: SA73-0.5B 234267015

SO Matrix:

Collect Date: 29-JUL-09 08:44

Receive Date: 30-JUL-09 Collector: Client

Parameter	Qualifier	Result	Uncertainty	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Alpha Spec Analysis											
Alphaspec Th, Solid "Dry We	eight Corrected"										
Thorium-228		2.21	+/-0.299	0.135	0.050	pCi/g		KXM 08/19/09 4	1619 8	892899	1
Thorium-230		1.38	+/-0.239	0.135	0.050	pCi/g					
Thorium-232		2.00	+/-0.279	0.0769	0.100	pCi/g					
Alphaspec U, Solid "Dry Wei	ight Corrected"										
Uranium-233/234		0.896	+/-0.091	0.0314	0.040	pCi/g		KXM 08/19/09 4	2120 8	892901	2
Uranium-235/236	0	.0696	+/-0.029	0.0222	0.040	pCi/g					
Uranium-238		0.912	+/-0.0918	0.0314	0.040	pCi/g					
Rad Gas Flow Proportional	l Counting										
Gas Flow Radium 228 "Dry	Weight Corrected	d''									
Radium-228		0.870	+/-0.446	0.718	0.500	pCi/g		JXC5 08/12/09	1925 8	891149	3
Rad Radium-226						1 0					
Lucas Cell, Ra226, solid "Dr	y Weight Correc	ted"									
Radium-226		0.573	+/-0.180	0.163	0.500	pCi/g		KSD1 08/26/09	1355 8	393450	4

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	CXC1	07/31/09	1435	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			71.0	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			97.8	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			86.6	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

Newport Beach, California 92660 Report Date: August 28, 2009

Contact: Mr. Frank Hagar
Project: Tronox Henderson

Client Sample ID: SA73-10B Sample ID: 234267016

Matrix: SO

Collect Date: 29-JUL-09 09:13
Receive Date: 30-JUL-09
Collector: Client

Project: KERRHenderson Client ID: KERR003

Parameter	Qualifier	Result	Uncertainty	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Alpha Spec Analysis											
Alphaspec Th, Solid "Dry W	Veight Corrected"										
Thorium-228		1.47	+/-0.217	0.106	0.050	pCi/g		KXM 08/19/09 4	1619 8	892899	1
Thorium-230		1.38	+/-0.208	0.0874	0.050	pCi/g					
Thorium-232		1.42	+/-0.209	0.0605	0.100	pCi/g					
Alphaspec U, Solid "Dry W	eight Corrected"										
Uranium-233/234	0	.998	+/-0.095	0.0257	0.040	pCi/g		KXM 08/25/09 4	1407 8	892901	2
Uranium-235/236	0.0)574	+/-0.0264	0.022	0.040	pCi/g					
Uranium-238	0	.885	+/-0.0898	0.0286	0.040	pCi/g					
Rad Gas Flow Proportion	al Counting										
Gas Flow Radium 228 "Dry	Weight Corrected	"									
Radium-228	_	1.58	+/-0.293	0.373	0.500	pCi/g		JXC5 08/12/09	1928 8	391149	3
Rad Radium-226						1 2					
Lucas Cell, Ra226, solid "D	ry Weight Correcte	ed"									
Radium-226		.726	+/-0.210	0.195	0.500	pCi/g		KSD1 08/26/09	1355 8	893450	4

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	CXC1	07/31/09	1435	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			86.7	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			120	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			101	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

Newport Beach, California 92660 Report Date: August 28, 2009

KERRHenderson KERR003

Project: Client ID:

Contact: Mr. Frank Hagar
Project: Tronox Henderson

Client Sample ID: SA73-30B Sample ID: 234267017

Matrix: SO

Collect Date: 29-JUL-09 10:18 Receive Date: 30-JUL-09 Collector: Client

			Circiit								
Parameter	Qualifier	Result	Uncertainty	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Alpha Spec Analy	sis										
Alphaspec Th, Solid "D	ry Weight Corrected	"									
Thorium-228		1.46	+/-0.227	0.173	0.050	pCi/g		KXM 08/19/09 4	1619 8	392899	1
Thorium-230		2.05	+/-0.250	0.0861	0.050	pCi/g					
Thorium-232		1.36	+/-0.203	0.0596	0.100	pCi/g					
Alphaspec U, Solid "Dr	y Weight Corrected'	'									
Uranium-233/234		1.72	+/-0.119	0.0235	0.040	pCi/g		KXM 08/19/09 4	2121 8	392901	2
Uranium-235/236		0.100	+/-0.0342	0.0291	0.040	pCi/g		•			
Uranium-238		1.82	+/-0.122	0.0163	0.040	pCi/g					
Rad Gas Flow Proport	tional Counting										
Gas Flow Radium 228	'Dry Weight Correct	ted"									
Radium-228	-	2.86	+/-0.607	0.897	0.500	pCi/g		JXC5 08/12/09	1929 8	391149	3
Rad Radium-226						1 0					
Lucas Cell, Ra226, solid	d "Dry Weight Corre	ected"									
Radium-226	_	2.73	+/-0.417	0.125	0.500	pCi/g		KSD1 08/26/09	1355 8	393450	4

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Pren	Dry Soil Pren GL-RAD-A-021	CXC1	07/31/09	1/25	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			87.3	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			106	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			84.6	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

Newport Beach, California 92660 Report Date: August 28, 2009

Project:

Client ID:

KERRHenderson KERR003

KSD1 08/22/09 1330 892760

Contact: Mr. Frank Hagar
Project: Tronox Henderson

Client Sample ID: FB072909-SO Sample ID: 234267018

Matrix: W

Collect Date: 29-JUL-09 14:25 Receive Date: 30-JUL-09 Collector: Client

0.258

+/-0.310

Parameter Qualifier Result Uncertainty DLRL Units DF AnalystDate Time Batch Method Rad Alpha Spec Analysis Alphaspec Th, Liquid "As Received" Thorium-228 0.0321 +/-0.022 0.0307 0.030 pCi/L JXD2 08/27/09 0805 897494 Thorium-230 +/-0.00897 0.0219 0.030 pCi/L U -5.46E-10 Thorium-232 U 0.00687 +/-0.0135 0.0253 0.030 pCi/L Alphaspec U, Liquid "As Received" Uranium-233/234 0.0167 0.030 JXD2 08/15/09 1748 892925 U 0.00671 +/-0.00956 pCi/L Uranium-235/236 +/-0.00843 0.0206 0.030 pCi/L U 0.00 Uranium-238 0.0104 +/-0.0108 0.0167 0.030 pCi/L **Rad Gas Flow Proportional Counting** GFPC, Ra228, Liquid "As Received" Radium-228 0.954 +/-1.09 1.83 3.00 pCi/L MXS2 08/12/09 1007 891394 3 Rad Radium-226 Lucas Cell, Ra226, liquid "As Received"

The following Analytical Methods were performed

Radium-226

Method	Description Description	Analyst Comments	
1	DOE EML HASL-300, Th-01-RC Modified		
2	DOE EML HASL-300, U-02-RC Modified		
3	EPA 904.0/SW846 9320 Modified		
4	EPA 903.1 Modified		

1.00

pCi/L

0.521

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Liquid "As Received"			72.4	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Liquid "As Received"			94.9	(15%-125%)
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			77.8	(15%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

Newport Beach, California 92660 Report Date: August 28, 2009

Project:

Client ID:

KERRHenderson

KERR003

Contact: Mr. Frank Hagar
Project: Tronox Henderson

Client Sample ID: SA49-10B Sample ID: 234267019

Matrix: SO

Collect Date: 30-JUL-09 11:15
Receive Date: 31-JUL-09
Collector: Client

Parameter Qualifier Result Uncertainty DLRL Units DF AnalystDate **Time Batch Method** Rad Alpha Spec Analysis Alphaspec Th, Solid "Dry Weight Corrected" Thorium-228 1.43 +/-0.2150.143 0.050 KXM 08/19/09 1619 892899 pCi/g Thorium-230 1.20 +/-0.1880.0714 0.050 pCi/g Thorium-232 1.36 +/-0.199 0.057 0.100 pCi/g Alphaspec U, Solid "Dry Weight Corrected" Uranium-233/234 1.04 +/-0.0924 0.0203 0.040 pCi/g KXM 08/19/09 2121 892901 Uranium-235/236 0.0784 +/-0.0299 0.025 0.040 pCi/g Uranium-238 0.0284 0.040 0.933 +/-0.088pCi/g **Rad Gas Flow Proportional Counting** Gas Flow Radium 228 "Dry Weight Corrected" Radium-228 1.23 +/-0.3430.487 0.500 pCi/g JXC5 08/12/09 1929 891149 Rad Radium-226 Lucas Cell, Ra226, solid "Dry Weight Corrected" Radium-226 0.637 +/-0.1960.194 0.500 pCi/g KSD1 08/26/09 1355 893450

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Pren	Dry Soil Prep GL-RAD-A-021	CXC1	07/31/09	1435	889936

Method	Description	Analyst Comments
1	DOE EML HASL-300, Th-01-RC Modified	
2	DOE EML HASL-300, U-02-RC Modified	
3	EPA 904.0/SW846 9320 Modified	
4	EPA 903.1 Modified	

Surrogate/Tracer recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Actinium-227 Tracer	Alphaspec Th, Solid "Dry Weight Corrected"			90.3	(15%-125%)
Uranium-232 Tracer	Alphaspec U, Solid "Dry Weight Corrected"			109	(15%-125%)
Barium-133 Tracer	Gas Flow Radium 228 "Dry Weight Corrected"			84.1	(25%-125%)

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Northgate Environmental

Management, Inc.

Address: 1100 Quail St., Suite 102

Newport Beach, California 92660 Report Date: August 28, 2009

Project:

Client ID:

KERRHenderson

KXM 08/19/09 2121 892901

JXC5 08/12/09 1402 891149

KSD1 08/26/09 1425 893450

KERR003

Contact: Mr. Frank Hagar
Project: Tronox Henderson

Client Sample ID: SA49-20B Sample ID: 234267020

Matrix: SO

Collect Date: 30-JUL-09 11:36 Receive Date: 31-JUL-09 Collector: Client

1.92

+/-0.126

+/-0.327

+/-0.358

Parameter Qualifier Result Uncertainty DL RL Units DF AnalystDate Time Batch Method Rad Alpha Spec Analysis Alphaspec Th, Solid "Dry Weight Corrected" Thorium-228 2.21 +/-0.2640.113 0.050 KXM 08/19/09 1619 892899 pCi/g Thorium-230 2.34 +/-0.266 0.0599 0.050 pCi/g Thorium-232 1.69 +/-0.2270.0599 0.100 pCi/g Alphaspec U, Solid "Dry Weight Corrected"

0.040

0.040

0.040

0.500

0.500

pCi/g

pCi/g

pCi/g

pCi/g

pCi/g

Analyst Comments

0.0308

0.0292

0.0286

0.473

0.285

Uranium-235/236 0.129 +/-0.0384 Uranium-238 1.91 +/-0.126 **Rad Gas Flow Proportional Counting**

Gas Flow Radium 228 "Dry Weight Corrected"
Radium-228 0.521

Uranium-233/234

Rad Radium-226 Lucas Cell, Ra226, solid "Dry Weight Corrected"

Radium-226 1.61

The following Prep Methods were performedMethodDescriptionAnalystDateTimePrep BatchDry Soil PrepDry Soil Prep GL-RAD-A-021CXC107/31/091435889936

The following Analytical Methods were performed

MethodDescription1DOE EML HASL-300, Th-01-RC Modified2DOE EML HASL-300, U-02-RC Modified3EPA 904.0/SW846 9320 Modified

EPA 903.1 Modified

Acceptable Limits Surrogate/Tracer recovery **Nominal** Recovery% Result Actinium-227 Tracer Alphaspec Th, Solid "Dry Weight Corrected" 85.7 (15% - 125%)Uranium-232 Tracer Alphaspec U, Solid "Dry Weight Corrected" 106 (15%-125%) Barium-133 Tracer Gas Flow Radium 228 "Dry Weight 76.3 (25% - 125%)Corrected"

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

Report Date: August 28, 2009

Page 1 of 5

QC Summary

Northgate Environmental Management, Inc.

1100 Quail St., Suite 102 Newport Beach, California

Contact: Mr. Frank Hagar

Workorder: 234267

Parmname	NOM	Sample Q	QC QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Alpha Spec								
Batch 892899								
QC1201899548 234267002 DUP		• • •		~				
Thorium-228		2.06	1.98	pCi/g	4.10		(0% - 20%) KXM4	08/19/09 16:19
		+/-0.268	+/-0.261					
Thorium-230		0.936	1.22	pCi/g	26.4*		(0% - 20%)	
		+/-0.184	+/-0.202					
Thorium-232		1.85	1.68	pCi/g	10.1		(0% - 20%)	
		+/-0.258	+/-0.234					
QC1201899550 LCS			11 0.00016	C: /-				00/10/00 16:10
Thorium-228			U 0.00816	pCi/g				08/19/09 16:19
Th 220	0.26		+/-0.0799	C: /-		110	(750/ 1050/)	
Thorium-230	8.26		9.11	pCi/g		110	(75%-125%)	
TTI : 222			+/-0.535	C : /			(750/ 1050/)	
Thorium-232			U -0.00814	pCi/g			(75%-125%)	
QC1201899547 MB			+/-0.0276					
Thorium-228			0.122	pCi/g				08/19/09 16:19
111011u111-220			+/-0.0796	pc//g				00/12/02 10:12
Thorium-230			U 0.00811	pCi/g				
1 HOITum-230			+/-0.0159	pci/g				
Thorium-232			U 0.00811	pCi/g				
THORIUM-232			+/-0.0355	pci/g				
QC1201899549 234267002 MS			+/-0.0333					
Thorium-228		2.06	2.14	pCi/g				08/19/09 16:19
		+/-0.268	+/-0.273	1 0				
Thorium-230	8.26	0.936	10.1	pCi/g		111	(75%-125%)	
		+/-0.184	+/-0.581	1 - 8			(,	
Thorium-232		1.85	1.68	pCi/g			(75%-125%)	
		+/-0.258	+/-0.240	1 8			(1271 -2071)	
Batch 892901		1, 0.200	., 0.2.0					
QC1201899552 234267002 DUP								
Uranium-233/234		1.22	0.930	pCi/g	27.0*		(0% - 20%) KXM4	08/19/09 21:21
Craman 233/234		+/-0.144	+/-0.0878	PCIIS	27.0		(0/0 20/0) 1221114	00/17/07 21.21
Uranium-235/236		0.0805	0.0624	pCi/g	25.3		(0% - 100%)	
Oramum-233/230		+/-0.0407	+/-0.026	pc1/g	25.5		(070 - 10070)	
Uranium-238		1.22	0.852	pCi/g	35.5*		(0% - 20%)	
Oramum-236		+/-0.144	+/-0.0836	pci/g	33.3		(070 - 2070)	
QC1201899554 LCS		+/-0.144	+/-0.0630					
Uranium-233/234			5.33	pCi/g				08/19/09 21:21
			+/-0.211	, ,				
Uranium-235/236			0.333	pCi/g				
			+/-0.0586	1 8				
Uranium-238	4.84		5.63	pCi/g		116	(75%-125%)	
			2.33	r = 2.8			(- / /)	

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

OC Summary

			\mathbf{Q}	CS	<u>ummary</u>	<i>T</i> -					
Workorder: 23	4267								Page 2	of 5	
Parmname		NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Alpha Spec Batch 8929	01										
Dateir 0,2,5	01										
					+/-0.217						
QC1201899551	MB										
Uranium-233/234				U	-0.0223	pCi/g				KXM4	08/19/09 21:21
					+/-0.0165						
Uranium-235/236				U	0.00528	pCi/g					
				* *	+/-0.0104	C :/					
Uranium-238				U	-0.00214	pCi/g					
QC1201899553	234267002 MS				+/-0.0111						
Uranium-233/234	23 120 7002 1115		1.22		5.29	pCi/g					08/19/09 21:21
			+/-0.144		+/-0.212	1 - 8					
Uranium-235/236			0.0805		0.370	pCi/g					
			+/-0.0407		+/-0.0626						
Uranium-238		4.94	1.22		5.77	pCi/g		92.1	(75%-125%))	
			+/-0.144		+/-0.222						
Batch 8929	25										
QC1201899629	LCS										
Uranium-233/234					3.15	pCi/L				JXD2	08/15/09 17:48
					+/-0.172						
Uranium-235/236					0.132	pCi/L					
					+/-0.0407	~~					
Uranium-238		3.15			3.20	pCi/L		102	(75%-125%))	
QC1201899630	LCSD				+/-0.173						
Uranium-233/234	LCSD				2.84	pCi/L	10.4				08/15/09 17:48
- Cramam 200, 20 .					+/-0.148	PULL	1011				00/10/09 17110
Uranium-235/236					0.146	pCi/L	10.0				
					+/-0.0372						
Uranium-238		3.15			3.03	pCi/L	5.43	96.2	(0%-20%))	
					+/-0.153						
QC1201899628	MB										
Uranium-233/234				U	0.011	pCi/L					08/15/09 18:00
11 : 225/226				* *	+/-0.0125	G: /ī					
Uranium-235/236				U	0.00617	pCi/L					
Hamisson 220				U	+/-0.0107	"С:/I					
Uranium-238				U	0.00666 +/-0.00799	pCi/L					
Batch 8974	94				+/-0.00733						
QC1201911150	LCS										
Thorium-228	_00				0.0264	pCi/L				JXD2	08/27/09 08:08
					+/-0.0172	•					
Thorium-230		2.68			2.99	pCi/L		112	(75%-125%))	
					+/-0.183	-					
Thorium-232				U	0.00585	pCi/L			(75%-125%))	
					+/-0.0115						

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

age 3	of :	5
)	ge 3	ge 3 of 5

Parmname	NOM	I Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Alpha Spec Batch 897494										
QC1201911151 LCSI	D									
Thorium-228			U	0.0132	pCi/L	66.3			JXD2	08/27/09 08:08
				+/-0.0159	•					
Thorium-230	2.68			3.09	pCi/L	3.29	115	(0%-20%)	1	
				+/-0.198						
Thorium-232			U	0.00661	pCi/L	12.2		(0%-20%)	1	
0.01201011110				+/-0.00916						
QC1201911149 MB Thorium-228			U	0.00293	pCi/L					08/27/09 08:08
Thorium-220			O	+/-0.00994	pci/L					08/27/07 08:08
Thorium-230				0.0205	pCi/L					
				+/-0.0152	F					
Thorium-232			U	0.00	pCi/L					
				+/-0.00573						
Rad Gas Flow										
Batch 891149										
QC1201895426 234267	002 DUP									
Radium-228		0.785		1.53	pCi/g	64.6		(0% - 100%)	JXC5	08/12/09 19:28
QC1201895428 LCS		+/-0.342		+/-0.468						
Radium-228	7.69			9.09	pCi/g		118	(75%-125%)	1	08/12/09 15:15
	,			+/-1.45	r 8			(,		
QC1201895425 MB										
Radium-228			U	0.277	pCi/g					08/12/09 14:02
0.01201005427 224267	002 149			+/-0.276						
QC1201895427 2342670 Radium-228	002 MS 63.6	0.785		76.7	pCi/g		119	(75%-125%)		08/12/09 13:04
Radium-220	03.0	+/-0.342		+/-11.8	pc1/g		11)	(75/0-125/0)	•	00/12/07 13:04
Batch 891394		., 0.5.2		., 1110						
QC1201896009 LCS										
Radium-228	40.6			39.7	pCi/L		97.9	(75%-125%)	MXS2	08/12/09 10:08
				+/-4.76						
QC1201896010 LCSI				2.5	G: 7	0.45	00.0	(00) (00)		00/12/00 10 00
Radium-228	40.6			36.5	pCi/L	8.47	89.9	(0%-20%)	1	08/12/09 10:08
QC1201896008 MB				+/-4.81						
Radium-228			U	0.924	pCi/L					08/12/09 10:08
				+/-1.32	•					
Rad Ra-226										
Batch 892760										
QC1201899207 LCS										
Radium-226	24.2			21.5	pCi/L		88.9	(75%-125%)	KSD1	08/22/09 14:05
OC1301900309 T CC	D			+/-1.63						
QC1201899208 LCSI Radium-226	24.2			21.9	pCi/L	1.81	90.5	(0%-20%)		08/22/09 15:05
Rudiulli-220	27.2			+/-1.61	PCI/L	1.01	70.5	(070-2070)	•	00/22/09 13:03
QC1201899206 MB				., 1.01						

GEL LABORATORIES LLC

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 234267 Page 4 of 5

Parmname	NOM	Sample (hual	QC	Units	RPD%	REC%	Range A	Anlst	Date	Time
	NOM	Sample	Zuai	<u> </u>	Cints	KI D /0	KEC /0	Kange 1	Amst	Date	Time
Rad Ra-226											
Batch 892760											
Radium-226			U	0.155	pCi/L					08/22/0	9 15:05
				+/-0.279							
Batch 893450				17 0.279							
QC1201900979 234267002 DUP											
Radium-226		0.492		0.433	pCi/g	12.7		(0% - 100%)	KSD1	08/26/0	9 14:25
		+/-0.162		+/-0.176							
QC1201900981 LCS											
Radium-226	11.6			14.0	pCi/g		121	(75%-125%)		08/26/0	9 17:30
				+/-0.959				· ·			
QC1201900978 MB				., 0.,00							
Radium-226			U	0.159	pCi/g					08/26/0	9 14:25
				+/-0.122	1 0						
QC1201900980 234267002 MS				.,							
Radium-226	12.0	0.492		13.1	pCi/g		105	(75%-125%)		08/26/0	9 14:25
		+/-0.162		+/-0.830	1 8		-00	(,: 120,0)		22,20,0	
		1/-0.102		17-0.030							

Notes:

The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- F Estimated Value
- H Analytical holding time was exceeded
- J Value is estimated
- M M if above MDC and less than LLD
- M Matrix Related Failure
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound

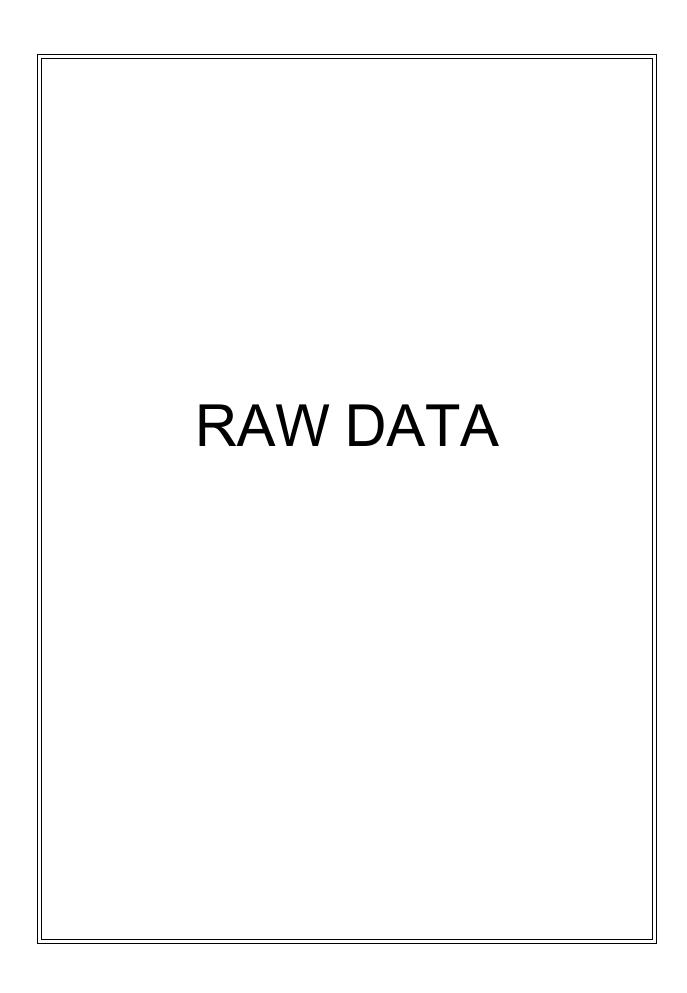
GEL LABORATORIES LLC

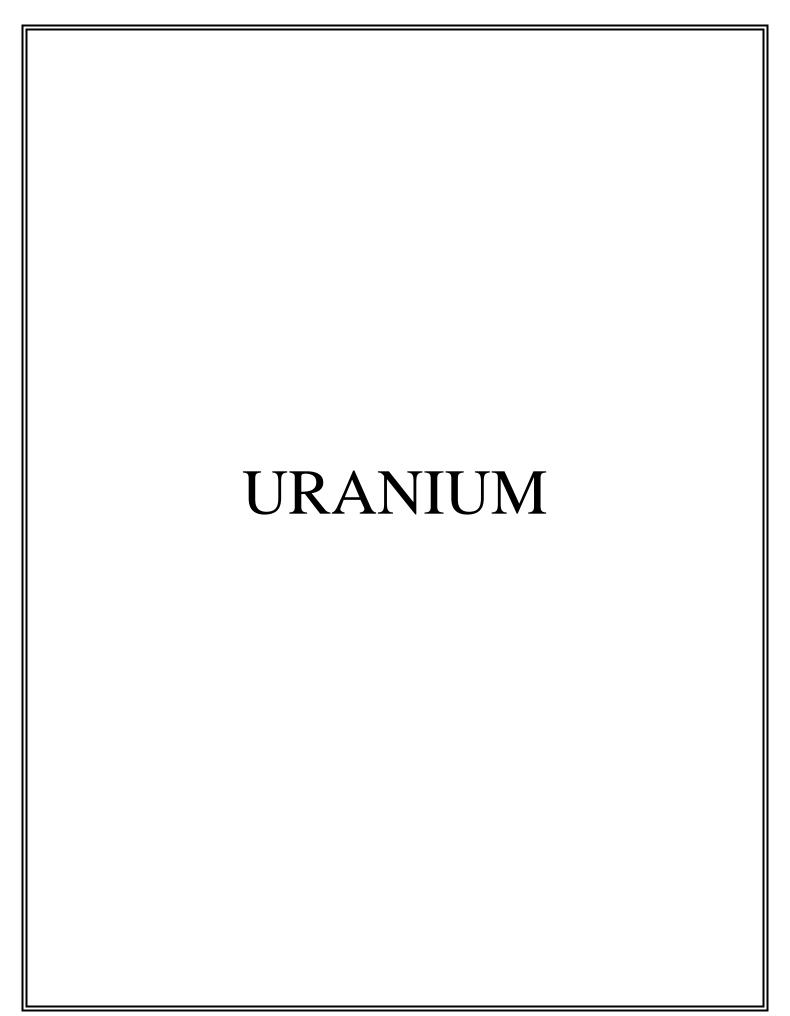
2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 234267 Page 5 of 5

Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time


- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- h Preparation or preservation holding time was exceeded


N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of \pm 0 the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Radiochemistry Ba	itch Cher		1 /
Batch# 89290 Product:	Di	ate:8	126/09
Criteria:	Yes	No	Comments
Sample Solids are less than or equal to 100 mg for GAB.			NIA
Samples have been blank corrected (if required)			NIA
If activity less 10° MDA/ MDC, error is 150% or less of sample activity. If greater 10° MDA/ MDC, error is 40% or less. If below the MDA/ MDC, error is okay.	./		
Instrument source check is within limits. Instrument bkg check is within limits.	1	<u> </u>	
Method RDL/ LLD has been met.	1/	 	
If duplicate activities are less 5° MDA/ MDC, then RPD is 100% or less. If greater 5° MDA/ MDC, then RPD 20% or less. If below the MDA/ MDC, the RPD is 0%. Or meets the client's required RER acceptance criteria.	1		Case norrative
Tracer yield is 15-125%. Carrier yield 25-125%. Or meets the client's contract acceptance criteria.	 		NCR 726292
Method blank is less than the ROL/ LLD. (If rad samples, < 5% of lowest activity)			
Sample was run within hold time.	V		
Sample was correctly preserved if required.			NA
Smears Taken for Radioactive batches.			NA
Method Spike and LCS are within 75-125% or meets the client's contract acceptance criteria.			
No blank spaces on data forms. All line outs initialed and dated.			
No transcription errors are apparent.			
Aux data is correct.			NA
Client Special requirements page has been checked.			
Raw Data and/ or spectrum are included and properly statused.	V		
QC data entered into QC database and batch is in REVW	V		6/4
Hit notification complete (if necessary)			N/A
Batch entered into Case Narrative.	1		0100 = -(-00
Batch non-conformances completed, if applicable. Batch non-conformances second reviewed and disposition			NCR 726292
verified to be completed.			NCR 106292
Aliquot Correction completed if required.	+		N /A
Review sample historical results if available (If REMP, results above MDC have been verified by historical results, recount or re-analysis.) GEL Laboratories, LLC	V		
revised 8/1/08			
Primary Review Performed By:	8/26/	69	
Secondary Review Performed By: 2 / 26/0	9		

8/17 8/28 KERR

Uranium Que Sheet

Batch #: 892901 Tracer Isotope (U-232) LCS Isotope: U-238 Spike Isotope: U-238 Prep Date: 8.13-04	10-236 4 Ini	Analyst: cr Code: Code: KM	m J j ä	XM4 First Client D \(\frac{\cappa 3.6}{\cappa 5.6} \) Expiration I \(\frac{\cappa 5.6}{\cappa 5.6} \) Expiration I Pipet ID: \(\frac{\cappa 4.05}{\cappa 8.6} \)	First Client Due Date: 28-AUG-09 Expiration Date: - 5-10 Vol: 0 Expiration Date: - 6-10 Vol: 0 Expiration Date: - 6-10 Vol: 0 L471658 Balance ID: 50410232	Vol: 6 Vol: 6 Vol: 6	Internal Due Date:17-AUG-09		Si Si	Witness:		
Sample ID	Client Description	Туре	Hazard e Code	rd e Min CRDL	L Matrix	Client	Collection Date	Pos.	Label #	We@Dry Aliquot @1/f)	U Det#	
234267001-1	RSAM7-28B	SAMPLE	S.E.	.04 pCi/g	SOIL	KERR003	28-JUL-09	-	2	0.50%	6 11	(
234267002-1	SA179-0.5B	SAMPLE	CE	.04 pCi/g	SOIL	KERR003	28-JUL-09	7	25	D.507	4	į į (Š)
234267003-1	SA179-10B	SAMPLE	CE	.04 pCi/g	SOIL	KERR003	28-JUL-09	ر س	53	0.521	17	Spela
234267004-1	SA179-29B	SAMPLE	E	.04 pCi/g	SOIL	KERR003	28-JUL-09	4	ξ	405.0	157	
234267005-1	RSAU4-0.5B	SAMPLE	CE	.04 pCi/g	SOIL	KERR003	29-JUL-09	,	53	0.506	17 12	(8)
234267006-1	RSAU4-10B	SAMPLE	SE SE	.04 pCi/g	SOIL	KERR003	29-JUL-09	•		6.509	154	8/26/04
234267007-1	RSAU4-20B	SAMPLE	E	.04 pCi/g	SOIL	KERR003	29-JUL-09	7	Ι.	P05.0	155	
234267008-1	RSAU4-25B	SAMPLE	3	.04 pCi/g	SOIL	KERR003	29-JUL-09	∞	28	9150	7.51	
234267009-1	RSAU4-40B	SAMPLE	E	.04 pCi/g	SOIL	KERR003	29-JUL-09	6	59	9.509	44	(g)
234267010-1	RSAU4-50B	SAMPLE	E	.04 pCi/g	SOIL	KERR003	29-JUL-09	10	60	0.506	\$	2/19/00
234267011-1	RSAU4-56B	SAMPLE	到	.04 pCi/g	SOIL	KERR003	29-JUL-09	==	19	8050	15.9	
234267012-1	RSAL6-0.5B	SAMPLE	图	.04 pCi/g	SOIL	KERR003	29-JUL-09	12	29	0.511	19/	
234267013-1	RSAL6-10B	SAMPLE	3	.04 pCi/g	SOIL	KERR003	29-JUL-09	13	63	0.507	791	
234267014-1	RSAL6-28B	SAMPLE	图	.04 pCi/g	SOIL	KERR003	29-JUL-09	14	6 4	0.500	٤٦/	
234267015-1	SA73-0.5B	SAMPLE	¥	.04 pCi/g	SOIL	KERR003	29-JUL-09	15	9 2	6.507	764	(
234267016-1	SA73-10B	SAMPLE	E	.04 pCi/g	SOIL	KERR003	29-JUL-09	16	99	0.510	81 -394	Sala.
234267017-1	SA73-30B	SAMPLE	3	.04 pCi/g	SOIL	KERR003	29-JUL-09	17	49	0.508	99/	- :
234267019-1	SA49-10B	SAMPLE	E	.04 pCi/g	SOIL	KERR003	30-JUL-09	18	89	0.92	167	
234267020-1	SA49-20B	SAMPLE	Œ	.04 pCi/g	SOIL	KERR003	30-JUL-09	19	64	0.5/1	891	
1201899551-1	MB for batch 892901	MB		.04 pCi/g	SOIL	QC ACCOUNT		70	2		691	
1201899552-1	SA179-0.5B(234267002DUP)	DUP) DUP		.04 pCi/g	SOIL	QC ACCOUNT	28-JUL-09	717		0.50	170	
1201899553-1	SA179-0.5B(234267002MS)	MS) MS		.04 pCi/g	SOIL	QC ACCOUNT	28-JUL-09	22	16	01/5/10	121	
1201899554-1	LCS for batch 892901	TCS		.04 pCi/g	SOIL	QC ACCOUNT		23		0.50	172	
											•	

Choose SOP used: GL-RAD-A-011 GL-RAD-A-038

Solid Sample Dissolution by: LEACH or DIGESTION
Circle One

Data Reviewed By: Surl MI 8/26/04

Page 1 of 1

GL-RAD-A-045 GL-RAD-A-043 GEL Laboratories LLC, Radiochemistry Division

BATCH NUMBER: 892901

SAMPLE DATE: 28-JUL-2009 00:00:00

SAMPLE ID : S0234267001_UU SAMPLE QTY: G 0.508

DETECTOR NUMBER :33449 **AVERAGE %EFFICIENCY:24.6514**

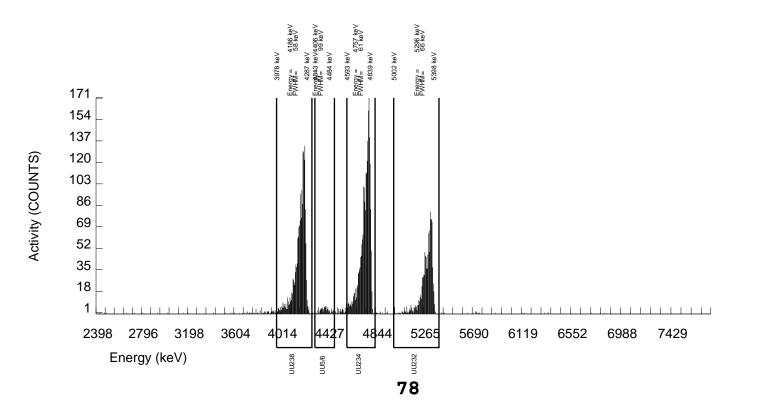
% YIELD : 86.896 COUNT DATE:19-AUG-2009 21:20:19 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238

PCI/G: 4.958E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.958E+00


TRACER ID: 1283-E ISOTOPE: U232

NOMINAL : 5.26442 dpm RESULTS : 4.57456 dpm

LIB FILE: ENV_ALPHA_UU.N BKG FILE: B149.CNF;345 BKG DATE: 16-AUG-2009 EFF FILE: W149.CNF;102 CAL DATE: 17-AUG-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU I.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	2230.000	2225.596	1.000	1.0000	100.0000	9.21E+00	1.33E+00	3.17E-02	9.63E-03	3.83E-01
U232	5302.100	1133.000	1127.000	6.000	2.4495	100.0000	4.67E+00	7.00E-01	5.96E-02	2.36E-02	2.74E-01
U-235	4391.000	87.000	86.000	1.000	1.0000	80.90000	4.40E-01	1.12E-01	3.92E-02	1.19E-02	9.41E-02
U-238	4184.730	1836.000	1833.000	3.000	1.7321	100.0000	7.59E+00	1.10E+00	4.58E-02	1.67E-02	3.48E-01

BATCH NUMBER: 892901

SAMPLE DATE: 28-JUL-2009 00:00:00

SAMPLE ID: S0234267002_UU SAMPLE QTY: G 0.507

DETECTOR NUMBER :78790 **AVERAGE %EFFICIENCY:34.0969**

% YIELD : 60.046 COUNT DATE:25-AUG-2009 14:07:05 ELAPSED LIVE TIME(SEC): 60000.00

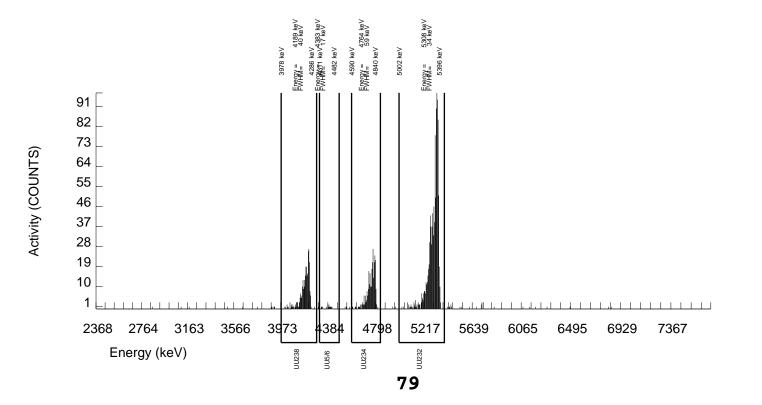
ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238

PCI/G: 4.968E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238

PCI/G: 4.968E+00


TRACER ID: 1283-E ISOTOPE: U232

NOMINAL: 5.26442 dpm RESULTS: 3.16106 dpm

LIB FILE: ENV_ALPHA_UU.N BKG FILE: B013.CNF;1039 BKG DATE: 23-AUG-2009 EFF FILE: W013.CNF;313 CAL DATE: 3-AUG-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	287.000	281.747	2.000	1.4142	100.0000	1.22E+00	2.22E-01	4.16E-02	1.43E-02	1.44E-01
U232	5302.100	1083.000	1077.000	6.000	2.4495	100.0000	4.68E+00	7.06E-01	6.25E-02	2.47E-02	2.81E-01
U-235	4391.000	15.000	15.000	0.000	0.0000	80.90000	8.05E-02	4.22E-02	1.61E-02	0.00E+00	4.07E-02
U-238	4184.730	284.000	282.000	2.000	1.4142	100.0000	1.22E+00	2.22E-01	4.16E-02	1.43E-02	1.44E-01

BATCH NUMBER: 892901

SAMPLE DATE: 28-JUL-2009 00:00:00

SAMPLE ID: S0234267003_UU SAMPLE QTY: 0.521 G

DETECTOR NUMBER :75556 **AVERAGE %EFFICIENCY:24.5018** : 106.742 % YIELD

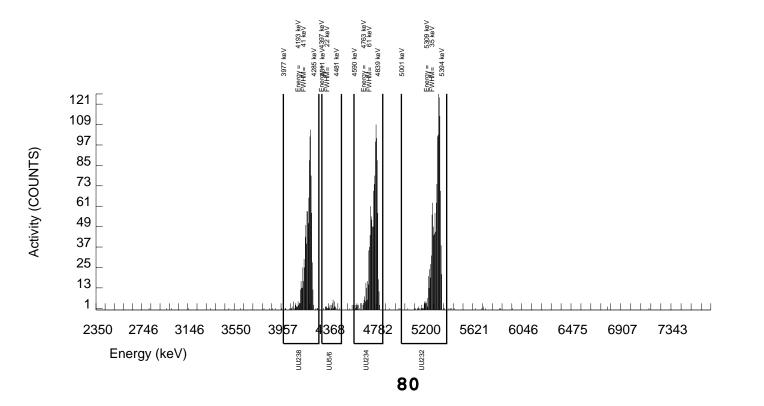
COUNT DATE:19-AUG-2009 21:20:23 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST

:KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.835E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238


TRACER ID: 1283-E ISOTOPE: U232 LIB FILE: ENV_ALPHA_UU.N BKG FILE: B151.CNF;341 BKG DATE: 16-AUG-2009 EFF FILE: W151.CNF;108 CAL DATE: 17-AUG-2009

PCI/G: 4.835E+00

NOMINAL : 5.26441 dpm RESULTS : 5.61935 dpm

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	1213.000	1204.844	4.000	2.0000	100.0000	3.98E+00	5.86E-01	4.07E-02	1.54E-02	2.26E-01
U232	5302.100	1379.000	1376.000	3.000	1.7321	100.0000	4.55E+00	6.63E-01	3.66E-02	1.33E-02	2.41E-01
U-235	4391.000	43.000	42.000	1.000	1.0000	80.90000	1.72E-01	5.80E-02	3.13E-02	9.51E-03	5.31E-02
U-238	4184.730	1037.000	1035.000	2.000	1.4142	100.0000	3.42E+00	5.09E-01	3.17E-02	1.09E-02	2.09E-01

BATCH NUMBER: 892901

SAMPLE DATE: 28-JUL-2009 00:00:00

SAMPLE ID: S0234267004_UU SAMPLE QTY: G 0.504

DETECTOR NUMBER :76222 **AVERAGE %EFFICIENCY:24.9016** % YIELD

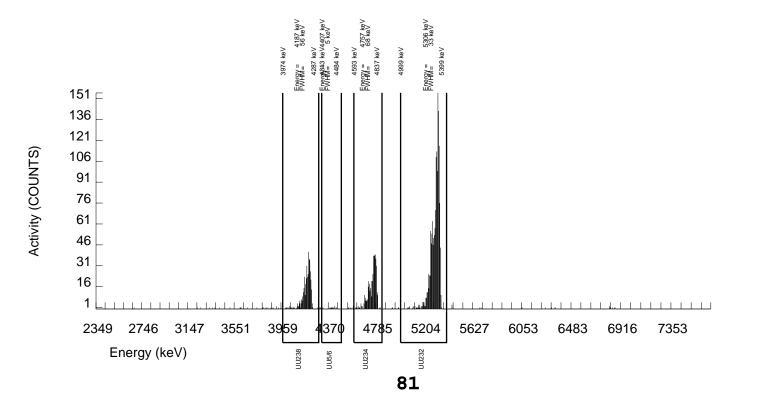
: 116.630

COUNT DATE:19-AUG-2009 21:20:27 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.998E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.998E+00


TRACER ID: 1283-E ISOTOPE: U232

NOMINAL: 5.26442 dpm RESULTS: 6.13990 dpm

LIB FILE: ENV_ALPHA_UU.N BKG FILE: B152.CNF;338 BKG DATE: 16-AUG-2009 EFF FILE : W152.CNF;95 CAL DATE : 17-AUG-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	465.000	457.385	3.000	1.7321	100.0000	1.41E+00	2.30E-01	3.40E-02	1.24E-02	1.30E-01
U232	5302.100	1537.000	1528.000	9.000	3.0000	100.0000	4.71E+00	6.77E-01	5.22E-02	2.15E-02	2.37E-01
U-235	4391.000	13.000	12.000	1.000	1.0000	80.90000	4.56E-02	2.86E-02	2.91E-02	8.85E-03	2.79E-02
U-238	4184.730	419.000	417.000	2.000	1.4142	100.0000	1.28E+00	2.13E-01	2.95E-02	1.01E-02	1.24E-01

BATCH NUMBER: 892901

SAMPLE DATE: 29-JUL-2009 00:00:00

SAMPLE ID: S0234267005_UU SAMPLE QTY: G 0.506

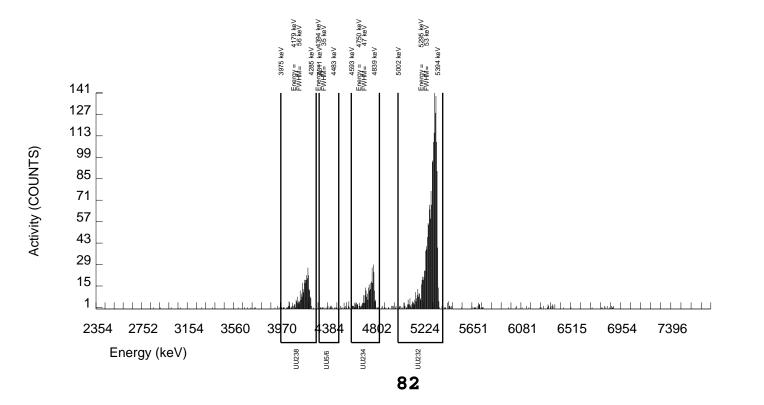
DETECTOR NUMBER :67616 **AVERAGE %EFFICIENCY:31.3062** % YIELD : 120.717 COUNT DATE:25-AUG-2009 14:07:05 ELAPSED LIVE TIME(SEC): 60000.00 :KXM4

ANALYST

MS/MSD ID: 1163-G ISOTOPE: U-238

PCI/G: 4.978E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238


TRACER ID: 1283-E ISOTOPE: U232 LIB FILE: ENV_ALPHA_UU.N BKG FILE: B014.CNF;1040 BKG DATE: 23-AUG-2009 EFF FILE: W014.CNF;312 CAL DATE: 3-AUG-2009

PCI/G: 4.978E+00

NOMINAL: 5.26428 dpm RESULTS: 6.35486 dpm

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	336.000	325.995	4.000	2.0000	100.0000	7.68E-01	1.32E-01	2.90E-02	1.10E-02	8.44E-02
U232	5302.100	1997.000	1988.000	9.000	3.0000	100.0000	4.69E+00	6.54E-01	4.00E-02	1.65E-02	2.07E-01
U-235	4391.000	20.000	18.000	2.000	1.4142	80.90000	5.24E-02	2.77E-02	2.79E-02	9.58E-03	2.68E-02
U-238	4184.730	356.000	352.000	4.000	2.0000	100.0000	8.29E-01	1.40E-01	2.90E-02	1.10E-02	8.76E-02

BATCH NUMBER: 892901

SAMPLE DATE: 29-JUL-2009 00:00:00

SAMPLE ID: S0234267006_UU SAMPLE QTY: G 0.509

DETECTOR NUMBER :76224 **AVERAGE %EFFICIENCY:25.5940** COUNT DATE:19-AUG-2009 21:20:32 ELAPSED LIVE TIME(SEC): 60000.00 :KXM4

ANALYST

: 114.960 % YIELD

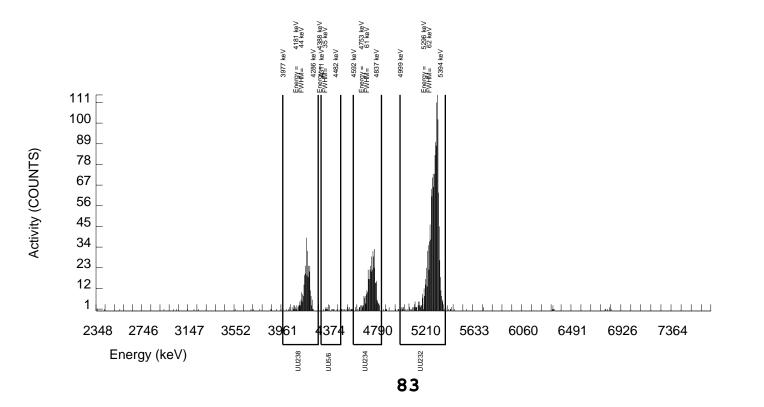
> LCS/LCSD **TRACER** ID: 1283-E ISOTOPE: U232

LIB FILE: ENV_ALPHA_UU.N BKG FILE: B154.CNF;335 BKG DATE: 16-AUG-2009

ISOTOPE: U-238 PCI/G: 4.949E+00

MS/MSD

ID: 1163-G


ID: 1163-G ISOTOPE: U-238 PCI/G: 4.949E+00

NOMINAL: 5.26428 dpm RESULTS: 6.05183 dpm

EFF FILE : W154.CNF;96 CAL DATE : 17-AUG-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	441.000	432.325	4.000	2.0000	100.0000	1.30E+00	2.14E-01	3.70E-02	1.40E-02	1.24E-01
U232	5302.100	1556.000	1548.000	8.000	2.8284	100.0000	4.66E+00	6.69E-01	4.86E-02	1.98E-02	2.33E-01
U-235	4391.000	19.000	18.000	1.000	1.0000	80.90000	6.69E-02	3.38E-02	2.85E-02	8.65E-03	3.26E-02
U-238	4184.730	361.000	361.000	0.000	0.0000	100.0000	1.09E+00	1.84E-01	9.02E-03	0.00E+00	1.12E-01

BATCH NUMBER: 892901

SAMPLE DATE: 29-JUL-2009 00:00:00

DETECTOR NUMBER :75553 AVERAGE %EFFICIENCY :26.0403

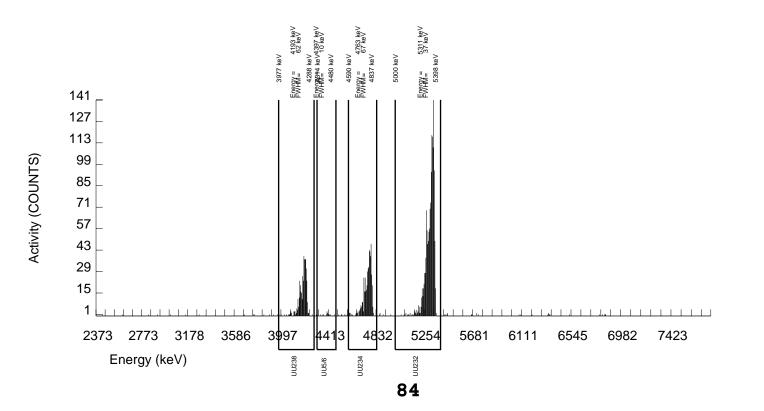
% YIELD : 105.253

COUNT DATE:19-AUG-2009 21:20:36 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238

PCI/G: 4.998E+00


LCS/LCSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.998E+00

TRACER
ID: 1283-E
ISOTOPE: U232

ISOTOPE: U232 NOMINAL: 5.26427 dpm RESULTS: 5.54081 dpm LIB FILE: ENV_ALPHA_UU.N BKG FILE: B155.CNF;342 BKG DATE: 16-AUG-2009 EFF FILE: W155.CNF;105 CAL DATE: 17-AUG-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	499.000	490.645	4.000	2.0000	100.0000	1.60E+00	2.59E-01	4.01E-02	1.52E-02	1.43E-01
U232	5302.100	1451.000	1442.000	9.000	3.0000	100.0000	4.70E+00	6.82E-01	5.53E-02	2.28E-02	2.44E-01
U-235	4391.000	15.000	13.000	2.000	1.4142	80.90000	5.24E-02	3.33E-02	3.86E-02	1.33E-02	3.26E-02
U-238	4184.730	416.000	415.000	1.000	1.0000	100.0000	1.35E+00	2.25E-01	2.50E-02	7.59E-03	1.31E-01

BATCH NUMBER: 892901

SAMPLE DATE: 29-JUL-2009 00:00:00

SAMPLE ID: S0234267008_UU SAMPLE QTY: G 0.516

DETECTOR NUMBER :75554 **AVERAGE %EFFICIENCY:24.7825**

% YIELD : 107.297 COUNT DATE:19-AUG-2009 21:20:38 ELAPSED LIVE TIME(SEC): 60000.00

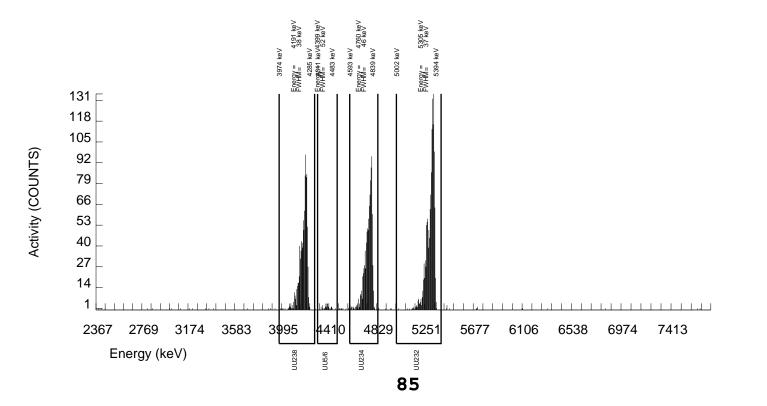
ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238

PCI/G: 4.882E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238

PCI/G: 4.882E+00


TRACER ID: 1283-E ISOTOPE: U232

NOMINAL: 5.26427 dpm RESULTS: 5.64841 dpm

LIB FILE: ENV_ALPHA_UU.N BKG FILE: B156.CNF;343 BKG DATE: 16-AUG-2009 EFF FILE: W156.CNF;109 CAL DATE: 17-AUG-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	995.000	976.775	14.000	3.7417	100.0000	3.21E+00	4.80E-01	6.70E-02	2.86E-02	2.04E-01
U232	5302.100	1405.000	1399.000	6.000	2.4495	100.0000	4.60E+00	6.69E-01	4.73E-02	1.87E-02	2.42E-01
U-235	4391.000	34.000	33.000	1.000	1.0000	80.90000	1.34E-01	5.04E-02	3.11E-02	9.44E-03	4.71E-02
U-238	4184.730	980.000	978.000	2.000	1.4142	100.0000	3.21E+00	4.80E-01	3.15E-02	1.08E-02	2.02E-01

BATCH NUMBER: 892901

SAMPLE DATE: 29-JUL-2009 00:00:00

SAMPLE ID: S0234267009_UU SAMPLE QTY: G 0.509

DETECTOR NUMBER :78774 **AVERAGE %EFFICIENCY:33.7280** % YIELD : 117.911 COUNT DATE:25-AUG-2009 14:07:05 ELAPSED LIVE TIME(SEC): 60000.00

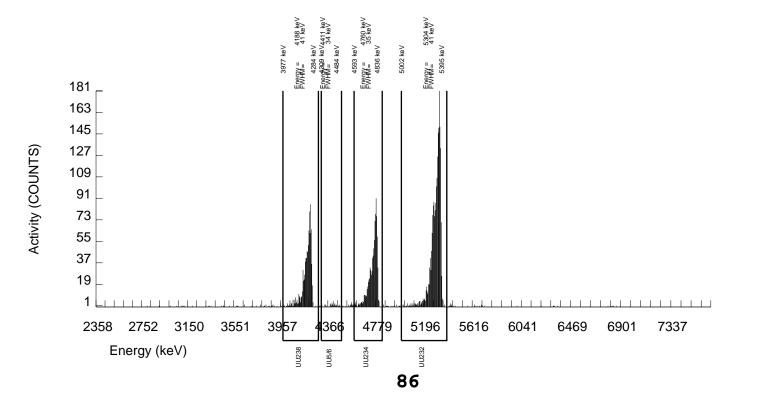
ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238

LCS/LCSD ID: 1163-G ISOTOPE: U-238

TRACER ID: 1283-E ISOTOPE: U232

NOMINAL: 5.26428 dpm RESULTS: 6.20714 dpm


LIB FILE: ENV_ALPHA_UU.N BKG FILE: B016.CNF;1035 BKG DATE: 23-AUG-2009 EFF FILE: W016.CNF;298 CAL DATE: 3-AUG-2009

PCI/G: 4.949E+00

PCI/G: 4.949E+00

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	927.000	919.681	1.000	1.0000	100.0000	2.05E+00	3.01E-01	1.70E-02	5.18E-03	1.32E-01
U232	5302.100	2101.000	2092.000	9.000	3.0000	100.0000	4.66E+00	6.47E-01	3.78E-02	1.55E-02	2.00E-01
U-235	4391.000	40.000	40.000	0.000	0.0000	80.90000	1.10E-01	3.71E-02	8.25E-03	0.00E+00	3.41E-02
U-238	4184.730	912.000	909.000	3.000	1.7321	100.0000	2.02E+00	2.98E-01	2.46E-02	8.97E-03	1.32E-01

BATCH NUMBER: 892901

SAMPLE DATE: 29-JUL-2009 00:00:00

SAMPLE ID : S0234267010_UU SAMPLE QTY: 0.506 G

DETECTOR NUMBER :33451 AVERAGE %EFFICIENCY :24.7083

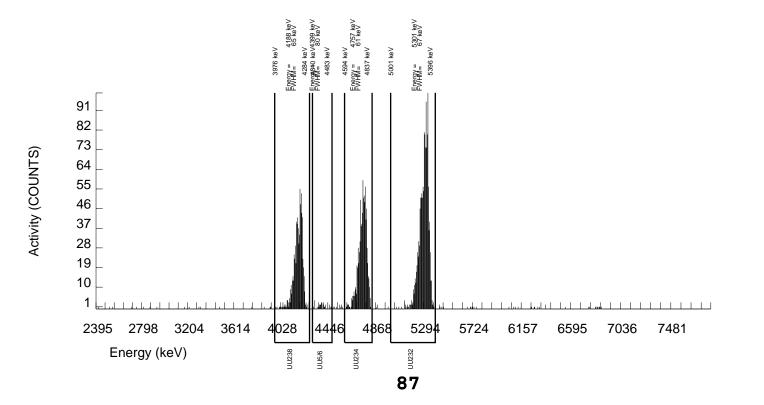
% YIELD : 104.619

COUNT DATE:19-AUG-2009 21:20:44 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238 LCS/LCSD ID: 1163-G ISOTOPE: U-238

TRACER
ID: 1283-E
ISOTOPE: U232


LIB FILE: ENV_ALPHA_UU.N BKG FILE: B158.CNF;344 BKG DATE: 16-AUG-2009 EFF FILE: W158.CNF;102 CAL DATE: 17-AUG-2009

TOPE: U-238 PCI/G: 4.978E+00 OTOPE: U-238 PCI/G: 4.978E+00

NOMINAL: 5.26427 dpm RESULTS: 5.50745 dpm

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	836.000	824.893	7.000	2.6458	100.0000	2.84E+00	4.33E-01	5.27E-02	2.12E-02	1.96E-01
U232	5302.100	1368.000	1360.000	8.000	2.8284	100.0000	4.69E+00	6.85E-01	5.57E-02	2.27E-02	2.51E-01
U-235	4391.000	34.000	32.000	2.000	1.4142	80.90000	1.36E-01	5.34E-02	4.08E-02	1.40E-02	5.01E-02
U-238	4184.730	742.000	741.000	1.000	1.0000	100.0000	2.55E+00	3.93E-01	2.64E-02	8.01E-03	1.84E-01

BATCH NUMBER: 892901

SAMPLE DATE: 29-JUL-2009 00:00:00

SAMPLE ID: S0234267011_UU SAMPLE QTY: G 0.508

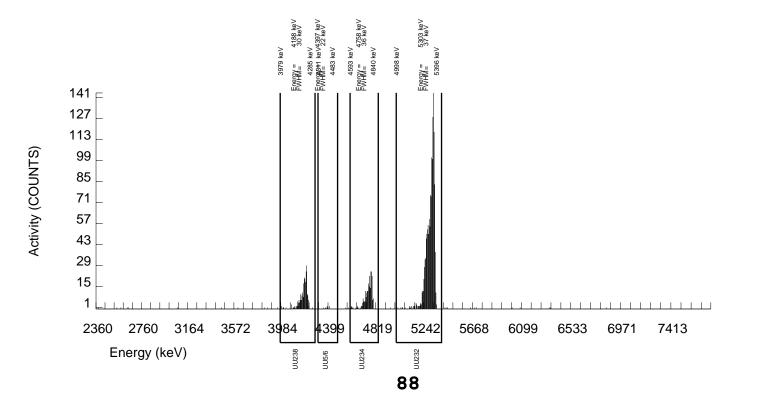
DETECTOR NUMBER :76225 **AVERAGE %EFFICIENCY:25.3619**

% YIELD : 107.244 COUNT DATE:19-AUG-2009 21:20:47 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.958E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.958E+00


TRACER ID: 1283-E ISOTOPE: U232

NOMINAL: 5.26428 dpm RESULTS: 5.64563 dpm

LIB FILE: ENV_ALPHA_UU.N BKG FILE: B159.CNF;317 BKG DATE: 16-AUG-2009 EFF FILE : W159.CNF;94 CAL DATE : 17-AUG-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	250.000	240.678	5.000	2.2361	100.0000	7.85E-01	1.47E-01	4.37E-02	1.70E-02	1.01E-01
U232	5302.100	1440.000	1431.000	9.000	3.0000	100.0000	4.67E+00	6.78E-01	5.53E-02	2.28E-02	2.43E-01
U-235	4391.000	8.000	6.000	2.000	1.4142	80.90000	2.42E-02	2.52E-02	3.86E-02	1.33E-02	2.50E-02
U-238	4184.730	245.000	243.000	2.000	1.4142	100.0000	7.92E-01	1.47E-01	3.12E-02	1.07E-02	1.00E-01

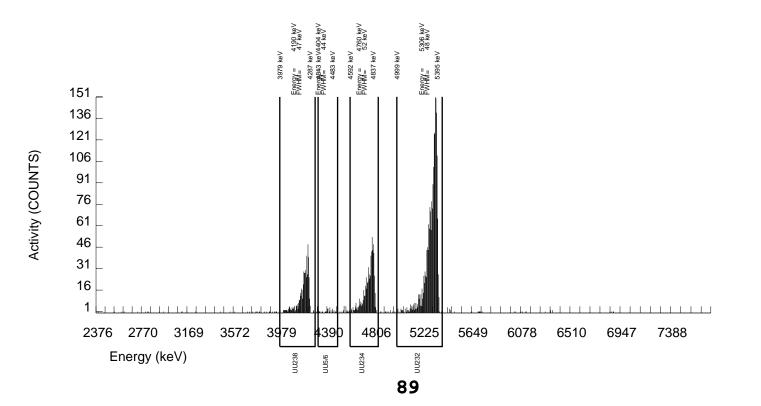
BATCH NUMBER: 892901

SAMPLE DATE: 29-JUL-2009 00:00:00

DETECTOR NUMBER :70321 AVERAGE %EFFICIENCY :37.2449 % YIELD : 103.035 COUNT DATE:19-AUG-2009 21:20:49 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238 LCS/LCSD ID: 1163-G ISOTOPE: U-238


TRACER ID: 1283-E ISOTOPE: U232 LIB FILE: ENV_ALPHA_UU.N BKG FILE: B161.CNF;115 BKG DATE: 16-AUG-2009 EFF FILE: W161.CNF;40 CAL DATE: 23-JUL-2009

TOPE : U-238 PCI/G : 4.929E+00 | ISOTOPE : U-238 PCI/G : 4.929E+00

NOMINAL: 5.26428 dpm RESULTS: 5.42405 dpm

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	667.000	659.902	1.000	1.0000	100.0000	1.52E+00	2.31E-01	1.76E-02	5.34E-03	1.16E-01
U232	5302.100	2027.000	2019.000	8.000	2.8284	100.0000	4.64E+00	6.46E-01	3.71E-02	1.51E-02	2.03E-01
U-235	4391.000	34.000	31.000	3.000	1.7321	80.90000	8.80E-02	3.58E-02	3.14E-02	1.14E-02	3.39E-02
U-238	4184.730	529.000	527.000	2.000	1.4142	100.0000	1.21E+00	1.91E-01	2.20E-02	7.56E-03	1.04E-01

BATCH NUMBER: 892901

SAMPLE DATE: 29-JUL-2009 00:00:00

SAMPLE ID: S0234267013_UU SAMPLE QTY: G 0.507

DETECTOR NUMBER :70323 **AVERAGE %EFFICIENCY:37.1124**

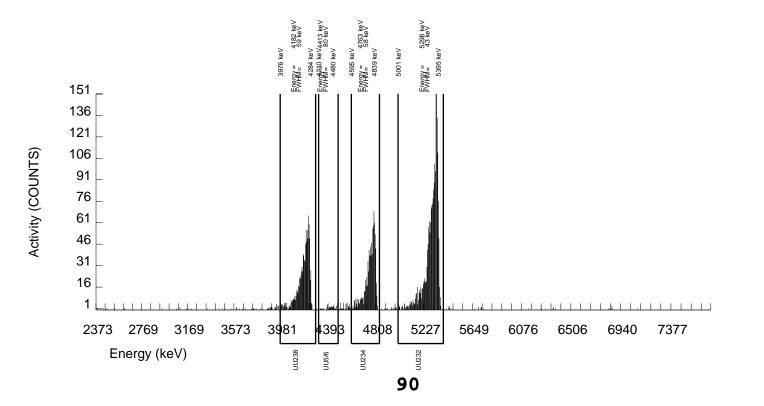
: 105.861 % YIELD

COUNT DATE:19-AUG-2009 21:20:52 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.968E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.968E+00


TRACER ID: 1283-E ISOTOPE: U232

NOMINAL: 5.26427 dpm RESULTS: 5.57283 dpm

LIB FILE: ENV_ALPHA_UU.N BKG FILE: B162.CNF;117 BKG DATE: 16-AUG-2009 EFF FILE: W162.CNF;49 CAL DATE: 4-AUG-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	902.000	893.757	2.000	1.4142	100.0000	2.02E+00	2.98E-01	2.17E-02	7.44E-03	1.33E-01
U232	5302.100	2074.000	2067.000	7.000	2.6458	100.0000	4.68E+00	6.50E-01	3.46E-02	1.39E-02	2.02E-01
U-235	4391.000	43.000	43.000	0.000	0.0000	80.90000	1.20E-01	3.93E-02	8.39E-03	0.00E+00	3.59E-02
U-238	4184.730	987.000	983.000	4.000	2.0000	100.0000	2.22E+00	3.25E-01	2.78E-02	1.05E-02	1.40E-01

BATCH NUMBER: 892901

SAMPLE DATE: 29-JUL-2009 00:00:00

SAMPLE ID: S0234267014_UU SAMPLE QTY: 0.520 G

DETECTOR NUMBER :70324 **AVERAGE %EFFICIENCY:38.2450**

: 106.305 % YIELD

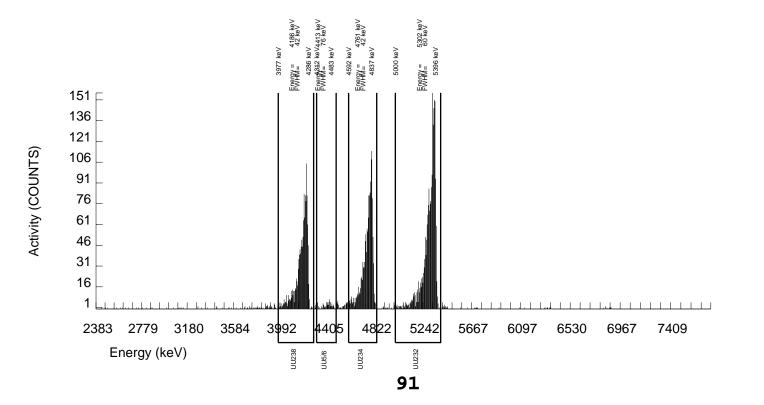
COUNT DATE:19-AUG-2009 21:20:53 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238

LCS/LCSD ID: 1163-G ISOTOPE: U-238

TRACER ID: 1283-E ISOTOPE: U232 LIB FILE: ENV_ALPHA_UU.N BKG FILE: B163.CNF;115 BKG DATE: 16-AUG-2009 EFF FILE : W163.CNF;37 CAL DATE : 23-JUL-2009


PCI/G: 4.844E+00

PCI/G: 4.844E+00

NOMINAL: 5.26428 dpm RESULTS: 5.59617 dpm

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	1430.000	1409.540	14.000	3.7417	100.0000	3.00E+00	4.26E-01	4.35E-02	1.85E-02	1.58E-01
U232	5302.100	2165.000	2139.000	26.000	5.0990	100.0000	4.56E+00	6.32E-01	5.70E-02	2.53E-02	1.96E-01
U-235	4391.000	69.000	69.000	0.000	0.0000	80.90000	1.82E-01	4.91E-02	7.90E-03	0.00E+00	4.29E-02
U-238	4184.730	1340.000	1336.000	4.000	2.0000	100.0000	2.85E+00	4.05E-01	2.62E-02	9.91E-03	1.53E-01

BATCH NUMBER: 892901

SAMPLE DATE: 29-JUL-2009 00:00:00

DETECTOR NUMBER :70325 AVERAGE %EFFICIENCY :38.7145

% YIELD : 97.847

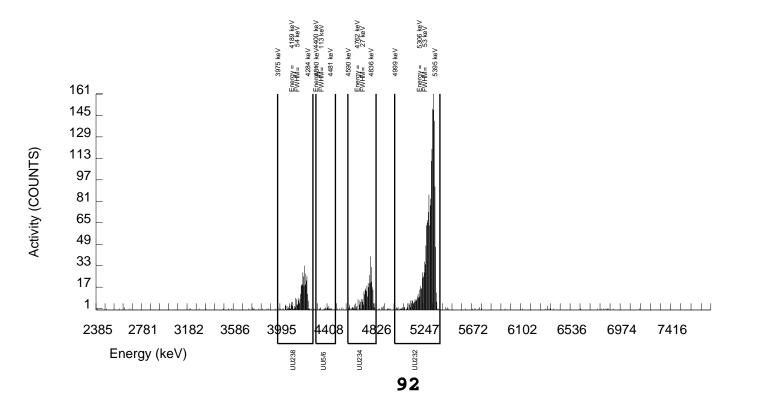
COUNT DATE:19-AUG-2009 21:20:57 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238

PCI/G: 4.968E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.968E+00


TRACER
ID: 1283-E
ISOTOPE: U232

ISOTOPE : U232 | Bł NOMINAL : 5.26428 dpm | RESULTS : 5.15095 dpm | C

LIB FILE: ENV_ALPHA_UU.N BKG FILE: B164.CNF;115 BKG DATE: 16-AUG-2009 EFF FILE: W164.CNF;37 CAL DATE: 23-JUL-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	393.000	381.981	5.000	2.2361	100.0000	8.96E-01	1.49E-01	3.14E-02	1.22E-02	9.10E-02
U232	5302.100	2009.000	1993.000	16.000	4.0000	100.0000	4.68E+00	6.52E-01	5.07E-02	2.18E-02	2.07E-01
U-235	4391.000	25.000	24.000	1.000	1.0000	80.90000	6.96E-02	3.04E-02	2.22E-02	6.74E-03	2.90E-02
U-238	4184.730	394.000	389.000	5.000	2.2361	100.0000	9.12E-01	1.52E-01	3.14E-02	1.22E-02	9.18E-02

BATCH NUMBER: 892901

SAMPLE DATE: 29-JUL-2009 00:00:00

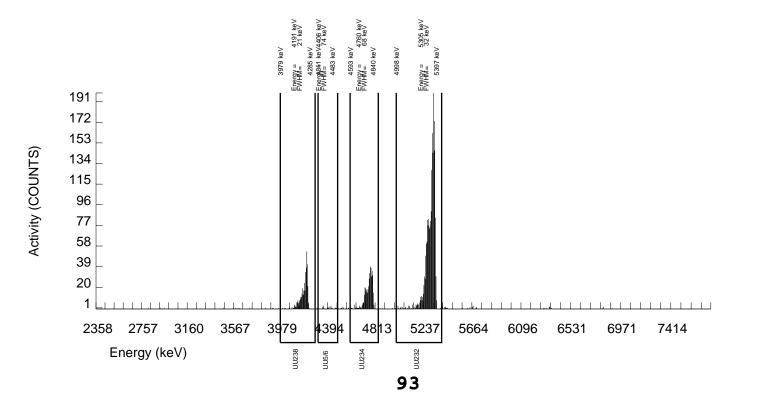
SAMPLE ID : S0234267016_UU SAMPLE QTY: G 0.510

DETECTOR NUMBER :78782 **AVERAGE %EFFICIENCY:31.7210** % YIELD : 119.917 COUNT DATE:25-AUG-2009 14:07:05 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.939E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238


TRACER ID: 1283-E ISOTOPE: U232 LIB FILE: ENV_ALPHA_UU.N BKG FILE: B018.CNF;1034 BKG DATE: 23-AUG-2009 EFF FILE: W018.CNF;293 CAL DATE: 3-AUG-2009

PCI/G: 4.939E+00

NOMINAL: 5.26428 dpm RESULTS: 6.31278 dpm

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	439.000	429.956	3.000	1.7321	100.0000	9.98E-01	1.63E-01	2.57E-02	9.36E-03	9.50E-02
U232	5302.100	2011.000	2001.000	10.000	3.1623	100.0000	4.65E+00	6.49E-01	4.12E-02	1.71E-02	2.05E-01
U-235	4391.000	21.000	20.000	1.000	1.0000	80.90000	5.74E-02	2.75E-02	2.20E-02	6.68E-03	2.64E-02
U-238	4184.730	385.000	381.000	4.000	2.0000	100.0000	8.85E-01	1.48E-01	2.86E-02	1.08E-02	8.98E-02

BATCH NUMBER: 892901

SAMPLE DATE: 29-JUL-2009 00:00:00

SAMPLE ID : S0234267017_UU SAMPLE QTY: 0.508 G

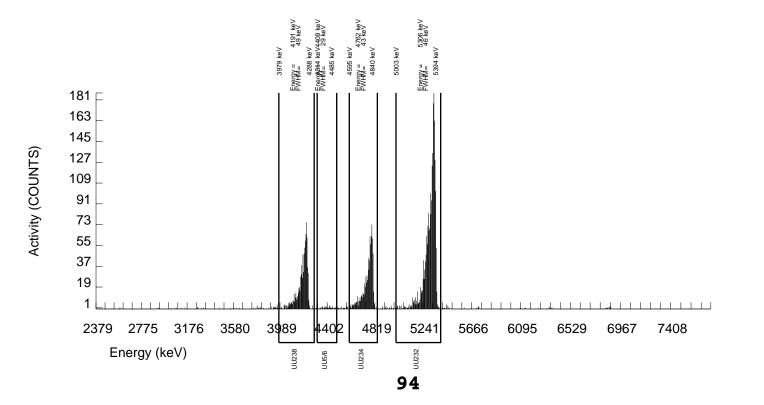
DETECTOR NUMBER :74545 AVERAGE %EFFICIENCY :39.2509

% YIELD : 106.147

COUNT DATE:19-AUG-2009 21:21:01 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238


PCI/G: 4.958E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.958E+00 TRACER
ID: 1283-E
ISOTOPE: U232

NOMINAL: 5.26428 dpm RESULTS: 5.58785 dpm LIB FILE: ENV_ALPHA_UU.N BKG FILE: B166.CNF;116 BKG DATE: 16-AUG-2009 EFF FILE: W166.CNF;37 CAL DATE: 23-JUL-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	820.000	810.380	3.000	1.7321	100.0000	1.72E+00	2.56E-01	2.35E-02	8.58E-03	1.19E-01
U232	5302.100	2200.000	2192.000	8.000	2.8284	100.0000	4.67E+00	6.45E-01	3.44E-02	1.40E-02	1.96E-01
U-235	4391.000	41.000	38.000	3.000	1.7321	80.90000	1.00E-01	3.66E-02	2.91E-02	1.06E-02	3.42E-02
U-238	4184.730	855.000	854.000	1.000	1.0000	100.0000	1.82E+00	2.68E-01	1.63E-02	4.95E-03	1.22E-01

BATCH NUMBER: 892901

SAMPLE DATE: 30-JUL-2009 00:00:00

SAMPLE ID: S0234267019_UU SAMPLE QTY: G 0.502

DETECTOR NUMBER :72546 **AVERAGE %EFFICIENCY:38.8816**

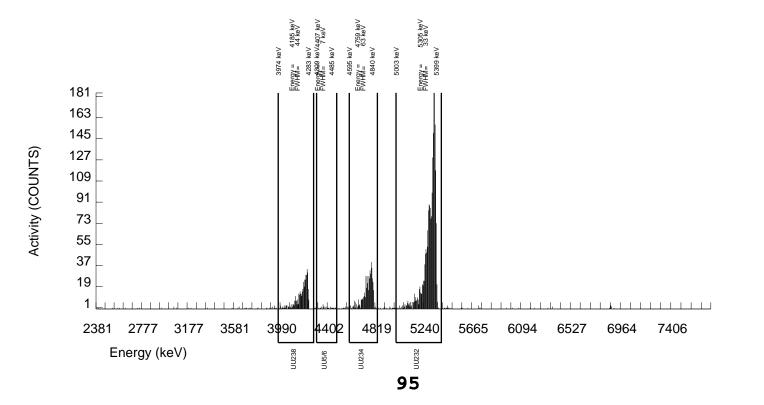
: 109.110 % YIELD

COUNT DATE:19-AUG-2009 21:21:04 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238 PCI/G: 5.018E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238 PCI/G: 5.018E+00


TRACER ID: 1283-E ISOTOPE: U232

NOMINAL: 5.26413 dpm RESULTS: 5.74372 dpm

LIB FILE: ENV_ALPHA_UU.N BKG FILE: B167.CNF;116 BKG DATE: 16-AUG-2009 EFF FILE : W167.CNF;37 CAL DATE : 23-JUL-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	502.000	493.259	2.000	1.4142	100.0000	1.04E+00	1.65E-01	2.03E-02	6.96E-03	9.24E-02
U232	5302.100	2241.000	2232.000	9.000	3.0000	100.0000	4.72E+00	6.51E-01	3.59E-02	1.48E-02	1.97E-01
U-235	4391.000	32.000	30.000	2.000	1.4142	80.90000	7.84E-02	3.16E-02	2.50E-02	8.60E-03	2.99E-02
U-238	4184.730	446.000	441.000	5.000	2.2361	100.0000	9.33E-01	1.51E-01	2.84E-02	1.10E-02	8.80E-02

BATCH NUMBER: 892901

SAMPLE DATE: 30-JUL-2009 00:00:00

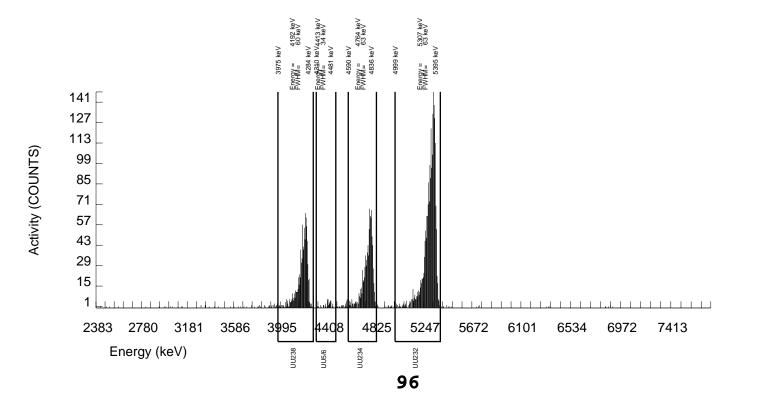
SAMPLE ID : S0234267020_UU SAMPLE QTY: 0.511 G

DETECTOR NUMBER :72547 AVERAGE %EFFICIENCY :38.9917

% YIELD : 105.829

COUNT DATE:19-AUG-2009 21:21:06 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4


MS/MSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.929E+00 LCS/LCSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.929E+00

TRACER
ID: 1283-E
ISOTOPE: U232

NOMINAL: 5.26413 dpm RESULTS: 5.57096 dpm LIB FILE: ENV_ALPHA_UU.N BKG FILE: B168.CNF;116 BKG DATE: 16-AUG-2009 EFF FILE: W168.CNF;37 CAL DATE: 23-JUL-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	910.000	897.443	6.000	2.4495	100.0000	1.92E+00	2.82E-01	3.08E-02	1.22E-02	1.26E-01
U232	5302.100	2190.000	2171.000	19.000	4.3589	100.0000	4.64E+00	6.42E-01	4.98E-02	2.17E-02	1.97E-01
U-235	4391.000	52.000	49.000	3.000	1.7321	80.90000	1.29E-01	4.20E-02	2.92E-02	1.06E-02	3.84E-02
U-238	4184.730	897.000	892.000	5.000	2.2361	100.0000	1.91E+00	2.81E-01	2.86E-02	1.11E-02	1.26E-01

BATCH NUMBER: 892901

SAMPLE DATE: 13-AUG-2009 00:00:00

SAMPLE ID : S1201899551_UU SAMPLE QTY: 0.521 G

DETECTOR NUMBER :72548 AVERAGE %EFFICIENCY:37.7690

% YIELD : 107.141 COUNT DATE:19-AUG-2009 21:21:09 ELAPSED LIVE TIME(SEC): 60000.00

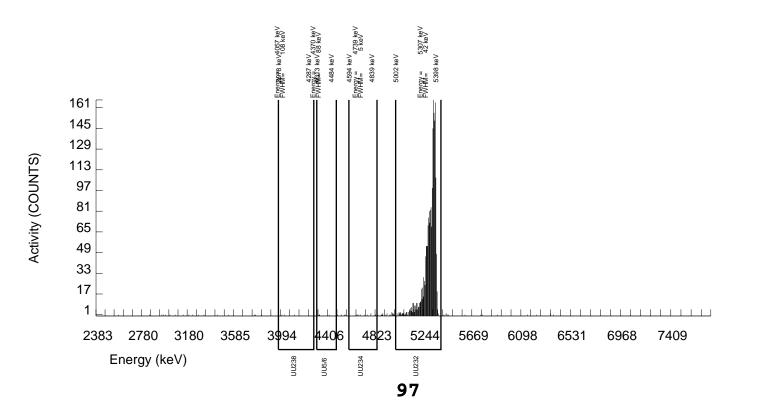
ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238

PCI/G: 4.835E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.835E+00

TRACER ID: 1283-E ISOTOPE: U232


NOMINAL : 5.26220 dpm RESULTS : 5.63798 dpm

LIB FILE: ENV_ALPHA_UU.N BKG FILE: B169.CNF;118 BKG DATE: 16-AUG-2009

EFF FILE: W169.CNF;47 CAL DATE: 4-AUG-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	9.000	-10.430	13.000	3.6056	100.0000	-2.23E-02	1.65E-02	4.23E-02	1.79E-02	1.65E-02
U232	5302.100	2143.000	2129.000	14.000	3.7417	100.0000	4.55E+00	6.30E-01	4.36E-02	1.86E-02	1.95E-01
U-235	4391.000	3.000	2.000	1.000	1.0000	80.90000	5.28E-03	1.04E-02	2.02E-02	6.14E-03	1.04E-02
U-238	4184.730	3.000	-1.000	4.000	2.0000	100.0000	-2.14E-03	1.11E-02	2.63E-02	9.94E-03	1.11E-02

BATCH NUMBER: 892901

SAMPLE DATE: 28-JUL-2009 00:00:00

SAMPLE ID : S1201899552_UU SAMPLE QTY: 0.502 G

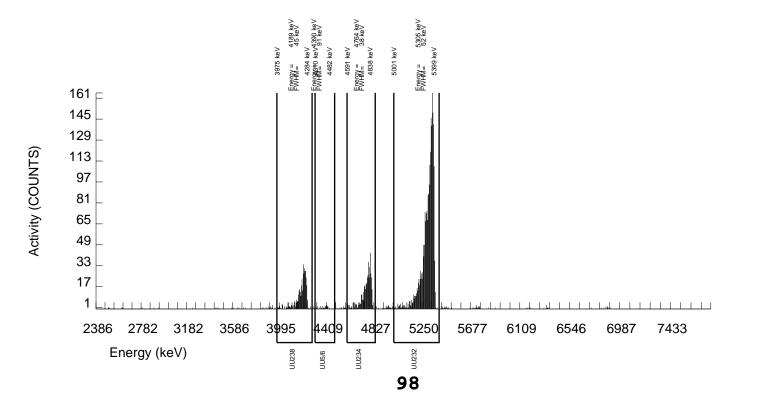
DETECTOR NUMBER :72549 AVERAGE %EFFICIENCY :36.7801 % YIELD : 116.016 COUNT DATE:19-AUG-2009 21:21:11 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238

PCI/G: 5.018E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238


TRACER ID: 1283-E ISOTOPE: U232 LIB FILE: ENV_ALPHA_UU.N BKG FILE: B170.CNF;116 BKG DATE: 16-AUG-2009 EFF FILE: W170.CNF;37 CAL DATE: 23-JUL-2009

PCI/G: 5.018E+00

NOMINAL : 5.26442 dpm RESULTS : 6.10758 dpm

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	455.000	442.220	6.000	2.4495	100.0000	9.30E-01	1.51E-01	3.03E-02	1.20E-02	8.78E-02
U232	5302.100	2262.000	2245.000	17.000	4.1231	100.0000	4.72E+00	6.51E-01	4.67E-02	2.02E-02	1.97E-01
U-235	4391.000	25.000	24.000	1.000	1.0000	80.90000	6.24E-02	2.72E-02	1.99E-02	6.05E-03	2.60E-02
U-238	4184.730	408.000	405.000	3.000	1.7321	100.0000	8.52E-01	1.40E-01	2.33E-02	8.47E-03	8.36E-02

BATCH NUMBER: 892901

SAMPLE DATE: 28-JUL-2009 00:00:00

DETECTOR NUMBER :78260 AVERAGE %EFFICIENCY :38.3792

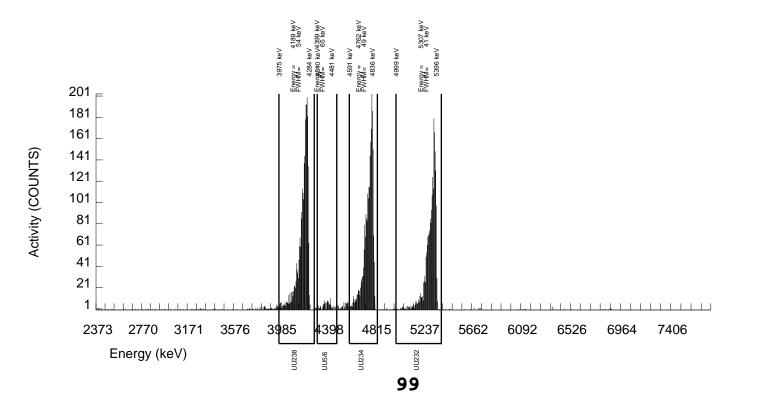
% YIELD : 104.645

COUNT DATE:19-AUG-2009 21:21:13 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238

PCI/G: 4.939E+00


LCS/LCSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.939E+00

TRACER
ID: 1283-E
ISOTOPE: U232

NOMINAL: 5.26442 dpm RESULTS: 5.50897 dpm LIB FILE: ENV_ALPHA_UU.N BKG FILE: B171.CNF;122 BKG DATE: 16-AUG-2009 EFF FILE: W171.CNF;54 CAL DATE: 23-JUL-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	2422.000	2407.618	8.000	2.8284	100.0000	5.29E+00	7.30E-01	3.55E-02	1.45E-02	2.12E-01
U232	5302.100	2130.000	2113.000	17.000	4.1231	100.0000	4.65E+00	6.45E-01	4.88E-02	2.11E-02	2.00E-01
U-235	4391.000	137.000	136.000	1.000	1.0000	80.90000	3.70E-01	7.93E-02	2.08E-02	6.32E-03	6.26E-02
U-238	4184.730	2636.000	2625.000	11.000	3.3166	100.0000	5.77E+00	7.93E-01	4.05E-02	1.70E-02	2.22E-01

BATCH NUMBER: 892901

SAMPLE DATE: 13-AUG-2009 00:00:00

SAMPLE ID : S1201899554_UU SAMPLE QTY: 0.521 G

DETECTOR NUMBER :78772 AVERAGE %EFFICIENCY:38.2284

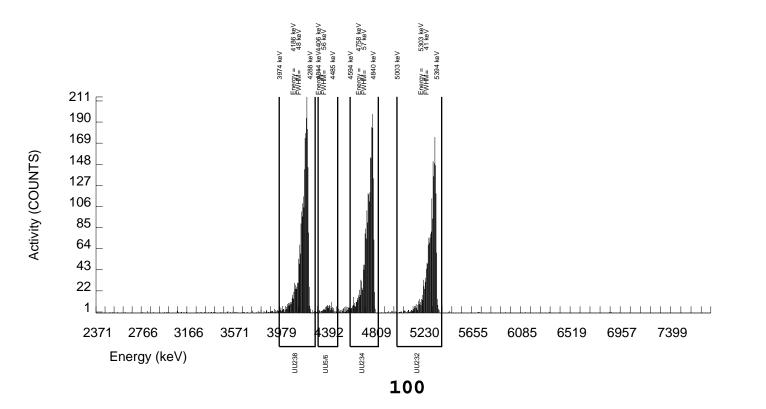
: 104.163 % YIELD

COUNT DATE:19-AUG-2009 21:21:14 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.835E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238 PCI/G: 4.835E+00


TRACER ID: 1283-E ISOTOPE: U232

NOMINAL : 5.26220 dpm RESULTS : 5.48127 dpm

LIB FILE: ENV_ALPHA_UU.N BKG FILE: B172.CNF;120 BKG DATE: 16-AUG-2009 EFF FILE : W172.CNF;47 CAL DATE : 23-JUL-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU I.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
U-3/4	4763.020	2462.000	2452.673	3.000	1.7321	100.0000	5.33E+00	7.33E-01	2.40E-02	8.75E-03	2.11E-01
U232	5302.100	2103.000	2095.000	8.000	2.8284	100.0000	4.55E+00	6.31E-01	3.51E-02	1.43E-02	1.96E-01
U-235	4391.000	124.000	124.000	0.000	0.0000	80.90000	3.33E-01	7.32E-02	8.05E-03	0.00E+00	5.86E-02
U-238	4184.730	2597.000	2592.000	5.000	2.2361	100.0000	5.63E+00	7.73E-01	2.91E-02	1.13E-02	2.17E-01

Radiochemistry Batch Checklist, Rev 9

Batch# 892925	Product: ${\cal U}$	Date:_	8120109
D4.01			

Criteria:	Yes	No	Comments
Onena.			
Sample Solids are less than or equal to 100 mg for GAB.			NA
Samples have been blank corrected (if required)			MA
If activity less 10° MDA/ MDC, error is 150% or less of			
sample activity. If greater 10° MDA/ MDC, error is 40%			
or less. If below the MDA/ MDC, error is okay.	V		
Instrument source check is within limits.			
Instrument bkg check is within limits.	V		
Method RDL/ LLD has been met.	$\sqrt{}$		
If duplicate activities are less 5° MDA/ MDC, then RPD			
is 100% or less. If greater 5" MDA/ MDC, then RPD 20% or			
less. If below the MDA/ MDC, the RPD is 0%.			
Or meets the client's required RER acceptance criteria.	V	 	
Tracer yield is 15-125%. Carrier yield 25-125%.		1	
Or meets the client's contract acceptance criteria.	V	 	
Method blank is less than the RDL/ LLD.			i
(If rad samples, < 5% of lowest activity)	 ' -	+	
Sample was run within hold time.	Y	ļ	
Sample was correctly preserved if required.	V	ļ	
Smears Taken for Radioactive batches.		ļ	NA
Method Spike and LCS are within 75-125% or meets the client's contract acceptance criteria.	$\sqrt{}$		
No blank spaces on data forms. All line outs initialed and dated.			
No transcription errors are apparent.	√		
140 transcription errors are apparent.		1	
Aux data is correct.	ļ		N/4
Client Special requirements page has been checked.	$\sqrt{}$	<u> </u>	
Raw Data and/ or spectrum are included and property statused.	V_	 	
QC data entered into QC database and batch is in REVW	<u> </u>	<u> </u>	
Hit notification complete (if necessary)		<u> </u>	NIA
Batch entered into Case Narrative.	<u> </u>		
Batch non-conformances completed, if applicable.	<u> </u>		NA
Batch non-conformances second reviewed and disposition verified to be completed.			MA
Aliquot Correction completed if required.			WA
Review sample historical results if available (If REMP, results above MDC have been verified by historical results, recount or re-analysis.)	V		

GEL Laboratories,	LLC
revised 8/1/08	

Primary Review Performed By:_

Secondary Review Performed By:___

8/21/29

KERR

8/15 - 8/26

Uranium Que Sheet

Batch #: 892925	92925	An	Analyst: JXD2	Fig	st Client Due	First Client Due Date: 26-AUG-09		Internal Due Date:15-AUG-09	60			
Tracer Isotop	Tracer Isotope: U-237U-236	Tracer Code: 1283-E	1283-6	 国	Expiration Date: 01/15/10	e: 01/12/10	Vol: 0. (
LCS Isotope: U-238	U-238	LCS Code: 1163-6	2-2911	<u>됩</u>	Expiration Date: 04/11/10	e: 04/11/10	Vol: 0.1					
Spike Isotope: U-238	»: U-238	Spike Code:		国	Expiration Date:	-	Vol			•		
Prep Date: 08/12/05		Initials: 040	Pipet ID:_	- 1	297 (058	Balance ID: 16750201	6750207		Witne	ss: 8/12	Witness: 8/12/09 CMM	
							ļ				Went	
			, 7	Hazard				Collection	Dog	Label	Aliquot	n T
Sample ID	Client Description	ion	Type	Code	Min CRDL	Matrix	Client	Date	Ė	#	(g /(Ū t)	Det #
234120018-1	EB072709-SO		SAMPLE		.03 pCi/L	WATER	KERR003	27-JUL-09	1	_	O. \$9	9
234267018-1	FB072909-SO		SAMPLE		.03 pCi/L	WATER	KERR003	29-JUL-09	7	٦	0,900	13
234414019-1	EB073109-SO		SAMPLE		.03 pCi/L	WATER	KERR003	31-JUL-09	က	~	0.700	<u>~</u>
234414020-1	EB080309-SO		SAMPLE		.03 pCi/L	WATER	KERR003	03-AUG-09	4	y -	0.800	د
234414021-1	FB080309-SO		SAMPLE		.03 pCi/L	WATER	KERR003	03-AUG-09 Low of-	(03.5	5	0.800	191
1201899628-1	MB for batch 892925	925	MB		.03 pCi/L	WATER	QC ACCOUNT	24-JUI-00, 24-406-07	9 10	و	0.800	7.91
1201899629-1	LCS for batch 892925	2925	rcs		.03 pCi/L	WATER	QC ACCOUNT	27-JUL-09 12- ALL-47	٠,	~ +	9.300	r+ -
1201899630-1	LCSD for batch 892925	92925	CSD		.03 pCi/L	WATER	QC ACCOUNT	27-JUL-39 12-AUC-07	œ د	×	0.300	<u>8</u>
.02								名が			•	ĺ

Solid Sample Dissolution by: LEACH or DIGESTION

18/2/log Data Reviewed By: 2 - 2

Page 1 of 1

Choose SOP used: GL-RAD-A-031

GL-RAD-A-038

GL-RAD-A-045

GL-RAD-A-043

GL-RAD-A-043

BATCH NUMBER: 892925

SAMPLE DATE: 29-JUL-2009 00:00:00

SAMPLE ID: S0234267018_UU SAMPLE QTY: 0.800

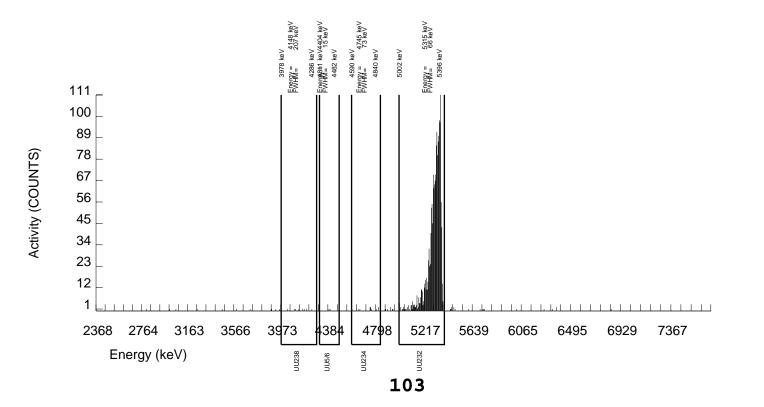
DETECTOR NUMBER :78790 **AVERAGE %EFFICIENCY:34.0969**

% YIELD : 94.922 COUNT DATE:15-AUG-2009 17:48:40 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :JXD2

MS/MSD ID: 1163-G ISOTOPE: U-238

LCS/LCSD ID: 1163-G ISOTOPE: U-238


TRACER ID: 1283-E ISOTOPE: U232 NOMINAL: 5.26428 dpm RESULTS: 4.99697 dpm LIB FILE: ENV_ALPHA_UU.N BKG FILE: B013.CNF;1034 BKG DATE: 9-AUG-2009 EFF FILE: W013.CNF;313 CAL DATE: 3-AUG-2009

PCI/L: 3.149E+00

PCI/L: 3.149E+00

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/L	TPU 1.96-SIGMA	MDA pCi/L	Lc pCi/L	UNC pCi/L
U-3/4	4763.020	11.000	3.857	2.000	1.4142	100.0000	6.71E-03	9.60E-03	1.67E-02	5.72E-03	9.56E-03
U232	5302.100	1707.000	1703.000	4.000	2.0000	100.0000	2.96E+00	4.19E-01	2.14E-02	8.10E-03	1.41E-01
U-235	4391.000	2.000	0.000	2.000	1.4142	80.90000	0.00E+00	8.43E-03	2.06E-02	7.07E-03	8.43E-03
U-238	4184.730	8.000	6.000	2.000	1.4142	100.0000	1.04E-02	1.09E-02	1.67E-02	5.72E-03	1.08E-02

BATCH NUMBER: 892925

SAMPLE DATE: 12-AUG-2009 00:00:00

SAMPLE ID : S1201899628_UU SAMPLE QTY: 0.800

DETECTOR NUMBER :70323 **AVERAGE %EFFICIENCY:37.1124**

% YIELD : 91.153 COUNT DATE:15-AUG-2009 18:00:06 ELAPSED LIVE TIME(SEC): 60000.00

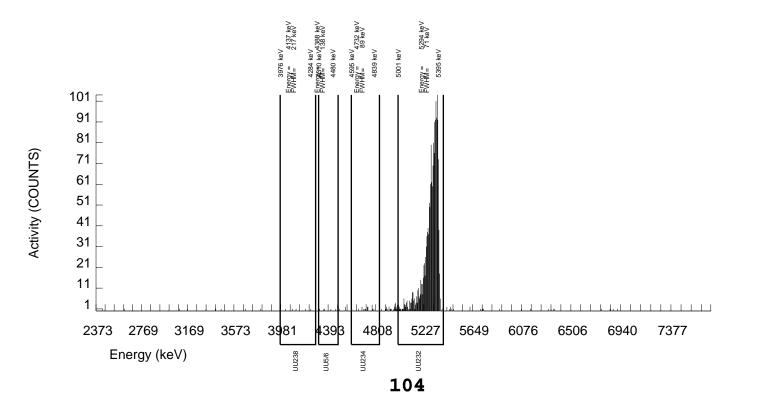
ANALYST :JXD2

MS/MSD ID: 1163-G ISOTOPE: U-238

PCI/L: 3.149E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238 PCI/L: 3.149E+00

ID: 1283-E ISOTOPE: U232


NOMINAL: 5.26234 dpm RESULTS: 4.79676 dpm

TRACER

LIB FILE: ENV_ALPHA_UU.N BKG FILE: B162.CNF;115 BKG DATE: 9-AUG-2009 EFF FILE: W162.CNF;49 CAL DATE: 4-AUG-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/L	TPU 1.96-SIGMA	MDA pCi/L	Lc pCi/L	UNC pCi/L
U-3/4	4763.020	16.000	6.625	4.000	2.0000	100.0000	1.10E-02	1.26E-02	2.05E-02	7.74E-03	1.25E-02
U232	5302.100	1787.000	1780.000	7.000	2.6458	100.0000	2.96E+00	4.16E-01	2.55E-02	1.02E-02	1.38E-01
U-235	4391.000	5.000	3.000	2.000	1.4142	80.90000	6.17E-03	1.07E-02	1.97E-02	6.77E-03	1.07E-02
U-238	4184.730	5.000	4.000	1.000	1.0000	100.0000	6.66E-03	8.04E-03	1.27E-02	3.87E-03	7.99E-03

BATCH NUMBER: 892925

SAMPLE DATE: 12-AUG-2009 00:00:00

SAMPLE ID : S1201899629_UU SAMPLE QTY: 0.800

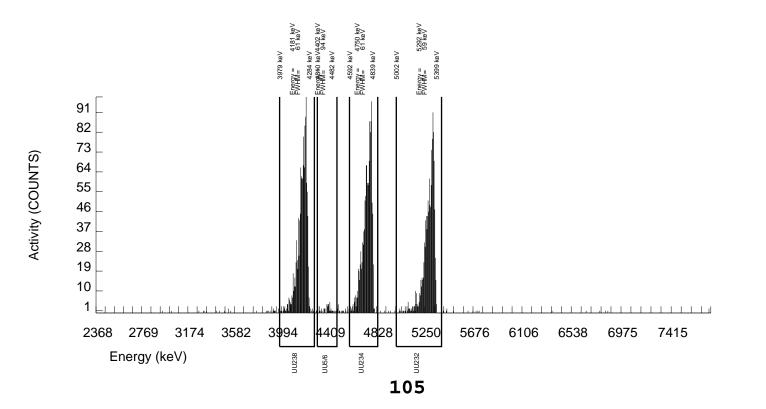
DETECTOR NUMBER :78791 **AVERAGE %EFFICIENCY:29.2091**

% YIELD : 79.445 COUNT DATE:15-AUG-2009 17:48:40 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :JXD2

MS/MSD ID: 1163-G ISOTOPE: U-238 PCI/L: 3.149E+00

LCS/LCSD ID: 1163-G ISOTOPE: U-238 PCI/L: 3.149E+00


TRACER ID: 1283-E ISOTOPE: U232

NOMINAL: 5.26234 dpm RESULTS: 4.18065 dpm

LIB FILE: ENV_ALPHA_UU.N BKG FILE: B017.CNF;1877 BKG DATE: 9-AUG-2009 EFF FILE: W017.CNF;1249 CAL DATE: 3-AUG-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/L	TPU I.96-SIGMA	MDA pCi/L	Lc pCi/L	UNC pCi/L
U-3/4	4763.020	1308.000	1298.313	6.000	2.4495	100.0000	3.15E+00	4.63E-01	3.49E-02	1.38E-02	1.72E-01
U232	5302.100	1223.000	1221.000	2.000	1.4142	100.0000	2.96E+00	4.37E-01	2.32E-02	7.98E-03	1.66E-01
U-235	4391.000	46.000	44.000	2.000	1.4142	80.90000	1.32E-01	4.45E-02	2.87E-02	9.87E-03	4.07E-02
U-238	4184.730	1320.000	1317.000	3.000	1.7321	100.0000	3.20E+00	4.69E-01	2.68E-02	9.78E-03	1.73E-01

BATCH NUMBER: 892925

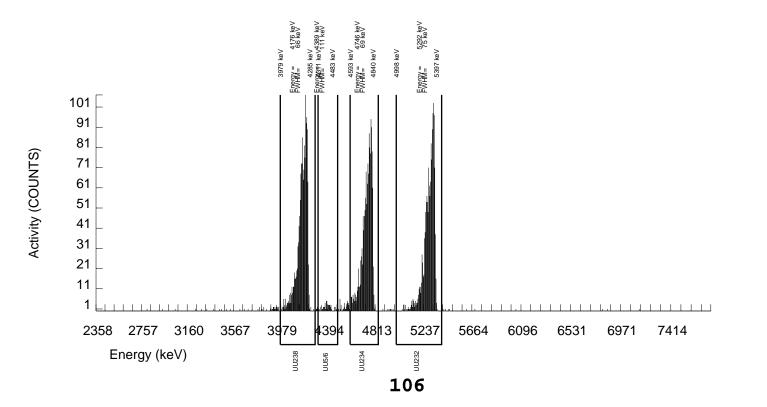
SAMPLE DATE: 12-AUG-2009 00:00:00

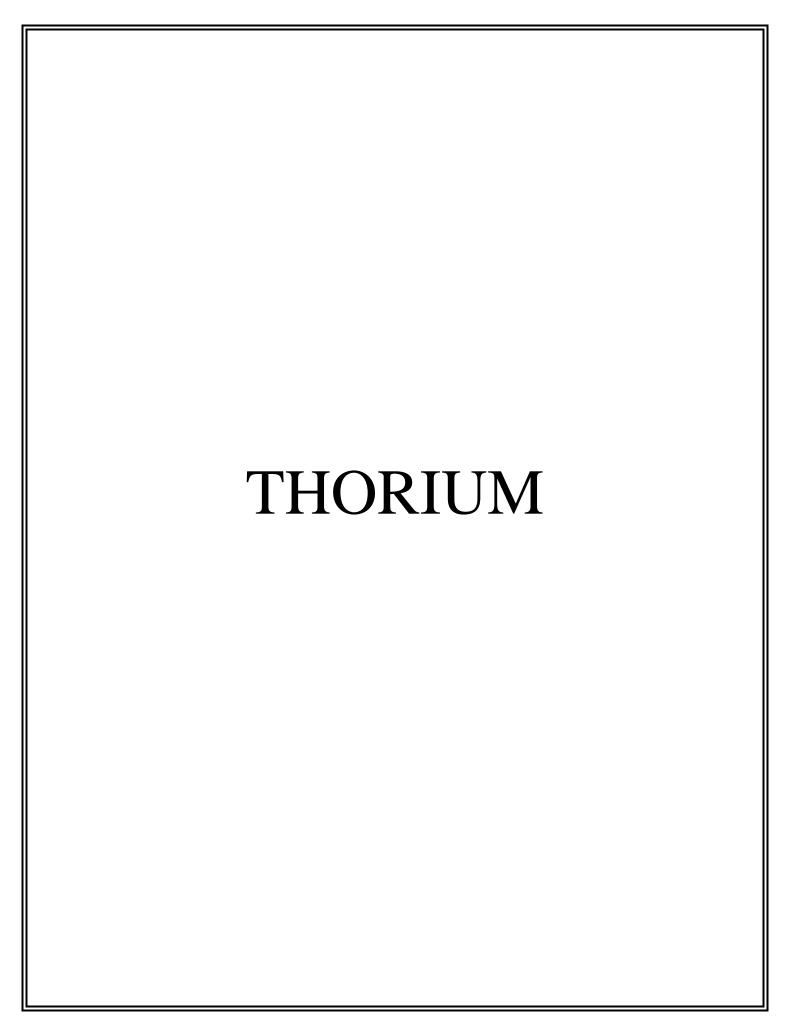
SAMPLE ID : S1201899630_UU SAMPLE QTY: 0.800 L

DETECTOR NUMBER :78782 AVERAGE %EFFICIENCY :31.7210 % YIELD : 88.731 COUNT DATE:15-AUG-2009 17:48:40 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :JXD2

MS/MSD ID: 1163-G ISOTOPE: U-238 PCI/L: 3.149E+00 LCS/LCSD ID: 1163-G ISOTOPE: U-238 PCI/L: 3.149E+00


TRACER ID: 1283-E ISOTOPE: U232


NOMINAL : 5.26234 dpm RESULTS : 4.66934 dpm LIB FILE: ENV_ALPHA_UU.N BKG FILE: B018.CNF;1029 BKG DATE: 9-AUG-2009 EFF FILE: W018.CNF;293 CAL DATE: 3-AUG-2009

NUCLIDE ACTIVITY SUMMARY

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/L	TPU 1.96-SIGMA	MDA pCi/L	Lc pCi/L	UNC pCi/L
U-3/4	4763.020	1428.000	1418.528	5.000	2.2361	100.0000	2.84E+00	4.09E-01	2.68E-02	1.04E-02	1.48E-01
U232	5302.100	1487.000	1481.000	6.000	2.4495	100.0000	2.96E+00	4.26E-01	2.88E-02	1.14E-02	1.52E-01
U-235	4391.000	59.000	59.000	0.000	0.0000	80.90000	1.46E-01	4.21E-02	7.42E-03	0.00E+00	3.72E-02
U-238	4184.730	1518.000	1513.000	5.000	2.2361	100.0000	3.03E+00	4.34E-01	2.68E-02	1.04E-02	1.53E-01

NOTE: Corrections made to U-3/4 net area due to tracer impurity

Radiochemistry Batch Checklist, Rev 9

Batch# 892899	Product: Th	Date: 8/28/09
Datciir	1100001	

Criteria:	Yes	No	Comments
Sample Solids are less than or equal to 100 mg for GAB.		•	1.10
·	_		1/4
	Ī		114
Samples have been blank corrected (if required)		1	1/07/
If activity less 10* MDA/ MDC, error is 150% or less of			
sample activity. If greater 10° MDA/ MDC, error is 40%	\checkmark	- 1	İ
or less. If below the MDA/ MDC, error is okay.	1	ļ.	
Instrument source check is within limits.	1		
Instrument bkg check is within limits.	\rightarrow		1
	+		
Method RDL/ LLD has been met.	—	- {	
If duplicate activities are less 5* MDA/ MDC, then RPD		1	
is 100% or less. If greater 5* MDA/ MDC, then RPD 20% or	} ~		Case nariative
less. If below the MDA/ MDC, the RPD is 0%.	1	ŀ	Ouse invitations
Or meets the client's required RER acceptance criteria.		ŀ	
Tracer yield is 15-125%. Carrier yield 25-125%.	 		
Or meets the client's contract acceptance criteria.	\triangleright		
Method blank is less than the RDL/ LLD.			Ce. 1 11 00 1 00
		2	NM# 727630
(If rad samples, < 5% of lowest activity)	+		100 CM 1070
	\sim		
Sample was run within hold time.		_	
O to and	\downarrow		
Sample was correctly preserved if required.	+		4. 4
O Tolera for Dodino shine betaken	1		1 A #A
Smears Taken for Radioactive batches.	+	_	7011
N. 11 . A 11	\star		
Method Spike and LCS are within	1		
75-125% or meets the client's contract acceptance criteria.			<u></u>
No blank spaces on data forms.	\		
All line outs initialed and dated.			
No transcription errors are apparent.			
			1 1 HA
Aux data is correct.			1/0 (/1
Client Special requirements page has been checked.	<u> </u>		
	≯		
Raw Data and/ or spectrum are included and properly statused.	\leftarrow		
CO data antered into CC detabase and betablis in REVIW			
QC data entered into QC database and batch is in REVW	+	_	
			1 / <i>1</i> /7
Hit notification complete (if necessary)			1/0/ 1
	1		
Batch entered into Case Narrative.			
	/		1 V/CV/# 324630
Batch non-conformances completed, if applicable.	<u> </u>		110001
Batch non-conformances second reviewed and disposition	1		NCN# 727630
verified to be completed.			104611 401030
			lan 🗸
Aliquot Correction completed if required.			NA
		I	
Review sample historical results if available	/ >		
(If REMP, results above MDC have been verified		1	
by historical results, recount or re-analysis.)	<u> </u>		

GEL Laboratories, LLC revised 8/1/08

Primary Review Performed By:___

Secondary Review Performed By:

108

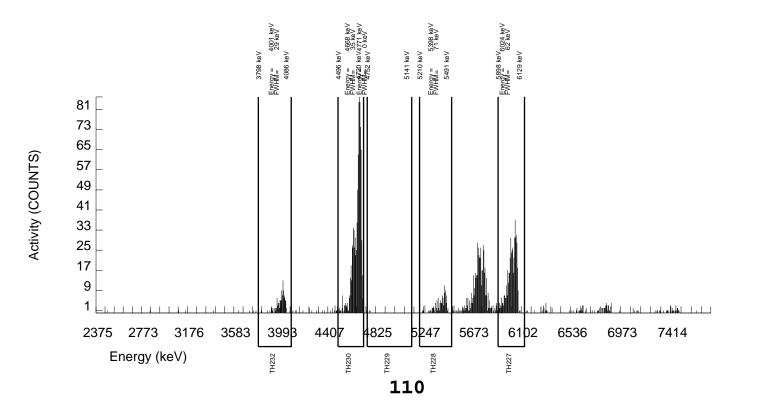
Thorium (Ac-227 Tracer) Que Sheet

S. 6	Th Det#	161	Ē	200	203	204	707	208	5	174	72	126	171	861	621	180	18/	187	13	184	581	981	187	88/	601	००/८०/४	Page 1 of
8-09/10:15	We(Dry) Aliquot	D. 254	0.151		٧٤		0.251	0.151	0.153	0.159	0.157	0.151	152.0	0.753	0.156	151.0	8510	0.157	0.154	0.159	0.154	0.253	9250		ANAS	787	
Vitness: MDA	Label #	<u>87</u>	25	33	کر	35	36	33	38	ス	40	14	<i>1</i> h	43	ታ ን	,	9ħ	th	<u> </u>	λd	8	r	25	53			
UG-09 ion Date/Tir With	Pos.	-	2	က	4	w	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	70	21	22	23	wed By:	•	
Internal Due Date17-AUG-09 Ac-227 Separation Date/Time: \$-18-09 / 10:15	Collection Date	28-JUL-09	28-JUL-09	28-JUL-09	28-JUL-09	29-JUL-09	30-JUL-09	30-JUL-09		28-JUL-09	28-JUL-09		Data Reviewed By:														
0-100 0-100 0-100 0-100	Client	KERR003	KERR003	KERR003	KERR003	KERR003	KERRO03	KERR003	QC ACCOUNT	QC ACCOUNT	QC ACCOUNT	C ACCOUNT	LEACH or DIGESTION	Circle One													
Due Date: 28-AU 6: 4-15-10 6: 4-15-10 6: 4-15-10 Balance II	Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	Solid Sample Dissolution by: LEAK		
XM4 First Client D System of the Company of the Co	Min	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	.05 pCi/g	i Sample Dia		
XXM Pig	Hazard				,																				Solic		
Analyst: KXM4 A 7 746-5 A 746-5 A 746-5 A 746-5	Type	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	WB.	DUP	MS	rcs			:
Tracer Code: LCS Code: Spike Code: Initials:	Client Description	88B	8	8	8	.5B	0B	0B	5B	0B	0 B	8 9	5B	0B	8B	€			*	**	MB for batch 892899	SA179-0.5B(234267002DUP)	SA179-0.5B(234267002MS)	LCS for batch 892899	Choose SOP Used (GL.RAD-A-038)	GL-RAD-A-045 GL-RAD-A-043	GL-RAD-A-032
892899 ope: Ac-227 e: Th-230 \$\frac{4}{6}-\lambda\frac{7}{3}\text{C}\frac{1}{6}\text{C}\frac{1}{3}\text{C}\frac{1}{6}\text{C}\f	Client De	RSAM7-28B	SA179-0.5B	SA179-10B	SA179-29B	RSAU4-0.5B	RSAU4-10B	RSAU4-20B	RSAU4-25B	RSAU4-40B	RSAU4-50B	RSAU4-56B	RSAL6-0.5B	RSAL6-10B	RSAL6-28B	SA73-0.5B	SA73-10B	SA73-30B	SA49-10B	SA49-20B	MB for b	SA179-0.	SA179-0.	LCS for t	Used	GL-R GL-R	GL-R
Batch #: 892899 Tracer Isotope: Ac-227 LCS Isotope: Th-230 Spike Isotope: Th-230 Prep Date: \(\begin{align*} \begin{align*} \text{C} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Sample ID	234267001-1	234267002-1	234267003-1	234267004-1	234267005-1	234267006-1	234267007-1	234267008-1	234267009-1	234267010-1	234267011-1	234267012-1	234267013-1	234267014-1	234267015-1	234267016-1	234267017-1	234267019-1	234267020-1	1201899547-1	1201899548-1	1201899549-1	1201899550-1	Choose SOI		1 100

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

DETECTOR NUMBER :78894 AVERAGE %EFFICIENCY :25.6823 % YIELD : 75.164 COUNT DATE:19-AUG-2009 12:29:01 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.426E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.426E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227

NOMINAL: 3.91541 dpm RESULTS: 2.94298 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B197.CNF;45 BKG DATE: 16-AUG-2009 EFF FILE: W197.CNF;34 CAL DATE: 23-JUL-2009

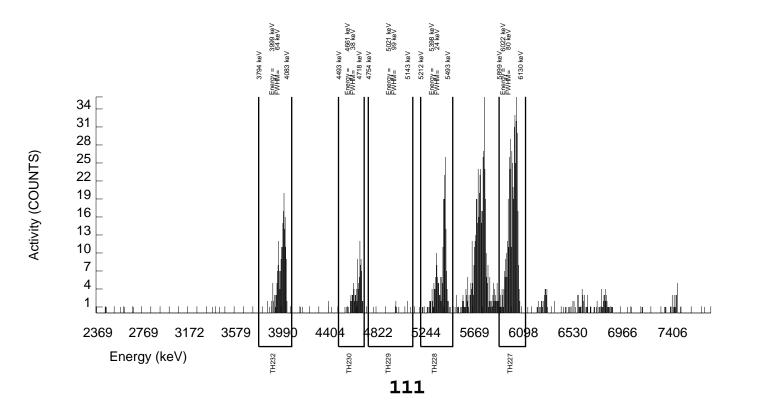
NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G	
AC-227	6038.010	491.000	488.000	3.000	1.7321	68.10000	6.94E+00	7.45E-01	1.57E-01	5.73E-02	6.20E-01	
TH-228	5363.000	115.000	112.000	3.000	1.7321	99.94000	1.03E+00	2.05E-01	1.02E-01	3.71E-02	1.96E-01	
TH229	4900.000	3.000	0.000	3.000	1.7321	99.52000	0.00E+00	4.43E-02	1.02E-01	3.72E-02	4.43E-02	
TH-230	4625.000	912.000	912.000	0.000	0.0000	100.0000	8.38E+00	7.38E-01	2.76E-02	0.00E+00	5.44E-01	
TH-232	3972.000	113.000	112.000	1.000	1.0000	100.0000	1.03E+00	2.02E-01	7.03E-02	2.14E-02	1.92E-01	

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S0234267002_TH SAMPLE QTY: 0.251 G

DETECTOR NUMBER :78896 AVERAGE %EFFICIENCY :25.1297 % YIELD : 78.548 COUNT DATE:19-AUG-2009 12:29:06 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.527E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.527E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227
NOMINAL: 3.91541 dpm
RESULTS: 3.07550 dpm

LIB FILE: ENV_ALPHA_TH.N BKG FILE: B199.CNF;45 BKG DATE: 16-AUG-2009 EFF FILE: W199.CNF;32 CAL DATE: 23-JUL-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU I.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
AC-227	6038.010	502.000	499.000	3.000	1.7321	68.10000	7.03E+00	7.49E-01	1.56E-01	5.67E-02	6.20E-01
TH-228	5363.000	226.000	226.000	0.000	0.0000	99.94000	2.06E+00	2.95E-01	2.73E-02	0.00E+00	2.68E-01
TH229	4900.000	8.000	8.000	0.000	0.0000	99.52000	7.31E-02	5.08E-02	2.74E-02	0.00E+00	5.06E-02
TH-230	4625.000	105.000	103.000	2.000	1.4142	100.0000	9.36E-01	1.93E-01	8.71E-02	2.99E-02	1.84E-01
TH-232	3972.000	207.000	204.000	3.000	1.7321	100.0000	1.85E+00	2.81E-01	1.01E-01	3.66E-02	2.58E-01

BATCH NUMBER: 892899

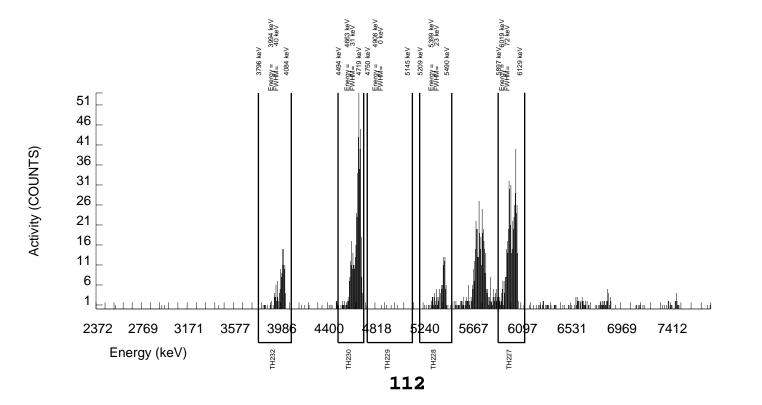
SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S0234267003_TH SAMPLE QTY: 0.251 G

DETECTOR NUMBER :78900 AVERAGE %EFFICIENCY :26.7253 % YIELD : 72.823 COUNT DATE:19-AUG-2009 12:29:09 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230


PCI/G: 8.527E+00

LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.527E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227
NOMINAL: 3.91541 dpm
RESULTS: 2.85132 dpm

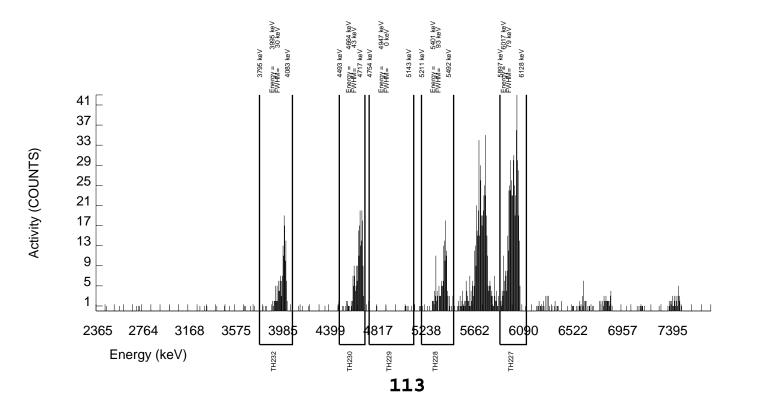
LIB FILE: ENV_ALPHA_TH.N BKG FILE: B200.CNF;45 BKG DATE: 16-AUG-2009 EFF FILE: W200.CNF;32 CAL DATE: 23-JUL-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
AC-227	6038.010	497.000	492.000	5.000	2.2361	68.10000	7.03E+00	7.54E-01	1.91E-01	7.43E-02	6.27E-01
TH-228	5363.000	128.000	120.000	8.000	2.8284	99.94000	1.11E+00	2.21E-01	1.49E-01	6.08E-02	2.11E-01
TH229	4900.000	5.000	-3.000	8.000	2.8284	99.52000	-2.78E-02	6.55E-02	1.50E-01	6.10E-02	6.55E-02
TH-230	4625.000	488.000	485.000	3.000	1.7321	100.0000	4.47E+00	4.81E-01	1.02E-01	3.72E-02	4.00E-01
TH-232	3972.000	141.000	137.000	4.000	2.0000	100.0000	1.26E+00	2.30E-01	1.13E-01	4.29E-02	2.18E-01

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S0234267004_TH SAMPLE QTY: 0.255 G


DETECTOR NUMBER :78905 AVERAGE %EFFICIENCY :25.6941 % YIELD : 87.139 COUNT DATE:19-AUG-2009 12:29:18 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.393E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.393E+00 TRACER
ID: 0387-B-102
ISOTOPE: AC227
NOMINAL: 3.91541 dpm
RESULTS: 3.41183 dpm

LIB FILE: ENV_ALPHA_TH.N BKG FILE: B203.CNF;45 BKG DATE: 16-AUG-2009 EFF FILE: W203.CNF;32 CAL DATE: 23-JUL-2009

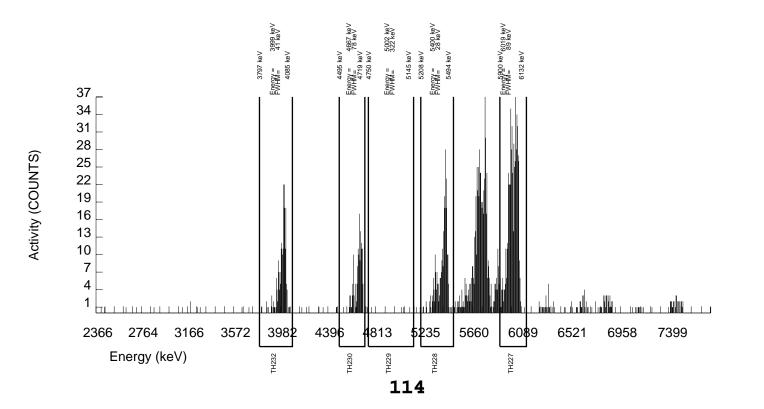
NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
AC-227	6038.010	566.000	566.000	0.000	0.0000	68.10000	6.92E+00	7.03E-01	3.67E-02	0.00E+00	5.70E-01
TH-228	5363.000	165.000	162.000	3.000	1.7321	99.94000	1.28E+00	2.15E-01	8.74E-02	3.19E-02	2.01E-01
TH229	4900.000	10.000	5.000	5.000	2.2361	99.52000	3.96E-02	6.02E-02	1.06E-01	4.12E-02	6.02E-02
TH-230	4625.000	219.000	217.000	2.000	1.4142	100.0000	1.71E+00	2.51E-01	7.56E-02	2.60E-02	2.30E-01
TH-232	3972.000	162.000	162.000	0.000	0.0000	100.0000	1.28E+00	2.11E-01	2.37E-02	0.00E+00	1.97E-01

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S0234267005_TH SAMPLE QTY: 0.254 G

DETECTOR NUMBER :78907 AVERAGE %EFFICIENCY :25.0649 % YIELD : 92.798 COUNT DATE:19-AUG-2009 12:29:22 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.426E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.426E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227
NOMINAL: 3.91541 dpm
RESULTS: 3.63344 dpm

LIB FILE: ENV_ALPHA_TH.N BKG FILE: B204.CNF;45 BKG DATE: 16-AUG-2009 EFF FILE: W204.CNF;32 CAL DATE: 23-JUL-2009

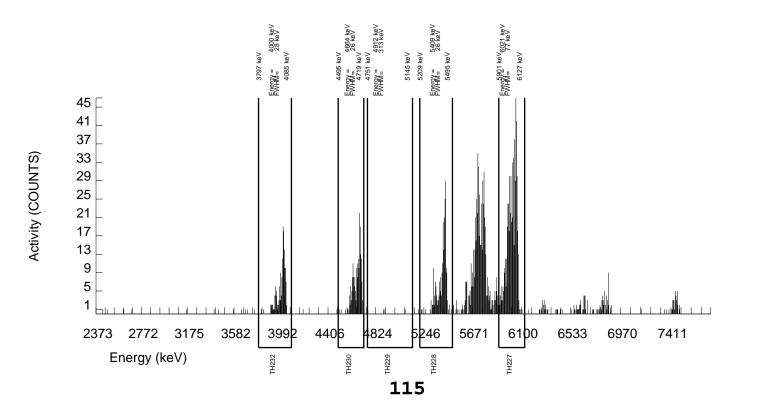
NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
AC-227	6038.010	589.000	588.000	1.000	1.0000	68.10000	6.94E+00	6.98E-01	9.04E-02	2.75E-02	5.62E-01
TH-228	5363.000	270.000	265.000	5.000	2.2361	99.94000	2.02E+00	2.76E-01	1.02E-01	3.97E-02	2.48E-01
TH229	4900.000	4.000	-3.000	7.000	2.6458	99.52000	-2.30E-02	4.98E-02	1.17E-01	4.72E-02	4.98E-02
TH-230	4625.000	152.000	151.000	1.000	1.0000	100.0000	1.15E+00	1.97E-01	5.83E-02	1.77E-02	1.85E-01
TH-232	3972.000	206.000	203.000	3.000	1.7321	100.0000	1.55E+00	2.35E-01	8.43E-02	3.07E-02	2.16E-01

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S0234267006_TH SAMPLE QTY: 0.251 G

DETECTOR NUMBER :78910 AVERAGE %EFFICIENCY :25.5856 % YIELD : 92.920 COUNT DATE:19-AUG-2009 12:29:32 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.527E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.527E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227

NOMINAL: 3.91541 dpm RESULTS: 3.63821 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B207.CNF;45 BKG DATE: 16-AUG-2009 EFF FILE: W207.CNF;32 CAL DATE: 23-JUL-2009

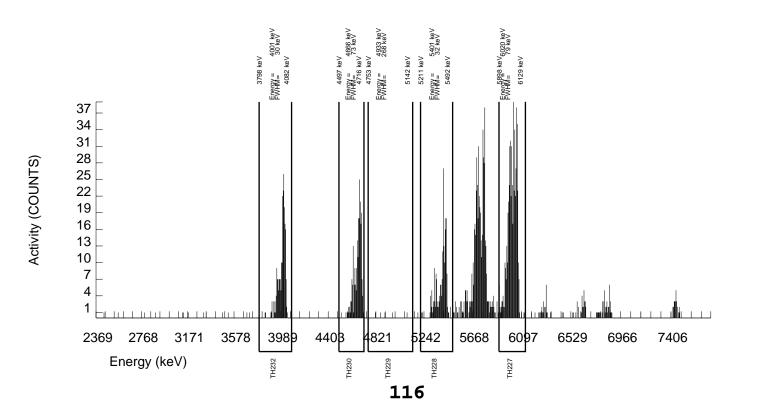
NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G	
AC-227	6038.010	601.000	601.000	0.000	0.0000	68.10000	7.03E+00	7.01E-01	3.51E-02	0.00E+00	5.62E-01	
TH-228	5363.000	235.000	225.000	10.000	3.1623	99.94000	1.70E+00	2.53E-01	1.34E-01	5.56E-02	2.32E-01	
TH229	4900.000	4.000	-8.000	12.000	3.4641	99.52000	-6.07E-02	5.95E-02	1.45E-01	6.11E-02	5.95E-02	
TH-230	4625.000	201.000	198.000	3.000	1.7321	100.0000	1.49E+00	2.29E-01	8.35E-02	3.04E-02	2.11E-01	
TH-232	3972.000	162.000	154.000	8.000	2.8284	100.0000	1.16E+00	2.05E-01	1.22E-01	4.97E-02	1.93E-01	

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S0234267007_TH SAMPLE QTY: 0.252 G

DETECTOR NUMBER :78911 AVERAGE %EFFICIENCY :25.2767 % YIELD : 87.170 COUNT DATE:19-AUG-2009 12:29:36 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.493E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.493E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227

NOMINAL: 3.91541 dpm RESULTS: 3.41306 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B208.CNF;45 BKG DATE: 16-AUG-2009 EFF FILE: W208.CNF;32 CAL DATE: 23-JUL-2009

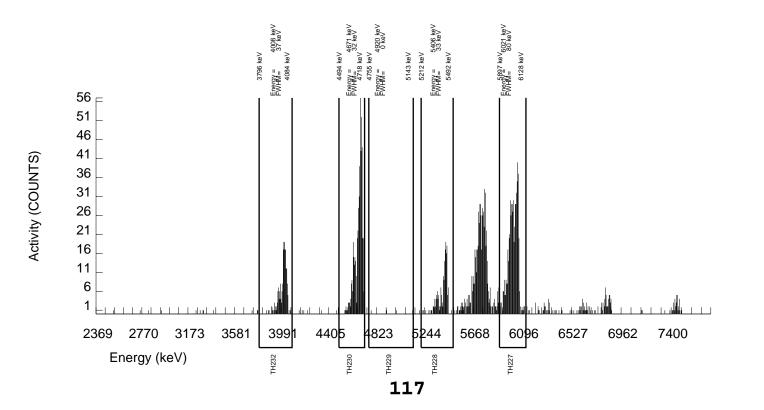
NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1.9	TPU 96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G	
AC-227	6038.010	561.000	557.000	4.000	2.0000	68.10000	7.00E+00	7.19E-01	1.55E-01	5.85E-02	5.85E-01	
TH-228	5363.000	214.000	207.000	7.000	2.6458	99.94000	1.68E+00	2.57E-01	1.24E-01	5.00E-02	2.37E-01	
TH229	4900.000	5.000	1.000	4.000	2.0000	99.52000	8.15E-03	4.79E-02	1.00E-01	3.79E-02	4.79E-02	
TH-230	4625.000	233.000	233.000	0.000	0.0000	100.0000	1.89E+00	2.68E-01	2.43E-02	0.00E+00	2.43E-01	
TH-232	3972.000	227.000	224.000	3.000	1.7321	100.0000	1.82E+00	2.64E-01	8.97E-02	3.27E-02	2.41E-01	

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S0234267008_TH SAMPLE QTY: 0.253 G

DETECTOR NUMBER :74431 AVERAGE %EFFICIENCY :26.2319 % YIELD : 90.408 COUNT DATE:19-AUG-2009 16:18:58 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.459E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.459E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227

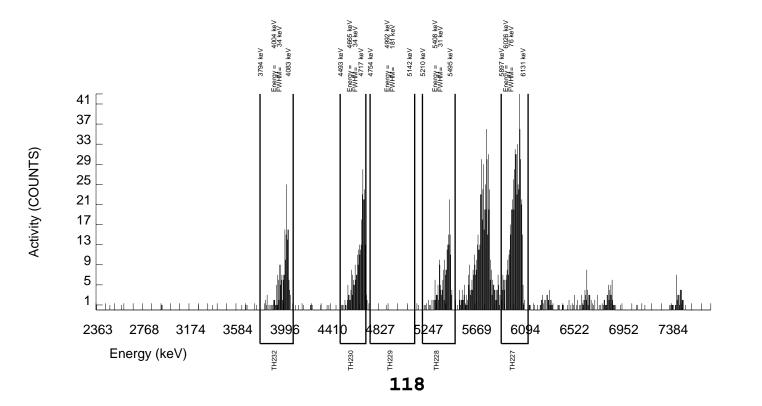
NOMINAL: 3.91541 dpm RESULTS: 3.53986 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B173.CNF;117 BKG DATE: 16-AUG-2009 EFF FILE: W173.CNF;35 CAL DATE: 22-JUL-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY TPU pCi/G 1.96-SIG	MDA MA pCi/G	Lc pCi/G	UNC pCi/G	
AC-227	6038.010	598.000	596.000	2.000	1.4142	68.10000	6.97E+00 6.98E-	01 1.12E-01	3.85E-02	5.62E-01	
TH-228	5363.000	180.000	167.000	13.000	3.6056	99.94000	1.26E+00 2.18E-	01 1.49E-01	6.31E-02	2.05E-01	
TH229	4900.000	5.000	0.000	5.000	2.2361	99.52000	0.00E+00 4.68E-	02 1.01E-01	3.92E-02	4.68E-02	
TH-230	4625.000	517.000	515.000	2.000	1.4142	100.0000	3.87E+00 4.07E-	01 7.19E-02	2.47E-02	3.35E-01	
TH-232	3972.000	199.000	197.000	2.000	1.4142	100.0000	1.48E+00 2.26E-	01 7.19E-02	2.47E-02	2.09E-01	

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

DETECTOR NUMBER :74432 AVERAGE %EFFICIENCY :25.5394 % YIELD : 99.092 COUNT DATE:19-AUG-2009 16:19:00 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.263E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.263E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227

NOMINAL: 3.91541 dpm RESULTS: 3.87986 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B174.CNF;117 BKG DATE: 16-AUG-2009 EFF FILE: W174.CNF;35 CAL DATE: 22-JUL-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
AC-227	6038.010	636.000	636.000	0.000	0.0000	68.10000	6.81E+00	6.66E-01	3.21E-02	0.00E+00	5.29E-01
TH-228	5363.000	229.000	218.000	11.000	3.3166	99.94000	1.50E+00	2.27E-01	1.27E-01	5.31E-02	2.09E-01
TH229	4900.000	2.000	-1.000	3.000	1.7321	99.52000	-6.91E-03	3.03E-02	7.64E-02	2.78E-02	3.03E-02
TH-230	4625.000	322.000	320.000	2.000	1.4142	100.0000	2.20E+00	2.75E-01	6.58E-02	2.26E-02	2.42E-01
TH-232	3972.000	222.000	219.000	3.000	1.7321	100.0000	1.51E+00	2.21E-01	7.60E-02	2.77E-02	2.02E-01

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

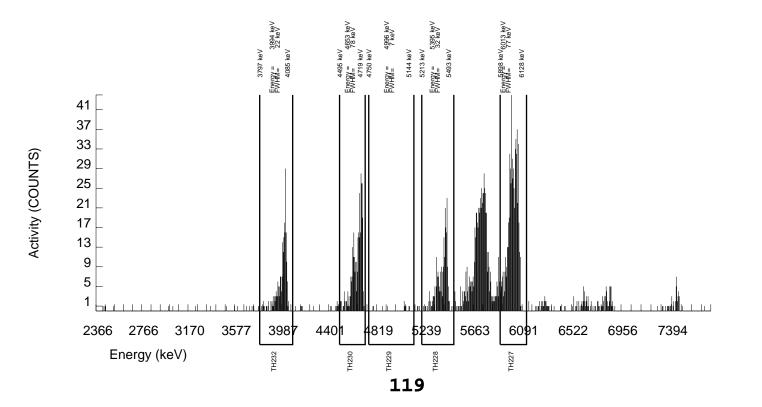
SAMPLE ID : S0234267010_TH SAMPLE QTY: 0.257 G

DETECTOR NUMBER :74433 **AVERAGE %EFFICIENCY:25.3924**

% YIELD : 100.450 COUNT DATE:19-AUG-2009 16:19:03 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.328E+00


LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.328E+00

TRACER ID: 0387-B-102 ISOTOPE: AC227

NOMINAL: 3.91541 dpm RESULTS: 3.93302 dpm

LIB FILE: ENV_ALPHA_TH.N BKG FILE: B175.CNF;117 BKG DATE: 16-AUG-2009 EFF FILE : W175.CNF;35 CAL DATE : 22-JUL-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1.	TPU 96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G	
AC-227	6038.010	644.000	641.000	3.000	1.7321	68.10000	6.86E+00	6.71E-01	1.18E-01	4.31E-02	5.34E-01	
TH-228	5363.000	242.000	234.000	8.000	2.8284	99.94000	1.61E+00	2.34E-01	1.11E-01	4.53E-02	2.13E-01	
TH229	4900.000	11.000	4.000	7.000	2.6458	99.52000	2.76E-02	5.74E-02	1.06E-01	4.25E-02	5.74E-02	
TH-230	4625.000	334.000	331.000	3.000	1.7321	100.0000	2.27E+00	2.82E-01	7.60E-02	2.77E-02	2.47E-01	
TH-232	3972.000	222.000	221.000	1.000	1.0000	100.0000	1.52E+00	2.20E-01	5.26E-02	1.60E-02	2.01E-01	

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

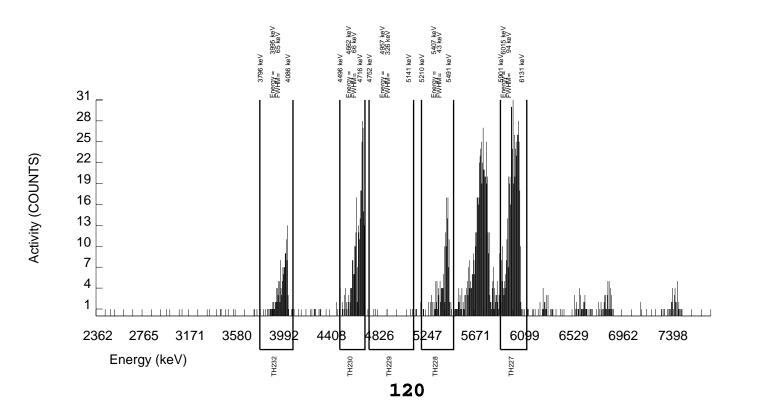
SAMPLE ID : S0234267011_TH SAMPLE QTY: 0.252 G

DETECTOR NUMBER :74434 **AVERAGE %EFFICIENCY:25.9651**

% YIELD : 86.740 COUNT DATE:19-AUG-2009 16:19:05 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.493E+00


LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.493E+00

TRACER ID: 0387-B-102 ISOTOPE: AC227

NOMINAL: 3.91541 dpm RESULTS: 3.39622 dpm

LIB FILE: ENV_ALPHA_TH.N BKG FILE: B176.CNF;117 BKG DATE: 16-AUG-2009 EFF FILE : W176.CNF;35 CAL DATE : 22-JUL-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
AC-227	6038.010	568.000	566.000	2.000	1.4142	68.10000	7.00E+00	7.13E-01	1.18E-01	4.07E-02	5.79E-01
TH-228	5363.000	172.000	161.000	11.000	3.3166	99.94000	1.28E+00	2.24E-01	1.47E-01	6.14E-02	2.11E-01
TH229	4900.000	5.000	1.000	4.000	2.0000	99.52000	7.97E-03	4.69E-02	9.81E-02	3.71E-02	4.69E-02
TH-230	4625.000	317.000	317.000	0.000	0.0000	100.0000	2.52E+00	3.15E-01	2.38E-02	0.00E+00	2.77E-01
TH-232	3972.000	146.000	142.000	4.000	2.0000	100.0000	1.13E+00	2.02E-01	9.77E-02	3.69E-02	1.91E-01

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S0234267012_TH SAMPLE QTY: 0.251 (G

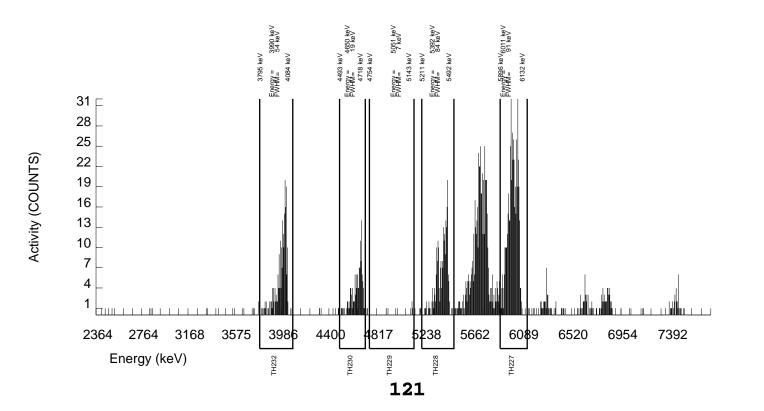
DETECTOR NUMBER :74435 **AVERAGE %EFFICIENCY:26.8586** % YIELD

: 76.151

COUNT DATE:19-AUG-2009 16:19:09 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.527E+00


LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.527E+00

TRACER ID: 0387-B-102 ISOTOPE: AC227

NOMINAL: 3.91541 dpm RESULTS: 2.98161 dpm

LIB FILE: ENV_ALPHA_TH.N BKG FILE: B177.CNF;117 BKG DATE: 16-AUG-2009 EFF FILE : W177.CNF;35 CAL DATE : 22-JUL-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1.	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G	
AC-227	6038.010	517.000	514.000	3.000	1.7321	68.10000	7.03E+00	7.41E-01	1.51E-01	5.51E-02	6.11E-01	
TH-228	5363.000	238.000	226.000	12.000	3.4641	99.94000	1.99E+00	2.97E-01	1.68E-01	7.09E-02	2.73E-01	
TH229	4900.000	7.000	4.000	3.000	1.7321	99.52000	3.53E-02	5.47E-02	9.75E-02	3.55E-02	5.46E-02	
TH-230	4625.000	134.000	132.000	2.000	1.4142	100.0000	1.16E+00	2.12E-01	8.41E-02	2.89E-02	2.01E-01	
TH-232	3972.000	220.000	219.000	1.000	1.0000	100.0000	1.92E+00	2.80E-01	6.71E-02	2.04E-02	2.56E-01	

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

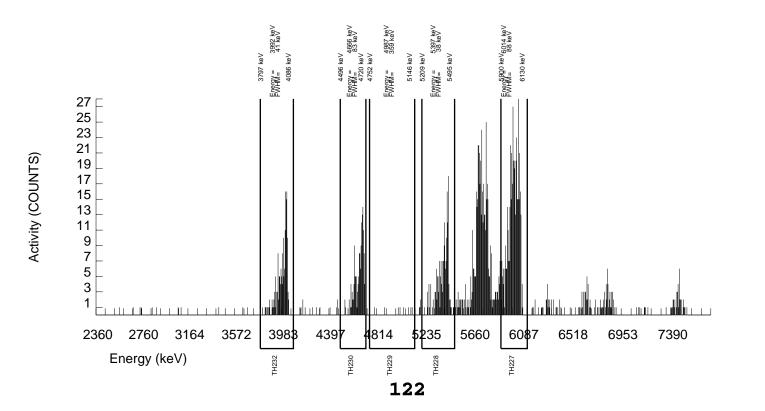
SAMPLE ID : S0234267013_TH SAMPLE QTY: 0.253 G

DETECTOR NUMBER :74436 AVERAGE %EFFICIENCY :25.6373 % YIELD : 71.397

COUNT DATE:19-AUG-2009 16:19:11

COUNT DATE:19-AUG-2009 16:19:11

ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.459E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.459E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227

NOMINAL: 3.91541 dpm RESULTS: 2.79548 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B178.CNF;117 BKG DATE: 16-AUG-2009 EFF FILE: W178.CNF;35 CAL DATE: 22-JUL-2009

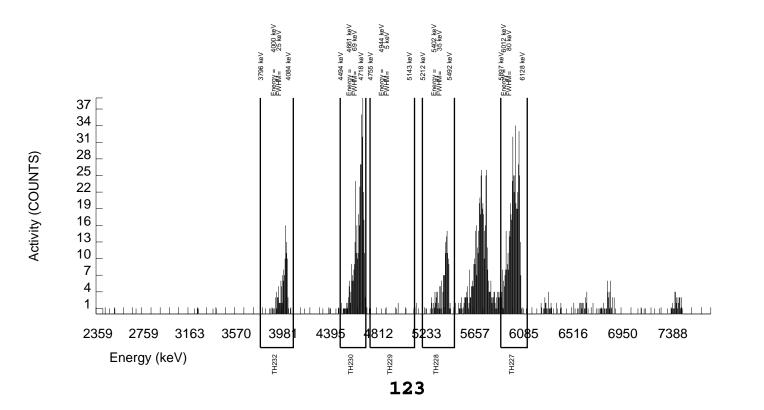
NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN		TPU 6-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G	
AC-227	6038.010	462.000	460.000	2.000	1.4142	68.10000	6.97E+00 7	.63E-01	1.45E-01	4.99E-02	6.40E-01	
TH-228	5363.000	188.000	174.000	14.000	3.7417	99.94000	1.70E+00 2	.90E-01	1.99E-01	8.49E-02	2.72E-01	
TH229	4900.000	9.000	3.000	6.000	2.4495	99.52000	2.93E-02 7	.42E-02	1.41E-01	5.57E-02	7.42E-02	
TH-230	4625.000	152.000	149.000	3.000	1.7321	100.0000	1.45E+00 2	.53E-01	1.08E-01	3.92E-02	2.37E-01	
TH-232	3972.000	171.000	169.000	2.000	1.4142	100.0000	1.64E+00 2	.69E-01	9.32E-02	3.20E-02	2.51E-01	

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S0234267014_TH SAMPLE QTY: 0.256 G

DETECTOR NUMBER :74437 AVERAGE %EFFICIENCY :26.5432 % YIELD : 80.054 COUNT DATE:19-AUG-2009 16:19:15 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.360E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.360E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227

NOMINAL: 3.91541 dpm RESULTS: 3.13445 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B179.CNF;117 BKG DATE: 16-AUG-2009 EFF FILE: W179.CNF;35 CAL DATE: 22-JUL-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G	
AC-227	6038.010	538.000	534.000	4.000	2.0000	68.10000	6.89E+00	7.17E-01	1.59E-01	6.00E-02	5.89E-01	
TH-228	5363.000	162.000	156.000	6.000	2.4495	99.94000	1.29E+00	2.24E-01	1.19E-01	4.73E-02	2.11E-01	
TH229	4900.000	9.000	6.000	3.000	1.7321	99.52000	4.99E-02	5.66E-02	9.20E-02	3.35E-02	5.65E-02	
TH-230	4625.000	435.000	435.000	0.000	0.0000	100.0000	3.60E+00	4.00E-01	2.48E-02	0.00E+00	3.39E-01	
TH-232	3972.000	137.000	137.000	0.000	0.0000	100.0000	1.13E+00	2.02E-01	2.48E-02	0.00E+00	1.90E-01	

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S0234267015_TH SAMPLE QTY: 0.252 G

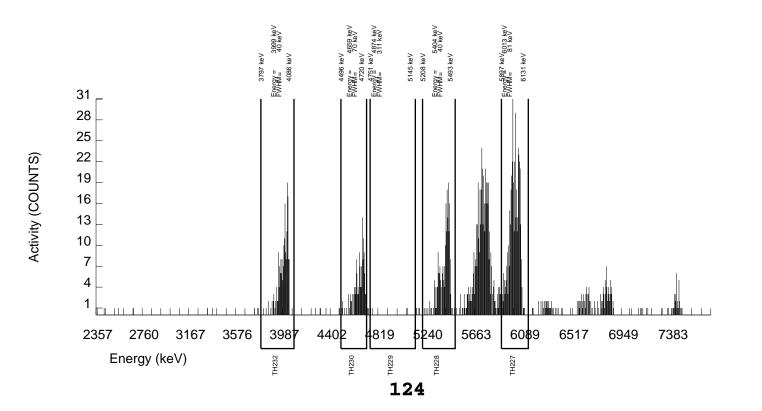
DETECTOR NUMBER :74438 **AVERAGE %EFFICIENCY:25.0525** % YIELD

: 70.999

COUNT DATE:19-AUG-2009 16:19:18 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.493E+00


LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.493E+00

TRACER ID: 0387-B-102 ISOTOPE: AC227

NOMINAL: 3.91541 dpm RESULTS: 2.77990 dpm

LIB FILE: ENV_ALPHA_TH.N BKG FILE: B180.CNF;119 BKG DATE: 16-AUG-2009 EFF FILE : W180.CNF;35 CAL DATE : 22-JUL-2009

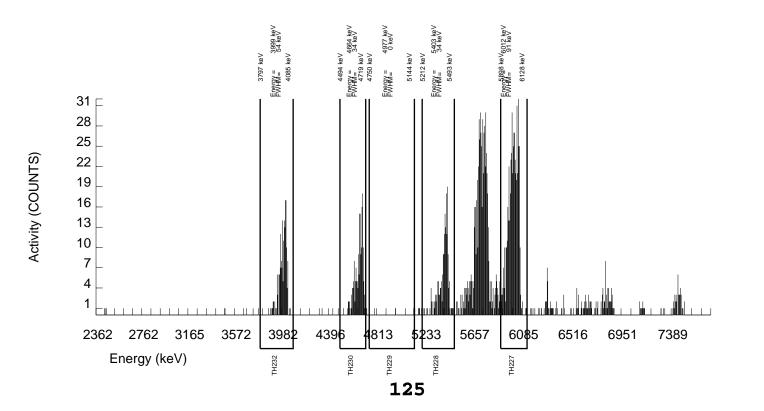
NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
AC-227	6038.010	449.000	447.000	2.000	1.4142	68.10000	7.00E+00	7.74E-01	1.50E-01	5.15E-02	6.52E-01
TH-228	5363.000	224.000	219.000	5.000	2.2361	99.94000	2.21E+00	3.26E-01	1.35E-01	5.24E-02	2.99E-01
TH229	4900.000	3.000	-1.000	4.000	2.0000	99.52000	-1.01E-02	5.24E-02	1.24E-01	4.70E-02	5.24E-02
TH-230	4625.000	142.000	137.000	5.000	2.2361	100.0000	1.38E+00	2.52E-01	1.35E-01	5.23E-02	2.39E-01
TH-232	3972.000	200.000	199.000	1.000	1.0000	100.0000	2.00E+00	3.04E-01	7.69E-02	2.34E-02	2.79E-01

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S0234267016_TH SAMPLE QTY: 0.258 G

DETECTOR NUMBER :74439 AVERAGE %EFFICIENCY :25.4854 % YIELD : 86.656 COUNT DATE:19-AUG-2009 16:19:20 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.295E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.295E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227

NOMINAL: 3.91541 dpm RESULTS: 3.39292 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B181.CNF;117 BKG DATE: 16-AUG-2009 EFF FILE: W181.CNF;35 CAL DATE: 22-JUL-2009

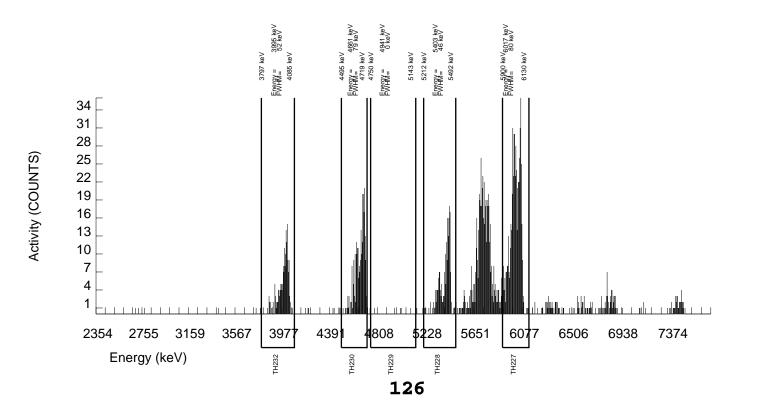
NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU I.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
AC-227	6038.010	555.000	555.000	0.000	0.0000	68.10000	6.84E+00	6.98E-01	3.70E-02	0.00E+00	5.69E-01
TH-228	5363.000	191.000	186.000	5.000	2.2361	99.94000	1.47E+00	2.34E-01	1.06E-01	4.12E-02	2.17E-01
TH229	4900.000	3.000	-2.000	5.000	2.2361	99.52000	-1.59E-02	4.40E-02	1.06E-01	4.13E-02	4.40E-02
TH-230	4625.000	178.000	175.000	3.000	1.7321	100.0000	1.38E+00	2.24E-01	8.74E-02	3.19E-02	2.08E-01
TH-232	3972.000	181.000	180.000	1.000	1.0000	100.0000	1.42E+00	2.25E-01	6.05E-02	1.84E-02	2.09E-01

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S0234267017_TH SAMPLE QTY: 0.257 G

DETECTOR NUMBER :74440 AVERAGE %EFFICIENCY :25.7871 % YIELD : 87.340 COUNT DATE:19-AUG-2009 16:19:23 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.328E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.328E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227

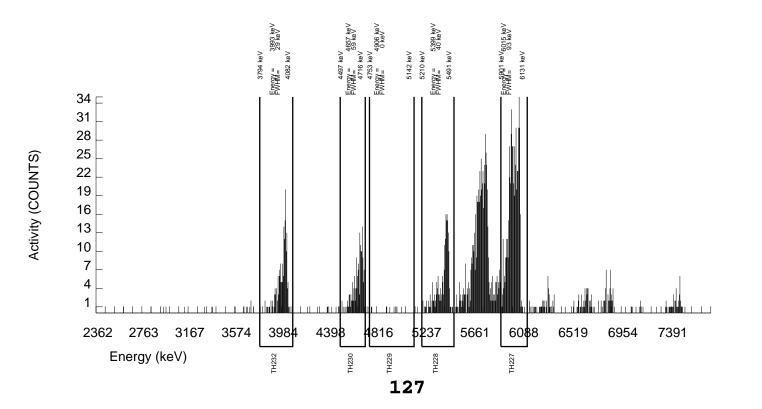
NOMINAL: 3.91541 dpm RESULTS: 3.41970 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B182.CNF;117 BKG DATE: 16-AUG-2009 EFF FILE: W182.CNF;35 CAL DATE: 22-JUL-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
AC-227	6038.010	567.000	566.000	1.000	1.0000	68.10000	6.86E+00	6.98E-01	9.28E-02	2.82E-02	5.66E-01
TH-228	5363.000	204.000	187.000	17.000	4.1231	99.94000	1.46E+00	2.43E-01	1.73E-01	7.48E-02	2.27E-01
TH229	4900.000	6.000	4.000	2.000	1.4142	99.52000	3.13E-02	4.34E-02	7.49E-02	2.57E-02	4.34E-02
TH-230	4625.000	266.000	263.000	3.000	1.7321	100.0000	2.05E+00	2.78E-01	8.61E-02	3.14E-02	2.50E-01
TH-232	3972.000	176.000	175.000	1.000	1.0000	100.0000	1.36E+00	2.18E-01	5.96E-02	1.81E-02	2.03E-01

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

DETECTOR NUMBER :74441 AVERAGE %EFFICIENCY :26.3659 % YIELD : 90.252 COUNT DATE:19-AUG-2009 16:19:25 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.426E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.426E+00

TRACER
ID: 0387-B-102

ISOTOPE: AC227 NOMINAL: 3.91541 dpm RESULTS: 3.53373 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B183.CNF;117 BKG DATE: 16-AUG-2009 EFF FILE: W183.CNF;35 CAL DATE: 22-JUL-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sq	%ABUN	ACTIVITY pCi/G 1	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G	
AC-227	6038.010	599.000	598.000	1.000	1.0000	68.10000	6.94E+00	6.94E-01	8.89E-02	2.70E-02	5.57E-01	
TH-228	5363.000	204.000	192.000	12.000	3.4641	99.94000	1.43E+00	2.31E-01	1.43E-01	6.02E-02	2.15E-01	
TH229	4900.000	9.000	5.000	4.000	2.0000	99.52000	3.74E-02	5.30E-02	9.22E-02	3.48E-02	5.29E-02	
TH-230	4625.000	163.000	161.000	2.000	1.4142	100.0000	1.20E+00	2.01E-01	7.14E-02	2.45E-02	1.88E-01	
TH-232	3972.000	184.000	183.000	1.000	1.0000	100.0000	1.36E+00	2.15E-01	5.70E-02	1.73E-02	1.99E-01	

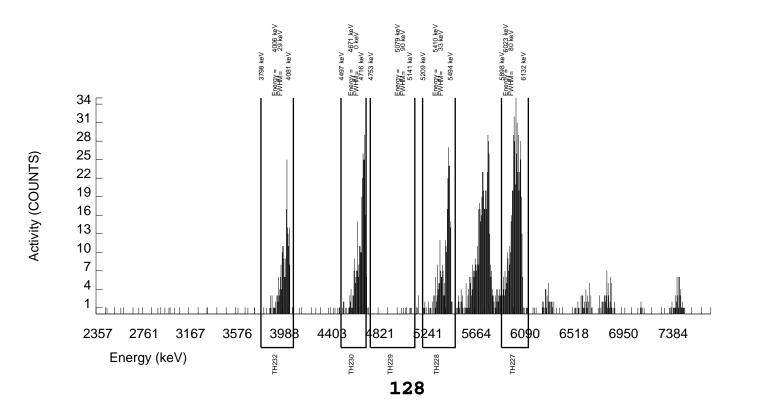
BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S0234267020_TH SAMPLE QTY: 0.259 G

DETECTOR NUMBER :74442 **AVERAGE %EFFICIENCY:25.8992** % YIELD : 85.733 COUNT DATE:19-AUG-2009 16:19:28 ELAPSED LIVE TIME(SEC): 60000.00 :KXM4

ANALYST


MS/MSD ID: A2796-J ISOTOPE: TH-230

PCI/G: 8.263E+00

LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.263E+00 TRACER ID: 0387-B-102

ISOTOPE: AC227 NOMINAL: 3.91541 dpm RESULTS: 3.35679 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B184.CNF;119 BKG DATE: 16-AUG-2009 EFF FILE : W184.CNF;35 CAL DATE : 22-JUL-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G	
AC-227	6038.010	561.000	558.000	3.000	1.7321	68.10000	6.81E+00	6.97E-01	1.35E-01	4.92E-02	5.68E-01	
TH-228	5363.000	288.000	282.000	6.000	2.4495	99.94000	2.21E+00	2.95E-01	1.13E-01	4.47E-02	2.64E-01	
TH229	4900.000	6.000	1.000	5.000	2.2361	99.52000	7.87E-03	5.12E-02	1.05E-01	4.09E-02	5.12E-02	
TH-230	4625.000	300.000	299.000	1.000	1.0000	100.0000	2.34E+00	3.00E-01	5.99E-02	1.82E-02	2.66E-01	
TH-232	3972.000	217.000	216.000	1.000	1.0000	100.0000	1.69E+00	2.48E-01	5.99E-02	1.82E-02	2.27E-01	

BATCH NUMBER: 892899

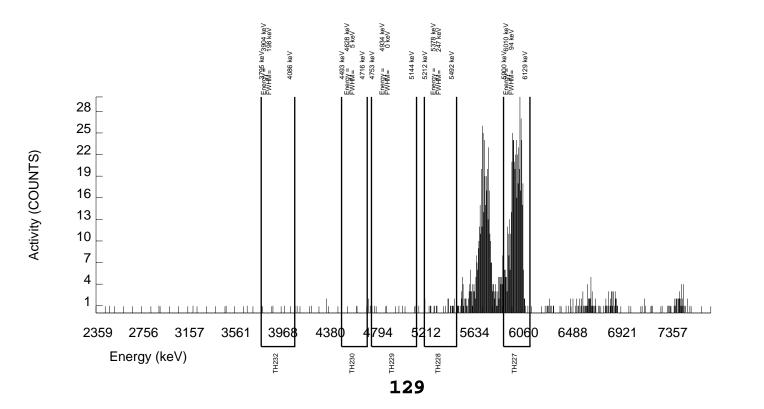
SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S1201899547_TH SAMPLE QTY: 0.259 G

DETECTOR NUMBER :68615 AVERAGE %EFFICIENCY :25.6564 % YIELD : 83.597 COUNT DATE:19-AUG-2009 16:19:30 ELAPSED LIVE TIME(SEC): 60000.00

ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230


PCI/G: 8.263E+00

LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.263E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227

NOMINAL: 3.91541 dpm RESULTS: 3.27317 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B185.CNF;99 BKG DATE: 16-AUG-2009 EFF FILE: W185.CNF;35 CAL DATE: 22-JUL-2009

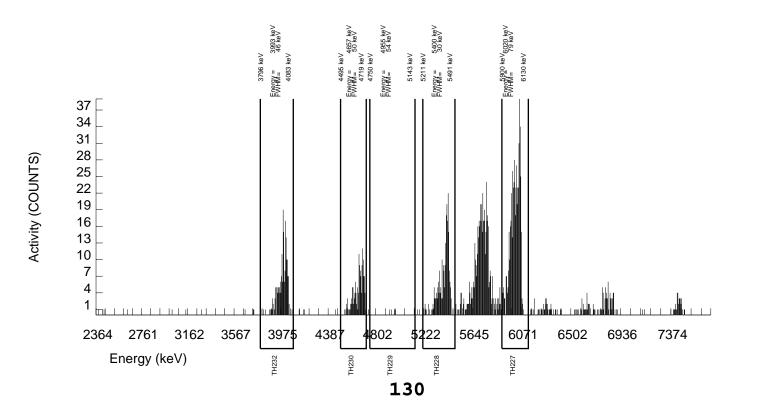
NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU 1.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G	
AC-227	6038.010	542.000	539.000	3.000	1.7321	68.10000	6.81E+00	7.05E-01	1.40E-01	5.09E-02	5.78E-01	
TH-228	5363.000	20.000	15.000	5.000	2.2361	99.94000	1.22E-01	8.00E-02	1.09E-01	4.23E-02	7.96E-02	
TH229	4900.000	6.000	2.000	4.000	2.0000	99.52000	1.63E-02	5.05E-02	1.00E-01	3.79E-02	5.05E-02	
TH-230	4625.000	1.000	1.000	0.000	0.0000	100.0000	8.11E-03	1.59E-02	2.43E-02	0.00E+00	1.59E-02	
TH-232	3972.000	3.000	1.000	2.000	1.4142	100.0000	8.11E-03	3.55E-02	7.77E-02	2.67E-02	3.55E-02	

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S1201899548_TH SAMPLE QTY: 0.253 G

DETECTOR NUMBER :68616 AVERAGE %EFFICIENCY :25.3097 % YIELD : 83.485 COUNT DATE:19-AUG-2009 16:19:33 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.459E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.459E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227

NOMINAL: 3.91541 dpm RESULTS: 3.26876 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B186.CNF;99 BKG DATE: 16-AUG-2009 EFF FILE: W186.CNF;36 CAL DATE: 22-JUL-2009

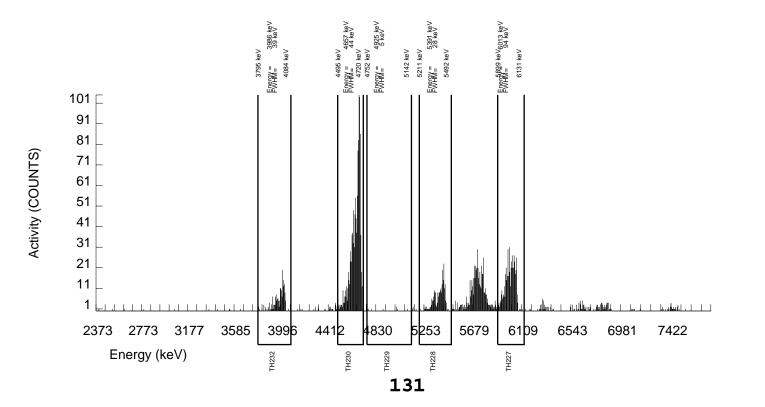
NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G	
AC-227	6038.010	533.000	531.000	2.000	1.4142	68.10000	6.97E+00	7.26E-01	1.26E-01	4.32E-02	5.95E-01	
TH-228	5363.000	241.000	234.000	7.000	2.6458	99.94000	1.98E+00	2.86E-01	1.29E-01	5.20E-02	2.61E-01	
TH229	4900.000	4.000	1.000	3.000	1.7321	99.52000	8.47E-03	4.39E-02	9.36E-02	3.41E-02	4.39E-02	
TH-230	4625.000	147.000	145.000	2.000	1.4142	100.0000	1.22E+00	2.14E-01	8.07E-02	2.77E-02	2.02E-01	
TH-232	3972.000	200.000	199.000	1.000	1.0000	100.0000	1.68E+00	2.55E-01	6.45E-02	1.96E-02	2.34E-01	

BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S1201899549_TH SAMPLE QTY: 0.259 G

DETECTOR NUMBER :68620 AVERAGE %EFFICIENCY :25.0189 % YIELD : 80.320 COUNT DATE:19-AUG-2009 16:19:35 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.263E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.263E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227

NOMINAL: 3.91541 dpm RESULTS: 3.14485 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B187.CNF;99 BKG DATE: 16-AUG-2009 EFF FILE: W187.CNF;35 CAL DATE: 22-JUL-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU .96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G	
AC-227	6038.010	508.000	505.000	3.000	1.7321	68.10000	6.81E+00	7.34E-01	1.49E-01	5.43E-02	5.97E-01	
TH-228	5363.000	252.000	247.000	5.000	2.2361	99.94000	2.14E+00	3.04E-01	1.16E-01	4.51E-02	2.73E-01	
TH229	4900.000	8.000	3.000	5.000	2.2361	99.52000	2.61E-02	6.15E-02	1.17E-01	4.52E-02	6.15E-02	
TH-230	4625.000	1171.000	1170.000	1.000	1.0000	100.0000	1.01E+01	8.59E-01	6.62E-02	2.01E-02	5.81E-01	
TH-232	3972.000	197.000	194.000	3.000	1.7321	100.0000	1.68E+00	2.62E-01	9.57E-02	3.49E-02	2.40E-01	

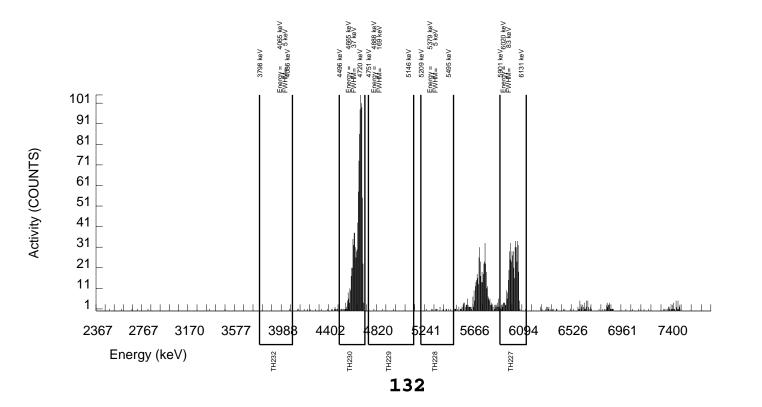
BATCH NUMBER: 892899

SAMPLE DATE: 18-AUG-2009 10:15:00

SAMPLE ID : S1201899550_TH SAMPLE QTY: 0.259 G

DETECTOR NUMBER :68621 **AVERAGE %EFFICIENCY:26.0109**

% YIELD : 82.152 COUNT DATE:19-AUG-2009 16:19:38 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :KXM4

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.263E+00

LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/G: 8.263E+00 TRACER ID: 0387-B-102

ISOTOPE: AC227 NOMINAL: 3.91541 dpm RESULTS: 3.21659 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B188.CNF;99 BKG DATE: 16-AUG-2009 EFF FILE : W188.CNF;36 CAL DATE : 22-JUL-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/G 1	TPU I.96-SIGMA	MDA pCi/G	Lc pCi/G	UNC pCi/G
AC-227	6038.010	540.000	537.000	3.000	1.7321	68.10000	6.81E+00	7.06E-01	1.40E-01	5.11E-02	5.79E-01
TH-228	5363.000	13.000	1.000	12.000	3.4641	99.94000	8.16E-03	7.99E-02	1.56E-01	6.57E-02	7.99E-02
TH229	4900.000	3.000	-1.000	4.000	2.0000	99.52000	-8.18E-03	4.24E-02	1.01E-01	3.81E-02	4.24E-02
TH-230	4625.000	1122.000	1119.000	3.000	1.7321	100.0000	9.11E+00	7.61E-01	9.00E-02	3.28E-02	5.35E-01
TH-232	3972.000	1.000	-1.000	2.000	1.4142	100.0000	-8.14E-03	2.76E-02	7.80E-02	2.68E-02	2.76E-02

Radiochemistry Batch Checklist, Rev 9

Batch# 897 494	Product: Th	Date: 8/08/09
Batch#	Product:	Date: 8 /08//09

Cntena:	Yes	No	Comments
Sample Solids are less than or equal to100 mg for GAB.			NA
			N/A
Samples have been blank corrected (if required)		 	· · · · · · · · · · · · · · · · · · ·
If activity less 10° MDA/ MDC, error is 150% or less of sample activity. If greater 10° MDA/ MDC, error is 40%		1	
or less. If below the MDA/ MDC, error is okay.	I V	1	
Instrument source check is within limits.			
Instrument source check is within limits.	1/	1	į i
instrument ong check is within littles.		 	
Method RDL/ LLD has been met.	V		ŀ
If duplicate activities are less 5° MDA/ MDC, then RPD	i — —		
is 100% or less. If greater 5° MDA/ MDC, then RPD 20% or	. /		
less. If below the MDA/ MDC, the RPD is 0%.			
Or meets the client's required RER acceptance criteria.			,
Tracer yield is 15-125%. Carrier yield 25-125%.			100 -11
Or meets the client's contract acceptance criteria.		V	NCR 7275/6
Method blank is less than the ROL/ LLD.	1	•	
(If rad samples, < 5% of lowest activity)	V		NCR 727516 Case narrative
Sample was run within hold time.	V		
	/		
Sample was correctly preserved if required.	LV.	<u> </u>	
Smears Taken for Radioactive batches.			NA
Method Spike and LCS are within	\v		
75-125% or meets the client's contract acceptance criteria. No blank spaces on data forms.	 	 	
All line outs initialed and dated.		1	
No transcription errors are apparent.	V		
Tro Indianation area are appeared.	 	<u> </u>	
Aux data is correct.			NA
Client Special requirements page has been checked.	V	ļ	
Raw Data and/ or spectrum are included and properly statused.	/		
QC data entered into QC database and batch is in REVW	V		
Hit notification complete (if necessary)			NA
Batch entered into Case Narrative.	V		
			NER 777 -11
Batch non-conformances completed, if applicable.	/		NCR 727 5/6
Batch non-conformances second reviewed and disposition	\mathbf{k}_{λ}		11187777516
verified to be completed.	17	1	NCR 727 516
Aliquot Correction completed if required.			NIA
Review sample historical results if available (If REMP, results above MDC have been verified by historical results, recount or re-analysis.)	V		

GEL Laboratories, LLC

revised 8/1/08

Primary Review Performed By:

Secondary Review Performed By:

8/28

KERR

Batch #: 897494		Analyst: JXD2	<u>CD</u>	First Cli	ient Due I	First Client Due Date: 28-AUG-09		Internal Due Date22-AUG-09	1G-09			
Tracer Isotope: Ac-227	Tracer Code:	Tracer Code: 0387-6-102		Expiration	Date:	04 1.1/ 40	Vol: 0./	Ac-227 Separation Date/Time: 08/12/1 20:02	n Date/Ti	me: 08/	20:00	ų
LCS Isotope: Th-230	LCS Code:	LCS Code: A 2 7 96 - J		Expiration	Date:	04/13/10	Vol: 0 · (•		
Spike Isotope: Th-230	Spike Code:		124	Expiration	Date:	-	Vol:			,	•	Ċ
Prep Date: 61/16/09			Pipet II	Pipet ID: 12/1	058	Balance ID: 16750207	+50203f		Wit	ness: M	Witness: Mg 8 200 0 9	<u> </u>
								4		1	Wedory	Ē
Sample ID Client Description	cription	Type C	Code CRDL	CRDL	Matrix	×	Client	Collection Date	Pos.	##	(LOD)	Det #
234267018-3 FB072909-SO	0	SAMPLE	9 .	03 pCi/L	WATER		KERR003	29~JUL-09	-	~	0,800	42
234414019-3 EB073109-SO	Q.	SAMPLE	ુ .	.03 pCi/L	WATER		KERR003	31~JUL-09	7	~	0.300	36
234414020-3 EB080309-SO	0	SAMPLE	J ,	.03 pCi/L	WATER		KERR003	03-AUG-09	3	~	0.800	É
234414021-3 FB080309-SO	9	SAMPLE	J .	.03 pCi/L	WATER		KERR003	03-AUG-09	4	>	6.29	£
1201911149-1 MB for batch 897494	ch 897494	MB	₹.	.03 pCi/L	WATER		QC ACCOUNT	60-101-8g	S	5	0.800	98
1201911150-1 LCS for batch 897494	ch 897494	rcs	٦.	.03 pCi/L	WATER		QC ACCOUNT	29-JUL-09	9	و	0.80g	205
1201911151-1 LCSD for batch 897494	atch 897494	CSD	₹.	03 pCi/L	WATER		QC ACCOUNT	29-JUL-62	7	4	0.700	206

Solid Sample Dissolution by: LEACH or DIGESTION Data Reviewed By: Jap L. 1 - 8/28/09

GL-RAD-A-045 GL-RAD-A-043 GL-RAD-A-032 GL-RAD-A-032

Choose SOP Used: GL-RAD-A-038

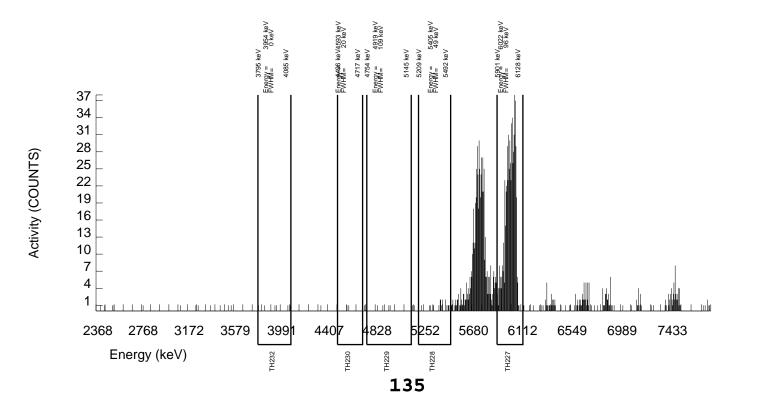
GEL Laboratories LLC, Radiochemistry Division

Page 1 of

BATCH NUMBER: 897494

SAMPLE DATE: 26-AUG-2009 20:02:00

DETECTOR NUMBER :42484 AVERAGE %EFFICIENCY :33.9669 % YIELD : 72.404 COUNT DATE:27-AUG-2009 08:05:28 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :JXD2

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/L: 2.675E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/L: 2.675E+00

TRACER
ID: 0387-B-102
ISOTOPE: AC227

NOMINAL: 3.91255 dpm RESULTS: 2.83284 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B027.CNF;1064 BKG DATE: 23-AUG-2009 EFF FILE: W027.CNF;316 CAL DATE: 3-AUG-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG	%ABUN	ACTIVITY	TPU 1.96-SIGMA	MDA pCi/L	Lc pCi/L	UNC pCi/L
		ANLA	ANEA	ANEA	Sg		pCI/L	1.90-SIGIVIA	pCI/L	pCI/L	pCI/L
AC-227	6038.010	635.000	635.000	0.000	0.0000	68.10000	2.20E+00	2.13E-01	1.04E-02	0.00E+00	1.71E-01
TH-228	5363.000	19.000	14.000	5.000	2.2361	99.94000	3.21E-02	2.21E-02	3.07E-02	1.19E-02	2.20E-02
TH229	4900.000	4.000	1.000	3.000	1.7321	99.52000	2.30E-03	1.19E-02	2.54E-02	9.27E-03	1.19E-02
TH-230	4625.000	2.000	0.000	2.000	1.4142	100.0000	-5.46E-10	8.98E-03	2.19E-02	7.53E-03	8.97E-03
TH-232	3972.000	6.000	3.000	3.000	1.7321	100.0000	6.87E-03	1.35E-02	2.53E-02	9.23E-03	1.35E-02

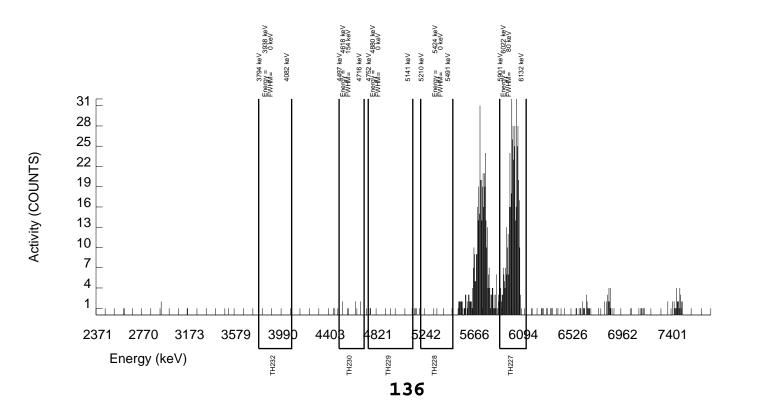
BATCH NUMBER: 897494

SAMPLE DATE: 26-AUG-2009 20:02:00

SAMPLE ID : S1201911149_TH SAMPLE QTY: 0.800 I

DETECTOR NUMBER :78895 **AVERAGE %EFFICIENCY:25.4102** COUNT DATE:27-AUG-2009 08:08:35 ELAPSED LIVE TIME(SEC): 60000.00

% YIELD : 75.758


ANALYST :JXD2

MS/	MSD
ID :	A2796-J
SOTOPE :	TH-230
PCI/L:	2.675E+00

LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/L: 2.675E+00

TRACER ID: 0387-B-102 ISOTOPE: AC227 NOMINAL: 3.91255 dpm RESULTS: 2.96406 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B198.CNF;48 BKG DATE: 23-AUG-2009 EFF FILE : W198.CNF;35 CAL DATE : 24-AUG-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/L 1	TPU 1.96-SIGMA	MDA pCi/L	Lc pCi/L	UNC pCi/L
AC-227	6038.010	497.000	497.000	0.000	0.0000	68.10000	2.20E+00	2.27E-01	1.33E-02	0.00E+00	1.94E-01
TH-228	5363.000	2.000	1.000	1.000	1.0000	99.94000	2.93E-03	9.95E-03	2.24E-02	6.81E-03	9.94E-03
TH229	4900.000	5.000	5.000	0.000	0.0000	99.52000	1.47E-02	1.29E-02	8.82E-03	0.00E+00	1.29E-02
TH-230	4625.000	7.000	7.000	0.000	0.0000	100.0000	2.05E-02	1.52E-02	8.77E-03	0.00E+00	1.52E-02
TH-232	3972.000	0.000	0.000	0.000	0.0000	100.0000	0.00E+00	5.74E-03	8.77E-03	0.00E+00	5.73E-03

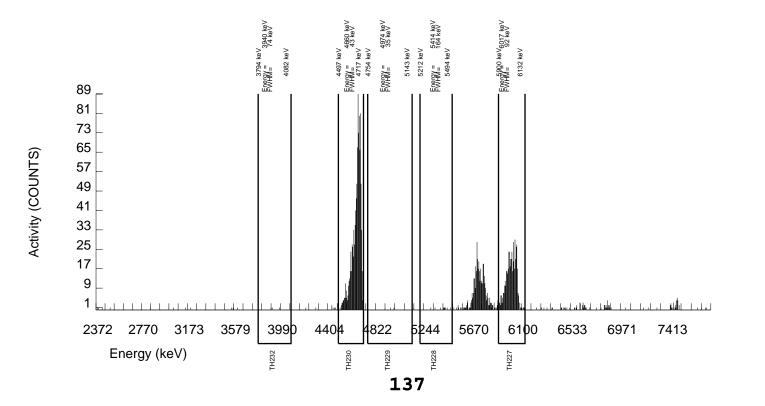
BATCH NUMBER: 897494

SAMPLE DATE: 26-AUG-2009 20:02:00

SAMPLE ID : S1201911150_TH SAMPLE QTY: 0.800 I

DETECTOR NUMBER :78908 **AVERAGE %EFFICIENCY:25.6002**

% YIELD : 75.196 COUNT DATE:27-AUG-2009 08:08:55 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :JXD2

MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/L: 2.675E+00

LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/L: 2.675E+00 TRACER ID: 0387-B-102

ISOTOPE: AC227 NOMINAL: 3.91255 dpm RESULTS: 2.94209 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B205.CNF;48 BKG DATE: 23-AUG-2009 EFF FILE : W205.CNF;35 CAL DATE : 24-AUG-2009

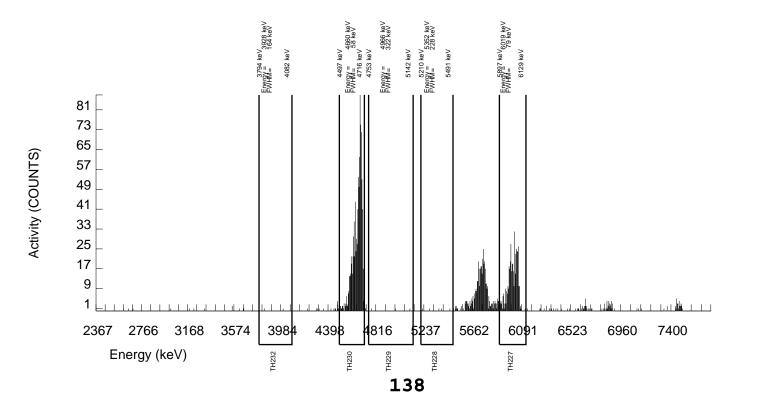
NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/L	TPU 1.96-SIGMA	MDA pCi/L	Lc pCi/L	UNC pCi/L
AC-227	6038.010	499.000	497.000	2.000	1.4142	68.10000	2.20E+00	2.28E-01	4.25E-02	1.46E-02	1.94E-01
TH-228	5363.000	9.000	9.000	0.000	0.0000	99.94000	2.64E-02	1.73E-02	8.79E-03	0.00E+00	1.72E-02
TH229	4900.000	2.000	2.000	0.000	0.0000	99.52000	5.88E-03	8.15E-03	8.82E-03	0.00E+00	8.15E-03
TH-230	4625.000	1022.000	1021.000	1.000	1.0000	100.0000	2.99E+00	2.44E-01	2.24E-02	6.80E-03	1.83E-01
TH-232	3972.000	3.000	2.000	1.000	1.0000	100.0000	5.85E-03	1.15E-02	2.24E-02	6.80E-03	1.15E-02

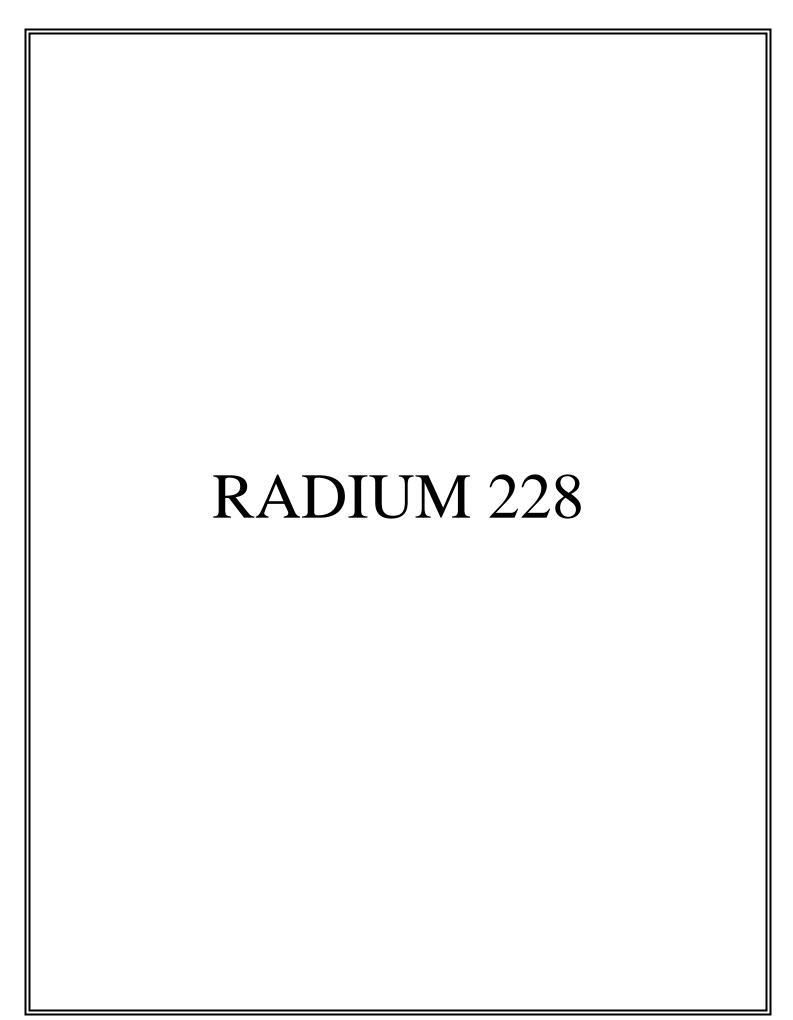
BATCH NUMBER: 897494

SAMPLE DATE: 26-AUG-2009 20:02:00

SAMPLE ID : S1201911151_TH SAMPLE QTY: 0.800 L

DETECTOR NUMBER :78909 AVERAGE %EFFICIENCY :25.3986 % YIELD : 67.101 COUNT DATE:27-AUG-2009 08:08:59 ELAPSED LIVE TIME(SEC): 60000.00


ANALYST :JXD2


MS/MSD ID: A2796-J ISOTOPE: TH-230 PCI/L: 2.675E+00 LCS/LCSD ID: A2796-J ISOTOPE: TH-230 PCI/L: 2.675E+00

TRACER
ID: 0387-B-102

ISOTOPE: AC227 NOMINAL: 3.91255 dpm RESULTS: 2.62534 dpm LIB FILE: ENV_ALPHA_TH.N BKG FILE: B206.CNF;48 BKG DATE: 23-AUG-2009 EFF FILE: W206.CNF;35 CAL DATE: 24-AUG-2009

NUCLIDE	ENERGY	GROSS AREA	NET AREA	BKG AREA	BKG Sg	%ABUN	ACTIVITY pCi/L 1	TPU 1.96-SIGMA	MDA pCi/L	Lc pCi/L	UNC pCi/L
AC-227	6038.010	440.000	440.000	0.000	0.0000	68.10000	2.20E+00	2.38E-01	1.50E-02	0.00E+00	2.06E-01
TH-228	5363.000	5.000	4.000	1.000	1.0000	99.94000	1.32E-02	1.59E-02	2.53E-02	7.70E-03	1.59E-02
TH229	4900.000	3.000	2.000	1.000	1.0000	99.52000	6.64E-03	1.30E-02	2.54E-02	7.72E-03	1.30E-02
TH-230	4625.000	935.000	935.000	0.000	0.0000	100.0000	3.09E+00	2.59E-01	9.91E-03	0.00E+00	1.98E-01
TH-232	3972.000	2.000	2.000	0.000	0.0000	100.0000	6.61E-03	9.16E-03	9.91E-03	0.00E+00	9.16E-03

Radiochemistry Batch Checklist, Rev 9

Batch#	891149	Product:	PA 228	Date: <u>8/15/09</u>

Criteria:	Yes	No	Comments	
Sample Solids are less than or equal to 100 mg for GAB.			ا مام	
	+		NA .	
Samples have been block corrected (if required)			NA	
Samples have been blank corrected (if required) If activity less 10* MDA/ MDC, error is 150% or less of			1711	
sample activity. If greater 10* MDA/ MDC, error is 40%	1 .			
or less. If below the MDA/ MDC, error is okay.	1			
Instrument source check is within limits.	+			
Instrument bkg check is within limits.			1	
instrument bug offern o within limite.	 	_		
Method RDL/ LLD has been met.				
If duplicate activities are less 5* MDA/ MDC, then RPD	1			•
is 100% or less. If greater 5* MDA/ MDC, then RPD 20% or				
less. If below the MDA/ MDC, the RPD is 0%.	,			
Or meets the client's required RER acceptance criteria.			!	
Tracer yield is 15-125%. Carrier yield 25-125%.				
Or meets the client's contract acceptance criteria.	/		ŀ	
Method blank is less than the RDL/ LLD.				
(If rad samples, < 5% of lowest activity)		-		
· · · · · · · · · · · · · · · · · · ·				
Sample was run within hold time.				
			1	
Sample was correctly preserved if required.			NA AWA	
			مان ا	
Smears Taken for Radioactive batches.			4 4	
	1			
Method Spike and LCS are within				
75-125% or meets the client's contract acceptance criteria. No blank spaces on data forms.	<u> </u>			
All line outs initialed and dated.	١.			
No transcription errors are apparent.	/			
по палесприон епого аге аррагент.	i 			
Aux data is correct.			NA	
Aux data is correct.			1711	
Client Special requirements page has been checked.	V			
Cherry Operation of the Page 1140 Doors of the Cherry	 			
Raw Data and/ or spectrum are included and properly statused.	/		i	
	/			
QC data entered into QC database and batch is in REVW	\ <u>\</u>			
	./	1		
Hit notification complete (if necessary)	<u> </u>			
Database to self-the Occupitation	. /			
Batch entered into Case Narrative.	<u> </u>			
Batch non-conformances completed, if applicable.			NA	
Batch non-conformances completed, if applicable. Batch non-conformances second reviewed and disposition	┿┈┈		-\n\u	
verified to be completed.			AM	
Torring to be descripted.	+			
Aliquot Correction completed if required.			NA	
- major	1		1911	
Review sample historical results if available				
(If REMP, results above MDC have been verified	/			
by historical results, recount or re-analysis.)	V			

GEL	Labor	atories.	LLC

revised 8/1/08

Primary Review Performed By:_

Secondary Review Performed By:

Batch #: 8	891149	Analy	Analyst:JXC5	Fir	st Client Due I	First Client Due Date: 08/28/2009	Internal Due Date 68 /17/2009	e 8 8/17/2009	4	7	()	
Spike Isoto	Spike Isotope: Radium-228	Spike Code: O503-B	503-F	1	Expiration Date:	Date: 9-13-09	Vol: 0.1 mL	Ac-228 Ingrow: 5-10-0-1	o/_Q:wo	1/ 1,0-	222	
LCS Isotor	LCS Isotope: Radium-228	LCS Code: 0503-	.03- B	ExI	Expiration Date: _	9-13-09	Vol: 0.1 at			•	9	7700
Tracer Iso	n-133	Tracer Code: 0114-5	2-416	Ex]	Expiration Date:	7.70	Vol: 0.1	Ac-228 Separation Date/Time: 5-11-0/	ration Da	te/Time:	1,071-5	10955
Prep Date:	Prep Date: 3-5-04 Init	Initials: M5	Pipe	Pipet ID: 27(0/01/1)	56700	Balance ID	Balance ID: [795516]	M	Witness: "	1.CD 8-5.04	٠٥٤	
							Collect	Pos. Vol	=	Ba Yield	Gamma	
Sample ID	Client Description	Type	Code	Min CRDL	L Matrix	Client	Date & Time		Det#	(%)	Det.#	
234267001-1	RSAM7.28R	SAMPLE		€ nC:/a	TOS	KERROMA	28. II II .00 12.55 PM		22 EA	101 00		
234267002-1	SA179-0.5B	SAMPLE	• -•	5 pCi/g	SOIL	KERR003	28-JUL-09 07:58 AM	200.	2000	5.5		
234267003-1	SA179-10B	SAMPLE	**	.5 pCi/g	SOIL	KERR003	28-JUL-09 08:37 AM	/v		87 40		41
234267004-1	SA179-29B	SAMPLE	• •	.5 pCi/g	SOIL	KERR003	28-JUL-09 09:21 AM	-	00 2A	\$5.5¢		
234267005-1	RSAU4-0.5B	SAMPLE	•	.5 pCi/g	SOIL	KERR003	29-JUL-09 07:14 AM	2	19 %	87.38		
234267006-1	RSAU4-10B	SAMPLE	•	.5 pCi/g	SOIL	KERR003	29-JUL-09 07:44 AM	6.1	013.8X	93,54		
234267007-1	RSAU4-20B	SAMPLE	•	.5 pCi/g	SOIL	KERR003	29-JUL-09 08:14 AM	0.1	0194	45.07	_	1 <u>2</u>
234267008-1	RSAU4-25B	SAMPLE	ě	.5 pCi/g	SOIL	KERR003	29-JUL-09 08:45 AM	8	D19 13A	82.58	_	<u>.</u>
1-600 <i>1</i>	RSAU4-40B	SAMPLE	•	.5 pCi/g	SOIL	KERR003	29-JUL-09 09:20 AM		30 71	74,17		
1 234267010-1	RSAU4-50B	SAMPLE	•	.5 pCi/g	SOIL	KERR003	29-JUL-09 10:15 AM	ව. ව	COSCD COSCD	h1, HP	-	
234267011-1	RSAU4-56B	SAMPLE	•	.5 pCi/g	SOIL	KERR003	29-JUL-09 10:45 AM		020 A	88,S7		
234267012-1	RSAL6-0.5B	SAMPLE	•	.5 pCi/g	SOIL	KERR003	29-JUL-09 10:51 AM	0.1	005113	87.85		98
234267013-1	RSAL6-10B	SAMPLE	•	.5 pCi/g	SOIL	KERR003	29-JUL-09 11:15 AM	13 1.0	006-7A	88.28		5
234267014-1	RSAL6-28B	SAMPLE	•	.5 pCi/g	SOIL	KERR003	29-JUL-09 11:50 AM	14.0	.0037B	82.68		33
234267015-1	SA73-0.5B	SAMPLE	•	.5 pCi/g	SOIL	KERR003	29.JUL-09 08:44 AM	0,1 51	012 74	86.58		를
234267016-1	SA73-10B	SAMPLE	•	.5 pCi/g	SOIL	KERR003	29-JUL-09 09:13 AM	1.0	S65C	101.23		8
234267017-1	SA73-30B	SAMPLE	•	.5 pCi/g	SOIL	KERR003	29-JUL-09 10:18 AM	ם יינ	11 9A	(9.48)		8
234267019-1	SA49-10B	SAMPLE	•	.5 pCi/g	SOIL	KERR003	30-JUL-09 11:15 AM	0.	12 90	84.11		B
234267020-1	SA49-20B	SAMPLE	•	.5 pCi/g	SOIL	KERR003	30-JUL-09 11:36 AM	210.1	15 9A	176,20		
1201895425-1	MB for batch 891149	MB	•	.5 pCi/g	SOIL	QC ACCOUNT		20 05	5.9 5.9 5.9	בראר		
1201895426-1	SA179-0.5B(234267002DUP)	UP) DUP	٠	.5 pCi/g	SOIL	QC ACCOUNT	28-JUL-09 07:58 AM	9-1-0	029774R	15.18		Ð
1201895427-1	SA179-0.5B(234267002MS)	S) WS	•	.5 pCi/g	SOIL	QC ACCOUNT	28-JUL-09 07:58 AM	6	128.88	78.01		
1201895428-1	LCS for batch 891149	rcs	•	.5 pCi/g	SOIL	QC ACCOUNT		رے ا	.0s6 10D	PC.C3		60
							<	(balas la DX	bal	6,
									_	_		ş
Comments:						Data	Data Reviewed By:	(A/ 816	رج 2			

Instrument Used: (Circle One) PIC S/N: 10751-4

Radium 228 Re-Elute / Reprecipitate

Batch # Ra 228 Spike Code OSOS B LCS Code____ 0503-B Ba-133 Tracer Code Oli2-J

Prep Date 8-14-09 Spike Vol (mls) D'ImL Initials_TCC

LCS Vol (mls) O IML Tracer Vol (mls) 0.1mL Seperation Time: 8-14-0

Ingrow Start Time: 8-12-06

Sample ID	Bkr #	Vol. (mls)	Det #	% Yield	Gamma Det #
234267013	13		C3/11D	84.21	
234267014	14	<u> </u>	DVI3A	90.52	
1201895425	20	Ĭ	DZ 14A	73.51	
1201845428	23	9	193 HB	845)	•
				<u> </u>	
	-				
				<u> </u>	
	<u> </u>				
				 	
					-
			<u> </u>		
	<u> </u>		1	<u> </u>	

RA891149c

Radium-228 Solid Spike SN: 0503-B Spike Exp Date: 9/13/2009

ω ν δ	Tracer Aliquot StDev. (mL)	0.000701 0.000701 0.000701 0.000701 0.000701 0.000701 0.000701 0.000701 0.000701 0.000701 0.000701 0.000701 0.000701 0.000701 0.000701 0.000701 0.000701
B m m m l m l m l m l m l m l m l m l m	StD	o o o o o o o o o o o o o o o o o o o
0.000701 0.002564 0.005480 GFC28RAS Radium-228 0.5 5.75 6.13 PIC	Tracer Aliquot (mL)	555555555555555555555555555555555555555
Pipet, 0.1 ml Stdev: +/- Pipet, 0.5 ml Stdev: +/- Pipet, 1 ml Stdev: +/- Procedure Code: Parmname: Required MDA: Halflife of Ra-228: Halflife of Ac-228: Batch counted on: BKG Count time:	Tracer Samp. Count Uncertainty (cpm)	4.66% 4.28% 4.49% 4.45% 4.19% 4.19% 4.19% 4.38% 4.48% 4.48% 4.33% 4.80% 4.56%
Pipet, 0. Pipet, 0. Pipet, 1. Piget,	Tracer Concentration (cpm) (Ba-133 Samp.)	186.2 215.8 201.4 205.7 220.2 223.8 174.6 206.8 208.5 199.2 199.2 175.9 176.7
0503-B 9/13/2009 180.32 0.10 0503-B 9/13/2009 180.32 0.10 0112-J 2/17/2010 0.10	Tracer Ref. Count Uncertainty (cpm)	4.07% 4.07% 4.07% 4.07% 4.07% 4.07% 4.07% 4.07% 4.07% 4.07% 4.07% 4.07%
Spike S/N: Spike Exp Date: Spike Activity (dpm/ml): Spike Volume Added: LCS Exp Date: LCS Activity (dpm/ml): LCS Volume Added: Tracer S/N: Tracer S/N: Tracer Volume Added:	Tracer Calculations Tracer Concentration (cpm) (Ba-133 Ref.)	235.4 235.4
	Sample Date/Time	7/28/2009 12:55 7/28/2009 7:58 7/28/2009 7:14 7/29/2009 7:14 7/29/2009 8:14 7/29/2009 8:14 7/29/2009 10:15 7/29/2009 10:15 7/29/2009 10:15 7/29/2009 11:50 7/29/2009 11:50 7/29/2009 11:15 7/29/2009 11:15 7/29/2009 11:15 7/29/2009 11:15 7/29/2009 11:15 7/29/2009 11:15 7/29/2009 11:15 7/29/2009 11:15 7/29/2009 11:15 7/28/2009 0:00 7/28/2009 7:58 8/5/2009 0:00
File type: Excel Version #: 1.2.4 Batch: 891149 Analyst: JXC5 Prep Date: 8/5/2009 undance: 1 certainty: 0 tion Date: 7/2/2009 Bue Date: 7/2/2009 Geometry: CeF on 25mm Filter	Sample Aliquot StDev. G	3.3237E-03 3.3257E-03 3.3256E-03 3.3253E-03 3.3253E-03 3.3255E-03 3.3256E-03 3.3256E-03 3.3239E-03 3.3237E-03 3.3236E-03 3.3236E-03 3.3236E-03 3.3250E-03 3.3250E-03 3.3250E-03 3.3250E-03 3.3250E-03 3.3250E-03 3.3250E-03
Filename: RA228.XL File type: Excel Version #: 1.2.4 Batch: 891149 Analyst: JXC5 Prep Date: 8/5/2009 Ra-228 Abundance: 1 Method Uncertainty: 0 Calibration Date: 7/2/2009 Calibration Due Date: 7/3/2009 Geometry: CeF on 25	Sample Aliquot G	1.0030 1.0230 1.0260 1.0190 1.0190 1.0200 1.0200 1.0200 1.0050 1.0120 1.0150 1.0150 1.0150 1.0150 1.0150
Filename: R File type: E Version #: 1. Batch: 8 Analyst: JJ Prep Date: 8 Prep Date: 8 Ra-228 Abundance: 1 Ra-228 Method Uncertainty: 0 Calibration Date: 7/ Geometry: C	Sample Characteristics Sample Pos. ID	294267002.1 234267003.1 234267004.1 234267005.1 234267005.1 234267005.1 234267001.1 23426701.1 23426701.1 23426701.1 23426701.1 23426701.1 23426701.1 23426701.1 23426701.1 23426701.1 23426701.1 23426701.1 23426701.1 23426701.1 23426701.1 23426701.1 23426701.1
	Sample Pos.	- 6 6 7 6 6 6 7 7 7 7 9 7 8 6 6 7 7 7 8 7 9 7 8 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8

20 E	Count raw Data	_ 0	00000	4	3	Detector	Detector Efficiency	Weekly Bkg	Bkg Count		Count			Ac-228	Calculated Sample	Sample
Pos.	ID	(min.)	Gross Couris Alpha Beta	Beta	cbm	cpm/dpm)	error (cpm/dpm)	mdo	min.)	Separation Date/Time	Start Date/Time	Ra-228 Decay	Ac-228 Decay	Count	Recovery %	Recovery Error %
-	2 A	06	18	124	1.378	0.6258	0.00816	0.444	200	8/12/2009 9:55	8/12/2009 14:02	0.995	0.628	1.087	79.10%	3.25%
N	2	09	9	ಜ	0.883	0.6119	0.00479	0.326	200	8/12/2009 9:55	8/12/2009 14:32	0.995	0.593	1.058	91.67%	3.12%
က	5	390	20	427	1.095	0.6348	0.00816	0.480	200	8/12/2009 9:55	8/12/2009 19:24	0.995	0.342	1.412	84.28%	3.19%
√ 1	5A	06	52	<u>8</u>	1.011	0.6172	0.00349	0.478	200	8/12/2009 9:55	8/12/2009 14:25	0.995	0.600	1.087	85.56%	3.17%
ւր 4	ပ္ထ	8	N :	115	1.438	0.6339	0.00816	0.472	200	8/12/2009 9:55	8/12/2009 14:25	0.995	0.601	1.077	87.38%	3.16%
9 4	& ∃	6	<u>5</u>	142	1.578	0.6247	0.00816	0.674	200	8/12/2009 9:55	8/12/2009 14:32	0.995	0.593	1.087	93.54%	3.10%
_	13A	390	1 62	420	1.077	0.6410	0.00816	0.488	200	8/12/2009 9:55	8/12/2009 19:25	0.995	0.342	1.412	95.07%	3.08%
ω	13A	8	42	13	1.488	0.6410	0.00816	0.488	200	8/12/2009 9:55	8/12/2009 14:19	0.995	0.608	1.077	82.58%	3.21%
თ :	6	2	တ	99	0.943	0.6257	0.00816	0.378	200	8/12/2009 9:55	8/12/2009 14:02	0.995	0.628	1.067	74.17%	3.31%
6	පි	8	17	92	0.950	0.6120	0.00816	0.500	200	8/12/2009 9:55	8/12/2009 14:41	0.995	0.583	1.077	94.14%	3.09%
=	_ ₹	20	9	86	1.400	0.6303	0.00600	0.336	200	8/12/2009 9:55	8/12/2009 14:55	0.995	0.568	1.067	88.57%	3.14%
2	138	390	28	936	1.631	0.6526	0.00816	1.308	200	8/12/2009 9:55	8/12/2009 19:25	0.995	0.341	1.412	87.85%	3.15%
<u>e</u>	=	09	9	8	1.350	0.6348	0.00816	0.480	200	8/14/2009 7:20	8/14/2009 9:59	0.995	0.740	1.058	84.21%	3.51%
4	13A	0	78	2	1.067	0.6410	0.00816	0.488	200	8/14/2009 7:20	8/14/2009 10:00	0.995	0.739	1.058	90.52%	3.44%
5	148	390	108	424	1.087	0.6266	0.00816	0.832	200	8/12/2009 9:55	8/12/2009 19:25	0.995	0.341	1.412	86.58%	3.16%
9	V 6	380	સ	329	0.921	0.6496	0.00816	0.340	200	8/12/2009 9:55	8/12/2009 19:28	0.995	0.339	1.412	101.23%	3.03%
12	9	380	15	73	1.997	0.6137	0.00816	1.198	200	8/12/2009 9:55	8/12/2009 19:29	0.995	0.339	1.412	84.62%	3.18%
<u>∞</u>	၁	390	19	220	0.692	0.6250	0.00816	0.344	200	8/12/2009 9:55	8/12/2009 19:29	966.0	0.339	1.412	84.11%	3.19%
6	6	8	4	4	0.683	0.6496	0.00816	0.340	200	8/12/2009 9:55	8/12/2009 14:02	966.0	0.627	1.058	76.30%	3.28%
8	ပ္မ	2	7	37	0.529	0.6273	0.00816	0.350	200	8/12/2009 9:55	8/12/2009 14:02	0.997	0.627	1.067	74.72%	3.31%
2	9	390	161	545	1.397	0.6320	0.00816	0.924	200	8/12/2009 9:55	8/12/2009 19:28	0.995	0.339	1.412	89.51%	3.13%
8	8	ဓ	8	268	8.933	0.6332	0.00816	1.920	200	8/12/2009 9:55	8/12/2009 13:04	0.995	0.700	1.029	75.06%	3.30%
ജ —	9	ဓ	17	8 4	6.800	0.6320	0.00816	0.924	200	8/12/2009 9:55	8/12/2009 15:15	0.997	0.547	1.029	82.24%	3.21%

Results									2 SIGMA	2 SIGMA						
	Decision Level	Critical Level	Required MDA	MDA	Sample Act. Conc.	Sample Act. Error	Net Count Rate	Net Count Rate Error	Counting	Total Prop. Uncertainty	Sample	Sample			Nominal	
Pos.	pCi/G	pCi/G	pCi/G	pCi/G	pCi/G	pCi/G	CPM	CPM	pCi/G	pCi/G	8	Туре	RPD	RER	pCi/G	Recovery
-	0.2807	0.1982	0.5	0.4490	1.4746	0.1404	0.9338	0.1273	0.3939	0.4057		SAMPLE				
8	0.2559	0.1807	0.5	0.4317	0.7846	0.2247	0.5573	0.1240	0.3421	0.3456		SAMPLE				
က	0.3718	0.2625	0.5	0.5513	2.0965	0.1052	0.6149	0.0614	0.4102	0.4321		SAMPLE				-
<u>1</u>	0.2847	0.2010	0.5	0.4534	0.8228	0.2096	0.5331	0.1104	0.3340	0.3380		SAMPLE				
գ 4	0.2773	0.1957	0.5	0.4454	1.3888	0.1462	0.9655	0.1375	0.3877	0.3978		SAMPLE				
9 5	0.3071	0.2168	0.5	0.4804	1.2674	0.1554	0.9038	0.1374	0.3776	0.3860		SAMPLE				
	0.3314	0.2340	0.5	0.4912	1.7750	0.1086	0.5889	0.0611	0.3611	0.3780		SAMPLE				
80	0.2916	0.2058	0.5	0.4675	1.4869	0.1439	0.9995	0.1399	0.4079	0.4192		SAMPLE				
6	0.2944	0.2078	0.5	0.4847	9606.0	0.2139	0.5649	0.1193	0.3764	0.3814		SAMPLE				
<u>و</u>	0.2800	0.1977	0.5	0.4484	0.6352	0.2542	0.4500	0.1135	0.3139	0.3165		SAMPLE				
Ξ	0.2574	0.1818	0.5	0.4275	1.5893	0.1389	1.0640	0.1438	0.4209	0.4327		SAMPLE				•
12	0.5848	0.4129	0.5	0.8508	1.0485	0.2575	0.3228	0.0824	0.5249	0.5292		SAMPLE				
<u>ნ</u>	0.2654	0.1874	0.5	0.4349	1.0468	0.1797	0.8700	0.1532	0.3612	0.3688		SAMPLE				
4	0.2476	0.1748	0.5	0.4052	0.6442	0.2393	0.5787	0.1369	0.2988	0.3022		SAMPLE				
15	0.4898	0.3458	0.5	0.7178	0.8704	0.2635	0.2552	0.0667	0.4461	0.4496		SAMPLE				
16	0.2492	0.1759	0.5	0.3727	1.5758	0.1001	0.5805	0.0551	0.2934	0.3091		SAMPLE				
17	0.6156	0.4346	0.5	0.8967	2.8564	0.1134	0.7994	0.0867	0.6072	0.6347		SAMPLE				-
18	0.3258	0.2300	0.5	0.4872	1.2292	0.1463	0.3483	0.0496	0.3433	0.3524		SAMPLE				-
19	0.2815	0.1987	0.5	0.4732	0.5206	0.3218	0.3433	0.1099	0.3265	0.3283		SAMPLE				
8	0.2731	0.1928	0.5	0.4522	0.2772	0.5098	0.1786	0.0908	0.2764	0.2770		WB				
21	0.4901	0.3460	0.5	0.7169	1.5334	0.1590	0.4734	0.0737	0.4678	0.4779	234267002.1	DOP	64.6%			
ឧ	6.6329	4.6829	0.5	10.4588	76.6532	0.0890	7.0133	0.5492	11.7650	13.3746	234267002.1	WS			63.6192	119.3%
ន	0.6514	0.4599	0.5	1.0746	9.0921	0.0879	5.8760	0.4780	1.4498	1.5663		SOT			7.6919	118.2%

Notes:

1 - Results are decay corrected to Sample Date/Time
2 - Reference date for Spike Activity (dpm/ml) is the batch Prep Date
3 - Spike Nominals are decay corrected to Sample Date/Time

Time (min.) Alpha Counts Beta Counts		Count Start Time	Count End Time	Machine
18				Protess
? დ	ند		8/12/2009 15:32	Protean
390 50 427	رد		8/13/2009 1:54	Protean
12	رد	8/12/2009 14:25 8	8/12/2009 15:55	Protean
8	<i>ر</i> ب	8/12/2009 14:25 8	8/12/2009 15:45	Protean
12	<i>ل</i> د	8/12/2009 14:32 8	8/12/2009 16:02	Protean
162		8/12/2009 19:25	8/13/2009 1:55	Protean
42	<i>ل</i> د	8/12/2009 14:19 8	8/12/2009 15:39	Protean
σ	رد	8/12/2009 14:02 8	8/12/2009 15:12	Protean
17	<i>د</i>	8/12/2009 14:41 8	8/12/2009 16:01	Protean
5	<i>ل</i> د	8/12/2009 14:55 8	8/12/2009 16:05	Protean
58	ىد	8/12/2009 19:25	8/13/2009 1:55	Protean
10		8/14/2009 9:59 8	8/14/2009 10:59	Protean
28	<i>و</i> ر	8/14/2009 10:00 8	8/14/2009 11:00	Protean
108		8/12/2009 19:25	8/13/2009 1:55	Protean
31		8/12/2009 19:28	8/13/2009 1:58	Protean
15		8/12/2009 19:29	8/13/2009 1:59	Protean
19	<i>ل</i> ہ	8/12/2009 19:29	8/13/2009 1:59	Protean
4		8/12/2009 14:02 8	8/12/2009 15:02	Protean
7	<i>ل</i> د	8/12/2009 14:02 8	8/12/2009 15:12	Protean
161		8/12/2009 19:28	8/13/2009 1:58	Protean
2	<i>و</i> د	8/12/2009 13:04 8	8/12/2009 13:34	Protean
0 17 204		8/12/2009 15:15 8	8/12/2009 15:45	Protean

ASSAY 14-Aug-09 3:03:57

Protocol id 8 228_REC

Time limit 180 Count limit 50000

Isotope Ba-133

Protocol date 9-Apr-07 10:03:07

Run id. 25

POS	RAC	(BATCH	TIME	COUNTS	CPM	ERROR	% RECOVERY	COUNT TIME
	1	98	1	180	680	196.3	4.52		03:04:04
	2	98	2	180	587	165.3	5	84.21	03:07:15
	3	98	3	3 180	624	177.7	4.79	90.52	03:10:27
	4	98	4	180	524	144.3	5.42	73.51	03:13:38
	5	98	5	180	589	165.9	4.99	84.51	03:16:49

_
9
0
4
_
_
O)
œ
⋖

Radium-228 Solid

			Pipet, 0.1 ml Stdev: +/- 0.000701 ml	Ū	Pipet, 1 ml Stdev: +/- 0.005480 ml		Procedure Code: GFC28RAS		0.5	5.75	Halflife of Ac-228: 6.13 hours	PIC PIC	BKG Count time: 500 min
Spike S/N: 0503-B	Date: 9/13/2009		0.10	Pipet	LCS S/N: 0503-B Pipe	Date: 9/13/2009		kdded: 0.10		0112-J	2/17/2010	0.10	
Spike	Spike Exp Date	Spike Activity (dpm/ml):	Spike Volume Added:		571	LCS Exp Date	LCS Activity (dpm/ml):	LCS Volume Added:		Tracer S/N:	Tracer Exp Date :	Tracer Volume Added:	Filter
Filename: RA228.XLS	File type : Excel	Version # : 1.2.4		Batch: 891149	Analyst: JXC5	Prep Date: 8/5/2009		Ra-228 Abundance: 1	Ra-228 Method Uncertainty: 0		Calibration Date: 7/2/2009	Calibration Due Date: 7/31/2010	Geometry: CeF on 25mm Filter

									200	-
Sample	Sample Characteristics		Sample		Tracer Calculations			Tracer Samp.		
		Sample	Aliquot		Tracer	Tracer Ref.	Tracer	Count	Tracer	Tracer
	Sample	Aliquot	StDev.	Sample	Concentration (cpm)	Count	Concentration (cpm)	Uncertainty	Aliquot	Alidnot
Pos.	Ω	o	o	Date/Time	(Ba-133 Ref.)	Uncertainty (cpm)	(Ba-133 Samp.)	(cbm)	(m)	StDev. (mL)
-	234267001.1	1.0030	3.3237E-03	7/28/2009 12:55	235.4	4.07%	186.2	4.66%	0.1	0.000701
Ø	234267002.1	1.0230	3.3257E-03	7/28/2009 7:58	235.4	4.07%	215.8	4.28%	0.1	0.000701
က	234267003.1	1.0260	3.3260E-03	7/28/2009 8:37	235.4	4.07%	198.4	4.49%	0.1	0.000701
4	234267004.1	1.0060	3.3240E-03	7/28/2009 9:21	235.4	4.07%	201.4	4.45%	0.1	0.000701
Ŋ	234267005.1	1.0190	3.3253E-03	7/29/2009 7:14	235.4	4.07%	205.7	4.40%	0.1	0.000701
ဖ	234267006.1	1.0130	3.3247E-03	7/29/2009 7:44	235.4	4.07%	220.2	4.23%	0.1	0.000701
7	234267007.1	1.0190	3.3253E-03	7/29/2009 8:14	235.4	4.07%	223.8	4.19%	0.1	0.000701
œ	234267008.1	1.0190	3.3253E-03	7/29/2009 8:45	235.4	4.07%	194.4	4.54%	0.1	0.000701
თ	234267009.1	1.0300	3.3265E-03	7/29/2009 9:20	235.4	4.07%	174.6	4.84%	0.1	0.000701
우	234267010.1	1.0280	3.3263E-03	7/29/2009 10:15	235.4	4.07%	221.6	4.21%	0.1	0.000701
=	234267011.1	1.0200	3.3254E-03	7/29/2009 10:45	235.4	4.07%	208.5	4.36%	0.1	0.000701
2	234267012.1	1.0050	3.3239E-03	7/29/2009 10:51	235.4	4.07%	206.8	4.38%	0.1	0.000701
<u>5</u>	234267013.1	1.0060	3.3240E-03	7/29/2009 11:15	196.3	4.52%	165.3	2.00%	0.1	0.000701
4	234267014.1	1.0030	3.3237E-03	7/29/2009 11:50	196.3	4.52%	177.7	4.79%	0.1	0.000701
क	234267015.1	1.0120	3.3246E-03	7/29/2009 8:44	235.4	4.07%	203.8	4.42%	0.1	0.000701
9	234267016.1	1.0560	3.3292E-03	7/29/2009 9:13	235.4	4.07%	238.3	4.04%	0.1	0.000701
17	234267017.1	1.0160	3.3250E-03	7/29/2009 10:18	235.4	4.07%	199.2	4.48%	0.1	0.000701
6	234267019.1	1.0160	3.3250E-03	7/30/2009 11:15	235.4	4.07%	198.0	4.49%	0.1	0.000701
6	234267020.1	1.0150	3.3249E-03	7/30/2009 11:36	235.4	4.07%	179.6	4.76%	0.1	0.000701
ଷ	1201895425.1	1.0560	3.3292E-03	8/5/2009 0:00	196.3	4.52%	144.3	5.42%	0.1	0.000701
۲,	1201895426.1	1.0290	3.3264E-03	7/28/2009 7:58	235.4	4.07%	210.7	4.33%	0.1	0.000701
8	1201895427.1	0.1280	3.2324E-03	7/28/2009 7:58	235.4	4.07%	176.7	4.80%	0.1	0.000701
ន	1201895428.1	1.0560	3.3292E-03	8/5/2009 0:00	196.3	4.52%	165.9	4.99%	0.1	0.000701

Count	Count raw Data	_					Detector	Weekly Bkg	Bkg						Calculated	-
		Counting				Detector	Efficiency		Count		Count			Ac-228	Sample	Sample
	Detector	Time	Gross Counts	Sounts	Beta	Efficiency	Error		Time	Separation	Start	Ra-228	Ac-228	Count	Recovery	Recovery
Pos.	<u>0</u>	(min.)	Alpha	Beta	cbu	(cbm/dbm)	(cpm/dpm)	шdэ	(min.)	Date/Time	Date/Time	Decay	Decay	Correction	%	Error %
-	2A	06	18	124	1.378	0.6258	0.00816	0.444	200	8/12/2009 9:55	8/12/2009 14:02	0.995	0.628	1.087	79.10%	3.25%
8	2	8	9	23	0.883	0.6119	0.00479	0.326	200	8/12/2009 9:55	8/12/2009 14:32	0.995	0.593	1.058	91.67%	3.12%
ო	#	99 38	20	427	1.095	0.6348	0.00816	0.480	200	8/12/2009 9:55	8/12/2009 19:24	0.995	0.342	1.412	84.28%	3.19%
1	χ	06	52	91	1.011	0.6172	0.00349	0.478	200	8/12/2009 9:55	8/12/2009 14:25	0.995	0.600	1.087	85.56%	3.17%
ւր 4	ပ္ထ	8	0	115	1.438	0.6339	0.00816	0.472	200	8/12/2009 9:55	8/12/2009 14:25	0.995	0.601	1.077	87.38%	3.16%
。 9	8	6	54	142	1.578	0.6247	0.00816	0.674	200	8/12/2009 9:55	8/12/2009 14:32	0.995	0.593	1.087	93.54%	3.10%
_	13A	8	162	420	1.077	0.6410	0.00816	0.488	200	8/12/2009 9:55	8/12/2009 19:25	0.995	0.342	1.412	95.07%	3.08%
۵	13A	8	4	119	1.488	0.6410	0.00816	0.488	200	8/12/2009 9:55	8/12/2009 14:19	0.995	0.608	1.077	82.58%	3.21%
6	5	2	တ	99	0.943	0.6257	0.00816	0.378	200	8/12/2009 9:55	8/12/2009 14:02	0.995	0.628	1.067	74.17%	3.31%
9	9	8	17	92	0.950	0.6120	0.00816	0.500	200	8/12/2009 9:55	8/12/2009 14:41	0.995	0.583	1.077	94.14%	3.09%
=	₹	2	우	86	1.400	0.6303	0.00600	0.336	200	8/12/2009 9:55	8/12/2009 14:55	0.995	0.568	1.067	, 88.57%	3.14%
4	138	380	28	936	1.631	0.6526	0.00816	1.308	200	8/12/2009 9:55	8/12/2009 19:25	0.995	0.341	1.412	87.85%	3.15%
<u>e</u>	14A	380	7	295	0.756	0.6393	0.00816	0.448	200	8/14/2009 7:20	8/14/2009 12:17	0.995	0.570	1.412	84.21%	3.51%
4	13A	8	88	2	1.067	0.6410	0.00816	0.488	200	8/14/2009 7:20	8/14/2009 10:00	0.995	0.739	1.058	90.52%	3.44%
15	1 48	380	108	454	1.087	0.6266	0.00816	0.832	200	8/12/2009 9:55	8/12/2009 19:25	0.995	0.341	1.412	86.58%	3.16%
16	6	990 390	31	329	0.921	0.6496	0.00816	0.340	200	8/12/2009 9:55	8/12/2009 19:28	0.995	0.339	1.412	101.23%	3.03%
12	108	98 38	ŧ	719	1.997	0.6137	0.00816	1.198	200	8/12/2009 9:55	8/12/2009 19:29	0.995	0.339	1.412	84.62%	3.18%
8	<u>ဗ</u>	980 380	6	270	0.692	0.6250	0.00816	0.344	200	8/12/2009 9:55	8/12/2009 19:29	0.996	0.339	1.412	84.11%	3.19%
19	θ	9	4	4	0.683	0.6496	0.00816	0.340	200	8/12/2009 9:55	8/12/2009 14:02	0.996	0.627	1.058	76.30%	3.28%
ଷ	14A	8	5	49	0.817	0.6393	0.00816	0.448	200	8/14/2009 7:20	8/14/2009 10:00	0.997	0.739	1.058	73.51%	3.67%
2	5	98 38	161	545	1.397	0.6320	0.00816	0.924	200	8/12/2009 9:55	8/12/2009 19:28	0.995	0.339	1.412	89.51%	3.13%
8	88	ଚ	N	268	8.933	0.6332	0.00816	1.920	200	8/12/2009 9:55	8/12/2009 13:04	0.995	0.700	1.029	75.06%	3.30%
8	118	09	83	460	7.667	0.6372	0.00816	0.832	200	8/14/2009 7:20	8/14/2009 10:00	0.997	0.739	1.058	84.51%	3.51%

1 - Results are decay corrected to Sample Date/Time
2 - Reference date for Spike Activity (dpm/ml) is the batch Prep Date
3 - Spike Nominals are decay corrected to Sample Date/Time

Results									2 SIGMA	2 SIGMA						
	Decision Level	Critical Level	Required MDA	MDA	Sample Act. Conc.	Sample Act. Error	Net Count Rate	Net Count Rate Error	>	Total Prop. Uncertainty	Samule	Sample			Nominal	<u>-</u>
Pos.	pCi/G	pCi/G	pCi/G	pCi/G	pCi/G	pCi/G	CPM	CPM		pCI/G	00	Туре	RPD	RER	pCi/G	Recovery
-	0.2807	0.1982	0.5	0.4490	1.4746	0.1404	0.9338	0.1273	0.3939	0.4057		SAMPLE				
8	0.2559	0.1807	0.5	0.4317	0.7846	0.2247	0.5573	0.1240	0.3421	0.3456		SAMPLE				
က	0.3718	0.2625	0.5	0.5513	2.0965	0.1052	0.6149	0.0614	0.4102	0.4321		SAMPLE				
ĭ	0.2847	0.2010	0.5	0.4534	0.8228	0.2096	0.5331	0.1104	0.3340	0.3380		SAMPLE				
<u>5</u>	0.2773	0.1957	0.5	0.4454	1.3888	0.1462	0.9655	0.1375	0.3877	0.3978		SAMPLE		1		•
ő	0.3071	0.2168	0.5	0.4804	1.2674	0.1554	0.9038	0.1374	0.3776	0.3860		SAMPLE				
_	0.3314	0.2340	0.5	0.4912	1.7750	0.1086	0.5889	0.0611	0.3611	0.3780		SAMPLE				_
80	0.2916	0.2058	0.5	0.4675	1.4869	0.1439	0.9995	0.1399	0.4079	0.4192		SAMPLE				
6	0.2944	0.2078	0.5	0.4847	9606.0	0.2139	0.5649	0.1193	0.3764	0.3814		SAMPLE				
우	0.2800	0.1977	0.5	0.4484	0.6352	0.2542	0.4500	0.1135	0.3139	0.3165		SAMPLE				
F	0.2574	0.1818	0.5	0.4275	1.5893	0.1389	1.0640	0.1438	0.4209	0.4327		SAMPLE				
12	0.5848	0.4129	0.5	0.8508	1.0485	0.2575	0.3228	0.0824	0.5249	0.5292		SAMPLE				-
13	0.2181	0.1540	0.5	0.3239	0.6385	0.1764	0.3084	0.0532	0.2161	0.2208		SAMPLE				
4	0.2476	0.1748	0.5	0.4052	0.6442	0.2393	0.5787	0.1369	0.2988	0.3022		SAMPLE				
15	0.4898	0.3458	0.5	0.7178	0.8704	0.2635	0.2552	0.0667	0.4461	0.4496		SAMPLE				
9	0.2492	0.1759	0.5	0.3727	1.5758	0.1001	0.5805	0.0551	0.2934	0.3091		SAMPLE				
1	0.6156	0.4346	0.5	0.8967	2.8564	0.1134	0.7994	0.0867	0.6072	0.6347		SAMPLE				_
18	0.3258	0.2300	0.5	0.4872	1.2292	0.1463	0.3483	0.0496	0.3433	0.3524		SAMPLE				
<u>ტ</u>	0.2815	0.1987	0.5	0.4732	0.5206	0.3218	0.3433	0.1099	0.3265	0.3283		SAMPLE				
8	0.2777	0.1960	0.5	0.4573	0.4805	0.3289	0.3687	0.1204	0.3077	0.3097		MB				
21	0.4901	0.3460	0.5	0.7169	1.5334	0.1590	0.4734	0.0737	0.4678	0.4779	234267002.1	PUP PUP	64.6%			
82	6.6329	4.6829	0.5	10.4588	76.6532	0.0890	7.0133	0.5492	11.7650	13.3746	234267002.1	MS			63.6192	119.3%
8	0.3303	0.2332	0.5	0.5233	7.7749	0.0639	6.8347	0.3598	0.8022	0.9733		S			7.6919	101.1%

Clotamoo	1	Time (mim)	Alala		i	į	
Sallipleid	201	usa i mae (man.)	Aipha Counts	Beta Counts	Count Start I me	Count End I ime	Machine
234267001	2 A	06	18	124	8/12/2009 14:02	8/12/2009 15:32	Protean
234267002	2D	09	ဖ	53	8/12/2009 14:32	8/12/2009 15:32	Protean
234267003	110	390	20	427	8/12/2009 19:24	8/13/2009 1:54	Protean
234267004	2 A	06	12	91	8/12/2009 14:25	8/12/2009 15:55	Protean
234267005	ပ္ထ	80	8	115	8/12/2009 14:25	8/12/2009 15:45	Protean
234267006	8 A	06	12	142	8/12/2009 14:32	8/12/2009 16:02	Protean
234267007	13A	390	162	420	8/12/2009 19:25	8/13/2009 1:55	Protean
234267008	13A	80	42	119	8/12/2009 14:19	8/12/2009 15:39	Protean
234267009	20	2	တ	99	8/12/2009 14:02	8/12/2009 15:12	Protean
234267010	Q9	80	17	76	8/12/2009 14:41	8/12/2009 16:01	Protean
234267011	4	2	9	86	8/12/2009 14:55	8/12/2009 16:05	Protean
234267012	13B	390	28	636	8/12/2009 19:25	8/13/2009 1:55	Protean
234267013	14A	390	71	295	8/14/2009 12:17	8/14/2009 18:47	Protean
234267014	13A	9	58	49	8/14/2009 10:00	8/14/2009 11:00	Protean
234267015	14B	390	108	424	8/12/2009 19:25	8/13/2009 1:55	Protean
234267016	8	390	31	359	8/12/2009 19:28	8/13/2009 1:58	Protean
234267017	10B	390	15	779	8/12/2009 19:29	8/13/2009 1:59	Protean
234267019	5	390	19	270	8/12/2009 19:29	8/13/2009 1:59	Protean
234267020	9 4	09	4	14	8/12/2009 14:02	8/12/2009 15:02	Protean
1201895425	14A	09	12	49	8/14/2009 10:00	8/14/2009 11:00	Protean
1201895426	10D	390	161	545	8/12/2009 19:28	8/13/2009 1:58	Protean
1201895427	8B	30	8	268	8/12/2009 13:04	8/12/2009 13:34	Protean
1201895428	118	09	23	460	8/14/2009 10:00	8/14/2009 11:00	Protean

Radiochemistry Batch Checklist, Rev 9

Batch# S91394	Product: Rodium 228	Date: 8/12/09
Batch#	Product: 100 My (G-5	Date

Criteria:	Yes	No	Comments
Sample Solids are less than or equal to100 mg for GAB.			17PA
	 	┼	
	1		M
If activity less 10* MDA/ MDC, error is 150% or less of		1	
sample activity. If greater 10* MDA/ MDC, error is 40%			
or less. If below the MDA/ MDC, error is okay.			
Instrument source check is within limits.	/		
Instrument bkg check is within limits.	1 ~		
I A The A PRI (I I P has been made			
Method RDL/ LLD has been met.	+	+	
If duplicate activities are less 5* MDA/ MDC, then RPD	/		
is 100% or less. If greater 5* MDA/ MDC, then RPD 20% or less. If below the MDA/ MDC, the RPD is 0%.	1		j
Or meets the client's required RER acceptance criteria.			1
Tracer yield is 15-125%. Carrier yield 25-125%.	+	 	
Or meets the client's contract acceptance criteria.			
Method blank is less than the RDL/ LLD.	+	†	
(If rad samples, < 5% of lowest activity)	./	1	
The state of the s	1 .	1	
Sample was run within hold time.	⊥.∕	<u></u>	
	T		
Sample was correctly preserved if required.		1	
	1 /	1	
Smears Taken for Radioactive batches.	1		
L	1./		1
Method Spike and LCS are within	1		1
75-125% or meets the client's contract acceptance criteria.		 	
No blank spaces on data forms. All line outs initialed and dated.	ح		
1		1	
No transcription errors are apparent.		 	
Aux data is correct		1	MA
Aux data is correct.	+	 	14.
Client Special requirements page has been checked.	$\perp \checkmark$	<u>L</u>	
	>	T	
Raw Data and/ or spectrum are included and properly statused.	 	 	
QC data entered into QC database and batch is in REVW			
and different tipe and animomon and period to in the 444	1	†	2.0
Hit notification complete (if necessary)		<u> </u>) y ₁ 0
	1/	T	
Batch entered into Case Narrative.			
	1		
Batch non-conformances completed, if applicable.		 	NA
Batch non-conformances second reviewed and disposition			MP
verified to be completed.	 	 	
Aliquot Correction completed if required.			MA
Povious pamplo historical requite if qualichia	,	1	
Review sample historical results if available (If REMP, results above MDC have been verified			
by historical results, recount or re-analysis.)		l	
by motorioa results, recount of re-analysis./	ــــــــــــــــــــــــــــــــــــــ		

GEL Laboratories, LLC
revised 8/1/08

Frimary Review Performed By:

Secondary Review Performed

Radium-228 Que Sheet

Batch #: 891394	891394	Analys	Analyst:MXS2	First (First Client Due Date: 08/26/2009	te:08/26/2009	Internal Due Date88/15/2009	.0 8/15/20(66	7	9	ع	
Spike Iso	Spike Isotope: Radium-228	Spike Code:	1 2 B	Expiration	ation Date:	Date: 0-12-09	Vol:	Ac-228	Ac-228 Ingrow: D / 01 105	. o :		2	
Tracer Is	33	Tracer Code: O112-5	112-5		ation Date: 2	Date: 2-17-10	Vol: O.1mL	Ac-228	Separat	ion Date	/Time:	Ac-228 Separation Date/Time: 8-10-09	5150
rich Dau		Initials: PC.2	ripet IL	7		Balance ID:	Balance ID: 1742) 60		Witne	SS: W(Witness: MC() 3-6-04	60.0	
Sample II	Sample ID Client Description	Type	Hazard Min Code	Min CRDL Matrix	Matrix	Client	Collect Date & Time	Pos.	Vol (mL) Det#		Ba Yield (%)	Gamma Det. #	
234120018-1	1 EB072709-SO	SAMPLE	3 pCi/L		WATER	KERR003	27-JUL-09 01:30 PM	_	000	7	74 82		
234267018-1	1 FB072909-SO	SAMPLE	3 pCi/L		WATER	KERR003	29-JUL-09 02:25 PM	7	700	, 2	8.8		
234414019-1	1 EB073109-SO	SAMPLE	3 pCi/L		WATER	KERR003	31-JUL-09 11:52 AM	3	5	2	7.77		1
234414020-1	1 EB080309-SO	SAMPLE	3 pCi/L		WATER	KERR003	03-AUG-09 11:50 AM	す	25	7	80.81		1
234414021-1	1 FB080309-SO	SAMPLE	3 pCi/L		WATER	KERR003	03-AUG-09 02:00 PM	ហ	200	20	XX		
1201896008	1201896008-1 MB for batch 891394	MB	3 pCi/L		WATER	QC ACCOUNT	27-JUL-09 01:30 PM	و	700	20	F		ŧ
1201896009	1201896009-1 LCS for batch 891394	t LCS	3 pCi/L		WATER	QC ACCOUNT	27-JUL-09 01:30 PM	T	28		30 87.80	/	
	1201896010-1 LCSD for batch 891394	94 LCSD	3 pCi/L		WATER	QC ACCOUNT	27-JUL-09 01:30 PM	ø	2007	30 78.61	18.6		69
.53							1.1					, 0	
							Z > Z					2	

Data Reviewed By: Offffully Norty

Page 1 of 1

Instrument Used: (Circle One) PIC S/N: 10751-4

Radium 228 Re-Elute / Reprecipitate

 Prep Date 8/10/09
Spike Vol (mls) 0.1
LCS Vol (mls) 0.1
Tracer Vol (mls) 0.1

Ingrow Start Time: 1620 8/10/09
Seperation Time: 2900 8/12/09

Sample ID	Bkr#	Vol. (mls)	Det #	% Yield	Gamma Det #
234120018	_	200	2A	76.23	
234267018	þ	200	20	71.82	
234414019	3	200	5Å	73.38	
234414020	4	200	56	73.04	·
234414021		900	GB	76.81	
MB	6	200	GD_	75.65	
LCS	7_	200	2B	76.34	
2CSD	8	200	3A	75.24	
				<u> </u>	
			,	ļ	
				<u> </u>	
			<u> </u>		
				ļ	

RA891394rp

Radium-228 Liquid

min	200	BKG Count time:			Geometry: CeF on 25mm Filter
	음	Batch counted on :	0.10	Tracer Volume Added:	Calibration Due Date: 7/31/2010
hours	6.13	Halflife of Ac-228:	2/17/2010	Tracer Exp Date :	Calibration Date: 7/2/2009
years	5.75	Halflife of Ra-228:	0112-J	Tracer S/N:	
PCI/L	ო	Required MDA:			Ra-228 Method Uncertainty: 0.1268
	Radinm-228	Parmname :	0.10	LCS Volume Added:	Ra-228 Abundance: 1
	GFC28RAL	Procedure Code:	180.26	LCS Activity (dpm/ml):	
			9/13/2009	LCS Exp Date:	Prep Date: 8/6/2009
Ē	0.005480	Pipet, 1 ml Stdev : +/-	0503-B	CS S/N:	Analyst: MXS2
Ξ	0.002564	Pipet, 0.5 ml Stdev : +/-			Batch: 891394
Ξ	0.000701	Pipet, 0.1 ml Stdev : +/-	N/A	Spike Volume Added:	
			N/A	Spike Activity (dpm/ml):	Version # : 1.2.4
			N/A	Spike Exp Date :	File type : Excel
			K/N	Spike S/N:	Filename : RA228.XLS

Sample	Sample Characteristics		Sample		Tracer Calculations			Tracer Samp.		
		Sample	Alidnot		Tracer	Tracer Ref.	Tracer	Count	Tracer	Tracer
	Sample	Aliquot	StDev.	Sample	Concentration (cpm)	Count	Concentration (cpm)	Uncertainty	Aliquot	Aliquot
Pos.	Q	ب	_	Date/Time	(Ba-133 Ref.)	Uncertainty (cpm)	(Ba-133 Samp.)	(cbm)	(mL)	StDev. (mL)
-	234120018.1	0.2000	1.6007E-05	7/27/2009 13:30	231.8	4.10%	176.7	4.80%	0.1	0.000701
8	234267018.1	0.2000	1.6007E-05	7/29/2009 14:25	217.8	4.25%	169.5	4.92%	0.1	0.000701
က	234414019.1	0.2000	1.6007E-05	7/31/2009 11:52	231.8	4.10%	170.1	4.91%	0.1	0.000701
4	234414020.1	0.2000	1.6007E-05	8/3/2009 11:50	231.8	4.10%	169.3	4.93%	0.1	0.000701
5	234414021.1	0.2000	1.6007E-05	8/3/2009 14:00	233.3	4.09%	179.2	4.76%	0.1	0.000701
9	1201896008.1	0.2000	1.6007E-05	8/6/2009 0:00	233.3	4.09%	176.5	4.81%	0.1	0.000701
7	1201896009.1	0.2000	1.6007E-05	8/6/2009 0:00	233.3	4.09%	178.1	4.78%	0.1	0.000701
œ	1201896010.1	0.2000	1.6007E-05	8/6/2009 0:00	231.8	4.10%	174.4	4.84%	0.1	0.000701

Counting Counting Counting Counting Count Detector Efficiency Efficiency Efficiency Efficiency Efficiency Count Detector Time Separation Start Ra-228 Ac-228 Sample Sampl	<u> </u>	ount raw Data						Detector	Weekly Bkg	Bkg					;	Calculated	
Time Gross Counts Beta Efficiency Error Time Separation Start Ra-228 Ac-228 Count Recovery F (min.) Alpha Beta cpm/dpml (cpm/dpml) cpm/dpml (cpm/dpml) cpm/dpml (min.) Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Decay Count Recovery F 90 5 57 0.633 0.6172 0.00349 0.326 500 8/12/2009 7:00 8/12/2009 10:07 0.995 0.702 1.087 77.82% 90 8 48 0.533 0.06169 0.798 500 8/12/2009 7:00 8/12/2009 10:08 0.702 1.087 73.04% 90 26 114 1.267 0.6638 0.00816 0.752 500 8/12/2009 7:00 8/12/2009 10:08 0.701 1.087 73.04% 90 29 84 0.833 0.6167 0.00816 0.500			Counting				Detector	Efficiency		Count		Count			Ac-228	Sample	Sample
(min.) Alpha Beta cpm (cpm/dpm) cpm (min.) Date/Time Date/Time <t< th=""><th></th><th>Detect</th><th></th><th>_</th><th>Counts</th><th>Beta</th><th></th><th>Error</th><th></th><th>Time</th><th>Separation</th><th>Start</th><th>Ra-228</th><th>Ac-228</th><th>Count</th><th>Recovery</th><th>Recovery</th></t<>		Detect		_	Counts	Beta		Error		Time	Separation	Start	Ra-228	Ac-228	Count	Recovery	Recovery
90 5 57 0.633 0.6172 0.00349 0.478 500 8/12/2009 7:00 8/12/2009 1:0:07 0.995 0.702 1.087 76.23% 90 10 41 0.456 0.6119 0.00479 0.326 500 8/12/2009 7:00 8/12/2009 1:0:07 0.995 0.702 1.087 77.82% 90 26 114 1.267 0.6368 0.00816 0.798 500 8/12/2009 7:00 8/12/2009 1:0:8 0.997 0.701 1.087 73.04% 90 26 114 1.267 0.6163 0.00816 0.752 500 8/12/2009 7:00 8/12/2009 10:08 0.997 0.701 1.087 75.65% 90 26 114 56 0.6120 0.00816 0.500 8/12/2009 7:00 8/12/2009 10:08 0.997 0.701 1.087 75.65% 90 11 56 0.6120 0.00816 0.500 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.087 75.65%	ď	s.	(min.)	Alpha	Beta	шф		(cbm/dbm)	срт	(min.)	Date/Time	Date/Time	Decay	Decay	Correction	%	Error %
90 10 41 0.456 0.6119 0.00479 0.326 500 8/12/2009 7:00 8/12/2009 10:07 0.995 0.702 1.087 77.82% 90 8 48 0.533 0.6258 0.00816 0.444 500 8/12/2009 7:00 8/12/2009 10:08 0.996 0.702 1.087 73.84% 90 26 114 1.267 0.6368 0.00816 0.752 500 8/12/2009 7:00 8/12/2009 10:08 0.997 0.701 1.087 75.65% 90 29 84 0.933 0.6163 0.00816 0.500 8/12/2009 7:00 8/12/2009 10:08 0.997 0.701 1.087 75.65% 90 11 56 0.622 0.6120 0.00816 0.500 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.087 75.65% 60 7 398 6.633 0.6167 0.00943 0.984 50 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.058	_	2A	8	5	57	0.633	0.6172	0.00349	0.478	500	8/12/2009 7:00	8/12/2009 10:07	0.995	0.702	1.087	76.23%	3.31%
90 8 48 0.533 0.6258 0.00816 0.44 500 8/12/2009 7:00 8/12/2009 1:008 0.996 0.702 1.087 73.38% 90 26 114 1.267 0.6368 0.00816 0.798 500 8/12/2009 7:00 8/12/2009 10:08 0.997 0.701 1.087 73.04% 90 29 84 0.933 0.6163 0.00816 0.500 8/12/2009 7:00 8/12/2009 10:08 0.997 0.701 1.087 75.65% 90 11 56 0.622 0.6120 0.00816 0.500 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.087 75.65% 60 7 398 6.633 0.6167 0.00343 0.984 50 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.058 75.24%	2	SD	06	우	4	0.456	0.6119	0.00479	0.326	200	8/12/2009 7:00	8/12/2009 10:07	0.995	0.702	1.087	77.82%	3.40%
90 26 114 1.267 0.6368 0.00816 0.798 500 8/12/2009 7:00 8/12/2009 10:08 0.997 0.701 1.087 73.04% 90 29 84 0.933 0.6163 0.00816 0.752 500 8/12/2009 7:00 8/12/2009 10:08 0.997 0.701 1.087 76.81% 90 11 56 0.622 0.6120 0.00816 0.500 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.087 75.65% 60 7 398 6.633 0.6167 0.00383 1.140 500 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.058 75.24% 60 60 334 5.567 0.00943 0.984 500 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.058 75.24%	۳ -	2 Y	06	ထ	48	0.533	0.6258	0.00816	0.444	200	8/12/2009 7:00	8/12/2009 10:08	966.0	0.702	1.087	73.38%	3.35%
90 29 84 0.933 0.6163 0.00816 0.752 500 8/12/2009 7:00 8/12/2009 10:08 0.997 0.701 1.087 76.81% 76.81% 90 11 56 0.622 0.6120 0.00816 0.500 500 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.087 75.65% 60 7 398 6.633 0.6167 0.00383 1.140 500 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.058 76.34% 60 60 334 5.567 0.5682 0.00943 0.984 500 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.058 75.24%	4 1.	ည္သ	06	2 9	114	1.267	0.6368	0.00816	0.798	200	8/12/2009 7:00	8/12/2009 10:08	0.997	0.701	1.087	73.04%	3.36%
90 11 56 0.622 0.6120 0.00816 0.500 500 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.087 75.65% 75.65% 60 7 398 6.633 0.6167 0.00383 1.140 500 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.058 76.34% 60 60 334 5.567 0.5682 0.00943 0.984 500 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.058 75.24%	န 5 (89	06	83	\$	0.933	0.6163	0.00816	0.752	200	8/12/2009 7:00	8/12/2009 10:08	0.997	0.701	1.087	76.81%	3.29%
60 7 398 6.633 0.6167 0.00383 1.140 500 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.058 76.34% 60 60 334 5.567 0.5682 0.00943 0.984 500 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.058 75.24%	ω 5	9	06	=	26	0.622	0.6120	0.00816	0.500	200	8/12/2009 7:00	8/12/2009 10:08	0.998	0.701	1.087	75.65%	3.31%
60 60 334 5.567 0.5682 0.00943 0.984 500 8/12/2009 7:00 8/12/2009 10:08 0.998 0.701 1.058 75.24%		5B	9	7	398	6.633	0.6167	0.00383	1.140	200	8/12/2009 7:00	8/12/2009 10:08	0.998	0.701	1.058	76.34%	3.30%
		3 A	99	9	334	2.567	0.5682	0.00943	0.984	200	8/12/2009 7:00	8/12/2009 10:08	0.998	0.701	1.058	75.24%	3.32%

Notes:

1 - Results are decay corrected to Sample Date/Time

2 - Reference date for Spike Activity (dpm/ml) is the batch Prep Date

3 - Spike Nominals are decay corrected to Sample Date/Time

Recovery							%6'26	89.9%
Nominal pCi/L							40.5999	40.5999
RER								
RPD								8.5%
Sample Type	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	MB	SOT	CSD
Sample								
2 SIGMA Total Prop. Uncertainty pCi/L	1.3394	1.1179	1.2469	2.0586	1.6174	1.3395	11.2661	10.5621
2 SIGMA Counting Uncertainty pCi/L	1.3060	1.0906	1.2345	1.8472	1.5802	1.3182	4.7630	4.8068
Net Count Rate Error CPM	0.0894	0.0756	0.0825	0.1252	0.1090	0.0890	0.3359	0.3078
Net Count Rate CPM	0.1553	0.1296	0.0893	0.4687	0.1813	0.1222	5.4933	4.5827
Sample Act. Error pCi/L	0.5765	0.5845	0.9247	0.2693	0.6019	0.7286	9690.0	0.0755
Sample Act. Conc. pCi/L	1.1577	0.9537	0.6816	3.5284	1.3416	0.9240	39.7409	36.5120
MDA pCi/L	2.1895	1.8288	2.1696	2.7845	2.6636	2.2659	3.8337	3.9510
Required MDA pCi/L	ဗ	က	က	ო	က	က	က	က
Critical Level pCi/L	0.9706	0.7917	0.9576	1.2668	1.2085	1.0069	1.7360	1.7763
Decision Level pCi/L	1.3747	1.1214	1.3564	1.7943	1.7117	1.4262	2.4589	2.5160
Results Pos.	-	7	ლ.	ť!	5"	7°	7	80

Count Start Time Count End Time Machine	8/12/2009 10:07 8/12/2009 11:37 Protean	8/12/2009 10:07 8/12/2009 11:37 Protean	8/12/2009 10:08 8/12/2009 11:38 Protean	8/12/2009 10:08 8/12/2009 11:38 Protean	8/12/2009 10:08 8/12/2009 11:38 Protean	8/12/2009 10:08 8/12/2009 11:38 Protean	8/12/2009 10:08 8/12/2009 11:08 Protean	8/12/2009 10:08 8/12/2009 11:08 Protean
Beta Counts	22	41	48	114	84	56	398	334
Alpha Counts Beta Counts	2	10	ω	56	53	=	7	09
Time (min.)	06	06	06	06	06	06	09	09
Instr	2 A	20	2 A	20	6B	0 9	5B	3 A
SampleID	234120018	234267018	234414019	234414020	234414021 6B 90	1201896008	1201896009	1201896010

ASSAY 11-Aug-09 6:13:52

Protocol id 9 228_REC2

Time limit 180 Count limit 50000

Isotope Ba-133

Protocol date 9-Apr-07 10:02:22

Run id. 62

POS	RACK	BATCH	T	IME	COUNTS	СРМ	ERROR	% RECOVERY	COUNT TIME	
	1	90	1	180	787	231.8	4.1		06:13:59	i :
	2	90	2	180	621	176.7	4.8	76.23		
	3	90	-3-	180	558	- 155.5	 5.19	67:0 6	306:20:22-9	AN 8-11-10
	4	90	4	180	602	170.1	4.91	73.38	3 06:23:33	
	5	90	5	180	599	169.3	4.93	73.04	1 06:26:45	
	-6	75	6 -	180	557	155.2	 5.19	66.9	5 08:30:09 4	108-11-10
	-7 -	75	-7-	180	 555	- 154.6	5.2	66.70	06:33:21	41(8-11-10
_	88	75	8_	180	544	151.1	5.28	65.19	06:36:32 	AC 5-11-10
	9	75	9	180	614	174.4	4.84	75.24	1 06:39:44	, •

ASSAY 11-Aug-09 8:04:11

Protocol id 9 228_REC2

Time limit 180 Count limit 50000

Isotope Ba-133

Protocol date 9-Apr-07 10:02:22

Run id. 64

POS RACK BATCH TIME COUNTS CPM ERROR % RECOVERY COUNT TIME
1 90 1 180 745 217.8 4.25 08:04:19

2 90 2 180 600 169.5 4.92 77.82 08:07:30

ASSAY 11-Aug-09 7:39:39

Protocol id

9 228_REC2

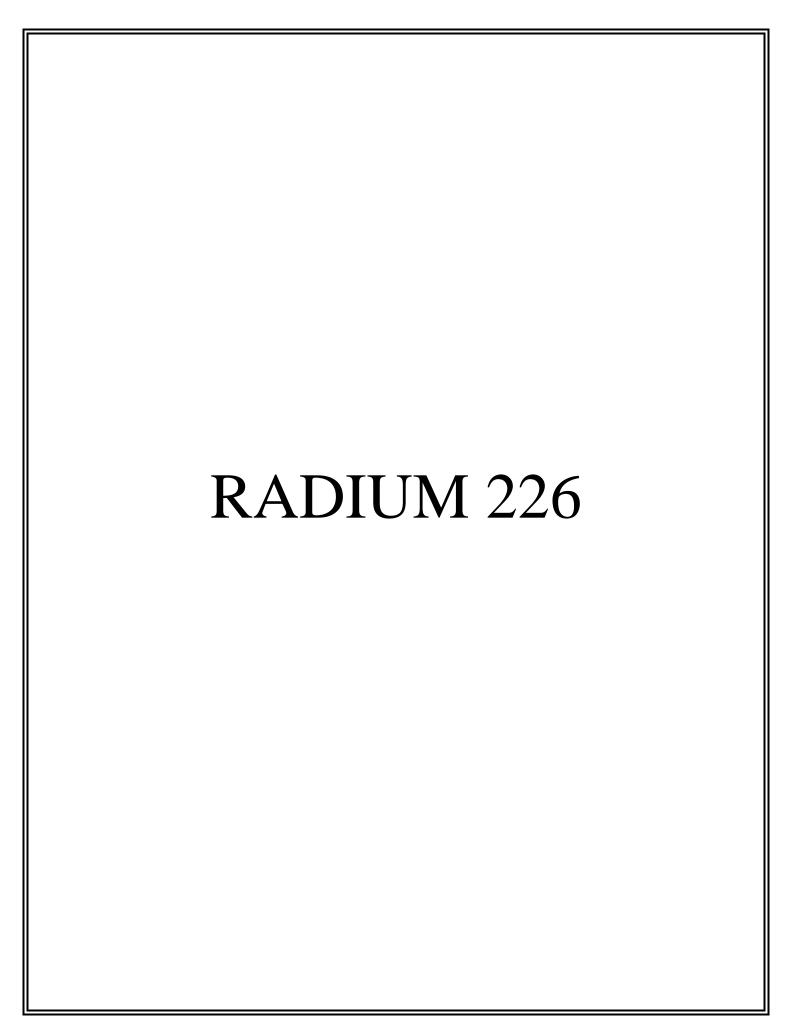
Time limit

180

Count limit

50000

Isotope Ba-133


Protocol date

9-Apr-07 10:02:22

Run id.

63

POS	R/	ACK	BATCH		TIME	COUNTS	СРМ	ERROR	% RECOVERY	COUNT TIME	
	1	90		1	180	791	233.3	4.09		07:39:47	
	2	90		-2	180	 570	- 159.7	 5.1	68.45		1(8-11-10
	3	90		3	180	629	179.2	4.76	76.81	07:46:09	
	4	90		4	180	621	176.5	4.81	75.65	07:49:21	
	5	90		5	180	626	178.1	4.78	76.34	07:52:32	

Radiochemistry Batch Checklist, Rev 9

Criteria:	Vea	INo	Comments
Batch# 892760	Product: 120-220	Date: 8	122109
_	Hadioolielliad A Datéil A	IICUMIOL	, ngv J

Criteria:	Yes	No	Comments
		· · · · · · · · · · · · · · · · · · ·	
Sample Solids are less than or equal to 100 mg for GAB.			NA
Samples have been blank corrected (if required)			NA
If activity less 10° MDA/ MDC, error is 150% or less of			
sample activity. If greater 10° MDA/ MDC, error is 40%	1./		
or less. If below the MDA/ MDC, error is okay.			
Instrument source check is within limits.	1/		
Instrument bkg check is within limits.			
Method RDL/ LLD has been met.			
If duplicate activities are less 5" MDA/ MDC, then RPD			-
is 100% or less. If greater 5" MDA/ MDC, then RPD 20% or		į	
less. If below the MDA/ MDC, the RPD is 0%.		ĺ	
Or meets the client's required RER acceptance criteria.			·
Tracer yield is 15-125%. Carrier yield 25-125%.		_	NA
Or meets the client's contract acceptance criteria.			1011
Method blank is less than the RDL/ LLD.		1	
(if rad samples, < 5% of lowest activity)	 		<u> </u>
Sample was run within hold time.	/		
Sample was correctly preserved if required.			NA
Smears Taken for Radioactive batches.			NA
Method Spike and LCS are within 75-125% or meets the client's contract acceptance criteria.			
No blank spaces on data forms. All line outs initialed and dated.		1	
No transcription errors are apparent		1	!
			NA
Aux data is correct.	 	 	1 - 11
Client Special requirements page has been checked.	/		
Raw Data and/ or spectrum are included and properly statused.	14	<u> </u>	
QC data entered into QC database and batch is in REVW	1	<u> </u>	\.\
Hit notification complete (if necessary)	<u> </u>		INH
Batch entered into Case Narrative.	\ <u>\</u>		
Batch non-conformances completed, if applicable.			NA
Batch non-conformances second reviewed and disposition verified to be completed.			NA
Aliquot Correction completed if required.		, Y	INA
	1	1	
Review sample historical results if available	1 /	1	
(If REMP, results above MDC have been verified	$I \vee$		
by historical results, recount or re-analysis.)	<u> </u>		<u> </u>
GEL Laboratories, LLC			

lit notification complete (if necessary)			WH		
latch entered into Case Narrative.					
Satch non-conformances completed, if applicable.			A(M		
latch non-conformances second reviewed and disposition erified to be completed.			NA		
Niquot Correction completed if required.		¥	NA		
Review sample historical results if available If REMP, results above MDC have been verified by historical results, recount or re-analysis.)					
SEL Laboratories, LLC evised 8/1/08 Primary Review Performed By: 40 8/24/69	U_		KERR	8/24/0	99

Radium-226 Que Sheet	e Sheet	08/11/2009	General Engineering Laboratories, Radiochemistry Division
Batch #: 892760	Analyst:KSD1	First Client Due Date: 08/26/2009	Internal Due Date: 08/15/2009
Spike Isotope: Radium-226	Spike Code:	Expiration Date:	Nom Conc. 24. 16.35 PC1 16
LCS Isotope: Radium-226	LCS Isotope: Radium-226 LCS Code: Ulf 3674	Expiration Date: 7 17110 Vol: 0.1	1.1 Nom Conc. 24.16557C1/L
30000		1	Sample Count Time: 3D (Min)
Prep Date: 6/10/04	Pipet ID: 14 14505 Initials:	2	Witness: 12-8-18-9 Bkg Count Time: 30 (Min)

Total	Counts	7	7	23	6	5	13.	189	135
Bkg	counts	0	6	8	α	∞	Ø	P	B
	Det #	2	\ <u>J</u>	S	٥	1	90	7	S
	Cell#	かどと	ተበተ	\$ 50c	k loou	on de	301	11h 2	105
Count	Date/Time	25%	91330	で表別	94. H	9 1433S	1505	76 1995×K	1505
Start	Date/	1845 8120 log	geels	oleelsk	0)00/20	0/2018	polecis 1010	3/22/2	6ajeel3
N De-em	e/Time	8 JRMS	5488) S	15 ORT	14 Mg0€	× (200	00 60 20	00100 201
End L	in Dat	1248 0	328 Sh2109	87218	102/8	<u>%</u>	Syste	Spri	2005
End Init End LN De-em Start Count	Degas Date/Tin Date/Time	8/18/04 1320 8/12/04 [Slog 132	S 18/4 132 812265	SIBINISE SIDINS	500 SISIA1320 STUN	811816132 Bylos	500 SISINIES SIZIN 1911 8/30/04	K) Ch 132
[0]	oL) Deg	B 8 R	20 8h	Š	So St	30 80	S	8	SICK AC
> .	5	\mathcal{R}	Ñ	B	Ŋ	Ŋ	Ŋ	<u>√</u>	3
							<u>}</u>	'n	ሥ
	Client	KERR003 /	KERR003 4	KERR003 3	KERR003 4	KERR003 S	OC ACCOUNT 6500	QC ACCOUNTY	OCACCOUNTS SOD RICHARD 8/2010 6/2010 501
Min		1 pCi/L KERR003 !	1 pCi/L KERR003 &	1 pC//L KERR003 5	1 pCi/L KERR003 4	1 pCi/L KERR003 S	1 pCi/L QC ACCOUNT	1 pCi/L QC ACCOUNT	1 PCIAL QCACCOUNTS
	CRDL	*	*	1	12	-		_	_
		1 pC/L K	1 pCi/L K	1 pCi/L	1 pCi/L K	1 pCi/L	1 pCi/L	1 pCi/L	1 pCi/L
Hazard	CRDL	WATER 1 pC/L K	WATER 1 pCi/L K	WATER 1 pC/L F	WATER 1 pCi/L R	WATER 1 pCi/L I	MB WATER 1 pCi/L	WATER 1 pCi/L (WATER 1 pCi/L

60)ee/8 dt *

Data Reviewed By Comments:

Instrument ID's:

LUCASI:90988, LUCAS2:136917, LUCAS3:90989, LUCAS4:102753, LUC5:132286, LUC6:170055

Radium-226 Liquid

years EEE 0.000701 0.002564 0.005480 Parmname: Radium-226 Procedure Code: LUC26RAL 1600 3.823 Halflife of Ra-226: Halflife of Rn-222: Pipet, 0.1 ml Stdev : +/-Pipet, 0.5 ml Stdev : +/-Required MDA: Pipet, 1 ml Stdev: +/-0638-H 7/17/2010 268.24 0.10 LCS Exp Date: LCS Activity (dpm/ml): LCS Volume Added: Spike S/N: Spike Exp Date: CCS S/N: Spike Activity (dpm/ml): Spike Volume Added: Filename: RA226.XLS Prep Date: 8/18/2009 Batch: 892760 Analyst: KSD1 Ra-226 Method Uncertainty: 0.0918 File type: Excel Version #: 1.2.4

	Ra-22(Ra-226 Method Uncertainty:0.0918	7: 0.0918	LCS Activity (dpm/mi): LCS Volume Added:	268.24 0.10	4		Hafflife Batch co	Halflife of Rn-222: 3.823 days Batch counted on: LUCAS CELL DETECTOR BKG Count time: 30 min	3823 3.823 UCAS CELL 30	years days L DETECTOR min	
Comple	Sample Characteristics		Sample		Count Raw Data	Data			Wee	Weekly Background	pu	
		Sample	Alignot		Ŭ	Counting					Count	Detector
	Sample	Alignot	StDev.	Sample	Sell C	Time	Gross	Gross			Time	Efficiency
Pos.	Q		J	Date/Time	Number	(min.)	Counts	CPM	Counts	CPM	(min.)	(cpm/dpm)
-	234120018 1	0.5000	2.0256E-05	7/27/2009 13:30	312	30	14	0.467	9	0.200	30	1.9440
۰ ،	234267018 1	0.5000	2.0256E-05	7/29/2009 14:25	404	90	16	0.533	80	0.267	30	1.9310
1 (1	234414019 1	0.5000	2.0256E-05	7/31/2009 11:52	506	8	ន	0.767	∞	0.267	30	2.0040
4	234414020.1	0.5000	2.0256E-05	8/3/2009 11:50	604	30	6	0.300	α	0.067	9	2.1330
ר עק	234414021.1	0.5000	2.0256E-05	8/3/2009 14:00	509	8	5	0.167	80	0.267	30	2.2910
) (C	1201899206.1	0.5000	2.0256E-05	8/18/2009 0:00	301	99	13	0.433	œ	0.267	30	2.0210
۸ د	1201899207.1	0.5000	2.0256E-05	8/18/2009 0:00	412	30	684	22.800	9	0.200	30	1.9670
- α	1201899208.1	0.5000	2.0256E-05	8/18/2009 0:00	501	30	735	24.500	∞	0.267	30	2.0870

Detector Efficiency	Cell	Cell		Rn-222 Ingrow	Count	Ŗ	Rn-222 Corrections	হ	
Error	Calibration	Calibration	De-Gas	End	Start	De-Gas to Ingrowth	Ingrowth	During	Ra-226
(mdp/mdb)	Date	Due Date	Date/Time	Date/Time	Date/Time	Ingrowth	to Count	Count	Decay
0.06082	2/4/2009	2/4/2010	8/18/2009 13:20	8/22/2009 8:45	8/22/2009 14:05	0.499	0.961	1.002	1.000
0.12371	3/2/2009	3/2/2010	8/18/2009 13:20	8/22/2009 8:45	8/22/2009 13:30	0.499	0.965	1.002	1.000
0.14377	3/25/2009	3/25/2010	8/18/2009 13:20	8/22/2009 8:45	8/22/2009 14:05	0.499	0.961	1.002	1.000
0.06605	8/4/2009	8/4/2010	8/18/2009 13:20	8/22/2009 8:45	8/22/2009 14:05	0.499	0.961	1.002	1.000
0.07722	12/19/2008	12/19/2009	8/18/2009 13:20	8/22/2009 9:00	8/22/2009 14:05	0.500	0.962	1.002	1.000
0.06082	2/4/2009	2/4/2010	8/18/2009 13:20	8/22/2009 9:00	8/22/2009 15:05	0.500	0.955	1.002	1.000
0.12371	3/2/2009	3/2/2010	8/18/2009 13:20	8/22/2009 9:00	8/22/2009 14:05	0.500	0.962	1.002	1.000
0.14377	3/25/2009	3/25/2010	8/18/2009 13:20	8/22/2009 9:00	8/22/2009 15:05	0.500	0.955	1.002	1.000

										_
		Recovery							88.9%	90.5%
:	Nominal	pCi/L							24.1655	24.1655
		RER								
		RPD								1.8%
	Sample	Туре	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	MB	S	CSD
	Samble	ОС								
2 SIGMA Total Prop.	Uncertainty	pCi/L	0.2876	0.3194	0.3750	0.1961	0.1924	0.2811	6.6892	7.4893
2 SIGMA Counting	Uncertainty	pCi/L	0.2821	0.3098	0.3407	0.1907	0.1923	0.2791	1.6316	1.6078
Net Count	Rate Error	CPM	0.1491	0.1633	0.1856	0.1106	0.1202	0.1528	0.8756	0.9086
Net Count	Rate	CPM	0.2667	0.2667	0.5000	0.2333	-0.1000	0.1667	22.6000	24.2333
Sample Act.	Error	pCi/L	0.5623	0.6247	0.3981	0.4784	1.2043	0.9185	0.1296	0.1486
Sample Act.	Conc.	PCi/L	0.2575	0.2581	0.4683	0.2053	-0.0816	0.1554	21.4857	21.8785
	MDA	pCi/L	0.4634	0.5213	0.5046	0.2810	0.4397	0.5022	0.4562	0.4863
Required	MDA	pCi/L	 -	-		-	-		-	-
Critical	Level	pCi/L	0.1834	0.2123	0.2054	0.0965	0.1790	0.2045	0.1806	0.1980
ts Decision	Level	pCi/L	0.2598	0.3007	0.2910	0.1367	0.2536	0.2896	0.2558	0.2805
Results		Pos.	-	8	m	4	<u>1</u> "(<u>ල</u> ී	<u>7</u> `	· &

Notes:

1 - Results are decay corrected to Sample Date/Time

2 - Reference date for Spike Activity (dpm/ml) is the batch Prep Date

3 - Spike Nominals are decay corrected to Sample Date/Time

Radiochemistry Batch Checklist, Rev 9

Product: Radium JH Date: 8-27-09 Batch# 893450

Criteria:	Yes	No	Comments
Sample Solids are less than or equal to100 mg for GAB.			N
			NA
		1	l NA
Samples have been blank corrected (if required)	ļ	1	118
If activity less 10° MDA/ MDC, error is 150% or less of	/	Ì	· ·
sample activity. If greater 10° MDA/ MDC, error is 40% or less. If below the MDA/ MDC, error is okay.		ĺ	
Instrument source check is within limits	 		
Instrument bkg check is within limits.			
Instrument ong crook to warm mino.	 		· · · · · · · · · · · · · · · · · · ·
Method RDL/ LLD has been met.		1	
If duplicate activities are less 5° MDA/ MDC, then RPD	1	1	
is 100% or less. If greater 5" MDA/ MDC, then RPD 20% or			
less. If below the MDA/ MDC, the RPD is 0%.	//	1	:
Or meets the client's required RER acceptance criteria.			
Tracer yield is 15-125%. Carrier yield 25-125%.			110
Or meets the client's contract acceptance criteria. "	<u> </u>		1 ////
Method blank is less than the RDL/ LLD.		1 -	7 4
(If rad samples, < 5% of lowest activity)	ļ		
	/	1	
Sample was run within hold time.	 	<u> </u>	
Sample was correctly preserved if required.			NA
Smears Taken for Radioactive batches.			NA
		 	
Method Spike and LCS are within	$I \smile$	1	[
75-125% or meets the client's contract acceptance criteria.	1		
No blank spaces on data forms.			
All line outs initialed and dated.	」 /	1	
No transcription errors are apparent.			
	1		NA
Aux data is correct.	ļ	ļ	11/1/
Client Special requirements page has been checked.	1/	1	
Raw Data and/ or spectrum are included and properly statused.		1	
QC data entered into QC database and batch is in REVW		1	
Lib and Earlier and the control of t			NA
Hit notification complete (if necessary)	+	 	i'n
Batch entered into Case Narrative.			
Batch non-conformances completed, if applicable.			NOR 726872
Batch non-conformances second reviewed and disposition	+	†	140014
verified to be completed.			
Aliquot Correction completed if required.			NA
Boulous comple historical results if sucilable		V^{-}	
Review sample historical results if available (If REMP, results above MDC have been verified	~	1	
by historical results, recount or re-analysis.)		1	
GEL Laboratorios LLC			

GEL Laboratories, LLC

revised 8/1/08

KERR 8-28-09

General Engineering Laboratories, Radiochemistry Division

Internal Due Date: 08/17/2009 Nom Conc: Nom Conc: Vol: Vol: First Client Due Date: 08/28/2009 Expiration Date: 711110 7/7/10 Expiration Date:

0110 11.6180

Sample Count Time: Bkg Count Time: Witness: DJM 8970

2

[nitials:

Pipet ID: 142303

8/14/169

Prep Date:

11.86.00 11861

Spike Code:

Spike Isotope: Radium-226 LCS Isotope: Radium-226

Batch #: 893450

LCS Code:

Analyst: KSD1

Code Matrix

Client Description

Sample I

RSAM7-28E

234267001-1

SA179-0.5B SA179-10B SA179-29B

234267002-1

SAMPLE SAMPLE

Hazard

SOIL

SAMPLE SAMPLE SAMPLE SAMPLE

SOIL SOIL SOIL SOIL

RSAU4-0.5B

234267005-1

234267004-1 234267003-1

3SAU4-10B

234267006-1 234267007-1 234267008-1 234267009-1 234267010-1

RSAU4-20B RSAU4-25B

SOIL

SAMPLE

SOIL

RSAU4-40B

RSAU4-50B **RSAU4-56B**

SAMPLE SAMPLE SOIL

SOIL SOIL

SAMPLE

SAMPLE

SOIL

SAMPLE SAMPLE SOIL

SAMPLE

SOIL

SOIL SOIL

SOIL

SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE

SOIL

SOIL SOIL SOIL SOIL

DUP

SA179-0.5B(234267002DUP) SA179-0.5B(234267002MS)

1201900979-1 1201900978-1

1201900980-1 1201900981-1

MB for batch 893450

g 3

(Min) (Min)

Counts Total 58= 523 88 2 counts ∞ ∞ ∞ ∞ ∞ Cell # Det # S 4 7 S ψ S <u>2</u> م ان 1355 335 Ĕ Staretog 1320 1355 1355 ž 五 0455 daylog 1330 1355 8/16/05 1250 0511 HIM18 DES MOJERETS RAD 33 130 8/26 1050 1250 931 popula 1280 0955 staclog 1320 996/09 1330 MSS 8726/09 1320 930 Shumanso 1970 GILLING 1250 End Init End LN De-em Start Count Date/Time Black 22/28 Boleseles Stolog 8 Spaces 45 8120/09 3 William of Studes (My ora Ora 2 3 3 (mL) Degas Date/Tin Date/Time MUST 1605 ST26105 となる rands aggi will, 8/24/05 Spelies 公と元 KILVIE Sales Stulos Spelos 74105 graps Salazins 8 182 ५११७८। 2012 Spelen 8/1/8 8/26/05 2006 Shills 1600 Shills STLIB 0148/11/100 OC ACCOUNT 201, 040 8/ 216-16-06 Mor that A WICH HOOS 236 Riving 1600 Shulo, 100 230 8 7 1 1 160c 7 Libs 1600 MUSILEDO 10338 July 1600 Shipsieso 8 Wellowiece SMOILEDE D33 4211600 Wer too 8mm Sinia Ita 19866 235 040 800 204 037 -089 -088 202 TQ 5/2 203 120 <u>5</u>2 8 19 OC ACCOUNTS OC ACCOUNTA! KERR003 /3 KERR003/5 KERR003 16 KERR003 18 KERR003 19 KERR003 (KERR003 12 KERR003/4 KERR003 17 KERR003 /2 KERR003 3 KERR003 S KERR003 & KERR003 17 KERR003 A KERR003 7 KERR003 / KERR003 4 KERR0034 Client 5 pCi/g 5 pCi/g .5 pCi/g .5 pCi/g .5 pCi/g .5 pCi/g .5 pCi/g .5 pCi/g .5 pCi/g .5 pCi/g .5 pCi/g .5 pCi/g .5 pCi/g .5 pCi/g .5 pCi/g .5 pCi/g .5 pCi/g .5 pCi/g 5 pCi/g 5 pCi/g 5 pCi/g

Data Reviewed By:

Page 1 of 1

893 893 100

dailles

18-27-CM

1145/302/109 XXX

OC ACCOUNT 331.040 STUITS 1600 SIZULES

5 pCi/g

CCS

LCS for batch 893450

MS

LUCASI:90988, LUCAS2:136917, LUCAS3:90989, LUCAS4:102753, LUC5:132286, LUC6:170055 Instrument ID's: Comments:

RSAL6-0.5B

RSAL6-10B

RSAL6-28B SA73-0.5B SA73-10B SA73-30B SA49-10B SA49-20B

234267014-1

234267015-1

234267016-1 234267017-1 234267019-1 234267020-1

Radium-226 Solid

0638-H 7/17/2010 268.24 0.10 Spike S/N: Spike Exp Date:

Filename: RA226.XLS File type: Excel Version #: 1.2.4

Spike Activity (dpm/ml): Spike Volume Added:

CCS S/N: LCS Exp Date: LCS Activity (dpm/ml): LCS Volume Added:

Batch: 893450
Analyst: KSD1
Prep Date: 8/19/2009
Ra-226 Abundance: 1
Ra-226 Method Uncertainty: 0.1153

0638-H 7/17/2010 268.24 0.10

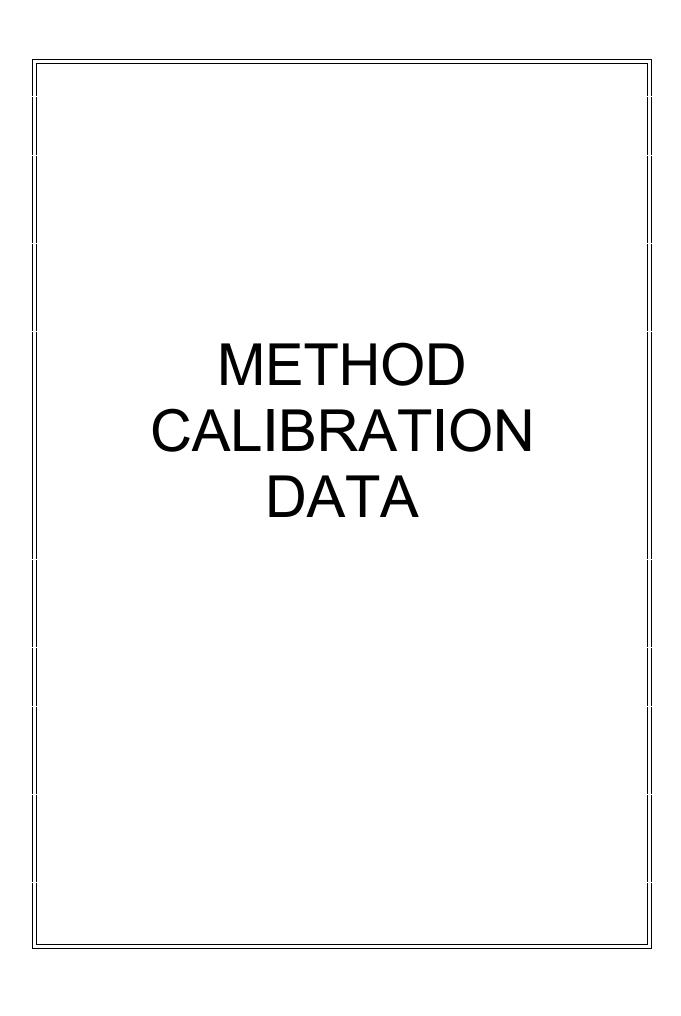
Pipet, 0.1 ml Stdev: +/- 0.000701 ml Pipet, 0.5 ml Stdev: +/- 0.002564 ml Pipet, 1 ml Stdev: +/- 0.005480 ml Pipet, 0.1 mi Stdev: +/- 0.000701 Pipet, 0.5 ml Stdev: +/- 0.002564

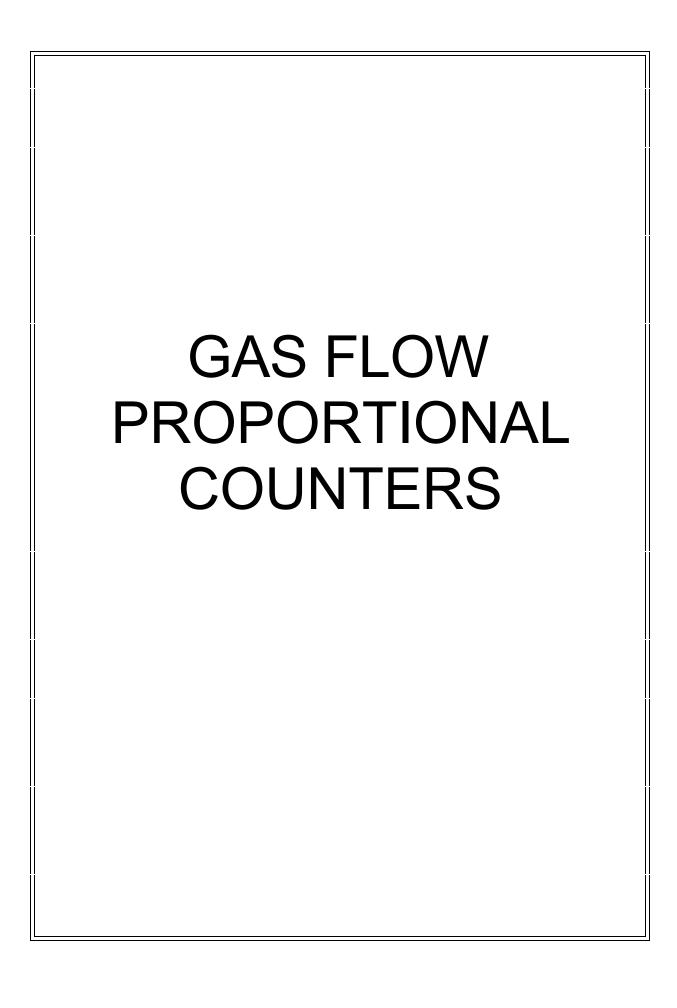
pCi/G years davs Procedure Code: LUC26RAS Parmname: Radium-226 0.5 1600 3.823 Required MDA: Halflife of Ra-226 : Halflife of Rn-222:

	Batch counted on: LUCAS CELL DETECTOR	BKG Count time: 30 min	
2:			

Sample	Sample Characteristics	clame	Sample		Count Raw Data	v Data			We	Weekly Background	nd Count	Detector
Pos.	Sample ID	Aliquot G	StDev.	Sample Date/Time	Cell	Time (min.)	Gross Counts	Gross	Counts	CPM	Time (min.)	Efficiency (cpm/dpm)
-	234267001 1	1 0060	3 3240F-03	7/28/2009 12:55	102	99	193	6.433	80	0.267	90	1.6470
- 01	234267002.1	1.0400	3.3275E-03	7/28/2009 7:58	504	8	46	1.533	4	0.133	93	2.1930
၊က	234267003.1	1.0350	3.3270E-03	7/28/2009 8:37	302	8	196	6.533	ß	0.167	93	2.0570
4	234267004.1	1.0140	3.3248E-03	7/28/2009 9:21	411	8	82	2.733	7	0.233	၉	1.8240
2	234267005.1	1.0080	3.3242E-03	7/29/2009 7:14	510	30	55	1.833	4	0.133	30	1.4580
9	234267006.1	1.0280	3.3263E-03	7/29/2009 7:44	602	30	98	2.867	ო	0.100	30	2.1680
7	234267007.1	1.0040	3.3238E-03	7/29/2009 8:14	111	30	23	1.767	9	0.200	8	1.5750
œ	234267008.1	1.0030	3.3237E-03	7/29/2009 8:45	201	8	148	4.933	9	0.200	30	1.9930
6	234267009.1	1.0150	3.3249E-03	7/29/2009 9:20	309	8	အ	2.100	80	0.267	30	1.8770
9	234267010.1	1.0210	3.3255E-03	7/29/2009 10:15	402	30	118	3.933	80	0.267	30	2.1180
=	234267011.1	1.0260	3.3260E-03	7/29/2009 10:45	505	93	115	3.833	က	0.100	30	2.3310
12	234267012.1	1.0020	3.3235E-03	7/29/2009 10:51	604	93	47	1.567	9	0.200	30	2.1330
13	234267013.1	1.0150	3.3249E-03	7/29/2009 11:15	104	30	11	2.567	4	0.133	30	1.9730
4	234267014.1	1.0370	3.3272E-03	7/29/2009 11:50	209	30	116	3.867	7	0.067	8	2.2910
15	234267015.1	1.0330	3.3268E-03	7/29/2009 8:44	311	30	25	1.733	S.	0.167	30	2.1140
16	234267016.1	1.0270	3.3261E-03	7/29/2009 9:13	409	9	4	2.133	7	0.233	8	2.0360
17	234267017.1	1.0170	3.3251E-03	7/29/2009 10:18	203	30	168	5.600	-	0.033	30	1.6010
8	234267019.1	1.0300	3.3265E-03	7/30/2009 11:15	902	တ္ထ	61	2.033	œ	0.267	8	2.1490
19	234267020.1	1.0140	3.3248E-03	7/30/2009 11:36	106	ဓ	66	3.300	ω	0.267	80	1.4860
20	1201900978.1	1.0400	3.3275E-03	8/19/2009 0:00	203	9	23	0.733	æ	0.267	ဓ	2.2540
21	1201900979.1	1.0330	3.3268E-03	7/28/2009 7:58	301	99	42	1.400	8	0.267	30	2.0210
22	1201900980.1	1.0060	3.3240E-03	7/28/2009 7:58	412	႙	286	32.900	80	0.267	8	1.9670
23	1201900981.1	1.0400	3.3275E-03	8/19/2009 0:00	208	30	823	27.433	-	0.033	90	1.5340

	Ra-226	Decay	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
SL	During	Count	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002
Rn-222 Corrections	Ingrowth	to Count	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.973	0.973	0.973	0.973	0.973	0.973	0.973	0.973	0.973	0.973	0.950
Ë	De-Gas to	Ingrowth	0.576	0.576	0.576	0.576	0.576	0.576	0.577	0.577	0.577	0.577	0.577	0.577	0.578	0.578	0.578	0.578	0.578	0.578	0.580	0.580	0.580	0.580	0.580
Count	Start	Date/Time	8/26/2009 12:50	8/26/2009 12:50	8/26/2009 12:50	8/26/2009 12:50	8/26/2009 12:50	8/26/2009 12:50	8/26/2009 13:20	8/26/2009 13:20	8/26/2009 13:20	8/26/2009 13:20	8/26/2009 13:20	8/26/2009 13:20	8/26/2009 13:55	8/26/2009 13:55	8/26/2009 13:55	8/26/2009 13:55	8/26/2009 13:55	8/26/2009 13:55	8/26/2009 14:25	8/26/2009 14:25	8/26/2009 14:25	8/26/2009 14:25	8/26/2009 17:30
Rn-222 Ingrow	End	Date/Time	8/26/2009 9:30	8/26/2009 9:30	8/26/2009 9:30	8/26/2009 9:30	8/26/2009 9:30	8/26/2009 9:30	8/26/2009 9:55	8/26/2009 9:55	8/26/2009 9:55	8/26/2009 9:55	8/26/2009 9:55	8/26/2009 9:55	8/26/2009 10:20	8/26/2009 10:20	8/26/2009 10:20	8/26/2009 10:20	8/26/2009 10:20	8/26/2009 10:20	8/26/2009 10:45	8/26/2009 10:45	8/26/2009 10:45	8/26/2009 10:45	8/26/2009 10:45
	De-Gas	Date/Time	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00	8/21/2009 16:00
S S	Calibration	Due Date	8/29/2009	12/19/2009	2/4/2010	3/2/2010	3/25/2010	8/4/2010	8/29/2009	12/19/2009	2/4/2010	3/2/2010	3/25/2010	8/4/2010	8/29/2009	12/19/2009	2/4/2010	3/2/2010	3/25/2010	8/4/2010	8/29/2009	12/19/2009	2/4/2010	3/2/2010	3/25/2010
<u></u>	Calibration	Date	8/29/2008	12/19/2008	2/4/2009	3/2/2009	3/25/2009	8/4/2009	8/29/2008	12/19/2008	2/4/2009	3/2/2009	3/25/2009	8/4/2009	8/29/2008	12/19/2008	2/4/2009	3/2/2009	3/25/2009	8/4/2009	8/29/2008	12/19/2008	2/4/2009	3/2/2009	3/25/2009
Detector Efficiency	Error	(cpm/dpm)	0.09580	0.07722	0.06082	0.12371	0.14377	0.06605	0.09580	0.07722	0.06082	0.12371	0.14377	0.06605	0.09580	0.07722	0.06082	0.12371	0.14377	0.06605	0.09580	0.07722	0.06082	0.12371	0.14377


		Recovery																						105.4%	120.6%
	Nominal	pCi/G																						12.0110	11.6180
		REB																							
		RPD																					12.7%		
	Sample	Туре	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	MΒ	PU B	WS	SOT
	Sample	ဝ	:																				234267002.1	234267002.1	
2 SIGMA	Total Prop. Uncertainty	pCi/G	0.9837	0.2102	0.7043	0.4472	0.4322	0.3408	0.3443	0.6086	0.3034	0.5248	0.5095	0.2222	0.3692	0.4215	0.2323	0.3195	1.0708	0.2567	0.5919	0.1291	0.2082	4.4374	5.1537
2 SIGMA	Counting Uncertainty	pCi/G	0.4477	0.1622	0.3484	0.2669	0.2735	0.2215	0.2537	0.3243	0.2310	0.2711	0.2372	0.1779	0.2345	0.2386	0.1804	0.2103	0.4166	0.1958	0.3576	0.1217	0.1764	0.8304	0.9594
	Net Count Rate Error	CPM	0.4726	0.2357	0.4726	0.3145	0.2560	0.3145	0.2560	0.4137	0.2809	0.3742	0.3621	0.2427	0.3000	0.3621	0.2517	0.2809	0.4333	0.2769	0.3448	0.1826	0.2357	1.0515	0.9568
	Net Count Rate	CPM	6.1667	1.4000	6.3667	2.5000	1.7000	2.7667	1.5667	4.7333	1.8333	3.6667	3.7333	1.3667	2.4333	3.8000	1.5667	1.9000	5.5667	1.7667	3.0333	0.4667	1.1333	32.6333	27.4000
	Sample Act. Error	pCi/G	0.1227	0.1853	0.0960	0.1765	0.2082	0.1315	0.1895	0.1167	0.1649	0.1604	0.1735	0.1895	0.1562	0.1227	0.1718	0.1928	0.1635	0.1701	0.1487	0.3988	0.2167	0.1279	0.1480
	Sample Act. Conc.	pCi/G	2.9806	0.4916	2.3948	1.0825	0.9263	0.9941	0.7921	1.8931	0.7693	1.3556	1.2480	0.5112	0.9704	1.2774	0.5730	0.7257	2.7305	0.6374	1.6051	0.1587	0.4328	13.1490	14.0162
	MDA	pCi/G	0.2604	0.1440	0.1681	0.2210	0.2235	0.1325	0.2426	0.1919	0.2260	0.1991	0.1232	0.1795	0.1636	0.1073	0.1634	0.1949	0.1251	0.1944	0.2850	0.1832	0.2057	0.2170	0.1305
	Required MDA	pCi/G	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Critical Level	pCi/G	0.1060	0.0545	0.0652	0.0888	0.0845	0.0483	0960.0	0.0760	0.0920	0.0811	0.0449	0.0711	0.0619	0.0369	0.0634	0.0784	0.0380	0.0791	0.1161	0.0746	0.0838	0.0884	0.0397
ús	Decision Level	pCi/G	0.1502	0.0771	0.0924	0.1258	0.1197	0.0684	0.1360	0.1076	0.1304	0.1149	0.0636	0.1006	0.0876	0.0522	0.0898	0.1110	0.0539	0.1121	0.1644	0.1057	0.1186	0.1252	0.0562
Results		Pos.	Ŀ	8	ო	4	2	1 [©]	72	2 ∞	6	9	Ξ	12	13	4	15	16	17	18	19	20	21	22	ឌ


Notes:

1 - Results are decay corrected to Sample Date/Time

2 - Reference date for Spike Activity (dpm/ml) is the batch Prep Date

3 - Spike Nominals are decay corrected to Sample Date/Time

General Engineering Laboratories 2040 Savage Road, Charleston, SC 29414

(843)556-8171

Gas Flow Proportional Counter Calibration Package

Method: Re-228 (PC)

		YES	NO	Comments
1)	Is all calibration standard information enclosed for: primary standard certificate? secondard standard(s) documentation? standard preparation information? standard < 1 Year old or verified?			
2)	Are the detector graphs included? beta absorption curves? beta plateau?			Alerand Etheriany
3)	Is the raw count data included for: the plateau generation? the absorption curve generation? the calibration verification? the crosstalk calculations?	<i>V V V</i>		
4)	Are the calibration verification calculations included? are verification recoveries 100% +/- 25%			
5)	Is the method Carrier Standardization included?			MA
	Prepared By:	Date:	7/2/09	<u>l</u>
	Reviewed By:	Date:	7/2/0	בי בי בי בי בי בי בי בי בי בי בי בי בי ב
	Effe	ective Date:	7/2/09	•

Ra-228 Calibration PROTEAN Detectors

•						Seperation time Decay Corrected	Volume corrected						
	_	Seperation	Count	Ac-228	Spike Vol.	Std. Act.	Standard	raw	ct. time	Beta	corrected*	Ra-228 eff	
Detector	Source #	date	date	decay (dec)	Ra-228 (mL)	Ra-228 dom/mL	Nominal dpm	beta counts	(min)	cpm	cpm	en (cpm/dpm)	
# 1A	[1]	7/1/09 10:45	7/1/2009 13:36	0.7249	1.5	6363.2	9544.8	13564	3	4521.3	6237.434348	0.6535	
1A	2	7/1/09 10:45	7/1/2009 13:52	0.7032	1.5	6363.2	9544.8	12775	3	4258.3	6055.521583	0.6344	
1A	3	7/1/09 10:45	7/1/2009 13:48	0.7083	1.5	6363.2	9544.8	12750	3	4250.0	6000.085083	0.6286	Average EFF
1A	4	7/1/09 10:45	7/1/2009 13:41	0.7170	1.5 1.5	6363.2 6363.2	9544.8 9544.8	12410 13292	3 3	4136.7 4430.7	5769.693602 6176.07771	0.6045 0.6471	0.6303
1B 1B	1 2	7/1/09 10:45 7/1/09 10:45	7/1/2009 13:41 7/1/2009 13:36	0.7174 0.7246	1.5	6363.2	9544.8	13274	3	4424.7	6106.181463	0.6397	
1B	3	7/1/09 10:45	7/1/2009 13:52	0.7031	1.5	6363.2	9544.8	12699	3	4233.0	6020.43969	0.6308	Average EFF
1B	4	7/1/09 10:45	7/1/2009 13:48	0.7082	1.5	6363.2	9544.8	12072	3	4024.0	5682.267909	0.5953	0.6282
1C	1 1	7/1/09 10:45	7/1/2009 13:48	0.7085	1.5	6363.2	9544.8 9544.8	12813 12979	3 3	4271.0 4326.3	6028.410186 6032.15531	0.6316 0.6320	
1C 1C	2 3	7/1/09 10:45 7/1/09 10:45	7/1/2009 13:41 7/1/2009 13:36	0.7172 0.7245	1.5 1.5	6363.2 6363.2	9544.8	12755	3	4320.3	5868.722998	0.6320	Average EFF
1C	4	7/1/09 10:45	7/1/2009 13:52	0.7030	1.5	6363.2	9544.8	11917	3	3972.3	5650.765354	0.5920	0.6176
1D	1	7/1/09 10:45	7/1/2009 13:52	0.7033	1.5	6363.2	9544.8	12473	3	4157.7	5911.258105	0.6193	
1D	2	7/1/09 10:45	7/1/2009 13:48	0.7084	1.5	6363.2	9544.8	12484	3	4161.3	5874.170562	0.6154	A EFF
1D	3	7/1/09 10:45	7/1/2009 13:41	0.7171	1.5 1.5	6363.2 6363.2	9544.8 9544.8	12289 12115	3 3	4096.3 4038.3	5712.363902 5575.47435	0.5985 0.5841	Average EFF 0.6043
1D 2A	4	7/1/09 10:45 7/1/09 10:45	7/1/2009 13:36 7/1/2009 13:57	0.7243 0.6960	1.5	6363.2	9544.8	12499	3	4166.3	5986.085459	0.6272	0.00-10
2A	2	7/1/09 10:45	7/1/2009 14:15	0.6728	1.5	6363.2	9544.8	12103	3	4034.3	5996.6905	0.6283	
2A	3	7/1/09 10:45	7/1/2009 14:09	0.6815	1.5	6363.2	9544.8	11968	3	3989.3	5854.110901	0.6133	Average EFF
2A	4	7/1/09 10:45	7/1/2009 14:02	0.6899	1.5	6363.2	9544.8	11855	3	3951.7	5728.227222	0.6001	0.6172
2B	1	7/1/09 10:45	7/1/2009 14:02	0.6903 0.6958	1.5 1.5	6363.2 6363.2	9544.8 9544.8	12471 12492	3 3	4157.0 4164.0	6022.286434 5984.232843	0.6309 0.6270	
2B 2B	3	7/1/09 10:45 7/1/09 10:45	7/1/2009 13:57 7/1/2009 14:15	0.6727	1.5	6363.2	9544.8	11892	3	3964.0	5892.884561	0.6174	Average EFF
2B	4	7/1/09 10:45	7/1/2009 14:09	0.6814	1.5	6363.2	9544.8	11539	3	3846.3	5644.974311	0.5914	0.6167
2C	1	7/1/09 10:45	7/1/2009 14:08	0.6817	1.5	6363.2	9544.8	12050	3	4016.7	5892.005142	0.6173	
2C	2	7/1/09 10:45	7/1/2009 14:02	0.6901	1.5	6363.2	9544.8	11914	3 3	3971.3 3998.0	5754.571355	0.6029 0.6021	Austral EEC
2C 2C	<u>3</u>	7/1/09 10:45 7/1/09 10:45	7/1/2009 13:58 7/1/2009 14:15	0.6957 0.6726	1.5 1.5	6363.2 6363.2	9544.8 9544.8	11994 10889	3	3629.7	5746.92868 5396.37168	0.5654	Average EFF 0.5969
2D	1	7/1/09 10:45	7/1/2009 14:15	0.6729	1.5	6363.2	9544.8	12010	3	4003.3	5949.493049	0.6233	
2D	2	7/1/09 10:45	7/1/2009 14:08	0.6816	1.5	6363.2	9544.8	12124	3.	4041.3	5929.303014	0.6212	
2D	3	7/1/09 10:45	7/1/2009 14:02	0.6900	1.5	6363.2	9544.8	12168	3	4056.0	5878.360714	0.6159	Average EFF
2D	4	7/1/09 10:45	7/1/2009 13:58	0.6954	1.5	6363.2 6363.2	9544.8 9544.8	11692 11194	3 3	3897.3 3731.3	5604.156523 5589.748519	0.5871 0.5856	0.6119
3A 3A	1 2	7/1/09 10:45 7/1/09 10:45	7/1/2009 14:19 7/1/2009 14:35	0.6675 0.6482	1.5 1.5	6363.2	9544.8	14227	4	3556.8	5486.792678	0.5748	
3A	3	7/1/09 10:45	7/1/2009 14:30	0.6548	1.5	6363.2	9544.8	14180	4	3545.0	5414.108112	0.5672	Average EFF
6A	4	7/1/09 10:45	7/1/2009 14:25	0.6608	1.5	6363.2	9544.8	13754	4	3438.5	5203.464549	0.5452	0.5682
3B	1	7/1/09 10:45	7/1/2009 14:25	0.6612	1.5	6363.2	9544.8	15370	4	3842.5	5811.010789	0.6088	
3B 3B	3	7/1/09 10:45	7/1/2009 14:20 7/1/2009 14:35	0.6673 0.6481	1.5 1.5	6363.2 6363.2	9544.8 9544.8	11695 14905	3 4	3898.3 3726.3	5842.303251 5749.171166	0.6121 0.6023	Average EFF
3B	4	7/1/09 10:45	7/1/2009 14:30	0.6547	1.5	6363.2	9544.8	14220	4	3555.0	5430.231301	0.5689	0.5980
3C	1	7/1/09 10:45	7/1/2009 14:29	0.6552	1.5	6363.2	9544.8	15644	4	3911.0	5969.527404	0.6254	
3C	2	7/1/09 10:45	7/1/2009 14:25	0.6611	1.5	6363.2	9544.8	15964	4	3991.0	6036.911214	0.6325	Average EEE
3C 3C	3	7/1/09 10:45 7/1/09 10:45	7/1/2009 14:20 7/1/2009 14:35	0.6672 0.6480	1.5 1.5	6363.2 6363.2	9544.8 9544.8	11701 14729	3 4	3900.3 3682.3	5846.033242 5682.352456	0.6125 0.5953	Average EFF 0.6164
3D	1	7/1/09 10:45	7/1/2009 14:35	0.6484	1.5	6363.2	9544.8	15152		3788.0	5842.430209	0.6121	4.5.5.
3D	2	7/1/09 10:45	7/1/2009 14:30	0.6550	1.5	6363.2	9544.8	15168	4	3792.0	5789.343603	0.6065	
3D	3	7/1/09 10:45	7/1/2009 14:25	0.6610	1.5	6363.2	9544.8	15295	4	3823.8	5785.011122	0.6061	Average EFF
3D	4	7/1/09 10:45	7/1/2009 14:20	0.6670	1.5	6363.2 6363.2	9544.8 9544.8	10942 15298	3 4	3647.3 3824.5	5468.022172 5959.288371	0.5729 0.6243	0.5994
4A 4A	1 2	7/1/09 10:45 7/1/09 10:45	7/1/2009 14:40 7/1/2009 15:00	0.6418 0.6187	1.5 1.5	6363.2	9544.8	14897	4	3724.3	6019.957238	0.6307	
4A	3	7/1/09 10:45	7/1/2009 14:53	0.6266	1.5	6363.2	9544.8	15050	4	3762.5	6005.095127	0.6291	Average EFF
4A	4	7/1/09 10:45	7/1/2009 14:48	0.6325	1.5	6363.2	9544.8	14462		3615.5	5715.951787	0.5989	0.6208
4B	1	7/1/09 10:45	7/1/2009 14:48	0.6329	1.5 1.5	6363.2 6363.2	9544.8 9544.8	15335 15513		3833.8 3878.3	6057.768128 6044.745331	0.6347 0.6333	
4B 4B	3	7/1/09 10:45 7/1/09 10:45	7/1/2009 14:41 7/1/2009 15:00	0.6416 0.6186	1.5	6363.2	9544.8	14521		3630.3	5868.56525	0.6148	Average EFF
4B	4	7/1/09 10:45	7/1/2009 14:53	0.6265	1.5	6363.2	9544.8	14328		3582.0	5717.547589	0.5990	0.6205
4C	1	7/1/09 10:45	7/1/2009 14:53	0.6268	1.5	6363.2	9544.8	14733		3683.3	5876.583259	0.6157	
4C	2	7/1/09 10:45	7/1/2009 14:48	0.6327	1.5	6363.2	9544.8	14902		3725.5	5888.011911	0.6169 0.6066	Average EFF
4C 4C	3	7/1/09 10:45 7/1/09 10:45	7/1/2009 14:41 7/1/2009 15:00	0.6414 0.6185	1.5 1.5	6363.2 6363.2	9544.8 9544.8	14856 13733		3714.0 3433.3	5790.010642 5550.795964	0.5816	0.6052
4D	1	7/1/09 10:45	7/1/2009 15:00	0.6188	1.5	6363.2	9544.8	14167		3541.8	5723.884149	0.5997	
4D	2	7/1/09 10:45	7/1/2009 14:53	0.6267	1.5	6363.2	9544.8	14204		3551.0	5666.467573	0.5937	
4D	3	7/1/09 10:45	7/1/2009 14:48	0.6326	1.5	6363.2	9544.8	14131	4	3532.8	5584.07765	0.5850	Average EFF
4D	4	7/1/09 10:45	7/1/2009 14:41	0.6413	1.5 1.5	6363.2 6363.2	9544.8 9544.8	13978 14870		3494.5 3717.5	5449.182717 6082.165089	0.5709 0.6372	0.5873
5A 5A	1 2	7/1/09 10:45	7/1/2009 15:06 7/1/2009 15:21	0.6112 0.5943	1.5 1.5	6363.2	9544.8 9544.8	14487		3621.8	6094.223373	0.6385	
5A	3	7/1/09 10:45	7/1/2009 15:17	0.5996	1.5	6363.2	9544.8	14259		3564.8	5945.170793	0.6229	Average EFF
5A	4	7/1/09 10:45	7/1/2009 15:12	0.6047	1.5	6363.2	9544.8	13957	4	3489.3	5770.592799	0.6046	0.6258
5B	1	7/1/09 10:45	7/1/2009 15:12	0.6050	1.5	6363.2	9544.8	14869		3717.3	6144.005028	0.6437 0.6352	
5B 5B	3	7/1/09 10:45 7/1/09 10:45	7/1/2009 15:06 7/1/2009 15:21	0.6111 0.5942	1.5 1.5	6363.2 6363.2	9544.8 9544.8	14821 14289	4	3705.3 3572.3	6063.072791 6011.872812	0.6299	Average EFF
5B	4	7/1/09 10:45	7/1/2009 15:17	0.5995	1.5	6363.2	9544.8	13809		3452.3	5758.629577	0.6033	0.6280
5C	1	7/1/09 10:45	7/1/2009 15:17	0.5994	1.5	6363.2	9544.8	14676	4	3669.0	6120.953053	0.6413	
5C	2	7/1/09 10:45	7/1/2009 15:12	0.6049	1.5	6363.2	9544.8	15122		3780.5	6249.917577	0.6548	A
5C	3	7/1/09 10:45	7/1/2009 15:07	0.6108	1.5	6363.2	9544.8	14958	4	3739.5	6121.8025	0.6414	Average EFF

	7/1/00 10		7/1/2000 15:01	0.5941	4 =	6363.2	9544.8	13831	4	3457.8	5819.905873	0.6097	0.6368
5C 5D	4 7/1/09 10 1 7/1/09 10		7/1/2009 15:21 7/1/2009 15:21	0.5943	1.5 1.5	6363.2	9544.8	14321	4	3580.3	6024.014899	0.6311	0.0000
5D	2 7/1/09 10		7/1/2009 15:17	0.5993	1.5	6363.2	9544.8	14642	4	3660.5	6107.538025	0.6399	
5D	3 7/1/09 10):45	7/1/2009 15:12	0.6048	1.5	6363.2	9544.8	14443	4	3610.8	5970.409434	0.6255	Average EFF
5D	4 7/1/09 10		7/1/2009 15:07	0.6107	1.5	6363.2	9544.8	13954	4	3488.5	5711.973074	0.5984	0.6237
6A	1 7/1/09 10		7/1/2009 15:27	0.5885	1.5	6363.2	9544.8	14018	4	3504.5	5955.42076	0.6239	
6A	2 7/1/09 10		7/1/2009 15:40 7/1/2009 15:36	0.5735	1.5	6363.2 6363.2	9544.8 9544.8	12283 12111	3.5 3.5	3509.4 3460.3	6118.819734 5987.187856	0.6411 0.6273	Average EFF
6A 6A	3 7/1/09 10 4 7/1/09 10		7/1/2009 15:32	0.5779 0.5826	1.5 1.5	6363.2	9544.8	11598	3.5	3313.7	5687.952648	0.5959	0.6221
6B	1 7/1/09 10		7/1/2009 15:32	0.5824	1.5	6363.2	9544.8	12151	3.5	3471.7	5961.398905	0.6246	****
6B	2 7/1/09 10		7/1/2009 15:27	0.5885	1.5	6363.2	9544.8	14371	4	3592.8	6105.389624	0.6397	
6B	3 7/1/09 10		7/1/2009 15:40	0.5734	1.5	6363.2	9544.8	11705	3.5	3344.3	5831.983307	0.6110	Average EFF
6B	4 7/1/09 10		7/1/2009 15:36	0.5779	1.5	6363.2	9544.8	11388	3.5	3253.7	5630.295163	0.5899	0.6163
6C	1 7/1/09 10		7/1/2009 15:36	0.5778	1.5	6363.2 6363.2	9544.8 9544.8	12161 12083	3.5 3.5	3474.6 3452.3	6013.224586 5930.638446	0.6300 0.6213	
6C 6C	2 7/1/09 10 3 7/1/09 10		7/1/2009 15:32 7/1/2009 15:27	0.5821 0.5883	1.5 1.5	6363.2	9544.8	13638	4	3409.5	5795.433731	0.6072	Average EFF
6C	4 7/1/09 10		7/1/2009 15:40	0.5733	1.5	6363.2	9544.8	11218	3.5	3205.1	5590.212659	0.5857	0.6111
6D	1 7/1/09 10		7/1/2009 15:40	0.5732	1.5	6363.2	9544.8	11987	3.5	3424.9	5974.547886	0.6259	
6D	2 7/1/09 10	0:45	7/1/2009 15:36	0.5777	1.5	6363.2	9544.8	12183	3.5	3480.9	6025.235519	0.6313	
6D	3 7/1/09 10		7/1/2009 15:32	0.5819	1.5	6363.2	9544.8	11882	3.5	3394.9	5833.810262	0.6112	Average EFF
6D	4 7/1/09 10		7/1/2009 15:27	0.5881	1.5	6363.2	9544.8	13018	4 3.5	3254.5 3430.6	5533.699914 6047.285606	0.5798 0.6336	0.6120
7A	1 7/1/09 10		7/1/2009 15:46	0.5673	1.5	6363.2 6363.2	9544.8 9544.8	12007 11655	3.5 3.5	3330.0	6027.30696	0.6315	
7A	2 7/1/09 10 3 7/1/09 10		7/1/2009 16:00 7/1/2009 15:56	0.5525 0.5569	1.5 1.5	6363.2	9544.8	11445	3.5	3270.0	5871.972756	0.6152	Average EFF
7A 7A	4 7/1/09 10		7/1/2009 15:50	0.5627	1.5	6363.2	9544.8	11121	3.5	3177.4	5646.694018	0.5916	0.6180
7B	1 7/1/09 10		7/1/2009 15:51	0.5622	1.5	6363.2	9544.8	11968	3.5	3419.4	6082.664171	0.6373	
7B	2 7/1/09 10		7/1/2009 15:46	0.5673	1.5	6363.2	9544.8	12050	3.5	3442.9	6069.322745	0.6359	
7B	3 7/1/09 10	0:45	7/1/2009 16:00	0.5524	1.5	6363.2	9544.8	11675	3.5	3335.7	6038.785014	0.6327	Average EFF
7B	4 7/1/09 10	0:45	7/1/2009 15:56	0.5567	1.5	6363.2	9544.8	11271	3.5	3220.3	5784.331251	0.6060	0.6280
7C	1 7/1/09 10		7/1/2009 15:56	0.5566	1.5	6363.2	9544.8	11781	3.5	3366.0	6047.202464	0.6336	
7C	2 7/1/09 10		7/1/2009 15:51	0.5621	1.5	6363.2	9544.8	11760	3.5 3.5	3360.0 3361.7	5978.073192 5928.878357	0.6263 0.6212	Average EFF
7C	3 7/1/09 10		7/1/2009 15:46	0.5670 0.5523	1.5 1.5	6363.2 6363.2	9544.8 9544.8	11766 10888	3.5	3110.9	5632.598965	0.5901	0.6178
7C 7D	4 7/1/09 10 7/1/09 10		7/1/2009 16:00 7/1/2009 16:00	0.5523	1.5	6363.2	9544.8	11605	3.5	3315.7	6004.271132	0.6291	
7D	2 7/1/09 10		7/1/2009 15:56	0.5565	1.5	6363.2	9544.8	11920	3.5	3405.7	6119.509991	0.6411	
7D	3 7/1/09 10		7/1/2009 15:51	0.5619	1.5	6363.2	9544.8	11933	3.5	3409.4	6067.346561	0.6357	Average EFF
7D	4 7/1/09 10	0:45	7/1/2009 15:46	0.5668	1.5	6363.2	9544.8	11305	3.5	3230.0	5698.36602	0.5970	0.6257
8A	1 7/1/09 10		7/1/2009 16:06	0.5466	1.5	6363.2	9544.8	11673	3.5	3335.1	6101.651756	0.6393	
8A	2 7/1/09 10		7/1/2009 16:19	0.5333	1.5	6363.2	9544.8 0544.8	11172 11258	3.5 3.5	3192.0 3216.6	5985.379105 5982.329368	0.6271 0.6268	Average EFF
8A	3 7/1/09 10 4 7/1/09 10		7/1/2009 16:15 7/1/2009 16:10	0.5377 0.5424	1.5 1.5	6363.2 6363.2	9544.8 9544.8	10977	3.5	3136.3	5782.059146	0.6058	0.6247
8A 8B	4 7/1/09 10 1 7/1/09 10		7/1/2009 16:10	0.5424	1.5	6363.2	9544.8	11583	3.5	3309.4	6102.412618	0.6393	··· ··
8B	2 7/1/09 10		7/1/2009 16:06	0.5466	1.5	6363.2	9544.8	11758	3.5	3359.4	6146.082528	0.6439	
8B	3 7/1/09 10		7/1/2009 16:19	0.5332	1.5	6363.2	9544.8	11499	3.5	3285.4	6161.727069	0.6456	Average EFF
8B	4 7/1/09 10	0:45	7/1/2009 16:15	0.5376	1.5	6363.2	9544.8	10844	3.5	3098.3	5763.600098	0.6038	0.6332
8C	1 7/1/09 1	0:45	7/1/2009 16:15	0.5375	1.5	6363.2	9544.8	11539	3.5	3296.9	6133.762218	0.6426	
8C	2 7/1/09 10		7/1/2009 16:10	0.5422	1.5	6363.2	9544.8	11774	3.5	3364.0	6204.011354	0.6500 0.6360	Average EEE
8C	3 7/1/09 1		7/1/2009 16:06	0.5465	1.5	6363.2	9544.8 9544.8	11611 10809	3.5 3.5	3317.4 3088.3	6070.574762 5793.080291	0.6069	Average EFF 0.6339
8C 8D	4 7/1/09 10 1 7/1/09 10		7/1/2009 16:19 7/1/2009 16:19	0.5331 0.5330	1.5 1.5	6363.2 6363.2	9544.8	11301	3.5	3228.9	6057.336905	0.6346	0.0000
8D	2 7/1/09 1		7/1/2009 16:15	0.5374	1.5	6363.2	9544.8	11412	3.5	3260.6	6067.58377	0.6357	
8D	3 7/1/09 1		7/1/2009 16:10	0.5421	1.5	6363.2	9544.8	11660	3.5	3331.4	6145.674775	0.6439	Average EFF
8D	4 7/1/09 1	0:45	7/1/2009 16:06	0.5464	1.5	6363.2	9544.8	10918	3.5	3119.4	5709.327085	0.5982	0.6281
9A	1 7/1/09 1		7/1/2009 16:24	0.5280	1.5	6363.2	9544.8	11605	3.5	3315.7	6280.207813	0.6580	
9A	2 7/1/09 1		7/1/2009 16:42	0.5106	1.5	6363.2	9544.8	11281	3.5	3223.1	6313.016372 6214.402502	0.6614 0.6511	Average EFF
9A	3 7/1/09 1		7/1/2009 16:33	0.5196 0.5236	1.5	6363.2 6363.2	9544.8 9544.8	11301 10987	3.5 3.5	3228.9 3139.1	5995.155865	0.6281	0.6496
9A 9B	4 7/1/09 1 1 7/1/09 1		7/1/2009 16:29 7/1/2009 16:29	0.5235	1.5 1.5	6363.2	9544.8	11151	3.5	3186.0		0.6376	0.0400
9B	2 7/1/09 1		7/1/2009 16:24	0.5280	1.5	6363.2	9544.8	11462	3.5	3274.9	6202.821366	0.6499	
9B	3 7/1/09 1		7/1/2009 16:42	0.5104	1.5	6363.2	9544.8	11004	3.5	3144.0		0.6454	Average EFF
9B	4 7/1/09 1	0:45	7/1/2009 16:33	0.5195	1.5	6363.2	9544.8	10581	3.5	3023.1	5819.569586	0.6097	0.6356
9C	1 7/1/09 1		7/1/2009 16:33	0.5194	1.5	6363.2	9544.8	11026	3.5	3150.3		0.6354	
9C	2 7/1/09 1		7/1/2009 16:29	0.5235	1.5	6363.2	9544.8 9544.8	11281 11016	3.5 3.5	3223.1 3147.4	6157.122814 5962.583098	0.6451 0.6247	Average EFF
9C 9C	3 7/1/09 1 4 7/1/09 1		7/1/2009 16:24 7/1/2009 16:42	0.5279 0.5103	1.5 1.5	6363.2 6363.2	9544.8	10297	3.5	2942.0		0.6040	0.6273
9D	1 7/1/09 1		7/1/2009 16:38	0.5146	1.5	6363.2	9544.8	11135	3.5	3181.4	6182.4976	0.6477	
9D	2 7/1/09 1		7/1/2009 16:33	0.5193	1.5	6363.2	9544.8	11412	3.5	3260.6		0.6578	
9D	3 7/1/09 1		7/1/2009 16:29	0.5234	1.5	6363.2	9544.8	11340	3.5	3240.0	6190.682442	0.6486	Average EFF
9D	4 7/1/09 1	0:45	7/1/2009 16:24	0.5278	1.5	6363.2	9544.8	10912	3.5	3117.7		0.6189	0.6433
10A	1 7/1/09 1		7/1/2009 16:47	0.5057	1.5	6363.2	9544.8	10991	3.5	3140.3		0.6506	
10A	2 7/1/09 1		7/1/2009 17:12	0.4824	1.5 1.5	6363.2 6363.2	9544.8 9544.8	11959 10553	4 3.5	2989.8 3015.1	6198.168046 6081.381423	0.6494 0.6371	Average EFF
10A	3 7/1/09 1 4 7/1/09 1		7/1/2009 16:58 7/1/2009 16:53	0.4958 0.5003	1.5 1.5	6363.2 6363.2	9544.8 9544.8	10338	3.5	2953.7	5903.409852	0.6185	0.6389
10A 10B	1 7/1/09 1		7/1/2009 10:53	0.4910	1.5	6363.2	9544.8	11110	4	2777.5		0.5927	
10B	2 7/1/09 1		7/1/2009 16:47	0.5057	1.5	6363.2	9544.8	10812	3.5	3089.1	6109.231533	0.6401	
10B	3 7/1/09 1		7/1/2009 17:12	0.4822	1.5	6363.2	9544.8	11422	4	2855.5	-1	0.6204	Average EFF
10B	4 7/1/09 1		7/1/2009 16:58	0.4957	1.5	6363.2	9544.8	9967	3.5	2847.7		0.6019	0.6137
10C	1 7/1/09 1		7/1/2009 16:58	0.4956	1.5	6363.2	9544.8	10482	3.5	2994.9		0.6331	
10C	2 7/1/09 1		7/1/2009 16:53	0.5001	1.5 1.5	6363.2 6363.2	9544.8 9544.8	10535 10723	3.5 3.5	3010.0 3063.7		0.6306 0.6351	Average EFF
10C 10C	3 7/1/09 1 4 7/1/09 1		7/1/2009 16:47 7/1/2009 17:13	0.5054 0.4820	1.5 1.5	6363.2	9544.8 9544.8	11066	4	2766.5		0.6013	0.6250
10D	1 7/1/09 1		7/1/2009 17:13	0.4819	1.5	6363.2	9544.8	12021	4	3005.3		0.6534	
10D	2 7/1/09 1		7/1/2009 16:58	0.4955	1.5	6363.2	9544.8	10614	3.5	3032.6	6119.984615	0.6412	
											•		

10D	3 7/1/09 10:45	7/1/2009 16:53	0.5000	1.5	6363.2	9544.8	10643	3.5	3040.9	6081.577364	0.6372	Average EFF
10D	4 7/1/09 10:45	7/1/2009 16:48	0.5053	1.5	6363.2	9544.8	10064	3.5	2875.4	5690.501596	0.5962	0.6320
11A	1 7/1/09 10:45	7/1/2009 11:56	0.8745	1.5	6363.2	9544.8	14773	3	4924.3	5631.22443	0.5900	
11A	2 7/1/09 10:45	7/1/2009 12:08	0.8547	1.5	6363.2	9544.8	14429	3	4809.7	5627.17636	0.5896	
11A	3 7/1/09 10:45	7/1/2009 12:04	0.8607	1.5	6363.2	9544.8	14454	3	4818.0	5597.851728	0.5865	Average EFF
11A	4 7/1/09 10:45	7/1/2009 12:00	0.8677	1.5	6363.2	9544.8	14013	3	4671.0	5383.193838	0.5640	0.5825
11B	1 7/1/09 10:45	7/1/2009 12:00	0.8681	1.5	6363.2	9544.8	16203	3	5401.0	6221.768068	0.6518	
11B	2 7/1/09 10:45	7/1/2009 11:56	0.8742	1.5	6363.2	9544.8	16106	3	5368.7	6141.073627	0.6434	
11B	3 7/1/09 10:45	7/1/2009 12:08	0.8545	1.5	6363.2	9544.8	15643	3	5214.3	6102.154531	0.6393	Average EFF
11B	4 7/1/09 10:45	7/1/2009 12:04	0.8606	1.5	6363.2	9544.8	15133	3	5044.3	5861.738123	0.6141	0.6372
11C	1 7/1/09 10:45	7/1/2009 12:04	0.8609	1.5	6363.2	9544.8	15637	3	5212.3	6054.305139	0.6343	
11C	2 7/1/09 10:45	7/1/2009 12:00	0.8680	1.5	6363.2	9544.8	15919	3 3	5306.3 5484.0	6113.481467 6274.376359	0.6405 0.6574	Average EFF
11C	3 7/1/09 10:45	7/1/2009 11:56	0.8740	1.5	6363.2	9544.8 9544.8	16452 14887	3	4962.3	5808.157492	0.6085	0.6352
11C	4 7/1/09 10:45	7/1/2009 12:08	0.8544	1.5	6363.2 6363.2	9544.8	15607	3	5202.3	6085.822645	0.6376	0.0002
11D	1 7/1/09 10:45 2 7/1/09 10:45	7/1/2009 12:08	0.8548 0.8608	1.5 1.5	6363.2	9544.8	15944	3	5314.7	6174.136045	0.6469	
11D		7/1/2009 12:04 7/1/2009 12:00	0.8679	1.5	6363.2	9544.8	16098	3	5366.0	6182.998937	0.6478	Average EFF
11D 11D	3 7/1/09 10:45 4 7/1/09 10:45	7/1/2009 12:56	0.8738	1.5	6363.2	9544.8	15191	3	5063.7	5794.733717	0.6071	0.6348
12A	1 7/1/09 10:45	7/1/2009 12:15	0.8437	1.5	6363.2	9544.8	15450	3	5150.0	6104.026984	0.6395	
12A	2 7/1/09 10:45	7/1/2009 12:28	0.8234	1.5	6363.2	9544.8	15016	3	5005.3	6078.958269	0.6369	
12A	3 7/1/09 10:45	7/1/2009 12:24	0.8296	1.5	6363.2	9544.8	14984	3	4994.7	6020.558384	0.6308	Average EFF
12A	4 7/1/09 10:45	7/1/2009 12:20	0.8358	1.5	6363.2	9544.8	14530	3	4843.3	5794.58497	0.6071	0.6286
12B	1 7/1/09 10:45	7/1/2009 12:20	0.8362	1.5	6363.2	9544.8	15404	3	5134.7	6140.635636	0.6433	
12B	2 7/1/09 10:45	7/1/2009 12:15	0.8437	1.5	6363.2	9544.8	15607	3	5202.3	6166.05496	0.6460	
12B	3 7/1/09 10:45	7/1/2009 12:28	0.8232	1.5	6363.2	9544.8	15060	3	5020.0	6097.91718	0.6389	Average EFF
12B	4 7/1/09 10:45	7/1/2009 12:24	0.8295	1.5	6363.2	9544.8	14553	3	4851.0	5848.11587	0.6127	0.6352
12C	1 7/1/09 10:45	7/1/2009 12:24	0.8300	1.5	6363.2	9544.8	15183	3	5061.0	6097.649845	0.6388	
12C	2 7/1/09 10:45	7/1/2009 12:20	0.8361	1.5	6363.2	9544.8	15651	3	5217.0	6239.881493	0.6537	
12C	3 7/1/09 10:45	7/1/2009 12:15	0.8436	1.5	6363.2	9544.8	15216	3	5072.0	6012.519531	0.6299	Average EFF
12C	4 7/1/09 10:45	7/1/2009 12:28	0.8231	1.5	6363.2	9544.8	14117	3	4705.7	5716.805229	0.5989	0.6304
12D	1 7/1/09 10:45	7/1/2009 12:28	0.8235	1.5	6363.2	9544.8	15174	3	5058.0	6141.959419	0.6435	
12D	2 7/1/09 10:45	7/1/2009 12:24	0.8298	1.5	6363.2	9544.8	15137	3	5045.7	6080.699807	0.6371	A PPP
12D	3 7/1/09 10:45	7/1/2009 12:20	0.8359	1.5	6363.2	9544.8	15418	3	5139.3	6148.142699	0.6441	Average EFF
12D	4 7/1/09 10:45	7/1/2009 12:15	0.8434	1.5	6363.2	9544.8	14566	3	4855.3	5756.75774	0.6031 0.6524	0.6320
13A	1 7/1/09 10:45	7/1/2009 12:33	0.8153	1.5	6363.2	9544.8	15230	3 3	5076.7 4928.0	6226.552932 6236.596242	0.6524	
13A	2 7/1/09 10:45	7/1/2009 12:50	0.7902	1.5	6363.2 6363.2	9544.8 9544.8	14784 14851	3	4950.3	6164.384216	0.6458	Average EFF
13A	3 7/1/09 10:45	7/1/2009 12:41 7/1/2009 12:37	0.8031 0.8090	1.5 1.5	6363.2	9544.8	14183	3	4727.7	5843.553624	0.6122	0.6410
13A 13B	4 7/1/09 10:45 1 7/1/09 10:45	7/1/2009 12:37	0.8094	1.5	6363.2	9544.8	15625	3	5208.3	6434.850276	0.6742	*******
13B	2 7/1/09 10:45	7/1/2009 12:33	0.8153	1.5	6363.2	9544.8	15450	3	5150.0	6316.496573	0.6618	
13B	3 7/1/09 10:45	7/1/2009 12:50	0.7901	1.5	6363.2	9544.8	14689	3	4896.3	6197.297391	0.6493	Average EFF
13B	4 7/1/09 10:45	7/1/2009 12:41	0.8029	1.5	6363.2	9544.8	14377	3	4792.3	5968.757323	0.6253	0.6526
13C	1 7/1/09 10:45	7/1/2009 12:41	0.8033	1.5	6363.2	9544.8	15426	3	5142.0	6401.251014	0.6707	
13C	2 7/1/09 10:45	7/1/2009 12:37	0.8093	1.5	6363.2	9544.8	15315	3	5105.0	6307.973396	0.6609	
13C	3 7/1/09 10:45	7/1/2009 12:33	0.8152	1.5	6363.2	9544.8	15288	3	5096.0	6251.048762	0.6549	Average EFF
13C	4 7/1/09 10:45	7/1/2009 12:50	0.7900	1.5	6363.2	9544.8	14222	3	4740.7	6001.209943	0.6287	0.6538
13D	1 7/1/09 10:45	7/1/2009 12:50	0.7903	1.5	6363.2	9544.8	14492	3	4830.7	6112.65055	0.6404	
13D	2 7/1/09 10:45	7/1/2009 12:46	0.7958	1.5	6363.2	9544.8	14858	3	4952.7	6223.19528	0.6520	
13D	3 7/1/09 10:45	7/1/2009 12:37	0.8092	1.5	6363.2	9544.8	14873	3	4957.7	6126.881339	0.6419	Average EFF
13D	4 7/1/09 10:45	7/1/2009 12:33	0.8151	1.5	6363.2	9544.8	14389	3	4796.3	5884.197712	0.6165	0.6377
14A	1 7/1/09 10:45	7/1/2009 12:54	0.7834	1.5	6363.2	9544.8	14463	3	4821.0	6153.596507	0.6447	
14A	2 7/1/09 10:45	7/1/2009 13:17	0.7507	1.5	6363.2	9544.8	14137	3	4712.3	6277.53373	0.6577	Average EFF
14A	3 7/1/09 10:45	7/1/2009 13:13	0.7571	1.5	6363.2	9544.8	14022 13451	3 3	4674.0 4483.7	6173.627369 5802.830587	0.6468 0.6080	0.6393
14A	4 7/1/09 10:45	7/1/2009 13:02	0.7727	1.5	6363.2 6363.2	9544.8 9544.8	14039	3	4679.7	6054.030301	0.6343	Ų. 0 000
14B	1 7/1/09 10:45	7/1/2009 13:01	0.7730 0.7834	1.5 1.5	6363.2	9544.8	14398	3	4799.3		0.6418	
14B 14B	2 7/1/09 10:45 3 7/1/09 10:45	7/1/2009 12:54 7/1/2009 13:17	0.7505	1.5	6363.2	9544.8	13475	3	4491.7		0.6270	Average EFF
14B	4 7/1/09 10:45	7/1/2009 13:13	0.7569	1.5	6363.2	9544.8	13077	3	4359.0		0.6033	0.6266
14C	1 7/1/09 10:45	7/1/2009 13:12	0.7573	1.5	6363.2	9544.8	14116	3	4705.3		0.6510	
14C	2 7/1/09 10:45	7/1/2009 13:02	0.7729	1.5	6363.2	9544.8	14187	3	4729.0		0.6410	
14C	3 7/1/09 10:45	7/1/2009 12:55	0.7832	1.5	6363.2	9544.8	14409	3	4803.0	6132.734423	0.6425	Average EFF
14C	4 7/1/09 10:45	7/1/2009 13:17		1.5	6363.2	9544.8	13229	3	4409.7		0.6156	0.6375
14D	1 7/1/09 10:45	7/1/2009 13:17	0.7508	1.5	6363.2	9544.8	13927	3	4642.3		0.6478	
14D	2 7/1/09 10:45	7/1/2009 13:12		1.5	6363.2	9544.8	14089	3	4696.3		0.6498	
14D	3 7/1/09 10:45	7/1/2009 13:02	0.7728	1.5	6363.2	9544.8	13912	3	4637.3		0.6287	Average EFF
14D	4 7/1/09 10:45	7/1/2009 12:55		1.5	.6363.2	9544.8	13545	3	4515.0	5766.084113	0.6041	0.6326
		•	Background	d is considere	ed negligible							

	_	• 1 - L - O	Data Causta	Count Start Time	Count End Time
SampleID Instr				Count Start Time	
1 1A	3	126	13564	7/1/2009 13:36	
2 1A	3	136	12775	7/1/2009 13:52	
3 1A	3	135	12750	7/1/2009 13:48	
4 1A	3	142	12410	7/1/2009 13:41	7/1/2009 13:44
1 1B	3	115	13292	7/1/2009 13:41	7/1/2009 13:44
2 1B	3	136	13274	7/1/2009 13:36	
3 1B	3	131	12699	7/1/2009 13:52	
4 1B	3	129	12072	7/1/2009 13:48	
1 1C	3	207	12813	7/1/2009 13:48	
2 1C	3	221	12979	7/1/2009 13:41	7/1/2009 13:44
3 1C	3	189	12755	7/1/2009 13:36	
4 1C	3	179	11917	7/1/2009 13:52	
1 1D	3	558	12473	7/1/2009 13:52	
2 1D	3	582		7/1/2009 13:48	
3 1D	3	632		7/1/2009 13:41	
4 1D	3	568		7/1/2009 13:36	
1 2A	3	424		7/1/2009 13:57	•
2 2A	3	449		7/1/2009 14:15	
3 2A	3	419		7/1/2009 14:09	
4 2A	3	417		7/1/2009 14:02	
1 2B	3	42		7/1/2009 14:02	
2 2B	3	39		7/1/2009 13:57	
3 2B	3	54		7/1/2009 14:15	
4 2B	3	69		7/1/2009 14:09	
1 2C	3	504		7/1/2009 14:08	
2 2C	3	527		7/1/2009 14:02	
3 2C	3	496		7/1/2009 13:58	
4 2C	3	499		7/1/2009 14:15	
1 2D	3	543		7/1/2009 14:15	
2 2D	3	508		7/1/2009 14:08	
3 2D	3	542		7/1/2009 14:02	
4 2D	3	544		7/1/2009 13:58	
1 3A	3	1397		7/1/2009 14:19	
2 3A	4	1809		7/1/2009 14:35	
3 3A	4	1757			
4 3A	4	1725			
1 3B	4	914			
2 3B	3	731			
3 3B	4	960			
4 3B	4	922		· · · · · · · · · · · · · · · · · · ·	
1 3C	4	671			
2 3C	4	722			
3 3C	3	558			
4 3C	4	647			
1 3D	4	651			
2 3D	4	722			
3 3D	4	684			
4 3D	3	466			
1 4A	4	412			
2 4A	4	407			
3 4A	4	389	15050	7/1/2009 14:5	3 7/1/2009 14:57

4 4A	4	417	14462	7/1/2009 14:48	7/1/2009 14:52
1 4B	4	58	15335	7/1/2009 14:48	7/1/2009 14:52
2 4B	4	61	15513	7/1/2009 14:41	7/1/2009 14:45
3 4B	4	53	14521	7/1/2009 15:00	7/1/2009 15:04
4 4B	4	72	14328	7/1/2009 14:53	7/1/2009 14:57
1 4C	4	532	14733	7/1/2009 14:53	7/1/2009 14:57
2 4C	4	545	14902	7/1/2009 14:48	7/1/2009 14:52
3 4C	4	486	14856	7/1/2009 14:41	7/1/2009 14:45
4 4C	4	540	13733	7/1/2009 15:00	7/1/2009 15:04
1 4D	4	1158	14167	7/1/2009 15:00	7/1/2009 15:04
2 4D	4	1192	14204	7/1/2009 14:53	7/1/2009 14:57
3 4D	4	1136	14131	7/1/2009 14:48	7/1/2009 14:52
4 4D	4	1149	13978	7/1/2009 14:41	7/1/2009 14:45
1 5A	4	424	14870	7/1/2009 15:06	7/1/2009 15:10
2 5A	4	395	14487	7/1/2009 15:21	7/1/2009 15:25
3 5A	4	403	14259	7/1/2009 15:17	7/1/2009 15:21
4 5A	4	389	13957	7/1/2009 15:12	7/1/2009 15:16
1 5B	4	428	14869	7/1/2009 15:12	7/1/2009 15:16
2 5B	4	440	14821	7/1/2009 15:06	7/1/2009 15:10
3 5B	4	420	14289	7/1/2009 15:21	7/1/2009 15:25
4 5B	4	414	13809	7/1/2009 15:17	7/1/2009 15:21
1 5C	4	436	14676	7/1/2009 15:17	7/1/2009 15:21
2 5C	4	443	15122	7/1/2009 15:12	7/1/2009 15:16
3 5C	4	433	14958	7/1/2009 15:07	7/1/2009 15:11
4 5C	4	416	13831	7/1/2009 15:21	7/1/2009 15:25
4 5C 1 5D	4	451	14321	7/1/2009 15:21	7/1/2009 15:25
2 5D	4	452	14642	7/1/2009 15:17	7/1/2009 15:21
3 5D	4	444	14443	7/1/2009 15:12	7/1/2009 15:16
	4	414	13954	7/1/2009 15:07	7/1/2009 15:11
4 5D	4	272	14018	7/1/2009 15:27	7/1/2009 15:31
1 6A	3.5	246	12283	7/1/2009 15:40	7/1/2009 15:44
2 6A	3.5	231	12111	7/1/2009 15:36	7/1/2009 15:40
3 6A	3.5 3.5	229	11598	7/1/2009 15:32	7/1/2009 15:35
4 6A		540	12151	7/1/2009 15:32	7/1/2009 15:36
1 6B	3.5	5 9 2	14371	7/1/2009 15:27	7/1/2009 15:31
2 6B	4	498	11705	7/1/2009 15:40	7/1/2009 15:44
3 6B	3.5 3.5	498	11388	7/1/2009 15:36	7/1/2009 15:40
4 6B	3.5 3.5	462	12161	7/1/2009 15:36	7/1/2009 15:40
1 6C		468	12083	7/1/2009 15:32	7/1/2009 15:36
2 6C	3.5	534	13638	7/1/2009 15:27	7/1/2009 15:31
3 6C	4	455	11218	7/1/2009 15:40	7/1/2009 15:44
4 6C	3.5	455 456	11987	7/1/2009 15:40	7/1/2009 15:44
1 6D	3.5	468	12183	7/1/2009 15:36	7/1/2009 15:40
2 6D	3.5		11882	7/1/2009 15:32	7/1/2009 15:36
3 6D	3.5	496 505		7/1/2009 15:27	7/1/2009 15:31
4 6D	4	525 466	13018 12007	7/1/2009 15:46	7/1/2009 15:50
1 7A	3.5	466		7/1/2009 15:40	7/1/2009 16:04
2 7A	3.5	491 444	11655 11445	7/1/2009 15:56	7/1/2009 15:59
3 7A	3.5		11121	7/1/2009 15:50	7/1/2009 15:54
4 7A	3.5	477 419	11968	7/1/2009 15:51	7/1/2009 15:54
1 7B	3.5	418		7/1/2009 15:46	7/1/2009 15:50
2 7B	3.5	448 460	12050	7/1/2009 15:40	7/1/2009 15:04
3 7B	3.5	460	11675	77172009 10.00	77 172000 10.04

					=///00000 / 0.000
4 7B	3.5	413	11271	7/1/2009 15:56	7/1/2009 16:00
1 7C	3.5	471	11781	7/1/2009 15:56	7/1/2009 16:00
2 7C	3.5	457	11760	7/1/2009 15:51	7/1/2009 15:54
3 7C	3.5	454	11766	7/1/2009 15:46	7/1/2009 15:50
4 7C	3.5	406	10888	7/1/2009 16:00	7/1/2009 16:04
1 7D	3.5	359	11605	7/1/2009 16:00	7/1/2009 16:04
2 7D	3.5	391	11920	7/1/2009 15:56	7/1/2009 16:00
3 7D	3.5	386	11933	7/1/2009 15:51	7/1/2009 15:55
4 7D	3.5	400	11305	7/1/2009 15:46	7/1/2009 15:50
1 8A	3.5	348	11673	7/1/2009 16:06	7/1/2009 16:09
2 8A	3.5	340	11172	7/1/2009 16:19	7/1/2009 16:22
3 8A	3.5	298	11258	7/1/2009 16:15	7/1/2009 16:18
	3.5	327	10977	7/1/2009 16:10	7/1/2009 16:13
4 8A		124	11583	7/1/2009 16:10	7/1/2009 16:13
1 8B	3.5	112	11758	7/1/2009 16:06	7/1/2009 16:09
2 8B	3.5		11499	7/1/2009 16:19	7/1/2009 16:23
3 8B	3.5	110		7/1/2009 16:15	7/1/2009 16:18
4 8B	3.5	102	10844	7/1/2009 16:15	7/1/2009 16:18
1 8C	3.5	202	11539		7/1/2009 16:14
2 8C	3.5	196	11774	7/1/2009 16:10	7/1/2009 16:14
3 8C	3.5	203	11611	7/1/2009 16:06	
4 8C	3.5	207	10809	7/1/2009 16:19	7/1/2009 16:23
1 8D	3.5	240	11301	7/1/2009 16:19	7/1/2009 16:23
2 8D	3.5	248	11412	7/1/2009 16:15	7/1/2009 16:18
3 8D	3.5	233	11660	7/1/2009 16:10	7/1/2009 16:14
4 8D	3.5	235	10918	7/1/2009 16:06	7/1/2009 16:10
1 9A	3.5	39	11605	7/1/2009 16:24	7/1/2009 16:28
2 9A	3.5	49	11281	7/1/2009 16:42	7/1/2009 16:46
3 9A	3.5	47	11301	7/1/2009 16:33	7/1/2009 16:36
4 9A	3.5	64	10987	7/1/2009 16:29	7/1/2009 16:32
1 9B	3.5	53	11151	7/1/2009 16:29	7/1/2009 16:32
2 9B	3.5	39	11462	7/1/2009 16:24	7/1/2009 16:28
3 9B	3.5	45	11004	7/1/2009 16:42	7/1/2009 16:46
4 9B	3.5	51	10581	7/1/2009 16:33	7/1/2009 16:36
1 9C	3.5	49	11026	7/1/2009 16:33	7/1/2009 16:36
2 9C	3.5	49	11281	7/1/2009 16:29	7/1/2009 16:32
3 9C	3.5	40	11016	7/1/2009 16:24	7/1/2009 16:28
4 9C	3.5	60	10297	7/1/2009 16:42	7/1/2009 16:46
1 9D	3.5	65	11135	7/1/2009 16:38	7/1/2009 16:41
2 9D	3.5	53	11412	7/1/2009 16:33	7/1/2009 16:37
3 9D	3.5	54	11340	7/1/2009 16:29	7/1/2009 16:32
4 9D	3.5	77	10912	7/1/2009 16:24	7/1/2009 16:28
	3.5 3.5	71	10991	7/1/2009 16:47	7/1/2009 16:51
1 10A	3.3 4	106	11959	7/1/2009 17:12	7/1/2009 17:16
2 10A	3.5	70	10553	7/1/2009 16:58	7/1/2009 17:01
3 10A		95	10338	7/1/2009 16:53	7/1/2009 16:56
4 10A	3.5		11110	7/1/2009 17:03	7/1/2009 17:07
1 10B	4	139	10812	7/1/2009 17:03	7/1/2009 16:51
2 10B	3.5	102	11422	7/1/2009 17:12	7/1/2009 17:16
3 10B	4	103	9967	7/1/2009 17:12	7/1/2009 17:10
4 10B	3.5	110		7/1/2009 16:58	7/1/2009 17:01
1 10C	3.5	74 70	10482	7/1/2009 16:53	7/1/2009 17:57
2 10C	3.5	79	10535		7/1/2009 16:51
3 10C	3.5	87	10723	7/1/2009 16:47	7/1/2003 10.31

4 10C	4	95	11066	7/1/2009 17:13	7/1/2009 17:17
1 10D	4	102	12021	7/1/2009 17:13	7/1/2009 17:17
2 10D	3.5	7 5	10614	7/1/2009 16:58	7/1/2009 17:01
3 10D	3.5	78	10643	7/1/2009 16:53	7/1/2009 16:57
4 10D	3.5	81	10064	7/1/2009 16:48	7/1/2009 16:51
1 11A	3	31	14773	7/1/2009 11:56	7/1/2009 11:59
2 11A	3	23	14429	7/1/2009 12:08	7/1/2009 12:11
3 11A	3	33	14454	7/1/2009 12:04	7/1/2009 12:07
4 11A	3	49	14013	7/1/2009 12:00	7/1/2009 12:03
1 11B	3	43	16203	7/1/2009 12:00	7/1/2009 12:03
2 11B	3	53	16106	7/1/2009 11:56	7/1/2009 11:59
3 11B	3	46	15643	7/1/2009 12:08	7/1/2009 12:11
4 11B	3	42	15133	7/1/2009 12:04	7/1/2009 12:07
1 11C	3	27	15637	7/1/2009 12:04	7/1/2009 12:07
2 11C	3	38	15919	7/1/2009 12:00	7/1/2009 12:03
3 11C	3	33	16452	7/1/2009 11:56	7/1/2009 11:59
4 11C	3	46	14887	7/1/2009 12:08	7/1/2009 12:11
1 11D	3	43	15607	7/1/2009 12:08	7/1/2009 12:11
2 11D	3	42	15944	7/1/2009 12:04	7/1/2009 12:07
3 11D	3	32	16098	7/1/2009 12:00	7/1/2009 12:03
4 11D	3	39	15191	7/1/2009 11:56	7/1/2009 11:59
1 12A	3	29	15450	7/1/2009 12:15	7/1/2009 12:18
2 12A	3	28	15016	7/1/2009 12:28	7/1/2009 12:31
3 12A	3	31	14984	7/1/2009 12:24	7/1/2009 12:27
4 12A	3	46	14530	7/1/2009 12:20	7/1/2009 12:23
1 12B	3	26	15404	7/1/2009 12:20	7/1/2009 12:23
2 12B	3	31	15607	7/1/2009 12:15	7/1/2009 12:18
3 12B	3	34	15060	7/1/2009 12:28	7/1/2009 12:31
4 12B	3	49	14553	7/1/2009 12:24	7/1/2009 12:27
1 12C	3	24	15183	7/1/2009 12:24	7/1/2009 12:27
2 12C	3	44	15651	7/1/2009 12:20	7/1/2009 12:23
3 12C	3	46	15216	7/1/2009 12:15	7/1/2009 12:18
4 12C	3	60	14117	7/1/2009 12:28	7/1/2009 12:31
1 12D	3	48	15174	7/1/2009 12:28	7/1/2009 12:31
2 12D	3	37	15137	7/1/2009 12:24	7/1/2009 12:27
3 12D	3	25	15418	7/1/2009 12:20	7/1/2009 12:23
4 12D		59	14566	7/1/2009 12:15	7/1/2009 12:18
1 13A	3 3	50	15230	7/1/2009 12:33	7/1/2009 12:36
2 13A	3	36	14784	7/1/2009 12:50	7/1/2009 12:53
3 13A	3	41	14851	7/1/2009 12:41	7/1/2009 12:44
4 13A	3	49	14183	7/1/2009 12:37	7/1/2009 12:40
1 13B	3	39	15625	7/1/2009 12:37	7/1/2009 12:40
2 13B	3	41	15450	7/1/2009 12:33	7/1/2009 12:36
3 13B	3	37	14689	7/1/2009 12:50	7/1/2009 12:53
4 13B	3	47	14377	7/1/2009 12:41	7/1/2009 12:44
1 13C	3	54	15426	7/1/2009 12:41	7/1/2009 12:44
2 13C	3	41	15315	7/1/2009 12:37	7/1/2009 12:40
3 13C	3	36	15288	7/1/2009 12:33	7/1/2009 12:36
4 13C	3	34	14222	7/1/2009 12:50	
1 13D	3	47	14492	7/1/2009 12:50	
2 13D	3	50	14858	7/1/2009 12:46	
3 13D	3	43	14873	7/1/2009 12:37	7/1/2009 12:40

4 13D	3	47	14389	7/1/2009 12:33	7/1/2009 12:36
1 14A	3	44	14463	7/1/2009 12:54	7/1/2009 12:57
2 14A	3	41	14137	7/1/2009 13:17	7/1/2009 13:20
3 14A	3	45	14022	7/1/2009 13:13	7/1/2009 13:16
4 14A	3	51	13451	7/1/2009 13:02	7/1/2009 13:05
1 14B	3	42	14039	7/1/2009 13:01	7/1/2009 13:04
2 14B	3	36	14398	7/1/2009 12:54	7/1/2009 12:57
3 14B	3	47	13475	7/1/2009 13:17	7/1/2009 13:20
4 14B	3	47	13077	7/1/2009 13:13	7/1/2009 13:16
1 14C	3	26	14116	7/1/2009 13:12	7/1/2009 13:15
2 14C	3	35	14187	7/1/2009 13:02	7/1/2009 13:05
3 14C	3	37	14409	7/1/2009 12:55	7/1/2009 12:58
4 14C	3	38	13229	7/1/2009 13:17	7/1/2009 13:20
1 14D	3	16	13927	7/1/2009 13:17	7/1/2009 13:20
2 14D	3	32	14089	7/1/2009 13:12	7/1/2009 13:15
3 14D	3	16	13912	7/1/2009 13:02	7/1/2009 13:05
4 14D	3	47	13545	7/1/2009 12:55	7/1/2009 12:58

			ı	Result		, l	۰ •		•		•		•	• •		•	• •		*	• •	•	•		* *	*	• •		•	• •		• •	• •			•		•	* *	•		*		• •		••	* n w	-
			-			r % Pos.	1.00%			26 %		88	* * * *	.00%	8 %	%	%	888	18	%6	888		888	%00.1 20.2 20.2	26		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	_	% % % %	.00. 8 8	* * * * * * * * * * * * * * * * * * *		88	%00:	.00% 4	%00. 4 %	% 4	%00. 4 %00.	00%	%00	%90: %90:		.00% .00%	8	- 20%	- 8	
				Pe of	_											•		•	·		·	-					•		- •	_			-,		-		-		-	- •		_		•		. ,-	
				Calculated	_		100.83%	114.229	120.58%	105.84%	112.82%	111.91%	108.20%	114.22%	105.84%	102.70%	112.829	100.83	108.20	114.22%	105.84%	102.70%	112.82%	100.83%	108.20%	114.22	105.84%	102.70%	112.82%	100.83%	108.20%	120.58	105.84%	112.82	111.91%	100.83%	114.22%	120.58%	102.70%	112.82%	100.83%	108.20	114.22%	105.84%	102.70%	111.91%	
				0000	Ser F	Correction	1.014	10.1	1.014	1.014	1.01	1.014	2 4 4 4	1.014	10.1	1.014	1.01	1.01	1.014	101	10.1	1.014	1.014	2.0.1	1.014	1.014	4 10 1	1.014	20.5	1.01	1.01	9	1.014	1.0	1.014	2.0.1	1.014	1.014	1.014	1.01	10.1	1.014	1.01	10.1	1.014	1.014	
							0.713	0.712	0.712	0.712	0.71	9.676	0.675	0.675	0.675	0.675	0.674	0.653	0.653	0.653	0.652	0.651	0.651	0.627	0.627	0.627	0.626	0.626	0.626	0.605	0.605	0.605	0.604	0.60	0.587	0.819	0.819	0.819	0.818	0.818	0.783	0.783	0.783	0.783	0.782	0.782	
•							0.00	9 6	<u>6</u>	00.5	3 8	00.5	3 8	00.	8 6	1.00	00.0	90	00.	00.5	9 6	1.00	00.1	9 6	8	000	8 8	00.	86.5	<u> </u>	96.5		- 1	8 8	00.	9 6	1.000	6 8 8 8	1.00	999	8 8	1.000	6. 6 6. 6	8 8	8 5	 	
				1	Start	Date/Time	7/2/2009 8:39	//2/2009 8:40 7/2/2009 8:40	7/2/2009 8:40	7/2/2009 8:40	7/2/2009 8:40	80:66 8:08	7/2/2009 9:08	7/2/2009 9:08	7/2/2009 9:08	7/2/2009 9:08	7/2/2009 9:09	7/2/2009 9:26	7/2/2009 9:26	7/2/2009 9:26	7/2/2009 9/26	7/2/2009 9:27	7/2/2009 9:27	7/2/2009 9:47	7/2/2009 9:48	7/2/2009 9:48	7/2/2009 9:48	7/2/2009 9:48	7/2/2009 9:48	7/2/2009 10:06	7/2/2009 10:06	7/2/2009 10:06 7/2/2009 10:06	7/2/2009 10:07	7/2/2009 10:07	7/2/2009 10:22	7/2/2009 7:26	7/2/2009 7:26	7/2/2009 7:26	7/2/2009 7:26	7/2/2009 7:26	7/2/2009 7:49	7/2/2009 7:49	7/2/2009 7:49	7/2/2009 7:50	7/2/2009 7:50	7/2/2009 7:50	
					Separation	Date/Time	7/2/2009 5:40			• - •	7/2/2009 5:40		7/2/2009 5:40	5:40	7/2/2009 5:40		7/2/2009 5:40	72/2009 5:40	5:40	5:40	7/2/2009 5:40		7/2/2009 5:40				7/2/2009 5:40		7/2/2009 5:40	- ,-		7/2/2009 5:40	5.40	7/2/2009 5:40	5:40	7/2/2009 5:40	7/2/2009 5:40	7/2/2009 5:40	6 6	5:40	72/2009 5:40	7/2/2009 5:40	7/2/2009 5:40	5:40	5:40	//2/2009 5:40 7/2/2009 5:40	
				₽.		(min.)	ı					200						-							•		8 8	-		8 8	200	8 8	8	6 6 6	200	8 5	200	200			2 2	200	<u> </u>	2 2 2 3 3 3	2 20	20 20	
				Weekly Bkg	ر) Wdo	0.312				1.428		0.762					1.070				0.76		0.362			0.396	.946	9.676	380	1.206	.370 .292	316	6.596 0.324	0.348	378	305	0.396	946	9.676	1.312	1.206	0.370	0.316	5.596	0.324	
			ı	Detector			0.00600				0.00383 1		0.00943 0		0.00464 0			0.00816 1				0.00816								0.00816		0.00816		0.00816		0.00816			0.00816		0.00816			0.00816		0.00816	
					ofor Effica	ত					.6167 0.0 5969 0.0													0.6120 0.0			0.6257 0.0					0.6273 0.0		0.6137 0.0				0.6348 0.0			0.6320 0.1					.6375 .6326 0.	
					Defector		0.6303			0	0 0	0			0.5994			33 0.5873																												00	
. 00		years hours	ä		Beta	Сф	132.000	130.600	151.000	122.533	136.867	132.267	109.667	129.467	138.400	127.267	131.600	125.333	119.000	133.933	40.4	121.067	128.867	121.733	118.867	128.933	130.867	119.200	128.000	112.600	113.733	120.133	113.867	116.200	117.933	141.867	169.600	173.0	155,333	168.667	164.200	146.000	163.867	175.667	152.0	154.867 159.200	Page 1
: GFC90SRI	-	5.75 6.13	20 등		anuts	Beta	1980	1959	8 88 888	1838	2053	1984	1645	1942	2076	1909	1974	1880	1785	2009	2107	1816	1933	1826	1783	1934	1963	1788	1920	1,82	1706	1802 1945	1708	1743	1769	2125	254	2596	888	2530	2463	2190	2458	2635 2173	2281	2323 2388 2388	щ
edure Code: GFC90SRL Dermname: Badium-228	. ¥Q₩ Þ	Ra-228 : Ac-228 :	Batch counted on : BKG Count time :		Gross Counts	Alpha	36	27	1 <u>5</u>	8	ω g	8 8	8 83	8 8	8 8	<u>ه</u> ک	26	<u> 두</u> 2	3 23	8	හු ද	8 5	.	æ 1	ଦ ଅ	4	8 8	? R	8	\$ †	: £	ნ ቪ	5 5	한 <u>부</u>	5 4	⊕ 6	4 to	4 i	<u></u>	9	2 ;	. t	= 9	2 -	: ‡ :	4 4	
Procedure Code	Requir	Halfilfe of Halfilfe of	BKG Cor		Đ.																																										
•					Counting	(min.)	5	ნ :	ច ក	ŧ	5	5 5	₹5 ‡	<u>.</u> 7	₹ 1	5 5	15	₹ 15	<u> </u>	5	₹ ;	ច ស	. 1 5	5 ;	ច ដ	5	₽ ;	12	15	2 5	<u> </u>	δ τ	5 52	tt t	5 15	₹5 £	. .	51	5 £	. L	5 1	5 5	5 ;	5 5	: 1	ត	
LCS Exp Date: 9/13/2009 stivity (dpm/ml): 182.42 Volume Added: 2.00	8.9	0112~J 2/17/2010	0.10	w Data	Detector	9	4	⊕ 9	5 5	8	8 8	28	¥ 8	နှ ဗွ	မ္တ :	₹ 4	9	4 :	5 6	S	<u>당</u>	\$ 8	88	8 ;	₹	5	<u>و</u> د	\$ 8	8	8 8	8	မ္မ မ	ş	ඩ දි	<u>5</u>	4 t	<u> </u>	5	12 8	5	<u>5</u>	<u> </u>	<u>S</u>	13C 44F	. 4	5 5	
pm/ml):	John J			Count raw Data		Pos	-	α (ນ 4	ß	9 1	- 00	o \$	2 ₽	22 5	5 4	15	9 (2 %	19	8	5 8	8	2, 5	8 K	2 2	8 8	8 8	8	88	ਲ ਲ	8 8	8 %	88	8 8	-	3 4	4	4 4 4	4	\$ \$	3 8	<u>ت</u>	2 K	<u>z</u>	ន ន	
LCS Exp Date: LCS Activity (dpm/ml):		Tracer S/N Tracer Exp Date	Tracer Volume Added:		Samole	Date/Time	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	7/1/2009 0:00	
AF1 7/1/2009		0.0784	6/2/2008 6/30/2009	Sample	Aliquot	L dicar.	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05 2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05 2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05 2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05 2.0399F-05	2.0399E-05	2.0389E-05	2.0399E-05	2.0399E-05	2.0399E-05 2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05	2.0399E-05 2.0399E-05	
Analyst: AF1 Prep Date: 7/1/2009	Re-228 Abundance :	Uncertainty:	Calibration Date: 6/2/2008 Calibration Due Date: 6/30/2009		Sample) -	1.0000	1.0000	000	1.000	1.0000	1.0000	1.0000	1.0000	1.0000	0000	1.0000	1.000	0000	900	1.0000	000.	96.	1.0000	000.	98.	1.0000	000	1.000	1.000	1.0000	1.0000	1.0000	1.0000	0000	1.0000	0000	1.0000	0000	1.000	1.0000	8 60	1.0000	0000	1.000	1.0000	
	Re-228	Ra-228 Method Uncertainty: 0.0784	Calit	Sample Characteristics	o come co	edure Q	1201245712.1	1201245713.1	1201245714.1	1201245716.1	1201245717.1	1201245/18.1	1201245720.1	1201245721.1	1201245723.1	1201245724.1	1201245726.1	1201245727.1	1201245728.1	1201245730.1	1201245731.1	1201245732.1	1201245734.1	1201245735.1	1201245736.1	1201245738.1	1201245739.1	1201245740.1	1201245742.1	1201245743.1	1201490022.1	1201490023.1	1201490024.1	1201490026.1	1201490027.1	1201245736.1	1201245737.1	1201245739.1	1201245740.1	1201245742.1	1201245743.1	1201490021.1	1201490023.1	1201490024.1	1201490026.1	1201490027.1	
				Sample		Pos.	-	N	ო •	t ro	9	~ ∞	o n :	2 =	2	ē ‡	. ក	91	٠ 4	9 6	8	₽ 8	1 8	2	8 8	8 2	88	8 8	8 K	88	8 8	8	8 %	8	8 4	4	4 £	3 4	\$	8 7	84	4 6	<i>a</i> 8	25	3 2	55 55	}

Pipet, 0.1 mi Stdev: +/- 0.000701 ml Pipet, 0.5 ml Stdev: +/- 0.002564 ml Pipet, 1 ml Stdev: +/- 0.005480 ml

LCS SN: 0503-B LCS Exp Date: 9/13/2009 LCS Activity (dpm/ml): 182.42 LCS Volume Added: 2.00

Batch: 595514 Analyst: AF1 Prep Date: 7/1/2009

ver09.xls

Radium-228 Liquid

Spike SN: 1
Spike Exp Date: 1
Spike Activity (dpm/ml): 1
Spike Volume Added: 1

Filename : RA228.XI.S File type : Excel Version # : 1.2.3

184

Page 2

ver09.xls

Notes:

1 - Results are decay corrected to Sample Date/Time

2 - Reference date for Spike Activity (dom/ml) is the batch Prep Date

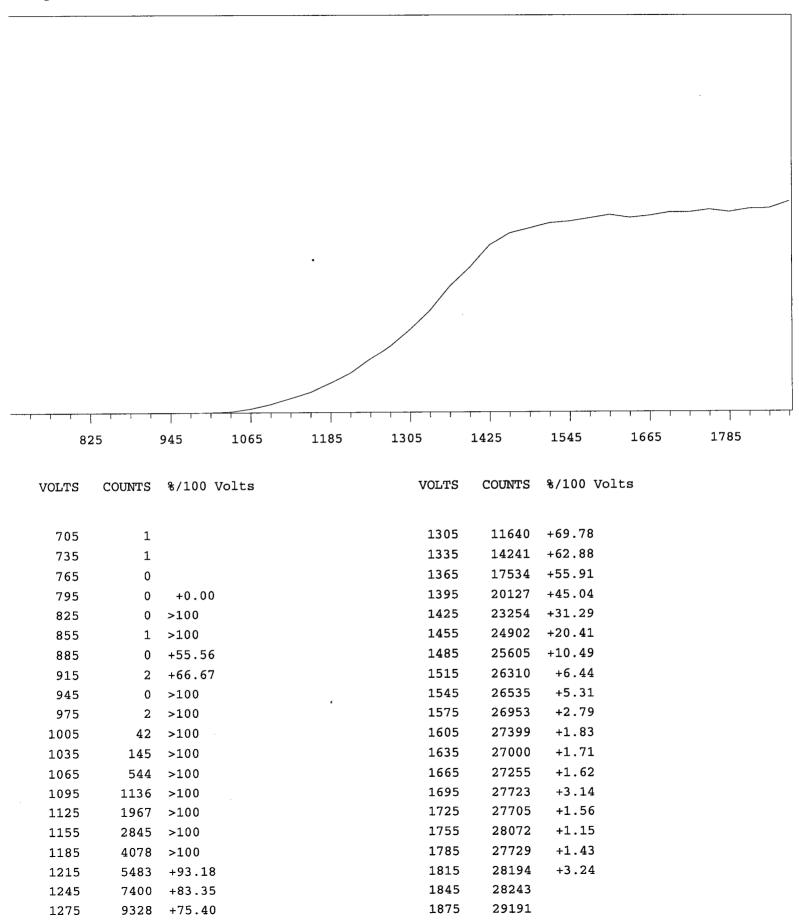
3 - Spike Nominals are decay corrected to Sample Date/Time

<u>-</u>	Critical Required Level MDA	Required MDA	WDA	Sample Act. Sample Act Net Count Conc. Error Rate	ample Act Error	Net Count Rate	Net Count Rate Error CPM	2 SIGMA Counting Uncertainty	2 SIGMA 2 SIGMA Net Count Counting Total Prop. Rate Error Uncertainty Uncertainty CPM DCIV. DCIV.	Sample Type	Nominal pCi/L	Recovery
		3 .		134 ft970	00054	131 6880	2.9666	5.9178	21.6466	: හු	164.3409	81.6%
0.3647	0.2575	- - -	0.7192	133.0399	0.0251	130,2580	2.9508	5.9071	21.4655	လျှ	164.3409	81.0%
0.5369	0.3790	-	0.9659	145,2921	0.0243	139.8173	3.0611	6.2347	23.3752	ខ្ម	164.3409	88.48 8.48 8.48
0.4695	0.3314	-	0.8753	159.8328	0.0239	150.4760	3.1730	6.6057	25.6756	S 5	164.3409	97.3%
0.4261	0.3008	-	0.8097	127.0000	0.0257	122.0833	2.8583	5.8279	20.5368	3 2	164 3409	85.8%
0.7599	0.5365	Ψ.	1.2813	141.0616	0.0247	135.4367	3.020	0.10/0	20053	3 2	164.3409	86.3%
0.3798	0.2681		0.750 0.708 0.708	141.6558	0.0253	131.8887	2.9696	6.4352	23.5274	ខ្ម	164.3409	88.7%
0.4130	0.6950		1 1343	129 6854	0.0284	108.9047	2.7042	6.3116	21.1935	ဌ	164.3409	78.9%
0.9035	0.6379		1.5022	135.4510	0.0266	119.6900	2.8455	6.3115	21.9803	တ္သ	164.3409	82.4%
0.6078		-	1.0779	141.2594	0.0255	128.6447	2.9382	6.3235	22.8259	တ္သ	164.3409	86.0%
0.5473		-	0.9987	155.5960	0.0247	137.7700	3.0378	6.7244	25.0636	3 2	164.3409	8 25
0.6283		-	1.1054	135.5336	0.0264	124.2433	2.6680	0.1/0	20 1127	3 5	164.3409	83.3%
0.9036			1.4942	136.9155	0.0254	120.4287	2.8134	6.5032	23.5621	3 3	164.3409	88.8%
0.7676	0.5418		300	147,9661	0.0266	124.2633	2.8910	6.7471	24.0105	S	164.3409	90.0%
0.4809		-	0.9027	134.9911	0.0269	120.7040	2.8427	6.2312	21.9265	တ္သ	164.3409	82.1%
0.6974		-	1.2076	131.4742	0.0271	117.9500	2.8170	6.1544	21.3797	ဗ္	164.3409	80:0%
0.6530		-	1.1419	148.2299	0.0259	132.9873	2.9884	6.4406	23.6659	8	164.3409	89.0%
0.7661		-	1.3064	156.3706	0.0255	139.2187	3.0605	6.7377	20.2008	3 2	164.3409	81.7%
0.6899	0.4871	,- ,	1.1997	134.1863	0.0270	120.300		6.3436	22.2643	ខ្ម	164.3409	83.4%
0.5079			5725	146.0056	0.0264	127.0307	2.9317	6.6044	23.6775	တ္သ	164.3409	88.8%
0.4376			0.8562	144.5849	0.0268	121.3713		6.6518	23.4785	ပ္သ	164.3409	88.0%
0.4227		-	0.8330	_	0.0275	113.7227	2.7577	6.3803	21.8573	ဗ္ဗ ဗ္	164.3409	81.7%
0.4360		-	0.8480	_	0.0270	118.4887	2.8152	6.4094 8.7858	24 608R	3 2	164.3409	92.4%
0.3962			0.7956	151.8935	0.0262	130.4707		6.7499	24.6318	3 2	164.3409	92.6%
0.4480	0.3183		1.1278		0.0279	109.4120	2.7108	6.2072	20.8518	S	164.3409	77.8%
0.9817			1.6167	_	0.0273	117.2540		6.3699	21.9896	တ္သ	164.3409	82.2%
0.5779		-	1.0463	-	0.0263	127.3240	2.9214	6.5922	23.7610	ខ្មី	164.3409	89.2%
0.8422	-	-	1.4301	141.4935	0.0272	117.4880		6.6441	23.0149	3 2	164.3408	70 4%
0.4379			0.8509		0.0276	112.2200	2.7540	6.4182	21.8026	3 2	164.3409	81.4%
0.7972	0.3029	- -	0.8728		0.0269	119.7633	2.8301	6.6832	23.4437	S	164.3409	87.8%
0.8154		-	1.3863	_	0.0263	128.3747		6.7718	24.4459	ဌ	164.3409	91.8%
0.4063		-	0.8104	•		113.5507		6.3927	21.8871	g g	164.3409	89.18
1.9322		-	2.9747	135.0540		109.6040		6.7277	22.0820	3 2	164.3408	80.4%
0.4205		- •	0.8358		0.0268	121.4093	2 8043	6.7699	23,5500	3 3	164.3409	88.1%
	0.00	- •	0.6763	-		141.3227		5.7736	21.8705	ဒ္ဌ	164.3409	82.4%
0.3289		-	0.6397	131.6931		150.2887		5,4434	21.2189	ပ္သ	164.3409	80.1%
0.2949		-	0.5922			169.2980		5.7929	23.8866	ပ္သ	164.3409	90.5%
0.3379		-	0.6530	_		172.6707	3.3968	5.8549	24.3615	ខ្លួ	164.3409	92.4% 80.1%
0.4816	-	-	0.8577	•		148.2120		5.462	21 7215	3 2	164 3409	8 2 %
0.7488		- •	1.2332	134.8066	0.0240	167 0007		5,823	23.8982	3 2	164.3409	90.6%
0.6180	0.5140	- +-	1.0494			162.8880		5.7315	23.1384	ဌ	164.3409	82.6%
0.3427		-	0.6660	_		148.3533		5.6202	21.7752		164.3409	85.2%
0.5997		-	1.0256	_		144.7940		5.4697	20.8960		164.3409	78.8%
0.3316		-	0.6469	_		163.4967		5.7832	23.4010	3 5	164 3400	00.0%
0.6355	_	- 1	1.0805	٠,	0.0235	174.3747	3.4223	5.5650	21.3060		164.3409	80.4%
0.3136	0.2214	- -	0.6255	135,6135		145.4707		5.8215	21.9070		164.3409	82.5%
7.4010 7.4010	•		-								00101	-
5		-	0.6330		0.0245	54.5427	3.2133	5.7718	22.7990		164.3409	86.2

SampleID	Instr	Time (min.)	Alpha Counts	Beta Counts	Count Start Time	Count End Time	
1	1A	15	· 36	1980	7/2/2009 8:39	7/2/2009 8:54	Protean
2	1B	15	27	1959	7/2/2009 8:40	7/2/2009 8:55	Protean
3	1C	15	44	2108	7/2/2009 8:40	7/2/2009 8:55	Protean
4	1D	15	108	2265	7/2/2009 8:40	7/2/2009 8:55	Protean
5	2A	15	69	1838	7/2/2009 8:40	7/2/2009 8:55	Protean
6	2B	15	8	2053	7/2/2009 8:40	7/2/2009 8:55	Protean
7	2C	15	96	1982	7/2/2009 8:40	7/2/2009 8:55	Protean
8	2D	15	93	1984	7/2/2009 9:08	7/2/2009 9:23	Protean
1	3A	15	233	1645	7/2/2009 9:08	7/2/2009 9:23	Protean
2	3B	15	99	1821	7/2/2009 9:08	7/2/2009 9:23	Protean
3	3C	15	96	1942	7/2/2009 9:08	7/2/2009 9:23	Protean
4	3D	15	90	2076	7/2/2009 9:08	7/2/2009 9:23	Protean
5	4A	15	79	1877	7/2/2009 9:08	7/2/2009 9:23	Protean
6	4B	15	13	1909	7/2/2009 9:08	7/2/2009 9:23	Protean
	4C	15	97	1974	7/2/2009 9:09	7/2/2009 9:24	Protean
7	4D	15	181	1880	7/2/2009 9:25	7/2/2009 9:40	Protean
8		15	53	1818	7/2/2009 9:26	7/2/2009 9:41	Protean
1	5A	15	59	1785	7/2/2009 9:26	7/2/2009 9:41	Protean
2	5B	15	43	2009	7/2/2009 9:26	7/2/2009 9:41	Protean
3	5C	15	-10 59	2107	7/2/2009 9:26	7/2/2009 9:41	Protean
4	5D	15	35	1800	7/2/2009 9:27	7/2/2009 9:42	Protean
5	6A	15	71	1816	7/2/2009 9:27	7/2/2009 9:42	Protean
6	6B 6C		81	1933	7/2/2009 9:27	7/2/2009 9:42	Protean
7	6D		81	1826	7/2/2009 9:47	7/2/2009 10:02	Protean
8	7A		75	1711	7/2/2009 9:48	7/2/2009 10:03	Protean
1	7B		. 59	1783	7/2/2009 9:48	7/2/2009 10:03	Protean
2	7C		74	1934	7/2/2009 9:48	7/2/2009 10:03	Protean
3	70 70		83	1963	7/2/2009 9:48	7/2/2009 10:03	Protean
4	8A		49	1653	7/2/2009 9:48	7/2/2009 10:03	Protean
5 6	8B		20	1788	7/2/2009 9:48	7/2/2009 10:03	Protean
6	8C		34	1920	7/2/2009 9:48	7/2/2009 10:03	Protean
7			45	1782	7/2/2009 10:07	7/2/2009 10:22	Protean
8	8D		17	1689	7/2/2009 10:06		Protean
1	9A 9B		13	1706	7/2/2009 10:06	7/2/2009 10:21	Protean
2	9C		13	1802	7/2/2009 10:06		Protean
3 4	90		15	1945	7/2/2009 10:06		
5	10/		10	1708	7/2/2009 10:07	7/2/2009 10:22	Protean
	10/		19	1743	7/2/2009 10:07		
6 7	100		15	1826	7/2/2009 10:07	7/2/2009 10:22	
8	10		14	1769	7/2/2009 10:22	7/2/2009 10:37	' Protean
1	11.		19	2125	7/2/2009 7:26	7/2/2009 7:41	Protean
2	11		22	2260	7/2/2009 7:26	7/2/2009 7:41	Protean
3	110		13	2544	7/2/2009 7:26	7/2/2009 7:41	Protean
4	11		14	2596	7/2/2009 7:26	7/2/2009 7:41	Protean
	12		17	2235	7/2/2009 7:26		Protean
5 6	12		10	2330	7/2/2009 7:26		Protean
7	12		16	2530	7/2/2009 7:26	7/2/2009 7:41	Protean
8	12		10	2463	7/2/2009 7:26	7/2/2009 7:41	
1	13		11	2231	7/2/2009 7:49		
2	13		13	2190	7/2/2009 7:49	7/2/2009 8:04	
3	13		11	2458	7/2/2009 7:49	7/2/2009 8:04	Protean
J							

ver_pic_09.xls

4 5 6	13D 14A 14B	15 15 15	12 11 11	2635 2173 2281	7/2/2009 7:50 7/2/2009 7:50 7/2/2009 7:50	7/2/2009 8:05 7/2/2009 8:05 7/2/2009 8:05	Protean Protean
7	14C	15	14	2323	7/2/2009 7:50	7/2/2009 8:05	Protean
8	14D	15	14	2388	7/2/2009 7:50	7/2/2009 8:05	Protean


Å.				
Ra-228	Cal Date	7/2/2009 Exp Date	7/31/2009	
Protean	A0	A1 A2	A3	A4
1 A	6.30258E-01			
1B	6.28221E-01			
1C	6.17615E-01			
1D	6.04341E-01			
2A	6.17224E-01			
2B	6.16681E-01			
2C	5.96919E-01			
2D	6.11886E-01			
3A	5.68218E-01			
3B	5.98041E-01			
3C	6.16431E-01			
3D	5.99405E-01			
4A	6.20765E-01			
4B	6.20459E-01			
4C	6.05183E-01			
4D	5.87325E-01			
5A	6.25790E-01			
5 B	6.28027E-01			
5C	6.36802E-01			
5D	6.23741E-01			
6A	6.22050E-01			
6B	6.16280E-01			
6C	6.11053E-01			
6D	6.12043E-01			
7A	6.17961E-01			
7B	6.27962E-01			
7C	6.17791E-01			
7D	6.25720E-01			
8 A	6.24723E-01			
8B	6.33167E-01		•	
8C	6.33890E-01			
8D	6.28089E-01			
9A	6.496412E-01			
9B	6.356321E-01			
9C	6.273008E-01			
9D	6.432553E-01			
10A	6.389066E-01			
10B	6.137441E-01			
10C	6.249999E-01			
10D	6.319781E-01			
11A	5.82502E-01			
11B	6.37172E-01			
11C	6.35171E-01			
11D	6.34840E-01			
12A	6.28566E-01			
12B	6.35234E-01			
12C	6.30366E-01			
12D	6.31956E-01			
13A	6.40953E-01			

13B	6.52643E-01
13C	6.53798E-01
13D	6.37701E-01
14A	6.39290E-01
14B	6.26611E-01
14C	6.37531E-01
14D	6 32609F-01

MPC 9600 Plateau Instrument 1 MPC 9604 Detector A

7/1/2009

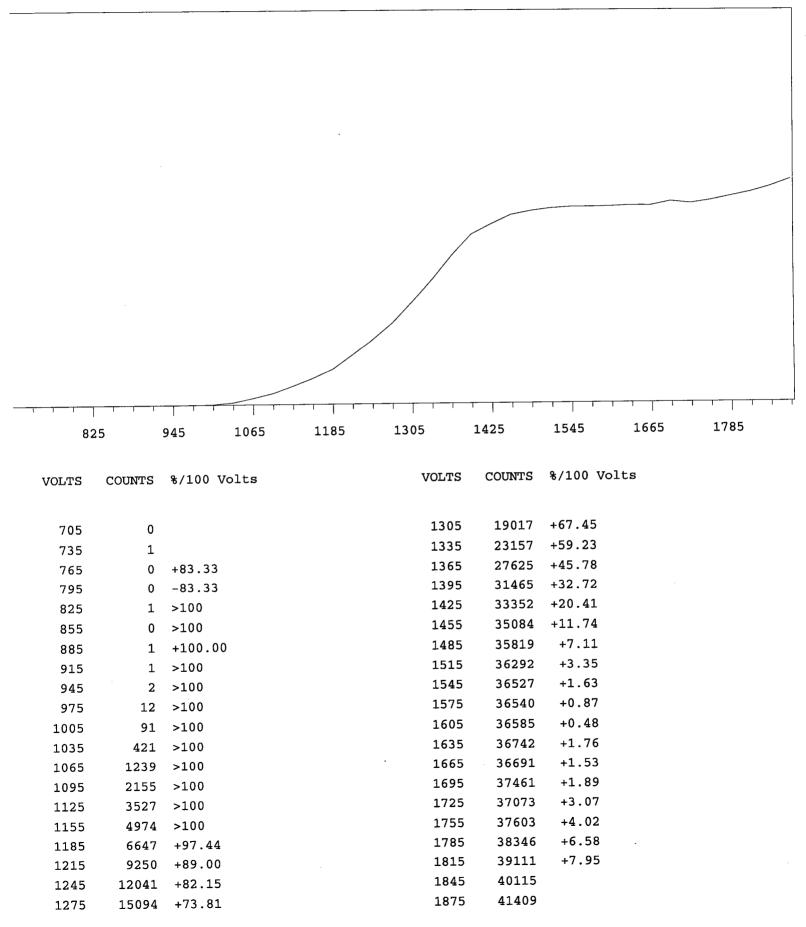
Alpha Volts: 1575 Beta Volts: 1575

190

MPC 9600 Plateau Instrument 1 MPC 9604 Detector B 7/1/2009

				 -					
					e .				
								-	_
					,				
· · · · · · · · ·	1			T	1	T			1 - 1 - 1
825		945	1065	1185	1305	1425	1545	1665	1785
		•							
VOLTS C	OUNTS	%/100 V	olts		VOLTS	COUNTS	%/100 Vo	lts	
705	1				1305	13188	+75.92		
735	0				1335	16818	+67.60		
765	0	+55.56			1365	20420	+59.86		
795	1	+83.33			1395	24341	+47.85		
825	1	+55.56	70		1425	27854	+35.51		
855	0	>100			1455	30288	+23.26		
885	1	+0.00			1485	31798	+14.54		
915	0	+0.00			1515	32622	+8.32		
0.45	1	>100					11		
945		7100			1545	33496	+5.11		
945 975	0	>100			15 4 5 1575	33496 33475	+4.43		
975	0	>100			1575	33475	+4.43		
975 1005	0 4	>100 >100			1575 1605	33475 33903	+4.43 +3.09		
975 1005 1035	0 4 56	>100 >100 >100			1575 1605 1635	33475 33903 34654	+4.43 +3.09 +2.46		
975 1005 1035 1065	0 4 56 292	>100 >100 >100 >100			1575 1605 1635 1665	33475 33903 34654 34485	+4.43 +3.09 +2.46 +1.74		
975 1005 1035 1065 1095	0 4 56 292 890	>100 >100 >100 >100 >100			1575 1605 1635 1665 1695	33475 33903 34654 34485 34445	+4.43 +3.09 +2.46 +1.74 +1.84		
975 1005 1035 1065 1095 1125	0 4 56 292 890 1841	>100 >100 >100 >100 >100 >100 >100			1575 1605 1635 1665 1695 1725	33475 33903 34654 34485 34445 34908	+4.43 +3.09 +2.46 +1.74 +1.84 +3.91		
975 1005 1035 1065 1095 1125 1155 1185	0 4 56 292 890 1841 2936	>100 >100 >100 >100 >100 >100 >100			1575 1605 1635 1665 1695 1725	33475 33903 34654 34485 34445 34908 35401	+4.43 +3.09 +2.46 +1.74 +1.84 +3.91 +6.80		
975 1005 1035 1065 1095 1125 1155	0 4 56 292 890 1841 2936 4179	>100 >100 >100 >100 >100 >100 >100 >100			1575 1605 1635 1665 1695 1725 1755	33475 33903 34654 34485 34445 34908 35401 36062	+4.43 +3.09 +2.46 +1.74 +1.84 +3.91 +6.80 +10.27		

MPC 9600 Plateau Instrument 1 MPC 9604 Detector C 7/1/2009


									/
					/				
1									
'	 	1 1 1			 	1. 11			- I - I - I
82	25	945	1065	1185	1305	1425	1545	1665	1785
82	25	945	1065	1185	1305	1425	1545	1665	1785
82 VOLTS		945 %/100 V		1185	1305 VOLTS		1545 %/100 Vo		1785
				1185					1785
VOLTS	COUNTS			1185	VOLTS	COUNTS	%/100 Vo		1785
VOLTS 705	COUNTS			1185	VOLTS	COUNTS 14817	%/100 Vo.		1785
VOLTS 705 735	COUNTS 1 0	%/100 V		1185	VOLTS 1305 1335	COUNTS 14817 17823	%/100 Vo: +71.06 +63.34		1785
VOLTS 705 735 765	COUNTS 1 0 1	%/100 V +0.00		1185	VOLTS 1305 1335 1365	COUNTS 14817 17823 21704	%/100 Vo. +71.06 +63.34 +53.63		1785
705 735 765 795	COUNTS 1 0 1 0	%/100 V +0.00 >100		1185	VOLTS 1305 1335 1365 1395	COUNTS 14817 17823 21704 25422	*/100 Vo: +71.06 +63.34 +53.63 +42.55		1785
VOLTS 705 735 765 795 825	COUNTS 1 0 1 0 1	%/100 V +0.00 >100 -55.56		1185	VOLTS 1305 1335 1365 1395 1425	14817 17823 21704 25422 28424	*/100 Vo. +71.06 +63.34 +53.63 +42.55 +29.21		1785
705 735 765 795 825 855	COUNTS 1 0 1 0 1 1	*/100 V +0.00 >100 -55.56 +55.56		1185	VOLTS 1305 1335 1365 1395 1425 1455	14817 17823 21704 25422 28424 30244	*/100 Vo: +71.06 +63.34 +53.63 +42.55 +29.21 +18.11		1785
VOLTS 705 735 765 795 825 855 885	COUNTS 1 0 1 0 1 1 0	*/100 V +0.00 >100 -55.56 +55.56 >100		1185	VOLTS 1305 1335 1365 1395 1425 1455 1485	COUNTS 14817 17823 21704 25422 28424 30244 31305	*/100 Vo. +71.06 +63.34 +53.63 +42.55 +29.21 +18.11 +10.10		1785
705 735 765 795 825 855 885 915	COUNTS 1 0 1 0 1 1 0 1	*/100 V +0.00 >100 -55.56 +55.56 >100 >100		1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515	COUNTS 14817 17823 21704 25422 28424 30244 31305 31989	*/100 Vo: +71.06 +63.34 +53.63 +42.55 +29.21 +18.11 +10.10 +6.07		1785
VOLTS 705 735 765 795 825 855 885 915 945	COUNTS 1 0 1 0 1 1 0 1 0 1	*/100 V +0.00 >100 -55.56 +55.56 >100 >100		1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515	COUNTS 14817 17823 21704 25422 28424 30244 31305 31989 32223	*/100 Vo: +71.06 +63.34 +53.63 +42.55 +29.21 +18.11 +10.10 +6.07 +3.43		1785
705 735 765 795 825 855 885 915 945	COUNTS 1 0 1 0 1 1 0 1 0 4	*/100 V +0.00 >100 -55.56 +55.56 >100 >100 >100		1185	VOLTS 1305 1335 1365 1395 1425 1455 1455 1545 1515	COUNTS 14817 17823 21704 25422 28424 30244 31305 31989 32223 32671	*/100 Vo: +71.06 +63.34 +53.63 +42.55 +29.21 +18.11 +10.10 +6.07 +3.43 +2.15		1785
VOLTS 705 735 765 795 825 855 8915 945 975 1005	COUNTS 1 0 1 0 1 0 1 0 4 32	*/100 V +0.00 >100 -55.56 +55.56 >100 >100 >100 >100		1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575	COUNTS 14817 17823 21704 25422 28424 30244 31305 31989 32223 32671 32621	*/100 Vo: +71.06 +63.34 +53.63 +42.55 +29.21 +18.11 +10.10 +6.07 +3.43 +2.15 +1.68		1785
VOLTS 705 735 765 795 825 855 915 945 975 1005 1035	COUNTS 1 0 1 0 1 1 0 4 32 206	*/100 V +0.00 >100 -55.56 +55.56 >100 >100 >100 >100 >100		1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	COUNTS 14817 17823 21704 25422 28424 30244 31305 31989 32223 32671 32621 32837	*/100 Vo. +71.06 +63.34 +53.63 +42.55 +29.21 +18.11 +10.10 +6.07 +3.43 +2.15 +1.68 +1.52		1785
VOLTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065	COUNTS 1 0 1 0 1 0 4 32 206 639	*/100 V +0.00 >100 -55.56 +55.56 >100 >100 >100 >100 >100 >100		1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	COUNTS 14817 17823 21704 25422 28424 30244 31305 31989 32223 32671 32621 32837 32961	*/100 Vo: +71.06 +63.34 +53.63 +42.55 +29.21 +18.11 +10.10 +6.07 +3.43 +2.15 +1.68 +1.52 +2.01		1785
VOLTS 705 735 765 795 825 885 915 945 975 1005 1035 1065 1095	COUNTS 1 0 1 0 1 0 4 32 206 639 1416	*/100 V +0.00 >100 -55.56 +55.56 >100 >100 >100 >100 >100 >100 >100 >10		1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665	COUNTS 14817 17823 21704 25422 28424 30244 31305 31989 32223 32671 32621 32837 32961 33249	*/100 Vo: +71.06 +63.34 +53.63 +42.55 +29.21 +18.11 +10.10 +6.07 +3.43 +2.15 +1.68 +1.52 +2.01 +2.64		1785
VOLTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	COUNTS 1 0 1 0 1 0 4 32 206 639 1416 2551	*/100 V +0.00 >100 -55.56 +55.56 >100 >100 >100 >100 >100 >100 >100 >10		1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695	COUNTS 14817 17823 21704 25422 28424 30244 31305 31989 32223 32671 32621 32837 32961 33249 33409	*/100 Vo: +71.06 +63.34 +53.63 +42.55 +29.21 +18.11 +10.10 +6.07 +3.43 +2.15 +1.68 +1.52 +2.01 +2.64 +3.21		1785
VOLTS 705 735 765 795 825 855 945 915 1005 1005 1005 1065 1095 1125 1155	COUNTS 1 0 1 0 1 0 4 32 206 639 1416 2551 3619	*/100 V +0.00 >100 -55.56 +55.56 >100 >100 >100 >100 >100 >100 >100 >10		1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725	COUNTS 14817 17823 21704 25422 28424 30244 31305 31989 32223 32671 32621 32837 32961 33249 33409 33931	*/100 Vo: +71.06 +63.34 +53.63 +42.55 +29.21 +18.11 +10.10 +6.07 +3.43 +2.15 +1.68 +1.52 +2.01 +2.64 +3.21 +4.07		1785
VOLTS 705 735 765 795 825 885 915 945 975 1005 1035 1065 1095 1125 1155 1185	COUNTS 1 0 1 0 1 1 0 4 32 206 639 1416 2551 3619 5037	*/100 V +0.00 >100 -55.56 +55.56 >100 >100 >100 >100 >100 >100 >100 >10		1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755 1785	COUNTS 14817 17823 21704 25422 28424 30244 31305 31989 32223 32671 32621 32837 32961 33249 33409 33931 34234	*/100 Vo. +71.06 +63.34 +53.63 +42.55 +29.21 +18.11 +10.10 +6.07 +3.43 +2.15 +1.68 +1.52 +2.01 +2.64 +3.21 +4.07 +7.20		1785
VOLTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1155 1185 1215	COUNTS 1 0 1 0 1 0 4 32 206 639 1416 2551 3619 5037 6875	*/100 V +0.00 >100 -55.56 +55.56 >100 >100 >100 >100 >100 >100 >100 >10		1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755 1785	COUNTS 14817 17823 21704 25422 28424 30244 31305 31989 32223 32671 32621 32837 32961 33249 33409 33931 34234 34909	*/100 Vo: +71.06 +63.34 +53.63 +42.55 +29.21 +18.11 +10.10 +6.07 +3.43 +2.15 +1.68 +1.52 +2.01 +2.64 +3.21 +4.07		1785
VOLTS 705 735 765 795 825 885 915 945 975 1005 1035 1065 1095 1125 1155 1185	COUNTS 1 0 1 0 1 1 0 4 32 206 639 1416 2551 3619 5037	*/100 V +0.00 >100 -55.56 +55.56 >100 >100 >100 >100 >100 >100 >100 >10		1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755 1785	COUNTS 14817 17823 21704 25422 28424 30244 31305 31989 32223 32671 32621 32837 32961 33249 33409 33931 34234	*/100 Vo. +71.06 +63.34 +53.63 +42.55 +29.21 +18.11 +10.10 +6.07 +3.43 +2.15 +1.68 +1.52 +2.01 +2.64 +3.21 +4.07 +7.20		1785

MPC 9600 Plateau Instrument 1 MPC 9604 Detector D 7/1/2009

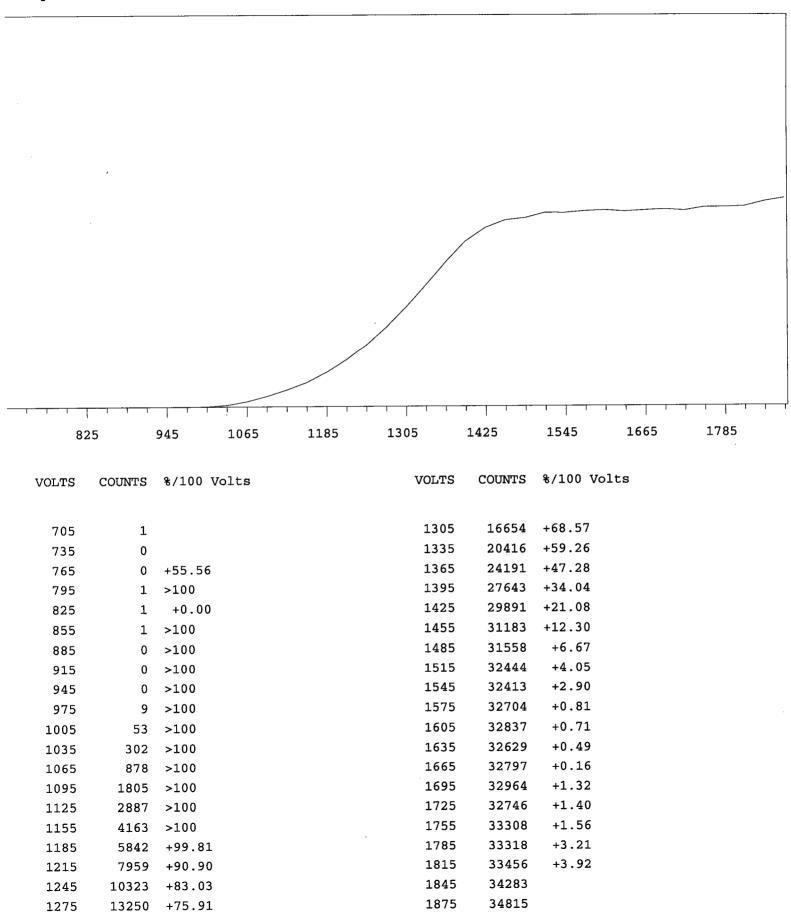
							<u></u>		
									/
					,				
•									
									
. 1 1. [_	, ,	' '	' ' '	1005	1.405	1545	1665	1785
82	5	945	1065	1185	1305	1425	1545	1665	1705
VOLTS	COUNTS	%/100 V	olts"		VOLTS	COUNTS	%/100 Vc	lts	
705	0				1305	15202	+66.36		
735	1				1335	18216	+57.86		
765	0	+0.00			1365	21597	+45.58		
795	1	+0.00			1395	24648	+32.96		
825	0	+0.00			1425	26505	+19.92		
855	1				1455	27475	+11.42		
885	0	>100	*		1485	27836	+7.08		
915	0	>100			1515	28609	+4.51		
945	0	>100			1545	28896	+2.93		
975	8	>100			1575	28862	+1.66		
1005	75	>100			1605	28969	+0.36		
1035	303	>100			1635	29292	+0.80		
1065	872	>100			1665	28836	+1.06		
1095	1656				1695	29279	+1.48		
1125	2729				1725	29439	+3.59		
1155	3862	>100			1755	29642	+4.07		
1185	5425				1785	30243	+6.51		
1215	7256				1815	30699	+7.79		
1245	9510				1845	31876			
1273	J J + U								
1275	11944				1875	32444			

MPC 9600 Plateau


Instrument 2 MPC 9604 Detector A 7/1/2009

MPC 9600 Plateau Instrument 2 MPC 9604 Detector B 7/1/2009

									. /
							/		
<u> </u>			-1			1 7 1	-, -, -	1 1 1	7 1 1
82	5	945	1065	1185	1305	1425	1545	1665	1785
-	-								
UOT.TC	COLIMITS	<u>% /1በበ</u> ነ	Volts		VOLTS	COUNTS	%/100 Vc	lts	
VOLTS	COUNTS	%/100 ·	Volts		VOLTS	COUNTS	%/100 Vo	olts	
		୫/100 ^ዓ	Volts					olts	
705	0	୫/100 ^ዓ	Volts		1305	12541	+83.18	olts	
705 735	0 1	%/100 `	Volts		1305 1335	12541 16192	+83.18 +74.48	olts	
705 735 765	0 1 0		Volts		1305 1335 1365	12541 16192 20083	+83.18 +74.48 +67.17	olts	
705 735 765 795	0 1 0	>100	Volts		1305 1335 1365 1395	12541 16192 20083 24273	+83.18 +74.48 +67.17 +58.43	olts	
705 735 765 795 825	0 1 0 0	>100 >100	Volts		1305 1335 1365 1395 1425	12541 16192 20083 24273 29090	+83.18 +74.48 +67.17 +58.43 +46.86	olts	
705 735 765 795 825 855	0 1 0 0 0	>100 >100 >100	Volts		1305 1335 1365 1395 1425 1455	12541 16192 20083 24273 29090 33223	+83.18 +74.48 +67.17 +58.43	olts	
705 735 765 795 825 855 885	0 1 0 0	>100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425	12541 16192 20083 24273 29090	+83.18 +74.48 +67.17 +58.43 +46.86 +34.56	olts	
705 735 765 795 825 855 885 915	0 1 0 0 0 0	>100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455	12541 16192 20083 24273 29090 33223 35608	+83.18 +74.48 +67.17 +58.43 +46.86 +34.56 +22.67	olts	
705 735 765 795 825 855 885	0 1 0 0 0 0	>100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485	12541 16192 20083 24273 29090 33223 35608 37581	+83.18 +74.48 +67.17 +58.43 +46.86 +34.56 +22.67 +13.63	olts	
705 735 765 795 825 855 885 915	0 1 0 0 0 0 0 0	>100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515	12541 16192 20083 24273 29090 33223 35608 37581 38762	+83.18 +74.48 +67.17 +58.43 +46.86 +34.56 +22.67 +13.63 +8.18	olts	
705 735 765 795 825 855 885 915 945	0 1 0 0 0 0 0 0	>100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545	12541 16192 20083 24273 29090 33223 35608 37581 38762 39185	+83.18 +74.48 +67.17 +58.43 +46.86 +34.56 +22.67 +13.63 +8.18 +4.42	olts	
705 735 765 795 825 855 885 915 945 975	0 1 0 0 0 0 0 0 1 2 3	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	12541 16192 20083 24273 29090 33223 35608 37581 38762 39185 39484	+83.18 +74.48 +67.17 +58.43 +46.86 +34.56 +22.67 +13.63 +8.18 +4.42 +3.06 +2.61 +2.03	olts	
705 735 765 795 825 855 885 915 945 975 1005	0 1 0 0 0 0 0 1 2 3	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665	12541 16192 20083 24273 29090 33223 35608 37581 38762 39185 39484 39806 40264 40353	+83.18 +74.48 +67.17 +58.43 +46.86 +34.56 +22.67 +13.63 +8.18 +4.42 +3.06 +2.61 +2.03 +2.32	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035	0 1 0 0 0 0 0 1 2 3 14 127	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695	12541 16192 20083 24273 29090 33223 35608 37581 38762 39185 39484 39806 40264 40353 40431	+83.18 +74.48 +67.17 +58.43 +46.86 +34.56 +22.67 +13.63 +8.18 +4.42 +3.06 +2.61 +2.03 +2.32 +3.28	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065	0 1 0 0 0 0 0 1 2 3 14 127 500	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	12541 16192 20083 24273 29090 33223 35608 37581 38762 39185 39484 39806 40264 40353 40431 41127	+83.18 +74.48 +67.17 +58.43 +46.86 +34.56 +22.67 +13.63 +8.18 +4.42 +3.06 +2.61 +2.03 +2.32 +3.28 +7.09	olts	
705 735 765 795 825 855 915 945 975 1005 1035 1065 1095	0 1 0 0 0 0 0 1 2 3 14 127 500 1332 2373 3614	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1675 1605 1635 1665 1695 1725 1755	12541 16192 20083 24273 29090 33223 35608 37581 38762 39185 39484 39806 40264 40353 40431 41127 41882	+83.18 +74.48 +67.17 +58.43 +46.86 +34.56 +22.67 +13.63 +8.18 +4.42 +3.06 +2.61 +2.03 +2.32 +3.28 +7.09 +12.40	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1125 1125 1185	0 1 0 0 0 0 0 0 1 2 3 14 127 500 1332 2373 3614 5227	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755 1785	12541 16192 20083 24273 29090 33223 35608 37581 38762 39185 39484 39806 40264 40353 40431 41127 41882 44049	+83.18 +74.48 +67.17 +58.43 +46.86 +34.56 +22.67 +13.63 +8.18 +4.42 +3.06 +2.61 +2.03 +2.32 +3.28 +7.09	olts	
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1155	0 1 0 0 0 0 0 1 2 3 14 127 500 1332 2373 3614	>100 >100 >100 >100 >100 >100 >100 >100	3		1305 1335 1365 1395 1425 1455 1485 1515 1545 1675 1605 1635 1665 1695 1725 1755	12541 16192 20083 24273 29090 33223 35608 37581 38762 39185 39484 39806 40264 40353 40431 41127 41882 44049 46950	+83.18 +74.48 +67.17 +58.43 +46.86 +34.56 +22.67 +13.63 +8.18 +4.42 +3.06 +2.61 +2.03 +2.32 +3.28 +7.09 +12.40	olts	


MPC 9600 Plateau Instrument 2 MPC 9604 Detector C 7/1/2009

MPC 9600 Plateau Instrument 2 MPC 9604 Detector D 7/1/2009

	•								
									•
- 				1 - -		1 1 1	' '	' ' '	4505
82	5	945	1065	1185	1305	1425	1545	1665	1785
VOLTS									
VOLID	COUNTS	%/100 V	olts		VOLTS	COUNTS	%/100 Vc	olts	
VOLID	COUNTS	%/100 V	olts		VOLTS	COUNTS	%/100 Vo	olts	
		%/100 V	olts		VOLTS	COUNTS 18675	%/100 Vc +65.94	olts	
705	1	%/100 V	olts					olts	
705 735	1 0		olts		1305	18675	+65.94	olts	
705 735 765	1 0 0	+83.33	olts		1305 1335	18675 22620	+65.94 +55.69	olts	
705 735 765 795	1 0 0 2	+83.33 +55.56	olts		1305 1335 1365	18675 22620 26869	+65.94 +55.69 +44.63 +32.08	olts	
705 735 765 795 825	1 0 0 2	+83.33	olts		1305 1335 1365 1395	18675 22620 26869 29957	+65.94 +55.69 +44.63 +32.08	olts	
705 735 765 795 825 855	1 0 0 2 1	+83.33 +55.56 >100	olts		1305 1335 1365 1395 1425	18675 22620 26869 29957 32494	+65.94 +55.69 +44.63 +32.08 +20.49	olts	
705 735 765 795 825 855 885	1 0 0 2 1 0	+83.33 +55.56 >100 >100	olts		1305 1335 1365 1395 1425 1455	18675 22620 26869 29957 32494 33836	+65.94 +55.69 +44.63 +32.08 +20.49 +11.98	olts	
705 735 765 795 825 855 885 915	1 0 0 2 1 0	+83.33 +55.56 >100 >100 >100 >100	olts		1305 1335 1365 1395 1425 1455	18675 22620 26869 29957 32494 33836 34627	+65.94 +55.69 +44.63 +32.08 +20.49 +11.98 +6.45	olts	
705 735 765 795 825 855 885 915	1 0 0 2 1 0 0 0	+83.33 +55.56 >100 >100 >100 >100 >100	olts		1305 1335 1365 1395 1425 1455 1485	18675 22620 26869 29957 32494 33836 34627 34849	+65.94 +55.69 +44.63 +32.08 +20.49 +11.98 +6.45 +3.22	olts	
705 735 765 795 825 855 885 915 945	1 0 0 2 1 0 0 0 2 9	+83.33 +55.56 >100 >100 >100 >100 >100 >100	olts		1305 1335 1365 1395 1425 1455 1485 1515	18675 22620 26869 29957 32494 33836 34627 34849 35298	+65.94 +55.69 +44.63 +32.08 +20.49 +11.98 +6.45 +3.22 +1.98	olts	
705 735 765 795 825 855 885 915 945 975	1 0 2 1 0 0 0 2 9	+83.33 +55.56 >100 >100 >100 >100 >100 >100 >100	olts		1305 1335 1365 1395 1425 1455 1485 1515 1545	18675 22620 26869 29957 32494 33836 34627 34849 35298 35180	+65.94 +55.69 +44.63 +32.08 +20.49 +11.98 +6.45 +3.22 +1.98 +2.37	olts	
705 735 765 795 825 855 885 915 945 975 1005	1 0 0 2 1 0 0 2 9 89 439	+83.33 +55.56 >100 >100 >100 >100 >100 >100 >100 >10	olts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	18675 22620 26869 29957 32494 33836 34627 34849 35298 35180 35503	+65.94 +55.69 +44.63 +32.08 +20.49 +11.98 +6.45 +3.22 +1.98 +2.37 +1.57	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035	1 0 0 2 1 0 0 0 2 9 89 439 1198	+83.33 +55.56 >100 >100 >100 >100 >100 >100 >100 >10	olts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	18675 22620 26869 29957 32494 33836 34627 34849 35298 35180 35503 36006 35722	+65.94 +55.69 +44.63 +32.08 +20.49 +11.98 +6.45 +3.22 +1.98 +2.37 +1.57 +0.99	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065	1 0 0 2 1 0 0 2 9 89 439 1198 2164	+83.33 +55.56 >100 >100 >100 >100 >100 >100 >100 >10	olts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665	18675 22620 26869 29957 32494 33836 34627 34849 35298 35180 35503 36006 35722 35597	+65.94 +55.69 +44.63 +32.08 +20.49 +11.98 +6.45 +3.22 +1.98 +2.37 +1.57 +0.99 +0.89 +0.93	olts	
705 735 765 795 825 855 915 945 975 1005 1035 1065 1095	1 0 0 2 1 0 0 0 2 9 89 439 1198 2164 3436	+83.33 +55.56 >100 >100 >100 >100 >100 >100 >100 >10	olts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695	18675 22620 26869 29957 32494 33836 34627 34849 35298 35180 35503 36006 35722 35597 36188	+65.94 +55.69 +44.63 +32.08 +20.49 +11.98 +6.45 +3.22 +1.98 +2.37 +1.57 +0.99 +0.89	olts	
705 735 765 795 825 885 915 945 975 1005 1035 1065 1095 1125 1155	1 0 0 2 1 0 0 0 2 9 89 439 1198 2164 3436 4917	+83.33 +55.56 >100 >100 >100 >100 >100 >100 >100 >10	olts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	18675 22620 26869 29957 32494 33836 34627 34849 35298 35180 35503 36006 35722 35597 36188 36272	+65.94 +55.69 +44.63 +32.08 +20.49 +11.98 +6.45 +3.22 +1.98 +2.37 +1.57 +0.99 +0.89 +0.89 +0.93 +1.86 +1.90	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1155	1 0 0 2 1 0 0 0 2 9 89 439 1198 2164 3436 4917 6762	+83.33 +55.56 >100 >100 >100 >100 >100 >100 >100 >10	olts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725 1755	18675 22620 26869 29957 32494 33836 34627 34849 35298 35180 35503 36006 35722 35597 36188 36272 36389	+65.94 +55.69 +44.63 +32.08 +20.49 +11.98 +6.45 +3.22 +1.98 +2.37 +1.57 +0.99 +0.93 +1.86 +1.90 +2.55	olts	
705 735 765 795 825 885 915 945 975 1005 1035 1065 1095 1125	1 0 0 2 1 0 0 0 2 9 89 439 1198 2164 3436 4917	+83.33 +55.56 >100 >100 >100 >100 >100 >100 >100 >10	olts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	18675 22620 26869 29957 32494 33836 34627 34849 35298 35180 35503 36006 35722 35597 36188 36272 36389 36529	+65.94 +55.69 +44.63 +32.08 +20.49 +11.98 +6.45 +3.22 +1.98 +2.37 +1.57 +0.99 +0.89 +0.89 +0.93 +1.86 +1.90	olts	

MPC 9600 Plateau Instrument 3 MPC 9604 Detector A 7/1/2009

MPC 9600 Plateau Instrument 3 MPC 9604 Detector B 7/1/2009

					 				
	•								
							•		
					•				
			1	1 1 1	1 1 1				
82	25	945	1065	1185	1305	1425	1545	1665	1785
ᢓͲͺϒϴ	COUNTS	%/100 V	<i>l</i> olts		VOLTS	COUNTS	%/100 Vo	olts	
VOLTS	COUNTS	%/100 V	/olts		VOLTS	COUNTS	%/100 Vo	olts	
		%/100 V	/olts					olts	
705	1	%/100 V	/olts		1305	19810	+64.73	olts	
705 735	1		/olts		1305 1335	19810 23962	+64.73 +52.62	olts	
705 735 765	1 1 0	-55.56	/olts		1305 1335 1365	19810 23962 28091	+64.73 +52.62 +39.27	olts	
705 735 765 795	1 1 0 0	-55.56 >100	/olts		1305 1335 1365 1395	19810 23962 28091 30594	+64.73 +52.62 +39.27 +25.61	olts	
705 735 765 795 825	1 1 0 0	-55.56 >100 >100	/olts		1305 1335 1365 1395 1425	19810 23962 28091 30594 32381	+64.73 +52.62 +39.27 +25.61 +14.86	olts	
705 735 765 795 825 855	1 1 0 0 1 3	-55.56 >100 >100 +33.33	<i>J</i> olts		1305 1335 1365 1395 1425 1455	19810 23962 28091 30594 32381 33206	+64.73 +52.62 +39.27 +25.61 +14.86 +8.91	olts	
705 735 765 795 825 855 885	1 1 0 0 1 3 0	-55.56 >100 >100 +33.33 +0.00	/olts		1305 1335 1365 1395 1425 1455	19810 23962 28091 30594 32381 33206 33832	+64.73 +52.62 +39.27 +25.61 +14.86 +8.91 +4.41	olts	
705 735 765 795 825 855 885 915	1 0 0 1 3 0	-55.56 >100 >100 +33.33 +0.00 >100	<i>J</i> olts		1305 1335 1365 1395 1425 1455 1485	19810 23962 28091 30594 32381 33206 33832 34260	+64.73 +52.62 +39.27 +25.61 +14.86 +8.91 +4.41 +3.01	olts	
705 735 765 795 825 855 885 915	1 1 0 0 1 3 0 1 2	-55.56 >100 >100 +33.33 +0.00 >100 >100	<i>T</i> olts		1305 1335 1365 1395 1425 1455 1485 1515	19810 23962 28091 30594 32381 33206 33832 34260 34071	+64.73 +52.62 +39.27 +25.61 +14.86 +8.91 +4.41 +3.01 +2.33	olts	
705 735 765 795 825 855 885 915 945	1 0 0 1 3 0 1 2	-55.56 >100 >100 +33.33 +0.00 >100 >100 >100	<i>J</i> olts		1305 1335 1365 1395 1425 1455 1485 1515 1545	19810 23962 28091 30594 32381 33206 33832 34260 34071 34623	+64.73 +52.62 +39.27 +25.61 +14.86 +8.91 +4.41 +3.01 +2.33 +1.34	olts	
705 735 765 795 825 855 885 915 945 975 1005	1 0 0 1 3 0 1 2 29 165	-55.56 >100 >100 +33.33 +0.00 >100 >100 >100	<i>T</i> olts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	19810 23962 28091 30594 32381 33206 33832 34260 34071 34623 34848	+64.73 +52.62 +39.27 +25.61 +14.86 +8.91 +4.41 +3.01 +2.33 +1.34 +1.22	olts	
705 735 765 795 825 855 885 915 945 975 1005	1 0 0 1 3 0 1 2 29 165 613	-55.56 >100 >100 +33.33 +0.00 >100 >100 >100 >100 >100	/olts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	19810 23962 28091 30594 32381 33206 33832 34260 34071 34623 34848 34564	+64.73 +52.62 +39.27 +25.61 +14.86 +8.91 +4.41 +3.01 +2.33 +1.34 +1.22 +0.89	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035	1 0 0 1 3 0 1 2 29 165 613 1394	-55.56 >100 >100 +33.33 +0.00 >100 >100 >100 >100 >100 >100	<i>T</i> olts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	19810 23962 28091 30594 32381 33206 33832 34260 34071 34623 34848 34564 34733	+64.73 +52.62 +39.27 +25.61 +14.86 +8.91 +4.41 +3.01 +2.33 +1.34 +1.22 +0.89 +1.01	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065	1 0 0 1 3 0 1 2 29 165 613 1394 2558	-55.56 >100 >100 +33.33 +0.00 >100 >100 >100 >100 >100 >100 >100	/olts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665	19810 23962 28091 30594 32381 33206 33832 34260 34071 34623 34848 34564 34733 35144	+64.73 +52.62 +39.27 +25.61 +14.86 +8.91 +4.41 +3.01 +2.33 +1.34 +1.22 +0.89 +1.01 +2.76	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095	1 0 0 1 3 0 1 2 29 165 613 1394 2558 3702	-55.56 >100 >100 +33.33 +0.00 >100 >100 >100 >100 >100 >100 >100	<i>T</i> olts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1675 1605 1635 1665 1695	19810 23962 28091 30594 32381 33206 33832 34260 34071 34623 34848 34564 34733 35144 35084	+64.73 +52.62 +39.27 +25.61 +14.86 +8.91 +4.41 +3.01 +2.33 +1.34 +1.22 +0.89 +1.01 +2.76 +3.66	olts	
705 735 765 795 825 855 885 915 945 975 1005 1065 1065 1125 1155	1 0 0 1 3 0 1 2 29 165 613 1394 2558 3702 5222	-55.56 >100 >100 +33.33 +0.00 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	19810 23962 28091 30594 32381 33206 33832 34260 34071 34623 34848 34564 34733 35144 35084 35839	+64.73 +52.62 +39.27 +25.61 +14.86 +8.91 +4.41 +3.01 +2.33 +1.34 +1.22 +0.89 +1.01 +2.76 +3.66 +3.97	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1155 1185	1 0 0 1 3 0 1 2 29 165 613 1394 2558 3702 5222 7161	-55.56 >100 >100 +33.33 +0.00 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1675 1635 1665 1695 1725 1755	19810 23962 28091 30594 32381 33206 33832 34260 34071 34623 34848 34564 34733 35144 35084 35839 36332	+64.73 +52.62 +39.27 +25.61 +14.86 +8.91 +4.41 +3.01 +2.33 +1.34 +1.22 +0.89 +1.01 +2.76 +3.66 +3.97 +5.39	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1125 1155 1185 1215	1 0 0 1 3 0 1 2 29 165 613 1394 2558 3702 5222 7161 9507	-55.56 >100 >100 +33.33 +0.00 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725 1785 1785	19810 23962 28091 30594 32381 33206 33832 34260 34071 34623 34848 34564 34733 35144 35084 35839 36332 36654	+64.73 +52.62 +39.27 +25.61 +14.86 +8.91 +4.41 +3.01 +2.33 +1.34 +1.22 +0.89 +1.01 +2.76 +3.66 +3.97	olts	
735 765 795 825 885 915 945 975 1005 1035 1065 1095 1125 1155	1 0 0 1 3 0 1 2 29 165 613 1394 2558 3702 5222 7161	-55.56 >100 >100 +33.33 +0.00 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1675 1635 1665 1695 1725 1755	19810 23962 28091 30594 32381 33206 33832 34260 34071 34623 34848 34564 34733 35144 35084 35839 36332 36654 37609	+64.73 +52.62 +39.27 +25.61 +14.86 +8.91 +4.41 +3.01 +2.33 +1.34 +1.22 +0.89 +1.01 +2.76 +3.66 +3.97 +5.39	olts	

MPC 9600 Plateau Alpha Volts: 705

Instrument 3 MPC 9604 Detector C

7/1/2009

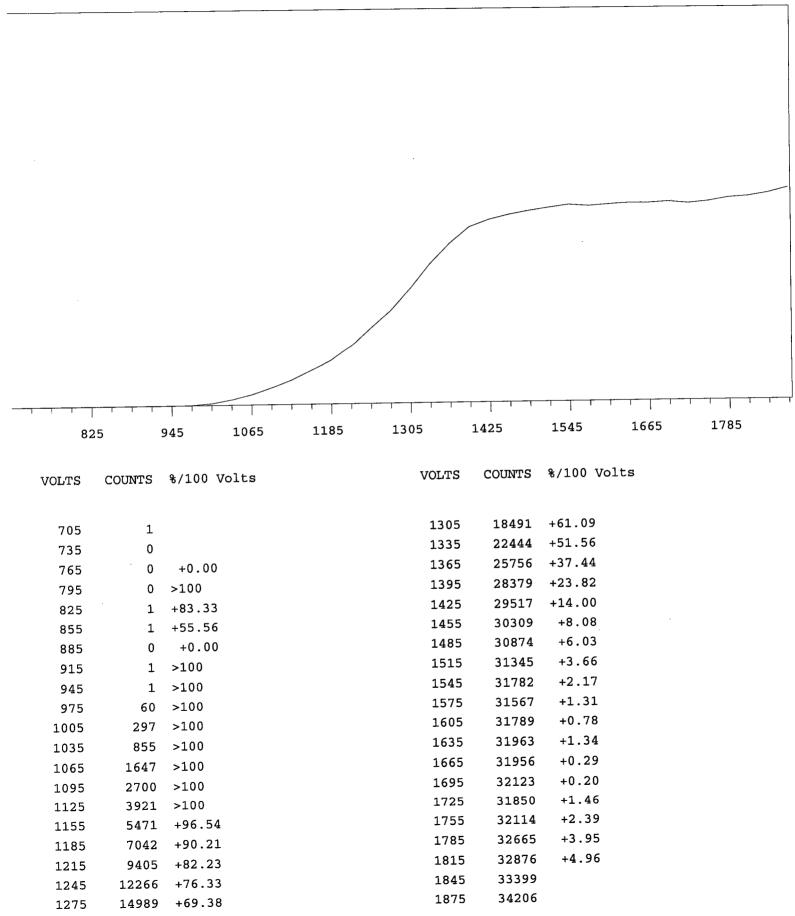
Beta Volts: 1575

MPC 9600 Plateau Instrument 3 MPC 9604 Detector D 7/1/2009

						_			
				,					
									
		· - -				' ' '		' ' 1	
0.	75	945	1065	1185	1305	1425	1545	1665	1785
82	<u> </u>	945	1065	1185	1305	1425	1545	1665	1785
				1185					1785
82 VOLTS	25 COUNTS			1185	1305 VOLTS		1545 %/100 Vo		1785
				1185	VOLTS	COUNTS	୫/100 Vo		1785
				1185	VOLTS	COUNTS	%/100 Vo		1785
VOLTS	COUNTS			1185	VOLTS 1305 1335	COUNTS 14171 17362	%/100 Vo +66.45 +54.90		1785
VOLTS	COUNTS 0			1185	VOLTS 1305 1335 1365	COUNTS 14171 17362 20310	%/100 Vo +66.45 +54.90 +43.83		1785
VOLTS 705 735	COUNTS 0 1	*/100 \ +0.00		1185	VOLTS 1305 1335 1365 1395	COUNTS 14171 17362 20310 22647	%/100 Vo +66.45 +54.90 +43.83 +30.82		1785
VOLTS 705 735 765	COUNTS 0 1 0	*/100 \ +0.00		1185	1305 1335 1365 1395 1425	COUNTS 14171 17362 20310 22647 24551	%/100 Vo +66.45 +54.90 +43.83 +30.82 +20.19		1785
VOLTS 705 735 765 795	COUNTS 0 1 0 1	%/100 V +0.00 >100	Olts .	1185	VOLTS 1305 1335 1365 1395 1425 1455	14171 17362 20310 22647 24551 25440	*/100 Vo +66.45 +54.90 +43.83 +30.82 +20.19 +11.69		1785
VOLTS 705 735 765 795 825	COUNTS 0 1 0 1	*/100 V +0.00 >100 +83.33	Olts .	1185	VOLTS 1305 1335 1365 1395 1425 1455 1485	COUNTS 14171 17362 20310 22647 24551 25440 26124	*/100 Vo +66.45 +54.90 +43.83 +30.82 +20.19 +11.69 +5.90		1785
705 735 765 795 825 855	COUNTS 0 1 0 1 0 0	*/100 \\ +0.00 >100 +83.33 -83.33	Olts .	1185	1305 1335 1365 1395 1425 1455 1485 1515	COUNTS 14171 17362 20310 22647 24551 25440 26124 26245	*/100 Vo +66.45 +54.90 +43.83 +30.82 +20.19 +11.69 +5.90 +2.21		1785
705 735 765 795 825 855 885	COUNTS 0 1 0 1 0 1	+0.00 >100 +83.33 -83.33 >100	Olts .	1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515	COUNTS 14171 17362 20310 22647 24551 25440 26124 26245 26428	*/100 Vo +66.45 +54.90 +43.83 +30.82 +20.19 +11.69 +5.90 +2.21 +1.39		1785
705 735 765 795 825 855 885 915	COUNTS 0 1 0 1 0 1 0 1	+0.00 >100 +83.33 -83.33 >100 >100 >100 >100	Olts .	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545	COUNTS 14171 17362 20310 22647 24551 25440 26124 26245 26428 26151	%/100 Vo +66.45 +54.90 +43.83 +30.82 +20.19 +11.69 +5.90 +2.21 +1.39 +2.69		1785
705 735 765 795 825 855 885 915 945	COUNTS 0 1 0 1 0 1 1 1 2 51	*/100 \\ +0.00 >100 +83.33 -83.33 >100 >100 >100 >100 >100 >100	Olts .	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575	COUNTS 14171 17362 20310 22647 24551 25440 26124 26245 26428 26151 26721	%/100 Vo +66.45 +54.90 +43.83 +30.82 +20.19 +11.69 +5.90 +2.21 +1.39 +2.69 +2.72		1785
705 735 765 795 825 855 885 915 945	COUNTS 0 1 0 1 0 1 1 2 51 298	*/100 \\ +0.00 >100 +83.33 -83.33 >100 >100 >100 >100 >100 >100 >100	Olts .	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	COUNTS 14171 17362 20310 22647 24551 25440 26124 26245 26428 26151 26721 27168	%/100 Vo +66.45 +54.90 +43.83 +30.82 +20.19 +11.69 +5.90 +2.21 +1.39 +2.69 +2.72 +2.80		1785
705 735 765 795 825 855 885 915 945 975 1005	COUNTS 0 1 0 1 0 1 1 2 51 298 848	*/100 \\ +0.00 >100 +83.33 -83.33 >100 >100 >100 >100 >100 >100 >100 >1	Olts .	1185	1305 1335 1365 1395 1425 1455 1455 1515 1545 1575 1605 1635	COUNTS 14171 17362 20310 22647 24551 25440 26124 26245 26428 26151 26721 27168 27007	%/100 Vo +66.45 +54.90 +43.83 +30.82 +20.19 +11.69 +5.90 +2.21 +1.39 +2.69 +2.72 +2.80 +0.87		1785
VOLTS 705 735 765 795 825 885 915 945 975 1005 1035 1065 1095	COUNTS 0 1 0 1 0 1 1 2 51 298 848 1649	*/100 \\ +0.00 >100 +83.33 -83.33 >100 >100 >100 >100 >100 >100 >100 >1	Olts .	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665	COUNTS 14171 17362 20310 22647 24551 25440 26124 26245 26428 26151 26721 27168 27007 27135	%/100 Vo +66.45 +54.90 +43.83 +30.82 +20.19 +11.69 +5.90 +2.21 +1.39 +2.69 +2.72 +2.80 +0.87 +0.70		1785
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	COUNTS 0 1 0 1 0 1 1 2 51 298 848 1649 2535	*/100 \\ +0.00 >100 +83.33 -83.33 >100 >100 >100 >100 >100 >100 >100 >1	<i>J</i> olts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695	COUNTS 14171 17362 20310 22647 24551 25440 26124 26245 26428 26151 26721 27168 27007 27135 27089	%/100 Vo +66.45 +54.90 +43.83 +30.82 +20.19 +11.69 +5.90 +2.21 +1.39 +2.69 +2.72 +2.80 +0.87 +0.70 +1.24		1785
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	COUNTS 0 1 0 1 0 1 1 2 51 298 848 1649 2535 3602	*/100 \\ +0.00 \\ >100 \\ +83.33 \\ -83.33 \\ >100 \\ \\ 100 \\ \tag{100 \\ \tag{	Olts .	1185	1305 1335 1365 1395 1425 1455 1455 1545 1575 1605 1635 1665 1695 1725	COUNTS 14171 17362 20310 22647 24551 25440 26124 26245 26428 26151 26721 27168 27007 27135 27089 27414	*/100 Vo +66.45 +54.90 +43.83 +30.82 +20.19 +11.69 +5.90 +2.21 +1.39 +2.69 +2.72 +2.80 +0.87 +0.70 +1.24 +1.43		1785
VOLTS 705 735 765 795 825 885 915 945 975 1005 1035 1065 1095 1125 1155 1185	COUNTS 0 1 0 1 0 1 1 2 51 298 848 1649 2535 3602 5036	*/100 \\ +0.00 \\ >100 \\ +83.33 \\ -83.33 \\ >100 \\ \\ 100 \\ \tag{100 \\ \	Jolts .	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755	COUNTS 14171 17362 20310 22647 24551 25440 26124 26245 26428 26151 26721 27168 27007 27135 27089 27414 27373	%/100 Vo +66.45 +54.90 +43.83 +30.82 +20.19 +11.69 +5.90 +2.21 +1.39 +2.69 +2.72 +2.80 +0.87 +0.70 +1.24 +1.43 +3.21		1785
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1125 1155 1185	COUNTS 0 1 0 1 0 1 1 2 51 298 848 1649 2535 3602 5036 6880	*/100 \\ +0.00 >100 +83.33 -83.33 >100 >100 >100 >100 >100 >100 >100 >1	/olts	1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725 1785 1785	COUNTS 14171 17362 20310 22647 24551 25440 26124 26245 26428 26151 26721 27168 27007 27135 27089 27414 27373 27581	*/100 Vo +66.45 +54.90 +43.83 +30.82 +20.19 +11.69 +5.90 +2.21 +1.39 +2.69 +2.72 +2.80 +0.87 +0.70 +1.24 +1.43		1785
VOLTS 705 735 765 795 825 885 915 945 975 1005 1035 1065 1095 1125 1155 1185	COUNTS 0 1 0 1 0 1 1 2 51 298 848 1649 2535 3602 5036	*/100 \\ +0.00 \\ >100 \\ +83.33 \\ -83.33 \\ >100 \\ \\ 100 \\ \tag{100 \\ \	Jolts .	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755	COUNTS 14171 17362 20310 22647 24551 25440 26124 26245 26428 26151 26721 27168 27007 27135 27089 27414 27373	%/100 Vo +66.45 +54.90 +43.83 +30.82 +20.19 +11.69 +5.90 +2.21 +1.39 +2.69 +2.72 +2.80 +0.87 +0.70 +1.24 +1.43 +3.21		1785

MPC 9600 Plateau Instrument 4 MPC 9604 Detector A 7/1/2009

							•			
								-		
						,				
		T 1-1-		1 1		1 1		' ' '	' ' '	,
82	15	945	1065	1185	1305	1425	1545	1665	1785	
VOLTS	COLIMITS	%/100 V	<i>l</i> olts		VOLTS	COUNTS	%/100 Vo	lts		
VOLID	COOMID	0,200 •								
					1205	16440				
705	0				1305	16442	+66.24			
735	0				1335	20146	+57.40			
765	0				1365	23769	+46.40			
795	0	>100			1395	26926	+34.68			
825	2	+55.56			1425	29276	+24.40			
855	1	>100			1455	31037	+15.28			
885	0	-55.56			1485	32197	+7.91			
915	. 3	>100			1515	32425	+4.33			
945	0	>100			1545	32314	+2.14			
975	16	>100			1575	33071	+2.66			
1005	114	>100			1605	32918	+2.52			
1035	451	>100			1635	33435	+1.02			
1065	1100	>100			1665	33382	+0.73			
1095	2068	>100			1695	33349	+1.07			
1125	3189	>100			1725	33324	+1.28			
1155	4386				1755	34001	+2.26			
1185	6094				1785	33701	+3.08			
1215	8184				1815	34304	+2.97			
1245	10489				1845	34744				
1275	13273				1875	35012				
1413	13213	. , 2 . 50								


MPC 9600 Plateau Instrument 4 MPC 9604 Detector B 7/1/2009

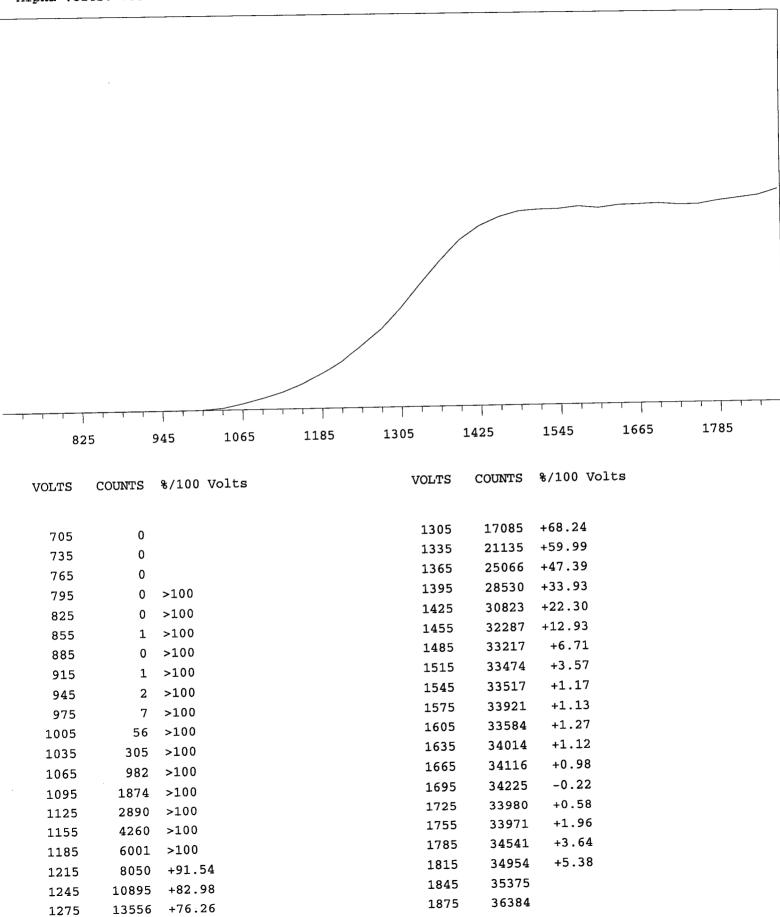
•								
				. /				
							,	
82	5	945 10) 1185	1305	1425	1545	1665	1785
	-							
VOLTS	COUNTS	%/100 Volt	S	VOLTS	COUNTS	%/100 V	olts	
		%/100 Volt	s		COUNTS 15747		olts	
705	0	%/100 Volt	s	VOLTS 1305 1335			olts	
705 735		%/100 Volt +0.00	s	1305	15747	+62.38	olts	
705 735 765	0 1 0	+0.00	s	1305 1335	15747 19230	+62.38 +54.19	olts	
705 735	0 1 0		s	1305 1335 1365	15747 19230 22255	+62.38 +54.19 +44.46	olts	
705 735 765 795	0 1 0 1	+0.00 >100	s	1305 1335 1365 1395	15747 19230 22255 25299	+62.38 +54.19 +44.46 +32.45	olts	
705 735 765 795 825 855	0 1 0 1	+0.00 >100 >100	s	1305 1335 1365 1395 1425	15747 19230 22255 25299 27370	+62.38 +54.19 +44.46 +32.45 +22.24	olts	
705 735 765 795 825 855 885	0 1 0 1 0	+0.00 >100 >100 >100	s	1305 1335 1365 1395 1425 1455	15747 19230 22255 25299 27370 28625	+62.38 +54.19 +44.46 +32.45 +22.24 +14.10	olts	
705 735 765 795 825 855 885 915	0 1 0 1 0 0	+0.00 >100 >100 >100 >100	s	1305 1335 1365 1395 1425 1455	15747 19230 22255 25299 27370 28625 29467	+62.38 +54.19 +44.46 +32.45 +22.24 +14.10 +8.56	olts	
705 735 765 795 825 855 885 915	0 1 0 1 0 0 0 0	+0.00 >100 >100 >100 >100 >100 >100	s	1305 1335 1365 1395 1425 1455 1485	15747 19230 22255 25299 27370 28625 29467 30213	+62.38 +54.19 +44.46 +32.45 +22.24 +14.10 +8.56 +5.29	olts	
705 735 765 795 825 855 885 915 945	0 1 0 1 0 0 0 0 2 31	+0.00 >100 >100 >100 >100 >100 >100 >100	:s	1305 1335 1365 1395 1425 1455 1485 1515	15747 19230 22255 25299 27370 28625 29467 30213 30326 30564	+62.38 +54.19 +44.46 +32.45 +22.24 +14.10 +8.56 +5.29 +2.77	olts	
705 735 765 795 825 855 885 915 945 975	0 1 0 1 0 0 0 0 2 31 176	+0.00 >100 >100 >100 >100 >100 >100 >100	s	1305 1335 1365 1395 1425 1455 1485 1515 1545	15747 19230 22255 25299 27370 28625 29467 30213 30326 30564 30548	+62.38 +54.19 +44.46 +32.45 +22.24 +14.10 +8.56 +5.29 +2.77 +1.57	olts	
705 735 765 795 825 855 885 915 945 975 1005	0 1 0 1 0 0 0 2 31 176 550	+0.00 >100 >100 >100 >100 >100 >100 >100	s	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	15747 19230 22255 25299 27370 28625 29467 30213 30326 30564 30548 30820	+62.38 +54.19 +44.46 +32.45 +22.24 +14.10 +8.56 +5.29 +2.77 +1.57 +1.57	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035	0 1 0 1 0 0 0 2 31 176 550 1218	+0.00 >100 >100 >100 >100 >100 >100 >100	s	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	15747 19230 22255 25299 27370 28625 29467 30213 30326 30564 30548 30820 30898	+62.38 +54.19 +44.46 +32.45 +22.24 +14.10 +8.56 +5.29 +2.77 +1.57 +1.52 +0.85	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095	0 1 0 1 0 0 0 2 31 176 550 1218 2114	+0.00 >100 >100 >100 >100 >100 >100 >100	s	1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665	15747 19230 22255 25299 27370 28625 29467 30213 30326 30564 30548 30820 30898 30779	+62.38 +54.19 +44.46 +32.45 +22.24 +14.10 +8.56 +5.29 +2.77 +1.57 +1.52 +0.85 +0.79	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095	0 1 0 1 0 0 0 0 2 31 176 550 1218 2114 3212	+0.00 >100 >100 >100 >100 >100 >100 >100	:s	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695	15747 19230 22255 25299 27370 28625 29467 30213 30326 30564 30548 30820 30898 30779 30934	+62.38 +54.19 +44.46 +32.45 +22.24 +14.10 +8.56 +5.29 +2.77 +1.57 +1.57 +0.85 +0.79 +0.44	olts	
705 735 765 795 825 885 915 945 975 1005 1035 1065 1095 1125	0 1 0 1 0 0 0 0 2 31 176 550 1218 2114 3212 4416	+0.00 >100 >100 >100 >100 >100 >100 >100	s	1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	15747 19230 22255 25299 27370 28625 29467 30213 30326 30564 30548 30820 30898 30779 30934 31008	+62.38 +54.19 +44.46 +32.45 +22.24 +14.10 +8.56 +5.29 +2.77 +1.57 +1.52 +0.85 +0.79 +0.44 +0.45 +0.96	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1155 1185	0 1 0 1 0 0 0 0 2 31 176 550 1218 2114 3212 4416 6066	+0.00 >100 >100 >100 >100 >100 >100 >100	.s	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755	15747 19230 22255 25299 27370 28625 29467 30213 30326 30544 30548 30820 30898 30779 30934 31008 30991	+62.38 +54.19 +44.46 +32.45 +22.24 +14.10 +8.56 +5.29 +2.77 +1.57 +1.52 +0.85 +0.79 +0.44 +0.45 +0.96 +2.01	olts	
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 1 0 1 0 0 0 0 2 31 176 550 1218 2114 3212 4416	+0.00 >100 >100 >100 >100 >100 >100 >100	.s	1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	15747 19230 22255 25299 27370 28625 29467 30213 30326 30564 30548 30820 30898 30779 30934 31008 30991 31196	+62.38 +54.19 +44.46 +32.45 +22.24 +14.10 +8.56 +5.29 +2.77 +1.57 +1.52 +0.85 +0.79 +0.44 +0.45 +0.96 +2.01	olts	

MPC 9600 Plateau Instrument 4 MPC 9604 Detector C 7/1/2009

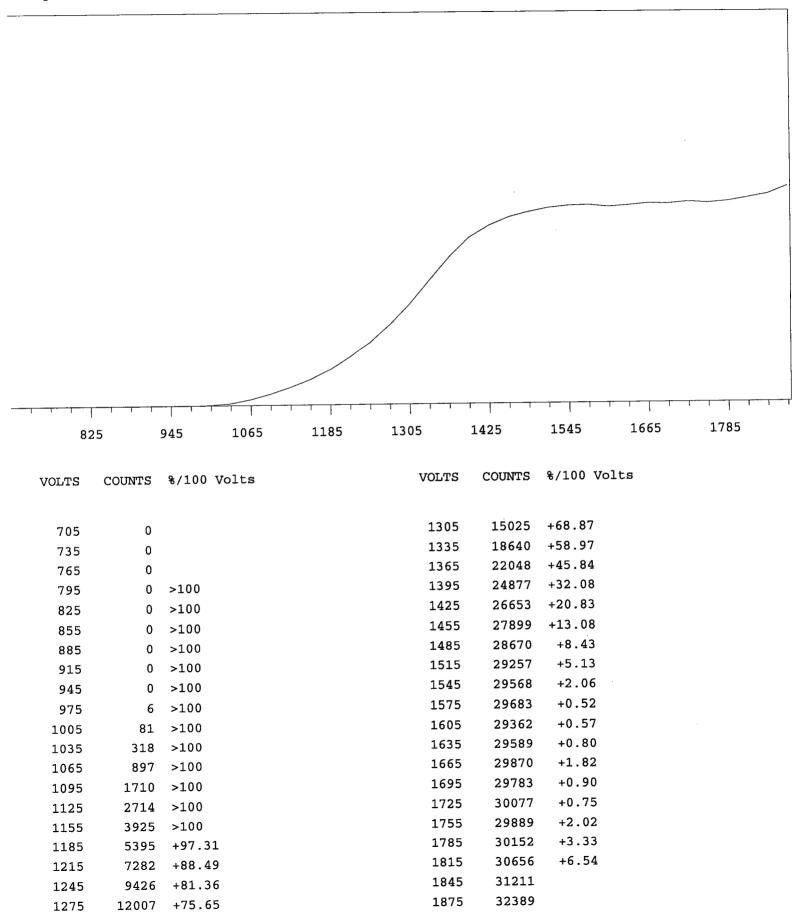
						<i>-</i>			
								•	
			1. 11.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1
82	5	945 10	065	1185	1305	1425	1545	1665	1785
VOLTS	COUNTS	%/100 Volt	.s		VOLTS	COUNTS	%/100 Vc	olts	
VOLTS	COUNTS	%/100 Volt	cs		VOLTS	COUNTS	%/100 Vo	olts	
VOLTS	COUNTS 0	%/100 Volt	cs		VOLTS	COUNTS	%/100 Vo	olts	
		%/100 Volt	cs					olts	
705	0	%/100 Volt +55.56	cs		1305	19796	+65.77	olts	
705 735	0 1		S		1305 1335	19796 24338	+65.77 +57.55	olts	
705 735 765	0 1 0	+55.56	cs		1305 1335 1365	19796 24338 28686	+65.77 +57.55 +45.86	olts	
705 735 765 795	0 1 0 2	+55.56 +0.00	cs		1305 1335 1365 1395 1425 1455	19796 24338 28686 32750 34919 36434	+65.77 +57.55 +45.86 +32.27 +20.83 +11.45	olts	
705 735 765 795 825	0 1 0 2 0	+55.56 +0.00 -55.56	cs		1305 1335 1365 1395 1425	19796 24338 28686 32750 34919 36434 37487	+65.77 +57.55 +45.86 +32.27 +20.83 +11.45 +5.80	olts	
705 735 765 795 825 855	0 1 0 2 0	+55.56 +0.00 -55.56 >100	cs		1305 1335 1365 1395 1425 1455	19796 24338 28686 32750 34919 36434	+65.77 +57.55 +45.86 +32.27 +20.83 +11.45	olts	
705 735 765 795 825 855 885	0 1 0 2 0 1	+55.56 +0.00 -55.56 >100 >100	cs		1305 1335 1365 1395 1425 1455	19796 24338 28686 32750 34919 36434 37487	+65.77 +57.55 +45.86 +32.27 +20.83 +11.45 +5.80	olts	
705 735 765 795 825 855 885 915	0 1 0 2 0 1 0	+55.56 +0.00 -55.56 >100 >100	cs		1305 1335 1365 1395 1425 1455 1485	19796 24338 28686 32750 34919 36434 37487 37623	+65.77 +57.55 +45.86 +32.27 +20.83 +11.45 +5.80 +3.32	olts	
705 735 765 795 825 855 885 915	0 1 0 2 0 1 0 0	+55.56 +0.00 -55.56 >100 >100 >100 >100 >100	cs		1305 1335 1365 1395 1425 1455 1485 1515	19796 24338 28686 32750 34919 36434 37487 37623 37528	+65.77 +57.55 +45.86 +32.27 +20.83 +11.45 +5.80 +3.32 +2.07	olts	
705 735 765 795 825 855 885 915 945	0 1 0 2 0 1 0 0 2 24	+55.56 +0.00 -55.56 >100 >100 >100 >100 >100	cs		1305 1335 1365 1395 1425 1455 1485 1515 1545	19796 24338 28686 32750 34919 36434 37487 37623 37528 38277	+65.77 +57.55 +45.86 +32.27 +20.83 +11.45 +5.80 +3.32 +2.07 +2.12	olts	
705 735 765 795 825 855 885 915 945 975 1005	0 1 0 2 0 1 0 0 2 24 134	+55.56 +0.00 -55.56 >100 >100 >100 >100 >100 >100	cs		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	19796 24338 28686 32750 34919 36434 37487 37623 37528 38277 38338	+65.77 +57.55 +45.86 +32.27 +20.83 +11.45 +5.80 +3.32 +2.07 +2.12 +2.70	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035	0 1 0 2 0 1 0 2 24 134 558 1361	+55.56 +0.00 -55.56 >100 >100 >100 >100 >100 >100 >100	cs		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	19796 24338 28686 32750 34919 36434 37487 37623 37528 38277 38338 38426	+65.77 +57.55 +45.86 +32.27 +20.83 +11.45 +5.80 +3.32 +2.07 +2.12 +2.70 +1.12	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065	0 1 0 2 0 1 0 2 24 134 558	+55.56 +0.00 -55.56 >100 >100 >100 >100 >100 >100 >100 >10	cs		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	19796 24338 28686 32750 34919 36434 37487 37623 37528 38277 38338 38426 39007	+65.77 +57.55 +45.86 +32.27 +20.83 +11.45 +5.80 +3.32 +2.07 +2.12 +2.70 +1.12 +1.06	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095	0 1 0 2 0 1 0 2 24 134 558 1361 2511	+55.56 +0.00 -55.56 >100 >100 >100 >100 >100 >100 >100 >10	cs		1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665	19796 24338 28686 32750 34919 36434 37487 37623 37528 38277 38338 38426 39007 38592	+65.77 +57.55 +45.86 +32.27 +20.83 +11.45 +5.80 +3.32 +2.07 +2.12 +2.70 +1.12 +1.06 +0.64	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1155	0 1 0 2 0 1 0 0 2 24 134 558 1361 2511 3762 5246	+55.56 +0.00 -55.56 >100 >100 >100 >100 >100 >100 >100 >10	cs		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695	19796 24338 28686 32750 34919 36434 37487 37623 37528 38277 38338 38426 39007 38592 38870	+65.77 +57.55 +45.86 +32.27 +20.83 +11.45 +5.80 +3.32 +2.07 +2.12 +2.70 +1.12 +1.06 +0.64 +0.63	olts	
705 735 765 795 825 885 915 945 975 1005 1035 1065 1095 1125 1155 1185	0 1 0 2 0 1 0 0 2 24 134 558 1361 2511 3762 5246 7268	+55.56 +0.00 -55.56 >100 >100 >100 >100 >100 >100 >100 >10	cs		1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	19796 24338 28686 32750 34919 36434 37487 37623 37528 38277 38338 38426 39007 38592 38870 38868	+65.77 +57.55 +45.86 +32.27 +20.83 +11.45 +5.80 +3.32 +2.07 +2.12 +2.70 +1.12 +1.06 +0.64 +0.63 +1.30	olts	
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 1 0 2 0 1 0 0 2 24 134 558 1361 2511 3762 5246	+55.56 +0.00 -55.56 >100 >100 >100 >100 >100 >100 >100 >10	cs		1305 1335 1365 1395 1425 1425 1485 1515 1545 1605 1635 1665 1695 1725 1755	19796 24338 28686 32750 34919 36434 37487 37623 37528 38277 38338 38426 39007 38592 38870 38868 39238	+65.77 +57.55 +45.86 +32.27 +20.83 +11.45 +5.80 +3.32 +2.07 +2.12 +2.70 +1.12 +1.06 +0.64 +0.63 +1.30 +1.45	olts	

MPC 9600 Plateau Instrument 4 MPC 9604 Detector D 7/1/2009

MPC 9600 Plateau Instrument 5 MPC 9604 Detector A 7/1/2009

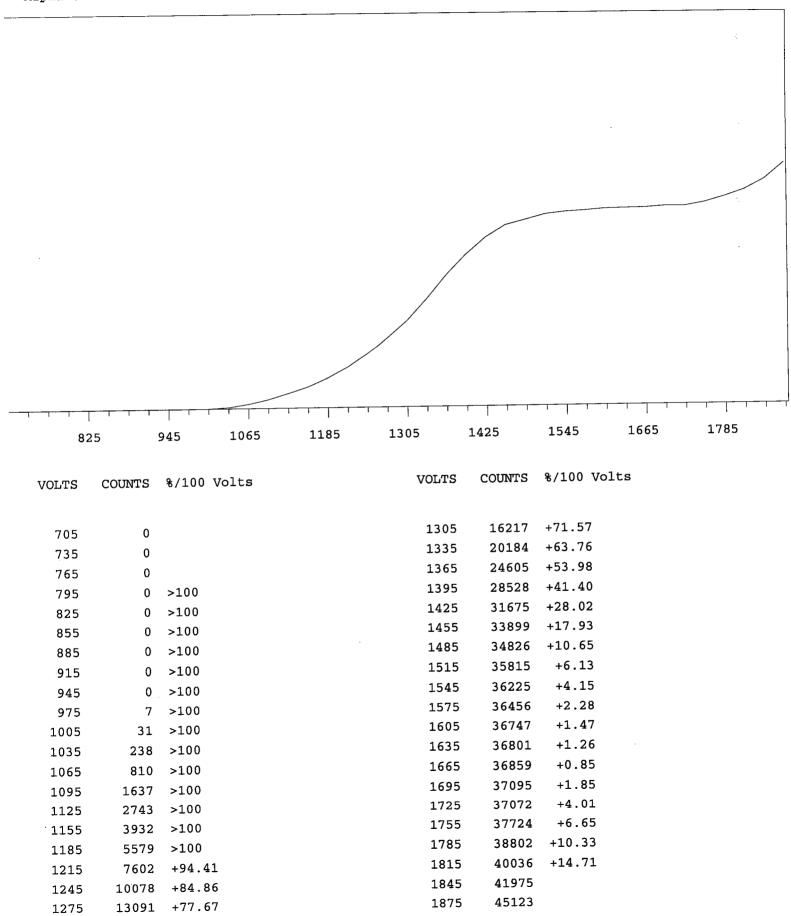

					•				
						, , , ,	 	, , , , ,	1 1
825		945	1065	1185	1305	1425	1545	1665	1785
0.20									
VOLTS	COUNTS	%/100 V	olts/		VOLTS	COUNTS	%/100 V	olts	
VOLTS	COUNTS	%/100 V	/olts		VOLTS	COUNTS	%/100 V	olts	
	COUNTS 0	%/100 V	/olts		VOLTS	13974	+68.00	olts	
705		%/100 V	Olts		1305 1335	13974 17170	+68.00 +58.62	olts	
705 735	0	%/100 V	Olts		1305	13974 17170 20456	+68.00 +58.62 +47.04	olts	
705	0	%/100 V +83.33	Olts		1305 1335	13974 17170 20456 23332	+68.00 +58.62 +47.04 +33.83	olts	
705 735 765 795	0 0 1	+83.33	Olts/		1305 1335 1365	13974 17170 20456	+68.00 +58.62 +47.04 +33.83 +21.10	olts	
705 735 765 795 825	0 0 1 1	+83.33 -83.33	Olts/		1305 1335 1365 1395	13974 17170 20456 23332 24996	+68.00 +58.62 +47.04 +33.83 +21.10 +12.40	olts	
705 735 765 795 825 855	0 0 1 1	+83.33 -83.33 >100	Olts/		1305 1335 1365 1395 1425	13974 17170 20456 23332 24996 26290	+68.00 +58.62 +47.04 +33.83 +21.10	olts	
705 735 765 795 825 855 885	0 0 1 1 1 1 0	+83.33 -83.33 >100 -55.56	Olts/		1305 1335 1365 1395 1425 1455	13974 17170 20456 23332 24996 26290	+68.00 +58.62 +47.04 +33.83 +21.10 +12.40	olts	
705 735 765 795 825 855 885 915	0 0 1 1 1 1 0 0	+83.33 -83.33 >100 -55.56 >100	Olts/		1305 1335 1365 1395 1425 1455	13974 17170 20456 23332 24996 26290 26683 27270	+68.00 +58.62 +47.04 +33.83 +21.10 +12.40 +7.74	olts	
705 735 765 795 825 855 885 915	0 0 1 1 1 1 0 0	+83.33 -83.33 >100 -55.56 >100 >100	Olts/		1305 1335 1365 1395 1425 1455 1485	13974 17170 20456 23332 24996 26290 26683 27270 27590	+68.00 +58.62 +47.04 +33.83 +21.10 +12.40 +7.74 +4.43	olts	
705 735 765 795 825 855 885 915 945	0 0 1 1 1 1 0 0	+83.33 -83.33 >100 -55.56 >100 >100 >100	Olts/		1305 1335 1365 1395 1425 1455 1485 1515 1545	13974 17170 20456 23332 24996 26290 26683 27270 27590 27635	+68.00 +58.62 +47.04 +33.83 +21.10 +12.40 +7.74 +4.43 +3.48	olts	
705 735 765 795 825 855 885 915 945 975	0 0 1 1 1 1 0 0 1 9	+83.33 -83.33 >100 -55.56 >100 >100 >100	Olts/		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	13974 17170 20456 23332 24996 26290 26683 27270 27590 27635 27932	+68.00 +58.62 +47.04 +33.83 +21.10 +12.40 +7.74 +4.43 +3.48 +1.71	olts	
705 735 765 795 825 855 885 915 945 975 1005	0 0 1 1 1 0 0 1 9 76 308	+83.33 -83.33 >100 -55.56 >100 >100 >100 >100 >100 >100	Olts/		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	13974 17170 20456 23332 24996 26290 26683 27270 27590 27635 27932 27807	+68.00 +58.62 +47.04 +33.83 +21.10 +12.40 +7.74 +4.43 +3.48 +1.71 +1.20 +0.88	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035	0 0 1 1 1 0 0 1 9 76 308 814	+83.33 -83.33 >100 -55.56 >100 >100 >100 >100 >100 >100 >100	Olts/		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	13974 17170 20456 23332 24996 26290 26683 27270 27590 27635 27932 27807 28006	+68.00 +58.62 +47.04 +33.83 +21.10 +12.40 +7.74 +4.43 +3.48 +1.71 +1.20 +0.88 +0.62	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065	0 0 1 1 1 0 0 1 9 76 308 814 1600	+83.33 -83.33 >100 -55.56 >100 >100 >100 >100 >100 >100 >100 >10	olts.		1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665	13974 17170 20456 23332 24996 26290 26683 27270 27590 27635 27932 27807 28006 27964	+68.00 +58.62 +47.04 +33.83 +21.10 +12.40 +7.74 +4.43 +3.48 +1.71 +1.20 +0.88 +0.62 +0.63	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095	0 0 1 1 1 0 0 1 9 76 308 814 1600 2598	+83.33 -83.33 >100 -55.56 >100 >100 >100 >100 >100 >100 >100 >10	olts.		1305 1335 1365 1395 1425 1455 1485 1515 1545 1675 1605 1635 1665 1695	13974 17170 20456 23332 24996 26290 26683 27270 27590 27635 27932 27807 28006 27964 28112	+68.00 +58.62 +47.04 +33.83 +21.10 +12.40 +7.74 +4.43 +3.48 +1.71 +1.20 +0.88 +0.62 +0.63 +0.98	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 0 1 1 1 0 0 1 9 76 308 814 1600 2598 3596	+83.33 -83.33 >100 -55.56 >100 >100 >100 >100 >100 >100 >100 >10			1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	13974 17170 20456 23332 24996 26290 26683 27270 27590 27635 27932 27807 28006 27964 28112 28020	+68.00 +58.62 +47.04 +33.83 +21.10 +12.40 +7.74 +4.43 +3.48 +1.71 +1.20 +0.88 +0.62 +0.63 +0.98 +2.84	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1185	0 0 1 1 1 1 0 0 1 9 76 308 814 1600 2598 3596 5065	+83.33 -83.33 >100 -55.56 >100 >100 >100 >100 >100 >100 >100 >10			1305 1335 1365 1395 1425 1455 1485 1515 1545 1675 1605 1635 1665 1695 1725 1755	13974 17170 20456 23332 24996 26290 26683 27270 27590 27635 27932 27807 28006 27964 28112 28020 28392	+68.00 +58.62 +47.04 +33.83 +21.10 +12.40 +7.74 +4.43 +3.48 +1.71 +1.20 +0.88 +0.62 +0.63 +0.98 +2.84 +3.76	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 0 1 1 1 0 0 1 9 76 308 814 1600 2598 3596	+83.33 -83.33 >100 -55.56 >100 >100 >100 >100 >100 >100 >100 >10			1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	13974 17170 20456 23332 24996 26290 26683 27270 27590 27635 27932 27807 28006 27964 28112 28020 28392 29028	+68.00 +58.62 +47.04 +33.83 +21.10 +12.40 +7.74 +4.43 +3.48 +1.71 +1.20 +0.88 +0.62 +0.63 +0.98 +2.84	olts	

MPC 9600 Plateau Instrument 5 MPC 9604 Detector B 7/1/2009


825 945 1065 1185 1305 1425 1545 1665 1785 VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 705 0 1305 17414 +68.46 735 0 1335 21540 +59.98 765 0 1365 25854 +46.75 795 0 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 3295 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 3428 +2.00
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 1395 29222 +33.38 1425 31128 +21.52 1 +41.67 1455 32995 +13.26 1485 33846 +8.09 1515 34289 +3.25
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 34289 +3.25
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 34289 +3.25
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 34289 +3.25
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 34289 +3.25
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 34289 +3.25
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 34289 +3.25
VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts VOLTS COUNTS %/100 Volts 1305 17414 +68.46 1335 21540 +59.98 1365 25854 +46.75 1395 29222 +33.38 825 1 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 34289 +3.25
VOLTS COUNTS %/100 Volts 705 0 1305 17414 +68.46 735 0 1335 21540 +59.98 765 0 1365 25854 +46.75 795 0 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 34289 +3.25
705 0 1305 17414 +68.46 735 0 1335 21540 +59.98 765 0 1365 25854 +46.75 795 0 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 34289 +3.25
705 0 1305 17414 +68.46 735 0 1335 21540 +59.98 765 0 1365 25854 +46.75 795 0 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 34289 +3.25
705 0 1335 21540 +59.98 765 0 1365 25854 +46.75 795 0 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 34289 +3.25
705 0 1335 21540 +59.98 765 0 1365 25854 +46.75 795 0 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 34289 +3.25
735 0 765 0 1365 25854 +46.75 795 0 >100 1395 29222 +33.38 825 1 >100 1425 31128 +21.52 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 34289 +3.25
765 0
825 1 >100 855 1 +41.67 885 2 -33.33 915 0 >100 1425 31128 +21.52 1455 32995 +13.26 1485 33846 +8.09 1515 34289 +3.25 1545 34538 +2.00
825 1 > 100 855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 > 100 1515 34289 +3.25
855 1 +41.67 1455 32995 +13.26 885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 34289 +3.25 1545 34538 +2.00
885 2 -33.33 1485 33846 +8.09 915 0 >100 1515 34289 +3.25
915 0 >100 1515 34289 +3.25
1EAE 24E29 ±2.00
975 17 >100 1575 34311 +1.78
1005 87 >100 1605 34866 +1.78
1035 336 >100 1635 35046 +1.14
1065 1010 >100 1665 35087 -0.26
1095 1955 >100 1695 34795 +0.11
1095 1933 2100
1125 3124 >100 1725 34657 +0.93 1155 4486 >100 1755 35220 +2.81
1177 4400 2100
1101 35263 13 08
1185 6017 >100 1785 35363 +3.98
1185 6017 >100 1785 35363 +3.98 1215 8507 +91.20 1815 36028 +4.79
1185 6017 >100 1785 35363 +3.98

MPC 9600 Plateau Instrument 5 MPC 9604 Detector C

7/1/2009



Instrument 5 MPC 9604 Detector D 7/1/2009 MPC 9600 Plateau

MPC 9600 Plateau Instrument 6 MPC 9604 Detector A

Alpha Volts: 705 Beta Volts: 1575

7/1/2009

MPC 9600 Plateau Instrument 6 MPC 9604 Detector B 7/1/2009

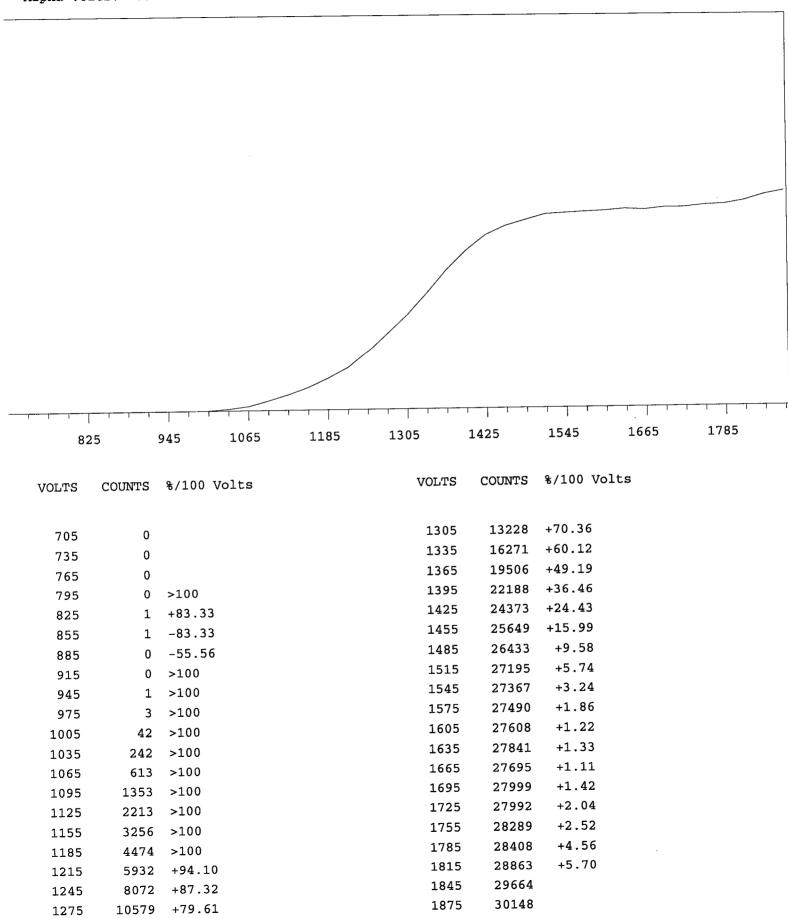
· · · · · · · · · · · · · · · · · · ·									
					•				
									•
			_						
							- 	, 	
	T T T			T	1 1 1 1				
0.5) - T	0.45	1065	1185	1305	1425	1545	1665	1785
82	25	945	1065	1185	1305	1425	1545	1665	1785
				1185					1785
82 VOLTS		945 %/100		1185	1305 VOLTS	1425 COUNTS	1545 %/100 Vo		1785
				1185	VOLTS	COUNTS	%/100 Vo		1785
				1185	VOLTS	COUNTS 20094	%/100 Vo +68.67		1785
VOLTS	COUNTS			1185	VOLTS 1305 1335	COUNTS 20094 24665	%/100 Vo +68.67 +59.40		1785
VOLTS	COUNTS 0			1185	VOLTS 1305 1335 1365	COUNTS 20094 24665 29591	%/100 Vo +68.67 +59.40 +47.86		1785
VOLTS 705 735	COUNTS 0 0	%/100 \range	Volts	1185	VOLTS 1305 1335 1365 1395	20094 24665 29591 33376	%/100 Vo +68.67 +59.40 +47.86 +34.51		1785
705 735 765 795 825	COUNTS 0 0 0 0 1	%/100 \frac{1}{2} > 100 +83.33	Volts	1185	VOLTS 1305 1335 1365 1395 1425	20094 24665 29591 33376 36440	%/100 Vo +68.67 +59.40 +47.86 +34.51 +22.50		1785
705 735 765 795 825 855	COUNTS 0 0 0 0 1 1	%/100 \frac{1}{2} \int \frac{1}{2} \text{100} \text{100} \frac{1}{2} \text{100} \text{100} \frac{1}{2} \text{100}	Volts	1185	VOLTS 1305 1335 1365 1395 1425 1455	20094 24665 29591 33376 36440 38024	%/100 Vo +68.67 +59.40 +47.86 +34.51 +22.50 +13.58		1785
705 735 765 795 825 855 885	COUNTS 0 0 0 0 1 1 0	*/100 \frac{1}{2} \text{ > 100 } \text{ +83.33 } \text{ -83.33 } \text{ > 100 }	Volts	1185	VOLTS 1305 1335 1365 1395 1425 1455 1485	20094 24665 29591 33376 36440 38024 39187	%/100 Vo +68.67 +59.40 +47.86 +34.51 +22.50 +13.58 +7.04		1785
705 735 765 795 825 855 885 915	COUNTS 0 0 0 1 1 0 0	<pre>%/100 \(\) >100 +83.33 -83.33 >100 >100</pre>	Volts	1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515	20094 24665 29591 33376 36440 38024 39187 39608	%/100 Vo +68.67 +59.40 +47.86 +34.51 +22.50 +13.58 +7.04 +3.63		1785
705 735 765 795 825 855 885	COUNTS 0 0 0 0 1 1 0	<pre>%/100</pre>	Volts	1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515	20094 24665 29591 33376 36440 38024 39187 39608 39722	%/100 Vo +68.67 +59.40 +47.86 +34.51 +22.50 +13.58 +7.04 +3.63 +2.10		1785
705 735 765 795 825 855 885 915	COUNTS 0 0 0 1 1 0 0	<pre>%/100 \(\) >100 +83.33 -83.33 >100 >100</pre>	Volts	1185	VOLTS 1305 1335 1365 1395 1425 1455 1455 1545 1545	20094 24665 29591 33376 36440 38024 39187 39608 39722 39894	%/100 Vo +68.67 +59.40 +47.86 +34.51 +22.50 +13.58 +7.04 +3.63 +2.10 +2.32		1785
705 735 765 795 825 855 885 915 945	COUNTS 0 0 0 1 1 0 0 5	<pre>%/100</pre>	Volts	1185	1305 1335 1365 1395 1425 1455 1455 1515 1545 1575	20094 24665 29591 33376 36440 38024 39187 39608 39722 39894 40298	%/100 Vo +68.67 +59.40 +47.86 +34.51 +22.50 +13.58 +7.04 +3.63 +2.10 +2.32 +2.09		1785
705 735 765 795 825 855 885 915 945 975	COUNTS 0 0 0 0 1 1 0 0 5 18	<pre>%/100</pre>	Volts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	20094 24665 29591 33376 36440 38024 39187 39608 39722 39894 40298 40711	%/100 Vo +68.67 +59.40 +47.86 +34.51 +22.50 +13.58 +7.04 +3.63 +2.10 +2.32 +2.09 +1.41		1785
VOLTS 705 735 765 795 825 855 885 915 945 975 1005	COUNTS 0 0 0 0 1 1 0 5 18 125	<pre>%/100</pre>	Volts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	20094 24665 29591 33376 36440 38024 39187 39608 39722 39894 40298 40711 40574	%/100 Vo +68.67 +59.40 +47.86 +34.51 +22.50 +13.58 +7.04 +3.63 +2.10 +2.32 +2.09 +1.41 +0.80		1785
VOLTS 705 735 765 795 825 855 885 915 945 975 1005 1035	COUNTS 0 0 0 0 1 1 0 0 5 18 125 482	<pre>%/100</pre>	Volts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665	20094 24665 29591 33376 36440 38024 39187 39608 39722 39894 40298 40711 40574 40608	%/100 Vo +68.67 +59.40 +47.86 +34.51 +22.50 +13.58 +7.04 +3.63 +2.10 +2.32 +2.09 +1.41 +0.80 +1.02		1785
VOLTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065	COUNTS 0 0 0 0 1 1 0 5 18 125 482 1255	*/100	Volts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	20094 24665 29591 33376 36440 38024 39187 39608 39722 39894 40298 40711 40574 40608 40839	%/100 Vo +68.67 +59.40 +47.86 +34.51 +22.50 +13.58 +7.04 +3.63 +2.10 +2.32 +2.09 +1.41 +0.80 +1.02 +1.28		1785
VOLTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095	COUNTS 0 0 0 0 1 1 0 5 18 125 482 1255 2318	<pre>%/100</pre>	Volts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665	20094 24665 29591 33376 36440 38024 39187 39608 39722 39894 40298 40711 40574 40608	%/100 Vo +68.67 +59.40 +47.86 +34.51 +22.50 +13.58 +7.04 +3.63 +2.10 +2.32 +2.09 +1.41 +0.80 +1.02		1785
VOLTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	COUNTS 0 0 0 0 1 1 0 5 18 125 482 1255 2318 3540	*/100	Volts	1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725	20094 24665 29591 33376 36440 38024 39187 39608 39722 39894 40298 40711 40574 40608 40839	%/100 Vo +68.67 +59.40 +47.86 +34.51 +22.50 +13.58 +7.04 +3.63 +2.10 +2.32 +2.09 +1.41 +0.80 +1.02 +1.28		1785
VOLTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1155	COUNTS 0 0 0 0 1 1 1 0 0 5 18 125 482 1255 2318 3540 5288	*/100	Volts	1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	20094 24665 29591 33376 36440 38024 39187 39608 39722 39894 40298 40711 40574 40608 40839 41201	%/100 Vo +68.67 +59.40 +47.86 +34.51 +22.50 +13.58 +7.04 +3.63 +2.10 +2.32 +2.09 +1.41 +0.80 +1.02 +1.28 +1.97		1785
VOLTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1155 1185	COUNTS 0 0 0 0 1 1 1 0 5 18 125 482 1255 2318 3540 5288 7168	*/100	Volts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755	20094 24665 29591 33376 36440 38024 39187 39608 39722 39894 40298 40711 40574 40608 40839 41201 41065 41711	%/100 Vo +68.67 +59.40 +47.86 +34.51 +22.50 +13.58 +7.04 +3.63 +2.10 +2.32 +2.09 +1.41 +0.80 +1.02 +1.28 +1.97 +3.74		1785

MPC 9600 Plateau

Instrument 6 MPC 9604 Detector C

7/1/2009

Beta Volts: 1575



MPC 9600 Plateau Instrument 6 MPC 9604 Detector D 7/1/2009

									•
								•	
	 					 		1 1	
				4405	1305	1425	1545	1665	1785
221	5	945	1065	1182	1303				
82!	5 !	945	1065	1185	1305				
				1185			%/100 Vc	olts	
82! OLTS	5 S	945 %/100 \		1185	VOLTS		%/100 Vo	olts	
				1185				olts	
/OLTS				1185			+65.82	olts	
OLTS 705	COUNTS 0			1185	VOLTS	COUNTS		olts	
70LTS 705 735	COUNTS 0 0			1185	VOLTS	COUNTS 17954	+65.82	olts	
70LTS 705 735 765	COUNTS 0		Volts	1185	VOLTS 1305 1335	COUNTS 17954 21482	+65.82 +57.64 +45.78 +34.80	olts	
70LTS 705 735 765 795	COUNTS 0 0 0 1	%/100 T +0.00	Volts	1185	VOLTS 1305 1335 1365	COUNTS 17954 21482 25373	+65.82 +57.64 +45.78	olts	
70LTS 705 735 765 795 825	COUNTS 0 0 0	%/100 ፕ	<i>V</i> olts		VOLTS 1305 1335 1365 1395	17954 21482 25373 29042	+65.82 +57.64 +45.78 +34.80 +23.29 +14.25	olts	
70LTS 705 735 765 795 825 855	COUNTS 0 0 0 1 0	%/100 V +0.00 >100	<i>V</i> olts		VOLTS 1305 1335 1365 1395 1425	17954 21482 25373 29042 31373	+65.82 +57.64 +45.78 +34.80 +23.29 +14.25 +8.49	olts	
70LTS 705 735 765 795 825 855 885	COUNTS 0 0 0 1 0 0	+0.00 +0.00 +0.00	<i>V</i> olts		VOLTS 1305 1335 1365 1395 1425 1455	17954 21482 25373 29042 31373 33143	+65.82 +57.64 +45.78 +34.80 +23.29 +14.25	olts	
705 735 765 795 825 855 885 915	COUNTS 0 0 0 1 0 0 1	+0.00 >100 +0.00 >100 >100	<i>V</i> olts		VOLTS 1305 1335 1365 1395 1425 1455 1485	17954 21482 25373 29042 31373 33143 34006	+65.82 +57.64 +45.78 +34.80 +23.29 +14.25 +8.49	olts	
70LTS 705 735 765 795 825 855 855 915	COUNTS 0 0 0 1 0 0 1 0 1 0 0	+0.00 >100 +0.00 >100 >100 >100	<i>V</i> olts		VOLTS 1305 1335 1365 1395 1425 1455 1485 1515	17954 21482 25373 29042 31373 33143 34006 34662	+65.82 +57.64 +45.78 +34.80 +23.29 +14.25 +8.49 +4.71	olts	
70LTS 705 735 765 795 825 855 885 915 945 975	COUNTS 0 0 0 1 0 0 1 0 1 1 0 14	+0.00 >100 +0.00 >100 >100 >100 >100 >100	<i>V</i> olts		VOLTS 1305 1335 1365 1395 1425 1455 1485 1515	17954 21482 25373 29042 31373 33143 34006 34662 34892	+65.82 +57.64 +45.78 +34.80 +23.29 +14.25 +8.49 +4.71 +3.14	olts	
70LTS 705 735 765 795 825 855 885 915 945 975 1005	COUNTS 0 0 0 1 0 0 1 0 14 109	+0.00 >100 +0.00 >100 >100 >100 >100 >100	<i>V</i> olts		VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545	17954 21482 25373 29042 31373 33143 34006 34662 34892 35129	+65.82 +57.64 +45.78 +34.80 +23.29 +14.25 +8.49 +4.71 +3.14 +1.86	olts	
70LTS 705 735 765 795 825 885 915 945 975 1005 1035	COUNTS 0 0 0 1 0 0 1 0 14 109 481	+0.00 >100 +0.00 >100 >100 >100 >100 >100 >100	<i>V</i> olts		VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	17954 21482 25373 29042 31373 33143 34006 34662 34892 35129 35411	+65.82 +57.64 +45.78 +34.80 +23.29 +14.25 +8.49 +4.71 +3.14 +1.86 +1.49	olts	
70LTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065	COUNTS 0 0 0 1 0 0 1 0 14 109 481 1177	*/100 \(\) +0.00 >100 +0.00 >100 >100 >100 >100 >100 >100 >100	<i>V</i> olts		VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	17954 21482 25373 29042 31373 33143 34006 34662 34892 35129 35411 35380	+65.82 +57.64 +45.78 +34.80 +23.29 +14.25 +8.49 +4.71 +3.14 +1.86 +1.49 +0.62	olts	
70LTS 705 735 765 795 825 885 915 945 975 1005 1035 1065 1095	COUNTS 0 0 0 1 0 0 1 0 14 109 481 1177 2133	*/100 \text{ \text{Y}} +0.00 >100 +0.00 >100 >100 >100 >100 >100 >100 >100	<i>V</i> olts		VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695	17954 21482 25373 29042 31373 33143 34006 34662 34892 35129 35411 35380 35554	+65.82 +57.64 +45.78 +34.80 +23.29 +14.25 +8.49 +4.71 +3.14 +1.86 +1.49 +0.62 +0.65	olts	
70LTS 705 735 765 795 825 855 915 945 975 1005 1035 1065 1095 1125	COUNTS 0 0 0 1 0 0 1 1 0 14 109 481 1177 2133 3243	*/100 \footnote{100} \tag{+0.00} \tag{>100}	<i>V</i> olts		VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725	17954 21482 25373 29042 31373 33143 34006 34662 34892 35129 35411 35380 35554 35385	+65.82 +57.64 +45.78 +34.80 +23.29 +14.25 +8.49 +4.71 +3.14 +1.86 +1.49 +0.62 +0.65 +1.18	olts	
70LTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1155	COUNTS 0 0 0 1 0 0 1 0 14 109 481 1177 2133 3243 4554	*/100 \text{ \text{Y}} +0.00 >100 +0.00 >100 >100 >100 >100 >100 >100 >100	<i>J</i> olts		VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	17954 21482 25373 29042 31373 33143 34006 34662 34892 35129 35411 35380 35554 35385 35755	+65.82 +57.64 +45.78 +34.80 +23.29 +14.25 +8.49 +4.71 +3.14 +1.86 +1.49 +0.62 +0.65 +1.18 +1.89	olts	
70LTS 705 735 765 795 825 885 915 945 975 1005 1035 1065 1095 1125 1155 1185	COUNTS 0 0 0 1 0 0 1 0 14 109 481 1177 2133 3243 4554 6285	*/100 \text{ \text{Y}} +0.00 >100 +0.00 >100 >100 >100 >100 >100 >100 >100	<i>J</i> olts		VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755	17954 21482 25373 29042 31373 33143 34006 34662 34892 35129 35411 35380 35554 35385 35755 35907 36305	+65.82 +57.64 +45.78 +34.80 +23.29 +14.25 +8.49 +4.71 +3.14 +1.86 +1.49 +0.62 +0.65 +1.18 +1.89 +3.26	olts	
70LTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1155 1185 1215	COUNTS 0 0 0 1 0 0 1 0 14 109 481 1177 2133 3243 4554 6285 8468	*/100 \text{ \ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \	<i>J</i> olts		VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725 1755 1785 1815	COUNTS 17954 21482 25373 29042 31373 33143 34006 34662 34892 35129 35411 35380 35554 35385 35755 35907 36305 36870	+65.82 +57.64 +45.78 +34.80 +23.29 +14.25 +8.49 +4.71 +3.14 +1.86 +1.49 +0.62 +0.65 +1.18 +1.89 +3.26 +4.62	olts	
70LTS 705 735 765 795 825 885 915 945 975 1005 1035 1065 1095 1125 1155 1185	COUNTS 0 0 0 1 0 0 1 0 14 109 481 1177 2133 3243 4554 6285	*/100 \text{ \text{Y}} +0.00 >100 +0.00 >100 >100 >100 >100 >100 >100 >100	<i>J</i> olts		VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755	17954 21482 25373 29042 31373 33143 34006 34662 34892 35129 35411 35380 35554 35385 35755 35907 36305 36870 37807	+65.82 +57.64 +45.78 +34.80 +23.29 +14.25 +8.49 +4.71 +3.14 +1.86 +1.49 +0.62 +0.65 +1.18 +1.89 +3.26 +4.62	olts	

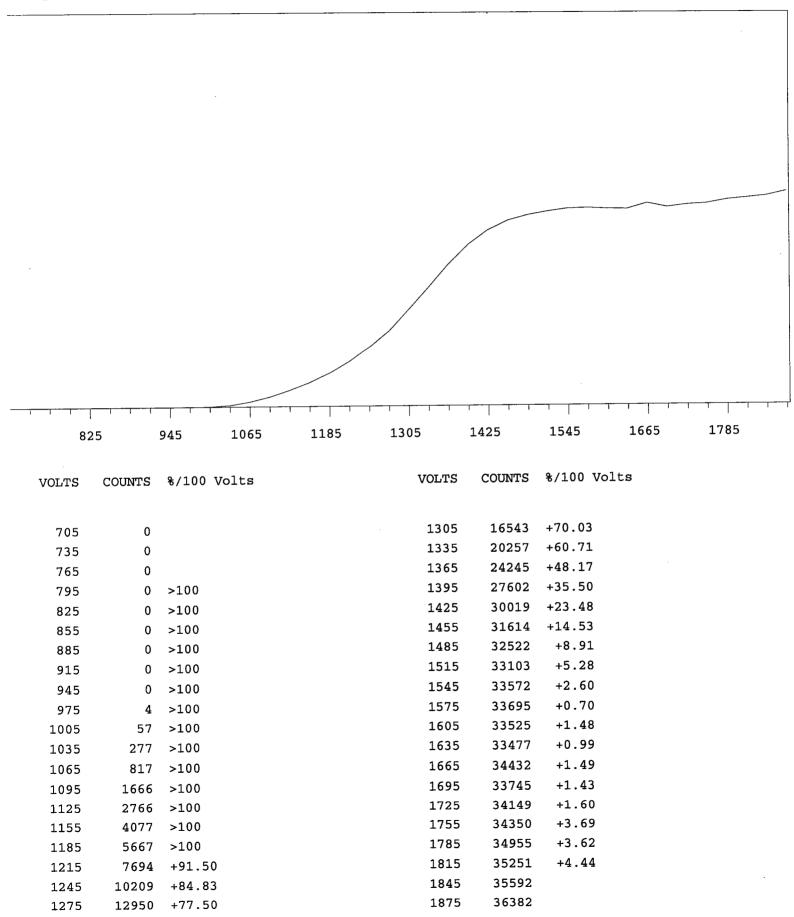
MPC 9600 Plateau Instrument 7 MPC 9604 Detector A

Alpha Volts: 705 Beta Volts: 1575

7/1/2009

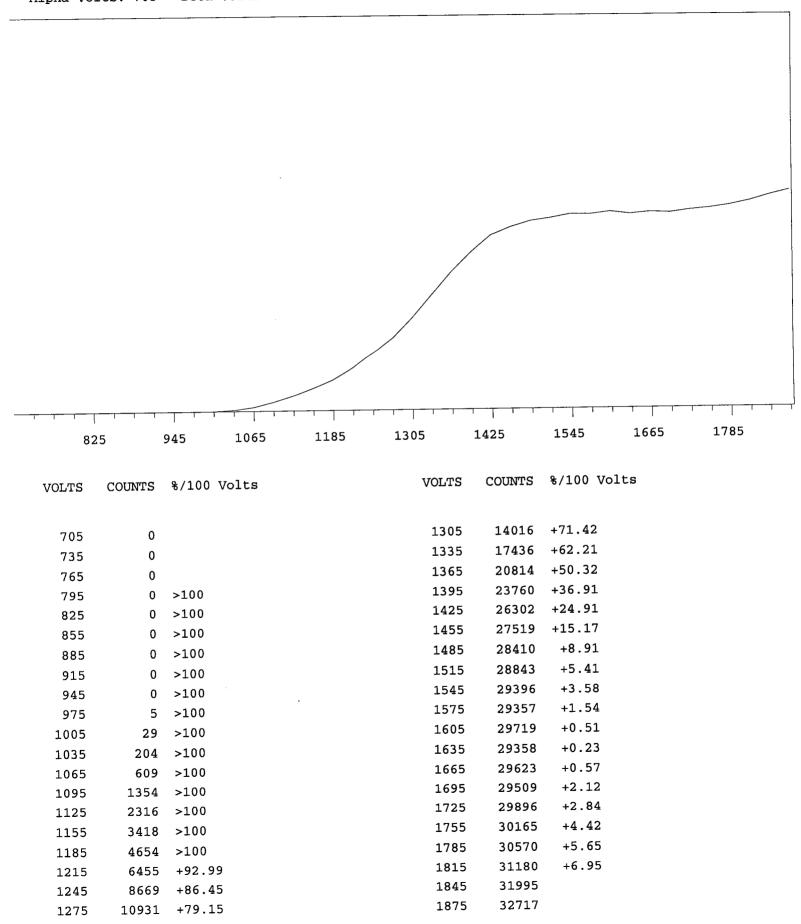
MPC 9600 Plateau Ins

Instrument 7 MPC 9604 Detector B


7/1/2009

Alpha Volts: 705

Beta Volts: 1575


MPC 9600 Plateau Instrument 7 MPC 9604 Detector C

Alpha Volts: 705 Beta Volts: 1575

7/1/2009

MPC 9600 Plateau Instrument 7 MPC 9604 Detector D 7/1/2009

Instrument 8 MPC 9604 Detector A MPC 9600 Plateau

7/1/2009

Alpha Volts: 705

MPC 9600 Plateau Instrument 8 MPC 9604 Detector B 7/1/2009

						,			
							1-1-1		1-1-1-
		7		1105	1205	1425	1545	1665	1785
825	9	45	1065	1185	1305	1425	1343	1005	2.00
						COLUMN	0 /100 Wa	1+a	
JOLTS CC	UNTS	%/100 V	olts		VOLTS	COUNTS	%/100 Vo	ils	
705	0				1305	16337	+74.91		
735	0				1335	20471	+68.07		
765	0				1365	25012	+57.86		
795	0	>100			1395	29694	+47.48		
825	0	>100			1425	33409	+35.17 +23.27		
855	0	>100			1455	37013	+23.27		
885	0	>100			1485	38629 39529	+7.69		
915	0	>100			1515 1545	40284	+4.34		
945	0	>100			1545	40711	+2.52		
975	0	>100				40642	+1.97		
1005	20	>100			1605 1635	40842	+1.11		
1035	122	>100			1665	41405	+0.98		
1065	511	>100			1695	41403	+0.30		
1095	1263	>100			1725	41182	+0.41		
1125	2390	>100			1755	41178	+3.28		
1155	3641	>100			1785		+6.47		
1185	5246	>100			1815		+10.82		
	DO 10								
1215 1245	7212 9897	+98.32 +89.80			1845				

MPC 9600 Plateau

Instrument 8 MPC 9604 Detector C

7/1/2009

Alpha Volts: 705 Beta Volts: 1575

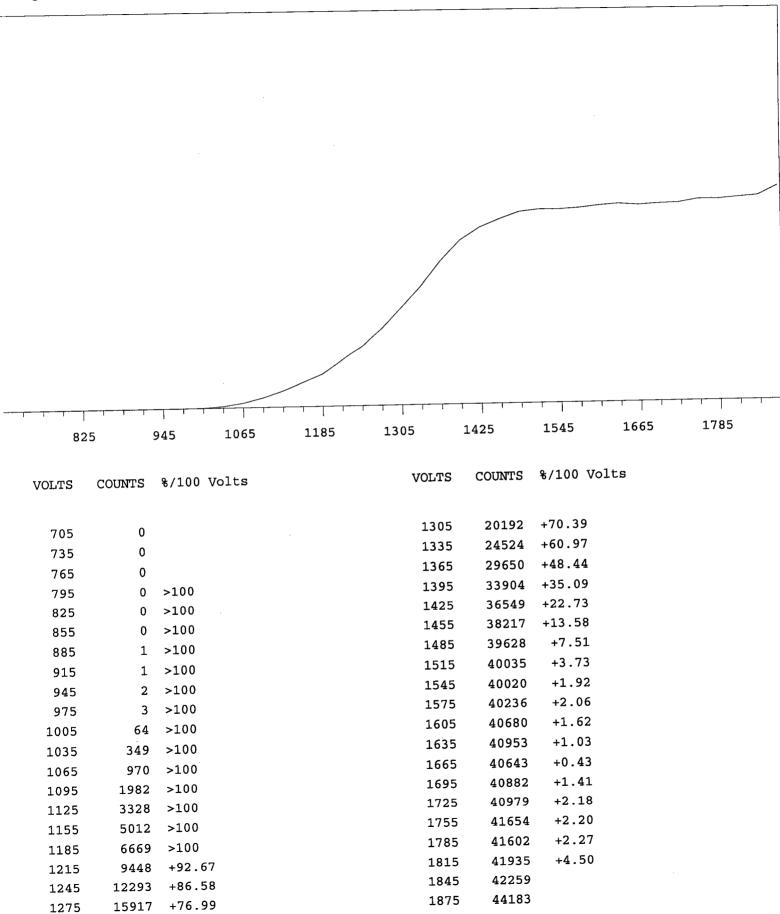
MPC 9600 Plateau Instrument 8 MPC 9604 Detector D 7/1/2009

								,		
٠										/
		•								
				/						
		1			 	1 1		- - -		'
		•	I	•						
82	5	945	1065	1185	1305	1425	1545	1665	1785	
82	5	945	1065	1185	1305	1425	1545	1665	1785	
				1185	1305 VOLTS	1425 COUNTS	1545 %/100 Vo		1785	
82 VOLTS		945 %/100 \		1185					1785	
VOLTS	COUNTS			1185	VOLTS	COUNTS	%/100 Vo		1785	
VOLTS	COUNTS 0			1185	VOLTS	COUNTS 16889	%/100 Vo +70.18		1785	
VOLTS 705 735	COUNTS 0 0	%/100 V		1185	VOLTS 1305 1335	COUNTS 16889 20600	%/100 Vo +70.18 +61.29		1785	
VOLTS 705 735 765	COUNTS 0 0 1	%/100 \ +0.00		1185	VOLTS	COUNTS 16889	%/100 Vo +70.18		1785	
VOLTS 705 735 765 795	COUNTS 0 0 1 0	*/100 \\ +0.00 >100		1185	VOLTS 1305 1335 1365	16889 20600 24824	%/100 Vo +70.18 +61.29 +50.40		1785	
705 735 765 795 825	COUNTS 0 0 1 0 0	*/100 \\ +0.00 >100 >100		1185	VOLTS 1305 1335 1365 1395	COUNTS 16889 20600 24824 28208	%/100 Vo +70.18 +61.29 +50.40 +38.85		1785	
705 735 765 795 825 855	COUNTS 0 0 1 0 0 0 0	*/100 \\ +0.00 >100 >100 >100 >100		1185	VOLTS 1305 1335 1365 1395 1425	16889 20600 24824 28208 31539	%/100 Vo +70.18 +61.29 +50.40 +38.85 +25.79		1785	
705 735 765 795 825 855 885	COUNTS 0 0 1 0 0	*/100 \\ +0.00 >100 >100		1185	VOLTS 1305 1335 1365 1395 1425 1455	16889 20600 24824 28208 31539 33391	%/100 Vo +70.18 +61.29 +50.40 +38.85 +25.79 +16.06		1785	
705 735 765 795 825 855 885 915	COUNTS 0 0 1 0 0 0 0 0	+0.00 >100 >100 >100 >100		1185	VOLTS 1305 1335 1365 1395 1425 1455 1485	16889 20600 24824 28208 31539 33391 33991	%/100 Vo +70.18 +61.29 +50.40 +38.85 +25.79 +16.06 +8.60		1785	
705 735 765 795 825 855 885	COUNTS 0 0 1 0 0 0 0 0 0 0	+0.00 >100 >100 >100 >100 >100 >100		1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515	COUNTS 16889 20600 24824 28208 31539 33391 33991 34782	%/100 Vo +70.18 +61.29 +50.40 +38.85 +25.79 +16.06 +8.60 +5.01 +4.10 +2.50		1785	
705 735 765 795 825 855 885 915	COUNTS 0 0 1 0 0 0 0 0 0 0	+0.00 >100 >100 >100 >100 >100 >100 >100		1185	VOLTS 1305 1335 1365 1395 1425 1455 1455 1545 1575 1605	COUNTS 16889 20600 24824 28208 31539 33391 33991 34782 35201 35380 35849	%/100 Vo +70.18 +61.29 +50.40 +38.85 +25.79 +16.06 +8.60 +5.01 +4.10 +2.50 +1.87		1785	
705 735 765 795 825 855 885 915 945	COUNTS 0 0 1 0 0 0 0 0 0 0 5	*/100 \\ +0.00 >100 >100 >100 >100 >100 >100 >100		1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	COUNTS 16889 20600 24824 28208 31539 33391 33991 34782 35201 35380 35849 35784	%/100 Vo +70.18 +61.29 +50.40 +38.85 +25.79 +16.06 +8.60 +5.01 +4.10 +2.50 +1.87 +1.79		1785	
VOLTS 705 735 765 795 825 855 885 915 945 975 1005	COUNTS 0 0 1 0 0 0 0 0 0 5 47	*/100 \\ +0.00 >100 >100 >100 >100 >100 >100 >100		1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665	COUNTS 16889 20600 24824 28208 31539 33391 33991 34782 35201 35380 35849 35784 36000	%/100 Vo +70.18 +61.29 +50.40 +38.85 +25.79 +16.06 +8.60 +5.01 +4.10 +2.50 +1.87 +1.79 +1.43		1785	
VOLTS 705 735 765 795 825 855 885 915 945 975 1005 1035	COUNTS 0 0 1 0 0 0 0 0 0 5 47 243	+0.00 >100 >100 >100 >100 >100 >100 >100		1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695	COUNTS 16889 20600 24824 28208 31539 33391 33991 34782 35201 35380 35849 35784 36000 36269	%/100 Vo +70.18 +61.29 +50.40 +38.85 +25.79 +16.06 +8.60 +5.01 +4.10 +2.50 +1.87 +1.79 +1.43 +2.10		1785	
VOLTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065	COUNTS 0 0 0 1 0 0 0 0 0 5 47 243 792	*/100 \\ +0.00 >100 >100 >100 >100 >100 >100 >100		1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	COUNTS 16889 20600 24824 28208 31539 33391 33991 34782 35201 35380 35849 35784 36000 36269 36381	%/100 Vo +70.18 +61.29 +50.40 +38.85 +25.79 +16.06 +8.60 +5.01 +4.10 +2.50 +1.87 +1.79 +1.43 +2.10 +3.46		1785	
VOLTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095	COUNTS 0 0 0 1 0 0 0 0 0 5 47 243 792 1744	*/100 \\ +0.00 >100 >100 >100 >100 >100 >100 >100		1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	COUNTS 16889 20600 24824 28208 31539 33391 33991 34782 35201 35380 35849 35784 36000 36269 36381 36733	%/100 Vo +70.18 +61.29 +50.40 +38.85 +25.79 +16.06 +8.60 +5.01 +4.10 +2.50 +1.87 +1.79 +1.43 +2.10 +3.46 +6.86		1785	
VOLTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	COUNTS 0 0 1 0 0 0 0 0 5 47 243 792 1744 2933	*/100 \\ +0.00 >100 >100 >100 >100 >100 >100 >100		1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1675 1605 1635 1665 1695 1725 1755 1785	COUNTS 16889 20600 24824 28208 31539 33391 33991 34782 35201 35380 35849 35784 36000 36269 36381 36733 37669	%/100 Vo +70.18 +61.29 +50.40 +38.85 +25.79 +16.06 +8.60 +5.01 +4.10 +2.50 +1.87 +1.79 +1.43 +2.10 +3.46 +6.86 +11.78		1785	
VOLTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1155	COUNTS 0 0 0 1 0 0 0 0 0 5 47 243 792 1744 2933 4123	*/100 \\ +0.00 >100 >100 >100 >100 >100 >100 >100	<i>J</i> olts	1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755 1785 1815	COUNTS 16889 20600 24824 28208 31539 33391 33991 34782 35201 35380 35849 35784 36000 36269 36381 36733 37669 39465	%/100 Vo +70.18 +61.29 +50.40 +38.85 +25.79 +16.06 +8.60 +5.01 +4.10 +2.50 +1.87 +1.79 +1.43 +2.10 +3.46 +6.86		1785	
VOLTS 705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1155 1185	COUNTS 0 0 0 1 0 0 0 0 0 5 47 243 792 1744 2933 4123 5780	*/100 \\ +0.00 >100 >100 >100 >100 >100 >100 >100	<i>J</i> olts	1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1675 1605 1635 1665 1695 1725 1755 1785	COUNTS 16889 20600 24824 28208 31539 33391 33991 34782 35201 35380 35849 35784 36000 36269 36381 36733 37669	%/100 Vo +70.18 +61.29 +50.40 +38.85 +25.79 +16.06 +8.60 +5.01 +4.10 +2.50 +1.87 +1.79 +1.43 +2.10 +3.46 +6.86 +11.78	lts	1785	

MPC 9600 Plateau Alpha Volts: 870 Instrument 9 MPC 9604 Detector A

7/1/2009

Beta Volts: 1530


MPC 9600 Plateau Instrument 9 MPC 9604 Detector B

7/1/2009

Alpha Volts: 870 Beta Volts: 1530

MPC 9600 Plateau Instrument 9 MPC 9604 Detector C

7/1/2009

MPC 9600 Plateau Instrument 9 MPC 9604 Detector D 7/1/2009

			*****			 .			
	,								
					/				
				•					
									•
1	···· · · · · 			· · · · · · · · · · · · · · · · · · ·			1 7 1		
82	25	945	1065	1185	1305	1425	1545	1665	1785
02		J 10	2005						
OLTS	COUNTS	%/100 ·	Volts		VOLTS	COUNTS	%/100 Vo	lts	
/OH15	COOMID	0,100	10100		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
705	0				1305	13319	+70.94		
735	0				1335	16319	+61.35		
765	0				1365	19577	+50.27		
795	0	>100			1395	22498	+36.85		
825	0	>100			1425	24782	+23.90		
855	0	>100			1455	25761	+15.37		
885	0	>100			1485	26486	+8.38		
915	1	>100			1515	27503	+5.11		
945	0	>100			1545	27223	+2.67		
243	5	>100			1575	27453	+1.71		
975	-								
	35	>100			1605	27604	+2.70		
975		>100 >100			1635	28021	+0.78		
975 1005	35				1635 1665	28021 28059	+0.78 +1.05		
975 1005 1035	35 186	>100			1635 1665 1695	28021 28059 27548	+0.78 +1.05 +0.90		
975 1005 1035 1065	35 186 618	>100 >100			1635 1665 1695 1725	28021 28059 27548 28280	+0.78 +1.05 +0.90 +2.16		
975 1005 1035 1065 1095	35 186 618 1280	>100 >100 >100			1635 1665 1695 1725 1755	28021 28059 27548 28280 28290	+0.78 +1.05 +0.90 +2.16 +3.51		
975 1005 1035 1065 1095 1125 1155 1185	35 186 618 1280 2141 3268 4659	>100 >100 >100 >100 >100 >100			1635 1665 1695 1725 1755	28021 28059 27548 28280 28290 28600	+0.78 +1.05 +0.90 +2.16 +3.51 +4.46		
975 1005 1035 1065 1095 1125 1155 1185 1215	35 186 618 1280 2141 3268 4659 6343	>100 >100 >100 >100 >100 >100 +90.68			1635 1665 1695 1725 1755 1785 1815	28021 28059 27548 28280 28290 28600 28879	+0.78 +1.05 +0.90 +2.16 +3.51		
975 1005 1035 1065 1095 1125 1155 1185	35 186 618 1280 2141 3268 4659	>100 >100 >100 >100 >100 >100 +90.68 +83.46	i		1635 1665 1695 1725 1755	28021 28059 27548 28280 28290 28600	+0.78 +1.05 +0.90 +2.16 +3.51 +4.46		

Instrument 10 MPC 9604 Detector A 7/1/2009 MPC 9600 Plateau

Beta Volts: 1552

Alpha Volts: 870

MPC 9600 Plateau Instrument 10 MPC 9604 Detector B 7/1/2009

							1		
					/				
									,
	7-7-1				1 1 1 1	' ' '	' '	' ' '	
82	25	945	1065	1185	1305	1425	1545	1665	1785
VOLTS	COUNTS	%/100	Volts		VOLTS	COUNTS	%/100 Vo	lts	
V0215	000000	•,							
					4005	1.4460	.71 00		
705	0				1305	14469	+71.08		•
735	0				1335	17904	+63.07		
765	0				1365	21677	+51.20		
795	0	>100			1395	25027	+38.06		
825	0	>100			1425	27237	+24.55		
855	0	>100			1455	28914	+14.61		
885	0	>100			1485	29480	+8.48		
915	0	>100			1515	30075	+5.06		
945	1	>100			1545	30374	+3.42		
975	7				1575	30738	+1.68		
1005	28				1605	30703	+1.08		
1035	190				1635	30679	+0.77		
1065	597				1665	30902	+1.46		
1005	1474				1695	30992	+1.89		
1125	2383				1725	31224	+2.40		
					1755	31397	+3.27		
1155	3680				1785	31826	+4.13		
1185	5131		_			32236	+5.59		
1215	6808	+89.95)		1815	34430	TJ.JJ		
					1045	20700			
1245	8990	+83.03	3		1845	32782			
1245 1275		+83.03	3		1845 1875	32782 33632			

MPC 9600 Plateau Instrument 10 MPC 9604 Detector C 7/1/2009

pila vo.									
	٠								
						7 7 7 7	- 	1	
82	25	945	1065	1185	1305	1425	1545	1665	1785
JOLTS	COUNTS	%/100 °	Volts		VOLTS	COUNTS	%/100 Vo	lts	
705	1				1305	18051	+71.16		
735	0				1335	22586	+62.34		
765	0				1365	26973	+51.47		
795		>100			1395	31137	+38.24		
825	0	>100			1425	34321	+25.70		
855	0	>100			1455	36267	+15.37		
885	1	>100			1485	37197	+9.21		
915	0	>100				0-0-4	+5.38		
					1515	37851	.5.50		
945	2	>100			1515 15 4 5	37851 38622	+3.00		
945 975	2								
975	2	>100			1545	38622	+3.00		
975 1005	2 36	>100 >100			15 4 5 1575	38622 38600	+3.00 +1.55		
975 1005 1035	2 36 220	>100 >100 >100			15 4 5 1575 1605	38622 38600 38538	+3.00 +1.55 +1.03		
975 1005 1035 1065	2 36 220 780	>100 >100 >100 >100			1545 1575 1605 1635	38622 38600 38538 38786 39129	+3.00 +1.55 +1.03 +0.91		
975 1005 1035 1065 1095	2 36 220 780 1712	>100 >100 >100 >100 >100			1545 1575 1605 1635 1665	38622 38600 38538 38786 39129	+3.00 +1.55 +1.03 +0.91 +1.38		
975 1005 1035 1065 1095 1125	2 36 220 780 1712 2926	>100 >100 >100 >100 >100 >100			1545 1575 1605 1635 1665 1695	38622 38600 38538 38786 39129 38832 39323	+3.00 +1.55 +1.03 +0.91 +1.38 +1.20		
975 1005 1035 1065 1095 1125 1155	2 36 220 780 1712 2926 4297	>100 >100 >100 >100 >100 >100 >100			1545 1575 1605 1635 1665 1695 1725	38622 38600 38538 38786 39129 38832 39323 39390	+3.00 +1.55 +1.03 +0.91 +1.38 +1.20 +2.00		
975 1005 1035 1065 1095 1125 1155 1185	2 36 220 780 1712 2926 4297 6097	>100 >100 >100 >100 >100 >100 >100 >100			1545 1575 1605 1635 1665 1695 1725 1755	38622 38600 38538 38786 39129 38832 39323 39390 40031	+3.00 +1.55 +1.03 +0.91 +1.38 +1.20 +2.00 +3.35		
975 1005 1035 1065 1095 1125 1155	2 36 220 780 1712 2926 4297	>100 >100 >100 >100 >100 >100 >100 >100			1545 1575 1605 1635 1665 1695 1725	38622 38600 38538 38786 39129 38832 39323 39390 40031 40466	+3.00 +1.55 +1.03 +0.91 +1.38 +1.20 +2.00 +3.35 +4.86		

MPC 9600 Plateau Instrument 10 MPC 9604 Detector D 7/1/2009

									
					/				
							-, , - ;	, , , , , , , , , , , , , , , , , , , 	
82	, , , , , ,	945	1065	1185	1305	1425	1545	1665	1785
0.2	.5	943	1003	1100	2000				
VOLTS	COUNTS	%/100 T	Volts					-1+a	
		0,200	V0202		VOLTS	COUNTS	%/100 Vo	JICS	
705	0	0,200	V0202					JICS	
705 735	0	0,200	VO2 02		1305 1335	15430 19258	*/100 Vo +69.87 +61.49	JICS	
735	0 0 0	0,200	, , , , , , , , , , , , , , , , , , , 		1305	15430	+69.87)ICS	
	0	>100	.0202		1305 1335	15430 19258	+69.87 +61.49)IUS	
735 765	0		.0202		1305 1335 1365	15430 19258 23018 26562	+69.87 +61.49 +50.06)ICS	
735 765 795	0 0 0	>100	.0202		1305 1335 1365 1395	15430 19258 23018 26562	+69.87 +61.49 +50.06 +35.34) ics	
735 765 795 825	0 0 0	>100 >100	.0202		1305 1335 1365 1395 1425	15430 19258 23018 26562 28750	+69.87 +61.49 +50.06 +35.34 +22.67) ics	
735 765 795 825 855	0 0 0 0	>100 >100 >100	.0202		1305 1335 1365 1395 1425 1455	15430 19258 23018 26562 28750 29911	+69.87 +61.49 +50.06 +35.34 +22.67 +13.20) ics	
735 765 795 825 855 885 915	0 0 0 0 0	>100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455	15430 19258 23018 26562 28750 29911 30798	+69.87 +61.49 +50.06 +35.34 +22.67 +13.20 +8.01). Jics	
735 765 795 825 855 885 915	0 0 0 0 0 0	>100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485	15430 19258 23018 26562 28750 29911 30798 31375	+69.87 +61.49 +50.06 +35.34 +22.67 +13.20 +8.01 +4.83	ores.	
735 765 795 825 855 885 915 945	0 0 0 0 0 0 0 0	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515	15430 19258 23018 26562 28750 29911 30798 31375 31684	+69.87 +61.49 +50.06 +35.34 +22.67 +13.20 +8.01 +4.83 +3.74	ores.	
735 765 795 825 855 885 915 945 975	0 0 0 0 0 0 0 3 49	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545	15430 19258 23018 26562 28750 29911 30798 31375 31684 31721	+69.87 +61.49 +50.06 +35.34 +22.67 +13.20 +8.01 +4.83 +3.74 +2.38	ores.	
735 765 795 825 855 885 915 945 975 1005	0 0 0 0 0 0 0 3 49	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	15430 19258 23018 26562 28750 29911 30798 31375 31684 31721 32398 32154	+69.87 +61.49 +50.06 +35.34 +22.67 +13.20 +8.01 +4.83 +3.74 +2.38 +1.44	ores .	
735 765 795 825 855 885 915 945 975 1005 1035	0 0 0 0 0 0 0 3 49 244 764	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	15430 19258 23018 26562 28750 29911 30798 31375 31684 31721 32398 32154	+69.87 +61.49 +50.06 +35.34 +22.67 +13.20 +8.01 +4.83 +3.74 +2.38 +1.44 +0.64	oles	
735 765 795 825 855 885 915 945 975 1005 1035 1065	0 0 0 0 0 0 0 3 49 244 764 1584	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665	15430 19258 23018 26562 28750 29911 30798 31375 31684 31721 32398 32154 32157 32152	+69.87 +61.49 +50.06 +35.34 +22.67 +13.20 +8.01 +4.83 +3.74 +2.38 +1.44 +0.64 -0.77	oics.	
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095	0 0 0 0 0 0 3 49 244 764 1584 2677	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	15430 19258 23018 26562 28750 29911 30798 31375 31684 31721 32398 32154 32157 32152 32029	+69.87 +61.49 +50.06 +35.34 +22.67 +13.20 +8.01 +4.83 +3.74 +2.38 +1.44 +0.64 -0.77 +0.99	DICS	
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 0 0 0 0 0 0 3 49 244 764 1584 2677 3763	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	15430 19258 23018 26562 28750 29911 30798 31375 31684 31721 32398 32154 32157 32152 32029 32699	+69.87 +61.49 +50.06 +35.34 +22.67 +13.20 +8.01 +4.83 +3.74 +2.38 +1.44 +0.64 -0.77 +0.99 +1.41	oles	
735 765 795 825 855 885 915 945 975 1005 1035 1065 1125 1155 1185	0 0 0 0 0 0 0 3 49 244 764 1584 2677 3763 5395	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755	15430 19258 23018 26562 28750 29911 30798 31375 31684 31721 32398 32154 32157 32152 32029 32699 32566	+69.87 +61.49 +50.06 +35.34 +22.67 +13.20 +8.01 +4.83 +3.74 +2.38 +1.44 +0.64 -0.77 +0.99 +1.41 +3.00 +4.71	oics.	
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 0 0 0 0 0 0 3 49 244 764 1584 2677 3763	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	15430 19258 23018 26562 28750 29911 30798 31375 31684 31721 32398 32154 32157 32152 32029 32699 32566 33351	+69.87 +61.49 +50.06 +35.34 +22.67 +13.20 +8.01 +4.83 +3.74 +2.38 +1.44 +0.64 -0.77 +0.99 +1.41 +3.00 +4.71	oles Sies	

Plateau 7/1/09 Instrument 11 MPC 9604 Detector A 7/1/2009

825		945	1065	1185	1305	1425	1545	1665	1785
VOLTS	COUNTS	%/100 V	/olts		VOLTS	COUNTS	%/100 Vo	olts	
705	0				1305	3225	+87.64		
735	1				1335	4189	+80.15		
765	0				1365	5428	+75.12		
795	0	>100			1395	6662	+68.60		
825	0	>100			1425	8241	+58.14		
855	0	>100			1455	9857	+46.65		
885	0	>100			1485	11018	+33.24		
915	0	>100			1515	11953	+21.01		
945	1	+0.00			1545	12538	+13.57		
975	0	>100	•		1575	12760	+8.35		
1005	0	>100			1605	13114	+5.84		
1035	2	>100			1635	13258	+4.78		
1065	9	>100			1665	13430	+3.99		
1095	61	>100			1695	13551	+5.46		
1125	248	>100			1725	13771	+8.65		
1155	528	>100			1755	14204	+16.44		
1185	882	>100			1785	14916	+30.03		
1215	1270	>100			1815	16579	+48.74		
1245	1786	>100			1845	19717			
1275	2478	+93.67			1875	25029			

Plateau 7/1/09 Instrument 11 MPC 9604 Detector B 7/1/2009

							-		
				/					
		 				1	1	T T	
82	!5	945	1065	1185	1305	1425	1545	1665	1785
					ma	gorama	0./100 **-	1	
VOLTS	COUNTS	%/100 T	/olts		VOLTS	COUNTS	%/100 Vo	TES	
705	0		•		1305	8947	+65.63		
735	0				1335	11238	+56.58		
765	0				1365	13246	+46.66		
795	0	>100			1395	14838	+30.69		
825	0	>100			1425	16166	+20.11		
855	0	>100			1455	16396	+11.95		
885	0	>100			1485	17161	+5.61		
	1	>100			1515	17274	+3.59		
915	0	>100							
915 945	U	· >T00			1545	17144	-0.00		
945	11				15 4 5 1575	17144 17323	-0.00 +0.80		
9 4 5 975	11	>100							
945 975 1005	11 47	>100 >100			1575 1605	17323 17136	+0.80		
945 975 1005 1035	11 47 280	>100 >100 >100			1575 1605 1635	17323 17136 17484	+0.80 +2.21 +1.94		
945 975 1005 1035 1065	11 47 280 610	>100 >100 >100 >100			1575 1605 1635 1665	17323 17136 17484 17638	+0.80 +2.21 +1.94 +2.16		
945 975 1005 1035 1065 1095	11 47 280 610 1192	>100 >100 >100 >100 >100 >100			1575 1605 1635 1665 1695	17323 17136 17484 17638 17580	+0.80 +2.21 +1.94 +2.16 +0.85		
945 975 1005 1035 1065 1095 1125	11 47 280 610 1192 1789	>100 >100 >100 >100 >100 >100			1575 1605 1635 1665 1695 1725	17323 17136 17484 17638 17580 17655	+0.80 +2.21 +1.94 +2.16 +0.85 +1.05		
945 975 1005 1035 1065 1095 1125 1155	11 47 280 610 1192 1789 2466	>100 >100 >100 >100 >100 >100 >100 >100			1575 1605 1635 1665 1695 1725	17323 17136 17484 17638 17580 17655 17700	+0.80 +2.21 +1.94 +2.16 +0.85 +1.05 +1.98		
945 975 1005 1035 1065 1095 1125 1155 1185	11 47 280 610 1192 1789 2466 3337	>100 >100 >100 >100 >100 >100 >100 +94.91			1575 1605 1635 1665 1695 1725 1755	17323 17136 17484 17638 17580 17655 17700 17857	+0.80 +2.21 +1.94 +2.16 +0.85 +1.05 +1.98 +2.38		
945 975 1005 1035 1065 1095 1125 1155	11 47 280 610 1192 1789 2466	>100 >100 >100 >100 >100 >100 >100 >100			1575 1605 1635 1665 1695 1725	17323 17136 17484 17638 17580 17655 17700	+0.80 +2.21 +1.94 +2.16 +0.85 +1.05 +1.98		

		1		1 7					1 1 1
82	25	945	1065	1185	1305	1425	1545	1665	1785
VOLTS	COUNTS	%/100 V	olts		VOLTS	COUNTS	%/100 Vo	olts	
VOLTS	COUNTS	%/100 V	olts		VOLTS	COUNTS	%/100 Vo	olts	
		%/100 V	Olts					olts	
705	1	%/100 V	<i>T</i> olts		1305	8636	+66.44	olts	
705 735	1 0		olts/		1305 1335			olts	
705 735 765	1 0 0	+0.00	olts/		1305	8636 10593	+66.44 +56.56	olts	
705 735 765 795	1 0	+0.00	<i>T</i> olts		1305 1335 1365	8636 10593 12582	+66.44 +56.56 +46.23	olts	
705 735 765 795 825	1 0 0	+0.00 >100	Olts		1305 1335 1365 1395	8636 10593 12582 13957	+66.44 +56.56 +46.23 +33.45	olts	
705 735 765 795	1 0 0 0	+0.00 >100 +0.00	<i>T</i> olts		1305 1335 1365 1395 1425	8636 10593 12582 13957 15443	+66.44 +56.56 +46.23 +33.45 +21.49	olts	
705 735 765 795 825 855	1 0 0 0 1 0	+0.00 >100 +0.00 >100	<i>T</i> olts		1305 1335 1365 1395 1425	8636 10593 12582 13957 15443 16048	+66.44 +56.56 +46.23 +33.45 +21.49 +13.14	olts	
705 735 765 795 825 855 885	1 0 0 0 1 0 0	+0.00 >100 +0.00 >100 +0.00 >100	<i>T</i> olts		1305 1335 1365 1395 1425 1455	8636 10593 12582 13957 15443 16048 16331	+66.44 +56.56 +46.23 +33.45 +21.49 +13.14 +6.45	olts	
705 735 765 795 825 855 885 915	1 0 0 0 1 0 0 0	+0.00 >100 +0.00 >100 +0.00 >100	<i>T</i> olts		1305 1335 1365 1395 1425 1455 1485	8636 10593 12582 13957 15443 16048 16331 16603	+66.44 +56.56 +46.23 +33.45 +21.49 +13.14 +6.45 +4.19	olts	
705 735 765 795 825 855 885 915	1 0 0 0 1 0 0 0	+0.00 >100 +0.00 >100 +0.00 >100 >100	<i>T</i> olts		1305 1335 1365 1395 1425 1455 1485 1515	8636 10593 12582 13957 15443 16048 16331 16603 16736 16884	+66.44 +56.56 +46.23 +33.45 +21.49 +13.14 +6.45 +4.19 +2.73 +1.11 +1.91	olts	
705 735 765 795 825 855 885 915 945	1 0 0 0 1 0 0 0	+0.00 >100 +0.00 >100 +0.00 >100 >100 >100	<i>T</i> olts		1305 1335 1365 1395 1425 1455 1485 1515 1545	8636 10593 12582 13957 15443 16048 16331 16603 16736 16884 16875	+66.44 +56.56 +46.23 +33.45 +21.49 +13.14 +6.45 +4.19 +2.73 +1.11	olts	
705 735 765 795 825 855 885 915 945 975	1 0 0 0 1 0 0 0 1 7	+0.00 >100 +0.00 >100 +0.00 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575	8636 10593 12582 13957 15443 16048 16331 16603 16736 16884 16875 16813 17257	+66.44 +56.56 +46.23 +33.45 +21.49 +13.14 +6.45 +4.19 +2.73 +1.11 +1.91 +2.86 +2.60	olts	
705 735 765 795 825 855 885 915 945 975 1005	1 0 0 1 0 0 0 1 7 46 191	+0.00 >100 +0.00 >100 +0.00 >100 >100 >100 >100 >100 >100	<i>T</i> olts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665	8636 10593 12582 13957 15443 16048 16331 16603 16736 16884 16875 16813 17257	+66.44 +56.56 +46.23 +33.45 +21.49 +13.14 +6.45 +4.19 +2.73 +1.11 +1.91 +2.86 +2.60 +1.58	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035	1 0 0 1 0 0 0 1 7 46 191 540	+0.00 >100 +0.00 >100 +0.00 >100 >100 >100 >100 >100 >100 >100	<i>T</i> olts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695	8636 10593 12582 13957 15443 16048 16331 16603 16736 16884 16875 16813 17257 17425 17238	+66.44 +56.56 +46.23 +33.45 +21.49 +13.14 +6.45 +4.19 +2.73 +1.11 +1.91 +2.86 +2.60 +1.58 +0.49	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065	1 0 0 0 1 0 0 0 1 7 46 191 540 957	+0.00 >100 +0.00 >100 +0.00 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725	8636 10593 12582 13957 15443 16048 16331 16603 16736 16884 16875 16813 17257 17425 17238	+66.44 +56.56 +46.23 +33.45 +21.49 +13.14 +6.45 +4.19 +2.73 +1.11 +1.91 +2.86 +2.60 +1.58 +0.49 +0.63	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095	1 0 0 1 0 0 0 1 7 46 191 540 957	+0.00 >100 +0.00 >100 +0.00 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755	8636 10593 12582 13957 15443 16048 16331 16603 16736 16884 16875 16813 17257 17425 17238 17230 17482	+66.44 +56.56 +46.23 +33.45 +21.49 +13.14 +6.45 +4.19 +2.73 +1.11 +1.91 +2.86 +2.60 +1.58 +0.49 +0.63 +3.27	olts	
705 735 765 795 825 885 915 945 975 1005 1035 1065 1095 1125	1 0 0 0 1 0 0 0 1 7 46 191 540 957 1597 2217	+0.00 >100 +0.00 >100 +0.00 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755 1785	8636 10593 12582 13957 15443 16048 16331 16603 16736 16884 16875 16813 17257 17425 17238 17230 17482	+66.44 +56.56 +46.23 +33.45 +21.49 +13.14 +6.45 +4.19 +2.73 +1.11 +1.91 +2.86 +2.60 +1.58 +0.49 +0.63	olts	
705 735 765 795 825 855 915 945 975 1005 1035 1065 1095 1125 1155 1185	1 0 0 0 1 0 0 0 1 7 46 191 540 957 1597 2217 3154	+0.00 >100 +0.00 >100 +0.00 >100 >100 >100 >100 >100 >100 >100	<i>T</i> olts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755	8636 10593 12582 13957 15443 16048 16331 16603 16736 16884 16875 16813 17257 17425 17238 17230 17482 17468 17977	+66.44 +56.56 +46.23 +33.45 +21.49 +13.14 +6.45 +4.19 +2.73 +1.11 +1.91 +2.86 +2.60 +1.58 +0.49 +0.63 +3.27	olts	

Plateau 7/1/09 Instrument 11 MPC 9604 Detector D 7/1/2009

			,					
				,				
	 		- - - - - - - - - - 		1 1	1 1	· · · · · · · · · · · · · · · · · · ·	1 1 1
82	25	945 1065	1185	1305	1425	1545	1665	1785
VOLTS	COUNTS	%/100 Volts		VOLTS	COUNTS	%/100 Vo	lts	
705	0			1305	7679	+65.97		
705	0			1335	9737	+57.57		
765	0			1365	11301	+45.87		
795	0	>100		1395	12767	+31.71		
825		>100		1425	13767	+19.90		
855	1			1455	14399	+10.72		
885	1			1485	14467	+4.38		
915	0	>100		1515	14671	+2.12		
945	1	>100		1545	14576	+2.61		
975	9	>100		1575	14808	+1.80		
1005	60	>100		1605	14974	+3.15		
1035	173	>100		1635	14872	+1.76		
1065	480	>100		1665	15248	-0.41		
1095	911	>100		1695	15067	-0.27		
1125	1508	>100		1725	14784	-0.43		
1155	2024	>100		1755	15044	+2.01		
1185	2872	+97.38		1785	15163	+2.82		
1215	3858			1815	15333	+3.61		
1245	5070			1845	15278			
1275	6322	+73.30		1875	15817			

Plateau 7/1/09 Instrument 12 MPC 9604 Detector A 7/1/2009

	- 				 	1 1 1 1	<u> </u>	1 1	
82	25	945	1065	1185	1305	1425	1545	1665	1785
VOLTS	COUNTS	\%/100	Volts		VOLTS	COUNTS	%/100 Vo	olts	
705	0				1305	6302	+80.03		
735	1				1335	8191	+73.78		
765	0				1365	10140	+66.18		
795	0	>100			1395	12247	+55.83		
825	0	>100			1425	14468	+43.92		
855	0	>100			1455	16303	+31.28		
885	0	>100			1485	17411	+18.64		
915	0	>100			1515	18150	+9.87		
945	0	>100			1545	18275	+5.30		
975	1	>100			1575	18496	+3.16		
1005	3	>100			1605	18685	+2.66		
1035	17	>100			1635	18820	+2.63		
1065	8/4	>100			1665	18855	+4.16		
1095	267	>100			1695	19152	+7.70		
1125	709	>100			1725	19706	+13.90		
1155	1299	>100			1755	20640	+26.51		
1185	1813	>100			1785	22308	+40.92		
1215	2638	>100	7		1815	26460 31616	+51.46		
1245	3777	+96.47			1845	31616			
1275	4915	+87.98	5		1875	37348			

Plateau 7/1/09 Instrument 12 MPC 9604 Detector B 7/1/2009

										\neg
	•									
										_
					/					
										ļ
				/						
1 1 1	- T - T - T - T - T - T - T - T - T - T			1 1						- 1
82	25	945	1065	1185	1305	1425	1545	1665	1785	
VOLTS	COUNTS	%/100 T	<i>J</i> olts		VOLTS	COUNTS	%/100 V	olts		
							50.40			
705	0				1305	10207	+70.42			
735	0				1335	12473	+60.75			
765	0				1365	14900	+48.87			
795	0	>100			1395	17101	+35.36			
825	0	>100			1425	18643	+22.53			
855	1	+83.33			1455	19350	+12.34			
					1485	19848	+6.68			
885	1	-83.33								
915	0	-55.56			1515	20014	+3.51			
945	0	>100			1545	20278	+2.03			
975	1	>100			1575	20186	+0.80			
1005	43	>100			1605	20375	+0.32			
1035	165	>100			1635	20209	+1.36			
1065	557	>100			1665	20364	+0.83			
1005	1055	>100			1695	20607	+2.43			
							+2.51			
1125	1775	>100			1725	20429				
1155	2470	>100			1755	20924	+3.64			
1185	3617	+98.46			1785	20984	+5.11			
1215	4757	+90.95			1815	21470	+5.63			
1245	6186	+83.59			1845	21773				
1275	8021	+77.85			1875	22346				
1213	J 0 2 1	. , ,								

Plateau 7/1/09 Instrument 12 MPC 9604 Detector C 7/1/2009

						,		,, ,,	· -
				1 1 1 1		' ' '	1 5 4 5	1.665	1705
825	5	945	1065	1185	1305	1425	1545	1665	1785
VOLTS	COUNTS	%/100 V	olts		VOLTS	COUNTS	%/100 Vo	olts	
705	4								
	1				1305	9543	+67.01		
	1				1305 1335	95 4 3 11617	+67.01 +56.47		
735 765	0								
735	0	>100			1335	11617	+56.47		
735 765	0 0	>100 >100			1335 1365	11617 13791 15387 16819	+56.47 +45.47 +31.66 +20.02		
735 765 795	0 0 0				1335 1365 1395 1425 1455	11617 13791 15387 16819 17210	+56.47 +45.47 +31.66 +20.02 +11.63		
735 765 795 825	0 0 0	>100			1335 1365 1395 1425 1455 1485	11617 13791 15387 16819 17210 17742	+56.47 +45.47 +31.66 +20.02 +11.63 +6.05		
735 765 795 825 855	0 0 0 0	>100 >100			1335 1365 1395 1425 1455 1485 1515	11617 13791 15387 16819 17210 17742 17892	+56.47 +45.47 +31.66 +20.02 +11.63 +6.05 +3.04		
735 765 795 825 855 885	0 0 0 0 0	>100 >100 +0.00			1335 1365 1395 1425 1455 1485	11617 13791 15387 16819 17210 17742 17892 18070	+56.47 +45.47 +31.66 +20.02 +11.63 +6.05 +3.04 +1.09		
735 765 795 825 855 885 915	0 0 0 0 0 1	>100 >100 +0.00 >100			1335 1365 1395 1425 1455 1485 1515	11617 13791 15387 16819 17210 17742 17892	+56.47 +45.47 +31.66 +20.02 +11.63 +6.05 +3.04 +1.09 +1.43		
735 765 795 825 855 885 915	0 0 0 0 0 1 0	>100 >100 +0.00 >100 >100			1335 1365 1395 1425 1455 1485 1515	11617 13791 15387 16819 17210 17742 17892 18070	+56.47 +45.47 +31.66 +20.02 +11.63 +6.05 +3.04 +1.09		
735 765 795 825 855 885 915 945	0 0 0 0 0 1 0 0	>100 >100 +0.00 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545	11617 13791 15387 16819 17210 17742 17892 18070 17856	+56.47 +45.47 +31.66 +20.02 +11.63 +6.05 +3.04 +1.09 +1.43		
735 765 795 825 855 885 915 945 975	0 0 0 0 1 0 0 7	>100 >100 +0.00 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575	11617 13791 15387 16819 17210 17742 17892 18070 17856 18054	+56.47 +45.47 +31.66 +20.02 +11.63 +6.05 +3.04 +1.09 +1.43 +0.42		
735 765 795 825 855 885 915 945 975 1005	0 0 0 0 1 0 7 52 214	>100 >100 +0.00 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	11617 13791 15387 16819 17210 17742 17892 18070 17856 18054 18287	+56.47 +45.47 +31.66 +20.02 +11.63 +6.05 +3.04 +1.09 +1.43 +0.42 +1.06		
735 765 795 825 855 885 915 945 975 1005 1035	0 0 0 0 1 0 7 52 214 590	>100 >100 +0.00 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	11617 13791 15387 16819 17210 17742 17892 18070 17856 18054 18287 17969	+56.47 +45.47 +31.66 +20.02 +11.63 +6.05 +3.04 +1.09 +1.43 +0.42 +1.06 +0.78		
735 765 795 825 855 885 915 945 975 1005 1035 1065	0 0 0 0 1 0 7 52 214 590 1201	>100 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665	11617 13791 15387 16819 17210 17742 17892 18070 17856 18054 18287 17969 18187	+56.47 +45.47 +31.66 +20.02 +11.63 +6.05 +3.04 +1.09 +1.43 +0.42 +1.06 +0.78 +1.48		
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 0 0 0 0 1 0 7 52 214 590 1201 1759	>100 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695	11617 13791 15387 16819 17210 17742 17892 18070 17856 18054 18287 17969 18187	+56.47 +45.47 +31.66 +20.02 +11.63 +6.05 +3.04 +1.09 +1.43 +0.42 +1.06 +0.78 +1.48 +4.89		
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 0 0 0 0 1 0 7 52 214 590 1201 1759 2569	>100 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	11617 13791 15387 16819 17210 17742 17892 18070 17856 18054 18287 17969 18187 18317	+56.47 +45.47 +31.66 +20.02 +11.63 +6.05 +3.04 +1.09 +1.43 +0.42 +1.06 +0.78 +1.48 +4.89 +4.76		
735 765 795 825 855 885 915 945 975 1005 1035 1065 1125 1185	0 0 0 0 0 1 0 7 52 214 590 1201 1759 2569 3440	>100 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755	11617 13791 15387 16819 17210 17742 17892 18070 17856 18054 18287 17969 18187 18317 18518 19156	+56.47 +45.47 +31.66 +20.02 +11.63 +6.05 +3.04 +1.09 +1.43 +0.42 +1.06 +0.78 +1.48 +4.89 +4.76 +5.18		

Plateau 7/1/09 Instrument 12 MPC 9604 Detector D 7/1/2009

									•
				•					
						T		 	
		' '	1065	1185	1305	1425	1545	1665	1785
82	:5	945	1065	1100	1303	1423	1343	1005	2.00
מחד שם	COINTE	<u>ያ</u> /1ለስ	Volte		ארי.זטג	COUNTS	%/100 Va	olts	•
VOLTS	COUNTS	%/100	Volts		VOLTS	COUNTS	%/100 Vo	olts	•
		%/100°	Volts		VOLTS	COUNTS 9144	%/100 Vo	olts	•
705	0	%/100	Volts					olts	•
705 735		%/100 °	Volts		1305	9144	+69.92	olts	•
705 735 765	0 0 0	%/100 >100	Volts		1305 1335	9144 11120	+69.92 +58.43	olts	•
705 735 765 795	0 0 0 0		Volts		1305 1335 1365	9144 11120 13399 14711	+69.92 +58.43 +45.40	olts	•
705 735 765	0 0 0 0	>100	Volts		1305 1335 1365 1395	9144 11120 13399 14711	+69.92 +58.43 +45.40 +32.57	olts	•
705 735 765 795 825	0 0 0 0	>100 >100	Volts		1305 1335 1365 1395 1425	9144 11120 13399 14711 16134	+69.92 +58.43 +45.40 +32.57 +20.69	olts	•
705 735 765 795 825 855	0 0 0 0 0	>100 >100 >100	Volts		1305 1335 1365 1395 1425 1455	9144 11120 13399 14711 16134 16805	+69.92 +58.43 +45.40 +32.57 +20.69 +13.46	olts	•
705 735 765 795 825 855 885	0 0 0 0 0 0	>100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455	9144 11120 13399 14711 16134 16805 17209	+69.92 +58.43 +45.40 +32.57 +20.69 +13.46 +7.90	olts	•
705 735 765 795 825 855 885 915	0 0 0 0 0 0	>100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485	9144 11120 13399 14711 16134 16805 17209 17500 17812 17629	+69.92 +58.43 +45.40 +32.57 +20.69 +13.46 +7.90 +4.31 +3.48 +2.80	olts	•
705 735 765 795 825 855 885 915	0 0 0 0 0 0 0	>100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515	9144 11120 13399 14711 16134 16805 17209 17500 17812 17629 18066	+69.92 +58.43 +45.40 +32.57 +20.69 +13.46 +7.90 +4.31 +3.48 +2.80 +2.23	olts	•
705 735 765 795 825 855 885 915 945	0 0 0 0 0 0 0 0	>100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545	9144 11120 13399 14711 16134 16805 17209 17500 17812 17629 18066 18122	+69.92 +58.43 +45.40 +32.57 +20.69 +13.46 +7.90 +4.31 +3.48 +2.80 +2.23 +1.44	olts	•
705 735 765 795 825 855 885 915 945 975	0 0 0 0 0 0 0 0 4 26	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575	9144 11120 13399 14711 16134 16805 17209 17500 17812 17629 18066 18122	+69.92 +58.43 +45.40 +32.57 +20.69 +13.46 +7.90 +4.31 +3.48 +2.80 +2.23 +1.44 +1.20	olts	•
705 735 765 795 825 855 885 915 945 975 1005	0 0 0 0 0 0 0 4 26 169	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	9144 11120 13399 14711 16134 16805 17209 17500 17812 17629 18066 18122 18166	+69.92 +58.43 +45.40 +32.57 +20.69 +13.46 +7.90 +4.31 +3.48 +2.80 +2.23 +1.44 +1.20 +1.60	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035	0 0 0 0 0 0 0 4 26 169 483	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	9144 11120 13399 14711 16134 16805 17209 17500 17812 17629 18066 18122 18166 17967	+69.92 +58.43 +45.40 +32.57 +20.69 +13.46 +7.90 +4.31 +3.48 +2.80 +2.23 +1.44 +1.20 +1.60 +3.41	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065	0 0 0 0 0 0 0 4 26 169 483 955	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	9144 11120 13399 14711 16134 16805 17209 17500 17812 17629 18066 18122 18166 17967 18469 18409	+69.92 +58.43 +45.40 +32.57 +20.69 +13.46 +7.90 +4.31 +3.48 +2.80 +2.23 +1.44 +1.20 +1.60 +3.41 +6.35	olts	
705 735 765 795 825 885 915 945 975 1005 1035 1065 1095	0 0 0 0 0 0 0 4 26 169 483 955 1639	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1675 1605 1635 1665 1695 1725 1755	9144 11120 13399 14711 16134 16805 17209 17500 17812 17629 18066 18122 18166 17967 18469 18409 18884	+69.92 +58.43 +45.40 +32.57 +20.69 +13.46 +7.90 +4.31 +3.48 +2.80 +2.23 +1.44 +1.20 +1.60 +3.41 +6.35 +9.47	olts	
705 735 765 795 825 885 915 945 975 1005 1035 1065 1095 1125	0 0 0 0 0 0 0 4 26 169 483 955 1639 2233	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1785 1785	9144 11120 13399 14711 16134 16805 17209 17500 17812 17629 18066 18122 18166 17967 18469 18409 18884 19535	+69.92 +58.43 +45.40 +32.57 +20.69 +13.46 +7.90 +4.31 +3.48 +2.80 +2.23 +1.44 +1.20 +1.60 +3.41 +6.35	olts	
735 765 795 825 885 915 945 975 1005 1035 1065 1095 1125 1155	0 0 0 0 0 0 0 4 26 169 483 955 1639 2233 3262	>100 >100 >100 >100 >100 >100 >100 >100	L.		1305 1335 1365 1395 1425 1455 1485 1515 1545 1675 1605 1635 1665 1695 1725 1755	9144 11120 13399 14711 16134 16805 17209 17500 17812 17629 18066 18122 18166 17967 18469 18409 18884 19535 20630	+69.92 +58.43 +45.40 +32.57 +20.69 +13.46 +7.90 +4.31 +3.48 +2.80 +2.23 +1.44 +1.20 +1.60 +3.41 +6.35 +9.47	olts	

Plateau 7/1/09 Instrument 13 MPC 9604 Detector A 7/1/2009

					,				
				· · · · · · · · · · · · · · · · · · ·				, ,	
T I	— ·· [1055	4405	1205	1405	1545	1665	1785
82	25	945	1065	1185	1305	1425	1343	1000	1703
OLTS	COLINERS	9./100 17	-1+e						
ODID		*/ I U U V (VOLTS	COUNTS	%/100 Vo	lts	
	COOMIS	%/100 Vo	Jics		VOLTS	COUNTS	%/100 Vo	lts	
705		8/100 VC	JICS					lts	
705 735	0	8/100 VC	J105		1305	9209	+64.55	lts	
735	0		J105					lts	
735 765	0	+55.56 >100)		1305 1335	9209 11200	+64.55 +55.94	lts	
735 765 795	0 1 0	+55.56)		1305 1335 1365	9209 11200 13123	+64.55 +55.94 +43.27 +29.04	lts	
735 765 795 825	0 1 0 2	+55.56 >100	, , , , , , , , , , , , , , , , , , ,		1305 1335 1365 1395	9209 11200 13123 14957	+64.55 +55.94 +43.27 +29.04	lts	
735 765 795 825 855	0 1 0 2 0	+55.56 >100 +0.00	, , , , , , , , , , , , , , , , , , ,		1305 1335 1365 1395 1425	9209 11200 13123 14957 15658	+64.55 +55.94 +43.27 +29.04 +17.41	lts	
735 765 795 825 855 885	0 1 0 2 0 0	+55.56 >100 +0.00 >100	<i>,</i>		1305 1335 1365 1395 1425 1455	9209 11200 13123 14957 15658 16123	+64.55 +55.94 +43.27 +29.04 +17.41 +8.01	lts	
735 765 795 825 855 885 915	0 1 0 2 0 0	+55.56 >100 +0.00 >100 >100 >100	, , , , , , , , , , , , , , , , , , ,		1305 1335 1365 1395 1425 1455	9209 11200 13123 14957 15658 16123 16530	+64.55 +55.94 +43.27 +29.04 +17.41 +8.01 +4.92	lts	
735 765 795 825 855 885 915	0 1 0 2 0 0 1 0	+55.56 >100 +0.00 >100 >100 >100 >100	, , , , , , , , , , , , , , , , , , ,		1305 1335 1365 1395 1425 1455 1485 1515	9209 11200 13123 14957 15658 16123 16530 16437	+64.55 +55.94 +43.27 +29.04 +17.41 +8.01 +4.92 +2.71	lts	
735 765 795 825 855 885 915 945	0 1 0 2 0 0 1 0 1	+55.56 >100 +0.00 >100 >100 >100 >100 >100	<i>,</i>		1305 1335 1365 1395 1425 1455 1485 1515 1545	9209 11200 13123 14957 15658 16123 16530 16437 16704 16707	+64.55 +55.94 +43.27 +29.04 +17.41 +8.01 +4.92 +2.71 +0.83	lts	
735 765 795 825 855 885 915 945 975	0 1 0 2 0 0 1 0 1 14 104	+55.56 >100 +0.00 >100 >100 >100 >100 >100 >100	<i>,</i>		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575	9209 11200 13123 14957 15658 16123 16530 16437 16704 16707	+64.55 +55.94 +43.27 +29.04 +17.41 +8.01 +4.92 +2.71 +0.83 +2.14 +0.55	lts	
735 765 795 825 855 885 915 945 975 1005	0 1 0 2 0 0 1 0 1 14 104 281	+55.56 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	9209 11200 13123 14957 15658 16123 16530 16437 16704 16707 16602 17024	+64.55 +55.94 +43.27 +29.04 +17.41 +8.01 +4.92 +2.71 +0.83 +2.14 +0.55 -0.28	lts	
735 765 795 825 855 885 915 945 975 1005 1035	0 1 0 2 0 0 1 0 1 14 104 281 720	+55.56 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	9209 11200 13123 14957 15658 16123 16530 16437 16704 16707 16602 17024 16684	+64.55 +55.94 +43.27 +29.04 +17.41 +8.01 +4.92 +2.71 +0.83 +2.14 +0.55 -0.28 -0.42	lts	
735 765 795 825 855 885 915 945 975 1005 1035 1065	0 1 0 2 0 0 1 14 104 281 720	+55.56 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665	9209 11200 13123 14957 15658 16123 16530 16437 16704 16707 16602 17024 16684 16597	+64.55 +55.94 +43.27 +29.04 +17.41 +8.01 +4.92 +2.71 +0.83 +2.14 +0.55 -0.28 -0.42 -0.85	lts	
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095	0 1 0 2 0 0 1 0 1 14 104 281 720 1302	+55.56 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695	9209 11200 13123 14957 15658 16123 16530 16437 16704 16707 16602 17024 16684 16597 16711	+64.55 +55.94 +43.27 +29.04 +17.41 +8.01 +4.92 +2.71 +0.83 +2.14 +0.55 -0.28 -0.42 -0.85 +1.27	lts	
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 1 0 2 0 0 1 1 14 104 281 720 1302 1834 2544	+55.56 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	9209 11200 13123 14957 15658 16123 16530 16437 16704 16707 16602 17024 16684 16597 16711 16796	+64.55 +55.94 +43.27 +29.04 +17.41 +8.01 +4.92 +2.71 +0.83 +2.14 +0.55 -0.28 -0.42 -0.85 +1.27 +1.51	lts	
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1155	0 1 0 2 0 0 1 14 104 281 720 1302 1834 2544 3485	+55.56 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725 1785	9209 11200 13123 14957 15658 16123 16530 16437 16704 16707 16602 17024 16684 16597 16711 16796 16903	+64.55 +55.94 +43.27 +29.04 +17.41 +8.01 +4.92 +2.71 +0.83 +2.14 +0.55 -0.28 -0.42 -0.85 +1.27 +1.51 +1.57	lts	
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 1 0 2 0 0 1 1 14 104 281 720 1302 1834 2544	+55.56 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	9209 11200 13123 14957 15658 16123 16530 16437 16704 16707 16602 17024 16684 16597 16711 16796	+64.55 +55.94 +43.27 +29.04 +17.41 +8.01 +4.92 +2.71 +0.83 +2.14 +0.55 -0.28 -0.42 -0.85 +1.27 +1.51	lts	

Plateau 7/1/09 Instrument 13 MPC 9604 Detector B 7/1/2009

705 0 1305 9666 +64.39 735 0 1335 11722 +55.91 765 0 1365 13680 +44.91 795 0 >100 1395 15677 +31.56 825 0 >100 1425 16786 +19.46 855 0 >100 1455 17283 +10.57 885 0 >100 1485 17608 +5.95 915 1 >100 1515 17972 +3.32 945 0 >100 1545 18006 +1.84 975 4 >100 1575 17970 +1.58 1005 70 >100 1605 18104 +0.74 1035 257 >100 1635 18351 +0.24			,			····				
COUNTS					1					
COUNTS										
COUNTS										
COUNTS										
COUNTS										
COUNTS										
COUNTS										
COUNTS										
COUNTS										
COUNTS										
COUNTS										
COUNTS										
COUNTS										
COUNTS										
COUNTS										
COUNTS										
COUNTS										
COUNTS	1	 					1		1 1 1	1 1 1
705 0 1305 9666 +64.39 735 0 1335 11722 +55.91 765 0 1365 13680 +44.91 795 0 >100 1395 15677 +31.56 825 0 >100 1425 16786 +19.46 855 0 >100 1455 17283 +10.57 885 0 >100 1485 17608 +5.95 9915 1 >100 1515 17972 +3.32 945 0 >100 1545 18006 +1.84 975 4 >100 1575 17970 +1.58 1005 70 >100 1605 18104 +0.74 1035 257 >100 1635 18351 +0.24 1065 648 >100 1665 18016 +0.16 1095 1116 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 <t< th=""><th>82</th><th>25</th><th>945</th><th>1065</th><th>1185</th><th>1305</th><th>1425</th><th>1545</th><th>1665</th><th>1785</th></t<>	82	25	945	1065	1185	1305	1425	1545	1665	1785
705 0 1305 9666 +64.39 735 0 1335 11722 +55.91 765 0 1365 13680 +44.91 795 0 >100 1395 15677 +31.56 825 0 >100 1425 16786 +19.46 855 0 >100 1455 17283 +10.57 885 0 >100 1485 17608 +5.95 9915 1 >100 1515 17972 +3.32 945 0 >100 1545 18006 +1.84 975 4 >100 1575 17970 +1.58 1005 70 >100 1605 18104 +0.74 1035 257 >100 1635 18351 +0.24 1065 648 >100 1665 18016 +0.16 1095 1116 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>										
735 0 1335 11722 +55.91 765 0 1365 13680 +44.91 795 0 >100 1395 15677 +31.56 825 0 >100 1425 16786 +19.46 855 0 >100 1455 17283 +10.57 885 0 >100 1485 17608 +5.95 915 1 >100 1515 17972 +3.32 945 0 >100 1545 18006 +1.84 975 4 >100 1575 17970 +1.58 1005 70 >100 1605 18104 +0.74 1035 257 >100 1635 18351 +0.24 1065 648 >100 1665 18016 +0.16 1095 1116 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 1185 3531 +96.11 1785 1810 -0.32	OLTS	COUNTS	%/100	Volts		VOLTS	COUNTS	%/100 Vo	lts	
735 0 1335 11722 +55.91 765 0 1365 13680 +44.91 795 0 >100 1395 15677 +31.56 825 0 >100 1425 16786 +19.46 855 0 >100 1455 17283 +10.57 885 0 >100 1485 17608 +5.95 915 1 >100 1515 17972 +3.32 945 0 >100 1545 18006 +1.84 975 4 >100 1575 17970 +1.58 1005 70 >100 1605 18104 +0.74 1035 257 >100 1635 18351 +0.24 1065 648 >100 1665 18016 +0.16 1095 1116 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 1185 3531 +96.11 1785 1810 -0.32										
735 0 1335 11722 +55.91 765 0 >1365 13680 +44.91 795 0 >100 1395 15677 +31.56 825 0 >100 1425 16786 +19.46 855 0 >100 1455 17283 +10.57 885 0 >100 1485 17608 +5.95 915 1 >100 1515 17972 +3.32 945 0 >100 1545 18006 +1.84 975 4 >100 1575 17970 +1.58 1005 70 >100 1605 18104 +0.74 1035 257 >100 1635 18351 +0.24 1065 648 >100 1665 18016 +0.16 1095 1116 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 1185 3531 +96.11 1785 1810 -0.32	705	0				1305	9666	+64.39		
765 0 >100 1365 13680 +44.91 795 0 >100 1395 15677 +31.56 825 0 >100 1425 16786 +19.46 885 0 >100 1485 17608 +5.95 915 1 >100 1515 17972 +3.32 945 0 >100 1545 18006 +1.84 975 4 >100 1575 17970 +1.58 1005 70 >100 1605 18104 +0.74 1035 257 >100 1635 18351 +0.24 1065 648 >100 1665 18016 +0.16 1095 1116 >100 1695 18080 -0.63 1125 1784 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 1185 3531 +96.11 1785 18110 -0.32 1215 4568 +89.22 1815 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>1335</td> <td>11722</td> <td>+55.91</td> <td></td> <td></td>						1335	11722	+55.91		
825 0 >100 1425 16786 +19.46 855 0 >100 1455 17283 +10.57 885 0 >100 1485 17608 +5.95 915 1 >100 1515 17972 +3.32 945 0 >100 1545 18006 +1.84 975 4 >100 1575 17970 +1.58 1005 70 >100 1605 18104 +0.74 1035 257 >100 1635 18351 +0.24 1065 648 >100 1665 18016 +0.16 1095 1116 >100 1695 18080 -0.63 1125 1784 >100 1755 18283 +0.29 1155 2560 >100 1755 18047 -0.47 1185 3531 +96.11 1785 18110 -0.32 1245 6137 +81.65 1845 18200		0				1365	13680	+44.91		
885 0 >100 1455 17283 +10.57 885 0 >100 1485 17608 +5.95 915 1 >100 1515 17972 +3.32 945 0 >100 1545 18006 +1.84 975 4 >100 1575 17970 +1.58 1005 70 >100 1605 18104 +0.74 1035 257 >100 1635 18351 +0.24 1065 648 >100 1665 18016 +0.16 1095 1116 >100 1695 18080 -0.63 1125 1784 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 1185 3531 +96.11 1785 18110 -0.32 1215 4568 +89.22 1815 18040 +1.17 1245 6137 +81.65 1845 18200	795	0	>100			1395	15677	+31.56		
885 0 >100 1485 17608 +5.95 915 1 >100 1515 17972 +3.32 945 0 >100 1545 18006 +1.84 975 4 >100 1575 17970 +1.58 1005 70 >100 1605 18104 +0.74 1035 257 >100 1635 18351 +0.24 1065 648 >100 1665 18016 +0.16 1095 1116 >100 1695 18080 -0.63 1125 1784 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 1185 3531 +96.11 1785 18110 -0.32 1215 4568 +89.22 1815 18040 +1.17 1245 6137 +81.65 1845 18200	825	0	>100			1425	16786	+19.46		
915 1 >100 1515 17972 +3.32 945 0 >100 1545 18006 +1.84 975 4 >100 1575 17970 +1.58 1005 70 >100 1605 18104 +0.74 1035 257 >100 1635 18351 +0.24 1065 648 >100 1665 18016 +0.16 1095 1116 >100 1695 18080 -0.63 1125 1784 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 1185 3531 +96.11 1785 18110 -0.32 1215 4568 +89.22 1815 18040 +1.17 1245 6137 +81.65 1845 18200	855	0	>100			1455	17283	+10.57		
945 0 > 100 1545 18006 +1.84 975 4 > 100 1575 17970 +1.58 1005 70 > 100 1605 18104 +0.74 1035 257 > 100 1635 18351 +0.24 1065 648 > 100 1665 18016 +0.16 1095 1116 > 100 1695 18080 -0.63 1125 1784 > 100 1725 18283 +0.29 1185 2560 > 100 1755 18047 -0.47 1185 3531 +96.11 1785 18110 -0.32 1215 4568 +89.22 1815 18040 +1.17 1245 6137 +81.65 1845 18200	885	0	>100			1485	17608	+5.95		
975 4 >100 1575 17970 +1.58 1005 70 >100 1605 18104 +0.74 1035 257 >100 1635 18351 +0.24 1065 648 >100 1665 18016 +0.16 1095 1116 >100 1695 18080 -0.63 1125 1784 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 1185 3531 +96.11 1785 18110 -0.32 1215 4568 +89.22 1815 18040 +1.17 1245 6137 +81.65 1845 18200	915	1	>100			1515	17972	+3.32		
1005 70 >100 1605 18104 +0.74 1035 257 >100 1635 18351 +0.24 1065 648 >100 1665 18016 +0.16 1095 1116 >100 1695 18080 -0.63 1125 1784 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 1185 3531 +96.11 1785 18110 -0.32 1215 4568 +89.22 1815 18040 +1.17 1245 6137 +81.65 1845 18200	945	0	>100			1545	18006	+1.84		
1035 257 >100 1635 18351 +0.24 1065 648 >100 1665 18016 +0.16 1095 1116 >100 1695 18080 -0.63 1125 1784 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 1185 3531 +96.11 1785 18110 -0.32 1215 4568 +89.22 1815 18040 +1.17 1245 6137 +81.65 1845 18200	975	4	>100			1575	17970	+1.58		
1035 257 >100 1635 18351 +0.24 1065 648 >100 1665 18016 +0.16 1095 1116 >100 1695 18080 -0.63 1125 1784 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 1185 3531 +96.11 1785 18110 -0.32 1215 4568 +89.22 1815 18040 +1.17 1245 6137 +81.65 1845 18200	1005	70				1605	18104	+0.74		
1065 648 >100 1665 18016 +0.16 1095 1116 >100 1695 18080 -0.63 1125 1784 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 1185 3531 +96.11 1785 18110 -0.32 1215 4568 +89.22 1815 18040 +1.17 1245 6137 +81.65 1845 18200	1035					1635	18351	+0.24		
1095 1116 >100 1695 18080 -0.63 1125 1784 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 1185 3531 +96.11 1785 18110 -0.32 1215 4568 +89.22 1815 18040 +1.17 1245 6137 +81.65 1845 18200	1065							+0.16		
1125 1784 >100 1725 18283 +0.29 1155 2560 >100 1755 18047 -0.47 1185 3531 +96.11 1785 18110 -0.32 1215 4568 +89.22 1815 18040 +1.17 1245 6137 +81.65 1845 18200										
1155 2560 > 100 1755 18047 -0.47 1185 3531 + 96.11 1785 18110 -0.32 1215 4568 + 89.22 1815 18040 +1.17 1245 6137 + 81.65 1845 18200										
1185 3531 +96.11 1785 18110 -0.32 1215 4568 +89.22 1815 18040 +1.17 1245 6137 +81.65 1845 18200										
1215 4568 +89.22 1815 18040 +1.17 1245 6137 +81.65 1845 18200				_						
1245 6137 +81.65 1845 18200										
								_ · - ·		
			+X 57)		IXAካ	T8200			

Plateau 7/1/09 Instrument 13 MPC 9604 Detector C 7/1/2009

				•		/			
				T 1	, , , , , , , , , , , , , , , , , , , 	1 1	- - 	, , , , ,	
82	:5	945	1065	1185	1305	1425	1545	1665	1785
OLTS	COUNTS	%/100 ·	Volts		VOLTS	COUNTS	%/100 Vo	olts	
OLTS	COUNTS	%/100 ·	Volts		VOLTS	COUNTS	%/100 Vo	olts	
		%/100 ·	Volts					olts	
705	0	%/100 ·	Volts		VOLTS 1305 1335	COUNTS 11573 13929	%/100 Vo +64.95 +56.47	olts	
		%/100 ·	Volts		1305	11573	+64.95	olts	
705 735	0	%/100 ·	Volts		1305 1335	11573 13929	+64.95 +56.47	olts	
705 735 765	0 0 0 0		Volts		1305 1335 1365	11573 13929 16726	+64.95 +56.47 +43.82	olts	
705 735 765 795	0 0 0 0	>100	Volts		1305 1335 1365 1395 1425 1455	11573 13929 16726 18834 19743 20314	+64.95 +56.47 +43.82 +29.38 +16.84 +7.95	olts	
705 735 765 795 825	0 0 0 0	>100	Volts		1305 1335 1365 1395 1425 1455	11573 13929 16726 18834 19743 20314 20860	+64.95 +56.47 +43.82 +29.38 +16.84 +7.95 +4.16	olts	
705 735 765 795 825 855	0 0 0 0 0	>100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485	11573 13929 16726 18834 19743 20314 20860 20670	+64.95 +56.47 +43.82 +29.38 +16.84 +7.95 +4.16 +3.23	olts	
705 735 765 795 825 855 885	0 0 0 0 0	>100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515	11573 13929 16726 18834 19743 20314 20860 20670 20844	+64.95 +56.47 +43.82 +29.38 +16.84 +7.95 +4.16 +3.23 +2.09	olts	
705 735 765 795 825 855 885 915	0 0 0 0 0 0	>100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545	11573 13929 16726 18834 19743 20314 20860 20670 20844 21330	+64.95 +56.47 +43.82 +29.38 +16.84 +7.95 +4.16 +3.23 +2.09 +2.48	olts	
705 735 765 795 825 855 885 915 945	0 0 0 0 0 0 0	>100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515	11573 13929 16726 18834 19743 20314 20860 20670 20844	+64.95 +56.47 +43.82 +29.38 +16.84 +7.95 +4.16 +3.23 +2.09	olts	
705 735 765 795 825 855 885 915 945	0 0 0 0 0 0 0	>100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545	11573 13929 16726 18834 19743 20314 20860 20670 20844 21330	+64.95 +56.47 +43.82 +29.38 +16.84 +7.95 +4.16 +3.23 +2.09 +2.48	olts	
705 735 765 795 825 855 885 915 945 975	0 0 0 0 0 0 0 0 9	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	11573 13929 16726 18834 19743 20314 20860 20670 20844 21330 21188	+64.95 +56.47 +43.82 +29.38 +16.84 +7.95 +4.16 +3.23 +2.09 +2.48 +1.16	olts	
705 735 765 795 825 855 885 915 945 975 1005	0 0 0 0 0 0 0 0 9 93 325	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	11573 13929 16726 18834 19743 20314 20860 20670 20844 21330 21188 21280	+64.95 +56.47 +43.82 +29.38 +16.84 +7.95 +4.16 +3.23 +2.09 +2.48 +1.16 -0.32	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035	0 0 0 0 0 0 0 9 93 325 834	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	11573 13929 16726 18834 19743 20314 20860 20670 20844 21330 21188 21280 21237	+64.95 +56.47 +43.82 +29.38 +16.84 +7.95 +4.16 +3.23 +2.09 +2.48 +1.16 -0.32 +0.08	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065	0 0 0 0 0 0 0 9 93 325 834 1525	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1675 1605 1635	11573 13929 16726 18834 19743 20314 20860 20670 20844 21330 21188 21280 21237	+64.95 +56.47 +43.82 +29.38 +16.84 +7.95 +4.16 +3.23 +2.09 +2.48 +1.16 -0.32 +0.08 +0.42	olts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095	0 0 0 0 0 0 0 9 93 325 834 1525 2318	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695	11573 13929 16726 18834 19743 20314 20860 20670 20844 21330 21188 21280 21237 . 21202 21254	+64.95 +56.47 +43.82 +29.38 +16.84 +7.95 +4.16 +3.23 +2.09 +2.48 +1.16 -0.32 +0.08 +0.42 +0.60	olts	
705 735 765 795 825 825 885 915 945 975 1005 1035 1065 1095 1125 1155	0 0 0 0 0 0 0 0 9 93 325 834 1525 2318 3233 4357	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	11573 13929 16726 18834 19743 20314 20860 20670 20844 21330 21188 21280 21237 21202 21254 21406	+64.95 +56.47 +43.82 +29.38 +16.84 +7.95 +4.16 +3.23 +2.09 +2.48 +1.16 -0.32 +0.08 +0.42 +0.60 +1.41	olts	
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 0 0 0 0 0 0 0 9 93 325 834 1525 2318 3233	>100 >100 >100 >100 >100 >100 >100 >100	•		1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725 1755	11573 13929 16726 18834 19743 20314 20860 20670 20844 21330 21188 21280 21237 . 21202 21254 21406 21326	+64.95 +56.47 +43.82 +29.38 +16.84 +7.95 +4.16 +3.23 +2.09 +2.48 +1.16 -0.32 +0.08 +0.42 +0.60 +1.41 +0.42	olts	

Plateau 7/1/09 Instrument 13 MPC 9604 Detector D 7/1/2009

	 	T			I I I I I I I I I I I I I I I I I I I			, , , , , , , , , , , , , , , , , , , 	1 1 1
83	25	945	1065	1185	1305	1425	1545	1665	1785
/OLTS	COUNTS	%/100 ፕ	Volts		VOLTS	COUNTS	%/100 Vo	lts	
705	1				1305	7524	+61.93		
705 735	1 0				1305 1335	752 4 9002	+61.93 +55.36		
						9002 10542	+55.36 +44.70		
735 765 795	0	>100			1335 1365 1395	9002 10542 12064	+55.36 +44.70 +31.21		
735 765 795 825	0 0 0	>100			1335 1365 1395 1425	9002 10542 12064 12981	+55.36 +44.70 +31.21 +19.20		
735 765 795	0 0 0				1335 1365 1395	9002 10542 12064	+55.36 +44.70 +31.21		
735 765 795 825	0 0 0	>100			1335 1365 1395 1425	9002 10542 12064 12981	+55.36 +44.70 +31.21 +19.20		
735 765 795 825 855	0 0 0 0	>100 >100			1335 1365 1395 1425 1455	9002 10542 12064 12981 13192	+55.36 +44.70 +31.21 +19.20 +10.41		
735 765 795 825 855 885	0 0 0 0 0	>100 >100 >100			1335 1365 1395 1425 1455	9002 10542 12064 12981 13192 13570	+55.36 +44.70 +31.21 +19.20 +10.41 +5.93		
735 765 795 825 855 885 915	0 0 0 0 0 0	>100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515	9002 10542 12064 12981 13192 13570 13820	+55.36 +44.70 +31.21 +19.20 +10.41 +5.93 +4.08		
735 765 795 825 855 885 915	0 0 0 0 0 0	>100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515	9002 10542 12064 12981 13192 13570 13820 13866	+55.36 +44.70 +31.21 +19.20 +10.41 +5.93 +4.08 +0.75		
735 765 795 825 855 885 915 945	0 0 0 0 0 0 0	>100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545	9002 10542 12064 12981 13192 13570 13820 13866 13880	+55.36 +44.70 +31.21 +19.20 +10.41 +5.93 +4.08 +0.75 +0.21		
735 765 795 825 855 885 915 945 975	0 0 0 0 0 0 0 9 58	>100 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575	9002 10542 12064 12981 13192 13570 13820 13866 13880 13695	+55.36 +44.70 +31.21 +19.20 +10.41 +5.93 +4.08 +0.75 +0.21 +0.59		
735 765 795 825 855 885 915 945 975 1005	0 0 0 0 0 0 0 9 58 228	>100 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	9002 10542 12064 12981 13192 13570 13820 13866 13880 13695 13950	+55.36 +44.70 +31.21 +19.20 +10.41 +5.93 +4.08 +0.75 +0.21 +0.59 +0.77		
735 765 795 825 855 885 915 945 975 1005 1035	0 0 0 0 0 0 9 58 228 544	>100 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	9002 10542 12064 12981 13192 13570 13820 13866 13880 13695 13950 13954	+55.36 +44.70 +31.21 +19.20 +10.41 +5.93 +4.08 +0.75 +0.21 +0.59 +0.77 +1.92 +0.19		
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095	0 0 0 0 0 0 0 9 58 228 544 936 1468	>100 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695	9002 10542 12064 12981 13192 13570 13820 13866 13880 13695 13950 13954 13911 14116	+55.36 +44.70 +31.21 +19.20 +10.41 +5.93 +4.08 +0.75 +0.21 +0.59 +0.77 +1.92 +0.19 +0.02		
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 0 0 0 0 0 0 9 58 228 544 936 1468 2110	>100 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	9002 10542 12064 12981 13192 13570 13820 13866 13880 13695 13950 13954 13911 14116 13908	+55.36 +44.70 +31.21 +19.20 +10.41 +5.93 +4.08 +0.75 +0.21 +0.59 +0.77 +1.92 +0.19 +0.02 -0.24		
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1155	0 0 0 0 0 0 0 0 9 58 228 544 936 1468 2110 2770	>100 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755	9002 10542 12064 12981 13192 13570 13820 13866 13880 13695 13950 13954 13911 14116 13908 13960	+55.36 +44.70 +31.21 +19.20 +10.41 +5.93 +4.08 +0.75 +0.21 +0.59 +0.77 +1.92 +0.19 +0.02 -0.24 -0.81		
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 0 0 0 0 0 0 9 58 228 544 936 1468 2110	>100 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	9002 10542 12064 12981 13192 13570 13820 13866 13880 13695 13950 13954 13911 14116 13908	+55.36 +44.70 +31.21 +19.20 +10.41 +5.93 +4.08 +0.75 +0.21 +0.59 +0.77 +1.92 +0.19 +0.02 -0.24		

11		- - 							, , , , , , , , , , , , , , , , , , ,
82		945	1065	1185	1305	1425	1545	1665	1785
82	25	945	1065	1185	1305	1425	1545	1665	1785
				1185					1785
		945		1185	1305 VOLTS		1545 %/100 Vo		1785
/OLTS	COUNTS			1185	VOLTS	COUNTS	%/100 Vo		1785
705	COUNTS 0			1185	VOLTS	COUNTS 8778	%/100 Vo +67.49		1785
705 735	COUNTS 0 0			1185	VOLTS 1305 1335	COUNTS 8778 10502	%/100 Vo +67.49 +57.68		1785
705 735 765	COUNTS 0 0 0	%/100 ·		1185	VOLTS 1305 1335 1365	COUNTS 8778 10502 12516	%/100 Vo +67.49 +57.68 +46.36		1785
705 735 765 795	COUNTS 0 0 0 0	%/100 · · · · · · · · · · · · · · · · · ·		1185	VOLTS 1305 1335 1365 1395	8778 10502 12516 14215	%/100 Vo +67.49 +57.68 +46.36 +35.88		1785
705 735 765 795 825	COUNTS 0 0 0 0 0	%/100 \frac{1}{2} > 100 \frac{1}{2} > 100 \frac{1}{2} > 100 \frac{1}{2} = 100		1185	1305 1335 1365 1395 1425	8778 10502 12516 14215 15472	%/100 Vo +67.49 +57.68 +46.36 +35.88 +22.01		1785
70LTS 705 735 765 795 825 855	COUNTS 0 0 0 0 0 0	%/100 \ >100 >100 >100	Volts	1185	VOLTS 1305 1335 1365 1395 1425 1455	8778 10502 12516 14215 15472 16469	%/100 Vo +67.49 +57.68 +46.36 +35.88 +22.01 +12.99		1785
705 735 765 795 825 855 885	COUNTS 0 0 0 0 0 0 1	<pre>%/100</pre>	Volts	1185	VOLTS 1305 1335 1365 1395 1425 1455 1485	8778 10502 12516 14215 15472 16469 16342	%/100 Vo +67.49 +57.68 +46.36 +35.88 +22.01 +12.99 +6.70		1785
70LTS 705 735 765 795 825 855 885 915	COUNTS 0 0 0 0 0 1 0	%/100 \ >100 \ >100 \ >100 \ +0.00 \ >100	Volts	1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515	COUNTS 8778 10502 12516 14215 15472 16469 16342 16874	%/100 Vo +67.49 +57.68 +46.36 +35.88 +22.01 +12.99 +6.70 +3.07		1785
705 735 765 795 825 855 885 915	COUNTS 0 0 0 0 0 1 0 0	<pre>%/100</pre>	Volts	1185	VOLTS 1305 1335 1365 1395 1425 1455 1455 1485 1515	8778 10502 12516 14215 15472 16469 16342 16874 16918	%/100 Vo +67.49 +57.68 +46.36 +35.88 +22.01 +12.99 +6.70 +3.07 +2.53		1785
705 735 765 795 825 855 885 915 945	COUNTS 0 0 0 0 0 1 0 0 0 0	<pre>%/100</pre>	Volts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545	8778 10502 12516 14215 15472 16469 16342 16874 16918 16950	%/100 Vo +67.49 +57.68 +46.36 +35.88 +22.01 +12.99 +6.70 +3.07 +2.53 +0.58		1785
70LTS 705 735 765 795 825 855 885 915 945 975	COUNTS 0 0 0 0 0 1 0 0 1 1 0 18	%/100	Volts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575	8778 10502 12516 14215 15472 16469 16342 16874 16918 16950 16943	%/100 Vo +67.49 +57.68 +46.36 +35.88 +22.01 +12.99 +6.70 +3.07 +2.53 +0.58 +0.95		1785
705 735 765 795 825 855 885 915 945 975 1005	COUNTS 0 0 0 0 0 1 0 0 18 137	<pre>%/100</pre>	Volts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	8778 10502 12516 14215 15472 16469 16342 16874 16918 16950 16943 17008	%/100 Vo +67.49 +57.68 +46.36 +35.88 +22.01 +12.99 +6.70 +3.07 +2.53 +0.58 +0.95 +2.13		1785
70LTS 705 735 765 795 825 855 885 915 945 975	COUNTS 0 0 0 0 0 1 0 0 1 1 0 18	%/100	Volts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	8778 10502 12516 14215 15472 16469 16342 16874 16918 16950 16943 17008	%/100 Vo +67.49 +57.68 +46.36 +35.88 +22.01 +12.99 +6.70 +3.07 +2.53 +0.58 +0.95 +2.13 +2.45		1785
705 735 765 795 825 855 885 915 945 975 1005	COUNTS 0 0 0 0 0 1 0 0 18 137	<pre>%/100</pre>	Volts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665	8778 10502 12516 14215 15472 16469 16342 16874 16918 16950 16943 17008	%/100 Vo +67.49 +57.68 +46.36 +35.88 +22.01 +12.99 +6.70 +3.07 +2.53 +0.58 +0.95 +2.13 +2.45 +2.43		1785
705 735 765 795 825 855 885 915 945 975 1005 1035	COUNTS 0 0 0 0 0 1 0 0 18 137 430	%/100	Volts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	8778 10502 12516 14215 15472 16469 16342 16874 16918 16950 16943 17008	%/100 Vo +67.49 +57.68 +46.36 +35.88 +22.01 +12.99 +6.70 +3.07 +2.53 +0.58 +0.95 +2.13 +2.45		1785
705 735 765 795 825 855 885 915 945 975 1005 1035 1065	COUNTS 0 0 0 0 0 1 0 18 137 430 865	%/100	Volts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665	8778 10502 12516 14215 15472 16469 16342 16874 16918 16950 16943 17008 17130 17403	%/100 Vo +67.49 +57.68 +46.36 +35.88 +22.01 +12.99 +6.70 +3.07 +2.53 +0.58 +0.95 +2.13 +2.45 +2.43		1785
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095	COUNTS 0 0 0 0 0 1 0 0 18 137 430 865 1444	%/100	Volts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695	8778 10502 12516 14215 15472 16469 16342 16874 16918 16950 16943 17008 17130 17403 17377	%/100 Vo +67.49 +57.68 +46.36 +35.88 +22.01 +12.99 +6.70 +3.07 +2.53 +0.58 +0.95 +2.13 +2.45 +2.43		1785
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	COUNTS 0 0 0 0 0 1 0 0 18 137 430 865 1444 2151	%/100	Volts	1185	VOLTS 1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725	8778 10502 12516 14215 15472 16469 16342 16874 16918 16950 16943 17008 17130 17403 17377 17515	%/100 Vo +67.49 +57.68 +46.36 +35.88 +22.01 +12.99 +6.70 +3.07 +2.53 +0.58 +0.95 +2.13 +2.45 +2.43 +2.43 +4.88		1785
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1125 1155	COUNTS 0 0 0 0 0 1 0 0 18 137 430 865 1444 2151 2981	%/100	Volts	1185	1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755	8778 10502 12516 14215 15472 16469 16342 16874 16918 16950 16943 17008 17130 17403 17377 17515 17710	%/100 Vo +67.49 +57.68 +46.36 +35.88 +22.01 +12.99 +6.70 +3.07 +2.53 +0.58 +0.95 +2.13 +2.45 +2.43 +2.43 +4.88 +7.54		1785

Plateau 7/1/09 Instrument 14 MPC 9604 Detector B 7/1/2009

						···			-
		•							
				· · · · · · · · · · · · · · · · · · ·		 		 	
	' ' ' 	0.45	1065	1105	1205	1405	1545	1665	1785
87	25	945	1065	1185	1305	1425	1343	1003	1,05
VOLTS	COUNTS	%/100 7	Volts		VOLTS	COUNTS	%/100 Vo	olts	
705	0				1305	8797	+65.44		
735	. 0				1335	10726	+54.47		
765	0				1365	12570	+41.11		
705 795	0	>100			1395	13917	+26.79		
					1425	14687	+15.44		
825 855	0	>100 +0.00			1455	15048	+8.47		
					1485	15318	+5.00		
885	0				1515	15494	+3.76		
915	0				1545	15606	+3.76		
945	0								
975	3	>100			1575	15776	+2.35		
1005	40	>100			1605	15889	+1.44		
1035	210				1635	15907	-0.16		
1065	590				1665	15881	+0.64		
1095	983				1695	15741	+1.21		
1125	1645				1725	16124	+3.63		
1155	2342				1755	16076	+5.41		
1185	3045				1785	16588	+5.79		
1215	4201	+90.42			1815	16830	+7.53		
1245	5579	+83.64			1845	17185			
1275	7121	+74.44			1875	17682			

Plateau 7/1/09 Instrument 14 MPC 9604 Detector C 7/1/2009

						_			
-						· · · · · · · · · · · · · · · · · · ·	-	 	
' ' '	, , , ,	0.45	1065	1185	1305	1425	1545	1665	1785
82	25	945	1003	1103	1303	1423	1343	1003	1,00
OLTS	COLIMITE	%/100 \	701 t a		VOLTS	COUNTS	%/100 Vo	olts	
OLIS	COOMIS	9/100 (OICS		V 0 1 1 0				
							,,		
705	0				1305				
705 735	0				1305 1335	10118	+69.76		
735	0				1335	10118 12269	+69.76 +59.65		
735 765	0	>100				10118	+69.76		
735 765 795	0 0 0	>100 >100			1335 1365	10118 12269 14810	+69.76 +59.65 +47.35		
735 765 795 825	0				1335 1365 1395	10118 12269 14810 16773	+69.76 +59.65 +47.35 +33.46		
735 765 795 825 855	0 0 0	>100			1335 1365 1395 1425	10118 12269 14810 16773 18104	+69.76 +59.65 +47.35 +33.46 +20.13		
735 765 795 825 855 885	0 0 0 0	>100 >100			1335 1365 1395 1425 1455	10118 12269 14810 16773 18104 18720	+69.76 +59.65 +47.35 +33.46 +20.13 +11.98		
735 765 795 825 855 885 915	0 0 0 0 0	>100 >100 +0.00			1335 1365 1395 1425 1455 1485	10118 12269 14810 16773 18104 18720 19122	+69.76 +59.65 +47.35 +33.46 +20.13 +11.98 +6.50		
735 765 795 825 855 885 915	0 0 0 0 0 1	>100 >100 +0.00 >100			1335 1365 1395 1425 1455 1485 1515	10118 12269 14810 16773 18104 18720 19122	+69.76 +59.65 +47.35 +33.46 +20.13 +11.98 +6.50 +4.77		
735 765 795 825 855 885 915 945	0 0 0 0 0 1 0 0	>100 >100 +0.00 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515	10118 12269 14810 16773 18104 18720 19122 19580 19527	+69.76 +59.65 +47.35 +33.46 +20.13 +11.98 +6.50 +4.77 +2.48		
735 765 795 825 855 885 915 945 975	0 0 0 0 1 0 0 2 21	>100 >100 +0.00 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545	10118 12269 14810 16773 18104 18720 19122 19580 19527 19902	+69.76 +59.65 +47.35 +33.46 +20.13 +11.98 +6.50 +4.77 +2.48 +0.81		
735 765 795 825 855 885 915 945 975 1005	0 0 0 0 1 0 0 2 21 132	>100 >100 +0.00 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575	10118 12269 14810 16773 18104 18720 19122 19580 19527 19902 19690	+69.76 +59.65 +47.35 +33.46 +20.13 +11.98 +6.50 +4.77 +2.48 +0.81 +0.53		
735 765 795 825 855 885 915 945 975 1005 1035	0 0 0 0 1 0 2 21 132 491	>100 >100 +0.00 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	10118 12269 14810 16773 18104 18720 19122 19580 19527 19902 19690 19739 19765	+69.76 +59.65 +47.35 +33.46 +20.13 +11.98 +6.50 +4.77 +2.48 +0.81 +0.53 +0.23 +1.29		
735 765 795 825 855 885 915 945 975 1005 1035 1065	0 0 0 0 1 0 2 21 132 491 1036	>100 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665	10118 12269 14810 16773 18104 18720 19122 19580 19527 19902 19690 19739 19765 19932	+69.76 +59.65 +47.35 +33.46 +20.13 +11.98 +6.50 +4.77 +2.48 +0.81 +0.53 +0.23 +1.29 +1.40		
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095	0 0 0 0 0 1 0 2 21 132 491 1036 1698	>100 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695	10118 12269 14810 16773 18104 18720 19122 19580 19527 19902 19690 19739 19765 19932	+69.76 +59.65 +47.35 +33.46 +20.13 +11.98 +6.50 +4.77 +2.48 +0.81 +0.53 +0.23 +1.29 +1.40 +2.72		
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 0 0 0 0 1 0 2 21 132 491 1036 1698 2517	>100 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725	10118 12269 14810 16773 18104 18720 19122 19580 19527 19902 19690 19739 19765 19932 19976 20051	+69.76 +59.65 +47.35 +33.46 +20.13 +11.98 +6.50 +4.77 +2.48 +0.81 +0.53 +0.23 +1.29 +1.40		
735 765 795 825 885 915 945 975 1005 1035 1065 1125 1125 1185	0 0 0 0 0 1 0 0 2 21 132 491 1036 1698 2517 3468	>100 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1675 1635 1665 1695 1725 1755	10118 12269 14810 16773 18104 18720 19122 19580 19527 19902 19690 19739 19765 19932 19976 20051 20523	+69.76 +59.65 +47.35 +33.46 +20.13 +11.98 +6.50 +4.77 +2.48 +0.81 +0.53 +0.23 +1.29 +1.40 +2.72 +2.92 +4.26		
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 0 0 0 0 1 0 2 21 132 491 1036 1698 2517	>100 >100 +0.00 >100 >100 >100 >100 >100 >100 >100			1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725	10118 12269 14810 16773 18104 18720 19122 19580 19527 19902 19690 19739 19765 19932 19976 20051	+69.76 +59.65 +47.35 +33.46 +20.13 +11.98 +6.50 +4.77 +2.48 +0.81 +0.53 +0.23 +1.29 +1.40 +2.72 +2.92		

Plateau 7/1/09 Instrument 14 MPC 9604 Detector D 7/1/2009

						· · · · · · · · · · · · · · · · · · ·		, , . , . ,	
82		945	1065	1185	1305	1425	1545	1665	1785
02	.5	743	1003	1103	1303	1120	23 10	2000	2.00
IOI, T.S.	COUNTS	_ች /100 ነ	Volts		VOLTS	COUNTS	%/100 Vo	lts	
/OLTS	COUNTS	%/100 Y	Volts		VOLTS	COUNTS	%/100 Vo	lts	
		୫/100 '	Volts					lts	
705	0	%/100 ·	Volts		VOLTS 1305 1335		%/100 Vo +71.16 +58.38	lts	
		%/100 ነ	Volts		1305	8095	+71.16	lts	
705 735	0 0 0	%/100 \ >100	Volts		1305 1335	8095 10052	+71.16 +58.38	lts	
705 735 765	0 0 0		Volts		1305 1335 1365	8095 10052 11990 13400	+71.16 +58.38 +47.92	lts	
705 735 765 795	0 0 0	>100	Volts		1305 1335 1365 1395	8095 10052 11990 13400	+71.16 +58.38 +47.92 +35.01 +23.58	lts	
705 735 765 795 825	0 0 0 0	>100 >100	Volts		1305 1335 1365 1395 1425	8095 10052 11990 13400 14808	+71.16 +58.38 +47.92 +35.01 +23.58	lts	
705 735 765 795 825 855	0 0 0 0 0	>100 >100 >100	Volts		1305 1335 1365 1395 1425	8095 10052 11990 13400 14808 15554	+71.16 +58.38 +47.92 +35.01 +23.58 +13.45	lts	
705 735 765 795 825 855 885	0 0 0 0 0	>100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455	8095 10052 11990 13400 14808 15554 15987	+71.16 +58.38 +47.92 +35.01 +23.58 +13.45 +6.39	lts	
705 735 765 795 825 855 885 915	0 0 0 0 0 0	>100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485	8095 10052 11990 13400 14808 15554 15987 15861	+71.16 +58.38 +47.92 +35.01 +23.58 +13.45 +6.39 +3.45	lts	
705 735 765 795 825 855 885 915	0 0 0 0 0 0 0	>100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515	8095 10052 11990 13400 14808 15554 15987 15861 16156	+71.16 +58.38 +47.92 +35.01 +23.58 +13.45 +6.39 +3.45 +2.18	lts	
705 735 765 795 825 855 885 915 945 975	0 0 0 0 0 0 0 0	>100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545	8095 10052 11990 13400 14808 15554 15987 15861 16156 16297	+71.16 +58.38 +47.92 +35.01 +23.58 +13.45 +6.39 +3.45 +2.18 +1.72	lts	
705 735 765 795 825 855 885 915 945 975	0 0 0 0 0 0 0 0	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605	8095 10052 11990 13400 14808 15554 15987 15861 16156 16297	+71.16 +58.38 +47.92 +35.01 +23.58 +13.45 +6.39 +3.45 +2.18 +1.72 +1.33	lts	
705 735 765 795 825 855 885 915 945 975 1005	0 0 0 0 0 0 0 1 14 130	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	8095 10052 11990 13400 14808 15554 15987 15861 16156 16297 16297	+71.16 +58.38 +47.92 +35.01 +23.58 +13.45 +6.39 +3.45 +2.18 +1.72 +1.33 +1.62	lts	
705 735 765 795 825 855 885 915 945 975 1005 1035	0 0 0 0 0 0 0 0 1 14 130 363	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635	8095 10052 11990 13400 14808 15554 15987 15861 16156 16297 16297 16208 16526	+71.16 +58.38 +47.92 +35.01 +23.58 +13.45 +6.39 +3.45 +2.18 +1.72 +1.33 +1.62 +2.92	lts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095	0 0 0 0 0 0 0 1 14 130 363 785	>100 >100 >100 >100 >100 >100 >100 >100	Volts		1305 1335 1365 1395 1425 1455 1485 1515 1545 1675 1605 1635 1665	8095 10052 11990 13400 14808 15554 15987 15861 16156 16297 16297 16208 16526 16526	+71.16 +58.38 +47.92 +35.01 +23.58 +13.45 +6.39 +3.45 +2.18 +1.72 +1.33 +1.62 +2.92 +3.94	lts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 0 0 0 0 0 0 0 1 14 130 363 785 1357	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695	8095 10052 11990 13400 14808 15554 15987 15861 16156 16297 16297 16208 16526 16581 16832	+71.16 +58.38 +47.92 +35.01 +23.58 +13.45 +6.39 +3.45 +2.18 +1.72 +1.33 +1.62 +2.92 +3.94 +5.91 +8.68	lts	
705 735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125 1155	0 0 0 0 0 0 0 0 1 14 130 363 785 1357 1996 2735	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1605 1635 1665 1695 1725	8095 10052 11990 13400 14808 15554 15987 15861 16156 16297 16297 16208 16526 16581 16832 17039 17800	+71.16 +58.38 +47.92 +35.01 +23.58 +13.45 +6.39 +3.45 +2.18 +1.72 +1.33 +1.62 +2.92 +3.94 +5.91 +8.68	lts	
735 765 795 825 855 885 915 945 975 1005 1035 1065 1095 1125	0 0 0 0 0 0 0 0 1 14 130 363 785 1357	>100 >100 >100 >100 >100 >100 >100 >100			1305 1335 1365 1395 1425 1455 1485 1515 1545 1575 1605 1635 1665 1695 1725 1755	8095 10052 11990 13400 14808 15554 15987 15861 16156 16297 16297 16208 16526 16581 16832 17039 17800	+71.16 +58.38 +47.92 +35.01 +23.58 +13.45 +6.39 +3.45 +2.18 +1.72 +1.33 +1.62 +2.92 +3.94 +5.91 +8.68 +11.53	lts	

ANALYTICS

0553

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 · U.S.A.

> Phone (404) 352-8677 Fax (404) 352-2837

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

66002-278

Ra-228 5 mL Liquid in Flame Sealed Vial

This standard radionuclide source was prepared gravimetrically from a calibrated master solution. The master solution was calibrated using a germanium gamma spectrometer system.

Radionuclide purity and calibration were checked using a germanium gamma spectrometer system. The nuclear decay rate and assay date for this source are given below.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

ISOTOPE:

Ra-228

ACTIVITY (dps):

2.367 E4

HALF-LIFE:

5.75 years

CALIBRATION DATE:

April 23, 2003 12:00 EST

TOTAL UNCERTAINTY*:

2.4%

*95% Confidence Level

Impurities: γ -impurities (other than decay products) <0.1%, Ra-226 <0.1%

5.31628 grams 4M HCl solution with 100 μ g/g Ba carrier.

P O NUMBER 3219 RD, Item 1

SOURCE PREPARED BY:

M. Taskaeva, Radiochemist

Q A APPROVED:

M. Mt 3 4-23-0

A Standard Traceability Log Rad

Source Mate	rial Info
Parent Code:	0553-A
Prepared By:	Lonnie Morris
Carrier Conc:	0.5M HCl
Reference Date:	04/23/2003
Ampoule Mass (g):	5.0235 g
Uncertainty:	+/-
LogBook No:	RC-S-035-068

A Solution	Material Info
Isotope:	Radium-228 SPIKE
Prepared By:	Lonnie Morris
Prep Date:	04/25/2003
Verification Date:	04/27/2005
Expiration Date:	04/27/2006
Primary Code:	0553-B
Dilution(mL):	1000 mL
Mass of Parent(g):	30.535 g
Density(g/mL):	
Balance ID:	

Calculations Converting parent activity to dpm/mL|dpm/g

(Mass of parent(g)) * (Parm Activity (dpm/mL)) * (conversion dpm to dpm) / (Dilution Vol) = Parent Activity (dpm/mL)

(Mass of parent(g)) * (Parm Activity (dpm/mL)) * (conversion dpm to dpm) / Density (g/mL)/ (Dilution Vol) = Parent Activity (dpm/g)

(30.535 g) * (13419.8626 dpm/mL) * (1 dpm/dpm) / (1000 mL) = 409.7755 dpm/mL

(30.535 g) * (13419.8626 dpm/mL) * (1 dpm/dpm) / (g/mL) / (1000 mL) = dpm/g

Secondary Standards

	Secondary Standards Core Verification Expiration							
Prep Date	eparer	Mass Primary	Dilution (mL)	Code	Conc dpm/mL	Verification Date	Expiration Date	The same of the sa

GEL Laboratories LLC Version 1.0 9/18/2000

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 · U.S.A.

> Phone (404) 352-8677 Fax (404) 352-2837

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

64673-278

Ra-228 5 mL Liquid in Flame Sealed Vial

prepared source was radionuclide standard gravimetrically from a calibrated master solution. master solution was calibrated using a germanium gamma spectrometer system.

Radionuclide purity and calibration were checked using a germanium gamma spectrometer system. The nuclear decay rate and assay date for this source are given below.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

ISOTOPE:

Ra-228

ACTIVITY (dps):

1.939 E4

HALF-LIFE:

5.75 years

CALIBRATION DATE:

October 1, 2002 12:00 EST

TOTAL UNCERTAINTY*:

3.6%

SYSTEMATIC:

3.4%

RANDOM:

1.1%

*99% Confidence Level

Impurities: γ-impurities <0.1%

5.02617 grams 0.1M HCl solution with 110 $\mu g/g$ Ba carrier.

P O NUMBER 3208RD, Item 2

SOURCE PREPARED BY:

M. Taskaeva, Radiochemist

O A APPROVED:

Standard Traceability Log Rad

C. Material Info					
Source Material Info					
Parent Code:	0503				
Prepared By:	Angela Johnson				
Carrier Conc:	0.1 M HCL				
Reference Date:	10/01/2002				
Ampoule Mass (g):	5.02617 g				
Uncertainty:	+/- 3.6 %				
LogBook No:	RC S 035 018				

A Solution Material Info				
Isotope:	Radium-228			
Prepared By:	Angela Johnson			
Prep Date:	02/20/2003			
Verification Date:	04/09/2004			
Expiration Date:	04/09/2005			
Primary Code:	0503-A			
Dilution(mL):	100 mL			
Mass of Parent(g):	4.4737 g			
Density(g/mL):	0.9992			
Balance ID:				

Calculations Converting parent activity to dpm/mL|dpm/g

(Mass of parent(g)) * (Parm Activity (dps)) * (conversion dpm to dps) / (Ampoule Mass(g) *(Dilution Vol)) = Parent Activity (dpm/mL)

(Mass of parent(g)) * (Parm Activity (dps)) * (conversion dpm to dps) / Density / (Ampoule Mass (g) * (Dilution Vol)) = Parent Activity (dpm/g)

(4.4737 g) * (19390 dps) * (60 dpm/dps) / (5.02617 g * 100 mL) = 10355.2060 dpm/mL

(4.4737 g) * (19390 dps) * (60 dpm/dps) / (0.9992 g/mL)/ (5.02617 g * 100 mL) = 10363.0820 dpm/g

Secondary Standards

Secondari,							
Prep Date	Preparer	Mass Primary	Dilution (mL)	Code	Conc dpm/mL	Verification Date	Expiration Date
04/02/2003	Lonnie Morris	39.71	1000	0503-B	411.518 dpm/mL	09/13/2008	09/13/2009

GEL Laboratories LLC Version 1.0 9/18/2000

Verification for Ra-228 Standard 0503-B

					(I)	Standard	
300	Sotone	Detector CPM	BKG CPM	NET CPM	Detector Eff Mass	s. Used (mL)	Detector Eff Mass. Used (mL) Source DPM/mL
0/13/2008	0503-B	1962 0000	45.6000	1916.4000	9.263763	1.0000	206.8705773
	0503-B	1983.2000	45.6000	1937.6000	9.263763	1.0000	209.1590642
	0503-B	1927.0000	45.6000	1881.4000	9.263763	1.0000	203.092415
			1				206.3740189
Mean Value (Counting) =	206.3740189	dpm/mL	102.880426	Pass			
Stdev =	3.063655617	dpm/mL	0.01484516	Rule 3 (Pass/Fail)			
Certificate Value =	200.596	dpm/mL					
Lower Limit =	200.2467076	dpm/mL					
Upper Limit =	212.5013301	dpm/mL					
Rule 1 Pass/Fail	Pass						
Two sigma =	6.127311233						
10 % of Mean =	20.63740189						
Rule 2 (Pass/Fail)	Pass						

Verification Rules

Rule 2 = The two sigma value used for the 95% confidence interval shall not exceed 10% of the mean value Rule 1 = The certificate value (NOT including any uncertainty) shall lie within the 95% confidence interval determined from the mean and two sigma standard deviation of the three measurements of the three verification measurements.

Rule 3 = The determined mean value shall be within 10% of the certificate value.

The analyst prepared three standard verification sources for Ra-228 source 0503-B by transfering portions of the standard into glass liquid scintillation vials. Ten mL of Ready Gel liquid scintillation cocktall was added to each vial and the vials were shaken to mix. A Blank vial was prepared in a similar fashion using 1 mL of DI water and 10 mL of Ready Gel cocktail. The standard verification vials and Background source were dark adapted for two hours and counted on LSC Gold for Ra-228 source standard verification. The Ra-228 efficiency calibration which was used for verification calculations was performed on 9/13/08 using source calculation was performed as follows:

3)(C)(D)		e cpm,	•	System efficiency, (cpm/dpm), and	mass used for standard verification.
Source $dpm/g = (A - B)/(C)(D)$		Ver. source cpm,	BKG cpm,	System et	mass use
후	<u></u>	II	II	II	11
Source	where:	∢	ω	ပ	Δ

Reference RAD SOP M-001

Dail of My 9/16/88

, e | 2 |

PAGE: 1

ID:TO	TAL ACT	IVITY COMMENT:GOL	D		16 SEP	2008 16:24
PRESET TIM DATA CALC COUNT BLAN TWO PHASE SCINTILLAT LOW LEVEL	: CPM K: NO : NO	H# :YES IC# : NO AQC : NO LUMEX:YES	SAMPLE REPEA REPLICATES CYCLE REPEATS LOW SAMPLE RI ORRECTION DA	: 1 5: 1 EJ: 0	PRINTER RS232 DISK	: STD :EDIT : OFF
CHAN: 0. CHAN: 0. SAM POS NO	T		ACTOR: 1.0	00000 BKG	. SUB: . SUB: UMEX EL	0 0 APSED TIME
1 11-1 2 11-2 3 11-3 4 11-4 5 11-5 6 11-6 7 11-7 8 11-8	5.00 98.2 1.30 99.3 1.30 100.4 1.35 99.2 5.00 97.9 5.00 110.7 5.00 110.8	50.40 12. 7802.31 1. 7782.31 1. 7581.48 1. 45.60 13. 1962.00 2. 1983.20 2.	99	1.99 1.99 1.98 13.02 2.02 2.01	0.41 0.00 0.00 0.01 0.43 0.01 0.01	5.55 7.81 10.14 12.51 18.61 24.65 30.75 36.85

Data Capture Date: User Filename:

Spectrum Type User Number:

User Id:

User Comment: Isotope Name:

Scintillator:

Sample, Rack-Pos, Time:

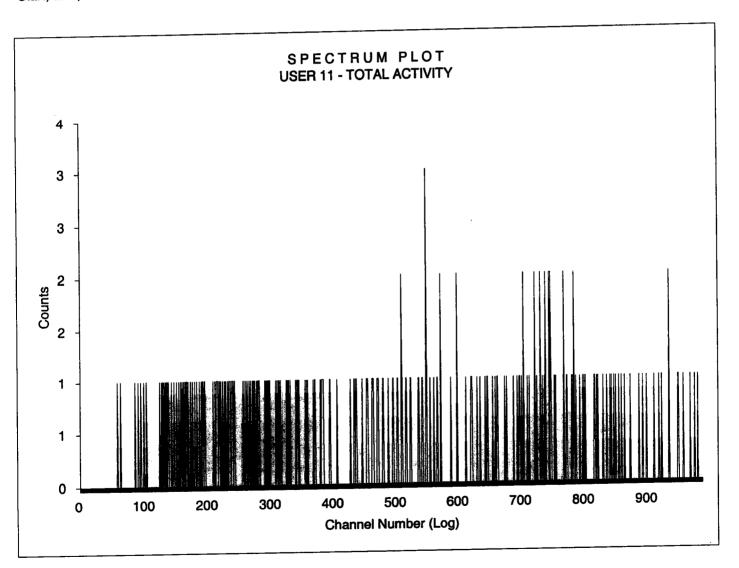
H#, Total Counts: Start, End, X-Axis: 16 Sep 2008 16:46:59

9/16/2008 16:52:01 S11091611-5A.WK1 U11091611-1A.WK1

Log Counts

11

TOTAL ACTIVITY


GOLD 14C LIQUID

5 11-5

97.9 69

0 990

Channel Number

Data Capture Date:

User Filename:

Spectrum Type

User Number: User ld:

User Comment: Isotope Name:

Scintillator:

Sample, Rack-Pos, Time:

H#, Total Counts: Start, End, X-Axis: 16 Sep 2008 16:53:01

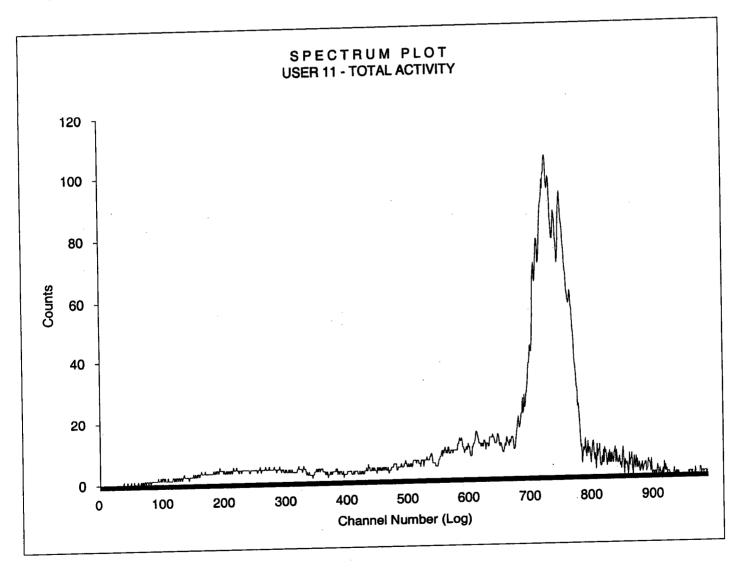
9/16/2008 16:58:06 S11091611-6A.WK1

U11091611-1A.WK1

Log Counts

11

TOTAL ACTIVITY


GOLD 14C LIQUID

3 11-6

110.7 7666

0 990

Channel Number

16 Sep 2008 16:59:07

Data Capture Date:

9/16/2008 17:04:12 S11091611-7A.WK1

User Filename:

U11091611-1A.WK1 **Log Counts**

Spectrum Type User Number:

11

User Id:

TOTAL ACTIVITY

User Comment: Isotope Name:

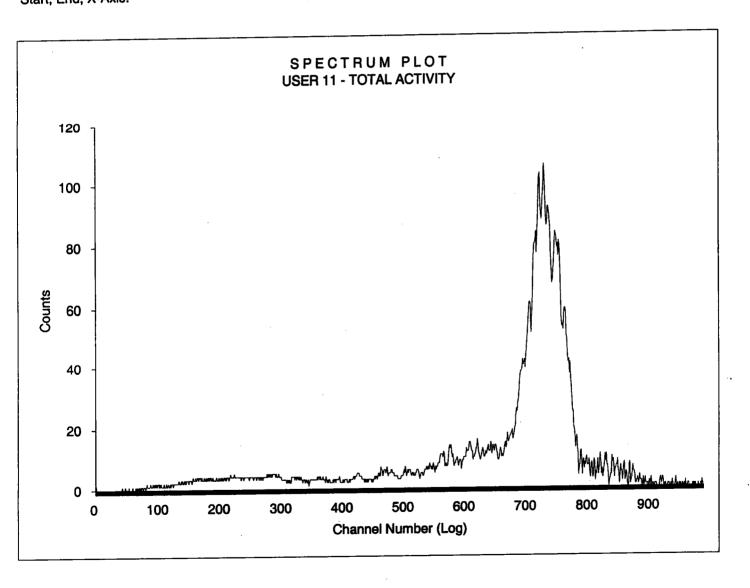
GOLD 14C

Scintillator:

LIQUID

11-7

Sample, Rack-Pos, Time:


7 7726 110.8

5.00

H#, Total Counts: Start, End, X-Axis:

990 0

Channel Number

Data Capture Date: User Filename:

Spectrum Type

User Number:

User Id:

User Comment: Isotope Name:

Scintillator:

Sample, Rack-Pos, Time:

H#, Total Counts:

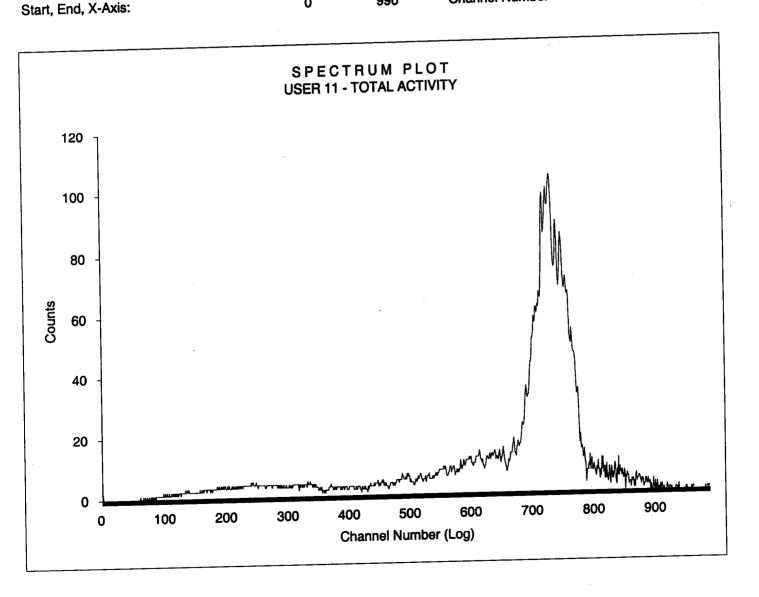
16 Sep 2008 17:05:13

9/16/2008 17:10:18 S11091611-8A.WK1 U11091611-1A.WK1

Log Counts

11

TOTAL ACTIVITY


GOLD 14C LIQUID

11-8

110.7 7557

0 990

Channel Number

Sheet
d)
ne
5
V
-
∞
28
.228
1-228
m-228
n-2
n-2
n-2
dium-2
n-2

Radium-228 Que Sheet		130 6130 log	130 09		-				06/30/2009
Batch #: 881540	Analy	Analyst: DXM2	First (First Client Due Date:		Internal Due Date@7/03/2009	87/03/2009 Ac-228 Ingrow: 2025 6/30/09	19 5506	130/09
Snike Isotone: Radium-228	Spike Code: A NA	とと		Expiration Date: JV A	ŀ	K N iev			ĺ
I.C. Isotope: Radium-228	LCS Code: 0503-B	0503-B	1	Expiration Date: 4/13/69	5	Vol	• • • • • • • • • • • • • • • • • • •		העאה מה-2-1
33	Tracer Code: 0112-	5-5110	Expira	Ë	סו/ רווכ	Vol: 0 · l	Ac-228 Separatio	Witness: 140 (e/30/09)	Ac-228 Separation Date: 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Prep Date: 6/30/07	Initials: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Pipet	\ 	127418	balance ID: // /				
						Collect	Pos. Vol	Ba Yield	Gamma
Sample ID Client Description	п Туре	Hazard N	Min CRDL Matrix	Matrix	Client	Date & Time	" (mL) Det #	et # (%)	Det. #
1201872112_1 I.CS for hatch 881540	rcs	60	3 pCi/L	GROUND WAT! QC ACCOUNT	QC ACCOUNT	16-JUN-09 03:56 PM	000	100.63	4
1201872113-1 I.CS for batch 881540			3 pCI/L	GROUND WATI	QC ACCOUNT	16-JUN-09 03:56 PM	200	108,20	
1201872114-1 LCS for batch 881540		m	3 pCi/L	GROUND WATI	QC ACCOUNT	16-JUN-09 03:56 PM	3 20	ce. HII	- 1
1201872115-1 LCS for batch 881540	rcs	•	3 pCi/L	GROUND WATI	QC ACCOUNT	16-JUN-09 03:56 PM	07.	35.051	WITHE
1201872116-1 LCS for batch 881540	CCS	6	3 pCi/L	GROUND WATI		16-JUN-09 03:56 PM	207	P8-201	
1201872117-1 LCS for batch 881540	CCS	60	3 pCi/L	GROUND WATI		16-JUN-09 03:56 PM	9	00.001	
1201872118-1 LCS for batch 881540	o rcs	60	3 pCi/L	GROUND WAT!	QC ACCOUNT	16-JUN-09 03:56 PM	02 6	113.83	
1201872119-1 LCS for batch 881540	· SOT 0		3 pCi/L	GROUND WATI QC ACCOUNT	QC ACCOUNT	16-JUN-09 03:56 PM	8	F-11(1	>

Data Reviewed By:_

Page 1 of 1

Instrument Used: (Circle One) PIC S/N: 10751-4

Comments:_

ASSAY 30-Jun-09 19:32:06

Protocol	id			8	228_REC	;						
Time	limit		1	80	•							
Count	limit		500	000								
Isotope	Ba-133											
Protocol	date		9-Apr	-07	10:03:07	7						
Run	id.			54				·				
	POS		RACK		BATCH	Т	IME	COUNTS	СРМ	ERROR	% RECOVERY	COUNT TIME
		1		97	•	1	180	779	229.3	4.13		19:32:13
		2		97	2	2	180	785	231.2	4.11	100.83	19:35:24
		3		97	;	3	180	835	248.1	3.95	108.20	19:38:35
		4		97		4	180	877	261.9	3.83	114.22	19:41:47
		5		97		5	180	921	276.5	3.71	120.58	19:44:58
		6	•	72	. (6	180	819	242.7	4	105.84	19:48:17

7 180

8 180

9 180

798 235.5

867 258.7

861 256.6

4.07

3.85

3.87

END OF ASSAY

7

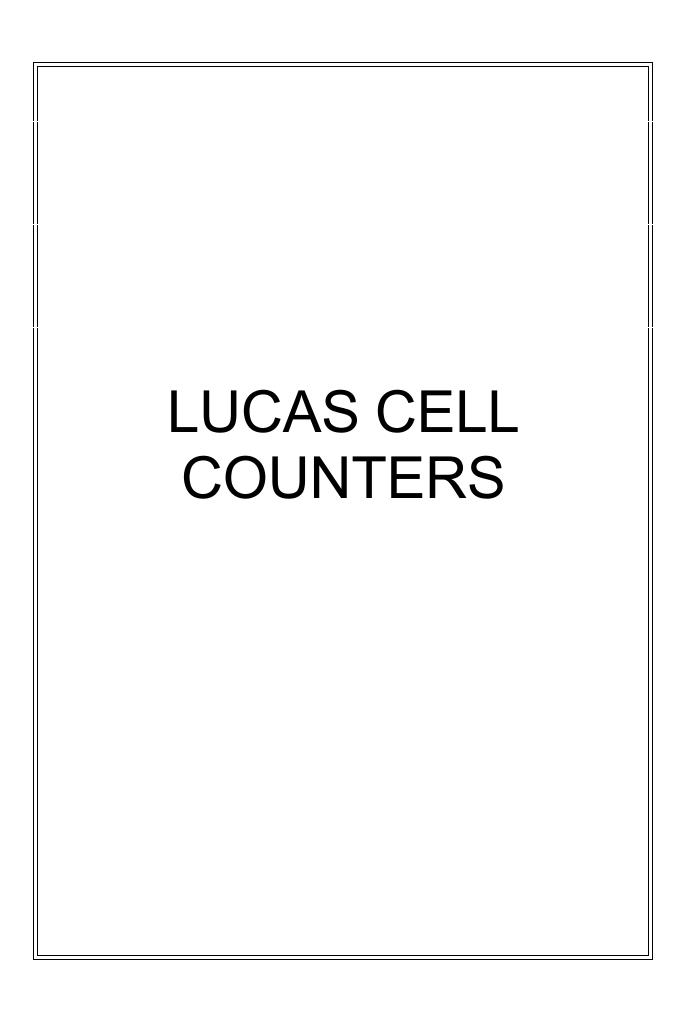
8

72

72

72

102.70


112.82

111.91

19:51:28

19:54:40

19:57:51

General Engineering Laboratories 2040 Savage Road, Charleston, SC 29414 (843)556-8171

Lucas Cell Calibration Package

		YES	NO	Comments
1)	Is all calibration standard information enclosed for:	***		
•	the primary standard certificate?			
	the secondard standard(s) documentation?			
	standard preparation information?			
	standard < 1 Year old or verified?		-	
		<u> </u>		
2)	Is the efficiency calibration report included ?			
3)	Is the raw count data included for:			
	Cell constant determination?	~		
	Plateau generation?			·
4)	Are the calibration verifications included?			
5)	Are the instrument settings included:			
	HVPS settings?	✓		
6)	Has the CELLEFF.xls file been updated?			
			· · · - · · · · ·	
7)	Have the calibration dates been updated in ALPHALIMS?			
	17		_	
	Prepared By: Killi's Denice	Date:	8/29/08	
	10,1		8129100 19119100	
	Reviewed By: Uth Holen	Date:	GIRBISE	
	T	_		•

Effective Date: Strales

Ra-226 Cell Constants

<u>0299-G</u> <u>0.1</u> 2446.35 <u>standard ID :</u>
Volume added (mL) :
Standard Reference Activity (DPWmL) :

	,					Date/time	Date/time				count		Кпомп	t1 (days)	t2 (days)	t3 (days)	Decay from
Lucas	Cell			Standard	Date/Time	flushed	end of	Bkg	bkg	tota/	time		activity	end-degas	end-flush	Std Ref Date	Std Ref Date
cell #	constant			Source	of count	to cell	degas	Counts	срт	counts	min	cbm	dpm	to flush	to count	to count	to count
101	1.796	Average	1.751	17	6/11/2008 22:40	6/11/2008 14:55	6/5/2008 14:10	8	0.267	8239	30	274.63	244.63	6.03125	0.32292	3102	0.9963
둳	1.729	Stdev	0.039	15	8/15/2008 12:50	8/15/2008 9:25	8/12/2008 16:10	œ	0.267	4800	99	160.00	244.63	2.71875	0.14236	3167	0.9962
101	1.728			14	7/31/2008 15:35	7/31/2008 8:55	7/28/2008 10:55	8	0.267	4938	30	164.60	244.63	2.91667	0.27778	3152	0.9963
102	1.677	Average	1.647	41	6/11/2008 23:15	6/11/2008 15:20	6/5/2008 14:10	8	0.267	7698	30	256.60	244.63	6.04861	0.32986	3102	0.9963
102	1.632	Stdev	0.026	4	8/4/2008 16:35	8/4/2008 9:45	8/1/2008 13:30	80	0.267	4570	8	152.33	244.63	2.84375	0.28472	3156	0.9963
102	1.632			44	7/31/2008 16:10	7/31/2008 9:20	7/28/2008 10:55	8	0.267	4680	30	156.00	244.63	2.93403	0.28472	3152	0.9963
103	1.864	Average	1.752	47	6/11/2008 13:40	6/11/2008 9:40	6/5/2008 14:10	8	0.267	8620	30	287.33	244.63	5.81250	0.16667	3102	0.9963
103	1.687	Stdev	0.098	36	7/31/2008 16:40	7/31/2008 9:50	7/28/2008 10:55	7	0.233	4862	93	162.07	244.63	2.95486	0.28472	3152	0.9963
103	1.704			36	8/4/2008 17:10	8/4/2008 10:15	8/1/2008 13:30	7	0.233	4796	30	159.87	244.63	2.86458	0.28819	3156	0.9963
104	1.937	Average	1.973	ဧ	6/11/2008 14:10	6/11/2008 10:00	6/5/2008 14:10	9	0.200	8955	30	298.50	244.63	5.82639	0.17361	3102	0.9963
5	1.917	Stdev	0.080	21	6/24/2008 17:20	6/24/2008 14:10	6/20/2008 9:50	80	0.267	7275	30	242.50	244.63	4.18056	0.13194	3115	0.9963
호	2.064			19	7/31/2008 17:20	7/31/2008 10:15	7/28/2008 10:55	8	0.267	5964	30	198.80	244.63	2.97222	0.29514	3152	0.9963
105	1.916	Average	1.749	37	8/15/2008 13:55	8/15/2008 9:55	8/12/2008 16:10	8	0.267	5327	30	177.57	244.63	2.73958	0.16667	3167	0.9962
105	1.700	Stdev	0.149	8	7/31/2008 17:55	7/31/2008 10:45	7/28/2008 10:55	4	0.133	4933	93	164.43	244.63	2.99306	0.29861	3152	0.9963
105	1.631			30	8/4/2008 18:35	8/4/2008 11:05	8/1/2008 13:30	1	0.033	4605	30	153.50	244.63	2.89931	0.31250	3156	0.9963
106	1.594	Average	1.486	43	8/15/2008 14:30	8/15/2008 10:15	8/12/2008 16:10	8	0.267	4441	30	148.03	244.63	2.75347	0.17708	3167	0.9962
106	1.441	Stdev	0.094	46	7/31/2008 18:25	7/31/2008 11:15	7/28/2008 10:55	œ	0.267	4208	93	140.27	244.63	3.01389	0.29861	3152	0.9963
90	1.422			15	8/19/2008 8:00	8/18/2008 16:00	8/15/2008 9:25	8	0.267	4132	30	137.73	244.63	3.27431	0.66667	3170	0.9962
107	1.779	Average	1.773	25	6/11/2008 15:50	6/11/2008 11:10	6/5/2008 14:10	80	0.267	8232	30	274.40	244.63	5.87500	0.19444	3102	0.9963
107	1.751	Stdev	0.020	13	7/31/2008 19:05	7/31/2008 11:40	7/28/2008 10:55	7	0.233	5121	8	170.70	244.63	3.03125	0.30903	3152	0.9963
107	1.790			13	8/4/2008 19:40	8/4/2008 12:00	8/1/2008 13:30	8	0.267	5105	30	170.17	244.63	2.93750	0.31944	3156	0.9963
901	1.755	Average	1.840	36	6/11/2008 17:00	6/11/2008 11:30	6/5/2008 14:10	7	0.233	8081	30	269.37	244.63	5.88889	0.22917	3102	0.9963
108	1.937	Stdev	0.092	47	6/25/2008 20:00	6/25/2008 15:40	6/20/2008 9:50	6 0	0.267	8413	8	280.43	244.63	5.24306	0.18056	3116	0.9963
108	1.827			46	8/15/2008 15:09	7 8/15/2008 10:15	8/12/2008 16:10	8	0.267	5071	30	169.03	244.63	2.75347	0.19792	3167	0.9962
109	1.646	Average	1.512	2	6/11/2008 17:35	6/11/2008 11:45	6/5/2008 14:10	80	0.267	7570	30	252.33	244.63	5.89931	0.24306	3102	0.9963
109	1.	Stdev	0.117	42	8/1/2008 8:55	7/31/2008 13:05	7/28/2008 10:55	9	0.200	3894	8	129.80	244.63	3.09028	0.82639	3152	0.9963
108 8	1.448			42	8/4/2008 20:40	8/4/2008 13:40	8/1/2008 13:30	8	0.267	4226	30	140.87	244.63	3.00694	0.29167	3156	0.9963
110	1.664	Average	1.544	98	6/24/2008 21:15	6/24/2008 15:05	6/20/2008 9:50	80	0.267	6214	30	207.13	244.63	4.21875	0.25694	3115	0.9963
110	1.566	Stdev	0.133	13	8/15/2008 15:35	8/15/2008 10:50	8/12/2008 16:10	80	0.267	4377	8	145.90	244.63	2.77778	0.19792	3167	0.9962
110	1.401			15	8/4/2008 21:10	8/4/2008 14:05	8/1/2008 13:30	8	0.267	4103	30	136.77	244.63	3.02431	0.29514	3156	0.9963
Ξ	1.632	Average	1.575	37	6/24/2008 22:30	6/24/2008 15:30	6/20/2008 9:50	7	0.233	6071	30	202.37	244.63	4.23611	0.29167	3115	0.9963
11	1.517	Stdev	0.057	43	8/1/2008 10:30	7/31/2008 14:00	7/28/2008 10:55	®	0.267	4120	8	137.33	244.63	3.12847	0.85417	3152	0.9963
₹	1.576			43	8/4/2008 21:35	8/4/2008 14:30	8/1/2008 13:30	7	0.233	4636	30	154.53	244.63	3.04167	0.29514	3156	0.9963
112	1.797	Average	1.648	43	6/11/2008 22:10	6/11/2008 14:30	6/5/2008 14:10	æ	0.267	8239	93	274.63	244.63	6.01389	0.31944	3102	0.9963
112	1.588	Stdev	0.130	37	8/1/2008 11:00	7/31/2008 14:00	7/28/2008 10:55	œ	0.267	4294	8	143.13	244.63	3.12847	0.87500	3152	0.9963
112	1.559			37	8/4/2008 22:00	8/4/2008 14:50	8/1/2008 13:30	8	0.267	4599	ଚ	153.30	244.63	3.05556	0.29861	3156	0.9963

Page 1

Ra-226 Verification Sheet

Cal 19 Cal 14 Cal 14 Cal 24 Cal 24 Cal 24		(_	
Cal 13 5 Cal 14 8 Cal 24 5 Cal 24 5								
Cal 14 5 5 6 1 10 6 5 6 1 14 5 5 6 1 14 5 5 6 1 14 5 5 6 1 14 5 5 6 1 14 5 5 6 1 14 5 5 6 1 14 5 5 6 1 14 5 5 6 1 14 5 6	1015108 1410							
Cal 14 5 Cal 24 55 48	US108 1410				+			
10	U15108 A10				7			
Cal 2d	01510 × 01510							
Cal 2d))		
- catal	6/20/08 0950	6/24/08 14/0	6/14/68 1726	104	_	8	7275	
	bloolog ogso	1979 Jet 1970	C181 80.23	E		8	Q 2	10 8 30 los
005 - 57 + 57 - 1	astal salata	456	y [921	10g	-		7547	
2013	iotroluk agso	6124 108 1505	G2400 2115	011	_	Q	6214	
Cal 37 500	obsolog puzo	1530 6124108	624.08 2230	=	-		6071	
Cat PT 500	0/20/05/04/05/0	6/24/08 1545	624.06 2305	4	-	8	2635	1
(ul3 5m	9500 301019	6/15/108 1405	6.25.08 170× 100	100	H	8	St. 28	1
(413) 500	osta galeala	14268 H420	C150 (740	101	-	00	3362	- Webabe
- Cat 41 Seo	W20108 0450	241/2 1015/101	18.03 182D	103	-	8	808	
(4139 SDD	as50 8002/9		6.25.08 1851	501	-	Ø	9300	
(4)45 500	05/20 8-142/21	61208 1516	6.25.08 1933	109	+	00	8151	
(4147 SOD	6120 W 095°	Wester 1540	6.14.08 2000	404	-	∞	8413	/
								Co Shales

Ra-226 Verification Sheet

				1				r	1					_		_		<u> </u>	∞
Total Counts	Sur	8955	aus	3534	8232	1808	7570	4366	76797	5867	8239	7698)
Background CPM	8	٩	4	٥٩	حد	٦	~	00		8	80	8							
Det #			-	+				+	+	_									
Cell	103	104	581	401	100	801	109	=	+	111/16	lol	<u>w</u>)
Start Count Date/Time	W11168 1340	V/11/1 1410	6111168 1440	0111108 1510	0111108 1550	ODLI 80/11/9	6/11/08 1735	6/11/18 2040	611.08 2115	G. 11.08 2210	6. (1.08 32 Ao	S16.6 2315	(
End De-em Date/Time	6 0940	9001	8 1015	8 1045	11108 1110	× 1130	8 1145	1950	CH A KE	1430	18 H55	os 1520							
En	20/11/0	0 111 60	80/11/01	2011117	Clife	6/11/05	श्रीमिष्ट	MHOR	नामिक	8011110	241119	3011110							
egas Fime	1410	1410	14-10	1410-	1410	1410	H10	1410	1410	1410	Milo	H10	1410	410	(410	1410	1410	/1410	(410
End Degas Date/Time	1015 log	X01519	goista	MOISION	8015/0	क्रीडाव्ह	bislot	Balsia	84519	301510	श्वाध्य	WSIOK	visior	15108	391519	१०१डान	301519	३ ०।डे\११	ठाडाव
Volume (mL)	200	200	500	N.	aus	500	200	200	Sen	200	500	200	200	905	200	200	200	200	500
Sample ID	CA147	6413	Catos	Ca140	Ca125	CA136	Carel	Ca+37	Ca1 29	64143	Calh	Ca141	Call	Ca1 30	Cal 7	6019	0 12	1 8 1 D	Cal 35
L	l		L.—	<u> </u>	<u>i </u>	<u>. </u>	<u> </u>	• 2	62		<u> </u>	<u> </u>	· -	-		<u>. </u>	<u> </u>	l	

8/14/18

Ra-226 Verification Sheet (1941

										/							7/1	38	/ 0
Counts	4938	4680	7885	5764	4933	4504	512/	अञ्	3894	3135	02/h	4194							
Background CPM	&⊃	8	_	8	7	∞	<u></u>	8	د	7	8	8							
# #	-			_	_	_													
# E	101	101	jo s	hal	105	201	<u>S</u>	801	109	110	111	112					i		-
Count	r (535	0 19	1646	1720	1755	1825	1905	2180	0855	0439	1050	1100							
Start (Date/	गान्धा	751/20	1131W	80/15/6	2/31/08	2/2/98	2/21/08	81/18	8/1/8	Strial	80)1)8	811/18							
e-em Fime	85\$	Aro	0450	1015	1045	1115	1140	400	1305	1530	0041	AH AH							
End D Date/		1/31/08	713/108	7/3/168	आधि	713168	7131108	मुस्राहर	7121108	7/3/108	7131108	7/31/08/							
egas ime	400	550	1055	550	550	1055	1055	1055	1055	5501	1055	1055							į
End Date/T	1/1/8/10/6 1	1/28/18	7/12/8/08	Thislas		7/28/06	301827	Theus	7/28/108	301221-	7/28/108	7/128108							
Volume (mL)		206	200	200	2000	206	266	Sup	506	386	200	500							
Sample ID	20/14	Calud	96 100	Cal 19	60190	Calue	CA113	tars &	62142	- C++12	(M)43	12/01							
	(mL) Date/Time Date/Time Date/Time # # CPM	Continue End Degas End De-em Start Count Cell Det Background Cell Det Background Cell Det Background Cell Det CPM Continue Cell Det CPM Continue Cell Ce	Volume End Degas End De-em Start Count Cell Det Background (mL) Date/Time Date/Time # # CPM 500 1/1/8/b/t 1/2/b/t 1/3/b/t 1/3/b/t	Colume End Degas End De-em Start Count Cell Det Background Cell Det Det Background Cell Det Colume End Degas End De-em Start Count Cell Det Background Cell Date/Time Background # # CPM CDD 1/08/04 1055 1/91/05 04/20 7/51/05 1/01 1/01 1/05 04/20 1/31/05 04/20 1/31/05 04/50 1/31/05 04/50 1/31/05 04/50 1/31/05 04/50 1/31/05 04/50 1/31/05 1/31/05 1/31/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05 1/01/05	Color Date/Time Date/Time Date/Time H	Colume End Degas End De-em Start Count Cell Det Background Cell Detertione Date/Time Date/Time Date/Time Date/Time CPM COV 1/108/101/1045 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/105 1/24/1	Column End Degas End Decem Start Count Cell Det Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/T	Sample Volume End Degas End Decermine Start Count # # CPM ID (mL) Date/Time Date/Time # # # CPM Cal 14 500 1 v8 v8 1045 1 v1 v8 0420 1 v1 v8 0420 <td< th=""><th> Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Colo</th><th> Sample Volume End Degas End Decm Start Count Cell Lot Date/Time Date/Time Date/Time The Count Cell Lot Date/Time Date/Time The Count Cell Lot Sob 1/1081/8 1055 1/1911/8 Volume Sob 1/1081/8 1055 1/1911/8 Volume Volum</th><th>Sample Volume End Degas End Deem Date/Time Date/</th><th> Sample Volume End Degas End Decrime Sart Count # # # # # CPM In</th><th> Sample Colume End Degres End Decorring Sant Colume Colume Colume End Decorring h><th>Sample (volume End Degas End Lucenn Signat Count of the Call Life (1825) 10 1 8 8 8 8 8 8 8 8 8</th><th>Sample Volume End Degas End Legm DaterTime Call Ld (ml.) (Al 14 500 11/8 10/5 11/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8</th><th> Sample Volume End Degas End Decem Start Count 4 4 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 </th><th> Sample Volume End Depart State Courts State</th><th> Simple Call light Data United Bank Time Data United Bank Tim</th></td<>	Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Colo	Sample Volume End Degas End Decm Start Count Cell Lot Date/Time Date/Time Date/Time The Count Cell Lot Date/Time Date/Time The Count Cell Lot Sob 1/1081/8 1055 1/1911/8 Volume Sob 1/1081/8 1055 1/1911/8 Volume Volum	Sample Volume End Degas End Deem Date/Time Date/	Sample Volume End Degas End Decrime Sart Count # # # # # CPM In	Sample Colume End Degres End Decorring Sant Colume Colume Colume End Decorring Sample (volume End Degas End Lucenn Signat Count of the Call Life (1825) 10 1 8 8 8 8 8 8 8 8 8	Sample Volume End Degas End Legm DaterTime Call Ld (ml.) (Al 14 500 11/8 10/5 11/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8	Sample Volume End Degas End Decem Start Count 4 4 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194	Sample Volume End Depart State Courts State	Simple Call light Data United Bank Time Data United Bank Tim		

10 8/12/18 4599 3638 4636 4796 9226 Counts 5105 先 先 4 63 4540 4605 3-75-5 Total Background CPM S ∞ و 7 ∞ ص Y رے == 103 <u>8</u> <u>ه</u> 107 10.27 h0 \<u>%</u> # Cell 109 \equiv 2010 1940 63% 2040 子の子 1745 016 055) som 18 1835 2160 235/ 200 Start Count Date/Time 8.4.08 8.4.08 8.4.08 8.4.08 8. 2.38 8.403 8.408 8.408 8.40g 84,08 8.4.3B する 1430 Mos 1340 1035 8 TOTO 8/4/0x 1615 Shot solu/8 84ths 1130 8/4/1/ 8H lox 1500 End De-em Date/Time 8418 6015 84408 391118 8/4/08 8/4/08 Sallox 1330 8116x 1930 1330 8/1/0x 1880 1336 8/1/08 1337 8/1/05 1330 8/11/08 1236 33 811108 1330 15.50 8/11/08/1330 End Degas Date/Time 80118 89118 30118 30/1/2 N I PK Volume 500 500 200 28 Ne 500 (mL) 200 500 B 500 S S 200 43 Sample 2 $\overline{\mathcal{C}}$ 37 5 30 すま 26 44

rier 1

Ra-226 Verification Sheet

ND 8/12/108

			, <i>[</i>						ı	かられる							W W
	Total Counts			4800	1255	リカカカ	1109	4377		465	4132						
	Background CPM			S	8	8	8	Š		4132	@O						/
<u>-</u> >>	Det #			-	1	حتد	-	1		1	_				 	;	
rior	Cell #			101	105	100	100	110		767	6) ()))					,
Ra-226 Verification Sheet	Start Count Date/Time	Annual of the Annual Bridge Company and the Company of the Company		0925 8113168 1250	SIGING 1355	8/15/108 1430	1030 Blisha 1500	5851 801S118		8-18-08 (720	080 Selps) 8	1					
Ra-226 V	End De-em Date/Time			8/15/08 1925	811S108	8115108	0801 2015118	8/13/08 1050		Bliefer truth	1						
	End Degas Date/Time	90/4/10/ 1205		8112108 (VI)	8/14/08 16/10	8/12/0x 1610	2/11/8 1910	0191 2011/8		SIKING DAZ	3/18/20 09/2F						
	Volume (mL)									\$			/				
	Sample ID			Cal 15	Ca1 37	Ca1 45	Ca145	Cal 13		51 107 5	10 1 N						

80150/8 M) F

Verification for Ra-226 Standard 0299-G

						Standard	
4/2/2008	Isotope	Detector CPM	BKG CPM	NET CPM	Detector Eff	Mass. Used (G)	Source DPM/G
D. Roy	0299-G N1	2536.9600	52.4000	2484.5600	1.917186	0.5057	2562.667649
•	0299-G N2	2520.2500	52.4000	2467.8500	1.917186	0.5056	2545.935781
	0299-G N3	2532.5000	52.4000	2480.1000	1.917186	0.5042	2565.677715
						Average =	2558.093715
Mean Value (Counting) =	2558.093715		104.944421	Pass			
Stdev =	10.63610098		0.00415782	Rule 3 (Pass/Fail)			
Certificate Value =	2437.6	dpm/miL					
Lower Limit =	2536.821513	dpm/mL					
Upper Limit =	2579.365917	dpm/mľ					
Rule 1 Pass/Fail	Fail	*exception take	n due to full r	*exception taken due to full recovery of standard			
Two sigma =	21.27220197	dpm/ml_					
10 % of Mean =	255.8093715	dpm/mL					
Rule 2 (Pass/Fail)	Pass						

Verification Rules

Rule 2 = The two sigma value used for the 95% confidence interval shall not exceed 10% of the mean value Rule 1 = The certificate value (NOT including any uncertainty) shall lie within the 95% confidence interval determined from the mean and two sigma standard deviation of the three measurements of the three verification measurements. Rule 3 = The determined mean value shall be within 10% of the certificate value.

4/02/08 using source 0024-A (Ra-226). Calibration data is recorded in this logbook under Ra-226 0024. Each The analyst prepared three standard verification sources for Ra-226 source 0299-G by transferring portions of the standard into tared glass liquid scintillation vials. One mL of DI Water and ten mLs of Ready Gel liquid scintillation cocktail was added to each vial and the vials were shaken to mix. A Blank vial was prepared in a verification. The Ra-226 efficiency calibration which was used for verification calculations was performed on similar fashion using 1 mL of DI water and 10 mL of Ready Gel cocktail. The standard verification vials and Background source were dark adapted for two hours and counted on LSC Gold for Radium source standard verification source calculation was performed as follows:

Source dpm/g = $(A - B)/(C)(D)$	Var. 2011100 201	ver source com,	BKG cpm,	System efficiency, (cpm/dpm), and	mass used for standard verification.	
큠;	. I	II	11	H	11	
Source	wnere:	•	60	O	۵	RAD SOP M-001

& Standard Traceability Log Rad

C BA	
Source Mat	eriai inio
Parent Code:	0299
Prepared By:	Angela Johnson
Carrier Conc:	0.5 M HCL
Reference Date:	12/15/1999
Ampoule Mass (g):	5.0368 g
Uncertainty:	+/- 2.5 %
LogBook No:	RC S 027 128

A Solution M	aterial Info
Isotope:	Radium-226
Prepared By:	Angela Johnson
Prep Date:	09/15/2000
Verification Date:	01/23/2008
Expiration Date:	01/23/2009
Primary Code:	0299-A
Dilution(mL):	100 mL
Mass of Parent(g):	4.6634 g
Density(g/mL):	1.0012
Balance ID:	

Calculations Converting parent activity to dpm/mL|dpm/g

 $(Mass\ of\ parent(g))\ *\ (Parm\ Activity\ (kBq/g))\ *\ (conversion\ dpm\ to\ kBq)\ /\ (Dilution\ Vol) = Parent\ Activity\ (dpm/mL)$

(Mass of parent(g)) * (Parm Activity (kBq/g)) * (conversion dpm to kBq) / Density (g/mL)/ (Dilution Vol) = Parent Activity (dpm/g)

(4.6634 g) * (43.75 kBq/g) * (60000 dpm/kBq) / (100 mL) = 122414.2500 dpm/mL

(4.6634 g) * (43.75 kBq/g) * (60000 dpm/kBq) / (1.0012 g/mL) / (100 mL) = 122273.3377 dpm/g

Secondary Standards

Prep Date	Preparer	Mass Primary	Dilution (mL)	Code	Conc dpm/mL	Verification Date	Expiration Date
08/26/2003	Angela Johnson	1.9909	100	0299-Е	2434.34 dpm/mL	11/04/2004	11/04/2005
08/26/2003	Angela Johnson	1.9872	100	0299-F	2429.82 dpm/mL	08/26/2004	08/26/2005
04/05/2005	Amanda Fehr	5.0018	250	0299-G	2446.3471 dpm/mL	04/02/2008	04/02/2009

GEL Laboratories LLC Version 1.0 9/18/2000

14) 8hsr8 14 Fil...

		11-KAO-	200-A		Isotope_	la-27	فار
	le SOP Number	415/05		Cockta	all Type Used	NIA	
Date Stati	Standard ID	D 7919-1		Matrix of \	Vial/Planchett	A, CA A, CA	
Amoul	nt Used (g o ml)					U,	
Standard Activity	ty (DPM/g o(mL))_	2446	347	Type of So	cintillation Vial_	[in	
	Reference Date	12/15/9	9	PI	ipette ID Used_	142	9303
	Expiration Date _	4/12/0	9	Ва	lance ID Used_		40216
Resid	due/Carrier Agent	0.54	Hel	Qu	enching Agent	<u> </u>	(A
		Standard Number	Quenching Vol (ul.)/ Residue Volume(ml.)	initial Wt. (g)	Final Wt. (g)	Net Wt.	
-		CALY	N. S. S. S. S. S. S. S. S. S. S. S. S. S.			/	
	7	CALZ					
	3	CA13	gar en la grande de la companya de l		/		
	U	CALY			39		
		CALS			07		
	6	CALLO		1 100	/		
	3	CAL 7					
	8	CAL 8					
	9	CAL9		Y			
	10	CALIO		4			
	A STATE	CALIL					
-	72	CALIZ					
	13	CALB				13	
	14	GH 14					
	15	CALK		1			
	Prepared By	W. 20 - N. 4. 10	oriel		Date	8/15	lo*
		1	follow		_Date	8/29	8016
	Reviewed By	1405	77.7		 Rev 1 RLM 9	/10/97	

		11-KAD-	A-008		Isotope_	La-2	26_
	Standards Prepared	415/05		Cockt	all Type Used	NIA	
	Standard ID	D 20101-	5	Matrix of	Vial/Planchett_	N.A	
Am	ount Used (g o(ml)					, ل	<u>A</u>
Standard Ac	tivity (DPM/g of mL)	2446			cintiliation Vial_		1A 29303_
	Reference Date_	12/15/9			ipette ID Used_ liance ID Used_		14021k
R	Expiration Dateesidue/Carrier Agent	D. 5 KI			enching Agent	<u></u>	NA_
					Final Wt.	Net Wt.	
		Standard Number	Quenching Vol (uL)/ Residue Volume(mL)	Initial Wt.	(g)	(mg)	who do
	16	CALIL					
	13	(ALI7		··		/	
	18	(AL 19					
	19	<u> </u>					
		CAL 21		*			
	21	CALZI					
	22 23	(H 23					
		CAL 24					
	24	CALIS	1. 1.11				
	26	PALZLO		<i>Y</i>			
	27	CALZZ				ļ	4
	28	(4128)				6 2	4
	29	CAL 29					
	30	CAL 30				<u> </u>	J
	Prepared By	. Kelw	Ponel		Date	Shulo Polis	
	Reviewed By	- Herrick	talent				
					Rev 1 RLM 9/	10/97	

		11-KAD-	4-008		isotope_	La-2	26
	cable SOP Number C	415/05		Cockt	ail Type Used_	AIM	
	Standard ID	0 2019-	5	Matrix of	Vial/Planchett_	N/A	
An	nount Used (g o(ml))					· ·	<u>. A</u>
Standard Ad	tivity (DPM/g o(mL))_	2446			cintillation Vial		1.A 201303
	Reference Date_	12/15/91	and the second s		ipette ID Used_ liance ID Used_		عالين الد
R	Expiration Date _ esidue/Carrier Agent _	D.5M	_	Qu	enching Agent		Arc
	,		Vel (al V	initial Wt.	Final Wt.	Net Wt.	
		Standard Number	Quenching Vol (uL)/ Residue Volume(mL)	(g)	(g)	(mg)	a rola
	31	CAR31				No.	ar.
	37	CAL 32					
	33 34	CAL34				/	
	35	CALBS					
	36	CH136					
	37	CAL 37			<u> </u>		4
	38	CAL32					
	39	CPL 39					•
	40	CHL 40		/			4
	41	CMUI					4
	42	CAL 42					4
	43	CALLI3				13 3	
	44	CAL 44	_/				-
	45	ALYS	<u>/</u>				
	Prepared By:	<u> Veleitous</u>	100		Date	8/25	100
	Reviewed By:	flank,	Hur		_Date Rev 1 RLM 9/		10-

	11-140.	- A 00		Isotope_	Ra.z	lo_
Applicable SOP Number 1	415		Cockta	iii Type Used_	N	λ Δ
Date Standards Prepared Standard ID	0799-	4		/ial/Planchett_	N N	<u>, A</u>
Amount Used (g or ml)	0.(Ā
Standard Activity (DPM/g or (L)	2446	<u>347</u>	Type of So	intillation Vial		1 <u>A</u>
Reference Date	12/15/9	3	Pi	pette ID Used		29303
Expiration Date_	4/2/0			lance ID Used		004021 01A
Residue/Carrier Agent_	120	uttel_	Qu	enching Agent		3 \
	Standard Number	Quenching Vol (uL)/	initial Wt.	Final Wt.	Net Wt.	80
	CALYLO	Residue Volume(mL)	(g)	(9)	W BNO	
46 42	CAL 47					
49	CAL 48					
				12.5		
	100					
	3 A					
	/J W		Service Services			
						-
					+	-
		Company of the second			The Charles	1
						+
			<u> </u>			⊿
	. Villusou	110		Date	Strik	
Prepared By	1	1400		Date	812	8013
Reviewed By	HALL			 Rev 1 RLM	9/10/97	

8-21-00 Nycomed Amersham plc Amersham Laboratories

Nycomed Amersham plc Radiation & Radioactivity Calibration Laboratory Amersham Laboratories White Lion Road Amersham Buckinghamshire HP7 9LL

ISSUED

FOR:

AEA Technology plc Isotrak . Amersham Laboratories White Lion Road Amersham Buckinghamshire` HP79LL

ion Principal radionuclide: Radium-226

RAY44 Product code: Solution number: R4/131/89

ment: Reference time: 1200 GMT on 15 December 1999

data Nuclear data quoted on this certificate are taken from the Joint European File, Version 2.2.

ion of The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2.00, which inties for a t-distribution with veff = 00 effective degrees of freedom corresponds to a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Unless indicated, all other uncertainties are expressed at the confidence level associated with one standard uncertainty.

The format used for the uncertainties in the values of radionuclidic purity is illustrated in the following examples;

 6.5 ± 2.1 6.5(21) 6.54 ± 0.21 6.54(21) 6.543 ± 0.021 6.543(21)

272

h December 1999 We 8/2000000 Nycomed

Page 1

. . .

Vers_6-08

Ra-226 WATER

Batch: LCSVER
Date: 8/20/2008
Analyst: KSD1

E E **Bkg Count Time:**

30

Procedure Code: LUC26RAL
Parmname: Radium-226
MDA: 1
Instrument Used: LUCAS CELL DETECTOR

COUNT	DATE/TIME		8/26/2008 16:10	8/26/2008 17:05	8/26/2008 17:45	8/26/2008 18:15	8/26/2008 19:00	8/26/2008 19:35	8/26/2008 20:10	8/26/2008 20:40	8/26/2008 21:10	8/26/2008 21:45
Ra-226	ERROR	DC!/L	1.5957	1.7334	1.5715	1.4866	1.7722	1.6986	1.6436	1.8313	1.8735	1.8227
Ra-226	RESULT	pCi/L	21.7600	24.1604	21.0967	21.4823	22.7382	25.0613	24.3515	25.2853	27.2897	26.7480
Ra-226	MDA	pCi/L	0.4737	0.5038	0.4735	0.3728	0.5576	0.4674	0.4505	0.5372	0.3989	0.5042
	BKG	cbm	0.267	0.267	0.267	0.200	0.267	0.267	0.267	0.267	0.133	0.267
	BKG		80	œ	œ	9	80	œ	œ	œ	4	æ
Cell	Const.	unu	1.751	1.647	1.752	1.973	1.486	1.773	1.840	1.544	1.575	1.648
Cell	#	unu	101	102	103	104	106	107	108	110	111	112
Gross	counts	cts	738	770	716	820	656	860	867	756	827	851
Count	Time	min	30	30	30	30	30	30	30	30	30	30
Sample	lo/	7	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
	Sample	۵	Ver 1	Ver 2	Ver 3	Ver 4	Ver 5	Ver 6	Ver 7	Ver 8	Ver 9	VER 10

Ver 1 Ver 3 Ver 4 Ver 5 Ver 6 Ver 6 Ver 7 Ver 9			8/26/2008 13:30 8/26/2008 13:30 8/26/2008 13:55 8/26/2008 14:25	SOT	0638-F	24.10	pCi/L	%06
Ver 2 Ver 4 Ver 5 Ver 6 Ver 7 Ver 8 Ver 9			8/26/2008 13:35 8/26/2008 13:55 8/26/2008 14:25 8/26/2008 14:45					
Ver 3 Ver 5 Ver 6 Ver 7 Ver 8 Ver 9 Ver 10			8/26/2008 13:55 8/26/2008 14:25 8/26/2008 14:45	SSI	0638-F	24.10	PC/L	100%
Ver 5 Ver 6 Ver 7 Ver 8 Ver 9			8/26/2008 14:25 8/26/2008 14:45	SOT	0638-F	24.10	pCi/L	88 %
Ver 5 Ver 6 Ver 8 Ver 9 Ver 10			8/26/2008 14:45	rcs	0638-F	24.10	pCi/L	%68
Ver 6 Ver 7 Ver 9 Ver 10		+- +- +-		CCS	0638-F	24.10	pCi/L	94%
Ver 7 Ver 8 Ver 9 Ver 10		- -	8/26/2008 15:05	CS	0638-F	24.10	pCi/L	104%
Ver 8 Ver 9 Ver 10		_	8/26/2008 15:25	SOT	0638-F	24.10	pCi/L	101%
Ver 9 Ver 10		-	8/26/2008 15:40	SOT	0638-F	24.10	pCi/L	105%
Ver 10		-	8/26/2008 15:55	SOT	0638-F	24.10	pCi/L	113%
5		-	8/26/2008 16:10	SOT	0638-F	24.10	pCi/L	111%
DEGASSING DATE/TIME	DE-EMAN. DATE/TIME	DEGASS- DE-EM	dE-EM- COUNT	constant	constant	constant	Net CPM cpm	Ingrowth constant
8/21/2008 15:30 8/2	8/26/2008 13:00	117.50	3.17	0.5882	0.9764	1.0019	24.3333	0.5754
8/21/2008 15:30 8/2	8/26/2008 13:30	118.00	3.58	0.5897	0.9733	1.0019	25.4000	0.5751
8/21/2008 15:30 8/2	8/26/2008 13:55	118.42	3.83	0.5910	0.9715	1.0019	23.6000	0.5752
8/21/2008 15:30 8/2	8/26/2008 14:25	118.92	3.83	0.5925	0.9715	1.0019	27.1333	0.5767
8/21/2008 15:30 8/2	8/26/2008 14:45	119.25	4.25	0.5936	0.9684	1.0019	21.6000	0.5759
8/21/2008 15:30 8/2	8/26/2008 15:05	119.58	4.50	0.5946	0.9666	1.0019	28.4000	0.5758
8/21/2008 15:30 8/2	8/26/2008 15:25	119.92	4.75	0.5956	0.9648	1.0019	28.6333	0.5757
8/21/2008 15:30 8/2	8/26/2008 15:40	120.17	2.00	0.5964	0.9630	1.0019	24.9333	0.5754
8/21/2008 15:30 8/2	8/26/2008 15:55	120.42	5.25	0.5971	0.9611	1.0019	27.4333	0.5750
8/21/2008 15:30 8/2	8/26/2008 16:10	120.67	5.58	0.5979	0.9587	1.0019	28.1000	0.5743

Vers_6-08

End De-em Start Count Cell Det Background Total Date/Time # # CPM Counts	8 1 101 01	Arubles 1765 102 1 8 770	8:26.08 (745 1175 1 8 716	8.22.08 1815 104 1 X 820	8 100 100 B 150	000 8 1 101 2560	3 2010 108 1 8 867	05t 8 1 011 0x02	±28 b 1 111 o112	214 112 1 8 851						
Start Count Cell Det Date/Time # #	1 9	Anolog 1765	(大)	1815	1 701 0061	1935	2019		0112							
Start Count Date/Time		Anolog 1765	(大)	1815	1900	1935	2019		0112							
	8/20/06/10/10	Brulos						2040		212		- "				
	8/20/06		8.26.08	BC 97.	2072	8					- 1	1		١	1	
End De-em				8	60	B.W.08	80918	8 16 of	\$ 8.26.0\$	8c78						
Ind D	1200	1830	1355	M15	14H S	5051	623	1540	1959	د 100		:				
	121/20 1520 Stulps (1500	stude 1930	Shulos	8/20/108	8/20/08	8/20/08	801m/x	8/100/18	8/20108	8/20/08	•					
End Degas	26510	1530	1530	1530	8hu los 1530	S/W108 1530	1530	8/21/08/1530	Stulor 1530	8/41/08 1530	ges1 8	K 1536				
End]	\$ 21 P	RINIOX	Shulor	SINIOR	Strill	1m/8	8/11/18 1530	8/11/8	Slule	81M	some	8/17/g	:			
Volume	5 000	200	500	200	200	500	500	200	200	500	280	200				
Sample	3	JW J	JW 3	VW 4	クるへ	227	787	8 M	2 2	5 3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	11 W/V		·		

的国子里

Verification for Ra-226 Standard 0638-F

) Rov						Standard	
7002/22/2007	Isotope	Detector CPM	BKG CPM	NET CPM	Detector Eff Ma	ass. Used (mL)	Detector Eff Mass. Used (mL) Source DPM/mL
	0638-F N1	1239.9000	31.5000	1208.4000	4.624018	1.0000	261.3311626
	0638-F N2	1222.8000	31.5000	1191.3000	4.624018	1.0000	257.6330801
	0638-F N3	1219.4000	31,5000	1187.9000	4.624018	1.0000	256.8977889
						Average =	258.6206772
Mean Value (Counting) =	258.6206772		96.8384646	Pass			
Stdev =	2.375965421		0.00918707	Rule 3 (Pass/Fail)			
Certificate Value =	267.1						
Lower Limit =	253.8687464						
Upper Limit =	263.3726081						
Rule 1 Pass/Fail	Ta.	'exception taken	due to full reco	exception taken due to full recovery of standard			
Two sigma =	4.751930843						
10 % of Mean =	25.86206772	,					
Rule 2 (Pass/Fail)	Pass						

Verification Rules

determined from the mean and two sigma standard deviation of the three measurements Rule 2 = The two sigma value used for the 95% confidence interval shall not exceed 10% of the mean value Rule 1 = The certificate value (NOT including any uncertainty) shall lie within the 95% confidence interval of the three verification measurements

Rule 3 = The determined mean value shall be within 5% of the certificate value.

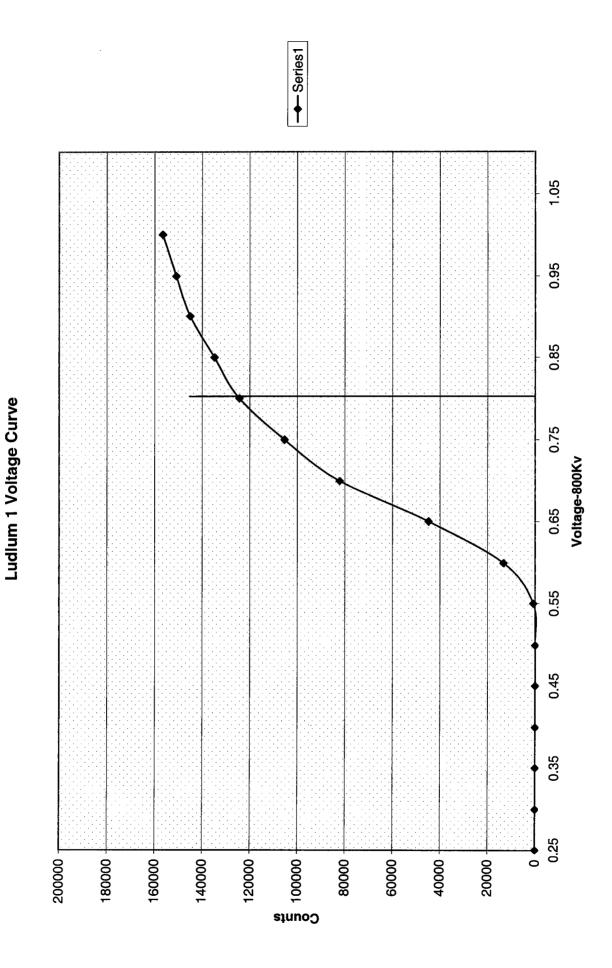
12/27/07 using source 0024-A (Ra-226). Calibration data is recorded in this logbook under Ra-226 (0024-A). The analyst prepared three standard verification sources for Ra-226 source 0638-F by transferring portions of scintillation cocktail was added to each vial and the vials were shaken to mix. A Blank vial was prepared in a verification. The Ra-226 efficiency calibration which was used for verification calculations was performed on similar fashion using 1 mL of DI water and 10 mL of Ready Gel cocktail. The standard verification vials and Background source were dark adapted for two hours and counted on LSC YELLOW using source standard the standard into tared glass liquid scintillation vials. One mL of DI Water and 10 mL Ready Gel liquid Each verification source calculation was performed as follows:

mass used for standard verification. BKG cpm, System efficiency, (cpm/dpm), and Source dpm/g = (A - B)/(C)(D)Ver. source cpm, Reference RAD SOP M-001 11 where:

Applicable SOP Num	ber <u>GL-VUAD-</u> V	A-003		Isotope	Ra-2-	26
Date Standards Prepa	red 17 18 1	07	. Coc	ktail Type Used	N)	<i>¥</i>
Standard	110 0638	- F	. Matrix o	of Vial/Planchett	AIG	
Amount Used (g or	<u>m)</u> 0.1.				219 NIP	+
Standard Activity (DPM/g or	nl) 267.5	19	Type of	Scintillation Vial	NIA	-
•	ate 1/23/04			Pipette ID Used	14293	<i>\$03</i>
	ate 12/20/08		В	alance ID Used	36	04 04 p
Residue/Carrier Ag	ent O·\H	Hel	Q	uenching Agent	NIA	-
	································			,		
	Standard Number	Quenching Vol (uL)/ Residue Volume(mL)	Initial Wt. (g)	Final Wt. (g)	Net Wt. (mg)	
	Verl					
2	Vev Z					
3	ver3			ДO		
4	ver4			RT		
5	ver 5			300		
4	Vero		7			
7	Ver 7					
8	Vers					
9	Ver 9					
10	Ver10					
11	Veril					
12	Ver 12					
. 13	Ver13					
14	1014					
I.S.	Varis					
Prepared		selo		Date	8/29/08	
Reviewed	By: MAN ST.	Jam		Date _	8/28/	06

Rev 1 RLM 9/10/97

Applicable SOP Number	GL-Lano. A.	-008		Isotope	Va-22	lφ
Date Standards Prepared	12/18/0	7	Coc	ktail Type Used	N/	7
Standard ID	<u> </u>	P			νı	•
			•		14	A
Amount Used (g o) 10.1					1 A
Standard Activity (DPM/g omL)	267-5	19	Type of S	Scintillation Vial	<u> </u>	-
Reference Date	1/23/0	4		Pipette ID Used	14293	500
Expiration Date	12/20/	0%	В	alance ID Used	3604	046
	0.141		•		N	
			•		•	
	Standard Number	Quenching Vol (uL)/	Initial Wt.	Final Wt.	Net Wt.	
	10 11	Residue Volume(mL)	(g)	(g)	(mg)	
16	Verle					ł
1+	Ver 17					
19	Ver 13					
19	Vev 19					
26	Ver 70			80		<u> </u>
21	Verzi		2010			
22	Ver 22	N N				
23	Vev23					
24	Verzy					
,						
	·					
					<u> </u>	J
Prepared By:	Kuly bone	U		Date	8heros	<i>Y</i>
•	Ilke fr.	Laur		Date	8128	
i teviewed by.	trus Or			Dale .	<u> </u>	100


Rev 1 RLM 9/10/97

VOLTAGE CURVE 08

	Voltage	Curve Ludlu	m # 1	
Volts	Counts	Date	Time	Detector
0.00	0	8/19/2008	11:00	1
0.05	0	8/19/2008	11:00	1
0.10	0	8/19/2008	11:00	1
0.15	0	8/19/2008	11:00	1
0.20	0	8/19/2008	11:00	1
0.25	0	8/19/2008	11:00	1
0.30	0	8/19/2008	11:00	1
0.35	0	8/19/2008	11:00	1
0.40	0	8/19/2008	11:00	1
0.45	0	8/19/2008	11:00	1
0.50	0	8/19/2008	11:00	1
0.55	813	8/19/2008	11:00	1
0.60	13369	8/19/2008	11:00	1
0.65	44807	8/19/2008	11:00	1
0.70	82131	8/19/2008	11:00	1
0.75	105365	8/19/2008	11:00	1
0.80	124405	8/19/2008	11:00	1
0.85	134938	8/19/2008	11:00	1
0.90	145048	8/19/2008	11:00	1
0.95	150949	8/19/2008	11:00	1
1.00	156594	8/19/2008	11:00	1

Page 1

8 hrose

101	1.751	8/29/2008
102	1.647	8/29/2008
103	1.752	8/29/2008
104	1.973	8/29/2008
105	1.749	8/29/2008
106	1.486	8/29/2008
107	1.773	8/29/2008
108	1.840	8/29/2008
109	1.512	8/29/2008
110	1.544	8/29/2008
111	1.575	8/29/2008
112	1.648	8/29/2008

General Engineering Laboratories

2040 Savage Road, Charleston, SC 29414 (843)556-8171

Lucas Cell Calibration Package

		YES	NO	Comments
1)	Is all calibration standard information enclosed for:			
•	the primary standard certificate?	V		
	the secondard standard(s) documentation?	✓		
	standard preparation information?	V		
	standard < 1 Year old or verified?	V		
				
2)	Is the efficiency calibration report included?			
۵١				
3)	Is the raw count data included for:		7	
	Cell constant determination?	 		
	Plateau generation?	<u> </u>		
4)	Are the calibration verifications included?	V		
٠,				
5)	Are the instrument settings included:			
	HVPS settings?			
				
6)	Has the CELLEFF.xls file been updated?	V	<u> </u>	
71	Have the calibration dates been updated in ALPHALIMS?			
7)	Have the campration dates been abadied in ALT FINLING :	<u></u>		
	1 0			
	Prepared By: <u>Vell Donell</u>	Date:	19/19/08	
	Reviewed By: Usu H. Adura	Date:	12/19/03	
	' 3	Establis Detail	1.1-	
	-	Effective Date:	12/19/08	

Ra-226 Cell Constants

12/15/1999 0299-G 0.1 2446.35

Standard Reference date:

Standard ID:

Volume added (mL):
Standard Reference Activity (DPMmL):

																								1000 Java	2017	かいなり												
EG.	ate	Ę			_		_		_	_		<u> </u>		_		•		<u> </u>		۸.	•',	<u> </u>					Ī.,		_	٥.	<u> </u>		<u> </u>		ζ,	٥.		
Decay from	Std Ref Date	to count	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	29000	29060	29060	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962	0.9962
t3 (days)	Std Ref Date	to count	3198	3201	3208	3198	3201	3234	3198	3201	3208	3198	3201	3213	3233	3201	3213	3198	3201	3213	3198	3201	3213	3108	1025	3213	3198	3201	3213	3198	3201	3213	3198	3201	3213	3198	3201	3213
t2 (days)	end-flush	to count	0.27778	0.20139	0.43056	0.28125	0.21181	1.00347	0.28472	0.21528	0.44792	0.28819	0.2222	0.20486	0.76736	0.24653	0.21181	0.40625	0.25694	0.21181	0.40972	0.30208	0.21875	0.41667	0.91230	-0.89599-	0.37153	0.33333	0.23958	0.37500	0.34375	0.24653	0.38889	0.40625	0.20486	0.39583	0.42014	0.24306
t1 (days)	end-degas	to flush	2.82292	2.96181	2.96875	2.84375	2.96528	6.90625	2.86111	2.96875	3.01042	2.88194	2.96181	3.97569	6.92014	2.96528	3.99653	2.92014	2.95833	4.02083	2.93750	2.95139	4.04167	3.85486	201102	4.05.00	3.02083	2.89236	4.07986	3.03819	2.88542	4.09722	3.04861	2.92014	4.15972	3.06250	2.91667	4.17708
Кломп	activity	dpm	243.02	243.02	243.02	243.02	243.02	243.02	243.02	243.05	243.02	243.02	243.05	243.02	243.02	243.02	243.02	243.02	243.02	243.02	243.02	243.02	243.02	243.02	20.042	20.00	243.02	243.02	243.02	243.02	243.02	243.02	243.02	243.02	243.02	243.02	243.02	243.02
		срш	186.53	198.30	178.70	225.97	214.17	308.27	210.00	220.43	209.93	204.40	222.37	251.17	252.80	166.63	239.00	207.20	220.13	270.83	203.13	203.50	255.20	208.60	212.47	236.03	235.77	205.67	293.17	222.17	204.73	270.53	205.00	206.90	263.90	230.87	213.50	276.23
count	time	uju	30	8	30	30	ଚ	30	8	8	30	99	8	30	8	8	30	8	ଞ	30	93	ଚ	93	8	8	k	န	8	30	30	8	90	99	ଞ	8	8	8	30
	tota/	counts	9659	5949	5361	6779	6425	9248	9300	6613	6298	6132	6671	7535	7584	4999	7170	6216	6604	8125	6094	6105	7656	8968	4/53	\$	7073	6170	8795	6665	6142	8116	6150	6207	7917	6926	6405	8287
	þkg	cpm	0.267	0.267	0.267	0.267	0.267	0.267	0.267	0.267	0.267	0.267	0.267	0.133	0.267	0.167	0.167	0.233	0.267	0.267	0.267	0.267	0.233	6.207	0133	889	0.033	0.067	0.100	0.033	0.100	0.033	0.033	0.133	0.100	0.033	0.267	0.267
Date/lime	end of	degas	9/12/2008 13:20	9/15/2008 9:05	9/22/2008 10:00	9/12/2008 13:20	9/15/2008 9:35	10/13/2008 16:00	9/12/2008 13:20	9/15/2008 10:00	9/22/2008 10:00	9/12/2008 13:20	9/15/2008 10:30	9/26/2008 9:45	10/13/2008 16:00	9/15/2008 10:55	9/26/2008 9:45	9/12/2006 13:20	9/15/2008 11:25	9/26/2008 9:45	9/12/2008 13:20	9/15/2008 11:50	9/26/2008 9:45	9712/2006 13:20	9/45/2009 10:15	9/26/2026 9:43	9/12/2008 13:20	9/15/2008 13:50	9/26/2008 9:45	9/12/2008 13:20	9/15/2008 14:15	9/26/2008 9:45	9/12/2008 13:20	9/15/2008 14:30	9/26/2008 9:45	9/12/2008 13:20	9/15/2008 14:50	9/26/2008 9:45
Date/time	flushed	to cell	9/15/2008 9:05	9/18/2008 8:10	9/25/2008 9:15	9/15/2008 9:35	9/18/2008 8:45	10/20/2008 13:45	9/15/2008 10:00	9/18/2008 9:15	9/25/2008 10:15		9/18/2008 9:35	9/30/2008 9:10	10/20/2008 14:05	9/18/2008 10:05	9/30/2008 9:40	9/15/2008 11:25	9/18/2008 10:25	9/30/2008 10:15	9/15/2008 11:50	9/18/2008 10:40	9/30/2008 10:45	8/15/2008 12:15	-0/18/2008 11:00	BY30/2000 11:10	9/15/2008 13:50	9/18/2008 11:15	9/30/2008 11:40	9/15/2008 14:15	9/18/2008 11:30	9/30/2008 12:05	9/15/2008 14:30	9/18/2008 12:35	9/30/2008 13:35	9/15/2008 14:50	9/18/2008 12:50	9/30/2008 14:00
	Date/Time	of count	9/15/2008 15:45	9/18/2008 13:00	9/25/2008 19:35	9/15/2008 16:20	9/18/2008 13:50	10/21/2008 13:50	9/15/2008 16:50	9/18/2008 14:25	9/25/2008 21:00	9/15/2008 17:25	9/18/2008 14:55	9/30/2008 14:05	10/21/2008 8:30	9/18/2008 16:00	9/30/2008 14:45	9/15/2008 21:10	9/18/2008 16:35	9/30/2008 15:20	9/15/2008 21:40	9/18/2008 17:55	9/30/2008 16:00	21:22:308:22:15	S/15/2000 10:30	9/39/2008 18:35	9/15/2008 22:45	9/18/2008 19:15	9/30/2008 17:25	9/15/2008 23:15	9/18/2008 19:45	9/30/2008 18:00	9/15/2008 23:50	9/18/2008 22:20	9/30/2008 18:30	9/16/2008 0:20	9/18/2008 22:55	9/30/2008 19:50
	Standard	Source	Cal 14	Cal 14	Cal 14	Cal 13	Cal 13	Cal 14	Cal 43	Cal 43	Cal 43	Cal 15	Cal 15	Cal 15	Cal 13	Cal 44	Cal 4	Cal 46	Cal 46	Cal 46	Cal 36	Cal 36	Cal 36	88183	Called	08 80	Cal 19	Cal 19	Cal 19	Cal 47	Cal 47	Cal 47	Cal 37	Cal 37	Cal 37	Cal 42	Cal 42	Cal 42
			1.993	0.068		2.261	0.156		2.254	0.019		2.193	0.102		1.799	0.167		2.259	0.030		2.146	0.038		2.283	0.135		2.291	0.137		2.253	0.059		2.171	0.057		2.322	0.081	ĺ
			Average	Stdev		Average	Stdev		Average	Stdev		Average	Stdev		Average	Stdev		Average	Stdev		Average	Stdev		Average	Stoev		Average	Stdev										
	Çe	constant	2.021	2.043	1.915	2.436	2.209	2.137	2.255	2.273	2.234	2.184	2.300	2.096	1.677	1.730	1.990	2.240	2.293	2.245	2.187	2.141	2.110	2.239	2.243	3116	2.471	2.212	2.420	2.320	2.210	2.230	2.140	2.238	2.136	2.405	2.315	2.244
	7ncas	# Jeo		50	反	30 5	88	202	502	82	202	ģ	8	20 20 20	285	285	202	506	506	506	207	207	202	8	7	<u> </u>		508	508	210	210	210	211	211	211	212	212	212
																						_	_	_	ν.:		2											;

Page 1

Ra-226 Verification Sheet

·		(2)											8	12	الم الحر	/	
Total Counts	1925	2845	8500														
Background CPM	00	60.	00														
m#	4	$ \iota $	2														
# Cell	76 -	w	43								•						
Start Count Date/Time	9/25/08 1935	0/02/18:2010	1/25/08 2100										$\mathcal{C}\mathcal{U}$	17/18/08			
End De-em Date/Time	apolos aus		9129/08 1015														
End Degas Date/Time	apodox 1000	alsoles 1000	9122108 1000	9/2/108 1000	91211081000	Grapher 1000	9/12/08 1000	91220 X 1000	9122108 1000	9122108 1000	9122408 1000	912210x 1000					
Volume (mL)	200	500	200	005	2005	200	200	200	005	500	200	206					
Sample ID	Ca114	4413	En 143	51 107	(पा पर्	C4146	Ca136	1 (4130	6117)	(u147	(4137	27197					

Ra-226 Verification Sheet

ţ

					- 7w	281171		7012107					١	;		j al	5 ⁷⁰	Mala
Total Counts	5596	6414	6300	6132	135	9179	6094	8579	7013	6665	6150	non						
Background CPM	٧	É	8	8	S	7	8	\$	1	1	1	1						
Det #	4	7	7	7	4	7	2	4	7	7	7	7						
Cell #	701	W	202	hon	587	ካባገ	רשל	30%	109	110	211	1 N		•	3 01			
Start Count Date/Time	1545	1420	1650	1771	1,805	2110	2140	2215	!	`	2350	9.16.08 0020			ROBIVA M			
Start Date	5751 201511b	9/15/10% 1620	9.15.03 1650	9.15.00	9-15-08	9,15,09	9.15.08	9.15.08	9,15,08	9.15.08	9.15.08							
e-em l'ime	Bars	0435	1000	1020	1155	1115	1150	STAL	1320	M15	1430	1450			مستعمد سعدسه سعدد			
End De-em Date/Time	9/13/18	9115116	2015116	वाडिक	911511pc	3015116	9/15/08	disibs	alistor	9115116	911510k	91115108						
egas Fime	1320	1320	1320	1220	0751	(1320	378	4751 7		1320	1320	725n						
End Degas Date/Time	9/12/08 1320	9/11/08 1320	91176V 1320	0751 SOP1116	4112108 1520	9/17/18 1320	9112lox	20/21/10	शायल	なったこしゃ	sopulb	9120					\	
Volume (mL)	Sec	996	200	200	ags	200	200	200	200	200	201	200						
Sample ID	Cal 14	CU 13	(a) 43	Cal 15	(4) 44	(a) 46	(41 3b	E 41 36	61 19	(ul 47	151177	Ca142						

Ra-226 Verification Sheet

					3								١	C, re	(a)	7	<u>)</u>
Total Counts	1535	7170	8115	1456	7681	8795	2/18	79,7	8287	`							
Background CPM	4	5	8	7		3	-	3	8								
Det #	4	2	r	4	1	4	7	7	7	:							
Cell	ህንሳ	205	non	Z	10C	WA	21 U	U II	Nr		\						
Start Count Date/Time	9/20/00 1405	9/30/08 1445	alsolot isco	appled 1600	4130108 1635	9-30-08 (725	9.30.08 1800	9.30.08 1830	9.30.08 1950				80/82/V2/ 01/1				-
End De-em Date/Time	alsolva paro	9130118 0940	9/30108 1015	9/30/05 wis	alsolva 1110	9/30/08 1140	9/31/08 1205	4/3010x 1335	9130108 HM				7.0	W			
End Degas Date/Time	aluntoe 1945	alwire pays	glaples 1941s	appelor vays	9/20/18 VOLUS	SHAD VOILLIA	opules 1945	altuolok usuus	almos ogus								
Volume (mL)	005	0.95	999	200	006	905	005	995	200								
Sample ID	3	hh	1h	16	98	Ы	4	16	47 47								

Ra-226 Verification Sheet

								50	11/19/08					8012	أرم	i,a	5
Total Counts	SA49	lo4 25	4413	6io71	4999	1,099	6105	(374	0119	2/19	(20)	6405					
Background CPM	مح	8	8	8	5	8	8	7	4	6	4	>					
Det #	7	4	4	4	7	4	4	6	7	2	7	4	>	p 2			
Cell #	107	MI	WS	704	202	206	197	7.08	209	240	1711	なったったったったったったったったったったったったったったったったったったった		20121121			
Start Count Date/Time	9118/08 1200	1545 ALISIUS 1350	alkink 1425	9/18/118 1455	009/ 20/81/6	9/18/108 1635	9/18/08 1755	9/18/08 1830	3/18/08 1915	9/18/08 1945	9/18/08 2220	9/18/08 2259		3			
End De-em Date/Time	9118108 6610	allelor usus	9118108 M15	9/18/108 19435	9118108 1005	9118108 1025	gistles 1040	Alistos iloo	9115108 1115	9/18/18	9118108 1235	alisies 1250					
End Degas Date/Time	अधिक व्यव्हा	911918 1435	9991 80151 p	9/15/108 1030	9/15/08 1055	8211 MISIN	911510K 1150	9119108 1245	9 11510 8 1350	SIM 21/5116	05 bl 2015116	95h] 8915116					
Volume (mL)	500	200	905	200	200	995	995	999	995	908	206	945					
Sample ID	Cal 14	EN 13	Ca1 43	(A) 15	५५ १७७	Cal 46	Ca 136	s Eatso	61 170 37	Ch 12	(M137	7h14)					

			T.								,		· · ·			 	
Total Counts		h851															
Background CPM	>	8															
Det #	7	2						r									
# Ce≡	101	597															
Start Count Date/Time	10.21.08 13:50	10 12 M 30 M 30	ľ			7					goth of	10.					
End De-em Date/Time	S	50H1 20104191															
End Degas Date/Time		0901 20/21/01		,													
Volume (mL)	200	200												;	,		
Sample ID	Ca1 14	51	45	74	3	98	46	30	bl	5	3.1	14					

Mutialia,

Verification for Ra-226 Standard 0299-G

						Standard	
4/2/2008	Isotope	Detector CPM	BKG CPM	NET CPM	Detector Eff	Mass. Used (G)	Source DPM/G
D. Roy	0299-G N1	2536.9600	52.4000	2484.5600	1.917186	0.5057	2562.667649
	0299-G N2	2520.2500	52.4000	2467.8500	1.917186	0.5056	2545.935781
	0299-G N3	2532.5000	52.4000	2480.1000	1.917186	0.5042	2565.677715
						Average =	2558.093715
Mean Value (Counting) =	2558.093715		104.944421	Pass			
Stdev =	10.63610098		0.00415782	Rule 3 (Pass/Fail)			
Certificate Value =	2437.6	dpm/mL.					
Lower Limit =	2536.821513	dpm/mf					
Upper Limit =	2579.365917	dpm/mL				•	
Rule 1 Pass/Fail	Fail	*exception take	n due to full r	*exception taken due to full recovery of standard			
Two sigma =	21.27220197	dpm/mľ		•			
10 % of Mean =	255.8093715	dpm/ml,					
Rule 2 (Pass/Fail)	Pass						

Verification Rules

Rule 2 = The two sigma value used for the 95% confidence interval shall not exceed 10% of the mean value Rule 1 = The certificate value (NOT including any uncertainty) shall lie within the 95% confidence interval determined from the mean and two sigma standard deviation of the three measurements of the three verification measurements.

Rule 3 = The determined mean value shall be within 10% of the certificate value.

The analyst prepared three standard verification sources for Ra-226 source 0299-G by transferring portions of 4/02/08 using source 0024-A (Ra-226). Calibration data is recorded in this logbook under Ra-226 0024. Each scintillation cocktail was added to each vial and the vials were shaken to mix. A Blank vial was prepared in a verification. The Ra-226 efficiency calibration which was used for verification calculations was performed on Background source were dark adapted for two hours and counted on LSC Gold for Radium source standard similar fashion using 1 mL of DI water and 10 mL of Ready Gel cocktail. The standard verification vials and the standard into tared glass liquid scintillation vials. One mL of DI Water and ten mLs of Ready Gel liquid verification source calculation was performed as follows:

Source dpm/g = $(A - B)/(C)(D)$		Ver. source cpm,	BKG cpm,	System efficiency, (cpm/dpm), and	mass used for standard verification.
큠	œ.	II	II	II	H
Source	wnere:	V	8	ပ	۵

William William Williams Holos

& Standard Traceability Log Rad

Source Mate	erial Info
Parent Code:	0299
Prepared By:	Angela Johnson
Carrier Conc:	0.5 M HCL
Reference Date:	12/15/1999
Ampoule Mass (g):	5.0368 g
Uncertainty:	+/- 2.5 %
LogBook No:	RC S 027 128

A Solution M	aterial Info
Isotope:	Radium-226
Prepared By:	Angela Johnson
Prep Date:	09/15/2000
Verification Date:	01/23/2008
Expiration Date:	01/23/2009
Primary Code:	0299-A
Dilution(mL):	100 mL
Mass of Parent(g):	4.6634 g
Density(g/mL):	1.0012
Balance ID:	1

Calculations Converting parent activity to dpm/mL|dpm/g

 $(Mass\ of\ parent(g))*(Parm\ Activity\ (kBq/g))*(conversion\ dpm\ to\ kBq)\ /\ (Dilution\ Vol) = Parent\ Activity\ (dpm/mL)$

 $(Mass\ of\ parent(g))*(Parm\ Activity\ (kBq/g))*(conversion\ dpm\ to\ kBq)\ /\ Density\ (g/mL)/\ (Dilution\ Vol) = \\ Parent\ Activity\ (dpm/g)$

(4.6634 g) * (43.75 kBq/g) * (60000 dpm/kBq) / (100 mL) = 122414.2500 dpm/mL

(4.6634 g) * (43.75 kBq/g) * (60000 dpm/kBq) / (1.0012 g/mL) / (100 mL) = 122273.3377 dpm/g

Secondary Standards

Prep Date	Preparer	Mass Primary	Dilution (mL)	Code	Conc dpm/mL	Verification Date	Expiration Date
08/26/2003	Angela Johnson	1.9909	100	0299-E	2434.34 dpm/mL	11/04/2004	11/04/2005
08/26/2003	Angela Johnson	1.9872	100	0299-F	2429.82 dpm/mL	08/26/2004	08/26/2005
04/05/2005	Amanda Fehr	5.0018	250	0299-G	2446.3471 dpm/mL	04/02/2008	04/02/2009

GEL Laboratories LLC Version 1.0 9/18/2000

W 1/19/08

General Engineering Laboratories Verification Source Preparation Sheet

	GURAD 1	1- 00%		lsotope	Ra-211	n
Applicable SOP Number	415105		Cockt	ail Type Used	NA	
Date Standards Prepared Standard ID	02996			Vial/Planchett	NA NA	
Amount Used (g o(ml))_	1446.31	17	Type of S	cintillation Vial	NA	
ndard Activity (DPM/g or mL)	19/15/			ipette ID Used_	142930)3
Expiration Date	41210	9	Be	lance ID Used_	360401	مال
Residue/Carrier Agent_	0.5 M	HCI	Qı	enching Agent_	NA_	
	Standard Number	Quenching Vol (uL)/ Residue Volume(mL)	initial Wt.	Final Wt.	Net Wt.	
iu l	C01(4	West of the State				
13	Calls					
43	CU143					
15	Calis					
44	CG144		/			
46	Ca146		/			
36	Ca136		To the	Nalot		
19	Ca1 19		<u> </u>	\mathcal{N}	e e se se se	
U 1	Ca147					
31	Ca137					
UV	Ca14t	/				
	1/20000	2. 8.		Date	12/191	%
Prepared By:	race DI	<u> </u>		Date	12/19	06
Reviewed By	Mky	5 Jelda				
	tar in all your			Rev 1 RLM 9/	10/97	

UKAS ACCREDITED CALIBRATION LAEORATORY No. 0146

		1200 GMT on 15 December 1999
met	n 1:	43.75 kilobecquerels per gram of solution
	which is equivalent to:	1.183 microcuries per gram of solution
	Mass of solution:	5.0368 grams
	도로 보다는 것이 되는 생각을 보았다고 있는 것으로 하다고 하는 사람이 있다고 하는 수 있다.	220.4 kilobecquerels
	Total activity of radium-226:	5.956 microcuries
	which is equivalent to:	1600 years
	Recommended half life:	

Method of measurement: The activity of the solution was measured using a high pressure re-entrant ionisation chamber calibrated with a large number of absolutely standardised solutions.

Calibration date: 15 December 1999

The calibration date is provided for added information only, and must not be confused with the reference date on pages 1 and 2 of the certificate. It is the reference date that must be used in all calculations relating to the values of activity.

Expanded uncertainty in the radioactive concentration quoted above: ± 2.5 %

Combined Type A uncertainty: ± 0.2 % Combined Type B uncertainty: ± 1.3 %

onuclidic The estimated activities of any radioactive impurities found by high-resolution gamma ray spectrometry, or in any other examination of the solution, are listed below expressed as percentages of the activity of the principal radionuclide at the reference time.

Carrier free in 0.5M HCL nical osition

> This product meets the quality assurance requirements for achieving traceability to NIST as defined in ANSI N42.22-1995.

1 year = 365.25 days

At the reference date radium-226 was shown to be in radioactive equilibrium with its daughter nuclides down the decay chain to polonium-214 and thallium-210, the precursors of lead-210. The ionisation chamber was calibrated using a standard supplied by the National Institute of Standards and Technology, Washington DC, USA.

No 12/19/08

Ra-226 WATER

Batch: LCSVER
Date: 10/31/2008
Analyst: KSD1

Procedure Code: LUC26RAL
Parmname: Radium-226
MDA: 1 pCi/L
Instrument Used: LUCAS CELL DETECTOR

шi 8

Bkg Count Time:

										Z	12/19/08			
COUNT	DATE/TIME		11/17/2008 15:10	11/17/2008 15:45	10/30/2008 16:05	10/30/2008 18:20	11/17/2008 16:20	10/30/2008 20:20	10/30/2008 22:00	11/20/2008 16:40	10/30/2008 23:40	10/31/2008 1:15	11/17/2008 21:55	10/31/2008 9:15
Ra-226	ERROR	, pCi/L	1.3817	1.2427	1.8110	1.8580	1.4718	1.8604	1.8858	1.4723	1.6596	1.7736	1.3401	1.7586
Ra-226	RESULT	pCi/L	22.1841	20.3702	24.4866	25.3188	22.6936	26.1045	25.2245	16.9552	21.0513	23.7356	22.0840	22.6294
Ra-226	MDA	pCi/L	0.3504	0.3089	0.5419	0.5519	0.3882	0.5373	0.5705	0.5132	0.4042	0.2527	0.3314	0.4223
	BKG	cpm	0.267	0.267	0.267	0.267	0.267	0.267	0.267	0.267	0.133	0.033	0.267	0.133
Cell	Const.	unu	1.993	2.261	2.254	2.193	1.799	2.259	2.146	2.283	2.291	2.253	2.171	2.322
Cell	#	mnu	201	505	203	204	202	206	207	508	209	210	211	212
Gross	counts	cts	1014	1056	726	737	937	780	711	533	630	691	1067	648
Count	Time	min	30	99	ဓ	30	တ္တ	ဓ	ဓ	98	30	90	ස	တ္တ
Sample	Vol		0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
	Sample	. ⊡	VER 1	VER 2	VER 3	VER 4	VER 5	VER 6	VER 7	VER 3	VER 9	VER 10	VER 11	VER 12

	3PD								1/10	\$ 1 8 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	(Z) (S)			_	<u>.</u>									3	181			
	Recovery/RPD	92%	85%	102%	105%	94%	108%	105%	70%	8 1%	%86	95%	94%	Ingrowth	constant		0.6833	0.6833	0.3907	0.3943	0.6833	0.3931	0.3900	0.4073	0.3898	0.3875	0.6633	0.3681
	NC units	pCi/L	NO N	pCi/L	pCi/L	pCi/L	PC!/	Net	CPM	cpm	33.5333	34.9333	23.9333	24.3000	30.9667	25.7333	23.4330	17:5000	20.8670	23.0003	35.3000	21.4670						
	NC	24.10	24.10	24.10	24.10	24.10	24.10	24.10	24.10	24.10	24.10	24.10	24.10	constant			1.0019	1.0019	1.0019	1.0019	1.0019	1.0019	1.0019	6189.1	1.0019	1.0019	1.0019	1.0019
	Standard ID	0638-F	0638-F	0638-F	0638-F	0638-F	0638-F	0638-F	0638-F	0638-F	0638-F	0638-F	0638-F	constant			0.9642	0.9630	0.9630	0.9569	0.9617	0.9473	0.9373	0.9636	0.9302	0.9215	0.9302	0.8707
	Sample Type	SOT	CS	SOT	SOT	SOT	SOT	S	83	SST	SST	SOT	CS	constant			0.7073	0.7083	0.4049	0.4113	0.7092	0.4142	0.4153	0.4219	0.4182	0.4197	0.7117	0.4219
DO-11 DA	Run Date	11/17/2008 10:20	11/17/2008 10:45	10/30/2008 11:05	10/30/2008 12:30	11/17/2008 11:10	10/30/2008 13:10	10/30/2008 13:25	11/20/2008 11:45	10/30/2008 14:05	10/30/2008 14:25	11/17/2008 12:20	10/30/2008 14:55	de-EM-	COUNT		4.83	5.00	5.00	5.83	5.17	7.17	8.58	4.82	9.58	10.83	9.58	18.33
	Det#	2	7	7	8	8	8	2	2	8	7	7	Ø	DEGASS-	DE-EM		162.75	163.17	68.75	70.17	163.58	70.83	71.08	72.58	71.75	72.08	164.75	72.58
	Sample Dup													DE-EMAN.	DATE/TIME		11/17/2008 10:20	11/17/2008 10:45	10/30/2008 11:05	10/30/2008 12:30	11/17/2008 11:10	~	•	11/20/2008 11:45	10/30/2008 14:05	10/30/2008 14:25	11/17/2008 12:20	10/30/2008 14:55
	Sample ID	201	202	203	204	205	506	207	208	508	210	211	212	DEGASSING	DATE/TIME		11/10/2008 15:35	11/10/2008 15:35	10/27/2008 14:20	10/27/2008 14:20	11/10/2008 15:35	•	10/27/2008 14:20	11/17/2008 11:10	10/27/2008 14:20	10/27/2008 14:20	11/10/2008 15:35	10/27/2008 14:20

Ra-226 Verification Sheet

	Sample ID	Volume (mL)	10 2	End De-em Date/Time	Start Count Date/Time	Cell #	Det #	Background CPM	Total Counts	,
<u> </u>	1 37	2005	5551 20101111	11/17/10 1020	11/17/16/510	197	~	\mathcal{S}	1014	
1	2	202	11110/08 1535	शियाक १०५८	111111111111111111111111111111111111111	M	7	60	1050	
<u> </u>	a	205	5251 20101111	0111 8014/11	11/11/08 1020	202	7	8	937	
B	7	500	555) 30)01/11	2411 MHIII	11.1708 20150	208	7	8	786	
' 	5	503	11/10/08 1535	WITING 1150	11.17.00 21.20	602	4	8	002)	3
	٩	SOV	5551 20101111	1111108 1VVV	11.17.08 2155	711	7	8	1901	12/18/108
l		300	tritolos 1555	11/14/166 16845	11/11/10 1330	101	1	3	186	m .
- 67 /	٧	202		11/17/108 6900	अभिक्षामा	201	+	8	1164	12/18/10%
 کر	6	206	5251 Xolal 1)	111111111111111111111111111111111111111	56 H ADIULI	705	1	8	Arr	2017111
1	Q1]
	=									
1	7			208IMI						
٠١										
	Yer 3	200	11 11 11 11 11	514199(pol11	ohos solosti	108	7	8	533	W17/1918
<u>. </u>								-		
1								Solz, W		
.1								W.A.C.		
•				,						
				,					3	mutichilos
									120	, i Listor

295

	280								2	
		1912 palpalal	tolooppe hade	$ar{\Gamma}$	10/20/08 1500	tot.	4	h	157	
	2006	orth solution	5001 29196/01		1013v/or 1535	202	1	>	189	(CO)
± 0 = 7 0	200	outly halo	911 2002/01	1105 10	10130 los 1605, 2010 8010101	# 17 19 00.00.00.00.00.00.00.00.00.00.00.00.00.	4	<i>></i>	726	3
5 7 6 0	300	orni solutioi	10120lox 1230		0681 80/08/01	Tion 18	7	<i>ۍ</i> .	737	
5 7 0 5	500	totalor law	11 yoursell	10/ 0501	10/30/08 1900	100	7	0	663	3
- 75	500	ozhi Xoliajoj	Mondos 13	10/ 019	0200 80/08/01	70 C	2,	S	780	00297
5	200	०२मा ४०१८५०।	rl 50/06/01	101 31	1975 10/30/08 2200	207	7	<i>≫</i>	111	
6	839	arti Yaltalal		101 549	10/30/08 2300	30%	4	1	497	3
	Sev		1013010x	1405 10	10/30/08/2340	70 a	7	+	930	12418108
l 0	500	اح. ا		101 SIM	10/31/08 0115	017	7		1 60	
1 AA	2019	07H 107101	10130108 H	1440 10	10/3/108 1835	170	5	Ç	433	
1 M	587	2012/01	h) 80108111	1 55h	10/21/08 1915	211	7	7	Shon	
				-						
					8618/21					
										100 121 Pais

0638-F
Standard
r Ra-226
cation fo
Verifi

D Roy						Standard	
12/27/2007	Isotope	Detector CPM	BKG CPM	NET CPM	Detector Eff M	ass. Used (mL)	Detector Eff Mass. Used (mL) Source DPM/mL
	0638-F N1	1239.9000	31.5000	1208.4000	4.624018	1.0000	261.3311626
	0638-F N2	1222.8000	31.5000	1191.3000	4.624018	1.0000	257.6330801
	0638-F N3	1219.4000	31.5000	1187.9000	4.624018	1.0000	256.8977889
						Average =	258.6206772
Mean Value (Counting) =	258.6206772		96.8384646	Pass			
Stdev =	2.375965421		0.00918707	Rule 3 (Pass/Fail)			
Certificate Value =	267.1						
Lower Limit =	253.8687464						
Upper Limit =	263.3726081						
Rule 1 Pass/Fail	Fai	'exception taken	tue to full reco	exception taken due to full recovery of standard			
Two sigma =	4.751930843						
10 % of Mean =	25.86206772						
Rule 2 (Pass/Fail)	Pass						

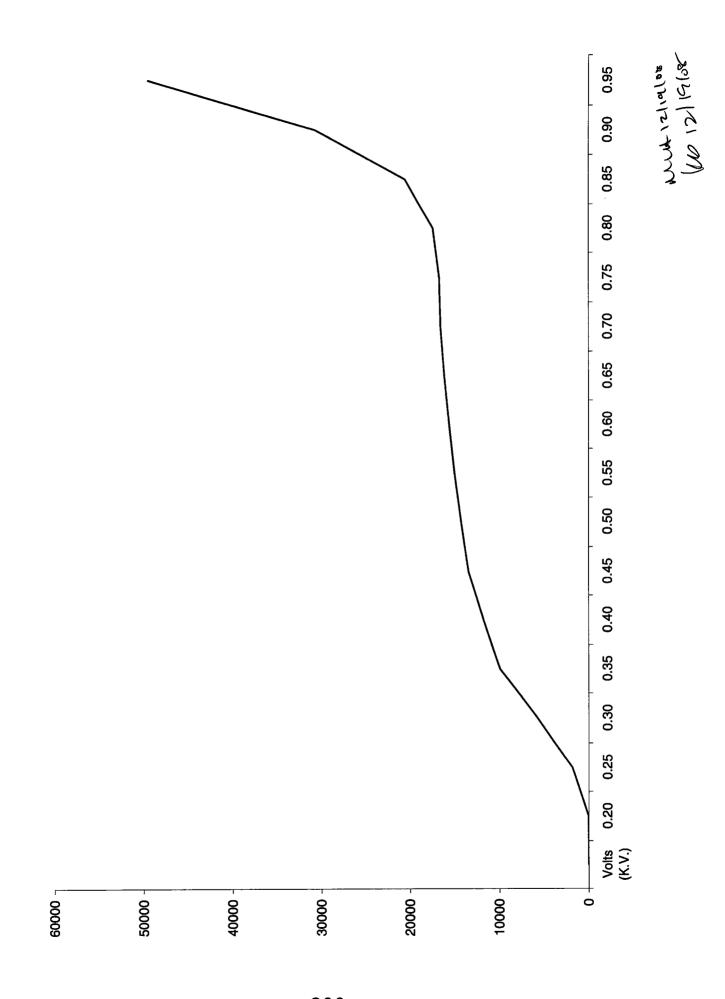
Verification Rules

Rule 2 = The two sigma value used for the 95% confidence interval shall not exceed 10% of the mean value Rule 1 = The certificate value (NOT including any uncertainty) shall lie within the 95% confidence interval determined from the mean and two sigma standard deviation of the three measurements of the three verification measurements. Rule 3 = The determined mean value shall be within 5% of the certificate value.

12/27/07 using source 0024-A (Ra-226). Calibration data is recorded in this logbook under Ra-226 (0024-A). The analyst prepared three standard verification sources for Ra-226 source 0638-F by transferring portions of scintillation cocktail was added to each vial and the vials were shaken to mix. A Blank vial was prepared in a verification. The Ra-226 efficiency calibration which was used for verification calculations was performed on similar fashion using 1 mL of DI water and 10 mL of Ready Gel cocktail. The standard verification vials and Background source were dark adapted for two hours and counted on LSC YELLOW using source standard the standard into tared glass liquid scintillation vials. One ml. of DI Water and 10 ml. Ready Gel liquid Each verification source calculation was performed as follows:

mass used for standard verification. System efficiency, (cpm/dpm), and Source dpm/g = (A - B)/(C)(D)Ver. source cpm, BKG cpm, Reference RAD SOP M-001 where:

J-141 1/4/04 10 12/19/08


General Engineering Laboratories Verification Source Preparation Sheet

	GL-RAD-A	000		lsotope_	RAM6	
Applicable SOP Number	12/18/07		Cockt	ail Type Used_	NA	
Date Standards Prepared Standard ID	0638 F		Matrix of	Vial/Planchett_	NA	
Amount Used (g or ml)	0.1		Type of S	cintillation Vial	NA NA	
Standard Activity (DPM/g of mL) Reference Date	1/23/04			ipette ID Used	142930	
Expiration Date	12/20108			lance ID Used	360404 NA	16
Residue/Carrier Agent	D.IMHCI		Qu	enching Agent		
	Standard Number	Quenching Vol (uL)/ Residue Volume(mL)	initial Wt.	Final Wt.	Net Wt. (mg)	
1 2	Veri					
3 4	Ver 4					
6	Ver 5			Jens/		
- 7 - 8 - 9	Vera Vera		VID			
- 10	Ver 10					
n	Verr					
Prepared E Reviewed E	y:	Britan	<	Date	12/19/08	
Leanemen				Rev 1 RLM 9	/10/97	

VoltageCurve det2

	Volta	ge Curve Ludi	um # 2	······································
Volts (K.V.)	Counts	Date	Time	Detector
0.20	0	9/19/2008	10:00	2
0.25	0	9/19/2008	10:00	2
0.30	0	9/19/2008	10:00	2
0.35	0	9/19/2008	10:00	2
0.40	0	9/19/2008	10:00	2
0.45	36	9/19/2008	10:00	2
0.50	1860	9/19/2008	10:00	2
0.55	5751	9/19/2008	10:00	2
0.60	9916	9/19/2008	10:00	2
0.65	11761	9/19/2008	10:00	2
0.70	13431	9/19/2008	10:00	2
0.75	14254	9/19/2008	10:00	2
0.80	14984	9/19/2008	10:00	2
0.85	15598	9/19/2008	10:00	2
0.90	16129	9/19/2008	10:00	2
0.95	16562	9/19/2008	10:00	2
1.00	16711	9/19/2008	10:00	2
1.05	17428	9/19/2008	10:00	2
1.10	20558	9/19/2008	10:00	2
1.15	30722	9/19/2008	10:00	2
1.20	49527	9/19/2008	10:00	2
1.25	71509	9/19/2008	10:00	2
1.30	115018	9/19/2008	10:00	2

201	1.993	12/19/2008
202	2.261	12/19/2008
203	2.254	12/19/2008
204	2.193	12/19/2008
205	1.799	12/19/2008
206	2.259	12/19/2008
207	2.146	12/19/2008
209	2.291	12/19/2008
210	2.253	12/19/2008
211	2.171	12/19/2008
212	2.322	12/19/2008

Minimo

General Engineering Laboratories

2040 Savage Road, Charleston, SC 29414 (843)556-8171

Lucas Cell Calibration Package

		YES	NO	Comments
1)	Is all calibration standard information enclosed for:			
٠,	the primary standard certificate?	V		
	the secondard standard(s) documentation?	✓ ×		
	standard preparation information?	~		
	standard < 1 Year old or verified?			
2)	Is the efficiency calibration report included ?	· ·		
3)	Is the raw count data included for:			
	Cell constant determination?			
	Plateau generation?		<u> </u>	
			 _	
4)	Are the calibration verifications included?	V		
_,				
5)	Are the instrument settings included:		T	
	HVPS settings?	<u> </u>		
6)	Has the CELLEFF.xls file been updated?			
O)	Has the Celler Fixis life been applicated !		<u> </u>	
7)	Have the calibration dates been updated in ALPHALIMS?		T	
',		<u> </u>		
	Prepared By: \\\(\lambda\)\(\lambda\)\(\lambda\)	Date	e: 213109	
				
	Reviewed By: Lug. Hen	<u>∕~</u> Date	: <u>2141 ~</u>	ń
		Effective Date	e: 2141 sq	4

Ra-226 Cell Constants

12/15/1999 0299-G 0.1 2446.35

Standard Reference date:

Standard ID:

Volume added (mL):
Standard Reference Activity (DPMmL):

						Date/time	Date/filme			count		Known	t1 (days)	t2 (days)	t3 (days)	Decay from
Lucas	jje Ce			Standard	Date/Time	flushed	end of	bkg	total	time		activity	end-degas	end-flush	Std Ref Date	Std Ref Date
# eo	constant			Source	of count	to cell	qedas	сьт	counts	mln	cpm	dpm	to flush	to count	to count	to count
30	1.867	Average 2.021	2.021	43	1/20/2009 11:05	1/19/2009 10:10	1/9/2009 15:45	0.267	9355	30	311.83	243.67	9.76736	1.03819	3324	0.9961
301	2.184	Stdev	0.159	43	1/29/2009 11:50	1/29/2009 8:50	1/26/2009 13:00	0.267	6239	30	207.97	243.67	2.82639	0.12500	3333	0.9961
301	2.011			43	1/26/2009 14:35	1/26/2009 9:25	1/22/2009 9:10	0.267	7282	30	242.73	243.67	4.01042	0.21528	3331	0.9961
302	2.082	Average 2.131	2.131	13	1/30/2009 11:30	1/30/2009 8:30	1/26/2009 13:00	0.267	7401	30	246.70	243.67	3.81250	0.12500	3334	0.9961
302	2.22	Stdev	0.082	47	1/29/2009 13:30	1/29/2009 9:20	1/26/2009 13:00	0.233	6335	8	211.17	243.67	2.84722	0.17361	3334	0.9961
305	2.086			47	1/26/2009 15:30	1/26/2009 9:55	1/22/2009 9:10	0.267	7555	30	251.83	243.67	4.03125	0.23264	3331	0.9961
383	1.958	Average	2.136	19	1/20/2009 13:40	1/19/2009 11:00	1/9/2009 15:45	0.267	9692	30	323.17	243.67	9.80208	1.11111	3325	0.9961
303	2.218	Stdev	0.154	19	1/22/2009 20:35	1/22/2009 10:05	1/19/2009 15:00	0.267	5938	8	197.93	243.67	2.79514	0.43750	3327	0.9961
303	2.231			19	1/26/2009 17:20	1/26/2009 10:25	1/22/2009 9:10	0.267	8028	30	267.60	243.67	4.05208	0.28819	3331	0.9961

302	1.897	Average	2.057	42	1/20/2009 14:50	1/19/2009 11:35	1/9/2009 15:45	0.200	9357	8	311.90	243.67	9.82639	1.13542	3325	0.9961
305	2.191	Stdev	0.149	42	1/22/2009 21:50	1/22/2009 11:05	1/19/2009 15:00	0.267	5921	8	197.37	243.67	2.83681	0.44792	3327	0.9961
305	2.083			42	1/26/2009 23:00	1/26/2009 11:20	1/22/2009 9:10	0.267	7280	30	242.67	243.67	4.09028	0.48611	3331	0.9961
306	1.730	Average	1.747	4	1/20/2009 15:20	1/19/2009 11:50	1/9/2009 15:45	0.167	8521	30	284.03	243.67	9.83681	1.14583	3325	0.9961
306	1.691	Stdev	0.067	8	1/29/2009 14:30	1/29/2009 10:20	1/26/2009 13:00	0.233	4869	8	162.30	243.67	2.88889	0.17361	3334	0.9961
306	1.821			4	1/26/2009 23:30	1/26/2009 11:50	1/22/2009 9:10	0.267	6387	30	212.90	243.67	4.11111	0.48611	3331	0.9961
307	1.818	Average	1.931	5	1/20/2009 15:50	1/19/2009 12:05	1/9/2009 15:45	0.267	8944	30	298.13	243.67	9.84722	1.15625	3325	0.9961
307	2.095	Stdev	0.145	98	1/30/2009 12:55	1/30/2009 9:10	1/26/2009 13:00	0.267	7442	8	248.07	243.67	3.84028	0.15625	3335	0.9961
307	1.881			15	1/27/2009 0:05	1/26/2009 12:10	1/22/2009 9:10	0.267	6598	30	219.93	243.67	4.12500	0.49653	3331	0.9961
308	2.129	Average	1.950	44	1/29/2009 15:50	1/29/2009 11:05	1/26/2009 13:00	0.133	6149	30	204.97	243.67	2.92014	0.19792	3334	0.9961
308	1.858	Stdev	0.155	4	1/23/2009 9:35	1/22/2009 13:45	1/19/2009 15:00	0.267	4829	8	160.97	243.67	2.94792	0.82639	3327	0.9961
308	1.862			4	1/27/2009 8:30	1/26/2009 13:15	1/22/2009 9:10	0.267	6226	30	207.53	243.67	4.17014	0.80208	3331	0.9961
309	1.857	Average	1.877	13	1/20/2009 17:20	1/19/2009 13:35	1/9/2009 15:45	0.033	9149	30	304.97	243.67	9.90972	1.15625	3325	0.9961
309	1.964	Stdev	0.079	13	1/23/2009 10:30	1/22/2009 14:05	1/19/2009 15:00	0.267	5100	99	170.00	243.67	2.96181	0.85069	3327	0.9961
309	1.810			13	1/27/2009 9:05	1/26/2009 13:30	1/22/2009 9:10	0.267	6046	8	201.53	243.67	4.18056	0.81597	3331	0.9961

0.9961	0.9961	0.9961	0.9961	0.9961	0.9961
3334	3328	3331	3325	3334	3331
0.22222	0.91319	0.85417	1.21250	0.23264	0.88194
2.93056	2.97569	4.19097	9.93403	2.94097	4.20139
243.67	243.67	243.67	243.67	243.67	243.67
205.87	189.93	220.23	304.50	193.80	214.87
ၕ	ଚ	8	8	ଚ	30
6176	2698	6607	9135	5814	6446
0.267	0.267	0.267	0.100	0.167	0.267
1/26/2009 13:00	1/19/2009 15:00	1/22/2009 9:10	1/9/2009 15:45	1/26/2009 13:00	1/22/2009 9:10
1/29/2009 11:20	1/22/2009 14:25	1/26/2009 13:45	1/19/2009 14:10	1/29/2009 11:35	1/26/2009 14:00
1/29/2009 16:40	1/23/2009 12:20	1/27/2009 10:15	1/20/2009 19:16	1/29/2009 17:10	1/27/2009 11:10
15	28	28	36	4	36
2.114	0.114		1.944	0.071	
Average	Stdev		Average	Stdev	
2.140	2.212	1.988	1.871	2.014	1.946
311	311	311	312	312	312

10/4/2/4/09 Pals109

4018H AN イガル 444 Total Counts 1401 Background CPM 8 # Det 2 es 301 # Ce 307 48 POIS12 97 1/20/09/1155 1855 1120109 1200 Start Count Date/Time 1/20109 1130 10630 bolow11 0310 End De-em Date/Time 1/20109 190/091 1/2/6/45 1360 1/26/09 1300 1126105 1300 End Degas Date/Time Volume (mL) 55 202 * \$ CA 36 Cal 28 Cal 13 Sample ID 43/04 304

ならな

			2)	2(3)09	the Usiof										120	131012	ちられ	
Total Counts	0517	6335	ums	4869	Solo	6419	9119	1185										
Background CPM	8	1+	7	4	3	t	8	S										
Det #	23	w	3	2	8	a	c	2										
Cell	301	302	504	306	307	308	311	312										
Start Count Date/Time	Palva 1150	1/26109 1330	1/12/104 1400	1/14/19 1430	Halle ISIS	1920 1950	1/29/09 1640	1/29/09 1710					307	Meste M				
End De-em Date/Time	174109 0850	1/26/109 09/20	1954109 0450	112600 1090	1174149 1045	1/25/109 1105	11/10	1124.109 119.5										
End Degas	1/20109 1300	(126/09 1300	1126/09 1300	1741K 1300	1/2/169 1300	1/2010/1300	1/2021 40/11/1	1/20/04 1300	1/2609 1300	1 (26109 1300	H26109 1300	१०६। ५०१७८।						
Volume (ml)	5,000	200	500	500	500	\$	2025	500	500	205	\ ⊗ ∨	2025						
Sample	Car 43	(A) W	(M119	021130	24142	Calyy	CA115	30 30	2	SC 128	CU136	Ca137						

al nts	9355	8933 100	15 43109	Poleston Oc	_	77	7	401212 and -8		12 cm 3	<i>V</i>		 	 3	72109	100 2 101 cm	
Background Total CPM Counts	8	8	8 9495	8 14.50	5 9857	1 8521	hh68 8	2 6938	1 9143	8198 8	1 9135						<u>/</u>
Det #		6	er,	6	5	3	ch	2	2		as a				$\frac{1}{\sqrt{1}}$		
Start Count Cell Date/Time #	105 5011 MIDA!	1906 301 30A	1/20/10 1840 303	History 14th 30th	Italia 1450 305	Union Harin 300	1/20/69 1550 3c7	1/20/19 1645 30°8	1/20/09 1720 309	1/20/09 1840 311	1/20/09 1916 BIV						
End De-em S	٥	7 070,	1/19/09 1100 1/12	1119109 1180 11	1119109 1135 11	111969 1150 11	111969 1205 11	111a169 (315) 1/	1119109 1335 1/2	11/41/16/1 1355 1/21	1/19109 11/10 1/20			/			
End Degas	\ C	1545	1545	1545	11 5451 5016	S.hS	119169 1515	11 shs1 601611	1 164 1545	119101 1345	1 4104 1545	1/4104 15415					
Volume	G G	+-		500	ags	Sab	2005	alks	2005	200	2002	202					
Sample	(n)		6119	Cal 20	74100	C6144	Cal 15	4447	6 (2112)	Kunsk	64136	LET MA					

		601E17 07	Les 213105			601812 971		100 273100	501817 07				po 213109			120 2131091	ליבו אומושל		
	Total Counts	1 8410	6498	5938	Τ'	İ	Sur	2943	5810	788	5100	2698	1885						
	Background CPM	8	4	V			∞	>	9	y	Ø		8						
H	# Det	ec.	do	er.	, ,	4	3	3	4	2	8	3	6					/	
	# Cell	1.0%	200	302	,	7,957	205	306	407	308	309	311	312		S	0/5/2			
-226 Verification Sheet	Start Count Date/Time	1/20/169 1525	140419 1405	77.00 0020	(100)	1.2201 2120	172109 MS0	1990 109 1890	1/2/09 0980	1/13/09 0935	1/2/09 1000	1/25/19 120	1/13/109 1965						
Ra-226 V	e-em ime	9418	3490	Soul		1035	105	1185	18m	5 ha)	Sahi	1425	0441						
	End De-em Date/Time	192109		17.70	1122104	1122109	112409	38/5-4-1	112409	1/2404	1/20/104	1122/04	112409	1122/69					
43	End Degas			200	287	1560	1580	150	1500	1500	1300	0351	2851	1567					
CH LAS	End 1	MANA 1500		2012		1110/104	19119	11616	भाषा	111963	1119169	119119	मुख्या-	11909					
3	Volume	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			200	500	5,00	5,610	5070	500	asc	roc	560	560					
	Sample	En 113		14 4	5017	06170	Cal UD	למו מת	Ca115	\$ Cally	61100	Ca128	-Ca136						

					160 2/3/09										\$ <u>7</u>	71 2 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	Total Counts	181	1555	8028	29/5	1280	6387	865y	mon	9400)	6667	9 hha						
#3	Background CPM	00	φ	0e		60	00	(%)	0°	06	o ^Q	0ο						
Cal for #3	Det #	3	3	2	4	w	w	3	3	2	2	2			60)	S/ >	$/\!\!\!\!/$	
Cal	Cell #	301	2006	, 203	198	305	306	224	308	304	311	312				77	/	
Ra-226 Verification Sheet	Start Count Date/Time	(Moloy 1455	1/20/bg 1530	176169 JOHO 200 200	1.76.09 1645	1.26.09 2300	1.2601 2330	1.27.01 0005	1127/89 ps/12/1	5000 60/2/1	ilaling inis	0111 4011241						
Ra-226 V	-em ime	BANS	6455	eval	1620	irro	1690	11/10	3181	1330	1345	1400						
	End De-em Date/Time	1/26/09	1126109	(125 105	1126105	1126/09	1126109	1/26/69	112009	601771)	12009	112109						
	End Degas	1122/19/19/10	172404 OGLO	1122/04 0410	0140 Papa	0140 40/22/1	1122los 10410	112200 15110	1/22/04 0510	1122/04/11	1/22/05 04:0	0151 50021)						
	Volume	28	280	500	583	2547	500	2507	as	Spru	2,25	28						
	Sample	2412	TH 127	CA115	CH 20			CallS	h110/3	8 (7,113	XC127	12/20	12/20					

Verification for Ra-226 Standard 0299-G

ource DPM/G 2562.667649

Standard

2565.677715 2558.093715 2545.935781

4/2/2008	Isotope	Detector CPM	BKG CPM	NET CPM	Detector Eff	Mas	လွ
D. Rov	0299-G N1	2536.9600	52.4000	2484.5600	1.917186	0.5057	Ñ
	0299-G N2	2520.2500	52.4000	2467.8500	1.917186	0.5056	Ñ
	0299-G N3	2532.5000	52.4000	2480.1000	1.917186	0.5042	Ñ
						Average ==	Ñ
Mean Value (Counting) =	2558.093715		104.944421	Pass			
Stdev =	10.63610098		0.00415782	Rule 3 (Pass/Fail)			
Certificate Value =	2437 6	dnm/ml					
)						
Lower Limit =	2536.821513	dpm/mL					
Upper Limit =	2579.365917	dpm/mL					
Rule 1 Pass/Fail	Fail	*exception take	n due to full r	ecovery of standard			
Two sigma =	21.27220197	dpm/mL		dpm/mL			
10 % of Mean =	255.8093715	dpm/ml_					
Rule 2 (Pass/Fail)	Pass						

Verification Rules

Rule 2 = The two sigma value used for the 95% confidence interval shall not exceed 10% of the mean value Rule 1 = The certificate value (NOT including any uncertainty) shall lie within the 95% confidence interval determined from the mean and two sigma standard deviation of the three measurements of the three verification measurements. 309

Rule 3 = The determined mean value shall be within 10% of the certificate value.

4/02/08 using source 0024-A (Ra-226). Calibration data is recorded in this logbook under Ra-226 0024. Each The analyst prepared three standard verification sources for Ra-226 source 0299-G by transferring portions of scintillation cocktail was added to each vial and the vials were shaken to mix. A Blank vial was prepared in a verification. The Ra-226 efficiency calibration which was used for verification calculations was performed on Background source were dark adapted for two hours and counted on LSC Gold for Radium source standard similar fashion using 1 mL of DI water and 10 mL of Ready Gel cocktail. The standard verification vials and the standard into tared glass liquid scintillation vials. One mL of DI Water and ten mLs of Ready Gel liquid verification source calculation was performed as follows:

```
mass used for standard verification.
                                                                                                    System efficiency, (cpm/dpm), and
Source dpm/g = (A - B)/(C)(D)
                                                   Ver. source cpm,
                                                                            BKG cpm,
                                where:
```

SOUTH AND CONT

RAD SOP M-001

& Standard Traceability Log Rad

Source Mate	erial Info
Parent Code:	0299
Prepared By:	Angela Johnson
Carrier Conc:	0.5 M HCL
Reference Date:	12/15/1999
Ampoule Mass (g):	5.0368 g
Uncertainty:	+/- 2.5 %
LogBook No:	RC S 027 128

A Solution M	aterial Info
Isotope:	Radium-226
Prepared By:	Angela Johnson
Prep Date:	09/15/2000
Verification Date:	01/23/2008
Expiration Date:	01/23/2009
Primary Code:	0299-A
Dilution(mL):	100 mL
Mass of Parent(g):	4.6634 g
Density(g/mL):	1.0012
Balance ID:	

Calculations Converting parent activity to dpm/mL|dpm/g

 $(Mass\ of\ parent(g))\ *\ (Parm\ Activity\ (kBq/g))\ *\ (conversion\ dpm\ to\ kBq)\ /\ (Dilution\ Vol) = Parent\ Activity\ (dpm/mL)$

 $(Mass\ of\ parent(g))*(Parm\ Activity\ (kBq/g))*(conversion\ dpm\ to\ kBq)\ /\ Density\ (g/mL)/\ (Dilution\ Vol) = \\ Parent\ Activity\ (dpm/g)$

(4.6634 g) * (43.75 kBq/g) * (60000 dpm/kBq) / (100 mL) = 122414.2500 dpm/mL (4.6634 g) * (43.75 kBq/g) * (60000 dpm/kBq) / (1.0012 g/mL) / (100 mL) = 122273.3377 dpm/g

Secondary Standards

Prep Date	Preparer	Mass Primary	Dilution (mL)	Code	Conc dpm/mL	Verification Date	Expiration Date
08/26/2003	Angela Johnson	1.9909	100	0299-E	2434.34 dpm/mL	11/04/2004	11/04/2005
08/26/2003	Angela Johnson	1.9872	100	0299-F	2429.82 dpm/mL	08/26/2004	08/26/2005
04/05/2005	Amanda Fehr	5.0018	250	0299-G	2446.3471 dpm/mL	04/02/2008	04/02/2009

GEL Laboratories LLC Version 1.0 9/18/2000

KD 2/3/09

General Engineering Laboratories Verification Source Preparation Sheet

31- RAD-A UO					
415105		Cockt	ail Type Used _	NA	
Da Gara I		Matrix of	Vial/Planchett	NA_	
0043				NA	
a				NA	- * * .
		Type of S	cintillation Vial_	NA	
2110. 941					
12/15/99		P	ipette ID Used_	141503	
1110100		Ra	lance ID Used	300407	16
41401					
0.5 MHC	1	Qu	enching Agent	NA_	
	1 2	Initial \A/t	Final Wt.	Net Wt.	
Standard Number	1			(mg)	
(4143	Inesidue volume(inic)				
CG1 30					
Carn				100	a
CG(44				2/3/4	
Calls					
Ca114					
Ca113"		1			
CG1 18					
CG136					
				6. 2.7	
Volci & Dr	71200		Date	2/3/09	
10					
	112109 0.5 M HC Standard Number Cal 43 Cal 47 Cal 19 Cal 30 Cal 12 Cal 12 Cal 13 Cal 14 Cal 13 Cal 18 Cal 18 Cal 36	1215/49 1215/49 12109 0.5 M HCI Standard Number Quenching Vol (uL)/ Residue Volume(mL) Cal 43 Cal 47 Cal 19 Cal 19 Cal 10 Cal 10 Cal 115 Cal 14 Cal 13 Cal 18 Cal 36 Velli & Dowel	2446 347 Type of S 1215/199 Ba 0.5 M HCI Quenching Vol (uL)/ Residue Volume(mL) (Q) Cal 43 Cal 47 Cal 19 Cal 19 Cal 19 Cal 18 Cal 36	D.1. 2446 347 Type of Scintillation Vial 1215 49 Pipette ID Used U12409 Balance ID Used O. S. M. HCI Quenching Agent Standard Number Residue Volume(mL) (g) (g) Cal 43 Cal 47 Cal 47 Cal 48 Cal 40 Cal 40 Cal 44 Cal 13 Cal 44 Cal 13 Cal 44 Cal 13 Cal 44 Cal 13 Cal 48 Cal 36 Cal 18 Cal 36 Cal 18 Cal 36 Cal 18	NA NA NA NA NA NA NA NA

UKAS ACCREDITED CALIBRATION LAFORATORY No. 0146

1200 GMT on 15 December 1999 ment Reference time for solution number R4/131/89: kilobecquerels per gram of solution 43.75 Radioactive concentration of radium-226: microcuries per gram of solution 1.183 which is equivalent to: 5.0368 Mass of solution: kilobecquerels 220.4 Total activity of radium-226: microcuries 5.956 which is equivalent to: 1600 years Recommended half life:

The activity of the solution was measured using a high pressure re-entrant ionisation chamber calibrated with a large number of absolutely standardised solutions.

The calibration date is provided for added information only, and must not be confused with the reference date on pages 1 and 2 of the certificate. It is the reference date that must be used in all calculations relating to the values of activity.

Expanded uncertainty in the radioactive concentration quoted above: ± 2.5 %

Combined Type A uncertainty: ± 0.2 % Combined Type B uncertainty: ± 1.3 %

phuclidic The estimated activities of any radioactive impurities found by high-resolution gamma ray spectrometry, or in any other examination of the solution, are listed below expressed as percentages of the activity of the principal radionuclide at the reference time.

position

Carrier free in 0.5M HCL

arks

This product meets the quality assurance requirements for achieving traceability to NIST as defined in ANSI N42.22-1995.

1 year = 365.25 days

At the reference date radium-226 was shown to be in radioactive equilibrium with its daughter nuclides down the decay chain to polonium-214 and thallium-210, the precursors of lead-210. The ionisation chamber was calibrated using a standard supplied by the National Institute of Standards and Technology, Washington DC, USA.

KW 2/3/09

Ra-226 WATER

Batch: LCSVER
Date: 1/2/2009
Analyst: KSD1

Procedure Code: LUC26RAL
Parmname: Radium-226
MDA: 1 pCi/L
Instrument Used: LUCAS CELL DETECTOR

m:

8

Bkg Count Time:

bolth2 anl

COUNT	1/30/2009 15:05 2/2/2009 13:40	1/30/2009 15:40	1/30/2009 17:05	1/30/2009 17:37	2/2/2009 14:15	1/30/2009 19:05	1/31/2009 10:20	1/31/2009 17:20	2/2/2009 8:25
Ra-226 ERROR PCI/L	1.5634	1.7397	1.6891	1.9605	2.0335	1.7254	2.0238	1.6667	2.3154
Ra-226 RESULT pCi/L	20.0589 22.6149	26.4838	23.8718	27.2885	27.3779	23.3957	28.0944	20.3087	26.8983
Ra-226 MDA pCi/L	0.4919 0.5554	0.4647	0.4845	0.5709	0.6113	0.5149	0.5908	0.5510	0.8009
BKG cpm	0.267 0.267	0.267	0.267	0.267	0.267	0.267	0.267	0.267	0.267
Cell Const. num	2.021	2.136	2.057	1.747	1.931	1.950	1.877	2.114	1.944
Cell # num	301 302	303	305	306	307	308	309	311	312
Gross counts cts	656 655	914	791	768	720	730	764	594	542
Count Time min	ස ස	30	80	8	8	8	30	30	90
Sample Vol L	0.500								0.500
Sample ID	- -	2	က	4	2	S	9	7	ω

	اہ																									
	Recovery/RPD	83%	94 %	110%		%66	113%	114%	% 26	117%	84%	112%	Ingrowth	constant		0.4800	0.4032	0.4809	0.4788	0 4787	0 4044	0.753	0.4733	0.450	0.4099	0.3067
	NC units	pCi/L	pCi/L	pCi/L	į	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	Zet	CPM	cbm	21.6000	21.5667	30.1997	26 1000	25 3330	23 7330	24.0867	24.0007	7881.07	19.5330	17.7997
	NC	24.10	24.10	24.10	24.10	24.10	24.10	24.10	24.10	24.10	24.10 24.10	24.10	constant			1.0019	1.0019	1.0019	1 0019	1 0019	0.001	500	0.001	9100.1	1,0019	1.0019
	Standard ID	7-8E90	0638-F	0638-F		0638-F	0638-F	0638-F	0638-F	0638-F	0638-F	0638-F	constant			0.9672	0.9672	0.9660	0.9587	0.000	0.930	0.9000	0.9479	0.8518	0.8095	0.6041
	Sample Type	SOT	CCS	SOT		SOT	SST	SSI	SO	SST	<u>8</u>	SOT	constant			0.4954	0.4160	0.4969	7007	0.4500	0.4880	0.41/8	0.5004	0.5045	0.5054	0.5067
Vers 1-07	Run Date	1/30/2009 10:40	2/2/2009 9:15	1/30/2009 11:05		1/30/2009 11:30	1/30/2009 11:45	2/2/2009 9:40	1/30/2009 12:00	1/30/2009 13:05	1/30/2008 13:20	1/30/2009 13:40	-WH-HC	COUNT		4.42	4 42	4.58	C L	0.00	5.87	4.58	7.08	21.25	00 80	66.75
	Det #	c:) (ť.	ာက		œ) (°	າ ຕ	י כ	ກຕ		າ ຕ	004070	DE-EM] 	90.58	71.25	91.00	3	91.42	91.67	71.67	91.92	93.00	000	93.58 93.58
	# Ce	301		303 303	!	305	900	200	200	308 309		312	i i	DE-EMAIN. DATE/TIME		1/20/2000 10:40	0.5000000000	1/30/2009 11:05		1/30/2009 11:30	1/30/2009 11:45	2/2/2009 9:40	1/30/2009 12:00	1/30/2009 13:05		1/30/2009 13:20
	Sample ID		- c	V C	1	ď	n •	4 (N I	മ) I	~ α		DEGASSING	ָרָלָ בּייִבּייִבּייִבּייִבּייִבּייִבּייִבּיי	4 (00/00/00 18:05	1/26/2009 16:03	1/30/2009 10.00		1/26/2009 16:05	1/26/2009 16:05	1/30/2009 10:00	1/26/2009 16:05	1/26/2009 16:05		1/26/2009 16:05 1/26/2009 16:05

																	لد	, ·
	Lotal	959	414	741	768	730	764	594	245									
	Background CPM	ى	<i>></i>	<i>∞</i>	v	≫	<i>≫</i>	<i>></i>	8									
Г	##	a	2	8	3	50	3	8	ec				,	9/5	Z			
	≣ #	201	308	305	30 G	308	309	311	218						7			
	Start Count Date/Time	1/20109 1505	1120104 1540	130/08 17105	Hall 20. 6737	779100 POS	1.31.091020	131.09 1720	ydog 1825									
	em me	ip40	5411	1130	1145	1200	1305	1320	0481									
	End De-em Date/Time	1/20109	1920109	1120104	1130104	1130104	1130104	1130104	1130109					/				
١	End Degas Date/Time	iluelog inos	170009 1605	1721199 1405	1/20109 1665	1700104 1605	1/2011 1/205	1126104 1005	1120105 1605	1/26109 1605	1120105 1605	509) 50192/1	1/20104 1605					
	Volume (mL)	2000	Søv	2005	SS.	aas	500	200	200	\$0.b	*	ges.	505					
	Sample ID	1 2	1 M	VW 3	h XV	Ver S	Ver 6	7 m	8 m/3	5	01 WV	= 51	71 W)					

Ra-226 Verification Sheet

			LO 213109									No visios	
Total Counts	655	120	197										
Background CPM	8	۶	8										
Det #	2	3	2										
Cell	400	707	bos										
Start Count Date/Time	thylog 1340	42/09 1415	MM19 1450										
End De-em Date/Time	ydug pais		1 1										
End Degas		1/20/09 1000	4/20/09/1000							500			
Volume	5.00	000	200								2		
Sample		2 27	++	1		3	16						

Verification for Ra-226 Standard 0638-F

D. Roy	Isotope	Value	Uncertainty
2/2/2009	0638-F #1	24.629	1.7426
	0638-F #2	24.438	1.7557
	0638-F #3	22.791	1.6808
Mean Value (Counting) =	23.953	99.60	Pass
Stdev =	1.010781096	R	tule 3 (Pass/Fail)
Target =	24.05		
Lower Limit =	21.93100448		
Upper Limit =	25.97412886		
Rule 1 Pass/Fail	Pass		
Two sigma =	2.021562191		
10 % of Mean =	2.395256667		
Rule 2 (Pass/Fail)	Pass		

Rule 1 = The certificate value (NOT including any uncertainty) shall lie within the 95% confidence interval determined from the mean and two sigma standard deviation of the three measurements

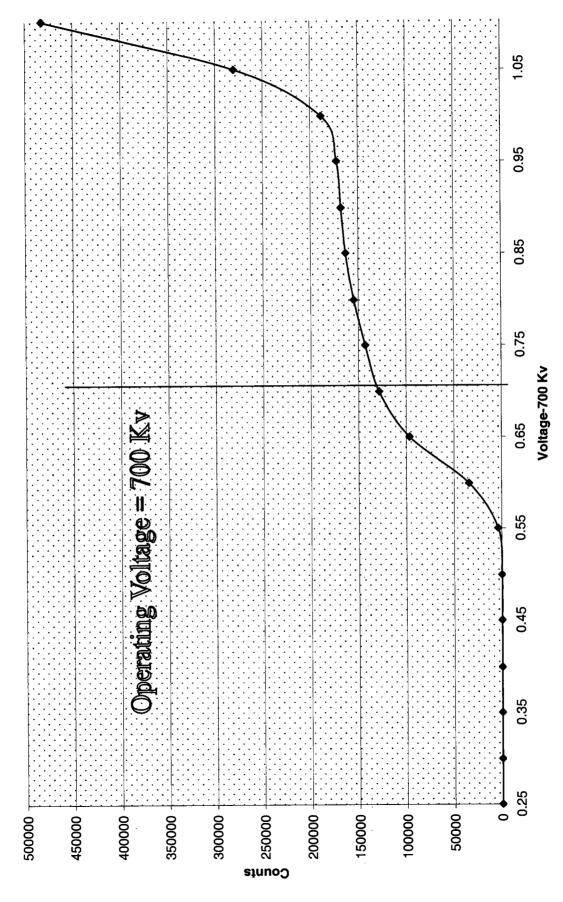
Rule 2 = The two sigma value used for the 95% confidence interval shall not exceed 10% of the mean value of the three verification measurements.

Rule 3 = The determined mean value shall be within 5% of the certificate value.

The analyst prepared three standard verification sources for standard 0638-F using 0.1 mL for each source. Each source was counted using routine Lucas cell procedures. Calibration for 0299-G was used in this verification.

110 14109 11 Stitant 212109 Manda L Jehr 214101

General Engineering Laboratories Verification Source Preparation Sheet


ate 1/23/25 ate 2/4/00 ent Clark Standard Number	F Indomful	Matrix of ' Type of So	cintillation Vial lipette ID Used lenching Agent Final Wt. (g)	142	A. 01/A A. 05/A
D 0625 D 0625 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Quenching Vol (uL)	Type of So P Ba Qu Initial Wt. (g)	cintillation Vial	147 101 101	A 930
10) 267.5 ate 123125 ate 214100 ent 01 Vev 2	Quenching Vol (uL)/	P Ba Qu Initial Wt. (g)	alance ID Used alance ID Used alance ID Used alanching Agent Final Wt.	147 101 101 Net WL	A 1 6 9 30 A
	Quenching Vol (uL)/	P Ba Qu Initial Wt. (g)	alance ID Used alance ID Used alance ID Used alanching Agent Final Wt.	147 101 101 Net WL	930 A
ate 1/23/25 ate 2/4/00 ent Clark Standard Number	Quenching Vol (uL)/	P Ba Qu Initial Wt. (g)	alance ID Used alance ID Used alance ID Used alanching Agent Final Wt.	147 101 101 Net WL	930 A
ate Z3 2= ate Z A 00 ent Standard Number Vex 2	Quenching Vol (uL)/	Ba Qu Initial Wt. (g)	venching Agent	Net Wt.	Α_
ent 214 0	Quenching Vol (uL)/	Ba Qu Initial Wt. (g)	venching Agent	Net Wt.	Α_
Standard Number	Quenching Vol (uL)/	Qu Initial Wt. (g)	enching Agent	⊢⊃\ Net Wt.	
Standard Number Ver 1 Ver 2	Quenching Vol (uL)/	Initial Wt. (g)	Final Wt.	Net Wt.	
Ver 1 ver 2		(g)			
Ver 1 ver 2		(g)			
Ver 2	Residue Volumo()				
Ver 2					•
			 		1
Vax 3					1
Very					1
ver 5			1		
ver L				1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
Ver 7		/			┪
Ver 8		<u> </u>			1
Ver 9					┫ :
Ver 10	131				-
Vetti	1				-
				 	-
VOLUME				0.11 2.15	-
					4
				213109	
ed By: Killi b nou			Date	/ 1 ~ 1 / 2 / 2	
	Ver 12	Veri	Vertz	Ver 12	Vert Vert

Voltage Curve 1-09

Voltage Curve Ludlum # 3								
Volts	Counts	Date	Time	Detector				
0.00	0	1/20/2009	13:45	3				
0.05	0	1/20/2009	13:46	3				
0.10	0	1/20/2009	13:47	3				
0.15	0	1/20/2009	13:48	3				
0.20	0	1/20/2009	13:49	3				
0.25	0	1/20/2009	14:00	3				
0.30	0	1/20/2009	14:01	3				
0.35	0	1/20/2009	14:02	3 ;				
0.40	0	1/20/2009	14:03	3				
0.45	0	1/20/2009	14:04	3				
0.50	0	1/20/2009	14:05	3				
0.55	3914	1/20/2009	14:06	3				
0.60	34392	1/20/2009	14:07	3				
0.65	96643	1/20/2009	14:08	3				
0.70	128361	1/20/2009	14:09	3				
0.75	142888	1/20/2009	14:10	3				
0.80	154583	1/20/2009	14:11	3				
0.85	163087	1/20/2009	14:12	3				
0.90	167801	1/20/2009	14:13	3				
0.95	172317	1/20/2009	14:14	3				
1.00	188508	1/20/2009	14:15	3				

W N 2000

Ludlum 3 Voltage Curve

Milalog

301	2.021	2/4/2009
302	2.131	2/4/2009
303	2.136	2/4/2009
305	2.057	2/4/2009
306	1.747	2/4/2009
307	1.931	2/4/2009
308	1.950	2/4/2009
309	1.877	2/4/2009
311	2.114	2/4/2009
312	1.944	2/4/2009

214107 WD 1/4/109

General Engineering Laboratories

2040 Savage Road, Charleston, SC 29414 (843)556-8171

Lucas Cell Calibration Package

		Y	ES	NO	Comments
1)	Is all calibration standard information enclosed for:				
' /	the primary standard certificate?		~		
	the secondard standard(s) documentation?		v		
	standard preparation information?		~		
	standard < 1 Year old or verified?		V		
2)	Is the efficiency calibration report included ?		~		
_,	•				
3)	Is the raw count data included for:				
•	Cell constant determination?	<u> </u>	<u> </u>		
	Plateau generation?	. L_	<u> </u>	<u></u>	
	·			— Т	
4)	Are the calibration verifications included?	L			
-,	·				•
.5)	Are the instrument settings included:		7	· · · · · · · · · · · · · · · · · · ·	
	HVPS settings?	ا			
6)	Has the CELLEFF xls file been updated?		V		
U)	Has the CLLLL! I Als like been appealed !	<u> </u>			
7)	Have the calibration dates been updated in ALPHALIMS?		V		
٠,	•			_ ,	
	t.			41	
	Prepared By: Voul		Date:	2/28/109	
	0 P -10th	<u></u>		2/2/09	
	Reviewed By:		Date:		
	G	Effoctive	o Date.	32/09	
		LHOCHY	o Daio.	<u> </u>	

Dight of the 3/2/09

Standard Reference date :

12/15/1999 0.299-G 0.1 2446.35 standard ID.: Volume added (mL):
Standard Reference Activity (DPM/mL):

						Date/time	Date/time			count		Known	t1 (days)	t2 (days)	t3 (days)	Decay from
Lucas	Cell			Standard	Date/Time	flushed	end of	bkg	tota/	time		activity	end-degas	end-flush	Std Ref Date	Std Ref Date
# eo	constant			Source	of count	to cell	degas	cpm	counts	min	срш	ф	to flush	to count	to count	to count
4 01	1.689	Average	1.574	ဗ	2/23/2009 16:15	2/23/2009 10:30	2/20/2009 17:25	0.267	4580	30	152.67	243.66	2.71181	0.23958	3359	0.9960
104	1.585	Stdev	0.121	က	2/27/2009 13:15	2/27/2009 9:00	2/23/2009 16:05	0.267	5474	30	182.47	243.66	3.70486	0.17708	3363	0.9960
401	1.448			88	2/25/2009 14:40	2/25/2009 7:55	2/20/2009 17:25	0.267	5677	30	189.23	243.66	4.60417	0.28125	3361	0.9960
402	2.133	Average	2.118	43	2/23/2009 16:55	2/23/2009 11:05	2/20/2009 17:25	0.267	5817	30	193.90	243.66	2.73611	0.24306	3359	0.9960
405	2.173	Stdev	0.064	43	2/27/2009 14:10	2/27/2009 9:30	2/23/2009 16:05	0.267	7507	30	250.23	243.66	3.72569	0.19444	3363	0.9960
405	2.048			5	2/25/2009 15:25	2/25/2009 8:15	2/20/2009 17:25	0.267	8017	30	267.23	243.66	4.61806	0.29861	3361	0.9960
403	1.475	Average	1.463	7	2/23/2009 18:30	2/23/2009 11:30	2/20/2009 17:25	0.267	4011	30	133.70	243.66	2.75347	0.29167	3359	0.9960
403	1.495	Stdev	0.039	7	2/27/2009 14:50	2/27/2009 10:00	2/23/2009 16:05	0.267	5182	30	172.73	243.66	3.74653	0.20139	3363	0.9960
403	1.419			14	2/25/2009 15:55	2/25/2009 8:35	2/20/2009 17:25	0.267	5562	30	185.40	243.66	4.63194	0.30556	3361	0.9960
404	1.792	Average	1.931	42	2/23/2009 19:05	2/23/2009 13:10	2/20/2009 17:25	0.267	5005	30	166.83	243.66	2.82292	0.24653	3359	0.9960
404	2.142	Stdev	0.186	42	2/27/2009 15:25	2/27/2009 10:30	2/23/2009 16:05	0.267	7443	30	248.10	243.66	3.76736	0.20486	3363	0.9960
404	1.859			46	2/25/2009 20:20	2/25/2009 8:55	2/20/2009 17:25	0.267	7075	30	235.83	243.66	4.64583	0.47569	3361	0.9960
405	2.066	Average	1.903	æ	3/2/2009 13:40	3/2/2009 10:30	2/25/2009 14:00	0.267	8602	30	286.73	243.66	4.85417	0.13194	3366	0.9960
405	1.899	Stdev	0.161	5	2/27/2009 16:00	2/27/2009 10:55	2/23/2009 16:05	0.267	6612	30	220.40	243.66	3.78472	0.21181	3363	0.9960
405	1.745			47	2/25/2009 20:55	2/25/2009 10:10	2/20/2009 17:25	0.267	6721	30	224.03	243.66	4.69792	0.44792	3361	0.9960
409	1.805	Average	2.036	8	2/24/2009 0:30	2/23/2009 15:20	2/20/2009 17:25	0.267	5039	30	167.97	243.66	2.91319	0.38194	3359	0.9960
409	2.153	Stdev	0.200	4	2/3/2009 21:10	2/3/2009 15:00	1/30/2009 10:50	0.267	7949	30	264.97	243.67	4.17361	0.25694	3339	0.9960
409	2.149			4	2/27/2009 16:35	2/27/2009 11:30	2/23/2009 16:05	0.267	7516	30	250.53	243.66	3.80903	0.21181	3363	0.9960
410	1.869	Average	1.886	82	2/26/2009 8:50	2/25/2009 13:05	2/20/2009 17:25	0.267	6838	30	227.93	243.66	4.81944	0.82292	3361	0.9960
410	1.965	Stdev	0.072	5	2/4/2009 8:30	2/3/2009 15:30	1/30/2009 10:50	0.267	6708	30	223.60	243.67	4.19444	0.70833	3339	0966.0
410	1.824			84	2/24/2009 8:00	2/23/2009 15:40	2/20/2009 17:25	0.267	4840	30	161.33	243.66	2.92708	0.68056	3359	0.9960
411	1.824	Average	1.824	98	2/24/2009 8:40	2/23/2009 15:55	2/20/2009 17:25	0.267	4839	30	161.30	243.66	2.93750	0.69792	3359	0.9960
1	1.811	Stdev	0.013	8	2/27/2009 17:45	2/27/2009 12:20	2/23/2009 16:05	0.267	6357	30	211.90	243.66	3.84375	0.22569	3363	0.9960
411	1.836			တ	2/26/2009 9:30	2/25/2009 13:40	2/20/2009 17:25	0.267	6734	30	224.47	243.66	4.84375	0.82639	3361	0.9960
412	1.947	Average	1.967	8	2/26/2009 10:15	2/25/2009 14:05	2/20/2009 17:25	0.267	7137	30	237.90	243.66	4.86111	0.84028	3361	0.9960
412	2.131	Stdev	0.156	48	2/27/2009 18:20	2/27/2009 12:45	2/23/2009 16:05	0.267	7495	30	249.83	243.66	3.86111	0.23264	3363	0966.0
412	1.822			ક્ષ	2/24/2009 9:40	2/23/2009 16:10	2/20/2009 17:25	0.267	4818	30	160.60	243.66	2.94792	0.72917	3359	0.9960
- C#C	0 193705	ľ	schinge viv	Put in Machines vis // 1103s Cell Tah)	Tahl											

0.123705 <- Put in Machines.xls (Lucas Cell Tab) EffErr

401	1.574	3/2/2009
402	2.118	3/2/2009
403	1.463	3/2/2009
404	1.931	3/2/2009
405	1.903	3/2/2009
409	2.036	3/2/2009
410	1.886	3/2/2009
411	1.824	3/2/2009
412	1.967	3/2/2009

General Engineering Laboratories Verification Source Preparation Sheet

Applies	able SOP Number	GURAD- A-U	08		Isotope	2u-rup	
		415105		Cockta	ill Type Used	NA	
Date St	andards Prepared			Matrix of \	/lai/Planchett	MA	
	Standard ID	02946		MIGHIN OF		NA	
						NA	
Amo	ount Used (g o(ml))	<u> </u>		_		NA	
iard Acti	vity (DPM/g or mL)	2446.347		Type of So	intillation Vial	NA_	
		1115199		Pi	pette ID Used_	1429	303
	Reference Date					a code	0.11
	Expiration Date_	4/2/19		Ва	lance ID Used_	36040	<u> </u>
		n e wa hit		Qu	enching Agent_	NA	1. 3 1.
Re	sidue/Carrier Agent_	DISM HC					
Γ		Standard Number	Quenching Vol (uL)/	initial Wt.	Final Wt.	Net Wt. (mg)	
			Residue Volume(mL)	(g)	(g)	(11.9)	
	3	Con 3					
Ī	43	CM 43					
	7	Ca17					
	42	alur			1, 1, 1, 1, 1		
	13	Ca143			/		
	44	Ca144		/			
	20	Cal 30		/_			
	48	Ca148		372	4		
	36	Ca136			 		
	35	Ca135					1
	38	Ca138					-
	15	Calls					-
	Щ	car14	· Carlo Salarana			0.000	-
	46	14146				1 1 2 2 2	4
	47_	carus					J :
	47					Ŀ	
		Jule D	۵۰۰۰ م		_Date	3/210	
	Prepared By					3/2/0	

General Engineering Laboratories Verification Source Preparation Sheet

olicable SOP Number	GURADO	08		lsotope	12n-226
Standards Prepared	415105		Cockta	il Type Used	NA.
Standard ID	01496		Matrix of \	/ial/Planchett	NA
Amount Used (g or m)	D2 100 31	2109			NA NA
Activity (DPM/g or mL)_	2.446.347		Type of So	intillation Vial	NA
Reference Date	12/15/99		Pi	pette ID Used_	142930
Expiration Date	417/09		Ba	lance ID Used_	360402
Residue/Carrier Agent	0.5W	140	Qu	enching Agent_	AN
Hesitue Carrot 18-					
	Standard Number	Quenching Vol (ul.)/ Residue Volume(ml.)	Initial Wt. (g)	Finai Wt. (g)	Net Wt.
16	callo	Nosiaco			
1 <u>V</u>	Ca1 25				
·					
23					:
158	60123 CG128				
	(4.123				
108	(4123 (4188				
168	(0.123 (4.128 (4.19				
168	(0.123 (4.128 (4.19	10 5kg			
168	(0.123 (4.128 (4.19				
168	(0.123 (4.128 (4.19	W 5 NA			
168	(0.123 (4.128 (4.19				
168	(0.123 (4.128 (4.19				
168	(0.123 (4.128 (4.19				
168	(0.123 (4.128 (4.19				
168	(0.123 (4.128 (4.19				
168	(0.123 (4.128 (4.19				

Rev 1 RLM 9/10/97

Standard Traceability Log Rad

		A Solution Material Info	iterial Info
		1 1 1	Dadi 224
Course Mot	onial Tafa	LSOTOPE:	אממוחש-כבס אמוחש-בבס
Source Malerial Into	בנומו דעוס	Duonono D	Angelo Tohnson
Donon+ Codo.	0200	riepaiea by.	ייטפוייט ביישקויע
רמויפוו כסמגי	7 (4 - 1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Drop Doto.	09/15/2000
Daniel Daniel	Ancolo Tobados	3 do 1 -	0007/01/00
rrepared by.	กกษ์ยาน ขอกการอก	Venification Data	01/23/2008
Committee Committee	JT W H	Verificanon Dare.	01/53/500
כמוני הסווכי	U.D M LICE	Evaluation Date:	01/23/2000
Defendance Date.	12/15/1000	באטון שווטמו טמובי.	01/23/2007
Rejerence Dale.	75/13/1323	Drimom, Code.	0200-A
Ammonilo Mace (a):	F 0348 0	Time y code.	
(b) central and (d).		Dilution(ml).	100 E
lacostoist.	1,05%		3III 001
Oricer iairi y.	۰/ ۲/ ۲.۵ %	Mass of Porental.	4 6634 0
Looport No.	DC C 027 128	المساهرة المنظرة	£.000.F
	NC J UE/ 150	Density(0/ml):	10012
		Cars 17 (9/11/L):	1

Calculations Converting parent activity to dpm/mLldpm/g

Balance ID:

(Mass of parent(g)) * (Parm Activity (kBq/g)) * (conversion dpm to kBq) / Density (g/mL)/ (Dilution Vol) = Parent Activity (dpm/g)
(4.6634 g)*(43.75 kBq/g)*(60000 dpm/kBq)/(100 mL) = 122414.2500 dpm/mL
(4.6634 g)*(43.75 kBq/g)*(60000 dpm/kBq)/(1.0012 g/mL)/(100 mL) = 122273.3377 dpm/g

Secondary Standards

Prep Date	Preparer	Mass Primary Dilution (mL) Code	Dilution (mL)	goo	Conc dpm/mL	Verification Date Expiration Date	Expiration Date
08/26/2003	08/26/2003 Angela Johnson	1.9909	100	0299-E	0299-E 2434.34 dpm/mL	11/04/2004	11/04/2005
08/26/2003	08/26/2003 Angela Johnson	1.9872	100	0299-F	0299-F 2429.82 dpm/mL	08/26/2004	08/26/2005
04/05/2005	04/05/2005 Amanda Fehr	5.0018	250	0299-6	0299-6 2446.3471 dpm/mL	04/02/2008	04/02/2009

/ersion 1.0 9/18/2000 FL Laboratories LLC

3/3/2009 8:40 AM

Nycomed Amersham plc Radiation & Radioactivity Calibration Laboratory Amersham Laboratories White Lion Road Amersham Buckinghamshire HP7 9LL

ISSUED FOR:

AEA Technology plc Isotrak : Amersham Laboratories White Lion Road Amersham Buckinghamshire` HP7 9LL

ion Principal radionuclide: Radium-226

RAY44 Product code: Solution number: R4/131/89

ment Reference time: 1200 GMT on 15 December 1999

data Nuclear data quoted on this certificate are taken from the Joint European File, Version 2.2.

ion of The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2.00, which inties for a t-distribution with veff = 00 effective degrees of freedom corresponds to a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Unless indicated, all other uncertainties are expressed at the confidence level associated with one standard uncertainty.

The format used for the uncertainties in the values of radionuclidic purity is illustrated in the following examples;

 6.5 ± 2.1 6.5(21) 6.54 ± 0.21 6.54(21) 6.543 ± 0.021 6.543(21)

7 December 1999 Wo 3hlos Nycomed

Verification for Ra-226 Standard 0299-G

						Standard	
4/2/2008	Isotope	Detector CPM	BKG CPM	NET CPM	Detector Eff	Mass. Used (G)	Source DPM/G
D. Rov	0299-G N1	2536.9600	52.4000	2484.5600	1.917186		2562.667649
	0299-G N2	2520,2500	52.4000	2467.8500	1.917186	0.5056	2545.935781
	0299-G N3	2532,5000	52.4000	2480.1000	1.917186	0.5042	2565.677715
						Average =	2558.093715
Mean Value (Counting) =	2558.093715		104.944421	Pass			
Stdev =	10.63610098		0.00415782	Rule 3 (Pass/Fail)			
Certificate Value -	2437 B	lm/mob .					
- Daily Charles	2526 821513	lm/mcb					
	2330.021313	7					
Upper Limit =	2579.365917	dpm/mL					
Rule 1 Pass/Fail	E.	*exception take	n due to full r	ecovery of standard			
Two sigma =	21.27220197	dpm/mf.		dpm/ml.			
10 % of Mean =	255.8093715	dpm/mL					
Rule 2 (Pass/Fail)	Pass						

Verification Rules

Rule 2 = The two sigma value used for the 95% confidence interval shall not exceed 10% of the mean value of the three verification measurements.

Rule 3 = The determined mean value shall be within 10% of the certificate value. Rule 1 = The certificate value (NOT including any uncertainty) shall lie within the 95% confidence interval determined from the mean and two sigma standard deviation of the three measurements

4/02/08 using source 0024-A (Ra-226). Calibration data is recorded in this logbook under Ra-226 0024. Each The analyst prepared three standard verification sources for Ra-226 source 0299-G by transferring portions of scintillation cocktail was added to each vial and the vials were shaken to mix. A Blank vial was prepared in a verification. The Ra-226 efficiency calibration which was used for verification calculations was performed on Background source were dark adapted for two hours and counted on LSC Gold for Radium source standard similar fashion using 1 mL of DI water and 10 mL of Ready Gel cocktail. The standard verification vials and the standard into tared glass liquid scintillation vials. One mL of DI Water and ten mLs of Ready Gel liquid verification source calculation was performed as follows:

mass used for standard verification. System efficiency, (cpm/dpm), and Source dpm/g = (A - B)/(C)(D)Ver. source cpm, BKG cpm, where:

Ra-226 Verification Sheet

	5	3/2/09	ω	32109	W	191215		the 3thlog	160	81409		<i>d</i>	10/2/8			7.7	31404
Total Counts	6763	4067	7042	1811	1 001 8	Ja4d	89LM	7851	1523								
Background CPM	8	8	8	8	8	8	8	8	8								
Det #	4	7	4	7	2	7	5	5	13								
# Cell	1947	404	40h	100	50h	404	7 10	= -	41.6								
Start Count Date/Time	2,309 1710		3.07	2.3.07 1915	23.03 7035	2.3-09 2110	214109 1830	1410 3200 A	1/4/09 1100				to Norther				
End De-em Date/Time		0	23109 133S	212109 1400	212/pc 1475	71300 1200	1390 PO1841.	2451 Males	13/09/ 1600					,	/		
End Degas	1,00	1050		1/20/04 1050	1/20/19/105/1	190109 1050	1/30/09 1050	0501 10611	0501 1,010511								
Volume	(7111)																
Sample	(M) 49	\prod_{i}	San San	24	47	44	2	3	30	7	36						

Ra-226 Verification Sheet

Cal #4

		2123/09			12021/280°S	१८७० था १५८८	yrshow	to water	2024 135						4	10/2/5	100 312 log
Total Counts	085N	45%74	4011	5005	4224	2755	2359	2598	۳_ آ	9484	hers)	8184					
Background CPM	в	В	B	oc	8		í		8	8	8	8					
# Det	7	7	+	4	3	2	4	7	ナ	3	7	4					
= *	104	70h	403	hoh	50 h	400	407	90 h	409	ηρ	4::	411					
Start Count	2171 POKUP.	2/13/04 1455	0.6) re22.5	7.2504 1408	22301 1935	22.04 225°	7.1309 2330	7.24.01 00:00	2.24.01 00:30	2/24 104 0800	Mulla 1840	Unallog bano		PONSUL	CM.		
End De-em	Urs 1090	1	i	7425/4 1310	2423105 1340	20 H Postory	644 60200	1/2	1	U451 5015240	2661 hopen	2362 1610					
End Degas	1/1/2/19 1715	Willia 1735	World His	Tholog His		22 F) Polary	. *	1 1	2/2010/125	2/20105 H25	भायाव पाउ	ZELL POLVEK					
Volume	Jul 2000	S.	202	220	200	586	500	200	500	520	5,00	3					
Sample	ID	7 - 2	12	477	13	K	m		0%	34	96	45					

オ

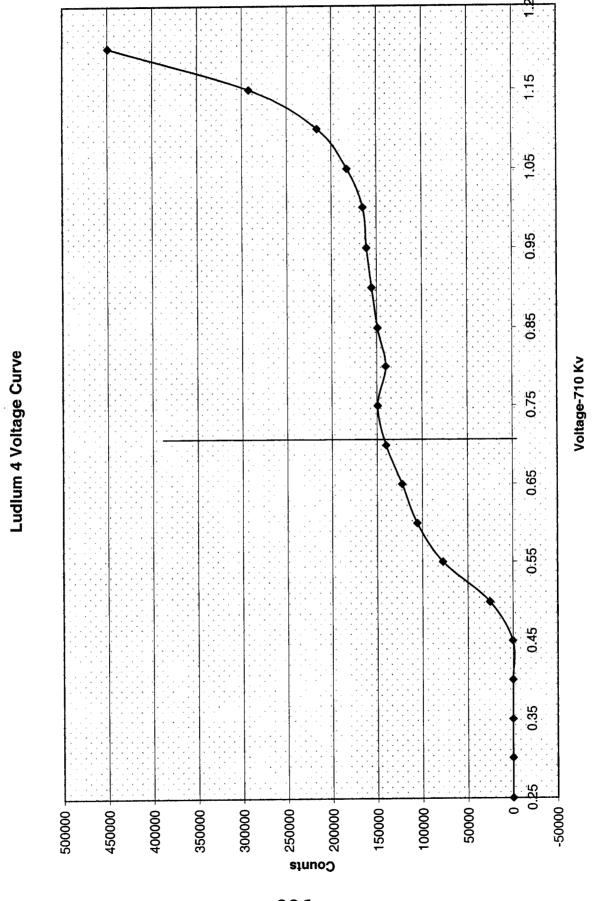
Ra-226 Verification Sheet

Sample	Volume	End Degas	End De-em	em	Start Count	Cell	Det #	Background CPM	Total Counts	
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cyclin Cyclin	Wold 1725	1175189 D	07155	Uns 69 1440	401	h	ۍ	5633	
5	2	200109 1725	}	5190	2/15/09 1525	401	7	<i>y</i>	2017	
Z.	Sas	2/20/109 MVS	पेप्टाक	18 35	U15/05 1555	403	3	من	5562	
4	Sas	HUBBY 1725	772109	5590	2.25.05 20:20	H0H	7	≫	SE02	
7	500	SULL PRIMITY	7458165		7.25.09 2055	405	t	Ø	6721	<i>\$</i> 6
1	Pas	Www.	4/25/10/	than	27600 0052	901,	1	ŏ	7081	20/2/08
y	3	July 112	Hestor	8777	3-5-5-6-5-6-5	Lah	7	3	व्हेड्र	500
2 2	Sac	राम भाग	1,0167 July	1145	25.27 - D. C.C.	997:	3	Þ	3137	145 145
N. S.	205	2/2018 1725	401811	1710	V1665 6510	404	2	<i>y</i>	2108	100 3/2/09
3%	250	Wood 1725	7918112	1305	Union 1850	H(0	7	ঙ	8838	
9	500	SUL SOMM	5015017	1340	2/20/01 M30	=	+	, من	V6734	
34	500	Stl worth	112169	1405	Unally 1015	412	7	ب	7137	,
							\setminus			
					PW2804					C :
										2012 M
					·					
$ \ $										·
										21705

100 312109

Ra-226 Verification Sheet (な) 井 リ

							1003/2109	6357	2)28105	-		. 11			7.10	378	, ,
Total Counts	2474	1507	2181	7443	6/90	7516	7850 14	2359- 6	7495								
Background CPM		8	<i>≫</i>	>>	×	ح	>>	8	<i>⊗</i>								
Det #	7	7	۱	4	7	7	+	7	J								
Cell	7 0.7	402	403	h9h	405	40h	014	ニカ	412								
Start Count	sim pallah	भाग क्लायी	2 royon waso	7/17/00.525	भूगाव १०६०	2/27/09 16:35	Startug Mis	2/21/09/11:45	8/27/09 18;20				WWW!				-
End De-em	2117 DIEG	17 moles (1920	i	yer109 1830	2501 20127	2127109 (130	2/271051 1150	222109 1220	2127109 MS								
End Degas	Jack line	+	11.05		11/2/pg 1605	2/13/09 1605	199129 14065	2 123 105 1405	. 1								
Volume	(m)	500	E S	2002	, v	586		525	1								
<u>e</u>	CELAR OCIO	0 0 0 0 0	_	1	27 12	77. 1.78	Cu.1 9		(c) 118	3							


	\								4	いっただ			3	1 7 Mos
Total Counts	Shor													
Background CPM	8		1		5	2	Ĺ							
#	7					7								
Cell	405													
Start Count Date/Time	3/4/09 1340													
End De-em	3/2/04 1030	1												
End Degas	1/15/09 1400													
Volume	(ML)	2000												
Sample	1	20.130					334							

Ra-226 Verification Sheet $(\omega_l \not\models \forall$

voltage curve -09

		B-1-	Time	Datastas
Volts (K.V.)	Counts	Date	Time	Detector
0.20	0	2/2/2009	9:00	4
0.25	00	2/2/2009	9:00	4
0.30	0	2/2/2009	9:00	4
0.35	0	2/2/2009	9:00	4
0.40	0	2/2/2009	9:00	4
0.45	473	2/2/2009	9:00	4
0.50	25577	2/2/2009	9:00	4
0.55	77365	2/2/2009	9:00	4
0.60	105618	2/2/2009	9:00	4
0.65	122379	2/2/2009	9:00	4
0.70	140073	2/2/2009	9:00	4
0.75	149183	2/2/2009	9:00	4
0.80	140046	2/2/2009	9:00	4
0.85	149183	2/2/2009	9:00	4
0.90	155553	2/2/2009	9:00	4
0.95	161020	2/2/2009	9:00	4
1.00	165182	2/2/2009	9:00	4
1.05	182720	2/2/2009	9:00	4
1.10	215932	2/2/2009	9:00	4
1.15	292211	2/2/2009	9:00	4
1.20	449383	2/2/2009	9:00	4
	:			

m 3M09

General Engineering Laboratories

2040 Savage Road, Charleston, SC 29414 (843)556-8171

Lucas Cell Calibration Package

		YES	NU	Comments
1)	Is all calibration standard information enclosed for:			
,	the primary standard certificate?	V		
	the secondard standard(s) documentation?	V		
	standard preparation information?	ν		
	standard < 1 Year old or verified?	~		·
2)	Is the efficiency calibration report included ?	V		
٥١	Letter and a second dealer in advanced from			
3)	Is the raw count data included for: Cell constant determination?	- J		
	Plateau generation?			
	ricieda generalen.	<u> </u>		
4)	Are the calibration verifications included?			
•				·
5)	Are the instrument settings included:			
	HVPS settings?	~		<u></u>
6)	Has the CELLEFF.xls file been updated?			
6)	has the Celler F.XIs life been appointed !	<u></u>		
7)	Have the calibration dates been updated in ALPHALIMS?			
٠,	,			
			01	^ .
	Prepared By: VIU Showel	Date: Date:	3/2410	4
	Reviewed By: angle of the		3/25/0	9
	Reviewed By:	Date:	<u>J1= 510</u>	
	F	Effective Date:	3/25/09	<mark>ነ</mark>
	-		` _	I .

Ra-226 Cell Constants

<u>0299-E</u> <u>0.1</u> 2434.34 <u>standard ID :</u> Volume added (mL) :

Standard Reference Activity (DPM/mL):

Lost A. In this control Southern Control Control A. In this control Southern Control							Date/time	Date/time		count		Known	t1 (days)	t2 (days)	t3 (days)	Decay from
1.507 Average 1.507 Average 1.507 Average 2.007 Average 1.507 Av	Lucas	Cell			Standard	Date/Time	flushed	end of	tota/	time		activity	end-degas	end-flush	Std Ref Date	Std Ref Date
1.87 Nemage 1.89 9 SPACODO 91-00 3 SPACOD	cell #	constant			Source	of count	to cell	degas	connts	min	cbm	dbm	to flush	to count	to count	to count
2.247 According State 9 1/12/2000 8129	501	1.927	Average	2.087	15	3/6/2009 7:50	3/3/2009 8:15	2/25/2009 14:00	5281	30	176.03	243.03	5.76042	2.98264	3369	0.9960
1.77 Average 422 31/12/2009 14:20 34/22 46.16 34/12/2009 15:20 34/12/200 34/12/200 34/12/200	501	2.086	Stdev	0.160	o	3/11/2009 10:40	3/10/2009 12:50	3/5/2009 14:00	7611	9	253.70	243.03	4.95139	0.90972	3374	0.9960
1,772 Newinge 1876 14 21/122009 11-26	501	2.247			42	3/12/2009 13:30	3/12/2009 9:10	3/6/2009 15:25	10210	30	340.33	243.03	5.73958	0.18056	3376	0.9960
2,046 SNA Q166 14 91/12/2009 11-20 <th< th=""><th>502</th><th>1.772</th><th>Average</th><th>1.878</th><th>16</th><th>3/18/2009 8:25</th><th>3/17/2009 12:50</th><th>3/10/2009 14:00</th><th>7951</th><th>30</th><th>265.03</th><th>243.03</th><th>6.95139</th><th>0.81597</th><th>3381</th><th>0.9960</th></th<>	502	1.772	Average	1.878	16	3/18/2009 8:25	3/17/2009 12:50	3/10/2009 14:00	7951	30	265.03	243.03	6.95139	0.81597	3381	0.9960
1.564 Average 1.567 Av	205	2.045	Stdev	0.146	4	3/11/2009 11:15	3/10/2009 13:20	3/5/2009 14:00	7474	9	249.13	243.03	4.97222	0.91319	3374	0.9960
1,581 Name 1,61 Secretion 9.20 Secr	205	1.816			19	3/12/2009 14:20	3/12/2009 9:35	3/6/2009 15:25	8243	30	274.77	243.03	5.75694	0.19792	3376	0.9960
1.589 Nome 4.2 31192000 91145 31720000 1420 31720000 1420 31720000 1420 31720000 1420 31720000 1420 31720000 1420 31720000 1420 31720000 1420 31720000 1420 31720000 1420 31720000 1420 31720000 1420 31720000 1420 31720000 1420 3172000 1420	503	1.581	Average	1.601	46	3/6/2009 9:20	3/5/2009 9:20	2/25/2009 14:00	7250	30	241.67	243.03	7.80556	1.00000	3369	0.9960
1,550 1,55	203	1.633	Stdev	0.028	42	3/19/2009 20:15	3/19/2009 15:15	3/12/2009 12:10	8282	30	276.07	243.03	7.12847	0.20833	3383	0.9960
1887 Average 1615 47 SREGOROR 1400 226-E0009 14.00 7262 80 242.07 243.03 731944 108472 389 1481 Side 0.025 34 311/2000 11.20 311/2000 11.00 310/2000 14.00 310/2000 14.00 3889 30 277.00 243.00 7.00 277.00 243.00 7.00 277.00 243.00 7.00 277.00 243.00 7.00 277.00 243.00 7.00 277.00 243.00 7.00 277.00 243.00 7.00 277.00 243.00 7.00 7.00 7.00 7.00 277.00 7.00 277.00 7.00 277.00 7.00 277.00 7.00 277.00 7.00 <th>503</th> <th>1.588</th> <th></th> <th></th> <th>44</th> <th>3/12/2009 14:50</th> <th>3/12/2009 10:00</th> <th>3/6/2009 15:25</th> <th>7214</th> <th>30</th> <th>240.47</th> <th>243.03</th> <th>5.77431</th> <th>0.20139</th> <th>3376</th> <th>0.9960</th>	503	1.588			44	3/12/2009 14:50	3/12/2009 10:00	3/6/2009 15:25	7214	30	240.47	243.03	5.77431	0.20139	3376	0.9960
1,641 Singe 0.025 34 311/20001 2-20 311/20000 1-20 311/20000 1-20 311/20000 1-20 311/20000 1-20 311/20000 1-20 311/20	504	1.592	Average	1.615	47	3/6/2009 10:30	3/5/2009 9:40	2/25/2009 14:00	7262	30	242.07	243.03	7.81944	1.03472	3369	0.9960
1.544 Average 1.544 Average 1.544 Average 1.154 3.7182009 12.00 3.712009 12.00 3.71700 24.30 7.13889 0.22222 3.833 3.833 2.344 Average 2.344 Average 2.347 3.62009 14.00 3.72009	504	1.611	Stdev	0.025	34	3/11/2009 12:30	3/10/2009 14:05	3/5/2009 14:00	5889	99	196.30	243.03	5.00347	0.93403	3375	0.9960
2.344 Average 2.334 Average 2.33 2.345 Average 2.345 Average 2.345 Average 2.347 Average 2.347 Average 2.347 Average 2.348 Average 2.347 Average <th>504</th> <th>1.641</th> <th></th> <th></th> <th>19</th> <th>3/19/2009 20:50</th> <th>3/19/2009 15:30</th> <th>3/12/2009 12:10</th> <th>8310</th> <th>30</th> <th>277.00</th> <th>243.03</th> <th>7.13889</th> <th>0.22222</th> <th>3383</th> <th>0.9960</th>	504	1.641			19	3/19/2009 20:50	3/19/2009 15:30	3/12/2009 12:10	8310	30	277.00	243.03	7.13889	0.22222	3383	0.9960
24.8 Sidey 0.127 2.3 311/20008 13:00 310/20008 14:00 8824 30 24.74 5.0008 5.0008 3.000 5.0008 3.000<	202	2.364	Average	2.331	16	3/6/2009 12:40	3/5/2009 10:05	2/25/2009 14:00	10654	30	355.13	243.03	7.83681	1.10764	3370	0.9960
2190 Average 2.044 Average 2.045 Average 1.711 3.70 Average 1.70	202	2.438	Stdev	0.127	23	3/11/2009 13:00	3/10/2009 14:30	3/5/2009 14:00	8924	30	297.47	243.03	5.02083	0.93750	3375	0.9960
1.902 Average 2.004 25 349/2008 13:10 345/2008 10:20 226/2008 14:00 864 30 285.87 243.03 7.86417 1.1111 3370 1.302 A.112 3.11 3.112/2008 13:30 317/2008 15:30 385/2008 14:30 386/2008 15:30	202	2.190			7	3/12/2009 17:01	3/12/2009 10:50	3/6/2009 15:25	9884	30	329.47	243.03	5.80903	0.25764	3376	0.9960
2.124 Sidev 0.112 4 31/12009 13:30 31/12009 14:00 7894 30 269.17 243.03 5.04514 0.93403 3375 1.365 Average 1.701 Average 1.702 2.4310 2.64209 1.702 2.4310 2.4310 2.69209 3.702	206	1.902	Average	2.004	25	3/6/2009 13:10	3/5/2009 10:30	2/25/2009 14:00	8576	စ္တ	285.87	243.03	7.85417	1.11111	3370	0966.0
1.366 Average 1.701 Average 1.702 Average 1.702 Average 1.702 Average 1.702 Average 1.703 Average 1.704 Average 1.702 Average 1.702 Average 1.702 Average 1.702 Average 1.703 Average 1.704 Average 1.704 Average 1.704 Average 1.702 Average 1.702 Average 1.702 Average 1.702 Average 1.702 Average 1.703 Average 1.7000 Average <	206	2.124	Stdev	0.112	47	3/11/2009 13:30	3/10/2009 15:05	3/5/2009 14:00	7804	30	260.13	243.03	5.04514	0.93403	3375	0.9960
1.708 Average 1.704 Average 1.704 Average 1.704 Average 1.704 Average 1.704 Average 1.704 Average 1.705 Average 1.704 Average Average 1.704 Average	206	1.985			13	3/12/2009 17:40	3/12/2009 11:15	3/6/2009 15:25	8954	30	298.47	243.03	5.82639	0.26736	3376	0.9960
1,722 Stidey 0,024 0,24	202	1.708	Average	1.701	23	3/6/2009 13:45	3/5/2009 10:55	2/25/2009 14:00	7695	30	256.50	243.03	7.87153	1.11806	3370	0.9960
1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,574 Average 1,734 Average 1,736 Average 1,736 </th <th>202</th> <th>1.722</th> <th>Stdev</th> <th>0.024</th> <th>25</th> <th>3/11/2009 14:20</th> <th>3/10/2009 15:27</th> <th>3/5/2009 14:00</th> <th>6315</th> <th>30</th> <th>210.50</th> <th>243.03</th> <th>5.06042</th> <th>0.95347</th> <th>3375</th> <th>0.9960</th>	202	1.722	Stdev	0.024	25	3/11/2009 14:20	3/10/2009 15:27	3/5/2009 14:00	6315	30	210.50	243.03	5.06042	0.95347	3375	0.9960
1.606 Average 1.54 39 39/6/2009 11:25 2/25/2009 11:25 225/2009 14:00 7236 30 241.20 243.03 7.14937 7.12953 3370 1.497 Side 0.062 44 3/19/2009 21:30 3/19/2009 12:10 7561 30 222.07 243.03 7.14931 0.23958 3383 1.1497 Side 0.062 44 3/19/2009 20:45 3/12/2009 12:10 3/12/2009 12:10 3/12/2009 12:10 3/12/2009 12:10 3/12/2009 12:10 3/12/2009 12:10 3/12/2009 12:10 3/12/2009 12:10 3/12/2009 12:10 3/12/2009 12:10 3/12/2009 12:10 3/12/2009 12:10 3/12/2009 12:10 3/12/2009 12:10 3/12/2009 12:10 3/12/2009 12:20 3/12/2009	202	1.674			43	3/12/2009 18:30	3/12/2009 11:35	3/6/2009 15:25	7535	30	251.17	243.03	5.84028	0.28819	3376	0.9960
1.487 Stdev 0.62 44 3/19/2009 21:30 3/19/2009 11:30	208	1.605	Average	1.534	36	3/6/2009 14:20	3/5/2009 11:25	2/25/2009 14:00	7236	30	241.20	243.03	7.89236	1.12153	3370	0.9960
1.439 Ayerage 1.730 Ayerage Ayerage 1.730 Ayerage Ayerage <th>208</th> <th>1.497</th> <th>Stdev</th> <th>0.062</th> <th>4</th> <th>3/19/2009 21:30</th> <th>3/19/2009 15:45</th> <th>3/12/2009 12:10</th> <th>7561</th> <th>8</th> <th>252.03</th> <th>243.03</th> <th>7.14931</th> <th>0.23958</th> <th>3383</th> <th>0.9960</th>	208	1.497	Stdev	0.062	4	3/19/2009 21:30	3/19/2009 15:45	3/12/2009 12:10	7561	8	252.03	243.03	7.14931	0.23958	3383	0.9960
1.36 Average 1.79 28 3/6/2009 11:45 2/25/2009 11:45 2/25/2009 11:45 2/25/2009 11:45 2/25/2009 11:45 2/25/2009 11:45 2/25/2009 11:45 2/25/2009 11:45 3/25/2009 11:45	208	1.499			3	3/12/2009 20:45	3/12/2009 12:10	3/6/2009 15:25	6680	30	222.67	243.03	5.86458	0.35764	3376	0.9960
1.867 Stdev 0.064 39 3/11/2009 15:25 3/15/2009 15:25	203	1.730	Average	1.798	28	3/6/2009 14:50	3/5/2009 11:45	2/25/2009 14:00	7795	30	259.83	243.03	7.90625	1.12847	3370	0.9960
1.806 Average 1.456 36 31/12/2009 12:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 15:35 36/2009 16:30 36/2009	203	1.857	Stdev	0.064	39	3/11/2009 15:25	3/10/2009 16:05	3/5/2009 14:00	6810	30	227.00	243.03	5.08681	0.97222	3375	0.9960
1.460 Average 1.458 9 3/6/2009 15.25 3/5/2009 14:00 6578 30 219.27 243.03 7.92361 1.13542 3370 1.433 Stdev 0.024 28 3/1/2009 16:05 3/1/2009 16:20 3/5/2009 14:00 5246 30 774.87 243.03 5.09226 0.98958 3375 1.481 Average 1.959 34 3/1/2009 16:0 3/1/2009 16:20 </th <th>209</th> <th>1.806</th> <th></th> <th></th> <th>36</th> <th>3/12/2009 21:20</th> <th>3/12/2009 12:35</th> <th>3/6/2009 15:25</th> <th>8049</th> <th>30</th> <th>268.30</th> <th>243.03</th> <th>5.88194</th> <th>0.36458</th> <th>3376</th> <th>0.9960</th>	209	1.806			36	3/12/2009 21:20	3/12/2009 12:35	3/6/2009 15:25	8049	30	268.30	243.03	5.88194	0.36458	3376	0.9960
1.433 Sidev 0.024 28 3/11/2009 16:05 3/5/2009 14:00 5246 30 174.87 243.03 5.09722 0.98958 3375 1.481 Average 1.359 34 31/12/2009 16:05 3/12/2009 16:20 3/6/2009 16:20 3/6/2009 16:05	510	1.460	Average	1.458	6	3/6/2009 15:25	3/5/2009 12:10	2/25/2009 14:00	6578	30	219.27	243.03	7.92361	1.13542	3370	0.9960
1.481 Average 1.559 34722009 12:50 3462009 15:25 <t< th=""><th>910</th><th>1.433</th><th>Stdev</th><th>0.024</th><th>28</th><th>3/11/2009 16:05</th><th>3/10/2009 16:20</th><th>3/5/2009 14:00</th><th>5246</th><th>99</th><th>174.87</th><th>243.03</th><th>5.09722</th><th>0.98958</th><th>3375</th><th>0.9960</th></t<>	910	1.433	Stdev	0.024	28	3/11/2009 16:05	3/10/2009 16:20	3/5/2009 14:00	5246	99	174.87	243.03	5.09722	0.98958	3375	0.9960
1.839 Average 1.959 346/2009 16:30 3/5/2009 13:20 2/25/2009 14:00 8316 30 277.20 243.03 7.97222 7.13194 3370 1.995 Stdev 0.106 46 3/11/2009 16:50 3/10/2009 13:10 3/6/2009 14:00 7283 30 277.20 243.03 5.10764 1.01042 3375 2.041 Average 1.956 48 3/11/2009 12:10 3/6/2009 15:25 9068 30 272.72 243.03 5.90625 0.39583 3775 2.10 Stdev 0.152 3 3/12/2009 13:10 3/6/2009 15:25 9068 30 272.72 243.03 5.90625 0.39583 3775 2.10 Stdev 3 3/12/2009 13:30 3/12/2009 14:30 3/6/2009 15:25 9322 30 243.03 5.92014 0.40625 3376 2.10 Stdev 3 3/12/2009 14:30 3/12/2009 14:30 3/12/2009 14:30 3/12/2009 14:30 3/12/2009 14:30 3/12/2009 14:30 3/12/2009 14:30 3/12/2009 14:30	510	1.481			35	3/12/2009 21:55	3/12/2009 12:50	3/6/2009 15:25	6283	30	219.63	243.03	5.89236	0.37847	3376	0.9960
1.995 Stdev 0.106 46 3/11/2009 16:50 3/10/2009 16:35 3/5/2009 14:00 7283 30 242.77 243.03 5.10764 1.01042 3375 2.041 Average 1.956 48 3/11/2009 17:35 3/10/2009 16:50 3/5/2009 14:00 6542 30 243.03 5.11806 1.03125 3375 2.100 Stdev 0.152 38 3/11/2009 17:35 3/10/2009 16:50 3/5/2009 14:00 6542 30 2/8.07 243.03 5.11806 1.03125 3375 2.100 Stdev 0.152 38 3/11/2009 13:30 3/12/2009 14:30 3/12/2009 14:30 3/10/2009 14:30	511	1.839	Average	1.959	34	3/6/2009 16:30	3/5/2009 13:20	2/25/2009 14:00	8316	30	277.20	243.03	7.97222	1.13194	3370	0.9960
2.041 Average 1.356 Average 1.356 48 3/12/2009 13:10 3/6/2009 15:25 9068 30 302.27 243.03 5.90625 0.39583 3376 1.796 Average 1.956 48 3/11/2009 17:35 3/10/2009 16:50 3/6/2009 15:25 952 30 2/8.07 243.03 5.11806 1.03125 3376 2.100 Stdev 0.152 38 3/12/2009 13:30 3/6/2009 15:25 9322 30 3/10.73 243.03 5.92014 0.40625 3376 1.972 48 3/18/2009 13:00 3/17/2009 14:00 3/10/2009 14:00 <th< th=""><th>511</th><th>1.995</th><th>Stdev</th><th>0.106</th><th>46</th><th>3/11/2009 16:50</th><th>3/10/2009 16:35</th><th>3/5/2009 14:00</th><th>7283</th><th>9</th><th>242.77</th><th>243.03</th><th>5.10764</th><th>1.01042</th><th>3375</th><th>0.9960</th></th<>	511	1.995	Stdev	0.106	46	3/11/2009 16:50	3/10/2009 16:35	3/5/2009 14:00	7283	9	242.77	243.03	5.10764	1.01042	3375	0.9960
1.796 Average 1.956 48 3/11/2009 17:35 3/10/2009 16:50 3/5/2009 14:00 6542 30 2/8.07 243.03 5.1806 1.03125 3375 2.100 Stdev 0.152 38 3/12/2009 23:15 3/12/2009 13:30 3/6/2009 15:25 9322 30 3/10.73 243.03 5.92014 0.40625 3376 1.972 48 3/18/2009 13:00 3/17/2009 14:00 3/10/2009 14:00	511	2.041			37	3/12/2009 22:40	3/12/2009 13:10	3/6/2009 15:25	8906	30	302.27	243.03	5.90625	0.39583	3376	0.9960
2.100 Stdev 0.152 38 3/12/2009 23:15 3/12/2009 13:30 3/6/2009 15:25 9322 30 3/10/3 243.03 5.92014 0.40625 3376 1.972 48 3/18/2009 13:30 3/17/2009 14:30 3/10/2009 14:00 8653 30 288.43 243.03 7.00000 0.95833 3382	512	1.796	Average	1.956	48	3/11/2009 17:35	3/10/2009 16:50	3/5/2009 14:00	6542	30	218.07	243.03	5.11806	1.03125	3375	0.9960
1.972 48 3/18/2009 13:00 3/17/2009 14:00 3/10/2009 14:00 8653 30 288.43 243.03 7.00000 0.95833 3382	512	2.100	Stdev	0.152	38	3/12/2009 23:15	3/12/2009 13:30	3/6/2009 15:25	9322	30	310.73	243.03	5.92014	0.40625	3376	0.9960
	512	1.972			48	3/18/2009 13:00	3/17/2009 14:00	3/10/2009 14:00	8653	30	288.43	243.03	2.00000	0.95833	3382	0.9960

Ra-226 Verification-Sheet

			to sizales	10/0/10-														603/6
	Total Counts	5781	4348	- (**X**)	7 120	7262	10654	8516	7695	7734	1795	6518	83/6					
	Background CPM	<i>90</i>		100 3/2 1001	3		2	8	7	_	<i>9</i> 0	7	e					
	Det #	5	5	5	5	5	N	Ŋ	N	Ŋ	N	Ŋ	S				Д	
1 116 109	Cell #	201	201	503	503	504	503	200	507	508	509	510	115		i			
Ra-226 Verification-Sheet	Start Count Date/Time	Hulog MS0	3/10/69 6846		3/6/69 6920	3/4/69 1000	316109 1240	316169 1316	316169 1345	3/10/109 1420	3/4/69 1456	3/19/19/19/5	3/6/09 1630					
Ra-226		0180	849		0,000	0440	lbos	060	1055	1115	5hl	12.10	1320		/			
	End De	313109	Pallete	0.19140	3/5/09	315109	515169	315109	315/09	315109	315104	315109	3/5/09					
(A1 # 5	End Degas	Urstog 1400		1 1	U125/105 1400	worl boisth	475109 1400	475109 1460	Wishe How	2041 101/52/12	2011 60152/2	175/164 1400	Upsley 1400					
	Volume		145		500	500	5100	500	500	500	500	200	205					
	Sample	6010	五 日 日 日		1/h (177)	50143	Cally	54 17)	(a) B	Ca1 29	81. 117)	(a) 9	Ca1 B4					
	<u> </u>		<u> </u>		_		-		- 3	39	•	•	•	•	-			

Ra-226 Verification Sheet

				- K3124109				po stratog	, WB 3124109.									Polaries.
Total	71.01		25 5	7352	6886	H268	-USL	6315	toyas	0/89	2246	7283	Ch59					
Background	O CLIM	0	5	8	ュ	7	00	<u> </u>	3	8	3	8	≫				\int	
	= (0	S	2	5	5	5	8	S	5	B	S	n					
Eg.	* 5	100	205	503	Sur	505	506	507	208	500	510	110	215			\int		
Start Count	Date/lime	3/11/104 1040	31111199 1115	23/11/11/2	3/11/09 1130	3/11/69 1300	311169 1530	०११। ५०।।।६.	Shi rollik	3/11/109 152S	3/ 11/01 16:0T	3/11/09 16:50	3/11/01 17:35					
End De-em		5/10/09 1250	Molos Poro	34.06s		3110105 1490	3110605 1509	\$120104 1527	Strotor 1550	2001 rotor	3110109 11020	३५०१। भागह	311069 (1650					
End Degas	Date/Time	3/5/04/400 3	3/5/09 1400			۵	315104 1400 31	0.4	315hg lyro st	R OSH YOSK	15 april boists	09/1	315104 1400					
Volume	(mL)	300	250	S CRIS	(in S	Soti	220	1	280	Son	Sign	500	588	/				
Sample	ID.	Cai	Cal	(41 15	10 Pd	Cul V3	Ca 47	Caras		Pa 1 M	(al 78	(0) 410	Cal 48					

Calibration
Ra-226 Verification Sheet

					100 3124 109													To alle los
Total	Counts	0129)	SUB	7214	420	7886	8554	7536		08 99	8049	5859	8906	usb				\int
Decker	CPM	8	<i>∞</i>	7	0	5	8	9		0	8	_	8	5				/
	# #	S	N	S	8	S	S	N		S	D	5	N	5				
= 0	# Ce	501	202	203	1961	505	506	507		2008	508	510	115	SIL				
	Start Count Date/Time	3/14/9 1330	Thy rank	3/12/05 1450	311Mbg 1575	10/21/6/10/12	2/12/20 17:45		2/12/08 18:30	3/12/09 20:45	3/12/07 21/2	3/12/09 21:55	3/2/01 22:40	1 1	_			
	End De-em	109 10110	04 Date 04 50		1 1	-		-	11.25	log Mo	09 1735	04 120	17,10	1320				
	편 c	2/12/09	311769	3/1404	21124114	2117 Age	21/11/2		211116	3/11/04	SIMOS	50 KIK	31M05	अभाभ				
	egas	1525	1525	15.25	1 1/2	76.35	200		1525	12104	1525	5251	1525	1525		/		
	End Degas	3/4/04 1525	3/10/69 1525	Polalog	1 I	0.1 1.0	20 FU WILL 100	200	791016	2416 3/6/04 1528	3/6/09	3/10/16	3/10/09	20/01/6				
	Volume	28	505	200	5	36.	35,	280	0,00	Sort	200	500	aas	500				
	Sample	7 H (10)	-	741 147		26 120	- 1 - 3	C41 15	Cal 42	6 Cal 2	9)& 1.70 41	56 100	Cal 37	84177				, Ž

Lot 26 M

Lo 3hurog Ko 3huros 8483 Total Counts 1855 1621 TO ST 6315 Background CPM S **†** Det # ψ Ŋ S S M 205 = C= # Las 715 Sod 202 3/15/2 1200 318/18 1005 1325 PAINTE 1855 Hisher 18725 3111011420 Start Count Date/Time SOUNDIE . 14 00 3/17/09 1250 317109 1345 3 holes 1527 End De-em Date/Time 3/11/09 2017/6 3/10/07 1400 A/10/09 1400 2/10/09 1400 3/10/09 1400 315/09 1400 Date/Time End Degas Volume rs B (mL) B 1 Za B 1201 1251 Cat 39 Cal 15 Sample Ca 148 Ca125 1 342

Ra-226 Verification Sheet (a) #5/5

Ra-226 Calibration Sheet
Standard ID:
Volume Added (mL): 11

Expiration Date: 41406

				3 hung						
Det *\" Total # \" Counts	8282	8310	7561	1942 les 3/241199						
Det :	\$85	8	5	R						
# Cell	503	Sort	5v8	504						
Start Count Date/Time	3/19/09 2015	3/19/09 2050	3/19/09 2130	1000 7/11/12 2200						
End De-em Date/Time	Bland 1515	3/14/05 1530	3/19/09 1545 3/19/09 2130	M14109 1400				Bolleda		
End Degas Date/Time		3/11/04 1210 2	3/11/09 11/16	311764 1110				2		
Volume (mL)	i I	200	200	Søt	and the state of t					
Sample ID	Ca1 42	Cal 19	m 44	-68+39	The Property of the Control of the C	2 m				

Nycomed Amersham plc Amersham Laboratories 029

Constitution of confident

Nycomed Amersham plc Radiation & Radioactivity Calibration Laboratory Amersham Laboratories White Lion Road Amersham Buckinghamshire HP7 9LL ISSUED FOR:

AEA Technology plc
Isotrak
Amersham Laboratories
White Lion Road
Amersham
Buckinghamshire
HP7 9LL

ion Principal radionuclide: Radium-226

Product code: RAY44 Solution number: R4/131/89

ment Reference time: 1200 GMT on 15 December 1999

data Nuclear data quoted on this certificate are tal en from the Joint European File, Version 2.2.

ion of The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2.00, which inties for a t-distribution with $v_{eff} = \infty$ effective degrees of freedom corresponds to a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Unless indicated, all other uncertainties are expressed at the confidence level associated with one standard uncertainty.

The format used for the uncertainties in the values of radionuclidic purity is illustrated in the following examples;

6.5(21) = 6.5 \pm 2.1 6.54(21) = 6.54 \pm 0.21 6.543(21) = 6.543 \pm 0.021

// tt_:

ved

Date of 17 December 1999

& Standard Traceability Log Rad

Source Mate	erial Info
Parent Code:	0299
Prepared By:	Angela Johnson
Carrier Conc:	0.5 M HCL
Reference Date:	12/15/1999
Ampoule Mass (g):	5.0368 g
Uncertainty:	+/- 2.5 %
LogBook No:	RC S 027 128

A Solution M	aterial Info
Isotope:	Radium-226
Prepared By:	Angela Johnson
Prep Date:	09/15/2000
Verification Date:	01/23/2008
Expiration Date:	01/23/2009
Primary Code:	0299-A
Dilution(mL):	100 mL
Mass of Parent(g):	4.6634 g
Density(g/mL):	1.0012
Balance ID:	

Calculations Converting parent activity to dpm/mL|dpm/g

 $(Mass\ of\ parent(g))*(Parm\ Activity\ (kBq/g))*(conversion\ dpm\ to\ kBq)\ /\ (Dilution\ Vol) = Parent\ Activity\ (dpm/mL)$

(Mass of parent(g)) * (Parm Activity (kBq/g)) * (conversion dpm to kBq) / Density (g/mL)/ (Dilution Vol) = Parent Activity (dpm/g)

(4.6634 g) * (43.75 kBq/g) * (60000 dpm/kBq) / (100 mL) = 122414.2500 dpm/mL

(4.6634 g) * (43.75 kBq/g) * (60000 dpm/kBq) / (1.0012 g/mL) / (100 mL) = 122273.3377 dpm/g

Secondary Standards

Prep Date	Preparer	Mass Primary	Dilution (mL)	Code	Conc dpm/mL	Verification Date	Expiration Date
08/26/2003	Angela Johnson	1.9909	100	0299-E	2434.34 dpm/mL	11/04/2004	11/04/2005
08/26/2003	Angela Johnson	1.9872	100	0299-F	2429.82 dpm/mL	08/26/2004	08/26/2005
04/05/2005	Amanda Fehr	5.0018	250	0299-G	2446.3471 dpm/mL	04/02/2008	04/02/2009

GEL Laboratories LLC Version 1.0 9/18/2000

felli Spoull

Verification for Ra-226 Standard 0299-G

						Standard	
4/2/2008	Isotope	Detector CPM	BKG CPM	NET CPM	Detector Eff	Mass. Used (G)	Source DPM/G
D. Roy	0299-G N1	2536.9600	52.4000	2484.5600	1.917186	0.5057	2562.667649
	0299-G N2	2520.2500	52.4000	2467.8500	1.917186	0.5056	2545.935781
	0299-G N3	2532.5000	52.4000	2480.1000	1.917186	0.5042	2565.677715
						Average =	2558.093715
Mean Value (Counting) =	2558.093715		104.944421	Pass			
Stdev =	10.63610098		0.00415782	Rule 3 (Pass/Fail)			
Certificate Value =	2437.6	. dem/mL					
Lower Limit =	2536.821513	dpm/mf					
Upper Limit =	2579.365917	dpm/mL					
Rule 1 Pass/Fail	Fail	*exception take	n due to fuil r	*exception taken due to full recovery of standard			
Two sigma =	21.27220197	dpm/mf		ı			
10 % of Mean =	255.8093715	dpm/mL					
Rule 2 (Pass/Fail)	Pass						

Verification Rules

Rule 2 = The two sigma value used for the 95% confidence interval shall not exceed 10% of the mean value Rule 1 = The certificate value (NOT including any uncertainty) shall lie within the 95% confidence interval determined from the mean and two sigma standard deviation of the three measurements of the three verification measurements.

Rule 3 = The determined mean value shall be within 10% of the certificate value.

4/02/08 using source 0024-A (Ra-226). Calibration data is recorded in this logbook under Ra-226 0024. Each The analyst prepared three standard verification sources for Ra-226 source 0299-G by transferring portions of scintillation cocktail was added to each vial and the vials were shaken to mix. A Blank vial was prepared in a verification. The Ra-226 efficiency calibration which was used for verification calculations was performed on Background source were dark adapted for two hours and counted on LSC Gold for Radium source standard similar fashion using 1 mL of DI water and 10 mL of Ready Gel cocktail. The standard verification vials and the standard into tared glass liquid scintillation vials. One mL of DI Water and ten mLs of Ready Gel liquid verification source calculation was performed as follows:

Source dpm/g = (A - B)/(C)(D)

where:

A = Ver. source cpm,
B = BKG cpm,
C = System efficiency, (cpm/dpm), and
D = mass used for standard verification.

General Engineering Laboratories Verification Source Preparation Sheet

A III-la COR Number	GL PANO-A-008	lsotope	PA-220
Applicable SOP Number_		Cocktail Type Used	NA
Date Standards Prepared	0/15/05	Matrix of Vial/Planchett	NA
Standard ID	0249-6	Matrix of Vialification	NA
Amount Used (g of ml)	0.1		NA NA
Standard Activity (DPM/g or mb)	1446.347	Type of Scintillation Vial_	NA
Reference Date	12/15/199	Pipette ID Used_	1429303
Expiration Date	4/2/09	Balance ID Used	36040216
	n Cuanci	Quenching Agent_	NA
Residue/Carrier Agent	V 31-11101		

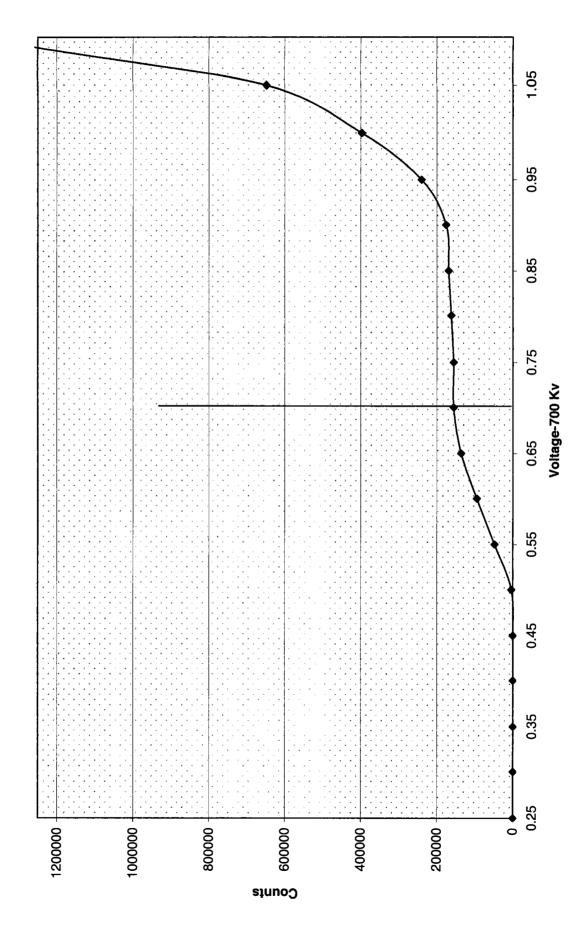
	Standard Number	Quenching Vol (uL)/ Residue Volume(mL)	Initial Wt. (g)	Final Wt.	Net Wt. (mg)
15	Calls				/
46	[4146			/	
47	Ca147			 	
10	Calle				
25	Ca125		 	 	
23	64123		 	0	
39	Ca139		1/2		
28	Cu 128		1/-5		
9	cala		1,2		
34	CG 134		<u> </u>		
42	Ca142	 			
19	CG119				
чЧ	CUILLA				
1	6417	//	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
13	[a113	<u> </u>	1		

	lue p		Da	te	3/24109	
Prepared By:	Janu D	UMP	Da			
Reviewed By:			 			

Rev 1 RLM 9/10/97

General Engineering Laboratories Verification Source Preparation Sheet

pplicable SOP Number	GLAMO K-DO	<u> 8</u>		Isotope	2122U	
e Standards Prepared	415109		Cockt	ail Type Used	NA	· · · ·
	02996		Matrix of	Vial/Planchett	NA	
Standard ID	U.V.			in in the second second second second second second second second second second second second second second se	NA	
Amount Used (g or ml)	D.1				NA	
(55)//	14146.347		Type of S	cintillation Vial	NA	
Activity (DPM/g or n(L))_	12/15/199		B	ipette ID Used_	1425	303
Reference Date_	79191		-	ipette io Caca		
Expiration Date_	4/2/09		Ва	lance ID Used	3600	OLL
	05MHC		Qu	enching Agent_	NA	
Residue/Carrier Agent_	V.SIOCAC	<u> </u>				. :
				Final Wt.	Net Wt.	
	Standard Number	Quenching Vol (uL)/ Residue Volume(mL)	Initial Wt. (g)	(g)	(mg)	
43	CU143	Hesidue Volume(mz)	(O)			
3	Cul3					
310	Ca 136					
35	Ca135					
3,1	Ca137					
38	C = 1.25/					4 . Ay
58	60170					
38	CG138		۲			
38	[6] 56	322	۵.			
38	(A136	322	5			
38	Calso					
- 58 	Cal 36					
38	Calso					
38	(a) 36					
38	CATSO					
	CALSO					
	CALS					
	Hilli Da				31241	


Rev 1 RLM 9/10/97

Voltage

	Voltage	Curve Ludlu	m # 5	
Volts	Counts	Date	Time	Detector
0.00	0	2/25/2009	9:20	5
0.05	0	2/25/2009	9:20	5
0.10	0	2/25/2009	9:20	5
0.15	0	2/25/2009	9:20	5
0.20	0	2/25/2009	9:20	5
0.25	0	2/25/2009	9:20	5
0.30	0	2/25/2009	9:20	5
0.35	0	2/25/2009	9:20	5
0.40	0	2/25/2009	9:20	5
0.45	0	2/25/2009	9:20	5
0.50	3611	2/25/2009	9:20	5
0.55	47984	2/25/2009	9:20	5
0.60	94752	2/25/2009	9:20	5
0.65	135854	2/25/2009	9:20	5
0.70	155952	2/25/2009	9:20	5
0.75	155696	2/25/2009	9:20	5
0.80	161972	2/25/2009	9:20	5
0.85	168840	2/25/2009	9:20	5
0.90	175598	2/25/2009	9:20	5
0.95	239969	2/25/2009	9:20	5
1.00	397249	2/25/2009	9:20	5

W 3/24109

Ludlum 5 Voltage Curve

Ra-226 WATER

Batch: LCSVER
Date: 2/20/2008
Analyst: DXM2

Bkg Count Time:

30

ш

Procedure Code: LUC26RAL
Parmname: Radium-226
MDA: 1 pCi/L
Instrument Used: LUCAS CELL DETECTOR

COUNT DATE/TIME		3/16/2009 15:10	3/16/2009 19:25	3/16/2009 20:20	3/20/2009 19:00	3/16/2009 22:00	3/20/2009 19:40	3/16/2009 23:00	3/16/2009 23:30	3/20/2009 20:50	3/17/2009 5:00	3/17/2009 5:35	3/17/2009 6:10
Ra-226 ERROR	pCi/L	2.0728	1.9747	2.2832	1.9774	1.7758	1.7988	2.0008	2.3344	1.8657	2.0476	1.7694	1.9815
Ra-226 RESULT	pCi/L	28.8142	23.0223	25.9035	26.2570	23.5744	27.0593	22.0004	27.7023	25.9694	21.6379	21.2369	26.7349
Ra-226 MDA	pCi/L	0.6041	0.5682	0.8071	0.6021	0.2559	0.4859	0.7287	0.3760	0.5430	0.3700	0.5934	0.5945
BKG	cbm	0.267	0.167	0.267	0.267	0.033	0.267	0.267	0.033	0.267	0.033	0.267	0.267
Cell Const.	mnu	2.087	1.878	1.601	1.615	2.331	2.004	1.701	1.534	1.798	1.458	1.959	1.956
# Ce	unu	501	205	503	504	202	206	207	508	209	510	511	512
Gross	cts	992	537	518	701	089	893	488	544	292	432	211	723
Count	min	30	30	30	30	30	30	30	30	30	30	30	႙
Sample Vol		0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
Sample	. ⊡	Ver 1	Ver 2	Ver 3	Ver 4	Ver 5	Ver 6	Ver 7	Ver 8	Ver 9	Ver 10	Ver 11	Ver 12

Recovery/RPD	120%	%90		%80L	109%	%86	113%	91%	115%	108%	%06	88 %	111%	Ingrowth	constant		0.3785	0.3695	0.3693	0.4908	0.3711	0.4901	0.3852	0.3837	0.4888	0.4103	0.4107	0.4106
NC conits	l/i	ا ا آزار	֓֞֞֝֞֞֞֞֞֞֞֞֓֓֞֞֞֓֓֓֞֞֓֓֓֓֞֞֓֓֞֓֞֞֓֓֞֓֞֞֞֞֞֓֞֞֞֞	PCI/L	pCi/L	pCi/L	pCi/L	PCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	Net	CPM	cpm	25.2667	17.7333	17.0000	23.1000	22.6333	29.5000	15.9997	18.1000	25.3333	14.3667	18.9663	23.8330
Z.	24.05	27.05	5 6	24.05	24.05	24.05	24.05	24.05	24.05	24.05	24.05	24.05	24.05	constant			1.0019	1.0019	1.0019	1.0019	1.0019	1.0019	1.0019	1.0019	1.0019	1.0019	1.0019	1.0019
Standard ID	0638-F	. дезе- Везе-	- L	0638-F 0638-F	0638-F	constant			0.9599	0.9325	0.9284	0.9563	0.9232	0.9533	0.9331	0.9296	0.9479	0.8957	0.8941	0.8918								
Sample Type	50)) () ()	S	SOT SOT	CCS	constant			0.3936	0.3955	0.3970	0.5122	0.4012	0.5131	0.4120	0.4120	0.5147	0.4571	0.4585	0.4595							
vers 5-09	3/16/2009 15:10	3/16/2000 10:25	0/10/2007 10:20	3/16/2009 20:20	3/20/2009 19:00	3/16/2009 22:00	3/20/2009 19:40	3/16/2009 23:00	3/16/2009 23:30	3/20/2009 20:50	3/17/2009 5:00	3/17/2009 5:35	3/17/2009 6:10	dE-EM-	COUNT		5.42	9.25	9.83	5.92	10.58	6.33	9.17	9.67	7.08	14.58	14.83	15.17
# *	- L	י ע) (2	5	2	ß	2	S	S	2	S.	5	DEGASS-	DE-EM		66.25	66.67	67.00	92.08	67.92	95.33	70.33	70.33	95.75	80.92	81.25	81.50
Seman Olin														DE-EMAN.	DATE/TIME		3/16/2009 9:45	3/16/2009 10:10	3/16/2009 10:30	3/20/2009 13:05	3/16/2009 11:25	3/20/2009 13:20	3/16/2009 13:50	3/16/2009 13:50	3/20/2009 13:45	3/16/2009 14:25	3/16/2009 14:45	3/16/2009 15:00
Cl alume?	501		200	503	504	505	506	507	208	509	510	511	512	DEGASSING	DATE/TIME		3/13/2009 15:30	3/13/2009 15:30	3/13/2009 15:30	3/16/2009 14:00	3/13/2009 15:30	3/16/2009 14:00	3/13/2009 15:30	3/13/2009 15:30	3/16/2009 14:00	3/13/2009 5:30	3/13/2009 5:30	3/13/2009 5:30

Ra-226 Verification Sheet

				37	3124101	140 25u109			= 100 2124109)				60	X.E.		
Total Counts	300	537	518	444	1 W3/1966 80	40+	488	75	049	432	57.7	303					
Background CPM	۵۵	85 ms.m	8	8	orkay! A	ð	۶	4 10 3456K	۶	1 Perts on	シ	8					
Det #	Ŋ	S	5	5	S	5	2	Ŋ	S	N	r)	5					
# Cell	201	202	503	204	505	206	Log	208	Sag	SID	511	215					
Start Count Date/Time	C151 PO-01.5	3,16.09 (925	3 16.09 2020	3,609 2115	3,16,01 2200	3,16.09 2130	2 leas 2300	31609 2530	3117109 BSHS	5/17/09	3/17/09 0535	1500 3/17/09 0610		40112	, (-
End De-em Date/Time	3/10/09 10445	5	3/16/09 1030	3116184 1150	3114109 1125	3/11/104 1155	3/14/04 1370	3/16/19 1350	3116109 1910	3116119 1475	3116109 (445	2051 Poly			, (M)		
End Degas Date/Time	5/15/09 1530 3/10/09	3/13/04 1530	3113109 1530	3/13/04 1550	3/13/104 1530	व्हडा म्लाहाहि	3/15/104 1530	311316 1520	343161 1530	3/13/04/1520	31316 1530	arsi pakik			e de la companya de l	والمستعدد والمستعد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستع	
Volume (mL)	535	Syds	406	2000	500	ags	Sass	200	R	Se	280	ng.					
Sample	1 1/1/1	2 37	VW 3	TXX	1000	437	YWA	8 37 3	53	18.10	× 37	100 M					

Ra-226 Verification Sheet
Standard ID: 0(038 F
Volume Added (mL): 0.1
Expiration Date: 1210

					j							
Total Counts	4	107	843	892								
Background Counts	8	Y	×	8								
Det #	2	V	v	٧								
Cell #	195	504	Soc	504								
Start Count Date/Time	3/20/09 1820	3/20/09 1900	3/30/69/92/8/6,	3/30 09 2050								
S	3/2	3/20	278	2.A					<u></u>			
End De-em Date/Time	Shal	5061	1320	1345					John Stratto)		
End Date	५०१०४।६	3/20/05	3/20/09	3120109								
End Degas Date/Time	1400	1400	1400	3116109 1400					:			
End I Date/	11101 HOD	3/16/14 1400	3116109 1400	311016			TOTAL TOTAL					
Volume (mL)	SW	28	R	220								
Sample ID	-tw+	1WV	Vex 3	V W Y								
6]		<u> </u>	<u> </u>	!	L	<u> </u>		<u> </u>	<u> </u>

General Engineering Laboratories Verification Source Preparation Sheet

• • • • •	-LI- COO Number	GL-AMD-	B D08		lsotope	PANG	
	cable SOP Number	1116/09		Cockta	ail Type Used_	NΝ	
210 3	nandardo i Toparod			Matrix of 1	Vial/Planchett_	NA	
	Standard ID _	0638 F		Matrix of	A ICIAL ICI ICI ICII C	NA	
		M: 1				NA	
Am	ount Used (g or [ni)_				tamala Ma	NA	
d Ac	tivity (DPM/g or InL)_	2107 519		Type of So	cintiliation Vial_		
		1123104		P	ipette ID Used_	142930	3
	Reference Date					3808 ou	
	Expiration Date	2/2/10		Ва	lance ID Used_	JOBOU	<u> ۲۲</u>
		NA		Qu	enching Agent	NA	11.3
R	esidue/Carrier Agent	INFO					
						11-214/4	
[Standard Number	Quenching Vol (uL)/	Initial Wt.	Final Wt. (g)	Net Wt. (mg)	
			Residue Volume(mL)	(g)	(8)		
	1	Ver					
at 3							
	ν	VIN 2					: ,
	- 3 · 3 · ·	1,23					•
	3	Ver 4					
	3 4 5	Ver 4 Ver 5					
		Ver u Ver u					
	3 4 5	Ver 1					
	3 4 5 4	Ver 4 Ver 5 Ver 1 Ver 7			,9		
	3 4 5 4 7 8	Ver 4 Ver 5 Ver 6 Ver 7 Ver 8 Ver 9			9		
	3 4 5 4	Ver 4 Ver 5 Ver 1 Ver 7			9		
	3 4 5 7 8 9	Ver 1 Ver 1 Ver 1 Ver 1 Ver 10 Ver 10			,9		
	3 4 5 7 8 9	Ver 4 Ver 5 Ver 1 Ver 7 Ver 8 Ver 10			9		· · · · · · · · · · · · · · · · · · ·
	3 4 5 7 8 9	Ver 1 Ver 1 Ver 1 Ver 1 Ver 10 Ver 10			9 3	100 18 200	
	3 4 5 7 8 9	Ver 1 Ver 1 Ver 1 Ver 1 Ver 10 Ver 10		120 M	9		
	3 4 5 7 8 9	Ver 1 Ver 1 Ver 1 Ver 1 Ver 10 Ver 10		120 M	9 3	100 18 200	

Rev 1 RLM 9/10/97

Standard Traceability Log Rad

Source Material Info					
Parent Code:	0638				
Prepared By:	Amanda Fehr				
Carrier Conc:	0.1M HCl				
Reference Date:	01/23/2004				
Ampoule Mass (g):	5.01065 g				
Uncertainty:	+/- 3.3 %				
LogBook No:	RC-S-037-037				

A Solution Material Info				
Isotope:	Radium-226			
Prepared By:	Amanda Fehr			
Prep Date:	01/16/2006			
Verification Date:	03/04/2007			
Expiration Date:	03/04/2008			
Primary Code:	0638-A			
Dilution(mL):	100 mL			
Mass of Parent(g):	4.8398 g			
Density(g/mL):	1.0266			
Balance ID:	38080204			

Calculations Converting parent activity to dpm/mL|dpm/g

(Mass of parent(g)) * (Parm Activity (dps)) * (conversion dpm to dps) / (Ampoule Mass(g) *(Dilution Vol)) = Parent Activity (dpm/mL)

(Mass of parent(g)) * (Parm Activity (dps)) * (conversion dpm to dps) / Density / (Ampoule Mass (g) * (Dilution Vol)) =
Parent Activity (dpm/g)

(4.8398 g) * (23530 dps) * (60 dpm/dps) / (5.01065 g * 100 mL) = 13636.6133 dpm/mL

(4.8398 g) * (23530 dps) * (60 dpm/dps) / (1.0266 g/mL) / (5.01065 g * 100 mL) = 13282.9676 dpm/g

Secondary Standards

Prep Date	Preparer	Mass Primary	Dilution (mL)	Code	Conc dpm/mL	Verification Date	Expiration Date
01/17/2006	Amanda Fehr	2.1041	100	0638-В	279.0211 dpm/mL	01/17/2007	01/17/2008
07/17/2006	Mary Aders	2.1313	100	0638-C	282.6281 dpm/mL	07/26/2006	07/26/2007
03/28/2007	Daniel Roy	2.1025	100	0638-D	279.2744 dpm/ml	04/08/2007	04/08/2008
03/28/2007	Daniel Roy	45.468	250	0638-E	2415.7999 dpm/ml	04/09/2008	04/08/2009
12/18/2007	Daniel Roy	2.014	100	0638-F	267.519 dpm/ml	02/02/2009	02/02/2010
02/12/2008	Daniel Roy	.5004	100	0638-G	66.468 dpm/ml	03/04/2008	03/04/2009
07/23/2008	Daniel Roy	5.0607	250	0638-Н	268.8845 dpm/ml	07/23/2008	07/23/2009

Verification for Ra-226 Standard 0638-F

D. Roy	Isotope	Value	Uncertainty		
2/2/2009	0638-F #1	24.629	1.7426		
	0638-F #2	24.438	1. 75 57		
	0638-F #3	22.791	1.6808		
Mean Value (Counting) =	23.953	99.60	Pass		
Stdev =	1.010781096	R	Rule 3 (Pass/Fail)		
Target =	24.05				
Lower Limit =	21.93100448				
Upper Limit =	25.97412886				
Rule 1 Pass/Fail	Pass				
Two sigma =	2.021562191				
10 % of Mean =	2.395256667				
Rule 2 (Pass/Fail)	Pass				

Rule 1 = The certificate value (NOT including any uncertainty) shall lie within the 95% confidence interval determined from the mean and two sigma standard deviation of the three measurements Rule 2 = The two sigma value used for the 95% confidence interval shall not exceed 10% of the mean value of the three verification measurements.

Rule 3 = The determined mean value shall be within 5% of the certificate value.

The analyst prepared three standard verification sources for standard 0638-F using 0.1 mL for each source. Each source was counted using routine Lucas cell procedures. Calibration for 0299-G was used in this verification.

JW 3124109

U -1:

General Engineering Laboratories

2040 Savage Road, Charleston, SC 29414 (843)556-8171

Lucas Cell Calibration Package

		YES	NO	Comments
1)	Is all calibration standard information enclosed for:			
	the primary standard certificate?	V		
	the secondard standard(s) documentation?	<u> </u>		
	standard preparation information?	V		
	standard < 1 Year old or verified?	V		:
2)	Is the efficiency calibration report included ?	V		
3)	Is the raw count data included for:			
-,	Cell constant determination?			
	Plateau generation?	V		
4)	Are the calibration verifications included?	V	<u> </u>	
.5)	Are the instrument settings included:			
	HVPS settings?	V	·	
۵۱				
6)	Has the CELLEFF xls file been updated?			
7)	Have the calibration dates been updated in ALPHALIMS?	V		
	Prepared By: Wy Boule Reviewed By: Ougland The		814109	
		Effective Date:	814109	

Standard Reference date:

12/15/1999 0299-G 0.1 2446.3471 standard ID: Volume added (mL):

Standard Reference Activity (DPM/mL):

						Date/time	Date/time		count		Known	t1 (days)	t2 (days)	t3 (days)	Decay from
Lucas	Ce!			Standard	Date/Time	flushed	end of	total	time		activity	end-degas	end-flush	Std Ref Date	Std Ref Date
# //ec	constant			Source	of count	to cell	degas	counts	min	срт	dpm	to flush	to count	to count	to count
601	2.164	Average	2.181	6	5/26/2009 13:30	5/26/2009 9:30	5/19/2009 14:00	10883	30	362.77	244.63	6.81250	0.16667	3451	0.9959
601	2.253	Stdev	0.065	-	5/22/2009 12:55	5/22/2009 9:15	5/19/2009 14:00	6378	30	212.60	244.63	2.80208	0.15278	3447	0.9959
601	2.126			5	5/29/2009 14:45	5/29/2009 9:50	5/22/2009 10:45	10735	30	357.83	244.63	6.96181	0.20486	3454	0.9959
602	2.007	Average	2.168	9	5/29/2009 15:20	5/29/2009 10:15	5/22/2009 10:45	10133	30	337.77	244.63	6.97917	0.21181	3454	0.9959
602	2.194	Stdev	0.150	01	5/26/2009 14:05	5/26/2009 9:55	5/19/2009 14:00	11033	30	367.77	244.63	6.82986	0.17361	3451	0.9959
602	2.304			ß	6/2/2009 14:45	6/2/2009 11:30	5/29/2009 9:50	8575	30	285.83	244.63	4.06944	0.13542	3458	0.9959
604	2.244	Average	2.133	9	6/2/2009 15:50	6/2/2009 11:50	5/29/2009 9:50	8321	30	277.37	244.63	4.08333	0.16667	3458	0.9959
604	2.076	Stdev	960.0	7	5/29/2009 15:55	5/29/2009 10:45	5/22/2009 12:00	10451	30	348.37	244.63	6.94792	0.21528	3454	0.9959
604	2.079			11	5/26/2009 15:45	5/26/2009 10:20	5/19/2009 14:00	10372	30	345.73	244.63	6.84722	0.22569	3451	0.9959
909	2.096	Average	2.149	12	5/26/2009 16:15	5/26/2009 10:50	5/19/2009 14:00	10474	30	349.13	244.63	90898.9	0.22569	3451	0.9959
605	2.228	Stdev	0.070	4	5/22/2009 16:25	5/22/2009 10:45	5/19/2009 14:00	6318	30	210.60	244.63	2.86458	0.23611	3447	0.9959
605	2.122			8	5/29/2009 17:15	5/29/2009 11:05	5/22/2009 12:50	10587	30	352.90	244.63	6.92708	0.25694	3454	0.9959
909	2.543	Average	2.348	6	5/29/2009 17:45	5/29/2009 13:10	5/26/2009 9:30	7816	30	260.53	244.63	3.15278	0.19097	3454	0.9959
909	2.202	Stdev	0.176	-	5/26/2009 16:45	5/26/2009 12:25	5/22/2009 12:00	8057	30	268.57	244.63	4.01736	0.18056	3451	0.9959
909	2.298			7	6/2/2009 18:20	6/2/2009 12:55	5/29/2009 9:50	8495	30	283.17	244.63	4.12847	0.22569	3458	0.9959
209	2.454	Average	2.450	8	6/2/2009 19:00	6/2/2009 13:10	5/29/2009 9:50	9057	30	301.90	244.63	4.13889	0.24306	3458	0.9959
209	2.572	Stdev	0.123	9	5/29/2009 19:00	5/29/2009 13:25	5/26/2009 9:55	7832	8	261.07	244.63	3.14583	0.23264	3454	0.9959
607	2.325			2	5/26/2009 17:15	5/26/2009 12:50	5/22/2009 12:00	8527	30	284.23	244.63	4.03472	0.18403	3451	0.9959
609	2.277	Average	2.316	တ	5/26/2009 19:20	5/26/2009 13:10	5/22/2009 12:00	8261	30	275.37	244.63	4.04861	0.25694	3451	0.9959
609	2.280	Stdev	990'0	7	5/22/2009 19:20	5/22/2009 12:00	5/19/2009 14:00	6473	90	215.77	244.63	2.91667	0.30556	3447	0.9959
609	2.392			11	5/29/2009 19:40	5/29/2009 13:45	5/26/2009 10:20	7261	30	242.03	244.63	3.14236	0.24653	3454	0.9959
611	2.488	Average	2.307	12	5/29/2009 20:20	5/29/2009 14:00	5/26/2009 10:50	7510	30	250.33	244.63	3.13194	0.26389	3454	0.9959
611	2.245	Stdev	0.160	4	5/26/2009 22:00	5/26/2009 13:25	5/22/2009 12:00	8010	30	267.00	244.63	4.05903	0.35764	3451	0.9959
611	2.187			6	6/2/2009 19:50	6/2/2009 13:25	5/29/2009 9:50	8052	30	268.40	244.63	4.14931	0.26736	3458	0.9959
EffErr	0.066051	<- Put in Ma	chines.xls	0.066051 <- Put in Machines.xls (Lucas Cell Tab)											

Backgrounds are not significant enough to be included in calculations ANSI N42.25-1997 (B.2).

age of the shelog Wo stubes

Page 1

601	2.181	8/4/2009
602	2.168	8/4/2009
604	2.133	8/4/2009
605	2.149	8/4/2009
606	2.348	8/4/2009
607	2.45	8/4/2009
609	2.316	8/4/2009
611	2 307	8/4/2009

Lucas	Ra-226	
Oldest Cal	01/23/20	08
Detector	Eff Error	Cal Date
1	0.0958	8/29/2008
2	0.0772	12/19/2008
3	0.0608	1/23/2008
4	0.1237	3/2/2009
5	0.1438	3/25/2009
6	0.0661	8/4/2009
7	0.0855	11/21/2008

General Engineering Laboratories Calibration Source Preparation Sheet

Ар	oplicable SOP Number_	GL-RAD-	800-A		Isotope	Razz	4
Date	e Standards Prepared	4/5/05		Coc	ktail Type Used	NA	
				Matrix o	f Vial/Planchett	NA NA	
A	Amount Used (g or(ml))_	0.1				N 14	
Standard /	Activity (DPM/g or mL)_	2446.3	3471	Type of \$	Scintillation Vial	NA	
	Reference Date	12/15/9	19	. 1	Pipette ID Used	14293	63
	Expiration Date_	1/21/11	0	, В	alance ID Used	3808	0204
i	Residue/Carrier Agent	0.1 MH	Cl	. Qı	uenching Agent	NA	
		-			·		
		Standard Number	Quenching Vol (uL)/ Residue Volume(mL)	Initial Wt.	Final Wt.	Net Wt.	
	(Call	Residue Volume(IIIL)	(g)	(g)	(mg)	
	2	cal Z					
	3	ca13					
	Ч	(914					
	5	cals					
	y	caly					
	7	cal7					
	ર્ષ્ટ	(a18					
	9	calq					
	10	Ca110					
	11	call					
	12	Cal 12					
							0 k.l.
514/09		1			<u> </u>		3/4/0°
7 7/07	Prepared By:	Kui &	Sheul		Date	8/4109	
	Reviewed By:	ank	d ah		Date	8/4/0	29
	, <u>-</u>	9			Rev 1 RLM 9/10		

1008 lelos

Standard ID: 1646 0299 6 Volume Added (mL): 11 x9 814107 Expiration Date: 4446
Ra-226 Standa

Sample	Volume	End Degas	End De-em	e-em	Start Count	niint	Cell	Det	Total
Ð	(mL)	Date/Time	Date/Time	Fime	Date/Time	ime	#	#	Counts
(h 5	200	Strain 1045 spales	5 374109	0450	2/29/09 14:45	14:45	100	6	10735
Cal 6	200	Studies lous	5/26/09	1015	5/24/09 1520	250	100	6	10 (33
G17	200	5/22/04/2000	5h01 6016215	ShOI	50/12/5	5591	had	ø	15401
Ca18	200	51210 120 9NA109	9ha109	1109	50/52/5	2) LI	ides	2	CBS ei
Ca19	200	SIW109 0930	Smlva	1310	5/29/09	الإبلا	Ø) (10)	6	1816
Cal 10	200	Shulls pass	5/14/09	1325	5/29/09	9:00	Lag	e	7832
Ca 1 11	200	Shulva low	9/14109	1345	60/62/5	19:40	609	6	12761
Cal 12	200	Osal rolans	Shalon	1400		20,02	119	6	1510
						\			
							501718 M	50)h	

8/4107 Ma8/4105

ID	Sample	Volume	End Degas	End De-em	_	Start Count	Cell	Det	Total	
(21) 1 500 5 19109 1400 5 22405 0415 5 1409 1400 5 22405 0415 5 1409 1400 5 14109 1400 5 14109 1400 5 14109 1400 5 14109 1400 5 14109 1400 5 14109 1400 5 14109 1400 5 14109 14109 14109 14109 <t< th=""><th>ΙĐ</th><th>(mL)</th><th>Date/Time</th><th>Date/Time</th><th></th><th>Date/Time</th><th>#</th><th>#</th><th>Counts</th><th></th></t<>	ΙĐ	(mL)	Date/Time	Date/Time		Date/Time	#	#	Counts	
Lu1 1 500 5 Hilps 1400 Staylos (1445 5 12hr 1315 1410 4120 4120 6318 Lu1 2 500 5 Hilps 1400 5 12hr 1410 5 12hr 1410 5 12hr 1410 6 12hr 1410 6 13hr 1410 6 12hr 1410 <td< td=""><td>- 18</td><td>260</td><td></td><td></td><td>Ū</td><td>Stry 1255</td><td>100</td><td>٩</td><td>१५०)</td><td></td></td<>	- 18	260			Ū	Stry 1255	100	٩	१५०)	
500 5/1965 1400 5/12409 1410 5/12409 1410 4/14 6 4600 500 5/1965 1400 5/12409 1115 5/122/09 1420 6/19 6/19 6/19 6/19 6/19 6/19 6/19 6/19	1012	200	- 1	stayof life	43		7.00	ح	6398	W 8/14/09
SOP SIMING 1400 SINZUON 1019 SINZUON 1020 UD 64318 UD 5000 SIMING 1400 SINZUON 1120 UD 64318 UD 5000 SIMING 1400 SINZUON 1140 413	205			9 1	करोत ज्राहरीड	744	\$	4600	501n18 071 -	
500 5119109 1400 5122409 1100 6122/09 1135 6071 60 6494 W8 500 5115109 1400 5122/09 1926 1009 6473 500 5115109 1410 5122109 1960 412/09 3035 6011 60 6473 11	Chiy	500	SIFING 1400		t	5/22/09 1025	600	٩	6318	
500 5115109 1400 5122109 1735 607 6 6428 120 500 5100 5100 5100 5100 6100 6100 6100	5 177	205	1 1		1 1		900	9	4049	50/n18 07
500 5/19/109 1480 5/22/09 1920 1009 10 6473 500 5/19/109 3/39 1011 10 10 10 10 10 10 10 10 10 10 10 1	(a) b	SøO	जाताक प्रकृ		 	5/22/09 (735	148	9	1649	We shaws
500 5/19/09 1/2/09 2/2/09 3035 1011 10 Deller	Cal 7	Seo				}	600	و	6473	
2	(418	\$25			200	1 1	ipli	9	S. S. S. S. S. S. S. S. S. S. S. S. S. S	ellez Vo
CAI 10 CAI 17	6 (11)							$ \int$		8/14/03
21 13	CG1 10									
71 12	= -3									
	21 13									

Ra-226 Calibration Sheet	Standard ID: + 1129-6 0299-6
R	

Standard ID: Hospe Co299-67
Volume Added (mL): 0.1

Expiration Date: 444110

					1				<u> </u>	
Total Counts	8515	8321	8495	9057	7508					
# Det	د	و	و	9	و					
# G	Zan	H09	999	1-00	(6.1)	\	M 8/4/109			
ount ime	6/2/109/1445	1650	1820	006	1950		W/			
Start Count Date/Time	1/2/1	0591 100/21 A	6.2.09	6.2.09	6-2.09					
e-em Time	1130	1150	6/2104 1255	1310	C1700 1912					
End De-em Date/Time	09/100 1130	691799	40/7/9	olyo	61409					
egas	09 Daso	0950	A109 0950	1950	0450					
End Degas Date/Time	9/14/09	S10100 0000	5/24/09	Sloplus 1950	511510A 0450				\	
Volume (mL)	200	200	200	200	200					
Sample ID	Ca1 5	Cal 6	Ca17	Ca 18	Ca 19					

Lolula Lol

Total Counts	10883	11033	10372	10474	£998	4758	1978	8 010		
Det #	e	9	ه	Ŋ	9	و	Ą	٥		
Cell	100	7 00	haa	510	ባዐላ	209	609	110)	 60	
Sount Fime	1336	1405	1545	1615	1645	SITI	1920	0022	som son	
Start Count Date/Time	5/W169 1330	5/m/04 1405	2.76.09 1545	5191 ,0915	5,24,09 (645	51th Long?5	50775	0012 60915		
e-em Fime	D430	1955	1020	1050	5211			5181		
End De-em Date/Time	5/W/M	5/20119 1955	51W109	6/m/6	SUN POINTS	5/2010A 1750	5/26109 1310	Studon		
End Degas Date/Time	2/14/04 1400	5/19109 1400	5/19109 1400	5/19109 1400	5/24 or 1200	5/22/09 1206	2122100 1200	Shulua 1200		
Volume (mL)	2010	500	200	570	500	200	200	200		
Sample ID	6 177)	Ca110	<u>G</u> = =	7112	Ca1 1	(a) 2	Ca13	4		

Nycomed Amerikam plc Amersham Laboratories

No. 0146

SSUED Y:

Nycomed Amersham plc Rediction & Radioactivity Calibration Laboratory Ameraham Laboratories

White Lion Road Amersham Buckinghamshire HP7 9LL

ISSUED FOR:

AEA Technology pic

Isotrak

Amersham Laboratories

White Lion Road Amersham **Buckinghamshire**

HP7 9LL

Description Principal radionuclide: Radium-226

Product code:

RAY44

Solution number: R4/131/89

Measurement Reference time: 1200 GMT on 15 December 1999

Nuclear data Nuclear data quoted on this certificate are taken from the Joint European File, Version 2.2.

Expression of The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2.00, which uncertainties for a t-distribution with vet = 00 effective degrees of freedom corresponds to a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

> Unless indicated, all other uncertainties are expressed at the confidence level associated with one standard uncertainty.

The format used for the uncertainties in the values of radionuclidic purity is illustrated in the following examples;

6.5(21)

 6.5 ± 2.1

6.54(21)

 6.54 ± 0.21

6.543(21)

 6.543 ± 0.021

December 1999

Verification for Ra-226 Standard 0299-G

M. Aders 1/26/2009	Isotope 0299-A #1 0299-A #2	Value DPM 220.970 241.730	Uncertainty 0.2670 0.2670
	0299-A #2 0299-A #3	257.470	0.2670
Mean Value (Counting) =	240.057	98.52	Pass
Stdev =	18.30744475	R	ule 3 (Pass/Fail)
Target =	243.67		
Lower Limit =	203.4417772		
Upper Limit =	276.6715562		
Rule 1 Pass/Fail	Pass		
Two sigma =	36.6148895		
10 % of Mean =	24.00566667		
Rule 2 (Pass/Fail)	Fail	*exception to	aken due to full recovery of standard

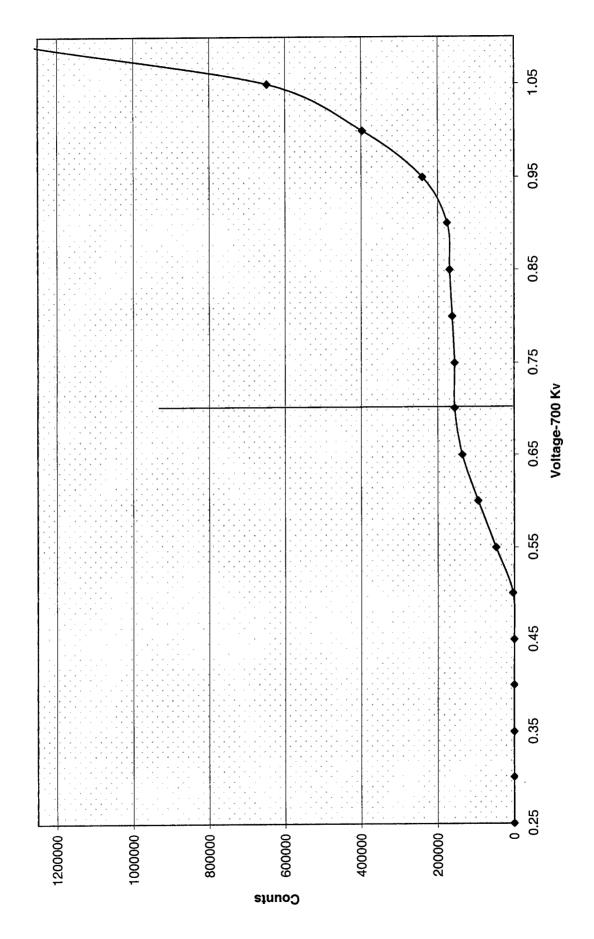
Rule 1 = The certificate value (NOT including any uncertainty) shall lie within the 95% confidence interval determined from the mean and two sigma standard deviation of the three measurements

Rule 2 = The two sigma value used for the 95% confidence interval shall not exceed 10% of the mean value of the three verification measurements.

Rule 3 = The determined mean value shall be within 5% of the certificate value.

The analyst prepared three standard verification sources for standard 0299-A using 0.1 mL for each source. Each standard was degassed and transferred according to SOP GL-RAD-A-008. Each source was counted using Ra-226 procedures.

Jo Goldens 841.99


11D: 0299-G	<u>17):</u> 0.1	nL): 2446.35
<u>standard ID</u>	Volume added (mL)	Standard Reference Activity (DPM/mL)

s) Decay from	ate Std Ref Date	to count	243.6698 4.01041667 0.2152778 3330.607639 0.996055555	933 0.99605551	222 0.996055419
t3 (days)	Std Ref D	to count	3330.6076	3330.645833	3330.722222
t2 (days)	end-flush	to count	0.2152778	0.2326389	0.2881944
t1 (days)	end-degas end-flush	to flush	4.01041667	4.03125	4.05208333
Known	activity	dpm	243.6698		243.6697
		срт	242.73	251.83	267.60
count	time	min	30	30	30
	total	counts min	0.267 7282 30 242.73	7555 30 251.83	8028
	bkg	срт	0.267	0.267	0.267
Date/fime	end of	degas	39835.38194	39835.38194	39835.38194
Date/time	flushed	to cell	39839.39236	39839.41319	39839.43403
	Date/Time	of count	39839.60764	39839.64583	39839.72222
	Standard	Source	43	47	19
	Cell	constant	2.021	302 2.131	2.136
	Lucas	# //eo	301	302	303

VOLTAGE CURVE 3_08

	Voltage Curve Ludlum # 6								
Volts	Counts	Date	Time	Detector					
0.00	0	5/20/2009	9:00	6					
0.05	0	5/20/2009	9:01	6					
0.10	0	5/20/2009	9:02	6					
0.15	0	5/20/2009	9:03	6					
0.20	0	5/20/2009	9:04	6					
0.25	0	5/20/2009	9:05	6					
0.30	0	5/20/2009	9:06	6					
0.35	0	5/20/2009	9:07	6					
0.40	0	5/20/2009	9:08	6					
0.45	512	5/20/2009	9:09	6					
0.50	3625	5/20/2009	9:10	6					
0.55	47990	5/20/2009	9:11	6					
0.60	94752	5/20/2009	9:12	6					
0.65	135854	5/20/2009	9:13	6					
0.70	155952	5/20/2009	9:14	6					
0.75	155700	5/20/2009	9:15	6					
0.80	161972	5/20/2009	9:16	6					
0.85	168860	5/20/2009	9:17	6					
0.90	175598	5/20/2009	9:18	6					
0.95	239969	5/20/2009	9:19	6					
1.00	397270	5/20/2009	9:20	6					

Ludlum 6 Voltage Curve

ver 6_09

Ra-226 WATER

Batch: LCSVER
Date: 6/2/2009
Analyst: KSD1

Procedure Code: LUC26RAL
Parmname: Radium-226
MDA: 1 pCi/L
Instrument Used: LUCAS CELL DETECTOR

ш і

30

Bkg Count Time:

			35)5	Ş	<u> 1</u>	2 2	Š	15	35	9
COUNT	DATE/TIME		6/8/2009 15:35	6/8/2009 16:0	6/8/2009 16:40	6/8/2009 17-1	200000000000000000000000000000000000000	2/8/5009 18:5	6/8/2009 19:15	6/8/2009 20:05	6/8/2009 23:10
Ra-226	ERROR	pCi/L	0.8356	0.8279	0.8254	0.8971	- 100	0.7895	0.7413	0.8089	 0.7806
		pCi/L	13.4431	13.2563	12.9119	15 3201	0.00	12.8971	11.8239	13.2848	12.0754
Ra-226	MDA	pCi/L	0.2115	0.1442	0.1786	0.2143	0.5	0.1867	0.1893	0.2007	0.2053
	BKG	cbm	0.267	0.100	0.167	0.267	0.50	0.233	0.267	0.267	0.267
Cell	Const.	num	2.181	2.168	2.133	2 149	61.13	2.348	2.450	2.316	2.307
Cell	#	unu	601	602	604	605	3	909	209	609	611
Gross	counts	cts	1018	994	<u>ዕ</u> ዳዳ	1144	ţ :	1046	1001	1060	943
Count	Time	min	30	90	8	8 8	3 6	ဓ္က	တ္တ	30	30
Sample	Nol	_	0.800	0.800	008		0.00	0.800	0.800	0.800	0.800
	sample	₽	ver 1	ver 2		2 707	D 4 '	ver 5	ver 6	ver 7	ver 8

Page 1

Recovery/RPD	%68	%88	%98	102%	%98	%62	%88	%08	Ingrowth	constant		0.6466	0.6472	0.6474	0.6476	0.6440	0.6434	0.6417	0.6299
				•															
NC units		bCi/L				bCi/L		pCi/L		CPM	cbm	9 33.6667	9 33.0333	9 31.6663	9 37.8667	•	9 33.0997	9 35.0667	9 31.1663
D NC	15.03	15.03	15.03	15.03	15.03	15.03	15.03	15.03	constant			1.0019	1.0019	1.0019	1.0019	1.0019	1.0019	1.0019	1.0019
Standard ID	0638-F	0638-F	0638-F	0638-F	0638-F	0638-F	0638-F	0638-F	constant			0.9751	0.9745	0.9733	0.9721	0.9654	0.9630	0.9593	0.9402
Sample Type	SOT	SOT	CS	SOT	SOT	SOT	SOT	SOT	constant			0.6618	0.6628	0.6639	0.6650	0.6658	0.6668	0.6677	0.6687
Run Date	6/8/2009 15:35	6/8/2009 16:05	6/8/2009 16:40	6/8/2009 17:15	6/8/2009 18:30	6/8/2009 19:15	6/8/2009 20:05	6/8/2009 23:10	dE-EM-	COUNT		3.33	3.42	3.58	3.75	4.67	5.00	5.50	8.17
Det #	9	9	9	9	9	9	ဖ	ဖ	DEGASS-	DE-EM		143.58	144.00	144.42	144.83	145.17	145.58	145.92	146.33
Cell #	601	602	604	902	909	209	609	611	DE-EMAN.	DATE/TIME		6/8/2009 12:15	6/8/2009 12:40	6/8/2009 13:05	6/8/2009 13:30	6/8/2009 13:50	6/8/2009 14:15	6/8/2009 14:35	6/8/2009 15:00
Sample ID	ver 1	ver 2	ver 3	ver 4	ver 5	ver 6	ver 7	ver 8	DEGASSING	DATE/TIME		6/2/2009 12:40	6/2/2009 12:40	6/2/2009 12:40	6/2/2009 12:40	6/2/2009 12:40	6/2/2009 12:40	6/2/2009 12:40	6/2/2009 12:40

100 M MOSIN 15 Total Counts | 44 100/ 466 1040 0/8 0901 943 356 Background CPM 1 മ **1** Ø 3 0 ∞ 9 # <u>D</u> و و و ٥ 2 L. 9 MAN OF بے چ led S 400 000 **609** 를 # 100 (dp) 3 1915 2005 1640 745 0)82 1535 1830 8 Start Count Date/Time 6809 682 6.8.0 08.0g 6809 6.809 6809 (080) 143S 1250 1305 1330 1500 1770 CM MISION End De-em Date/Time 601319 10/8/04 61819 10/8/0 618109 16/18/109 2 18/2 2 who my once song Who isus blylog was 0/2/ 20/1/0 whiley myo 6/2/09 1240 End Degas Date/Time 0750 Volume (mL) Sec 200 200 500 200 B 500 ŝ 380 ŝ 200 Z V VW 12 1 XX 6 15 A 12 XX VW5 スグマ VW 7 VCX 8 Ver 3 · V& 2 Sample ID 3 2 to Chis

e #

≥

Ra-226 Verification Sheet

374

General Engineering Laboratories Verification Source Preparation Sheet

Applicable SOP Number	L C VI MAA WAA L	UN 814109		lsotope_	ra vue	
	1/16/19		Cockta	II Type Used_	Nn	
Date Standards Prepared					NA	
Standard ID_	0638 F		Matrix of V	rial/Planchett_	NA	
Amount Used (g or (ni))_	D I				NA	
	267519		Type of Sc	intillation Vial	NA	
lard Activity (DPM/g or (mt.)) _	1/23/04		Pi	pette ID Used	111262	<u>. ۲</u>
Reference Date	2/1/10			ance ID Used	381801	v. -
Expiration Date					NA	
Residue/Carrier Agent	NA		Que	enching Agent	Nr	
	Standard Number	Quenching Vol (uL)/ Residue Volume(mL)	Initial Wt. (g)	Finai Wt. (g)	Net Wt. (mg)	
A North Control of the Control of th	NW					
1	Verz					
3	VWV VW3					
3	Verz Verz Ver4					
3 4 5	Verz Verz Ver 4 Vers					
3 4 5	Verz Vers Vers Verc					
3 4 5	Ver v Ver s Ver v Ver v					
3 4 3	Verz Vers Vers Verc					
3 4 5	Ver v Ver s Ver v Ver v					
3 4 5	Ver 2 Ver 3 Ver 4 Ver 4 Ver 4 Ver 4	W				
3 4 5	Ver 2 Ver 3 Ver 4 Ver 4 Ver 4 Ver 4	W				
3 4 5	Ver 2 Ver 3 Ver 4 Ver 4 Ver 4 Ver 4	MI				
3 4 5 0	Ver 2 Ver 3 Ver 4 Ver 4 Ver 4 Ver 4					
3 4 5	Ver 2 Ver 3 Ver 4 Ver 4 Ver 4 Ver 4	MI				
3 4 5	Ver 2 Ver 3 Ver 4 Ver 4 Ver 4 Ver 4	MI				
3 4 5	Ver 2 Ver 3 Ver 4 Ver 4 Ver 4 Ver 4	MI				
3 4 5	Vers Vers Vers Vers Vers			Date		\$

Phone (404) 352-8677 Fax (404) 352-2837

0638

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

67519-278

Ra-226 5 mL Liquid in Flame Sealed Vial

This standard radionuclide source was prepared gravimetrically from a calibrated master solution. The master solution was calibrated using a germanium gamma spectrometer system.

Radionuclide purity and calibration were checked using a germanium gamma spectrometer system. The nuclear decay rate and assay date for this source are given below.

Analytics maintains traceability to the National Institute of Standards and Technology through participation in a Measurements Assurance Program as described in USNRC Reg. Guide 4.15, Revision 1, February 1979.

ISOTOPE:

Ra-226

ACTIVITY (dps):

2.353 E4

HALF-LIFE:

1.600 E3 years

CALIBRATION DATE:

January 23, 2004 12:00 EST

RELATIVE EXPANDED

UNCERTAINTY (k=2):

3.3%

Impurities: γ -impurities (other than decay products) <0.1%

5.01065 grams 0.1M HCl solution with 50 μ g/g Ba carrier.

P O NUMBER 3231RD, Item 5

SOURCE PREPARED BY:

M. D. Currie, Radiochemist

Q A APPROVED:

RCUM 1/21/04

W 8/4/09

.. 25 1 34

Standard Traceability Log Rad

		A Solution Material Info	terial Info
October Modern		Isotope:	Radium-22
Source Material IIII0	riai milo	Dronog Dr.	A mondo Eo
Donout Codo.	0620	riepaieu by.	Aillailua re
ralent code.	0000	Dran Note.	01/16/200
Drenared By:	Amanda Behr	TICP Date.	
i ichaica Dy.	manda ı om	Verification Date.	0/1/00/2001
Corrier Conc.	O 1M HC	Veillication Daw.	0071/01-0
Calliel Colle.	0.11411101	Evniration Date.	04/00/201
Deference Date:	1/03/2004	LAPITATION DAIC.	107/20/40
Neighbor Date.	+007/C7/TO	Driman, Code.	0638_A
Ampoule Mass (a):	5 01065 a	I IIIIau y Coue.	U-0C00
Ampoure Mass (g).	g cooro	Dilution(mI).	100 m
I Incertainty.	7/-33%	Dudaon mal).	3
Cuco canny.	? ? :	Mass of Parent(o).	4 8398 σ
LogBook No.	RC-S-037-037		A > / 2 > .
LOSTOCK IVO.	NC 2 027	Dencity(a/m1):	1 0266
		Lollolly Killery	2010

Amanda Fehr Radium-226

01/16/2006 04/09/2009 04/09/2010

38080204	o/mulging
Ö	J. J.m/mub
Balance I	ing narent activity to
	narent
	ino

1.0266

Calculations Converting parent activity to dpm/mL/dpm/g

(Mass of parent(g)) * (Parm Activity (dps)) * (conversion dpm to dps) / (Ampoule Mass(g) *(Dilution Vol)) = Parent Activity (dpm/mL)

(4.8398 g) * (23530 dps) * (60 dpm/dps) / (5.01065 g * 100 mL) = 13636.6133 dpm/mL

(Mass of parent(g)) * (Parm Activity (dps)) * (conversion dpm to dps) / Density / (Ampoule Mass (g) * (Dilution Vol)) = Parent Activity (dpm/g)

(4.8398 g) * (23530 dps) * (60 dpm/dps) / (1.0266 g/mL) / (5.01065 g * 100 mL) = 13282.9676 dpm/g

IM SIMING

8/4/2009 1:00 PM

Secondary Standards

Prep Date Preparer 01/17/2006 Amanda Fehr		Dilletton (mel)				;
01/17/2006 Amanda		Time manual	ano)	Conc dpm/mL	Mass Primary Dilution (mL) Code Conc dpm/mL Verification Date Expiration Date	Expiration Date
Commence of the Commence of th	Fehr 2.1041	100	0638-B	0638-B 279.0211 dpm/mL	01/17/2007	01/17/2008
07/17/2006 Mary Aders	ders 2.1313	100	0638-C	0638-C 282.6281 dpm/mL	07/26/2006	07/26/2007
03/28/2007 Daniel Roy	Roy 2.1025	100	0638-D	0638-D 279.2744 dpm/ml	04/08/2007	04/08/2008
03/28/2007 Daniel Roy	Roy 45.468	250	0638-E	0638-E 2415.7999 dpm/ml	04/09/2009	04/09/2010
12/18/2007 Daniel Roy	Roy 2.014	100	0638-F	0638-F 267.519 dpm/ml	02/02/2009	02/02/2010
02/12/2008 Daniel Roy	Roy .5004	100	D-8E90	0638-G 66.468 dpm/ml	03/02/2009	03/02/2010
07/23/2008 Daniel Roy	Roy 5.0607	250	H-8E90	3638-H 268.8845 dpm/ml	07/17/2009	07/17/2010

GEL Laboratories LLC Version 1.0 9/18/2000 Im shirt

8/4/2009 1:00 PM

Verification for Ra-226 Standard 0638-F

D. Roy	Isotope	Value	Uncertainty
2/2/2009	0638-F #1	24.629	1.7426
	0638-F #2	24.438	1.7557
	0638-F #3	22.791	1.6808
Mean Value (Counting) =	23.953	99.60	Pass
Stdev =	1.010781096	R	ule 3 (Pass/Fail)
Target =	24.05		
Lower Limit =	21.93100448		
Upper Limit =	25.97412886		
Rule 1 Pass/Fail	Pass		
Two sigma =	2.021562191		
10 % of Mean =	2.395256667		
Rule 2 (Pass/Fail)	Pass		

Rule 1 = The certificate value (NOT including any uncertainty) shall lie within the 95% confidence interval determined from the mean and two sigma standard deviation of the three measurements

Rule 2 = The two sigma value used for the 95% confidence interval shall not exceed 10% of the mean value of the three verification measurements.

Rule 3 = The determined mean value shall be within 5% of the certificate value.

The analyst prepared three standard verification sources for standard 0638-F using 0.1 mL for each source. Each source was counted using routine Lucas cell procedures. Calibration for 0299-G was used in this verification.

Mande Lite

try Division			(u)
General Engineering Laboratories, Radiochemistry Division	Internal Due Date: 02/07/2009	Nom Conc:	Sample Count Time: (Min)
General Engin	Internal Du	Vol:	Samp
02/03/2009	First Client Due Date:	Expiration Date: (2/24/2) Vol:	
e Sheet	Analyst:KSD1	Spike Isotope: Radium-226 Spike Code: CC3- ELCS Isotope: Radium-226 LCS Code: CC3- C	
Radium-226 Que Sheet	Batch #: 838839	Spike Isotope: Radium-226 LCS Isotope: Radium-226	D

i	Skg counts			<u>6</u> 4	01
	Det#	63	(, t	Λ.	Ø
	Cell#	4	3 5	,	う う と
3	Start Count Date/Time	6 . C	المحادث التيامية. المحادث	1251 124	13-13-1 1957
	(mL) Degas Date/Tin Date/Time Date/Time	C 11 - 1 - 1.	1	(MI : 71.4)	12 ray 120
7.0	Degas Date/Tir	(1)	1031301911.	() 21 1 1 1 1 1 1 1 1 1	13407 1605
Vol	(mL)	\$ \frac{1}{2}		:	7.7%
	Client	WAT 1 PCI/L QC ACCOUNT	WAT 1 pCi/L QC ACCOUNT	WAT I DCIAL OF ACCOUNT	
Zi	CRDL	1 pCi/L	1 pCi/L	1 nCi/I	
Hazard		GROUND WAT	GROUND WAT	GROUND WAT	
	Lype	rcs	rcs	CS	
	Sample I Client Description	201770521-1 LCS for batch 838839	201770522-1 LCS for batch 838839	201770523-1 LCS for batch 838839	
	Sample I	1201770521-1	1201770522-1	1201770523-1	

Total Counts

_(Min)

Bkg Count Time:

_ Witness:_

Initials: VS Y

Pipet ID:_

Prep Date:

501718001

Data Reviewed By:

Comments:

Matricent ID's:
LUCASL-89283 LUCASL-8989** LUCASL-82753** LUCS-132286** LUC6-179955**
**TOTAL STATEMENT STA

τ	3
-=	3
Ξ	3
τ	3
.=	•
_	J
Œ)
226	١
S	j
Ŀ	
۲	=
=	ŧ
.=	•
7	į
ă	í
ä	5
LI	

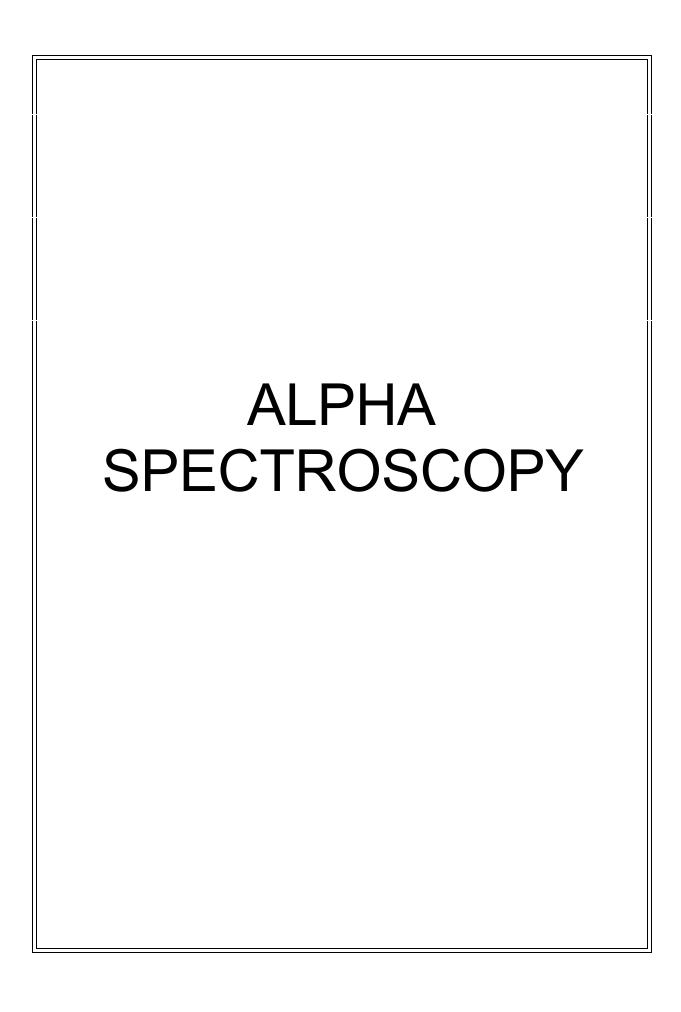
'ipet, 0.1 ml Stdev: +/- 0.000701 ml 'ipet, 0.5 ml Stdev: +/- 0.002564 ml Pipet, 1 ml Stdev: +/- 0.005480 ml	Procedure Code: LUC26RAL Parmname: Radium-226 Required MDA: pCi/L Halflife of Ra-226: 1600 years Halflife of Rn-222: 3.823 days Ratch counted on 110 Roc Cell Defection
Pipet, 0.1 ml Pipet, 0.5 ml Pipet, 1 mł	Proced Pa Requi Halflife
4 4 4 4 Z Z Z Z	0638-F 12/20/2008 266.94 0.10
Spike S/N: Spike Exp Date: Spike Activity (dpm/ml): Spike Volume Added:	LCS S/N: LCS Exp Date: LCS Activity (dpm/ml): LCS Volume Added:
Filename : RA226.XLS File type : Excel Version # : 1.2.3	Batch: 838839 Analyst: KSD1 Prep Date: 1/26/2009 Ra-226 Abundance: 1 Ra-226 Method Uncertainty: 0.0918

							BKG C	BKG Count time: 30 min	30	min	
Sample Characteristics	Sample	Sample		Count Raw Data	Data			Wee	Weekly Background	bu	ı
Sample ID	Aliquot	StDev.	Sample Date/Time	Cell	Time (min.)	Gross Counts	Gross	Counts	CPM	Count Time (min.)	Detector Efficiency (cpm/dpm)
1201770521.1 1201770522.1 1201770523.1	0.5000 0.5000 0.5000	2.0256E-05 2.0256E-05 2.0256E-05	1/26/2009 0:00 1/26/2009 0:00 1/26/2009 0:00	302 306 308	9 9 9	791 768 730	26.367 25.600 24.333	& & &	0.267 0.267 0.267	30	1.9930 1.9500 2.0010

(3	7
(7	
¢	X	כ
(χ	
(۲	,
C	X	3
4	đ	
ſ	r	
_		

Ra-226 Decay	1.000 1.000 1.000
ns	1.002
During	1.002
Count	1.002
Rn-222 Corrections	0.959
to Ingrowth	0.957
n to Count	0.948
Rn-222 Correc	0.499
De-Gas to Ingrowth	0.500
Ingrowth to Count	0.501
Count	1/30/2009 17:05
Start	1/30/2009 17:37
Date/Time	1/30/2009 19:05
Rn-222 Ingrow	1/30/2009 11:30
End	1/30/2009 11:45
Date/Time	1/30/2009 12:00
De-Gas Date/Time	1/26/2009 16:05 1/26/2009 16:05 1/26/2009 16:05
Cell	1/22/2009
Calibration	1/22/2009
Due Date	1/22/2009
Cell	1/23/2008
Calibration	1/23/2008
Date	1/23/2008
Detector Efficiency Error (cpm/dpm)	0.06082 0.06082 0.06082

Notes.


1 - Results are decay corrected to Sample Date/Time

2 - Reference date for Spike Activity (dpm/ml) is the batch Prep Date

3 - Spike Nominals are decay corrected to Sample Date/Time

Recovery	102.4% 101.6% 94.8%
Nominal pCi/L R	24.0486 1 24.0486 1 24.0486
RER -	
RPD	
Sample Type	SO7
Sample QC	
2 SIGMA Total Prop. Uncertainty pCi/L	5.5940 5.5591 5.1982
2 SIGMA Counting Uncertainty pCi/L	1.7426 1.7557 1.6808
Net Count Rate Error CPM	0.9422 0.9286 0.9055
Net Count Rate CPM	26.1000 25.3333 24.0667
Sample Act. N Error pCi/L	0.0707 0.0710 0.0715
Sample Act. Conc. pCi/L	24.6287 24.4384 22.7906
MDA pCi/L	0.5083 0.5196 0.5101
Critical Level pCi/L	0.2070 0.2116 0.2077
Results Decision Level pCi/L	0.2932 0.2997 0.2942 0.2942

Monto.

Alpha Spectroscopy Calibration Sources

The following is a summary of the procedure performed for preparing mixed alpha calibration standards:

A calibration stock solution was prepared by combining the following in a volumetric flask and diluting to 50 ml (51.4561 grams). These individual standards were first verified by direct precipitation of small aliquots of each standard (as described in Attachment I).

Isotope	Serial #	amount used (g)	dpm (note 1)
Gd-148	64445-278	0.2471	212.159287
Np-237	4341	1.8075	204.438594
Cm-244	4320A	7.2704	240.144737

Note 1: Dpm values are decay corrected to 2/7/2003.

Forty one weighted aliquots were then directly precipitated using Neodymium Flouride /HF system. The sources were then mounted on 0.1Poly-proplyene filters and taped securely to 1 inch stainless steel planchettes for counting in an Alpha Spectroscopy system. The liquid fraction that passes through the filter is collected, traced with Am-241 and prepared for counting using the identical procedure. These samples are counted to ensure there is no more than 1% loss in the filtering processes. All sources pass this requirement. The DPM information for each source is listed in attachment II.

Certificate files were then created on the Alpha system used for acquisition and processing of data. Each source is assigned a name (AESS-001 through AESS-041). The information for the source activities is entered into the certificate files appropriate for the detector being used.

For example: If source AESS-001 is used for calibrating detector 25, the source data is entered into the certificate file name [env_alpha.cer]U025.cer.

The computer software uses these certificate files to calculate an energy calibration and determine the efficiency of the detector after counting the source.

2002 Alpha Eff Source Stock Verification

		99.81%	pCi/g Pass
	Value pCl/g 96.080 93.750 86.560	95.463 1.503074627	95.6460 92.45718408 98.46948259 Pass 3.006148253 9.546333333 Pass
Gadolinium-148	Isotope SSTOCK2002A2_AM SSTOCK2002B2_AM SSTOCK2002C2_AM	Mean Value (Counting) = Stdev =	Target = Lower Limit = Upper Limit = Rute 1 Pass/Fait Two sigma = 10 % of Mean = Rute 2 (Pass/Fait)
			Pass
		98.02%	pCi/g Pass
	Vatue pCl/g 90.100 87.200 93.500	90.267 3.153305144	92.0900 83.96005638 96.57327696 Pass 6.306610289 9.026666667 Pass
Neptunium-237	Isotope SSTOCK2002A2_AM SSTOCK2002B2_AM SSTOCK2002C2_AM	Mean Value (Counting) = Stdev =	Target = Lower Limit = Upper Limit = The 1 Pass/Fail Two sigma = 10 % of Mean = Rule 2 (Pass/Fail)
ž		\bar{2}	PASS (D) Fair Stelve)
		98.04%	pCl/g Pass
	Value pCi/g 106.000 106.000 106.000	106.000	108.1230 106 106 Pass 0 10.6 Pass
Curium-244	Isotope SSTOCK2002A2_AM SSTOCK2002B2_AM SSTOCK2002C2_AM	Mean Value (Counting) = Stdev =	Target = Lower Limit = Upper Limit = Rule 1 Pass/Fail Two sigma = 10 % of Mean = Rule 2 (Pass/Fail)

Pass

The analyst prepared three standard verification sources for the mixed alpha stock standard using 0.1030 g for source #1, 0.1035 g for source #2 and 0.1028 g for source #3. Each standard was combined with 1.0 mL of Am-243 standard 0454.A and 0.1 mL of Nd carrier in a disposable centrifuge tube. Four mL of 2 M HCl was added to each standard and then dituted with 4 mL of DI water. 5 mL of ascorbic acid was added to each sample when one mL of 48% HF was added to pracipitate Nd(and Curlum) fluoride. After 30 minutes, each sample was filtered following routine procedures for alpha spectroscopy source preparation. Each source was counted using routine alpha spec procedures. pCirl. vatues for the Mixed Alpha Stock were calculated and compared to Am-243 certified values.

1) The rule fated because the 3 results from 3 sources were the Same.

Therefore, the 5+4 dev was zero. The intent of this is to ensure as appropriate amount of counts are achieved the proper determinations (Column /10 02118 Just under 10000 which has a counting error of nearly 196. Because the standard's bias is < 2% from the Known surface for each standard the # of Grunt achieved was Value the standard is acceptable.

386

Decay corr	dpm/g 212.159287 204.438594 240.144737	`	dps Cm-244	4.147	4.140 ~	4.138 /	4.135 ~	4.144 ~	4.135 ~	4.142 -	4.148 -	4.143 /	4.141 ~	4.144 -	4.149~	4.161	4.150	4.148	4.144	4.145	4,146	4.142	4.147	4.142	4.144	4.144	4.140	4.148	4.137	4.144	4.149
Dpm/g	mixed 212.9974853 204.4393182 314.1796879	١	dps Np-237		3.525	3.523	3.520	3.528	3.520	3.526	3.531	3.527	3.525	3.528	3.532	3.542	3.533	3.531	3.528	3.529	3.530	3.526	3.530	3.526	3.528	3.528	3.524	3.531	3.522	3.528	3.532
amount used	for mixed 0.2471 1.8075 7.2704	`	dps Gd-148	3.664	3.658	3.656	3.653	3.661	3.653	3.659	3.664	3.660	3.658	3.661	3.666	3.676	3.666	3.664	3.661	3.662	3.663	3.659	3.664	3.659	3.661	3.661	3.657	3.665	3.655	3.661	3.665
Half-life (years)	74.60 2.14E+06 18.1		dpm Cm-244	248.838	248.406	248.310	248.094	248.622	248.094	248.502	248.862	248.598	248.454	248.622	248.958	249.654	248.982	248.862	248.622	248.694	248.766	248.526	248.814	248.502	248.622	248.622	248.382	248.886	248.214	248.622	248.934
Reference date Half-life (years)	9/5/2002 3/1/1992 2/1/1996		dpm Np-237	211.839	211.471	211.390	211.206	211.655	211.206	211.553	211.860	211.635	211.512	211.655	211.941	212.534	211.962	211.860	211.655	211.717	211.778	211.574	211.819	211.553	211.655	211.655	211.451	211.880	211.308	211.655	211.921
2/7/2003 Stock Dpm/g	44354.59289 5820 2223.6	`	dpm Gd-148	219.839	219.458	219.373	219.182	219.649	219.182	219.542	219.861	219.627	219.500	219.649	219.946	220.561	219.967	219.861	219.649	219.712	219.776	219.564	219.818	219.542	219.649	219.649	219.436	219.882	219.288	219.649	219.924
Mixed alpha Reference date = Isotope Source	64445-278 (0502) Srm 4341 (0493) SRM 4320a (0490)		Amount of standard used	1.0362	1.0344	1.034	1.0331	1.0353	1.0331	1.0348	1.0363	1.0352	1.0346	1.0353	1.0367	1.0396	1.0368	1.0363	1.0353	1.0356	1.0359	1.0349	1.0361	1.0348	1.0353	1.0353	1.0343	1.0364	1.0336	1.0353	1.0366
Mixed alpha Isotope	Gd-148 Np-237 Cm-244			AESS-001	AESS-002	AESS-003	AESS-004	AESS-005	AESS-006	AESS-007	AESS-008	AESS-009	AESS-010	AESS-011	AESS-012	AESS-013	AESS-014	AESS-015	AESS-016	AESS-017	AESS-018	AESS-019	AESS-020	AESS-021	AESS-022	AESS-023	AESS-024	AESS-025	AESS-026	AESS-027	AESS-028

National Institute of Standards & Technology Certificate

Standard Reference Material 4320A Curium-244 Radioactivity Standard

This Standard Reference Material (SRM) consists of radioactive curium-244 nitrate and nitric acid dissolved in 5 mL of distilled water. The solution is contained in a flame-sealed NIST borosilicate-glass ampoule. The SRM is intended for the calibration of alpha-particle counting instruments and for the monitoring of radiochemical procedures.

Radiological Hazard

The SRM ampoule contains curium-244 with a total activity of approximately 200 Bq. Curium-244 decays by alpha-particle emission to plutonium-240, which also decays by alpha-particle emission. None of the alpha particles escape from the SRM ampoule. During the decay process X-rays and gamma rays with energies from 40 keV to 1100 keV are also emitted. Most of these photons escape from the SRM ampoule but their intensities are so small that they do not represent a radiation hazard. Approximate unshielded dose rates at qualified to handle radioactive material.

Chemical Hazard

The SRM ampoule contains nitric acid (HNO₃) with a concentration of 1 mole per liter of water. The solution is corrosive and represents a health hazard if it comes in contact with eyes or skin. If the ampoule is to be opened to transfer the solution, the recommended procedure is given on page 2. The ampoule should be opened only by persons qualified to handle both radioactive material and strong acid solution.

Storage and Handling

The SRM should be stored and used at a temperature between 5 and 65 °C. The solution in an unopened ampoule should remain stable and homogeneous until at least February 2006.

The ampoule (or any subsequent container) should always be clearly marked as containing radioactive material. If the ampoule is transported it should be packed, marked, labeled, and shipped in accordance with the applicable national, international, and carrier regulations. The solution in the ampoule is a dangerous good (hazardous material) both because of the radioactivity and because of the strong acid.

Preparation

This Standard Reference Material was prepared in the Physics Laboratory, Ionizing Radiation Division, Radioactivity Group, J.M.R. Hutchinson, Group Leader. The overall technical direction and physical measurements leading to certification were provided by L.L. Lucas of the Radioactivity Group.

The support aspects involved in the preparation, certification, and issuance of this SRM were coordinated through the Standard Reference Materials Program by N.M. Trahev.

Gaithersburg, Maryland 20899 February 1996 (Text only revised November 1997)

Thomas E. Gills, Chief Standard Reference Materials Program

Recommended Procedure for Opening the SRM Ampoule

- 1) If the SRM solution is to be diluted, it is recommended that the diluting solution have a composition comparable to that of the SRM solution.
- Wear eye protection, gloves, and protective clothing and work over a tray with absorbent paper in it. Work in a fume hood. In addition to the radioactive material, the solution contains strong acid and is corrosive.
- 3) Shake the ampoule to wet all of the inside surface of the ampoule. Return the ampoule to the upright position.
- 4) Check that all of the liquid has drained out of the neck of the ampoule. If necessary, gently tap the neck to speed the process.
- 5) Holding the ampoule upright, score the narrowest part of the neck with a scribe or diamond pencil.
- 6) Lightly wet the scored line. This reduces the crack propagation velocity and makes for a cleaner break.
- 7) Hold the ampoule upright with a paper towel, a wiper, or a support jig. Position the scored line away from you. Using a paper towel or wiper to avoid contamination, snap off the top of the ampoule by pressing the narrowest part of the neck away from you while pulling the tip of the ampoule towards you.
- 8) Transfer the solution from the ampoule using a pycnometer or a pipet with dispenser handle. NEVER PIPETTE BY MOUTH.
- 9) Seal any unused SRM solution in a flame-sealed glass ampoule, if possible, to minimize the evaporation loss.

See also reference [4]*.

RC-5-035-005 b

PROPERTIES OF SRM 4320A (Certified values are shown in bold type)

Source identification number	NIST SRM 4320A		
Physical Properties:			
Source description	Liquid in flame-seale	ed NIST borosilicate-g	lass ampoule
Ampoule specifications	Body outside diamet Wall Thickness Barium content Lead-oxide content Other heavy element	(0.60 ± 0.0 Less than Less than	04) mm 2.5% 0.02%
Solution density	(1.030 ± 0.002) g·m	L ⁻¹ at 22.8 °C [b]*	·
Solution mass	Approximately 5.15	g	
Chemical Properties:	建设。		
Solution composition	Chemical Formula	Concentration (mol·L ⁻¹)	Mass Fraction (g•g ⁻¹)
	H ₂ O HNO ₃ HCl ²⁴⁴ Cm ⁺³	54 1.0 <0.001 5 × 10 ⁻¹¹	0.94 0.06 <4 × 10 ⁻⁵ 1 × 10 ⁻¹¹
Radiological Properties:	A. Double by	Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Sa	y ja ka ja
Radionuclide	Curium-244	Yes a self-training	
Reference time	1230 EST, 1 Februa		
Massic activity of the solution [d]	37.06 Bq·g ⁻¹	7412 By	19-11
Relative expanded uncertainty $(k=2)$	0.68 % [e] [f]		
Alpha-particle-emitting daughters Alpha-particle-emitting impurities	Plutonium-240: (0.2 Curium-243: (0.005	22 ± 0.11) Bq·g ⁻¹ [b] 5 ± 0.004) Bq·g ⁻¹ [b]	[c] [g]
Photon-emitting impurities	None detected [h]	· .	
Half lives used in the decay corrections	Curium-244: (18.10 Plutonium-240: (65		
Calibration method	Two 4πα liquid-scin	tillation counting syste	ems

37.06+2 2000

*Notes and references are on pages 5 and 6.

- [i] The stated uncertainty is the standard uncertainty. See reference [5].
- [j] Relative standard uncertainty of the input quantity x_i .
- The relative change in the output quantity y divided by the relative change in the input quantity x_i . If $|\partial y/\partial x_i| \cdot (x_i/y) = 1.0$, then a 1% change in x_i results in a 1% change in y. If $|\partial y/\partial x_i| \cdot (x_i/y) = 0.05$, then a 1% change in x_i results in a 0.05% change in y.
- [m] Relative component of combined standard uncertainty of output quantity y, rounded to two significant figures or less. The relative component of combined standard uncertainty of y is given by $u_i(y)/y = |\partial y/\partial x_i| \cdot u(x_i)/y = |\partial y/\partial x_i| \cdot (x_i/y) \cdot u(x_i)/x_i$. The numerical values of $u(x_i)/x_i$, $|\partial y/\partial x_i| \cdot (x_i/y)$, and $u_i(y)/y$, all dimensionless quantities, are listed in columns 3, 4, and 5, respectively. Thus, the value in column 5 is equal to the value in column 4 multiplied by the value in column 3. The input quantities are independent, or very nearly so. Hence the covariances are zero or negligible.
- [n] The relative standard uncertainty of $\lambda \cdot t$ is determined by the relative standard uncertainty of λ (i.e., of the half life). The relative standard uncertainty of t is negligible.
- [p] $\left| \frac{\partial y}{\partial x_i} \right| \cdot (x_i/y) = \left| \lambda \cdot t \right|$
- [q] The live time is determined by counting the pulses from a gated oscillator.
- The standard uncertainty given is for the detected Cm-243 impurity. $|\partial y/\partial x_i| \cdot (x_i/y) = \{(\text{response per Bq of Cm-244})\} \cdot \{(\text{Bq of impurity})/(\text{Bq of Cm-244})\}$.
- The standard uncertainty for each undetected impurity that might reasonably be expected to be present is estimated to be equal to the estimated limit of detection for that impurity, i.e. $u(x_i)/x_i = 100\%$. $|\partial y/\partial x_i| \cdot (x_i/y) = \{(\text{response per Bq of impurity})/(\text{response per Bq of Cm-244})\} \cdot \{(\text{Bq of impurity})/(\text{Bq of Cm-244})\}$. Thus $u_i(y)/y$ is the relative change in y if the impurity were present with a massic activity equal to the estimated limit of detection.

REFERENCES

- [1] International Organization for Standardization (ISO), ISO Standards Handbook Quantities and Units, 1993. Available from the American National Standards Institute, 11 West 42nd Street, New York, NY 10036, U.S.A. 1-212-642-4900.
- [2] International Organization for Standardization (ISO), Guide to the Expression of Uncertainty in Measurement, 1993. Available from the American National Standards Institute, 11 West 42nd Street, New York, NY 10036, U.S.A. 1-212-642-4900. (Listed under ISO miscellaneous publications as "ISO Guide to the Expression 1993".)
- [3] B. N. Taylor and C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297, 1994. Available from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20407, U.S.A.
- [4] National Council on Radiation Protection and Measurements Report No. 58, A Handbook of Radioactivity Measurements Procedures, Second Edition, 1985. Available from the National Council on Radiation Protection and Measurements, 7910 Woodmont Avenue, Bethesda, MD 20814 U.S.A.
- [5] Evaluated Nuclear Structure Data File (ENSDF), February 1996.

RC-5-035-005

0502

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 · U.S.A.

> Phone (404) 352-8677 Fax (404) 352-2837

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

64445-278

Gd-148 5 mL Liquid in Flame Sealed Vial

This standard radionuclide source was prepared gravimetrically from a calibrated master liquid radionuclide solution source. The master source was calibrated by liquid scintillation counting.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

Radionuclide purity and calibration were checked using a germanium gamma spectrometer system. The nuclear decay rate and assay date for this source are given below.

ISOTOPE:

Gd-148

ACTIVITY (dps):

3.759, E3

HALF-LIFE:

74.6 years

CALIBRATION DATE:

September 5, 2002 12:00 EST

15

TOTAL UNCERTAINTY*:

2.7%

SYSTEMATIC:

1.9%

RANDOM:

0.8%

99% confidence level.

31

5.08493 grams 0.1M HCl solution.

302

P O NUMBER 3207RD, Item 1

SOURCE PREPARED BY:

M.D. Currie, Radiochemist

Q A APPROVED:

IM. RJ

9-6-03

National Institute of Standards & Technology

Certificate

Standard Reference Material 4341 Radioactivity Standard

Radionuclide

Neptunium-237

Territory Transfer

Source identification

SRM 4341

Source description

Liquid in flame-sealed NIST borosilicate-glass ampoule (1)*

Solution mass

Approximately 5 grams

Solution composition

Neptunium-237 in 2 mol·L⁻¹ nitric acid

Reference time

March 1992 ru en establicado ficil e emitado e

Radioactivity concentration

97.0 Bq·g¹ 101 not

Overall uncertainty

1.28 percent ⁽²⁾

Photon-emitting impurities

None detected (9)
None detected (9)

Alpha-particle-emitting impurities

Half life (2.14 ± 0.11) x 10° years (9)

Measuring instrument

NIST "0.8π"α defined-solid-angle counter with scintillation detector

This standard reference material was prepared in the Physics Laboratory, Ionizing Radiation Division, Radioactivity Group, J.M. Robin Hutchinson, Acting Group Leader.

TO SEE THE STATE OF SHIP OF THE SECOND TO SECOND

Gaithersburg, MD January 1993

William P. Reed, Chief Standard Reference Materials Program

*Notes on back

NOTES

(1) Approximately five milliliters of solution. Ampoule specifications:

body diameter wall thickness barium content lead oxide content other heavy elements	16.5 ± 0.5 mm 0.60 ± 0.04 mm less than 2.5 percent less than 0.02 percent trace quantities
---	--

The overall uncertainty was formed by taking three times the quadratic combination of the standard deviations of the mean, or approximations thereof, for the following:

0.34 percent

-		0.34 percent
	a) alpha-particle-emission-rate measurements	0.01 percent
	b) background	0.10 percent
	i ar i ai ai ai ai ai ai ai ai ai ai ai ai a	0.16 percent
	d) detection efficiency d) detection efficiency	0.10 percent
	\	n no percent
		0.10 percent 0.10 percent
	a) maximetric measurements	0.10 percent
والرفاق روا	f) half life g) gravimetric measurements h) alpha-emitting impurities	
	II) arpria dimensi	in equilibrium

The protactinium-233 daughter of neptunium-237 is approximately in equilibrium.

The limit of detection for photon-emitting impurities is

0.19 $\gamma \cdot s^{-1} \cdot g^{-1}$ for energies between 30 and 307 keV and 0.01 $\gamma \cdot s^{-1} \cdot g^{-1}$ for energies between 317 and 1750 keV,

provided that the impurity photons are separated in energy by 5 keV or more from photons emitted in the decay of neptunium-237 and progeny.

(4) The limit of detection for alpha-particle-emitting impurities is

 $0.10 \ \alpha \cdot s^{-1} \cdot g^{-1}$ for energies between 1.0 and 4.3 MeV and $0.05 \ \alpha \cdot s^{-1} \cdot g^{-1}$ for energies between 4.9 and 10 MeV.

(5) Evaluated Nuclear Structure Data File (ENSDF), February 1990.

For further information please contact Dr. J.M. Robin Hutchinson at NIST.

Telephone: (301) 975-5532 FAX: (301) 926-7416

Subsection 1: Energy Calibration

The Energy Calibration energy=Cal Zero+(e1*C)+(e2*C^2)

where: Cal_Zero = Energy Calibration Zero

e1 = Energy Calibration Slope e2 = Energy Calibration Quadratic

C = Channel

Instrument: CHAMBER 001

Detector: 78788

Calibration Date/Time : 5-AUG-2009 14:45:15

Calibration Source Id: AESS-001

Source Id Expiration Date Standard Energy Actual Energy Cal. Isotopes GD-148 NP-237 6445-278 2/28/10 3183.000 3182.768 4341 2/28/10 4768.800 4768.589 CM-244 4320A 2/28/10 5795.020 5794.928

> Energy/Channel Equation : see above Energy Calibration Zero : 2541.111 Energy Calibration Slope : 5.103021 Energy Calibration Quadratic : 3.7696620E-04 Energy Calibration Range : 8162.000

> > Instrument: CHAMBER 002

Detector: 78266

Calibration Date/Time : 5-AUG-2009 14:45:26

Calibration Source Id: AESS-002

Source Id Expiration Date Standard Energy Actual Energy Cal. Isotopes GD-148 6445-278 2/28/10 3183.000 3174.754 NP-237 4341 2/28/10 4768.800 4760.313 CM-244 4320A 2/28/10 5795.020 5783.900

> Energy/Channel Equation : see above Energy Calibration Zero : 2454.309 Energy Calibration Slope : 5.127246 Energy Calibration Quadratic : 2.9634204E-04 Energy Calibration Range : 8015.000

> > Instrument : CHAMBER 003

Detector: 67617

Calibration Date/Time : 5-AUG-2009 14:45:38

Calibration Source Id: AESS-003

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id 6445-278 GD-148 2/28/10 3183.000 3181.710 NP-237 4341 2/28/10 4768.800 4767.829 2/28/10 CM-244 4320A 5794.321 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2595.909 Energy Calibration Slope : 5.495871 Energy Calibration Quadratic : 3.8085488E-04 Energy Calibration Range : 8623.000

Detector: 64279

Calibration Date/Time 5-AUG-2009 14:45:54

Calibration Source Id **AESS-004**

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.926 NP-237 4341 2/28/10 4768.800 4769.257 CM-244 4320A 2/28/10 5795.158 5795.020

> Energy/Channel Equation see above 2531.198 Energy Calibration Zero Energy Calibration Slope 5.085382 **Energy Calibration Quadratic** 3.7076508E-04 **Energy Calibration Range** 8127.000

> > Instrument: CHAMBER 005

Detector: 67612

5-AUG-2009 14:46:05 Calibration Date/Time

Calibration Source Id **AESS-005**

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.615 NP-237 4341 2/28/10 4768.800 4768.917 5795.020 5795.262 CM-244 4320A 2/28/10

> Energy/Channel Equation see above **Energy Calibration Zero** 2383.824 Energy Calibration Slope 5.018230 **Energy Calibration Quadratic** 2.9044802E-04 Energy Calibration Range 7827.000

> > Instrument : CHAMBER 006 Detector : 67613

5-AUG-2009 14:46:15 Calibration Date/Time :

Calibration Source Id AESS-006

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.663 NP-237 2/28/10 4341 4768.800 4768.540 CM-244 2/28/10 4320A 5795.020 5794.813

> Energy/Channel Equation see above **Energy Calibration Zero** 2372.455 **Energy Calibration Slope** 4.968300 **Energy Calibration Quadratic** 3.0602218E-04 **Energy Calibration Range** 7781.000

Detector: 67607

Calibration Date/Time: 3-AUG-2009 15:08:14

Calibration Source Id: AESS-007

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.242 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2434.070 Energy Calibration Slope : 5.126286 Energy Calibration Quadratic : 3.2231462E-04 Energy Calibration Range : 8021.000

> > Instrument: CHAMBER 008

Detector: 78788

Calibration Date/Time : 3-AUG-2009 15:08:25

Calibration Source Id: AESS-008

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.886 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2371.872 Energy Calibration Slope : 4.982497 Energy Calibration Quadratic : 2.9716187E-04 Energy Calibration Range : 7786.000

> > Instrument: CHAMBER 009

Detector: 72528

Calibration Date/Time : 3-AUG-2009 15:08:37

Calibration Source Id: AESS-009

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2376.048 Energy Calibration Slope : 4.954385 Energy Calibration Quadratic : 3.3214918E-04 Energy Calibration Range : 7798.000

Detector: 72529

Calibration Date/Time : 3-AUG-2009 15:08:47

Calibration Source Id: AESS-010

Cal. Isotopes Source Id **Expiration Date** Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2369.197 Energy Calibration Slope : 4.976785 Energy Calibration Quadratic : 2.5434556E-04 Energy Calibration Range : 7732.000

> > Instrument: CHAMBER 011

Detector: 72531

Calibration Date/Time: 3-AUG-2009 15:10:05

Calibration Source Id: AESS-011

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.798 5795.020 5794.773 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2352.745 Energy Calibration Slope : 4.989676 Energy Calibration Quadratic : 3.1640983E-04 Energy Calibration Range : 7794.000

> > Instrument: CHAMBER 012

Detector: 67594

Calibration Date/Time : 3-AUG-2009 15:10:47

Calibration Source Id: AESS-012

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.999 NP-237 2/28/10 4341 4768.800 4768.892 CM-244 2/28/10 4320A 5795.020 5795.162

> Energy/Channel Equation : see above Energy Calibration Zero : 2380.763 Energy Calibration Slope : 4.944053 Energy Calibration Quadratic : 2.9969949E-04 Energy Calibration Range : 7758.000

Detector: 78790

Calibration Date/Time : 3-AUG-2009 15:10:57

Calibration Source Id: AESS-013

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.313 NP-237 4341 2/28/10 4768.800 4768.407 CM-244 4320A 2/28/10 5794.604 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2363.188 Energy Calibration Slope : 4.918418 Energy Calibration Quadratic : 2.9963398E-04 Energy Calibration Range : 7714.000

> > Instrument: CHAMBER 014

Detector: 67616

Calibration Date/Time : 3-AUG-2009 15:11:09

Calibration Source Id: AESS-014

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.775 NP-237 4341 2/28/10 4768.800 4769.221 5795.020 CM-244 4320A 2/28/10 5795.274

> Energy/Channel Equation : see above Energy Calibration Zero : 2348.951 Energy Calibration Slope : 4.947984 Energy Calibration Quadratic : 3.1622496E-04 Energy Calibration Range : 7747.000

> > Instrument: CHAMBER 015

Detector: 61581

Calibration Date/Time : 3-AUG-2009 15:11:19

Calibration Source Id: AESS-015

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.428 NP-237 2/28/10 4341 4768.800 4768.094 CM-244 2/28/10 4320A 5795.020 5794.472

> Energy/Channel Equation : see above Energy Calibration Zero : 2351.056 Energy Calibration Slope : 4.893757 Energy Calibration Quadratic : 3.2378119E-04 Energy Calibration Range : 7702.000

Detector: 78774

Calibration Date/Time : 3-AUG-2009 15:11:28

Calibration Source Id: AESS-016

Cal. Isotopes Source Id **Expiration Date** Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.555 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2352.841 Energy Calibration Slope : 4.901042 Energy Calibration Quadratic : 2.9683873E-04 Energy Calibration Range : 7683.000

> > Instrument: CHAMBER 017

Detector: 78791

Calibration Date/Time : 3-AUG-2009 15:12:45

Calibration Source Id: AESS-017

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.274 NP-237 4341 2/28/10 4768.800 4768.745 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2363.135 Energy Calibration Slope : 4.992663 Energy Calibration Quadratic : 2.7446265E-04 Energy Calibration Range : 7763.000

> > Instrument: CHAMBER 018

Detector: 78782

Calibration Date/Time : 3-AUG-2009 15:12:56

Calibration Source Id: AESS-018

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.695 NP-237 2/28/10 4341 4768.800 4768.801 CM-244 2/28/10 4320A 5795.020 5795.113

> Energy/Channel Equation : see above Energy Calibration Zero : 2352.853 Energy Calibration Slope : 4.963830 Energy Calibration Quadratic : 3.1513936E-04 Energy Calibration Range : 7766.000

Detector: 78786

Calibration Date/Time : 3-AUG-2009 15:13:21

Calibration Source Id: AESS-019

Cal. Isotopes Source Id **Expiration Date** Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5794.625

> Energy/Channel Equation : see above Energy Calibration Zero : 2342.911 Energy Calibration Slope : 5.075375 Energy Calibration Quadratic : 2.0290195E-04 Energy Calibration Range : 7753.000

> > Instrument: CHAMBER 020

Detector: 78787

Calibration Date/Time : 3-AUG-2009 15:13:30

Calibration Source Id: AESS-020

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.407 NP-237 4341 2/28/10 4768.800 4768.798 5795.020 CM-244 4320A 2/28/10 5794.754

> Energy/Channel Equation : see above Energy Calibration Zero : 2341.178 Energy Calibration Slope : 4.974929 Energy Calibration Quadratic : 3.0557165E-04 Energy Calibration Range : 7756.000

> > Instrument: CHAMBER 021

Detector: 67047

Calibration Date/Time : 3-AUG-2009 15:13:40

Calibration Source Id: AESS-021

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.625 NP-237 2/28/10 4341 4768.800 4768.133 CM-244 2/28/10 4320A 5795.020 5794.606

> Energy/Channel Equation : see above Energy Calibration Zero : 2275.519 Energy Calibration Slope : 4.971471 Energy Calibration Quadratic : 2.7405904E-04 Energy Calibration Range : 7654.000

Detector: 72530

Calibration Date/Time : 3-AUG-2009 15:13:53

Calibration Source Id: AESS-022

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.547 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2376.547 Energy Calibration Slope : 4.977059 Energy Calibration Quadratic : 2.7739155E-04 Energy Calibration Range : 7764.000

> > Instrument: CHAMBER 023

Detector: 78264

Calibration Date/Time : 3-AUG-2009 15:14:51

Calibration Source Id: AESS-023

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.979 NP-237 4341 2/28/10 4768.800 4768.454 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2383.134 Energy Calibration Slope : 4.999145 Energy Calibration Quadratic : 2.8956190E-04 Energy Calibration Range : 7806.000

> > Instrument: CHAMBER 024

Detector: 76542

Calibration Date/Time : 3-AUG-2009 15:15:01

Calibration Source Id: AESS-024

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2348.727 Energy Calibration Slope : 4.965035 Energy Calibration Quadratic : 2.7366623E-04 Energy Calibration Range : 7720.000

Instrument: CHAMBER 025 Detector: 45-149AA5

Calibration Date/Time : 3-AUG-2009 15:15:13

Calibration Source Id: AESS-025

Cal. Isotopes Source Id **Expiration Date** Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.326 NP-237 4341 2/28/10 4768.800 4769.288 CM-244 4320A 2/28/10 5795.321 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2318.480 Energy Calibration Slope : 4.856905 Energy Calibration Quadratic : 3.0368069E-04 Energy Calibration Range : 7610.000

> > Instrument: CHAMBER 026

Detector: 78204

Calibration Date/Time : 3-AUG-2009 15:15:23

Calibration Source Id: AESS-026

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.821 5795.020 5795.028 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2356.528 Energy Calibration Slope : 4.940171 Energy Calibration Quadratic : 3.3160963E-04 Energy Calibration Range : 7763.000

> > Instrument: CHAMBER 027

Detector: 42484

Calibration Date/Time : 3-AUG-2009 15:15:36

Calibration Source Id: AESS-027

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.779 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2362.956 Energy Calibration Slope : 4.971167 Energy Calibration Quadratic : 3.1741365E-04 Energy Calibration Range : 7786.000

Detector: 78792

Calibration Date/Time : 3-AUG-2009 15:15:45

Calibration Source Id: AESS-028

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.319 NP-237 4341 2/28/10 4768.800 4768.977 CM-244 4320A 2/28/10 5795.020 5795.122

> Energy/Channel Equation : see above Energy Calibration Zero : 2311.473 Energy Calibration Slope : 4.929708 Energy Calibration Quadratic : 3.5385601E-04 Energy Calibration Range : 7731.000

> > Instrument: CHAMBER 029

Detector: 33454

Calibration Date/Time: 3-AUG-2009 15:15:55

Calibration Source Id: AESS-029

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3184.453 NP-237 4341 2/28/10 4768.800 4773.209 5795.020 CM-244 4320A 2/28/10 5802.449

> Energy/Channel Equation : see above Energy Calibration Zero : 2339.797 Energy Calibration Slope : 4.857889 Energy Calibration Quadratic : 3.2029144E-04 Energy Calibration Range : 7650.000

> > Instrument: CHAMBER 030

Detector: 33447

Calibration Date/Time: 3-AUG-2009 15:16:05

Calibration Source Id: AESS-030

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.504 NP-237 2/28/10 4341 4768.800 4768.116 CM-244 2/28/10 4320A 5795.020 5794.519

> Energy/Channel Equation : see above Energy Calibration Zero : 2378.547 Energy Calibration Slope : 4.952705 Energy Calibration Quadratic : 3.1284252E-04 Energy Calibration Range : 7778.000

Detector: 67042

Calibration Date/Time : 3-AUG-2009 15:16:16

Calibration Source Id: AESS-031

Standard Energy Actual Energy Cal. Isotopes Source Id Expiration Date 3183.466 GD-148 6445-278 2/28/10 3183.000 NP-237 4341 2/28/10 4768.800 4769.878 CM-244 4320A 2/28/10 5795.020 5796.077

> Energy/Channel Equation : see above Energy Calibration Zero : 2364.033 Energy Calibration Slope : 4.931703 Energy Calibration Quadratic : 3.3940026E-04 Energy Calibration Range : 7770.000

> > Instrument: CHAMBER 032

Detector: 67041

Calibration Date/Time : 3-AUG-2009 15:16:28

Calibration Source Id: AESS-032

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2370.812 Energy Calibration Slope : 4.912539 Energy Calibration Quadratic : 3.7134811E-04 Energy Calibration Range : 7791.000

> > Instrument: CHAMBER 033

Detector: 78785

Calibration Date/Time : 3-AUG-2009 15:16:44

Calibration Source Id: AESS-033

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.937 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2376.592 Energy Calibration Slope : 4.933960 Energy Calibration Quadratic : 3.4911980E-04 Energy Calibration Range : 7795.000

Detector: 61586

Calibration Date/Time : 3-AUG-2009 15:16:57

Calibration Source Id: AESS-034

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.237 NP-237 4341 2/28/10 4768.800 4768.352 CM-244 4320A 2/28/10 5795.020 5794.135

> Energy/Channel Equation : see above Energy Calibration Zero : 2382.364 Energy Calibration Slope : 5.064843 Energy Calibration Quadratic : 3.7605409E-04 Energy Calibration Range : 7963.000

> > Instrument: CHAMBER 035

Detector: 78202

Calibration Date/Time : 3-AUG-2009 15:17:07

Calibration Source Id: AESS-035

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.976 5795.020 CM-244 4320A 2/28/10 5795.068

> Energy/Channel Equation : see above Energy Calibration Zero : 2332.455 Energy Calibration Slope : 4.961503 Energy Calibration Quadratic : 3.2716690E-04 Energy Calibration Range : 7756.000

> > Instrument: CHAMBER 036

Detector: 78203

Calibration Date/Time : 3-AUG-2009 15:17:19

Calibration Source Id: AESS-036

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.831 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2351.688 Energy Calibration Slope : 4.934670 Energy Calibration Quadratic : 3.2679725E-04 Energy Calibration Range : 7747.000

Instrument: CHAMBER 037 Detector: 45-149BB5

Calibration Date/Time : 3-AUG-2009 15:17:30

Calibration Source Id: AESS-037

Cal. Isotopes Source Id **Expiration Date** Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.360 NP-237 4341 2/28/10 4768.800 4770.173 CM-244 4320A 2/28/10 5795.020 5795.449

> Energy/Channel Equation : see above Energy Calibration Zero : 2380.215 Energy Calibration Slope : 4.934037 Energy Calibration Quadratic : 2.6879812E-04 Energy Calibration Range : 7715.000

> > Instrument: CHAMBER 038

Detector: 72532

Calibration Date/Time : 3-AUG-2009 15:17:42

Calibration Source Id: AESS-038

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.992 NP-237 4341 2/28/10 4768.800 4768.694 5795.020 CM-244 4320A 2/28/10 5794.956

> Energy/Channel Equation : see above Energy Calibration Zero : 2374.738 Energy Calibration Slope : 4.941356 Energy Calibration Quadratic : 3.2555324E-04 Energy Calibration Range : 7776.000

> > Instrument: CHAMBER 039 Detector: 45-149BB2

Calibration Date/Time : 3-AUG-2009 15:17:50

Calibration Source Id: AESS-039

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4769.047 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2386.341 Energy Calibration Slope : 4.892657 Energy Calibration Quadratic : 3.3502636E-04 Energy Calibration Range : 7748.000

Detector: 78773

Calibration Date/Time : 3-AUG-2009 15:18:00

Calibration Source Id: AESS-040

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.091

> Energy/Channel Equation : see above Energy Calibration Zero : 2353.680 Energy Calibration Slope : 4.886324 Energy Calibration Quadratic : 3.3744561E-04 Energy Calibration Range : 7711.000

> > Instrument: CHAMBER 041

Detector: 78205

Calibration Date/Time: 3-AUG-2009 15:18:09

Calibration Source Id: AESS-041

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 CM-244 4320A 2/28/10 5795.019

> Energy/Channel Equation : see above Energy Calibration Zero : 2360.991 Energy Calibration Slope : 4.934965 Energy Calibration Quadratic : 3.5826201E-04 Energy Calibration Range : 7790.000

> > Instrument: CHAMBER 042

Detector: 78793

Calibration Date/Time : 3-AUG-2009 15:18:18

Calibration Source Id: AESS-042

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2378.631 Energy Calibration Slope : 4.903480 Energy Calibration Quadratic : 3.3252311E-04 Energy Calibration Range : 7748.000

Detector: 76543

Calibration Date/Time : 3-AUG-2009 15:18:26

Calibration Source Id: AESS-043

Standard Energy Actual Energy Cal. Isotopes Source Id **Expiration Date** GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.829 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2368.789 Energy Calibration Slope : 4.934124 Energy Calibration Quadratic : 3.2330386E-04 Energy Calibration Range : 7760.000

> > Instrument: CHAMBER 044

Detector: 79459

Calibration Date/Time : 3-AUG-2009 15:18:36

Calibration Source Id: AESS-044

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.302 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2359.457 Energy Calibration Slope : 4.939529 Energy Calibration Quadratic : 3.2710869E-04 Energy Calibration Range : 7761.000

> > Instrument: CHAMBER 045

Detector: 78783

Calibration Date/Time : 3-AUG-2009 15:18:46

Calibration Source Id: AESS-045

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.992 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2366.479 Energy Calibration Slope : 4.912705 Energy Calibration Quadratic : 3.5802016E-04 Energy Calibration Range : 7773.000

Detector: 76544

Calibration Date/Time : 3-AUG-2009 15:18:55

Calibration Source Id: AESS-046

Standard Energy Actual Energy Cal. Isotopes Source Id **Expiration Date** GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2361.703 Energy Calibration Slope : 4.888400 Energy Calibration Quadratic : 3.3994557E-04 Energy Calibration Range : 7724.000

> > Instrument : CHAMBER 047 Detector : 46-089B1

Calibration Date/Time: 3-AUG-2009 15:19:03

Calibration Source Id: AESS-047

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.340 NP-237 4341 2/28/10 4768.800 4768.922 5795.020 5795.151 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2354.429 Energy Calibration Slope : 4.963282 Energy Calibration Quadratic : 3.1133511E-04 Energy Calibration Range : 7763.000

> > Instrument: CHAMBER 048

Detector: 42483

Calibration Date/Time : 3-AUG-2009 15:19:12

Calibration Source Id: AESS-048

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.266 NP-237 2/28/10 4341 4768.800 4768.972 CM-244 2/28/10 4320A 5795.020 5795.095

> Energy/Channel Equation : see above Energy Calibration Zero : 2377.788 Energy Calibration Slope : 4.957360 Energy Calibration Quadratic : 2.8386535E-04 Energy Calibration Range : 7752.000

Detector: 68551

Calibration Date/Time : 11-AUG-2009 11:32:36

Calibration Source Id: AESS-001

Standard Energy Actual Energy Cal. Isotopes Source Id Expiration Date GD-148 6445-278 2/28/10 3183.000 3183.849 NP-237 4341 2/28/10 4768.800 4769.466 CM-244 4320A 2/28/10 5795.163 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2372.264 Energy Calibration Slope : 4.908353 Energy Calibration Quadratic : 3.3354512E-04 Energy Calibration Range : 7748.000

> > Instrument : CHAMBER 066 Detector : 46-089C1

Calibration Date/Time : 11-AUG-2009 11:33:22

Calibration Source Id: AESS-002

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.390 NP-237 4341 2/28/10 4768.800 4769.085 5795.020 CM-244 4320A 2/28/10 5795.154

> Energy/Channel Equation : see above Energy Calibration Zero : 2366.405 Energy Calibration Slope : 4.987269 Energy Calibration Quadratic : 2.6785664E-04 Energy Calibration Range : 7754.000

> > Instrument : CHAMBER 067

Detector: 46-089B4

Calibration Date/Time : 11-AUG-2009 11:33:34

Calibration Source Id: AESS-003

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.001 NP-237 2/28/10 4341 4768.800 4768.295 CM-244 2/28/10 4320A 5795.020 5794.813

> Energy/Channel Equation : see above Energy Calibration Zero : 2395.106 Energy Calibration Slope : 4.966452 Energy Calibration Quadratic : 2.8820083E-04 Energy Calibration Range : 7783.000

Detector: 78794

Calibration Date/Time : 11-AUG-2009 11:38:02

Calibration Source Id: AESS-004

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.980 CM-244 4320A 2/28/10 5795.020 5795.141

> Energy/Channel Equation : see above Energy Calibration Zero : 2363.999 Energy Calibration Slope : 4.959627 Energy Calibration Quadratic : 3.2675461E-04 Energy Calibration Range : 7785.000

> > Instrument: CHAMBER 069

Detector: 78795

Calibration Date/Time : 11-AUG-2009 11:38:36

Calibration Source Id: AESS-005

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.715 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2374.161 Energy Calibration Slope : 4.934980 Energy Calibration Quadratic : 3.3370449E-04 Energy Calibration Range : 7777.000

> > Instrument : CHAMBER 070

Detector: 46-089B2

Calibration Date/Time : 11-AUG-2009 11:38:49

Calibration Source Id: AESS-006

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.376 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2384.967 Energy Calibration Slope : 4.940035 Energy Calibration Quadratic : 3.0117441E-04 Energy Calibration Range : 7759.000

Detector: 64259

Calibration Date/Time : 11-AUG-2009 11:39:05

Calibration Source Id: AESS-007

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2380.222 Energy Calibration Slope : 4.972534 Energy Calibration Quadratic : 3.0923611E-04 Energy Calibration Range : 7796.000

> > Instrument : CHAMBER 072 Detector : 45-149AA3

Calibration Date/Time : 11-AUG-2009 11:41:05

Calibration Source Id: AESS-008

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 5794.779 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2367.289 Energy Calibration Slope : 4.936321 Energy Calibration Quadratic : 3.1663457E-04 Energy Calibration Range : 7754.000

> > Instrument: CHAMBER 073

Detector: 78775

Calibration Date/Time : 11-AUG-2009 11:41:19

Calibration Source Id: AESS-009

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2340.294 Energy Calibration Slope : 4.933617 Energy Calibration Quadratic : 3.0803526E-04 Energy Calibration Range : 7715.000

Detector: 78266

Calibration Date/Time : 11-AUG-2009 11:41:50

Calibration Source Id: AESS-010

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2357.238 Energy Calibration Slope : 4.957754 Energy Calibration Quadratic : 3.2763465E-04 Energy Calibration Range : 7778.000

> > Instrument : CHAMBER 075

Detector: 68550

Calibration Date/Time : 11-AUG-2009 11:42:08

Calibration Source Id: AESS-011

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.795 NP-237 4341 2/28/10 4768.800 4769.246 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2357.909 Energy Calibration Slope : 4.956091 Energy Calibration Quadratic : 3.1667759E-04 Energy Calibration Range : 7765.000

> > Instrument: CHAMBER 076

Detector: 78779

Calibration Date/Time : 11-AUG-2009 11:42:40

Calibration Source Id: AESS-012

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.193

> Energy/Channel Equation : see above Energy Calibration Zero : 2353.146 Energy Calibration Slope : 4.949463 Energy Calibration Quadratic : 3.2361425E-04 Energy Calibration Range : 7761.000

Detector: 67576

Calibration Date/Time: 11-AUG-2009 11:42:53

Calibration Source Id: AESS-013

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5794.739

> Energy/Channel Equation : see above Energy Calibration Zero : 2362.830 Energy Calibration Slope : 4.939044 Energy Calibration Quadratic : 3.0275399E-04 Energy Calibration Range : 7738.000

> > Instrument: CHAMBER 078

Detector: 67577

Calibration Date/Time : 11-AUG-2009 11:43:47

Calibration Source Id: AESS-014

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3181.433 NP-237 4341 2/28/10 4768.800 4767.846 5795.020 CM-244 4320A 2/28/10 5793.522

> Energy/Channel Equation : see above Energy Calibration Zero : 2407.798 Energy Calibration Slope : 4.964797 Energy Calibration Quadratic : 3.3742035E-04 Energy Calibration Range : 7846.000

> > Instrument: CHAMBER 079

Detector: 67598

Calibration Date/Time : 11-AUG-2009 11:44:09

Calibration Source Id: AESS-015

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.694 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2369.132 Energy Calibration Slope : 4.920986 Energy Calibration Quadratic : 3.1385853E-04 Energy Calibration Range : 7737.000

Detector: 78197

Calibration Date/Time: 12-AUG-2009 06:47:19

Calibration Source Id: AESS-016

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.250 NP-237 4341 2/28/10 4768.800 4769.057 CM-244 4320A 2/28/10 5795.270 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2352.236 Energy Calibration Slope : 4.998828 Energy Calibration Quadratic : 2.8291933E-04 Energy Calibration Range : 7768.000

> > Instrument: CHAMBER 081

Detector: 72533

Calibration Date/Time : 11-AUG-2009 11:46:32

Calibration Source Id: AESS-017

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3204.930 NP-237 4341 2/28/10 4768.800 4703.826 5795.020 CM-244 4320A 2/28/10 5726.761

> Energy/Channel Equation : see above Energy Calibration Zero : 2219.847 Energy Calibration Slope : 9.458302 Energy Calibration Quadratic : -5.2725184E-03 Energy Calibration Range : 6377.000

> > Instrument: CHAMBER 082

Detector: 64263

Calibration Date/Time : 11-AUG-2009 11:47:05

Calibration Source Id: AESS-018

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.619 NP-237 2/28/10 4341 4768.800 4767.967 CM-244 2/28/10 4320A 5795.020 5794.591

> Energy/Channel Equation : see above Energy Calibration Zero : 2389.567 Energy Calibration Slope : 4.987039 Energy Calibration Quadratic : 3.1898782E-04 Energy Calibration Range : 7831.000

Detector: 64278

Calibration Date/Time : 11-AUG-2009 11:47:29

Calibration Source Id: AESS-019

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.777 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2373.204 Energy Calibration Slope : 5.041853 Energy Calibration Quadratic : 2.3808437E-04 Energy Calibration Range : 7786.000

> > Instrument: CHAMBER 084

Detector: 78265

Calibration Date/Time : 11-AUG-2009 11:47:52

Calibration Source Id : AESS-020

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5794.867

> Energy/Channel Equation : see above Energy Calibration Zero : 2362.363 Energy Calibration Slope : 5.016379 Energy Calibration Quadratic : 2.7867779E-04 Energy Calibration Range : 7791.000

> > Instrument: CHAMBER 085

Detector: 78776

Calibration Date/Time : 11-AUG-2009 11:48:19

Calibration Source Id: AESS-021

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.802 CM-244 2/28/10 4320A 5795.020 5795.019

> Energy/Channel Equation : see above Energy Calibration Zero : 2368.057 Energy Calibration Slope : 4.984862 Energy Calibration Quadratic : 2.9382212E-04 Energy Calibration Range : 7781.000

Detector: 78198

Calibration Date/Time : 11-AUG-2009 11:48:41

Calibration Source Id: AESS-022

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.458 NP-237 4341 2/28/10 4768.800 4768.482 CM-244 4320A 2/28/10 5794.558 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2358.351 Energy Calibration Slope : 5.023737 Energy Calibration Quadratic : 2.3622859E-04 Energy Calibration Range : 7750.000

> > Instrument: CHAMBER 087

Detector: 78199

Calibration Date/Time : 11-AUG-2009 11:49:08

Calibration Source Id: AESS-023

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.717 NP-237 4341 2/28/10 4768.800 4768.539 5795.020 CM-244 4320A 2/28/10 5794.745

> Energy/Channel Equation : see above Energy Calibration Zero : 2342.553 Energy Calibration Slope : 4.976685 Energy Calibration Quadratic : 2.4361881E-04 Energy Calibration Range : 7694.000

> > Instrument: CHAMBER 088

Detector: 33452

Calibration Date/Time: 11-AUG-2009 11:50:14

Calibration Source Id: AESS-024

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.801 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2348.450 Energy Calibration Slope : 4.985291 Energy Calibration Quadratic : 2.0228673E-04 Energy Calibration Range : 7666.000

Detector: 78262

Calibration Date/Time : 11-AUG-2009 11:50:54

Calibration Source Id: AESS-025

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.822 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2360.236 Energy Calibration Slope : 4.993787 Energy Calibration Quadratic : 3.1235311E-04 Energy Calibration Range : 7801.000

> > Instrument: CHAMBER 090

Detector: 78263

Calibration Date/Time : 11-AUG-2009 11:51:07

Calibration Source Id: AESS-026

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.689 5795.020 CM-244 4320A 2/28/10 5794.864

> Energy/Channel Equation : see above Energy Calibration Zero : 2367.944 Energy Calibration Slope : 4.912088 Energy Calibration Quadratic : 3.3423179E-04 Energy Calibration Range : 7748.000

> > Instrument: CHAMBER 091

Detector: 78259

Calibration Date/Time : 11-AUG-2009 11:51:19

Calibration Source Id: AESS-027

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.501 NP-237 2/28/10 4341 4768.800 4768.562 CM-244 2/28/10 4320A 5795.020 5794.908

> Energy/Channel Equation : see above Energy Calibration Zero : 2373.294 Energy Calibration Slope : 4.962712 Energy Calibration Quadratic : 3.3628431E-04 Energy Calibration Range : 7808.000

Detector: 79457

Calibration Date/Time : 11-AUG-2009 11:52:08

Calibration Source Id: AESS-028

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.999 4769.086 NP-237 4341 2/28/10 4768.800 CM-244 4320A 2/28/10 5795.236 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2353.207 Energy Calibration Slope : 4.920592 Energy Calibration Quadratic : 3.2561756E-04 Energy Calibration Range : 7733.000

> > Instrument: CHAMBER 093

Detector: 33206

Calibration Date/Time : 11-AUG-2009 11:52:22

Calibration Source Id: AESS-029

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.729 NP-237 4341 2/28/10 4768.800 4768.662 5795.020 CM-244 4320A 2/28/10 5794.973

> Energy/Channel Equation : see above Energy Calibration Zero : 2374.507 Energy Calibration Slope : 4.905449 Energy Calibration Quadratic : 3.4070064E-04 Energy Calibration Range : 7755.000

> > Instrument: CHAMBER 094

Detector: 78267

Calibration Date/Time : 11-AUG-2009 11:52:36

Calibration Source Id: AESS-030

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.615 NP-237 2/28/10 4768.657 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5794.828

> Energy/Channel Equation : see above Energy Calibration Zero : 2364.661 Energy Calibration Slope : 4.944430 Energy Calibration Quadratic : 3.0602465E-04 Energy Calibration Range : 7749.000

Detector: 64279

Calibration Date/Time : 11-AUG-2009 11:53:20

Calibration Source Id: AESS-031

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5794.924

> Energy/Channel Equation : see above Energy Calibration Zero : 2360.997 Energy Calibration Slope : 4.923662 Energy Calibration Quadratic : 3.3134571E-04 Energy Calibration Range : 7750.000

> > Instrument: CHAMBER 096

Detector: 67605

Calibration Date/Time : 11-AUG-2009 11:53:35

Calibration Source Id: AESS-032

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.861 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 CM-244 4320A 2/28/10 5794.970

> Energy/Channel Equation : see above Energy Calibration Zero : 2352.669 Energy Calibration Slope : 4.930194 Energy Calibration Quadratic : 3.4499675E-04 Energy Calibration Range : 7763.000

> > Instrument: CHAMBER 097

Detector: 67599

Calibration Date/Time : 11-AUG-2009 11:54:04

Calibration Source Id: AESS-033

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.385 NP-237 2/28/10 4341 4768.800 4768.497 CM-244 2/28/10 4320A 5795.020 5794.575

> Energy/Channel Equation : see above Energy Calibration Zero : 2366.630 Energy Calibration Slope : 4.955770 Energy Calibration Quadratic : 3.2342706E-04 Energy Calibration Range : 7780.000

Detector: 68644

Calibration Date/Time : 11-AUG-2009 11:54:57

Calibration Source Id: AESS-034

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.677 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2384.988 Energy Calibration Slope : 4.980790 Energy Calibration Quadratic : 3.1301824E-04 Energy Calibration Range : 7814.000

> > Instrument: CHAMBER 099

Detector: 70317

Calibration Date/Time : 11-AUG-2009 11:55:11

Calibration Source Id: AESS-035

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.657 NP-237 4341 2/28/10 4768.800 4768.798 5795.020 CM-244 4320A 2/28/10 5794.872

> Energy/Channel Equation : see above Energy Calibration Zero : 2370.271 Energy Calibration Slope : 4.896307 Energy Calibration Quadratic : 3.5264078E-04 Energy Calibration Range : 7754.000

> > Instrument: CHAMBER 100

Detector: 79456

Calibration Date/Time: 11-AUG-2009 11:55:23

Calibration Source Id: AESS-046

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.007 NP-237 2/28/10 4341 4768.800 4768.931 CM-244 2/28/10 4320A 5795.020 5795.248

> Energy/Channel Equation : see above Energy Calibration Zero : 2353.091 Energy Calibration Slope : 4.889555 Energy Calibration Quadratic : 3.4731548E-04 Energy Calibration Range : 7724.000

Detector: 64253

Calibration Date/Time: 11-AUG-2009 11:55:41

Calibration Source Id: AESS-037

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id 6445-278 GD-148 2/28/10 3183.000 3182.482 4768.628 NP-237 4341 2/28/10 4768.800 CM-244 4320A 2/28/10 5795.020 5795.004

> Energy/Channel Equation : see above Energy Calibration Zero : 2413.378 Energy Calibration Slope : 4.941072 Energy Calibration Quadratic : 3.1744229E-04 Energy Calibration Range : 7806.000

> > Instrument: CHAMBER 102

Detector: 72525

Calibration Date/Time : 11-AUG-2009 11:55:55

Calibration Source Id: AESS-038

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.620 NP-237 4341 2/28/10 4768.800 4768.759 5795.020 5795.021 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2365.023 Energy Calibration Slope : 4.877947 Energy Calibration Quadratic : 3.3410732E-04 Energy Calibration Range : 7710.000

> > Instrument: CHAMBER 103

Detector: 79461

Calibration Date/Time : 11-AUG-2009 11:56:06

Calibration Source Id: AESS-039

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.724 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2388.602 Energy Calibration Slope : 4.925415 Energy Calibration Quadratic : 3.3399722E-04 Energy Calibration Range : 7782.000

Detector: 72524

Calibration Date/Time: 11-AUG-2009 11:56:56

Calibration Source Id: AESS-040

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.731 NP-237 4341 2/28/10 4768.800 4768.746 CM-244 4320A 2/28/10 5794.950 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2361.164 Energy Calibration Slope : 4.875978 Energy Calibration Quadratic : 3.5914616E-04 Energy Calibration Range : 7731.000

> > Instrument: CHAMBER 105

Detector: 78777

Calibration Date/Time : 11-AUG-2009 11:57:20

Calibration Source Id: AESS-041

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2374.957 Energy Calibration Slope : 4.877512 Energy Calibration Quadratic : 3.5687728E-04 Energy Calibration Range : 7744.000

> > Instrument: CHAMBER 106

Detector: 64274

Calibration Date/Time : 11-AUG-2009 11:57:33

Calibration Source Id: AESS-042

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2386.397 Energy Calibration Slope : 4.925849 Energy Calibration Quadratic : 3.5619634E-04 Energy Calibration Range : 7804.000

Detector: 67578

Calibration Date/Time : 11-AUG-2009 11:58:23

Calibration Source Id: AESS-043

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.757 NP-237 4341 2/28/10 4768.800 4768.431 CM-244 4320A 2/28/10 5794.760 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2365.165 Energy Calibration Slope : 4.989622 Energy Calibration Quadratic : 3.0367926E-04 Energy Calibration Range : 7793.000

> > Instrument: CHAMBER 108

Detector: 78778

Calibration Date/Time : 11-AUG-2009 12:00:02

Calibration Source Id: AESS-044

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.085

> Energy/Channel Equation : see above Energy Calibration Zero : 2361.750 Energy Calibration Slope : 4.889173 Energy Calibration Quadratic : 3.3859405E-04 Energy Calibration Range : 7723.000

> > Instrument: CHAMBER 109

Detector: 79463

Calibration Date/Time : 11-AUG-2009 12:00:23

Calibration Source Id: AESS-045

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.801 CM-244 2/28/10 4320A 5795.020 5795.011

> Energy/Channel Equation : see above Energy Calibration Zero : 2361.956 Energy Calibration Slope : 4.902098 Energy Calibration Quadratic : 3.6021773E-04 Energy Calibration Range : 7759.000

Detector: 67602

Calibration Date/Time : 11-AUG-2009 12:01:03

Calibration Source Id: AESS-046

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3180.240 NP-237 4341 2/28/10 4768.800 4767.627 CM-244 4320A 2/28/10 5795.020 5792.351

> Energy/Channel Equation : see above Energy Calibration Zero : 2450.737 Energy Calibration Slope : 5.078455 Energy Calibration Quadratic : 3.6329794E-04 Energy Calibration Range : 8032.000

> > Instrument: CHAMBER 111

Detector: 79462

Calibration Date/Time : 11-AUG-2009 12:01:21

Calibration Source Id: AESS-047

Cal. Isotopes Expiration Date Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.689 NP-237 4341 2/28/10 4768.800 4768.620 5795.020 CM-244 4320A 2/28/10 5794.913

> Energy/Channel Equation : see above Energy Calibration Zero : 2360.863 Energy Calibration Slope : 4.982990 Energy Calibration Quadratic : 3.1839884E-04 Energy Calibration Range : 7797.000

> > Instrument: CHAMBER 112

Detector: 78261

Calibration Date/Time : 11-AUG-2009 12:02:06

Calibration Source Id: AESS-048

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.798 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2372.713 Energy Calibration Slope : 4.922604 Energy Calibration Quadratic : 3.2149741E-04 Energy Calibration Range : 7751.000

Instrument: CHAMBER 113 Detector: 45-111B4

Calibration Date/Time : 17-AUG-2009 14:57:05

Calibration Source Id: AESS-001

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.693 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2388.351 Energy Calibration Slope : 4.986037 Energy Calibration Quadratic : 2.9112995E-04 Energy Calibration Range : 7799.000

> > Instrument: CHAMBER 114

Detector: 78258

Calibration Date/Time : 17-AUG-2009 14:57:42

Calibration Source Id: AESS-007

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.738 NP-237 4341 2/28/10 4768.800 4768.375 5795.020 CM-244 4320A 2/28/10 5794.878

> Energy/Channel Equation : see above Energy Calibration Zero : 2341.717 Energy Calibration Slope : 4.967946 Energy Calibration Quadratic : 2.6719994E-04 Energy Calibration Range : 7709.000

> > Instrument: CHAMBER 115

Detector: 45-132FF4

Calibration Date/Time : 17-AUG-2009 14:57:55

Calibration Source Id: AESS-002

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.996 CM-244 2/28/10 4320A 5795.020 5795.124

> Energy/Channel Equation : see above Energy Calibration Zero : 2360.484 Energy Calibration Slope : 5.001271 Energy Calibration Quadratic : 2.5857674E-04 Energy Calibration Range : 7753.000

Instrument: CHAMBER 116 Detector: 45-132FF2

Calibration Date/Time: 17-AUG-2009 14:58:06

Calibration Source Id: AESS-008

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.296 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2358.140 Energy Calibration Slope : 4.998592 Energy Calibration Quadratic : 2.4986797E-04 Energy Calibration Range : 7739.000

> > Instrument: CHAMBER 117

Detector: 33450

Calibration Date/Time : 17-AUG-2009 14:58:17

Calibration Source Id: AESS-003

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.212 NP-237 4341 2/28/10 4768.800 4768.136 5795.020 CM-244 4320A 2/28/10 5794.829

> Energy/Channel Equation : see above Energy Calibration Zero : 2377.331 Energy Calibration Slope : 4.984442 Energy Calibration Quadratic : 2.6023277E-04 Energy Calibration Range : 7754.000

> > Instrument: CHAMBER 118

Detector: 75544

Calibration Date/Time : 17-AUG-2009 14:58:27

Calibration Source Id: AESS-009

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.453 NP-237 2/28/10 4341 4768.800 4768.624 CM-244 2/28/10 4320A 5795.020 5794.893

> Energy/Channel Equation : see above Energy Calibration Zero : 2343.030 Energy Calibration Slope : 4.970738 Energy Calibration Quadratic : 2.7650801E-04 Energy Calibration Range : 7723.000

Detector: 74429

Calibration Date/Time : 2-FEB-2009 15:15:38

Calibration Source Id: AESS-004

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3001.688 NP-237 4341 2/28/10 4768.800 4669.281 CM-244 4320A 2/28/10 5795.020 5706.875

> Energy/Channel Equation : see above Energy Calibration Zero : 2437.949 Energy Calibration Slope : 5.036866

Energy Calibration Quadratic

Energy Calibration Range : 7596.000

Instrument : CHAMBER 120

Detector: 74430

Calibration Date/Time : 18-AUG-2009 13:38:55

Calibration Source Id: AESS-010

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.734 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5794.984

> Energy/Channel Equation : see above Energy Calibration Zero : 2316.127 Energy Calibration Slope : 4.939470 Energy Calibration Quadratic : 2.8824760E-04 Energy Calibration Range : 7676.000

> > Instrument: CHAMBER 121

Detector: 75545

Calibration Date/Time: 17-AUG-2009 14:58:37

Calibration Source Id: AESS-005

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.992 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5794.910

> Energy/Channel Equation : see above Energy Calibration Zero : 2338.077 Energy Calibration Slope : 4.950966 Energy Calibration Quadratic : 2.8139201E-04 Energy Calibration Range : 7703.000

Detector: 75546

Calibration Date/Time : 17-AUG-2009 14:58:49

Calibration Source Id: AESS-011

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.767 NP-237 4341 2/28/10 4768.800 4768.557 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2334.596 Energy Calibration Slope : 4.961221 Energy Calibration Quadratic : 2.6947071E-04 Energy Calibration Range : 7697.000

> > Instrument : CHAMBER 123 Detector : 45-142V3

Calibration Date/Time : 17-AUG-2009 14:58:58

Calibration Source Id: AESS-006

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.626 NP-237 4341 2/28/10 4768.800 4768.419 5795.020 CM-244 4320A 2/28/10 5794.913

> Energy/Channel Equation : see above Energy Calibration Zero : 2377.630 Energy Calibration Slope : 4.988592 Energy Calibration Quadratic : 2.4062325E-04 Energy Calibration Range : 7738.000

> > Instrument: CHAMBER 124

Detector: 45-142V2

Calibration Date/Time : 17-AUG-2009 14:59:08

Calibration Source Id: AESS-012

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.737 NP-237 2/28/10 4341 4768.800 4768.348 CM-244 2/28/10 4320A 5795.020 5794.822

> Energy/Channel Equation : see above Energy Calibration Zero : 2389.445 Energy Calibration Slope : 5.014465 Energy Calibration Quadratic : 2.5700411E-04 Energy Calibration Range : 7794.000

Detector: 75547

Calibration Date/Time: 17-AUG-2009 14:59:18

Calibration Source Id: AESS-013

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.519 NP-237 4341 2/28/10 4768.800 4768.590 CM-244 4320A 2/28/10 5795.020 5794.968

> Energy/Channel Equation : see above Energy Calibration Zero : 2346.234 Energy Calibration Slope : 4.935012 Energy Calibration Quadratic : 2.8653492E-04 Energy Calibration Range : 7700.000

> > Instrument: CHAMBER 126

Detector: 75548

Calibration Date/Time : 17-AUG-2009 14:59:32

Calibration Source Id: AESS-019

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.586 NP-237 4341 2/28/10 4768.800 4768.494 5795.020 CM-244 4320A 2/28/10 5794.836

> Energy/Channel Equation : see above Energy Calibration Zero : 2351.831 Energy Calibration Slope : 5.025319 Energy Calibration Quadratic : 2.1107355E-04 Energy Calibration Range : 7719.000

> > Instrument: CHAMBER 127

Detector: 78770

Calibration Date/Time: 17-AUG-2009 14:59:46

Calibration Source Id: AESS-014

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.831 NP-237 2/28/10 4768.741 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5794.894

> Energy/Channel Equation : see above Energy Calibration Zero : 2339.154 Energy Calibration Slope : 4.970251 Energy Calibration Quadratic : 2.5652250E-04 Energy Calibration Range : 7698.000

Detector: 75549

Calibration Date/Time : 17-AUG-2009 15:00:39

Calibration Source Id: AESS-020

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.531 NP-237 4341 2/28/10 4768.800 4768.610 CM-244 4320A 2/28/10 5794.838 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2330.388 Energy Calibration Slope : 5.000057 Energy Calibration Quadratic : 2.3812153E-04 Energy Calibration Range : 7700.000

> > Instrument: CHAMBER 129

Detector: 76227

Calibration Date/Time : 17-AUG-2009 15:00:50

Calibration Source Id: AESS-015

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.843 NP-237 4341 2/28/10 4768.800 4768.717 5795.020 CM-244 4320A 2/28/10 5794.874

> Energy/Channel Equation : see above Energy Calibration Zero : 2351.215 Energy Calibration Slope : 4.930460 Energy Calibration Quadratic : 2.9455224E-04 Energy Calibration Range : 7709.000

> > Instrument: CHAMBER 130

Detector: 76228

Calibration Date/Time: 17-AUG-2009 15:01:00

Calibration Source Id: AESS-021

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.985 NP-237 2/28/10 4341 4768.800 4768.658 CM-244 2/28/10 4320A 5795.020 5794.729

> Energy/Channel Equation : see above Energy Calibration Zero : 2337.606 Energy Calibration Slope : 4.982665 Energy Calibration Quadratic : 2.2944069E-04 Energy Calibration Range : 7680.000

Detector: 33448

Calibration Date/Time : 17-AUG-2009 15:01:10

Calibration Source Id: AESS-016

Standard Energy Actual Energy Cal. Isotopes Source Id Expiration Date 6445-278 3178.948 GD-148 2/28/10 3183.000 NP-237 4341 2/28/10 4768.800 4766.564 CM-244 4320A 2/28/10 5795.020 5793.610

> Energy/Channel Equation : see above Energy Calibration Zero : 2408.823 Energy Calibration Slope : 4.963500 Energy Calibration Quadratic : 2.8727154E-04 Energy Calibration Range : 7793.000

> > Instrument: CHAMBER 132

Detector: 67579

Calibration Date/Time : 17-AUG-2009 15:01:19

Calibration Source Id: AESS-022

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.495 5795.020 CM-244 4320A 2/28/10 5794.895

> Energy/Channel Equation : see above Energy Calibration Zero : 2326.639 Energy Calibration Slope : 5.034670 Energy Calibration Quadratic : 2.1709618E-04 Energy Calibration Range : 7710.000

> > Instrument: CHAMBER 133

Detector: 76229

Calibration Date/Time: 17-AUG-2009 15:01:29

Calibration Source Id: AESS-017

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.802 NP-237 2/28/10 4341 4768.800 4768.798 CM-244 2/28/10 4320A 5795.020 5794.855

> Energy/Channel Equation : see above Energy Calibration Zero : 2310.723 Energy Calibration Slope : 4.901457 Energy Calibration Quadratic : 2.6648620E-04 Energy Calibration Range : 7609.000

Detector: 76230

Calibration Date/Time : 17-AUG-2009 15:01:38

Calibration Source Id: AESS-023

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.670 NP-237 4341 2/28/10 4768.800 4768.734 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2328.671 Energy Calibration Slope : 4.971330 Energy Calibration Quadratic : 2.3919715E-04 Energy Calibration Range : 7670.000

> > Instrument: CHAMBER 135

Detector: 64270

Calibration Date/Time : 17-AUG-2009 15:01:50

Calibration Source Id: AESS-018

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.220 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2334.713 Energy Calibration Slope : 4.950563 Energy Calibration Quadratic : 2.6665861E-04 Energy Calibration Range : 7684.000

> > Instrument: CHAMBER 136

Detector: 68549

Calibration Date/Time : 17-AUG-2009 15:02:00

Calibration Source Id: AESS-024

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.547 NP-237 2/28/10 4341 4768.800 4769.648 CM-244 2/28/10 4320A 5795.020 5795.176

> Energy/Channel Equation : see above Energy Calibration Zero : 2352.961 Energy Calibration Slope : 4.996480 Energy Calibration Quadratic : 2.6544984E-04 Energy Calibration Range : 7748.000

Detector: 64288

Calibration Date/Time : 18-AUG-2009 09:58:00

Calibration Source Id: AESS-025

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id 3183.000 GD-148 6445-278 2/28/10 3183.000 NP-237 4341 2/28/10 4768.800 4768.426 CM-244 4320A 2/28/10 5794.897 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2376.854 Energy Calibration Slope : 5.032813 Energy Calibration Quadratic : 2.8756596E-04 Energy Calibration Range : 7832.000

> > Instrument: CHAMBER 138

Detector: 65877

Calibration Date/Time : 17-AUG-2009 15:10:23

Calibration Source Id: AESS-031

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.778 5795.020 CM-244 4320A 2/28/10 5794.902

> Energy/Channel Equation : see above Energy Calibration Zero : 2376.472 Energy Calibration Slope : 4.997972 Energy Calibration Quadratic : 2.8433124E-04 Energy Calibration Range : 7793.000

> > Instrument: CHAMBER 139

Detector: 76231

Calibration Date/Time: 17-AUG-2009 15:10:36

Calibration Source Id: AESS-026

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.807 NP-237 2/28/10 4341 4768.800 4768.778 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2353.050 Energy Calibration Slope : 4.923675 Energy Calibration Quadratic : 3.2614564E-04 Energy Calibration Range : 7737.000

Detector: 78771

Calibration Date/Time : 17-AUG-2009 15:10:53

Calibration Source Id: AESS-032

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5794.950

> Energy/Channel Equation : see above Energy Calibration Zero : 2343.606 Energy Calibration Slope : 4.949296 Energy Calibration Quadratic : 3.0935110E-04 Energy Calibration Range : 7736.000

> > Instrument : CHAMBER 141

Detector: 76232

Calibration Date/Time : 17-AUG-2009 15:11:05

Calibration Source Id: AESS-027

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.704 NP-237 4341 2/28/10 4768.800 4768.701 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2354.080 Energy Calibration Slope : 4.967496 Energy Calibration Quadratic : 2.7667297E-04 Energy Calibration Range : 7731.000

> > Instrument: CHAMBER 142

Detector: 64261

Calibration Date/Time : 17-AUG-2009 15:11:22

Calibration Source Id: AESS-033

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5794.996

> Energy/Channel Equation : see above Energy Calibration Zero : 2377.858 Energy Calibration Slope : 4.966272 Energy Calibration Quadratic : 3.0408424E-04 Energy Calibration Range : 7782.000

Detector: 65882

Calibration Date/Time : 17-AUG-2009 15:11:35

Calibration Source Id: AESS-028

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.838 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2353.476 Energy Calibration Slope : 4.958334 Energy Calibration Quadratic : 2.9036327E-04 Energy Calibration Range : 7735.000

> > Instrument: CHAMBER 144

Detector: 75551

Calibration Date/Time : 17-AUG-2009 15:11:48

Calibration Source Id: AESS-034

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.149 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2348.280 Energy Calibration Slope : 4.953019 Energy Calibration Quadratic : 2.9027942E-04 Energy Calibration Range : 7725.000

> > Instrument: CHAMBER 145

Detector: 72526

Calibration Date/Time : 17-AUG-2009 15:12:06

Calibration Source Id: AESS-029

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.799 CM-244 2/28/10 4320A 5795.020 5794.950

> Energy/Channel Equation : see above Energy Calibration Zero : 2358.188 Energy Calibration Slope : 4.950538 Energy Calibration Quadratic : 3.1101296E-04 Energy Calibration Range : 7754.000

Detector: 72527

Calibration Date/Time : 17-AUG-2009 15:12:19

Calibration Source Id: AESS-035

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.841 NP-237 4341 2/28/10 4768.800 4768.589 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2352.896 Energy Calibration Slope : 4.936564 Energy Calibration Quadratic : 2.8588294E-04 Energy Calibration Range : 7708.000

> > Instrument: CHAMBER 147

Detector: 75550

Calibration Date/Time : 17-AUG-2009 15:12:37

Calibration Source Id: AESS-030

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.991 NP-237 4341 2/28/10 4768.800 4768.681 5795.020 CM-244 4320A 2/28/10 5794.852

> Energy/Channel Equation : see above Energy Calibration Zero : 2344.357 Energy Calibration Slope : 4.979820 Energy Calibration Quadratic : 2.4974984E-04 Energy Calibration Range : 7706.000

> > Instrument: CHAMBER 148

Detector: 74429

Calibration Date/Time : 17-AUG-2009 15:12:57

Calibration Source Id: AESS-036

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.790 NP-237 2/28/10 4341 4768.800 4768.746 CM-244 2/28/10 4320A 5795.020 5794.901

> Energy/Channel Equation : see above Energy Calibration Zero : 2347.048 Energy Calibration Slope : 4.952481 Energy Calibration Quadratic : 2.8881739E-04 Energy Calibration Range : 7721.000

Detector: 33449

Calibration Date/Time : 17-AUG-2009 15:02:09

Calibration Source Id: AESS-037

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.635 NP-237 4341 2/28/10 4768.800 4768.444 CM-244 4320A 2/28/10 5794.948 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2393.262 Energy Calibration Slope : 4.951241 Energy Calibration Quadratic : 3.0021602E-04 Energy Calibration Range : 7778.000

> > Instrument: CHAMBER 150

Detector: 75552

Calibration Date/Time : 17-AUG-2009 15:02:19

Calibration Source Id: AESS-043

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2357.177 Energy Calibration Slope : 4.964990 Energy Calibration Quadratic : 2.8429780E-04 Energy Calibration Range : 7739.000

> > Instrument: CHAMBER 151

Detector: 75556

Calibration Date/Time: 17-AUG-2009 15:02:29

Calibration Source Id: AESS-038

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.755 CM-244 2/28/10 4320A 5795.020 5794.925

> Energy/Channel Equation : see above Energy Calibration Zero : 2344.746 Energy Calibration Slope : 4.932197 Energy Calibration Quadratic : 2.7974858E-04 Energy Calibration Range : 7689.000

Detector: 76222

Calibration Date/Time: 17-AUG-2009 15:02:41

Calibration Source Id: AESS-044

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id 6445-278 GD-148 2/28/10 3183.000 3182.811 NP-237 4341 2/28/10 4768.800 4768.798 CM-244 4320A 2/28/10 5794.877 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2344.480 Energy Calibration Slope : 4.936235 Energy Calibration Quadratic : 2.8715734E-04 Energy Calibration Range : 7700.000

> > Instrument: CHAMBER 153

Detector: 76223

Calibration Date/Time : 17-AUG-2009 15:02:59

Calibration Source Id: AESS-039

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.810 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5794.996

> Energy/Channel Equation : see above Energy Calibration Zero : 2337.684 Energy Calibration Slope : 4.933674 Energy Calibration Quadratic : 3.0187287E-04 Energy Calibration Range : 7706.000

> > Instrument: CHAMBER 154

Detector: 76224

Calibration Date/Time : 17-AUG-2009 15:03:12

Calibration Source Id: AESS-045

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.801 CM-244 2/28/10 4320A 5795.020 5795.019

> Energy/Channel Equation : see above Energy Calibration Zero : 2342.948 Energy Calibration Slope : 4.948957 Energy Calibration Quadratic : 2.8683257E-04 Energy Calibration Range : 7711.000

Detector: 75553

Calibration Date/Time: 17-AUG-2009 15:03:49

Calibration Source Id: AESS-040

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id 6445-278 GD-148 2/28/10 3183.000 3182.770 NP-237 4341 2/28/10 4768.800 4768.662 CM-244 4320A 2/28/10 5794.902 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2367.728 Energy Calibration Slope : 4.983710 Energy Calibration Quadratic : 2.8808211E-04 Energy Calibration Range : 7773.000

> > Instrument: CHAMBER 156

Detector: 75554

Calibration Date/Time : 17-AUG-2009 15:03:58

Calibration Source Id: AESS-046

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.851 NP-237 4341 2/28/10 4768.800 4768.705 5795.020 CM-244 4320A 2/28/10 5794.899

> Energy/Channel Equation : see above Energy Calibration Zero : 2362.355 Energy Calibration Slope : 4.999010 Energy Calibration Quadratic : 2.6741659E-04 Energy Calibration Range : 7762.000

> > Instrument: CHAMBER 157

Detector: 75555

Calibration Date/Time: 17-AUG-2009 15:04:07

Calibration Source Id: AESS-041

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.868 NP-237 2/28/10 4341 4768.800 4768.768 CM-244 2/28/10 4320A 5795.020 5794.925

> Energy/Channel Equation : see above Energy Calibration Zero : 2358.092 Energy Calibration Slope : 4.979420 Energy Calibration Quadratic : 2.8018607E-04 Energy Calibration Range : 7751.000

Detector: 33451

Calibration Date/Time: 17-AUG-2009 15:04:18

Calibration Source Id: AESS-047

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id 6445-278 GD-148 2/28/10 3183.000 3182.449 NP-237 4341 2/28/10 4768.800 4768.432 CM-244 4320A 2/28/10 5794.938 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2389.976 Energy Calibration Slope : 5.006801 Energy Calibration Quadratic : 3.0287215E-04 Energy Calibration Range : 7835.000

> > Instrument: CHAMBER 159

Detector: 76225

Calibration Date/Time : 17-AUG-2009 15:04:28

Calibration Source Id: AESS-042

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2354.720 Energy Calibration Slope : 4.980748 Energy Calibration Quadratic : 2.9428111E-04 Energy Calibration Range : 7764.000

> > Instrument: CHAMBER 160

Detector: 76226

Calibration Date/Time : 17-AUG-2009 15:04:40

Calibration Source Id: AESS-048

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2355.649 Energy Calibration Slope : 4.990073 Energy Calibration Quadratic : 2.8874222E-04 Energy Calibration Range : 7768.000

Detector: 70321

Calibration Date/Time : 24-AUG-2009 14:06:47

Calibration Source Id: AESS-001

Standard Energy Actual Energy Cal. Isotopes Source Id **Expiration Date** 6445-278 GD-148 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2374.961 Energy Calibration Slope : 4.910189 Energy Calibration Quadratic : 3.2356248E-04 Energy Calibration Range : 7742.000

> > Instrument: CHAMBER 162

Detector: 70323

Calibration Date/Time : 24-AUG-2009 14:06:56

Calibration Source Id: AESS-007

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 5795.021 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2369.767 Energy Calibration Slope : 4.933752 Energy Calibration Quadratic : 2.9582490E-04 Energy Calibration Range : 7732.000

> > Instrument: CHAMBER 163

Detector: 70324

Calibration Date/Time : 24-AUG-2009 14:07:06

Calibration Source Id: AESS-002

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.801 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2380.833 Energy Calibration Slope : 4.951450 Energy Calibration Quadratic : 2.9602056E-04 Energy Calibration Range : 7762.000

Detector: 70325

Calibration Date/Time : 24-AUG-2009 14:07:20

Calibration Source Id: AESS-008

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2382.319 Energy Calibration Slope : 4.937610 Energy Calibration Quadratic : 3.1754762E-04 Energy Calibration Range : 7771.000

> > Instrument: CHAMBER 165

Detector: 72544

Calibration Date/Time : 24-AUG-2009 14:07:34

Calibration Source Id: AESS-003

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2383.801 Energy Calibration Slope : 4.978922 Energy Calibration Quadratic : 2.7212233E-04 Energy Calibration Range : 7768.000

> > Instrument: CHAMBER 166

Detector: 74545

Calibration Date/Time : 24-AUG-2009 14:07:42

Calibration Source Id: AESS-009

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2376.102 Energy Calibration Slope : 4.917744 Energy Calibration Quadratic : 3.4292034E-04 Energy Calibration Range : 7771.000

Detector: 72546

Calibration Date/Time : 24-AUG-2009 14:07:51

Calibration Source Id: AESS-004

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2378.657 Energy Calibration Slope : 4.932514 Energy Calibration Quadratic : 3.1670861E-04 Energy Calibration Range : 7762.000

> > Instrument: CHAMBER 168

Detector: 72547

Calibration Date/Time : 24-AUG-2009 14:07:59

Calibration Source Id: AESS-010

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2383.249 Energy Calibration Slope : 4.927288 Energy Calibration Quadratic : 3.2642024E-04 Energy Calibration Range : 7771.000

> > Instrument: CHAMBER 169

Detector: 72548

Calibration Date/Time : 24-AUG-2009 14:08:11

Calibration Source Id: AESS-005

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2381.642 Energy Calibration Slope : 4.923596 Energy Calibration Quadratic : 3.2521432E-04 Energy Calibration Range : 7764.000

Detector: 72549

Calibration Date/Time : 24-AUG-2009 14:08:20

Calibration Source Id: AESS-011

Standard Energy Actual Energy Cal. Isotopes Source Id Expiration Date GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.492 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2382.004 Energy Calibration Slope : 4.926051 Energy Calibration Quadratic : 3.3877406E-04 Energy Calibration Range : 7782.000

> > Instrument : CHAMBER 171

Detector: 78260

Calibration Date/Time : 24-AUG-2009 14:08:29

Calibration Source Id: AESS-006

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4769.426 5795.020 CM-244 4320A 2/28/10 5795.289

> Energy/Channel Equation : see above Energy Calibration Zero : 2366.691 Energy Calibration Slope : 4.935659 Energy Calibration Quadratic : 3.0618926E-04 Energy Calibration Range : 7742.000

> > Instrument: CHAMBER 172

Detector: 78772

Calibration Date/Time : 24-AUG-2009 14:08:40

Calibration Source Id: AESS-012

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.798 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2367.995 Energy Calibration Slope : 4.907234 Energy Calibration Quadratic : 3.5045875E-04 Energy Calibration Range : 7760.000

Detector: 74431

Calibration Date/Time : 24-AUG-2009 14:08:49

Calibration Source Id: AESS-013

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2364.808 Energy Calibration Slope : 4.998088 Energy Calibration Quadratic : 2.5220143E-04 Energy Calibration Range : 7747.000

> > Instrument: CHAMBER 174

Detector: 74432

Calibration Date/Time : 24-AUG-2009 14:08:58

Calibration Source Id: AESS-019

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2359.695 Energy Calibration Slope : 5.048626 Energy Calibration Quadratic : 1.8959134E-04 Energy Calibration Range : 7728.000

> > Instrument: CHAMBER 175

Detector: 74433

Calibration Date/Time : 24-AUG-2009 14:09:06

Calibration Source Id: AESS-014

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.801 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2365.396 Energy Calibration Slope : 4.978646 Energy Calibration Quadratic : 2.7462494E-04 Energy Calibration Range : 7751.000

Detector: 74434

Calibration Date/Time : 24-AUG-2009 14:09:15

Calibration Source Id: AESS-020

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2362.332 Energy Calibration Slope : 5.014320 Energy Calibration Quadratic : 2.4356594E-04 Energy Calibration Range : 7752.000

> > Instrument: CHAMBER 177

Detector: 74435

Calibration Date/Time : 24-AUG-2009 14:09:24

Calibration Source Id: AESS-015

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2364.740 Energy Calibration Slope : 4.964604 Energy Calibration Quadratic : 2.9061688E-04 Energy Calibration Range : 7753.000

> > Instrument: CHAMBER 178

Detector: 74436

Calibration Date/Time : 24-AUG-2009 14:09:35

Calibration Source Id: AESS-021

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2358.420 Energy Calibration Slope : 4.990875 Energy Calibration Quadratic : 2.6006214E-04 Energy Calibration Range : 7742.000

Detector: 74437

Calibration Date/Time : 24-AUG-2009 14:09:44

Calibration Source Id: AESS-016

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2360.365 Energy Calibration Slope : 4.967896 Energy Calibration Quadratic : 2.8685154E-04 Energy Calibration Range : 7748.000

> > Instrument: CHAMBER 180

Detector: 74438

Calibration Date/Time : 24-AUG-2009 14:09:54

Calibration Source Id : AESS-022

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2358.338 Energy Calibration Slope : 5.025792 Energy Calibration Quadratic : 2.1654682E-04 Energy Calibration Range : 7732.000

> > Instrument: CHAMBER 181

Detector: 74439

Calibration Date/Time : 24-AUG-2009 14:10:03

Calibration Source Id: AESS-017

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.697 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2362.787 Energy Calibration Slope : 4.972206 Energy Calibration Quadratic : 2.7814286E-04 Energy Calibration Range : 7746.000

Detector: 74440

Calibration Date/Time : 24-AUG-2009 14:10:14

Calibration Source Id: AESS-023

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2353.051 Energy Calibration Slope : 4.986979 Energy Calibration Quadratic : 2.5764259E-04 Energy Calibration Range : 7730.000

> > Instrument: CHAMBER 183

Detector: 74441

Calibration Date/Time : 24-AUG-2009 14:10:29

Calibration Source Id: AESS-018

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2362.208 Energy Calibration Slope : 4.980685 Energy Calibration Quadratic : 2.7016739E-04 Energy Calibration Range : 7746.000

> > Instrument: CHAMBER 184

Detector: 74442

Calibration Date/Time : 24-AUG-2009 14:10:41

Calibration Source Id: AESS-024

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2359.055 Energy Calibration Slope : 5.010284 Energy Calibration Quadratic : 2.3703104E-04 Energy Calibration Range : 7738.000

Detector: 68615

Calibration Date/Time : 24-AUG-2009 14:10:54

Calibration Source Id: AESS-025

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.699 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2361.733 Energy Calibration Slope : 4.933492 Energy Calibration Quadratic : 2.8617174E-04 Energy Calibration Range : 7714.000

> > Instrument: CHAMBER 186

Detector: 68616

Calibration Date/Time : 24-AUG-2009 14:11:06

Calibration Source Id: AESS-031

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2365.753 Energy Calibration Slope : 4.935731 Energy Calibration Quadratic : 2.9755512E-04 Energy Calibration Range : 7732.000

> > Instrument: CHAMBER 187

Detector: 68620

Calibration Date/Time : 24-AUG-2009 14:11:16

Calibration Source Id: AESS-026

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.801 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2376.047 Energy Calibration Slope : 4.966012 Energy Calibration Quadratic : 3.0612116E-04 Energy Calibration Range : 7782.000

Detector: 68621

Calibration Date/Time : 24-AUG-2009 14:11:25

Calibration Source Id: AESS-032

Standard Energy Actual Energy Cal. Isotopes Source Id Expiration Date GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2368.519 Energy Calibration Slope : 4.967674 Energy Calibration Quadratic : 2.9094989E-04 Energy Calibration Range : 7761.000

> > Instrument: CHAMBER 189

Detector: 68622

Calibration Date/Time : 24-AUG-2009 14:11:34

Calibration Source Id: AESS-027

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2363.805 Energy Calibration Slope : 4.932057 Energy Calibration Quadratic : 3.0281782E-04 Energy Calibration Range : 7732.000

> > Instrument: CHAMBER 190

Detector: 68623

Calibration Date/Time : 24-AUG-2009 14:11:43

Calibration Source Id: AESS-033

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2358.846 Energy Calibration Slope : 4.945598 Energy Calibration Quadratic : 2.9230170E-04 Energy Calibration Range : 7730.000

Detector: 68624

Calibration Date/Time : 24-AUG-2009 14:11:54

Calibration Source Id: AESS-028

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2370.757 Energy Calibration Slope : 4.964250 Energy Calibration Quadratic : 3.1056980E-04 Energy Calibration Range : 7780.000

> > Instrument: CHAMBER 192

Detector: 74430

Calibration Date/Time : 24-AUG-2009 14:12:04

Calibration Source Id: AESS-034

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2365.552 Energy Calibration Slope : 4.984001 Energy Calibration Quadratic : 2.9122332E-04 Energy Calibration Range : 7775.000

> > Instrument: CHAMBER 193

Detector: 68627

Calibration Date/Time : 24-AUG-2009 14:12:15

Calibration Source Id: AESS-029

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2364.432 Energy Calibration Slope : 4.926356 Energy Calibration Quadratic : 3.1079396E-04 Energy Calibration Range : 7735.000

Detector: 68635

Calibration Date/Time : 24-AUG-2009 14:12:24

Calibration Source Id: AESS-035

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2361.972 Energy Calibration Slope : 4.949121 Energy Calibration Quadratic : 2.8917161E-04 Energy Calibration Range : 7733.000

> > Instrument: CHAMBER 195

Detector: 68636

Calibration Date/Time : 24-AUG-2009 14:12:38

Calibration Source Id: AESS-030

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.802 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2361.575 Energy Calibration Slope : 4.972611 Energy Calibration Quadratic : 2.6226370E-04 Energy Calibration Range : 7729.000

> > Instrument: CHAMBER 196

Detector: 68637

Calibration Date/Time : 24-AUG-2009 14:12:49

Calibration Source Id: AESS-036

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2364.691 Energy Calibration Slope : 4.926461 Energy Calibration Quadratic : 3.1398068E-04 Energy Calibration Range : 7739.000

Detector: 78894

Calibration Date/Time : 24-AUG-2009 14:12:58

Calibration Source Id: AESS-037

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2371.940 Energy Calibration Slope : 4.962372 Energy Calibration Quadratic : 3.0214558E-04 Energy Calibration Range : 7770.000

> > Instrument: CHAMBER 198

Detector: 78895

Calibration Date/Time : 24-AUG-2009 14:13:11

Calibration Source Id: AESS-043

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2366.058 Energy Calibration Slope : 4.966545 Energy Calibration Quadratic : 2.8346200E-04 Energy Calibration Range : 7749.000

> > Instrument: CHAMBER 199

Detector: 78896

Calibration Date/Time : 24-AUG-2009 14:13:20

Calibration Source Id: AESS-038

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2368.399 Energy Calibration Slope : 4.967513 Energy Calibration Quadratic : 2.9532972E-04 Energy Calibration Range : 7765.000

Detector: 78900

Calibration Date/Time : 24-AUG-2009 14:13:29

Calibration Source Id: AESS-044

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2366.221 Energy Calibration Slope : 4.968300 Energy Calibration Quadratic : 2.9352392E-04 Energy Calibration Range : 7762.000

> > Instrument: CHAMBER 201

Detector: 78902

Calibration Date/Time : 24-AUG-2009 14:13:38

Calibration Source Id: AESS-039

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2362.156 Energy Calibration Slope : 4.974658 Energy Calibration Quadratic : 2.9066936E-04 Energy Calibration Range : 7761.000

> > Instrument: CHAMBER 202

Detector: 78903

Calibration Date/Time : 24-AUG-2009 14:13:47

Calibration Source Id: AESS-045

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2356.033 Energy Calibration Slope : 4.956886 Energy Calibration Quadratic : 2.9409473E-04 Energy Calibration Range : 7740.000

Detector: 78905

Calibration Date/Time : 24-AUG-2009 14:16:33

Calibration Source Id: AESS-040

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2364.159 Energy Calibration Slope : 4.957525 Energy Calibration Quadratic : 3.0185276E-04 Energy Calibration Range : 7757.000

> > Instrument: CHAMBER 204

Detector: 78907

Calibration Date/Time : 24-AUG-2009 14:14:37

Calibration Source Id: AESS-046

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2361.336 Energy Calibration Slope : 4.953297 Energy Calibration Quadratic : 3.0559121E-04 Energy Calibration Range : 7754.000

> > Instrument: CHAMBER 205

Detector: 78908

Calibration Date/Time : 24-AUG-2009 14:14:46

Calibration Source Id: AESS-041

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2366.916 Energy Calibration Slope : 4.956555 Energy Calibration Quadratic : 3.0603251E-04 Energy Calibration Range : 7763.000

Detector: 78909

Calibration Date/Time : 24-AUG-2009 14:14:55

Calibration Source Id: AESS-047

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2362.312 Energy Calibration Slope : 4.958225 Energy Calibration Quadratic : 2.9557038E-04 Energy Calibration Range : 7749.000

> > Instrument: CHAMBER 207

Detector: 78910

Calibration Date/Time : 24-AUG-2009 14:15:04

Calibration Source Id: AESS-042

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2365.581 Energy Calibration Slope : 4.980759 Energy Calibration Quadratic : 2.8388310E-04 Energy Calibration Range : 7764.000

> > Instrument: CHAMBER 208

Detector: 78911

Calibration Date/Time : 24-AUG-2009 14:15:14

Calibration Source Id: AESS-048

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2364.472 Energy Calibration Slope : 4.972521 Energy Calibration Quadratic : 2.9282621E-04 Energy Calibration Range : 7763.000

Detector: 79188

Calibration Date/Time : 28-AUG-2009 13:24:07

Calibration Source Id: AESS-001

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id 3183.000 GD-148 6445-278 2/28/10 3183.000 NP-237 4341 2/28/10 4768.800 4768.335 CM-244 4320A 2/28/10 5795.020 5794.881

> Energy/Channel Equation : see above Energy Calibration Zero : 2390.838 Energy Calibration Slope : 4.927811 Energy Calibration Quadratic : 3.3034658E-04 Energy Calibration Range : 7783.000

> > Instrument: CHAMBER 210

Detector: 79189

Calibration Date/Time : 28-AUG-2009 13:25:35

Calibration Source Id: AESS-002

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.411 NP-237 4341 2/28/10 4768.800 4768.113 5795.020 CM-244 4320A 2/28/10 5794.645

> Energy/Channel Equation : see above Energy Calibration Zero : 2383.667 Energy Calibration Slope : 4.959684 Energy Calibration Quadratic : 2.9263049E-04 Energy Calibration Range : 7769.000

> > Instrument: CHAMBER 211

Detector: 79190

Calibration Date/Time : 28-AUG-2009 13:25:47

Calibration Source Id: AESS-003

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.995 NP-237 2/28/10 4341 4768.800 4768.326 CM-244 2/28/10 4320A 5795.020 5794.748

> Energy/Channel Equation : see above Energy Calibration Zero : 2392.783 Energy Calibration Slope : 4.948876 Energy Calibration Quadratic : 3.2176418E-04 Energy Calibration Range : 7798.000

Detector: 79191

Calibration Date/Time : 28-AUG-2009 13:26:50

Calibration Source Id: AESS-004

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.995 NP-237 4341 2/28/10 4768.800 4768.536 CM-244 4320A 2/28/10 5795.020 5794.696

> Energy/Channel Equation : see above Energy Calibration Zero : 2390.425 Energy Calibration Slope : 4.930474 Energy Calibration Quadratic : 3.3508314E-04 Energy Calibration Range : 7791.000

> > Instrument : CHAMBER 213

Detector: 79192

Calibration Date/Time : 28-AUG-2009 13:27:02

Calibration Source Id: AESS-005

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.585 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2391.388 Energy Calibration Slope : 4.965888 Energy Calibration Quadratic : 2.9186261E-04 Energy Calibration Range : 7782.000

> > Instrument: CHAMBER 214

Detector: 79193

Calibration Date/Time : 28-AUG-2009 13:27:13

Calibration Source Id: AESS-006

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.617 NP-237 4341 2/28/10 4768.800 4768.269 CM-244 2/28/10 4320A 5795.020 5794.897

> Energy/Channel Equation : see above Energy Calibration Zero : 2388.729 Energy Calibration Slope : 4.939622 Energy Calibration Quadratic : 3.2170661E-04 Energy Calibration Range : 7784.000

Detector: 79194

Calibration Date/Time : 28-AUG-2009 13:27:24

Calibration Source Id: AESS-007

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.687 CM-244 4320A 2/28/10 5795.020 5794.826

> Energy/Channel Equation : see above Energy Calibration Zero : 2394.311 Energy Calibration Slope : 4.937372 Energy Calibration Quadratic : 3.3629968E-04 Energy Calibration Range : 7803.000

> > Instrument: CHAMBER 216

Detector: 79195

Calibration Date/Time : 28-AUG-2009 13:27:35

Calibration Source Id: AESS-008

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.995 NP-237 4341 2/28/10 4768.800 4768.219 5795.020 5795.021 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2390.139 Energy Calibration Slope : 4.935822 Energy Calibration Quadratic : 3.2837162E-04 Energy Calibration Range : 7789.000

> > Instrument: CHAMBER 217

Detector: 79410

Calibration Date/Time : 28-AUG-2009 13:27:45

Calibration Source Id: AESS-009

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.999 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 2/28/10 4320A 5795.020 5794.882

> Energy/Channel Equation : see above Energy Calibration Zero : 2392.370 Energy Calibration Slope : 4.932100 Energy Calibration Quadratic : 3.3393077E-04 Energy Calibration Range : 7793.000

Detector: 79411

Calibration Date/Time : 28-AUG-2009 13:27:55

Calibration Source Id: AESS-010

Standard Energy Actual Energy Cal. Isotopes Source Id Expiration Date GD-148 6445-278 2/28/10 3183.000 3182.358 NP-237 4341 2/28/10 4768.800 4768.423 CM-244 4320A 2/28/10 5794.546 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2390.502 Energy Calibration Slope : 4.945263 Energy Calibration Quadratic : 3.2289582E-04 Energy Calibration Range : 7793.000

> > Instrument: CHAMBER 219

Detector: 79412

Calibration Date/Time : 28-AUG-2009 13:28:06

Calibration Source Id: AESS-011

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.507 5795.020 CM-244 4320A 2/28/10 5794.730

> Energy/Channel Equation : see above Energy Calibration Zero : 2388.417 Energy Calibration Slope : 4.951864 Energy Calibration Quadratic : 3.1518008E-04 Energy Calibration Range : 7790.000

> > Instrument : CHAMBER 220

Detector: 79413

Calibration Date/Time : 28-AUG-2009 13:28:15

Calibration Source Id: AESS-012

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.604 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2384.931 Energy Calibration Slope : 4.925590 Energy Calibration Quadratic : 3.4113281E-04 Energy Calibration Range : 7786.000

Detector: 79414

Calibration Date/Time : 28-AUG-2009 13:28:26

Calibration Source Id: AESS-013

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.994 NP-237 4341 2/28/10 4768.800 4768.508 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2389.873 Energy Calibration Slope : 4.963081 Energy Calibration Quadratic : 3.1328213E-04 Energy Calibration Range : 7801.000

> > Instrument : CHAMBER 222

Detector: 79415

Calibration Date/Time : 28-AUG-2009 13:28:40

Calibration Source Id: AESS-014

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.242 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2383.161 Energy Calibration Slope : 5.032124 Energy Calibration Quadratic : 2.3446424E-04 Energy Calibration Range : 7782.000

> > Instrument: CHAMBER 223

Detector: 79416

Calibration Date/Time : 28-AUG-2009 13:28:50

Calibration Source Id: AESS-015

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.591 CM-244 2/28/10 4320A 5795.020 5794.816

> Energy/Channel Equation : see above Energy Calibration Zero : 2389.471 Energy Calibration Slope : 4.966544 Energy Calibration Quadratic : 3.1951332E-04 Energy Calibration Range : 7810.000

Detector: 79417

Calibration Date/Time : 28-AUG-2009 13:29:01

Calibration Source Id: AESS-016

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.496 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2391.014 Energy Calibration Slope : 4.986970 Energy Calibration Quadratic : 2.9468181E-04 Energy Calibration Range : 7807.000

> > Instrument: CHAMBER 225

Detector: 79418

Calibration Date/Time : 28-AUG-2009 13:29:13

Calibration Source Id: AESS-017

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.995 NP-237 4341 2/28/10 4768.800 4768.482 5795.020 CM-244 4320A 2/28/10 5794.771

> Energy/Channel Equation : see above Energy Calibration Zero : 2392.520 Energy Calibration Slope : 4.953336 Energy Calibration Quadratic : 3.1543931E-04 Energy Calibration Range : 7795.000

> > Instrument: CHAMBER 226

Detector: 79419

Calibration Date/Time : 28-AUG-2009 13:29:24

Calibration Source Id: AESS-018

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.533 CM-244 2/28/10 4320A 5795.020 5794.638

> Energy/Channel Equation : see above Energy Calibration Zero : 2385.990 Energy Calibration Slope : 4.969761 Energy Calibration Quadratic : 3.0473244E-04 Energy Calibration Range : 7795.000

Detector: 79420

Calibration Date/Time : 28-AUG-2009 13:29:35

Calibration Source Id: AESS-019

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.989 4768.396 NP-237 4341 2/28/10 4768.800 CM-244 4320A 2/28/10 5795.020 5795.019

> Energy/Channel Equation : see above Energy Calibration Zero : 2390.018 Energy Calibration Slope : 4.958102 Energy Calibration Quadratic : 3.1095589E-04 Energy Calibration Range : 7793.000

> > Instrument: CHAMBER 228

Detector: 79421

Calibration Date/Time : 28-AUG-2009 13:30:03

Calibration Source Id: AESS-020

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.001 NP-237 4341 2/28/10 4768.800 4768.080 5795.020 CM-244 4320A 2/28/10 5794.730

> Energy/Channel Equation : see above Energy Calibration Zero : 2384.553 Energy Calibration Slope : 4.991631 Energy Calibration Quadratic : 2.7237524E-04 Energy Calibration Range : 7782.000

> > Instrument: CHAMBER 229

Detector: 79422

Calibration Date/Time : 28-AUG-2009 13:30:14

Calibration Source Id: AESS-021

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.535 NP-237 2/28/10 4341 4768.800 4768.314 CM-244 2/28/10 4320A 5795.020 5794.771

> Energy/Channel Equation : see above Energy Calibration Zero : 2391.623 Energy Calibration Slope : 4.946116 Energy Calibration Quadratic : 3.3402635E-04 Energy Calibration Range : 7807.000

Detector: 79423

Calibration Date/Time : 28-AUG-2009 13:31:10

Calibration Source Id: AESS-022

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id 3183.000 GD-148 6445-278 2/28/10 3183.000 NP-237 4341 2/28/10 4768.800 4768.295 CM-244 4320A 2/28/10 5795.020 5794.755

> Energy/Channel Equation : see above Energy Calibration Zero : 2386.924 Energy Calibration Slope : 4.965939 Energy Calibration Quadratic : 3.0765639E-04 Energy Calibration Range : 7795.000

> > Instrument: CHAMBER 231

Detector: 79424

Calibration Date/Time : 28-AUG-2009 13:31:59

Calibration Source Id: AESS-023

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.555 NP-237 4341 2/28/10 4768.800 4768.511 5795.020 CM-244 4320A 2/28/10 5794.833

> Energy/Channel Equation : see above Energy Calibration Zero : 2389.970 Energy Calibration Slope : 4.957988 Energy Calibration Quadratic : 3.0450191E-04 Energy Calibration Range : 7786.000

> > Instrument: CHAMBER 232

Detector: 79425

Calibration Date/Time : 28-AUG-2009 13:32:18

Calibration Source Id: AESS-024

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.305 CM-244 2/28/10 4320A 5795.020 5794.704

> Energy/Channel Equation : see above Energy Calibration Zero : 2386.107 Energy Calibration Slope : 5.009925 Energy Calibration Quadratic : 2.5456178E-04 Energy Calibration Range : 7783.000

Detector: 79426

Calibration Date/Time : 28-AUG-2009 13:32:35

Calibration Source Id: AESS-025

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.576 CM-244 4320A 2/28/10 5795.020 5794.737

> Energy/Channel Equation : see above Energy Calibration Zero : 2384.864 Energy Calibration Slope : 4.921108 Energy Calibration Quadratic : 3.4491287E-04 Energy Calibration Range : 7786.000

> > Instrument: CHAMBER 234

Detector: 79427

Calibration Date/Time : 28-AUG-2009 13:32:51

Calibration Source Id: AESS-026

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.551 NP-237 4341 2/28/10 4768.800 4768.513 5795.020 5794.778 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2381.948 Energy Calibration Slope : 4.930495 Energy Calibration Quadratic : 3.2252993E-04 Energy Calibration Range : 7769.000

> > Instrument: CHAMBER 235

Detector: 79428

Calibration Date/Time : 28-AUG-2009 13:33:07

Calibration Source Id: AESS-027

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2389.848 Energy Calibration Slope : 4.916008 Energy Calibration Quadratic : 3.6057594E-04 Energy Calibration Range : 7802.000

Detector: 79429

Calibration Date/Time : 28-AUG-2009 13:33:24

Calibration Source Id: AESS-028

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.403 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2389.679 Energy Calibration Slope : 4.915041 Energy Calibration Quadratic : 3.5203501E-04 Energy Calibration Range : 7792.000

> > Instrument: CHAMBER 237

Detector: 79430

Calibration Date/Time : 28-AUG-2009 13:33:41

Calibration Source Id: AESS-029

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2386.371 Energy Calibration Slope : 4.953910 Energy Calibration Quadratic : 3.1539882E-04 Energy Calibration Range : 7790.000

> > Instrument: CHAMBER 238

Detector: 79431

Calibration Date/Time : 28-AUG-2009 13:33:59

Calibration Source Id: AESS-030

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.662 CM-244 2/28/10 4320A 5795.020 5795.015

> Energy/Channel Equation : see above Energy Calibration Zero : 2382.061 Energy Calibration Slope : 4.932787 Energy Calibration Quadratic : 3.2764973E-04 Energy Calibration Range : 7777.000

Detector: 79432

Calibration Date/Time : 28-AUG-2009 13:34:23

Calibration Source Id: AESS-031

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2390.464 Energy Calibration Slope : 4.922751 Energy Calibration Quadratic : 3.5207078E-04 Energy Calibration Range : 7801.000

> > Instrument: CHAMBER 240

Detector: 79433

Calibration Date/Time : 28-AUG-2009 13:34:40

Calibration Source Id: AESS-032

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.994 NP-237 4341 2/28/10 4768.800 4768.676 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2384.323 Energy Calibration Slope : 4.929180 Energy Calibration Quadratic : 3.3816224E-04 Energy Calibration Range : 7786.000

> > Instrument: CHAMBER 241

Detector: 79434

Calibration Date/Time : 28-AUG-2009 13:34:57

Calibration Source Id: AESS-033

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.801 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2388.207 Energy Calibration Slope : 4.903821 Energy Calibration Quadratic : 3.6748822E-04 Energy Calibration Range : 7795.000

Detector: 79435

Calibration Date/Time : 28-AUG-2009 13:35:16

Calibration Source Id: AESS-034

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.542 CM-244 4320A 2/28/10 5795.020 5794.775

> Energy/Channel Equation : see above Energy Calibration Zero : 2390.032 Energy Calibration Slope : 4.921538 Energy Calibration Quadratic : 3.5085063E-04 Energy Calibration Range : 7798.000

> > Instrument: CHAMBER 243

Detector: 79436

Calibration Date/Time : 28-AUG-2009 13:35:39

Calibration Source Id: AESS-035

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.988 NP-237 4341 2/28/10 4768.800 4768.486 5795.020 CM-244 4320A 2/28/10 5794.752

> Energy/Channel Equation : see above Energy Calibration Zero : 2386.548 Energy Calibration Slope : 4.951634 Energy Calibration Quadratic : 3.2005890E-04 Energy Calibration Range : 7793.000

> > Instrument: CHAMBER 244

Detector: 79437

Calibration Date/Time : 28-AUG-2009 13:36:07

Calibration Source Id: AESS-036

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.497 NP-237 2/28/10 4341 4768.800 4768.339 CM-244 2/28/10 4320A 5795.020 5794.813

> Energy/Channel Equation : see above Energy Calibration Zero : 2390.547 Energy Calibration Slope : 4.935142 Energy Calibration Quadratic : 3.3349055E-04 Energy Calibration Range : 7794.000

Detector: 79438

Calibration Date/Time : 28-AUG-2009 13:36:53

Calibration Source Id: AESS-037

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.392 NP-237 4341 2/28/10 4768.800 4768.244 CM-244 4320A 2/28/10 5795.020 5794.789

> Energy/Channel Equation : see above Energy Calibration Zero : 2393.397 Energy Calibration Slope : 4.967153 Energy Calibration Quadratic : 3.0749093E-04 Energy Calibration Range : 7802.000

> > Instrument: CHAMBER 246

Detector: 78912

Calibration Date/Time : 28-AUG-2009 13:37:05

Calibration Source Id: AESS-038

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.994 NP-237 4341 2/28/10 4768.800 4768.559 5795.020 CM-244 4320A 2/28/10 5794.661

> Energy/Channel Equation : see above Energy Calibration Zero : 2393.972 Energy Calibration Slope : 4.938848 Energy Calibration Quadratic : 3.3234741E-04 Energy Calibration Range : 7800.000

> > Instrument: CHAMBER 247

Detector: 79440

Calibration Date/Time : 28-AUG-2009 13:37:16

Calibration Source Id: AESS-039

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.001 NP-237 2/28/10 4341 4768.800 4768.340 CM-244 2/28/10 4320A 5795.020 5794.822

> Energy/Channel Equation : see above Energy Calibration Zero : 2392.511 Energy Calibration Slope : 4.947969 Energy Calibration Quadratic : 3.3144341E-04 Energy Calibration Range : 7807.000

Detector: 79441

Calibration Date/Time : 28-AUG-2009 13:37:28

Calibration Source Id: AESS-040

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5794.763

> Energy/Channel Equation : see above Energy Calibration Zero : 2387.425 Energy Calibration Slope : 4.938920 Energy Calibration Quadratic : 3.3573247E-04 Energy Calibration Range : 7797.000

> > Instrument: CHAMBER 249

Detector: 79442

Calibration Date/Time : 28-AUG-2009 13:37:39

Calibration Source Id: AESS-041

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.655 5795.020 CM-244 4320A 2/28/10 5794.817

> Energy/Channel Equation : see above Energy Calibration Zero : 2387.492 Energy Calibration Slope : 4.950956 Energy Calibration Quadratic : 3.3470633E-04 Energy Calibration Range : 7808.000

> > Instrument: CHAMBER 250

Detector: 79443

Calibration Date/Time : 28-AUG-2009 13:37:51

Calibration Source Id: AESS-042

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2382.437 Energy Calibration Slope : 4.924478 Energy Calibration Quadratic : 3.4610991E-04 Energy Calibration Range : 7788.000

Detector: 79444

Calibration Date/Time : 28-AUG-2009 13:38:01

Calibration Source Id: AESS-043

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.630 5794.883 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2390.000 Energy Calibration Slope : 4.933837 Energy Calibration Quadratic : 3.5430092E-04 Energy Calibration Range : 7814.000

> > Instrument: CHAMBER 252

Detector: 79445

Calibration Date/Time : 28-AUG-2009 13:38:11

Calibration Source Id: AESS-044

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.618 5795.020 5794.764 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2389.483 Energy Calibration Slope : 4.925191 Energy Calibration Quadratic : 3.5263240E-04 Energy Calibration Range : 7803.000

> > Instrument: CHAMBER 253

Detector: 79446

Calibration Date/Time : 28-AUG-2009 13:38:20

Calibration Source Id: AESS-045

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.801 CM-244 2/28/10 4320A 5795.020 5794.899

> Energy/Channel Equation : see above Energy Calibration Zero : 2397.089 Energy Calibration Slope : 4.939593 Energy Calibration Quadratic : 3.6825475E-04 Energy Calibration Range : 7841.000

Detector: 79447

Calibration Date/Time : 28-AUG-2009 13:38:31

Calibration Source Id: AESS-046

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.420 NP-237 4341 2/28/10 4768.800 4768.432 CM-244 4320A 2/28/10 5794.736 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2392.513 Energy Calibration Slope : 4.939602 Energy Calibration Quadratic : 3.3955529E-04 Energy Calibration Range : 7807.000

> > Instrument: CHAMBER 255

Detector: 79448

Calibration Date/Time : 28-AUG-2009 13:38:42

Calibration Source Id: AESS-047

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.573 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 CM-244 4320A 2/28/10 5795.019

> Energy/Channel Equation : see above Energy Calibration Zero : 2389.962 Energy Calibration Slope : 4.937794 Energy Calibration Quadratic : 3.5419688E-04 Energy Calibration Range : 7818.000

> > Instrument: CHAMBER 256

Detector: 79449

Calibration Date/Time : 28-AUG-2009 13:38:54

Calibration Source Id: AESS-048

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.994 NP-237 2/28/10 4341 4768.800 4768.603 CM-244 2/28/10 4320A 5795.020 5794.763

> Energy/Channel Equation : see above Energy Calibration Zero : 2390.038 Energy Calibration Slope : 4.925209 Energy Calibration Quadratic : 3.5748276E-04 Energy Calibration Range : 7808.000

Subsection 2: **Background Calibration**

Instrument: CHAMBER 001

Detector: 78788

Background Analysis Date/Time: 2-AUG-2009 17:38:31

Background Count Time 59999.99

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2987.927	3299.401	3.000000	0.7200001	57.73503	95.00000
NP-237	4432.428	4902.923	11.00000	2.640001	30.15113	95.00000
CM-244	5533.599	5883.327	10.00000	2.400001	31.62278	95.00000

Counto

Instrument: CHAMBER 002 78266 Detector:

2-AUG-2009 17:38:31 Background Analysis Date/Time

Background Count Time 59999.99

Counts Counts **End Energy** Cal. Isotopes Start Energy in 1000 min during Cal % Error Confidence GD-148 2990.748 3297.924 4.000000 0.9600002 50.00000 95.00000 NP-237 4434.751 4902.555 3.000000 0.7200001 57.73503 95.00000 CM-244 5533.273 5884.668 1.000000 0.2400001 95.00000 100.0000

> CHAMBER 003 Instrument:

Detector: 67617 Background Analysis Date/Time

2-AUG-2009 17:38:31

Background Count Time 59999.99

Counts Counts Cal. Isotopes **End Energy** in 1000 min during Cal % Error Confidence Start Energy GD-148 2988.035 3300.027 6.000000 1.440000 40.82483 95.00000 NP-237 33.33334 4433.783 4901.623 9.000000 2.160001 95.00000 CM-244 5533.183 5887.889 9.000000 2.160001 33.33334 95.00000

> CHAMBER 004 Instrument: 64279

Detector

Background Analysis Date/Time 2-AUG-2009 17:38:31

Background Count Time 59999.99

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 NP-237 2991.885 3302.347 4.000000 0.9600002 50.00000 95.00000 4436.757 4905.540 7.000000 1.680000 37.79645 95.00000 CM-244 5533.807 5887.698 4.000000 0.9600002 50.00000 95.00000

Detector: 67612

Background Analysis Date/Time : 2-AUG-2009 17:38:31

Background Count Time : 59999.99

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2990.194 3301.639 3.000000 0.7200001 57.73503 95.00000 NP-237 4437.588 4901.889 8.000000 1.920000 35.35534 95.00000 CM-244 5531.535 5887.236 1.000000 0.2400001 100.0000 95.00000

Instrument : CHAMBER 006

Detector: 67613

Background Analysis Date/Time : 2-AUG-2009 17:38:31

Background Count Time : 59999.99

Counts Counts during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2988.186 3302.064 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 33.33334 4434.812 4901.476 9.000000 2.160001 95.00000 CM-244 5533.017 5887.020 8.000000 1.920000 35.35534 95.00000

Instrument: CHAMBER 007

Detector: 67607

Background Analysis Date/Time : 2-AUG-2009 17:38:32

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2991.468 3299.148 8.000000 1.920000 35.35534 95.00000 4903.766 4433.972 11.00000 2.640000 30.15113 95.00000 17.00000 CM-244 5532.246 5885.701 4.080001 24.25356 95.00000

Instrument : CHAMBER 008

Detector: 78788

Background Analysis Date/Time : 2-AUG-2009 17:38:32

Background Count Time: 60000.00

Counts Counts

End Energy in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2989.215 3298.713 3.000000 0.7200001 57.73503 95.00000 NP-237 4433.303 4905.744 4.000000 0.9600002 50.00000 95.00000 5886.606 CM-244 5532.461 2.000000 0.4800001 70.71068 95.00000

Instrument : CHAMBER 009 Detector : 72528

Detector:

Background Analysis Date/Time: 2-AUG-2009 17:38:32

Background Count Time : 60000.00

Cal. Isotopes	Start Energy	End Energy	in 1000 min	Counts during Cal	% Error	Confidence
GD-148	2990.462	3298.900	5.000000	1.200000	44.72136	95.00000
NP-237	4437.055	4904.570	10.00000	2.400000	31.62278	95.00000
CM-244	5532.536	5882.399	13.00000	3.120001	27.73501	95.00000

Instrument: CHAMBER 010

72529 Detector:

Background Analysis Date/Time: 2-AUG-2009 17:38:32

Background Count Time 60000.00 Counts

	J		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [']	2990.229	3298.607	8.000000	1.920000	35.35534	95.00000
NP-237	4436.880	4905.484	9.000000	2.160000	33.33334	95.00000
CM-244	5531.409	5886.990	4.000000	0.9600002	50.00000	95.00000

Instrument: CHAMBER 011

Detector: 72531

2-AUG-2009 17:38:32 Background Analysis Date/Time:

> 60000.00 Background Count Time

	_ a.a.i.g.		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2991.538	3301.988	3.000000	0.7200001	57.73503	95.00000
NP-237	4435.957	4905.467	9.000000	2.160000	33.33334	95.00000
CM-244	5530.314	5886.614	3.000000	0.7200001	57.73503	95.00000

Instrument: CHAMBER 012 Detector: 67594

2-AUG-2009 17:38:32 Background Analysis Date/Time

Background Count Time 60000.00

Counts Counts Start Energy **End Energy** Cal. Isotopes in 1000 min during Cal % Error Confidence GD-148 2988.398 3300.615 3.000000 0.7200001 57.73503 95.00000 NP-237 4437.450 4901.503 9.000000 2.160000 33.33334 95.00000 3.840001 CM-244 5534.709 16.00000 95.00000 5886.652 25.00000

Detector: 78790

Background Analysis Date/Time : 2-AUG-2009 17:38:33

Background Count Time : 59999.99

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 3298.441 1.000000 0.2400001 100.0000 95.00000 2987.666 NP-237 4435.272 4902.524 6.000000 1.440000 40.82483 95.00000 CM-244 5533.077 5883.559 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument : CHAMBER 014

Detector: 67616

Background Analysis Date/Time : 2-AUG-2009 17:38:33

Background Count Time : 59999.99

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence 2992.504 3300.484 GD-148 2.000000 0.4800001 70.71068 95.00000 NP-237 4435.990 4902.000 4.000000 0.9600002 50.00000 95.00000 CM-244 5532.918 5886.701 23.00000 5.520001 20.85144 95.00000

Instrument: CHAMBER 015

Detector: 61581

Background Analysis Date/Time : 2-AUG-2009 17:38:33

Background Count Time : 59999.99

Counts Counts in 1000 min during Cal Cal. Isotopes % Error Confidence Start Energy **End Energy** GD-148 NP-237 2987.739 3297.575 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4432.566 4904.976 10.00000 2.400001 31.62278 95.00000 CM-244 5530.833 5887.242 22.00000 5.280001 95.00000 21.32007

Instrument: CHAMBER 016

Detector: 78774

Background Analysis Date/Time : 2-AUG-2009 17:38:33

Background Count Time : 59999.99

Counts Counts

% Error **End Energy** in 1000 min Confidence Cal. Isotopes Start Energy during Cal GD-148 2990.015 3299.769 3.000000 0.7200001 57.73503 95.00000 NP-237 4903.568 3.000000 0.7200001 57.73503 95.00000 4432.750 CM-244 5886.508 5531.945 2.000000 0.4800001 70.71068 95.00000

Detector: 78791

Background Analysis Date/Time : 2-AUG-2009 17:38:33

Background Count Time : 59999.99

Counts Counts

Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2991.506 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 3301.266 NP-237 4435.397 4901.753 6.000000 1.440000 40.82483 95.00000 CM-244 5532.102 5885.058 2.000000 0.4800001 70.71068 95.00000

Instrument : CHAMBER 018

Detector: 78782

Background Analysis Date/Time : 2-AUG-2009 17:38:33

Background Count Time : 59999.99

Counts Counts

End Energy during Cal Cal. Isotopes Start Energy in 1000 min % Error Confidence GD-148 2988.342 3302.274 1.000000 0.2400001 100.0000 95.00000 NP-237 4435.776 4902.996 4.000000 0.9600002 50.00000 95.00000 CM-244 5535.506 5884.764 1.000000 0.2400001 100.0000 95.00000

Instrument : CHAMBER 019

Detector: 78786

Background Analysis Date/Time : 2-AUG-2009 17:38:34

Background Count Time : 59999.99

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 0.2399998 2990.757 3299.102 1.000000 100.0000 95.00000 4436.959 4904.938 5.000000 1.199999 44.72136 95.00000 CM-244 5530.360 5882.637 4.000000 0.9599994 50.00000 95.00000

Instrument: CHAMBER 020

Detector: 78787

Background Analysis Date/Time : 2-AUG-2009 17:38:34

Background Count Time : 59999.99

Counts Counts

Start Energy **End Energy** Confidence Cal. Isotopes in 1000 min during Cal % Error GD-148 2988.029 3302.537 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4905.035 2.399998 95.00000 4437.491 10.00000 31.62278 CM-244 5532.389 5886.993 5.000000 1.199999 44.72136 95.00000

Instrument : CHAMBER 021 Detector : 67047

Background Analysis Date/Time :

2-AUG-2009 17:38:34

Background Count Time

59999.99

	Cal. Isotopes GD-148 NP-237 CM-244	Start Energy 2992.044 4432.692 5532.273	End Energy 3301.105 4903.261 5884.483	Counts in 1000 min 4.000000 8.000000 16.00000	Counts during Cal 0.9599994 1.919999 3.839998	% Error 50.00000 35.35534 25.00000	Confidence 95.00000 95.00000 95.00000
--	---	--	--	---	---	---	--

Instrument : CHAMBER 022

Detector: 72530

Background Analysis Date/Time : 2-AUG-2009 17:38:34

Background Count Time : 59999.99

	Ŭ		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [']	2987.876	3301.717	5.000000	1.199999	44.72136	95.00000
NP-237	4432.553	4902.907	4.000000	0.9599994	50.00000	95.00000
CM-244	5531.719	5883.858	21.00000	5.039997	21.82179	95.00000

Instrument : CHAMBER 023

Detector: 78264

Background Analysis Date/Time : 2-AUG-2009 17:38:34

Background Count Time : 59999.99

			Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2992.270	3297.465	1.000000	0.2399998	100.0000	95.00000
NP-237	4434.353	4902.238	12.00000	2.879998	28.86751	95.00000
CM-244	5535.006	5884.098	4.000000	0.9599994	50.00000	95.00000

Instrument : CHAMBER 024 Detector : 76542

Background Analysis Date/Time : 2-AUG-2009 17:38:34

Background Count Time : 59999.99

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 2988.735 3301.963 3.000000 0.7199996 57.73503 95.00000 NP-237 4435.585 4904.900 14.00000 3.359998 26.72612 95.00000 CM-244 5883.527 6.000000 1.439999 95.00000 5532.247 40.82483

Instrument: CHAMBER 025 Detector: 45-149AA5

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

Counts Counts

Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2989.576 3302.009 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4437.518 4905.500 4.000000 0.9600002 50.00000 95.00000 CM-244 5535.553 5882.966 61.00000 14.64000 12.80369 95.00000

Instrument : CHAMBER 026

Detector: 78204

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

5885.357

CM-244

5530.854

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2989.278 3302.066 1.000000 0.2400001 100.0000 95.00000 4432.530 4904.245 8.000000 1.920000 35.35534 95.00000

35.00000

8.400002

16.90309

95.00000

Instrument: CHAMBER 027

Detector: 42484

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2989.311 3298.574 1.000000 0.2400001 100.0000 95.00000 4433.571 4901.458 4.000000 0.9600002 50.00000 95.00000 37.00000 CM-244 5534.916 5884.719 8.880002 16.43990 95.00000

> Instrument : CHAMBER 028 Detector : 78792

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

Counts Counts **End Energy** in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2988.458 3301.428 1.000000 0.2400001 100.0000 95.00000 NP-237 4433.918 4901.793 10.00000 2.400001 31.62278 95.00000 CM-244 5530.766 5886.861 36.00000 8.640002 16.66667 95.00000

Detector: 33454

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2991.561 3299.264 4.000000 0.9600002 50.00000 95.00000 4905.813 NP-237 4436.609 5.000000 44.72136 1.200000 95.00000 CM-244 5532.652 5886.650 41.00000 9.840002 15.61738 95.00000

Instrument : CHAMBER 030

Detector: 33447

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2992.462 3300.436 4.000000 0.9600002 50.00000 95.00000 4435.706 4901.528 10.00000 2.400001 31.62278 95.00000 CM-244 5532.111 5885.667 49.00000 11.76000 14.28572 95.00000

Instrument: CHAMBER 031

Detector: 67042

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2990.816 3298.130 4.000000 0.9599994 50.00000 95.00000 4432.666 4904.194 11.00000 2.639998 30.15113 95.00000 50.00000 11.99999 CM-244 5530.750 5885.317 14.14214 95.00000

> Instrument : CHAMBER 032 Detector : 67041

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

Counts Counts % Error Start Energy **End Energy** Confidence Cal. Isotopes in 1000 min during Cal GD-148 2990.681 3302.442 2.000000 0.4799997 70.71068 95.00000 NP-237 4436.943 4904.070 8.000000 1.919999 35.35534 95.00000 CM-244 5883.050 5532.476 63.00000 15.11999 12.59882 95.00000

Detector: 78785

Background Analysis Date/Time: 2-AUG-2009 17:38:35

Background Count Time : 59999.99

			Counts	Counts	-	
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.750	3301.323	2.000000	0.4799997	70.71068	95.00000
NP-237	4437.327	4904.445	7.000000	1.679999	37.79645	95.00000
CM-244	5532.298	5882.301	47.00000	11.27999	14.58650	95.00000

Instrument: CHAMBER 034

Detector: 61586

Background Analysis Date/Time : 2-AUG-2009 17:38:35 Background Count Time : 59999.99

		Counts	Counts		
Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
2990.405	3301.020	3.000000	0.7199996	57.73503	95.00000
4436.289	4905.558	6.000000	1.439999	40.82483	95.00000
5534.591	5883.408	6.000000	1.439999	40.82483	95.00000
	2990.405 4436.289	2990.405 3301.020 4436.289 4905.558	Start Energy End Energy in 1000 min 2990.405 3301.020 3.000000 4436.289 4905.558 6.000000	Start Energy End Energy in 1000 min during Cal 2990.405 3301.020 3.000000 0.7199996 4436.289 4905.558 6.000000 1.439999	Start Energy End Energy in 1000 min during Cal % Error 2990.405 3301.020 3.000000 0.7199996 57.73503 4436.289 4905.558 6.000000 1.439999 40.82483

Instrument: CHAMBER 035

Detector: 78202

2-AUG-2009 17:38:35 Background Analysis Date/Time:

> 59999.99 Background Count Time

	_ac.ig.		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.026	3302.211	3.000000	0.7199996	57.73503	95.00000
NP-237	4437.360	4905.577	20.00000	4.799997	22.36068	95.00000
CM-244	5534.350	5884.600	61.00000	14.63999	12.80369	95.00000

Instrument: CHAMBER 036 78203

Detector: Background Analysis Date/Time: 2-AUG-2009 17:38:35

Background Count Time 59999.99

Counts Counts Start Energy **End Energy** Cal. Isotopes in 1000 min during Cal % Error Confidence GD-148 2988.680 3301.073 2.000000 0.4799997 70.71068 95.00000 NP-237 4435.041 4905.984 9.000000 2.159999 33.33334 95.00000 CM-244 5531.465 5885.278 47.00000 11.27999 14.58650 95.00000

Instrument: Detector

CHAMBER 037 45-149BB5

Background Analysis Date/Time

2-AUG-2009 17:38:36

Counte

Background Count Time

60000.00 Counts

Cal. Isotopes GD-148	Start Energy 2991.168	End Energy 3302.212	in 1000 min 3.000000	during Cal 0.7199995	% Error 57.73503	Confidence 95.00000
NP-237	4432.895	4904.029	13.00000	3.119998	27.73501	95.00000
CM-244	5532.110	5886.157	66.00000	15.83999	12.30915	95.00000

Instrument:

CHAMBER 038

Detector: 72532

Background Analysis Date/Time 2-AUG-2009 17:38:36

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2992.472 3300.031 4.000000 0.9599993 50.00000 95.00000 4434.591 4905.742 16.00000 3.839997 25.00000 95.00000 CM-244 5531.463 5885.396 50.00000 11.99999 14.14214 95.00000

> Instrument: CHAMBER 039 45-149BB2 Detector:

Background Analysis Date/Time 2-AUG-2009 17:38:36

Background Count Time 60000.00

Counts Counts Cal. Isotopes in 1000 min during Cal % Error Confidence Start Energy **End Energy** GD-148 NP-237 2988.231 3297.932 6.000000 1.439999 40.82483 95.00000 40.82483 4433.148 4905.972 6.000000 1.439999 95.00000 CM-244 5532.651 5884.312 76.00000 18.23999 11.47079 95.00000

> Instrument: CHAMBER 040 Detector 78773

Background Analysis Date/Time 2-AUG-2009 17:38:36

Background Count Time 60000.00

Counts Counts **End Energy** in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2989.631 3299.278 2.000000 0.4799997 70.71068 95.00000 NP-237 4434.455 4902.104 2.000000 0.4799997 70.71068 95.00000 CM-244 5885.901 5534.140 43.00000 10.31999 15.24986 95.00000

Instrument : CHAMBER 041 Detector : 78205

Background Analysis Date/Time : 2-AUG-2009 17:38:36

Ound Analysis Date,

Background Count Time : 600
Counts 60000.00

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.485	3301.427	8.000000	1.919999	35.35534	95.00000
NP-237	4434.095	4902.163	8.000000	1.919999	35.35534	95.00000
CM-244	5531.498	5882.427	43.00000	10.31999	15.24986	95.00000
CIVI-244	5531.498	5882.427	43.00000	10.31999	15.24986	95.00000

Instrument: CHAMBER 042

Detector: 78793

Background Analysis Date/Time : 2-AUG-2009 17:38:36
Background Count Time : 60000.00
Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2991.775	3302.182	3.000000	0.7199995	57.73503	95.00000
NP-237	4434.604	4903.031	12.00000	2.879998	28.86751	95.00000
CM-244	5530.666	5882.826	45.00000	10.79999	14.90712	95.00000
CIVI-244	000.000	5882.826	45.00000	10.79999	14.90712	95.00000

Instrument: CHAMBER 043

Detector: 76543

Background Analysis Date/Time : 2-AUG-2009 17:38:37

Background Count Time: 59999.99 Counts

	20019.		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2990.605	3297.721	2.000000	0.4799997	70.71068	95.00000
NP-237	4435.729	4906.163	7.000000	1.679999	37.79645	95.00000
CM-244	5530.889	5884.237	59.00000	14.15999	13.01889	95.00000

Instrument: CHAMBER 044

Detector: 79459
Background Analysis Date/Time: 2-AUG-2009 17:38:37
Background Count Time: 59999.99

ound Analysis Date/Time : 599 Background Count Time : 599 Counts

			Courits	Courits		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2992.053	3299.650	4.000000	0.9599994	50.00000	95.00000
NP-237	4434.444	4905.733	8.000000	1.919999	35.35534	95.00000
CM-244	5531.674	5885.749	67.00000	16.07999	12.21694	95.00000

Detector: 78783

Background Analysis Date/Time : 2-AUG-2009 17:38:37

Background Count Time : 59999.99

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2991.163 3297.674 2.000000 0.4799997 70.71068 95.00000 NP-237 4435.665 4901.796 4.000000 0.9599994 50.00000 95.00000 CM-244 5533.912 5883.468 60.00000 14.39999 12.90994 95.00000

Instrument : CHAMBER 046

Detector: 76544

Background Analysis Date/Time : 2-AUG-2009 17:38:37

Background Count Time : 59999.99

5885.833

CM-244

5533.808

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 NP-237 2988.013 3297.754 6.000000 1.439999 40.82483 95.00000 4433.428 4906.578 9.000000 2.159999 33.33334 95.00000

47.00000

11.27999

14.58650

95.00000

Instrument: CHAMBER 047

Detector: 46-089B1

Background Analysis Date/Time : 2-AUG-2009 17:38:37

Background Count Time : 59999.99

Counts Counts Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** during Cal GD-148 NP-237 2989.788 3298.531 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4436.493 4903.356 9.000000 2.159999 33.33334 95.00000 73.00000 CM-244 5535.296 5884.198 17.51999 95.00000 11.70411

Instrument: CHAMBER 048

Detector: 42483

Background Analysis Date/Time : 2-AUG-2009 17:38:37

Background Count Time : 59999.99

Counts Counts

Start Energy **End Energy** Confidence Cal. Isotopes in 1000 min during Cal % Error GD-148 2991.838 3299.553 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 2.399998 4437.268 95.00000 4906.475 10.00000 31.62278 CM-244 5533.930 5885.396 49.00000 11.75999 14.28572 95.00000

Detector: 68551

Background Analysis Date/Time : 9-AUG-2009 15:42:44

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min during Cal % Error Confidence Start Energy GD-148 2991.020 3301.790 4.000000 0.9599993 50.00000 95.00000 4435.576 2.639998 NP-237 4904.585 11.00000 30.15113 95.00000 CM-244 5533.015 5885.628 14.00000 3.359998 26.72612 95.00000

> Instrument: CHAMBER 066 Detector: 46-089C1

Background Analysis Date/Time : 9-AUG-2009 15:42:44

Background Count Time : 60000.00

Counts Counts during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2988.945 3298.217 3.000000 0.7199995 57.73503 95.00000 4435.388 4905.987 4.000000 0.9599993 50.00000 95.00000 CM-244 5534.885 5886.957 15.00000 3.599998 25.81989 95.00000

Instrument : CHAMBER 067

Detector: 46-089B4

Background Analysis Date/Time : 9-AUG-2009 15:42:44

Background Count Time : 60000.00

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 0.2399998 2990.195 3298.405 1.000000 100.0000 95.00000 4432.996 4903.114 5.000000 1.199999 44.72136 95.00000 12.00000 CM-244 5531.881 5884.128 2.879998 95.00000 28.86751

> Instrument : CHAMBER 068 Detector : 78794

Background Analysis Date/Time : 9-AUG-2009 15:42:44

Background Count Time: 60000.00

Counts Counts **End Energy** in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2989.058 3297.794 2.000000 0.4799997 70.71068 95.00000 NP-237 4436.694 4904.361 3.000000 0.7199995 57.73503 95.00000 CM-244 5532.395 5887.637 15.00000 3.599998 25.81989 95.00000

Detector: 78795

Background Analysis Date/Time : 9-AUG-2009 15:42:44

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2991.230 3298.554 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4432.770 NP-237 4904.008 12.00000 2.879998 28.86751 95.00000 CM-244 5535.390 5884.253 11.00000 2.639998 30.15113 95.00000

> Instrument: CHAMBER 070 Detector: 46-089B2

Background Analysis Date/Time : 9-AUG-2009 15:42:44

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 NP-237 2992.134 3299.079 4.000000 0.9599993 50.00000 95.00000 4435.081 4904.079 12.00000 2.879998 28.86751 95.00000 CM-244 5531.689 5883.454 10.00000 2.399998 31.62278 95.00000

Instrument : CHAMBER 071

Detector: 64259

Background Analysis Date/Time : 9-AUG-2009 15:42:45

Background Count Time: 60000.00

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2991.474 3300.552 4.000000 0.9599993 50.00000 95.00000 4434.375 4901.563 12.00000 2.879998 28.86751 95.00000 CM-244 5533.885 5882.968 9.000000 2.159998 95.00000 33.33334

> Instrument: CHAMBER 072 Detector: 45-149AA3

Background Analysis Date/Time : 9-AUG-2009 15:42:45

Background Count Time: 60000.00

Counts Counts al. Isotopes Start Energy End Energy in 1000 min during C

% Error Confidence Cal. Isotopes during Cal GD-148 2989.276 3301.453 1.000000 0.2399998 100.0000 95.00000 NP-237 4904.104 11.00000 2.639998 30.15113 95.00000 4434.016 CM-244 5886.502 3.599998 5533.538 15.00000 25.81989 95.00000

Detector: 78775

Background Analysis Date/Time : 9-AUG-2009 15:42:45

Background Count Time : 60000.00

			Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2991.884	3298.904	2.000000	0.4799997	70.71068	95.00000
NP-237	4435.607	4905.083	10.00000	2.399998	31.62278	95.00000
CM-244	5533.495	5885.787	1.000000	0.2399998	100.0000	95.00000

Instrument : CHAMBER 074

Detector: 78266

Background Analysis Date/Time : 9-AUG-2009 15:42:45

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2992.157 3300.875 6.000000 1.439999 40.82483 95.00000 4434.541 4902.170 10.00000 2.399998 31.62278 95.00000 CM-244 5535.537 5885.413 5.000000 1.199999 44.72136 95.00000

Instrument: CHAMBER 075

Detector: 68550

Background Analysis Date/Time : 9-AUG-2009 15:42:45

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2992.440 3300.846 3.000000 0.7199995 57.73503 95.00000 4432.709 4904.580 14.00000 3.359998 26.72612 95.00000 CM-244 5531.026 5885.258 12.00000 2.879998 95.00000 28.86751

Instrument: CHAMBER 076

Detector: 78779

Background Analysis Date/Time : 9-AUG-2009 15:42:45

Background Count Time : 60000.00

Counts Counts

End Energy in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2991.979 3300.154 1.000000 0.2399998 100.0000 95.00000 NP-237 4436.825 4903.508 2.639998 95.00000 11.00000 30.15113 CM-244 5884.591 0.0000000E+00 0.0000000E+00 0.0000000E+00 5535.510 95.00000

Detector: 67576

Background Analysis Date/Time : 9-AUG-2009 15:42:46

Background Count Time : 59999.99

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2989.957 3302.071 2.000000 0.4800001 70.71068 95.00000 NP-237 4433.544 4902.799 6.000000 40.82483 1.440000 95.00000 CM-244 5530.788 5882.782 17.00000 4.080001 24.25356 95.00000

Instrument : CHAMBER 078

Detector: 67577

Background Analysis Date/Time : 9-AUG-2009 15:42:46

Background Count Time : 59999.99

Counts Counts during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2988.255 3302.223 3.000000 0.7200001 57.73503 95.00000 4437.236 4905.680 5.000000 1.200000 44.72136 95.00000 CM-244 5535.005 5885.680 6.000000 1.440000 40.82483 95.00000

Instrument: CHAMBER 079

Detector: 67598

Background Analysis Date/Time : 9-AUG-2009 15:42:46

Background Count Time : 59999.99

Counts Counts in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** during Cal GD-148 NP-237 3300.331 2989.159 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4434.317 4902.854 5.000000 1.200000 44.72136 95.00000 37.79645 CM-244 5535.480 5887.277 7.000000 95.00000 1.680000

Instrument: CHAMBER 080

Detector: 78197

Background Analysis Date/Time : 9-AUG-2009 15:42:46

Background Count Time: 59999.99

Counts Counts

% Error Confidence Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal GD-148 2991.650 3302.015 2.000000 0.4799997 70.71068 95.00000 NP-237 4906.537 7.000000 1.679999 37.79645 95.00000 4433.624 CM-244 1.199999 5533.522 5887.645 5.000000 44.72136 95.00000

Detector: 72533

Background Analysis Date/Time : 9-AUG-2009 15:42:46

Background Count Time : 59999.99

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2994.266 3303.451 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4435.242 4901.625 6.000000 1.440000 40.82483 95.00000 CM-244 5531.807 5884.164 15.00000 3.600001 25.81989 95.00000

Instrument : CHAMBER 082

Detector: 64263

Background Analysis Date/Time : 9-AUG-2009 15:42:46

Background Count Time : 59999.99

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2987.542 3297.569 2.000000 0.4800001 70.71068 95.00000 4435.421 4904.506 14.00000 3.360001 26.72612 95.00000 CM-244 5534.230 5884.907 8.000000 1.920000 35.35534 95.00000

Instrument: CHAMBER 083

Detector: 64278

Background Analysis Date/Time : 9-AUG-2009 15:42:47

Background Count Time: 60000.00

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2991.854 3298.707 3.000000 0.7199995 57.73503 95.00000 4433.271 4906.151 10.00000 2.399998 31.62278 95.00000 CM-244 5531.993 5884.932 8.000000 1.919999 95.00000 35.35534

Instrument : CHAMBER 084

Detector: 78265

Background Analysis Date/Time : 9-AUG-2009 15:42:47

Background Count Time : 60000.00

Counts Counts Start Energy **End Energy** % Error Confidence Cal. Isotopes in 1000 min during Cal GD-148 2988.678 3299.931 1.000000 0.2399998 100.0000 95.00000 NP-237 4434.465 4903.170 2.639998 95.00000 11.00000 30.15113 CM-244 0.0000000E+00 0.0000000E+00 0.0000000E+00 5531.407 5886.178 95.00000

Detector: 78776

Background Analysis Date/Time : 9-AUG-2009 15:42:47

Background Count Time : 60000.00

GD-148 2990.698 3300.313 4.000000 0.959 NP-237 4435.121 4902.282 7.000000 1.679 CM-244 5534.187 5882.859 5.000000 1.199	
---	--

Instrument : CHAMBER 086 Detector : 78198

Background Analysis Date/Time : 9-AUG-2009 15:42:47

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2990.009 3300.939 1.000000 0.2399998 100.0000 95.00000 4436.927 4902.983 9.000000 2.159998 33.33334 95.00000 CM-244 5531.983 5883.724 1.000000 0.2399998 100.0000 95.00000

Instrument: CHAMBER 087

Detector: 78199

Background Analysis Date/Time : 9-AUG-2009 15:42:47

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy GD-148 NP-237 2988.599 3301.987 2.000000 0.4799997 70.71068 95.00000 4434.300 4902.242 9.000000 2.159998 33.33334 95.00000 CM-244 5532.304 5887.140 2.000000 0.4799997 95.00000 70.71068

Instrument: CHAMBER 088

Detector: 33452

Background Analysis Date/Time : 9-AUG-2009 15:42:47

Background Count Time: 60000.00

Counts Counts **End Energy** in 1000 min during Cal % Error Confidence Cal. Isotopes Start Energy GD-148 2989.881 3297.896 3.000000 0.7199995 57.73503 95.00000 NP-237 4902.043 10.00000 2.399998 31.62278 95.00000 4436.727 5884.609 CM-244 2.639998 5532.799 11.00000 30.15113 95.00000

Detector: 78262

Background Analysis Date/Time : 9-AUG-2009 15:42:48

Background Count Time : 60000.00

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2989.340 3299.886 3.000000 0.7200001 57.73503 95.00000 NP-237 4433.954 4903.393 6.000000 1.440000 40.82483 95.00000 CM-244 5533.423 5884.190 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument : CHAMBER 090

Detector: 78263

Background Analysis Date/Time : 9-AUG-2009 15:42:48

Background Count Time : 60000.00

5884.186

CM-244

5531.267

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2992.174 3298.193 2.000000 0.4800001 70.71068 95.00000 4432.899 4902.301 9.000000 2.160000 33.33334 95.00000

1.000000

0.2400000

100.0000

95.00000

Instrument: CHAMBER 091

Detector: 78259

Background Analysis Date/Time : 9-AUG-2009 15:42:48

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2988.796 3297.819 3.000000 0.7200001 57.73503 95.00000 4433.118 4901.645 4.000000 0.9600002 50.00000 95.00000 CM-244 5531.054 5887.180 2.000000 0.4800001 95.00000 70.71068

Instrument : CHAMBER 092

Detector: 79457

Background Analysis Date/Time : 9-AUG-2009 15:42:48

Background Count Time: 60000.00

Counts Counts in 1000 min % Error Start Energy **End Energy** Confidence Cal. Isotopes during Cal GD-148 2988.378 3299.875 108.0000 25.92000 9.622504 95.00000 NP-237 4435.762 4905.401 82.00000 19.68000 11.04315 95.00000 CM-244 5534.466 5887.335 8.000000 1.920000 35.35534 95.00000

Detector: 33206

Background Analysis Date/Time : 9-AUG-2009 15:42:48

Background Count Time : 60000.00

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.021	3298.707	5.000000	1.200000	44.72136	95.00000
NP-237	4432.645	4901.916	6.000000	1.440000	40.82483	95.00000
CM-244	5530.870	5883.862	2.000000	0.4800001	70.71068	95.00000

Instrument : CHAMBER 094

Detector: 78267

Background Analysis Date/Time : 9-AUG-2009 15:42:48

Background Count Time : 60000.00

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 NP-237 3299.970 2987.496 8.000000 1.920000 35.35534 95.00000 4432.930 4902.883 1.000000 0.2400000 100.0000 95.00000 CM-244 5531.875 5884.464 4.000000 0.9600002 50.00000 95.00000

Instrument: CHAMBER 095

Detector: 64279

Background Analysis Date/Time : 9-AUG-2009 17:08:35

Background Count Time : 59999.99

Counts Counts during Cal Cal. Isotopes Start Energy in 1000 min % Error Confidence **End Energy** GD-148 NP-237 2991.646 3298.356 3.000000 0.7199996 57.73503 95.00000 4435.397 4905.664 11.00000 2.639998 30.15113 95.00000 5530.369 CM-244 5883.804 23.00000 5.519997 20.85144 95.00000

> Instrument : CHAMBER 096 Detector : 67605

Background Analysis Date/Time : 9-AUG-2009 17:08:35

Background Count Time : 59999.99

Counts Counts Start Energy **End Energy** % Error Cal. Isotopes in 1000 min during Cal Confidence GD-148 2989.386 3301.860 1.000000 0.2399998 100.0000 95.00000 NP-237 4437.256 4904.015 24.00000 5.759996 20.41241 95.00000 CM-244 5531.292 1.199999 5886.331 5.000000 44.72136 95.00000

Instrument: CHAMBER 097 Detector: 67599

Background Analysis Date/Time :

9-AUG-2009 17:08:35

Background Count Time

59999.99

Cal. Isotopes GD-148 NP-237 CM-244	Start Energy 2991.155 4437.204 5531.403	End Energy 3299.592 4904.260 5886.106	Counts in 1000 min 5.000000 9.000000 16.00000	Counts during Cal 1.199999 2.159999 3.839998	% Error 44.72136 33.33334 25.00000	Confidence 95.00000 95.00000 95.00000

Instrument: CHAMBER 098

Detector: 68644

Background Analysis Date/Time: 9-AUG-2009 17:08:35

Background Count Time 59999.99

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2992.247	3301.860	4.000000	0.9599994	50.00000	95.00000
NP-237	4432.619	4906.019	9.000000	2.159999	33.33334	95.00000
CM-244	5534.382	5884.237	3.000000	0.7199996	57.73503	95.00000

Instrument: CHAMBER 099

Detector: 70317

9-AUG-2009 17:08:35 Background Analysis Date/Time:

> 59999.99 Background Count Time

	_ a.a.i.g.		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2987.820	3298.212	1.000000	0.2399998	100.0000	95.00000
NP-237	4437.036	4906.585	8.000000	1.919999	35.35534	95.00000
CM-244	5530.871	5884.331	1.000000	0.2399998	100.0000	95.00000

Instrument: CHAMBER 100

Detector: 79456

Background Analysis Date/Time 9-AUG-2009 17:08:35

Background Count Time 59999.99

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 2989.623 3299.666 6.000000 1.439999 40.82483 95.00000 NP-237 24.25356 4436.895 4905.650 17.00000 4.079998 95.00000 5534.086 CM-244 5886.872 2.879998 95.00000 12.00000 28.86751

CHAMBER 101 Instrument:

64253 Detector

Background Analysis Date/Time 9-AUG-2009 15:42:49

Background Count Time 60000.00

Counts Counts

Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2990.814 3297.893 8.000000 1.919999 35.35534 95.00000 NP-237 4435.403 4905.470 5.000000 1.199999 44.72136 95.00000 CM-244 5534.897 5882.499 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

> Instrument: CHAMBER 102

Detector: 72525

Background Analysis Date/Time 9-AUG-2009 15:42:49

Background Count Time 60000.00

Counts Counts

Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 2989.911 3298.890 2.000000 0.4799997 70.71068 95.00000 NP-237 4436.604 4903.163 6.000000 1.439999 40.82483 95.00000 CM-244 5533.661 5884.537 1.000000 0.2399998 100.0000 95.00000

> CHAMBER 103 Instrument

79461 Detector

Background Analysis Date/Time 9-AUG-2009 15:42:49

Background Count Time 60000.00

Counts Counts

during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2989.467 3301.138 2.000000 0.4799997 70.71068 95.00000 4432.983 4903.264 8.000000 1.919999 35.35534 95.00000 CM-244 5533.387 5886.945 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

> Instrument: CHAMBER 104

Detector 72524

Background Analysis Date/Time 9-AUG-2009 15:42:49

> **Background Count Time** 60000.00

Counts Counts

in 1000 min **End Energy** % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2991.174 3300.565 4.000000 0.9599993 50.00000 95.00000 NP-237 4436.202 4904.648 8.000000 1.919999 35.35534 95.00000 CM-244 0.7199995 5532.970 5885.836 3.000000 57.73503 95.00000

Detector: 78777

Background Analysis Date/Time : 9-AUG-2009 15:42:49

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2990.222 3299.531 4.000000 0.9599993 50.00000 95.00000 NP-237 4434.728 4902.932 3.000000 0.7199995 57.73503 95.00000 CM-244 5530.878 5883.508 1.000000 0.2399998 100.0000 95.00000

Instrument : CHAMBER 106

Detector: 64274

Background Analysis Date/Time : 9-AUG-2009 15:42:49

Background Count Time : 60000.00

5884.452

CM-244

5534.428

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2987.640 3299.757 6.000000 1.439999 40.82483 95.00000 4434.577 4901.415 11.00000 2.639998 30.15113 95.00000

4.000000

0.9599993

50.00000

95.00000

Instrument : CHAMBER 107

Detector: 67578

Background Analysis Date/Time : 9-AUG-2009 15:42:50

Background Count Time: 60000.00

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2988.547 3298.638 3.000000 0.7199995 57.73503 95.00000 4435.772 4904.146 5.000000 1.199999 44.72136 95.00000 5532.554 CM-244 5882.324 8.000000 1.919999 95.00000 35.35534

Instrument: CHAMBER 108

Detector: 78778

Background Analysis Date/Time : 9-AUG-2009 15:42:50

Background Count Time: 60000.00

Counts Counts

End Energy Confidence Cal. Isotopes Start Energy in 1000 min during Cal % Error GD-148 2988.136 3297.898 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 0.4799997 95.00000 4433.563 4901.441 2.000000 70.71068 CM-244 5533.812 5885.772 9.000000 2.159998 33.33334 95.00000

CHAMBER 109 Instrument:

79463 Detector

Background Analysis Date/Time 9-AUG-2009 15:42:50

Background Count Time 60000.00

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2990.332 3301.320 1.000000 0.2399998 100.0000 95.00000 NP-237 4437.566 4903.059 2.000000 0.4799997 70.71068 95.00000 CM-244 5534.376 5883.521 6.000000 1.439999 40.82483 95.00000

> Instrument: CHAMBER 110

Detector: 67602

Background Analysis Date/Time 9-AUG-2009 15:42:50

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2987.980 3298.573 1.000000 0.2399998 100.0000 95.00000 4433.010 4901.606 8.000000 1.919999 35.35534 95.00000 CM-244 5534.957 5883.028 14.00000 3.359998 26.72612 95.00000

> CHAMBER 111 Instrument

79462 Detector

Background Analysis Date/Time 9-AUG-2009 15:42:50

> **Background Count Time** 60000.00

Counts Counts Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** during Cal GD-148 NP-237 2988.711 3298.714 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4436.440 4905.458 8.000000 1.919999 35.35534 95.00000 50.00000 CM-244 5535.080 5885.693 4.000000 0.9599993 95.00000

> Instrument: CHAMBER 112

Detector 78261

Background Analysis Date/Time 9-AUG-2009 15:42:50

Background Count Time 60000.00

Counts Counts

End Energy in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2988.059 3299.440 3.000000 0.7199995 57.73503 95.00000 NP-237 4903.902 1.000000 0.2399998 100.0000 95.00000 4434.653 CM-244 5532.350 5884.826 7.000000 1.679999 37.79645 95.00000

Instrument: CHAMBER 113 Detector: 45-111B4

Background Analysis Date/Time : 16-AUG-2009 16:34:44

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal 95.00000 GD-148 2990.867 3300.361 1.000000 0.3000000 100.0000 NP-237 4434.565 4901.409 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5532.822 5886.571 10.00000 3.000000 31.62278 95.00000

Instrument : CHAMBER 114

Detector: 78258

Background Analysis Date/Time : 16-AUG-2009 16:34:50

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 2992.066 3300.343 1.000000 0.3000000 100.0000 95.00000 NP-237 4433.866 4902.961 2.000000 0.6000000 70.71068 95.00000 CM-244 5535.155 5886.142 4.000000 1.200000 50.00000 95.00000

Instrument : CHAMBER 115

Detector: 45-132FF4

Background Analysis Date/Time : 16-AUG-2009 16:34:55

Background Count Time : 60000.00

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2989.683 3299.666 2.000000 0.6000000 70.71068 95.00000 4433.623 4904.729 6.000000 1.800000 40.82483 95.00000 10.00000 CM-244 5534.066 5886.268 3.000000 31.62278 95.00000

> Instrument: CHAMBER 116 Detector: 45-132FF2

Background Analysis Date/Time : 16-AUG-2009 16:34:59

Background Count Time : 60000.00

Counts Counts

Start Energy **End Energy** Confidence Cal. Isotopes in 1000 min during Cal % Error GD-148 2991.930 3301.615 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4433.958 4904.160 95.00000 3.000000 0.9000000 57.73503 CM-244 5532.087 5883.400 11.00000 3.300000 30.15113 95.00000

Detector: 33450

Background Analysis Date/Time : 16-AUG-2009 16:35:03

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal 70.71068 GD-148 2989.306 3298.199 2.000000 0.6000000 95.00000 4903.152 NP-237 4433.520 3.000000 0.9000000 57.73503 95.00000 CM-244 5530.582 5887.083 11.00000 3.300000 30.15113 95.00000

Instrument : CHAMBER 118

Detector: 75544

Background Analysis Date/Time : 16-AUG-2009 16:35:08

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2988.856 3302.528 2.000000 0.6000000 70.71068 95.00000 95.00000 4432.711 4902.773 2.000000 0.6000000 70.71068 CM-244 5531.177 5883.080 18.00000 5.400000 23.57022 95.00000

Instrument: CHAMBER 119

Detector: 74429

Background Analysis Date/Time : 16-AUG-2009 16:35:12

Background Count Time : 60000.00

Counts Counts in 1000 min during Cal % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2992.004 3299.253 3.000000 0.9000000 57.73503 95.00000 0.0000000E+00 0.0000000E+00 0.0000000E+00 4432.548 4906.013 95.00000 CM-244 5530.584 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 5883,165

Instrument : CHAMBER 120

Detector: 74430

Background Analysis Date/Time : 16-AUG-2009 16:35:17

Background Count Time : 60000.00

Counts Counts

Start Energy **End Energy** % Error Confidence Cal. Isotopes in 1000 min during Cal GD-148 2988.209 3300.389 1.000000 0.3000000 100.0000 95.00000 NP-237 0.0000000E+00 0.0000000E+00 0.0000000E+00 4904.997 95.00000 4436.370 CM-244 5531.794 5882.950 1.000000 0.3000000 100.0000 95.00000

CHAMBER 121 Instrument:

75545 Detector

Background Analysis Date/Time 16-AUG-2009 16:35:22

Background Count Time 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2991.483 3299.036 4.000000 1.200000 50.00000 95.00000 4904.843 NP-237 4436.007 6.000000 1.800000 40.82483 95.00000 CM-244 5531.746 5882.876 5.000000 1.500000 44.72136 95.00000

> Instrument: CHAMBER 122

Detector: 75546

Background Analysis Date/Time 16-AUG-2009 16:35:26

Background Count Time 60000.00

Counts Counts % Error Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal Confidence GD-148 2989.140 3302.149 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 95.00000 4434.728 4903.501 14.00000 4.200000 26.72612 CM-244 5535.323 5886.133 13.00000 3.900000 27.73501 95.00000

> CHAMBER 123 Instrument

Detector 45-142V3

Background Analysis Date/Time 16-AUG-2009 16:35:30

Background Count Time 60000.00

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2989.820 3298.601 3.000000 0.9000000 57.73503 95.00000 4437.478 4905.941 6.000000 1.800000 40.82483 95.00000 2.400000 CM-244 5531.339 5886.453 8.000000 35.35534 95.00000

> Instrument: CHAMBER 124 Detector 45-142V2

Background Analysis Date/Time 16-AUG-2009 16:35:35

Background Count Time 60000.00

Counts Counts

in 1000 min Start Energy **End Energy** % Error Confidence Cal. Isotopes during Cal GD-148 2989.806 3300.376 2.000000 0.6000000 70.71068 95.00000 NP-237 4902.974 9.000000 2.700000 33.33334 95.00000 4436.352 CM-244 1.800000 5533.246 5885.946 6.000000 40.82483 95.00000

Detector: 75547

Background Analysis Date/Time : 16-AUG-2009 16:35:39

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min during Cal % Error Confidence Start Energy GD-148 3299.275 2.000000 0.6000000 70.71068 95.00000 2987.619 NP-237 4433.269 4906.266 6.000000 1.800000 40.82483 95.00000 CM-244 5531.959 5882.482 4.000000 1.200000 50.00000 95.00000

Instrument : CHAMBER 126

Detector: 75548

Background Analysis Date/Time : 16-AUG-2009 16:35:44

Background Count Time: 60000.00

Counts Counts

Cal. Isotopes Start Energy End Energy in 1000 min during Cal % Error Confidence
GD-148 2988.372 3298.946 0.00000000E+00 0.0000000E+00 0.0000000E+00 95.00000

GD-148 2988.372 3298.946 0.0000000E+00 0.0000000E+00 0.000000E+00 95.00000 NP-237 4437.297 4901.551 15.00000 4.500000 25.81989 95.00000 CM-244 5532.806 5882.587 4.000000 1.200000 50.00000 95.00000

Instrument : CHAMBER 127

Detector: 78770

Background Analysis Date/Time : 16-AUG-2009 16:35:48

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2989.622 3297.830 3.000000 0.9000000 57.73503 95.00000 4435.622 4904.092 1.000000 0.3000000 100.0000 95.00000 CM-244 5535.184 5885.434 1.000000 0.3000000 100.0000 95.00000

Instrument: CHAMBER 128

Detector: 75549

Background Analysis Date/Time : 16-AUG-2009 16:35:52

Background Count Time : 60000.00

Counts Counts

in 1000 min % Error **End Energy** Confidence Cal. Isotopes Start Energy during Cal GD-148 2989.482 3299.177 135.0000 40.50000 8.606629 95.00000 NP-237 4436.028 4905.664 84.00000 25.20000 10.91089 95.00000 CM-244 9.600000 5532.549 5883.141 32.00000 17.67767 95.00000

Detector: 76227

Background Analysis Date/Time : 16-AUG-2009 16:35:57

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2992.146 3298.635 1.000000 0.3000000 100.0000 95.00000 4905.761 NP-237 4432.563 8.000000 2.400000 35.35534 95.00000 CM-244 5531.918 5882.796 2.000000 0.6000000 70.71068 95.00000

Instrument : CHAMBER 130

Detector: 76228

Background Analysis Date/Time : 16-AUG-2009 16:36:01

Background Count Time : 60000.00

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 NP-237 2989.230 3297.665 2.000000 0.6000000 70.71068 95.00000 4434.582 4901.937 8.000000 2.400000 35.35534 95.00000 CM-244 5530.859 5884.881 4.000000 1.200000 50.00000 95.00000

Instrument: CHAMBER 131

Detector: 33448

Background Analysis Date/Time : 16-AUG-2009 16:36:05

Background Count Time: 60000.00

Counts Counts in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** during Cal GD-148 NP-237 2988.455 3301.428 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4434.994 4904.668 4.000000 1.200000 50.00000 95.00000 CM-244 5532.826 5884.723 6.000000 95.00000 1.800000 40.82483

Instrument: CHAMBER 132

Detector: 67579

Background Analysis Date/Time : 16-AUG-2009 16:36:09

Background Count Time : 60000.00

Counts Counts **End Energy** in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2989.906 3301.298 2.000000 0.6000000 70.71068 95.00000 NP-237 4432.560 4903.500 5.000000 1.500000 44.72136 95.00000 CM-244 5531.586 5882.587 2.000000 0.6000000 70.71068 95.00000

Detector: 76229

Background Analysis Date/Time : 16-AUG-2009 16:36:14

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2992.199 3301.674 1.000000 0.3000000 100.0000 95.00000 NP-237 4436.849 4905.652 3.000000 0.9000000 57.73503 95.00000 CM-244 5530.602 5882.872 5.000000 1.500000 44.72136 95.00000

Instrument : CHAMBER 134

Detector: 76230

Background Analysis Date/Time : 16-AUG-2009 16:36:19

Background Count Time: 60000.00

Counts Counts during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2989.055 3302.112 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 95.00000 4432.969 4905.408 21.00000 6.300000 21.82179 CM-244 5534.460 5883.375 9.000000 2.700000 33.33334 95.00000

Instrument: CHAMBER 135

Detector: 64270

Background Analysis Date/Time : 16-AUG-2009 16:36:23

Background Count Time : 60000.00 Counts

Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2987.813 3300.105 2.000000 0.6000000 70.71068 95.00000 4435.123 4902.752 2.000000 0.6000000 70.71068 95.00000 10.00000 CM-244 5532.979 5882.877 3.000000 31.62278 95.00000

Instrument : CHAMBER 136

Detector: 68549

Background Analysis Date/Time : 16-AUG-2009 16:36:27

Background Count Time : 60000.00

Counts Counts % Error Confidence Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal GD-148 2991.796 3301.682 3.000000 0.9000000 57.73503 95.00000 NP-237 4901.780 14.00000 4.200000 26.72612 95.00000 4435.713 CM-244 1.500000 5531.520 5884.028 5.000000 44.72136 95.00000

Detector: 64288

Background Analysis Date/Time : 16-AUG-2009 16:36:31

Background Count Time : 60000.00

ON 244 3332.344 3003.340 7.000000 2.100000 37.73043 33.00000	Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
	GD-148	2990.035	3302.352	4.000000	1.200000	50.00000	95.00000
	NP-237	4435.990	4901.349	6.000000	1.800000	40.82483	95.00000
	CM-244	5532.344	5883.346	7.000000	2.100000	37.79645	95.00000

Instrument : CHAMBER 138

Detector: 65877

Background Analysis Date/Time : 16-AUG-2009 16:36:35

Background Count Time : 60000.00

	Baokgi	ouria ocurii riirio	Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2990.457	3300.623	3.000000	0.9000000	57.73503	95.00000
NP-237	4436.833	4904.301	13.00000	3.900000	27.73501	95.00000
CM-244	5531.035	5885.034	10.00000	3.000000	31.62278	95.00000

Instrument : CHAMBER 139

Detector: 76231

Background Analysis Date/Time : 16-AUG-2009 16:36:40

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min during Cal % Error Confidence Start Energy GD-148 NP-237 2988.624 3300.322 4.000000 1.200000 50.00000 95.00000 35.35534 4436.965 4901.673 8.000000 2.400000 95.00000 CM-244 5531.099 5884.173 8.000000 2.400000 35.35534 95.00000

Instrument : CHAMBER 140

Detector: 78771

Background Analysis Date/Time : 16-AUG-2009 16:36:43

Background Count Time: 60000.00

Counts Counts Start Energy **End Energy** Cal. Isotopes in 1000 min during Cal % Error Confidence GD-148 2992.243 3300.208 3.000000 0.9000000 57.73503 95.00000 NP-237 4435.227 4906.111 12.00000 3.600000 28.86751 95.00000 CM-244 5884.403 0.3000000 5531.085 1.000000 100.0000 95.00000

Detector: 76232

Background Analysis Date/Time : 16-AUG-2009 16:36:48

Background Count Time 60000.00

Cal. Isotopes GD-148 NP-237 CM-244	Start Energy 2989.414 4437.262 5534.971	End Energy 3297.748 4901.753	in 1000 min 1.000000 5.000000	during Cal 0.3000000 1.500000	% Error 100.0000 44.72136	Confidence 95.00000 95.00000
CIVI-244	5534.971	5886.637	5.000000	1.500000	44.72136	95.00000

Instrument: CHAMBER 142

Detector: 64261

Background Analysis Date/Time : 16-AUG-2009 16:36:52

Background Count Time 60000.00 Counts

	9		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [']	2988.269	3301.948	2.000000	0.6000000	70.71068	95.00000
NP-237	4433.864	4905.404	11.00000	3.300000	30.15113	95.00000
CM-244	5531.110	5884.773	12.00000	3.600000	28.86751	95.00000

Instrument: CHAMBER 143

Detector: 65882

16-AUG-2009 16:36:56 Background Analysis Date/Time:

> 60000.00 Background Count Time

	zacitg.		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2987.868	3300.973	10.00000	3.000000	31.62278	95.00000
NP-237	4435.203	4905.234	16.00000	4.800000	25.00000	95.00000
CM-244	5533.941	5886.181	11.00000	3.300000	30.15113	95.00000

Instrument: CHAMBER 144

Detector: 75551

16-AUG-2009 16:37:00 Background Analysis Date/Time

Background Count Time 60000.00

Counts Counts **End Energy** Cal. Isotopes Start Energy in 1000 min during Cal % Error Confidence GD-148 2992.050 3299.833 2.000000 0.6000000 70.71068 95.00000 NP-237 4433.005 4902.603 12.00000 3.600000 28.86751 95.00000 CM-244 5530.735 5882.656 9.000000 2.700000 95.00000 33.33334

Instrument : CHAMBER 145
Detector : 72526
Background Analysis Date/Time : 16-AUG-2009 16:37:03
Background Count Time : 60000.00
Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2991.923	3299.882	3.000000	0.9000000	57.73503	95.00000
NP-237	4434.984	4905.949	4.000000	1.200000	50.00000	95.00000
CM-244	5531.069	5884.490	6.000000	1.800000	40.82483	95.00000
• =		00000	0.00000			00.0000

Instrument : CHAMBER 146 Detector : 72527

Background Analysis Date/Time : 16-AUG-2009 16:37:08
Background Count Time : 60000.00
Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2989-460	3301,164	2.000000	0.6000000	70.71068	95.00000
NP-237	4435.288	4903.095	2.000000	0.6000000	70.71068	95.00000
CM-244	5534.042	5884.573	6.000000	1.800000	40.82483	95.00000
CIVI-244	5534.042	0004.0 <i>1</i> 0	6.000000	1.600000	40.02403	95.00000

Instrument: CHAMBER 147

Detector: 75550

Background Analysis Date/Time: 16-AUG-2009 16:37:11

Background Count Time: 60000.00

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2990.910	3299.539	10.00000	3.000000	31.62278	95.00000
NP-237	4433.251	4901.935	8.000000	2.400000	35.35534	95.00000
CM-244	5533.139	5883.368	12.00000	3.600000	28.86751	95.00000

Instrument : CHAMBER 148
Detector : 74429
Background Analysis Date/Time : 16-AUG-2009 16:37:16
Background Count Time : 60000.00
Counts Counts

			Courits	Couris		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2990.725	3298.446	6.000000	1.800000	40.82483	95.00000
NP-237	4436.496	4905.977	7.000000	2.100000	37.79645	95.00000
CM-244	5533.919	5885.716	8.000000	2.400000	35.35534	95.00000

Detector: 33449

Background Analysis Date/Time : 16-AUG-2009 16:37:20

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2991.734 3299.272 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4437.371 4901.944 NP-237 4.000000 1.200000 50.00000 95.00000 CM-244 5530.548 5882.851 6.000000 1.800000 40.82483 95.00000

Instrument : CHAMBER 150

Detector: 75552

Background Analysis Date/Time : 16-AUG-2009 16:37:24

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2992.316 3300.643 2.000000 0.6000000 70.71068 95.00000 4435.415 4905.497 7.000000 2.100000 37.79645 95.00000 CM-244 5534.121 5886.240 7.000000 2.100000 37.79645 95.00000

Instrument: CHAMBER 151

Detector: 75556

Background Analysis Date/Time : 16-AUG-2009 16:37:28

Background Count Time : 60000.00 Counts

Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2990.659 3302.040 1.000000 0.3000000 100.0000 95.00000 4434.623 4901.634 4.000000 1.200000 50.00000 95.00000 CM-244 5531.364 5886.469 8.000000 2.400000 95.00000 35.35534

Instrument : CHAMBER 152

Detector: 76222

Background Analysis Date/Time : 16-AUG-2009 16:37:32

Background Count Time : 60000.00

Counts Counts Start Energy in 1000 min % Error Confidence Cal. Isotopes **End Energy** during Cal GD-148 2991.044 3297.777 4.000000 1.200000 50.00000 95.00000 NP-237 4437.300 4905.285 5.000000 1.500000 44.72136 95.00000 CM-244 2.100000 5531.209 5887.199 7.000000 37.79645 95.00000

Instrument : CHAMBER 153
Detector : 76223
Background Analysis Date/Time : 16-AUG-2009 16:37:35
Background Count Time : 60000.00
Counts Counts

		Counts	Counts		
Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
2989.175	3301.127	4.000000	1.200000	50.00000	95.00000
4437.148	4906.174	10.00000	3.000000	31.62278	95.00000
5533.838	5885.640	4.000000	1.200000	50.00000	95.00000
	2989.175 4437.148	2989.175 3301.127 4437.148 4906.174	Start Energy End Energy in 1000 min 2989.175 3301.127 4.000000 4437.148 4906.174 10.00000	Start Energy End Energy in 1000 min during Cal 2989.175 3301.127 4.000000 1.200000 4437.148 4906.174 10.00000 3.000000	Start Energy End Energy in 1000 min during Cal % Error 2989.175 3301.127 4.000000 1.200000 50.00000 4437.148 4906.174 10.00000 3.000000 31.62278

Instrument: CHAMBER 154

Detector: 76224

Background Analysis Date/Time : 16-AUG-2009 16:37:40
Background Count Time : 60000.00
Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2991.160	3298.663	3.000000	0.9000000	57.73503	95.00000
NP-237	4435.792	4904.845	6.000000	1.800000	40.82483	95.00000
CM-244	5532.170	5883.602	4.000000	1.200000	50.00000	95.00000

Instrument: CHAMBER 155

Detector: 75553

Background Analysis Date/Time : 16-AUG-2009 16:37:44
Background Count Time : 60000.00
Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2990.137	3299.574	8.000000	2.400000	35.35534	95,00000
NP-237	4433.383	4905.252	9.000000	2.700000	33.33334	95.00000
CM-244	5530.995	5884.485	8.000000	2.400000	35.35534	95.00000

Instrument : CHAMBER 156
Detector : 75554
Background Analysis Date/Time : 16-AUG-2009 16:37:48
Background Count Time : 60000.00
Counts Counts

			Couris	Couris		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2991.410	3301.423	6.000000	1.800000	40.82483	95.00000
NP-237	4436.034	4902.390	17.00000	5.100000	24.25356	95.00000
CM-244	5532.563	5885.336	4.000000	1.200000	50.00000	95.00000

Detector: 75555

Background Analysis Date/Time : 16-AUG-2009 16:37:52

Background Count Time : 60000.00

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2989.948	3299.042	1.000000	0.3000000	100.0000	95.00000
NP-237	4436.337	4902.073	9.000000	2.700000	33.33334	95.00000
NP-237	4436.33 <i>7</i>	4902.073	9.000000	2.700000	33.33334	95.00000
CM-244	5531.733	5884.378	7.000000	2.100000	37.79645	95.00000

Instrument : CHAMBER 158

Detector: 33451

Background Analysis Date/Time : 16-AUG-2009 16:37:56

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2990.074 3301.013 2.000000 0.6000000 70.71068 95.00000 4435.907 4905.421 10.00000 3.000000 31.62278 95.00000 CM-244 5535.323 5885.904 6.000000 1.800000 40.82483 95.00000

Instrument : CHAMBER 159

Detector: 76225

Background Analysis Date/Time : 16-AUG-2009 16:38:00

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 1.200000 2992.022 3301.502 4.000000 50.00000 95.00000 4435.853 4902.842 7.000000 2.100000 37.79645 95.00000 CM-244 5534.528 5883.086 12.00000 3.600000 95.00000 28.86751

Instrument : CHAMBER 160

Detector: 76226

Background Analysis Date/Time : 16-AUG-2009 16:38:03

Background Count Time : 60000.00

Counts Counts **End Energy** in 1000 min during Cal % Error Confidence Cal. Isotopes Start Energy GD-148 2988.982 3298.890 6.000000 1.800000 40.82483 95.00000 NP-237 4434.439 20.00000 6.000000 22.36068 95.00000 4901.761 CM-244 3.300000 5533.753 5882.414 11.00000 30.15113 95.00000

Detector: 70321

Background Analysis Date/Time : 23-AUG-2009 11:54:11

Background Count Time: 60000.00

Counts Counts

Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2988.799 3299.450 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4437.354 4905.712 6.000000 1.800000 40.82483 95.00000 CM-244 5533.034 5884.911 14.00000 4.200000 26.72612 95.00000

Instrument : CHAMBER 162

Detector: 70323

Background Analysis Date/Time : 23-AUG-2009 11:54:16

Background Count Time: 60000.00

Counts Counts

% Error Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal Confidence GD-148 2991.108 3297.679 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4437.157 4905.370 5.000000 1.500000 44.72136 95.00000 CM-244 5531.808 5882.856 5.000000 1.500000 44.72136 95.00000

Instrument: CHAMBER 163

Detector: 70324

Background Analysis Date/Time : 23-AUG-2009 11:54:21

Background Count Time: 60000.00

5884.699

CM-244

5532.622

Counts Counts in 1000 min during Cal % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2989.316 3301.922 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4434.725 4904.333 12.00000 3.600000 28.86751 95.00000

13.00000

3.900000

95.00000

27.73501

Instrument: CHAMBER 164

Detector: 70325

Background Analysis Date/Time : 23-AUG-2009 11:54:26

Background Count Time : 60000.00

Counts Counts

End Energy in 1000 min Start Energy % Error Confidence Cal. Isotopes during Cal GD-148 2989.433 3301.590 2.000000 0.6000000 70.71068 95.00000 NP-237 4904.243 9.000000 2.700000 33.33334 95.00000 4434.137 CM-244 1.800000 5533.726 5886.727 6.000000 40.82483 95.00000

CHAMBER 165 Instrument:

72544 Detector

23-AUG-2009 11:54:31 Background Analysis Date/Time

Background Count Time 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2990.235 3298.979 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 37.79645 NP-237 4434.502 4904.549 7.000000 2.100000 95.00000 CM-244 5532.823 5884.601 7.000000 2.100000 37.79645 95.00000

> Instrument: CHAMBER 166

Detector: 74545

Background Analysis Date/Time 23-AUG-2009 11:54:35

Background Count Time 60000.00

Counts Counts % Error Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal Confidence GD-148 2991.175 3297.621 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 95.00000 4434.428 4904.926 5.000000 1.500000 44.72136 CM-244 5535.556 5884.119 12.00000 3.600000 28.86751 95.00000

> CHAMBER 167 Instrument

72546 Detector

Background Analysis Date/Time 23-AUG-2009 11:54:40

> 60000.00 **Background Count Time**

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 95.00000 2990.148 3302.011 2.000000 0.6000000 70.71068 4433.463 4903.100 12.00000 3.600000 28.86751 95.00000 10.00000 31.62278 CM-244 5531.940 5884.576 3.000000 95.00000

> Instrument: CHAMBER 168

Detector 72547

Background Analysis Date/Time 23-AUG-2009 11:54:44

> 60000.00 **Background Count Time**

Counts Counts

in 1000 min Start Energy **End Energy** % Error Confidence Cal. Isotopes during Cal GD-148 2989.237 3300.921 1.000000 0.3000000 100.0000 95.00000 NP-237 4437.534 4902.237 16.00000 4.800000 25.00000 95.00000 CM-244 2.700000 5531.663 5884.741 9.000000 33.33334 95.00000

Detector: 72548

Background Analysis Date/Time : 23-AUG-2009 11:54:49

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min during Cal % Error Confidence Start Energy GD-148 2992.165 3298.594 1.000000 0.3000000 100.0000 95.00000 27.73501 4903.754 NP-237 4434.229 13.00000 3.900000 95.00000 CM-244 5532.658 5885.433 3.000000 0.9000000 57.73503 95.00000

Instrument : CHAMBER 170

Detector: 72549

Background Analysis Date/Time : 23-AUG-2009 11:54:54

Background Count Time: 60000.00

Counts Counts % Error Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal Confidence GD-148 NP-237 2988.025 3299.867 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 95.00000 4432.622 4903.408 16.00000 4.800000 25.00000 CM-244 5534.316 5882.981 5.000000 1.500000 44.72136 95.00000

Instrument : CHAMBER 171

Detector: 78260

Background Analysis Date/Time : 23-AUG-2009 11:54:58

Background Count Time : 60000.00 Counts

Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2988.433 3300.366 1.000000 0.3000000 100.0000 95.00000 4436.595 4905.826 9.000000 2.700000 33.33334 95.00000 11.00000 CM-244 5885.935 3.300000 95.00000 5533.870 30.15113

Instrument : CHAMBER 172

Detector: 78772

Background Analysis Date/Time : 23-AUG-2009 11:55:03

Background Count Time : 60000.00

Counts Counts in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** during Cal GD-148 2991.870 3297.903 3.000000 0.9000000 57.73503 95.00000 NP-237 4903.969 9.000000 2.700000 33.33334 95.00000 4433.678 CM-244 2.100000 5534.514 5883.121 7.000000 37.79645 95.00000

Detector: 74431

Background Analysis Date/Time : 23-AUG-2009 11:55:07

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.449	3298.086	0.0000000E+00	0.0000000E+00	0.0000000E+00	95.00000
NP-237	4435.604	4905.905	2.000000	0.6000000	70.71068	95.00000
CM-244	5534.021	5885.467	33.00000	9.900001	17.40777	95.00000

Instrument : CHAMBER 174

Detector: 74432

Background Analysis Date/Time : 23-AUG-2009 11:55:12

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 3300.179 2988.639 2.000000 0.6000000 70.71068 95.00000 4435.486 4905.219 9.000000 2.700000 33.33334 95.00000 CM-244 5531.026 5885.734 20.00000 6.000000 22.36068 95.00000

Instrument: CHAMBER 175

Detector: 74433

Background Analysis Date/Time : 23-AUG-2009 11:55:16

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 3300.926 2992.018 1.000000 0.3000000 100.0000 95.00000 4437.197 4902.367 8.000000 2.400000 35.35534 95.00000 CM-244 5531.134 5883.215 22.00000 6.600000 21.32007 95.00000

Instrument : CHAMBER 176

Detector: 74434

Background Analysis Date/Time : 23-AUG-2009 11:55:21

Background Count Time: 60000.00

Counts Counts **End Energy** in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2987.853 3298.318 1.000000 0.3000000 100.0000 95.00000 NP-237 4433.083 4904.101 7.000000 2.100000 37.79645 95.00000 CM-244 6.900000 5532.948 5884.695 23.00000 20.85144 95.00000

Detector: 74435

Background Analysis Date/Time : 23-AUG-2009 11:55:26

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min during Cal % Error Confidence Start Energy GD-148 3298.211 3.000000 0.9000000 57.73503 95.00000 2989.857 4903.934 NP-237 4433.475 1.000000 0.3000000 100.0000 95.00000 CM-244 5533.213 5885.773 29.00000 8.700001 18.56953 95.00000

Instrument : CHAMBER 178

Detector: 74436

Background Analysis Date/Time : 23-AUG-2009 11:55:31

Background Count Time: 60000.00

Counts Counts % Error Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal Confidence GD-148 NP-237 2991.399 3300.807 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 95.00000 4432.785 4903.123 10.00000 3.000000 31.62278 CM-244 5531.481 5883.158 22.00000 6.600000 21.32007 95.00000

Instrument: CHAMBER 179

Detector: 74437

Background Analysis Date/Time : 23-AUG-2009 11:55:36

Background Count Time : 60000.00

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2990.874 3299.393 2.000000 0.6000000 70.71068 95.00000 4435.018 4905.518 5.000000 1.500000 44.72136 95.00000 CM-244 5534.758 5887.251 32.00000 9.600000 95.00000 17.67767

Instrument : CHAMBER 180

Detector: 74438

Background Analysis Date/Time : 23-AUG-2009 11:55:40

Background Count Time : 60000.00

Counts Counts Start Energy in 1000 min % Error **End Energy** Confidence Cal. Isotopes during Cal GD-148 2989.946 3300.627 2.000000 0.6000000 70.71068 95.00000 NP-237 4434.505 4904.405 9.000000 2.700000 33.33334 95.00000 CM-244 7.200000 5531.104 5886.649 24.00000 20.41241 95.00000

CHAMBER 181 Instrument:

74439 Detector

Background Analysis Date/Time 23-AUG-2009 11:55:45

Background Count Time 60000.00

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.658	3302.315	0.0000000E+00	0.0000000E+00	0.0000000E+00	95.00000
NP-237	4432.549	4902.677	7.000000	2.100000	37.79645	95.00000
CM-244	5531.208	5883.203	33.00000	9.900001	17.40777	95.00000

Instrument: CHAMBER 182

Detector: 74440

Background Analysis Date/Time 23-AUG-2009 11:55:49

Background Count Time 60000.00

Counts Counts

during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2990.553 3299.709 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4435.824 4905.707 3.000000 0.9000000 57.73503 95.00000 CM-244 5533.404 5884.684 13.00000 3.900000 27.73501 95.00000

> CHAMBER 183 Instrument

74441 Detector

Background Analysis Date/Time 23-AUG-2009 11:55:54

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2989.015 3297.962 3.000000 0.9000000 57.73503 95.00000 4434.099 4904.342 5.000000 1.500000 44.72136 95.00000 5532.826 CM-244 5884.696 34.00000 10.20000 17.14986 95.00000

> Instrument: CHAMBER 184

Detector 74442

Background Analysis Date/Time 23-AUG-2009 11:55:58

Background Count Time 60000.00

Counts Counts **End Energy** in 1000 min Cal. Isotopes Start Energy during Cal

% Error Confidence GD-148 2989.045 3299.169 1.000000 0.3000000 100.0000 95.00000 NP-237 4437.505 4902.470 5.000000 1.500000 44.72136 95.00000 CM-244 5886.318 7.200000 5535.333 24.00000 20.41241 95.00000

Detector: 68615

Background Analysis Date/Time : 23-AUG-2009 11:56:04

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2987.897 3299.344 1.000000 0.3000000 100.0000 95.00000 4432.571 NP-237 4905.243 2.000000 0.6000000 70.71068 95.00000 CM-244 5530.503 5886.106 27.00000 8.100000 19.24501 95.00000

Instrument : CHAMBER 186

Detector: 68616

Background Analysis Date/Time : 23-AUG-2009 11:56:08

Background Count Time : 60000.00

Counts Counts % Error Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal Confidence GD-148 NP-237 2992.379 3299.140 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 95.00000 4434.242 4902.774 1.000000 0.3000000 100.0000 CM-244 5534.982 5886.349 24.00000 7.200000 20.41241 95.00000

Instrument: CHAMBER 187

Detector: 68620

Background Analysis Date/Time : 23-AUG-2009 11:56:12

Background Count Time : 60000.00 Counts

Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 3300.157 1.200000 2991.498 4.000000 50.00000 95.00000 4437.493 4903.961 8.000000 2.400000 35.35534 95.00000 19.00000 CM-244 5535.243 5883.722 5.700000 22.94157 95.00000

Instrument : CHAMBER 188

Detector: 68621

Background Analysis Date/Time : 23-AUG-2009 11:56:16

Background Count Time : 60000.00

Counts Counts

in 1000 min Start Energy % Error Confidence Cal. Isotopes **End Energy** during Cal GD-148 2988.985 3297.497 1.000000 0.3000000 100.0000 95.00000 NP-237 4904.064 5.000000 1.500000 44.72136 95.00000 4433.354 CM-244 9.300000 5533.683 5886.437 31.00000 17.96053 95.00000

Detector: 68622

Background Analysis Date/Time : 23-AUG-2009 11:56:21

Background Count Time : 60000.00

			Counts	Counts		.
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2990.052	3301.735	1.000000	0.3000000	100.0000	95.00000
NP-237	4436.853	4905.539	3.000000	0.9000000	57.73503	95.00000
CM-244	5532.776	5884.354	29.00000	8.700001	18.56953	95.00000

Instrument: CHAMBER 190

Detector: 68623

Background Analysis Date/Time : 23-AUG-2009 11:56:25

Background Count Time 60000.00 Counts

	9		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [']	2991.652	3298.950	4.000000	1.200000	50.00000	95.00000
NP-237	4435.677	4904.720	24.00000	7.200000	20.41241	95.00000
CM-244	5532.170	5883.736	36.00000	10.80000	16.66667	95.00000

Instrument: CHAMBER 191

Detector: 68624

23-AUG-2009 11:56:29 Background Analysis Date/Time:

> 60000.00 Background Count Time

Cal. Isotopes Start Er GD-148 2991.10 NP-237 4437.43	00 3299.772	Counts in 1000 min 1.000000 1.000000	Counts during Cal 0.3000000 0.3000000	% Error 100.0000 100.0000	Confidence 95.00000 95.00000
CM-244 5530.54		27.00000	8.100000	19.24501	95.00000

Instrument: CHAMBER 192

Detector: 74430

23-AUG-2009 11:56:33 Background Analysis Date/Time

Background Count Time 60000.00

Counts Counts **End Energy** Cal. Isotopes Start Energy in 1000 min during Cal % Error Confidence GD-148 2988.046 3297.560 1.000000 0.3000000 100.0000 95.00000 NP-237 4437.061 4903.990 4.000000 1.200000 50.00000 95.00000 25.00000 7.500000 CM-244 5883.955 95.00000 5535.519 20.00000

Detector: 68627

Background Analysis Date/Time : 23-AUG-2009 11:56:37

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal 70.71068 GD-148 2990.087 3301.572 2.000000 0.6000000 95.00000 4905.309 NP-237 4436.483 7.000000 37.79645 2.100000 95.00000 CM-244 5532.931 5884.819 32.00000 9.600000 17.67767 95.00000

Instrument : CHAMBER 194

Detector: 68635

Background Analysis Date/Time : 23-AUG-2009 11:56:41

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2990.152 3297.570 1.000000 0.3000000 100.0000 95.00000 4434.536 4903.587 4.000000 1.200000 50.00000 95.00000 CM-244 5530.970 5882.461 12.00000 3.600000 28.86751 95.00000

Instrument: CHAMBER 195

Detector: 68636

Background Analysis Date/Time : 23-AUG-2009 11:56:45

Background Count Time : 60000.00 Counts

Counts in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** during Cal GD-148 NP-237 2992.288 3300.624 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4434.057 4902.978 3.000000 0.9000000 57.73503 95.00000 CM-244 5534.813 5885.542 95.00000 15.00000 4.500000 25.81989

Instrument: CHAMBER 196

Detector: 68637

Background Analysis Date/Time : 23-AUG-2009 11:56:50

Background Count Time : 60000.00

Counts Counts in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** during Cal GD-148 2990.410 3301.963 3.000000 0.9000000 57.73503 95.00000 NP-237 5.000000 4437.321 1.500000 44.72136 95.00000 4906.417 CM-244 5534.476 5886.645 21.00000 6.300000 21.82179 95.00000

CHAMBER 197 Instrument:

78894 Detector

Background Analysis Date/Time 23-AUG-2009 11:56:54

Background Count Time 60000.00

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [·]	2991.920	3300.320	0.0000000E+00	0.0000000E+00	0.0000000E+00	95.00000
NP-237	4436.468	4902.348	1.000000	0.3000000	100.0000	95.00000
CM-244	5532.745	5886.065	12.00000	3.600000	28.86751	95.00000

Instrument: CHAMBER 198

Detector: 78895

Background Analysis Date/Time 23-AUG-2009 11:56:58

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error

Confidence GD-148 NP-237 3299.642 2991.305 1.000000 0.3000000 100.0000 95.00000 4434.397 4904.448 1.000000 0.3000000 100.0000 95.00000 CM-244 5533.011 5885.087 30.00000 9.000000 18.25742 95.00000

> CHAMBER 199 Instrument

78896 Detector

Background Analysis Date/Time 23-AUG-2009 11:57:02

Background Count Time 60000.00

Counts Counts

during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2988.912 3297.497 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4433.891 4904.941 5.000000 1.500000 44.72136 95.00000 7.000000 CM-244 5535.121 5882.869 95.00000 2.100000 37.79645

> Instrument: CHAMBER 200

Detector 78900

Background Analysis Date/Time 23-AUG-2009 11:57:06

Background Count Time 60000.00

5885.759

CM-244

5532.744

Counts Counts **End Energy** Start Energy in 1000 min % Error Confidence Cal. Isotopes during Cal GD-148 2991.845 3300.480 2.000000 0.6000000 70.71068 95.00000 NP-237 4902.709 10.00000 3.000000 31.62278 95.00000 4436.941

30.00000

9.000000

18.25742

95.00000

CHAMBER 201 Instrument:

78902 Detector

Background Analysis Date/Time 23-AUG-2009 11:57:10

Background Count Time 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min during Cal % Error Confidence Start Energy GD-148 2988.531 3297.499 1.000000 0.3000000 100.0000 95.00000 1.500000 44.72136 NP-237 4434.991 4906.359 5.000000 95.00000 CM-244 5531.510 5884.700 15.00000 4.500000 25.81989 95.00000

> Instrument: CHAMBER 202

Detector: 78903

Background Analysis Date/Time 23-AUG-2009 11:57:14

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min

% Error Confidence GD-148 NP-237 2990.301 3298.322 1.000000 0.3000000 100.0000 95.00000 4432.596 4902.750 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5531.710 5884.137 14.00000 4.200000 26.72612 95.00000

> CHAMBER 203 Instrument

78905 Detector

Background Analysis Date/Time 23-AUG-2009 11:57:19

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2988.566 3301.771 4.000000 1.200000 50.00000 95.00000 4437.077 4902.609 6.000000 1.800000 40.82483 95.00000 5532.534 12.00000 CM-244 5885.590 3.600000 95.00000 28.86751

> Instrument: CHAMBER 204

Detector 78907

Background Analysis Date/Time 23-AUG-2009 11:57:23

Background Count Time 60000.00

Counts

Counts **End Energy** in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2990.303 3298.289 13.00000 3.900000 27.73501 95.00000 NP-237 4903.866 12.00000 3.600000 28.86751 95.00000 4433.152 CM-244 5886.993 5533.856 34.00000 10.20000 17.14986 95.00000

Detector: 78908

Background Analysis Date/Time : 23-AUG-2009 11:57:27

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2991.267 3299.423 1.000000 0.3000000 100.0000 95.00000 NP-237 4434.928 4905.917 1.000000 0.3000000 100.0000 95.00000 CM-244 5530.946 5884.256 15.00000 4.500000 25.81989 95.00000

Instrument : CHAMBER 206

Detector: 78909

Background Analysis Date/Time : 23-AUG-2009 11:57:31

Background Count Time : 60000.00

Counts Counts % Error Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal Confidence GD-148 NP-237 2991.740 3299.836 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 95.00000 4434.469 4904.811 0.0000000E+00 0.0000000E+00 0.0000000E+00 CM-244 5534.058 5886.660 13.00000 3.900000 27.73501 95.00000

Instrument: CHAMBER 207

Detector: 78910

Background Analysis Date/Time : 23-AUG-2009 11:57:35

Background Count Time : 60000.00 Counts

Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2987.560 3301.824 2.000000 0.6000000 70.71068 95.00000 4434.563 4905.877 4.000000 1.200000 50.00000 95.00000 14.00000 CM-244 5530,790 5883.765 4.200000 95.00000 26.72612

Instrument : CHAMBER 208

Detector: 78911

Background Analysis Date/Time : 23-AUG-2009 11:57:40

Background Count Time : 60000.00

Counts Counts in 1000 min **End Energy** % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2990.613 3299.492 2.000000 0.6000000 70.71068 95.00000 NP-237 4436.795 4902.883 6.000000 1.800000 40.82483 95.00000 CM-244 3.900000 5533.327 5886.561 13.00000 27.73501 95.00000

Detector: 79188

Background Analysis Date/Time : 23-AUG-2009 11:57:44

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2991.940 3298.642 2.000000 0.6000000 70.71068 95.00000 57.73503 NP-237 4435.592 4905.793 3.000000 0.9000000 95.00000 CM-244 5530.388 5883.749 4.000000 1.200000 50.00000 95.00000

Instrument : CHAMBER 210

Detector: 79189

Background Analysis Date/Time : 23-AUG-2009 11:57:48

Background Count Time: 60000.00

Counts Counts

% Error Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal Confidence GD-148 NP-237 2988.073 3301.089 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4435.142 4905.164 1.000000 0.3000000 100.0000 95.00000 CM-244 5533.916 5886.208 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument: CHAMBER 211

Detector: 79190

Background Analysis Date/Time : 23-AUG-2009 11:57:52

Background Count Time: 60000.00

5885.262

CM-244

5531.327

Counts Counts in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** during Cal GD-148 NP-237 2991.282 3299.071 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4434.230 4900.253 2.000000 0.6000000 70.71068 95.00000

0.6000000

95.00000

70.71068

2.000000

Instrument: CHAMBER 212

Detector: 79191

Background Analysis Date/Time : 23-AUG-2009 11:57:56

Background Count Time: 60000.00

Counts Counts

End Energy Start Energy Confidence Cal. Isotopes in 1000 min during Cal % Error GD-148 2991.918 3298.870 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4902.590 95.00000 4437.027 1.000000 0.3000000 100.0000 CM-244 5533.378 5887.318 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Detector: 79192

Background Analysis Date/Time : 23-AUG-2009 11:58:01

Background Count Time: 60000.00

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2991.497	3299.775	0.0000000E+00	0.0000000E+00	0.0000000E+00	95.00000
NP-237	4434.841	4905.254	1.000000	0.3000000	100.0000	95.00000
CM-244	5534.504	5887.063	3.000000	0.9000000	57.73503	95.00000

Instrument : CHAMBER 214

Detector: 79193

Background Analysis Date/Time : 23-AUG-2009 11:58:05

Background Count Time: 60000.00

Counts Counts

during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2991.133 3298.396 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 50.00000 4436.844 4902.153 4.000000 1.200000 95.00000 CM-244 5532.271 5885.676 3.000000 0.9000000 57.73503 95.00000

Instrument: CHAMBER 215

Detector: 79194

Background Analysis Date/Time : 23-AUG-2009 11:58:09

Background Count Time: 60000.00

Counts Counts

Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** during Cal GD-148 NP-237 2991.638 3298.993 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4433.482 4904.904 1.000000 0.3000000 100.0000 95.00000 3.000000 CM-244 5531.246 5885.655 95.00000 0.9000000 57.73503

Instrument: CHAMBER 216

Detector: 79195

Background Analysis Date/Time : 23-AUG-2009 11:58:13

Background Count Time: 60000.00

Counts Counts

End Energy Confidence Cal. Isotopes Start Energy in 1000 min during Cal % Error GD-148 2992.181 3299.336 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4903.311 0.3000000 100.0000 95.00000 4432.606 1.000000 CM-244 5533.853 5887.574 2.000000 0.6000000 70.71068 95.00000

Detector: 79410

Background Analysis Date/Time : 23-AUG-2009 11:58:18

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2989.031 3301.074 1.000000 0.3000000 100.0000 95.00000 NP-237 4434.240 4905.058 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5530.547 5884.453 2.000000 0.6000000 70.71068 95.00000

Instrument : CHAMBER 218

Detector: 79411

Background Analysis Date/Time : 23-AUG-2009 11:58:23

Background Count Time: 60000.00

Counts Counts

End Energy % Error Cal. Isotopes Start Energy in 1000 min during Cal Confidence GD-148 NP-237 2988.583 3301.235 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4435.884 4901.733 9.000000 2.700000 95.00000 33.33334 CM-244 5532.602 5886.438 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument: CHAMBER 219

Detector: 79412

Background Analysis Date/Time : 23-AUG-2009 11:58:27

Background Count Time: 60000.00

Counts Counts

during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2992.207 4435.206 3300.096 1.000000 0.3000000 100.0000 95.00000 4906.290 4.000000 1.200000 50.00000 95.00000 CM-244 5885.285 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 5531.669

Instrument : CHAMBER 220

Detector: 79413

Background Analysis Date/Time : 23-AUG-2009 11:58:31

Background Count Time: 60000.00

Counts Counts

Start Energy **End Energy** Confidence Cal. Isotopes in 1000 min during Cal % Error GD-148 2990.930 3297.738 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4435.749 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4901.420 CM-244 5532.504 5886.683 1.000000 0.3000000 100.0000 95.00000

Detector: 79414

Background Analysis Date/Time : 23-AUG-2009 11:58:35

Background Count Time: 60000.00

Counts Counts

Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2989.954 3298.454 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4435.659 4902.272 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5533.925 5882.692 2.000000 0.6000000 70.71068 95.00000

Instrument : CHAMBER 222

Detector: 79415

Background Analysis Date/Time : 23-AUG-2009 11:58:40

Background Count Time : 60000.00

Counts Counts

% Error Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal Confidence 2990.392 GD-148 3301.657 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4433.525 4905.197 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5534.683 5886.672 2.000000 0.6000000 70.71068 95.00000

Instrument: CHAMBER 223

Detector: 79416

Background Analysis Date/Time : 23-AUG-2009 11:58:47

Background Count Time: 60000.00

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 95.00000 2990.058 3298.884 2.000000 0.6000000 70.71068 4432.434 4905.074 2.000000 0.6000000 70.71068 95.00000 CM-244 5532.599 5887.467 3.000000 0.9000000 95.00000 57.73503

Instrument: CHAMBER 224

Detector: 79417

Background Analysis Date/Time : 23-AUG-2009 11:58:53

Background Count Time: 60000.00

Counts Counts

Start Energy **End Energy** Confidence Cal. Isotopes in 1000 min during Cal % Error GD-148 2988.636 3298.216 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4432.951 4905.382 95.00000 3.000000 0.9000000 57.73503 CM-244 5532.025 5886.099 4.000000 1.200000 50.00000 95.00000

CHAMBER 225 Instrument:

79418 Detector

23-AUG-2009 11:58:59 Background Analysis Date/Time

Background Count Time 60000.00

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [.]	2991.462	3299.408	0.0000000E+00	0.0000000E+00	0.0000000E+00	95.00000
NP-237	4434.737	4905.917	1.000000	0.3000000	100.0000	95.00000
CM-244	5531.430	5885.124	1.000000	0.3000000	100.0000	95.00000

Instrument: CHAMBER 226

Detector: 79419

Background Analysis Date/Time 23-AUG-2009 11:59:05

Background Count Time 60000.00

Counts Counts

during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2991.793 3300.581 1.000000 0.3000000 100.0000 95.00000 4433.080 4904.877 2.000000 0.6000000 70.71068 95.00000 CM-244 0.0000000E+00 0.0000000E+00 0.0000000E+00 5530.936 5884.804 95.00000

> CHAMBER 227 Instrument

79420 Detector

Background Analysis Date/Time 23-AUG-2009 11:59:10

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2989.468 3297.622 1.000000 0.3000000 100.0000 95.00000 4433.427 4904.675 1.000000 0.3000000 100.0000 95.00000 CM-244 5535.505 5883.794 1.000000 0.3000000 100.0000 95.00000

> Instrument: CHAMBER 228

Detector 79421

Background Analysis Date/Time 23-AUG-2009 11:59:16

Background Count Time 60000.00

Counts

Counts in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** during Cal GD-148 2992.529 3302.052 1.000000 0.3000000 100.0000 95.00000 NP-237 100.0000 4435.206 4906.368 1.000000 0.3000000 95.00000 CM-244 5530.800 5883.365 1.000000 0.3000000 100.0000 95.00000

Detector: 79422

Background Analysis Date/Time : 23-AUG-2009 11:59:21

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2989.967 1.000000 0.3000000 100.0000 95.00000 3297.813 4905.968 NP-237 4433.942 2.000000 0.6000000 70.71068 95.00000 CM-244 5533.045 5882.442 1.000000 0.3000000 100.0000 95.00000

Instrument : CHAMBER 230

Detector: 79423

Background Analysis Date/Time : 23-AUG-2009 11:59:28

Background Count Time : 60000.00

Counts Counts

% Error Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal Confidence GD-148 NP-237 2992.307 3300.916 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4432.950 4904.639 2.000000 0.6000000 95.00000 70.71068 CM-244 5530.626 5884.491 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument: CHAMBER 231

Detector: 79424

Background Analysis Date/Time : 23-AUG-2009 11:59:34

Background Count Time: 60000.00

Counts Counts

in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** during Cal GD-148 NP-237 2989.314 3302.411 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4437.493 4903.010 4.000000 1.200000 50.00000 95.00000 CM-244 5532.978 5886.091 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument : CHAMBER 232

Detector: 79425

Background Analysis Date/Time : 23-AUG-2009 11:59:39

Background Count Time : 60000.00

Counts Counts

in 1000 min Start Energy % Error Confidence Cal. Isotopes **End Energy** during Cal GD-148 2990.963 3301.243 2.000000 0.6000000 70.71068 95.00000 NP-237 4902.090 4436.020 4.000000 1.200000 50.00000 95.00000 CM-244 5531.563 5883.791 2.000000 0.6000000 70.71068 95.00000

CHAMBER 233 Instrument:

79426 Detector

Background Analysis Date/Time 23-AUG-2009 11:59:46

Background Count Time 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2990.373 3302.025 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4905.324 NP-237 4434.487 2.000000 0.6000000 70.71068 95.00000 CM-244 5531.110 5885.315 3.000000 0.9000000 57.73503 95.00000

> Instrument: CHAMBER 234

Detector: 79427

Background Analysis Date/Time 23-AUG-2009 11:59:51

Background Count Time 60000.00

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 NP-237 2988.269 3300.079 1.000000 0.3000000 100.0000 95.00000 95.00000 4436.893 4901.571 1.000000 0.3000000 100.0000 CM-244 5530.864 5883.822 6.000000 1.800000 40.82483 95.00000

> CHAMBER 235 Instrument

79428 Detector

Background Analysis Date/Time 23-AUG-2009 11:59:57

> 60000.00 **Background Count Time**

Counts Counts in 1000 min % Error Cal. Isotopes Start Energy **End Energy** during Cal

Confidence GD-148 NP-237 2989.964 3301.553 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4434.767 4906.350 1.000000 0.3000000 100.0000 95.00000 CM-244 5533.497 5883.248 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

> Instrument: CHAMBER 236

Detector 79429

Background Analysis Date/Time 23-AUG-2009 12:00:03

> 60000.00 **Background Count Time**

Counts Counts Start Energy **End Energy** % Error Cal. Isotopes in 1000 min during Cal

GD-148 2989.553 3300.921 3.000000 0.9000000 57.73503 95.00000 NP-237 11.00000 3.300000 30.15113 95.00000 4432.813 4903.618 CM-244 5534.883 5883.901 1.000000 0.3000000 100.0000 95.00000

Confidence

Detector: 79430

Background Analysis Date/Time : 23-AUG-2009 12:00:08

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [·]	2990.412	3298.430	0.0000000E+00	0.0000000E+00	0.0000000E+00	95.00000
NP-237	4434.021	4905.306	1.000000	0.3000000	100.0000	95.00000
CM-244	5530.956	5884.725	0.0000000E+00	0.0000000E+00	0.0000000E+00	95.00000

Instrument : CHAMBER 238

Detector: 79431

Background Analysis Date/Time : 23-AUG-2009 12:00:14

Background Count Time: 60000.00

Counts Counts
Cal lectones Start Energy End Energy in 1000 min during (

during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2988.738 3300.787 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4433.583 4904.073 4.000000 1.200000 50.00000 95.00000 CM-244 5534.315 5882.484 1.000000 0.3000000 100.0000 95.00000

Instrument: CHAMBER 239

Detector: 79432

Background Analysis Date/Time : 23-AUG-2009 12:00:20

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2991.271 3298.066 2.000000 0.6000000 70.71068 95.00000 4436.718 4902.950 8.000000 2.400000 35.35534 95.00000 5535.054 CM-244 5884.530 1.000000 0.3000000 100.0000 95.00000

Instrument : CHAMBER 240

Detector: 79433

Background Analysis Date/Time : 23-AUG-2009 12:00:26

Background Count Time : 60000.00

Counts Counts in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** during Cal GD-148 2990.716 3297.687 2.000000 0.6000000 70.71068 95.00000 NP-237 4436.108 4901.861 3.000000 0.9000000 57.73503 95.00000 CM-244 5532.981 5887.143 1.000000 0.3000000 100.0000 95.00000

Detector: 79434

Background Analysis Date/Time : 23-AUG-2009 12:00:31

Background Count Time: 60000.00

Counts Counts

Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2991.942 4.000000 1.200000 50.00000 95.00000 3297.913 4905.642 NP-237 4434.531 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5532.339 5887.328 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument : CHAMBER 242

Detector: 79435

Background Analysis Date/Time : 23-AUG-2009 12:00:38

Background Count Time: 60000.00

Counts Counts

End Energy % Error Cal. Isotopes Start Energy in 1000 min during Cal Confidence GD-148 2990.675 3302.424 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4435.599 4901.625 2.000000 0.6000000 95.00000 70.71068 CM-244 5533.423 5882.719 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument: CHAMBER 243

Detector: 79436

Background Analysis Date/Time : 23-AUG-2009 12:00:44

Background Count Time: 60000.00

Counts Counts

in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** during Cal GD-148 NP-237 2990.382 3298.347 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4434.037 4905.494 2.000000 0.6000000 70.71068 95.00000 CM-244 5531.482 5885.497 1.000000 100.0000 95.00000 0.3000000

Instrument : CHAMBER 244

Detector: 79437

Background Analysis Date/Time : 23-AUG-2009 12:00:50

Background Count Time: 60000.00

Counts Counts

End Energy Start Energy % Error Confidence Cal. Isotopes in 1000 min during Cal GD-148 2987.566 3299.789 5.000000 1.500000 44.72136 95.00000 NP-237 0.6000000 70.71068 95.00000 4433.571 4904.626 2.000000 0.0000000E+00 0.0000000E+00 0.0000000E+00 CM-244 5530.417 5884.486 95.00000

Detector: 79438

Background Analysis Date/Time : 23-AUG-2009 12:00:56

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.843	3302.525	0.0000000E+00	0.0000000E+00	0.0000000E+00	95.00000
NP-237	4434.670	4906.399	2.000000	0.6000000	70.71068	95.00000
CM-244	5532.436	5886.326	1.000000	0.3000000	100.0000	95.00000

Instrument : CHAMBER 246

Detector: 78912

Background Analysis Date/Time : 23-AUG-2009 12:01:02

Background Count Time : 60000.00

Counts Counts

during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 3298.792 2991.420 1.000000 0.3000000 100.0000 95.00000 4433.098 4904.335 4.000000 1.200000 50.00000 95.00000 CM-244 0.0000000E+00 0.0000000E+00 0.0000000E+00 5530.336 5884.508 95.00000

Instrument: CHAMBER 247

Detector: 79440

Background Analysis Date/Time : 23-AUG-2009 12:01:07

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2991.040 3298.952 5.000000 1.500000 44.72136 95.00000 44.72136 4435.157 4901.869 5.000000 1.500000 95.00000 CM-244 5534.103 5883.404 6.000000 1.800000 40.82483 95.00000

Instrument : CHAMBER 248

Detector: 79441

Background Analysis Date/Time : 23-AUG-2009 12:01:13

Background Count Time: 60000.00

5884.950

CM-244

5530.441

Counts Counts in 1000 min during Cal % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 2989.950 3302.491 1.000000 0.3000000 100.0000 95.00000 NP-237 4437.546 4903.912 6.000000 1.800000 40.82483 95.00000

3.000000

0.9000000

57.73503

95.00000

Detector: 79442

Background Analysis Date/Time : 23-AUG-2009 12:01:19

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2991.458 3299.653 2.000000 0.6000000 70.71068 95.00000 4904.383 NP-237 4437.087 6.000000 1.800000 40.82483 95.00000 CM-244 5532,120 5887.291 2.000000 0.6000000 70.71068 95.00000

Instrument : CHAMBER 250

Detector: 79443

Background Analysis Date/Time : 23-AUG-2009 12:01:25

Background Count Time : 60000.00

Counts Counts during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2988.375 3300.259 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4433.621 4904.859 3.000000 0.9000000 57.73503 95.00000 CM-244 5531.200 5885.729 1.000000 0.3000000 100.0000 95.00000

Instrument: CHAMBER 251

Detector: 79444

Background Analysis Date/Time : 23-AUG-2009 12:01:31

Background Count Time : 60000.00

Counts Counts in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** during Cal GD-148 NP-237 2992.181 3299.694 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4435.877 4903.211 9.000000 2.700000 33.33334 95.00000 CM-244 5531.476 5887.181 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument: CHAMBER 252

Detector: 79445

Background Analysis Date/Time : 23-AUG-2009 12:01:36

Background Count Time : 60000.00

Counts Counts

Start Energy **End Energy** Confidence Cal. Isotopes in 1000 min during Cal % Error GD-148 2990.594 3297.549 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 95.00000 4436.816 4903.310 2.000000 0.6000000 70.71068 0.0000000E+00 0.0000000E+00 0.0000000E+00 CM-244 5530.420 5885.459 95.00000

CHAMBER 253 Instrument:

79446 Detector

23-AUG-2009 12:01:42 Background Analysis Date/Time

Background Count Time 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min during Cal % Error Confidence Start Energy GD-148 2990.116 3298.147 1.000000 0.3000000 100.0000 95.00000 NP-237 4437.082 4905.908 11.00000 3.300000 30.15113 95.00000 CM-244 5531.106 5882.794 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

> Instrument: CHAMBER 254

Detector: 79447

Background Analysis Date/Time 23-AUG-2009 12:01:48

Background Count Time 60000.00

Counts Counts

during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 2990.155 3297.706 1.000000 0.3000000 100.0000 95.00000 NP-237 4433.107 4904.992 6.000000 1.800000 40.82483 95.00000 CM-244 0.0000000E+00 0.0000000E+00 0.0000000E+00 5532.020 5886.853 95.00000

> CHAMBER 255 Instrument

79448 Detector

Background Analysis Date/Time 23-AUG-2009 12:02:23

Background Count Time 60000.00

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 3300.373 95.00000 2987.598 1.000000 0.3000000 100.0000 4437.418 4905.095 9.000000 2.700000 33.33334 95.00000 0.3000000 CM-244 5533.813 5884.354 1.000000 100.0000 95.00000

> Instrument: CHAMBER 256

Detector 79449

Background Analysis Date/Time 23-AUG-2009 12:02:28

> **Background Count Time** 60000.00

> > 5882.840

5532.797

Counts Counts in 1000 min Start Energy **End Energy** % Error Confidence Cal. Isotopes during Cal GD-148 2991.222 3298.267 1.000000 0.3000000 100.0000 95.00000 NP-237 4432.956 4905.052 4.000000 1.200000 50.00000 95.00000 CM-244

0.6000000

70.71068

95.00000

2.000000

Subsection 3: Efficiency Calibration

Instrument: CHAMBER 001

Detector: 78788 Standard ID : **AESS-001**

20-FEB-2008 09:54:53 Standard Reference Date : Calibration Analysis Date/Time 5-AUG-2009 09:23:09

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 5-AUG-2009 14:45:15

Average Efficiency 0.3129051 Average Efficiency Error: 8.6269947E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.6698	28-FEB-2010	2987.927	3299.401	15169.00	0.3069817	1.3193288E-02	58.42078
NP-237	171.0024	28-FEB-2010	4432.428	4902.923	12984.00	0.3163057	1.6057158E-02	73.48861
CM-244	158.1060	28-FEB-2010	5533.599	5883.327	11428.00	0.3183713	1.6194897E-02	56.66428

Instrument: CHAMBER 002

Detector: 78266 Standard ID:

AESS-002 19-FEB-2008 11:05:22 Standard Reference Date: Calibration Analysis Date/Time 5-AUG-2009 09:23:09

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 5-AUG-2009 14:45:26

0.3058862 Average Efficiency: Average Efficiency Error: 8.4242094E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1144	28-FEB-2010	2990.748	3297.924	14398.00	0.3038373	1.3070637E-02	49.74084
NP-237	200.4990	28-FEB-2010	4434.751	4902.555	14828.00	0.3081331	1.5613098E-02	65.75996
CM-244	196.5558	28-FEB-2010	5533.273	5884.668	13676.00	0.3065576	1.5550442E-02	56.66758

Instrument: CHAMBER 003

67617 Detector: AESS-003 Standard ID:

Standard Reference Date : 15-FEB-2008 13:12:27 Calibration Analysis Date/Time : 5-AUG-2009 09:23:09

Calibration Count Time 240.0000

5-AUG-2009 14:45:38 Efficiency Calibration Date/Time

Average Efficiency 0.3501697 Average Efficiency Error: 9.6245455E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.9740	28-FEB-2010	2988.035	3300.027	16505.00	0.3434206	1.4738046E-02	69.44512
NP-237	203.2080	28-FEB-2010	4433.783	4901.623	17421.00	0.3571638	1.8062104E-02	78.56305
CM-244	197.2236	28-FEB-2010	5533.183	5887.889	15808.00	0.3532508	1.7884690E-02	60.67228

CHAMBER 004 Instrument:

Detector: 64279 **AESS-004** Standard ID

14-FEB-2008 09:35:18 Standard Reference Date Calibration Analysis Date/Time 5-AUG-2009 09:23:09

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 5-AUG-2009 14:45:54

Average Efficiency 0.3004026 Average Efficiency Error: 8.2737673E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.1222	28-FEB-2010	2991.885	3302.347	14848.00	0.3042404	1.3080551E-02	53.10138
NP-237	204.2586	28-FEB-2010	4436.757	4905.540	14917.00	0.3042575	1.5415543E-02	64.73015
CM-244	198.8100	28-FEB-2010	5533.807	5887.698	13166.00	0.2919180	1.4816008E-02	57.85523

Instrument: CHAMBER 005

Detector: 67612 Standard ID : **AESS-005**

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 5-AUG-2009 09:23:09

240.0000

Calibration Count Time Efficiency Calibration Date/Time 5-AUG-2009 14:46:05

Average Efficiency 0.2843162 Average Efficiency Error 7.8336252E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.7452	28-FEB-2010	2990.194	3301.639	14157.00	0.2837222	1.2209224E-02	51.06648
NP-237	209.5938	28-FEB-2010	4437.588	4901.889	14375.00	0.2857330	1.4484116E-02	69.27464
CM-244	202.7478	28-FEB-2010	5531.535	5887.236	13050.00	0.2837417	1.4402892E-02	60.22887

Instrument: CHAMBER 006

Detector: 67613 Standard ID AESS-006

14-FEB-2008 09:35:18 5-AUG-2009 09:23:09 Standard Reference Date Calibration Analysis Date/Time

240.0000 Calibration Count Time

Efficiency Calibration Date/Time 5-AUG-2009 14:46:15

Average Efficiency: 0.3150931 Average Efficiency Error: 8.6723948E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6952	28-FEB-2010	2988.186	3302.064	15061.00	0.3123020	1.3423658E-02	54.65259
NP-237	204.7038	28-FEB-2010	4434.812	4901.476	15598.00	0.3174475	1.6074667E-02	62.21717
CM-244	195 0060	28-FFR-2010	5533 017	5887 020	14013 00	0.3167382	1 6061435F-02	59 32273

CHAMBER 007 Instrument:

Detector: 67607 **AESS-007** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 3-AUG-2009 10:53:33

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:08:14

Average Efficiency 0.3026176 Average Efficiency Error: 8.3323661E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.7342	28-FEB-2010	2991.468	3299.148	14693.00	0.3001373	1.2906651E-02	48.67664
NP-237	205.0260	28-FEB-2010	4433.972	4903.766	14977.00	0.3043185	1.5417857E-02	59.64954
CM-244	199.6806	28-FEB-2010	5532.246	5885.701	13798.00	0.3044618	1.5442326E-02	51.23282

Instrument: CHAMBER 008

Detector: 78788 Standard ID **AESS-008**

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 3-AUG-2009 10:53:33

240.0000

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:08:25

Average Efficiency 0.3224154 Average Efficiency Error 8.8692745E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.0418	28-FEB-2010	2989.215	3298.713	15734.00	0.3225096	1.3851766E-02	44.71056
NP-237	209.2716	28-FEB-2010	4433.303	4905.744	15863.00	0.3158187	1.5988812E-02	63.33889
CM-244	199.6488	28-FEB-2010	5532.461	5886.606	14925.00	0.3294691	1.6692771E-02	51.66238

CHAMBER 009 Instrument:

Detector: 72528 **AESS-009** Standard ID

19-FEB-2008 11:05:22 3-AUG-2009 10:53:33 Standard Reference Date Calibration Analysis Date/Time

240.0000 Calibration Count Time

Efficiency Calibration Date/Time 3-AUG-2009 15:08:37

Average Efficiency: 0.3431641 Average Efficiency Error: 9.4328979E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.3736	28-FEB-2010	2990.462	3298.900	16457.00	0.3417034	1.4665021E-02	47.76541
NP-237	204.0192	28-FEB-2010	4437.055	4904.570	16959.00	0.3463034	1.7518245E-02	66.91080
CM-244	197 2128	28-FFR-2010	5532 536	5882 399	15320 00	0 3421319	1 7328590F-02	53 20248

Instrument: CHAMBER 010

72529 Detector **AESS-010** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 3-AUG-2009 10:53:33

> Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:08:47

0.3163380 Average Efficiency Average Efficiency Error: 8.7065995E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.0008	28-FEB-2010	2990.229	3298.607	15141.00	0.3165374	1.3604476E-02	54.57225
NP-237	202.9926	28-FEB-2010	4436.880	4905.484	15237.00	0.3127136	1.5839646E-02	70.41494
CM-244	196.2330	28-FEB-2010	5531.409	5886.990	14242.00	0.3198532	1.6215732E-02	59.36025

Instrument: CHAMBER 011

Detector: 72531 **AESS-011** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 3-AUG-2009 10:53:33

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:10:05

Average Efficiency 0.2947833 Average Efficiency Error 8.1152376E-03 Confidence: 95.00000

Cal. Istps DPM Start Engy EFF Err Resolution Exp. Date End Engy Counts EFF. GD-148 212.8284 28-FEB-2010 2991.538 3301.988 14786.00 0.2934125 1.2615963E-02 51.15865 NP-237 214.4868 28-FEB-2010 4435.957 4905.467 15318.00 0.2975290 1.5069493E-02 57.97636 CM-244 208.4184 28-FEB-2010 5530.314 5886.614 13904.00 0.2940101 1.4910497E-02 52.04412

> CHAMBER 012 Instrument:

Detector: 67594 Standard ID **AESS-012**

Standard Reference Date 14-FEB-2008 13:39:25 3-AUG-2009 10:53:33 Calibration Analysis Date/Time

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:10:47

Average Efficiency 0.2985670 Average Efficiency Error 8.2218517E-03

Confidence 95.00000

Start Engy Cal. Istps DPM Exp. Date End Engy Counts EFF. EFF Err Resolution GD-148 206.2200 28-FEB-2010 2988.398 3300.615 0.2981249 1.2822272E-02 47.31236 14557.00 NP-237 1.5264360E-02 205.8930 28-FEB-2010 4437.450 4901.503 14889.00 0.3012659 60.85177 CM-244 203,1954 28-FEB-2010 5534,709 5886.652 13676.00 0.2965543 1.5043142E-02 54.26840

CHAMBER 013 Instrument:

Detector: 78790 **AESS-013** Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 3-AUG-2009 10:53:35

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:10:57

Average Efficiency 0.3409691 Average Efficiency Error: 9.3713822E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6544	28-FEB-2010	2987.666	3298.441	16523.00	0.3426617	1.4705168E-02	49.16812
NP-237	210.2526	28-FEB-2010	4435.272	4902.524	17040.00	0.3376607	1.7080082E-02	61.60270
CM-244	201.9108	28-FEB-2010	5533.077	5883.559	15669.00	0.3420227	1.7318053E-02	54.98487

Instrument: CHAMBER 014

Detector: 67616 Standard ID AESS-014

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 3-AUG-2009 10:53:35

240.0000

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:11:09

Average Efficiency 0.3130623 Average Efficiency Error 8.6121503E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	214.7088	28-FEB-2010	2992.504	3300.484	15590.00	0.3066251	1.3171598E-02	52.69585
NP-237	211.7160	28-FEB-2010	4435.990	4902.000	16202.00	0.3188440	1.6137818E-02	68.36411
CM-244	207.3882	28-FEB-2010	5532.918	5886.701	14925.00	0.3169042	1.6056320E-02	53.58373

Instrument: CHAMBER 015

Detector: 61581 Standard ID **AESS-015**

14-FEB-2008 17:45:04 3-AUG-2009 10:53:35 Standard Reference Date Calibration Analysis Date/Time

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:11:19

Average Efficiency 0.3249588 Average Efficiency Error: 8.9409258E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0270	28-FEB-2010	2987.739	3297.575	15440.00	0.3196218	1.3732214E-02	68.63618
NP-237	200.6460	28-FEB-2010	4432.566	4904.976	15842.00	0.3289294	1.6652878E-02	78.34551
CM-244	195.9270	28-FEB-2010	5530.833	5887.242	14624.00	0.3288428	1.6665678E-02	73.03269

CHAMBER 016 Instrument:

78774 Detector AESS-016 Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 3-AUG-2009 10:53:35

> Calibration Count Time 240.0000

3-AUG-2009 15:11:28 Efficiency Calibration Date/Time

Average Efficiency 0.3372796 Average Efficiency Error: 9.2755891E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0534	28-FEB-2010	2990.015	3299.769	15968.00	0.3304942	1.4191121E-02	47.63641
NP-237	199.3962	28-FEB-2010	4432.750	4903.568	16594.00	0.3467403	1.7544748E-02	65.62801
CM-244	198.6402	28-FEB-2010	5531.945	5886.508	15241.00	0.3381473	1.7127821E-02	51.73166

Instrument: CHAMBER 017

Detector: 78791 Standard ID AESS-017

14-FEB-2008 17:45:04 Standard Reference Date Calibration Analysis Date/Time 3-AUG-2009 10:53:35

240.0000

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:12:45

0.2920910 Average Efficiency Average Efficiency Error 8.0447914E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.0798	28-FEB-2010	2991.506	3301.266	14360.00	0.2887001	1.2420051E-02	46.05902
NP-237	208.5846	28-FEB-2010	4435.397	4901.753	14828.00	0.2961742	1.5007162E-02	55.70656
CM-244	205.5828	28-FEB-2010	5532.102	5885.058	13665.00	0.2929415	1.4859928E-02	50.18596

CHAMBER 018 Instrument:

Detector: 78782 Standard ID **AESS-018**

Standard Reference Date 14-FEB-2008 17:45:04 3-AUG-2009 10:53:35 Calibration Analysis Date/Time

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:12:56

> Average Efficiency 0.3172097 8.7289969E-03 Average Efficiency Error

Confidence: 95.00000

DPM **End Engy** EFF Err Cal. Istps Exp. Date Start Engy Counts EFF. Resolution GD-148 202.1856 28-FEB-2010 2988.342 3302.274 0.3205433 1.3773307E-02 42.03425 15345.00 NP-237 4435.776 208.8990 28-FEB-2010 4902.996 15628.00 0.3116947 1.5782947E-02 59.98587 CM-244 5884.764 0.3183995 1.6140889E-02 198.1458 28-FEB-2010 5535.506 14315.00 46.41229

CHAMBER 019 Instrument:

78786 Detector **AESS-019** Standard ID

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 3-AUG-2009 10:53:38

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:13:21

0.2910323 Average Efficiency Average Efficiency Error: 8.0228020E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.6468	28-FEB-2010	2990.757	3299.102	13644.00	0.2815492	1.2124360E-02	48.88054
NP-237	202.9140	28-FEB-2010	4436.959	4904.938	14592.00	0.2996101	1.5184480E-02	53.45035
CM-244	199.3140	28-FEB-2010	5530.360	5882.637	13450.00	0.2972434	1.5081594E-02	50.55271

Instrument: CHAMBER 020

Detector: 78787 Standard ID **AESS-020**

14-FEB-2008 21:55:55 Standard Reference Date Calibration Analysis Date/Time 3-AUG-2009 10:53:38

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:13:30

Average Efficiency 0.3471871 Average Efficiency Error 9.5441081E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	205.5870	28-FEB-2010	2988.029	3302.537	16453.00	0.3380062	1.4506385E-02	51.08092
NP-237	203.4984	28-FEB-2010	4437.491	4905.035	17379.00	0.3557895	1.7993098E-02	61.84319
CM-244	197.1096	28-FEB-2010	5532.389	5886.993	15772.00	0.3526238	1.7853415E-02	51.51802

CHAMBER 021 Instrument:

Detector: 67047 Standard ID **AESS-021**

Standard Reference Date 19-FEB-2008 15:31:52 3-AUG-2009 10:53:38 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:13:40

> Average Efficiency 0.3035440 Average Efficiency Error 8.3565973E-03

Confidence: 95.00000

Cal. Istps **End Engy** EFF Err DPM Exp. Date Start Engy Counts EFF. Resolution GD-148 208.3608 28-FEB-2010 2992.044 3301.105 14782.00 0.2995796 1.2881183E-02 58.16195 NP-237 210.1548 28-FEB-2010 4432.692 4903.261 15300.00 0.3033102 1.5362527E-02 64.83363 0.3096792 1.5701950E-02 CM-244 200.7390 28-FEB-2010 5532.273 5884.483 14116.00 51.57142

CHAMBER 022 Instrument:

72530 Detector: **AESS-022** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 3-AUG-2009 10:53:38

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:13:53

Average Efficiency 0.3171063 Average Efficiency Error: 8.7253209E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	209.6724	28-FEB-2010	2987.876	3301.717	15368.00	0.3095404	1.3300211E-02	46.46027
NP-237	206.8830	28-FEB-2010	4432.553	4902.907	16121.00	0.3246614	1.6433254E-02	59.61079
CM-244	203.0208	28-FEB-2010	5531.719	5883.858	14793.00	0.3210209	1.6266784E-02	54.93265

Instrument: CHAMBER 023

Detector: 78264 Standard ID: **AESS-023**

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 3-AUG-2009 10:53:38

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:14:51

Average Efficiency 0.3475247 Average Efficiency Error: 9.5510995E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	207.4764	28-FEB-2010	2992.270	3297.465	16655.00	0.3390353	1.4547646E-02	44.65316
NP-237	207.4998	28-FEB-2010	4434.353	4902.238	17621.00	0.3537784	1.7888635E-02	67.17326
CM-244	199.8804	28-FEB-2010	5535.006	5884.098	16062.00	0.3541352	1.7925926E-02	50.59406

Instrument: CHAMBER 024

76542 Detector: **AESS-024** Standard ID

14-FEB-2008 21:55:55 Standard Reference Date 3-AUG-2009 10:53:38 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:15:01

Average Efficiency: 0.3329758 9.1575533E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.5218	28-FEB-2010	2988.735	3301.963	15751.00	0.3268531	1.4038056E-02	48.09840
NP-237	205.6662	28-FEB-2010	4435.585	4904.900	16552.00	0.3352655	1.6964708E-02	62.82615
CM-244	198 3060	28-FFR-2010	5532 247	5883 527	15292 00	Ი 3398233	1 7212013F-02	54 96418

CHAMBER 025 Instrument: Detector: 45-149AA5 **AESS-025** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 3-AUG-2009 10:53:40

> Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:15:13

Average Efficiency 0.3273577 Average Efficiency Error: 9.0229549E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.5670	28-FEB-2010	2989.576	3302.009	15260.00	0.3295556	1.4161936E-02	65.60141
NP-237	167.9916	28-FEB-2010	4437.518	4905.500	13240.00	0.3283658	1.6664496E-02	71.67536
CM-244	157.2432	28-FEB-2010	5535.553	5882.966	11554.00	0.3234104	1.6448844E-02	64.13462

Instrument: CHAMBER 026

Detector: 78204 Standard ID AESS-026

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 3-AUG-2009 10:53:40

240.0000

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:15:23

Average Efficiency 0.3163501 Average Efficiency Error 9.2731481E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.5072	28-FEB-2010	2989.278	3302.066	15073.00	0.3190832	1.6165398E-02	47.54145
NP-237	168.0294	28-FEB-2010	4432.530	4904.245	12818.00	0.3178037	1.6136298E-02	64.89447
CM-244	160.5822	28-FEB-2010	5530.854	5885.357	11388.00	0.3123012	1.5887389E-02	53.07367

CHAMBER 027 Instrument:

Detector: 42484 Standard ID **AESS-027**

15-FEB-2008 09:06:52 3-AUG-2009 10:53:40 Standard Reference Date Calibration Analysis Date/Time

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:15:36

Average Efficiency 0.3396688 Average Efficiency Error: 9.9549843E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	193.4238	28-FEB-2010	2989.311	3298.574	15139.00	0.3305598	1.6745884E-02	45.75581
NP-237	161.6154	28-FEB-2010	4433.571	4901.458	13298.00	0.3428161	1.7396733E-02	58.91746
CM-244	148.1754	28-FEB-2010	5534.916	5884.719	11660.00	0.3465259	1.7621491E-02	49.89463

CHAMBER 028 Instrument:

78792 Detector **AESS-028** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 3-AUG-2009 10:53:40

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:15:45

Average Efficiency 0.3070537 Average Efficiency Error: 9.0059368E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.6542	28-FEB-2010	2988.458	3301.428	14649.00	0.3098790	1.5704965E-02	43.03392
NP-237	168.1992	28-FEB-2010	4433.918	4901.793	12445.00	0.3082309	1.5657367E-02	57.16418
CM-244	156.7614	28-FEB-2010	5530.766	5886.861	10793.00	0.3031792	1.5437813E-02	42.94358

Instrument: CHAMBER 029

Detector: 33454 Standard ID **AESS-029**

15-FEB-2008 09:06:52 Standard Reference Date Calibration Analysis Date/Time 3-AUG-2009 10:53:40

240.0000

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:15:55

Average Efficiency 0.3165512 Average Efficiency Error 9.2795976E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	201.5742	28-FEB-2010	2991.561	3299.264	14962.00	0.3134704	1.5882587E-02	59.06260
NP-237	169.7700	28-FEB-2010	4436.609	4905.813	12925.00	0.3171891	1.6103044E-02	65.57512
CM-244	154.8234	28-FEB-2010	5532.652	5886.650	11221.00	0.3191230	1.6238619E-02	58.94875

CHAMBER 030 Instrument:

Detector: 33447 Standard ID **AESS-030**

Standard Reference Date 15-FEB-2008 09:06:52 3-AUG-2009 10:53:40 Calibration Analysis Date/Time

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:16:05

> Average Efficiency 0.3195129 Average Efficiency Error 9.3687959E-03 Confidence: 95.00000

Start Engy EFF Err Cal. Istps DPM Exp. Date **End Engy** Counts EFF. Resolution GD-148 198.9792 28-FEB-2010 2992.462 3300.436 14496.00 0.3076674 1.5595090E-02 51.22312 NP-237 4435.706 166.3758 28-FEB-2010 4901.528 13016.00 0.3259090 1.6544048E-02 70.89224 CM-244 157.1856 28-FEB-2010 5532.111 5885.667 11657.00 0.3264974 1.6603231E-02 58.51925

Instrument: CHAMBER 031

67042 Detector **AESS-031** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 3-AUG-2009 10:53:41

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:16:16

Average Efficiency 0.3333972 Average Efficiency Error: 9.1897855E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	193.6650	28-FEB-2010	2990.816	3298.130	15264.00	0.3328327	1.4302717E-02	63.22559
NP-237	162.9186	28-FEB-2010	4432.666	4904.194	13199.00	0.3374993	1.7128870E-02	85.39982
CM-244	153.1968	28-FEB-2010	5530.750	5885.317	11495.00	0.3302312	1.6797049E-02	69.66753

Instrument: CHAMBER 032

Detector: 67041 **AESS-032** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 3-AUG-2009 10:53:41

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:16:28

Average Efficiency 0.3079946 Average Efficiency Error 8.4994007E-03 95.00000 Confidence:

DPM Start Engy EFF Err Resolution Cal. Istps Exp. Date End Engy Counts EFF. GD-148 195.2364 28-FEB-2010 2990.681 3302.442 14237.00 0.3079492 1.3250315E-02 56.35440 NP-237 165.9822 28-FEB-2010 4436.943 4904.070 12286.00 0.3083688 1.5667509E-02 62.42379 CM-244 153.7938 28-FEB-2010 5532.476 5883.050 10756.00 0.3076837 1.5668528E-02 54.99291

> Instrument: CHAMBER 033

Detector 78785 Standard ID **AESS-033**

Standard Reference Date 18-FEB-2008 11:28:15 3-AUG-2009 10:53:41 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:16:44

Average Efficiency 0.3159786 Average Efficiency Error 8.7208869E-03

Confidence 95.00000

Start Engy **End Engy** EFF Err Cal. Istps DPM Exp. Date Counts EFF. Resolution GD-148 192.4158 28-FEB-2010 2988.750 3301.323 0.3105978 1.3365801E-02 46.58186 14152.00 NP-237 1.6132571E-02 161.7816 28-FEB-2010 4437.327 4904.445 12331.00 0.3175407 57.74305 CM-244 147.2670 28-FEB-2010 5532.298 5882.301 10791.00 0.3224820 1.6420925E-02 47.06204

CHAMBER 034 Instrument:

61586 Detector **AESS-034** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 3-AUG-2009 10:53:41

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:16:57

Average Efficiency 0.3186626 Average Efficiency Error: 8.7871859E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.5488	28-FEB-2010	2990.405	3301.020	14898.00	0.3137061	1.3486663E-02	63.62747
NP-237	167.2962	28-FEB-2010	4436.289	4905.558	12847.00	0.3199310	1.6243735E-02	89.06429
CM-244	154.4388	28-FEB-2010	5534.591	5883.408	11387.00	0.3247890	1.6522311E-02	62.47897

Instrument: CHAMBER 035

Detector: 78202 Standard ID **AESS-035**

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 3-AUG-2009 10:53:41

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:17:07

Average Efficiency 0.3066753 Average Efficiency Error 8.4610144E-03 Confidence: 95.00000

Cal. Istps DPM EFF. EFF Err Resolution Exp. Date Start Engy End Engy Counts GD-148 198.6666 28-FEB-2010 2988.026 3302.211 14579.00 0.3098971 1.3328200E-02 45.84651 NP-237 168.2934 28-FEB-2010 4437.360 4905.577 12421.00 0.3074051 1.5615990E-02 59.70762 CM-244 158.8128 28-FEB-2010 5534.350 5884.600 10890.00 0.3016905 1.5359893E-02 46.83206

> CHAMBER 036 Instrument:

Detector: 78203 Standard ID AESS-036

Standard Reference Date 18-FEB-2008 11:28:15 3-AUG-2009 10:53:41 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:17:19

> Average Efficiency 0.3238717 8.9277234E-03 Average Efficiency Error

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	201.3204	28-FEB-2010	2988.68Ŏ´	3301.073	15196.00	0.3187600	1.3699047E-02	53.56891
NP-237	167.4312	28-FEB-2010	4435.041	4905.984	13273.00	0.3302565	1.6759887E-02	68.47729
CM-244	156 4188	28-FFR-2010	5531 465	5885 278	11554 00	0.3251042	1 6534815F-02	54 91026

CHAMBER 037 Instrument: Detector: 45-149BB5

AESS-037 Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 3-AUG-2009 10:53:43

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:17:30

Average Efficiency 0.3588454 Average Efficiency Error: 9.8783271E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7372	28-FEB-2010	2991.168	3302.212	16427.00	0.3508205	1.5056745E-02	64.60843
NP-237	167.1294	28-FEB-2010	4432.895	4904.029	14662.00	0.3654579	1.8520588E-02	77.87219
CM-244	154.7664	28-FEB-2010	5532.110	5886.157	12816.00	0.3643632	1.8501068E-02	65.29257

Instrument: CHAMBER 038

Detector: 72532 Standard ID: **AESS-038**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 3-AUG-2009 10:53:43

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:17:42

Average Efficiency 0.3401872 Average Efficiency Error 9.3690762E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1408	28-FEB-2010	2992.472	3300.031	15896.00	0.3353978	1.4402774E-02	52.10275
NP-237	170.0886	28-FEB-2010	4434.591	4905.742	14074.00	0.3446777	1.7477222E-02	66.10255
CM-244	157.7460	28-FEB-2010	5531.463	5885.396	12284.00	0.3427305	1.7413909E-02	59.13643

Instrument: CHAMBER 039 Detector: 45-149BB2 **AESS-039** Standard ID

18-FEB-2008 15:31:47 3-AUG-2009 10:53:43 Standard Reference Date Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:17:50

Average Efficiency 0.3635030 Average Efficiency Errór: 1.0010615E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	192.2418	28-FEB-2010	2988.231	3297.932	16136.00	0.3544406	1.5216673E-02	64.96208
NP-237	159.1506	28-FEB-2010	4433.148	4905.972	14381.00	0.3764731	1.9083694E-02	79.22511
CM-244	151.7142	28-FEB-2010	5532.651	5884.312	12578.00	0.3647127	1.8524269E-02	60.58306

CHAMBER 040 Instrument:

Detector: 78773 **AESS-040** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 3-AUG-2009 10:53:43

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:18:00

Average Efficiency 0.3197618 Average Efficiency Error: 8.8180574E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4828	28-FEB-2010	2989.631	3299.278	14776.00	0.3208454	1.3795648E-02	47.91216
NP-237	166.8174	28-FEB-2010	4434.455	4902.104	12719.00	0.3176762	1.6131660E-02	62.00956
CM-244	155.0100	28-FEB-2010	5534.140	5885.901	11283.00	0.3203784	1.6300978E-02	46.47287

Instrument: CHAMBER 041

Detector: 78205 Standard ID **AESS-041**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 3-AUG-2009 10:53:43

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:18:09

Average Efficiency 0.3320726 Average Efficiency Error 9.1476394E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.9034	28-FEB-2010	2988.485	3301.427	15744.00	0.3260407	1.4003299E-02	48.05792
NP-237	171.2268	28-FEB-2010	4434.095	4902.163	13892.00	0.3380044	1.7141877E-02	64.23948
CM-244	159.5796	28-FEB-2010	5531.498	5882.427	12150.00	0.3351395	1.7031105E-02	52.60388

CHAMBER 042 Instrument:

Detector: 78793 **AESS-042** Standard ID

18-FEB-2008 15:31:47 3-AUG-2009 10:53:43 Standard Reference Date Calibration Analysis Date/Time

239.9998 Calibration Count Time

Efficiency Calibration Date/Time 3-AUG-2009 15:18:18

Average Efficiency 0.3355130 Average Efficiency Error: 9.2503820E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	188.7090	28-FEB-2010	2991.775	3302.182	14895.00	0.3333198	1.4329934E-02	45.19947
NP-237	159.6558	28-FEB-2010	4434.604	4903.031	12973.00	0.3384922	1.7183678E-02	58.44910
CM-244	150.5208	28-FEB-2010	5530.666	5882.826	11480.00	0.3356853	1.7074790E-02	51.00649

CHAMBER 043 Instrument:

76543 Detector **AESS-043** Standard ID

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 3-AUG-2009 10:53:44

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:18:26

Average Efficiency 0.3394984 Average Efficiency Error: 9.3512600E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7708	28-FEB-2010	2990.605	3297.721	15848.00	0.3383991	1.4532390E-02	52.98521
NP-237	168.7422	28-FEB-2010	4435.729	4906.163	13860.00	0.3421971	1.7355058E-02	63.69067
CM-244	156.3252	28-FEB-2010	5530.889	5884.237	12022.00	0.3383877	1.7199298E-02	58.34155

Instrument: CHAMBER 044

Detector: 79459 Standard ID AESS-044

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 3-AUG-2009 10:53:44

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:18:36

0.3472623 Average Efficiency Average Efficiency Error 9.5641837E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4510	28-FEB-2010	2992.053	3299.650	16240.00	0.3526795	1.5139417E-02	46.60588
NP-237	166.6248	28-FEB-2010	4434.444	4905.733	13868.00	0.3467396	1.7585307E-02	67.40435
CM-244	155.8290	28-FEB-2010	5531.674	5885.749	12067.00	0.3406831	1.7315021E-02	50.52586

CHAMBER 045 Instrument:

Detector: 78783 Standard ID **AESS-045**

Standard Reference Date 19-FEB-2008 00:32:27 3-AUG-2009 10:53:44 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:18:46

> Average Efficiency 0.3473964 Average Efficiency Error 9.5752627E-03

Confidence: 95.00000

End Engy EFF Err Cal. Istps DPM Exp. Date Start Engy Counts EFF. Resolution GD-148 186.9936 28-FEB-2010 2991.163 3297.674 15321.00 0.3460006 1.4867575E-02 42.89996 NP-237 160.8066 28-FEB-2010 4435.665 4901.796 13169.00 0.3411981 1.7317103E-02 61.13550 CM-244 145.8384 28-FEB-2010 5533.912 5883.468 11808.00 0.3562486 1.8112443E-02 45.70908

CHAMBER 046 Instrument:

Detector: 76544 **AESS-046** Standard ID

Standard Reference Date 19-FEB-2008 19:35:48 Calibration Analysis Date/Time 3-AUG-2009 10:53:44

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:18:55

Average Efficiency 0.3396656 Average Efficiency Error: 9.3595181E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.7474	28-FEB-2010	2988.013	3297.754	15574.00	0.3376833	1.4506049E-02	53.28547
NP-237	164.6658	28-FEB-2010	4433.428	4906.578	13320.00	0.3369921	1.7100822E-02	64.03419
CM-244	151.3824	28-FEB-2010	5533.808	5885.833	11881.00	0.3453883	1.7558334E-02	49.95901

Instrument: CHAMBER 047 Detector: 46-089B1

Standard ID **AESS-047**

Standard Reference Date 19-FEB-2008 00:32:27 3-AUG-2009 10:53:44 Calibration Analysis Date/Time

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:19:03

Average Efficiency 0.3416091 Average Efficiency Error 9.4094146E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.4804	28-FEB-2010	2989.788	3298.531	15812.00	0.3381371	1.4521689E-02	57.51329
NP-237	168.3948	28-FEB-2010	4436.493	4903.356	13857.00	0.3428169	1.7386565E-02	66.01371
CM-244	154.6032	28-FEB-2010	5535.296	5884.198	12141.00	0.3454518	1.7555740E-02	60.25008

CHAMBER 048 Instrument:

Detector: 42483 Standard ID **AESS-048**

19-FEB-2008 00:32:27 Standard Reference Date 3-AUG-2009 10:53:44 Calibration Analysis Date/Time

239.9998 Calibration Count Time

Efficiency Calibration Date/Time 3-AUG-2009 15:19:12

Average Efficiency 0.3123633 Average Efficiency Error: 8.6213006E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	191.8350	28-FEB-2010	2991.838	3299.553	14065.00	0.3096292	1.3325672E-02	54.65192
NP-237	161.5530	28-FEB-2010	4437.268	4906.475	12285.00	0.3167912	1.6095465E-02	66.40394
CM-244	151.1856	28-FEB-2010	5533.930	5885.396	10717.00	0.3119354	1.5885884E-02	57.74399

CHAMBER 065 Instrument:

Detector: 68551 **AESS-001** Standard ID

Standard Reference Date 20-FEB-2008 09:54:53 Calibration Analysis Date/Time 11-AUG-2009 07:20:10

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:32:36

Average Efficiency: 0.3083470 Average Efficiency Error: 8.5085379E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.6698	28-FEB-2010	2991.020	3301.790	14596.00	0.2954247	1.2705522E-02	58.52770
NP-237	171.0024	28-FEB-2010	4435.576	4904.585	13191.00	0.3213498	1.6309390E-02	64.23100
CM-244	158.1060	28-FEB-2010	5533.015	5885.628	11352.00	0.3164231	1.6097672E-02	59.22498

Instrument: CHAMBER 066 Detector: 46-089C1

Standard ID **AESS-002**

Standard Reference Date 19-FEB-2008 11:05:22 11-AUG-2009 07:20:10 Calibration Analysis Date/Time

239.9998

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 11:33:22

Average Efficiency 0.3112474 Average Efficiency Error: 8.5695526E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1144	28-FEB-2010	2988.945	3298.217	14657.00	0.3093549	1.3303596E-02	55.37485
NP-237	200.4990	28-FEB-2010	4435.388	4905.987	14981.00	0.3113079	1.5771858E-02	67.81973
CM-244	196.5558	28-FEB-2010	5534.885	5886.957	13998.00	0.3138950	1.5917554E-02	57.19744

Instrument: CHAMBER 067 Detector: 46-089B4 **AESS-003** Standard ID

Standard Reference Date 15-FEB-2008 13:12:27 11-AUG-2009 07:20:10 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:33:34

Average Efficiency: 0.3251616 Average Efficiency Error: 8.9453170E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.9740	28-FEB-2010	2990.195	3298.405	15523.00	0.3230599	1.3878663E-02	73.01379
NP-237	203.2080	28-FEB-2010	4432.996	4903.114	16006.00	0.3281700	1.6612297E-02	79.50097
CM-244	197 2236	28-FFR-2010	5531 881	5884 128	14543 00	0 3251645	1 6480407F-02	73 28760

CHAMBER 068 Instrument:

Detector: 78794 **AESS-004** Standard ID

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 11-AUG-2009 07:20:10

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:38:02

Average Efficiency: 0.2988316 Average Efficiency Error: 8.2298918E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.1222	28-FEB-2010	2989.058	3297.794	14610.00	0.2994183	1.2877054E-02	47.51308
NP-237	204.2586	28-FEB-2010	4436.694	4904.361	14617.00	0.2981576	1.5110506E-02	57.11169
CM-244	198.8100	28-FEB-2010	5532.395	5887.637	13466.00	0.2986969	1.5155178E-02	48.38633

Instrument: CHAMBER 069

Detector: 78795 Standard ID **AESS-005**

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 11-AUG-2009 07:20:10

239.9998

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 11:38:36

Average Efficiency 0.3175282 Average Efficiency Error: 8.7343659E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.7452	28-FEB-2010	2991.230	3298.554	15670.00	0.3141076	1.3491860E-02	49.70101
NP-237	209.5938	28-FEB-2010	4432.770	4904.008	16141.00	0.3208218	1.6238715E-02	60.15531
CM-244	202.7478	28-FEB-2010	5535.390	5884.253	14673.00	0.3191766	1.6174993E-02	51.27451

Instrument: CHAMBER 070 Detector: 46-089B2 AESS-006 Standard ID

Standard Reference Date 14-FEB-2008 09:35:18 11-AUG-2009 07:20:10 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:38:49

Average Efficiency: 0.3529845 Average Efficiency Error: 9.7008841E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6952	28-FEB-2010	2992.134	3299.079	16742.00	0.3471912	1.4896408E-02	63.07681
NP-237	204.7038	28-FEB-2010	4435.081	4904.079	17300.00	0.3520767	1.7806258E-02	82.77227
CM-244	195.0060	28-FEB-2010	5531.689	5883.454	16039.00	0.3627528	1.8362503E-02	70.00533

CHAMBER 071 Instrument:

Detector: 64259 **AESS-007** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 11-AUG-2009 07:20:11

Calibration Count Time : 239.9998

Efficiency Calibration Date/Time : 11-AUG-2009 11:39:05

Average Efficiency: 0.3208804 Average Efficiency Error: 8.8285562E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.7342	28-FEB-2010	2991.474	3300.552	15413.00	0.3149293	1.3531087E-02	62.47171
NP-237	205.0260	28-FEB-2010	4434.375	4901.563	15925.00	0.3235798	1.6380999E-02	71.98354
CM-244	199.6806	28-FEB-2010	5533.885	5882.968	14807.00	0.3270442	1.6571697E-02	60.00851

Instrument: CHAMBER 072 Detector: 45-149AA3

Standard ID : **AESS-008**

14-FEB-2008 13:39:25 Standard Reference Date 11-AUG-2009 07:20:11 Calibration Analysis Date/Time

239.9998

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 11:41:05

Average Efficiency 0.3267370 Average Efficiency Error: 8.9871846E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.0418	28-FEB-2010	2989.276	3301.453	15650.00	0.3208615	1.3782272E-02	51.51645
NP-237	209.2716	28-FEB-2010	4434.016	4904.104	16413.00	0.3267362	1.6534751E-02	70.18485
CM-244	199.6488	28-FEB-2010	5533.538	5886.502	15197.00	0.3356811	1.7003637E-02	59.25634

Instrument: CHAMBER 073

Detector: 78775 **AESS-009** Standard ID

19-FEB-2008 11:05:22 Standard Reference Date 11-AUG-2009 07:20:11 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:41:19

Average Efficiency: 0.3329331 Average Efficiency Error: 9.1557140E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.3736	28-FEB-2010	2991.884	3298.904	15903.00	0.3302805	1.4182931E-02	45.72569
NP-237	204.0192	28-FEB-2010	4435.607	4905.083	16398.00	0.3348464	1.6945357E-02	65.14548
CM-244	197 2128	28-FFR-2010	5533 495	5885 787	14977 00	0 3348103	1 6962610F-02	52 22756

CHAMBER 074 Instrument:

Detector: 78266 **AESS-010** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 11-AUG-2009 07:20:11

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time : 11-AUG-2009 11:41:50

Average Efficiency: 0.3171463 Average Efficiency Error : Confidence : 8.7284483E-03

95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.0008	28-FEB-2010	2992.157	3300.875	15091.00	0.3155650	1.3563500E-02	48.84003
NP-237	202.9926	28-FEB-2010	4434.541	4902.170	15525.00	0.3186204	1.6135018E-02	61.89280
CM-244	196.2330	28-FEB-2010	5535.537	5885.413	14144.00	0.3179084	1.6118674E-02	53.87412

Instrument: CHAMBER 075

Detector: 68550 Standard ID **AESS-011**

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time : 11-AUG-2009 07:20:11

239.9998

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 11:42:08

Average Efficiency 0.2994908 Average Efficiency Error: 8.2427450E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	212.8284	28-FEB-2010	2992.440	3300.846	15058.00	0.2988699	1.2846401E-02	51.75235
NP-237	214.4868	28-FEB-2010	4432.709	4904.580	15499.00	0.3010221	1.5244178E-02	70.86993
CM-244	208.4184	28-FEB-2010	5531.026	5885.258	14123.00	0.2988416	1.5152307E-02	52.88081

CHAMBER 076 Instrument:

Detector: 78779 **AESS-012** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 11-AUG-2009 07:20:11 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:42:40

Average Efficiency: 0.3028130 Average Efficiency Error: 8.3379308E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Enav	Counts	EFF.	EFF Err	Resolution
GD-148	206.2200	28-FEB-2010	2991.979	3300.154	14630.00	0.2996896	1.2888389E-02	45.27155
NP-237	205.8930	28-FEB-2010	4436.825	4903.508	15329.00	0.3101608	1.5709149E-02	64.17129
CM-244	203 1954	28-FFR-2010	5535 510	5884 591	13832 00	0.3002685	1 5228972F-02	51 27063

CHAMBER 077 Instrument:

Detector: 67576 **AESS-013** Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 11-AUG-2009 07:20:12

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 11-AUG-2009 11:42:53

Average Efficiency: 0.3266060 Average Efficiency Error: 8.9822784E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6544	28-FEB-2010	2989.957	3302.071	15788.00	0.3274788	1.4064389E-02	50.84729
NP-237	210.2526	28-FEB-2010	4433.544	4902.799	16283.00	0.3226589	1.6329939E-02	64.60262
CM-244	201.9108	28-FEB-2010	5530.788	5882.782	15087.00	0.3295008	1.6692154E-02	50.76959

Instrument: CHAMBER 078

Detector: 67577 Standard ID AESS-014

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 11-AUG-2009 07:20:12

240.0000

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 11:43:47

Average Efficiency 0.3266194 Average Efficiency Error: 8.9784693E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	214.7088	28-FEB-2010	2988.255	3302.223	16485.00	0.3242883	1.3917238E-02	54.47247
NP-237	211.7160	28-FEB-2010	4437.236	4905.680	16830.00	0.3311986	1.6755598E-02	62.86163
CM-244	207.3882	28-FEB-2010	5535.005	5885.680	15311.00	0.3254575	1.6484126E-02	54.68671

Instrument: CHAMBER 079

Detector: 67598 Standard ID **AESS-015**

14-FEB-2008 17:45:04 Standard Reference Date 11-AUG-2009 07:20:12 Calibration Analysis Date/Time

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 11-AUG-2009 11:44:09

Average Efficiency: 0.3272116 Average Efficiency Errór: 9.0027396E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0270	28-FEB-2010	2989.159	3300.331	15511.00	0.3211554	1.3797027E-02	50.97751
NP-237	200.6460	28-FEB-2010	4434.317	4902.854	16177.00	0.3359110	1.7001966E-02	61.88776
CM-244	195.9270	28-FEB-2010	5535.480	5887.277	14557.00	0.3276861	1.6607955E-02	52.62397

CHAMBER 080 Instrument:

78197 Detector AESS-016 Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 11-AUG-2009 12:17:29

> Calibration Count Time 239.9998

12-AUG-2009 06:47:19 Efficiency Calibration Date/Time

Average Efficiency 0.3321076 Average Efficiency Error: 9.1349650E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0534	28-FEB-2010	2991.650	3302.015	15752.00	0.3260951	1.4005513E-02	48.00739
NP-237	199.3962	28-FEB-2010	4433.624	4906.537	16268.00	0.3399083	1.7203139E-02	68.49010
CM-244	198.6402	28-FEB-2010	5533.522	5887.645	15012.00	0.3333320	1.6887236E-02	53.20805

Instrument: CHAMBER 081

Detector: 72533 Standard ID **AESS-017**

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 11-AUG-2009 07:20:12

240.0000

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 11:46:32

6.1864634E-03 Average Efficiency Average Efficiency Error 2.9860463E-04

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.0798	28-FEB-2010	2994.266	3303.451	1475.000	2.9659975E	-0124708204E-03	0.0000000E+00
NP-237	208.5846	28-FEB-2010	4435.242	4901.625	202.0000	4.0063704E	-0334766502E-04	575.4393
CM-244	205.5828	28-FEB-2010	5531.807	5884.164	427.0000	9.0843663E	-0633504453E-04	562.1900

CHAMBER 082 Instrument:

Detector: 64263 Standard ID **AESS-018**

Standard Reference Date 14-FEB-2008 17:45:04 11-AUG-2009 07:20:12 Calibration Analysis Date/Time

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 11-AUG-2009 11:47:05

> Average Efficiency 0.3226976 Average Efficiency Error 8.8783512E-03

Confidence: 95.00000

DPM **End Engy** EFF Err Cal. Istps Exp. Date Start Engy Counts EFF. Resolution GD-148 202.1856 28-FEB-2010 2987.542 3297.569 15428.00 0.3223361 1.3849068E-02 64.65321 4904.506 NP-237 208.8990 28-FEB-2010 4435.421 15892.00 93.68992 CM-244 198.1458 28-FEB-2010 5534.230 5884.907 14803.00 0.3294876 1.6695555E-02 84.86885

CHAMBER 083 Instrument:

Detector: 64278 **AESS-019** Standard ID

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 11-AUG-2009 07:20:14

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:47:29

0.3395500 Average Efficiency: Average Efficiency Error: 9.3379803E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.6468	28-FEB-2010	2991.854	3298.707	15947.00	0.3291289	1.4132823E-02	53.16394
NP-237	202.9140	28-FEB-2010	4433.271	4906.151	16931.00	0.3476149	1.7584924E-02	67.04104
CM-244	199.3140	28-FEB-2010	5531.993	5884.932	15718.00	0.3476342	1.7601561E-02	59.50858

Instrument: CHAMBER 084

Detector: 78265 Standard ID **AESS-020**

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 11-AUG-2009 07:20:14

239.9998

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 11:47:52

Average Efficiency 0.3397457 Average Efficiency Error: 9.3453201E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	205.5870	28-FEB-2010	2988.678	3299.931	15922.00	0.3271575	1.4048551E-02	47.08979
NP-237	203.4984	28-FEB-2010	4434.465	4903.170	17250.00	0.3531433	1.7860783E-02	67.92932
CM-244	197.1096	28-FEB-2010	5531.407	5886.178	15482.00	0.3464514	1.7544933E-02	50.18247

CHAMBER 085 Instrument:

Detector: 78776 Standard ID **AESS-021**

Standard Reference Date 19-FEB-2008 15:31:52 11-AUG-2009 07:20:14 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:48:19

Average Efficiency: 0.3272626 Average Efficiency Error: 8.9994660E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.3608	28-FEB-2010	2990.698	3300.313	15918.00	0.3226679	1.3855824E-02	49.75027
NP-237	210.1548	28-FEB-2010	4435.121	4902.282	16630.00	0.3296844	1.6681336E-02	59.70044
CM-244	200.7390	28-FEB-2010	5534.187	5882.859	15098.00	0.3315589	1.6796166E-02	51.87433

CHAMBER 086 Instrument:

Detector: 78198 **AESS-022** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 11-AUG-2009 07:20:14

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:48:41

Average Efficiency: 0.3012526 Average Efficiency Error: 8.2951793E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	209.6724	28-FEB-2010	2990.009	3300.939	14622.00	0.2945913	1.2669257E-02	46.73733
NP-237	206.8830	28-FEB-2010	4436.927	4902.983	15242.00	0.3069340	1.5546833E-02	58.46733
CM-244	203.0208	28-FEB-2010	5531.983	5883.724	14065.00	0.3055728	1.5494397E-02	51.66624

Instrument: CHAMBER 087

Detector: 78199 Standard ID **AESS-023**

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 11-AUG-2009 07:20:14

239.9998

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 11:49:08

Average Efficiency 0.3135695 Average Efficiency Error: 8.6297104E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	207.4764	28-FEB-2010	2988.599	3301.987	15111.00	0.3076608	1.3223418E-02	48.25697
NP-237	207.4998	28-FEB-2010	4434.300	4902.242	15867.00	0.3185670	1.6127942E-02	61.93990
CM-244	199.8804	28-FEB-2010	5532.304	5887.140	14381.00	0.3173418	1.6086275E-02	50.20942

CHAMBER 088 Instrument:

Detector: 33452 **AESS-024** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 11-AUG-2009 07:20:14 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:50:14

Average Efficiency: 0.3028336 Average Efficiency Error: 8.3410190E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.5218	28-FEB-2010	2989.881	3297.896	14259.00	0.2959496	1.2733680E-02	60.40763
NP-237	205.6662	28-FEB-2010	4436.727	4902.043	15208.00	0.3080562	1.5604130E-02	68.20498
CM-244	198.3060	28-FEB-2010	5532.799	5884.609	13848.00	0.3079579	1.5618804E-02	57.90837

CHAMBER 089 Instrument:

Detector: 78262 **AESS-025** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 11-AUG-2009 07:20:15

> Calibration Count Time 240.0000

Efficiency Calibration Date/Time 11-AUG-2009 11:50:54

Average Efficiency: 0.2999636 Average Efficiency Error: 8.2814181E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.5670	28-FEB-2010	2989.340	3299.886	14192.00	0.3065364	1.3190371E-02	47.47885
NP-237	167.9916	28-FEB-2010	4433.954	4903.393	12026.00	0.2982433	1.5158199E-02	61.37537
CM-244	157.2432	28-FEB-2010	5533.423	5884.190	10453.00	0.2932044	1.4938097E-02	52.58473

Instrument: CHAMBER 090

Detector: 78263 Standard ID **AESS-026**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 11-AUG-2009 07:20:15

240.0000

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 11:51:07

Average Efficiency 0.3280271 Average Efficiency Error: 9.6107582E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.5072	28-FEB-2010	2992.174	3298.193	15340.00	0.3247949	1.6451096E-02	48.79327
NP-237	168.0294	28-FEB-2010	4432.899	4902.301	13513.00	0.3350319	1.6997805E-02	59.73701
CM-244	160.5822	28-FEB-2010	5531.267	5884.186	11821.00	0.3246754	1.6506171E-02	54.24763

CHAMBER 091 Instrument:

Detector: 78259 **AESS-027** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 11-AUG-2009 07:20:15 Calibration Analysis Date/Time

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 11-AUG-2009 11:51:19

Average Efficiency: 0.3422945 1.0031743E-02 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	193.4238	28-FEB-2010	2988.796	3297.819	15212.00	0.3322093	1.6828449E-02	48.17033
NP-237	161.6154	28-FEB-2010	4433.118	4901.645	13301.00	0.3428935	1.7400602E-02	71.25236
CM-244	148.1754	28-FEB-2010	5531.054	5887.180	11864.00	0.3531335	1.7951898E-02	54.03432

CHAMBER 092 Instrument:

Detector: 79457 **AESS-028** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 11-AUG-2009 07:20:15

> Calibration Count Time 240.0000

Efficiency Calibration Date/Time : 11-AUG-2009 11:52:08

Average Efficiency: 0.3126248 Average Efficiency Error: 9.1664707E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.6542	28-FEB-2010	2988.378	3299.875	14752.00	0.3115867	1.5790872E-02	44.92863
NP-237	168.1992	28-FEB-2010	4435.762	4905.401	12691.00	0.3138909	1.5940819E-02	59.90319
CM-244	156.7614	28-FEB-2010	5534.466	5887.335	11106.00	0.3124176	1.5899830E-02	46.96757

Instrument: CHAMBER 093

Detector: 33206 Standard ID **AESS-029**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 11-AUG-2009 07:20:15

240.0000

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 11:52:22

Average Efficiency 0.3223998 Average Efficiency Error: 9.4486484E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	201.5742	28-FEB-2010	2988.021	3298.707	15183.00	0.3181591	1.6117128E-02	52.68830
NP-237	169.7700	28-FEB-2010	4432.645	4901.916	13165.00	0.3230736	1.6397305E-02	66.05635
CM-244	154.8234	28-FEB-2010	5530.870	5883.862	11451.00	0.3262046	1.6592693E-02	55.78003

CHAMBER 094 Instrument:

Detector: 78267 **AESS-030** Standard ID

15-FEB-2008 09:06:52 Standard Reference Date 11-AUG-2009 07:20:15 Calibration Analysis Date/Time

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 11-AUG-2009 11:52:36

Average Efficiency: 0.3070784 Average Efficiency Error: 9.0072202E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.9792	28-FEB-2010	2987.496	3299.970	14244.00	0.3023582	1.5329675E-02	44.82082
NP-237	166.3758	28-FEB-2010	4432.930	4902.883	12450.00	0.3117883	1.5837880E-02	57.18416
CM-244	157 1856	28-FFR-2010	5531 875	5884 464	10956 00	0 3073991	1 5648084F-02	55 69304

CHAMBER 095 Instrument:

Detector: 64279 **AESS-031** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 11-AUG-2009 07:20:16

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:53:20

Average Efficiency: 0.3112848 Average Efficiency Error: 8.5905641E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	193.6650	28-FEB-2010	2991.646	3298.356	14103.00	0.3075817	1.3236930E-02	52.02211
NP-237	162.9186	28-FEB-2010	4435.397	4905.664	12249.00	0.3132029	1.5913907E-02	59.25825
CM-244	153.1968	28-FEB-2010	5530.369	5883.804	10942.00	0.3147666	1.6023749E-02	56.52655

Instrument: CHAMBER 096

Detector: 67605 Standard ID AESS-032

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 11-AUG-2009 07:20:16

239.9998

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 11:53:35

Average Efficiency 0.3007939 Average Efficiency Error: 8.3044088E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.2364	28-FEB-2010	2989.386	3301.860	13969.00	0.3022173	1.3008440E-02	46.72513
NP-237	165.9822	28-FEB-2010	4437.256	4904.015	11834.00	0.2969258	1.5095386E-02	61.08714
CM-244	153.7938	28-FEB-2010	5531.292	5886.331	10564.00	0.3028315	1.5425657E-02	47.63036

Instrument: CHAMBER 097

Detector: 67599 Standard ID **AESS-033**

Standard Reference Date 18-FEB-2008 11:28:15 11-AUG-2009 07:20:16 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:54:04

Average Efficiency: 0.3450123 Average Efficiency Error: 9.5089795E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	192.4158	28-FEB-2010	2991.155	3299.592	15339.00	0.3367012	1.4467746E-02	59.45457
NP-237	161.7816	28-FEB-2010	4437.204	4904.260	13605.00	0.3503401	1.7772736E-02	79.89651
CM-244	147.2670	28-FEB-2010	5531.403	5886.106	11772.00	0.3523416	1.7914115E-02	60.43928

CHAMBER 098 Instrument:

68644 Detector **AESS-034** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 11-AUG-2009 07:20:16

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:54:57

Average Efficiency 0.3358550 Average Efficiency Error: 9.2535829E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.5488	28-FEB-2010	2992.247	3301.860	15657.00	0.3297495	1.4163947E-02	50.47488
NP-237	167.2962	28-FEB-2010	4432.619	4906.019	13588.00	0.3383684	1.7165720E-02	63.83917
CM-244	154.4388	28-FEB-2010	5534.382	5884.237	11997.00	0.3424924	1.7407812E-02	51.17926

Instrument: CHAMBER 099

Detector: 70317 Standard ID **AESS-035**

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 11-AUG-2009 07:20:16

239.9998

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 11:55:11

Average Efficiency 0.3432277 Average Efficiency Error 9.4517590E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.6666	28-FEB-2010	2987.820	3298.212	15976.00	0.3396714	1.4585057E-02	54.44847
NP-237	168.2934	28-FEB-2010	4437.036	4906.585	14008.00	0.3467679	1.7584279E-02	71.12630
CM-244	158.8128	28-FEB-2010	5530.871	5884.331	12421.00	0.3448446	1.7517686E-02	52.96134

CHAMBER 100 Instrument:

Detector: 79456 Standard ID **AESS-046**

Standard Reference Date 19-FEB-2008 19:35:48 11-AUG-2009 07:20:16 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:55:23

> Average Efficiency 0.3455574 Average Efficiency Error 9.5195137E-03 Confidence: 95.00000

DPM EFF Err Cal. Istps Exp. Date Start Engy **End Engy** Counts EFF. Resolution GD-148 194.7474 28-FEB-2010 2989.623 3299.666 15783.00 0.3422834 1.4700302E-02 52.09954 NP-237 164.6658 28-FEB-2010 4436.895 4905.650 13580.00 0.3435225 1.7427422E-02 69.24625 CM-244 151.3824 28-FEB-2010 5534.086 5886.872 12110.00 0.3525722 1.7917577E-02 56.51697

CHAMBER 101 Instrument:

64253 Detector **AESS-037** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 11-AUG-2009 07:20:17

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:55:41

0.3333714 Average Efficiency Average Efficiency Error: 9.1898674E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7372	28-FEB-2010	2990.814	3297.893	15101.00	0.3225393	1.3863103E-02	69.71876
NP-237	167.1294	28-FEB-2010	4435.403	4905.470	13614.00	0.3393782	1.7216442E-02	75.26087
CM-244	154.7664	28-FEB-2010	5534.897	5882.499	12090.00	0.3444314	1.7504154E-02	64.32682

Instrument: CHAMBER 102

Detector: 72525 Standard ID **AESS-038**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 11-AUG-2009 07:20:17

239.9998

Cal. Istps

DPM

Exp. Date

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 11:55:55

Average Efficiency 0.3351222 Average Efficiency Error 9.2311725E-03 Confidence: 95.00000

EFF Err Resolution Start Engy End Engy Counts EFF. 2989.911 3298.890 15784.00 0.3331057 1.4306106E-02 52.96164

GD-148 200.1408 28-FEB-2010 NP-237 170.0886 28-FEB-2010 4436.604 4903.163 13774.00 0.3373874 1.7112618E-02 67.26456 CM-244 157.7460 28-FEB-2010 5533.661 5884.537 12012.00 0.3357387 1.7064173E-02 56.82374

> CHAMBER 103 Instrument:

Detector: 79461 Standard ID **AESS-039**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 11-AUG-2009 07:20:17

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:56:06

> Average Efficiency: 0.3326890 Average Efficiency Error: 9.1751814E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	192.2418	28-FEB-2010	2989.467	3301.138	14760.00	0.3242984	1.3944432E-02	47.60223
NP-237	159.1506	28-FEB-2010	4432.983	4903.264	13171.00	0.3447756	1.7498676E-02	57.68694
CM-244	151 7142	28-FFR-2010	5533 387	5886 945	11484 00	በ 3337491	1 6975598F-02	51 22444

CHAMBER 104 Instrument:

72524 Detector **AESS-040** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 11-AUG-2009 07:20:17

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:56:56

Average Efficiency 0.3150799 Average Efficiency Error: 8.6921128E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4828	28-FEB-2010	2991.174	3300.565	14723.00	0.3197476	1.3749403E-02	50.59072
NP-237	166.8174	28-FEB-2010	4436.202	4904.648	12311.00	0.3074494	1.5620295E-02	55.80039
CM-244	155.0100	28-FEB-2010	5532.970	5885.836	11138.00	0.3167908	1.6121507E-02	49.72461

Instrument: CHAMBER 105

Detector: 78777 Standard ID **AESS-041**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 11-AUG-2009 07:20:17

239.9998

5883.508

DPM

203.9034

171.2268

159.5796

28-FEB-2010

5530.878

Cal. Istps

GD-148

NP-237

CM-244

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 11:57:20

Average Efficiency 0.3276281 Average Efficiency Error 9.0270750E-03 Confidence: 95.00000

EFF Err Resolution Exp. Date Start Engy End Engy Counts EFF. 28-FEB-2010 2990.222 3299.531 15562.00 0.3223552 1.3847793E-02 46.50069 28-FEB-2010 4434.728 4902.932 13744.00 0.3344322 1.6963221E-02 65.77631

0.3287036 1.6709210E-02

49.01804

11897.00

CHAMBER 106 Instrument:

Detector: 64274 Standard ID **AESS-042**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 11-AUG-2009 07:20:17

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 11:57:33

> Average Efficiency 0.3250493 Average Efficiency Error: 8.9671388E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	188.7090	28-FEB-2010	2987.640	3299.757	14336.00	0.3208575	1.3803991E-02	53.47353
NP-237	159.6558	28-FEB-2010	4434.577	4901.415	12565.00	0.3278506	1.6651530E-02	72.39591
CM-244	150.5208	28-FEB-2010	5534.428	5884.452	11211.00	0.3283702	1.6708910E-02	56.10339

CHAMBER 107 Instrument:

Detector: 67578 **AESS-043** Standard ID

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 11-AUG-2009 07:20:19

> Calibration Count Time : 239.9998

Efficiency Calibration Date/Time : 11-AUG-2009 11:58:23

Average Efficiency: 0.3085136 Average Efficiency Error: Confidence: 8.5112611E-03

95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7708	28-FEB-2010	2988.547	3298.638	14405.00	0.3076421	1.3234209E-02	50.64014
NP-237	168.7422	28-FEB-2010	4435.772	4904.146	12514.00	0.3089727	1.5693650E-02	62.76998
CM-244	156.3252	28-FEB-2010	5532.554	5882.324	10968.00	0.3092847	1.5743818E-02	52.78785

Instrument: CHAMBER 108

Detector: 78778 Standard ID : AESS-044

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time : 11-AUG-2009 07:20:19

239.9998

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 12:00:02

Average Efficiency 0.3507076 Average Efficiency Error: 9.6569844E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4510	28-FEB-2010	2988.136	3297.898	16033.00	0.3482739	1.4953526E-02	49.59322
NP-237	166.6248	28-FEB-2010	4433.563	4901.441	14165.00	0.3542025	1.7958457E-02	66.29896
CM-244	155.8290	28-FEB-2010	5533.812	5885.772	12398.00	0.3507225	1.7816888E-02	52.33121

Instrument: CHAMBER 109

Detector: 79463 **AESS-045** Standard ID

19-FEB-2008 00:32:27 Standard Reference Date 11-AUG-2009 07:20:19 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 12:00:23

Average Efficiency: 0.3572300 Average Efficiency Error: 9.8411189E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	186.9936	28-FEB-2010	2990.332	3301.320	15964.00	0.3605992	1.5483866E-02	43.37672
NP-237	160.8066	28-FEB-2010	4437.566	4903.059	13542.00	0.3508754	1.7801007E-02	56.95218
CM-244	145 8384	28-FFR-2010	5534 376	5883 521	11884 00	0 3502313	1 8261438F ₋ 02	45 65917

CHAMBER 110 Instrument:

Detector: 67602 **AESS-046** Standard ID

Standard Reference Date 8-JAN-2007 09:29:00 Calibration Analysis Date/Time 11-AUG-2009 07:20:19

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 12:01:03

Average Efficiency: 0.3231843 Average Efficiency Error: 8.9130215E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.6531	28-FEB-2010	2987.980	3298.573	14814.00	0.3198501	1.3754530E-02	53.58074
NP-237	164.3834	28-FEB-2010	4433.010	4901.606	12984.00	0.3290606	1.6704626E-02	68.74621
CM-244	159.4253	28-FEB-2010	5534.957	5883.028	11170.00	0.3222606	1.6399227E-02	53.66474

Instrument: CHAMBER 111

Detector: 79462 Standard ID **AESS-047**

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 11-AUG-2009 07:20:19

239.9998

Calibration Count Time Efficiency Calibration Date/Time 11-AUG-2009 12:01:21

Average Efficiency 0.3397023 Average Efficiency Error: 9.3582701E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.4804	28-FEB-2010	2988.711	3298.714	15668.00	0.3351243	1.4394601E-02	47.62338
NP-237	168.3948	28-FEB-2010	4436.440	4905.458	13711.00	0.3392103	1.7206213E-02	64.03130
CM-244	154.6032	28-FEB-2010	5535.080	5885.693	12172.00	0.3470925	1.7637538E-02	47.05465

CHAMBER 112 Instrument:

Detector: 78261 **AESS-048** Standard ID

19-FEB-2008 00:32:27 Standard Reference Date 11-AUG-2009 07:20:19 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 11-AUG-2009 12:02:06

Average Efficiency: 0.3161603 Average Efficiency Errór: 8.7240264E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	191.8350	28-FEB-2010	2988.059	3299.440	14279.00	0.3143869	1.3526597E-02	45.81523
NP-237	161.5530	28-FEB-2010	4434.653	4903.902	12390.00	0.3195488	1.6233314E-02	58.56979
CM-244	151.1856	28-FEB-2010	5532.350	5884.826	10815.00	0.3153441	1.6056247E-02	49.68813

CHAMBER 113 Instrument: Detector: 45-111B4

AESS-001 Standard ID

Standard Reference Date 20-FEB-2008 09:54:53 Calibration Analysis Date/Time 17-AUG-2009 09:40:49

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 14:57:05

Average Efficiency 0.2505672 Average Efficiency Error: 6.9084223E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.6698	28-FEB-2010	2990.867	3300.361	15169.00	0.2456670	1.0558164E-02	69.86203
NP-237	171.0024	28-FEB-2010	4434.565	4901.409	13130.00	0.2559362	1.2990281E-02	75.93420
CM-244	158.1060	28-FEB-2010	5532.822	5886.571	11319.00	0.2525721	1.2849954E-02	69.15296

Instrument: CHAMBER 114

Detector: 78258 Standard ID **AESS-007**

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 17-AUG-2009 09:40:56

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-AUG-2009 14:57:42

Average Efficiency 0.2566939 Average Efficiency Error 7.0618941E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.7342	28-FEB-2010	2992.066	3300.343	15529.00	0.2538896	1.0907058E-02	46.46336
NP-237	205.0260	28-FEB-2010	4433.866	4902.961	15975.00	0.2597136	1.3147265E-02	59.75802
CM-244	199.6806	28-FEB-2010	5535.155	5886.142	14576.00	0.2577351	1.3062422E-02	48.49145

Instrument: CHAMBER 115 Detector: 45-132FF4 Standard ID AESS-002

Standard Reference Date 19-FEB-2008 11:05:22 17-AUG-2009 09:41:02 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 14:57:55

Average Efficiency: 0.2653268 Average Efficiency Error: 7.2980789E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1144	28-FEB-2010	2989.683	3299.666	15797.00	0.2667769	1.1457291E-02	62.01321
NP-237	200.4990	28-FEB-2010	4433.623	4904.729	15897.00	0.2642607	1.3378277E-02	65.74837
CM-244	196.5558	28-FEB-2010	5534.066	5886.268	14729.00	0.2644131	1.3399067E-02	62.30648

CHAMBER 116 Instrument: Detector: 45-132FF2

AESS-008 Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 17-AUG-2009 09:41:08

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 14:58:06

0.2617015 Average Efficiency Average Efficiency Error: 7.1968301E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.0418	28-FEB-2010	2991.930	3301.615	15931.00	0.2613424	1.1222276E-02	57.22266
NP-237	209.2716	28-FEB-2010	4433.958	4904.160	16458.00	0.2621330	1.3264989E-02	65.63932
CM-244	199.6488	28-FEB-2010	5532.087	5883.400	14804.00	0.2617715	1.3264321E-02	58.02108

Instrument: **CHAMBER 117**

Detector: 33450 Standard ID **AESS-003**

Standard Reference Date 15-FEB-2008 13:12:27 Calibration Analysis Date/Time 17-AUG-2009 09:41:13

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-AUG-2009 14:58:17

Average Efficiency 0.2525579 Average Efficiency Error: 6.9512939E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.9740	28-FEB-2010	2989.306	3298.199	15015.00	0.2500224	1.0747343E-02	65.18716
NP-237	203.2080	28-FEB-2010	4433.520	4903.152	15609.00	0.2560285	1.2964435E-02	69.72454
CM-244	197.2236	28-FEB-2010	5530.582	5887.083	14123.00	0.2527719	1.2816428E-02	63.59301

CHAMBER 118 Instrument:

75544 Detector: **AESS-009** Standard ID

19-FEB-2008 11:05:22 Standard Reference Date 17-AUG-2009 09:41:17 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 14:58:27

Average Efficiency: 0.2576301 Average Efficiency Error: 7.0881532E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.3736	28-FEB-2010	2988.856	3302.528	15454.00	0.2568017	1.1033086E-02	48.57111
NP-237	204.0192	28-FEB-2010	4432.711	4902.773	15795.00	0.2580543	1.3065088E-02	53.80557
CM-244	197.2128	28-FEB-2010	5531.177	5883.080	14443.00	0.2583711	1.3096387E-02	48.23898

CHAMBER 119 Instrument:

74429 Detector: **AESS-004** Standard ID

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 18-AUG-2009 08:34:33

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 2-FEB-2009 15:15:38

Average Efficiency 0.2936279 Average Efficiency Error: 1.2630888E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.1222	28-FEB-2010	2992.004	3299.253	1406.000	0.2936279	1.2630888E-02	0.0000000E+00
NP-237	204.2586	28-FEB-2010	4432.548	4906.013	0.0000000E+	00000000E-	+ 0 0000000E+00	0.0000000E+00
CM-244	198.8100	28-FEB-2010	5530.584	5883.165	0.0000000E+	00000000E-	+ 0 0000000E+00	0.0000000E+00

Instrument: CHAMBER 120

Detector: 74430 Standard ID **AESS-010**

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 18-AUG-2009 08:35:01

300.0000

Calibration Count Time Efficiency Calibration Date/Time 18-AUG-2009 13:38:55

Average Efficiency 0.2589359 Average Efficiency Error: 7.1242545E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.0008	28-FEB-2010	2988.209	3300.389	15391.00	0.2575360	1.1065440E-02	43.23295
NP-237	202.9926	28-FEB-2010	4436.370	4904.997	15823.00	0.2598289	1.3154631E-02	56.74783
CM-244	196.2330	28-FEB-2010	5531.794	5882.950	14449.00	0.2600255	1.3180019E-02	54.60671

Instrument: CHAMBER 121

Detector: 75545 **AESS-005** Standard ID

14-FEB-2008 09:35:18 Standard Reference Date 17-AUG-2009 09:41:25 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 14:58:37

Average Efficiency: 0.2477992 Average Efficiency Errór: 6.8184505E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.7452	28-FEB-2010	2991.483	3299.036	15409.00	0.2471195	1.0617682E-02	50.47642
NP-237	209.5938	28-FEB-2010	4436.007	4904.843	15591.00	0.2479274	1.2554423E-02	56.89366
CM-244	202 7478	28-FFR-2010	5531 746	5882 876	14277 00	0.2486278	1 2604386F-02	50 04906

CHAMBER 122 Instrument:

Detector: 75546 **AESS-011** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 17-AUG-2009 09:41:30

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 14:58:49

Average Efficiency: 0.2511526 Average Efficiency Error: 6.9076614E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	212.8284	28-FEB-2010	2989.140	3302.149	15817.00	0.2511983	1.0788003E-02	55.71524
NP-237	214.4868	28-FEB-2010	4434.728	4903.501	16008.00	0.2487148	1.2590243E-02	57.96050
CM-244	208.4184	28-FEB-2010	5535.323	5886.133	14974.00	0.2536270	1.2849721E-02	53.77795

Instrument: CHAMBER 123 Detector: 45-142V3

Standard ID AESS-006

14-FEB-2008 09:35:18 Standard Reference Date 17-AUG-2009 09:41:34 Calibration Analysis Date/Time

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-AUG-2009 14:58:58

Average Efficiency 0.2594329 Average Efficiency Error: 7.1380134E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6952	28-FEB-2010	2989.820	3298.601	15515.00	0.2574363	1.1059616E-02	71.81727
NP-237	204.7038	28-FEB-2010	4437.478	4905.941	15738.00	0.2562436	1.2974020E-02	72.62444
CM-244	195.0060	28-FEB-2010	5531.339	5886.453	14683.00	0.2658339	1.3471606E-02	67.85081

Instrument: CHAMBER 124 Detector: 45-142V2 Standard ID **AESS-012**

Standard Reference Date 14-FEB-2008 13:39:25 17-AUG-2009 09:41:39 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 14:59:08

Average Efficiency: 0.2622745 7.2123613E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.2200	28-FEB-2010	2989.806	3300.376	16169.00	0.2650077	1.1376831E-02	65.10977
NP-237	205.8930	28-FEB-2010	4436.352	4902.974	16128.00	0.2610630	1.3214089E-02	71.08579
CM-244	203 1954	28-FFR-2010	5533 246	5885 946	14953 00	N 2508170	1 3163561F-02	70 97868

CHAMBER 125 Instrument:

75547 Detector **AESS-013** Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 17-AUG-2009 09:41:44

> Calibration Count Time 300.0000

17-AUG-2009 14:59:18 Efficiency Calibration Date/Time

Average Efficiency 0.2577128 Average Efficiency Error: 7.0888288E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6544	28-FEB-2010	2987.619	3299.275	15570.00	0.2584035	1.1100472E-02	45.32409
NP-237	210.2526	28-FEB-2010	4433.269	4906.266	16194.00	0.2567104	1.2993116E-02	55.37461
CM-244	201.9108	28-FEB-2010	5531.959	5882.482	14741.00	0.2577693	1.3062201E-02	51.62124

Instrument: CHAMBER 126

Detector: 75548 Standard ID **AESS-019**

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 17-AUG-2009 09:41:49

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-AUG-2009 14:59:32

0.2528252 Average Efficiency Average Efficiency Error 6.9586127E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.6468	28-FEB-2010	2988.372	3298.946	15025.00	0.2481292	1.0665805E-02	51.29427
NP-237	202.9140	28-FEB-2010	4437.297	4901.551	15728.00	0.2582902	1.3077814E-02	59.55880
CM-244	199.3140	28-FEB-2010	5532.806	5882.587	14367.00	0.2543760	1.2894685E-02	53.51087

CHAMBER 127 Instrument:

Detector: 78770 Standard ID AESS-014

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 17-AUG-2009 09:41:53

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 14:59:46

> Average Efficiency 0.2467646 6.7887292E-03 Average Efficiency Error

Confidence: 95.00000

DPM **End Engy** Cal. Istps Exp. Date Start Engy Counts EFF. EFF Err Resolution GD-148 214.7088 28-FEB-2010 2989.622 3297.830 15608.00 0.2456636 1.0552737E-02 45.17228 NP-237 211.7160 28-FEB-2010 4435.622 4904.092 15815.00 0.2489925 1.2606090E-02 55.68476 CM-244 207.3882 28-FEB-2010 5535.184 5885.434 14463.00 0.2461215 1.2475103E-02 51.99955

CHAMBER 128 Instrument:

Detector: 75549 **AESS-020** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 17-AUG-2009 09:41:59

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:00:39

Average Efficiency 0.2557978 Average Efficiency Error: 7.0393290E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	205.5870	28-FEB-2010	2989.482	3299.177	15312.00	0.2510756	1.0789989E-02	50.23243
NP-237	203.4984	28-FEB-2010	4436.028	4905.664	15805.00	0.2584755	1.3086889E-02	59.26414
CM-244	197.1096	28-FEB-2010	5532.549	5883.141	14531.00	0.2601309	1.3184624E-02	52.60558

Instrument: CHAMBER 129

Detector: 76227 Standard ID **AESS-015**

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 17-AUG-2009 09:42:03

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-AUG-2009 15:00:50

Average Efficiency 0.2636167 Average Efficiency Error: 7.2512124E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0270	28-FEB-2010	2992.146	3298.635	15855.00	0.2626581	1.1279699E-02	51.01081
NP-237	200.6460	28-FEB-2010	4432.563	4905.761	16101.00	0.2674463	1.3537456E-02	55.64974
CM-244	195.9270	28-FEB-2010	5531.918	5882.796	14498.00	0.2612732	1.3242676E-02	51.23387

CHAMBER 130 Instrument:

Detector: 76228 **AESS-021** Standard ID

19-FEB-2008 15:31:52 Standard Reference Date 17-AUG-2009 09:42:09 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:01:00

Average Efficiency: 0.2500172 6.8798582E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.3608	28-FEB-2010	2989.230	3297.665	15254.00	0.2474099	1.0632024E-02	49.47410
NP-237	210.1548	28-FEB-2010	4434.582	4901.937	15716.00	0.2492386	1.2619579E-02	59.00264
CM-244	200.7390	28-FEB-2010	5530.859	5884.881	14487.00	0.2546751	1.2908396E-02	49.18253

CHAMBER 131 Instrument:

33448 Detector **AESS-016** Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 17-AUG-2009 09:42:13

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:01:10

0.2486686 Average Efficiency Average Efficiency Error: 6.8503493E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0534	28-FEB-2010	2988.455	3301.428	14427.00	0.2389750	1.0279993E-02	88.46142
NP-237	199.3962	28-FEB-2010	4434.994	4904.668	15550.00	0.2599315	1.3162703E-02	91.50983
CM-244	198.6402	28-FEB-2010	5532.826	5884.723	14238.00	0.2530668	1.2829903E-02	81.92683

Instrument: CHAMBER 132

Detector: 67579 Standard ID **AESS-022**

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 17-AUG-2009 09:42:18

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-AUG-2009 15:01:19

Average Efficiency 0.2503150 Average Efficiency Error 6.8899435E-03 Confidence: 95.00000

DPM Cal. Istps EFF Err Resolution Exp. Date Start Engy End Engy Counts EFF. GD-148 209.6724 28-FEB-2010 2989.906 3301.298 15059.00 0.2427482 1.0434108E-02 48.23922 NP-237 206.8830 28-FEB-2010 4432.560 4903.500 15980.00 0.2574485 1.3032571E-02 59.84295 CM-244 51.83584 203.0208 28-FEB-2010 5531.586 5882.587 14657.00 0.2549047 1.2918007E-02

> CHAMBER 133 Instrument:

Detector: 76229 Standard ID **AESS-017**

Standard Reference Date 14-FEB-2008 17:45:04 17-AUG-2009 09:42:22 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:01:29

> Average Efficiency 0.2444916 Average Efficiency Error 6.7288522E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.0798	28-FEB-2010	2992.199	3301.674	15088.00	0.2427499	1.0433814E-02	51.73604
NP-237	208.5846	28-FEB-2010	4436.849	4905.652	15341.00	0.2451461	1.2416095E-02	59.86903
CM-244	205.5828	28-FEB-2010	5530.602	5882.872	14343.00	0.2463241	1.2486813E-02	55.80942

CHAMBER 134 Instrument:

Detector: 76230 **AESS-023** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 17-AUG-2009 09:42:27

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:01:38

Average Efficiency: 0.2444722 Average Efficiency Error: 6.7306994E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	207.4764	28-FEB-2010	2989.055	3302.112	14731.00	0.2399838	1.0319396E-02	45.58716
NP-237	207.4998	28-FEB-2010	4432.969	4905.408	15414.00	0.2475136	1.2535379E-02	52.40787
CM-244	199.8804	28-FEB-2010	5534.460	5883.375	14046.00	0.2480791	1.2579419E-02	47.39998

Instrument: CHAMBER 135

Detector: 64270 Standard ID **AESS-018**

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 17-AUG-2009 09:42:32

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-AUG-2009 15:01:50

Average Efficiency 0.2546879 Average Efficiency Error: 7.0084208E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.1856	28-FEB-2010	2987.813	3300.105	15110.00	0.2525907	1.0856513E-02	49.36219
NP-237	208.8990	28-FEB-2010	4435.123	4902.752	15878.00	0.2533506	1.2826114E-02	62.03614
CM-244	198.1458	28-FEB-2010	5532.979	5882.877	14546.00	0.2591602	1.3135060E-02	51.79539

Instrument: CHAMBER 136

Detector: 68549 **AESS-024** Standard ID

14-FEB-2008 21:55:55 Standard Reference Date 17-AUG-2009 09:42:37 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:02:00

Average Efficiency: 0.2475998 Average Efficiency Error: 6.8165381E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Enav	Counts	EFF.	EFF Err	Resolution
GD-148	203.5218	28-FEB-2010	2991.796	3301.682	14741.00	0.2447980	1.0526305E-02	60.65231
NP-237	205.6662	28-FEB-2010	4435.713	4901.780	15573.00	0.2523313	1.2777670E-02	84.66249
CM-244	198 3060	28-FFR-2010	5531 520	5884 028	13875 00	0 2470199	1 2527825F-02	70 83999

Instrument: CHAMBER 137

64288 Detector **AESS-025** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 17-AUG-2009 15:19:29

> Calibration Count Time 300.0000

18-AUG-2009 09:58:00 Efficiency Calibration Date/Time

Average Efficiency 0.2555233 Average Efficiency Error: 7.0462842E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.5670	28-FEB-2010	2990.035	3302.352	15040.00	0.2599163	1.1172320E-02	62.16771
NP-237	167.9916	28-FEB-2010	4435.990	4901.349	12745.00	0.2528539	1.2839622E-02	74.72440
CM-244	157.2432	28-FEB-2010	5532.344	5883.346	11242.00	0.2523895	1.2842122E-02	61.62554

Instrument: CHAMBER 138

Detector: 65877 Standard ID **AESS-031**

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 17-AUG-2009 10:05:25

Calibration Count Time 300.0000

5885.034

Cal. Istps

153.1968

28-FEB-2010

5531.035

GD-148

NP-237

CM-244

Efficiency Calibration Date/Time 17-AUG-2009 15:10:23

Average Efficiency 0.2550827 Average Efficiency Error 7.0365570E-03 Confidence: 95.00000

DPM Start Engy EFF Err Resolution Exp. Date End Engy Counts EFF. 193.6650 28-FEB-2010 2990.457 3300.623 14458.00 0.2522955 1.0852579E-02 60.07153 162.9186 28-FEB-2010 4436.833 4904.301 12578.00 0.2572678 1.3066470E-02 64.63396

11155.00

0.2569406 1.3075489E-02

58.61239

Instrument: CHAMBER 139

Detector 76231 Standard ID **AESS-026**

Standard Reference Date 15-FEB-2008 09:06:52 17-AUG-2009 10:05:40 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:10:36

Average Efficiency 0.2493770 Average Efficiency Error 7.3113223E-03

Confidence: 95.00000

Start Engy **End Engy** Cal. Istps DPM Exp. Date Counts EFF. EFF Err Resolution GD-148 199.5072 28-FEB-2010 2988.624 3300.322 0.2505293 1.2695529E-02 52.23651 14789.00 NP-237 4436.965 12535.00 168.0294 28-FEB-2010 4901.673 0.2486135 1.2627549E-02 58.33430 CM-244 160.5822 28-FEB-2010 5531.099 5884.173 11327.00 0.2489982 1.2667944E-02 53.91700

CHAMBER 140 Instrument:

78771 Detector **AESS-032** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 17-AUG-2009 10:05:55

> Calibration Count Time 300.0000

17-AUG-2009 15:10:53 Efficiency Calibration Date/Time

0.2545226 Average Efficiency Average Efficiency Error: 7.0204390E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.2364	28-FEB-2010	2992.243	3300.208	14492.00	0.2508534	1.0790074E-02	46.38138
NP-237	165.9822	28-FEB-2010	4435.227	4906.111	12782.00	0.2566222	1.3030458E-02	51.74347
CM-244	153.7938	28-FEB-2010	5531.085	5884.403	11234.00	0.2578183	1.3118429E-02	44.44519

Instrument: CHAMBER 141

Detector: 76232 Standard ID **AESS-027**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 17-AUG-2009 10:06:09

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-AUG-2009 15:11:05

Average Efficiency 0.2584702 Average Efficiency Error 7.5807418E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	193.4238	28-FEB-2010	2989.414	3297.748	14427.00	0.2520987	1.2779256E-02	53.56795
NP-237	161.6154	28-FEB-2010	4437.262	4901.753	12660.00	0.2610831	1.3258832E-02	57.80217
CM-244	148.1754	28-FEB-2010	5534.971	5886.637	11030.00	0.2627913	1.3375781E-02	54.14219

CHAMBER 142 Instrument:

Detector: 64261 Standard ID **AESS-033**

Standard Reference Date 18-FEB-2008 11:28:15 17-AUG-2009 10:06:21 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:11:22

> Average Efficiency 0.2600435 7.1729934E-03 Average Efficiency Error

Confidence: 95.00000

End Engy EFF Err Cal. Istps DPM Exp. Date Start Engy Counts EFF. Resolution GD-148 192.4158 28-FEB-2010 2988.269[°] 3301.948 14656.00 0.2574165 1.1070056E-02 54.03382 NP-237 161.7816 28-FEB-2010 4433.864 4905.404 12714.00 0.2618904 1.3299029E-02 57.43495 CM-244 5884.773 147.2670 28-FEB-2010 5531.110 10935.00 0.2619993 1.3337597E-02 54.46835

CHAMBER 143 Instrument:

65882 Detector **AESS-028** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 17-AUG-2009 10:06:30

> Calibration Count Time 300.0000

17-AUG-2009 15:11:35 Efficiency Calibration Date/Time

Average Efficiency 0.2441945 Average Efficiency Error: 7.1629179E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.6542	28-FEB-2010	2987.868	3300.973	14504.00	0.2454895	1.2443409E-02	48.86588
NP-237	168.1992	28-FEB-2010	4435.203	4905.234	12409.00	0.2458239	1.2487897E-02	54.42411
CM-244	156.7614	28-FEB-2010	5533.941	5886.181	10719.00	0.2413527	1.2290902E-02	48.55591

Instrument: CHAMBER 144

Detector: 75551 Standard ID **AESS-034**

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 17-AUG-2009 10:06:42

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-AUG-2009 15:11:48

Average Efficiency 0.2468767 Average Efficiency Error 6.8111387E-03 Confidence: 95.00000

EFF. EFF Err Resolution Start Engy End Engy Counts 3299.833 14487.00 0.2441242 1.0500696E-02

DPM Cal. Istps Exp. Date GD-148 200.5488 28-FEB-2010 2992.050 46.56598 NP-237 167.2962 28-FEB-2010 4433.005 4902.603 12463.00 0.2482506 1.2610275E-02 54.14901 CM-244 154.4388 28-FEB-2010 5530.735 5882.656 10920.00 0.2495103 1.2702089E-02 51.83741

> CHAMBER 145 Instrument:

Detector: 72526 Standard ID **AESS-029**

Standard Reference Date 15-FEB-2008 09:06:52 17-AUG-2009 10:06:50 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:12:06

> Average Efficiency 0.2516074 Average Efficiency Error: 7.3767379E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	201.5742	28-FEB-2010	2991.923	3299.882	14896.00	0.2497595	1.2655314E-02	52.44717
NP-237	169.7700	28-FEB-2010	4434.984	4905.949	12721.00	0.2497460	1.2682147E-02	64.14503
CM-244	154.8234	28-FEB-2010	5531.069	5884.490	11206.00	0.2555142	1.3001818E-02	51.97158

CHAMBER 146 Instrument:

Detector: 72527 **AESS-035** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 17-AUG-2009 10:06:56

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:12:19

Average Efficiency 0.2487766 Average Efficiency Error: 6.8616522E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.6666	28-FEB-2010	2989.460	3301.164	14683.00	0.2497765	1.0741138E-02	52.75697
NP-237	168.2934	28-FEB-2010	4435.288	4903.095	12451.00	0.2466013	1.2526580E-02	54.23803
CM-244	158.8128	28-FEB-2010	5534.042	5884.573	11233.00	0.2496148	1.2701104E-02	51.22379

Instrument: CHAMBER 147

Detector: 75550 Standard ID **AESS-030**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 17-AUG-2009 10:07:03

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-AUG-2009 15:12:37

Average Efficiency 0.2470976 Average Efficiency Error: 7.2475495E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.9792	28-FEB-2010	2990.910	3299.539	14303.00	0.2429080	1.2314880E-02	46.94440
NP-237	166.3758	28-FEB-2010	4433.251	4901.935	12590.00	0.2521924	1.2808450E-02	53.36894
CM-244	157.1856	28-FEB-2010	5533.139	5883.368	10980.00	0.2465573	1.2550585E-02	53.24918

CHAMBER 148 Instrument:

Detector: 74429 **AESS-036** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 17-AUG-2009 10:07:10 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:12:57

Average Efficiency: 0.2480969 Average Efficiency Errór: 6.8435837E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	201.3204	28-FEB-2010	2990.725	3298.446	14645.00	0.2458259	1.0571792E-02	53.02917
NP-237	167.4312	28-FEB-2010	4436.496	4905.977	12647.00	0.2517435	1.2784752E-02	56.62496
CM-244	156.4188	28-FEB-2010	5533.919	5885.716	10983.00	0.2477803	1.2612724E-02	51.14078

CHAMBER 149 Instrument:

33449 Detector **AESS-037** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 17-AUG-2009 09:46:49

> Calibration Count Time 300.0000

17-AUG-2009 15:02:09 Efficiency Calibration Date/Time

Average Efficiency 0.2465136 Average Efficiency Error: 6.8024271E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7372	28-FEB-2010	2991.734	3299.272	14178.00	0.2423231	1.0427443E-02	68.70028
NP-237	167.1294	28-FEB-2010	4437.371	4901.944	12533.00	0.2499420	1.2695006E-02	68.91545
CM-244	154.7664	28-FEB-2010	5530.548	5882.851	10933.00	0.2492944	1.2690787E-02	65.41205

Instrument: CHAMBER 150

Detector: 75552 Standard ID **AESS-043**

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 17-AUG-2009 09:47:06

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-AUG-2009 15:02:19

Average Efficiency 0.2486527 Average Efficiency Error 6.8590841E-03 Confidence: 95.00000

Cal. Istps DPM EFF. EFF Err Resolution Exp. Date Start Engy End Engy Counts 0.2506822 1.0780259E-02 GD-148 197.7708 28-FEB-2010 2992.316 3300.643 14670.00 53.31720 NP-237 168.7422 28-FEB-2010 4435.415 4905.497 12565.00 0.2481675 1.2604410E-02 58.05605 5886.240 CM-244 156.3252 28-FEB-2010 5534.121 10915.00 0.2463857 1.2543092E-02 53.10606

> **CHAMBER 151** Instrument:

Detector: 75556 Standard ID **AESS-038**

Standard Reference Date 18-FEB-2008 15:31:47 17-AUG-2009 09:47:22 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:02:29

> Average Efficiency 0.2450182 Average Efficiency Error: 6.7593171E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1408	28-FEB-2010	2990.659	3302.040	14473.00	0.2443945	1.0512492E-02	52.21863
NP-237	170.0886	28-FEB-2010	4434.623	4901.634	12448.00	0.2439277	1.2390838E-02	56.98894
CM-244	157.7460	28-FEB-2010	5531.364	5886.469	11043.00	0.2470334	1.2573502E-02	57.42078

CHAMBER 152 Instrument:

Detector: 76222 **AESS-044** Standard ID

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 17-AUG-2009 09:47:27

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:02:41

Average Efficiency 0.2490164 Average Efficiency Error: 6.8703890E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4510	28-FEB-2010	2991.044	3297.777	14243.00	0.2475301	1.0650607E-02	47.08284
NP-237	166.6248	28-FEB-2010	4437.300	4905.285	12419.00	0.2484124	1.2619114E-02	60.94747
CM-244	155.8290	28-FEB-2010	5531.209	5887.199	11119.00	0.2517907	1.2814093E-02	54.11842

Instrument: CHAMBER 153

Detector: 76223 Standard ID **AESS-039**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 17-AUG-2009 09:47:33

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-AUG-2009 15:02:59

Average Efficiency 0.2519075 Average Efficiency Error: 6.9520962E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	192.2418	28-FEB-2010	2989.175	3301.127	14308.00	0.2515197	1.0821341E-02	47.18059
NP-237	159.1506	28-FEB-2010	4437.148	4906.174	12220.00	0.2558792	1.3001786E-02	54.79121
CM-244	151.7142	28-FEB-2010	5533.838	5885.640	10690.00	0.2486704	1.2664073E-02	49.37799

CHAMBER 154 Instrument:

76224 Detector: **AESS-045** Standard ID

19-FEB-2008 00:32:27 Standard Reference Date 17-AUG-2009 09:47:38 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:03:12

Average Efficiency 0.2559401 7.0637148E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	186.9936	28-FEB-2010	2991.160	3298.663	14169.00	0.2560697	1.1019127E-02	49.27927
NP-237	160.8066	28-FEB-2010	4435.792	4904.845	12224.00	0.2533519	1.2873255E-02	55.70718
CM-244	145.8384	28-FEB-2010	5532.170	5883.602	10681.00	0.2584613	1.3162896E-02	52.40295

CHAMBER 155 Instrument:

75553 Detector **AESS-040** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 17-AUG-2009 09:47:43

> Calibration Count Time 300.0000

17-AUG-2009 15:03:49 Efficiency Calibration Date/Time

0.2604031 Average Efficiency Average Efficiency Error: 7.1793078E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4828	28-FEB-2010	2990.137	3299.574	15144.00	0.2631285	1.1309024E-02	51.70325
NP-237	166.8174	28-FEB-2010	4433.383	4905.252	13025.00	0.2602106	1.3208893E-02	58.26657
CM-244	155.0100	28-FEB-2010	5530.995	5884.485	11287.00	0.2569496	1.3073267E-02	54.09868

Instrument: CHAMBER 156

Detector: 75554 Standard ID AESS-046

Standard Reference Date 19-FEB-2008 19:35:48 Calibration Analysis Date/Time 17-AUG-2009 09:47:48

300.0000

5885.336

Cal. Istps

151.3824

28-FEB-2010

5532.563

GD-148

NP-237

CM-244

Calibration Count Time Efficiency Calibration Date/Time 17-AUG-2009 15:03:58

0.2478251 Average Efficiency Average Efficiency Error 6.8396293E-03 Confidence: 95.00000

DPM EFF Err Resolution Exp. Date Start Engy End Engy Counts EFF. 194,7474 28-FEB-2010 2991.410 3301.423 14146.00 0.2454547 1.0562697E-02 50.29560 164.6658 28-FEB-2010 4436.034 4902.390 12227.00 0.2474083 1.2571326E-02 54.83716

10800.00

0.2517493 1.2818515E-02

50.76693

CHAMBER 157 Instrument:

Detector: 75555 Standard ID **AESS-041**

Standard Reference Date 18-FEB-2008 15:31:47 17-AUG-2009 09:47:53 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:04:07

> Average Efficiency 0.2459567 Average Efficiency Error: 6.7838337E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.9034	28-FEB-2010	2989.948	3299.042	14635.00	0.2425698	1.0431849E-02	49.95551
NP-237	171.2268	28-FEB-2010	4436.337	4902.073	12880.00	0.2506870	1.2727586E-02	53.18868
CM-244	159.5796	28-FEB-2010	5531.733	5884.378	11136.00	0.2462586	1.2532219E-02	53.03581

CHAMBER 158 Instrument:

Detector: 33451 **AESS-047** Standard ID

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 17-AUG-2009 09:47:59

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:04:18

Average Efficiency 0.2470825 Average Efficiency Error: 6.8179565E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.4804	28-FEB-2010	2990.074	3301.013	14195.00	0.2429217	1.0452971E-02	65.65772
NP-237	168.3948	28-FEB-2010	4435.907	4905.421	12486.00	0.2470921	1.2551059E-02	76.64585
CM-244	154.6032	28-FEB-2010	5535.323	5885.904	11102.00	0.2534059	1.2896620E-02	68.27572

Instrument: CHAMBER 159

Detector: 76225 Standard ID **AESS-042**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 17-AUG-2009 09:48:04

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-AUG-2009 15:04:28

Average Efficiency 0.2536185 Average Efficiency Error 6.9992472E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	188.7090	28-FEB-2010	2992.022	3301.502	14176.00	0.2538644	1.0924136E-02	47.45573
NP-237	159.6558	28-FEB-2010	4435.853	4902.842	12186.00	0.2543722	1.2925758E-02	52.94994
CM-244	150.5208	28-FEB-2010	5534.528	5883.086	10773.00	0.2525320	1.2859062E-02	52.36504

CHAMBER 160 Instrument:

Detector: 76226 Standard ID **AESS-048**

19-FEB-2008 00:32:27 Standard Reference Date 17-AUG-2009 09:48:09 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-AUG-2009 15:04:40

Average Efficiency: 0.2450936 Average Efficiency Error: 6.7667966E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	191.8350	28-FEB-2010	2988.982	3298.890	13916.00	0.2451341	1.0552234E-02	50.78497
NP-237	161.5530	28-FEB-2010	4434.439	4901.761	11957.00	0.2465858	1.2534058E-02	58.31113
CM-244	151.1856	28-FEB-2010	5533.753	5882.414	10437.00	0.2435748	1.2410097E-02	52.51821

CHAMBER 161 Instrument:

Detector: 70321 **AESS-001** Standard ID

Standard Reference Date 20-FEB-2008 09:54:53 Calibration Analysis Date/Time 24-AUG-2009 08:39:50

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:06:47

Average Efficiency 0.3731306 Average Efficiency Error: 1.0235887E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.6698	28-FEB-2010	2988.799	3299.450	22121.00	0.3583271	1.5313427E-02	65.76945
NP-237	171.0024	28-FEB-2010	4437.354	4905.712	19775.00	0.3854371	1.9465830E-02	75.53835
CM-244	158.1060	28-FEB-2010	5533.034	5884.911	17229.00	0.3847365	1.9458989E-02	65.65879

Instrument: CHAMBER 162

Detector: 70323 Standard ID **AESS-007**

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 24-AUG-2009 08:39:56

300.0000

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:06:56

Average Efficiency 0.3723955Average Efficiency Error 1.0201765E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.7342	28-FEB-2010	2991.108	3297.679	22068.00	0.3608688	1.5422536E-02	59.05890
NP-237	205.0260	28-FEB-2010	4437.157	4905.370	23621.00	0.3840082	1.9362321E-02	75.93850
CM-244	199.6806	28-FEB-2010	5531.808	5882.856	21406.00	0.3787849	1.9115422E-02	59.17039

CHAMBER 163 Instrument:

Detector: 70324 **AESS-002** Standard ID

Standard Reference Date 19-FEB-2008 11:05:22 24-AUG-2009 08:40:01 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:07:06

Average Efficiency: 0.3784964 1.0368022E-02 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1144	28-FEB-2010	2989.316	3301.922	21875.00	0.3695002	1.5793122E-02	75.87975
NP-237	200.4990	28-FEB-2010	4434.725	4904.333	23130.00	0.3844810	1.9389626E-02	89.93044
CM-244	196.5558	28-FEB-2010	5532.622	5884.699	21494.00	0.3861476	1.9486297E-02	68.44479

CHAMBER 164 Instrument:

Detector: 70325 **AESS-008** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 24-AUG-2009 08:40:07

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:07:20

Average Efficiency 0.3795241 Average Efficiency Error: 1.0392675E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.0418	28-FEB-2010	2989.433	3301.590	22711.00	0.3726217	1.5919240E-02	60.22451
NP-237	209.2716	28-FEB-2010	4434.137	4904.243	23751.00	0.3782692	1.9072101E-02	72.85822
CM-244	199.6488	28-FEB-2010	5533.726	5886.727	22121.00	0.3914949	1.9750981E-02	58.50513

Instrument: CHAMBER 165

Detector: 72544 Standard ID **AESS-003**

Standard Reference Date 15-FEB-2008 13:12:27 Calibration Analysis Date/Time 24-AUG-2009 08:40:14

300.0000

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:07:34

Average Efficiency 0.3818519 Average Efficiency Error: 1.0458693E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.9740	28-FEB-2010	2990.235	3298.979	22293.00	0.3712923	1.5866017E-02	64.67880
NP-237	203.2080	28-FEB-2010	4434.502	4904.549	23821.00	0.3907148	1.9699110E-02	89.80749
CM-244	197.2236	28-FEB-2010	5532.823	5884.601	21728.00	0.3892223	1.9639486E-02	65.21038

CHAMBER 166 Instrument:

Detector: 74545 **AESS-009** Standard ID

19-FEB-2008 11:05:22 Standard Reference Date 24-AUG-2009 08:40:20 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:07:42

Average Efficiency: 0.3930937 Average Efficiency Error: 1.0762543E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.3736	28-FEB-2010	2991.175	3297.621	23070.00	0.3834404	1.6378330E-02	51.93287
NP-237	204.0192	28-FEB-2010	4434.428	4904.926	24581.00	0.4015882	2.0242147E-02	75.61842
CM-244	197.2128	28-FEB-2010	5535.556	5884.119	22299.00	0.3992831	2.0142501E-02	56.82180

CHAMBER 167 Instrument:

Detector: 72546 **AESS-004** Standard ID

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 24-AUG-2009 08:40:25

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:07:51

Average Efficiency 0.3896100 Average Efficiency Error: 1.0666691E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.1222	28-FEB-2010	2990.148	3302.011	23242.00	0.3811870	1.6280681E-02	60.73105
NP-237	204.2586	28-FEB-2010	4433.463	4903.100	24426.00	0.3985536	2.0090239E-02	78.42995
CM-244	198.8100	28-FEB-2010	5531.940	5884.576	22136.00	0.3933990	1.9846944E-02	60.41788

Instrument: CHAMBER 168

Detector: 72547 Standard ID AESS-010

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 24-AUG-2009 08:40:32

300.0000

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:07:59

Average Efficiency 0.3891803 Average Efficiency Error: 1.0657012E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.0008	28-FEB-2010	2989.237	3300.921	22691.00	0.3797462	1.6223785E-02	60.45912
NP-237	202.9926	28-FEB-2010	4437.534	4902.237	24096.00	0.3956006	1.9943606E-02	81.13048
CM-244	196.2330	28-FEB-2010	5531.663	5884.741	22054.00	0.3970870	2.0033659E-02	60.17071

CHAMBER 169 Instrument:

72548 Detector: **AESS-005** Standard ID

14-FEB-2008 09:35:18 Standard Reference Date 24-AUG-2009 08:40:37 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:08:11

Average Efficiency: 0.3755721 Average Efficiency Errór: 1.0284009E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.7452	28-FEB-2010	2992.165	3298.594	22868.00	0.3668304	1.5670519E-02	63.17508
NP-237	209.5938	28-FEB-2010	4434.229	4903.754	23971.00	0.3811674	1.9216783E-02	80.00423
CM-244	202.7478	28-FEB-2010	5532.658	5885.433	21988.00	0.3832155	1.9334303E-02	60.82853

CHAMBER 170 Instrument:

72549 Detector **AESS-011** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 24-AUG-2009 08:40:43

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:08:20

0.3679080 Average Efficiency Average Efficiency Error: 1.0074493E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	212.8284	28-FEB-2010	2988.025	3299.867	22620.00	0.3593037	1.5351000E-02	55.68573
NP-237	214.4868	28-FEB-2010	4432.622	4903.408	24183.00	0.3757574	1.8942678E-02	83.32780
CM-244	208.4184	28-FEB-2010	5534.316	5882.981	22007.00	0.3730944	1.8823531E-02	57.78218

Instrument: CHAMBER 171

Detector: 78260 Standard ID AESS-006

14-FEB-2008 09:35:18 Standard Reference Date Calibration Analysis Date/Time 24-AUG-2009 08:40:49

300.0000

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:08:29

Average Efficiency 0.3855957 Average Efficiency Error 1.0559761E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6952	28-FEB-2010	2988.433	3300.366	22641.00	0.3757591	1.6053872E-02	54.75708
NP-237	204.7038	28-FEB-2010	4436.595	4905.826	23976.00	0.3903738	1.9680876E-02	77.89750
CM-244	195.0060	28-FEB-2010	5533.870	5885.935	21851.00	0.3959031	1.9975597E-02	57.65449

CHAMBER 172 Instrument:

78772 Detector: Standard ID **AESS-012**

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 24-AUG-2009 08:40:55

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:08:40

> Average Efficiency 0.3797724 1.0397769E-02 Average Efficiency Error

Confidence: 95.00000

DPM **End Engy** Cal. Istps Exp. Date Start Engy Counts EFF. EFF Err Resolution GD-148 206.2200 28-FEB-2010 2991.870 3297.903 22889.00 0.3752128 1.6028440E-02 52.39552 NP-237 4433.678 82.21458 205.8930 28-FEB-2010 4903.969 23812.00 0.3854640 1.9434443E-02 CM-244 203.1954 28-FEB-2010 5534.514 5883.121 21897.00 0.3807611 1.9211210E-02 56.07287

CHAMBER 173 Instrument:

Detector: 74431 **AESS-013** Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 24-AUG-2009 08:41:01

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:08:49

Average Efficiency 0.2601730 Average Efficiency Error: 7.1557011E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6544	28-FEB-2010	2988.449	3298.086	15819.00	0.2625923	1.1277330E-02	48.84491
NP-237	210.2526	28-FEB-2010	4435.604	4905.905	16223.00	0.2571892	1.3017043E-02	57.42966
CM-244	201.9108	28-FEB-2010	5534.021	5885.467	14862.00	0.2599279	1.3170394E-02	53.55892

Instrument: CHAMBER 174

Detector: 74432 Standard ID **AESS-019**

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 24-AUG-2009 08:41:06

300.0000

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:08:58

Average Efficiency 0.2560052 Average Efficiency Error: 7.0460425E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.6468	28-FEB-2010	2988.639	3300.179	15066.00	0.2488402	1.0695883E-02	51.37117
NP-237	202.9140	28-FEB-2010	4435.486	4905.219	15899.00	0.2611338	1.3219978E-02	60.89258
CM-244	199.3140	28-FEB-2010	5531.026	5885.734	14784.00	0.2618657	1.3269406E-02	47.62206

CHAMBER 175 Instrument:

Detector: 74433 **AESS-014** Standard ID

19-FEB-2008 11:05:22 Standard Reference Date 24-AUG-2009 08:41:12 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:09:06

Average Efficiency: 0.2541471 Average Efficiency Errór: 6.9896011E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	214.7088	28-FEB-2010	2992.018	3300.926	15876.00	0.2499355	1.0733101E-02	50.54956
NP-237	211.7160	28-FEB-2010	4437.197	4902.367	16318.00	0.2568789	1.3000464E-02	57.64658
CM-244	207.3882	28-FEB-2010	5531.134	5883.215	15134.00	0.2576209	1.3050339E-02	53.56906

CHAMBER 176 Instrument:

Detector: 74434 **AESS-020** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 24-AUG-2009 08:41:18

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:09:15

Average Efficiency 0.2565841 Average Efficiency Error: 7.0622312E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	205.5870	28-FEB-2010	2987.853	3298.318	15148.00	0.2490841	1.0705328E-02	47.98410
NP-237	203.4984	28-FEB-2010	4433.083	4904.101	15833.00	0.2593126	1.3128439E-02	58.20272
CM-244	197.1096	28-FEB-2010	5532.948	5884.695	14821.00	0.2655677	1.3456577E-02	49.33431

Instrument: CHAMBER 177

Detector: 74435 Standard ID AESS-015

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 24-AUG-2009 08:41:25

300.0000

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:09:24

Average Efficiency 0.2668152 Average Efficiency Error: 7.3382389E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0270	28-FEB-2010	2989.857	3298.211	15920.00	0.2637714	1.1326759E-02	49.45098
NP-237	200.6460	28-FEB-2010	4433.475	4903.934	16338.00	0.2714185	1.3736055E-02	53.30935
CM-244	195.9270	28-FEB-2010	5533.213	5885.773	14796.00	0.2666922	1.3513907E-02	53.74039

CHAMBER 178 Instrument:

Detector: 74436 **AESS-021** Standard ID

19-FEB-2008 15:31:52 Standard Reference Date 24-AUG-2009 08:41:30 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:09:35

Average Efficiency: 0.2595187 Average Efficiency Error: 7.1381964E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.3608	28-FEB-2010	2991.399	3300.807	15690.00	0.2545363	1.0932880E-02	44.11681
NP-237	210.1548	28-FEB-2010	4432.785	4903.123	16730.00	0.2653126	1.3423340E-02	55.16845
CM-244	200.7390	28-FEB-2010	5531.481	5883.158	14852.00	0.2611876	1.3234260E-02	50.76077

CHAMBER 179 Instrument:

Detector: 74437 **AESS-016** Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 24-AUG-2009 08:41:36

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:09:44

Average Efficiency 0.2718232 Average Efficiency Error: 7.4735158E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0534	28-FEB-2010	2990.874	3299.393	16266.00	0.2694745	1.1567459E-02	45.58660
NP-237	199.3962	28-FEB-2010	4435.018	4905.518	16480.00	0.2754735	1.3939864E-02	58.76590
CM-244	198.6402	28-FEB-2010	5534.758	5887.251	15277.00	0.2715900	1.3756392E-02	54.51526

Instrument: CHAMBER 180

Detector: 74438 Standard ID **AESS-022**

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 24-AUG-2009 08:41:41

300.0000

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:09:54

Average Efficiency 0.2528372 Average Efficiency Error: 6.9568004E-03 Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	209.6724	28-FEB-2010	2989.946	3300.627	15376.00	0.2479020	1.0651710E-02	47.69878
NP-237	206.8830	28-FEB-2010	4434.505	4904.405	15995.00	0.2576708	1.3043700E-02	52.34612
CM-244	203.0208	28-FEB-2010	5531.104	5886.649	14679.00	0.2553639	1.2941188E-02	49.43889

CHAMBER 181 Instrument:

Detector: 74439 **AESS-017** Standard ID

14-FEB-2008 17:45:04 Standard Reference Date 24-AUG-2009 08:41:46 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:10:03

Average Efficiency: 0.2567677 7.0618824E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.0798	28-FEB-2010	2988.658	3302.315	15809.00	0.2543999	1.0925616E-02	48.94121
NP-237	208.5846	28-FEB-2010	4432.549	4902.677	16291.00	0.2603085	1.3174290E-02	56.85185
CM-244	205.5828	28-FEB-2010	5531.208	5883.203	14943.00	0.2566723	1.3004515E-02	53.00024

CHAMBER 182 Instrument:

74440 Detector **AESS-023** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 24-AUG-2009 08:41:51

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:10:14

0.2534730 Average Efficiency Average Efficiency Error: 6.9745579E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	207.4764	28-FEB-2010	2990.553	3299.709	15297.00	0.2492435	1.0710318E-02	46.65529
NP-237	207.4998	28-FEB-2010	4435.824	4905.707	15977.00	0.2566445	1.2991886E-02	50.94455
CM-244	199.8804	28-FEB-2010	5533.404	5884.684	14515.00	0.2565299	1.3002145E-02	46.18616

Instrument: CHAMBER 183

Detector: 74441 Standard ID **AESS-018**

14-FEB-2008 17:45:04 Standard Reference Date Calibration Analysis Date/Time 24-AUG-2009 08:41:56

300.0000

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:10:29

Average Efficiency 0.2637588 Average Efficiency Error 7.2541810E-03 Confidence: 95.00000

Cal. Istps DPM EFF Err Resolution Exp. Date Start Engy End Engy Counts EFF. GD-148 202.1856 28-FEB-2010 2989.015 3297.962 16012.00 0.2677119 1.1494849E-02 47.11412 NP-237 208.8990 28-FEB-2010 4434.099 4904.342 16303.00 0.2601227 1.3164749E-02 52.97176 CM-244 53.53780 198.1458 28-FEB-2010 5532.826 5884.696 14712.00 0.2621811 1.3286361E-02

> CHAMBER 184 Instrument:

Detector: 74442 **AESS-024** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 24-AUG-2009 08:42:02 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:10:41

> Average Efficiency: 0.2604004 Average Efficiency Error: 7.1640476E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Enav	Counts	EFF.	EFF Err	Resolution
GD-148	203.5218	28-FEB-2010	2989.045	3299.169	15378.00	0.2554370	1.0975426E-02	49.39055
NP-237	205.6662	28-FEB-2010	4437.505	4902.470	16322.00	0.2645144	1.3386835E-02	57.05146
CM-244	198 3060	28-FFR-2010	5535 333	5886 318	14804 00	0 2636573	1 3359983F-02	50 92117

CHAMBER 185 Instrument:

Detector: 68615 **AESS-025** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 24-AUG-2009 08:42:07

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:10:54

Average Efficiency 0.2583998 Average Efficiency Error: 7.1241027E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.5670	28-FEB-2010	2987.897	3299.344	14977.00	0.2588871	1.1128917E-02	59.70583
NP-237	167.9916	28-FEB-2010	4432.571	4905.243	13169.00	0.2612911	1.3261506E-02	62.76381
CM-244	157.2432	28-FEB-2010	5530.503	5886.106	11355.00	0.2549717	1.2971560E-02	55.40694

Instrument: CHAMBER 186

Detector: 68616 Standard ID **AESS-031**

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 24-AUG-2009 08:42:13

300.0000

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:11:06

Average Efficiency 0.2578412 Average Efficiency Error: 7.1111098E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	193.6650	28-FEB-2010	2992.379	3299.140	14692.00	0.2564398	1.1027561E-02	55.81911
NP-237	162.9186	28-FEB-2010	4434.242	4902.774	12639.00	0.2585895	1.3132489E-02	57.78773
CM-244	153.1968	28-FEB-2010	5534.982	5886.349	11244.00	0.2590897	1.3183227E-02	55.94541

Instrument: CHAMBER 187

Detector: 68620 **AESS-026** Standard ID

15-FEB-2008 09:06:52 Standard Reference Date 24-AUG-2009 08:42:19 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:11:16

Average Efficiency: 0.2520546 7.3888451E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.5072	28-FEB-2010	2991.498	3300.157	14978.00	0.2537758	1.2857930E-02	50.69514
NP-237	168.0294	28-FEB-2010	4437.493	4903.961	12739.00	0.2526664	1.2830210E-02	58.36928
CM-244	160 5822	28-FFR-2010	5535 243	5883 722	11357 00	0 2497735	1 2706947F-02	53 40160

CHAMBER 188 Instrument:

Detector: 68621 **AESS-032** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 24-AUG-2009 08:42:24

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:11:25

Average Efficiency 0.2590206 Average Efficiency Error: 7.1418569E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.2364	28-FEB-2010	2988.985	3297.497	14940.00	0.2586645	1.1119837E-02	50.77880
NP-237	165.9822	28-FEB-2010	4433.354	4904.064	12857.00	0.2581703	1.3107833E-02	59.69577
CM-244	153.7938	28-FEB-2010	5533.683	5886.437	11347.00	0.2603945	1.3247656E-02	50.83346

Instrument: CHAMBER 189

Detector: 68622 Standard ID **AESS-027**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 24-AUG-2009 08:42:30

300.0000

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:11:34

Average Efficiency 0.2605012 Average Efficiency Error: 7.6393606E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	193.4238	28-FEB-2010	2990.052	3301.735	14579.00	0.2547995	1.2914370E-02	54.11663
NP-237	161.6154	28-FEB-2010	4436.853	4905.539	12669.00	0.2612749	1.3268417E-02	57.74998
CM-244	148.1754	28-FEB-2010	5532.776	5884.354	11162.00	0.2659585	1.3534531E-02	55.68552

Instrument: CHAMBER 190

Detector: 68623 Standard ID **AESS-033**

Standard Reference Date 18-FEB-2008 11:28:15 24-AUG-2009 08:42:35 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:11:43

Average Efficiency: 0.2627709 7.2474247E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	192.4158	28-FEB-2010	2991.652	3298.950	14837.00	0.2606309	1.1205810E-02	49.34105
NP-237	161.7816	28-FEB-2010	4435.677	4904.720	12625.00	0.2599701	1.3203092E-02	52.76612
CM-244	147.2670	28-FEB-2010	5532.170	5883.736	11225.00	0.2689729	1.3686700E-02	52.48962

CHAMBER 191 Instrument:

Detector: 68624 **AESS-028** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 24-AUG-2009 08:42:40

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:11:54

Average Efficiency 0.2621362 Average Efficiency Error: 7.6808794E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.6542	28-FEB-2010	2991.100	3299.772	15569.00	0.2636111	1.3349629E-02	49.40056
NP-237	168.1992	28-FEB-2010	4437.436	4904.158	13280.00	0.2631744	1.3355431E-02	53.16087
CM-244	156.7614	28-FEB-2010	5530.545	5884.668	11529.00	0.2596773	1.3207550E-02	53.47022

Instrument: CHAMBER 192

Detector: 74430 Standard ID AESS-034

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 24-AUG-2009 08:42:45

300.0000

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:12:04

Average Efficiency 0.2555450 Average Efficiency Error 7.0466422E-03 Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.5488	28-FEB-2010	2988.046	3297.560	14899.00	0.2511216	1.0796109E-02	50.91946
NP-237	167.2962	28-FEB-2010	4437.061	4903.990	12977.00	0.2585397	1.3124744E-02	59.22014
CM-244	154.4388	28-FEB-2010	5535.519	5883.955	11337.00	0.2591194	1.3182904E-02	51.43979

Instrument: CHAMBER 193

Detector: 68627 Standard ID **AESS-029**

Standard Reference Date 15-FEB-2008 09:06:52 24-AUG-2009 08:42:50 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:12:15

Average Efficiency: 0.2629034 7.7030240E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	201.5742	28-FEB-2010	2990.087	3301.572	15539.00	0.2605920	1.3197066E-02	51.03585
NP-237	169.7700	28-FEB-2010	4436.483	4905.309	13298.00	0.2610572	1.3247789E-02	60.49369
CM-244	154.8234	28-FEB-2010	5532.931	5884.819	11722.00	0.2672982	1.3591460E-02	49.40217

CHAMBER 194 Instrument:

68635 Detector **AESS-035** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 24-AUG-2009 08:42:56

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:12:24

0.2559154 Average Efficiency Average Efficiency Error: 7.0551960E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.6666	28-FEB-2010	2990.152	3297.570	15094.00	0.2568187	1.1038445E-02	52.22760
NP-237	168.2934	28-FEB-2010	4434.536	4903.587	12941.00	0.2562945	1.3011310E-02	57.01247
CM-244	158.8128	28-FEB-2010	5530.970	5882.461	11437.00	0.2543004	1.2935611E-02	52.26905

Instrument: CHAMBER 195

Detector: 68636 Standard ID **AESS-030**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 24-AUG-2009 08:43:02

300.0000

DPM

Exp. Date

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:12:38

Average Efficiency 0.2667065 Average Efficiency Error 7.8130718E-03 Confidence: 95.00000

EFF. EFF Err Resolution Start Engy End Engy Counts 3300.624 15672.00 0.2662604 1.3482675E-02

Cal. Istps GD-148 198.9792 28-FEB-2010 2992.288 51.81870 NP-237 166.3758 28-FEB-2010 4434.057 4902.978 13400.00 0.2684508 1.3621432E-02 55.01876 CM-244 157.1856 28-FEB-2010 5534.813 5885.542 11813.00 0.2654414 1.3495106E-02 48.18431

> CHAMBER 196 Instrument:

Detector: 68637 Standard ID **AESS-036**

Standard Reference Date 18-FEB-2008 11:28:15 24-AUG-2009 08:43:07 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:12:49

> Average Efficiency 0.2563491 Average Efficiency Error: 7.0671304E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	201.3204	28-FEB-2010	2990.410	3301.963	15144.00	0.2542627	1.0927959E-02	54.37652
NP-237	167.4312	28-FEB-2010	4437.321	4906.417	12971.00	0.2582058	1.3107896E-02	61.84642
CM-244	156.4188	28-FEB-2010	5534.476	5886.645	11409.00	0.2574924	1.3098660E-02	57.13540

CHAMBER 197 Instrument:

Detector: 78894 **AESS-037** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 24-AUG-2009 08:43:12

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:12:58

Average Efficiency 0.2565553 Average Efficiency Error: 7.0746746E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7372	28-FEB-2010	2991.920	3300.320	14773.00	0.2525423	1.0858861E-02	53.38351
NP-237	167.1294	28-FEB-2010	4436.468	4902.348	13097.00	0.2612088	1.3258392E-02	59.72187
CM-244	154.7664	28-FEB-2010	5532.745	5886.065	11302.00	0.2578566	1.3119171E-02	59.33312

Instrument: CHAMBER 198

Detector: 78895 Standard ID **AESS-043**

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 24-AUG-2009 08:43:18

300.0000

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:13:11

Average Efficiency 0.2541020 Average Efficiency Error: 7.0067579E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7708	28-FEB-2010	2991.305	3299.642	14821.00	0.2533123	1.0891330E-02	54.52969
NP-237	168.7422	28-FEB-2010	4434.397	4904.448	12902.00	0.2548661	1.2939337E-02	62.13729
CM-244	156.3252	28-FEB-2010	5533.011	5885.087	11271.00	0.2544529	1.2946853E-02	57.18044

Instrument: CHAMBER 199

Detector: 78896 **AESS-038** Standard ID

18-FEB-2008 15:31:47 Standard Reference Date 24-AUG-2009 08:43:24 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:13:20

Average Efficiency: 0.2501573 Average Efficiency Errór: 6.8986462E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1408	28-FEB-2010	2988.912	3297.497	14841.00	0.2506579	1.0776930E-02	55.76347
NP-237	170.0886	28-FEB-2010	4433.891	4904.941	12813.00	0.2510752	1.2748260E-02	59.43263
CM-244	157 7460	28-FFR-2010	5535 121	5882 869	11103 00	0 2485638	1 2650183F-02	55 23568

CHAMBER 200 Instrument:

Detector: 78900 **AESS-044** Standard ID

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 24-AUG-2009 08:43:29

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:13:29

Average Efficiency 0.2684568 Average Efficiency Error: 7.3974063E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4510	28-FEB-2010	2991.845	3300.480	15537.00	0.2700785	1.1602442E-02	51.63891
NP-237	166.6248	28-FEB-2010	4436.941	4902.709	13461.00	0.2692276	1.3660024E-02	60.85046
CM-244	155.8290	28-FEB-2010	5532.744	5885.759	11723.00	0.2655081	1.3500395E-02	52.11015

Instrument: CHAMBER 201

Detector: 78902 Standard ID **AESS-039**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 24-AUG-2009 08:43:34

300.0000

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:13:38

0.2592217 Average Efficiency Average Efficiency Error 7.1504964E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	192.2418	28-FEB-2010	2988.531	3297.499	14697.00	0.2584198	1.1112645E-02	48.26062
NP-237	159.1506	28-FEB-2010	4434.991	4906.359	12598.00	0.2638277	1.3399226E-02	56.82220
CM-244	151.7142	28-FEB-2010	5531.510	5884.700	10999.00	0.2559689	1.3029314E-02	45.31117

CHAMBER 202 Instrument:

Detector: 78903 **AESS-045** Standard ID

19-FEB-2008 00:32:27 Standard Reference Date 24-AUG-2009 08:43:39 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:13:47

Average Efficiency: 0.2636107 7.2720256E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	186.9936	28-FEB-2010	2990.301	3298.322	14668.00	0.2651460	1.1402297E-02	43.51926
NP-237	160.8066	28-FEB-2010	4432.596	4902.750	12471.00	0.2585094	1.3131124E-02	55.44957
CM-244	145.8384	28-FEB-2010	5531.710	5884.137	11024.00	0.2668914	1.3584715E-02	46.64507

CHAMBER 203 Instrument:

78905 Detector **AESS-040** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 24-AUG-2009 08:43:44

> Calibration Count Time 300.0000

24-AUG-2009 14:16:33 Efficiency Calibration Date/Time

Average Efficiency 0.2640079 Average Efficiency Error: 7.2768405E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4828	28-FEB-2010	2988.566	3301.771	15299.00	0.2658898	1.1425615E-02	49.79924
NP-237	166.8174	28-FEB-2010	4437.077	4902.609	13111.00	0.2619471	1.3295709E-02	56.73104
CM-244	155.0100	28-FEB-2010	5532.534	5885.590	11568.00	0.2635126	1.3401660E-02	53.98056

Instrument: CHAMBER 204

Detector: 78907 Standard ID AESS-046

Standard Reference Date 19-FEB-2008 19:35:48 Calibration Analysis Date/Time 24-AUG-2009 08:43:49

300.0000

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:14:37

Average Efficiency 0.2523464 Average Efficiency Error 6.9619059E-03 Confidence: 95.00000

Cal. Istps DPM EFF Err Resolution Exp. Date Start Engy End Engy Counts EFF. GD-148 194,7474 28-FEB-2010 2990.303 3298.289 14571.00 0.2528380 1.0874456E-02 50.39679 NP-237 164.6658 28-FEB-2010 4433.152 4903.866 12403.00 0.2510013 1.2750966E-02 53.81767 CM-244 151.3824 28-FEB-2010 5533.856 5886.993 10856.00 0.2530294 1.2882944E-02 47.99111

> Instrument: CHAMBER 205

Detector: 78908 Standard ID **AESS-041**

Standard Reference Date 18-FEB-2008 15:31:47 24-AUG-2009 08:43:54 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:14:46

> Average Efficiency 0.2560018 Average Efficiency Error: 7.0556081E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.9034	28-FEB-2010	2991.267	3299.423	15358.00	0.2545983	1.0939639E-02	47.30880
NP-237	171.2268	28-FEB-2010	4434.928	4905.917	13265.00	0.2582288	1.3104673E-02	60.39516
CM-244	159.5796	28-FEB-2010	5530.946	5884.256	11561.00	0.2557920	1.3009178E-02	54.31215

CHAMBER 206 Instrument:

78909 Detector **AESS-047** Standard ID

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 24-AUG-2009 08:44:00

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:14:55

0.2539860 Average Efficiency Average Efficiency Error: 7.0044687E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.4804	28-FEB-2010	2991.740	3299.836	14668.00	0.2510710	1.0797012E-02	49.54147
NP-237	168.3948	28-FEB-2010	4434.469	4904.811	12921.00	0.2557680	1.2984839E-02	58.90450
CM-244	154.6032	28-FEB-2010	5534.058	5886.660	11229.00	0.2564440	1.3048770E-02	52.29348

Instrument: CHAMBER 207

Detector: 78910 Standard ID **AESS-042**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 24-AUG-2009 08:44:06

300.0000

Calibration Count Time Efficiency Calibration Date/Time 24-AUG-2009 14:15:04

0.2567169 Average Efficiency Average Efficiency Error 7.0834220E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	188.7090	28-FEB-2010	2987.560	3301.824	14325.00	0.2565888	1.1039187E-02	52.32441
NP-237	159.6558	28-FEB-2010	4434.563	4905.877	12409.00	0.2590533	1.3159815E-02	57.42267
CM-244	150.5208	28-FEB-2010	5530.790	5883.765	10855.00	0.2546263	1.2963978E-02	55.85357

CHAMBER 208 Instrument:

Detector: 78911 Standard ID **AESS-048**

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 24-AUG-2009 08:44:11

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 24-AUG-2009 14:15:14

> Average Efficiency 0.2558721 Average Efficiency Error 7.0590605E-03

Confidence: 95.00000

DPM **End Engy** EFF Err Cal. Istps Exp. Date Start Engy Counts EFF. Resolution GD-148 191.8350 28-FEB-2010 2990.613 3299.492 0.2561232 1.1016136E-02 49.47414 14536.00 NP-237 0.2531039 1.2859914E-02 161.5530 28-FEB-2010 4436.795 4902.883 12269.00 57.37383 0.2584097 1.3152145E-02 CM-244 151.1856 28-FEB-2010 5533.327 5886.561 11065.00 53.34291

CHAMBER 209 Instrument:

Detector: 79188 **AESS-001** Standard ID

Standard Reference Date 20-FEB-2008 09:54:53 Calibration Analysis Date/Time 28-AUG-2009 07:06:29

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:24:07

Average Efficiency 0.3688648 Average Efficiency Error: 1.0119580E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.6698	28-FEB-2010	2991.940	3298.642	21909.00	0.3549186	1.5169610E-02	67.58371
NP-237	171.0024	28-FEB-2010	4435.592	4905.793	19508.00	0.3802500	1.9206451E-02	83.29742
CM-244	158.1060	28-FEB-2010	5530.388	5883.749	17000.00	0.3798451	1.9214446E-02	66.10979

Instrument: CHAMBER 210

Detector: 79189 Standard ID **AESS-002**

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 28-AUG-2009 07:06:35

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:25:35

Average Efficiency 0.3925964 Average Efficiency Error: 1.0751541E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1144	28-FEB-2010	2988.073	3301.089	22564.00	0.3811763	1.6285976E-02	59.50077
NP-237	200.4990	28-FEB-2010	4435.142	4905.164	24168.00	0.4017925	2.0255197E-02	72.98598
CM-244	196.5558	28-FEB-2010	5533.916	5886.208	22310.00	0.4010454	2.0231251E-02	59.60097

CHAMBER 211 Instrument:

Detector: 79190 Standard ID **AESS-003**

15-FEB-2008 13:12:27 Standard Reference Date 28-AUG-2009 07:06:39 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:25:47

Average Efficiency: 0.3783190 Average Efficiency Error: 1.0361547E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.9740	28-FEB-2010	2991.282	3299.071	22252.00	0.3706464	1.5838793E-02	59.43069
NP-237	203.2080	28-FEB-2010	4434.230	4900.253	23526.00	0.3867531	1.9501008E-02	83.71527
CM-244	197.2236	28-FEB-2010	5531.327	5885.262	21283.00	0.3814342	1.9250123E-02	60.34041

CHAMBER 212 Instrument:

79191 Detector **AESS-004** Standard ID

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 28-AUG-2009 07:06:45

> Calibration Count Time 300.0000

28-AUG-2009 13:26:50 Efficiency Calibration Date/Time

Average Efficiency 0.3842054 Average Efficiency Error: 1.0521159E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.1222	28-FEB-2010	2991.918	3298.870	22817.00	0.3742636	1.5988497E-02	61.37182
NP-237	204.2586	28-FEB-2010	4437.027	4902.590	24211.00	0.3950988	1.9917466E-02	76.39180
CM-244	198.8100	28-FEB-2010	5533.378	5887.318	21854.00	0.3886002	1.9607035E-02	60.73505

Instrument: CHAMBER 213

Detector: 79192 Standard ID AESS-005

14-FEB-2008 09:35:18 Standard Reference Date Calibration Analysis Date/Time 28-AUG-2009 07:06:50

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:27:02

Average Efficiency 0.3626718 Average Efficiency Error 9.9363821E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.7452	28-FEB-2010	2991.497	3299.775	21877.00	0.3509731	1.5001265E-02	65.21502
NP-237	209.5938	28-FEB-2010	4434.841	4905.254	23395.00	0.3720641	1.8761570E-02	80.31606
CM-244	202.7478	28-FEB-2010	5534.504	5887.063	21311.00	0.3715691	1.8752033E-02	64.10100

CHAMBER 214 Instrument:

Detector: 79193 Standard ID AESS-006

Standard Reference Date 14-FEB-2008 09:35:18 28-AUG-2009 07:06:55 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:27:13

> Average Efficiency 0.3838671 Average Efficiency Error 1.0511074E-02

Confidence: 95.00000

EFF Err Cal. Istps DPM Exp. Date Start Engy End Engy Counts EFF. Resolution GD-148 203.6952 28-FEB-2010 2991.133 3298.396 22762.00 0.3778099 1.6140467E-02 58.86099 NP-237 204.7038 28-FEB-2010 4436.844 4902.153 23748.00 0.3866856 1.9496445E-02 74.56451 CM-244 195.0060 28-FEB-2010 5532.271 5885.676 21514.00 0.3900006 1.9680507E-02 59.70840

CHAMBER 215 Instrument:

Detector: 79194 **AESS-007** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 28-AUG-2009 07:06:59

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:27:24

Average Efficiency 0.3806459 Average Efficiency Error: 1.0423170E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.7342	28-FEB-2010	2991.638	3298.993	22783.00	0.3725980	1.5917629E-02	61.31356
NP-237	205.0260	28-FEB-2010	4433.482	4904.904	23893.00	0.3884499	1.9584404E-02	80.36595
CM-244	199.6806	28-FEB-2010	5531.246	5885.655	21745.00	0.3849533	1.9423924E-02	60.77392

Instrument: CHAMBER 216

Detector: 79195 Standard ID **AESS-008**

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 28-AUG-2009 07:07:04

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:27:35

Average Efficiency 0.3745080 Average Efficiency Error: 1.0257245E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.0418	28-FEB-2010	2992.181	3299.336	22346.00	0.3666793	1.5668461E-02	61.23994
NP-237	209.2716	28-FEB-2010	4432.606	4903.311	23466.00	0.3737679	1.8847005E-02	82.70575
CM-244	199.6488	28-FEB-2010	5533.853	5887.574	21885.00	0.3874936	1.9550970E-02	61.73182

CHAMBER 217 Instrument:

Detector: 79410 **AESS-009** Standard ID

19-FEB-2008 11:05:22 Standard Reference Date 28-AUG-2009 07:07:09 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:27:45

Average Efficiency: 0.3777330 1.0345438E-02 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.3736	28-FEB-2010	2989.031	3301.074	22245.00	0.3697601	1.5800970E-02	58.22815
NP-237	204.0192	28-FEB-2010	4434.240	4905.058	23534.00	0.3845063	1.9388009E-02	79.31593
CM-244	197.2128	28-FEB-2010	5530.547	5884.453	21374.00	0.3829291	1.9324809E-02	62.42009

CHAMBER 218 Instrument:

79411 Detector **AESS-010** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 28-AUG-2009 07:07:14

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:27:55

0.3930598 Average Efficiency Average Efficiency Error: 1.0761084E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.0008	28-FEB-2010	2988.583	3301.235	23052.00	0.3858313	1.6480651E-02	58.44905
NP-237	202.9926	28-FEB-2010	4435.884	4901.733	24227.00	0.3977866	2.0052891E-02	78.90448
CM-244	196.2330	28-FEB-2010	5532.602	5886.438	22153.00	0.3990829	2.0133503E-02	64.39376

Instrument: CHAMBER 219

Detector: 79412 Standard ID **AESS-011**

14-FEB-2008 13:39:25 Standard Reference Date Calibration Analysis Date/Time 28-AUG-2009 07:07:18

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:28:06

Average Efficiency 0.3681216 Average Efficiency Error 1.0080670E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	212.8284	28-FEB-2010	2992.207	3300.096	22591.00	0.3588740	1.5332905E-02	58.48974
NP-237	214.4868	28-FEB-2010	4435.206	4906.290	24021.00	0.3732913	1.8819345E-02	78.80820
CM-244	208.4184	28-FEB-2010	5531.669	5885.285	22231.00	0.3770731	1.9022530E-02	63.56152

CHAMBER 220 Instrument:

Detector: 79413 Standard ID **AESS-012**

Standard Reference Date 14-FEB-2008 13:39:25 28-AUG-2009 07:07:23 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:28:15

> Average Efficiency 0.3790617 1.0378873E-02 Average Efficiency Error

Confidence: 95.00000

End Engy EFF Err Cal. Istps DPM Exp. Date Start Engy Counts EFF. Resolution GD-148 206.2200 28-FEB-2010 2990.930 3297.738 22806.00 0.3739041 1.5973235E-02 57.23833 NP-237 205.8930 28-FEB-2010 4435.749 4901.420 23881.00 0.3866248 1.9492462E-02 76.47005 CM-244 203.1954 28-FEB-2010 5532.504 5886.683 21795.00 0.3791749 1.9131947E-02 59.12632

CHAMBER 221 Instrument:

79414 Detector **AESS-013** Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 28-AUG-2009 07:07:27

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:28:26

Average Efficiency 0.3760977 Average Efficiency Error: 1.0297902E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6544	28-FEB-2010	2989.954	3298.454	22543.00	0.3742467	1.5990108E-02	51.83245
NP-237	210.2526	28-FEB-2010	4435.659	4902.272	23655.00	0.3750251	1.8909130E-02	73.29375
CM-244	201.9108	28-FEB-2010	5533.925	5882.692	21697.00	0.3798594	1.9167274E-02	59.34735

Instrument: CHAMBER 222

Detector: 79415 Standard ID AESS-014

19-FEB-2008 11:05:22 Standard Reference Date Calibration Analysis Date/Time 28-AUG-2009 07:07:32

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:28:40

Average Efficiency 0.3479734 Average Efficiency Error 9.5388982E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	214.7088	28-FEB-2010	2990.392	3301.657	21181.00	0.3334915	1.4259904E-02	57.45364
NP-237	211.7160	28-FEB-2010	4433.525	4905.197	22862.00	0.3599479	1.8154154E-02	71.83906
CM-244	207.3882	28-FEB-2010	5534.683	5886.672	21099.00	0.3594557	1.8142378E-02	61.07040

CHAMBER 223 Instrument:

Detector: 79416 Standard ID **AESS-015**

Standard Reference Date 14-FEB-2008 17:45:04 28-AUG-2009 07:07:38 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:28:50

> Average Efficiency 0.3915000 1.0720647E-02 Average Efficiency Error

Confidence: 95.00000

End Engy EFF Err Cal. Istps DPM Exp. Date Start Engy Counts EFF. Resolution GD-148 204.0270 28-FEB-2010 2990.058 22991.00 0.3809772 1.6273832E-02 50.91898 3298.884 NP-237 200.6460 28-FEB-2010 4432.434 4905.074 24293.00 0.4035698 2.0343946E-02 76.26361 CM-244 5532.599 195.9270 28-FEB-2010 5887.467 21933.00 0.3957134 1.9965306E-02 59.83861

CHAMBER 224 Instrument:

Detector: 79417 **AESS-016** Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 28-AUG-2009 07:07:44

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:29:01

Average Efficiency 0.3813685 Average Efficiency Error: 1.0448295E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0534	28-FEB-2010	2988.636	3298.216	22249.00	0.3686436	1.5753238E-02	55.61435
NP-237	199.3962	28-FEB-2010	4432.951	4905.382	23877.00	0.3991403	2.0123499E-02	76.52156
CM-244	198.6402	28-FEB-2010	5532.025	5886.099	21587.00	0.3841456	1.9384453E-02	60.82283

Instrument: CHAMBER 225

Detector: 79418 Standard ID **AESS-017**

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 28-AUG-2009 07:07:50

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:29:13

Average Efficiency 0.3798896 Average Efficiency Error: 1.0400972E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.0798	28-FEB-2010	2991.462	3299.408	23067.00	0.3712333	1.5856978E-02	56.54003
NP-237	208.5846	28-FEB-2010	4434.737	4905.917	24322.00	0.3886784	1.9593079E-02	73.79168
CM-244	205.5828	28-FEB-2010	5531.430	5885.124	22345.00	0.3842223	1.9382324E-02	56.97727

CHAMBER 226 Instrument:

Detector: 79419 **AESS-018** Standard ID

14-FEB-2008 17:45:04 Standard Reference Date 28-AUG-2009 07:07:57 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:29:24

Average Efficiency: 0.3827937 Average Efficiency Error: 1.0482643E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.1856	28-FEB-2010	2991.793	3300.581	22481.00	0.3759236	1.6062303E-02	52.26083
NP-237	208.8990	28-FEB-2010	4433.080	4904.877	23880.00	0.3810358	1.9210700E-02	71.56741
CM-244	198.1458	28-FEB-2010	5530.936	5884.804	22156.00	0.3952768	1.9941466E-02	57.91118

CHAMBER 227 Instrument:

79420 Detector **AESS-019** Standard ID

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 28-AUG-2009 07:08:03

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:29:35

0.3801799 Average Efficiency Average Efficiency Error: 1.0412521E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.6468	28-FEB-2010	2989.468	3297.622	22414.00	0.3702514	1.5820496E-02	54.09752
NP-237	202.9140	28-FEB-2010	4433.427	4904.675	23804.00	0.3910310	1.9715140E-02	71.53796
CM-244	199.3140	28-FEB-2010	5535.505	5883.794	21696.00	0.3846057	1.9406769E-02	56.80846

Instrument: CHAMBER 228

Detector: 79421 Standard ID **AESS-020**

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 28-AUG-2009 07:08:10

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:30:03

Average Efficiency 0.3820991 Average Efficiency Error 1.0465804E-02 Confidence: 95.00000

Cal. Istps DPM EFF. EFF Err Resolution Exp. Date Start Engy End Engy Counts GD-148 205.5870 28-FEB-2010 2992.529 3302.052 22496.00 0.3699491 1.5806897E-02 57.79967 NP-237 203.4984 28-FEB-2010 4435.206 4906.368 23880.00 0.3911529 1.9720770E-02 74.62083 CM-244 197.1096 28-FEB-2010 5530.800 5883.365 21859.00 0.3920157 1.9779330E-02 58.42591

> CHAMBER 229 Instrument:

Detector: 79422 Standard ID **AESS-021**

Standard Reference Date 19-FEB-2008 15:31:52 28-AUG-2009 07:08:15 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:30:14

> Average Efficiency: 0.3792264 Average Efficiency Error: 1.0383990E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.3608	28-FEB-2010	2989.967	3297.813	22847.00	0.3706752	1.5834933E-02	56.62864
NP-237	210.1548	28-FEB-2010	4433.942	4905.968	24067.00	0.3817250	1.9244215E-02	74.03220
CM-244	200 7390	28-FFR-2010	5533 045	5882 442	22147 00	0.3898062	1 9665552F-02	61 11129

CHAMBER 230 Instrument:

79423 Detector **AESS-022** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 28-AUG-2009 07:08:19

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:31:10

Average Efficiency 0.3733873 Average Efficiency Error: 1.0229134E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	209.6724	28-FEB-2010	2992.307	3300.916	22287.00	0.3593755	1.5356863E-02	52.42038
NP-237	206.8830	28-FEB-2010	4432.950	4904.639	23944.00	0.3857800	1.9449461E-02	68.40366
CM-244	203.0208	28-FEB-2010	5530.626	5884.491	22017.00	0.3833580	1.9341249E-02	56.79975

Instrument: CHAMBER 231

Detector: 79424 Standard ID **AESS-023**

14-FEB-2008 21:55:55 Standard Reference Date Calibration Analysis Date/Time 28-AUG-2009 07:08:24

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:31:59

Average Efficiency 0.3850142 Average Efficiency Error 1.0541392E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	207.4764	28-FEB-2010	2989.314	3302.411	23101.00	0.3764438	1.6079262E-02	62.44617
NP-237	207.4998	28-FEB-2010	4437.493	4903.010	24175.00	0.3883348	1.9576734E-02	78.49866
CM-244	199.8804	28-FEB-2010	5532.978	5886.091	22319.00	0.3947221	1.9912189E-02	60.41550

CHAMBER 232 Instrument:

Detector: 79425 Standard ID AESS-024

Standard Reference Date 14-FEB-2008 21:55:55 28-AUG-2009 07:08:30 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:32:18

> Average Efficiency 0.3742643 1.0255569E-02 Average Efficiency Error

Confidence: 95.00000

DPM **End Engy** Cal. Istps Exp. Date Start Engy Counts EFF. EFF Err Resolution GD-148 203.5218 28-FEB-2010 2990.963 3301.243 21662.00 0.3598436 1.5382325E-02 53.98000 NP-237 205.6662 28-FEB-2010 4436.020 4902.090 23797.00 0.3856703 1.9444924E-02 72.96513 CM-244 5883.791 198.3060 28-FEB-2010 5531.563 21651.00 0.3859375 1.9474341E-02 56.32160

CHAMBER 233 Instrument:

79426 Detector **AESS-025** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 28-AUG-2009 07:08:35

> Calibration Count Time 300.0000

28-AUG-2009 13:32:35 Efficiency Calibration Date/Time

0.3806617 Average Efficiency Average Efficiency Error: 1.0437921E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.5670	28-FEB-2010	2990.373	3302.025	21917.00	0.3788947	1.6194314E-02	59.57938
NP-237	167.9916	28-FEB-2010	4434.487	4905.324	19388.00	0.3846898	1.9431910E-02	80.68842
CM-244	157.2432	28-FEB-2010	5531.110	5885.315	16870.00	0.3792152	1.9184273E-02	59.70237

Instrument: CHAMBER 234

Detector: 79427 Standard ID AESS-026

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 28-AUG-2009 07:08:41

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:32:51

Average Efficiency 0.3701842 Average Efficiency Error 1.0801505E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.5072	28-FEB-2010	2988.269	3300.079	21287.00	0.3607304	1.8206345E-02	60.36027
NP-237	168.0294	28-FEB-2010	4436.893	4901.571	19195.00	0.3807805	1.9236386E-02	87.24484
CM-244	160.5822	28-FEB-2010	5530.864	5883.822	16817.00	0.3701437	1.8726060E-02	61.15481

CHAMBER 235 Instrument:

Detector: 79428 Standard ID **AESS-027**

Standard Reference Date 15-FEB-2008 09:06:52 28-AUG-2009 07:08:45 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:33:07

> Average Efficiency 0.3924418 Average Efficiency Error 1.1451972E-02

Confidence: 95.00000

End Engy EFF Err Cal. Istps DPM Exp. Date Start Engy Counts EFF. Resolution GD-148 193.4238 28-FEB-2010 2989.964 3301.553 21591.00 0.3773947 1.9044928E-02 59.06186 NP-237 161.6154 28-FEB-2010 4434.767 4906.350 19376.00 0.3996259 2.0186499E-02 69.60875 CM-244 5533.497 148,1754 28-FEB-2010 5883.248 16865.00 0.4023240 2.0353375E-02 59.46798

CHAMBER 236 Instrument:

79429 Detector: **AESS-028** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 28-AUG-2009 07:08:51

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:33:24

Average Efficiency 0.3822154 Average Efficiency Error: 1.1149851E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.6542	28-FEB-2010	2989.553	3300.921	21911.00	0.3710214	1.8720830E-02	59.63935
NP-237	168.1992	28-FEB-2010	4432.813	4903.618	19461.00	0.3856082	1.9477623E-02	76.00614
CM-244	156.7614	28-FEB-2010	5534.883	5883.901	17350.00	0.3912177	1.9785114E-02	63.22596

Instrument: CHAMBER 237

Detector: 79430 Standard ID **AESS-029**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 28-AUG-2009 07:08:55

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:33:41

Average Efficiency 0.3836243 Average Efficiency Error: 1.1190724E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	201.5742	28-FEB-2010	2990.412	3298.430	22171.00	0.3718633	1.8761324E-02	57.93632
NP-237	169.7700	28-FEB-2010	4434.021	4905.306	19694.00	0.3866741	1.9529065E-02	74.67754
CM-244	154.8234	28-FEB-2010	5530.956	5884.725	17244.00	0.3937016	1.9912098E-02	63.18201

CHAMBER 238 Instrument:

Detector: 79431 **AESS-030** Standard ID

15-FEB-2008 09:06:52 Standard Reference Date 28-AUG-2009 07:09:00 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:33:59

Average Efficiency: 0.3827302 1.1164652E-02 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.9792	28-FEB-2010	2988.738	3300.787	21962.00	0.3731618	1.8828424E-02	57.84193
NP-237	166.3758	28-FEB-2010	4433.583	4904.073	19552.00	0.3916996	1.9784329E-02	69.05827
CM-244	157.1856	28-FEB-2010	5534.315	5882.484	17088.00	0.3842701	1.9437104E-02	55.46104

CHAMBER 239 Instrument:

79432 Detector **AESS-031** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 28-AUG-2009 07:09:05

> Calibration Count Time 300.0000

28-AUG-2009 13:34:23 Efficiency Calibration Date/Time

Average Efficiency 0.3877645 Average Efficiency Error: 1.0634423E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	193.6650	28-FEB-2010	2991.271	3298.066	21814.00	0.3807774	1.6275739E-02	53.01001
NP-237	162.9186	28-FEB-2010	4436.718	4902.950	19446.00	0.3978185	2.0094519E-02	75.58379
CM-244	153.1968	28-FEB-2010	5535.054	5884.530	16836.00	0.3883347	1.9646063E-02	61.05005

Instrument: CHAMBER 240

Detector: 79433 Standard ID **AESS-032**

18-FEB-2008 11:28:15 Standard Reference Date Calibration Analysis Date/Time 28-AUG-2009 07:09:09

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:34:40

Average Efficiency 0.3763680 Average Efficiency Error 1.0324174E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.2364	28-FEB-2010	2990.716	3297.687	21305.00	0.3688990	1.5772741E-02	54.18781
NP-237	165.9822	28-FEB-2010	4436.108	4901.861	19099.00	0.3835373	1.9376662E-02	70.26006
CM-244	153.7938	28-FEB-2010	5532.981	5887.143	16557.00	0.3804168	1.9249255E-02	59.34691

CHAMBER 241 Instrument:

Detector: 79434 Standard ID **AESS-033**

Standard Reference Date 18-FEB-2008 11:28:15 28-AUG-2009 07:09:15 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:34:57

> Average Efficiency 0.3975072 1.0901848E-02 Average Efficiency Error

Confidence: 95.00000

End Engy EFF Err Cal. Istps DPM Exp. Date Start Engy Counts EFF. Resolution GD-148 192.4158 28-FEB-2010 2991.942 3297.913 22027.00 0.3869813 1.6538920E-02 56.90702 NP-237 161.7816 28-FEB-2010 4434.531 4905.642 19524.00 0.4022706 2.0318527E-02 70.70508 CM-244 17047.00 0.4090414 2.0690644E-02 147.2670 28-FEB-2010 5532.339 5887.328 61.22742

CHAMBER 242 Instrument:

Detector: 79435 **AESS-034** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 28-AUG-2009 07:09:21

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:35:16

Average Efficiency 0.3864579 Average Efficiency Error: 1.0596083E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.5488	28-FEB-2010	2990.675	3302.424	22431.00	0.3781182	1.6156483E-02	57.80299
NP-237	167.2962	28-FEB-2010	4435.599	4901.625	19682.00	0.3921467	1.9805590E-02	79.14774
CM-244	154.4388	28-FEB-2010	5533.423	5882.719	17192.00	0.3933641	1.9895712E-02	58.04135

Instrument: CHAMBER 243

Detector: 79436 Standard ID **AESS-035**

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 28-AUG-2009 07:09:26

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:35:39

Average Efficiency 0.3714339 Average Efficiency Error 1.0188053E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.6666	28-FEB-2010	2990.382	3298.347	21390.00	0.3639862	1.5561880E-02	52.11441
NP-237	168.2934	28-FEB-2010	4434.037	4905.494	19170.00	0.3796824	1.9181171E-02	79.79841
CM-244	158.8128	28-FEB-2010	5531.482	5885.497	16828.00	0.3744243	1.8942432E-02	60.93315

CHAMBER 244 Instrument:

Detector: 79437 Standard ID AESS-036

Standard Reference Date 18-FEB-2008 11:28:15 28-AUG-2009 07:09:32 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:36:07

Average Efficiency: 0.3715149 Average Efficiency Error: 1.0192083E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	201.3204	28-FEB-2010	2987.566	3299.789	21504.00	0.3610823	1.5436707E-02	66.23463
NP-237	167.4312	28-FEB-2010	4433.571	4904.626	19293.00	0.3840864	1.9402392E-02	76.43731
CM-244	156.4188	28-FEB-2010	5530.417	5884.486	16611.00	0.3752594	1.8987549E-02	63.78664

CHAMBER 245 Instrument:

79438 Detector **AESS-037** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 28-AUG-2009 07:09:37

> Calibration Count Time 300.0000

28-AUG-2009 13:36:53 Efficiency Calibration Date/Time

Average Efficiency 0.3848314 Average Efficiency Error: 1.0552316E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7372	28-FEB-2010	2988.843	3302.525	22076.00	0.3774236	1.6129972E-02	66.05534
NP-237	167.1294	28-FEB-2010	4434.670	4906.399	19600.00	0.3909029	1.9743593E-02	75.47243
CM-244	154.7664	28-FEB-2010	5532.436	5886.326	17075.00	0.3898463	1.9719332E-02	65.09534

Instrument: CHAMBER 246

Detector: 78912 Standard ID **AESS-038**

18-FEB-2008 15:31:47 Standard Reference Date Calibration Analysis Date/Time 28-AUG-2009 07:09:44

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:37:05

Average Efficiency 0.3738058 Average Efficiency Error 1.0253170E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1408	28-FEB-2010	2991.420	3298.792	21522.00	0.3635281	1.5541083E-02	66.60865
NP-237	170.0886	28-FEB-2010	4433.098	4904.335	19515.00	0.3824243	1.9316213E-02	81.32760
CM-244	157.7460	28-FEB-2010	5530.336	5884.508	17010.00	0.3810334	1.9274388E-02	64.73948

CHAMBER 247 Instrument:

Detector: 79440 Standard ID **AESS-039**

Standard Reference Date 18-FEB-2008 15:31:47 28-AUG-2009 07:09:50 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:37:16

> Average Efficiency 0.3955781 Average Efficiency Error 1.0848942E-02

Confidence: 95.00000

End Engy EFF Err Cal. Istps DPM Exp. Date Start Engy Counts EFF. Resolution GD-148 192.2418 28-FEB-2010 2991.040 3298.952 21948.00 0.3859353 1.6494961E-02 55.97421 NP-237 4435.157 159.1506 28-FEB-2010 4901.869 19486.00 0.4080938 2.0613093E-02 75.98156 CM-244 151.7142 28-FEB-2010 5534.103 5883.404 17090.00 0.3980037 2.0131798E-02 63,42304

CHAMBER 248 Instrument:

Detector: 79441 **AESS-040** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 28-AUG-2009 07:09:55

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:37:28

Average Efficiency 0.3941916 Average Efficiency Error: 1.0806664E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4828	28-FEB-2010	2989.950	3302.491	22290.00	0.3874540	1.6556673E-02	56.03559
NP-237	166.8174	28-FEB-2010	4437.546	4903.912	19884.00	0.3972850	2.0063095E-02	79.90582
CM-244	155.0100	28-FEB-2010	5530.441	5884.950	17598.00	0.4011423	2.0283826E-02	58.96740

Instrument: CHAMBER 249

Detector: 79442 Standard ID **AESS-041**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 28-AUG-2009 07:10:01

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:37:39

Average Efficiency 0.3691496 Average Efficiency Error: 1.0125251E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.9034	28-FEB-2010	2991.458	3299.653	21709.00	0.3599154	1.5384958E-02	54.07297
NP-237	171.2268	28-FEB-2010	4437.087	4904.383	19560.00	0.3807467	1.9231046E-02	72.35228
CM-244	159.5796	28-FEB-2010	5532.120	5887.291	16794.00	0.3718590	1.8813105E-02	57.81293

CHAMBER 250 Instrument:

Detector: 79443 **AESS-042** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 28-AUG-2009 07:10:06 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:37:51

Average Efficiency: 0.3921595 Average Efficiency Error: 1.0755106E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	188.7090	28-FEB-2010	2988.375	3300.259	21703.00	0.3887982	1.6619630E-02	48.88448
NP-237	159.6558	28-FEB-2010	4433.621	4904.859	19099.00	0.3987351	2.0144468E-02	67.77724
CM-244	150.5208	28-FEB-2010	5531.200	5885.729	16638.00	0.3905834	1.9762557E-02	55.02527

CHAMBER 251 Instrument:

79444 Detector: **AESS-043** Standard ID

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 28-AUG-2009 07:10:12

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:38:01

Average Efficiency 0.3860320 Average Efficiency Error: 1.0584467E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7708	28-FEB-2010	2992.181	3299.694	22112.00	0.3779713	1.6153051E-02	53.81643
NP-237	168.7422	28-FEB-2010	4435.877	4903.211	19812.00	0.3913130	1.9762235E-02	75.40137
CM-244	156.3252	28-FEB-2010	5531.476	5887.181	17382.00	0.3928898	1.9869251E-02	59.21478

Instrument: CHAMBER 252

Detector: 79445 Standard ID AESS-044

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 28-AUG-2009 07:10:17

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:38:11

Average Efficiency 0.3746736Average Efficiency Error 1.0277720E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4510	28-FEB-2010	2990.594	3297.549	21166.00	0.3679778	1.5734663E-02	58.89096
NP-237	166.6248	28-FEB-2010	4436.816	4903.310	19132.00	0.3827184	1.9334946E-02	82.92307
CM-244	155.8290	28-FEB-2010	5530.420	5885.459	16612.00	0.3766809	1.9059464E-02	58.52933

CHAMBER 253 Instrument:

Detector: 79446 **AESS-045** Standard ID

19-FEB-2008 00:32:27 Standard Reference Date 28-AUG-2009 07:10:22 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:38:20

Average Efficiency: 0.4166903 Average Efficiency Error: 1.1423565E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	186.9936	28-FEB-2010	2990.116	3298.147	22479.00	0.4063848	1.7363828E-02	54.86803
NP-237	160.8066	28-FEB-2010	4437.082	4905.908	20384.00	0.4224682	2.1329734E-02	78.85169
CM-244	145.8384	28-FEB-2010	5531.106	5882.794	17611.00	0.4266897	2.1575425E-02	60.09909

CHAMBER 254 Instrument:

Detector: 79447 **AESS-046** Standard ID

Standard Reference Date 19-FEB-2008 19:35:48 Calibration Analysis Date/Time 28-AUG-2009 07:10:27

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:38:31

Average Efficiency 0.3994595 Average Efficiency Error: 1.0953108E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.7474	28-FEB-2010	2990.155	3297.706	22342.00	0.3878187	1.6571781E-02	57.29897
NP-237	164.6658	28-FEB-2010	4433.107	4904.992	20059.00	0.4060186	2.0502383E-02	81.53826
CM-244	151.3824	28-FEB-2010	5532.020	5886.853	17611.00	0.4110290	2.0783551E-02	57.98274

Instrument: CHAMBER 255

Detector: 79448 Standard ID **AESS-047**

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 28-AUG-2009 07:10:32

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-AUG-2009 13:38:42

Average Efficiency 0.3673038 Average Efficiency Error: 1.0076646E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.4804	28-FEB-2010	2987.598	3300.373	21106.00	0.3613006	1.5449724E-02	54.03281
NP-237	168.3948	28-FEB-2010	4437.418	4905.095	18737.00	0.3708411	1.8738993E-02	71.81757
CM-244	154.6032	28-FEB-2010	5533.813	5884.354	16306.00	0.3726670	1.8860538E-02	60.74806

CHAMBER 256 Instrument:

Detector: 79449 **AESS-048** Standard ID

19-FEB-2008 00:32:27 Standard Reference Date 28-AUG-2009 07:10:37 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-AUG-2009 13:38:54

Average Efficiency: 0.3796731 Average Efficiency Error: 1.0416142E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	191.8350	28-FEB-2010	2991.222	3298.267	21126.00	0.3722856	1.5919263E-02	56.71911
NP-237	161.5530	28-FEB-2010	4432.956	4905.052	18745.00	0.3867485	1.9542677E-02	77.89369
CM-244	151.1856	28-FEB-2010	5532.797	5882.840	16417.00	0.3836786	1.9416265E-02	61.63605

Subsection 1: Energy Calibration

The Energy Calibration energy=Cal Zero+(e1*C)+(e2*C^2)

where: Cal_Zero = Energy Calibration Zero

e1 = Energy Calibration Slope e2 = Energy Calibration Quadratic

C = Channel

Instrument: CHAMBER 001

Detector: 78788

Calibration Date/Time : 3-AUG-2009 15:07:18

Calibration Source Id: AESS-001

Source Id Expiration Date Standard Energy Actual Energy Cal. Isotopes GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2534.953 Energy Calibration Slope : 5.110485 Energy Calibration Quadratic : 3.6437725E-04 Energy Calibration Range : 8150.000

> > Instrument: CHAMBER 002

Detector: 78266

Calibration Date/Time : 3-AUG-2009 15:07:28

Calibration Source Id: AESS-002

Source Id Expiration Date Standard Energy Actual Energy Cal. Isotopes GD-148 6445-278 2/28/10 3183.000 3182.388 NP-237 4341 2/28/10 4768.800 4766.321 CM-244 4320A 2/28/10 5795.020 5788.471

> Energy/Channel Equation : see above Energy Calibration Zero : 2388.235 Energy Calibration Slope : 4.973730 Energy Calibration Quadratic : 2.6397678E-04 Energy Calibration Range : 7758.000

> > Instrument : CHAMBER 003

Detector: 67617

Calibration Date/Time: 3-AUG-2009 15:07:35

Calibration Source Id: AESS-003

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id 6445-278 3182.387 GD-148 2/28/10 3183.000 NP-237 4341 2/28/10 4768.800 4767.838 2/28/10 5794.156 CM-244 4320A 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2584.211 Energy Calibration Slope : 5.517208 Energy Calibration Quadratic : 3.4034223E-04 Energy Calibration Range : 8591.000

Detector: 64279

Calibration Date/Time : 3-AUG-2009 15:07:43

Calibration Source Id: AESS-004

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.447 NP-237 4341 2/28/10 4768.800 4768.577 CM-244 4320A 2/28/10 5795.020 5794.331

> Energy/Channel Equation : see above Energy Calibration Zero : 2531.886 Energy Calibration Slope : 5.104729 Energy Calibration Quadratic : 3.4169605E-04 Energy Calibration Range : 8117.000

> > Instrument: CHAMBER 005

Detector: 67612

Calibration Date/Time: 3-AUG-2009 15:07:52

Calibration Source Id: AESS-005

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.483 NP-237 4341 2/28/10 4768.800 4768.485 5795.020 CM-244 4320A 2/28/10 5794.609

> Energy/Channel Equation : see above Energy Calibration Zero : 2389.088 Energy Calibration Slope : 5.005554 Energy Calibration Quadratic : 3.1303350E-04 Energy Calibration Range : 7843.000

> > Instrument: CHAMBER 006

Detector: 67613

Calibration Date/Time : 3-AUG-2009 15:08:01

Calibration Source Id: AESS-006

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.992 NP-237 2/28/10 4341 4768.800 4768.752 CM-244 2/28/10 4320A 5795.020 5795.014

> Energy/Channel Equation : see above Energy Calibration Zero : 2370.146 Energy Calibration Slope : 4.964829 Energy Calibration Quadratic : 3.0693886E-04 Energy Calibration Range : 7776.000

Detector: 67607

Calibration Date/Time: 3-AUG-2009 15:08:14

Calibration Source Id: AESS-007

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.242 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2434.070 Energy Calibration Slope : 5.126286 Energy Calibration Quadratic : 3.2231462E-04 Energy Calibration Range : 8021.000

> > Instrument: CHAMBER 008

Detector: 78788

Calibration Date/Time : 3-AUG-2009 15:08:25

Calibration Source Id: AESS-008

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.886 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2371.872 Energy Calibration Slope : 4.982497 Energy Calibration Quadratic : 2.9716187E-04 Energy Calibration Range : 7786.000

> > Instrument: CHAMBER 009

Detector: 72528

Calibration Date/Time: 3-AUG-2009 15:08:37

Calibration Source Id: AESS-009

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2376.048 Energy Calibration Slope : 4.954385 Energy Calibration Quadratic : 3.3214918E-04 Energy Calibration Range : 7798.000

Detector: 72529

Calibration Date/Time : 3-AUG-2009 15:08:47

Calibration Source Id: AESS-010

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2369.197 Energy Calibration Slope : 4.976785 Energy Calibration Quadratic : 2.5434556E-04 Energy Calibration Range : 7732.000

> > Instrument: CHAMBER 011

Detector: 72531

Calibration Date/Time : 3-AUG-2009 15:10:05

Calibration Source Id: AESS-011

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.798 5795.020 5794.773 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2352.745 Energy Calibration Slope : 4.989676 Energy Calibration Quadratic : 3.1640983E-04 Energy Calibration Range : 7794.000

> > Instrument: CHAMBER 012

Detector: 67594

Calibration Date/Time : 3-AUG-2009 15:10:47

Calibration Source Id: AESS-012

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.999 NP-237 2/28/10 4341 4768.800 4768.892 CM-244 2/28/10 4320A 5795.020 5795.162

> Energy/Channel Equation : see above Energy Calibration Zero : 2380.763 Energy Calibration Slope : 4.944053 Energy Calibration Quadratic : 2.9969949E-04 Energy Calibration Range : 7758.000

Detector: 78790

Calibration Date/Time : 3-AUG-2009 15:10:57

Calibration Source Id: AESS-013

Cal. Isotopes Source Id **Expiration Date** Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.313 NP-237 4341 2/28/10 4768.800 4768.407 CM-244 4320A 2/28/10 5794.604 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2363.188 Energy Calibration Slope : 4.918418 Energy Calibration Quadratic : 2.9963398E-04 Energy Calibration Range : 7714.000

> > Instrument: CHAMBER 014

Detector: 67616

Calibration Date/Time : 3-AUG-2009 15:11:09

Calibration Source Id: AESS-014

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.775 NP-237 4341 2/28/10 4768.800 4769.221 5795.020 CM-244 4320A 2/28/10 5795.274

> Energy/Channel Equation : see above Energy Calibration Zero : 2348.951 Energy Calibration Slope : 4.947984 Energy Calibration Quadratic : 3.1622496E-04 Energy Calibration Range : 7747.000

> > Instrument: CHAMBER 015

Detector: 61581

Calibration Date/Time : 3-AUG-2009 15:11:19

Calibration Source Id: AESS-015

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.428 NP-237 2/28/10 4341 4768.800 4768.094 CM-244 2/28/10 4320A 5795.020 5794.472

> Energy/Channel Equation : see above Energy Calibration Zero : 2351.056 Energy Calibration Slope : 4.893757 Energy Calibration Quadratic : 3.2378119E-04 Energy Calibration Range : 7702.000

Detector: 78774

Calibration Date/Time : 3-AUG-2009 15:11:28

Calibration Source Id: AESS-016

Cal. Isotopes Source Id **Expiration Date** Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.555 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2352.841 Energy Calibration Slope : 4.901042 Energy Calibration Quadratic : 2.9683873E-04 Energy Calibration Range : 7683.000

> > Instrument: CHAMBER 017

Detector: 78791

Calibration Date/Time : 3-AUG-2009 15:12:45

Calibration Source Id: AESS-017

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.274 NP-237 4341 2/28/10 4768.800 4768.745 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2363.135 Energy Calibration Slope : 4.992663 Energy Calibration Quadratic : 2.7446265E-04 Energy Calibration Range : 7763.000

> > Instrument: CHAMBER 018

Detector: 78782

Calibration Date/Time: 3-AUG-2009 15:12:56

Calibration Source Id: AESS-018

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.695 NP-237 2/28/10 4341 4768.800 4768.801 CM-244 2/28/10 4320A 5795.020 5795.113

> Energy/Channel Equation : see above Energy Calibration Zero : 2352.853 Energy Calibration Slope : 4.963830 Energy Calibration Quadratic : 3.1513936E-04 Energy Calibration Range : 7766.000

Detector: 78786

Calibration Date/Time : 3-AUG-2009 15:13:21

Calibration Source Id: AESS-019

Cal. Isotopes Source Id **Expiration Date** Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5794.625

> Energy/Channel Equation : see above Energy Calibration Zero : 2342.911 Energy Calibration Slope : 5.075375 Energy Calibration Quadratic : 2.0290195E-04 Energy Calibration Range : 7753.000

> > Instrument: CHAMBER 020

Detector: 78787

Calibration Date/Time : 3-AUG-2009 15:13:30

Calibration Source Id: AESS-020

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.407 NP-237 4341 2/28/10 4768.800 4768.798 5795.020 CM-244 4320A 2/28/10 5794.754

> Energy/Channel Equation : see above Energy Calibration Zero : 2341.178 Energy Calibration Slope : 4.974929 Energy Calibration Quadratic : 3.0557165E-04 Energy Calibration Range : 7756.000

> > Instrument: CHAMBER 021

Detector: 67047

Calibration Date/Time : 3-AUG-2009 15:13:40

Calibration Source Id: AESS-021

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.625 NP-237 2/28/10 4341 4768.800 4768.133 CM-244 2/28/10 4320A 5795.020 5794.606

> Energy/Channel Equation : see above Energy Calibration Zero : 2275.519 Energy Calibration Slope : 4.971471 Energy Calibration Quadratic : 2.7405904E-04 Energy Calibration Range : 7654.000

Detector: 72530

Calibration Date/Time : 3-AUG-2009 15:13:53

Calibration Source Id: AESS-022

Cal. Isotopes Source Id **Expiration Date** Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.547 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2376.547 Energy Calibration Slope : 4.977059 Energy Calibration Quadratic : 2.7739155E-04 Energy Calibration Range : 7764.000

> > Instrument: CHAMBER 023

Detector: 78264

Calibration Date/Time : 3-AUG-2009 15:14:51

Calibration Source Id: AESS-023

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.979 NP-237 4341 2/28/10 4768.800 4768.454 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2383.134 Energy Calibration Slope : 4.999145 Energy Calibration Quadratic : 2.8956190E-04 Energy Calibration Range : 7806.000

> > Instrument: CHAMBER 024

Detector: 76542

Calibration Date/Time : 3-AUG-2009 15:15:01

Calibration Source Id: AESS-024

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2348.727 Energy Calibration Slope : 4.965035 Energy Calibration Quadratic : 2.7366623E-04 Energy Calibration Range : 7720.000

Instrument: CHAMBER 025 Detector: 45-149AA5

Calibration Date/Time : 3-AUG-2009 15:15:13

Calibration Source Id: AESS-025

Cal. Isotopes Source Id **Expiration Date** Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.326 NP-237 4341 2/28/10 4768.800 4769.288 CM-244 4320A 2/28/10 5795.321 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2318.480 Energy Calibration Slope : 4.856905 Energy Calibration Quadratic : 3.0368069E-04 Energy Calibration Range : 7610.000

> > Instrument: CHAMBER 026

Detector: 78204

Calibration Date/Time : 3-AUG-2009 15:15:23

Calibration Source Id: AESS-026

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.821 5795.020 5795.028 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2356.528 Energy Calibration Slope : 4.940171 Energy Calibration Quadratic : 3.3160963E-04 Energy Calibration Range : 7763.000

> > Instrument: CHAMBER 027

Detector: 42484

Calibration Date/Time : 3-AUG-2009 15:15:36

Calibration Source Id: AESS-027

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.779 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2362.956 Energy Calibration Slope : 4.971167 Energy Calibration Quadratic : 3.1741365E-04 Energy Calibration Range : 7786.000

Detector: 78792

Calibration Date/Time : 3-AUG-2009 15:15:45

Calibration Source Id: AESS-028

Cal. Isotopes Source Id **Expiration Date** Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.319 NP-237 4341 2/28/10 4768.800 4768.977 CM-244 4320A 2/28/10 5795.020 5795.122

> Energy/Channel Equation : see above Energy Calibration Zero : 2311.473 Energy Calibration Slope : 4.929708 Energy Calibration Quadratic : 3.5385601E-04 Energy Calibration Range : 7731.000

> > Instrument: CHAMBER 029

Detector: 33454

Calibration Date/Time: 3-AUG-2009 15:15:55

Calibration Source Id: AESS-029

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3184.453 NP-237 4341 2/28/10 4768.800 4773.209 5795.020 CM-244 4320A 2/28/10 5802.449

> Energy/Channel Equation : see above Energy Calibration Zero : 2339.797 Energy Calibration Slope : 4.857889 Energy Calibration Quadratic : 3.2029144E-04 Energy Calibration Range : 7650.000

> > Instrument: CHAMBER 030

Detector: 33447

Calibration Date/Time : 3-AUG-2009 15:16:05

Calibration Source Id: AESS-030

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.504 NP-237 2/28/10 4341 4768.800 4768.116 CM-244 2/28/10 4320A 5795.020 5794.519

> Energy/Channel Equation : see above Energy Calibration Zero : 2378.547 Energy Calibration Slope : 4.952705 Energy Calibration Quadratic : 3.1284252E-04 Energy Calibration Range : 7778.000

Detector: 67042

Calibration Date/Time : 3-AUG-2009 15:16:16

Calibration Source Id: AESS-031

Standard Energy Actual Energy Cal. Isotopes Source Id Expiration Date 3183.466 GD-148 6445-278 2/28/10 3183.000 NP-237 4341 2/28/10 4768.800 4769.878 CM-244 4320A 2/28/10 5795.020 5796.077

> Energy/Channel Equation : see above Energy Calibration Zero : 2364.033 Energy Calibration Slope : 4.931703 Energy Calibration Quadratic : 3.3940026E-04 Energy Calibration Range : 7770.000

> > Instrument: CHAMBER 032

Detector: 67041

Calibration Date/Time: 3-AUG-2009 15:16:28

Calibration Source Id: AESS-032

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2370.812 Energy Calibration Slope : 4.912539 Energy Calibration Quadratic : 3.7134811E-04 Energy Calibration Range : 7791.000

> > Instrument: CHAMBER 033

Detector: 78785

Calibration Date/Time : 3-AUG-2009 15:16:44

Calibration Source Id: AESS-033

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.937 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2376.592 Energy Calibration Slope : 4.933960 Energy Calibration Quadratic : 3.4911980E-04 Energy Calibration Range : 7795.000

Detector: 61586

Calibration Date/Time : 3-AUG-2009 15:16:57

Calibration Source Id: AESS-034

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.237 NP-237 4341 2/28/10 4768.800 4768.352 CM-244 4320A 2/28/10 5795.020 5794.135

> Energy/Channel Equation : see above Energy Calibration Zero : 2382.364 Energy Calibration Slope : 5.064843 Energy Calibration Quadratic : 3.7605409E-04 Energy Calibration Range : 7963.000

> > Instrument: CHAMBER 035

Detector: 78202

Calibration Date/Time : 3-AUG-2009 15:17:07

Calibration Source Id: AESS-035

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.976 5795.020 CM-244 4320A 2/28/10 5795.068

> Energy/Channel Equation : see above Energy Calibration Zero : 2332.455 Energy Calibration Slope : 4.961503 Energy Calibration Quadratic : 3.2716690E-04 Energy Calibration Range : 7756.000

> > Instrument: CHAMBER 036

Detector: 78203

Calibration Date/Time : 3-AUG-2009 15:17:19

Calibration Source Id: AESS-036

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.831 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2351.688 Energy Calibration Slope : 4.934670 Energy Calibration Quadratic : 3.2679725E-04 Energy Calibration Range : 7747.000

Instrument: CHAMBER 037 Detector: 45-149BB5

Calibration Date/Time : 3-AUG-2009 15:17:30

Calibration Source Id: AESS-037

Cal. Isotopes Source Id **Expiration Date** Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.360 NP-237 4341 2/28/10 4768.800 4770.173 CM-244 4320A 2/28/10 5795.020 5795.449

> Energy/Channel Equation : see above Energy Calibration Zero : 2380.215 Energy Calibration Slope : 4.934037 Energy Calibration Quadratic : 2.6879812E-04 Energy Calibration Range : 7715.000

> > Instrument: CHAMBER 038

Detector: 72532

Calibration Date/Time : 3-AUG-2009 15:17:42

Calibration Source Id: AESS-038

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.992 NP-237 4341 2/28/10 4768.800 4768.694 5795.020 CM-244 4320A 2/28/10 5794.956

> Energy/Channel Equation : see above Energy Calibration Zero : 2374.738 Energy Calibration Slope : 4.941356 Energy Calibration Quadratic : 3.2555324E-04 Energy Calibration Range : 7776.000

> > Instrument: CHAMBER 039 Detector: 45-149BB2

Calibration Date/Time : 3-AUG-2009 15:17:50

Calibration Source Id: AESS-039

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4769.047 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2386.341 Energy Calibration Slope : 4.892657 Energy Calibration Quadratic : 3.3502636E-04 Energy Calibration Range : 7748.000

Detector: 78773

Calibration Date/Time : 3-AUG-2009 15:18:00

Calibration Source Id: AESS-040

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.091

> Energy/Channel Equation : see above Energy Calibration Zero : 2353.680 Energy Calibration Slope : 4.886324 Energy Calibration Quadratic : 3.3744561E-04 Energy Calibration Range : 7711.000

> > Instrument: CHAMBER 041

Detector: 78205

Calibration Date/Time : 3-AUG-2009 15:18:09

Calibration Source Id: AESS-041

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 5795.019 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2360.991 Energy Calibration Slope : 4.934965 Energy Calibration Quadratic : 3.5826201E-04 Energy Calibration Range : 7790.000

> > Instrument: CHAMBER 042

Detector: 78793

Calibration Date/Time : 3-AUG-2009 15:18:18

Calibration Source Id: AESS-042

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2378.631 Energy Calibration Slope : 4.903480 Energy Calibration Quadratic : 3.3252311E-04 Energy Calibration Range : 7748.000

Detector: 76543

Calibration Date/Time : 3-AUG-2009 15:18:26

Calibration Source Id: AESS-043

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.829 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2368.789 Energy Calibration Slope : 4.934124 Energy Calibration Quadratic : 3.2330386E-04 Energy Calibration Range : 7760.000

> > Instrument: CHAMBER 044

Detector: 79459

Calibration Date/Time : 3-AUG-2009 15:18:36

Calibration Source Id: AESS-044

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.302 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2359.457 Energy Calibration Slope : 4.939529 Energy Calibration Quadratic : 3.2710869E-04 Energy Calibration Range : 7761.000

> > Instrument: CHAMBER 045

Detector: 78783

Calibration Date/Time : 3-AUG-2009 15:18:46

Calibration Source Id: AESS-045

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.992 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2366.479 Energy Calibration Slope : 4.912705 Energy Calibration Quadratic : 3.5802016E-04 Energy Calibration Range : 7773.000

Detector: 76544

Calibration Date/Time : 3-AUG-2009 15:18:55

Calibration Source Id: AESS-046

Standard Energy Actual Energy Cal. Isotopes Source Id **Expiration Date** GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2361.703 Energy Calibration Slope : 4.888400 Energy Calibration Quadratic : 3.3994557E-04 Energy Calibration Range : 7724.000

> > Instrument : CHAMBER 047 Detector : 46-089B1

Calibration Date/Time : 3-AUG-2009 15:19:03

Calibration Source Id: AESS-047

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.340 NP-237 4341 2/28/10 4768.800 4768.922 5795.020 5795.151 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2354.429 Energy Calibration Slope : 4.963282 Energy Calibration Quadratic : 3.1133511E-04 Energy Calibration Range : 7763.000

> > Instrument: CHAMBER 048

Detector: 42483

Calibration Date/Time : 3-AUG-2009 15:19:12

Calibration Source Id: AESS-048

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.266 NP-237 2/28/10 4341 4768.800 4768.972 CM-244 2/28/10 4320A 5795.020 5795.095

> Energy/Channel Equation : see above Energy Calibration Zero : 2377.788 Energy Calibration Slope : 4.957360 Energy Calibration Quadratic : 2.8386535E-04 Energy Calibration Range : 7752.000

Detector: 68551

Calibration Date/Time: 9-JUL-2009 13:06:51

Calibration Source Id: AESS-001

Standard Energy Actual Energy Cal. Isotopes Source Id **Expiration Date** 3181.934 GD-148 6445-278 2/28/10 3183.000 NP-237 4341 2/28/10 4768.800 4768.222 CM-244 4320A 2/28/10 5795.020 5794.627

> Energy/Channel Equation : see above Energy Calibration Zero : 2383.031 Energy Calibration Slope : 4.912300 Energy Calibration Quadratic : 3.2574762E-04 Energy Calibration Range : 7755.000

> > Instrument : CHAMBER 066

Detector: 46-089C1

Calibration Date/Time : 9-JUL-2009 13:07:05

Calibration Source Id: AESS-002

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.612 NP-237 4341 2/28/10 4768.800 4768.619 5795.020 CM-244 4320A 2/28/10 5794.832

> Energy/Channel Equation : see above Energy Calibration Zero : 2375.985 Energy Calibration Slope : 4.975531 Energy Calibration Quadratic : 2.7539468E-04 Energy Calibration Range : 7760.000

> > Instrument : CHAMBER 067

Detector: 46-089B4

Calibration Date/Time : 9-JUL-2009 13:07:16

Calibration Source Id: AESS-003

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.025 NP-237 2/28/10 4341 4768.800 4768.287 CM-244 2/28/10 4320A 5795.020 5794.643

> Energy/Channel Equation : see above Energy Calibration Zero : 2392.470 Energy Calibration Slope : 4.972788 Energy Calibration Quadratic : 2.7622253E-04 Energy Calibration Range : 7774.000

Detector: 78794

Calibration Date/Time : 9-JUL-2009 13:07:28

Calibration Source Id: AESS-004

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.711 NP-237 4341 2/28/10 4768.800 4768.483 CM-244 4320A 2/28/10 5794.734 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2363.543 Energy Calibration Slope : 4.977541 Energy Calibration Quadratic : 3.1141064E-04 Energy Calibration Range : 7787.000

> > Instrument: CHAMBER 069

Detector: 78795

Calibration Date/Time : 9-JUL-2009 13:07:42

Calibration Source Id: AESS-005

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.689 NP-237 4341 2/28/10 4768.800 4768.583 5795.020 CM-244 4320A 2/28/10 5794.896

> Energy/Channel Equation : see above Energy Calibration Zero : 2376.120 Energy Calibration Slope : 4.922992 Energy Calibration Quadratic : 3.4665639E-04 Energy Calibration Range : 7781.000

> > Instrument: CHAMBER 070

Detector: 46-089B2

Calibration Date/Time : 9-JUL-2009 13:07:53

Calibration Source Id: AESS-006

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.107 NP-237 2/28/10 4341 4768.800 4768.384 CM-244 2/28/10 4320A 5795.020 5794.512

> Energy/Channel Equation : see above Energy Calibration Zero : 2386.604 Energy Calibration Slope : 4.939598 Energy Calibration Quadratic : 2.9686227E-04 Energy Calibration Range : 7756.000

Detector: 64259

Calibration Date/Time : 9-JUL-2009 13:08:07

Calibration Source Id: AESS-007

Standard Energy Actual Energy Cal. Isotopes Source Id **Expiration Date** GD-148 6445-278 2/28/10 3183.000 3182.519 NP-237 4341 2/28/10 4768.800 4768.421 CM-244 4320A 2/28/10 5794.714 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2381.008 Energy Calibration Slope : 4.974834 Energy Calibration Quadratic : 3.0491504E-04 Energy Calibration Range : 7795.000

> > Instrument : CHAMBER 072 Detector : 45-149AA3

Calibration Date/Time: 9-JUL-2009 13:08:19

Calibration Source Id: AESS-008

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.621 NP-237 4341 2/28/10 4768.800 4768.489 5795.020 CM-244 4320A 2/28/10 5794.766

> Energy/Channel Equation : see above Energy Calibration Zero : 2365.531 Energy Calibration Slope : 4.947875 Energy Calibration Quadratic : 2.9255319E-04 Energy Calibration Range : 7739.000

> > Instrument: CHAMBER 073

Detector: 78775

Calibration Date/Time : 9-JUL-2009 13:08:30

Calibration Source Id: AESS-009

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.442 NP-237 2/28/10 4341 4768.800 4768.180 CM-244 2/28/10 4320A 5795.020 5794.629

> Energy/Channel Equation : see above Energy Calibration Zero : 2339.856 Energy Calibration Slope : 4.937759 Energy Calibration Quadratic : 3.0114278E-04 Energy Calibration Range : 7712.000

Detector: 78266

Calibration Date/Time: 9-JUL-2009 13:08:42

Calibration Source Id: AESS-010

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id 3183.000 GD-148 6445-278 2/28/10 3182.764 NP-237 4341 2/28/10 4768.800 4768.637 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2353.120 Energy Calibration Slope : 4.981784 Energy Calibration Quadratic : 2.9874133E-04 Energy Calibration Range : 7768.000

> > Instrument: CHAMBER 075

Detector: 68550

Calibration Date/Time : 9-JUL-2009 13:08:53

Calibration Source Id: AESS-011

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.163 NP-237 4341 2/28/10 4768.800 4768.299 5795.020 CM-244 4320A 2/28/10 5794.726

> Energy/Channel Equation : see above Energy Calibration Zero : 2364.223 Energy Calibration Slope : 4.955623 Energy Calibration Quadratic : 3.1275101E-04 Energy Calibration Range : 7767.000

> > Instrument: CHAMBER 076

Detector: 78779

Calibration Date/Time : 9-JUL-2009 13:09:04

Calibration Source Id: AESS-012

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.983 NP-237 2/28/10 4341 4768.800 4768.736 CM-244 2/28/10 4320A 5795.020 5794.908

> Energy/Channel Equation : see above Energy Calibration Zero : 2353.316 Energy Calibration Slope : 4.951778 Energy Calibration Quadratic : 3.2127454E-04 Energy Calibration Range : 7761.000

Detector: 67576

Calibration Date/Time: 9-JUL-2009 13:09:15

Calibration Source Id: AESS-013

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.001 NP-237 4341 2/28/10 4768.800 4768.613 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2361.225 Energy Calibration Slope : 4.943738 Energy Calibration Quadratic : 2.9529908E-04 Energy Calibration Range : 7733.000

> > Instrument: CHAMBER 078

Detector: 67577

Calibration Date/Time : 9-JUL-2009 13:09:25

Calibration Source Id: AESS-014

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.605 NP-237 4341 2/28/10 4768.800 4768.392 5795.020 CM-244 4320A 2/28/10 5794.652

> Energy/Channel Equation : see above Energy Calibration Zero : 2395.349 Energy Calibration Slope : 4.935272 Energy Calibration Quadratic : 3.3427982E-04 Energy Calibration Range : 7800.000

> > Instrument: CHAMBER 079

Detector: 67598

Calibration Date/Time : 9-JUL-2009 13:09:33

Calibration Source Id: AESS-015

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.660 NP-237 2/28/10 4341 4768.800 4768.547 CM-244 2/28/10 4320A 5795.020 5794.894

> Energy/Channel Equation : see above Energy Calibration Zero : 2369.373 Energy Calibration Slope : 4.904424 Energy Calibration Quadratic : 3.2698381E-04 Energy Calibration Range : 7734.000

Detector: 78197

Calibration Date/Time : 9-JUL-2009 13:09:43

Calibration Source Id: AESS-016

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3184.302 NP-237 4341 2/28/10 4768.800 4771.069 CM-244 4320A 2/28/10 5795.020 5795.787

> Energy/Channel Equation : see above Energy Calibration Zero : 2345.798 Energy Calibration Slope : 5.019492 Energy Calibration Quadratic : 2.4690092E-04 Energy Calibration Range : 7745.000

> > Instrument: CHAMBER 081

Detector: 72533

Calibration Date/Time : 9-JUL-2009 13:09:58

Calibration Source Id: AESS-017

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3128.274 NP-237 4341 2/28/10 4768.800 4679.048 5795.020 CM-244 4320A 2/28/10 5545.961

> Energy/Channel Equation : see above Energy Calibration Zero : 2299.761 Energy Calibration Slope : 8.847325 Energy Calibration Quadratic : -4.6356809E-03 Energy Calibration Range : 6499.000

> > Instrument: CHAMBER 082

Detector: 64263

Calibration Date/Time : 9-JUL-2009 13:10:11

Calibration Source Id: AESS-018

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.523 NP-237 2/28/10 4341 4768.800 4768.330 CM-244 2/28/10 4320A 5795.020 5794.746

> Energy/Channel Equation : see above Energy Calibration Zero : 2391.756 Energy Calibration Slope : 4.946808 Energy Calibration Quadratic : 3.5040258E-04 Energy Calibration Range : 7825.000

Detector: 64278

Calibration Date/Time: 9-JUL-2009 13:10:22

Calibration Source Id: AESS-019

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4769.394 CM-244 4320A 2/28/10 5795.020 5795.019

> Energy/Channel Equation : see above Energy Calibration Zero : 2373.863 Energy Calibration Slope : 5.042446 Energy Calibration Quadratic : 2.3603256E-04 Energy Calibration Range : 7785.000

> > Instrument: CHAMBER 084

Detector: 78265

Calibration Date/Time : 9-JUL-2009 13:10:32

Calibration Source Id: AESS-020

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.274

> Energy/Channel Equation : see above Energy Calibration Zero : 2362.172 Energy Calibration Slope : 5.013323 Energy Calibration Quadratic : 2.8020472E-04 Energy Calibration Range : 7790.000

> > Instrument: CHAMBER 085

Detector: 78776

Calibration Date/Time : 9-JUL-2009 13:10:43

Calibration Source Id: AESS-021

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2367.102 Energy Calibration Slope : 4.983326 Energy Calibration Quadratic : 2.9771921E-04 Energy Calibration Range : 7782.000

Detector: 78198

Calibration Date/Time : 9-JUL-2009 13:10:52

Calibration Source Id: AESS-022

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.643 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2354.748 Energy Calibration Slope : 5.010773 Energy Calibration Quadratic : 2.3814633E-04 Energy Calibration Range : 7735.000

> > Instrument: CHAMBER 087

Detector: 78199

Calibration Date/Time : 9-JUL-2009 13:11:02

Calibration Source Id: AESS-023

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2338.424 Energy Calibration Slope : 4.984921 Energy Calibration Quadratic : 2.3201770E-04 Energy Calibration Range : 7686.000

> > Instrument: CHAMBER 088

Detector: 33452

Calibration Date/Time : 9-JUL-2009 13:11:13

Calibration Source Id: AESS-024

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.001 NP-237 2/28/10 4341 4768.800 4768.468 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2351.689 Energy Calibration Slope : 4.964746 Energy Calibration Quadratic : 2.3151403E-04 Energy Calibration Range : 7678.000

Detector: 78262

Calibration Date/Time : 9-JUL-2009 13:11:23

Calibration Source Id: AESS-025

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.808 NP-237 4341 2/28/10 4768.800 4768.497 CM-244 4320A 2/28/10 5794.868 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2357.358 Energy Calibration Slope : 4.998539 Energy Calibration Quadratic : 3.0872814E-04 Energy Calibration Range : 7800.000

> > Instrument: CHAMBER 090

Detector: 78263

Calibration Date/Time : 9-JUL-2009 13:11:39

Calibration Source Id: AESS-026

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.574 NP-237 4341 2/28/10 4768.800 4768.547 5795.020 CM-244 4320A 2/28/10 5794.930

> Energy/Channel Equation : see above Energy Calibration Zero : 2367.561 Energy Calibration Slope : 4.900284 Energy Calibration Quadratic : 3.4428819E-04 Energy Calibration Range : 7746.000

> > Instrument: CHAMBER 091

Detector: 78259

Calibration Date/Time: 9-JUL-2009 13:11:52

Calibration Source Id: AESS-027

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.675 NP-237 2/28/10 4341 4768.800 4768.729 CM-244 2/28/10 4320A 5795.020 5794.997

> Energy/Channel Equation : see above Energy Calibration Zero : 2370.658 Energy Calibration Slope : 4.954311 Energy Calibration Quadratic : 3.4313111E-04 Energy Calibration Range : 7804.000

Detector: 79457

Calibration Date/Time : 10-JUL-2009 08:15:23

Calibration Source Id: AESS-028

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2351.067 Energy Calibration Slope : 4.974295 Energy Calibration Quadratic : 2.6989207E-04 Energy Calibration Range : 7728.000

> > Instrument: CHAMBER 093

Detector: 33206

Calibration Date/Time : 9-JUL-2009 13:12:10

Calibration Source Id: AESS-029

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.697 NP-237 4341 2/28/10 4768.800 4768.674 5795.020 CM-244 4320A 2/28/10 5794.907

> Energy/Channel Equation : see above Energy Calibration Zero : 2369.563 Energy Calibration Slope : 4.914497 Energy Calibration Quadratic : 3.2562285E-04 Energy Calibration Range : 7743.000

> > Instrument: CHAMBER 094

Detector: 78267

Calibration Date/Time : 9-JUL-2009 13:12:19

Calibration Source Id: AESS-030

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.761 NP-237 2/28/10 4341 4768.800 4768.682 CM-244 2/28/10 4320A 5795.020 5794.852

> Energy/Channel Equation : see above Energy Calibration Zero : 2363.085 Energy Calibration Slope : 4.944716 Energy Calibration Quadratic : 3.0186711E-04 Energy Calibration Range : 7743.000

Detector: 64279

Calibration Date/Time : 9-JUL-2009 13:12:27

Calibration Source Id: AESS-031

Standard Energy Actual Energy Cal. Isotopes Source Id **Expiration Date** GD-148 6445-278 2/28/10 3183.000 3182.666 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2355.533 Energy Calibration Slope : 4.950543 Energy Calibration Quadratic : 2.9788527E-04 Energy Calibration Range : 7737.000

> > Instrument: CHAMBER 096

Detector: 67605

Calibration Date/Time : 9-JUL-2009 13:12:36

Calibration Source Id: AESS-032

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.747 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2347.386 Energy Calibration Slope : 4.941090 Energy Calibration Quadratic : 3.3197468E-04 Energy Calibration Range : 7755.000

> > Instrument: CHAMBER 097

Detector: 67599

Calibration Date/Time : 9-JUL-2009 13:12:44

Calibration Source Id: AESS-033

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4769.290 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2363.267 Energy Calibration Slope : 4.928224 Energy Calibration Quadratic : 3.4786455E-04 Energy Calibration Range : 7775.000

Detector: 68644

Calibration Date/Time : 9-JUL-2009 13:12:53

Calibration Source Id: AESS-034

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.282 NP-237 4341 2/28/10 4768.800 4768.479 CM-244 4320A 2/28/10 5794.637 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2385.389 Energy Calibration Slope : 4.950438 Energy Calibration Quadratic : 3.5501088E-04 Energy Calibration Range : 7827.000

> > Instrument: CHAMBER 099

Detector: 70317

Calibration Date/Time : 9-JUL-2009 13:13:03

Calibration Source Id: AESS-035

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.752 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2368.685 Energy Calibration Slope : 4.893388 Energy Calibration Quadratic : 3.5426160E-04 Energy Calibration Range : 7751.000

> > Instrument: CHAMBER 100

Detector: 79456

Calibration Date/Time: 9-JUL-2009 13:13:12

Calibration Source Id: AESS-046

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.705 CM-244 2/28/10 4320A 5795.020 5794.913

> Energy/Channel Equation : see above Energy Calibration Zero : 2354.623 Energy Calibration Slope : 4.898829 Energy Calibration Quadratic : 3.4345602E-04 Energy Calibration Range : 7731.000

Detector: 64253

Calibration Date/Time : 9-JUL-2009 13:13:22

Calibration Source Id: AESS-037

Standard Energy Actual Energy Cal. Isotopes Source Id **Expiration Date** GD-148 6445-278 2/28/10 3183.000 3182.469 NP-237 4341 2/28/10 4768.800 4767.637 CM-244 4320A 2/28/10 5795.020 5794.300

> Energy/Channel Equation : see above Energy Calibration Zero : 2410.698 Energy Calibration Slope : 4.933665 Energy Calibration Quadratic : 3.2843428E-04 Energy Calibration Range : 7807.000

> > Instrument: CHAMBER 102

Detector: 72525

Calibration Date/Time : 9-JUL-2009 13:13:31

Calibration Source Id: AESS-038

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.443 5795.020 CM-244 4320A 2/28/10 5794.909

> Energy/Channel Equation : see above Energy Calibration Zero : 2363.658 Energy Calibration Slope : 4.864605 Energy Calibration Quadratic : 3.5245687E-04 Energy Calibration Range : 7715.000

> > Instrument: CHAMBER 103

Detector: 79461

Calibration Date/Time : 9-JUL-2009 13:13:40

Calibration Source Id: AESS-039

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.789 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2389.068 Energy Calibration Slope : 4.916300 Energy Calibration Quadratic : 3.4528042E-04 Energy Calibration Range : 7785.000

Detector: 72524

Calibration Date/Time: 9-JUL-2009 13:13:48

Calibration Source Id: AESS-040

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5794.853

> Energy/Channel Equation : see above Energy Calibration Zero : 2353.445 Energy Calibration Slope : 4.898041 Energy Calibration Quadratic : 3.2613348E-04 Energy Calibration Range : 7711.000

> > Instrument: CHAMBER 105

Detector: 78777

Calibration Date/Time : 9-JUL-2009 13:13:56

Calibration Source Id: AESS-041

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.693 NP-237 4341 2/28/10 4768.800 4768.750 5795.020 CM-244 4320A 2/28/10 5794.773

> Energy/Channel Equation : see above Energy Calibration Zero : 2376.710 Energy Calibration Slope : 4.874049 Energy Calibration Quadratic : 3.5893198E-04 Energy Calibration Range : 7744.000

> > Instrument: CHAMBER 106

Detector: 64274

Calibration Date/Time : 9-JUL-2009 13:14:04

Calibration Source Id: AESS-042

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.001 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2388.689 Energy Calibration Slope : 4.927028 Energy Calibration Quadratic : 3.4706845E-04 Energy Calibration Range : 7798.000

Detector: 67578

Calibration Date/Time: 9-JUL-2009 13:14:15

Calibration Source Id: AESS-043

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.693 NP-237 4341 2/28/10 4768.800 4768.881 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2362.860 Energy Calibration Slope : 4.955241 Energy Calibration Quadratic : 3.3647806E-04 Energy Calibration Range : 7790.000

> > Instrument: CHAMBER 108

Detector: 78778

Calibration Date/Time : 10-JUL-2009 08:15:33

Calibration Source Id: AESS-044

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2360.573 Energy Calibration Slope : 4.897293 Energy Calibration Quadratic : 3.3521929E-04 Energy Calibration Range : 7727.000

> > Instrument: CHAMBER 109

Detector: 79463

Calibration Date/Time : 9-JUL-2009 13:14:36

Calibration Source Id: AESS-045

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2361.218 Energy Calibration Slope : 4.898855 Energy Calibration Quadratic : 3.6102085E-04 Energy Calibration Range : 7756.000

Detector: 67602

Calibration Date/Time: 9-JUL-2009 13:15:06

Calibration Source Id: AESS-046

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3151.318 NP-237 4341 2/28/10 4768.800 4743.843 CM-244 4320A 2/28/10 5748.494 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2393.627 Energy Calibration Slope : 5.263870 Energy Calibration Quadratic : 7.2507857E-05 Energy Calibration Range : 7860.000

> > Instrument: CHAMBER 111

Detector: 79462

Calibration Date/Time : 9-JUL-2009 13:15:22

Calibration Source Id: AESS-047

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2359.279 Energy Calibration Slope : 4.970932 Energy Calibration Quadratic : 3.2777866E-04 Energy Calibration Range : 7793.000

> > Instrument: CHAMBER 112

Detector: 78261

Calibration Date/Time : 9-JUL-2009 13:15:42

Calibration Source Id: AESS-048

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4769.029 CM-244 2/28/10 4320A 5795.020 5795.070

> Energy/Channel Equation : see above Energy Calibration Zero : 2372.776 Energy Calibration Slope : 4.930915 Energy Calibration Quadratic : 3.0952421E-04 Energy Calibration Range : 7747.000

Instrument: CHAMBER 113 Detector: 45-111B4

Calibration Date/Time : 15-JUL-2009 13:43:32

Calibration Source Id: AESS-001

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.143 NP-237 4341 2/28/10 4768.800 4769.352 CM-244 4320A 2/28/10 5795.169 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2384.808 Energy Calibration Slope : 5.000635 Energy Calibration Quadratic : 2.7049560E-04 Energy Calibration Range : 7789.000

> > Instrument: CHAMBER 114

Detector: 78258

Calibration Date/Time : 15-JUL-2009 13:43:44

Calibration Source Id: AESS-007

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.317 NP-237 4341 2/28/10 4768.800 4768.936 5795.020 CM-244 4320A 2/28/10 5795.187

> Energy/Channel Equation : see above Energy Calibration Zero : 2334.310 Energy Calibration Slope : 4.976188 Energy Calibration Quadratic : 2.4765823E-04 Energy Calibration Range : 7690.000

> > Instrument: CHAMBER 115

Detector: 45-132FF4

Calibration Date/Time: 15-JUL-2009 13:43:54

Calibration Source Id: AESS-002

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.299 NP-237 2/28/10 4341 4768.800 4768.906 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2362.743 Energy Calibration Slope : 4.999947 Energy Calibration Quadratic : 2.6256693E-04 Energy Calibration Range : 7758.000

Instrument : CHAMBER 116 Detector : 45-132FF2

Calibration Date/Time : 15-JUL-2009 13:44:05

Calibration Source Id: AESS-008

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2361.201 Energy Calibration Slope : 4.980864 Energy Calibration Quadratic : 2.6853522E-04 Energy Calibration Range : 7743.000

> > Instrument: CHAMBER 117

Detector: 33450

Calibration Date/Time : 15-JUL-2009 13:44:15

Calibration Source Id: AESS-003

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.341 NP-237 4341 2/28/10 4768.800 4769.249 5795.020 CM-244 4320A 2/28/10 5795.149

> Energy/Channel Equation : see above Energy Calibration Zero : 2372.642 Energy Calibration Slope : 4.960156 Energy Calibration Quadratic : 2.9082331E-04 Energy Calibration Range : 7757.000

> > Instrument: CHAMBER 118

Detector: 75544

Calibration Date/Time : 15-JUL-2009 13:44:26

Calibration Source Id: AESS-009

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.240 NP-237 2/28/10 4341 4768.800 4768.906 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2335.434 Energy Calibration Slope : 4.978148 Energy Calibration Quadratic : 2.6964993E-04 Energy Calibration Range : 7716.000

Detector: 74429

Calibration Date/Time : 2-FEB-2009 15:15:38

Calibration Source Id: AESS-004

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3069.001 NP-237 4341 2/28/10 4768.800 4669.281 CM-244 4320A 2/28/10 5795.020 5706.875

> Energy/Channel Equation : see above Energy Calibration Zero : 2437.949 Energy Calibration Slope : 5.036866

Energy Calibration Quadratic

Energy Calibration Range : 7596.000

Instrument: CHAMBER 120

Detector: 74430

Calibration Date/Time : 16-JUL-2009 09:29:36

Calibration Source Id: AESS-010

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.243 NP-237 4341 2/28/10 4768.800 4768.978 5795.020 CM-244 4320A 2/28/10 5795.142

> Energy/Channel Equation : see above Energy Calibration Zero : 2311.106 Energy Calibration Slope : 4.960131 Energy Calibration Quadratic : 2.6160042E-04 Energy Calibration Range : 7665.000

> > Instrument: CHAMBER 121

Detector: 75545

Calibration Date/Time : 15-JUL-2009 13:44:36

Calibration Source Id: AESS-005

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.799 CM-244 2/28/10 4320A 5795.020 5795.188

> Energy/Channel Equation : see above Energy Calibration Zero : 2334.679 Energy Calibration Slope : 4.950221 Energy Calibration Quadratic : 2.8347687E-04 Energy Calibration Range : 7701.000

Detector: 75546

Calibration Date/Time : 15-JUL-2009 13:44:46

Calibration Source Id: AESS-011

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.172 NP-237 4341 2/28/10 4768.800 4769.003 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2330.980 Energy Calibration Slope : 4.960747 Energy Calibration Quadratic : 2.7343398E-04 Energy Calibration Range : 7698.000

> > Instrument : CHAMBER 123

Detector: 45-142V3

Calibration Date/Time : 15-JUL-2009 13:44:55

Calibration Source Id: AESS-006

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.316 NP-237 4341 2/28/10 4768.800 4769.249 5795.020 5795.021 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2374.720 Energy Calibration Slope : 4.978360 Energy Calibration Quadratic : 2.5058995E-04 Energy Calibration Range : 7735.000

> > Instrument : CHAMBER 124

Detector: 45-142V2

Calibration Date/Time : 15-JUL-2009 13:45:05

Calibration Source Id: AESS-012

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.701 NP-237 2/28/10 4341 4768.800 4768.518 CM-244 2/28/10 4320A 5795.020 5794.902

> Energy/Channel Equation : see above Energy Calibration Zero : 2382.371 Energy Calibration Slope : 5.018754 Energy Calibration Quadratic : 2.4640319E-04 Energy Calibration Range : 7780.000

Detector: 75547

Calibration Date/Time : 17-JUL-2009 14:23:54

Calibration Source Id: AESS-013

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.386 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.165

> Energy/Channel Equation : see above Energy Calibration Zero : 2338.781 Energy Calibration Slope : 4.955306 Energy Calibration Quadratic : 2.6291917E-04 Energy Calibration Range : 7689.000

> > Instrument: CHAMBER 126

Detector: 75548

Calibration Date/Time : 17-JUL-2009 14:24:06

Calibration Source Id: AESS-019

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 5795.019 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2345.216 Energy Calibration Slope : 5.042264 Energy Calibration Quadratic : 1.8960494E-04 Energy Calibration Range : 7707.000

> > Instrument: CHAMBER 127

Detector: 78770

Calibration Date/Time : 17-JUL-2009 14:24:19

Calibration Source Id: AESS-014

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.168 NP-237 4341 2/28/10 4768.800 4769.036 CM-244 2/28/10 4320A 5795.020 5795.095

> Energy/Channel Equation : see above Energy Calibration Zero : 2333.395 Energy Calibration Slope : 4.961254 Energy Calibration Quadratic : 2.6867207E-04 Energy Calibration Range : 7695.000

Detector: 75549

Calibration Date/Time : 17-JUL-2009 14:24:31

Calibration Source Id: AESS-020

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id 3183.449 GD-148 6445-278 2/28/10 3183.000 NP-237 4341 2/28/10 4768.800 4769.095 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2323.424 Energy Calibration Slope : 5.017115 Energy Calibration Quadratic : 2.1570176E-04 Energy Calibration Range : 7687.000

> > Instrument: CHAMBER 129

Detector: 76227

Calibration Date/Time : 17-JUL-2009 14:24:41

Calibration Source Id: AESS-015

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.112 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2343.567 Energy Calibration Slope : 4.949915 Energy Calibration Quadratic : 2.7041257E-04 Energy Calibration Range : 7696.000

> > Instrument: CHAMBER 130

Detector: 76228

Calibration Date/Time: 17-JUL-2009 14:24:51

Calibration Source Id: AESS-021

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.758 NP-237 2/28/10 4341 4768.800 4768.607 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2336.361 Energy Calibration Slope : 4.980415 Energy Calibration Quadratic : 2.3134552E-04 Energy Calibration Range : 7679.000

Detector: 33448

Calibration Date/Time: 17-JUL-2009 14:25:01

Calibration Source Id: AESS-016

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.605 NP-237 4341 2/28/10 4768.800 4768.573 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2388.756 Energy Calibration Slope : 4.931267 Energy Calibration Quadratic : 3.1428930E-04 Energy Calibration Range : 7768.000

> > Instrument: CHAMBER 132

Detector: 67579

Calibration Date/Time : 31-JUL-2009 14:19:45

Calibration Source Id: AESS-022

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.400 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2326.942 Energy Calibration Slope : 5.036047 Energy Calibration Quadratic : 2.1360136E-04 Energy Calibration Range : 7708.000

> > Instrument: CHAMBER 133

Detector: 76229

Calibration Date/Time: 17-JUL-2009 14:25:22

Calibration Source Id: AESS-017

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.235 NP-237 2/28/10 4341 4768.800 4768.799 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2304.280 Energy Calibration Slope : 4.909981 Energy Calibration Quadratic : 2.5969208E-04 Energy Calibration Range : 7604.000

Detector: 76230

Calibration Date/Time : 17-JUL-2009 14:25:32

Calibration Source Id: AESS-023

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.428 NP-237 4341 2/28/10 4768.800 4769.138 CM-244 4320A 2/28/10 5795.114 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2323.771 Energy Calibration Slope : 4.983015 Energy Calibration Quadratic : 2.2696581E-04 Energy Calibration Range : 7664.000

> > Instrument: CHAMBER 135

Detector: 64270

Calibration Date/Time : 17-JUL-2009 14:25:42

Calibration Source Id: AESS-018

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.580 NP-237 4341 2/28/10 4768.800 4768.589 5795.020 5794.911 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2342.408 Energy Calibration Slope : 4.931945 Energy Calibration Quadratic : 2.7902660E-04 Energy Calibration Range : 7685.000

> > Instrument: CHAMBER 136

Detector: 68549

Calibration Date/Time: 17-JUL-2009 14:25:52

Calibration Source Id: AESS-024

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3181.940 NP-237 2/28/10 4341 4768.800 4766.491 CM-244 2/28/10 4320A 5795.020 5789.976

> Energy/Channel Equation : see above Energy Calibration Zero : 2353.642 Energy Calibration Slope : 5.024161 Energy Calibration Quadratic : 2.3099547E-04 Energy Calibration Range : 7741.000

Detector: 64288

Calibration Date/Time : 17-JUL-2009 14:26:02

Calibration Source Id: AESS-025

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4769.015 CM-244 4320A 2/28/10 5795.020 5795.229

> Energy/Channel Equation : see above Energy Calibration Zero : 2378.044 Energy Calibration Slope : 5.009023 Energy Calibration Quadratic : 3.1443321E-04 Energy Calibration Range : 7837.000

> > Instrument: CHAMBER 138

Detector: 65877

Calibration Date/Time : 17-JUL-2009 14:26:11

Calibration Source Id: AESS-031

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.798 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2377.362 Energy Calibration Slope : 4.981610 Energy Calibration Quadratic : 2.9931843E-04 Energy Calibration Range : 7792.000

> > Instrument: CHAMBER 139

Detector: 76231

Calibration Date/Time : 17-JUL-2009 14:26:21

Calibration Source Id: AESS-026

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.896 CM-244 2/28/10 4320A 5795.020 5795.211

> Energy/Channel Equation : see above Energy Calibration Zero : 2343.572 Energy Calibration Slope : 4.954267 Energy Calibration Quadratic : 2.9043874E-04 Energy Calibration Range : 7721.000

Detector: 78771

Calibration Date/Time : 17-JUL-2009 14:26:31

Calibration Source Id: AESS-032

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.831 CM-244 4320A 2/28/10 5795.020 5795.069

> Energy/Channel Equation : see above Energy Calibration Zero : 2342.367 Energy Calibration Slope : 4.948852 Energy Calibration Quadratic : 3.0391497E-04 Energy Calibration Range : 7729.000

> > Instrument: CHAMBER 141

Detector: 76232

Calibration Date/Time : 17-JUL-2009 14:26:40

Calibration Source Id: AESS-027

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.179 NP-237 4341 2/28/10 4768.800 4768.885 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2351.966 Energy Calibration Slope : 4.956621 Energy Calibration Quadratic : 2.8871323E-04 Energy Calibration Range : 7730.000

> > Instrument: CHAMBER 142

Detector: 64261

Calibration Date/Time : 17-JUL-2009 14:26:50

Calibration Source Id: AESS-033

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.815 NP-237 2/28/10 4341 4768.800 4768.706 CM-244 2/28/10 4320A 5795.020 5794.924

> Energy/Channel Equation : see above Energy Calibration Zero : 2381.651 Energy Calibration Slope : 4.957265 Energy Calibration Quadratic : 2.9752569E-04 Energy Calibration Range : 7770.000

Detector: 65882

Calibration Date/Time : 31-JUL-2009 14:19:55

Calibration Source Id: AESS-028

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.208 NP-237 4341 2/28/10 4768.800 4768.821 CM-244 4320A 2/28/10 5795.020 5795.044

> Energy/Channel Equation : see above Energy Calibration Zero : 2350.073 Energy Calibration Slope : 4.971674 Energy Calibration Quadratic : 2.7526112E-04 Energy Calibration Range : 7730.000

> > Instrument: CHAMBER 144

Detector: 75551

Calibration Date/Time : 17-JUL-2009 14:27:26

Calibration Source Id: AESS-034

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3182.828 NP-237 4341 2/28/10 4768.800 4768.697 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2348.318 Energy Calibration Slope : 4.957791 Energy Calibration Quadratic : 2.7922410E-04 Energy Calibration Range : 7718.000

> > Instrument: CHAMBER 145

Detector: 72526

Calibration Date/Time : 17-JUL-2009 14:27:37

Calibration Source Id: AESS-029

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.094 NP-237 2/28/10 4341 4768.800 4768.886 CM-244 2/28/10 4320A 5795.020 5795.045

> Energy/Channel Equation : see above Energy Calibration Zero : 2353.360 Energy Calibration Slope : 4.971958 Energy Calibration Quadratic : 2.8320373E-04 Energy Calibration Range : 7742.000

Detector: 72527

Calibration Date/Time : 17-JUL-2009 14:27:48

Calibration Source Id: AESS-035

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.175 NP-237 4341 2/28/10 4768.800 4768.922 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2350.571 Energy Calibration Slope : 4.930733 Energy Calibration Quadratic : 2.9194859E-04 Energy Calibration Range : 7706.000

> > Instrument: CHAMBER 147

Detector: 75550

Calibration Date/Time : 17-JUL-2009 14:27:59

Calibration Source Id: AESS-030

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.209 NP-237 4341 2/28/10 4768.800 4769.018 5795.020 CM-244 4320A 2/28/10 5795.333

> Energy/Channel Equation : see above Energy Calibration Zero : 2343.476 Energy Calibration Slope : 4.959011 Energy Calibration Quadratic : 2.7492910E-04 Energy Calibration Range : 7710.000

> > Instrument: CHAMBER 148

Detector: 74429

Calibration Date/Time : 17-JUL-2009 14:28:08

Calibration Source Id: AESS-036

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.165 NP-237 2/28/10 4341 4768.800 4768.865 CM-244 2/28/10 4320A 5795.020 5795.167

> Energy/Channel Equation : see above Energy Calibration Zero : 2342.407 Energy Calibration Slope : 4.941724 Energy Calibration Quadratic : 3.0098064E-04 Energy Calibration Range : 7718.000

Detector: 33449

Calibration Date/Time : 17-JUL-2009 14:28:21

Calibration Source Id: AESS-037

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2388.292 Energy Calibration Slope : 4.935481 Energy Calibration Quadratic : 3.1694383E-04 Energy Calibration Range : 7775.000

> > Instrument: CHAMBER 150

Detector: 75552

Calibration Date/Time : 17-JUL-2009 14:28:35

Calibration Source Id: AESS-043

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.748 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2354.055 Energy Calibration Slope : 4.971218 Energy Calibration Quadratic : 2.7575236E-04 Energy Calibration Range : 7734.000

> > Instrument: CHAMBER 151

Detector: 75556

Calibration Date/Time : 17-JUL-2009 14:28:46

Calibration Source Id: AESS-038

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.936 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2341.373 Energy Calibration Slope : 4.941175 Energy Calibration Quadratic : 2.6452926E-04 Energy Calibration Range : 7679.000

Detector: 76222

Calibration Date/Time: 17-JUL-2009 14:28:57

Calibration Source Id: AESS-044

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.140 NP-237 4341 2/28/10 4768.800 4768.855 CM-244 4320A 2/28/10 5795.020 5795.046

> Energy/Channel Equation : see above Energy Calibration Zero : 2338.705 Energy Calibration Slope : 4.955201 Energy Calibration Quadratic : 2.6211896E-04 Energy Calibration Range : 7688.000

> > Instrument: CHAMBER 153

Detector: 76223

Calibration Date/Time : 17-JUL-2009 14:29:06

Calibration Source Id: AESS-039

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.045

> Energy/Channel Equation : see above Energy Calibration Zero : 2333.099 Energy Calibration Slope : 4.935291 Energy Calibration Quadratic : 2.9876101E-04 Energy Calibration Range : 7700.000

> > Instrument: CHAMBER 154

Detector: 76224

Calibration Date/Time: 17-JUL-2009 14:29:15

Calibration Source Id: AESS-045

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4768.651 4341 2/28/10 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2341.465 Energy Calibration Slope : 4.948726 Energy Calibration Quadratic : 2.8072123E-04 Energy Calibration Range : 7703.000

Detector: 75553

Calibration Date/Time : 17-JUL-2009 14:29:25

Calibration Source Id: AESS-040

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.160 NP-237 4341 2/28/10 4768.800 4768.857 CM-244 4320A 2/28/10 5795.020 5795.116

> Energy/Channel Equation : see above Energy Calibration Zero : 2365.986 Energy Calibration Slope : 4.960846 Energy Calibration Quadratic : 3.0533157E-04 Energy Calibration Range : 7766.000

> > Instrument: CHAMBER 156

Detector: 75554

Calibration Date/Time : 17-JUL-2009 14:29:35

Calibration Source Id: AESS-046

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.180 NP-237 4341 2/28/10 4768.800 4768.829 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2358.748 Energy Calibration Slope : 4.995668 Energy Calibration Quadratic : 2.7021556E-04 Energy Calibration Range : 7758.000

> > Instrument: CHAMBER 157

Detector: 75555

Calibration Date/Time: 17-JUL-2009 14:29:49

Calibration Source Id: AESS-041

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.132 NP-237 4341 2/28/10 4768.800 4768.802 CM-244 2/28/10 4320A 5795.020 5795.161

> Energy/Channel Equation : see above Energy Calibration Zero : 2355.714 Energy Calibration Slope : 4.974587 Energy Calibration Quadratic : 2.8556405E-04 Energy Calibration Range : 7749.000

Detector: 33451

Calibration Date/Time : 17-JUL-2009 14:30:01

Calibration Source Id: AESS-047

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.110 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2380.269 Energy Calibration Slope : 4.995139 Energy Calibration Quadratic : 3.1028705E-04 Energy Calibration Range : 7821.000

> > Instrument: CHAMBER 159

Detector: 76225

Calibration Date/Time: 17-JUL-2009 14:30:14

Calibration Source Id: AESS-042

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.190 NP-237 4341 2/28/10 4768.800 4768.913 5795.020 5795.044 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2353.142 Energy Calibration Slope : 4.981561 Energy Calibration Quadratic : 2.9250194E-04 Energy Calibration Range : 7761.000

> > Instrument: CHAMBER 160

Detector: 76226

Calibration Date/Time : 17-JUL-2009 14:30:32

Calibration Source Id: AESS-048

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.999 NP-237 2/28/10 4341 4768.800 4768.958 CM-244 2/28/10 4320A 5795.020 5795.070

> Energy/Channel Equation : see above Energy Calibration Zero : 2355.931 Energy Calibration Slope : 4.980661 Energy Calibration Quadratic : 2.9644801E-04 Energy Calibration Range : 7767.000

Detector: 70321

Calibration Date/Time : 23-JUL-2009 13:58:35

Calibration Source Id: AESS-001

Standard Energy Actual Energy Cal. Isotopes Source Id **Expiration Date** GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2371.155 Energy Calibration Slope : 4.901179 Energy Calibration Quadratic : 3.3258999E-04 Energy Calibration Range : 7739.000

> > Instrument : CHAMBER 162

Detector: 70323

Calibration Date/Time : 30-JUL-2009 13:57:32

Calibration Source Id: AESS-007

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5794.732

> Energy/Channel Equation : see above Energy Calibration Zero : 2368.699 Energy Calibration Slope : 4.929536 Energy Calibration Quadratic : 3.0326832E-04 Energy Calibration Range : 7735.000

> > Instrument: CHAMBER 163

Detector: 70324

Calibration Date/Time : 23-JUL-2009 13:58:54

Calibration Source Id: AESS-002

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4768.799 4341 2/28/10 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2378.440 Energy Calibration Slope : 4.923447 Energy Calibration Quadratic : 3.2373652E-04 Energy Calibration Range : 7760.000

Detector: 70325

Calibration Date/Time : 23-JUL-2009 13:59:02

Calibration Source Id: AESS-008

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2380.008 Energy Calibration Slope : 4.927452 Energy Calibration Quadratic : 3.2609751E-04 Energy Calibration Range : 7768.000

> > Instrument: CHAMBER 165

Detector: 72544

Calibration Date/Time : 23-JUL-2009 13:59:11

Calibration Source Id: AESS-003

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2387.218 Energy Calibration Slope : 4.942940 Energy Calibration Quadratic : 3.0943105E-04 Energy Calibration Range : 7773.000

> > Instrument: CHAMBER 166

Detector: 74545

Calibration Date/Time : 23-JUL-2009 13:59:23

Calibration Source Id: AESS-009

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4768.801 4341 2/28/10 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2373.718 Energy Calibration Slope : 4.929422 Energy Calibration Quadratic : 3.2212323E-04 Energy Calibration Range : 7759.000

Detector: 72546

Calibration Date/Time : 23-JUL-2009 13:59:32

Calibration Source Id: AESS-004

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2375.899 Energy Calibration Slope : 4.924172 Energy Calibration Quadratic : 3.2251154E-04 Energy Calibration Range : 7756.000

> > Instrument: CHAMBER 168

Detector: 72547

Calibration Date/Time : 23-JUL-2009 13:59:40

Calibration Source Id: AESS-010

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2378.301 Energy Calibration Slope : 4.935927 Energy Calibration Quadratic : 3.1537362E-04 Energy Calibration Range : 7763.000

> > Instrument: CHAMBER 169

Detector: 72548

Calibration Date/Time : 30-JUL-2009 13:57:41

Calibration Source Id: AESS-005

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4768.799 4341 2/28/10 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2382.975 Energy Calibration Slope : 4.911447 Energy Calibration Quadratic : 3.4493016E-04 Energy Calibration Range : 7774.000

Detector: 72549

Calibration Date/Time : 23-JUL-2009 13:59:58

Calibration Source Id: AESS-011

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2381.389 Energy Calibration Slope : 4.912318 Energy Calibration Quadratic : 3.5837301E-04 Energy Calibration Range : 7787.000

> > Instrument : CHAMBER 171

Detector: 78260

Calibration Date/Time : 23-JUL-2009 14:00:07

Calibration Source Id: AESS-006

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.798 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2368.307 Energy Calibration Slope : 4.932293 Energy Calibration Quadratic : 3.2247280E-04 Energy Calibration Range : 7757.000

> > Instrument: CHAMBER 172

Detector: 78772

Calibration Date/Time : 23-JUL-2009 14:00:15

Calibration Source Id: AESS-012

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2365.785 Energy Calibration Slope : 4.920015 Energy Calibration Quadratic : 3.3008555E-04 Energy Calibration Range : 7750.000

Detector: 74431

Calibration Date/Time : 22-JUL-2009 14:12:56

Calibration Source Id: AESS-013

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.926 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2364.405 Energy Calibration Slope : 4.981549 Energy Calibration Quadratic : 2.6860670E-04 Energy Calibration Range : 7747.000

> > Instrument: CHAMBER 174

Detector: 74432

Calibration Date/Time : 22-JUL-2009 14:13:10

Calibration Source Id: AESS-019

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2358.379 Energy Calibration Slope : 5.035265 Energy Calibration Quadratic : 2.0271989E-04 Energy Calibration Range : 7727.000

> > Instrument: CHAMBER 175

Detector: 74433

Calibration Date/Time : 22-JUL-2009 14:13:33

Calibration Source Id: AESS-014

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.817 NP-237 4341 2/28/10 4768.800 4768.732 CM-244 2/28/10 4320A 5795.020 5794.897

> Energy/Channel Equation : see above Energy Calibration Zero : 2361.060 Energy Calibration Slope : 4.980610 Energy Calibration Quadratic : 2.6701824E-04 Energy Calibration Range : 7741.000

Detector: 74434

Calibration Date/Time : 22-JUL-2009 14:13:51

Calibration Source Id: AESS-020

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3182.546 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2357.097 Energy Calibration Slope : 5.018647 Energy Calibration Quadratic : 2.3654266E-04 Energy Calibration Range : 7744.000

> > Instrument: CHAMBER 177

Detector: 74435

Calibration Date/Time : 22-JUL-2009 14:14:02

Calibration Source Id: AESS-015

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2358.948 Energy Calibration Slope : 4.983318 Energy Calibration Quadratic : 2.6383059E-04 Energy Calibration Range : 7739.000

> > Instrument: CHAMBER 178

Detector: 74436

Calibration Date/Time : 22-JUL-2009 14:14:14

Calibration Source Id: AESS-021

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4768.799 4341 2/28/10 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2354.644 Energy Calibration Slope : 4.987851 Energy Calibration Quadratic : 2.6228666E-04 Energy Calibration Range : 7737.000

Detector: 74437

Calibration Date/Time : 22-JUL-2009 14:14:24

Calibration Source Id: AESS-016

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.260 NP-237 4341 2/28/10 4768.800 4768.966 CM-244 4320A 2/28/10 5795.020 5795.056

> Energy/Channel Equation : see above Energy Calibration Zero : 2353.987 Energy Calibration Slope : 4.982908 Energy Calibration Quadratic : 2.6569929E-04 Energy Calibration Range : 7735.000

> > Instrument: CHAMBER 180

Detector: 74438

Calibration Date/Time : 22-JUL-2009 14:14:36

Calibration Source Id: AESS-022

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 5795.167 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2352.144 Energy Calibration Slope : 5.023554 Energy Calibration Quadratic : 2.2043443E-04 Energy Calibration Range : 7727.000

> > Instrument: CHAMBER 181

Detector: 74439

Calibration Date/Time : 22-JUL-2009 14:14:47

Calibration Source Id: AESS-017

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.801 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2357.233 Energy Calibration Slope : 4.973598 Energy Calibration Quadratic : 2.7286567E-04 Energy Calibration Range : 7736.000

Detector: 74440

Calibration Date/Time : 22-JUL-2009 14:14:57

Calibration Source Id: AESS-023

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.653 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2348.571 Energy Calibration Slope : 4.995710 Energy Calibration Quadratic : 2.4269641E-04 Energy Calibration Range : 7719.000

> > Instrument: CHAMBER 183

Detector: 74441

Calibration Date/Time : 22-JUL-2009 14:15:07

Calibration Source Id: AESS-018

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2357.181 Energy Calibration Slope : 4.984746 Energy Calibration Quadratic : 2.6386807E-04 Energy Calibration Range : 7738.000

> > Instrument: CHAMBER 184

Detector: 74442

Calibration Date/Time : 22-JUL-2009 14:15:18

Calibration Source Id: AESS-024

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2352.411 Energy Calibration Slope : 5.026765 Energy Calibration Quadratic : 2.1738216E-04 Energy Calibration Range : 7728.000

Detector: 68615

Calibration Date/Time : 22-JUL-2009 14:15:30

Calibration Source Id: AESS-025

Cal. Isotopes Source Id **Expiration Date** Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.262 NP-237 4341 2/28/10 4768.800 4769.011 CM-244 4320A 2/28/10 5795.020 5795.113

> Energy/Channel Equation : see above Energy Calibration Zero : 2354.510 Energy Calibration Slope : 4.938845 Energy Calibration Quadratic : 2.7730624E-04 Energy Calibration Range : 7703.000

> > Instrument: CHAMBER 186

Detector: 68616

Calibration Date/Time : 22-JUL-2009 14:15:43

Calibration Source Id: AESS-031

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.191 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.143

> Energy/Channel Equation : see above Energy Calibration Zero : 2359.547 Energy Calibration Slope : 4.938616 Energy Calibration Quadratic : 2.9074642E-04 Energy Calibration Range : 7722.000

> > Instrument: CHAMBER 187

Detector: 68620

Calibration Date/Time : 22-JUL-2009 14:15:58

Calibration Source Id: AESS-026

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.775 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2367.921 Energy Calibration Slope : 4.980083 Energy Calibration Quadratic : 2.9012386E-04 Energy Calibration Range : 7772.000

Detector: 68621

Calibration Date/Time : 22-JUL-2009 14:16:10

Calibration Source Id: AESS-032

Standard Energy Actual Energy Cal. Isotopes Source Id Expiration Date 3183.008 GD-148 6445-278 2/28/10 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.044 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2361.934 Energy Calibration Slope : 4.976158 Energy Calibration Quadratic : 2.7708741E-04 Energy Calibration Range : 7748.000

> > Instrument: CHAMBER 189

Detector: 68622

Calibration Date/Time : 22-JUL-2009 14:16:25

Calibration Source Id: AESS-027

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.093

> Energy/Channel Equation : see above Energy Calibration Zero : 2355.697 Energy Calibration Slope : 4.939315 Energy Calibration Quadratic : 2.8903113E-04 Energy Calibration Range : 7717.000

> > Instrument: CHAMBER 190

Detector: 68623

Calibration Date/Time : 22-JUL-2009 14:16:38

Calibration Source Id: AESS-033

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.298 NP-237 2/28/10 4341 4768.800 4768.799 CM-244 2/28/10 4320A 5795.020 5795.045

> Energy/Channel Equation : see above Energy Calibration Zero : 2351.739 Energy Calibration Slope : 4.948914 Energy Calibration Quadratic : 2.8685224E-04 Energy Calibration Range : 7720.000

Detector: 68624

Calibration Date/Time : 22-JUL-2009 14:17:15

Calibration Source Id: AESS-028

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id 3183.000 GD-148 6445-278 2/28/10 3183.000 NP-237 4341 2/28/10 4768.800 4768.925 CM-244 4320A 2/28/10 5795.020 5795.090

> Energy/Channel Equation : see above Energy Calibration Zero : 2367.921 Energy Calibration Slope : 4.966295 Energy Calibration Quadratic : 3.1035815E-04 Energy Calibration Range : 7779.000

> > Instrument: CHAMBER 192

Detector: 74430

Calibration Date/Time : 22-JUL-2009 14:17:47

Calibration Source Id: AESS-034

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.903 5795.020 CM-244 4320A 2/28/10 5795.089

> Energy/Channel Equation : see above Energy Calibration Zero : 2362.162 Energy Calibration Slope : 4.978550 Energy Calibration Quadratic : 2.9185213E-04 Energy Calibration Range : 7766.000

> > Instrument: CHAMBER 193

Detector: 68627

Calibration Date/Time : 22-JUL-2009 14:18:09

Calibration Source Id: AESS-029

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3182.786 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.042

> Energy/Channel Equation : see above Energy Calibration Zero : 2363.145 Energy Calibration Slope : 4.920224 Energy Calibration Quadratic : 3.1340783E-04 Energy Calibration Range : 7730.000

Detector: 68635

Calibration Date/Time : 22-JUL-2009 14:18:45

Calibration Source Id: AESS-035

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2356.478 Energy Calibration Slope : 4.939730 Energy Calibration Quadratic : 2.9438961E-04 Energy Calibration Range : 7723.000

> > Instrument: CHAMBER 195

Detector: 68636

Calibration Date/Time : 22-JUL-2009 14:19:31

Calibration Source Id: AESS-030

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.181

> Energy/Channel Equation : see above Energy Calibration Zero : 2359.634 Energy Calibration Slope : 4.956642 Energy Calibration Quadratic : 2.8082752E-04 Energy Calibration Range : 7730.000

> > Instrument: CHAMBER 196

Detector: 68637

Calibration Date/Time : 22-JUL-2009 14:19:51

Calibration Source Id: AESS-036

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.156 NP-237 2/28/10 4341 4768.800 4768.801 CM-244 2/28/10 4320A 5795.020 5795.019

> Energy/Channel Equation : see above Energy Calibration Zero : 2357.884 Energy Calibration Slope : 4.943155 Energy Calibration Quadratic : 2.9007217E-04 Energy Calibration Range : 7724.000

Detector: 78894

Calibration Date/Time : 23-JUL-2009 14:00:24

Calibration Source Id: AESS-037

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2369.600 Energy Calibration Slope : 4.961125 Energy Calibration Quadratic : 2.9980636E-04 Energy Calibration Range : 7764.000

> > Instrument: CHAMBER 198

Detector: 78895

Calibration Date/Time : 23-JUL-2009 14:00:36

Calibration Source Id: AESS-043

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2364.985 Energy Calibration Slope : 4.958083 Energy Calibration Quadratic : 2.9077829E-04 Energy Calibration Range : 7747.000

> > Instrument: CHAMBER 199

Detector: 78896

Calibration Date/Time : 23-JUL-2009 14:00:47

Calibration Source Id: AESS-038

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2363.893 Energy Calibration Slope : 4.975142 Energy Calibration Quadratic : 2.8265564E-04 Energy Calibration Range : 7755.000

Detector: 78900

Calibration Date/Time : 23-JUL-2009 14:00:57

Calibration Source Id: AESS-044

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2366.560 Energy Calibration Slope : 4.944607 Energy Calibration Quadratic : 3.1754555E-04 Energy Calibration Range : 7763.000

> > Instrument: CHAMBER 201

Detector: 78902

Calibration Date/Time : 23-JUL-2009 14:01:05

Calibration Source Id: AESS-039

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2365.274 Energy Calibration Slope : 4.952928 Energy Calibration Quadratic : 3.1035283E-04 Energy Calibration Range : 7763.000

> > Instrument: CHAMBER 202

Detector: 78903

Calibration Date/Time : 23-JUL-2009 14:01:14

Calibration Source Id: AESS-045

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2355.391 Energy Calibration Slope : 4.951035 Energy Calibration Quadratic : 2.9712555E-04 Energy Calibration Range : 7737.000

Detector: 78905

Calibration Date/Time : 23-JUL-2009 14:01:22

Calibration Source Id: AESS-040

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2359.621 Energy Calibration Slope : 4.976038 Energy Calibration Quadratic : 2.7450506E-04 Energy Calibration Range : 7743.000

> > Instrument: CHAMBER 204

Detector: 78907

Calibration Date/Time : 23-JUL-2009 14:01:31

Calibration Source Id: AESS-046

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2360.966 Energy Calibration Slope : 4.954226 Energy Calibration Quadratic : 2.9946532E-04 Energy Calibration Range : 7748.000

> > Instrument: CHAMBER 205

Detector: 78908

Calibration Date/Time : 23-JUL-2009 14:01:40

Calibration Source Id: AESS-041

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.801 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2367.589 Energy Calibration Slope : 4.954722 Energy Calibration Quadratic : 3.0296977E-04 Energy Calibration Range : 7759.000

Detector: 78909

Calibration Date/Time : 23-JUL-2009 14:01:49

Calibration Source Id: AESS-047

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2361.905 Energy Calibration Slope : 4.955875 Energy Calibration Quadratic : 2.9360279E-04 Energy Calibration Range : 7745.000

> > Instrument: CHAMBER 207

Detector: 78910

Calibration Date/Time : 23-JUL-2009 14:01:57

Calibration Source Id: AESS-042

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2368.030 Energy Calibration Slope : 4.964427 Energy Calibration Quadratic : 2.9426123E-04 Energy Calibration Range : 7760.000

> > Instrument: CHAMBER 208

Detector: 78911

Calibration Date/Time : 23-JUL-2009 14:02:06

Calibration Source Id: AESS-048

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2364.066 Energy Calibration Slope : 4.968146 Energy Calibration Quadratic : 2.8974371E-04 Energy Calibration Range : 7755.000

Detector: 79188

Calibration Date/Time : 28-JUL-2009 13:59:46

Calibration Source Id: AESS-001

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2390.309 Energy Calibration Slope : 4.907889 Energy Calibration Quadratic : 3.5155186E-04 Energy Calibration Range : 7785.000

> > Instrument: CHAMBER 210

Detector: 79189

Calibration Date/Time : 28-JUL-2009 13:59:55

Calibration Source Id: AESS-002

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 CM-244 4320A 2/28/10 5795.019

> Energy/Channel Equation : see above Energy Calibration Zero : 2382.719 Energy Calibration Slope : 4.945560 Energy Calibration Quadratic : 3.0519743E-04 Energy Calibration Range : 7767.000

> > Instrument: CHAMBER 211

Detector: 79190

Calibration Date/Time : 28-JUL-2009 14:00:03

Calibration Source Id: AESS-003

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2388.786 Energy Calibration Slope : 4.957439 Energy Calibration Quadratic : 3.0850343E-04 Energy Calibration Range : 7789.000

Detector: 79191

Calibration Date/Time : 28-JUL-2009 14:00:11

Calibration Source Id: AESS-004

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2386.612 Energy Calibration Slope : 4.941330 Energy Calibration Quadratic : 3.1567214E-04 Energy Calibration Range : 7778.000

> > Instrument: CHAMBER 213

Detector: 79192

Calibration Date/Time : 28-JUL-2009 14:00:20

Calibration Source Id: AESS-005

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2392.102 Energy Calibration Slope : 4.949504 Energy Calibration Quadratic : 3.0747624E-04 Energy Calibration Range : 7783.000

> > Instrument: CHAMBER 214

Detector: 79193

Calibration Date/Time : 28-JUL-2009 14:00:29

Calibration Source Id: AESS-006

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2383.299 Energy Calibration Slope : 4.938057 Energy Calibration Quadratic : 3.2320846E-04 Energy Calibration Range : 7779.000

Detector: 79194

Calibration Date/Time : 28-JUL-2009 14:00:38

Calibration Source Id: AESS-007

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2391.097 Energy Calibration Slope : 4.946728 Energy Calibration Quadratic : 3.2361320E-04 Energy Calibration Range : 7796.000

> > Instrument: CHAMBER 216

Detector: 79195

Calibration Date/Time : 28-JUL-2009 14:00:46

Calibration Source Id: AESS-008

Expiration Date Cal. Isotopes Standard Energy Actual Energy Source Id GD-148 6445-278 2/28/10 3183.000 3183.001 NP-237 4341 2/28/10 4768.800 4768.798 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2389.871 Energy Calibration Slope : 4.924810 Energy Calibration Quadratic : 3.3861332E-04 Energy Calibration Range : 7788.000

> > Instrument: CHAMBER 217

Detector: 79410

Calibration Date/Time : 28-JUL-2009 14:00:55

Calibration Source Id: AESS-009

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2391.358 Energy Calibration Slope : 4.934552 Energy Calibration Quadratic : 3.3054961E-04 Energy Calibration Range : 7791.000

Detector: 79411

Calibration Date/Time : 28-JUL-2009 14:01:03

Calibration Source Id: AESS-010

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2388.335 Energy Calibration Slope : 4.946022 Energy Calibration Quadratic : 3.1945287E-04 Energy Calibration Range : 7788.000

> > Instrument: CHAMBER 219

Detector: 79412

Calibration Date/Time : 28-JUL-2009 14:01:48

Calibration Source Id: AESS-011

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2390.188 Energy Calibration Slope : 4.929147 Energy Calibration Quadratic : 3.3767600E-04 Energy Calibration Range : 7792.000

> > Instrument: CHAMBER 220

Detector: 79413

Calibration Date/Time : 28-JUL-2009 14:02:00

Calibration Source Id: AESS-012

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2382.449 Energy Calibration Slope : 4.943600 Energy Calibration Quadratic : 3.1373679E-04 Energy Calibration Range : 7774.000

Detector: 79414

Calibration Date/Time : 28-JUL-2009 14:02:09

Calibration Source Id: AESS-013

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2387.174 Energy Calibration Slope : 4.970656 Energy Calibration Quadratic : 3.0409341E-04 Energy Calibration Range : 7796.000

> > Instrument: CHAMBER 222

Detector: 79415

Calibration Date/Time : 28-JUL-2009 14:02:19

Calibration Source Id: AESS-014

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2382.306 Energy Calibration Slope : 5.025091 Energy Calibration Quadratic : 2.4377843E-04 Energy Calibration Range : 7784.000

> > Instrument: CHAMBER 223

Detector: 79416

Calibration Date/Time : 28-JUL-2009 14:02:29

Calibration Source Id: AESS-015

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4768.799 4341 2/28/10 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2389.067 Energy Calibration Slope : 4.958123 Energy Calibration Quadratic : 3.2477293E-04 Energy Calibration Range : 7807.000

Detector: 79417

Calibration Date/Time : 28-JUL-2009 14:02:37

Calibration Source Id: AESS-016

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.027 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.021 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2386.695 Energy Calibration Slope : 5.011842 Energy Calibration Quadratic : 2.6290418E-04 Energy Calibration Range : 7794.000

> > Instrument: CHAMBER 225

Detector: 79418

Calibration Date/Time : 28-JUL-2009 14:02:46

Calibration Source Id: AESS-017

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 CM-244 4320A 2/28/10 5795.019

> Energy/Channel Equation : see above Energy Calibration Zero : 2392.776 Energy Calibration Slope : 4.933724 Energy Calibration Quadratic : 3.3852886E-04 Energy Calibration Range : 7800.000

> > Instrument: CHAMBER 226

Detector: 79419

Calibration Date/Time : 28-JUL-2009 14:02:55

Calibration Source Id: AESS-018

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2384.150 Energy Calibration Slope : 4.973210 Energy Calibration Quadratic : 2.9508519E-04 Energy Calibration Range : 7786.000

Detector: 79420

Calibration Date/Time : 28-JUL-2009 14:03:04

Calibration Source Id: AESS-019

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2391.061 Energy Calibration Slope : 4.938961 Energy Calibration Quadratic : 3.3045741E-04 Energy Calibration Range : 7795.000

> > Instrument: CHAMBER 228

Detector: 79421

Calibration Date/Time : 28-JUL-2009 14:03:13

Calibration Source Id: AESS-020

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2386.005 Energy Calibration Slope : 4.959556 Energy Calibration Quadratic : 3.0744984E-04 Energy Calibration Range : 7787.000

> > Instrument: CHAMBER 229

Detector: 79422

Calibration Date/Time : 28-JUL-2009 14:03:22

Calibration Source Id: AESS-021

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2387.995 Energy Calibration Slope : 4.940877 Energy Calibration Quadratic : 3.3899915E-04 Energy Calibration Range : 7803.000

Detector: 79423

Calibration Date/Time : 28-JUL-2009 14:03:31

Calibration Source Id: AESS-022

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2384.573 Energy Calibration Slope : 4.960246 Energy Calibration Quadratic : 3.1046796E-04 Energy Calibration Range : 7789.000

> > Instrument: CHAMBER 231

Detector: 79424

Calibration Date/Time : 28-JUL-2009 14:03:40

Calibration Source Id: AESS-023

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2387.425 Energy Calibration Slope : 4.946337 Energy Calibration Quadratic : 3.1792521E-04 Energy Calibration Range : 7786.000

> > Instrument: CHAMBER 232

Detector: 79425

Calibration Date/Time : 28-JUL-2009 14:03:48

Calibration Source Id: AESS-024

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2384.962 Energy Calibration Slope : 5.004478 Energy Calibration Quadratic : 2.5898189E-04 Energy Calibration Range : 7781.000

Detector: 79426

Calibration Date/Time : 28-JUL-2009 14:03:57

Calibration Source Id: AESS-025

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2384.858 Energy Calibration Slope : 4.908395 Energy Calibration Quadratic : 3.6085595E-04 Energy Calibration Range : 7789.000

> > Instrument: CHAMBER 234

Detector: 79427

Calibration Date/Time : 28-JUL-2009 14:04:08

Calibration Source Id: AESS-026

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 CM-244 4320A 2/28/10 5795.019

> Energy/Channel Equation : see above Energy Calibration Zero : 2378.557 Energy Calibration Slope : 4.936086 Energy Calibration Quadratic : 3.1737317E-04 Energy Calibration Range : 7766.000

> > Instrument: CHAMBER 235

Detector: 79428

Calibration Date/Time : 28-JUL-2009 14:04:17

Calibration Source Id: AESS-027

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2386.048 Energy Calibration Slope : 4.937345 Energy Calibration Quadratic : 3.3249237E-04 Energy Calibration Range : 7791.000

Detector: 79429

Calibration Date/Time : 28-JUL-2009 14:04:27

Calibration Source Id: AESS-028

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2388.810 Energy Calibration Slope : 4.906125 Energy Calibration Quadratic : 3.6270331E-04 Energy Calibration Range : 7793.000

> > Instrument: CHAMBER 237

Detector: 79430

Calibration Date/Time : 28-JUL-2009 14:04:36

Calibration Source Id: AESS-029

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2387.128 Energy Calibration Slope : 4.944391 Energy Calibration Quadratic : 3.2767057E-04 Energy Calibration Range : 7794.000

> > Instrument: CHAMBER 238

Detector: 79431

Calibration Date/Time : 28-JUL-2009 14:04:46

Calibration Source Id: AESS-030

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2381.338 Energy Calibration Slope : 4.929770 Energy Calibration Quadratic : 3.3144769E-04 Energy Calibration Range : 7777.000

Detector: 79432

Calibration Date/Time : 28-JUL-2009 14:04:55

Calibration Source Id: AESS-031

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.798 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2390.132 Energy Calibration Slope : 4.920120 Energy Calibration Quadratic : 3.5708508E-04 Energy Calibration Range : 7803.000

> > Instrument: CHAMBER 240

Detector: 79433

Calibration Date/Time : 28-JUL-2009 14:05:04

Calibration Source Id: AESS-032

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2385.205 Energy Calibration Slope : 4.918474 Energy Calibration Quadratic : 3.4866974E-04 Energy Calibration Range : 7787.000

> > Instrument: CHAMBER 241

Detector: 79434

Calibration Date/Time : 28-JUL-2009 14:05:13

Calibration Source Id: AESS-033

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2385.825 Energy Calibration Slope : 4.908836 Energy Calibration Quadratic : 3.6050563E-04 Energy Calibration Range : 7790.000

Detector: 79435

Calibration Date/Time : 28-JUL-2009 14:05:21

Calibration Source Id: AESS-034

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2385.009 Energy Calibration Slope : 4.945025 Energy Calibration Quadratic : 3.1615721E-04 Energy Calibration Range : 7780.000

> > Instrument: CHAMBER 243

Detector: 79436

Calibration Date/Time : 28-JUL-2009 14:05:30

Calibration Source Id: AESS-035

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 5795.020 5795.020 CM-244 4320A 2/28/10

> Energy/Channel Equation : see above Energy Calibration Zero : 2386.770 Energy Calibration Slope : 4.934989 Energy Calibration Quadratic : 3.3655608E-04 Energy Calibration Range : 7793.000

> > Instrument: CHAMBER 244

Detector: 79437

Calibration Date/Time : 28-JUL-2009 14:05:39

Calibration Source Id: AESS-036

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.801 CM-244 2/28/10 4320A 5795.020 5795.019

> Energy/Channel Equation : see above Energy Calibration Zero : 2391.069 Energy Calibration Slope : 4.911016 Energy Calibration Quadratic : 3.5919523E-04 Energy Calibration Range : 7797.000

Detector: 79438

Calibration Date/Time : 28-JUL-2009 14:05:48

Calibration Source Id: AESS-037

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2392.602 Energy Calibration Slope : 4.941990 Energy Calibration Quadratic : 3.3874813E-04 Energy Calibration Range : 7808.000

> > Instrument: CHAMBER 246

Detector: 78912

Calibration Date/Time : 28-JUL-2009 14:05:57

Calibration Source Id: AESS-038

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2392.768 Energy Calibration Slope : 4.935872 Energy Calibration Quadratic : 3.3401168E-04 Energy Calibration Range : 7797.000

> > Instrument: CHAMBER 247

Detector: 79440

Calibration Date/Time : 28-JUL-2009 14:06:06

Calibration Source Id: AESS-039

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2393.687 Energy Calibration Slope : 4.919972 Energy Calibration Quadratic : 3.6322643E-04 Energy Calibration Range : 7813.000

Detector: 79441

Calibration Date/Time : 28-JUL-2009 14:06:15

Calibration Source Id: AESS-040

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2386.829 Energy Calibration Slope : 4.935865 Energy Calibration Quadratic : 3.3986062E-04 Energy Calibration Range : 7798.000

> > Instrument: CHAMBER 249

Detector: 79442

Calibration Date/Time : 28-JUL-2009 14:10:21

Calibration Source Id: AESS-041

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.799 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2391.737 Energy Calibration Slope : 4.913334 Energy Calibration Quadratic : 3.7958668E-04 Energy Calibration Range : 7821.000

> > Instrument: CHAMBER 250

Detector: 79443

Calibration Date/Time : 28-JUL-2009 14:07:02

Calibration Source Id: AESS-042

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4341 4768.800 4768.798 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2383.582 Energy Calibration Slope : 4.915850 Energy Calibration Quadratic : 3.5610356E-04 Energy Calibration Range : 7791.000

Detector: 79444

Calibration Date/Time : 28-JUL-2009 14:07:11

Calibration Source Id: AESS-043

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 CM-244 4320A 2/28/10 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2390.072 Energy Calibration Slope : 4.920268 Energy Calibration Quadratic : 3.7023224E-04 Energy Calibration Range : 7817.000

> > Instrument: CHAMBER 252

Detector: 79445

Calibration Date/Time : 28-JUL-2009 14:07:24

Calibration Source Id: AESS-044

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2391.797 Energy Calibration Slope : 4.906192 Energy Calibration Quadratic : 3.7361679E-04 Energy Calibration Range : 7808.000

> > Instrument: CHAMBER 253

Detector: 79446

Calibration Date/Time : 28-JUL-2009 14:07:35

Calibration Source Id: AESS-045

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.799 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.021

> Energy/Channel Equation : see above Energy Calibration Zero : 2393.983 Energy Calibration Slope : 4.947714 Energy Calibration Quadratic : 3.5550338E-04 Energy Calibration Range : 7833.000

Detector: 79447

Calibration Date/Time : 28-JUL-2009 14:07:52

Calibration Source Id: AESS-046

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.801 CM-244 4320A 2/28/10 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2389.038 Energy Calibration Slope : 4.937405 Energy Calibration Quadratic : 3.4224574E-04 Energy Calibration Range : 7804.000

> > Instrument: CHAMBER 255

Detector: 79448

Calibration Date/Time : 28-JUL-2009 14:08:10

Calibration Source Id: AESS-047

Expiration Date Standard Energy Actual Energy Cal. Isotopes Source Id GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 4341 2/28/10 4768.800 4768.800 5795.020 CM-244 4320A 2/28/10 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2391.216 Energy Calibration Slope : 4.920984 Energy Calibration Quadratic : 3.7234218E-04 Energy Calibration Range : 7821.000

> > Instrument: CHAMBER 256

Detector: 79449

Calibration Date/Time : 28-JUL-2009 14:08:26

Calibration Source Id: AESS-048

Cal. Isotopes Source Id Expiration Date Standard Energy Actual Energy GD-148 6445-278 2/28/10 3183.000 3183.000 NP-237 2/28/10 4768.801 4341 4768.800 CM-244 2/28/10 4320A 5795.020 5795.020

> Energy/Channel Equation : see above Energy Calibration Zero : 2387.279 Energy Calibration Slope : 4.932406 Energy Calibration Quadratic : 3.4164111E-04 Energy Calibration Range : 7796.000

Subsection 2: Background Calibration

Instrument : CHAMBER 001

Detector: 78788

Background Analysis Date/Time : 2-AUG-2009 17:38:31

Background Count Time : 59999.99

	J		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [·]	2987.497	3299.286	3.000000	0.7199996	57.73503	95.00000
NP-237	4432.698	4903.020	11.00000	2.639998	30.15113	95.00000
CM-244	5533.173	5882.474	10.00000	2.399998	31.62278	95.00000

Instrument : CHAMBER 002

Detector: 78266

Background Analysis Date/Time : 2-AUG-2009 17:38:31

Background Count Time : 59999.99 Counts

G			Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [·]	2988.884	3302.198	4.000000	0.9599994	50.00000	95.00000
NP-237	4435.520	4904.443	3.000000	0.7199996	57.73503	95.00000
CM-244	5531.029	5887.102	1.000000	0.2399998	100.0000	95.00000

Instrument : CHAMBER 003

Detector: 67617

Background Analysis Date/Time : 2-AUG-2009 17:38:31

Background Count Time : 59999.99 Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.781	3301.594	6.000000	1.439999	40.82483	95.00000
NP-237	4436.211	4903.478	9.000000	2.159999	33.33334	95.00000
CM-244	5533.447	5886.860	9.000000	2.159999	33.33334	95.00000
CIVI-244	5555.447	3000.000	9.000000	2.109999	33.33334	33.00000

Counts

Instrument : CHAMBER 004

Detector: 64279

Background Analysis Date/Time : 2-AUG-2009 17:38:31

Background Count Time : 59999.99

Counts Counts Confidence Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error GD-148 NP-237 3300.077 95.00000 2988.914 4.000000 0.9599994 50.00000 4435.281 4903.621 7.000000 1.679999 37.79645 95.00000 CM-244 5530.627 5883.485 4.000000 0.9599994 50.00000 95.00000

Detector: 67612

Background Analysis Date/Time : 2-AUG-2009 17:38:31

Background Count Time : 59999.99

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence 3300.230 GD-148 2989.182 3.000000 0.7199996 57.73503 95.00000 4906.346 1.919999 NP-237 4436.140 8.000000 35.35534 95.00000 CM-244 5532.027 5883.330 1.000000 0.2399998 100.0000 95.00000

Instrument : CHAMBER 006

Detector: 67613

Background Analysis Date/Time : 2-AUG-2009 17:38:31

Background Count Time : 59999.99

Counts Counts

Cal Isotopes Start Energy End Energy in 1000 min during C

% Error Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal Confidence GD-148 NP-237 2990.504 3299.144 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 33.33334 4436.461 4902.944 9.000000 2.159999 95.00000 CM-244 5534.266 5882.776 8.000000 1.919999 35.35534 95.00000

Instrument: CHAMBER 007

Detector: 67607

Background Analysis Date/Time : 2-AUG-2009 17:38:32

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2991.468 3299.148 8.000000 1.920000 35.35534 95.00000 4903.766 4433.972 11.00000 2.640000 30.15113 95.00000 17.00000 CM-244 5532.246 5885.701 4.080001 24.25356 95.00000

Instrument: CHAMBER 008

Detector: 78788

Background Analysis Date/Time : 2-AUG-2009 17:38:32

Background Count Time: 60000.00

Counts Counts

End Energy in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2989.215 3298.713 3.000000 0.7200001 57.73503 95.00000 NP-237 4433.303 4905.744 4.000000 0.9600002 50.00000 95.00000 5886.606 CM-244 5532.461 2.000000 0.4800001 70.71068 95.00000

Detector: 72528

Background Analysis Date/Time : 2-AUG-2009 17:38:32

Background Count Time : 60000.00

		Counts	Counts		
Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
2990.462	3298.900	5.000000	1.200000	44.72136	95.00000
4437.055	4904.570	10.00000	2.400000	31.62278	95.00000
5532.536	5882.399	13.00000	3.120001	27.73501	95.00000
	2990.462 4437.055	2990.462 3298.900 4437.055 4904.570	Start Energy End Energy in 1000 min 2990.462 3298.900 5.000000 4437.055 4904.570 10.00000	Start Energy End Energy in 1000 min during Cal 2990.462 3298.900 5.000000 1.200000 4437.055 4904.570 10.00000 2.400000	Start Energy End Energy in 1000 min during Cal % Error 2990.462 3298.900 5.000000 1.200000 44.72136 4437.055 4904.570 10.00000 2.400000 31.62278

Instrument : CHAMBER 010

Detector: 72529

Background Analysis Date/Time : 2-AUG-2009 17:38:32

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2990.229 3298.607 8.000000 1.920000 35.35534 95.00000 4436.880 4905.484 9.000000 2.160000 33.33334 95.00000 CM-244 5531.409 5886.990 4.000000 0.9600002 50.00000 95.00000

Instrument: CHAMBER 011

Detector: 72531

Background Analysis Date/Time : 2-AUG-2009 17:38:32

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy in 1000 min % Error Confidence **End Energy** GD-148 NP-237 57.73503 2991.538 3301.988 3.000000 0.7200001 95.00000 4435.957 4905.467 9.000000 2.160000 33.33334 95.00000 CM-244 5530.314 5886.614 3.000000 0.7200001 95.00000 57.73503

Instrument : CHAMBER 012

Detector: 67594

Background Analysis Date/Time : 2-AUG-2009 17:38:32

Background Count Time: 60000.00

Counts Counts Start Energy **End Energy** Cal. Isotopes in 1000 min during Cal % Error Confidence GD-148 2988.398 3300.615 3.000000 0.7200001 57.73503 95.00000 NP-237 4437.450 4901.503 9.000000 2.160000 33.33334 95.00000 CM-244 3.840001 5534.709 5886.652 16.00000 25.00000 95.00000

Detector: 78790

Background Analysis Date/Time : 2-AUG-2009 17:38:33

Background Count Time : 59999.99

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 3298.441 1.000000 0.2400001 100.0000 95.00000 2987.666 NP-237 4435.272 4902.524 6.000000 1.440000 40.82483 95.00000 CM-244 5533.077 5883.559 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument : CHAMBER 014

Detector: 67616

Background Analysis Date/Time : 2-AUG-2009 17:38:33

Background Count Time : 59999.99

Counts Counts
Cal Isotopos Start Energy End Energy in 1000 min during Co

during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence 2992.504 3300.484 GD-148 2.000000 0.4800001 70.71068 95.00000 NP-237 4435.990 4902.000 4.000000 0.9600002 50.00000 95.00000 CM-244 5532.918 5886.701 23.00000 5.520001 20.85144 95.00000

Instrument: CHAMBER 015

Detector: 61581

Background Analysis Date/Time : 2-AUG-2009 17:38:33

Background Count Time : 59999.99

Counts Counts in 1000 min during Cal Cal. Isotopes % Error Confidence Start Energy **End Energy** GD-148 NP-237 2987.739 3297.575 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4432.566 4904.976 10.00000 2.400001 31.62278 95.00000

5.280001

95.00000

21.32007

22.00000

Instrument: CHAMBER 016

Detector: 78774

Background Analysis Date/Time : 2-AUG-2009 17:38:33

Background Count Time : 59999.99

Counts Counts

Al. Isotopes Start Energy End Energy in 1000 min during C

5887.242

CM-244

5530.833

% Error Confidence Cal. Isotopes during Cal GD-148 2990.015 3299.769 3.000000 0.7200001 57.73503 95.00000 NP-237 4903.568 3.000000 0.7200001 57.73503 95.00000 4432.750 CM-244 5886.508 5531.945 2.000000 0.4800001 70.71068 95.00000

CHAMBER 017 Instrument:

78791 Detector

Background Analysis Date/Time 2-AUG-2009 17:38:33

Background Count Time 59999.99

Counts Counts

Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2991.506 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 3301.266 NP-237 4435.397 4901.753 6.000000 1.440000 40.82483 95.00000 CM-244 5532.102 5885.058 2.000000 0.4800001 70.71068 95.00000

> Instrument: CHAMBER 018

Detector: 78782

Background Analysis Date/Time 2-AUG-2009 17:38:33

Background Count Time 59999.99

Counts Counts **End Energy** during Cal Cal. Isotopes Start Energy in 1000 min % Error

Confidence GD-148 NP-237 2988.342 3302.274 1.000000 0.2400001 100.0000 95.00000 4435.776 4902.996 4.000000 0.9600002 50.00000 95.00000 CM-244 5535.506 5884.764 1.000000 0.2400001 100.0000 95.00000

> CHAMBER 019 Instrument

78786 Detector

Background Analysis Date/Time 2-AUG-2009 17:38:34

> 59999.99 **Background Count Time**

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 0.2399998 2990.757 3299.102 1.000000 100.0000 95.00000 4436.959 4904.938 5.000000 1.199999 44.72136 95.00000 CM-244 5530.360 5882.637 4.000000 0.9599994 50.00000 95.00000

> Instrument: CHAMBER 020

Detector 78787

Background Analysis Date/Time 2-AUG-2009 17:38:34

Background Count Time 59999.99

Counts Counts

Start Energy **End Energy** Confidence Cal. Isotopes in 1000 min during Cal % Error GD-148 2988.029 3302.537 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4905.035 2.399998 95.00000 4437.491 10.00000 31.62278 CM-244 5532.389 5886.993 5.000000 1.199999 44.72136 95.00000

Instrument : CHAMBER 021
Detector : 67047
Background Analysis Date/Time : 2-AUG-2009 17:38:34
Background Count Time : 59999.99
Counts Counts

			Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [·]	2992.044	3301.105	4.000000	0.9599994	50.00000	95.00000
NP-237	4432.692	4903.261	8.000000	1.919999	35.35534	95.00000
CM-244	5532.273	5884.483	16.00000	3.839998	25.00000	95.00000

Instrument : CHAMBER 022 Detector : 72530

Background Analysis Date/Time : 2-AUG-2009 17:38:34
Background Count Time : 59999.99
Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2987,876	3301 717	5.000000		44.72136	95.00000
NP-237	4432.553	4902.907	4.000000	0.9599994	50.00000	95.00000
CM-244	5531.719	5883.858	21.00000	5.039997	21.82179	95.00000

Instrument: CHAMBER 023

Detector: 78264

Background Analysis Date/Time : 2-AUG-2009 17:38:34
Background Count Time : 59999.99
Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2992.270	3297.465	1.000000	0.239998	100.0000	95.00000
NP-237	4434.353	4902.238	12.00000	2.879998	28.86751	95.00000
CM-244	5535.006	5884.098	4.000000	0.9599994	50.00000	95.00000
CIVI-244	3333.000	3004.030	4.000000	0.3333334	30.00000	33.00000

Instrument : CHAMBER 024
Detector : 76542
Background Analysis Date/Time : 2-AUG-2009 17:38:34
Background Count Time : 59999.99
Counts Counts

			Couris	Couris		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.735	3301.963	3.000000	0.7199996	57.73503	95.00000
NP-237	4435.585	4904.900	14.00000	3.359998	26.72612	95.00000
CM-244	5532.247	5883.527	6.000000	1.439999	40.82483	95.00000

Instrument: CHAMBER 025 Detector: 45-149AA5

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2989.576	3302.009	0.0000000E+00	0.0000000E+00	0.0000000E+00	95.00000
NP-237	4437.518	4905.500	4.000000	0.9600002	50.00000	95.00000
CM-244	5535.553	5882.966	61.00000	14.64000	12.80369	95.00000

Instrument : CHAMBER 026

Detector: 78204

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2989.278 3302.066 1.000000 0.2400001 100.0000 95.00000 4432.530 4904.245 8.000000 1.920000 35.35534 95.00000 CM-244 5530.854 5885.357 35.00000 8.400002 16.90309 95.00000

Instrument: CHAMBER 027

Detector: 42484

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2989.311 3298.574 1.000000 0.2400001 100.0000 95.00000 4433.571 4901.458 4.000000 0.9600002 50.00000 95.00000 CM-244 5534.916 5884.719 37.00000 8.880002 16.43990 95.00000

Instrument : CHAMBER 028

Detector: 78792

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

Counts Counts Cal. Isotopes in 1000 min during Cal % Error Confidence Start Energy **End Energy** GD-148 2988.458 3301.428 1.000000 0.2400001 100.0000 95.00000 NP-237 4433.918 4901.793 10.00000 2.400001 31.62278 95.00000 CM-244 8.640002 5530.766 5886.861 36.00000 16.66667 95.00000

Detector: 33454

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

		Counts	Counts		
Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
2991.561	3299.264	4.000000	0.9600002	50.00000	95.00000
4436.609	4905.813	5.000000	1.200000	44.72136	95.00000
5532.652	5886.650	41.00000	9.840002	15.61738	95.00000
	2991.561 4436.609	2991.561 3299.264 4436.609 4905.813	Start Energy End Energy in 1000 min 2991.561 3299.264 4.000000 4436.609 4905.813 5.000000	Start Energy End Energy in 1000 min during Cal 2991.561 3299.264 4.000000 0.9600002 4436.609 4905.813 5.000000 1.200000	Start Energy End Energy in 1000 min during Cal % Error 2991.561 3299.264 4.000000 0.9600002 50.00000 4436.609 4905.813 5.000000 1.200000 44.72136

Instrument : CHAMBER 030

Detector: 33447

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2992.462 3300.436 4.000000 0.9600002 50.00000 95.00000 4435.706 4901.528 10.00000 2.400001 31.62278 95.00000 CM-244 5532.111 5885.667 49.00000 11.76000 14.28572 95.00000

Instrument: CHAMBER 031

Detector: 67042

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2990.816 3298.130 4.000000 0.9599994 50.00000 95.00000 4432.666 4904.194 11.00000 2.639998 30.15113 95.00000 11.99999 CM-244 5530.750 5885.317 50.00000 14.14214 95.00000

Instrument : CHAMBER 032

Detector: 67041

Background Analysis Date/Time : 2-AUG-2009 17:38:35

Background Count Time : 59999.99

Counts Counts Cal. Isotopes in 1000 min during Cal % Error Confidence Start Energy **End Energy** GD-148 2990.681 3302.442 2.000000 0.4799997 70.71068 95.00000 NP-237 4436.943 4904.070 8.000000 1.919999 35.35534 95.00000 CM-244 5883.050 5532.476 63.00000 15.11999 12.59882 95.00000

Instrument : CHAMBER 033
Detector : 78785
Background Analysis Date/Time : 2-AUG-2009 17:38:35
Background Count Time : 59999.99
Counts Counts

			Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.750	3301.323	2.000000	0.4799997	70.71068	95.00000
NP-237	4437.327	4904.445	7.000000	1.679999	37.79645	95.00000
CM-244	5532.298	5882.301	47.00000	11.27999	14.58650	95.00000

Instrument: CHAMBER 034

Detector: 61586

Background Analysis Date/Time : 2-AUG-2009 17:38:35
Background Count Time : 59999.99
Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2990.405	3301.020	3.000000	0.7199996	57.73503	95.00000
NP-237	4436.289	4905.558	6.000000	1.439999	40.82483	95.00000
CM-244	5534.591	5883.408	6.000000	1.439999	40.82483	95.00000

Instrument: CHAMBER 035

Detector: 78202

Background Analysis Date/Time: 2-AUG-2009 17:38:35

Background Count Time: 59999.99

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988-026	3302,211	3.000000	0.7199996	57,73503	95.00000
NP-237	4437.360	4905.577	20.00000	4.799997	22.36068	95.00000
CM-244	5534.350	5884.600	61.00000	14.63999	12.80369	95.00000

Instrument : CHAMBER 036
Detector : 78203
Background Analysis Date/Time : 2-AUG-2009 17:38:35
Background Count Time : 59999.99
Counts Counts

			Couris	Couris		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.680	3301.073	2.000000	0.4799997	70.71068	95.00000
NP-237	4435.041	4905.984	9.000000	2.159999	33.33334	95.00000
CM-244	5531.465	5885.278	47.00000	11.27999	14.58650	95.00000

Instrument : Detector :

CHAMBER 037 45-149BB5

Background Analysis Date/Time

2-AUG-2009 17:38:36

Counte

Background Count Time

: 60000.00

Cal. Isotopes GD-148	Start Energy 2991.168	End Energy 3302.212	in 1000 min 3.000000	during Cal 0.7199995	% Error 57.73503	Confidence 95.00000
NP-237	4432.895	4904.029	13.00000	3.119998	27.73501	95.00000
CM-244	5532.110	5886.157	66.00000	15.83999	12.30915	95.00000

Instrument :

CHAMBER 038

Detector: 72532

Background Analysis Date/Time : 2-AUG-2009 17:38:36

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2992.472 3300.031 4.000000 0.9599993 50.00000 95.00000 4434.591 4905.742 16.00000 3.839997 25.00000 95.00000 CM-244 5531.463 5885.396 50.00000 11.99999 14.14214 95.00000

> Instrument : C Detector : 4

CHAMBER 039 45-149BB2

Background Analysis Date/Time : 2-AUG-2009 17:38:36

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes in 1000 min during Cal % Error Confidence Start Energy **End Energy** GD-148 NP-237 2988.231 3297.932 6.000000 1.439999 40.82483 95.00000 40.82483 4433.148 4905.972 6.000000 1.439999 95.00000 CM-244 5532.651 5884.312 76.00000 18.23999 11.47079 95.00000

Instrument :

CHAMBER 040

Detector: 78773

Background Analysis Date/Time : 2-AUG-2009 17:38:36

Background Count Time : 60000.00

Counts Counts **End Energy** % Error in 1000 min during Cal Confidence Cal. Isotopes Start Energy GD-148 2989.631 3299.278 2.000000 0.4799997 70.71068 95.00000 NP-237 4434.455 4902.104 2.000000 0.4799997 70.71068 95.00000 CM-244 5885.901 5534.140 43.00000 10.31999 15.24986 95.00000

Instrument: CHAMBER 041 Detector: 78205

Background Analysis Date/Time

2-AUG-2009 17:38:36

Counts

Background Count Time :

: 60000.00

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.485	3301.427	8.000000	1.919999	35.35534	95.00000
NP-237	4434.095	4902.163	8.000000	1.919999	35.35534	95.00000
CM-244	5531.498	5882.427	43.00000	10.31999	15.24986	95.00000
CIVI-244	3331.430	3002.421	43.00000	10.51333	13.24300	33.00000

Instrument : CHAMBER 042 Detector : 78793

Detector: 7879

Background Analysis Date/Time : 2-AUG-2009 17:38:36

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2991.775 3302.182 3.000000 0.7199995 57.73503 95.00000 4434.604 4903.031 12.00000 2.879998 28.86751 95.00000 CM-244 5530.666 5882.826 45.00000 10.79999 14.90712 95.00000

Instrument: CHAMBER 043

Detector: 76543

Background Analysis Date/Time : 2-AUG-2009 17:38:37

Background Count Time : 59999.99

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2990.605 3297.721 2.000000 0.4799997 70.71068 95.00000 4435.729 4906.163 7.000000 1.679999 37.79645 95.00000 CM-244 5530.889 5884.237 59.00000 14.15999 13.01889 95.00000

Instrument : CHAMBER 044

Detector: 79459

Background Analysis Date/Time : 2-AUG-2009 17:38:37

Background Count Time : 59999.99

Counts Counts **End Energy** in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2992.053 3299.650 4.000000 0.9599994 50.00000 95.00000 NP-237 4434.444 4905.733 8.000000 1.919999 35.35534 95.00000 CM-244 5531.674 5885.749 67.00000 16.07999 12.21694 95.00000

Detector: 78783

Background Analysis Date/Time : 2-AUG-2009 17:38:37

Background Count Time : 59999.99

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2991.163 3297.674 2.000000 0.4799997 70.71068 95.00000 NP-237 4435.665 4901.796 4.000000 0.9599994 50.00000 95.00000 CM-244 5533.912 5883.468 60.00000 14.39999 12.90994 95.00000

Instrument : CHAMBER 046

Detector: 76544

Background Analysis Date/Time : 2-AUG-2009 17:38:37

Background Count Time : 59999.99

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 NP-237 2988.013 3297.754 6.000000 1.439999 40.82483 95.00000 4433.428 4906.578 9.000000 2.159999 33.33334 95.00000 CM-244 5533.808 5885.833 47.00000 11.27999 14.58650 95.00000

Instrument : CHAMBER 047

Detector: 46-089B1

Background Analysis Date/Time : 2-AUG-2009 17:38:37

Background Count Time : 59999.99

5884.198

CM-244

5535.296

Counts Counts Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** during Cal GD-148 NP-237 2989.788 3298.531 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4436.493 4903.356 9.000000 2.159999 33.33334 95.00000

17.51999

95.00000

11.70411

73.00000

Instrument: CHAMBER 048

Detector: 42483

Background Analysis Date/Time : 2-AUG-2009 17:38:37

Background Count Time: 59999.99

Counts Counts

Start Energy Confidence Cal. Isotopes **End Energy** in 1000 min during Cal % Error GD-148 2991.838 3299.553 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 2.399998 4437.268 10.00000 95.00000 4906.475 31.62278 CM-244 5533.930 5885.396 49.00000 11.75999 14.28572 95.00000

CHAMBER 065 Instrument:

68551 Detector

Background Analysis Date/Time 5-JUL-2009 15:12:01

Background Count Time 59999.99

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2992.172 3297.923 12.00000 2.879998 28.86751 95.00000 NP-237 4436.297 4904.907 10.00000 2.399998 31.62278 95.00000 CM-244 5532.615 5884.733 17.00000 4.079998 24.25356 95.00000

> Instrument: CHAMBER 066 Detector: 46-089C1

Background Analysis Date/Time 5-JUL-2009 15:12:01

Background Count Time 59999.99

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 NP-237 2992.142 3300.807 4.000000 0.9599994 50.00000 95.00000 4436.247 4906.352 9.000000 2.159999 33.33334 95.00000 CM-244 5534.784 5886.688 18.00000 4.319997 23.57022 95.00000

> CHAMBER 067 Instrument 46-089B4 Detector

Background Analysis Date/Time 5-JUL-2009 15:12:01

Background Count Time 59999.99

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2988.144 3301.594 1.000000 0.2399998 100.0000 95.00000 4436.169 4905.946 11.00000 2.639998 30.15113 95.00000 37.79645 CM-244 5533.963 5885.648 7.000000 1.679999 95.00000

> Instrument: CHAMBER 068

Detector

78794

5-JUL-2009 15:12:01 Background Analysis Date/Time

Background Count Time 59999.99

Counts Counts **End Energy** in 1000 min % Error Cal. Isotopes Start Energy during Cal

Confidence GD-148 2990.601 3300.139 1.000000 0.2399998 100.0000 95.00000 NP-237 4903.729 4.000000 0.9599994 50.00000 95.00000 4435.756 CM-244 0.9599994 5531.794 5886.867 4.000000 50.00000 95.00000

Instrument: CHAMBER 069 Detector: 78795

Detector: 78

Background Analysis Date/Time : 5-JUL-2009 15:12:01

Background Count Time : 59999.99

			Counts	Courits		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2991.901	3298.738	5.000000	1.199999	44.72136	95.00000
NP-237	4437.201	4903.207	6.000000	1.439999	40.82483	95.00000
CM-244	5534.874	5884.048	9.000000	2.159999	33.33334	95.00000

Instrument: CHAMBER 070 Detector: 46-089B2

Background Analysis Date/Time : 5-JUL-2009 15:12:01

Background Count Time : 59999.99

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [·]	2988.641	3300.492	4.000000	0.9599994	50.00000	95.00000
NP-237	4435.833	4904.443	11.00000	2.639998	30.15113	95.00000
CM-244	5531.433	5882.799	7.000000	1.679999	37.79645	95.00000

Instrument: CHAMBER 071

Detector: 64259

Background Analysis Date/Time : 5-JUL-2009 15:12:02

Background Count Time : 59999.99

Counts Counts Start Energy during Cal Cal. Isotopes **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2992.476 3301.614 1.000000 0.2399998 100.0000 95.00000 4435.387 4902.436 6.000000 1.439999 40.82483 95.00000 CM-244 5534.462 5883.334 12.00000 2.879998 95.00000 28.86751

> Instrument: CHAMBER 072 Detector: 45-149AA3

Background Analysis Date/Time : 5-JUL-2009 15:12:02

Background Count Time : 59999.99

Counts Counts Start Energy **End Energy** Cal. Isotopes in 1000 min during Cal % Error Confidence GD-148 2988.586 3301.014 2.000000 0.4799997 70.71068 95.00000 NP-237 4432.963 4902.126 5.000000 1.199999 44.72136 95.00000 CM-244 14.00000 3.359998 5535.050 5886.750 26.72612 95.00000

Detector: 78775

Background Analysis Date/Time : 5-JUL-2009 15:12:02

Background Count Time : 59999.99

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2991.870 3299.007 2.000000 0.4799997 70.71068 95.00000 NP-237 4435.703 4904.982 6.000000 1.439999 40.82483 95.00000 CM-244 5532.962 5884.931 1.000000 0.2399998 100.0000 95.00000

Instrument : CHAMBER 074

Detector: 78266

Background Analysis Date/Time : 5-JUL-2009 15:12:02

Background Count Time : 59999.99

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 NP-237 2990.625 3300.254 2.000000 0.4799997 70.71068 95.00000 4435.417 4902.858 9.000000 2.159999 33.33334 95.00000 CM-244 5535.258 5884.259 6.000000 1.439999 40.82483 95.00000

Instrument: CHAMBER 075

Detector: 68550

Background Analysis Date/Time : 5-JUL-2009 15:12:02

Background Count Time : 59999.99

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2988.563 3301.861 2.000000 0.4799997 70.71068 95.00000 4432.969 4904.420 19.00000 4.559997 22.94157 95.00000 37.79645 CM-244 5535.562 5884.044 7.000000 1.679999 95.00000

Instrument : CHAMBER 076

Detector: 78779

Background Analysis Date/Time : 5-JUL-2009 15:12:02

Background Count Time : 59999.99

Counts Counts **End Energy** in 1000 min Start Energy % Error Confidence Cal. Isotopes during Cal GD-148 2992.408 3300.679 2.000000 0.4799997 70.71068 95.00000 NP-237 4437.552 4904.251 7.000000 1.679999 37.79645 95.00000 CM-244 0.2399998 5530.870 5885.252 1.000000 100.0000 95.00000

CHAMBER 077 Instrument:

67576 Detector

5-JUL-2009 15:12:03 Background Analysis Date/Time

Background Count Time 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 3301.085 2.000000 0.4800001 70.71068 95.00000 2988.825 4432.612 44.72136 NP-237 4901.681 5.000000 1.200000 95.00000 CM-244 5534.546 5886.248 8.000000 1.920000 35.35534 95.00000

> Instrument: CHAMBER 078

Detector: 67577

Background Analysis Date/Time 5-JUL-2009 15:12:03

Background Count Time 60000.00

Counts Counts % Error Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal Confidence GD-148 2992.395 3299.584 0.0000000E+00 0.0000000E+00 0.0000000E+00

95.00000 NP-237 44.72136 4433.349 4904.419 5.000000 1.200000 95.00000 CM-244 5535.593 5884.350 7.000000 1.680000 37.79645 95.00000

> CHAMBER 079 Instrument

67598 Detector

Background Analysis Date/Time 5-JUL-2009 15:12:03

> 60000.00 **Background Count Time**

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 95.00000 2987.535 3297.935 1.000000 0.2400000 100.0000 4435.153 4903.332 3.000000 0.7200001 57.73503 95.00000 CM-244 5530.500 5882.333 4.000000 0.9600002 50.00000 95.00000

> Instrument: CHAMBER 080

Detector 78197

Background Analysis Date/Time 5-JUL-2009 15:12:03

> **Background Count Time** 60000.00

Counts Counts

Start Energy **End Energy** % Error Confidence Cal. Isotopes in 1000 min during Cal GD-148 2992.338 3298.189 3.000000 0.7200001 57.73503 95.00000 NP-237 2.400000 31.62278 95.00000 4434.851 4901.472 10.00000 CM-244 0.0000000E+00 0.0000000E+00 0.0000000E+00 5531.493 5883.930 95.00000

CHAMBER 081 Instrument:

72533 Detector

5-JUL-2009 15:12:03 Background Analysis Date/Time

Background Count Time 60000.00

	_ = = = = = = = = = = = = = = = = = = =		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2985.980	3302.417	1.000000	0.2400000	100.0000	95.00000
NP-237	4432.287	4905.979	5.000000	1.200000	44.72136	95.00000
CM-244	5534.795	5885.572	2.000000	0.4800001	70.71068	95.00000

Instrument: CHAMBER 082

Detector: 64263

Background Analysis Date/Time 5-JUL-2009 15:12:03

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2990.419 3298.608 1.000000 0.2400000 100.0000 95.00000 4437.000 4905.115 7.000000 1.680000 37.79645 95.00000 CM-244 5534.320 5885.085 9.000000 2.160000 33.33334 95.00000

> Instrument: CHAMBER 083

Detector 64278

5-JUL-2009 15:12:04 Background Analysis Date/Time

Background Count Time 59999.99

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2987.455 3299.407 2.000000 0.4800001 70.71068 95.00000 4433.838 4906.607 13.00000 3.120001 27.73501 95.00000 CM-244 5532.253 5885.057 13.00000 3.120001 95.00000 27.73501

> Instrument: CHAMBER 084

Detector 78265

Background Analysis Date/Time 5-JUL-2009 15:12:04

Background Count Time 59999.99

Counts Counts

End Energy in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2988.133 3299.227 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4433.289 4901.844 1.920000 35.35534 95.00000 8.000000 CM-244 5535.275 5884.618 2.000000 0.4800001 70.71068 95.00000

Detector: 78776

Background Analysis Date/Time : 5-JUL-2009 15:12:04

Background Count Time : 59999.99

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2989.612	3299.207	2.000000	0.4800001	70.71068	95.00000
NP-237	4434.183	4901.520	9.000000	2.160001	33.33334	95.00000
CM-244	5533.754	5882.654	3.000000	0.7200001	57.73503	95.00000

Instrument : CHAMBER 086

Detector: 78198

Background Analysis Date/Time : 5-JUL-2009 15:12:04

Background Count Time : 59999.99

Counts Counts during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2989.886 3300.091 3.000000 0.7200001 57.73503 95.00000 4433.582 4903.927 6.000000 1.440000 40.82483 95.00000 CM-244 5531.751 5882.863 5.000000 1.200000 44.72136 95.00000

Instrument: CHAMBER 087

Detector: 78199

Background Analysis Date/Time : 5-JUL-2009 15:12:04

Background Count Time : 59999.99

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2990.385 3299.009 4.000000 0.9600002 50.00000 95.00000 4436.772 4904.542 10.00000 2.400001 31.62278 95.00000 CM-244 5534.083 5883.178 2.000000 0.4800001 95.00000 70.71068

Instrument: CHAMBER 088

Detector: 33452

Background Analysis Date/Time : 5-JUL-2009 15:12:04

Background Count Time : 59999.99

Counts Counts

End Energy in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2990.970 3298.296 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4436.463 4902.334 8.000000 1.920000 35.35534 95.00000 CM-244 5887.587 9.000000 5534.583 2.160001 33.33334 95.00000

Detector: 78262

Background Analysis Date/Time : 5-JUL-2009 15:12:04

Background Count Time : 59999.99

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2992.075 3297.767 4.000000 0.9599994 50.00000 95.00000 1.679999 NP-237 4432.406 4901.978 7.000000 37.79645 95.00000 CM-244 5532.097 5882.869 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument : CHAMBER 090

Detector: 78263

Background Analysis Date/Time : 5-JUL-2009 15:12:04

Background Count Time : 59999.99

Counts Counts

during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence 2990.462 GD-148 3300.982 1.000000 0.2399998 100.0000 95.00000 NP-237 4434.552 4903.775 8.000000 1.919999 35.35534 95.00000 CM-244 5532.754 5885.804 3.000000 0.7199996 57.73503 95.00000

Instrument: CHAMBER 091

Detector: 78259

Background Analysis Date/Time : 5-JUL-2009 15:12:04

Background Count Time : 59999.99

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2990.268 3298.949 1.000000 0.2399998 100.0000 95.00000 4433.436 4901.824 7.000000 1.679999 37.79645 95.00000 CM-244 5531.214 5887.413 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument: CHAMBER 092

Detector: 79457

Background Analysis Date/Time : 5-JUL-2009 15:12:04

Background Count Time : 59999.99

Counts Counts

End Energy in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2992.198 3300.849 49.00000 11.75999 14.28572 95.00000 NP-237 4905.687 19.00000 4.559997 22.94157 95.00000 4435.896 5885.099 CM-244 1.439999 5533.567 6.000000 40.82483 95.00000

Detector: 33206

Background Analysis Date/Time : 5-JUL-2009 15:12:04

Background Count Time : 59999.99

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2988.963 3299.960 1.000000 0.2399998 100.0000 95.00000 NP-237 4434.063 4902.978 9.000000 2.159999 33.33334 95.00000 CM-244 5531.085 5883.424 2.000000 0.4799997 70.71068 95.00000

Instrument : CHAMBER 094

Detector: 78267

Background Analysis Date/Time : 5-JUL-2009 15:12:04

Background Count Time : 59999.99

Counts Counts during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2990.912 3298.303 4.000000 0.9599994 50.00000 95.00000 4435.971 4905.664 4.000000 0.9599994 50.00000 95.00000 CM-244 5534.211 5886.502 4.000000 0.9599994 50.00000 95.00000

Instrument: CHAMBER 095

Detector: 64279

Background Analysis Date/Time : 5-JUL-2009 15:12:05

Background Count Time : 59999.99

Counts Counts in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** during Cal GD-148 NP-237 2989.056 3301.826 3.000000 0.7199996 57.73503 95.00000 4435.330 4905.275 10.00000 2.399998 31.62278 95.00000 CM-244 5534.057 5886.430 24.00000 5.759996 20.41241 95.00000

Instrument : CHAMBER 096

Detector: 67605

Background Analysis Date/Time : 8-JUL-2009 15:03:56

Background Count Time : 59999.99

Counts Counts Start Energy **End Energy** % Error Confidence Cal. Isotopes in 1000 min during Cal GD-148 2990.311 3298.177 2.000000 0.4799997 70.71068 95.00000 NP-237 4434.251 4906.198 29.00000 6.959996 18.56953 95.00000 CM-244 0.4799997 5533.120 5882.408 2.000000 70.71068 95.00000

Instrument: Detector:

CHAMBER 097 67599

Background Analysis Date/Time

5-JUL-2009 15:12:05

Background Count Time

59999.99

			Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2989.746	3302.068	2.000000	0.4799997	70.71068	95.00000
NP-237	4437.101	4903.794	1.000000	0.2399998	100.0000	95.00000
CM-244	5531.052	5886.116	14.00000	3.359998	26.72612	95.00000

Instrument: CHAMBER 098

Detector: 68644

Background Analysis Date/Time 5-JUL-2009 15:12:05

Background Count Time 59999.99

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2989.589	3298.128	1.000000	0.2399998	100.0000	95.00000
NP-237	4432.836	4901.640	12.00000	2.879998	28.86751	95.00000
CM-244	5531.873	5883.257	2.000000	0.4799997	70.71068	95.00000

Instrument: CHAMBER 099

70317 Detector:

Background Analysis Date/Time 5-JUL-2009 15:12:05

> **Background Count Time** 59999.99

Counts Counts during Cal Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy GD-148 NP-237 2990.876 3301.163 3.000000 0.7199996 57.73503 95.00000 4434.526 4903.945 4.000000 0.9599994 50.00000 95.00000 CM-244 5533.432 5886.885 7.000000 1.679999 95.00000 37.79645

> Instrument: CHAMBER 100

Detector: 79456

5-JUL-2009 15:12:05 Background Analysis Date/Time

Background Count Time 59999.99

Counts Counts Start Energy **End Energy** Cal. Isotopes in 1000 min during Cal % Error Confidence GD-148 2992.287 3297.799 2.000000 0.4799997 70.71068 95.00000 NP-237 4436.422 4905.631 13.00000 3.119998 27.73501 95.00000 CM-244 5887.590 7.000000 1.679999 5534.572 37.79645 95.00000

Detector: 64253

Background Analysis Date/Time : 5-JUL-2009 15:12:06

Background Count Time : 60000.00

	2001.9.1		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [']	2992.433	3299.297	2.000000	0.4800001	70.71068	95.00000
NP-237	4436.714	4901.796	4.000000	0.9600002	50.00000	95.00000
CM-244	5531.777	5885.188	0.000000E+00	0.000000E+00	0.0000000E+00	95.00000

Instrument : CHAMBER 102

Detector: 72525

Background Analysis Date/Time : 5-JUL-2009 15:12:06

Background Count Time : 60000.00

5882.690

CM-244

5531.106

Counts Counts during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2992.102 3300.657 3.000000 0.7200001 57.73503 95.00000 4432.858 4904.949 7.000000 1.680000 37.79645 95.00000

2.000000

0.4800001

70.71068

95.00000

Instrument: CHAMBER 103

Detector: 79461

Background Analysis Date/Time : 5-JUL-2009 15:12:06

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2988.996 3300.314 1.000000 0.2400000 100.0000 95.00000 4436.805 4901.981 2.000000 0.4800001 70.71068 95.00000 CM-244 5532.506 5886.425 3.000000 0.7200001 95.00000 57.73503

Instrument: CHAMBER 104

Detector: 72524

Background Analysis Date/Time : 5-JUL-2009 15:12:06

Background Count Time : 60000.00

Counts Counts

End Energy in 1000 min during Cal % Error Confidence Cal. Isotopes Start Energy GD-148 2990.719 3300.868 1.000000 0.2400000 100.0000 95.00000 NP-237 4437.132 4904.901 12.00000 2.880001 28.86751 95.00000 CM-244 5883.017 4.000000 0.9600002 5531.506 50.00000 95.00000

Detector: 78777

Background Analysis Date/Time : 5-JUL-2009 15:12:06

Background Count Time : 60000.00

			Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2991.574	3300.708	1.000000	0.2400000	100.0000	95.00000
NP-237	4435.406	4903.467	4.000000	0.9600002	50.00000	95.00000
CM-244	5531.275	5883.854	1.000000	0.2400000	100.0000	95.00000

Instrument : CHAMBER 106

Detector: 64274

Background Analysis Date/Time : 5-JUL-2009 15:12:06

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 3301.958 2989.941 4.000000 0.9600002 50.00000 95.00000 4435.855 4902.069 6.000000 1.440000 40.82483 95.00000 CM-244 5534.023 5883.359 3.000000 0.7200001 57.73503 95.00000

Instrument: CHAMBER 107

Detector: 67578

Background Analysis Date/Time : 5-JUL-2009 15:12:07

Background Count Time: 60000.00

Counts Counts Cal. Isotopes in 1000 min during Cal % Error Confidence Start Energy **End Energy** GD-148 NP-237 2987.523 4435.381 3301.257 5.000000 1.199999 44.72136 95.00000 44.72136 4903.438 5.000000 1.199999 95.00000 CM-244 5532.229 5882.600 2.000000 0.4799997 70.71068 95.00000

Instrument : CHAMBER 108

Detector: 78778

Background Analysis Date/Time : 5-JUL-2009 15:12:07

Background Count Time : 60000.00

Counts Counts

End Energy % Error Confidence Cal. Isotopes Start Energy in 1000 min during Cal GD-148 2987.937 3298.136 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4435.160 4903.491 1.439999 40.82483 95.00000 6.000000 CM-244 5883.227 5531.067 1.000000 0.2399998 100.0000 95.00000

CHAMBER 109 Instrument:

79463 Detector

5-JUL-2009 15:12:07 Background Analysis Date/Time

Background Count Time 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2989.195 3299.997 2.000000 0.4799997 70.71068 95.00000 4906.161 NP-237 4435.631 7.000000 1.679999 37.79645 95.00000 CM-244 5531.938 5886.333 2.000000 0.4799997 70.71068 95.00000

> Instrument: CHAMBER 110

Detector: 67602

Background Analysis Date/Time 5-JUL-2009 15:12:07

Background Count Time 60000.00

Counts Counts

Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 NP-237 2989.370 3301.157 2.000000 0.4799997 70.71068 95.00000 4436.284 4904.992 4.000000 0.9599993 50.00000 95.00000 CM-244 5535.250 5883.287 6.000000 1.439999 40.82483 95.00000

> CHAMBER 111 Instrument

79462 Detector

Background Analysis Date/Time 5-JUL-2009 15:12:07

Background Count Time 60000.00

Counts Counts in 1000 min during Cal % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2990.820 3300.305 5.000000 1.199999 44.72136 95.00000 40.82483 4436.744 4905.500 6.000000 1.439999 95.00000 CM-244 5535.002 5885.661 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

> Instrument: CHAMBER 112

Detector 78261

Background Analysis Date/Time 5-JUL-2009 15:12:07

Background Count Time 60000.00

Counts Counts

in 1000 min Start Energy **End Energy** % Error Confidence Cal. Isotopes during Cal GD-148 2988.969 3300.635 3.000000 0.7199995 57.73503 95.00000 NP-237 4905.135 7.000000 1.679999 37.79645 95.00000 4436.114 CM-244 0.2399998 5532.983 5884.981 1.000000 100.0000 95.00000

Instrument: CHAMBER 113 Detector: 45-111B4

Background Analysis Date/Time : 12-JUL-2009 18:14:41

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal 95.00000 GD-148 2988.779 3298.785 1.000000 0.3000000 100.0000 4905.331 NP-237 4433.559 6.000000 1.800000 40.82483 95.00000 CM-244 5530.517 5883.481 3.000000 0.9000000 57.73503 95.00000

Instrument : CHAMBER 114

Detector: 78258

Background Analysis Date/Time : 12-JUL-2009 18:14:46

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2990.441 3298.868 1.000000 0.3000000 100.0000 95.00000 4436.900 4905.218 5.000000 1.500000 44.72136 95.00000 CM-244 5530.599 5885.790 4.000000 1.200000 50.00000 95.00000

> Instrument: CHAMBER 115 Detector: 45-132FF4

Background Analysis Date/Time : 12-JUL-2009 18:14:50

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 3301.816 2991.839 2.000000 0.6000000 70.71068 95.00000 4436.001 4902.052 1.000000 0.3000000 100.0000 95.00000 CM-244 5531.697 5884.118 11.00000 3.300000 95.00000 30.15113

> Instrument: CHAMBER 116 Detector: 45-132FF2

Background Analysis Date/Time : 12-JUL-2009 18:14:55

Background Count Time: 60000.00

Counts Counts **End Energy** in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2988.005 3302.013 1.000000 0.3000000 100.0000 95.00000 NP-237 4432.895 4903.021 6.000000 1.800000 40.82483 95.00000 CM-244 5531.311 5883.052 3.000000 0.9000000 57.73503 95.00000

Detector: 33450

Background Analysis Date/Time : 12-JUL-2009 18:15:00

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2992.173 3300.224 2.000000 0.6000000 70.71068 95.00000 44.72136 NP-237 4434.403 4904.427 5.000000 1.500000 95.00000 CM-244 5533.135 5885.381 8.000000 2.400000 35.35534 95.00000

Instrument : CHAMBER 118

Detector: 75544

Background Analysis Date/Time : 12-JUL-2009 18:15:04

Background Count Time: 60000.00

Counts Counts

during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 2992.199 3301.179 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4437.404 4902.417 2.000000 0.6000000 70.71068 95.00000 CM-244 5530.853 5882.689 4.000000 1.200000 50.00000 95.00000

Instrument: CHAMBER 119

Detector: 74429

Background Analysis Date/Time : 12-JUL-2009 18:15:09

Background Count Time: 60000.00

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2992.004 3299.253 3.000000 0.9000000 57.73503 95.00000 4432.548 4906.013 1.000000 0.3000000 100.0000 95.00000 CM-244 5530.584 5883.165 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument: CHAMBER 120

Detector: 74430

Background Analysis Date/Time : 12-JUL-2009 18:15:13

Background Count Time : 60000.00

Counts Counts

End Energy in 1000 min Start Energy % Error Confidence Cal. Isotopes during Cal GD-148 2990.522 3298.404 3.000000 0.9000000 57.73503 95.00000 NP-237 4435.328 4903.588 4.000000 1.200000 50.00000 95.00000 CM-244 5534.528 5884.756 3.000000 0.9000000 57.73503 95.00000

Detector: 75545

Background Analysis Date/Time : 12-JUL-2009 18:15:18

Background Count Time: 60000.00

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.023	3300.631	0.0000000E+00	0.0000000E+00	0.0000000E+00	95.00000
NP-237	4432.658	4901.599	1.000000	0.3000000	100.0000	95.00000
CM-244	5533.997	5885.295	6.000000	1.800000	40.82483	95.00000

Instrument : CHAMBER 122

Detector: 75546

Background Analysis Date/Time : 12-JUL-2009 18:15:22

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2990.563 3298.589 1.000000 0.3000000 100.0000 95.00000 4436.782 4905.890 5.000000 1.500000 44.72136 95.00000 CM-244 5532.955 5884.078 11.00000 3.300000 30.15113 95.00000

Instrument : CHAMBER 123

Detector: 45-142V3

Background Analysis Date/Time : 12-JUL-2009 18:15:27

Background Count Time: 60000.00

Counts Counts

during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2990.850 3299.223 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4437.241 4905.636 4.000000 1.200000 50.00000 95.00000 CM-244 5531.191 5886.517 5.000000 1.500000 95.00000 44.72136

> Instrument : CHAMBER 124 Detector : 45-142V2

Background Analysis Date/Time : 12-JUL-2009 18:15:31

Background Count Time: 60000.00

Counts Counts

End Energy % Error Cal. Isotopes in 1000 min Confidence Start Energy during Cal GD-148 2988.169 3298.838 1.000000 0.3000000 100.0000 95.00000 NP-237 4434.514 4905.983 2.000000 0.6000000 70.71068 95.00000 CM-244 5535.498 5887.649 6.000000 1.800000 40.82483 95.00000

CHAMBER 125 Instrument:

75547 Detector

Background Analysis Date/Time 12-JUL-2009 18:15:35

Background Count Time 60000.00

			Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2992.438	3299.892	1.000000	0.3000000	100.0000	95.00000
NP-237	4435.342	4903.042	3.000000	0.9000000	57.73503	95.00000
CM-244	5533.267	5883.118	2.000000	0.6000000	70.71068	95.00000

Instrument: CHAMBER 126

Detector: 75548

Background Analysis Date/Time 12-JUL-2009 18:15:39

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2988.642 3299.863 2.000000 0.6000000 70.71068 95.00000 4434.022 4903.287 10.00000 3.000000 31.62278 95.00000 CM-244 5533.750 5882.833 3.000000 0.9000000 57.73503 95.00000

> Instrument: CHAMBER 127

78770 Detector:

12-JUL-2009 18:15:43 Background Analysis Date/Time

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2987.930 3300.925 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4433.404 4902.114 4.000000 1.200000 50.00000 95.00000 CM-244 5533.832 5884.575 3.000000 95.00000 0.9000000 57.73503

> Instrument: CHAMBER 128

Detector 75549

Background Analysis Date/Time 12-JUL-2009 18:15:48

Background Count Time 60000.00

Counts Counts

Cal. Isotopes in 1000 min during Cal % Error Confidence Start Energy **End Energy** GD-148 2989.441 3299.762 3.000000 0.9000000 57.73503 95.00000 NP-237 4437.479 4901.607 5.000000 1.500000 44.72136 95.00000 CM-244 5532.807 5882.614 1.000000 0.3000000 100.0000 95.00000

Instrument : CHAMBER 129 Detector : 76227

Detector: 762

Background Analysis Date/Time : 12-JUL-2009 18:15:53

Background Count Time : 60000.00

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2991.626 3298.866 1.000000 0.3000000 100.0000 95.00000 1.200000 NP-237 4434.006 4901.792 4.000000 50.00000 95.00000 CM-244 5532.320 5882.430 1.000000 0.3000000 100.0000 95.00000

Instrument : CHAMBER 130

Detector: 76228

Background Analysis Date/Time : 12-JUL-2009 18:15:58

Background Count Time : 60000.00

Counts Counts during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2987.724 3301.129 4.000000 1.200000 50.00000 95.00000 4432.733 4905.256 8.000000 2.400000 35.35534 95.00000 CM-244 5534.221 5882.991 1.000000 0.3000000 100.0000 95.00000

Instrument: CHAMBER 131

Detector: 33448

Background Analysis Date/Time : 12-JUL-2009 18:16:03

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2990.041 3301.703 1.000000 0.3000000 100.0000 95.00000 4437.470 4901.500 6.000000 1.800000 40.82483 95.00000 CM-244 5535.040 5887.344 7.000000 2.100000 95.00000 37.79645

Instrument : CHAMBER 132

Detector: 67579

Background Analysis Date/Time : 30-JUL-2009 14:06:43

Background Count Time : 60000.00

Counts Counts **End Energy** in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2990.330 3301.737 1.000000 0.3000000 100.0000 95.00000 NP-237 4432.839 4903.616 11.00000 3.300000 30.15113 95.00000 CM-244 1.500000 5531.399 5887.519 5.000000 44.72136 95.00000

Detector: 76229

Background Analysis Date/Time : 12-JUL-2009 18:16:11

Background Count Time : 60000.00

			Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2991.784	3301.677	2.000000	0.6000000	70.71068	95.00000
NP-237	4432.798	4901.797	5.000000	1.500000	44.72136	95.00000
CM-244	5532.072	5884.338	3.000000	0.9000000	57.73503	95.00000

Instrument : CHAMBER 134

Detector: 76230

Background Analysis Date/Time : 12-JUL-2009 18:16:16

Background Count Time : 60000.00

Counts Counts during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 3299.017 2990.526 3.000000 0.9000000 57.73503 95.00000 4435.982 4903.287 19.00000 5.700000 22.94157 95.00000 CM-244 5532.080 5886.000 3.000000 0.9000000 57.73503 95.00000

Instrument: CHAMBER 135

Detector: 64270

Background Analysis Date/Time : 12-JUL-2009 18:16:20

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2988.277 3299.628 1.000000 0.3000000 100.0000 95.00000 4437.221 4904.200 5.000000 1.500000 44.72136 95.00000 CM-244 5533.869 5883.613 3.000000 0.9000000 95.00000 57.73503

Instrument : CHAMBER 136

Detector: 68549

Background Analysis Date/Time : 12-JUL-2009 18:16:24

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 2990.353 3301.238 2.000000 0.6000000 70.71068 95.00000 NP-237 4436.739 4902.455 15.00000 4.500000 25.81989 95.00000 CM-244 5887.561 1.800000 5530.869 6.000000 40.82483 95.00000

Detector: 64288

Background Analysis Date/Time : 12-JUL-2009 18:16:27

Background Count Time : 60000.00

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.740	3300.102	3.000000	0.9000000	57.73503	95.00000
NP-237	4437.224	4902.644	2.000000	0.6000000	70.71068	95.00000
CM-244	5534.374	5886.101	13.00000	3.900000	27.73501	95.00000
CIVI-244	3334.374	3666.101	13.00000	3.90000	21.73301	95.00000

Instrument : CHAMBER 138

Detector: 65877

Background Analysis Date/Time : 12-JUL-2009 18:16:31

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 3299.020 2989.573 2.000000 0.6000000 70.71068 95.00000 4433.563 4906.044 32.00000 9.600000 17.67767 95.00000 CM-244 5532.867 5887.098 10.00000 3.000000 31.62278 95.00000

Instrument: CHAMBER 139

Detector: 76231

Background Analysis Date/Time : 12-JUL-2009 18:16:35

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2987.505 3300.432 2.000000 0.6000000 70.71068 95.00000 4434.030 4903.806 6.000000 1.800000 40.82483 95.00000 CM-244 5532.176 5884.231 9.000000 2.700000 33.33334 95.00000

> Instrument : CHAMBER 140 Detector : 78771

Background Analysis Date/Time : 12-JUL-2009 18:16:39

Background Count Time: 60000.00

5885.667

CM-244

5532.806

Counts Counts **End Energy** Cal. Isotopes in 1000 min during Cal % Error Confidence Start Energy GD-148 2990.854 3298.685 2.000000 0.6000000 70.71068 95.00000 NP-237 4432.882 4903.279 10.00000 3.000000 31.62278 95.00000

3.000000

0.9000000

57.73503

95.00000

CHAMBER 141 Instrument:

76232 Detector

12-JUL-2009 18:16:43 Background Analysis Date/Time

Background Count Time 60000.00

	_ac.ig.		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2991.144	3299.081	4.000000	1.200000	50.00000	95.00000
NP-237	4432.714	4902.455	11.00000	3.300000	30.15113	95.00000
CM-244	5530.738	5882.724	5.000000	1.500000	44.72136	95.00000

Instrument: CHAMBER 142

Detector: 64261

Background Analysis Date/Time 12-JUL-2009 18:16:47

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2990.865 3298.794 2.000000 0.6000000 70.71068 95.00000 4432.947 4903.147 17.00000 5.100000 24.25356 95.00000 CM-244 5532.255 5884.805 10.00000 3.000000 31.62278 95.00000

> Instrument: CHAMBER 143

65882 Detector:

30-JUL-2009 14:51:31 Background Analysis Date/Time

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 37.79645 2990.957 3299.552 7.000000 2.100000 95.00000 4434.731 4904.726 12.00000 3.600000 28.86751 95.00000 CM-244 5533.008 5884.829 6.000000 1.800000 40.82483 95.00000

> Instrument: CHAMBER 144 Detector 75551

Background Analysis Date/Time 12-JUL-2009 18:16:55

Background Count Time 60000.00

Counts Counts in 1000 min during Cal % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 2987.490 3300.379 2.000000 0.6000000 70.71068 95.00000 NP-237 4902.257 6.000000 1.800000 40.82483 95.00000 4433.137 CM-244 3.300000 5534.787 5886.106 11.00000 30.15113 95.00000

Detector: 72526

Background Analysis Date/Time : 12-JUL-2009 18:16:59

Background Count Time: 60000.00

Counts Counts

Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2989.366 3298.098 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 37.79645 NP-237 4434.265 4904.885 7.000000 2.100000 95.00000 CM-244 5534.192 5886.678 8.000000 2.400000 35.35534 95.00000

Instrument : CHAMBER 146

Detector: 72527

Background Analysis Date/Time : 12-JUL-2009 18:17:03

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 NP-237 2991.494 3297.950 2.000000 0.6000000 70.71068 95.00000 4436.761 4904.596 6.000000 1.800000 40.82483 95.00000 CM-244 5530.438 5886.440 7.000000 2.100000 37.79645 95.00000

Instrument: CHAMBER 147

Detector: 75550

Background Analysis Date/Time : 12-JUL-2009 18:17:07

Background Count Time : 60000.00 Counts

Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 35.35534 2987.763 3300.677 8.000000 2.400000 95.00000 4433.256 4902.183 15.00000 4.500000 25.81989 95.00000 CM-244 5534.346 5885.412 5.000000 1.500000 95.00000 44.72136

Instrument: CHAMBER 148

Detector: 74429

Background Analysis Date/Time : 12-JUL-2009 18:17:10

Background Count Time: 60000.00

Counts Counts

Start Energy **End Energy** in 1000 min % Error Confidence Cal. Isotopes during Cal GD-148 2989.918 3302.313 6.000000 1.800000 40.82483 95.00000 NP-237 4904.245 11.00000 3.300000 30.15113 95.00000 4434.677 CM-244 2.700000 5532.604 5884.780 9.000000 33.33334 95.00000

Detector: 33449

Background Analysis Date/Time : 12-JUL-2009 18:17:14

Background Count Time 60000.00

	_ a.a.n.g.		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2990.126	3302.099	3.000000	0.9000000	57.73503	95.00000
NP-237	4433.957	4903.766	6.000000	1.800000	40.82483	95.00000
CM-244	5532.840	5885.608	7.000000	2.100000	37.79645	95.00000

Instrument: CHAMBER 150

Detector: 75552

Background Analysis Date/Time : 12-JUL-2009 18:17:18

Background Count Time 60000.00 Counts

	J		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [']	2989.847	3298.390	5.000000	1.500000	44.72136	95.00000
NP-237	4433.411	4903.355	5.000000	1.500000	44.72136	95.00000
CM-244	5531.584	5883.380	3.000000	0.9000000	57.73503	95.00000

Instrument: CHAMBER 151

Detector: 75556

Background Analysis Date/Time : 12-JUL-2009 18:17:22

60000.00 Background Count Time

	_ a.cg.		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.196	3299.830	1.000000	0.3000000	100.0000	95.00000
NP-237	4437.520	4904.128	2.000000	0.6000000	70.71068	95.00000
CM-244	5532.939	5887.339	7.000000	2.100000	37.79645	95.00000

Instrument: CHAMBER 152

Detector: 76222

12-JUL-2009 18:17:26 Background Analysis Date/Time

Background Count Time 60000.00

Counts Counts **End Energy** Cal. Isotopes Start Energy in 1000 min during Cal % Error Confidence GD-148 2992.335 3299.767 2.000000 0.6000000 70.71068 95.00000 NP-237 4435.085 4902.709 1.000000 0.3000000 100.0000 95.00000 CM-244 5882.589 7.000000 2.100000 95.00000 5532.813 37.79645

Detector: 76223

Background Analysis Date/Time : 12-JUL-2009 18:17:30

Background Count Time : 60000.00

		Counts	Counts		
Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
2989.763	3301.789	7.000000	2.100000	37.79645	95.00000
4432.699	4901.612	7.000000	2.100000	37.79645	95.00000
5534.359	5886.038	11.00000	3.300000	30.15113	95.00000
	2989.763 4432.699	2989.763 3301.789 4432.699 4901.612	Start Energy End Energy in 1000 min 2989.763 3301.789 7.000000 4432.699 4901.612 7.000000	Start Energy End Energy in 1000 min during Cal 2989.763 3301.789 7.000000 2.100000 4432.699 4901.612 7.000000 2.100000	Start Energy End Energy in 1000 min during Cal % Error 2989.763 3301.789 7.000000 2.100000 37.79645 4432.699 4901.612 7.000000 2.100000 37.79645

Instrument: CHAMBER 154

Detector: 76224

Background Analysis Date/Time : 12-JUL-2009 18:17:34

Background Count Time 60000.00 Counts

	9		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [·]	2989.543	3301.969	2.000000	0.6000000	70.71068	95.00000
NP-237	4433.171	4901.699	2.000000	0.6000000	70.71068	95.00000
CM-244	5533.478	5884.401	4.000000	1.200000	50.00000	95.00000

Instrument: CHAMBER 155

Detector: 75553

Background Analysis Date/Time : 12-JUL-2009 18:17:38

60000.00 Background Count Time

			Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2990.863	3299.267	2.000000	0.6000000	70.71068	95.00000
NP-237	4435.628	4901.683	4.000000	1.200000	50.00000	95.00000
CM-244	5532.390	5885.923	1.000000	0.3000000	100.0000	95.00000

Instrument: CHAMBER 156 Detector: 75554

12-JUL-2009 18:17:42 Background Analysis Date/Time

Background Count Time 60000.00

Counts Counts **End Energy** Cal. Isotopes Start Energy in 1000 min during Cal % Error Confidence GD-148 2992.492 3302.387 4.000000 1.200000 50.00000 95.00000 NP-237 4436.746 4903.077 15.00000 4.500000 25.81989 95.00000 2.700000 CM-244 5533.286 5886.114 9.000000 95.00000 33.33334

Instrument : CHAMBER 157 Detector : 75555

Background Analysis Date/Time : 12-JUL-2009 18:17:46 ound Ariaiyəiə במנסית..... Background Count Time : 600 Counts

60000.00

	_acitg.		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2992.092	3301.029	5.000000	1.500000	44.72136	95.00000
NP-237	4432.881	4903.879	12.00000	3.600000	28.86751	95.00000
CM-244	5533.745	5886.569	13.00000	3.900000	27.73501	95.00000

Instrument: CHAMBER 158

Detector: 33451

Background Analysis Date/Time : 12-JUL-2009 18:17:50
Background Count Time : 60000.00
Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2989.224	3299.662	4.000000	1.200000	50.00000	95.00000
NP-237	4433.214	4902.387	14.00000	4.200000	26.72612	95.00000
CM-244	5532.016	5882.536	8.000000	2.400000	35.35534	95.00000
CIVI-244	5532.016	5882.536	8.000000	2.400000	35.35534	95.00000

Instrument: CHAMBER 159

Detector: 76225

Background Analysis Date/Time : 12-JUL-2009 18:17:54

ound Analysis Date(Time : 600 Background Count Time : 600 Counts 60000.00

Cal. Isotopes	Start Energy	End Energy	Counts in 1000 min	Counts during Cal	% Error	Confidence
GD-148	2990.518	3300.013	1.000000	0.3000000	100.0000	95.00000
NP-237 CM-244	4434.310 5532.775	4906.501 5886.617	6.000000 7.000000	1.800000 2.100000	40.82483 37.79645	95.00000 95.00000
CIVI-244	3332.113	3000.017	7.000000	2.100000	37.73043	93.00000

Instrument: CHAMBER 160

Detector: 76226
Background Analysis Date/Time: 12-JUL-2009 18:17:58

Background Count Time 60000.00

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.201	3297.681	1.000000	0.3000000	100.0000	95.00000
NP-237	4437.389	4904.545	8.000000	2.400000	35.35534	95.00000
CM-244	5531.162	5885.243	3.000000	0.9000000	57.73503	95.00000

Detector: 70321

Background Analysis Date/Time : 19-JUL-2009 13:08:31

Background Count Time : 60000.00

			Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2989.000	3299.306	2.000000	0.6000000	70.71068	95.00000
NP-237	4436.547	4904.892	11.00000	3.300000	30.15113	95.00000
CM-244	5532.420	5884.522	7.000000	2.100000	37.79645	95.00000

Instrument : CHAMBER 162

Detector: 70323

Background Analysis Date/Time : 29-JUL-2009 14:45:34

Background Count Time : 60000.00

Counts Counts in 1000 min Cal. Isotopes Start Energy **End Energy** during Cal % Error Confidence GD-148 NP-237 95.00000 2989.629 3301.127 1.000000 0.3000000 100.0000 4435.610 4904.052 6.000000 1.800000 40.82483 95.00000 CM-244 5882.387 1.800000 40.82483 5530.978 6.000000 95.00000

Instrument: CHAMBER 163

Detector: 70324

Background Analysis Date/Time : 19-JUL-2009 13:08:40

Background Count Time : 60000.00

			Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.922	3300.358	1.000000	0.3000000	100.0000	95.00000
NP-237	4435.910	4905.359	19.00000	5.700000	22.94157	95.00000
CM-244	5534.127	5886.809	10.00000	3.000000	31.62278	95.00000

Instrument: CHAMBER 164

Detector: 70325

Background Analysis Date/Time : 19-JUL-2009 13:08:44

Background Count Time : 60000.00

Counts Counts

			Counts	Oddillo		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2991.018	3297.699	2.000000	0.6000000	70.71068	95.00000
NP-237	4434.306	4904.250	9.000000	2.700000	33.33334	95.00000
CM-244	5533.729	5886.834	9.000000	2.700000	33.33334	95.00000

Detector: 72544

Background Analysis Date/Time : 19-JUL-2009 13:08:49

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2989.844 3302.139 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4434.670 4904.543 3.300000 11.00000 30.15113 95.00000 CM-244 5533.515 5886.135 2.000000 0.6000000 70.71068 95.00000

Instrument: CHAMBER 166

Detector: 74545

Background Analysis Date/Time : 19-JUL-2009 13:08:54

Background Count Time: 60000.00

Counts Counts

% Error Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal Confidence 2989.919 GD-148 3301.734 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4433.352 4903.208 6.000000 1.800000 40.82483 95.00000 CM-244 5532.473 5885.411 10.00000 3.000000 31.62278 95.00000

Instrument: CHAMBER 167

Detector: 72546

Background Analysis Date/Time : 19-JUL-2009 13:08:58

Background Count Time: 60000.00

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 2991.456 3297.909 2.000000 0.6000000 70.71068 95.00000 4433.461 4902.876 7.000000 2.100000 37.79645 95.00000 CM-244 5531.568 5884.192 8.000000 2.400000 95.00000 35.35534

Instrument: CHAMBER 168

Detector: 72547

Background Analysis Date/Time : 19-JUL-2009 13:09:03

Background Count Time : 60000.00

Counts Counts

Start Energy **End Energy** Confidence Cal. Isotopes in 1000 min during Cal % Error GD-148 2990.191 3302.241 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4904.107 3.000000 95.00000 4434.272 10.00000 31.62278 CM-244 5533.178 5885.925 7.000000 2.100000 37.79645 95.00000

Detector: 72548

Background Analysis Date/Time : 29-JUL-2009 14:45:39

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2992.301 3298.359 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4433.879 4903.911 20.00000 6.000000 22.36068 95.00000 CM-244 5533.976 5887.635 8.000000 2.400000 35.35534 95.00000

Instrument : CHAMBER 170

Detector: 72549

Background Analysis Date/Time : 19-JUL-2009 13:09:11

Background Count Time: 60000.00

Counts Counts

during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2991.026 3302.433 1.000000 0.3000000 100.0000 95.00000 4434.863 4906.064 7.000000 2.100000 37.79645 95.00000 CM-244 5532.657 5887.477 8.000000 2.400000 35.35534 95.00000

Instrument: CHAMBER 171

Detector: 78260

Background Analysis Date/Time : 19-JUL-2009 13:09:16

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2989.883 3301.923 1.000000 0.3000000 100.0000 95.00000 4434.363 4904.564 11.00000 3.300000 30.15113 95.00000 CM-244 5534.294 5887.494 6.000000 1.800000 40.82483 95.00000

Instrument: CHAMBER 172

Detector: 78772

Background Analysis Date/Time : 19-JUL-2009 13:09:20

Background Count Time: 60000.00

Counts Counts

End Energy Start Energy in 1000 min % Error Confidence Cal. Isotopes during Cal GD-148 2990.947 3302.414 1.000000 0.3000000 100.0000 95.00000 NP-237 4433.288 4903.064 6.000000 1.800000 40.82483 95.00000 CM-244 1.500000 5532.422 5885.508 5.000000 44.72136 95.00000

CHAMBER 173 Instrument:

74431 Detector

Background Analysis Date/Time 19-JUL-2009 13:09:25

Background Count Time 60000.00

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2991.296	3300.266	2.000000	0.6000000	70.71068	95.00000
NP-237	4436.390	4906.583	5.000000	1.500000	44.72136	95.00000
CM-244	5534.964	5886.757	17.00000	5.100000	24.25356	95.00000
CIVI-244	5534.964	5886.757	17.00000	5.100000	24.25356	95.00000

Instrument: CHAMBER 174

74432 Detector:

Background Analysis Date/Time 19-JUL-2009 13:09:29

Background Count Time 60000.00

Counts Counts % Error during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2990.955 3301.951 3.000000 0.9000000 57.73503 95.00000 4436.112 4905.743 7.000000 2.100000 37.79645 95.00000 CM-244 5531.741 5886.720 21.00000 6.300000 21.82179 95.00000

> Instrument: CHAMBER 175

74433 Detector:

Background Analysis Date/Time 19-JUL-2009 13:09:34

Background Count Time 60000.00

Counts Counts Cal. Isotopes in 1000 min during Cal % Error Confidence Start Energy **End Energy** GD-148 NP-237 3301.771 2987.808 2.000000 0.6000000 70.71068 95.00000 4437.598 4902.379 3.000000 0.9000000 57.73503 95.00000 CM-244 5530.438 5887.378 15.00000 4.500000 95.00000 25.81989

> Instrument: CHAMBER 176 Detector 74434

Background Analysis Date/Time 19-JUL-2009 13:09:39

Background Count Time 60000.00

Counts

Counts in 1000 min during Cal % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 2988.124 3298.749 3.000000 0.9000000 57.73503 95.00000 NP-237 4433.658 4904.539 5.000000 1.500000 44.72136 95.00000 CM-244 5884.495 4.500000 5533.031 15.00000 25.81989 95.00000

Detector: 74435

Background Analysis Date/Time : 19-JUL-2009 13:09:43

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min during Cal % Error Confidence Start Energy 3300.055 95.00000 GD-148 2991.035 2.000000 0.6000000 70.71068 1.200000 50.00000 NP-237 4436.061 4906.072 4.000000 95.00000 CM-244 5534.094 5885.629 20.00000 6.000000 22.36068 95.00000

Instrument : CHAMBER 178

Detector: 74436

Background Analysis Date/Time : 19-JUL-2009 13:09:47

Background Count Time : 60000.00

Counts Counts during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2992.331 3301.630 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4433.348 4903.642 11.00000 3.300000 30.15113 95.00000 CM-244 5531.998 5883.700 21.00000 6.300000 21.82179 95.00000

Instrument: CHAMBER 179

Detector: 74437

Background Analysis Date/Time : 19-JUL-2009 13:09:52

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2991.102 3300.165 1.000000 0.3000000 100.0000 95.00000 4436.443 4906.617 6.000000 1.800000 40.82483 95.00000 25.00000 CM-244 5534.901 5886.605 7.500000 95.00000 20.00000

Instrument : CHAMBER 180

Detector: 74438

Background Analysis Date/Time : 19-JUL-2009 13:09:56

Background Count Time : 60000.00

Counts Counts al. Isotopes Start Energy End Energy in 1000 min during C

End Energy % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2988.611 3299.257 2.000000 0.6000000 70.71068 95.00000 NP-237 4903.299 4433.245 9.000000 2.700000 33.33334 95.00000 CM-244 6.300000 5535.594 5886.061 21.00000 21.82179 95.00000

CHAMBER 181 Instrument:

74439 Detector

Background Analysis Date/Time 19-JUL-2009 13:10:01

Background Count Time 60000.00

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2988.239 3301.914 2.000000 0.6000000 70.71068 95.00000 57.73503 NP-237 4437.080 4901.757 3.000000 0.9000000 95.00000 CM-244 5535.131 5886.836 26.00000 7.800000 19.61161 95.00000

> Instrument: CHAMBER 182

Detector: 74440

Background Analysis Date/Time 19-JUL-2009 13:10:05

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2991.998 3301.429 2.000000 0.6000000 70.71068 95.00000 4432.415 4901.861 6.000000 1.800000 40.82483 95.00000 CM-244 5533.907 5884.511 30.00000 9.000000 18.25742 95.00000

> CHAMBER 183 Instrument

74441 Detector

Background Analysis Date/Time 19-JUL-2009 13:10:09

> **Background Count Time** 60000.00

Counts Counts Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** during Cal GD-148 NP-237 2989.448 3298.556 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4434.882 4905.025 5.000000 1.500000 44.72136 95.00000 26.00000 CM-244 5533.221 5884.854 7.800000 19.61161 95.00000

> Instrument: CHAMBER 184

Detector 74442

Background Analysis Date/Time 19-JUL-2009 13:10:15

Background Count Time 60000.00

Counts Counts

Start Energy **End Energy** in 1000 min % Error Confidence Cal. Isotopes during Cal GD-148 2989.235 3300.018 3.000000 0.9000000 57.73503 95.00000 NP-237 4904.409 4.000000 1.200000 50.00000 95.00000 4434.314 CM-244 9.000000 5531.386 5887.098 30.00000 18.25742 95.00000

CHAMBER 185 Instrument:

68615 Detector

Background Analysis Date/Time 19-JUL-2009 13:10:19

Background Count Time 60000.00

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2991.225 1.000000 0.3000000 100.0000 95.00000 3297.857 4436.385 NP-237 4903.692 1.000000 0.3000000 100.0000 95.00000 CM-244 5533.756 5883.696 28.00000 8.400001 18.89822 95.00000

> Instrument: CHAMBER 186

Detector: 68616

Background Analysis Date/Time 19-JUL-2009 13:10:23

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2991.440 3298.282 2.000000 0.6000000 70.71068 95.00000 4433.254 4901.541 1.000000 0.3000000 100.0000 95.00000 CM-244 5533.251 5884.261 30.00000 9.000000 18.25742 95.00000

> CHAMBER 187 Instrument

68620 Detector

Background Analysis Date/Time 19-JUL-2009 13:10:27

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2989.912 3299.166 3.000000 0.9000000 57.73503 95.00000 4432.442 4904.149 11.00000 3.300000 30.15113 95.00000 22.00000 CM-244 5535.067 5883.156 6.600000 21.32007 95.00000

> Instrument: **CHAMBER 188** Detector 68621

Background Analysis Date/Time 19-JUL-2009 13:10:31

Background Count Time 60000.00

Counts Counts

End Energy in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2988.283 3302.165 2.000000 0.6000000 70.71068 95.00000 NP-237 4903.527 2.000000 0.6000000 70.71068 95.00000 4433.129 CM-244 5532.390 5884.553 29.00000 8.700001 18.56953 95.00000

Detector: 68622

Background Analysis Date/Time : 19-JUL-2009 13:10:35

Background Count Time : 60000.00

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 3299.552 2.000000 0.6000000 70.71068 95.00000 2987.652 4434.579 NP-237 4902.841 6.000000 40.82483 1.800000 95.00000 CM-244 5534.475 5885.420 43.00000 12.90000 15.24986 95.00000

Instrument : CHAMBER 190

Detector: 68623

Background Analysis Date/Time : 19-JUL-2009 13:10:39

Background Count Time : 60000.00

Counts Counts
Cal Jactones Start Energy End Energy in 1000 min during C

during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2989.900 3302.388 5.000000 1.500000 44.72136 95.00000 4434.198 4903.145 22.00000 6.600000 21.32007 95.00000 CM-244 5535.637 5887.028 30.00000 9.000000 18.25742 95.00000

Instrument: CHAMBER 191

Detector: 68624

Background Analysis Date/Time : 19-JUL-2009 13:10:43

Background Count Time: 60000.00

Counts Counts
Cal. Isotopes Start Energy End Energy in 1000 min during (

% Error Confidence during Cal GD-148 NP-237 2988.514 3302.389 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4902.283 4435.396 1.000000 0.3000000 100.0000 95.00000 CM-244 5534.230 5883.124 95.00000 16.00000 4.800000 25.00000

Instrument : CHAMBER 192

Detector: 74430

Background Analysis Date/Time : 19-JUL-2009 13:10:47

Background Count Time : 60000.00

Counts Counts

End Energy in 1000 min % Error Confidence Cal. Isotopes Start Energy during Cal GD-148 2989.042 3298.270 2.000000 0.6000000 70.71068 95.00000 NP-237 4436.778 4903.324 5.000000 1.500000 44.72136 95.00000 CM-244 5882.529 6.300000 5534.357 21.00000 21.82179 95.00000

Detector: 68627

Background Analysis Date/Time : 19-JUL-2009 13:10:51

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2988.069 3299.225 2.000000 0.6000000 70.71068 95.00000 NP-237 4433.121 4901.609 5.000000 44.72136 1.500000 95.00000 CM-244 5534.158 5885.907 25.00000 7.500000 20.00000 95.00000

Instrument : CHAMBER 194

Detector: 68635

Background Analysis Date/Time : 19-JUL-2009 13:10:55

Background Count Time: 60000.00

5883.671

CM-244

5532.274

Counts Counts during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2988.572 3300.603 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4436.435 4905.175 1.000000 0.3000000 100.0000 95.00000

22.00000

6.600000

21.32007

95.00000

Instrument: CHAMBER 195

Detector: 68636

Background Analysis Date/Time : 19-JUL-2009 13:10:59

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2988.629 3301.408 5.000000 1.500000 44.72136 95.00000 4433.877 4902.925 52.00000 15.60000 13.86751 95.00000 43.00000 CM-244 5535.397 5886.705 12.90000 15.24986 95.00000

Instrument: CHAMBER 196

Detector: 68637

Background Analysis Date/Time : 19-JUL-2009 13:11:03

Background Count Time: 60000.00

Counts Counts

Start Energy **End Energy** in 1000 min % Error Confidence Cal. Isotopes during Cal GD-148 2990.343 3302.501 2.000000 0.6000000 70.71068 95.00000 NP-237 4433.338 4901.979 2.000000 0.6000000 70.71068 95.00000 CM-244 5534.144 5885.395 20.00000 6.000000 22.36068 95.00000

CHAMBER 197 Instrument:

78894 Detector

Background Analysis Date/Time 19-JUL-2009 13:11:08

Background Count Time 60000.00

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2989.389 3297.669 1.000000 0.3000000 100.0000 95.00000 4904.076 NP-237 4433.236 1.000000 0.3000000 100.0000 95.00000 CM-244 5534.086 5887.165 19.00000 5.700000 22.94157 95.00000

> Instrument: CHAMBER 198

Detector: 78895

Background Analysis Date/Time 19-JUL-2009 13:11:12

Background Count Time 60000.00

Counts Counts

during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2989.288 3302.314 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4436.287 4906.224 1.000000 0.3000000 100.0000 95.00000 CM-244 5534.818 5887.000 15.00000 4.500000 25.81989 95.00000

> CHAMBER 199 Instrument

78896 Detector

Background Analysis Date/Time 19-JUL-2009 13:11:16

Background Count Time 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2990.202 3299.048 2.000000 0.6000000 70.71068 95.00000 4906.357 4435.598 2.000000 0.6000000 70.71068 95.00000 21.00000 CM-244 5530.513 5883.049 6.300000 21.82179 95.00000

> Instrument: CHAMBER 200

Detector 78900

Background Analysis Date/Time 19-JUL-2009 13:11:20

> **Background Count Time** 60000.00

Counts Counts

Start Energy **End Energy** in 1000 min % Error Confidence Cal. Isotopes during Cal GD-148 2989.598 3302.306 3.000000 0.9000000 57.73503 95.00000 NP-237 4902.466 15.00000 4.500000 25.81989 95.00000 4436.820 CM-244 9.300000 5532.933 5886.480 31.00000 17.96053 95.00000

Detector: 78902

Background Analysis Date/Time : 19-JUL-2009 13:11:24

Background Count Time : 60000.00

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 2989.239 3302.324 1.000000 0.3000000 100.0000 95.00000 4432.525 1.200000 50.00000 NP-237 4903.539 4.000000 95.00000 CM-244 5534.042 5887.523 22.00000 6.600000 21.32007 95.00000

Instrument : CHAMBER 202

Detector: 78903

Background Analysis Date/Time : 19-JUL-2009 13:11:29

Background Count Time : 60000.00

Counts Counts

during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 3301.750 2988.965 2.000000 0.6000000 70.71068 95.00000 4435.262 4905.190 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5533.929 5886.269 31.00000 9.300000 17.96053 95.00000

Instrument: CHAMBER 203

Detector: 78905

Background Analysis Date/Time : 19-JUL-2009 13:11:32

Background Count Time : 60000.00 Counts

Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2990.960 3299.739 5.000000 1.500000 44.72136 95.00000 33.33334 4435.540 4905.766 9.000000 2.700000 95.00000 25.00000 CM-244 5534.337 5886.308 7.500000 20.00000 95.00000

Instrument : CHAMBER 204

Detector: 78907

Background Analysis Date/Time : 19-JUL-2009 13:11:37

Background Count Time : 60000.00

Counts Counts

in 1000 min Start Energy **End Energy** % Error Confidence Cal. Isotopes during Cal GD-148 2989.953 3297.878 13.00000 3.900000 27.73501 95.00000 NP-237 4437.339 4902.439 14.00000 4.200000 26.72612 95.00000 CM-244 9.300000 5531.727 5884.400 31.00000 17.96053 95.00000

Detector: 78908

Background Analysis Date/Time: 19-JUL-2009 13:11:41

Background Count Time : 60000.00

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2991.664	3299.649	1.000000	0.300000	100.0000	95.00000
NP-237	4434.348	4904.923	3.000000	0.900000	57.73503	95.00000
CM-244	5534.662	5887.628	18.00000	5.400000	23.57022	95.00000

Instrument: CHAMBER 206

78909 Detector:

Background Analysis Date/Time : 19-JUL-2009 13:11:45

Background Count Time 60000.00 Counts

	J		Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [']	2991.007	3298.921	2.000000	0.6000000	70.71068	95.00000
NP-237	4432.777	4902.746	2.000000	0.6000000	70.71068	95.00000
CM-244	5531.452	5883.730	22.00000	6.600000	21.32007	95.00000

Instrument: CHAMBER 207

Detector: 78910

Background Analysis Date/Time : 19-JUL-2009 13:11:49

60000.00 Background Count Time

			Counts	Counts		
Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.143	3301.594	1.000000	0.3000000	100.0000	95.00000
NP-237	4437.296	4902.779	2.000000	0.6000000	70.71068	95.00000
CM-244	5532.449	5885.271	25.00000	7.500000	20.00000	95.00000

Instrument: CHAMBER 208

Detector: 78911

19-JUL-2009 13:11:53 Background Analysis Date/Time

Background Count Time 60000.00

5887.108

CM-244

5534.389

Counts Counts **End Energy** Cal. Isotopes Start Energy in 1000 min during Cal % Error Confidence GD-148 2989.612 3298.165 3.000000 0.9000000 57.73503 95.00000 NP-237 4434.097 4904.804 2.000000 0.6000000 70.71068 95.00000

8.000000

2.400000

95.00000

35.35534

743

Detector: 79188

Background Analysis Date/Time : 26-JUL-2009 17:06:41

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min during Cal % Error Confidence Start Energy GD-148 2989.310 3300.226 2.000000 0.6000000 70.71068 95.00000 NP-237 4435.667 4905.853 1.000000 0.3000000 100.0000 95.00000 CM-244 5530.947 5884.845 8.000000 2.400000 35.35534 95.00000

Instrument : CHAMBER 210

Detector: 79189

Background Analysis Date/Time : 26-JUL-2009 17:06:45

Background Count Time: 60000.00

Counts Counts

during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 2990.620 3297.977 1.000000 0.3000000 100.0000 95.00000 4435.731 4905.552 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5534.352 5886.824 9.000000 2.700000 33.33334 95.00000

Instrument: CHAMBER 211

Detector: 79190

Background Analysis Date/Time : 26-JUL-2009 17:06:49

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2988.121 3301.259 3.000000 0.9000000 57.73503 95.00000 4436.737 4902.524 1.000000 0.3000000 100.0000 95.00000 15.00000 CM-244 5532.952 5886.368 4.500000 95.00000 25.81989

Instrument: CHAMBER 212

Detector: 79191

Background Analysis Date/Time : 26-JUL-2009 17:06:54

Background Count Time : 60000.00

Counts Counts

End Energy % Error Confidence Cal. Isotopes Start Energy in 1000 min during Cal GD-148 2989.135 3301.447 1.000000 0.3000000 100.0000 95.00000 NP-237 4904.665 4434.433 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5534.267 5887.313 12.00000 3.600000 28.86751 95.00000

Detector: 79192

Background Analysis Date/Time : 26-JUL-2009 17:06:58

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2990.470 3298.036 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4901.687 NP-237 4436.689 1.000000 0.3000000 100.0000 95.00000 CM-244 5531.037 5883.842 3.000000 0.9000000 57.73503 95.00000

Instrument : CHAMBER 214

Detector: 79193

Background Analysis Date/Time : 26-JUL-2009 17:07:02

Background Count Time : 60000.00

Counts Counts

during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 NP-237 3297.788 2990.553 2.000000 0.600000070.71068 95.00000 4436.227 4901.574 1.000000 0.3000000 100.0000 95.00000 CM-244 0.0000000E+00 0.0000000E+00 0.0000000E+00 5531.780 5885.252 95.00000

Instrument: CHAMBER 215

Detector: 79194

Background Analysis Date/Time : 26-JUL-2009 17:07:06

Background Count Time: 60000.00

Counts Counts

Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** during Cal GD-148 NP-237 3302.121 2989.364 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4437.186 4903.222 1.000000 0.3000000 100.0000 95.00000 CM-244 5534.359 5882.968 95.00000 6.000000 1.800000 40.82483

Instrument : CHAMBER 216

Detector: 79195

Background Analysis Date/Time : 26-JUL-2009 17:07:10

Background Count Time: 60000.00

Counts Counts

in 1000 min Start Energy **End Energy** % Error Confidence Cal. Isotopes during Cal GD-148 2990.730 3302.451 1.000000 0.3000000 100.0000 95.00000 NP-237 4905.361 2.000000 0.6000000 70.71068 95.00000 4434.761 CM-244 5530.680 5884.547 6.000000 1.800000 40.82483 95.00000

Detector: 79410

Background Analysis Date/Time : 26-JUL-2009 17:07:14

Background Count Time : 60000.00

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2988.264 3300.395 1.000000 0.3000000 100.0000 95.00000 NP-237 4433.666 4904.432 1.000000 0.3000000 100.0000 95.00000 CM-244 5535.108 5883.550 8.000000 2.400000 35.35534 95.00000

Instrument : CHAMBER 218

Detector: 79411

Background Analysis Date/Time : 26-JUL-2009 17:07:19

Background Count Time : 60000.00

Counts Counts
Cal Jactones Start Energy End Energy in 1000 min during C

End Energy during Cal Cal. Isotopes Start Energy in 1000 min % Error Confidence GD-148 NP-237 2991.480 3299.092 1.000000 0.3000000 100.0000 95.00000 4433.463 4904.366 6.000000 1.800000 40.82483 95.00000 CM-244 5534.949 5883.207 1.000000 0.3000000 100.0000 95.00000

Instrument: CHAMBER 219

Detector: 79412

Background Analysis Date/Time : 26-JUL-2009 17:07:23

Background Count Time: 60000.00

Counts Counts

during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2991.558 3298.478 1.000000 0.3000000 100.0000 95.00000 4436.677 4902.329 2.000000 0.6000000 70.71068 95.00000 CM-244 5533.300 5887.374 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument: CHAMBER 220

Detector: 79413

Background Analysis Date/Time : 26-JUL-2009 17:07:26

Background Count Time: 60000.00

Counts Counts

% Error Start Energy **End Energy** Confidence Cal. Isotopes in 1000 min during Cal GD-148 2990.238 3297.635 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4436.067 4906.404 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5530.768 5883.799 4.000000 1.200000 50.00000 95.00000

Detector: 79414

Background Analysis Date/Time : 26-JUL-2009 17:07:30

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [·]	2988.031	3301.906	0.0000000E+00	0.0000000E+00	0.0000000E+00	95.00000
NP-237	4434.520	4906.347	1.000000	0.3000000	100.0000	95.00000
CM-244	5532.427	5886.301	7.000000	2.100000	37.79645	95.00000

Instrument : CHAMBER 222

Detector: 79415

Background Analysis Date/Time : 26-JUL-2009 17:07:34

Background Count Time : 60000.00

Counts Counts

during Cal % Error Cal. Isotopes Start Energy **End Energy** in 1000 min Confidence GD-148 NP-237 2988.828 3299.834 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4436.567 4903.132 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5532.999 5885.314 5.000000 1.500000 44.72136 95.00000

Instrument: CHAMBER 223

Detector: 79416

Background Analysis Date/Time : 26-JUL-2009 17:07:38

Background Count Time : 60000.00

Counts Counts

during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2988.719 3302.203 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4434.717 4901.802 1.000000 0.3000000 100.0000 95.00000 10.00000 CM-244 5534.370 5883.775 95.00000 3.000000 31.62278

Instrument : CHAMBER 224

Detector: 79417

Background Analysis Date/Time : 26-JUL-2009 17:07:43

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes in 1000 min during Cal % Error Confidence Start Energy **End Energy** GD-148 2991.902 3302.451 1.000000 0.3000000 100.0000 95.00000 NP-237 100.0000 4433.496 4905.621 1.000000 0.3000000 95.00000 CM-244 5531.081 5884.107 5.000000 1.500000 44.72136 95.00000

Detector: 79418

Background Analysis Date/Time : 26-JUL-2009 17:07:47

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2989.698 3.000000 0.9000000 57.73503 95.00000 3301.928 NP-237 4436.047 4902.115 1.000000 100.0000 0.3000000 95.00000 CM-244 5533.662 5882.674 1.000000 0.3000000 100.0000 95.00000

Instrument : CHAMBER 226

Detector: 79419

Background Analysis Date/Time : 26-JUL-2009 17:07:51

Background Count Time: 60000.00

Counts Counts

End Energy % Error Cal. Isotopes Start Energy in 1000 min during Cal Confidence GD-148 NP-237 3299.048 2990.229 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4436.278 4902.399 1.000000 0.3000000 100.0000 95.00000 CM-244 5532.943 5886.259 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument: CHAMBER 227

Detector: 79420

Background Analysis Date/Time : 26-JUL-2009 17:07:55

Background Count Time : 60000.00

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 95.00000 2988.495 3300.898 1.000000 0.3000000 100.0000 4435.132 4906.286 3.000000 0.9000000 57.73503 95.00000 CM-244 5532.133 5886.196 1.000000 100.0000 95.00000 0.3000000

Instrument : CHAMBER 228

Detector: 79421

Background Analysis Date/Time : 26-JUL-2009 17:07:59

Background Count Time: 60000.00

Counts Counts

End Energy Start Energy % Error Confidence Cal. Isotopes in 1000 min during Cal GD-148 2990.613 3298.829 1.000000 0.3000000 100.0000 95.00000 NP-237 0.0000000E+00 0.0000000E+00 0.0000000E+00 4905.792 95.00000 4434.639 0.0000000E+00 0.0000000E+00 0.0000000E+00 CM-244 5531.072 5884.538 95.00000

Detector: 79422

Background Analysis Date/Time : 26-JUL-2009 17:08:03

Background Count Time : 60000.00

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2990.805 3298.464 3.000000 0.9000000 57.73503 95.00000 NP-237 4434.226 4906.242 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5533.427 5882.943 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument : CHAMBER 230

Detector: 79423

Background Analysis Date/Time : 26-JUL-2009 17:08:07

Background Count Time: 60000.00

Counts Counts

End Energy during Cal % Error Cal. Isotopes Start Energy in 1000 min Confidence GD-148 2989.308 3297.622 2.000000 0.6000000 70.71068 95.00000 NP-237 4433.975 4905.433 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5531.188 5884.956 1.000000 0.3000000 100.0000 95.00000

Instrument: CHAMBER 231

Detector: 79424

Background Analysis Date/Time : 26-JUL-2009 17:08:12

Background Count Time: 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2990.586 3298.189 1.000000 0.3000000 100.0000 95.00000 4432.432 4903.240 4.000000 1.200000 50.00000 95.00000 CM-244 5887.186 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 5533.660

Instrument: CHAMBER 232

Detector: 79425

Background Analysis Date/Time : 26-JUL-2009 17:08:16

Background Count Time : 60000.00

Counts Counts

in 1000 min Start Energy **End Energy** % Error Confidence Cal. Isotopes during Cal GD-148 2989.229 3299.258 1.000000 0.3000000 100.0000 95.00000 NP-237 4433.403 4904.597 0.3000000 100.0000 95.00000 1.000000 CM-244 5534.062 5886.338 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Detector: 79426

Background Analysis Date/Time : 26-JUL-2009 17:08:20

Background Count Time : 60000.00

Counts Counts Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 3300.219 1.000000 0.3000000 100.0000 95.00000 2989.053 NP-237 4437.148 4902.933 1.000000 0.3000000 100.0000 95.00000 CM-244 5534.654 5884.028 5.000000 1.500000 44.72136 95.00000

Instrument : CHAMBER 234

Detector: 79427

Background Analysis Date/Time : 26-JUL-2009 17:08:25

Background Count Time : 60000.00

5887.217

CM-244

5534.289

Counts Counts **End Energy** during Cal Cal. Isotopes Start Energy in 1000 min % Error Confidence GD-148 NP-237 2990.497 3297.542 2.000000 0.6000000 70.71068 95.00000 4434.922 4904.935 1.000000 0.3000000 100.0000 95.00000

7.000000

2.100000

37.79645

95.00000

Instrument: CHAMBER 235

Detector: 79428

Background Analysis Date/Time : 26-JUL-2009 17:08:29

Background Count Time: 60000.00

Counts Counts

in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** during Cal GD-148 NP-237 2988.334 3300.717 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4435.003 4906.236 2.000000 0.6000000 70.71068 95.00000 CM-244 5532.236 5886,409 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument : CHAMBER 236

Detector: 79429

Background Analysis Date/Time : 26-JUL-2009 17:08:33

Background Count Time : 60000.00

Counts Counts

End Energy Confidence Cal. Isotopes Start Energy in 1000 min during Cal % Error GD-148 2987.761 3298.777 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4435.283 4906.214 2.700000 95.00000 9.000000 33.33334 CM-244 5532.557 5887.291 3.000000 0.9000000 57.73503 95.00000

Detector: 79430

Background Analysis Date/Time : 26-JUL-2009 17:08:37

Background Count Time: 60000.00

Counts Counts

Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal GD-148 2990.197 3297.861 1.000000 0.3000000 100.0000 95.00000 NP-237 4432.935 4904.354 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5530.478 5884.662 11.00000 3.300000 30.15113 95.00000

Instrument : CHAMBER 238

Detector: 79431

Background Analysis Date/Time : 26-JUL-2009 17:08:41

Background Count Time: 60000.00

Counts Counts

% Error Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal Confidence GD-148 2987.703 3299.637 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4437.459 4902.787 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5533.171 5886.843 4.000000 1.200000 50.00000 95.00000

Instrument: CHAMBER 239

Detector: 79432

Background Analysis Date/Time : 26-JUL-2009 17:08:46

Background Count Time: 60000.00

Counts Counts

in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** during Cal GD-148 NP-237 2990.694 3302.472 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4436.142 4902.540 8.000000 2.400000 35.35534 95.00000 CM-244 5534.989 5884.715 1.000000 100.0000 95.00000 0.3000000

Instrument : CHAMBER 240

Detector: 79433

Background Analysis Date/Time : 26-JUL-2009 17:08:50

Background Count Time : 60000.00

Counts Counts

Start Energy in 1000 min **End Energy** % Error Confidence Cal. Isotopes during Cal GD-148 2990.448 3302.009 1.000000 0.3000000 100.0000 95.00000 NP-237 4434.377 4905.282 1.000000 0.3000000 100.0000 95.00000 CM-244 5531.249 5885.600 1.000000 0.3000000 100.0000 95.00000

Instrument : CHAMBER 241 Detector : 79434

Detector:

Background Analysis Date/Time : 26-JUL-2009 17:08:54

Background Count Time 60000.00

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2990.069	3301.257	3.000000	0.9000000	57.73503	95.00000
NP-237	4433.036	4904.033	0.0000000E+00	0.0000000E+00	0.0000000E+00	95.00000
CM-244	5530.409	5885.133	1.000000	0.3000000	100.0000	95.00000

Instrument: CHAMBER 242

Detector: 79435

Background Analysis Date/Time: 26-JUL-2009 17:08:58

Background Count Time 60000.00

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2987.986	3300.537	1.000000	0.3000000	100.0000	95.00000
NP-237	4434.402	4905.006	0.0000000E+00	0.0000000E+00	0.0000000E+00	95.00000
CM-244	5535.112	5883.069	0.0000000E+00	0.000000E+00	0.0000000E+00	95.00000

Instrument: CHAMBER 243

Detector: 79436

Background Analysis Date/Time: 26-JUL-2009 17:09:02

Background Count Time 60000.00

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148	2988.831	3301.144	0.0000000E+00	0.0000000E+00	0.0000000E+00	95.00000
NP-237	4435.437	4901.520	3.000000	0.9000000	57.73503	95.00000
CM-244	5533.039	5887.402	2.000000	0.6000000	70.71068	95.00000

Instrument: CHAMBER 244

Detector: 79437

Background Analysis Date/Time : 26-JUL-2009 17:09:06

Background Count Time 60000.00

Counts Counts

Cal. Isotopes	Start Energy	End Energy	in 1000 min	during Cal	% Error	Confidence
GD-148 [·]	2990.561	3301.814	0.0000000E+00	0.0000000E+00	0.0000000E+00	95.00000
NP-237	4433.746	4904.768	1.000000	0.3000000	100.0000	95.00000
CM-244	5531.146	5885.854	0.0000000E+00	0.000000E+00	0.0000000E+00	95.00000

Detector: 79438

Background Analysis Date/Time : 26-JUL-2009 17:09:11

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2990.519 3298.200 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4434.025 4906.060 1.000000 0.3000000 100.0000 95.00000 CM-244 5533.264 5882.788 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument : CHAMBER 246

Detector: 78912

Background Analysis Date/Time : 26-JUL-2009 17:09:15

Background Count Time : 60000.00

Counts Counts

during Cal Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence GD-148 2989.883 3302.161 2.000000 0.600000070.71068 95.00000 NP-237 4436.171 4902.069 2.000000 0.6000000 70.71068 95.00000 CM-244 0.0000000E+00 0.0000000E+00 0.0000000E+00 5533.279 5887.441 95.00000

Instrument : CHAMBER 247

Detector: 79440

Background Analysis Date/Time : 26-JUL-2009 17:09:20

Background Count Time: 60000.00

Counts Counts during Cal in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** GD-148 NP-237 95.00000 2989.314 3301.154 2.000000 0.6000000 70.71068 4435.427 4902.237 2.000000 0.6000000 70.71068 95.00000 CM-244 5535.390 5885.574 2.000000 0.6000000 70.71068 95.00000

Instrument: CHAMBER 248

Detector: 79441

Background Analysis Date/Time : 26-JUL-2009 17:09:23

Background Count Time: 60000.00

Counts Counts

in 1000 min % Error **End Energy** Confidence Cal. Isotopes Start Energy during Cal GD-148 2989.045 3301.474 2.000000 0.6000000 70.71068 95.00000 NP-237 4436.389 4902.813 1.000000 0.3000000 100.0000 95.00000 CM-244 5534.872 5884.178 5.000000 1.500000 44.72136 95.00000

Instrument : CHAMBER 249

Detector: 79442

Background Analysis Date/Time : 26-JUL-2009 17:09:28

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes **End Energy** in 1000 min % Error Confidence Start Energy during Cal GD-148 2991.808 3298.538 3.000000 0.9000000 57.73503 95.00000 NP-237 4433.459 4906.270 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 CM-244 5535.492 5886.613 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument : CHAMBER 250

Detector: 79443

Background Analysis Date/Time : 26-JUL-2009 17:09:32

Background Count Time: 60000.00

Counts Counts

% Error Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal Confidence GD-148 2988.616 3300.155 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 NP-237 4432.911 4904.182 6.000000 1.800000 95.00000 40.82483 CM-244 5530.811 5885.622 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000

Instrument: CHAMBER 251

Detector: 79444

Background Analysis Date/Time : 26-JUL-2009 17:09:36

Background Count Time: 60000.00

Counts Counts

in 1000 min % Error Confidence Cal. Isotopes Start Energy **End Energy** during Cal GD-148 NP-237 2990.845 3297.824 0.0000000E+00 0.0000000E+00 0.0000000E+00 95.00000 4433.069 4905.749 2.000000 0.6000000 70.71068 95.00000 CM-244 5534.571 5885.360 2.000000 95.00000 0.6000000 70.71068

Instrument : CHAMBER 252

Detector: 79445

Background Analysis Date/Time : 26-JUL-2009 17:09:40

Background Count Time: 60000.00

Counts Counts

End Energy % Error Confidence Cal. Isotopes Start Energy in 1000 min during Cal GD-148 2990.916 3302.142 1.000000 0.3000000 100.0000 95.00000 NP-237 4906.631 0.3000000 100.0000 95.00000 4434.879 1.000000 0.0000000E+00 0.0000000E+00 0.0000000E+00 CM-244 5534.322 5884.528 95.00000

Instrument: CHAMBER 253 Detector: 79446

Detector: 7944

Background Analysis Date/Time : 26-JUL-2009 17:09:45

Background Count Time : 60000.00

Counts Counts Cal. Isotopes Start Energy **End Energy** in 1000 min % Error Confidence during Cal 95.00000 GD-148 3301.166 2.000000 0.6000000 70.71068 2987.796 NP-237 4435.182 4903.720 9.000000 2.700000 33.33334 95.00000 CM-244 5533.610 5884.813 2.000000 0.6000000 70.71068 95.00000

Instrument : CHAMBER 254

Detector: 79447

Background Analysis Date/Time : 26-JUL-2009 17:09:49

Background Count Time : 60000.00 Counts

Counts Cal. Isotopes Start Energy **End Energy** in 1000 min during Cal % Error Confidence GD-148 NP-237 3298.982 2991.474 1.000000 0.3000000 100.0000 95.00000 4434.396 4906.361 4.000000 1.200000 50.00000 95.00000 CM-244 5533.560 5883.122 1.000000 0.3000000 100.0000 95.00000

Instrument: CHAMBER 255

Detector: 79448

Background Analysis Date/Time : 26-JUL-2009 17:09:53

Background Count Time : 60000.00

Counts Counts during Cal Cal. Isotopes in 1000 min % Error Confidence Start Energy **End Energy** GD-148 NP-237 2992.107 3299.169 3.000000 0.9000000 57.73503 95.00000 4434.844 4902.471 4.000000 1.200000 50.00000 95.00000 CM-244 5531.565 5882.529 6.000000 1.800000 95.00000 40.82483

Instrument : CHAMBER 256

Detector: 79449

Background Analysis Date/Time : 26-JUL-2009 17:09:57

Background Count Time : 60000.00

Counts Counts

Cal. Isotopes Start Energy End Energy in 1000 min during Cal % Error

GD-148 2989 102 3301 350 2 000000 0 6000000 70 71068

GD-148 2989.102 3301.350 2.000000 0.6000000 70.71068 95.00000 NP-237 4901.991 8.000000 2.400000 35.35534 95.00000 4435.732 CM-244 5533.871 5883.102 3.000000 0.9000000 57.73503 95.00000

Confidence

Subsection 3: Efficiency Calibration

Instrument: CHAMBER 001

Detector: 78788 **AESS-001** Standard ID :

Standard Reference Date : 20-FEB-2008 09:54:53 Calibration Analysis Date/Time 3-AUG-2009 10:53:32

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:07:18

Average Efficiency 0.3072915 Average Efficiency Error: 8.4744794E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.6698	28-FEB-2010	2987.497	3299.286	14959.00	0.3027170	1.3013256E-02	60.06309
NP-237	171.0024	28-FEB-2010	4432.698	4903.020	12837.00	0.3127241	1.5878061E-02	70.44009
CM-244	158.1060	28-FEB-2010	5533.173	5882.474	11081.00	0.3086398	1.5708195E-02	59.67077

Instrument: CHAMBER 002

Detector: 78266 Standard ID:

AESS-002 19-FEB-2008 11:05:22 Standard Reference Date Calibration Analysis Date/Time 3-AUG-2009 10:53:32

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:07:28

Average Efficiency: 0.3047790 Average Efficiency Error: 8.3967093E-03 Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1144	28-FEB-2010	2988.884	3302.198	14702.00	0.3102380	1.3340797E-02	65.57149
NP-237	200.4990	28-FEB-2010	4435.520	4904.443	14954.00	0.3107518	1.5744045E-02	94.51757
CM-244	196 5558	28-FFR-2010	5531 029	5887 102	13060 00	0 2926901	1 4856945F-02	$0.00000000E \pm 00$

Instrument: CHAMBER 003

67617 Detector: **AESS-003** Standard ID:

Standard Reference Date : 15-FEB-2008 13:12:27 Calibration Analysis Date/Time : 3-AUG-2009 10:53:32

239.9998 Calibration Count Time

Efficiency Calibration Date/Time 3-AUG-2009 15:07:35

Average Efficiency 0.3389317 Average Efficiency Error: 9.3198884E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.9740	28-FEB-2010	2988.781	3301.594	15967.00	0.3322094	1.4264807E-02	60.31285
NP-237	203.2080	28-FEB-2010	4436.211	4903.478	16727.00	0.3429340	1.7350566E-02	79.97358
CM-244	197.2236	28-FEB-2010	5533.447	5886.860	15440.00	0.3449565	1.7469896E-02	60.62294

CHAMBER 004 Instrument:

Detector: 64279 **AESS-004** Standard ID

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 3-AUG-2009 10:53:32

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:07:43

Average Efficiency 0.3276852 Average Efficiency Error: 9.0145394E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.1222	28-FEB-2010	2988.914	3300.077	15585.00	0.3193274	1.3717359E-02	53.06041
NP-237	204.2586	28-FEB-2010	4435.281	4903.621	16383.00	0.3341627	1.6910920E-02	59.06969
CM-244	198.8100	28-FEB-2010	5530.627	5883.485	15063.00	0.3339140	1.6915970E-02	56.20342

Instrument: CHAMBER 005

Detector: 67612 Standard ID : **AESS-005**

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 3-AUG-2009 10:53:32

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:07:52

Average Efficiency 0.2953230 Average Efficiency Error 8.1327893E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.7452	28-FEB-2010	2989.182	3300.230	14534.00	0.2912640	1.2527555E-02	49.46475
NP-237	209.5938	28-FEB-2010	4436.140	4906.346	14880.00	0.2957725	1.4986137E-02	66.12806
CM-244	202.7478	28-FEB-2010	5532.027	5883.330	13841.00	0.3008797	1.5259837E-02	55.20132

Instrument: CHAMBER 006

Detector: 67613 Standard ID AESS-006

14-FEB-2008 09:35:18 Standard Reference Date 3-AUG-2009 10:53:32 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:08:01

Average Efficiency: 0.3067075 Average Efficiency Error: 8.4449323E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6952	28-FEB-2010	2990.504	3299.144	14730.00	0.3054237	1.3133301E-02	57.36432
NP-237	204.7038	28-FEB-2010	4436.461	4902.944	15001.00	0.3052960	1.5467043E-02	60.47643
CM-244	195.0060	28-FEB-2010	5534.266	5882.776	13718.00	0.3100067	1.5724778E-02	55.94251

CHAMBER 007 Instrument:

67607 Detector **AESS-007** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 3-AUG-2009 10:53:33

Calibration Count Time 240.0000

3-AUG-2009 15:08:14 Efficiency Calibration Date/Time

Average Efficiency 0.3026176 Average Efficiency Error: 8.3323661E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.7342	28-FEB-2010	2991.468	3299.148	14693.00	0.3001373	1.2906651E-02	48.67664
NP-237	205.0260	28-FEB-2010	4433.972	4903.766	14977.00	0.3043185	1.5417857E-02	59.64954
CM-244	199.6806	28-FEB-2010	5532.246	5885.701	13798.00	0.3044618	1.5442326E-02	51.23282

Instrument: CHAMBER 008

Detector: 78788 Standard ID **AESS-008**

14-FEB-2008 13:39:25 Standard Reference Date Calibration Analysis Date/Time 3-AUG-2009 10:53:33

240.0000

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:08:25

Average Efficiency 0.3224154 Average Efficiency Error 8.8692745E-03 Confidence: 95.00000

DPM Cal. Istps EFF. EFF Err Resolution Exp. Date Start Engy End Engy Counts GD-148 206.0418 28-FEB-2010 2989.215 3298.713 15734.00 0.3225096 1.3851766E-02 44.71056 NP-237 209.2716 28-FEB-2010 4433.303 4905.744 15863.00 0.3158187 1.5988812E-02 63.33889 CM-244 199.6488 28-FEB-2010 5532.461 5886.606 14925.00 0.3294691 1.6692771E-02 51.66238

> CHAMBER 009 Instrument:

Detector: 72528 Standard ID **AESS-009**

Standard Reference Date 19-FEB-2008 11:05:22 3-AUG-2009 10:53:33 Calibration Analysis Date/Time

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:08:37

> Average Efficiency 0.3431641 Average Efficiency Error 9.4328979E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.3736	28-FEB-2010	2990.462	3298.900	16457.00	0.3417034	1.4665021E-02	47.76541
NP-237	204.0192	28-FEB-2010	4437.055	4904.570	16959.00	0.3463034	1.7518245E-02	66.91080
CM-244	197.2128	28-FEB-2010	5532.536	5882.399	15320.00	0.3421319	1.7328590E-02	53.20248

CHAMBER 010 Instrument:

72529 Detector **AESS-010** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 3-AUG-2009 10:53:33

> Calibration Count Time 240.0000

3-AUG-2009 15:08:47 Efficiency Calibration Date/Time

0.3163380 Average Efficiency Average Efficiency Error: 8.7065995E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.0008	28-FEB-2010	2990.229	3298.607	15141.00	0.3165374	1.3604476E-02	54.57225
NP-237	202.9926	28-FEB-2010	4436.880	4905.484	15237.00	0.3127136	1.5839646E-02	70.41494
CM-244	196.2330	28-FEB-2010	5531.409	5886.990	14242.00	0.3198532	1.6215732E-02	59.36025

Instrument: CHAMBER 011

Detector: 72531 Standard ID **AESS-011**

14-FEB-2008 13:39:25 Standard Reference Date Calibration Analysis Date/Time 3-AUG-2009 10:53:33

240.0000

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:10:05

Average Efficiency 0.2947833 Average Efficiency Error 8.1152376E-03 Confidence: 95.00000

DPM Cal. Istps EFF Err Resolution Exp. Date Start Engy End Engy Counts EFF. GD-148 212.8284 28-FEB-2010 2991.538 3301.988 14786.00 0.2934125 1.2615963E-02 51.15865 NP-237 214.4868 28-FEB-2010 4435.957 4905.467 15318.00 0.2975290 1.5069493E-02 57.97636 CM-244 208.4184 28-FEB-2010 5530.314 5886.614 13904.00 0.2940101 1.4910497E-02 52.04412

> CHAMBER 012 Instrument:

Detector: 67594 Standard ID **AESS-012**

Standard Reference Date 14-FEB-2008 13:39:25 3-AUG-2009 10:53:33 Calibration Analysis Date/Time

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:10:47

Average Efficiency 0.2985670 Average Efficiency Error 8.2218517E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.2200	28-FEB-2010	2988.398	3300.615	14557.00	0.2981249	1.2822272E-02	47.31236
NP-237	205.8930	28-FEB-2010	4437.450	4901.503	14889.00	0.3012659	1.5264360E-02	60.85177
CM-244	203.1954	28-FEB-2010	5534.709	5886.652	13676.00	0.2965543	1.5043142E-02	54.26840

CHAMBER 013 Instrument:

78790 Detector **AESS-013** Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 3-AUG-2009 10:53:35

> Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:10:57

Average Efficiency 0.3409691 Average Efficiency Error: 9.3713822E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6544	28-FEB-2010	2987.666	3298.441	16523.00	0.3426617	1.4705168E-02	49.16812
NP-237	210.2526	28-FEB-2010	4435.272	4902.524	17040.00	0.3376607	1.7080082E-02	61.60270
CM-244	201.9108	28-FEB-2010	5533.077	5883.559	15669.00	0.3420227	1.7318053E-02	54.98487

Instrument: CHAMBER 014

Detector: 67616 Standard ID AESS-014

19-FEB-2008 11:05:22 Standard Reference Date Calibration Analysis Date/Time 3-AUG-2009 10:53:35

240.0000

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:11:09

0.3130623 Average Efficiency Average Efficiency Error 8.6121503E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	214.7088	28-FÉB-2010	2992.504	3300.484	15590.00	0.3066251	1.3171598E-02	52.69585
NP-237	211.7160	28-FEB-2010	4435.990	4902.000	16202.00	0.3188440	1.6137818E-02	68.36411
CM-244	207.3882	28-FEB-2010	5532.918	5886.701	14925.00	0.3169042	1.6056320E-02	53.58373

CHAMBER 015 Instrument:

Detector: 61581 Standard ID **AESS-015**

14-FEB-2008 17:45:04 3-AUG-2009 10:53:35 Standard Reference Date Calibration Analysis Date/Time

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:11:19

> Average Efficiency 0.3249588 Average Efficiency Error 8.9409258E-03

Confidence: 95.00000

DPM **End Engy** EFF Err Cal. Istps Exp. Date Start Engy Counts EFF. Resolution GD-148 204.0270 28-FEB-2010 2987.739 3297.575 15440.00 0.3196218 1.3732214E-02 68.63618 NP-237 4904.976 200.6460 28-FEB-2010 4432.566 15842.00 0.3289294 1.6652878E-02 78.34551 CM-244 195.9270 28-FEB-2010 5530.833 5887.242 14624.00 0.3288428 1.6665678E-02 73.03269

CHAMBER 016 Instrument:

78774 Detector AESS-016 Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 3-AUG-2009 10:53:35

> Calibration Count Time 240.0000

3-AUG-2009 15:11:28 Efficiency Calibration Date/Time

Average Efficiency 0.3372796 Average Efficiency Error: 9.2755891E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0534	28-FEB-2010	2990.015	3299.769	15968.00	0.3304942	1.4191121E-02	47.63641
NP-237	199.3962	28-FEB-2010	4432.750	4903.568	16594.00	0.3467403	1.7544748E-02	65.62801
CM-244	198.6402	28-FEB-2010	5531.945	5886.508	15241.00	0.3381473	1.7127821E-02	51.73166

Instrument: CHAMBER 017

Detector: 78791 Standard ID AESS-017

14-FEB-2008 17:45:04 Standard Reference Date Calibration Analysis Date/Time 3-AUG-2009 10:53:35

240.0000

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:12:45

0.2920910 Average Efficiency Average Efficiency Error 8.0447914E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.0798	28-FEB-2010	2991.506	3301.266	14360.00	0.2887001	1.2420051E-02	46.05902
NP-237	208.5846	28-FEB-2010	4435.397	4901.753	14828.00	0.2961742	1.5007162E-02	55.70656
CM-244	205.5828	28-FEB-2010	5532.102	5885.058	13665.00	0.2929415	1.4859928E-02	50.18596

CHAMBER 018 Instrument:

Detector: 78782 Standard ID **AESS-018**

Standard Reference Date 14-FEB-2008 17:45:04 3-AUG-2009 10:53:35 Calibration Analysis Date/Time

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:12:56

> Average Efficiency 0.3172097 8.7289969E-03 Average Efficiency Error

Confidence: 95.00000

DPM **End Engy** EFF Err Cal. Istps Exp. Date Start Engy Counts EFF. Resolution GD-148 202.1856 28-FEB-2010 2988.342 3302.274 0.3205433 1.3773307E-02 42.03425 15345.00 NP-237 4435.776 208.8990 28-FEB-2010 4902.996 15628.00 0.3116947 1.5782947E-02 59.98587 CM-244 5884.764 0.3183995 1.6140889E-02 198.1458 28-FEB-2010 5535.506 14315.00 46.41229

CHAMBER 019 Instrument:

78786 Detector **AESS-019** Standard ID

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 3-AUG-2009 10:53:38

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:13:21

0.2910323 Average Efficiency Average Efficiency Error: 8.0228020E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.6468	28-FEB-2010	2990.757	3299.102	13644.00	0.2815492	1.2124360E-02	48.88054
NP-237	202.9140	28-FEB-2010	4436.959	4904.938	14592.00	0.2996101	1.5184480E-02	53.45035
CM-244	199.3140	28-FEB-2010	5530.360	5882.637	13450.00	0.2972434	1.5081594E-02	50.55271

Instrument: CHAMBER 020

Detector: 78787 Standard ID **AESS-020**

14-FEB-2008 21:55:55 Standard Reference Date Calibration Analysis Date/Time 3-AUG-2009 10:53:38

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:13:30

Average Efficiency 0.3471871 Average Efficiency Error 9.5441081E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	205.5870	28-FEB-2010	2988.029	3302.537	16453.00	0.3380062	1.4506385E-02	51.08092
NP-237	203.4984	28-FEB-2010	4437.491	4905.035	17379.00	0.3557895	1.7993098E-02	61.84319
CM-244	197.1096	28-FEB-2010	5532.389	5886.993	15772.00	0.3526238	1.7853415E-02	51.51802

CHAMBER 021 Instrument:

Detector: 67047 Standard ID **AESS-021**

Standard Reference Date 19-FEB-2008 15:31:52 3-AUG-2009 10:53:38 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:13:40

> Average Efficiency 0.3035440 Average Efficiency Error 8.3565973E-03 Confidence: 95.00000

Cal. Istps DPM EFF Err Exp. Date Start Engy End Engy Counts EFF. Resolution GD-148 208.3608 28-FEB-2010 2992.044 3301.105 14782.00 0.2995796 1.2881183E-02 58.16195 NP-237 210.1548 28-FEB-2010 4432.692 4903.261 15300.00 0.3033102 1.5362527E-02 64.83363 0.3096792 1.5701950E-02 CM-244 200.7390 28-FEB-2010 5532.273 5884.483 14116.00 51.57142

CHAMBER 022 Instrument:

Detector: 72530 **AESS-022** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 3-AUG-2009 10:53:38

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:13:53

Average Efficiency 0.3171063 Average Efficiency Error: 8.7253209E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	209.6724	28-FEB-2010	2987.876	3301.717	15368.00	0.3095404	1.3300211E-02	46.46027
NP-237	206.8830	28-FEB-2010	4432.553	4902.907	16121.00	0.3246614	1.6433254E-02	59.61079
CM-244	203.0208	28-FEB-2010	5531.719	5883.858	14793.00	0.3210209	1.6266784E-02	54.93265

Instrument: CHAMBER 023

Detector: 78264 Standard ID **AESS-023**

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 3-AUG-2009 10:53:38

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:14:51

Average Efficiency 0.3475247 Average Efficiency Error 9.5510995E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	207.4764	28-FEB-2010	2992.270	3297.465	16655.00	0.3390353	1.4547646E-02	44.65316
NP-237	207.4998	28-FEB-2010	4434.353	4902.238	17621.00	0.3537784	1.7888635E-02	67.17326
CM-244	199.8804	28-FEB-2010	5535.006	5884.098	16062.00	0.3541352	1.7925926E-02	50.59406

CHAMBER 024 Instrument:

Detector: 76542 **AESS-024** Standard ID

14-FEB-2008 21:55:55 Standard Reference Date 3-AUG-2009 10:53:38 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:15:01

Average Efficiency 0.3329758 Average Efficiency Error: 9.1575533E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.5218	28-FEB-2010	2988.735	3301.963	15751.00	0.3268531	1.4038056E-02	48.09840
NP-237	205.6662	28-FEB-2010	4435.585	4904.900	16552.00	0.3352655	1.6964708E-02	62.82615
CM-244	198.3060	28-FEB-2010	5532.247	5883.527	15292.00	0.3398233	1.7212013E-02	54.96418

CHAMBER 025 Instrument: Detector: 45-149AA5 **AESS-025** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 3-AUG-2009 10:53:40

> Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:15:13

Average Efficiency 0.3273577 Average Efficiency Error: 9.0229549E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.5670	28-FEB-2010	2989.576	3302.009	15260.00	0.3295556	1.4161936E-02	65.60141
NP-237	167.9916	28-FEB-2010	4437.518	4905.500	13240.00	0.3283658	1.6664496E-02	71.67536
CM-244	157.2432	28-FEB-2010	5535.553	5882.966	11554.00	0.3234104	1.6448844E-02	64.13462

Instrument: CHAMBER 026

Detector: 78204 Standard ID AESS-026

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 3-AUG-2009 10:53:40

240.0000

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:15:23

Average Efficiency 0.3163501 Average Efficiency Error 9.2731481E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.5072	28-FEB-2010	2989.278	3302.066	15073.00	0.3190832	1.6165398E-02	47.54145
NP-237	168.0294	28-FEB-2010	4432.530	4904.245	12818.00	0.3178037	1.6136298E-02	64.89447
CM-244	160.5822	28-FEB-2010	5530.854	5885.357	11388.00	0.3123012	1.5887389E-02	53.07367

Instrument: CHAMBER 027

Detector: 42484 Standard ID **AESS-027**

15-FEB-2008 09:06:52 Standard Reference Date 3-AUG-2009 10:53:40 Calibration Analysis Date/Time

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:15:36

Average Efficiency 0.3396688 Average Efficiency Error: 9.9549843E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	193.4238	28-FEB-2010	2989.311	3298.574	15139.00	0.3305598	1.6745884E-02	45.75581
NP-237	161.6154	28-FEB-2010	4433.571	4901.458	13298.00	0.3428161	1.7396733E-02	58.91746
CM-244	148.1754	28-FEB-2010	5534.916	5884.719	11660.00	0.3465259	1.7621491E-02	49.89463

CHAMBER 028 Instrument:

Detector: 78792 **AESS-028** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 3-AUG-2009 10:53:40

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:15:45

Average Efficiency 0.3070537 Average Efficiency Error: 9.0059368E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.6542	28-FEB-2010	2988.458	3301.428	14649.00	0.3098790	1.5704965E-02	43.03392
NP-237	168.1992	28-FEB-2010	4433.918	4901.793	12445.00	0.3082309	1.5657367E-02	57.16418
CM-244	156.7614	28-FEB-2010	5530.766	5886.861	10793.00	0.3031792	1.5437813E-02	42.94358

Instrument: CHAMBER 029

Detector: 33454 Standard ID **AESS-029**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 3-AUG-2009 10:53:40

240.0000

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:15:55

Average Efficiency 0.3165512 Average Efficiency Error 9.2795976E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	201.5742	28-FEB-2010	2991.561	3299.264	14962.00	0.3134704	1.5882587E-02	59.06260
NP-237	169.7700	28-FEB-2010	4436.609	4905.813	12925.00	0.3171891	1.6103044E-02	65.57512
CM-244	154.8234	28-FEB-2010	5532.652	5886.650	11221.00	0.3191230	1.6238619E-02	58.94875

CHAMBER 030 Instrument:

Detector: 33447 **AESS-030** Standard ID

15-FEB-2008 09:06:52 3-AUG-2009 10:53:40 Standard Reference Date Calibration Analysis Date/Time

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 3-AUG-2009 15:16:05

Average Efficiency: 0.3195129 Average Efficiency Error: 9.3687959E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.9792	28-FEB-2010	2992.462	3300.436	14496.00	0.3076674	1.5595090E-02	51.22312
NP-237	166.3758	28-FEB-2010	4435.706	4901.528	13016.00	0.3259090	1.6544048E-02	70.89224
CM-244	157.1856	28-FEB-2010	5532.111	5885.667	11657.00	0.3264974	1.6603231E-02	58.51925

CHAMBER 031 Instrument:

Detector: 67042 **AESS-031** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 3-AUG-2009 10:53:41

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:16:16

Average Efficiency 0.3333972 Average Efficiency Error: 9.1897855E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	193.6650	28-FEB-2010	2990.816	3298.130	15264.00	0.3328327	1.4302717E-02	63.22559
NP-237	162.9186	28-FEB-2010	4432.666	4904.194	13199.00	0.3374993	1.7128870E-02	85.39982
CM-244	153.1968	28-FEB-2010	5530.750	5885.317	11495.00	0.3302312	1.6797049E-02	69.66753

Instrument: CHAMBER 032

Detector: 67041 Standard ID AESS-032

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 3-AUG-2009 10:53:41

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:16:28

Average Efficiency 0.3079946 Average Efficiency Error 8.4994007E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.2364	28-FEB-2010	2990.681	3302.442	14237.00	0.3079492	1.3250315E-02	56.35440
NP-237	165.9822	28-FEB-2010	4436.943	4904.070	12286.00	0.3083688	1.5667509E-02	62.42379
CM-244	153.7938	28-FEB-2010	5532.476	5883.050	10756.00	0.3076837	1.5668528E-02	54.99291

CHAMBER 033 Instrument:

Detector: 78785 **AESS-033** Standard ID

18-FEB-2008 11:28:15 Standard Reference Date 3-AUG-2009 10:53:41 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:16:44

Average Efficiency 0.3159786 Average Efficiency Error: 8.7208869E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	192.4158	28-FEB-2010	2988.750	3301.323	14152.00	0.3105978	1.3365801E-02	46.58186
NP-237	161.7816	28-FEB-2010	4437.327	4904.445	12331.00	0.3175407	1.6132571E-02	57.74305
CM-244	147.2670	28-FEB-2010	5532.298	5882.301	10791.00	0.3224820	1.6420925E-02	47.06204

CHAMBER 034 Instrument:

Detector: 61586 **AESS-034** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 3-AUG-2009 10:53:41

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:16:57

Average Efficiency 0.3186626 Average Efficiency Error: 8.7871859E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.5488	28-FEB-2010	2990.405	3301.020	14898.00	0.3137061	1.3486663E-02	63.62747
NP-237	167.2962	28-FEB-2010	4436.289	4905.558	12847.00	0.3199310	1.6243735E-02	89.06429
CM-244	154.4388	28-FEB-2010	5534.591	5883.408	11387.00	0.3247890	1.6522311E-02	62.47897

Instrument: CHAMBER 035

Detector: 78202 Standard ID **AESS-035**

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 3-AUG-2009 10:53:41

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:17:07

Average Efficiency 0.3066753 Average Efficiency Error 8.4610144E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.6666	28-FEB-2010	2988.026	3302.211	14579.00	0.3098971	1.3328200E-02	45.84651
NP-237	168.2934	28-FEB-2010	4437.360	4905.577	12421.00	0.3074051	1.5615990E-02	59.70762
CM-244	158.8128	28-FEB-2010	5534.350	5884.600	10890.00	0.3016905	1.5359893E-02	46.83206

CHAMBER 036 Instrument:

Detector: 78203 **AESS-036** Standard ID

18-FEB-2008 11:28:15 Standard Reference Date 3-AUG-2009 10:53:41 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:17:19

Average Efficiency: 0.3238717 8.9277234E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	201.3204	28-FEB-2010	2988.680	3301.073	15196.00	0.3187600	1.3699047E-02	53.56891
NP-237	167.4312	28-FEB-2010	4435.041	4905.984	13273.00	0.3302565	1.6759887E-02	68.47729
CM-244	156.4188	28-FEB-2010	5531.465	5885.278	11554.00	0.3251042	1.6534815E-02	54.91026

CHAMBER 037 Instrument: Detector: 45-149BB5

AESS-037 Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 3-AUG-2009 10:53:43

Calibration Count Time 239.9998

3-AUG-2009 15:17:30 Efficiency Calibration Date/Time

Average Efficiency 0.3588454 Average Efficiency Error: 9.8783271E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7372	28-FEB-2010	2991.168	3302.212	16427.00	0.3508205	1.5056745E-02	64.60843
NP-237	167.1294	28-FEB-2010	4432.895	4904.029	14662.00	0.3654579	1.8520588E-02	77.87219
CM-244	154.7664	28-FEB-2010	5532.110	5886.157	12816.00	0.3643632	1.8501068E-02	65.29257

Instrument: CHAMBER 038

Detector: 72532 Standard ID **AESS-038**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 3-AUG-2009 10:53:43

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:17:42

Average Efficiency 0.3401872 Average Efficiency Error 9.3690762E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1408	28-FEB-2010	2992.472	3300.031	15896.00	0.3353978	1.4402774E-02	52.10275
NP-237	170.0886	28-FEB-2010	4434.591	4905.742	14074.00	0.3446777	1.7477222E-02	66.10255
CM-244	157.7460	28-FEB-2010	5531.463	5885.396	12284.00	0.3427305	1.7413909E-02	59.13643

Instrument: CHAMBER 039 Detector: 45-149BB2 **AESS-039** Standard ID

18-FEB-2008 15:31:47 3-AUG-2009 10:53:43 Standard Reference Date Calibration Analysis Date/Time

239.9998 Calibration Count Time

Efficiency Calibration Date/Time 3-AUG-2009 15:17:50

Average Efficiency 0.3635030 Average Efficiency Errór: 1.0010615E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	192.2418	28-FEB-2010	2988.231	3297.932	16136.00	0.3544406	1.5216673E-02	64.96208
NP-237	159.1506	28-FEB-2010	4433.148	4905.972	14381.00	0.3764731	1.9083694E-02	79.22511
CM-244	151.7142	28-FEB-2010	5532.651	5884.312	12578.00	0.3647127	1.8524269E-02	60.58306

CHAMBER 040 Instrument:

78773 Detector **AESS-040** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 3-AUG-2009 10:53:43

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:18:00

Average Efficiency 0.3197618 Average Efficiency Error: 8.8180574E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4828	28-FEB-2010	2989.631	3299.278	14776.00	0.3208454	1.3795648E-02	47.91216
NP-237	166.8174	28-FEB-2010	4434.455	4902.104	12719.00	0.3176762	1.6131660E-02	62.00956
CM-244	155.0100	28-FEB-2010	5534.140	5885.901	11283.00	0.3203784	1.6300978E-02	46.47287

Instrument: CHAMBER 041

Detector: 78205 Standard ID **AESS-041**

18-FEB-2008 15:31:47 Standard Reference Date Calibration Analysis Date/Time 3-AUG-2009 10:53:43

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:18:09

Average Efficiency 0.3320726 Average Efficiency Error 9.1476394E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.9034	28-FEB-2010	2988.485	3301.427	15744.00	0.3260407	1.4003299E-02	48.05792
NP-237	171.2268	28-FEB-2010	4434.095	4902.163	13892.00	0.3380044	1.7141877E-02	64.23948
CM-244	159.5796	28-FEB-2010	5531.498	5882.427	12150.00	0.3351395	1.7031105E-02	52.60388

CHAMBER 042 Instrument:

Detector: 78793 Standard ID **AESS-042**

Standard Reference Date 18-FEB-2008 15:31:47 3-AUG-2009 10:53:43 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:18:18

Average Efficiency 0.3355130 Average Efficiency Error 9.2503820E-03

Confidence: 95.00000

DPM **End Engy** EFF Err Cal. Istps Exp. Date Start Engy Counts EFF. Resolution GD-148 188.7090 28-FEB-2010 2991.775 3302.182 0.3333198 1.4329934E-02 45.19947 14895.00 NP-237 159.6558 28-FEB-2010 4434.604 4903.031 12973.00 0.3384922 1.7183678E-02 58.44910 CM-244 150.5208 28-FEB-2010 5530.666 5882.826 11480.00 0.3356853 1.7074790E-02 51.00649

CHAMBER 043 Instrument:

76543 Detector **AESS-043** Standard ID

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 3-AUG-2009 10:53:44

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:18:26

Average Efficiency 0.3394984 Average Efficiency Error: 9.3512600E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7708	28-FEB-2010	2990.605	3297.721	15848.00	0.3383991	1.4532390E-02	52.98521
NP-237	168.7422	28-FEB-2010	4435.729	4906.163	13860.00	0.3421971	1.7355058E-02	63.69067
CM-244	156.3252	28-FEB-2010	5530.889	5884.237	12022.00	0.3383877	1.7199298E-02	58.34155

Instrument: CHAMBER 044

Detector: 79459 Standard ID AESS-044

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 3-AUG-2009 10:53:44

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:18:36

Average Efficiency 0.3472623 Average Efficiency Error 9.5641837E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4510	28-FEB-2010	2992.053	3299.650	16240.00	0.3526795	1.5139417E-02	46.60588
NP-237	166.6248	28-FEB-2010	4434.444	4905.733	13868.00	0.3467396	1.7585307E-02	67.40435
CM-244	155.8290	28-FEB-2010	5531.674	5885.749	12067.00	0.3406831	1.7315021E-02	50.52586

CHAMBER 045 Instrument:

Detector: 78783 Standard ID **AESS-045**

19-FEB-2008 00:32:27 Standard Reference Date 3-AUG-2009 10:53:44 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:18:46

> Average Efficiency 0.3473964 Average Efficiency Error 9.5752627E-03

Confidence: 95.00000

DPM **End Engy** EFF Err Cal. Istps Exp. Date Start Engy Counts EFF. Resolution GD-148 186.9936 28-FEB-2010 2991.163 3297.674 15321.00 0.3460006 1.4867575E-02 42.89996 NP-237 160.8066 28-FEB-2010 4435.665 4901.796 13169.00 0.3411981 1.7317103E-02 61.13550 CM-244 145.8384 28-FEB-2010 5533.912 5883.468 11808.00 0.3562486 1.8112443E-02 45.70908

CHAMBER 046 Instrument:

76544 Detector AESS-046 Standard ID

Standard Reference Date 19-FEB-2008 19:35:48 Calibration Analysis Date/Time 3-AUG-2009 10:53:44

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:18:55

Average Efficiency 0.3396656 Average Efficiency Error: 9.3595181E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.7474	28-FEB-2010	2988.013	3297.754	15574.00	0.3376833	1.4506049E-02	53.28547
NP-237	164.6658	28-FEB-2010	4433.428	4906.578	13320.00	0.3369921	1.7100822E-02	64.03419
CM-244	151.3824	28-FEB-2010	5533.808	5885.833	11881.00	0.3453883	1.7558334E-02	49.95901

Instrument: CHAMBER 047 Detector: 46-089B1

Standard ID **AESS-047**

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 3-AUG-2009 10:53:44

239.9998

Calibration Count Time Efficiency Calibration Date/Time 3-AUG-2009 15:19:03

Average Efficiency 0.3416091 Average Efficiency Error 9.4094146E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.4804	28-FEB-2010	2989.788	3298.531	15812.00	0.3381371	1.4521689E-02	57.51329
NP-237	168.3948	28-FEB-2010	4436.493	4903.356	13857.00	0.3428169	1.7386565E-02	66.01371
CM-244	154.6032	28-FEB-2010	5535.296	5884.198	12141.00	0.3454518	1.7555740E-02	60.25008

CHAMBER 048 Instrument:

Detector: 42483 Standard ID **AESS-048**

Standard Reference Date 19-FEB-2008 00:32:27 3-AUG-2009 10:53:44 Calibration Analysis Date/Time

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 3-AUG-2009 15:19:12

> Average Efficiency 0.3123633 Average Efficiency Error 8.6213006E-03

95.00000 Confidence:

DPM **End Engy** EFF Err Cal. Istps Exp. Date Start Engy Counts EFF. Resolution GD-148 191.8350 28-FEB-2010 2991.838 3299.553 14065.00 0.3096292 1.3325672E-02 54.65192 NP-237 161.5530 28-FEB-2010 4437.268 4906.475 12285.00 0.3167912 1.6095465E-02 66.40394 CM-244 151.1856 28-FEB-2010 5533.930 5885.396 10717.00 0.3119354 1.5885884E-02 57,74399

CHAMBER 065 Instrument:

Detector: 68551 **AESS-001** Standard ID

Standard Reference Date 20-FEB-2008 09:54:53 Calibration Analysis Date/Time 9-JUL-2009 08:08:10

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 9-JUL-2009 13:06:51

Average Efficiency 0.3167298 Average Efficiency Error: 8.7357797E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.6698	28-FEB-2010	2992.172	3297.923	15001.00	0.3033305	1.3038947E-02	62.70693
NP-237	171.0024	28-FEB-2010	4436.297	4904.907	13337.00	0.3249072	1.6487280E-02	73.64597
CM-244	158.1060	28-FEB-2010	5532.615	5884.733	11898.00	0.3304830	1.6799837E-02	62.05407

Instrument: CHAMBER 066 Detector: 46-089C1

Standard ID **AESS-002**

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 9-JUL-2009 08:08:10

239.9998

Calibration Count Time Efficiency Calibration Date/Time 9-JUL-2009 13:07:05

Average Efficiency 0.3104099 Average Efficiency Error 8.5468190E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1144	28-FEB-2010	2992.142	3300.807	14611.00	0.3081217	1.3251217E-02	57.90394
NP-237	200.4990	28-FEB-2010	4436.247	4906.352	15119.00	0.3141508	1.5914036E-02	71.36474
CM-244	196.5558	28-FEB-2010	5534.784	5886.688	13872.00	0.3099799	1.5721031E-02	60.13244

CHAMBER 067 Instrument: Detector: 46-089B4 **AESS-003** Standard ID

Standard Reference Date 15-FEB-2008 13:12:27 Calibration Analysis Date/Time 9-JUL-2009 08:08:10

239.9998 Calibration Count Time

Efficiency Calibration Date/Time 9-JUL-2009 13:07:16

Average Efficiency 0.3225107 Average Efficiency Error: 8.8746333E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.9740	28-FEB-2010	2988.144	3301.594	15198.00	0.3160322	1.3581690E-02	73.87538
NP-237	203.2080	28-FEB-2010	4436.169	4905.946	16027.00	0.3285710	1.6632373E-02	84.27850
CM-244	197.2236	28-FEB-2010	5533.963	5885.648	14635.00	0.3261202	1.6527411E-02	74.53841

CHAMBER 068 Instrument:

Detector: 78794 **AESS-004** Standard ID

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 9-JUL-2009 08:08:10

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 9-JUL-2009 13:07:28

Average Efficiency 0.3018608 Average Efficiency Error: 8.3120642E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.1222	28-FEB-2010	2990.601	3300.139	14643.00	0.2998493	1.2894920E-02	46.91775
NP-237	204.2586	28-FEB-2010	4435.756	4903.729	14909.00	0.3041092	1.5408116E-02	62.03638
CM-244	198.8100	28-FEB-2010	5531.794	5886.867	13681.00	0.3024790	1.5343496E-02	51.78417

Instrument: CHAMBER 069

Detector: 78795 Standard ID **AESS-005**

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 9-JUL-2009 08:08:10

239.9998

Calibration Count Time Efficiency Calibration Date/Time 9-JUL-2009 13:07:42

0.3159011 Average Efficiency Average Efficiency Error 8.6903321E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.7452	28-FEB-2010	2991.901	3298.738	15562.00	0.3116586	1.3388185E-02	51.55959
NP-237	209.5938	28-FEB-2010	4437.201	4903.207	15965.00	0.3173516	1.6065169E-02	63.95503
CM-244	202.7478	28-FEB-2010	5534.874	5884.048	14792.00	0.3206663	1.6248737E-02	52.59375

Instrument: CHAMBER 070 Detector: 46-089B2 AESS-006 Standard ID

14-FEB-2008 09:35:18 Standard Reference Date Calibration Analysis Date/Time 9-JUL-2009 08:08:10

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 9-JUL-2009 13:07:53

Average Efficiency: 0.3520789 Average Efficiency Error: 9.6757710E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6952	28-FEB-2010	2988.641	3300.492	16713.00	0.3463008	1.4858479E-02	61.95700
NP-237	204.7038	28-FEB-2010	4435.833	4904.443	17344.00	0.3529772	1.7851282E-02	74.78303
CM-244	195.0060	28-FEB-2010	5531.433	5882.799	15964.00	0.3598273	1.8215435E-02	68.73500

CHAMBER 071 Instrument:

64259 Detector **AESS-007** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 9-JUL-2009 08:08:11

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 9-JUL-2009 13:08:07

Average Efficiency 0.3163752 Average Efficiency Error: 8.7076994E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.7342	28-FEB-2010	2992.476	3301.614	15079.00	0.3078622	1.3232440E-02	56.06450
NP-237	205.0260	28-FEB-2010	4435.387	4902.436	15763.00	0.3203167	1.6217813E-02	68.61439
CM-244	199.6806	28-FEB-2010	5534.462	5883.334	14790.00	0.3255263	1.6495051E-02	58.90277

Instrument: CHAMBER 072 Detector: 45-149AA3

Standard ID AESS-008

14-FEB-2008 13:39:25 Standard Reference Date 9-JUL-2009 08:08:11 Calibration Analysis Date/Time

239.9998

Calibration Count Time Efficiency Calibration Date/Time 9-JUL-2009 13:08:19

Average Efficiency 0.3234064 Average Efficiency Error 8.8950237E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.0418	28-FEB-2010	2988.586	3301.014	15743.00	0.3224942	1.3850860E-02	54.24233
NP-237	209.2716	28-FEB-2010	4432.963	4902.126	16207.00	0.3226633	1.6331071E-02	69.06731
CM-244	199.6488	28-FEB-2010	5535.050	5886.750	14785.00	0.3254575	1.6491652E-02	56.72540

CHAMBER 073 Instrument:

Detector: 78775 Standard ID **AESS-009**

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 9-JUL-2009 08:08:11

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 9-JUL-2009 13:08:30

> Average Efficiency 0.3320738 Average Efficiency Error 9.1329338E-03

Confidence: 95.00000

End Engy EFF Err Cal. Istps DPM Exp. Date Start Engy Counts EFF. Resolution GD-148 203.3736 28-FEB-2010 2991.870 3299.007 15813.00 0.3281374 1.4092137E-02 50.25317 68.87427 NP-237 4904.982 204.0192 28-FEB-2010 4435.703 16193.00 0.3306793 1.6736971E-02 CM-244 197.2128 28-FEB-2010 5532.962 5884.931 15235.00 0.3394034 1.7191524E-02 49.27633

CHAMBER 074 Instrument:

Detector: 78266 **AESS-010** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 9-JUL-2009 08:08:11

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 9-JUL-2009 13:08:42

Average Efficiency 0.3124804 Average Efficiency Error: 8.6027775E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.0008	28-FEB-2010	2990.625	3300.254	14705.00	0.3072563	1.3212435E-02	51.15489
NP-237	202.9926	28-FEB-2010	4435.417	4902.858	15345.00	0.3149306	1.5950510E-02	57.41002
CM-244	196.2330	28-FEB-2010	5535.258	5884.259	14186.00	0.3177475	1.6109865E-02	49.01177

Instrument: CHAMBER 075

Detector: 68550 Standard ID **AESS-011**

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 9-JUL-2009 08:08:11

239.9998

Calibration Count Time Efficiency Calibration Date/Time 9-JUL-2009 13:08:53

0.2973897 Average Efficiency Average Efficiency Error 8.1859389E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	212.8284	28-FEB-2010	2988.563	3301.861	14863.00	0.2947582	1.2672522E-02	56.94482
NP-237	214.4868	28-FEB-2010	4432.969	4904.420	15483.00	0.3006926	1.5227719E-02	69.06491
CM-244	208.4184	28-FEB-2010	5535.562	5884.044	14125.00	0.2978785	1.5103404E-02	58.86678

Instrument: CHAMBER 076

78779 Detector: **AESS-012** Standard ID

14-FEB-2008 13:39:25 Standard Reference Date Calibration Analysis Date/Time 9-JUL-2009 08:08:11

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 9-JUL-2009 13:09:04

Average Efficiency: 0.3059446 Average Efficiency Error: 8.4217470E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.2200	28-FEB-2010	2992.408	3300.679	14839.00	0.3037126	1.3057882E-02	46.65081
NP-237	205.8930	28-FEB-2010	4437.552	4904.251	15221.00	0.3079897	1.5600574E-02	59.39308
CM-244	203.1954	28-FEB-2010	5530.870	5885.252	14195.00	0.3070807	1.5568880E-02	50.95067

CHAMBER 077 Instrument:

67576 Detector **AESS-013** Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 9-JUL-2009 08:08:11

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 9-JUL-2009 13:09:15

Average Efficiency 0.3220192 Average Efficiency Error: 8.8578872E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6544	28-FEB-2010	2988.825	3301.085	15444.00	0.3200761	1.3751586E-02	52.27526
NP-237	210.2526	28-FEB-2010	4432.612	4901.681	16184.00	0.3207017	1.6232070E-02	64.77522
CM-244	201.9108	28-FEB-2010	5534.546	5886.248	14985.00	0.3261909	1.6525861E-02	54.87537

Instrument: CHAMBER 078

Detector: 67577 Standard ID AESS-014

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 9-JUL-2009 08:08:11

240.0000

Calibration Count Time Efficiency Calibration Date/Time 9-JUL-2009 13:09:25

0.3269402 Average Efficiency Average Efficiency Error 8.9888843E-03 Confidence: 95.00000

Cal. Istps DPM Counts EFF Err Resolution Exp. Date Start Engy End Engy EFF. GD-148 214.7088 28-FEB-2010 2992.395 3299.584 16294.00 0.3202777 1.3747618E-02 52.02948 NP-237 211.7160 28-FEB-2010 4433.349 4904.419 17152.00 0.3375357 1.7072473E-02 63.87207 CM-244 5884.350 207.3882 28-FEB-2010 5535.593 15420.00 0.3266392 1.6542494E-02 56.64688

> CHAMBER 079 Instrument:

Detector: 67598 Standard ID **AESS-015**

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 9-JUL-2009 08:08:11

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 9-JUL-2009 13:09:33

> Average Efficiency 0.3269641 8.9949844E-03 Average Efficiency Error

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0270	28-FEB-2010	2987.535	3297.935	15565.00	0.3219998	1.3832338E-02	51.91238
NP-237	200.6460	28-FEB-2010	4435.153	4903.332	15964.00	0.3314978	1.6781278E-02	65.57870
CM-244	195.9270	28-FEB-2010	5530.500	5882.333	14697.00	0.3297131	1.6708534E-02	52.00982

CHAMBER 080 Instrument:

Detector: 78197 **AESS-016** Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 9-JUL-2009 08:08:11

240.0000 Calibration Count Time

Efficiency Calibration Date/Time 9-JUL-2009 13:09:43

Average Efficiency 0.3342651 Average Efficiency Error: 9.1930544E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0534	28-FEB-2010	2992.338	3298.189	15890.00	0.3286708	1.4113899E-02	49.39791
NP-237	199.3962	28-FEB-2010	4434.851	4901.472	16357.00	0.3417528	1.7295377E-02	67.37957
CM-244	198.6402	28-FEB-2010	5531.493	5883.930	15145.00	0.3351447	1.6977096E-02	53.36457

Instrument: CHAMBER 081

Detector: 72533 Standard ID **AESS-017**

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 9-JUL-2009 08:08:11

240.0000

Calibration Count Time Efficiency Calibration Date/Time 9-JUL-2009 13:09:58

Average Efficiency 1.0059110E-03 Average Efficiency Error 1.4002950E-04

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.0798	28-FEB-2010	2985.980	3302.417	45.00000	8.9930405E	-0144010404E-04	0.0000000E+00
NP-237	208.5846	28-FEB-2010	4432.287	4905.979	16296.00	0.3255036	1.6473748E-02	140.8390
CM-244	205.5828	28-FEB-2010	5534.795	5885.572	3965.000	8.4768414E	-0424471347E-03	0.0000000E+00

Instrument: CHAMBER 082

Detector: 64263 **AESS-018** Standard ID

14-FEB-2008 17:45:04 Standard Reference Date Calibration Analysis Date/Time 9-JUL-2009 08:08:11

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 9-JUL-2009 13:10:11

Average Efficiency: 0.3262649 8.9742821E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.1856	28-FEB-2010	2990.419	3298.608	15507.00	0.3237216	1.3907208E-02	58.84102
NP-237	208.8990	28-FEB-2010	4437.000	4905.115	16371.00	0.3264953	1.6523048E-02	77.98001
CM-244	198.1458	28-FEB-2010	5534.320	5885.085	14864.00	0.3296992	1.6705383E-02	70.67408

CHAMBER 083 Instrument:

64278 Detector: **AESS-019** Standard ID

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 9-JUL-2009 08:08:12

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 9-JUL-2009 13:10:22

Average Efficiency 0.3331127 Average Efficiency Error: 9.1688316E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.6468	28-FEB-2010	2987.455	3299.407	15432.00	0.3182384	1.3672802E-02	55.81121
NP-237	202.9140	28-FEB-2010	4433.838	4906.607	17206.00	0.3532467	1.7866544E-02	69.77620
CM-244	199.3140	28-FEB-2010	5532.253	5885.057	15334.00	0.3379439	1.7116275E-02	60.81681

Instrument: CHAMBER 084

Detector: 78265 Standard ID AESS-020

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 9-JUL-2009 08:08:12

240.0000

Calibration Count Time Efficiency Calibration Date/Time 9-JUL-2009 13:10:32

Average Efficiency 0.3434564 Average Efficiency Error 9.4431741E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	205.5870	28-FEB-2010	2988.133	3299.227	16254.00	0.3337056	1.4324601E-02	49.70576
NP-237	203.4984	28-FEB-2010	4433.289	4901.844	17176.00	0.3516426	1.7785732E-02	63.55498
CM-244	197.1096	28-FEB-2010	5535.275	5884.618	15707.00	0.3502632	1.7734783E-02	51.80883

CHAMBER 085 Instrument:

Detector: 78776 **AESS-021** Standard ID

19-FEB-2008 15:31:52 Standard Reference Date Calibration Analysis Date/Time 9-JUL-2009 08:08:12

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 9-JUL-2009 13:10:43

Average Efficiency 0.3254945 Average Efficiency Error: 8.9515289E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.3608	28-FEB-2010	2989.612	3299.207	15817.00	0.3203625	1.3758179E-02	45.89981
NP-237	210.1548	28-FEB-2010	4434.183	4901.520	16560.00	0.3282868	1.6611453E-02	60.08111
CM-244	200.7390	28-FEB-2010	5533.754	5882.654	15090.00	0.3302506	1.6729988E-02	50.06017

CHAMBER 086 Instrument:

78198 Detector **AESS-022** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 9-JUL-2009 08:08:12

> Calibration Count Time 240.0000

Efficiency Calibration Date/Time 9-JUL-2009 13:10:52

Average Efficiency 0.2987570 Average Efficiency Error: 8.2268827E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	209.6724	28-FEB-2010	2989.886	3300.091	14561.00	0.2931078	1.2606329E-02	46.08396
NP-237	206.8830	28-FEB-2010	4433.582	4903.927	15096.00	0.3040077	1.5400495E-02	61.33533
CM-244	203.0208	28-FEB-2010	5531.751	5882.863	13945.00	0.3018999	1.5310007E-02	49.24375

Instrument: CHAMBER 087

Detector: 78199 Standard ID AESS-023

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 9-JUL-2009 08:08:12

240.0000

Calibration Count Time Efficiency Calibration Date/Time 9-JUL-2009 13:11:02

Average Efficiency 0.3162691 Average Efficiency Error 8.7025622E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	207.4764	28-FEB-2010	2990.385	3299.009	15285.00	0.3109341	1.3361266E-02	44.58315
NP-237	207.4998	28-FEB-2010	4436.772	4904.542	15818.00	0.3175828	1.6078727E-02	57.63754
CM-244	199.8804	28-FEB-2010	5534.083	5883.178	14684.00	0.3229105	1.6363984E-02	49.88237

CHAMBER 088 Instrument:

Detector: 33452 Standard ID AESS-024

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 9-JUL-2009 08:08:12

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 9-JUL-2009 13:11:13

> Average Efficiency 0.2998269 Average Efficiency Error 8.2606915E-03

Confidence: 95.00000

Cal. Istps DPM EFF Err Exp. Date Start Engy **End Engy** Counts EFF. Resolution GD-148 203.5218 28-FEB-2010 2990.970 3298.296 14025.00 0.2908646 1.2518696E-02 52.96125 NP-237 205.6662 28-FEB-2010 4436.463 4902.334 15055.00 0.3049660 1.5449598E-02 63.94186 CM-244 5534.583 5887.587 198.3060 28-FEB-2010 13923.00 0.3085581 1.5648056E-02 61.30964

CHAMBER 089 Instrument:

Detector: 78262 **AESS-025** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 9-JUL-2009 08:08:13

Calibration Count Time 239.9998

9-JUL-2009 13:11:23 Efficiency Calibration Date/Time

Average Efficiency 0.2963288 Average Efficiency Error: 8.1822695E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.5670	28-FEB-2010	2992.075	3297.767	13916.00	0.3003191	1.2927603E-02	50.98783
NP-237	167.9916	28-FEB-2010	4432.406	4901.978	12013.00	0.2979151	1.5141796E-02	61.57396
CM-244	157.2432	28-FEB-2010	5532.097	5882.869	10361.00	0.2896218	1.4757983E-02	57.67693

Instrument: CHAMBER 090

Detector: 78263 Standard ID AESS-026

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 9-JUL-2009 08:08:13

239.9998

Calibration Count Time Efficiency Calibration Date/Time 9-JUL-2009 13:11:39

Average Efficiency 0.3241549 Average Efficiency Error 9.4982684E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.5072	28-FEB-2010	2990.462	3300.982	15417.00	0.3261584	1.6518990E-02	52.53284
NP-237	168.0294	28-FEB-2010	4434.552	4903.775	13172.00	0.3265822	1.6575273E-02	66.40552
CM-244	160.5822	28-FEB-2010	5532.754	5885.804	11687.00	0.3198750	1.6265199E-02	57.74523

CHAMBER 091 Instrument:

Detector: 78259 **AESS-027** Standard ID

15-FEB-2008 09:06:52 Standard Reference Date Calibration Analysis Date/Time 9-JUL-2009 08:08:13

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 9-JUL-2009 13:11:52

Average Efficiency 0.3403451 Average Efficiency Error: 9.9735688E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	193.4238	28-FEB-2010	2990.268	3298.949	15270.00	0.3332087	1.6878121E-02	49.79137
NP-237	161.6154	28-FEB-2010	4433.436	4901.824	13289.00	0.3425658	1.7384235E-02	66.53712
CM-244	148.1754	28-FEB-2010	5531.214	5887.413	11658.00	0.3458194	1.7585119E-02	55.76472

CHAMBER 092 Instrument:

Detector: 79457 **AESS-028** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 9-JUL-2009 08:08:13

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 10-JUL-2009 08:15:23

0.3244753 Average Efficiency Average Efficiency Error: 9.5090605E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.6542	28-FEB-2010	2992.198	3300.849	15511.00	0.3276620	1.6594216E-02	50.13194
NP-237	168.1992	28-FEB-2010	4435.896	4905.687	13201.00	0.3269055	1.6591255E-02	61.53701
CM-244	156.7614	28-FEB-2010	5533.567	5885.099	11382.00	0.3190994	1.6232992E-02	50.67320

Instrument: CHAMBER 093

Detector: 33206 Standard ID **AESS-029**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 9-JUL-2009 08:08:13

239.9998

Calibration Count Time Efficiency Calibration Date/Time 9-JUL-2009 13:12:10

Average Efficiency 0.3253579 Average Efficiency Error 9.5347259E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	201.5742	28-FEB-2010	2988.963	3299.960	15194.00	0.3181445	1.6116098E-02	50.56812
NP-237	169.7700	28-FEB-2010	4434.063	4902.978	13286.00	0.3260259	1.6544953E-02	75.56580
CM-244	154.8234	28-FEB-2010	5531.085	5883.424	11716.00	0.3326032	1.6911702E-02	57.95201

CHAMBER 094 Instrument:

Detector: 78267 **AESS-030** Standard ID

15-FEB-2008 09:06:52 Standard Reference Date Calibration Analysis Date/Time 9-JUL-2009 08:08:13

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 9-JUL-2009 13:12:19

Average Efficiency 0.3085452 Average Efficiency Error: 9.0499781E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.9792	28-FEB-2010	2990.912	3298.303	14487.00	0.3072813	1.5575566E-02	44.68866
NP-237	166.3758	28-FEB-2010	4435.971	4905.664	12598.00	0.3154770	1.6022354E-02	64.16422
CM-244	157.1856	28-FEB-2010	5534.211	5886.502	10849.00	0.3033472	1.5444501E-02	48.21400

CHAMBER 095 Instrument:

Detector: 64279 **AESS-031** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 9-JUL-2009 08:08:14

Calibration Count Time 239.9998

9-JUL-2009 13:12:27 Efficiency Calibration Date/Time

Average Efficiency: 0.3068112 Average Efficiency Error: 8.4704254E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	193.6650	28-FEB-2010	2989.056	3301.826	13965.00	0.3043179	1.3098821E-02	55.82520
NP-237	162.9186	28-FEB-2010	4435.330	4905.275	12386.00	0.3167128	1.6089419E-02	68.30973
CM-244	153.1968	28-FEB-2010	5534.057	5886.430	10508.00	0.3012262	1.5345651E-02	56.59253

Instrument: CHAMBER 096

Detector: 67605 Standard ID : AESS-032

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 9-JUL-2009 08:08:14

239.9998

Calibration Count Time Efficiency Calibration Date/Time 9-JUL-2009 13:12:36

Average Efficiency 0.3103104 Average Efficiency Error: 8.5620275E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.2364	28-FEB-2010	2990.311	3298.177	14291.00	0.3089209	1.3291076E-02	50.28194
NP-237	165.9822	28-FEB-2010	4434.251	4906.198	12426.00	0.3117568	1.5837051E-02	61.11779
CM-244	153.7938	28-FEB-2010	5533.120	5882.408	10880.00	0.3108360	1.5824955E-02	51.23636

Instrument: CHAMBER 097

Detector: 67599 **AESS-033** Standard ID

18-FEB-2008 11:28:15 Standard Reference Date Calibration Analysis Date/Time 9-JUL-2009 08:08:14

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 9-JUL-2009 13:12:44

Average Efficiency: 0.3440487 Average Efficiency Error: 9.4836140E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	192.4158	28-FEB-2010	2989.746	3302.068	15243.00	0.3343306	1.4367314E-02	49.90135
NP-237	161.7816	28-FEB-2010	4437.101	4903.794	13519.00	0.3481746	1.7664408E-02	69.66666
CM-244	147 2670	28-FFR-2010	5531 052	5886 116	11904 00	0 3550793	1 8049983F-02	57 03643

CHAMBER 098 Instrument:

Detector: 68644 **AESS-034** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 9-JUL-2009 08:08:14

Calibration Count Time 239.9998

9-JUL-2009 13:12:53 Efficiency Calibration Date/Time

Average Efficiency 0.3341772 Average Efficiency Error: 9.2099942E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.5488	28-FEB-2010	2989.589	3298.128	15405.00	0.3241865	1.3928778E-02	51.17890
NP-237	167.2962	28-FEB-2010	4432.836	4901.640	13623.00	0.3392162	1.7208137E-02	68.23425
CM-244	154.4388	28-FEB-2010	5531.873	5883.257	12118.00	0.3447607	1.7520264E-02	52.08022

Instrument: CHAMBER 099

Detector: 70317 Standard ID **AESS-035**

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 9-JUL-2009 08:08:14

239.9998

Calibration Count Time Efficiency Calibration Date/Time 9-JUL-2009 13:13:03

Average Efficiency 0.3431231 Average Efficiency Error: 9.4483467E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.6666	28-FEB-2010	2990.876	3301.163	16106.00	0.3421397	1.4688905E-02	50.68632
NP-237	168.2934	28-FEB-2010	4434.526	4903.945	13954.00	0.3454547	1.7518591E-02	61.64373
CM-244	158.8128	28-FEB-2010	5533.432	5886.885	12370.00	0.3422045	1.7384758E-02	52.31840

Instrument: CHAMBER 100

Detector: 79456 Standard ID AESS-046

19-FEB-2008 19:35:48 Standard Reference Date Calibration Analysis Date/Time 9-JUL-2009 08:08:14

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 9-JUL-2009 13:13:12

Average Efficiency: 0.3427027 Average Efficiency Error: 9.4427206E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.7474	28-FEB-2010	2992.287	3297.799	15520.00	0.3363194	1.4448194E-02	50.00877
NP-237	164.6658	28-FEB-2010	4436.422	4905.631	13582.00	0.3435974	1.7431144E-02	61.98585
CM-244	151 3824	28-FFR-2010	5534 572	5887 590	12114 00	0 3515212	1 7863980F-02	52 94975

CHAMBER 101 Instrument:

Detector: 64253 **AESS-037** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 9-JUL-2009 08:08:15

> Calibration Count Time 240.0000

Efficiency Calibration Date/Time 9-JUL-2009 13:13:22

Average Efficiency 0.3390052 Average Efficiency Error: 9.3409885E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7372	28-FEB-2010	2992.433	3299.297	15460.00	0.3299631	1.4176095E-02	61.39046
NP-237	167.1294	28-FEB-2010	4436.714	4901.796	13907.00	0.3466887	1.7581994E-02	74.45712
CM-244	154.7664	28-FEB-2010	5531.777	5885.188	12159.00	0.3452022	1.7541731E-02	61.78313

Instrument: CHAMBER 102

Detector: 72525 Standard ID **AESS-038**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 9-JUL-2009 08:08:15

240.0000

Calibration Count Time Efficiency Calibration Date/Time 9-JUL-2009 13:13:31

Average Efficiency 0.3328035 Average Efficiency Error 9.1680549E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1408	28-FEB-2010	2992.102	3300.657	15781.00	0.3327644	1.4291358E-02	57.28693
NP-237	170.0886	28-FEB-2010	4432.858	4904.949	13683.00	0.3351520	1.7000843E-02	70.05949
CM-244	157.7460	28-FEB-2010	5531.106	5882.690	11868.00	0.3305628	1.6804401E-02	60.52639

CHAMBER 103 Instrument:

Detector: 79461 Standard ID **AESS-039**

18-FEB-2008 15:31:47 Standard Reference Date Calibration Analysis Date/Time 9-JUL-2009 08:08:15

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 9-JUL-2009 13:13:40

Average Efficiency 0.3354990 Average Efficiency Error: 9.2500327E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	192.2418	28-FEB-2010	2988.996	3300.314	15148.00	0.3325511	1.4292428E-02	46.53494
NP-237	159.1506	28-FEB-2010	4436.805	4901.981	13231.00	0.3463839	1.7579062E-02	65.39693
CM-244	151.7142	28-FEB-2010	5532.506	5886.425	11383.00	0.3296518	1.6769741E-02	53.08098

CHAMBER 104 Instrument:

Detector: 72524 **AESS-040** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 9-JUL-2009 08:08:15

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 9-JUL-2009 13:13:48

Average Efficiency 0.3172685 Average Efficiency Error: 8.7505886E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4828	28-FEB-2010	2990.719	3300.868	14808.00	0.3213409	1.3816299E-02	52.43279
NP-237	166.8174	28-FEB-2010	4437.132	4904.901	12602.00	0.3146936	1.5982572E-02	60.08082
CM-244	155.0100	28-FEB-2010	5531.506	5883.017	11092.00	0.3143873	1.6000355E-02	48.93826

Instrument: CHAMBER 105

Detector: 78777 Standard ID **AESS-041**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 9-JUL-2009 08:08:15

240.0000

Calibration Count Time Efficiency Calibration Date/Time 9-JUL-2009 13:13:56

Average Efficiency 0.3238136 Average Efficiency Error 8.9225518E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.9034	28-FEB-2010	2991.574	3300.708	15632.00	0.3235499	1.3897874E-02	47.98710
NP-237	171.2268	28-FEB-2010	4435.406	4903.467	13447.00	0.3271988	1.6601518E-02	65.57580
CM-244	159.5796	28-FEB-2010	5531.275	5883.854	11655.00	0.3209064	1.6318357E-02	49.59695

Instrument: CHAMBER 106

Detector: 64274 **AESS-042** Standard ID

18-FEB-2008 15:31:47 Standard Reference Date Calibration Analysis Date/Time 9-JUL-2009 08:08:15

Calibration Count Time 240.0000

Efficiency Calibration Date/Time 9-JUL-2009 13:14:04

Average Efficiency 0.3300298 Average Efficiency Error: 9.1015678E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	188.7090	28-FEB-2010	2989.941	3301.958	14641.00	0.3274217	1.4080711E-02	51.04536
NP-237	159.6558	28-FEB-2010	4435.855	4902.069	12766.00	0.3331273	1.6915364E-02	68.33770
CM-244	150.5208	28-FEB-2010	5534.023	5883.359	11329.00	0.3306891	1.6823869E-02	57.44720

CHAMBER 107 Instrument:

67578 Detector **AESS-043** Standard ID

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 9-JUL-2009 08:08:16

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 9-JUL-2009 13:14:15

Average Efficiency 0.3045647 Average Efficiency Error: 8.4048761E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7708	28-FEB-2010	2987.523	3301.257	14050.00	0.2997997	1.2902850E-02	50.05696
NP-237	168.7422	28-FEB-2010	4435.381	4903.438	12388.00	0.3058615	1.5538067E-02	64.39712
CM-244	156.3252	28-FEB-2010	5532.229	5882.600	11043.00	0.3103665	1.5796915E-02	54.52126

Instrument: CHAMBER 108

Detector: 78778 Standard ID AESS-044

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 9-JUL-2009 08:08:16

239.9998

Calibration Count Time Efficiency Calibration Date/Time 10-JUL-2009 08:15:33

Average Efficiency 0.3360237 Average Efficiency Error 9.2592761E-03 Confidence: 95.00000

Cal. Istps DPM EFF Err Resolution Exp. Date Start Engy End Engy Counts EFF. GD-148 194.4510 28-FEB-2010 2987.937 3298.136 15260.00 0.3312062 1.4232747E-02 47.91920 NP-237 166.6248 28-FEB-2010 4435.160 4903.491 13641.00 0.3410752 1.7302046E-02 70.19518 CM-244 5883.227 0.3380632 1.7182823E-02 155.8290 28-FEB-2010 5531.067 11990.00 49.11132

> CHAMBER 109 Instrument:

Detector: 79463 Standard ID **AESS-045**

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 9-JUL-2009 08:08:16

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 9-JUL-2009 13:14:36

> Average Efficiency 0.3557599 Average Efficiency Error 9.8008178E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	186.9936	28-FEB-2010	2989.195	3299.997	15695.00	0.3542219	1.5214318E-02	44.90919
NP-237	160.8066	28-FEB-2010	4435.631	4906.161	13634.00	0.3532281	1.7918682E-02	60.71558
CM-244	145.8384	28-FEB-2010	5531.938	5886.333	11971.00	0.3606424	1.8330947E-02	47.40115

CHAMBER 110 Instrument:

Detector: 67602 **AESS-046** Standard ID

Standard Reference Date 8-JAN-2007 09:29:00 Calibration Analysis Date/Time 9-JUL-2009 08:08:16

> Calibration Count Time 239.9998

Efficiency Calibration Date/Time 9-JUL-2009 13:15:06

Average Efficiency 0.3174780 Average Efficiency Error: 8.7590944E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.6531	28-FEB-2010	2989.370	3301.157	14395.00	0.3105389	1.3360999E-02	53.22070
NP-237	164.3834	28-FEB-2010	4436.284	4904.992	12802.00	0.3244717	1.6475134E-02	64.57879
CM-244	159.4253	28-FEB-2010	5535.250	5883.287	11162.00	0.3209743	1.6333863E-02	56.77616

Instrument: CHAMBER 111

Detector: 79462 Standard ID **AESS-047**

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 9-JUL-2009 08:08:16

239.9998

Calibration Count Time Efficiency Calibration Date/Time 9-JUL-2009 13:15:22

Average Efficiency 0.3410317 Average Efficiency Error 9.3937013E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.4804	28-FEB-2010	2990.820	3300.305	15891.00	0.3395850	1.4582562E-02	46.16263
NP-237	168.3948	28-FEB-2010	4436.744	4905.500	13621.00	0.3369952	1.7095437E-02	61.95173
CM-244	154.6032	28-FEB-2010	5535.002	5885.661	12226.00	0.3474574	1.7654790E-02	55.37262

Instrument: CHAMBER 112

Detector: 78261 **AESS-048** Standard ID

19-FEB-2008 00:32:27 Standard Reference Date Calibration Analysis Date/Time 9-JUL-2009 08:08:16

Calibration Count Time 239.9998

Efficiency Calibration Date/Time 9-JUL-2009 13:15:42

Average Efficiency 0.3101838 Average Efficiency Error: 8.5619837E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	191.8350	28-FEB-2010	2988.969	3300.635	14006.00	0.3081187	1.3261668E-02	44.59222
NP-237	161.5530	28-FEB-2010	4436.114	4905.135	12212.00	0.3149208	1.6001921E-02	60.98758
CM-244	151.1856	28-FEB-2010	5532.983	5884.981	10616.00	0.3085150	1.5713703E-02	48.71024

CHAMBER 113 Instrument: Detector: 45-111B4

AESS-001 Standard ID

Standard Reference Date 20-FEB-2008 09:54:53 Calibration Analysis Date/Time 15-JUL-2009 08:37:50

Calibration Count Time 300.0000

15-JUL-2009 13:43:32 Efficiency Calibration Date/Time

0.2519916 Average Efficiency Average Efficiency Error: 6.9467155E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.6698	28-FEB-2010	2988.779	3298.785	15298.00	0.2475491	1.0637350E-02	69.86681
NP-237	171.0024	28-FEB-2010	4433.559	4905.331	12963.00	0.2526515	1.2826058E-02	72.30716
CM-244	158.1060	28-FEB-2010	5530.517	5883.481	11603.00	0.2580627	1.3123710E-02	68.28992

Instrument: CHAMBER 114

Detector: 78258 Standard ID **AESS-007**

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 15-JUL-2009 08:37:55

300.0000

Calibration Count Time Efficiency Calibration Date/Time 15-JUL-2009 13:43:44

Average Efficiency 0.2556549 Average Efficiency Error 7.0340075E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.7342	28-FEB-2010	2990.441	3298.868	15389.00	0.2513953	1.0801502E-02	44.39313
NP-237	205.0260	28-FEB-2010	4436.900	4905.218	15927.00	0.2589234	1.3107756E-02	58.50210
CM-244	199.6806	28-FEB-2010	5530.599	5885.790	14679.00	0.2586593	1.3108032E-02	49.91982

Instrument: CHAMBER 115 Detector: 45-132FF4 Standard ID **AESS-002**

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 15-JUL-2009 08:37:59

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 15-JUL-2009 13:43:54

Average Efficiency: 0.2654886 7.3024337E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1144	28-FEB-2010	2991.839	3301.816	15791.00	0.2664527	1.1443332E-02	55.36104
NP-237	200.4990	28-FEB-2010	4436.001	4902.052	15786.00	0.2624403	1.3287230E-02	64.95200
CM-244	196.5558	28-FEB-2010	5531.697	5884.118	14942.00	0.2673051	1.3543067E-02	65.53946

Instrument: CHAMBER 116 45-132FF2 Detector

AESS-008 Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 15-JUL-2009 08:38:03

Calibration Count Time 300.0000

15-JUL-2009 13:44:05 Efficiency Calibration Date/Time

Average Efficiency 0.2629267 Average Efficiency Error: 7.2302124E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.0418	28-FEB-2010	2988.005	3302.013	16058.00	0.2632007	1.1300448E-02	59.26229
NP-237	209.2716	28-FEB-2010	4432.895	4903.021	16270.00	0.2591243	1.3114552E-02	68.78876
CM-244	199.6488	28-FEB-2010	5531.311	5883.052	15125.00	0.2665666	1.3503457E-02	63.98270

Instrument: CHAMBER 117

Detector: 33450 Standard ID **AESS-003**

15-FEB-2008 13:12:27 Standard Reference Date Calibration Analysis Date/Time 15-JUL-2009 08:38:07

300.0000

Calibration Count Time Efficiency Calibration Date/Time 15-JUL-2009 13:44:15

0.2535850Average Efficiency Average Efficiency Error 6.9797374E-03 Confidence: 95.00000

Cal. Istps DPM EFF. EFF Err Resolution Exp. Date Start Engy End Engy Counts GD-148 202.9740 28-FEB-2010 2992.173 3300.224 14948.00 0.2486987 1.0691201E-02 65.60831 NP-237 203.2080 28-FEB-2010 4434.403 4904.427 15595.00 0.2557888 1.2952457E-02 67.83129 CM-244 5885.381 197.2236 28-FEB-2010 5533.135 14502.00 0.2586756 1.3111014E-02 62.53085

> **CHAMBER 118** Instrument:

Detector: 75544 Standard ID **AESS-009**

Standard Reference Date 19-FEB-2008 11:05:22 15-JUL-2009 08:38:11 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 15-JUL-2009 13:44:26

> Average Efficiency 0.2598683 7.1489667E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.3736	28-FEB-2010	2992.199	3301.179	15535.00	0.2579420	1.1080938E-02	44.86411
NP-237	204.0192	28-FEB-2010	4437.404	4902.417	15842.00	0.2588220	1.3103474E-02	58.11101
CM-244	197.2128	28-FEB-2010	5530.853	5882.689	14791.00	0.2637591	1.3365132E-02	41.32130

CHAMBER 119 Instrument:

74429 Detector Standard ID **AESS-004**

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 15-JUL-2009 08:38:16

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 2-FEB-2009 15:15:38

Average Efficiency 0.2936279 Average Efficiency Error: 1.2630888E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.1222	28-FEB-2010	2992.004	3299.253	9998.000	0.2936279	1.2630888E-02	0.0000000E+00
NP-237	204.2586	28-FEB-2010	4432.548	4906.013	0.0000000E+	-00000000E-	+ 0 0000000E+00	0.0000000E+00
CM-244	198.8100	28-FEB-2010	5530.584	5883.165	0.0000000E+	00000000E-	+ 0 0000000E+00	0.0000000E+00

Instrument: CHAMBER 120

Detector: 74430 **AESS-010** Standard ID

14-FEB-2008 13:39:25 Standard Reference Date Calibration Analysis Date/Time 15-JUL-2009 08:38:20

Calibration Count Time 300.0000

Cal. Istps

GD-148

NP-237

CM-244

DPM

202.0008

202.9926

196.2330

Exp. Date

28-FEB-2010

28-FEB-2010

28-FEB-2010

5534.528

Efficiency Calibration Date/Time 16-JUL-2009 09:29:36

5884.756

Average Efficiency 0.2329810 Average Efficiency Error 6.4206291E-03 Confidence: 95.00000

EFF Err Start Engy **End Engy** Resolution Counts EFF. 2990.522 3298.404 13848.00 0.2315074 9.9664843E-03 47.05631 4435.328 4903.588 14182.00 0.2328624 1.1806204E-02 59.86080

0.2352170 1.1938849E-02

50.37906

Instrument: CHAMBER 121

13118.00

Detector 75545 Standard ID **AESS-005**

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 15-JUL-2009 08:38:24

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 15-JUL-2009 13:44:36

Average Efficiency 0.2481502 Average Efficiency Error 6.8278033E-03

Confidence: 95.00000

Start Engy **End Engy** Cal. Istps DPM Exp. Date Counts EFF. EFF Err Resolution GD-148 210.7452 28-FEB-2010 2988.023 0.2475892 1.0637230E-02 49.92188 3300.631 15450.00 NP-237 4432.658 1.2618415E-02 209.5938 28-FEB-2010 4901.599 15670.00 0.2492075 57.40462 CM-244 202.7478 28-FEB-2010 5533.997 5885.295 14284.00 0.2478847 1.2566634E-02 53.21548

CHAMBER 122 Instrument:

Detector: 75546 **AESS-011** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 15-JUL-2009 08:38:29

Calibration Count Time 300.0000

15-JUL-2009 13:44:46 Efficiency Calibration Date/Time

Average Efficiency 0.2535488 Average Efficiency Error: 6.9723255E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	212.8284	28-FEB-2010	2990.563	3298.589	16028.00	0.2543318	1.0920011E-02	51.38880
NP-237	214.4868	28-FEB-2010	4436.782	4905.890	16182.00	0.2514608	1.2727518E-02	56.55112
CM-244	208.4184	28-FEB-2010	5532.955	5884.078	15083.00	0.2546007	1.2897825E-02	50.53276

Instrument: CHAMBER 123 Detector: 45-142V3

Standard ID AESS-006

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 15-JUL-2009 08:38:33

300.0000

Calibration Count Time Efficiency Calibration Date/Time 15-JUL-2009 13:44:55

Average Efficiency 0.2599957 Average Efficiency Error 7.1522635E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6952	28-FEB-2010	2990.850	3299.223	15663.00	0.2596899	1.1154454E-02	71.05709
NP-237	204.7038	28-FEB-2010	4437.241	4905.636	15899.00	0.2588749	1.3105587E-02	67.04378
CM-244	195.0060	28-FEB-2010	5531.191	5886.517	14497.00	0.2615748	1.3257999E-02	62.26140

Instrument: CHAMBER 124 Detector: 45-142V2 Standard ID **AESS-012**

Standard Reference Date 14-FEB-2008 13:39:25 15-JUL-2009 08:38:38 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 15-JUL-2009 13:45:05

Average Efficiency: 0.2587920 Average Efficiency Error: 7.1179173E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.2200	28-FEB-2010	2988.169	3298.838	15692.00	0.2569794	1.1037684E-02	70.68444
NP-237	205.8930	28-FEB-2010	4434.514	4905.983	16135.00	0.2612102	1.3221423E-02	71.87656
CM-244	203.1954	28-FEB-2010	5535.498	5887.649	14956.00	0.2589717	1.3120654E-02	72.67943

CHAMBER 125 Instrument:

Detector: 75547 **AESS-013** Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 17-JUL-2009 09:11:36

Calibration Count Time 300.0000

17-JUL-2009 14:23:54 Efficiency Calibration Date/Time

Average Efficiency 0.2576947 Average Efficiency Error: 7.0884591E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6544	28-FEB-2010	2992.438	3299.892	15734.00	0.2609255	1.1206666E-02	46.30545
NP-237	210.2526	28-FEB-2010	4435.342	4903.042	16013.00	0.2538552	1.2850333E-02	59.85715
CM-244	201.9108	28-FEB-2010	5533.267	5883.118	14760.00	0.2572743	1.3036882E-02	47.93466

Instrument: CHAMBER 126

Detector: 75548 Standard ID : **AESS-019**

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 17-JUL-2009 09:11:44

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-JUL-2009 14:24:06

Average Efficiency 0.2541045 Average Efficiency Error: 6.9944067E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.6468	28-FEB-2010	2988.642	3299.863	14987.00	0.2472976	1.0630463E-02	48.38591
NP-237	202.9140	28-FEB-2010	4434.022	4903.287	15977.00	0.2624101	1.3283804E-02	54.76476
CM-244	199.3140	28-FEB-2010	5533.750	5882.833	14524.00	0.2563267	1.2991657E-02	55.65510

Instrument: CHAMBER 127

Detector: 78770 **AESS-014** Standard ID

19-FEB-2008 11:05:22 Standard Reference Date 17-JUL-2009 09:11:52 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-JUL-2009 14:24:19

Average Efficiency: 0.2465067 Average Efficiency Error: 6.7814202E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	214.7088	28-FEB-2010	2987.930	3300.925	15708.00	0.2470578	1.0611333E-02	45.78584
NP-237	211.7160	28-FEB-2010	4433.404	4902.114	15685.00	0.2469317	1.2503051E-02	55.80547
CM-244	207 3882	28-FFR-2010	5533 832	5884 575	14464 00	0 2453295	1 2434963F-02	52 15766

CHAMBER 128 Instrument:

Detector: 75549 **AESS-020** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 17-JUL-2009 09:11:58

> Calibration Count Time 300.0000

17-JUL-2009 14:24:31 Efficiency Calibration Date/Time

Average Efficiency 0.2568552 Average Efficiency Error: 7.0680329E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	205.5870	28-FEB-2010	2989.441	3299.762	15295.00	0.2512498	1.0796450E-02	45.99468
NP-237	203.4984	28-FEB-2010	4437.479	4901.607	16011.00	0.2622381	1.3274715E-02	55.45222
CM-244	197.1096	28-FEB-2010	5532.807	5882.614	14556.00	0.2598990	1.3172311E-02	50.77409

Instrument: CHAMBER 129

Detector: 76227 Standard ID **AESS-015**

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 17-JUL-2009 09:12:03

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-JUL-2009 14:24:41

Average Efficiency 0.2644528 Average Efficiency Error 7.2740684E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0270	28-FEB-2010	2991.626	3298.866	15762.00	0.2609125	1.1205764E-02	46.80607
NP-237	200.6460	28-FEB-2010	4434.006	4901.792	16185.00	0.2688618	1.3608224E-02	54.56116
CM-244	195.9270	28-FEB-2010	5532.320	5882.430	14766.00	0.2652449	1.3440695E-02	49.47559

CHAMBER 130 Instrument:

76228 Detector: **AESS-021** Standard ID

19-FEB-2008 15:31:52 Standard Reference Date Calibration Analysis Date/Time 17-JUL-2009 09:12:07

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-JUL-2009 14:24:51

Average Efficiency: 0.2468057 Average Efficiency Errór: 6.7924876E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.3608	28-FEB-2010	2987.724	3301.129	15063.00	0.2441104	1.0492519E-02	52.03590
NP-237	210.1548	28-FEB-2010	4432.733	4905.256	15645.00	0.2481126	1.2563273E-02	57.61189
CM-244	200.7390	28-FEB-2010	5534.221	5882.991	14232.00	0.2493957	1.2643824E-02	52.52812

CHAMBER 131 Instrument:

33448 Detector AESS-016 Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 17-JUL-2009 09:12:11

> Calibration Count Time 300.0000

17-JUL-2009 14:25:01 Efficiency Calibration Date/Time

Average Efficiency 0.2570197 Average Efficiency Error: 7.0734182E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0534	28-FEB-2010	2990.041	3301.703	15183.00	0.2512954	1.0799803E-02	73.19037
NP-237	199.3962	28-FEB-2010	4437.470	4901.500	15793.00	0.2639839	1.3365344E-02	77.05526
CM-244	198.6402	28-FEB-2010	5535.040	5887.344	14606.00	0.2587552	1.3113786E-02	69.05248

Instrument: CHAMBER 132

Detector: 67579 Standard ID **AESS-022**

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 31-JUL-2009 07:58:03

300.0000

Calibration Count Time Efficiency Calibration Date/Time 31-JUL-2009 14:19:45

0.2508602 Average Efficiency Average Efficiency Error 6.9039976E-03 Confidence: 95.00000

Cal. Istps DPM EFF. EFF Err Resolution Exp. Date Start Engy End Engy Counts GD-148 209.6724 28-FEB-2010 2990.330 3301.737 15153.00 0.2441628 1.0493682E-02 47.13118 NP-237 206.8830 28-FEB-2010 4432.839 4903.616 15907.00 0.2562432 1.2972324E-02 57.62207 CM-244 203.0208 28-FEB-2010 5531.399 5887.519 14730.00 0.2557008 1.2957520E-02 51.35268

> CHAMBER 133 Instrument:

Detector: 76229 Standard ID **AESS-017**

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 17-JUL-2009 09:12:20

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-JUL-2009 14:25:22

> Average Efficiency: 0.2443746 Average Efficiency Error: 6.7256871E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Enav	Counts	EFF.	EFF Err	Resolution
GD-148	210.0798	28-FEB-2010	2991.784	3301.677	15064.00	0.2421688	1.0409047E-02	50.61230
NP-237	208.5846	28-FEB-2010	4432.798	4901.797	15477.00	0.2473098	1.2524300E-02	59.86257
CM-244	205 5828	28-FFR-2010	5532 072	5884 338	14290 00	0 2446276	1 2401419F-02	51 55180

CHAMBER 134 Instrument:

76230 Detector **AESS-023** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 17-JUL-2009 09:12:25

Calibration Count Time 300.0000

17-JUL-2009 14:25:32 Efficiency Calibration Date/Time

Average Efficiency 0.2446093 Average Efficiency Error: 6.7343172E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	207.4764	28-FEB-2010	2990.526	3299.017	14780.00	0.2405785	1.0344269E-02	47.58438
NP-237	207.4998	28-FEB-2010	4435.982	4903.287	15238.00	0.2446961	1.2394482E-02	57.76377
CM-244	199.8804	28-FEB-2010	5532.080	5886.000	14233.00	0.2505983	1.2704798E-02	45.62634

Instrument: CHAMBER 135

Detector: 64270 Standard ID **AESS-018**

14-FEB-2008 17:45:04 Standard Reference Date Calibration Analysis Date/Time 17-JUL-2009 09:12:30

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-JUL-2009 14:25:42

0.2559817 Average Efficiency Average Efficiency Error 7.0438967E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.1856	28-FEB-2010	2988.277	3299.628	15593.00	0.2604657	1.1188660E-02	51.52015
NP-237	208.8990	28-FEB-2010	4437.221	4904.200	15580.00	0.2485812	1.2587634E-02	59.07031
CM-244	198.1458	28-FEB-2010	5533.869	5883.613	14517.00	0.2578413	1.3068504E-02	58.17161

CHAMBER 136 Instrument:

Detector: 68549 Standard ID AESS-024

Standard Reference Date 14-FEB-2008 21:55:55 17-JUL-2009 09:12:34 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-JUL-2009 14:25:52

> Average Efficiency 0.2467655 6.7935060E-03 Average Efficiency Error

Confidence: 95.00000

DPM **End Engy** Cal. Istps Exp. Date Start Engy Counts EFF. EFF Err Resolution GD-148 203.5218 28-FEB-2010 2990.353 3301.238 14853.00 0.2464695 1.0596607E-02 65.72455 NP-237 0.2505761 1.2689904E-02 205.6662 28-FEB-2010 4436.739 4902.455 15465.00 90.78280 CM-244 5887.561 198.3060 28-FEB-2010 5530.869 13725.00 0.2435561 1.2354044E-02 84.13201

Instrument: CHAMBER 137

64288 Detector **AESS-025** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 17-JUL-2009 09:12:39

Calibration Count Time 300.0000

17-JUL-2009 14:26:02 Efficiency Calibration Date/Time

Average Efficiency 0.2552701 Average Efficiency Error: 7.0390012E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.5670	28-FEB-2010	2988.740	3300.102	14923.00	0.2576955	1.1078311E-02	64.99760
NP-237	167.9916	28-FEB-2010	4437.224	4902.644	12892.00	0.2557947	1.2986653E-02	75.28851
CM-244	157.2432	28-FEB-2010	5534.374	5886.101	11242.00	0.2515239	1.2798158E-02	68.25955

Instrument: CHAMBER 138

Detector: 65877 Standard ID **AESS-031**

18-FEB-2008 11:28:15 Standard Reference Date Calibration Analysis Date/Time 17-JUL-2009 09:12:44

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-JUL-2009 14:26:11

Average Efficiency 0.2546351 Average Efficiency Error 7.0242025E-03 95.00000 Confidence:

DPM EFF Err Cal. Istps Resolution Exp. Date Start Engy End Engy Counts EFF. GD-148 193.6650 28-FEB-2010 2989.573 3299.020 14588.00 0.2543695 1.0939864E-02 53.70593 NP-237 162.9186 28-FEB-2010 4433.563 4906.044 12608.00 0.2577648 1.3091444E-02 63.94941 CM-244 153.1968 28-FEB-2010 5532.867 5887.098 10976.00 0.2519955 1.2827461E-02 58.23169

> Instrument: CHAMBER 139

Detector 76231 Standard ID **AESS-026**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 17-JUL-2009 09:12:48

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-JUL-2009 14:26:21

Average Efficiency 0.2504273 Average Efficiency Error 7.3419176E-03

Confidence: 95.00000

Start Engy Cal. Istps DPM Exp. Date End Engy Counts EFF. EFF Err Resolution GD-148 199.5072 28-FEB-2010 2987.505 3300.432 0.2510030 1.2718994E-02 48.79321 14828.00 NP-237 168.0294 28-FEB-2010 4434.030 4903.806 12788.00 0.2536503 1.2879401E-02 56.03834 CM-244 160.5822 28-FEB-2010 5532.176 5884.231 11264.00 0.2468024 1.2557442E-02 47.42265

CHAMBER 140 Instrument:

Detector: 78771 **AESS-032** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 17-JUL-2009 09:12:53

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-JUL-2009 14:26:31

Average Efficiency 0.2551487 Average Efficiency Error: 7.0366412E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.2364	28-FEB-2010	2990.854	3298.685	14731.00	0.2547957	1.0956220E-02	48.77175
NP-237	165.9822	28-FEB-2010	4432.882	4903.279	12676.00	0.2545053	1.2924591E-02	56.74310
CM-244	153.7938	28-FEB-2010	5532.806	5885.667	11205.00	0.2563040	1.3041983E-02	50.50342

Instrument: CHAMBER 141

Detector: 76232 Standard ID **AESS-027**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 17-JUL-2009 09:12:58

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-JUL-2009 14:26:40

Average Efficiency 0.2558747 Average Efficiency Error 7.5053386E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	193.4238	28-FEB-2010	2991.144	3299.081	14344.00	0.2504358	1.2695894E-02	52.97828
NP-237	161.6154	28-FEB-2010	4432.714	4902.455	12501.00	0.2577664	1.3093018E-02	59.69727
CM-244	148.1754	28-FEB-2010	5530.738	5882.724	10942.00	0.2598479	1.3227826E-02	52.14254

Instrument: CHAMBER 142

Detector: 64261 **AESS-033** Standard ID

18-FEB-2008 11:28:15 Standard Reference Date 17-JUL-2009 09:13:03 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-JUL-2009 14:26:50

Average Efficiency: 0.2578609 Average Efficiency Error: 7.1141319E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	192.4158	28-FEB-2010	2990.865	3298.794	14538.00	0.2551434	1.0973847E-02	59.26533
NP-237	161.7816	28-FEB-2010	4432.947	4903.147	12416.00	0.2557132	1.2990172E-02	60.24754
CM-244	147.2670	28-FEB-2010	5532.255	5884.805	11064.00	0.2642446	1.3449099E-02	59.08084

CHAMBER 143 Instrument:

Detector: 65882 **AESS-028** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 31-JUL-2009 07:58:09

> Calibration Count Time 300.0000

31-JUL-2009 14:19:55 Efficiency Calibration Date/Time

Average Efficiency 0.2422946 Average Efficiency Error: 7.1076802E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.6542	28-FEB-2010	2990.957	3299.552	14219.00	0.2405759	1.2197561E-02	46.88452
NP-237	168.1992	28-FEB-2010	4434.731	4904.726	12305.00	0.2437864	1.2385987E-02	57.18259
CM-244	156.7614	28-FEB-2010	5533.008	5884.829	10791.00	0.2425734	1.2351508E-02	49.33925

Instrument: CHAMBER 144

Detector: 75551 Standard ID AESS-034

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 17-JUL-2009 09:13:14

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-JUL-2009 14:27:26

0.2489190 Average Efficiency Average Efficiency Error 6.8659927E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.5488	28-FEB-2010	2987.490	3300.379	14854.00	0.2501176	1.0753425E-02	46.53134
NP-237	167.2962	28-FEB-2010	4433.137	4902.257	12414.00	0.2473100	1.2563203E-02	59.28743
CM-244	154.4388	28-FEB-2010	5534.787	5886.106	10929.00	0.2488915	1.2670427E-02	55.09279

CHAMBER 145 Instrument:

Detector: 72526 Standard ID **AESS-029**

15-FEB-2008 09:06:52 Standard Reference Date Calibration Analysis Date/Time 17-JUL-2009 09:13:19

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-JUL-2009 14:27:37

Average Efficiency: 0.2495571 Average Efficiency Error: 7.3171528E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	201.5742	28-FEB-2010	2989.366	3298.098	14915.00	0.2498968	1.2661957E-02	51.73314
NP-237	169.7700	28-FEB-2010	4434.265	4904.885	12751.00	0.2503173	1.2710736E-02	57.53227
CM-244	154.8234	28-FEB-2010	5534.192	5886.678	10933.00	0.2484652	1.2648602E-02	48.31667

CHAMBER 146 Instrument:

72527 Detector **AESS-035** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 17-JUL-2009 09:13:24

Calibration Count Time 300.0000

17-JUL-2009 14:27:48 Efficiency Calibration Date/Time

Average Efficiency 0.2495693 Average Efficiency Error: 6.8829530E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.6666	28-FEB-2010	2991.494	3297.950	14697.00	0.2498184	1.0742654E-02	54.01461
NP-237	168.2934	28-FEB-2010	4436.761	4904.596	12650.00	0.2505190	1.2722510E-02	56.99129
CM-244	158.8128	28-FEB-2010	5530.438	5886.440	11210.00	0.2482881	1.2634057E-02	52.12059

Instrument: CHAMBER 147

Detector: 75550 Standard ID **AESS-030**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 17-JUL-2009 09:13:29

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-JUL-2009 14:27:59

0.2449156 Average Efficiency Average Efficiency Error 7.1838433E-03 Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.9792	28-FEB-2010	2987.763	3300.677	14416.00	0.2446455	1.2401544E-02	44.93960
NP-237	166.3758	28-FEB-2010	4433.256	4902.183	12106.00	0.2424534	1.2321484E-02	55.16415
CM-244	157.1856	28-FEB-2010	5534.346	5885.412	11068.00	0.2477740	1.2610656E-02	48.98204

CHAMBER 148 Instrument:

Detector: 74429 Standard ID **AESS-036**

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 17-JUL-2009 09:13:34

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-JUL-2009 14:28:08

> Average Efficiency 0.2454490 Average Efficiency Error 6.7716590E-03 Confidence: 95.00000

Cal. Istps DPM **End Engy** Exp. Date Start Engy Counts EFF. EFF Err Resolution GD-148 201.3204 28-FEB-2010 2989.918 3302.313 0.2424625 1.0429571E-02 47.34021 14456.00 4434.677 NP-237 4904.245 12395.00 55.78803 167.4312 28-FEB-2010 0.2467024 1.2532696E-02 CM-244 156,4188 28-FEB-2010 5532.604 5884.780 11054.00 0.2485659 1.2651297E-02 54.50585

CHAMBER 149 Instrument:

33449 Detector **AESS-037** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 17-JUL-2009 09:13:39

Calibration Count Time 300.0000

17-JUL-2009 14:28:21 Efficiency Calibration Date/Time

Average Efficiency 0.2457679 Average Efficiency Error: 6.7815189E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7372	28-FEB-2010	2990.126	3302.099	14274.00	0.2437622	1.0487950E-02	64.38747
NP-237	167.1294	28-FEB-2010	4433.957	4903.766	12301.00	0.2453031	1.2463043E-02	67.00629
CM-244	154.7664	28-FEB-2010	5532.840	5885.608	10964.00	0.2491831	1.2684503E-02	59.86861

Instrument: CHAMBER 150

Detector: 75552 Standard ID **AESS-043**

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 17-JUL-2009 09:13:44

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-JUL-2009 14:28:35

0.2487296 Average Efficiency Average Efficiency Error 6.8612574E-03 Confidence: 95.00000

Cal. Istps DPM EFF. EFF Err Resolution Exp. Date Start Engy End Engy Counts GD-148 197.7708 28-FEB-2010 2989.847 3298.390 14400.00 0.2458598 1.0576462E-02 51.08628 NP-237 168.7422 28-FEB-2010 4433.411 4903.355 12733.00 0.2514980 1.2770942E-02 58.74739 CM-244 156.3252 28-FEB-2010 5531.584 5883.380 11116.00 0.2501363 1.2729902E-02 54.38089

> CHAMBER 151 Instrument:

Detector: 75556 Standard ID **AESS-038**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 17-JUL-2009 09:13:48

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-JUL-2009 14:28:46

> Average Efficiency: 0.2462034 Average Efficiency Error: 6.7912084E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1408	28-FEB-2010	2988.196	3299.830	14661.00	0.2473749	1.0638047E-02	50.47650
NP-237	170.0886	28-FEB-2010	4437.520	4904.128	12488.00	0.2447234	1.2430614E-02	54.82476
CM-244	157 7460	28-FFR-2010	5532 939	5887 339	11036 00	0.2460822	1 2525211F-02	55 11473

CHAMBER 152 Instrument:

76222 Detector **AESS-044** Standard ID

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 17-JUL-2009 09:13:54

> Calibration Count Time 300.0000

17-JUL-2009 14:28:57 Efficiency Calibration Date/Time

Average Efficiency 0.2424625 Average Efficiency Error: 6.6924468E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4510	28-FEB-2010	2992.335	3299.767	14031.00	0.2436645	1.0487170E-02	49.42483
NP-237	166.6248	28-FEB-2010	4435.085	4902.709	12138.00	0.2428150	1.2339183E-02	57.89848
CM-244	155.8290	28-FEB-2010	5532.813	5882.589	10654.00	0.2404757	1.2247530E-02	56.10107

Instrument: CHAMBER 153

Detector: 76223 Standard ID **AESS-039**

18-FEB-2008 15:31:47 Standard Reference Date Calibration Analysis Date/Time 17-JUL-2009 09:13:59

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-JUL-2009 14:29:06

0.2537628Average Efficiency Average Efficiency Error 7.0021353E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	192.2418	28-FEB-2010	2989.763	3301.789	14281.00	0.2508323	1.0792080E-02	43.74009
NP-237	159.1506	28-FEB-2010	4432.699	4901.612	12218.00	0.2558562	1.3000614E-02	52.94971
CM-244	151.7142	28-FEB-2010	5534.359	5886.038	11040.00	0.2559308	1.3026465E-02	50.96056

CHAMBER 154 Instrument:

Detector: 76224 Standard ID **AESS-045**

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 17-JUL-2009 09:14:04

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-JUL-2009 14:29:15

> Average Efficiency 0.2562141 Average Efficiency Error 7.0709228E-03

Confidence: 95.00000

End Engy Cal. Istps DPM Exp. Date Start Engy Counts EFF. EFF Err Resolution GD-148 186.9936 28-FEB-2010 2989.543 3301.969 14237.00 0.2571022 1.1062440E-02 44.63987 NP-237 160.8066 28-FEB-2010 4433.171 4901.699 12222.00 0.2533354 1.2872400E-02 53.13824 CM-244 145.8384 28-FEB-2010 5533.478 5884.401 10695.00 0.2579601 1.3137060E-02 43.14489

Instrument: CHAMBER 155

75553 Detector **AESS-040** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 17-JUL-2009 09:14:09

> Calibration Count Time 300.0000

17-JUL-2009 14:29:25 Efficiency Calibration Date/Time

Average Efficiency 0.2566149 Average Efficiency Error: 7.0761675E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4828	28-FEB-2010	2990.863	3299.267	14869.00	0.2581782	1.1099775E-02	49.42255
NP-237	166.8174	28-FEB-2010	4435.628	4901.683	12765.00	0.2550453	1.2950568E-02	57.37749
CM-244	155.0100	28-FEB-2010	5532.390	5885.923	11282.00	0.2560498	1.3027489E-02	54.62441

Instrument: CHAMBER 156

Detector: 75554 Standard ID AESS-046

Standard Reference Date 19-FEB-2008 19:35:48 Calibration Analysis Date/Time 17-JUL-2009 09:14:14

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-JUL-2009 14:29:35

0.2473153 Average Efficiency Average Efficiency Error 6.8258164E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.7474	28-FEB-2010	2992.492	3302.387	14104.00	0.2445442	1.0524000E-02	51.31209
NP-237	164.6658	28-FEB-2010	4436.746	4903.077	12183.00	0.2465298	1.2527379E-02	60.35096
CM-244	151.3824	28-FEB-2010	5533.286	5886.114	10859.00	0.2522683	1.2843768E-02	55.38654

CHAMBER 157 Instrument:

Detector: 75555 Standard ID **AESS-041**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 17-JUL-2009 09:14:19

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-JUL-2009 14:29:49

> Average Efficiency 0.2476787 6.8296832E-03 Average Efficiency Error

Confidence: 95.00000

DPM **End Engy** EFF Err Cal. Istps Exp. Date Start Engy Counts EFF. Resolution GD-148 203.9034 28-FEB-2010 2992.092 3301.029 0.2467154 1.0606610E-02 50.26978 14898.00 NP-237 171.2268 28-FEB-2010 4432.881 4903.879 12754.00 0.2482167 1.2604078E-02 60.14729 0.2485061 1.2643948E-02 CM-244 50.54896 159.5796 28-FEB-2010 5533.745 5886.569 11276.00

CHAMBER 158 Instrument:

Detector: 33451 **AESS-047** Standard ID

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 17-JUL-2009 09:14:24

> Calibration Count Time 300.0000

17-JUL-2009 14:30:01 Efficiency Calibration Date/Time

Average Efficiency 0.2485719 Average Efficiency Error: 6.8571796E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.4804	28-FEB-2010	2989.224	3299.662	14546.00	0.2487231	1.0697613E-02	60.48595
NP-237	168.3948	28-FEB-2010	4433.214	4902.387	12467.00	0.2466980	1.2531369E-02	67.30831
CM-244	154.6032	28-FEB-2010	5532.016	5882.536	11002.00	0.2502942	1.2740301E-02	63.12125

Instrument: CHAMBER 159

Detector: 76225 Standard ID AESS-042

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 17-JUL-2009 09:14:28

300.0000

Calibration Count Time Efficiency Calibration Date/Time 17-JUL-2009 14:30:14

Average Efficiency 0.2532322 Average Efficiency Error 6.9885729E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	188.7090	28-FEB-2010	2990.518	3300.013	14150.00	0.2532160	1.0896488E-02	50.25048
NP-237	159.6558	28-FEB-2010	4434.310	4906.501	12068.00	0.2519211	1.2803175E-02	54.85251
CM-244	150.5208	28-FEB-2010	5532.775	5886.617	10895.00	0.2545989	1.2961634E-02	49.59791

CHAMBER 160 Instrument:

Detector: 76226 Standard ID **AESS-048**

19-FEB-2008 00:32:27 Standard Reference Date Calibration Analysis Date/Time 17-JUL-2009 09:14:34

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 17-JUL-2009 14:30:32

Average Efficiency: 0.2469152 Average Efficiency Errór: 6.8162913E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	191.8350	28-FEB-2010	2988.201	3297.681	13856.00	0.2439119	1.0500359E-02	46.45536
NP-237	161.5530	28-FEB-2010	4437.389	4904.545	12040.00	0.2483725	1.2623324E-02	55.48813
CM-244	151.1856	28-FEB-2010	5531.162	5885.243	10738.00	0.2498441	1.2722801E-02	48.70280

CHAMBER 161 Instrument:

Detector: 70321 **AESS-001** Standard ID

Standard Reference Date 20-FEB-2008 09:54:53 Calibration Analysis Date/Time 23-JUL-2009 08:06:57

Calibration Count Time 300.0000

23-JUL-2009 13:58:35 Efficiency Calibration Date/Time

Average Efficiency 0.3724494 Average Efficiency Error: 1.0217360E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.6698	28-FEB-2010	2989.000	3299.306	22090.00	0.3575253	1.5279296E-02	62.61223
NP-237	171.0024	28-FEB-2010	4436.547	4904.892	19670.00	0.3833612	1.9362049E-02	79.92251
CM-244	158.1060	28-FEB-2010	5532.420	5884.522	17328.00	0.3856982	1.9506300E-02	61.01914

Instrument: CHAMBER 162

Detector: 70323 Standard ID **AESS-007**

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 30-JUL-2009 08:27:55

300.0000

Calibration Count Time Efficiency Calibration Date/Time 30-JUL-2009 13:57:32

Average Efficiency 0.3758747 Average Efficiency Error 1.0294678E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.7342	28-FEB-2010	2989.629	3301.127	22440.00	0.3667149	1.5669044E-02	58.43632
NP-237	205.0260	28-FEB-2010	4435.610	4904.052	23835.00	0.3874826	1.9536050E-02	74.17772
CM-244	199.6806	28-FEB-2010	5530.978	5882.387	21440.00	0.3783883	1.9095136E-02	56.26302

CHAMBER 163 Instrument:

Detector: 70324 **AESS-002** Standard ID

Standard Reference Date 19-FEB-2008 11:05:22 23-JUL-2009 08:07:06 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 23-JUL-2009 13:58:54

Average Efficiency: 0.3824499 Average Efficiency Error: 1.0474509E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1144	28-FEB-2010	2988.922	3300.358	22181.00	0.3743604	1.5997946E-02	60.90985
NP-237	200.4990	28-FEB-2010	4435.910	4905.359	23404.00	0.3890015	1.9615676E-02	79.84089
CM-244	196.5558	28-FEB-2010	5534.127	5886.809	21671.00	0.3880399	1.9580306E-02	54.00466

CHAMBER 164 Instrument:

70325 Detector **AESS-008** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 23-JUL-2009 08:07:11

Calibration Count Time 300.0000

23-JUL-2009 13:59:02 Efficiency Calibration Date/Time

Average Efficiency 0.3871453 Average Efficiency Error: 1.0598736E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.0418	28-FEB-2010	2991.018	3297.699	23119.00	0.3790087	1.6188504E-02	60.82843
NP-237	209.2716	28-FEB-2010	4434.306	4904.250	24656.00	0.3926844	1.9792885E-02	74.00230
CM-244	199.6488	28-FEB-2010	5533.729	5886.834	22328.00	0.3938190	1.9866610E-02	56.32586

Instrument: CHAMBER 165

Detector: 72544 Standard ID **AESS-003**

15-FEB-2008 13:12:27 Standard Reference Date Calibration Analysis Date/Time 23-JUL-2009 08:07:15

300.0000

Calibration Count Time Efficiency Calibration Date/Time 23-JUL-2009 13:59:11

Average Efficiency 0.3820039 Average Efficiency Error 1.0462373E-02 Confidence: 95.00000

> EFF Err Resolution End Engy Counts EFF.

Cal. Istps DPM Exp. Date Start Engy GD-148 202.9740 28-FEB-2010 2989.844 3302.139 22390.00 0.3726058 1.5921146E-02 65.20252 91.19821 NP-237 203.2080 28-FEB-2010 4434.670 4904.543 24014.00 0.3938612 1.9856445E-02 CM-244 197.2236 28-FEB-2010 5533.515 5886.135 21543.00 0.3846419 1.9409848E-02 65.46077

> **CHAMBER 166** Instrument:

Detector: 74545 Standard ID **AESS-009**

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 23-JUL-2009 08:07:19

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 23-JUL-2009 13:59:23

> Average Efficiency 0.3925092 Average Efficiency Error: 1.0746423E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Enav	Counts	EFF.	EFF Err	Resolution
GD-148	203.3736	28-FEB-2010	2989.919	3301.734	23062.00	0.3829970	1.6359299E-02	52.59587
NP-237	204.0192	28-FEB-2010	4433.352	4903.208	24416.00	0.3988877	2.0107118E-02	75.96468
CM-244	197 2128	28-FFB-2010	5532 473	5885 411	22446 00	0.4005800	2 0206742F-02	58 40631

CHAMBER 167 Instrument:

Detector: 72546 **AESS-004** Standard ID

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 23-JUL-2009 08:07:23

> Calibration Count Time 300.0000

Efficiency Calibration Date/Time 23-JUL-2009 13:59:32

Average Efficiency 0.3888160 Average Efficiency Error: 1.0646137E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.1222	28-FEB-2010	2991.456	3297.909	23075.00	0.3781414	1.6151825E-02	58.07474
NP-237	204.2586	28-FEB-2010	4433.461	4902.876	24396.00	0.3980886	2.0066978E-02	77.66827
CM-244	198.8100	28-FEB-2010	5531.568	5884.192	22354.00	0.3959535	1.9974077E-02	59.99561

Instrument: CHAMBER 168

Detector: 72547 Standard ID AESS-010

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 23-JUL-2009 08:07:28

300.0000

Calibration Count Time Efficiency Calibration Date/Time 23-JUL-2009 13:59:40

Average Efficiency 0.3899174 Average Efficiency Error: 1.0677175E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.0008	28-FEB-2010	2990.191	3302.241	22715.00	0.3798450	1.6227633E-02	58.81176
NP-237	202.9926	28-FEB-2010	4434.272	4904.107	24151.00	0.3965338	1.9990249E-02	77.71660
CM-244	196.2330	28-FEB-2010	5533.178	5885.925	22217.00	0.3986928	2.0113347E-02	60.84048

CHAMBER 169 Instrument:

72548 Detector: **AESS-005** Standard ID

14-FEB-2008 09:35:18 Standard Reference Date Calibration Analysis Date/Time 30-JUL-2009 08:27:59

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 30-JUL-2009 13:57:41

Average Efficiency: 0.3786090 Average Efficiency Error: 1.0367081E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.7452	28-FEB-2010	2992.301	3298.359	22972.00	0.3682704	1.5731057E-02	59.25197
NP-237	209.5938	28-FEB-2010	4433.879	4903.911	24257.00	0.3856828	1.9442579E-02	73.68909
CM-244	202.7478	28-FEB-2010	5533.976	5887.635	22289.00	0.3874188	1.9544041E-02	61.27797

CHAMBER 170 Instrument:

72549 Detector: **AESS-011** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 23-JUL-2009 08:07:36

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 23-JUL-2009 13:59:58

Average Efficiency: 0.3678014 Average Efficiency Error: 1.0071305E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	212.8284	28-FEB-2010	2991.026	3302.433	22648.00	0.3594523	1.5356976E-02	58.76050
NP-237	214.4868	28-FEB-2010	4434.863	4906.064	24165.00	0.3755153	1.8930556E-02	77.34428
CM-244	208.4184	28-FEB-2010	5532.657	5887.477	22059.00	0.3727079	1.8803651E-02	57.81808

Instrument: CHAMBER 171

Detector: 78260 Standard ID AESS-006

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 23-JUL-2009 08:07:41

300.0000

Calibration Count Time Efficiency Calibration Date/Time 23-JUL-2009 14:00:07

Average Efficiency 0.3837917 Average Efficiency Error: 1.0510301E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6952	28-FEB-2010	2989.883	3301.923	22631.00	0.3752889	1.6033715E-02	57.49370
NP-237	204.7038	28-FEB-2010	4434.363	4904.564	23668.00	0.3853487	1.9429620E-02	72.93391
CM-244	195.0060	28-FEB-2010	5534.294	5887.494	21890.00	0.3953083	1.9945232E-02	55.35253

Instrument: CHAMBER 172

Detector: 78772 **AESS-012** Standard ID

14-FEB-2008 13:39:25 Standard Reference Date 23-JUL-2009 08:07:46 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 23-JUL-2009 14:00:15

Average Efficiency: 0.3822835 Average Efficiency Errór: 1.0466998E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.2200	28-FEB-2010	2990.947	3302.414	22849.00	0.3742635	1.5988056E-02	52.36660
NP-237	205.8930	28-FEB-2010	4433.288	4903.064	24169.00	0.3912586	1.9724179E-02	72.41768
CM-244	203 1954	28-FFR-2010	5532 422	5885 508	22239 00	0 3854235	1 9443754F-02	56 46907

CHAMBER 173 Instrument:

74431 Detector **AESS-013** Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 22-JUL-2009 08:09:49

Calibration Count Time 300.0000

22-JUL-2009 14:12:56 Efficiency Calibration Date/Time

Average Efficiency 0.2623188 Average Efficiency Error: 7.2139227E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6544	28-FEB-2010	2991.296	3300.266	16061.00	0.2663769	1.1436811E-02	50.38961
NP-237	210.2526	28-FEB-2010	4436.390	4906.583	16403.00	0.2600285	1.3159030E-02	60.88579
CM-244	201.9108	28-FEB-2010	5534.964	5886.757	14870.00	0.2592480	1.3135729E-02	54.15428

Instrument: CHAMBER 174

Detector: 74432 Standard ID **AESS-019**

19-FEB-2008 11:05:22 Standard Reference Date Calibration Analysis Date/Time 22-JUL-2009 08:09:54

300.0000

Calibration Count Time Efficiency Calibration Date/Time 22-JUL-2009 14:13:10

0.2553943Average Efficiency Average Efficiency Error 7.0305546E-03 Confidence: 95.00000

DPM Cal. Istps Counts EFF. EFF Err Resolution Exp. Date Start Engy End Engy GD-148 204.6468 28-FEB-2010 2990.955 3301.951 14943.00 0.2465975 1.0600956E-02 50.10695 NP-237 202.9140 28-FEB-2010 4436.112 4905.743 16012.00 0.2629998 1.3313278E-02 60.55487 CM-244 199.3140 28-FEB-2010 5531.741 5886.720 14821.00 0.2616092 1.3255978E-02 55.35811

> CHAMBER 175 Instrument:

74433 Detector: Standard ID AESS-014

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 22-JUL-2009 08:09:59

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 22-JUL-2009 14:13:33

> Average Efficiency 0.2539235 Average Efficiency Error: 6.9827326E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	214.7088	28-FEB-2010	2987.808	3301.771	16022.00	0.2520186	1.0820774E-02	50.17014
NP-237	211.7160	28-FEB-2010	4437.598	4902.379	16148.00	0.2542258	1.2867783E-02	58.39753
CM-244	207.3882	28-FEB-2010	5530.438	5887.378	15110.00	0.2563593	1.2986641E-02	52.37697

CHAMBER 176 Instrument:

Detector: 74434 **AESS-020** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 22-JUL-2009 08:10:03

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 22-JUL-2009 14:13:51

Average Efficiency 0.2596514 Average Efficiency Error: 7.1437038E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	205.5870	28-FEB-2010	2988.124	3298.749	15474.00	0.2542223	1.0921958E-02	48.05445
NP-237	203.4984	28-FEB-2010	4433.658	4904.539	16076.00	0.2633027	1.3327949E-02	56.64418
CM-244	197.1096	28-FEB-2010	5533.031	5884.495	14789.00	0.2641215	1.3383611E-02	51.45706

Instrument: CHAMBER 177

Detector: 74435 Standard ID AESS-015

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 22-JUL-2009 08:10:07

300.0000

Calibration Count Time Efficiency Calibration Date/Time 22-JUL-2009 14:14:02

Average Efficiency 0.2685861 Average Efficiency Error: 7.3855612E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0270	28-FEB-2010	2991.035	3300.055	16129.00	0.2670162	1.1463443E-02	46.17820
NP-237	200.6460	28-FEB-2010	4436.061	4906.072	16230.00	0.2696093	1.3645601E-02	58.26474
CM-244	195.9270	28-FEB-2010	5534.094	5885.629	15017.00	0.2697915	1.3668223E-02	52.64664

CHAMBER 178 Instrument:

Detector: 74436 **AESS-021** Standard ID

19-FEB-2008 15:31:52 Standard Reference Date Calibration Analysis Date/Time 22-JUL-2009 08:10:12

300.0000 Calibration Count Time

Efficiency Calibration Date/Time 22-JUL-2009 14:14:14

Average Efficiency: 0.2563734 7.0544411E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.3608	28-FEB-2010	2992.331	3301.630	15324.00	0.2483911	1.0673227E-02	46.26046
NP-237	210.1548	28-FEB-2010	4433.348	4903.642	16496.00	0.2615961	1.3237508E-02	57.60064
CM-244	200.7390	28-FEB-2010	5531.998	5883.700	15038.00	0.2635517	1.3351870E-02	53.76401

CHAMBER 179 Instrument:

74437 Detector AESS-016 Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 22-JUL-2009 08:10:16

> Calibration Count Time 300.0000

22-JUL-2009 14:14:24 Efficiency Calibration Date/Time

Average Efficiency 0.2654315 Average Efficiency Error: 7.3000593E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0534	28-FEB-2010	2991.102	3300.165	15895.00	0.2631131	1.1298665E-02	48.51485
NP-237	199.3962	28-FEB-2010	4436.443	4906.617	16075.00	0.2687030	1.3601316E-02	57.52364
CM-244	198.6402	28-FEB-2010	5534.901	5886.605	14985.00	0.2655179	1.3452120E-02	51.10583

Instrument: CHAMBER 180

Detector: 74438 Standard ID **AESS-022**

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 22-JUL-2009 08:10:21

300.0000

Calibration Count Time Efficiency Calibration Date/Time 22-JUL-2009 14:14:36

0.2505249Average Efficiency Average Efficiency Error 6.8937857E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	209.6724	28-FEB-2010	2988.611	3299.257	15266.00	0.2459229	1.0567908E-02	47.44321
NP-237	206.8830	28-FEB-2010	4433.245	4903.299	15791.00	0.2543839	1.2879343E-02	51.57590
CM-244	203.0208	28-FEB-2010	5535.594	5886.061	14621.00	0.2534862	1.2846692E-02	51.76523

CHAMBER 181 Instrument:

Detector: 74439 Standard ID **AESS-017**

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 22-JUL-2009 08:10:26

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 22-JUL-2009 14:14:47

> Average Efficiency 0.2548543 Average Efficiency Error 7.0099598E-03

Confidence: 95.00000

DPM **End Engy** EFF Err Cal. Istps Exp. Date Start Engy Counts EFF. Resolution GD-148 210.0798 28-FEB-2010 2988.239° 3301.914 0.2552872 1.0962813E-02 48.35796 15878.00 NP-237 208.5846 57.35833 28-FEB-2010 4437.080 4901.757 16198.00 0.2588415 1.3100917E-02 CM-244 205.5828 28-FEB-2010 5535.131 5886.836 14634.00 0.2505288 1.2696699E-02 51.18034

CHAMBER 182 Instrument:

74440 Detector **AESS-023** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 22-JUL-2009 08:10:30

Calibration Count Time 300.0000

22-JUL-2009 14:14:57 Efficiency Calibration Date/Time

Average Efficiency 0.2578707 Average Efficiency Error: 7.0930445E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	207.4764	28-FEB-2010	2991.998	3301.429	15699.00	0.2555752	1.0977317E-02	46.97070
NP-237	207.4998	28-FEB-2010	4432.415	4901.861	16221.00	0.2605498	1.3187178E-02	56.46945
CM-244	199.8804	28-FEB-2010	5533.907	5884.511	14682.00	0.2584959	1.3099929E-02	47.10158

Instrument: CHAMBER 183

Detector: 74441 Standard ID **AESS-018**

14-FEB-2008 17:45:04 Standard Reference Date Calibration Analysis Date/Time 22-JUL-2009 08:10:35

300.0000

Calibration Count Time Efficiency Calibration Date/Time 22-JUL-2009 14:15:07

0.2636590 Average Efficiency Average Efficiency Error 7.2516296E-03 Confidence: 95.00000

DPM Cal. Istps EFF Err Resolution Exp. Date Start Engy End Engy Counts EFF. GD-148 202.1856 28-FEB-2010 2989.448 3298.556 16019.00 0.2676203 1.1490691E-02 47.36681 NP-237 208.8990 28-FEB-2010 4434.882 4905.025 16143.00 0.2575647 1.3036844E-02 61.28753 CM-244 198.1458 28-FEB-2010 5533.221 5884.854 14903.00 0.2647125 1.3412292E-02 54.17869

> CHAMBER 184 Instrument:

Detector: 74442 Standard ID AESS-024

Standard Reference Date 14-FEB-2008 21:55:55 22-JUL-2009 08:10:39 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 22-JUL-2009 14:15:18

> Average Efficiency 0.2589915 Average Efficiency Error: 7.1259094E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.5218	28-FEB-2010	2989.235	3300.018	15286.00	0.2536818	1.0901084E-02	45.69374
NP-237	205.6662	28-FEB-2010	4434.314	4904.409	16135.00	0.2614885	1.3235523E-02	58.78146
CM-244	198.3060	28-FEB-2010	5531.386	5887.098	14902.00	0.2644547	1.3399277E-02	53.47013

CHAMBER 185 Instrument:

68615 Detector **AESS-025** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 22-JUL-2009 08:10:43

> Calibration Count Time 300.0000

22-JUL-2009 14:15:30 Efficiency Calibration Date/Time

0.2565642 Average Efficiency Average Efficiency Error: 7.0740697E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.5670	28-FEB-2010	2991.225	3297.857	15033.00	0.2596380	1.1160337E-02	55.72531
NP-237	167.9916	28-FEB-2010	4436.385	4903.692	12852.00	0.2550071	1.2947261E-02	59.11316
CM-244	157.2432	28-FEB-2010	5533.756	5883.696	11351.00	0.2539946	1.2921941E-02	56.16187

Instrument: CHAMBER 186

Detector: 68616 Standard ID **AESS-031**

18-FEB-2008 11:28:15 Standard Reference Date Calibration Analysis Date/Time 22-JUL-2009 08:10:48

300.0000

Calibration Count Time Efficiency Calibration Date/Time 22-JUL-2009 14:15:43

0.2530972 Average Efficiency Average Efficiency Error 6.9825449E-03 Confidence: 95.00000

DPM Cal. Istps EFF Err Resolution Exp. Date Start Engy End Engy Counts EFF. GD-148 193.6650 28-FEB-2010 2991.440 3298.282 14435.00 0.2517332 1.0828621E-02 55.45393 NP-237 162.9186 28-FEB-2010 4433.254 4901.541 12537.00 0.2565026 1.3028130E-02 59.45676 CM-244 153.1968 28-FEB-2010 5533.251 5884.261 10964.00 0.2517129 1.2813604E-02 55.46026

> Instrument: CHAMBER 187

Detector: 68620 Standard ID **AESS-026**

Standard Reference Date 15-FEB-2008 09:06:52 22-JUL-2009 08:10:52 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 22-JUL-2009 14:15:58

> Average Efficiency 0.2501889 Average Efficiency Error: 7.3357723E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.5072	28-FEB-2010	2989.912	3299.166	15000.00	0.2539414	1.2865975E-02	52.23053
NP-237	168.0294	28-FEB-2010	4432.442	4904.149	12738.00	0.2526287	1.2828344E-02	58.21870
CM-244	160.5822	28-FEB-2010	5535.067	5883.156	11152.00	0.2443892	1.2436978E-02	54.57392

CHAMBER 188 Instrument:

Detector: 68621 **AESS-032** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 22-JUL-2009 08:10:57

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 22-JUL-2009 14:16:10

0.2601093 Average Efficiency Average Efficiency Error: 7.1711414E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.2364	28-FEB-2010	2988.283	3302.165	15025.00	0.2599137	1.1172294E-02	51.37601
NP-237	165.9822	28-FEB-2010	4433.129	4903.527	12962.00	0.2602972	1.3214173E-02	62.37115
CM-244	153.7938	28-FEB-2010	5532.390	5884.553	11377.00	0.2601953	1.3236898E-02	52.05467

Instrument: CHAMBER 189

Detector: 68622 Standard ID **AESS-027**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 22-JUL-2009 08:11:01

300.0000

Calibration Count Time Efficiency Calibration Date/Time 22-JUL-2009 14:16:25

Average Efficiency 0.2590416 Average Efficiency Error 7.5966278E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	193.4238	28-FEB-2010	2987.652	3299.552	14591.00	0.2547911	1.2913714E-02	51.68600
NP-237	161.6154	28-FEB-2010	4434.579	4902.841	12573.00	0.2592825	1.3168799E-02	58.17202
CM-244	148.1754	28-FEB-2010	5534.475	5885.420	11096.00	0.2633716	1.3404469E-02	50.36570

Instrument: CHAMBER 190

Detector: 68623 Standard ID **AESS-033**

18-FEB-2008 11:28:15 Standard Reference Date Calibration Analysis Date/Time 22-JUL-2009 08:11:06

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 22-JUL-2009 14:16:38

Average Efficiency: 0.2606415 7.1893386E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	192.4158	28-FEB-2010	2989.900	3302.388	14653.00	0.2571782	1.1059794E-02	51.45757
NP-237	161.7816	28-FEB-2010	4434.198	4903.145	12826.00	0.2641300	1.3411093E-02	58.05247
CM-244	147.2670	28-FEB-2010	5535.637	5887.028	10980.00	0.2622307	1.3348678E-02	51.95362

CHAMBER 191 Instrument:

68624 Detector **AESS-028** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 22-JUL-2009 08:11:10

Calibration Count Time 300.0000

22-JUL-2009 14:17:15 Efficiency Calibration Date/Time

Average Efficiency 0.2621158 Average Efficiency Error: 7.6803956E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.6542	28-FEB-2010	2988.514	3302.389	15421.00	0.2608921	1.3213424E-02	48.76201
NP-237	168.1992	28-FEB-2010	4435.396	4902.283	13449.00	0.2665235	1.3522904E-02	61.15327
CM-244	156.7614	28-FEB-2010	5534.230	5883.124	11542.00	0.2591464	1.3180151E-02	50.76146

Instrument: CHAMBER 192

Detector: 74430 Standard ID AESS-034

18-FEB-2008 11:28:15 Standard Reference Date Calibration Analysis Date/Time 22-JUL-2009 08:11:15

300.0000

Calibration Count Time Efficiency Calibration Date/Time 22-JUL-2009 14:17:47

0.2610474 Average Efficiency Average Efficiency Error 7.1950918E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.5488	28-FEB-2010	2989.042	3298.270	15338.00	0.2583001	1.1098851E-02	47.63512
NP-237	167.2962	28-FEB-2010	4436.778	4903.324	13156.00	0.2621002	1.3302793E-02	56.66595
CM-244	154.4388	28-FEB-2010	5534.357	5882.529	11589.00	0.2639953	1.3425920E-02	46.57637

CHAMBER 193 Instrument:

Detector: 68627 Standard ID **AESS-029**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 22-JUL-2009 08:11:19

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 22-JUL-2009 14:18:09

> Average Efficiency 0.2640715 7.7369036E-03 Average Efficiency Error

Confidence: 95.00000

End Engy Cal. Istps DPM Exp. Date Start Engy Counts EFF. EFF Err Resolution GD-148 201.5742 28-FEB-2010 2988.069 3299.225 0.2598549 1.3159974E-02 52.58962 15508.00 NP-237 4433.121 169.7700 28-FEB-2010 4901.609 13394.00 0.2629541 1.3342631E-02 58.77226 CM-244 154.8234 28-FEB-2010 5534.158 5885.907 11872.00 0.2698340 1.3717437E-02 53.66179

CHAMBER 194 Instrument:

Detector: 68635 **AESS-035** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 22-JUL-2009 08:11:24

Calibration Count Time 300.0000

22-JUL-2009 14:18:45 Efficiency Calibration Date/Time

Average Efficiency 0.2549567 Average Efficiency Error: 7.0293345E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.6666	28-FEB-2010	2988.572	3300.603	15135.00	0.2573063	1.1058749E-02	49.25695
NP-237	168.2934	28-FEB-2010	4436.435	4905.175	12918.00	0.2558570	1.2989412E-02	62.01285
CM-244	158.8128	28-FEB-2010	5532.274	5883.671	11329.00	0.2509550	1.2767645E-02	52.44061

Instrument: CHAMBER 195

Detector: 68636 Standard ID **AESS-030**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 22-JUL-2009 08:11:29

300.0000

Calibration Count Time Efficiency Calibration Date/Time 22-JUL-2009 14:19:31

Average Efficiency 0.2573034 Average Efficiency Error 7.5419121E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.9792	28-FEB-2010	2988.629	3301.408	14891.00	0.2527547	1.2807086E-02	48.20201
NP-237	166.3758	28-FEB-2010	4433.877	4902.925	13025.00	0.2606431	1.3231294E-02	57.67042
CM-244	157.1856	28-FEB-2010	5535.397	5886.705	11566.00	0.2588032	1.3162592E-02	51.27964

Instrument: CHAMBER 196

Detector: 68637 Standard ID AESS-036

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 22-JUL-2009 08:11:34

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 22-JUL-2009 14:19:51

Average Efficiency: 0.2566788 7.0757568E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	201.3204	28-FEB-2010	2990.343	3302.501	15220.00	0.2553304	1.0972751E-02	52.52193
NP-237	167.4312	28-FEB-2010	4433.338	4901.979	12956.00	0.2579251	1.3093841E-02	56.52662
CM-244	156.4188	28-FEB-2010	5534.144	5885.395	11442.00	0.2573523	1.3090876E-02	54.16713

CHAMBER 197 Instrument:

Detector: 78894 **AESS-037** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 23-JUL-2009 07:57:39

Calibration Count Time 300.0000

23-JUL-2009 14:00:24 Efficiency Calibration Date/Time

Average Efficiency 0.2568228 Average Efficiency Error: 7.0815496E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7372	28-FEB-2010	2989.389	3297.669	14834.00	0.2533745	1.0893730E-02	54.12946
NP-237	167.1294	28-FEB-2010	4433.236	4904.076	13081.00	0.2608898	1.3242440E-02	59.82949
CM-244	154.7664	28-FEB-2010	5534.086	5887.165	11341.00	0.2578318	1.3117233E-02	57.39178

Instrument: CHAMBER 198

Detector: 78895 Standard ID **AESS-043**

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 23-JUL-2009 07:57:47

300.0000

Calibration Count Time Efficiency Calibration Date/Time 23-JUL-2009 14:00:36

Average Efficiency 0.2554221 Average Efficiency Error 7.0427968E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7708	28-FEB-2010	2989.288	3302.314	14813.00	0.2529756	1.0876846E-02	54.48853
NP-237	168.7422	28-FEB-2010	4436.287	4906.224	13147.00	0.2597000	1.3181067E-02	56.83169
CM-244	156.3252	28-FEB-2010	5534.818	5887.000	11318.00	0.2547599	1.2961345E-02	56.23568

CHAMBER 199 Instrument:

Detector: 78896 Standard ID **AESS-038**

18-FEB-2008 15:31:47 Standard Reference Date Calibration Analysis Date/Time 23-JUL-2009 07:57:56

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 23-JUL-2009 14:00:47

Average Efficiency: 0.2512973 Average Efficiency Errór: 6.9297734E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1408	28-FEB-2010	2990.202	3299.048	14855.00	0.2506810	1.0777651E-02	51.46595
NP-237	170.0886	28-FEB-2010	4435.598	4906.357	12647.00	0.2478395	1.2586436E-02	58.09747
CM-244	157.7460	28-FEB-2010	5530.513	5883.049	11473.00	0.2558941	1.3016121E-02	53.79463

CHAMBER 200 Instrument:

Detector: 78900 **AESS-044** Standard ID

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 23-JUL-2009 07:58:04

Calibration Count Time 300.0000

23-JUL-2009 14:00:57 Efficiency Calibration Date/Time

Average Efficiency 0.2672527 Average Efficiency Error: 7.3646023E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4510	28-FEB-2010	2989.598	3302.306	15546.00	0.2700108	1.1599314E-02	51.74545
NP-237	166.6248	28-FEB-2010	4436.820	4902.466	13287.00	0.2657169	1.3484498E-02	57.34525
CM-244	155.8290	28-FEB-2010	5532.933	5886.480	11743.00	0.2650634	1.3477416E-02	51.61598

Instrument: CHAMBER 201

Detector: 78902 Standard ID **AESS-039**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 23-JUL-2009 07:58:10

300.0000

Calibration Count Time Efficiency Calibration Date/Time 23-JUL-2009 14:01:05

Average Efficiency 0.2606938 Average Efficiency Error 7.1896687E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	192.2418	28-FEB-2010	2989.239	3302.324	14811.00	0.2602134	1.1188080E-02	47.14003
NP-237	159.1506	28-FEB-2010	4432.525	4903.539	12448.00	0.2606924	1.3242436E-02	55.19216
CM-244	151.7142	28-FEB-2010	5534.042	5887.523	11271.00	0.2613738	1.3298883E-02	50.86152

CHAMBER 202 Instrument:

Detector: 78903 **AESS-045** Standard ID

19-FEB-2008 00:32:27 Standard Reference Date Calibration Analysis Date/Time 23-JUL-2009 07:58:17

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 23-JUL-2009 14:01:14

Average Efficiency: 0.2637661 7.2755860E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	186.9936	28-FEB-2010	2988.965	3301.750	14586.00	0.2634446	1.1330210E-02	45.61659
NP-237	160.8066	28-FEB-2010	4435.262	4905.190	12706.00	0.2633806	1.3374711E-02	55.61831
CM-244	145.8384	28-FEB-2010	5533.929	5886.269	10972.00	0.2646115	1.3470060E-02	49.12627

CHAMBER 203 Instrument:

Detector: 78905 **AESS-040** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 23-JUL-2009 07:58:24

Calibration Count Time 300.0000

23-JUL-2009 14:01:22 Efficiency Calibration Date/Time

Average Efficiency 0.2569410 Average Efficiency Error: 7.0852954E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4828	28-FEB-2010	2990.960	3299.739	14972.00	0.2599902	1.1176325E-02	44.74440
NP-237	166.8174	28-FEB-2010	4435.540	4905.766	12710.00	0.2539164	1.2894144E-02	57.74120
CM-244	155.0100	28-FEB-2010	5534.337	5886.308	11275.00	0.2558869	1.3019669E-02	47.66172

Instrument: CHAMBER 204

Detector: 78907 Standard ID AESS-046

Standard Reference Date 19-FEB-2008 19:35:48 Calibration Analysis Date/Time 23-JUL-2009 07:58:28

300.0000

Calibration Count Time Efficiency Calibration Date/Time 23-JUL-2009 14:01:31

Average Efficiency 0.2506487 Average Efficiency Error 6.9159763E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.7474	28-FEB-2010	2989.953	3297.878	14336.00	0.2485577	1.0693511E-02	50.84674
NP-237	164.6658	28-FEB-2010	4437.339	4902.439	12528.00	0.2535195	1.2876903E-02	55.89592
CM-244	151.3824	28-FEB-2010	5531.727	5884.400	10796.00	0.2508073	1.2771029E-02	51.62991

CHAMBER 205 Instrument:

Detector: 78908 **AESS-041** Standard ID

18-FEB-2008 15:31:47 Standard Reference Date 23-JUL-2009 07:58:33 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 23-JUL-2009 14:01:40

Average Efficiency: 0.2503343 Average Efficiency Errór: 6.9021145E-03

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.9034	28-FEB-2010	2991.664	3299.649	14924.00	0.2472031	1.0627222E-02	48.93098
NP-237	171.2268	28-FEB-2010	4434.348	4904.923	13015.00	0.2533501	1.2860725E-02	61.87793
CM-244	159.5796	28-FEB-2010	5534.662	5887.628	11424.00	0.2518927	1.2813480E-02	52.59251

CHAMBER 206 Instrument:

Detector: 78909 **AESS-047** Standard ID

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 23-JUL-2009 07:58:38

Calibration Count Time 300.0000

23-JUL-2009 14:01:49 Efficiency Calibration Date/Time

Average Efficiency 0.2562930 Average Efficiency Error: 7.0664333E-03

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.4804	28-FEB-2010	2991.007	3298.921	15006.00	0.2566382	1.1031752E-02	49.35140
NP-237	168.3948	28-FEB-2010	4432.777	4902.746	12926.00	0.2558552	1.2989211E-02	55.62066
CM-244	154.6032	28-FEB-2010	5531.452	5883.730	11261.00	0.2562518	1.3038474E-02	55.87610

Instrument: CHAMBER 207

Detector: 78910 Standard ID AESS-042

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 23-JUL-2009 07:58:42

300.0000

Calibration Count Time Efficiency Calibration Date/Time 23-JUL-2009 14:01:57

Average Efficiency 0.2558556 Average Efficiency Error 7.0599136E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	188.7090	28-FEB-2010	2988.143	3301.594	14367.00	0.2571380	1.1062090E-02	47.38946
NP-237	159.6558	28-FEB-2010	4437.296	4902.779	12320.00	0.2572077	1.3067513E-02	57.42012
CM-244	150.5208	28-FEB-2010	5532.449	5885.271	10817.00	0.2528071	1.2872322E-02	52.11042

CHAMBER 208 Instrument:

Detector: 78911 **AESS-048** Standard ID

19-FEB-2008 00:32:27 Standard Reference Date 23-JUL-2009 07:58:46 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 23-JUL-2009 14:02:06

Average Efficiency: 0.2527668 6.9748992E-03 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	191.8350	28-FEB-2010	2989.612	3298.165	14243.00	0.2507517	1.0789137E-02	50.79447
NP-237	161.5530	28-FEB-2010	4434.097	4904.804	12430.00	0.2564567	1.3027546E-02	58.53157
CM-244	151.1856	28-FEB-2010	5534.389	5887.108	10827.00	0.2520371	1.2832657E-02	54.35335

CHAMBER 209 Instrument:

Detector: 79188 **AESS-001** Standard ID

Standard Reference Date 20-FEB-2008 09:54:53 Calibration Analysis Date/Time 27-JUL-2009 11:47:13

> Calibration Count Time 300.0000

28-JUL-2009 13:59:46 Efficiency Calibration Date/Time

Average Efficiency 0.3720503 Average Efficiency Error: 1.0203380E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	208.6698	28-FEB-2010	2989.310	3300.226	22310.00	0.3611241	1.5431225E-02	61.07782
NP-237	171.0024	28-FEB-2010	4435.667	4905.853	19559.00	0.3812561	1.9256754E-02	78.47396
CM-244	158.1060	28-FEB-2010	5530.947	5884.845	17057.00	0.3798239	1.9212671E-02	62.16251

Instrument: CHAMBER 210

Detector: 79189 Standard ID AESS-002

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 27-JUL-2009 11:47:19

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 13:59:55

Average Efficiency 0.3939427Average Efficiency Error: 1.0785731E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1144	28-FEB-2010	2990.620	3297.977	22918.00	0.3868399	1.6524704E-02	56.73992
NP-237	200.4990	28-FEB-2010	4435.731	4905.552	24207.00	0.4024462	2.0287881E-02	74.58759
CM-244	196.5558	28-FEB-2010	5534.352	5886.824	22110.00	0.3960794	1.9982373E-02	58.11366

CHAMBER 211 Instrument:

Detector: 79190 Standard ID **AESS-003**

15-FEB-2008 13:12:27 Standard Reference Date Calibration Analysis Date/Time 27-JUL-2009 11:47:25

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:00:03

Average Efficiency: 0.3799735 Average Efficiency Errór: 1.0408110E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.9740	28-FEB-2010	2988.121	3301.259	22155.00	0.3687188	1.5757136E-02	56.93997
NP-237	203.2080	28-FEB-2010	4436.737	4902.524	23738.00	0.3893826	1.9632483E-02	71.62598
CM-244	197.2236	28-FEB-2010	5532.952	5886.368	21725.00	0.3879907	1.9577414E-02	62.12684

CHAMBER 212 Instrument:

Detector: 79191 **AESS-004** Standard ID

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 27-JUL-2009 11:47:32

Calibration Count Time 300.0000

28-JUL-2009 14:00:11 Efficiency Calibration Date/Time

Average Efficiency 0.3809828 Average Efficiency Error: 1.0432592E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.1222	28-FEB-2010	2989.135	3301.447	22739.00	0.3726791	1.5921319E-02	60.42460
NP-237	204.2586	28-FEB-2010	4434.433	4904.665	23808.00	0.3885271	1.9588865E-02	78.17927
CM-244	198.8100	28-FEB-2010	5534.267	5887.313	21781.00	0.3859496	1.9473951E-02	58.94521

Instrument: CHAMBER 213

Detector: 79192 Standard ID **AESS-005**

Standard Reference Date 14-FEB-2008 09:35:18 Calibration Analysis Date/Time 27-JUL-2009 11:47:39

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 14:00:20

Average Efficiency 0.3632684 Average Efficiency Error: 9.9503463E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.7452	28-FEB-2010	2990.470	3298.036	22131.00	0.3547624	1.5160903E-02	63.50857
NP-237	209.5938	28-FEB-2010	4436.689	4901.687	23169.00	0.3684698	1.8581852E-02	80.13203
CM-244	202.7478	28-FEB-2010	5531.037	5883.842	21347.00	0.3709584	1.8720919E-02	62.77599

CHAMBER 214 Instrument:

Detector: 79193 Standard ID AESS-006

14-FEB-2008 09:35:18 Standard Reference Date 27-JUL-2009 11:47:45 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:00:29

Average Efficiency: 0.3836091 Average Efficiency Error: 1.0504629E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6952	28-FEB-2010	2990.553	3297.788	22693.00	0.3763517	1.6078612E-02	56.27348
NP-237	204.7038	28-FEB-2010	4436.227	4901.574	23647.00	0.3850555	1.9414932E-02	74.54285
CM-244	195.0060	28-FEB-2010	5531.780	5885.252	21759.00	0.3931459	1.9837169E-02	56.86452

CHAMBER 215 Instrument:

Detector: 79194 **AESS-007** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 27-JUL-2009 11:47:51

Calibration Count Time 300.0000

28-JUL-2009 14:00:38 Efficiency Calibration Date/Time

Average Efficiency 0.3803512 Average Efficiency Error: 1.0415906E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.7342	28-FEB-2010	2989.364	3302.121	22674.00	0.3705170	1.5829490E-02	58.59007
NP-237	205.0260	28-FEB-2010	4437.186	4903.222	23893.00	0.3884499	1.9584402E-02	72.67680
CM-244	199.6806	28-FEB-2010	5534.359	5882.968	21950.00	0.3872738	1.9539375E-02	61.41080

Instrument: CHAMBER 216

Detector: 79195 Standard ID AESS-008

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 27-JUL-2009 11:47:57

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 14:00:46

Average Efficiency 0.3731616 Average Efficiency Error: 1.0220583E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.0418	28-FEB-2010	2990.730	3302.451	22182.00	0.3636904	1.5542008E-02	60.14384
NP-237	209.2716	28-FEB-2010	4434.761	4905.361	23781.00	0.3787806	1.9097654E-02	75.39853
CM-244	199.6488	28-FEB-2010	5530.680	5884.547	21648.00	0.3820059	1.9275997E-02	60.78160

CHAMBER 217 Instrument:

Detector: 79410 **AESS-009** Standard ID

19-FEB-2008 11:05:22 Standard Reference Date 27-JUL-2009 11:48:04 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:00:55

Average Efficiency: 0.3778184 Average Efficiency Error: 1.0346431E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.3736	28-FEB-2010	2988.264	3300.395	22447.00	0.3728177	1.5929710E-02	59.20551
NP-237	204.0192	28-FEB-2010	4433.666	4904.432	23270.00	0.3801880	1.9172091E-02	76.02460
CM-244	197.2128	28-FEB-2010	5535.108	5883.550	21438.00	0.3827657	1.9316062E-02	61.20031

CHAMBER 218 Instrument:

Detector: 79411 **AESS-010** Standard ID

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 27-JUL-2009 11:48:10

Calibration Count Time 300.0000

28-JUL-2009 14:01:03 Efficiency Calibration Date/Time

0.3940997 Average Efficiency Average Efficiency Error: 1.0791861E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.0008	28-FEB-2010	2991.480	3299.092	22843.00	0.3820206	1.6319500E-02	60.57081
NP-237	202.9926	28-FEB-2010	4433.463	4904.366	24456.00	0.4015617	2.0241646E-02	78.79704
CM-244	196.2330	28-FEB-2010	5534.949	5883.207	22582.00	0.4054522	2.0451389E-02	60.53443

Instrument: CHAMBER 219

Detector: 79412 Standard ID **AESS-011**

Standard Reference Date 14-FEB-2008 13:39:25 Calibration Analysis Date/Time 27-JUL-2009 11:48:16

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 14:01:48

Average Efficiency 0.3662424 Average Efficiency Error: 1.0028155E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	212.8284	28-FEB-2010	2991.558	3298.478	22686.00	0.3600933	1.5384067E-02	58.88719
NP-237	214.4868	28-FEB-2010	4436.677	4902.329	24003.00	0.3730206	1.8805804E-02	79.43044
CM-244	208.4184	28-FEB-2010	5533.300	5887.374	21804.00	0.3685999	1.8598294E-02	60.23553

CHAMBER 220 Instrument:

Detector: 79413 **AESS-012** Standard ID

14-FEB-2008 13:39:25 Standard Reference Date 27-JUL-2009 11:48:23 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:02:00

Average Efficiency: 0.3800345 1.0404716E-02 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	206.2200	28-FEB-2010	2990.238	3297.635	22946.00	0.3758968	1.6057028E-02	61.95944
NP-237	205.8930	28-FEB-2010	4436.067	4906.404	23867.00	0.3863981	1.9481128E-02	76.81815
CM-244	203.1954	28-FEB-2010	5530.768	5883.799	21903.00	0.3797704	1.9161157E-02	61.74461

CHAMBER 221 Instrument:

Detector: 79414 **AESS-013** Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 27-JUL-2009 11:48:29

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:02:09

Average Efficiency 0.3757081 Average Efficiency Error: 1.0287202E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.6544	28-FEB-2010	2988.031	3301.906	22489.00	0.3730499	1.5939282E-02	52.97857
NP-237	210.2526	28-FEB-2010	4434.520	4906.347	23758.00	0.3766535	1.8990556E-02	73.94412
CM-244	201.9108	28-FEB-2010	5532.427	5886.301	21697.00	0.3785694	1.9102205E-02	60.49401

Instrument: CHAMBER 222

Detector: 79415 Standard ID AESS-014

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 27-JUL-2009 11:48:37

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 14:02:19

Average Efficiency 0.3486046Average Efficiency Error: 9.5541952E-03

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	214.7088	28-FEB-2010	2988.828	3299.834	21348.00	0.3358505	1.4359185E-02	53.28439
NP-237	211.7160	28-FEB-2010	4436.567	4903.132	22784.00	0.3587198	1.8092748E-02	75.86924
CM-244	207.3882	28-FEB-2010	5532.999	5885.314	21129.00	0.3587538	1.8106727E-02	62.25880

CHAMBER 223 Instrument:

Detector: 79416 **AESS-015** Standard ID

14-FEB-2008 17:45:04 Standard Reference Date 27-JUL-2009 11:48:43 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:02:29

Average Efficiency: 0.3842350 1.0522764E-02 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0270	28-FEB-2010	2988.719	3302.203	22642.00	0.3749019	1.6017098E-02	52.37010
NP-237	200.6460	28-FEB-2010	4434.717	4901.802	23720.00	0.3940558	1.9868227E-02	70.08206
CM-244	195.9270	28-FEB-2010	5534.370	5883.775	21616.00	0.3886585	1.9611971E-02	55.34917

CHAMBER 224 Instrument:

Detector: 79417 **AESS-016** Standard ID

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 27-JUL-2009 11:48:51

Calibration Count Time 300.0000

28-JUL-2009 14:02:37 Efficiency Calibration Date/Time

Average Efficiency 0.3844876 Average Efficiency Error: 1.0532029E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.0534	28-FEB-2010	2991.902	3302.451	22483.00	0.3722161	1.5903715E-02	55.77303
NP-237	199.3962	28-FEB-2010	4433.496	4905.621	23986.00	0.4009725	2.0215105E-02	74.29817
CM-244	198.6402	28-FEB-2010	5531.081	5884.107	21855.00	0.3876156	1.9557375E-02	62.08027

Instrument: CHAMBER 225

Detector: 79418 Standard ID **AESS-017**

Standard Reference Date 14-FEB-2008 17:45:04 Calibration Analysis Date/Time 27-JUL-2009 11:48:57

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 14:02:46

Average Efficiency 0.3784786 Average Efficiency Error: 1.0361850E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	210.0798	28-FÉB-2010	2989.698	3301.928	23097.00	0.3714026	1.5863828E-02	56.57831
NP-237	208.5846	28-FEB-2010	4436.047	4902.115	24170.00	0.3862496	1.9471634E-02	72.01178
CM-244	205.5828	28-FEB-2010	5533.662	5882.674	22249.00	0.3812986	1.9235564E-02	61.39241

CHAMBER 226 Instrument:

Detector: 79419 **AESS-018** Standard ID

14-FEB-2008 17:45:04 Standard Reference Date 27-JUL-2009 11:49:04 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:02:55

Average Efficiency: 0.3808596 Average Efficiency Errór: 1.0428368E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	202.1856	28-FEB-2010	2990.229	3299.048	22549.00	0.3767624	1.6097387E-02	54.38462
NP-237	208.8990	28-FEB-2010	4436.278	4902.399	23852.00	0.3805940	1.9188609E-02	81.14477
CM-244	198.1458	28-FEB-2010	5532.943	5886.259	21774.00	0.3871692	1.9535474E-02	57.36676

CHAMBER 227 Instrument:

79420 Detector: **AESS-019** Standard ID

Standard Reference Date 19-FEB-2008 11:05:22 Calibration Analysis Date/Time 27-JUL-2009 11:49:10

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:03:04

Average Efficiency 0.3843335 Average Efficiency Error: 1.0524626E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	204.6468	28-FEB-2010	2988.495	3300.898	22690.00	0.3745091	1.5999891E-02	56.91222
NP-237	202.9140	28-FEB-2010	4435.132	4906.286	23781.00	0.3906433	1.9695761E-02	72.78109
CM-244	199.3140	28-FEB-2010	5532.133	5886.196	22245.00	0.3930259	1.9827209E-02	61.27127

Instrument: CHAMBER 228

Detector: 79421 Standard ID **AESS-020**

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 27-JUL-2009 11:49:16

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 14:03:13

Average Efficiency 0.3819269 Average Efficiency Error: 1.0460673E-02 Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	205.5870	28-FEB-2010	2990.613	3298.829	22551.00	0.3705553	1.5832171E-02	51.70354
NP-237	203.4984	28-FEB-2010	4434.639	4905.792	23625.00	0.3869812	1.9512173E-02	70.48917
CM-244	197.1096	28-FEB-2010	5531.072	5884.538	22079.00	0.3946491	1.9910410E-02	54.39862

Instrument: CHAMBER 229

Detector: 79422 **AESS-021** Standard ID

19-FEB-2008 15:31:52 Standard Reference Date 27-JUL-2009 11:49:22 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:03:22

Average Efficiency: 0.3798401 Average Efficiency Errór: 1.0399979E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Enav	Counts	EFF.	EFF Err	Resolution
GD-148	208.3608	28-FEB-2010	2990.805	3298.464	23010.00	0.3730097	1.5933167E-02	54.32673
NP-237	210.1548	28-FEB-2010	4434.226	4906.242	23918.00	0.3793714	1.9126525E-02	69.91097
CM-244	200 7390	28-FFR-2010	5533 427	5882 943	22277 00	0.3907950	1 9714409F-02	60 50524

CHAMBER 230 Instrument:

79423 Detector **AESS-022** Standard ID

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 27-JUL-2009 11:49:29

Calibration Count Time 300.0000

28-JUL-2009 14:03:31 Efficiency Calibration Date/Time

Average Efficiency 0.3762562 Average Efficiency Error: 1.0304146E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	209.6724	28-FEB-2010	2989.308	3297.622	22698.00	0.3656987	1.5623449E-02	50.65837
NP-237	206.8830	28-FEB-2010	4433.975	4905.433	24027.00	0.3871273	1.9516820E-02	69.68443
CM-244	203.0208	28-FEB-2010	5531.188	5884.956	21996.00	0.3817128	1.9258413E-02	56.82364

Instrument: CHAMBER 231

Detector: 79424 Standard ID **AESS-023**

Standard Reference Date 14-FEB-2008 21:55:55 Calibration Analysis Date/Time 27-JUL-2009 11:49:35

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 14:03:40

0.3847702 Average Efficiency Average Efficiency Error 1.0534914E-02 Confidence: 95.00000

EFF Err Resolution Start Engy End Engy Counts EFF.

Cal. Istps DPM Exp. Date GD-148 207.4764 28-FEB-2010 2990.586 3298.189 23057.00 0.3754197 1.6035730E-02 56.58625 NP-237 207.4998 28-FEB-2010 4432.432 4903.240 24264.00 0.3897645 1.9648222E-02 77.05042 CM-244 199.8804 28-FEB-2010 5533.660 5887.186 22354.00 0.3940257 1.9876782E-02 61.75343

> CHAMBER 232 Instrument:

Detector: 79425 Standard ID AESS-024

Standard Reference Date 14-FEB-2008 21:55:55 27-JUL-2009 11:49:42 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:03:48

> Average Efficiency: 0.3748871 Average Efficiency Error: 1.0271599E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.5218	28-FEB-2010	2989.229	3299.258	21761.00	0.3612023	1.5439365E-02	56.38522
NP-237	205.6662	28-FEB-2010	4433.403	4904.597	23806.00	0.3858308	1.9452941E-02	74.06577
CM-244	198 3060	28-FFR-2010	5534 062	5886 338	21708 00	0 3856767	1 9460704F-02	58 N9N93

CHAMBER 233 Instrument:

79426 Detector **AESS-025** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 27-JUL-2009 11:49:48

> Calibration Count Time 300.0000

28-JUL-2009 14:03:57 Efficiency Calibration Date/Time

Average Efficiency 0.3793921 Average Efficiency Error: 1.0403312E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.5670	28-FEB-2010	2989.053	3300.219	21850.00	0.3774274	1.6132066E-02	56.42078
NP-237	167.9916	28-FEB-2010	4437.148	4902.933	19321.00	0.3833666	1.9365741E-02	74.45728
CM-244	157.2432	28-FEB-2010	5534.654	5884.028	16885.00	0.3782761	1.9136583E-02	61.18657

Instrument: CHAMBER 234

Detector: 79427 Standard ID AESS-026

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 27-JUL-2009 11:49:54

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 14:04:08

0.3700874 Average Efficiency Average Efficiency Error 1.0797138E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.5072	28-FEB-2010	2990.497	3297.542	21594.00	0.3656335	1.8451264E-02	61.40455
NP-237	168.0294	28-FEB-2010	4434.922	4904.935	19043.00	0.3777652	1.9085610E-02	76.29016
CM-244	160.5822	28-FEB-2010	5534.289	5887.217	16745.00	0.3673259	1.8584441E-02	59.63282

CHAMBER 235 Instrument:

Detector: 79428 Standard ID **AESS-027**

Standard Reference Date 15-FEB-2008 09:06:52 27-JUL-2009 11:50:01 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:04:17

> Average Efficiency 0.3932829 Average Efficiency Error 1.1475780E-02

Confidence: 95.00000

End Engy EFF Err Cal. Istps DPM Exp. Date Start Engy Counts EFF. Resolution GD-148 193.4238 28-FEB-2010 2988.334 3300.717 21681.00 0.3786630 1.9108076E-02 53.32552 NP-237 77.72460 161.6154 28-FEB-2010 4435.003 4906.236 19404.00 0.4001970 2.0215055E-02 CM-244 148,1754 28-FEB-2010 5532.236 5886.409 16945.00 0.4028875 2.0380763E-02 59.12006

CHAMBER 236 Instrument:

79429 Detector: **AESS-028** Standard ID

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 27-JUL-2009 11:50:07

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:04:27

Average Efficiency 0.3837650 Average Efficiency Error: 1.1193846E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	199.6542	28-FEB-2010	2987.761	3298.777	22073.00	0.3734792	1.8843459E-02	56.09225
NP-237	168.1992	28-FEB-2010	4435.283	4906.214	19676.00	0.3898810	1.9691262E-02	74.38795
CM-244	156.7614	28-FEB-2010	5532.557	5887.291	17304.00	0.3888687	1.9666921E-02	61.23972

Instrument: CHAMBER 237

Detector: 79430 Standard ID **AESS-029**

Standard Reference Date 15-FEB-2008 09:06:52 Calibration Analysis Date/Time 27-JUL-2009 11:50:14

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 14:04:36

Average Efficiency 0.3796787 Average Efficiency Error: 1.1077547E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	201.5742	28-FEB-2010	2990.197	3297.861	21831.00	0.3658611	1.8460920E-02	57.27552
NP-237	169.7700	28-FEB-2010	4432.935	4904.354	19680.00	0.3864051	1.9515611E-02	75.85569
CM-244	154.8234	28-FEB-2010	5530.478	5884.662	17077.00	0.3885164	1.9652124E-02	63.51448

CHAMBER 238 Instrument:

Detector: 79431 Standard ID **AESS-030**

15-FEB-2008 09:06:52 Standard Reference Date 27-JUL-2009 11:50:20 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:04:46

Average Efficiency: 0.3810317 Average Efficiency Error: 1.1114767E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.9792	28-FEB-2010	2987.703	3299.637	22045.00	0.3742708	1.8883610E-02	56.22876
NP-237	166.3758	28-FEB-2010	4437.459	4902.787	19439.00	0.3894599	1.9672327E-02	69.82738
CM-244	157.1856	28-FEB-2010	5533.171	5886.843	16955.00	0.3799904	1.9222379E-02	58.92646

CHAMBER 239 Instrument:

Detector: 79432 **AESS-031** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 27-JUL-2009 11:50:26

Calibration Count Time 300.0000

28-JUL-2009 14:04:55 Efficiency Calibration Date/Time

Average Efficiency 0.3927835 Average Efficiency Error: 1.0770131E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	193.6650	28-FEB-2010	2990.694	3302.472	22065.00	0.3848595	1.6447702E-02	55.29106
NP-237	162.9186	28-FEB-2010	4436.142	4902.540	19439.00	0.3976750	2.0087343E-02	70.90855
CM-244	153.1968	28-FEB-2010	5534.989	5884.715	17391.00	0.3998017	2.0218691E-02	58.92552

Instrument: CHAMBER 240

Detector: 79433 Standard ID AESS-032

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 27-JUL-2009 11:50:32

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 14:05:04

0.3772089 Average Efficiency Average Efficiency Error: 1.0348574E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	195.2364	28-FEB-2010	2990.448	3302.009	21172.00	0.3663063	1.5662992E-02	53.41883
NP-237	165.9822	28-FEB-2010	4434.377	4905.282	19119.00	0.3839507	1.9397326E-02	73.43593
CM-244	153.7938	28-FEB-2010	5531.249	5885.600	16917.00	0.3873951	1.9597435E-02	58.29160

CHAMBER 241 Instrument:

Detector: 79434 Standard ID **AESS-033**

18-FEB-2008 11:28:15 Standard Reference Date Calibration Analysis Date/Time 27-JUL-2009 11:50:38

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:05:13

Average Efficiency: 0.3940109 Average Efficiency Error: 1.0806140E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	192.4158	28-FEB-2010	2990.069	3301.257	21921.00	0.3848144	1.6447132E-02	59.39081
NP-237	161.7816	28-FEB-2010	4433.036	4904.033	19316.00	0.3979853	2.0104248E-02	71.72956
CM-244	147.2670	28-FEB-2010	5530.409	5885.133	16898.00	0.4041099	2.0443266E-02	59.86270

CHAMBER 242 Instrument:

79435 Detector **AESS-034** Standard ID

Standard Reference Date 18-FEB-2008 11:28:15 Calibration Analysis Date/Time 27-JUL-2009 11:50:45

Calibration Count Time 300.0000

28-JUL-2009 14:05:21 Efficiency Calibration Date/Time

Average Efficiency 0.3872019 Average Efficiency Error: 1.0618003E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.5488	28-FEB-2010	2987.986	3300.537	22304.00	0.3756698	1.6052835E-02	60.14239
NP-237	167.2962	28-FEB-2010	4434.402	4905.006	19728.00	0.3930755	1.9852022E-02	81.49045
CM-244	154.4388	28-FEB-2010	5535.112	5883.069	17513.00	0.3993755	2.0195547E-02	60.38340

Instrument: CHAMBER 243

Detector: 79436 Standard ID **AESS-035**

18-FEB-2008 11:28:15 Standard Reference Date Calibration Analysis Date/Time 27-JUL-2009 11:50:51

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 14:05:30

0.3689618 Average Efficiency Average Efficiency Error 1.0121634E-02 Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	198.6666	28-FEB-2010	2988.831	3301.144	21270.00	0.3616530	1.5463094E-02	51.17657
NP-237	168.2934	28-FEB-2010	4435.437	4901.520	19256.00	0.3813798	1.9266052E-02	75.58389
CM-244	158.8128	28-FEB-2010	5533.039	5887.402	16593.00	0.3679604	1.8618485E-02	58.44908

CHAMBER 244 Instrument:

Detector: 79437 Standard ID **AESS-036**

Standard Reference Date 18-FEB-2008 11:28:15 27-JUL-2009 11:50:57 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:05:39

> Average Efficiency 0.3687662 Average Efficiency Error 1.0117218E-02

Confidence: 95.00000

DPM **End Engy** EFF Err Cal. Istps Exp. Date Start Engy Counts EFF. Resolution GD-148 201.3204 28-FEB-2010 2990.561 21334.00 0.3579595 1.5304583E-02 62.36397 3301.814 NP-237 167.4312 28-FEB-2010 4433.746 4904.768 18977.00 0.3778012 1.9088112E-02 75.63606 CM-244 5531.146 156,4188 28-FEB-2010 5885.854 16722.00 0.3765100 1.9049343E-02 61.05648

CHAMBER 245 Instrument:

79438 Detector **AESS-037** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 27-JUL-2009 11:51:02

Calibration Count Time 300.0000

28-JUL-2009 14:05:48 Efficiency Calibration Date/Time

Average Efficiency 0.3877061 Average Efficiency Error: 1.0631136E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7372	28-FEB-2010	2990.519	3298.200	22136.00	0.3781450	1.6160103E-02	62.31918
NP-237	167.1294	28-FEB-2010	4434.025	4906.060	19910.00	0.3970917	2.0053044E-02	78.86944
CM-244	154.7664	28-FEB-2010	5533.264	5882.788	17268.00	0.3929479	1.9873664E-02	61.71907

Instrument: CHAMBER 246

Detector: 78912 Standard ID **AESS-038**

18-FEB-2008 15:31:47 Standard Reference Date Calibration Analysis Date/Time 27-JUL-2009 11:51:08

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 14:05:57

0.3708842 Average Efficiency Average Efficiency Error 1.0172031E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	200.1408	28-FEB-2010	2989.883	3302.161	21584.00	0.3642771	1.5572389E-02	64.71516
NP-237	170.0886	28-FEB-2010	4436.171	4902.069	19259.00	0.3774192	1.9065937E-02	76.67652
CM-244	157.7460	28-FEB-2010	5533.279	5887.441	16761.00	0.3742064	1.8932275E-02	58.21912

CHAMBER 247 Instrument:

Detector: 79440 Standard ID **AESS-039**

Standard Reference Date 18-FEB-2008 15:31:47 27-JUL-2009 11:51:13 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:06:06

> Average Efficiency 0.3957888 Average Efficiency Error 1.0855773E-02

95.00000 Confidence:

End Engy EFF Err Cal. Istps DPM Exp. Date Start Engy Counts EFF. Resolution GD-148 192.2418 28-FEB-2010 2989.314 21842.00 0.3837782 1.6403578E-02 54.27637 3301.154 NP-237 159.1506 28-FEB-2010 4435.427 4902.237 19566.00 0.4097880 2.0697797E-02 74.12901 CM-244 5885.574 151.7142 28-FEB-2010 5535.390 17262.00 0.4007001 2.0265834E-02 60.50509

CHAMBER 248 Instrument:

Detector: 79441 **AESS-040** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 27-JUL-2009 11:51:19

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:06:15

Average Efficiency 0.3937030 Average Efficiency Error: 1.0792862E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4828	28-FEB-2010	2989.045	3301.474	22331.00	0.3878492	1.6573036E-02	60.09726
NP-237	166.8174	28-FEB-2010	4436.389	4902.813	19896.00	0.3975548	2.0076567E-02	79.69174
CM-244	155.0100	28-FEB-2010	5534.872	5884.178	17540.00	0.3984762	2.0149769E-02	58.60526

Instrument: CHAMBER 249

Detector: 79442 Standard ID **AESS-041**

Standard Reference Date 18-FEB-2008 15:31:47 Calibration Analysis Date/Time 27-JUL-2009 11:51:24

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 14:10:21

Average Efficiency 0.3675877 Average Efficiency Error: 1.0082438E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	203.9034	28-FEB-2010	2991.808	3298.538	21645.00	0.3585607	1.5327478E-02	53.17529
NP-237	171.2268	28-FEB-2010	4433.459	4906.270	19414.00	0.3779393	1.9090647E-02	76.86456
CM-244	159.5796	28-FEB-2010	5535.492	5886.613	16816.00	0.3711205	1.8775435E-02	56.57472

CHAMBER 250 Instrument:

Detector: 79443 **AESS-042** Standard ID

Standard Reference Date 18-FEB-2008 15:31:47 27-JUL-2009 11:51:30 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:07:02

Average Efficiency: 0.3960947 Average Efficiency Error: 1.0862177E-02

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	188.7090	28-FEB-2010	2988.616	3300.155	21788.00	0.3900070	1.6670316E-02	52.60693
NP-237	159.6558	28-FEB-2010	4432.911	4904.182	19368.00	0.4043324	2.0424359E-02	73.85986
CM-244	150.5208	28-FEB-2010	5530.811	5885.622	16966.00	0.3969653	2.0080892E-02	59.65899

CHAMBER 251 Instrument:

Detector: 79444 **AESS-043** Standard ID

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 27-JUL-2009 11:51:36

Calibration Count Time 300.0000

28-JUL-2009 14:07:11 Efficiency Calibration Date/Time

Average Efficiency 0.3862193 Average Efficiency Error: 1.0589682E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.7708	28-FEB-2010	2990.845	3297.824	22101.00	0.3774794	1.6131971E-02	54.21589
NP-237	168.7422	28-FEB-2010	4433.069	4905.749	19931.00	0.3937052	1.9881824E-02	74.21349
CM-244	156.3252	28-FEB-2010	5534.571	5885.360	17400.00	0.3919745	1.9822748E-02	57.06868

Instrument: CHAMBER 252

Detector: 79445 Standard ID AESS-044

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 27-JUL-2009 11:51:43

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 14:07:24

Average Efficiency 0.3698718 Average Efficiency Error: 1.0146284E-02

Confidence: 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.4510	28-FEB-2010	2990.916	3302.142	21075.00	0.3660958	1.5654918E-02	61.30944
NP-237	166.6248	28-FEB-2010	4434.879	4906.631	18642.00	0.3729277	1.8845377E-02	80.38726
CM-244	155.8290	28-FEB-2010	5534.322	5884.528	16473.00	0.3722862	1.8838966E-02	60.16105

Instrument: CHAMBER 253

Detector: 79446 **AESS-045** Standard ID

19-FEB-2008 00:32:27 Standard Reference Date 27-JUL-2009 11:51:49 Calibration Analysis Date/Time

Calibration Count Time 300.0000

Efficiency Calibration Date/Time 28-JUL-2009 14:07:35

Average Efficiency: 0.4175173 1.1444525E-02 Average Efficiency Error:

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	186.9936	28-FEB-2010	2987.796	3301.166	22755.00	0.4110381	1.7559895E-02	55.81194
NP-237	160.8066	28-FEB-2010	4435.182	4903.720	20118.00	0.4169668	2.1054644E-02	75.83978
CM-244	145 8384	28-FFR-2010	5533 610	5884 813	17722 00	0 4279359	2 1636952F-02	56 91713

CHAMBER 254 Instrument:

Detector: 79447 **AESS-046** Standard ID

Standard Reference Date 19-FEB-2008 19:35:48 Calibration Analysis Date/Time 27-JUL-2009 11:51:54

Calibration Count Time 300.0000

28-JUL-2009 14:07:52 Efficiency Calibration Date/Time

Average Efficiency: 0.4058467 Average Efficiency Error: 1.1127573E-02

Confidence : 95.00000

Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	194.7474	28-FEB-2010	2991.474	3298.982	22591.00	0.3918256	1.6740572E-02	58.61956
NP-237	164.6658	28-FEB-2010	4434.396	4906.361	20593.00	0.4168403	2.1043487E-02	82.24182
CM-244	151.3824	28-FEB-2010	5533.560	5883.122	17929.00	0.4170516	2.1083934E-02	61.14439

Instrument: CHAMBER 255

Detector: 79448 Standard ID **AESS-047**

Standard Reference Date 19-FEB-2008 00:32:27 Calibration Analysis Date/Time 27-JUL-2009 11:52:00

300.0000

Calibration Count Time Efficiency Calibration Date/Time 28-JUL-2009 14:08:10

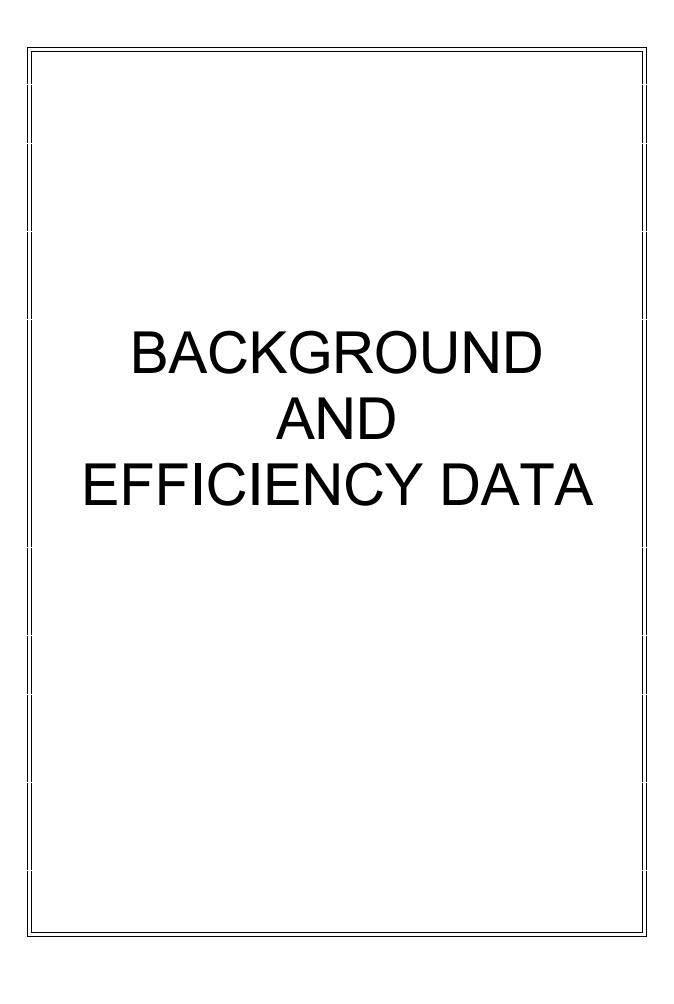
Average Efficiency 0.3643631 Average Efficiency Error: 9.9972216E-03

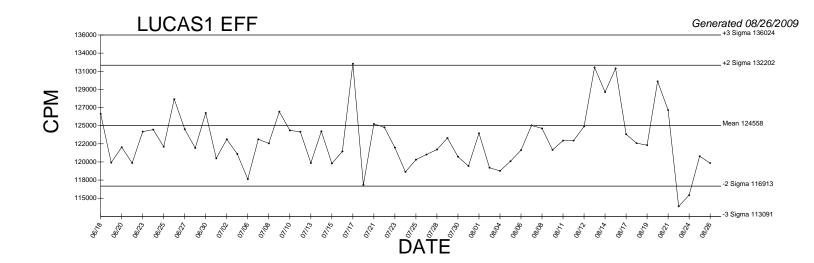
Confidence: 95.00000

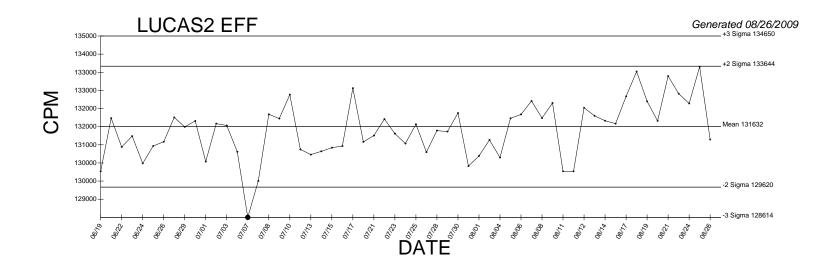
Cal. Istps	DPM	Exp. Date	Start Engy	End Engy	Counts	EFF.	EFF Err	Resolution
GD-148	197.4804	28-FEB-2010	2992.107	3299.169	20953.00	0.3583827	1.5326263E-02	55.06876
NP-237	168.3948	28-FEB-2010	4434.844	4902.471	18382.00	0.3638436	1.8389078E-02	74.38364
CM-244	154.6032	28-FEB-2010	5531.565	5882.529	16422.00	0.3740352	1.8928226E-02	58.14114

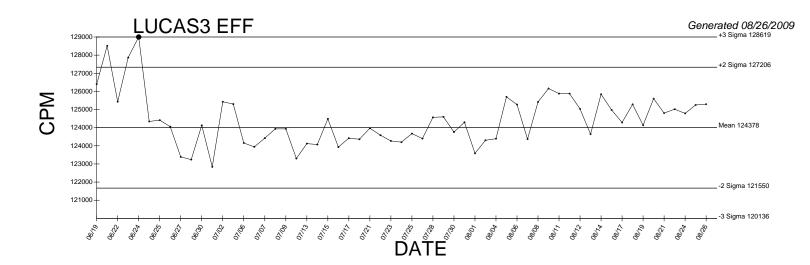
CHAMBER 256 Instrument:

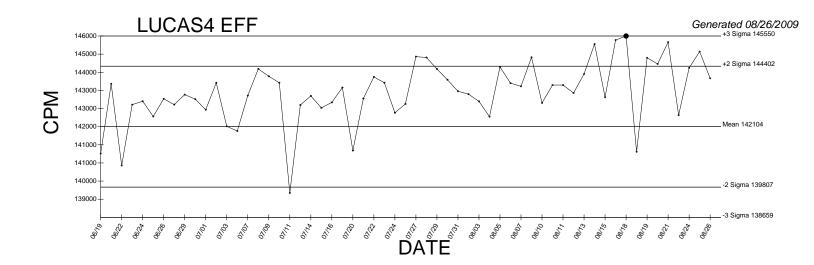
Detector: 79449 **AESS-048** Standard ID

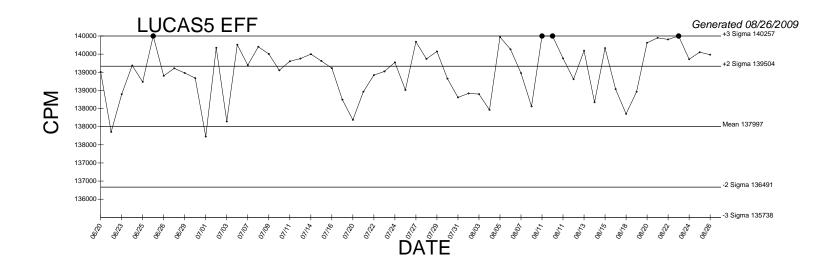

19-FEB-2008 00:32:27 Standard Reference Date 27-JUL-2009 11:52:06 Calibration Analysis Date/Time

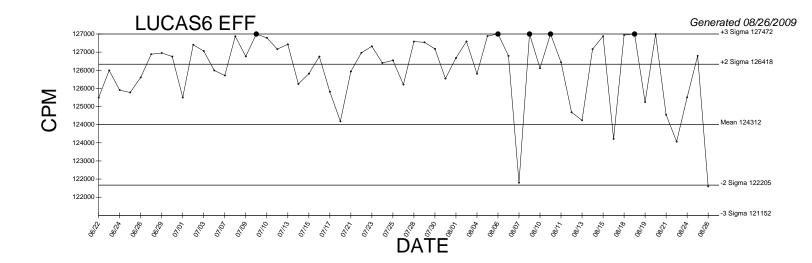

Calibration Count Time 300.0000

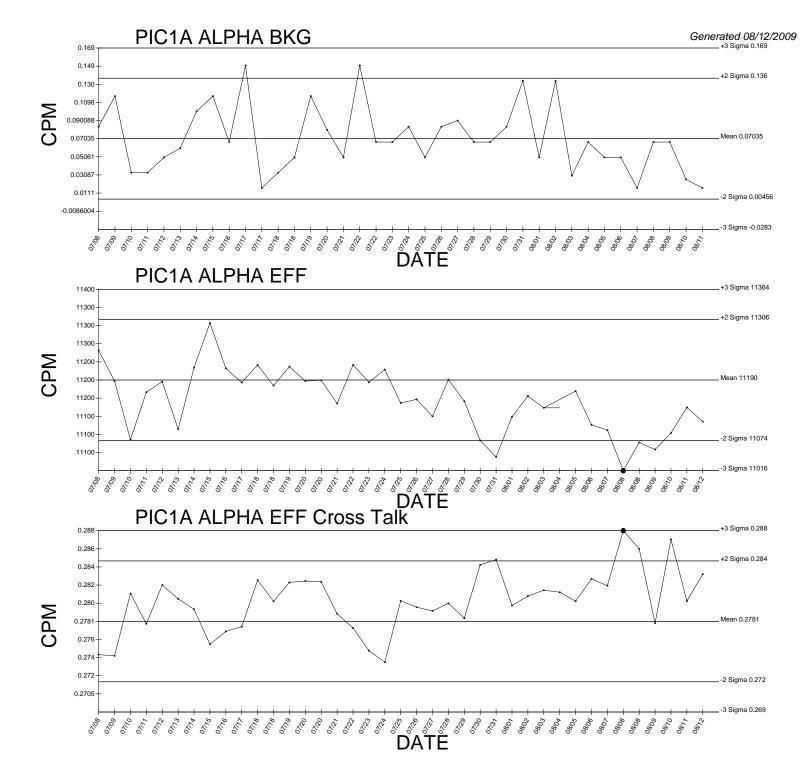

Efficiency Calibration Date/Time 28-JUL-2009 14:08:26

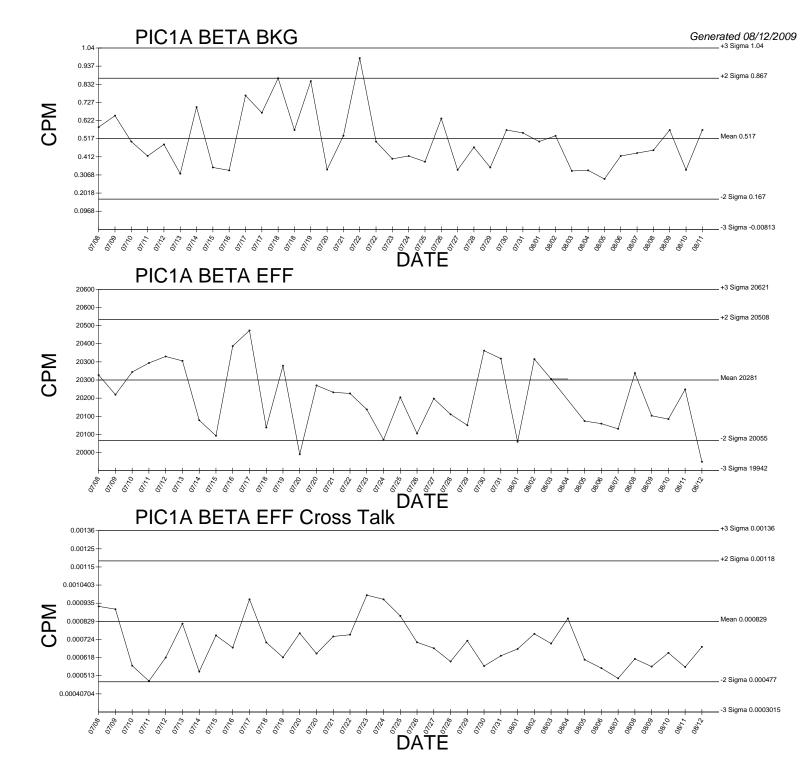

Average Efficiency: 0.3831320 Average Efficiency Errór: 1.0509511E-02

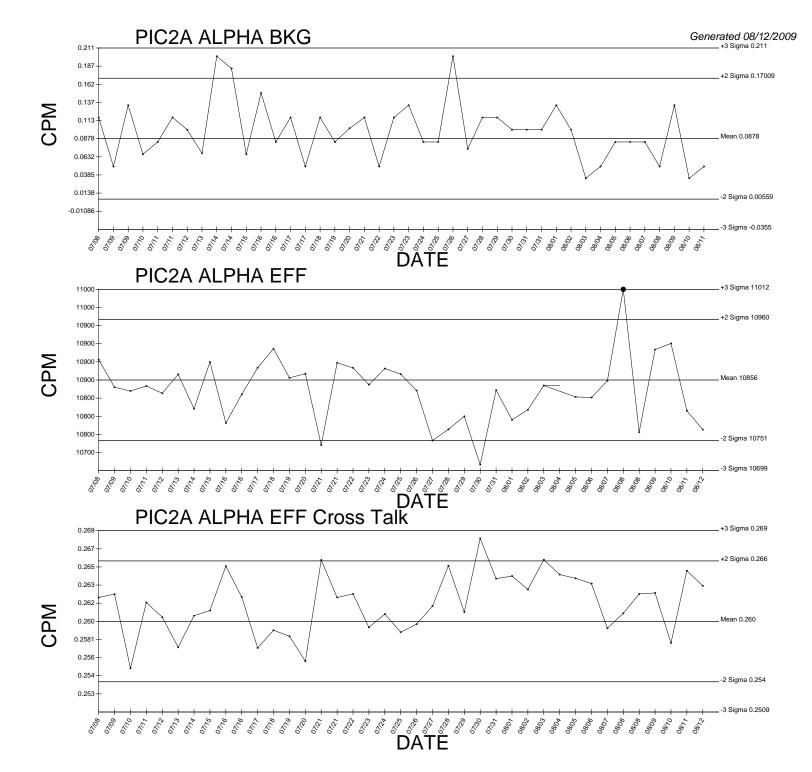

Cal. Istps	DPM	Exp. Date	Start Engy	End Enav	Counts	EFF.	EFF Err	Resolution
GD-148	191.8350	28-FEB-2010	2989.102	3301.350	21361.00	0.3761188	1.6080733E-02	55.66320
NP-237	161.5530	28-FEB-2010	4435.732	4901.991	18891.00	0.3897299	1.9691780E-02	78.88689
CM-244	151 1856	28-FFR-2010	5533 871	5883 102	16615 00	0.3870071	1 9581940F-02	56 91294

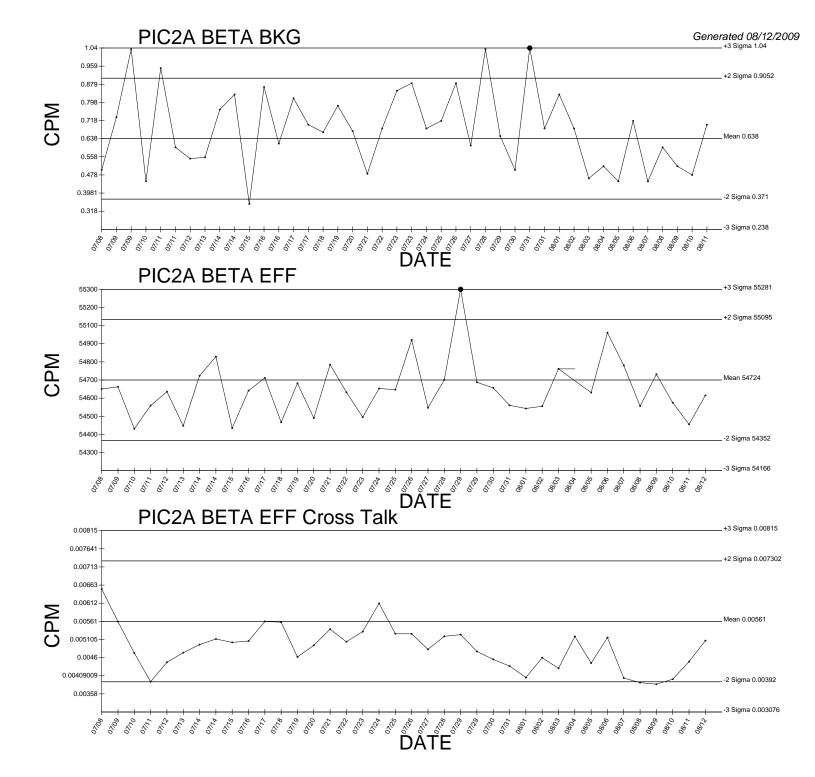


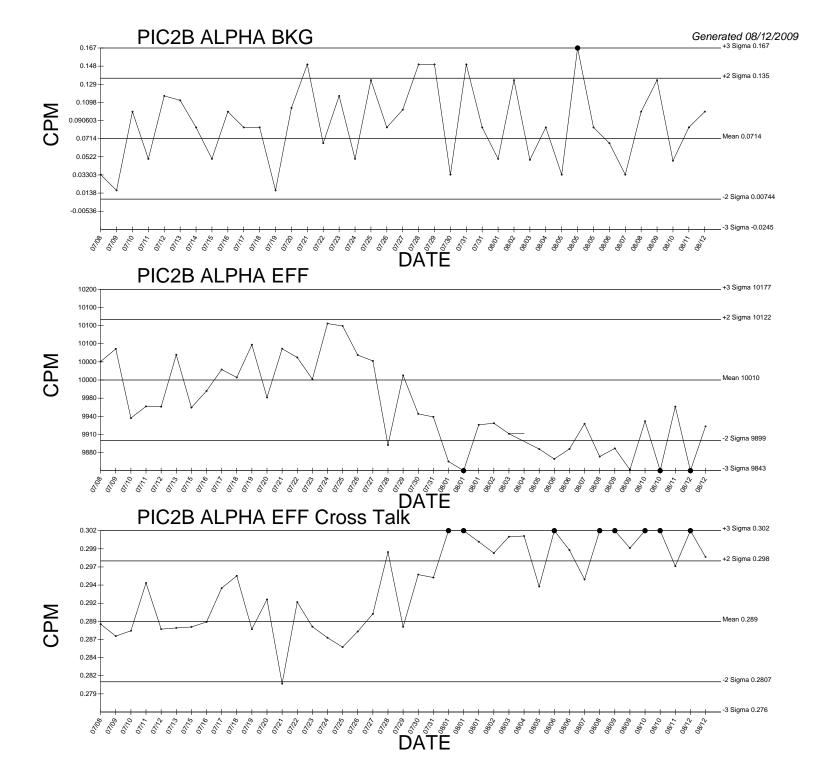


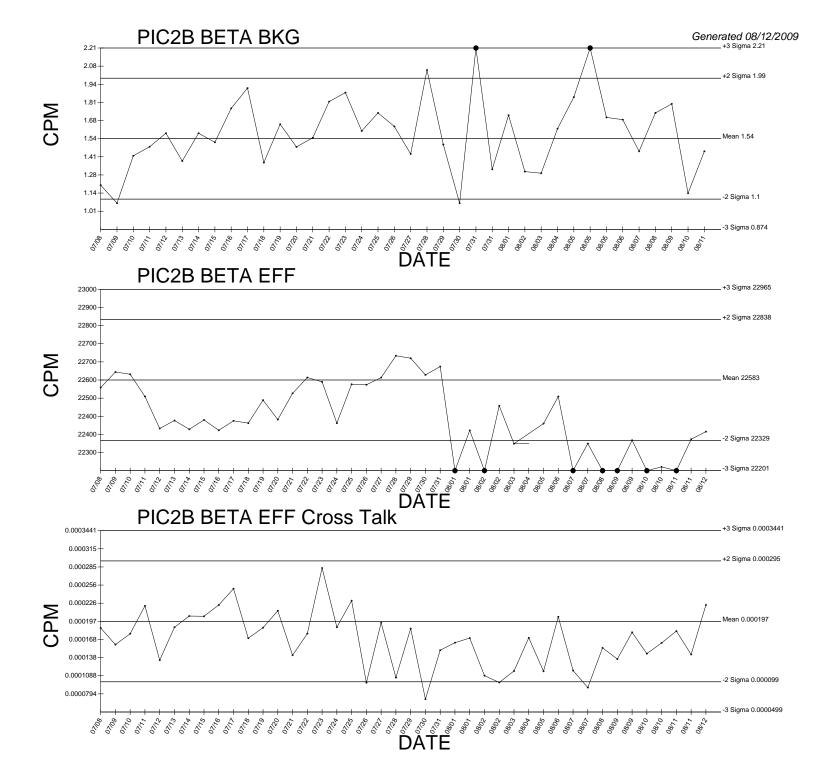


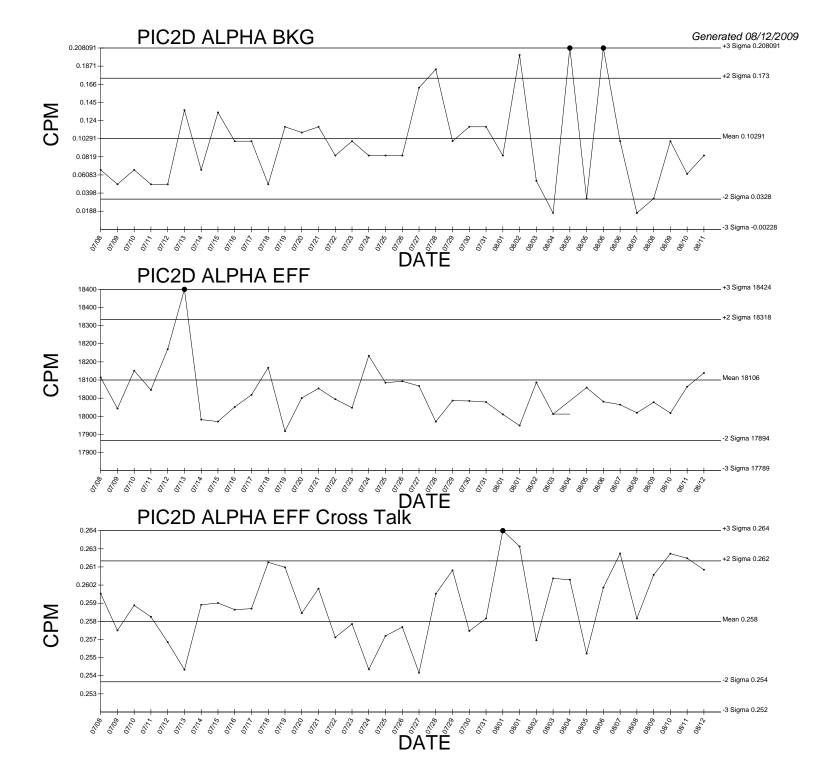


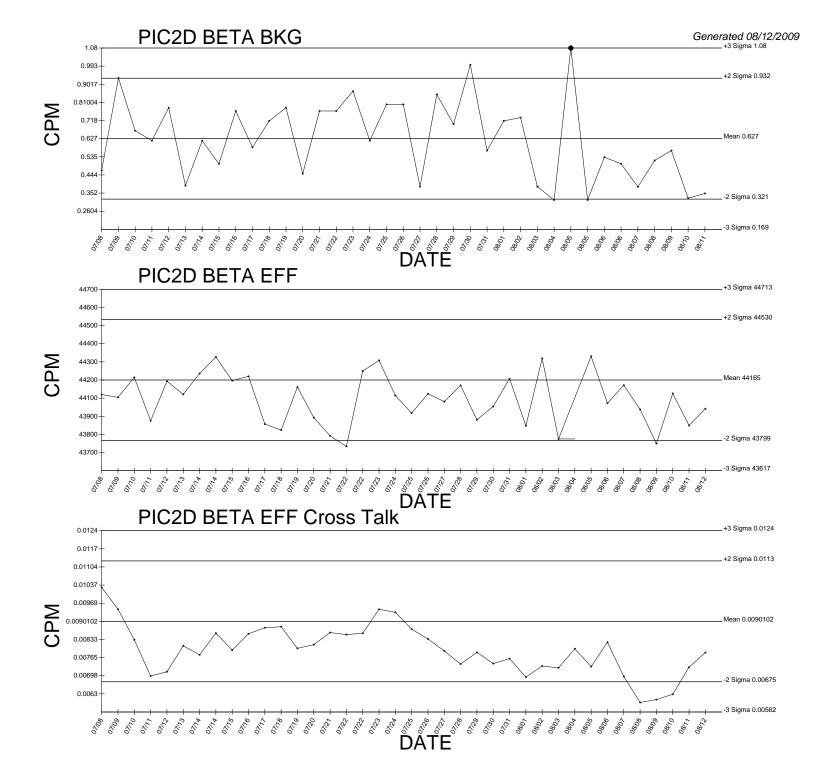


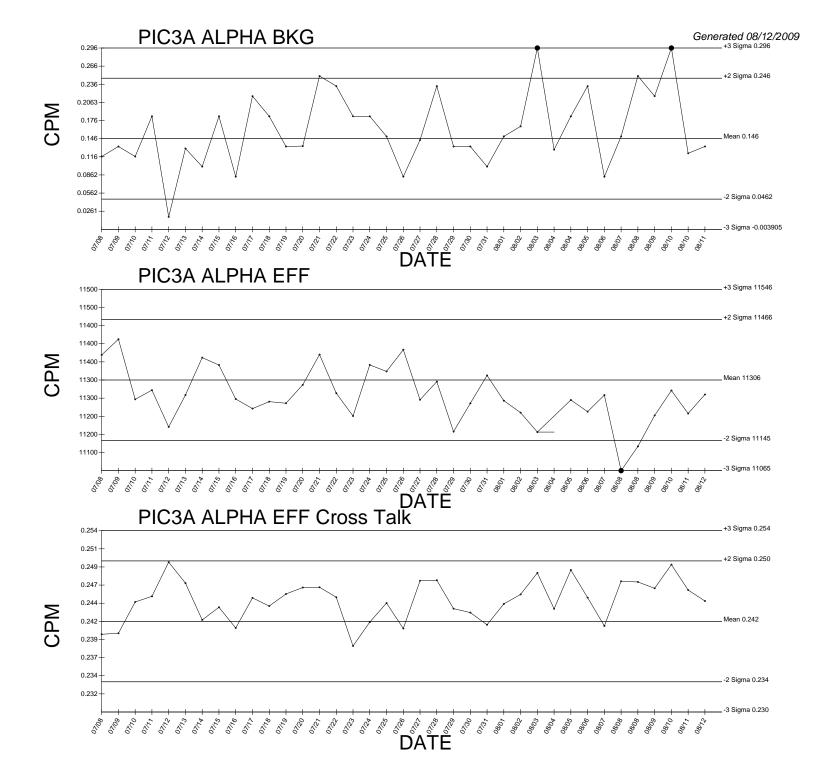


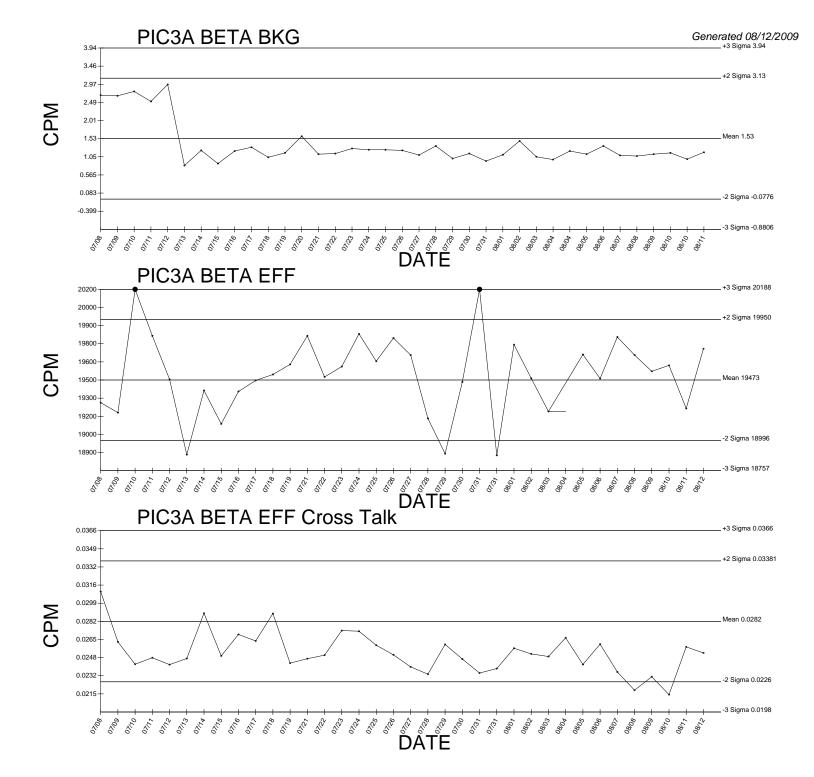


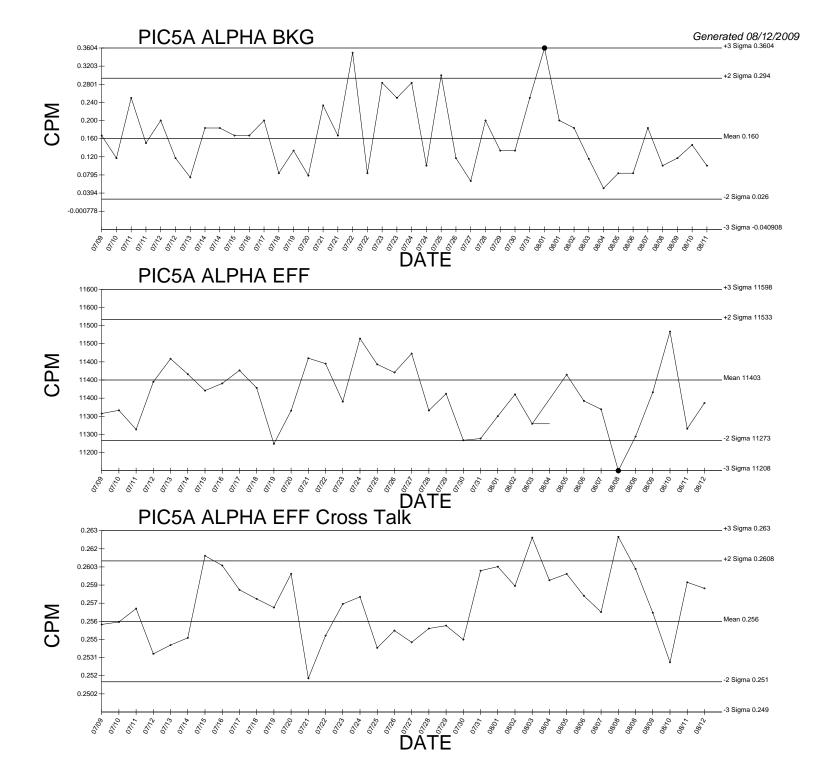


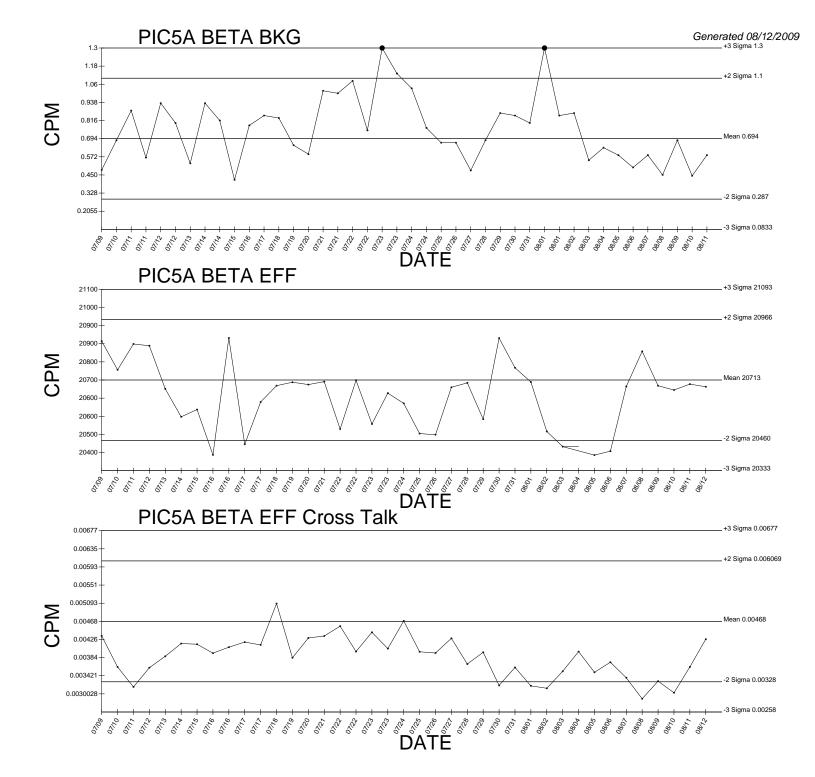


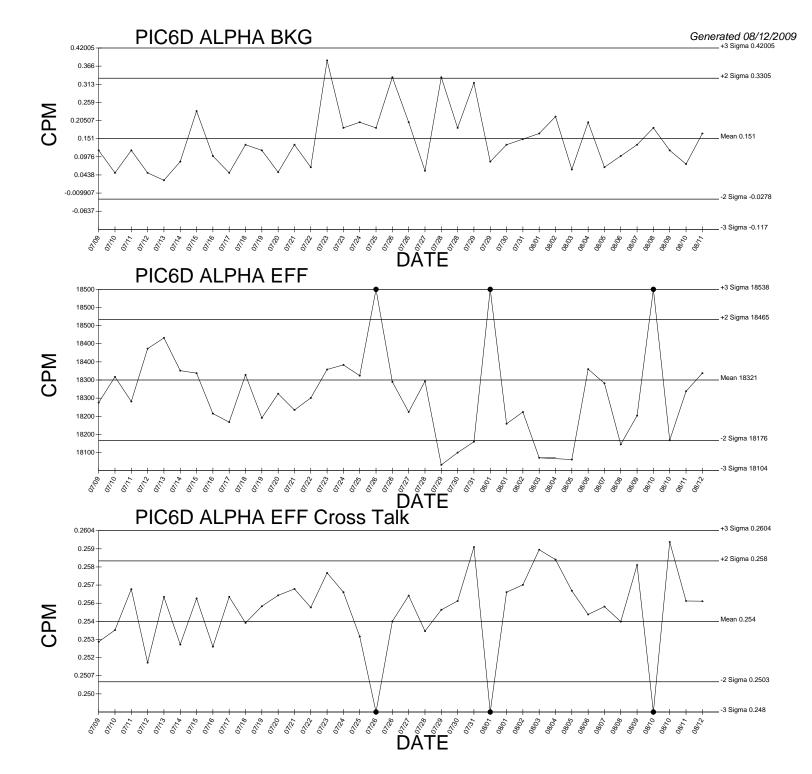


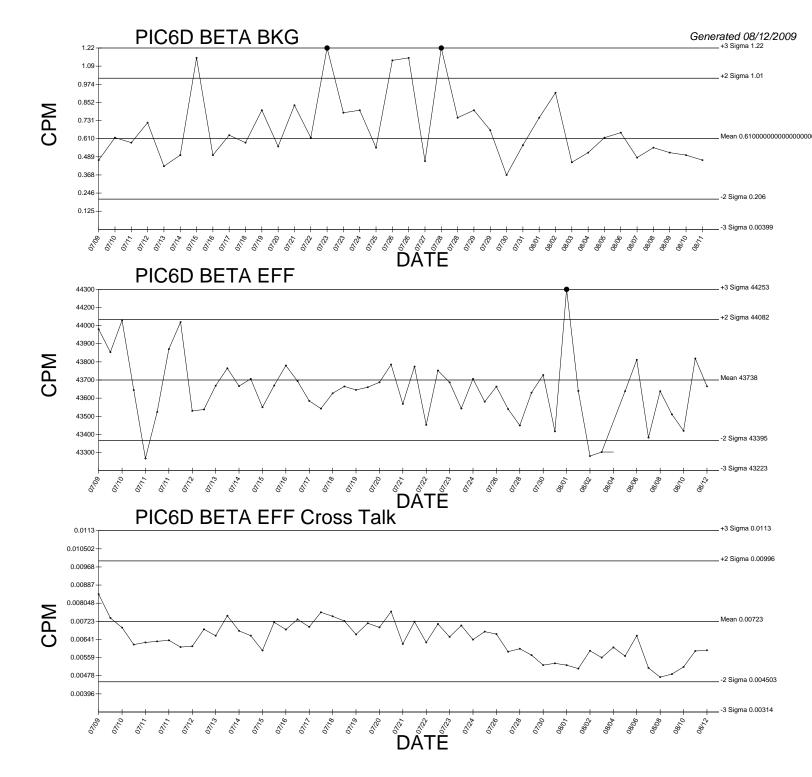


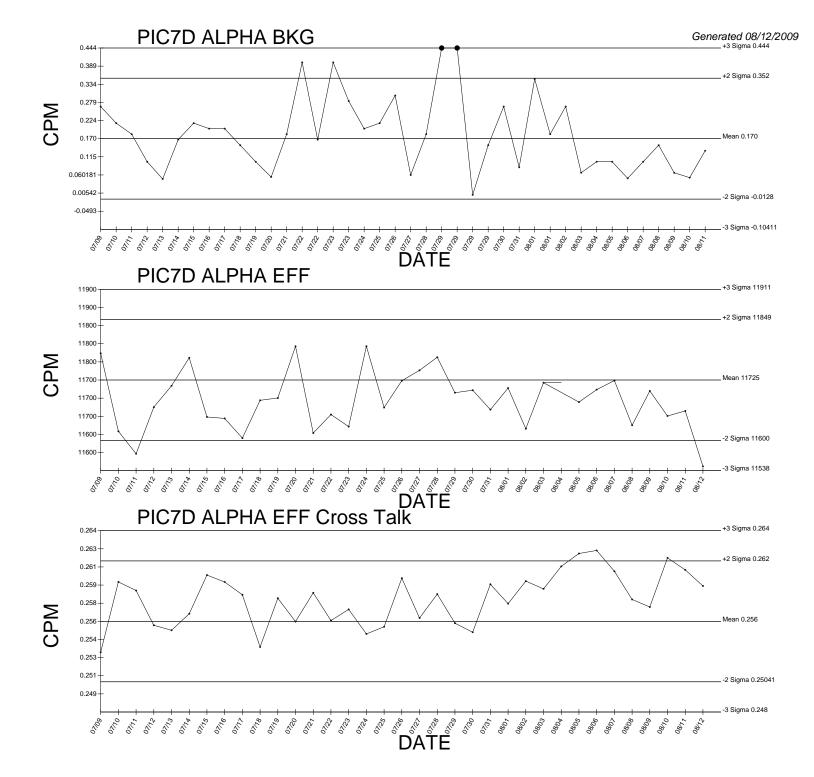


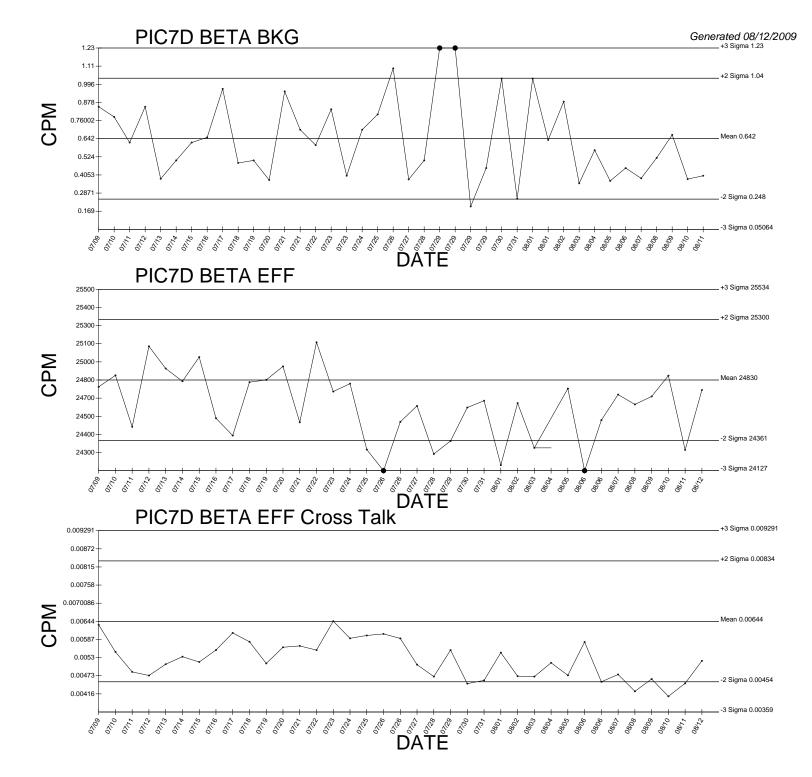


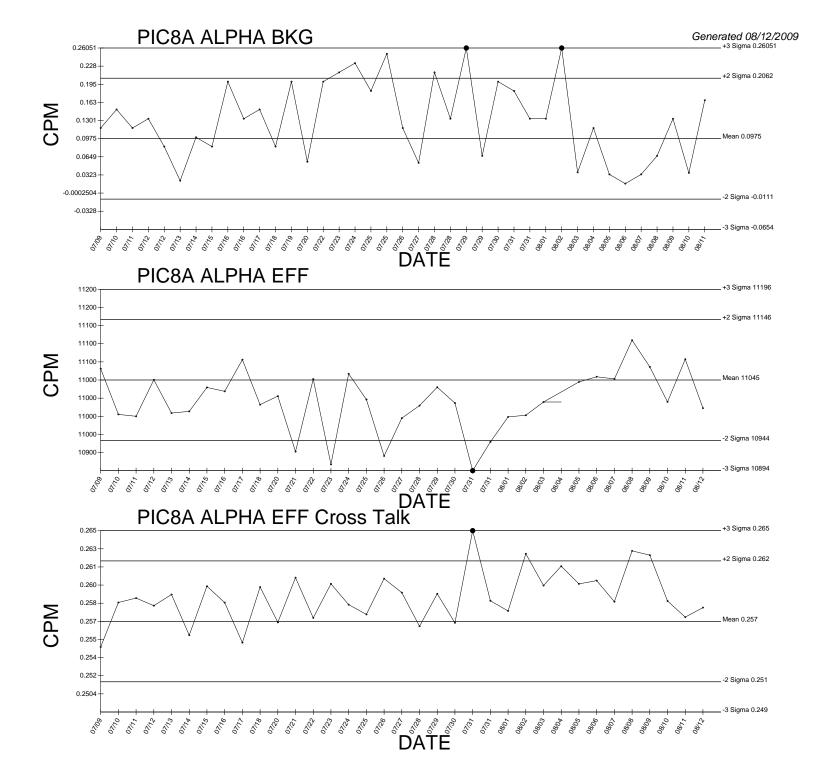


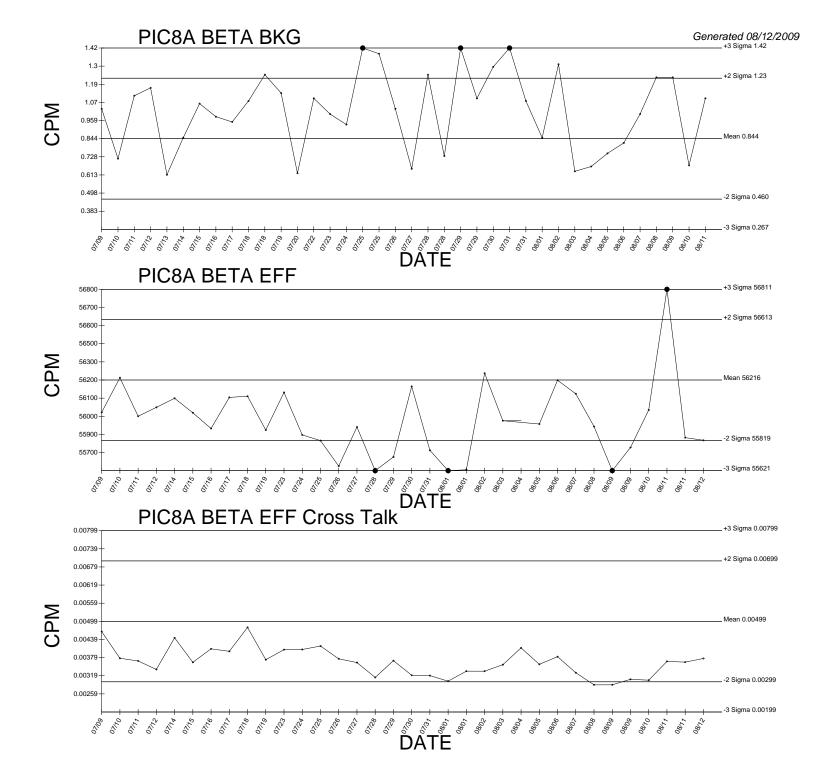


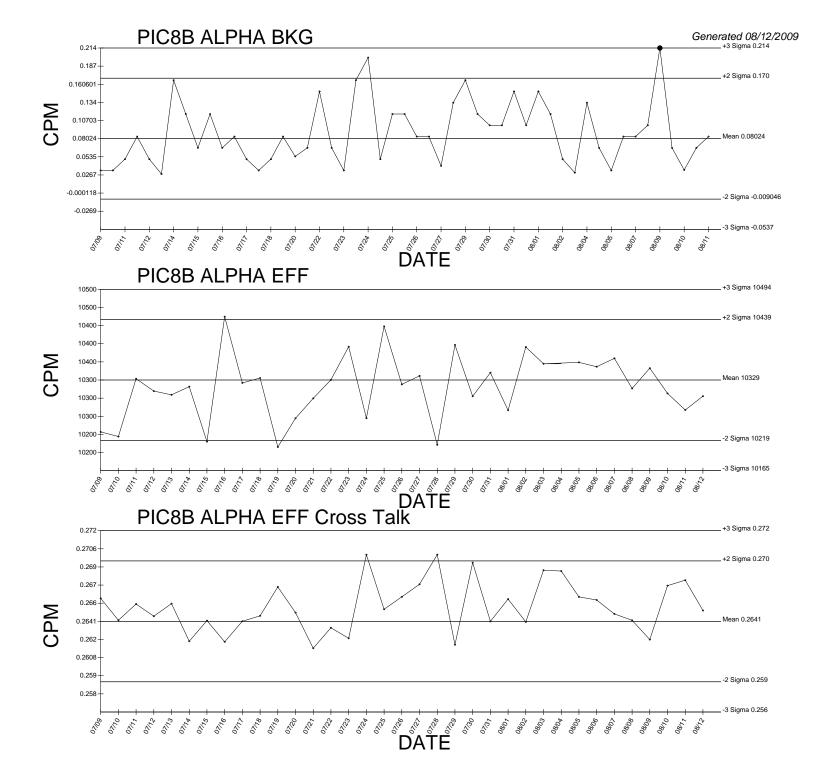


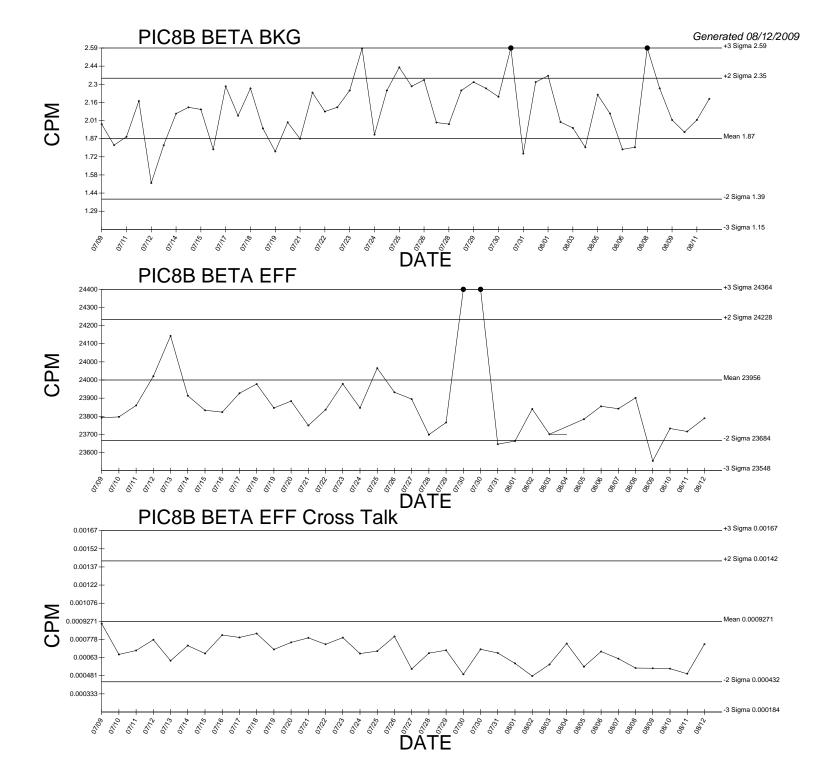


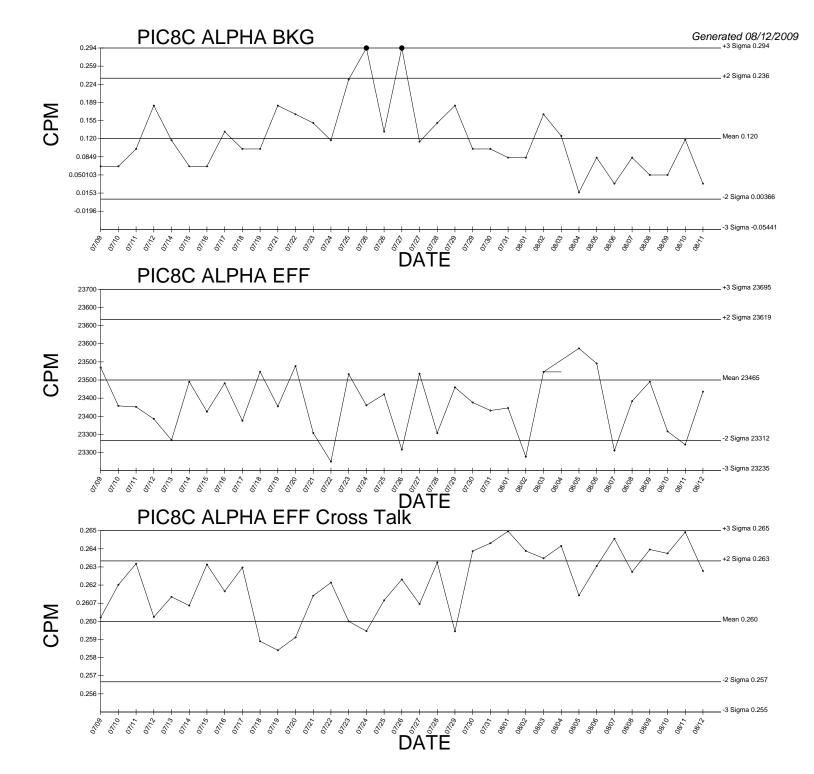


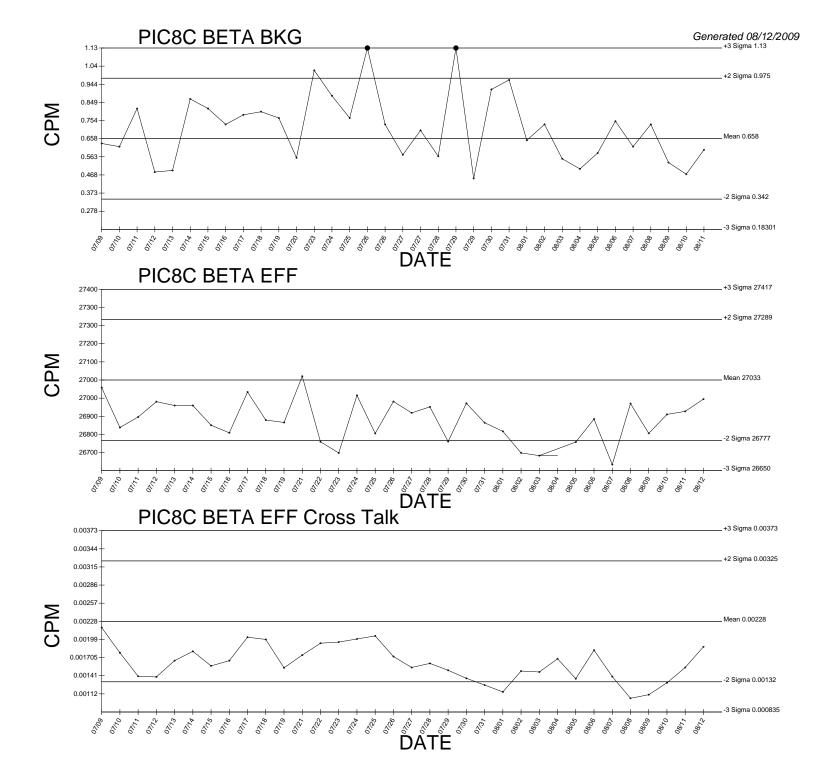


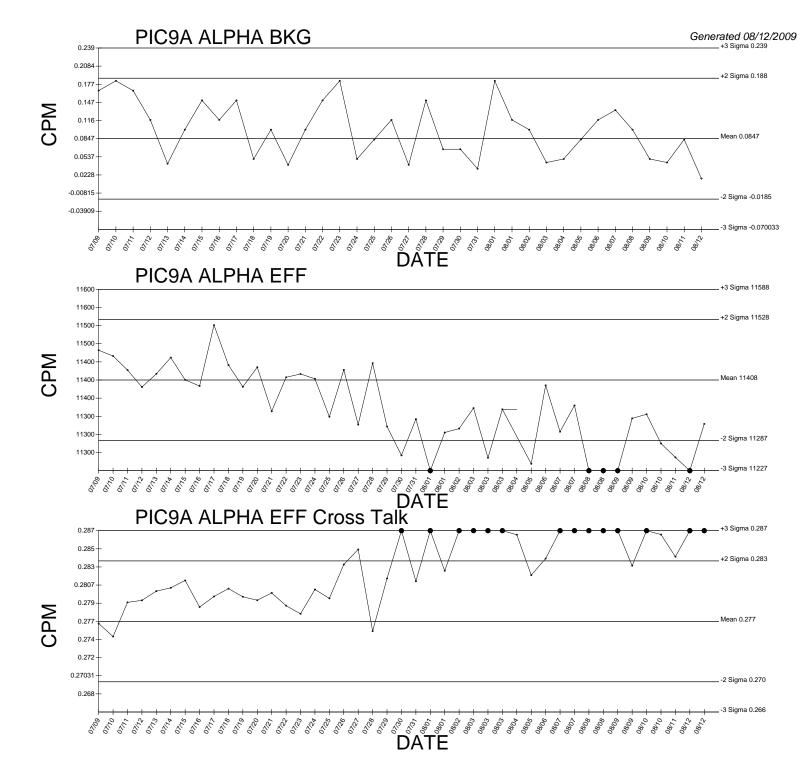


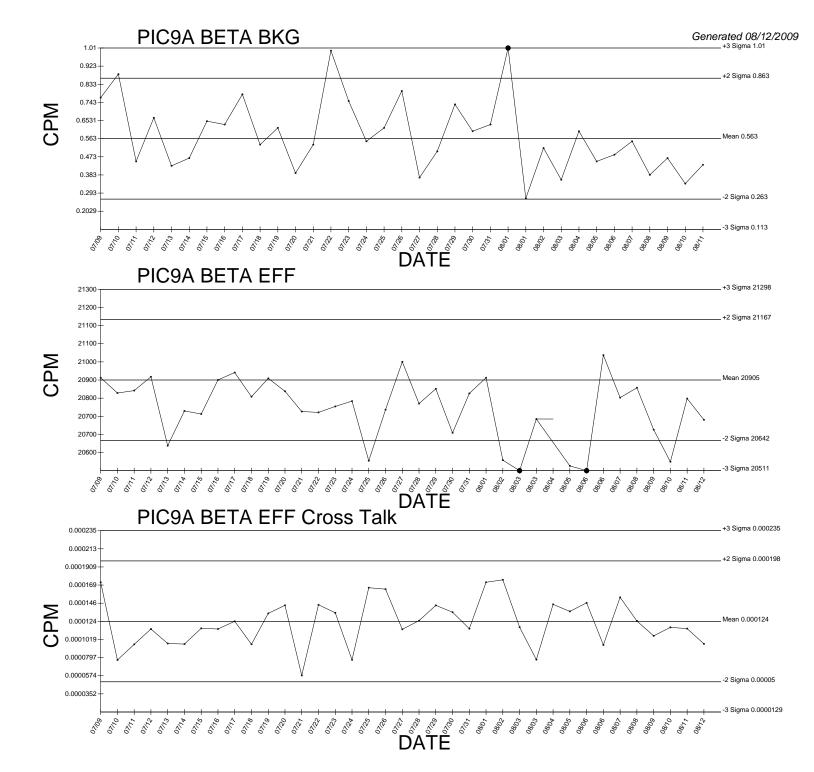


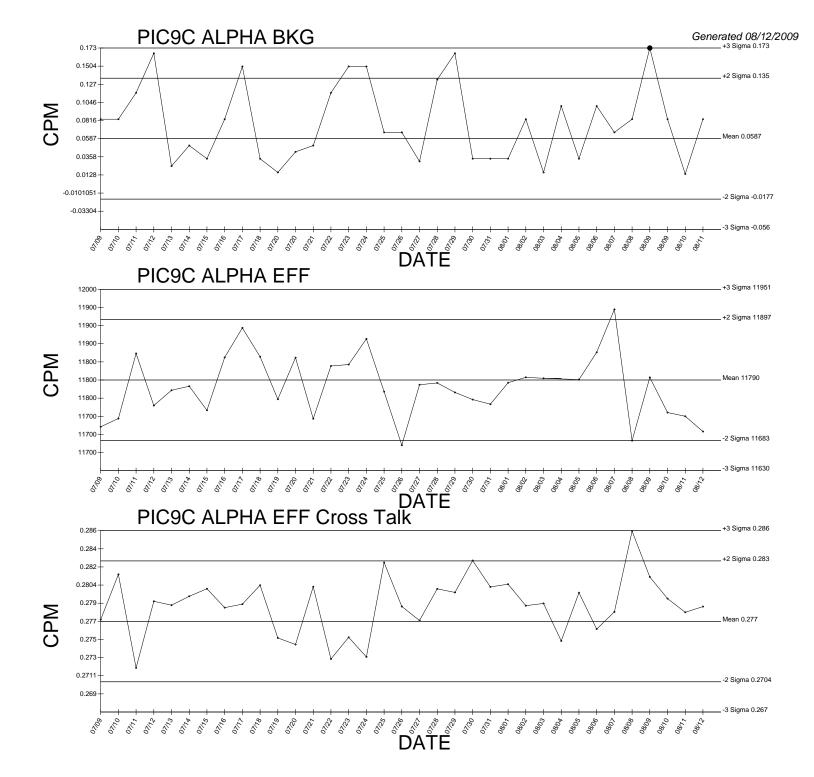


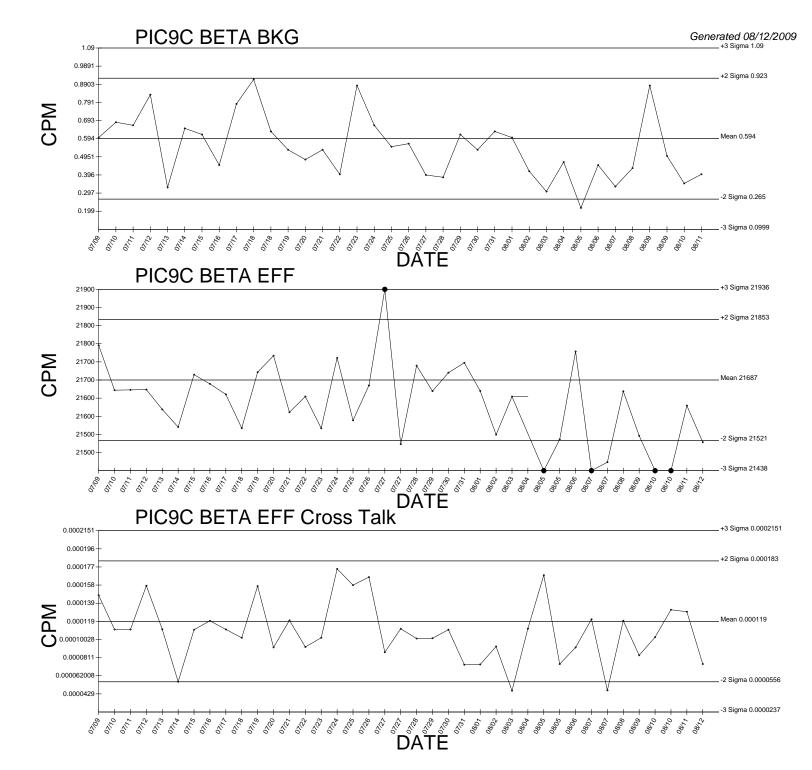


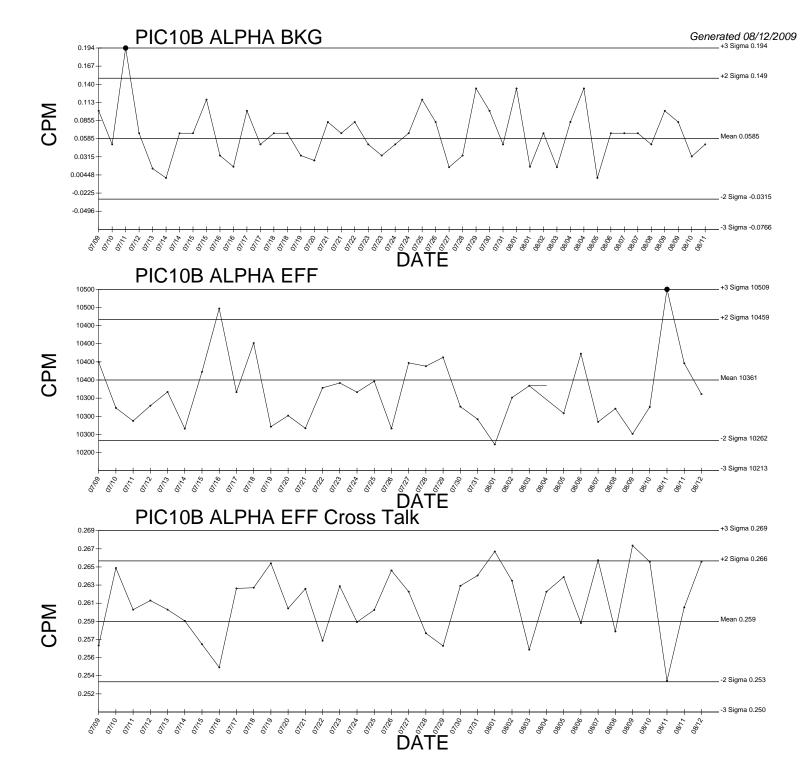


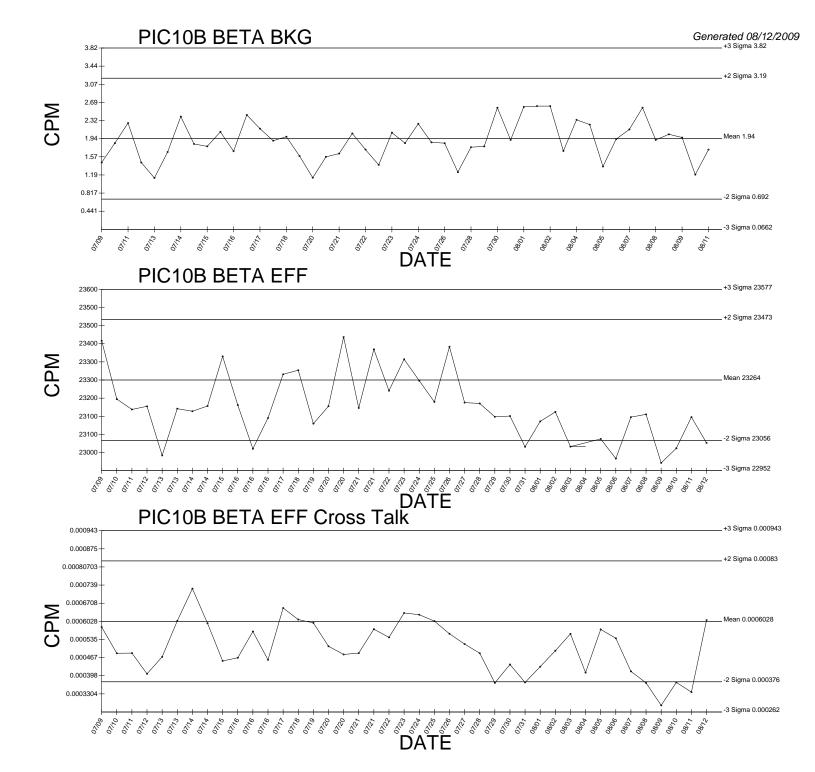


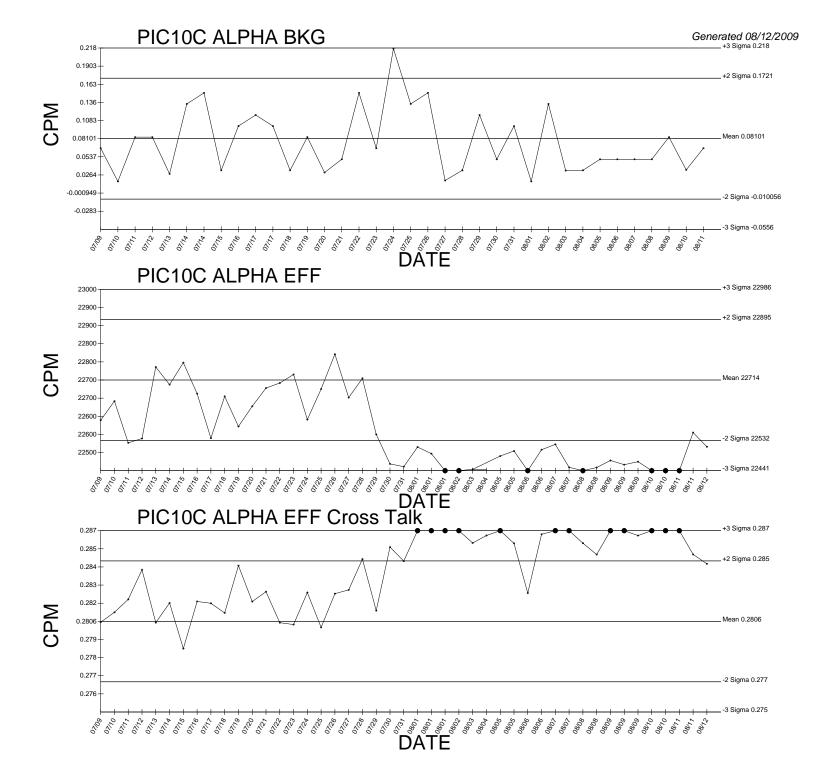


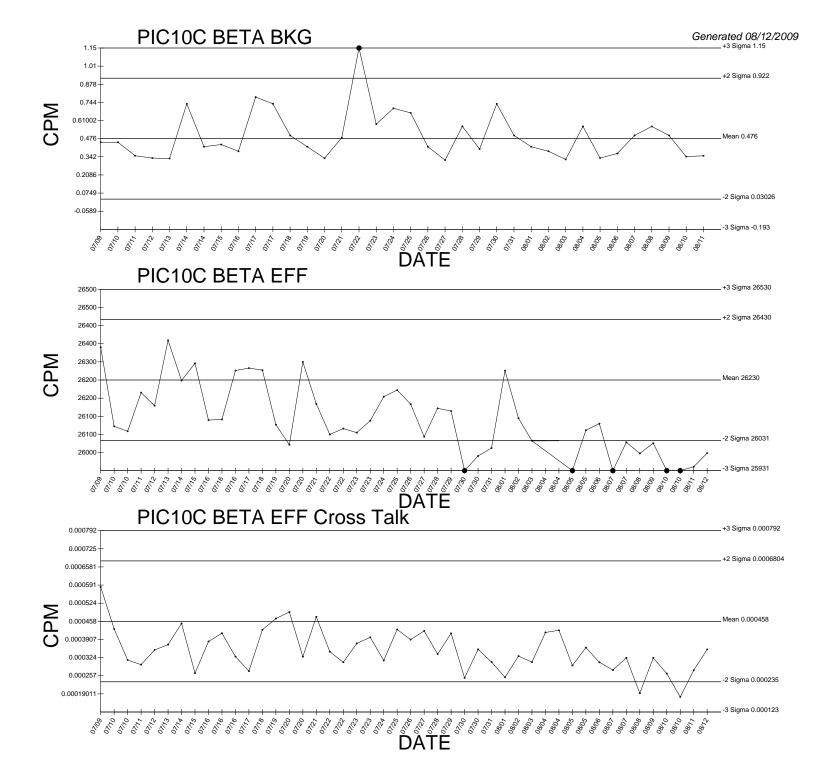


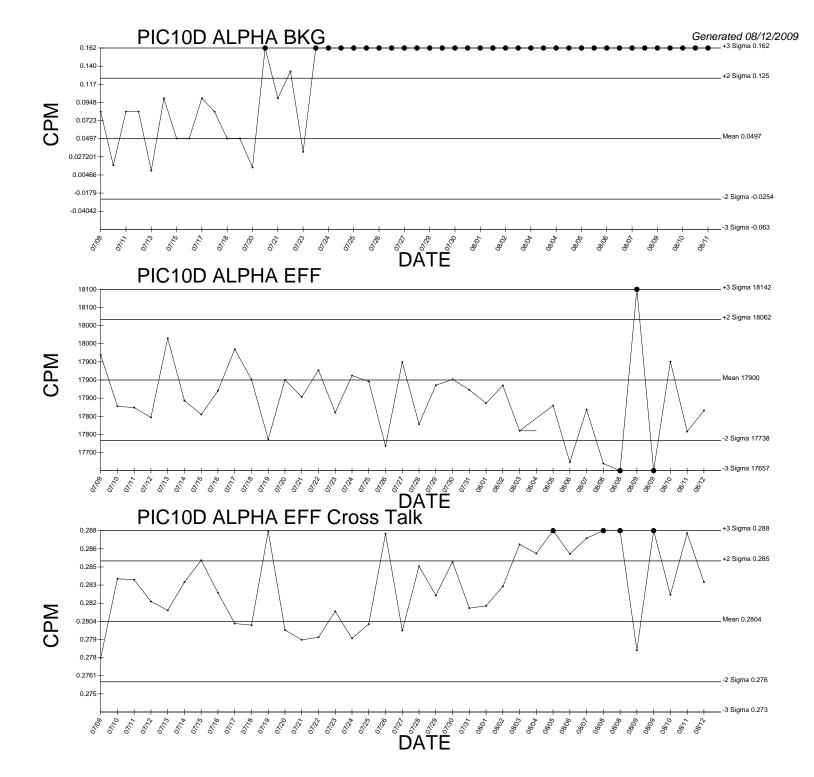


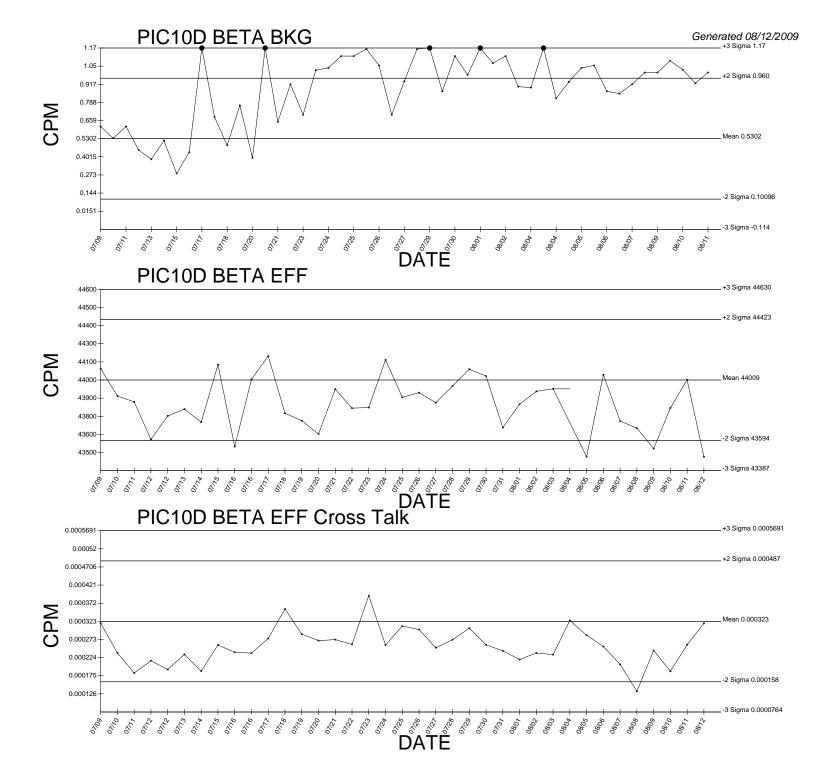


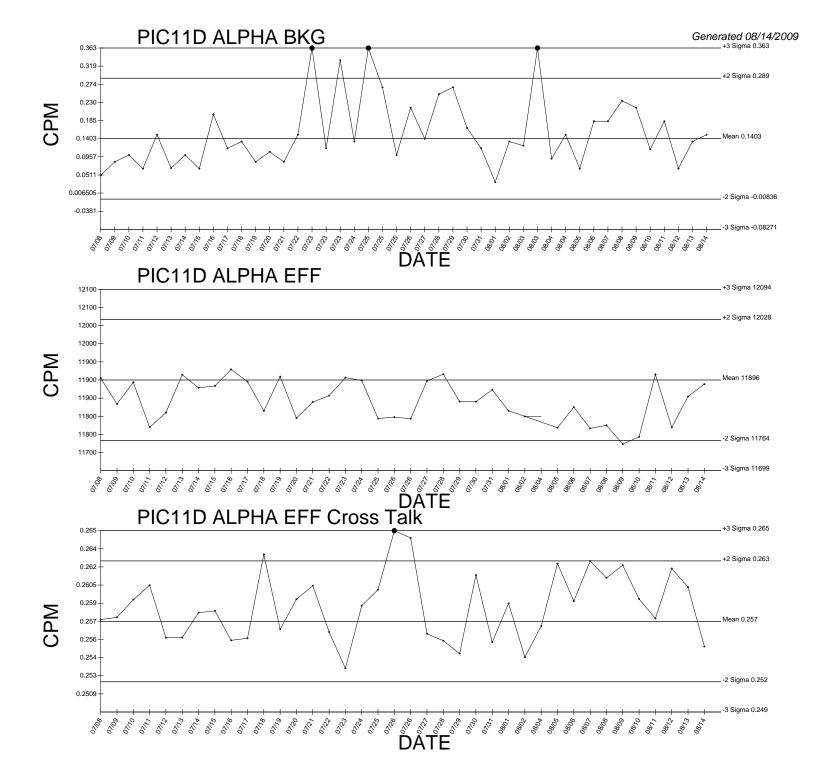


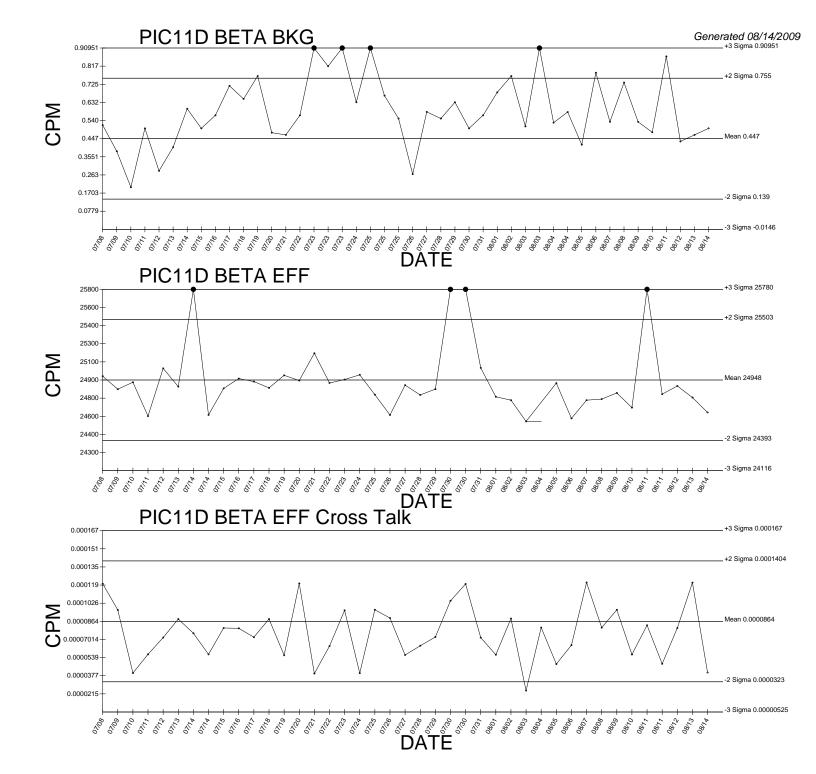


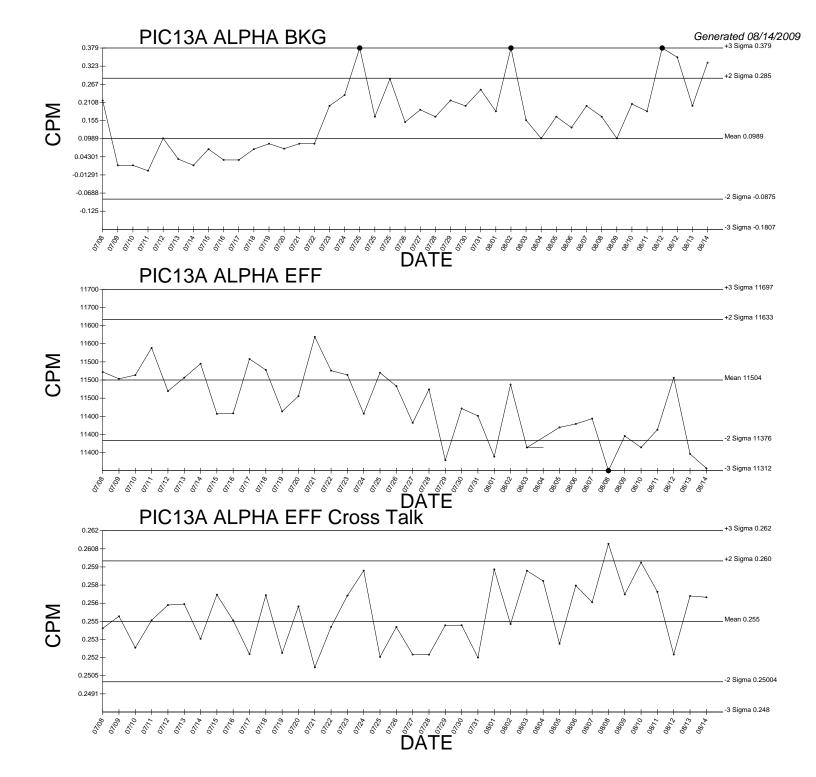


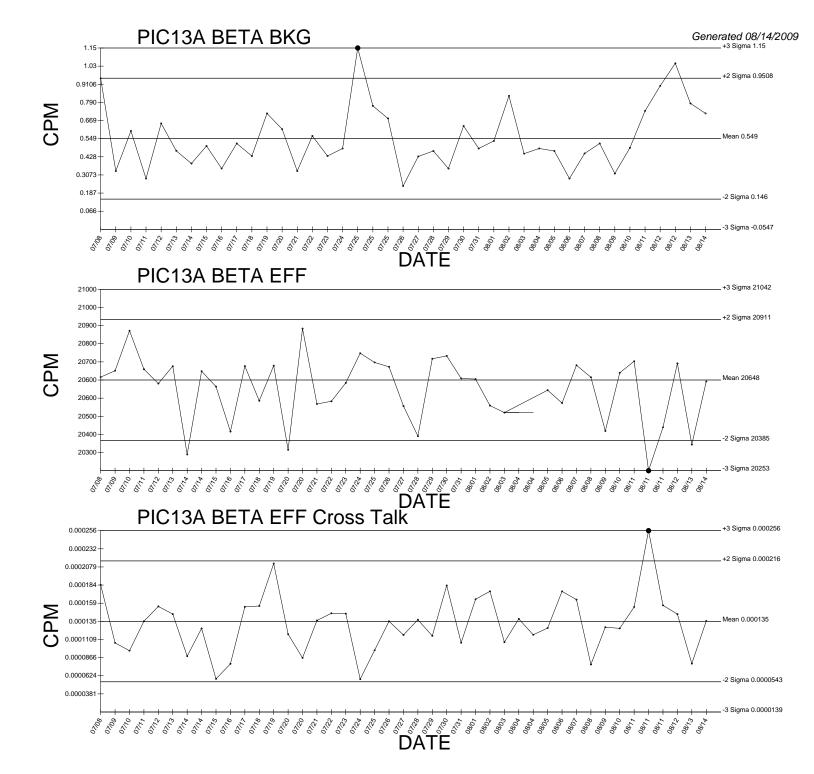


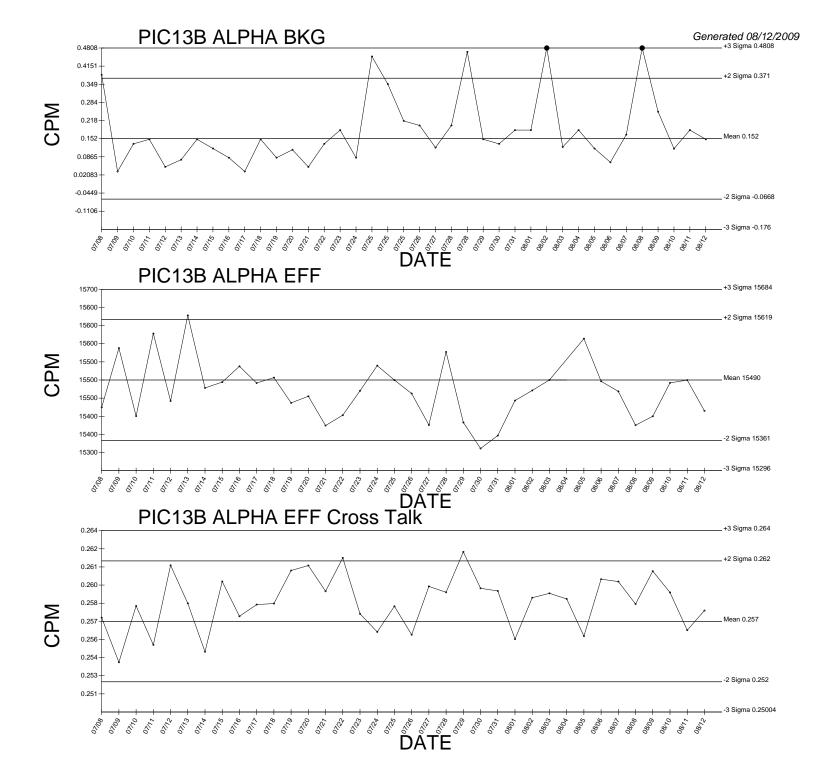


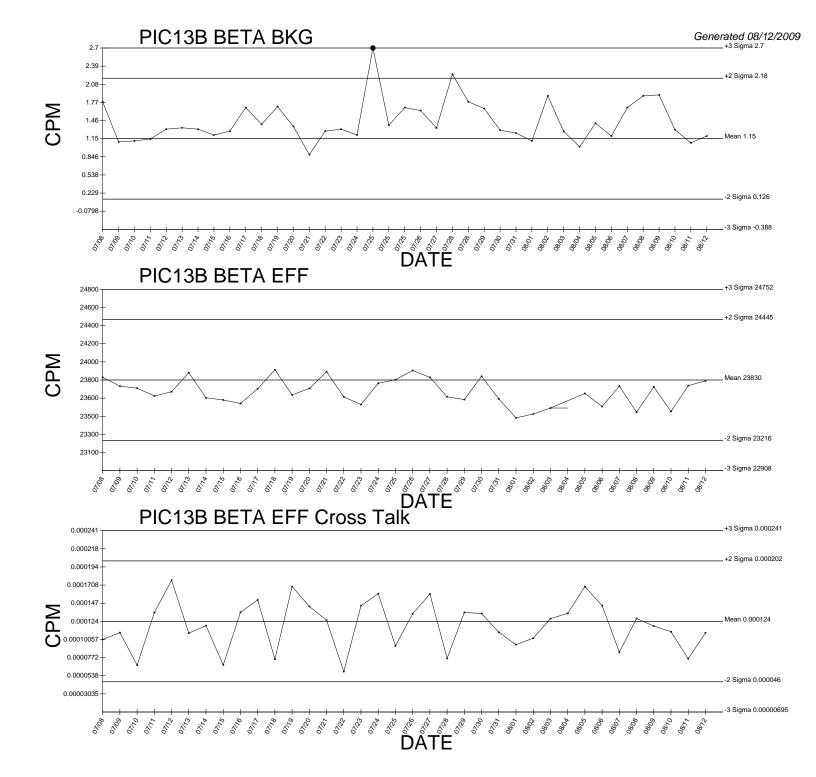


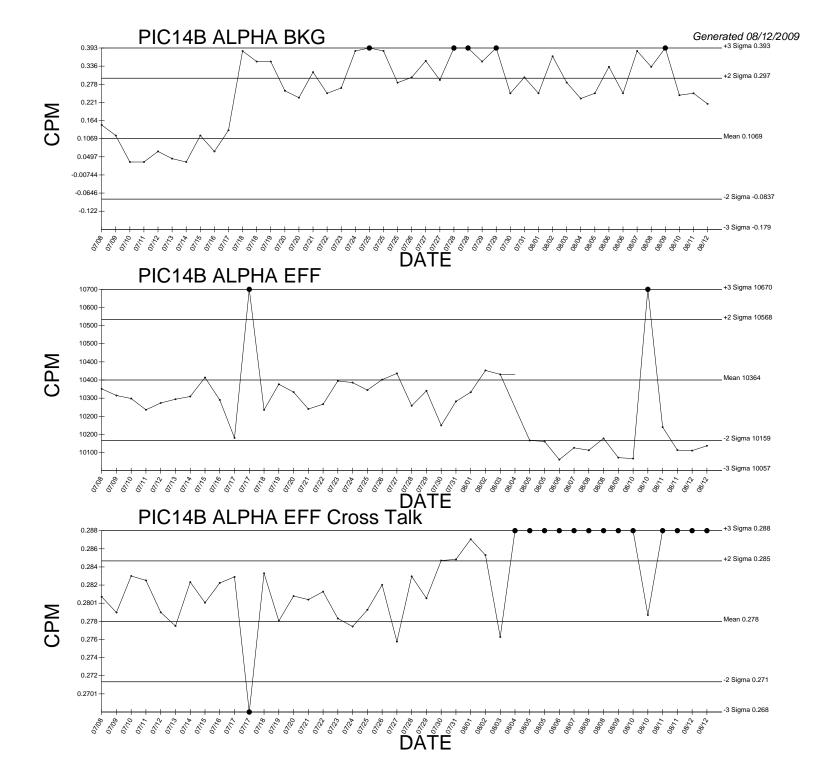


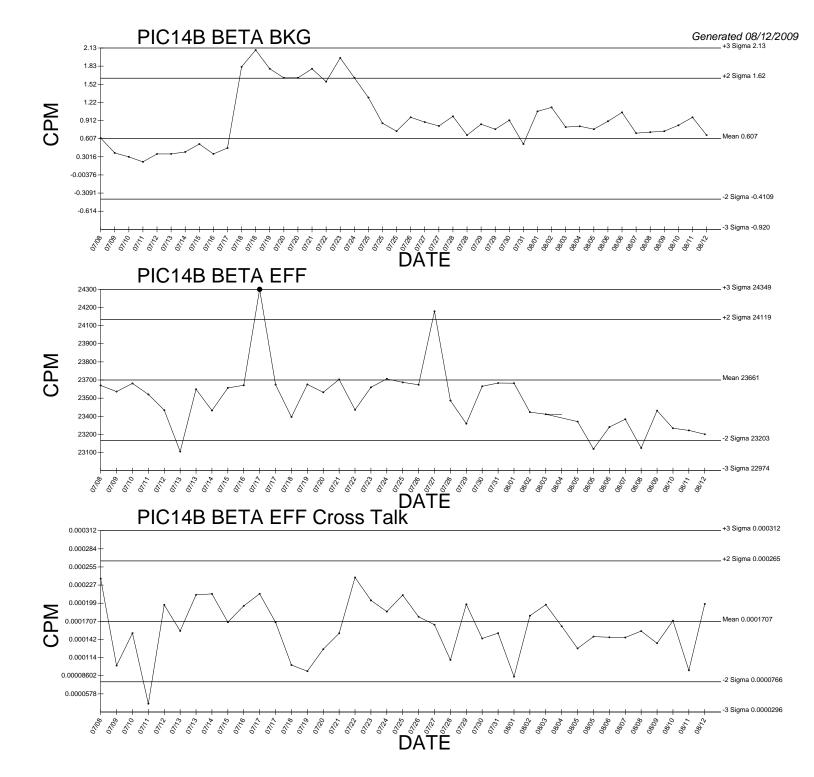


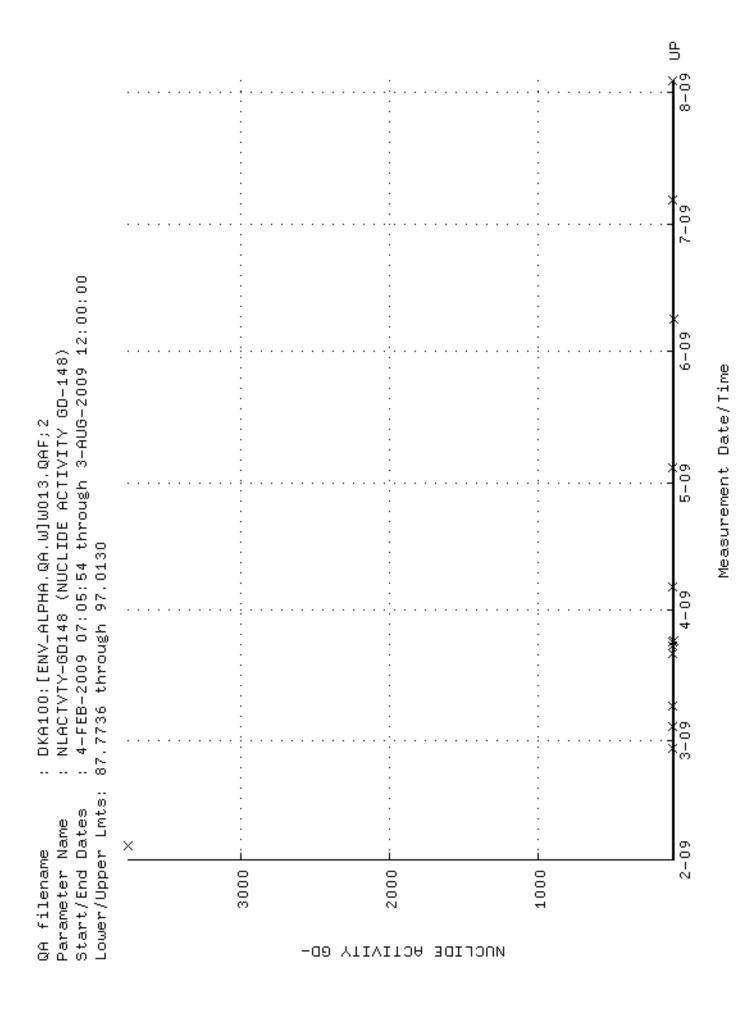


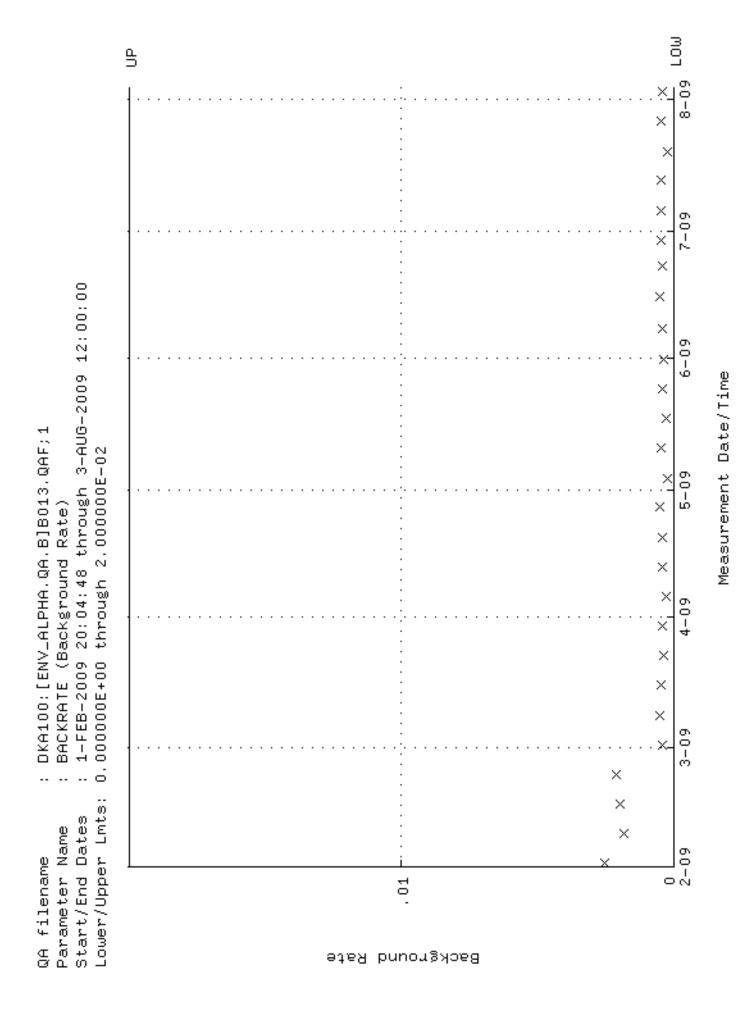


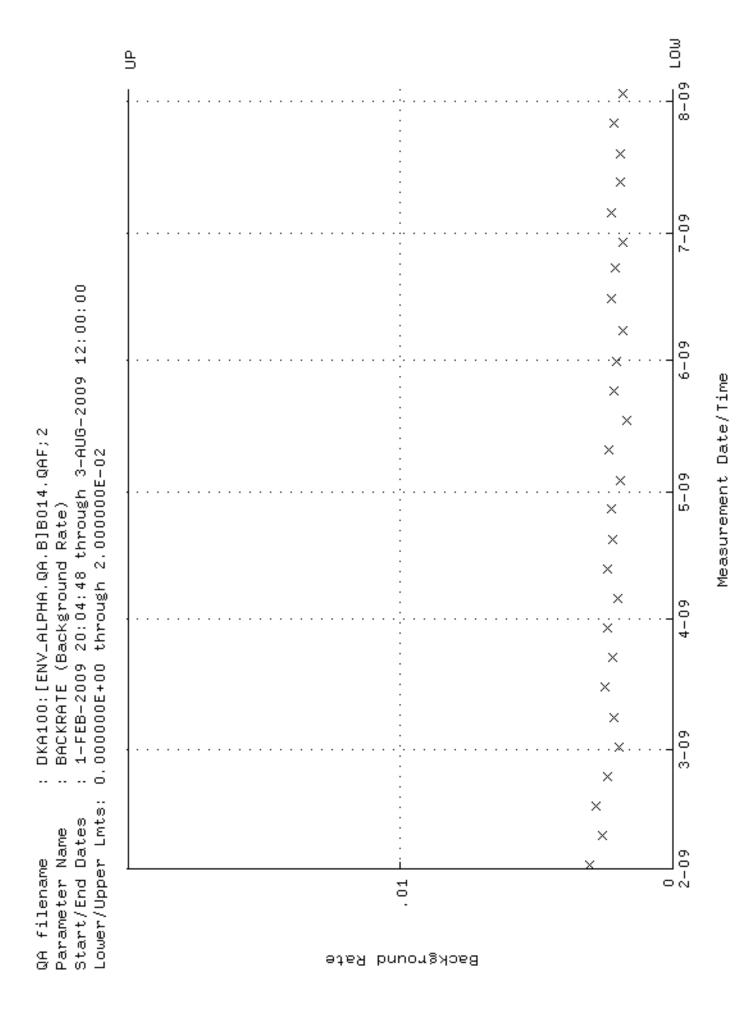


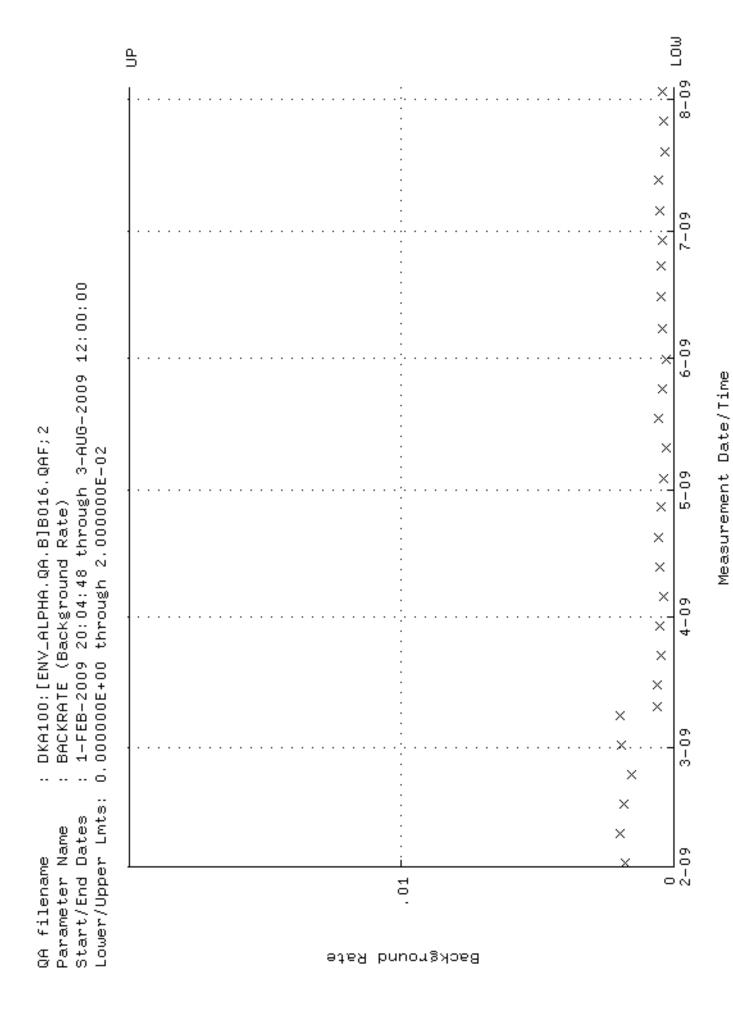




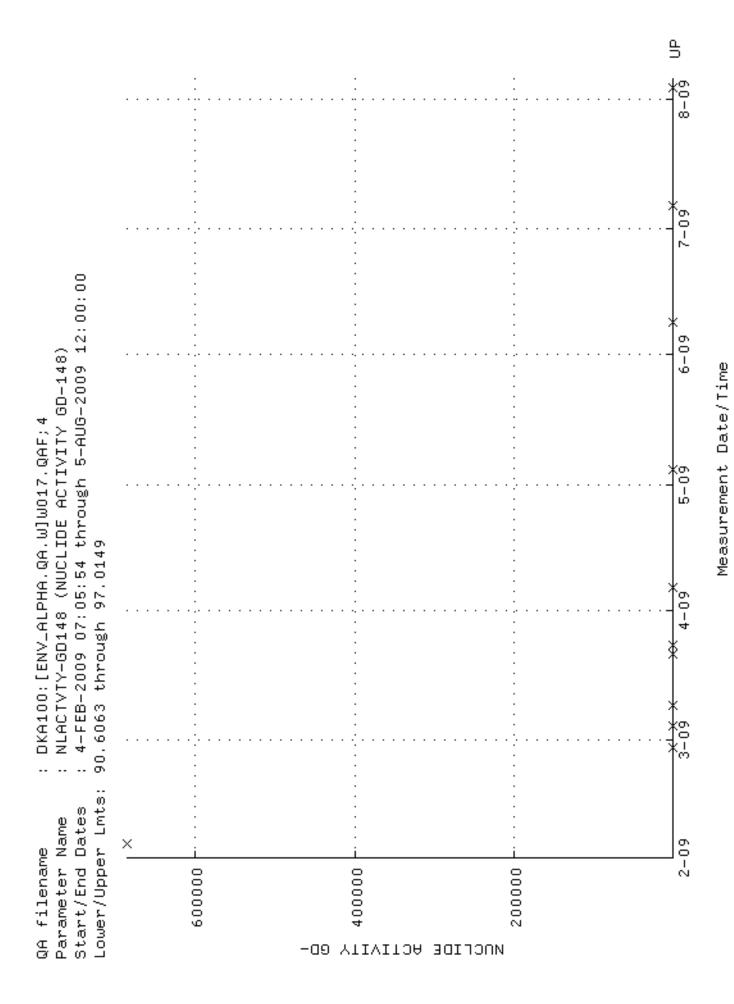


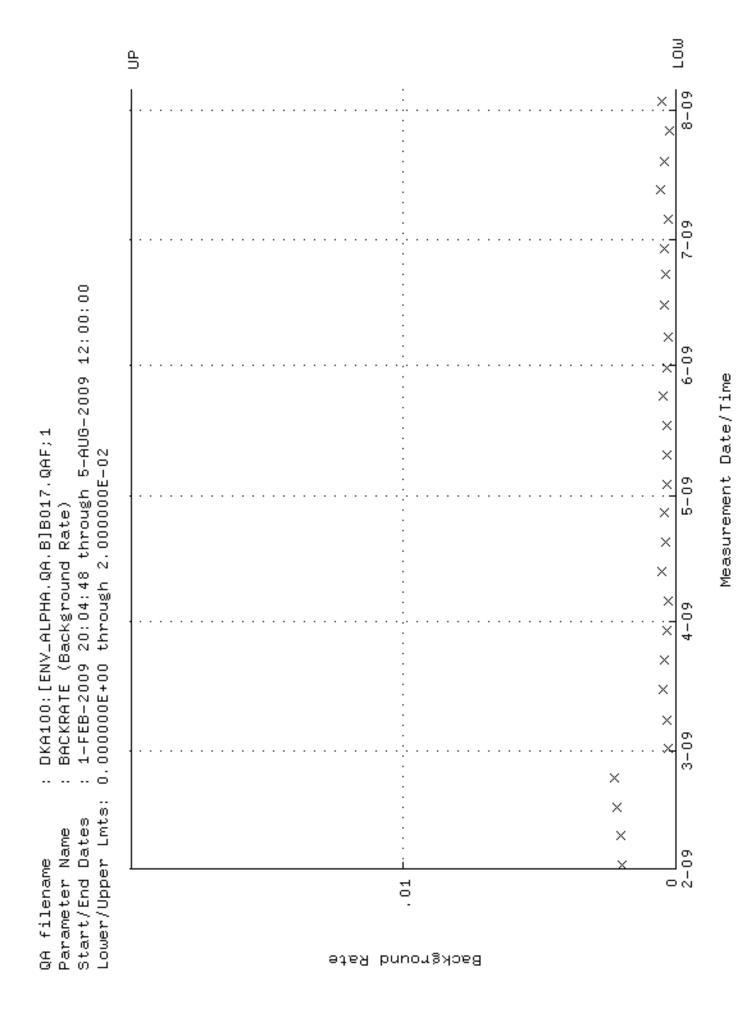


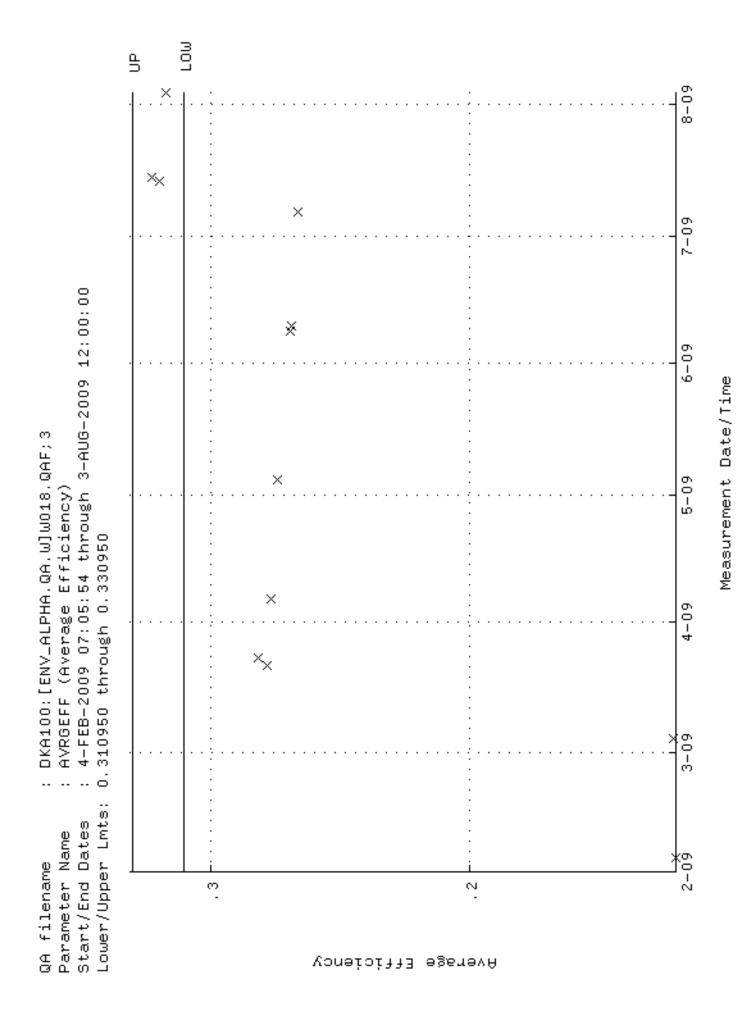

307 9 8-09 X 2-09 AVRGEFF (Average Efficiency) 4-FEB-2009 07:05:54 through 3-AUG-2009 12:00:00 × 60-9 DKA100: [ENV_ALPHA.QA.W]W013.QAF; 2 60-9 × 0.331676 through 0.351676 Х 4-09 * × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename ო Ŋ 던. Yoneizitti egeneyA

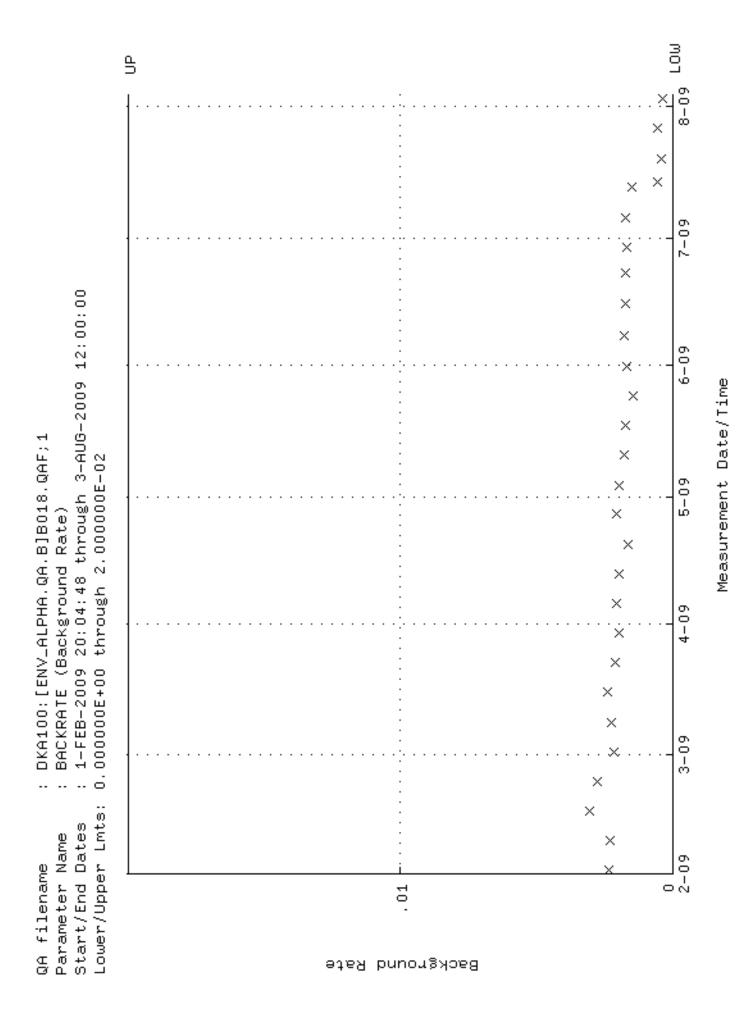

30 9 8-09 × Х 2-09 AVRGEFF (Average Efficiency) 4-FEB-2009 07:05:54 through 3-AUG-2009 12:00:00 × 60-9 DKA100: [ENV_ALPHA.QA.W]W014.QAF; 4 60-9 0.301834 through 0.321834 × 4-09 × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name . 15 ├_. 2-09 QA filename ო . 25 ۲, Yonəibilə əğenəvA

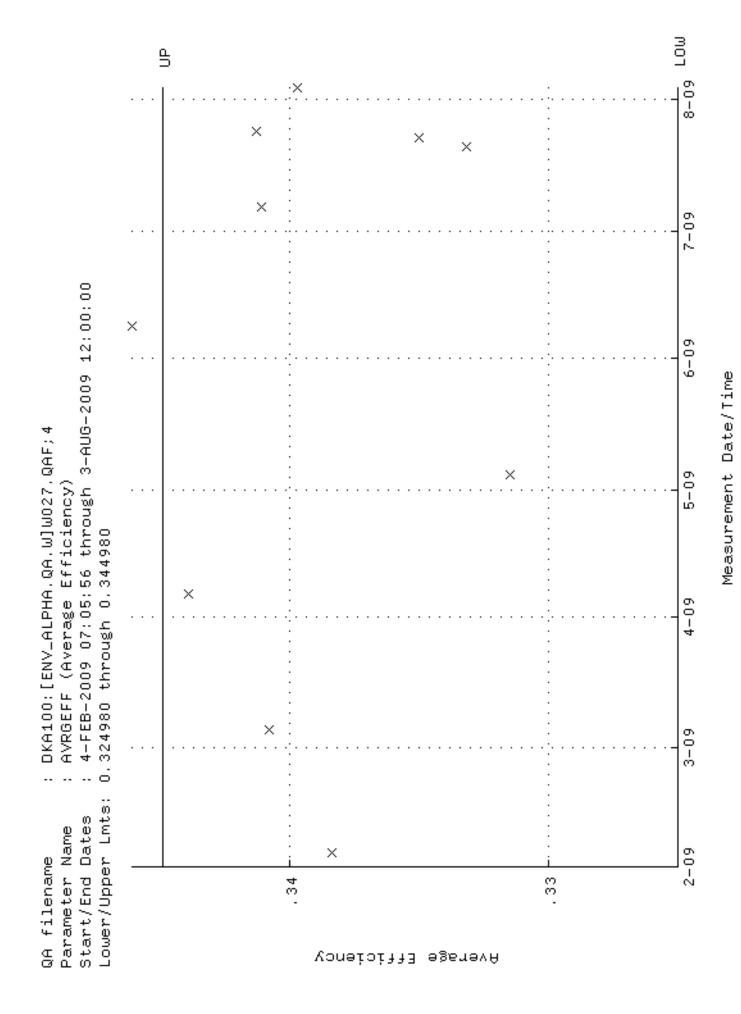
MOT 9 8-09 × 2-09 : 4-FEB-2009 07:05:54 through 3-AUG-2009 12:00:00 × 60-9 : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) : DKA100: [ENV_ALPHA.QA.W]W014.QAF; 4 60-9 × 89.9790 through 99.4504 × 4-09 X 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 90 L × QA filename 86 96 92 94 NOCLIDE ACTIVITY 6D-

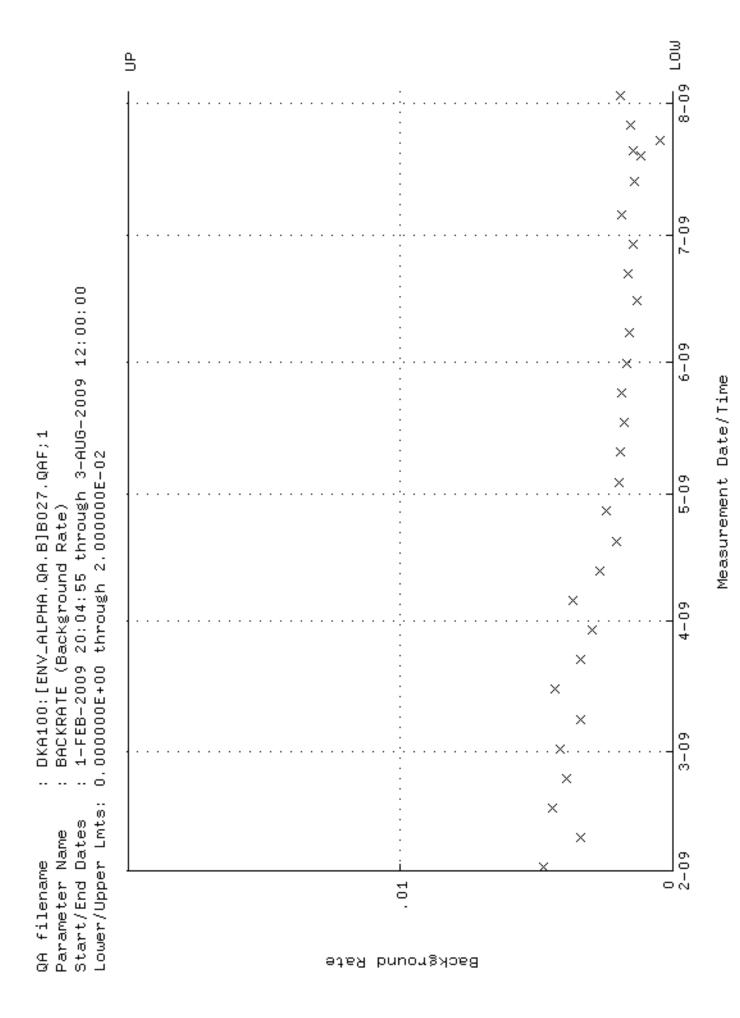


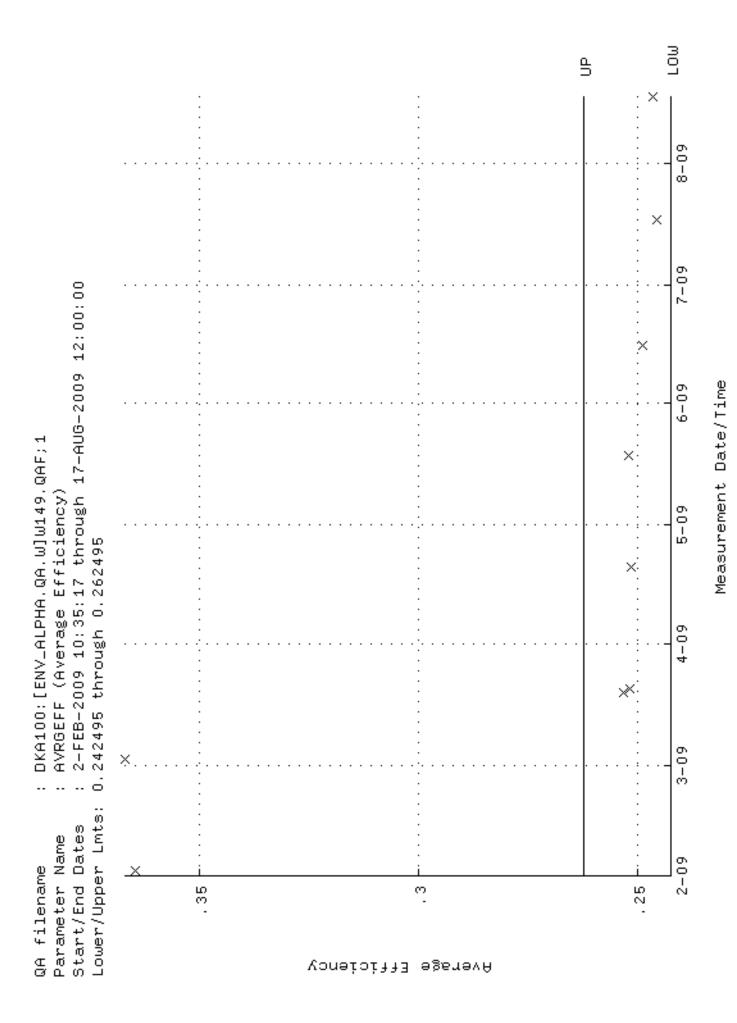

30 10 10 9 8-09 Х 2-09 AVRGEFF (Average Efficiency) 4-FEB-2009 07:05:54 through 3-AUG-2009 12:00:00 × 60-9 DKA100: [ENV_ALPHA.QA.W]W016.QAF; 3 60-9 ×. 0.326058 through 0.346058 × 4-09 ×× × × 3-09 × Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 × QA filename ო Ŋ Yonəibilə əğenəvA

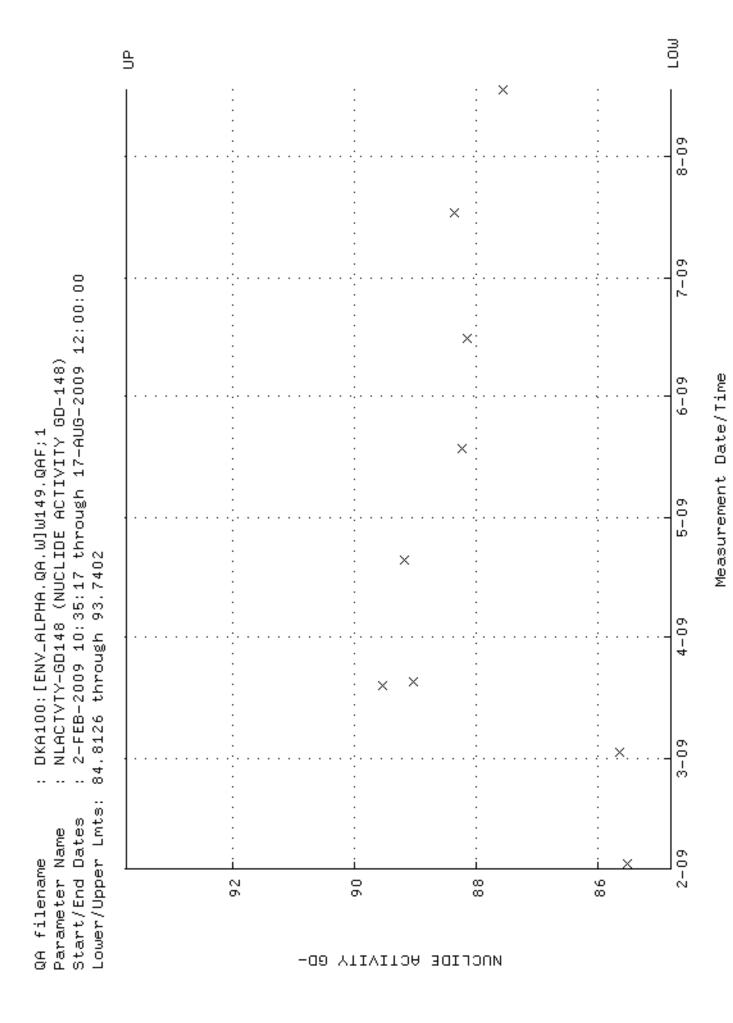

MOT 9 8-09 × 2-09 : 4-FEB-2009 07:05:54 through 3-AUG-2009 12:00:00 60-9 : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) : DKA100:[ENV_ALPHA.QA.W]W016.QAF;3 60-9 85.9280 through 94.9730 × 4-09 ××× 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 86 <u>L. .</u> 2-09 Х QA filename 94 9 8 92 NOCLIDE ACTIVITY 6D-

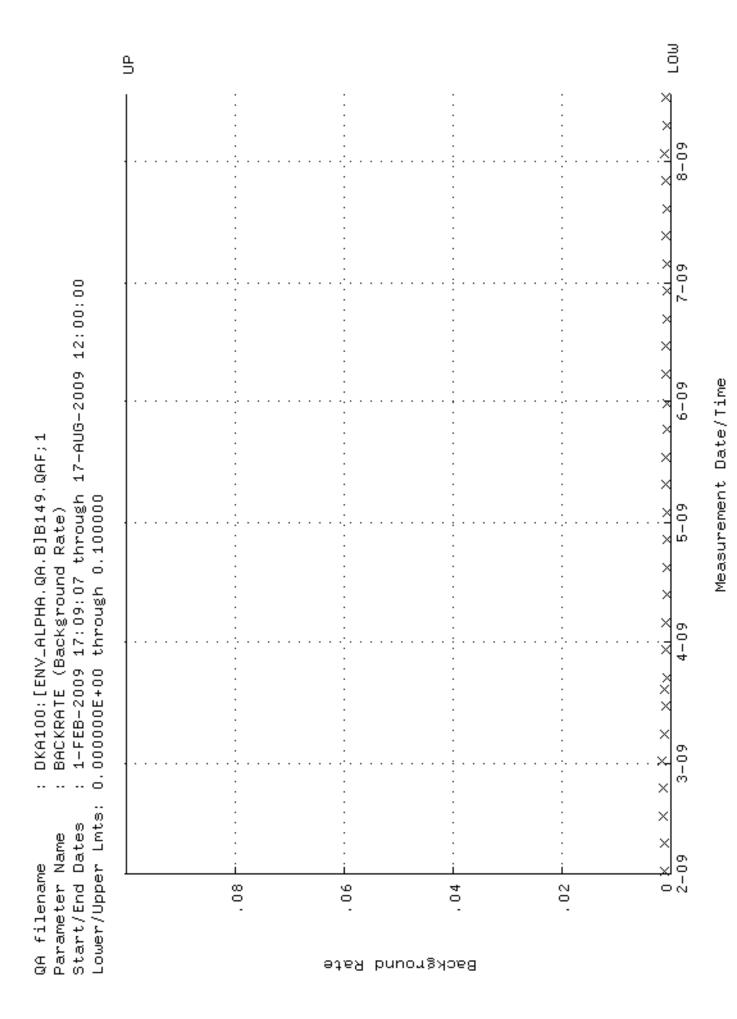

MOT 9 8-09 2-09 AVRGEFF (Average Efficiency) 4-FEB-2009 07:05:54 through 5-AUG-2009 12:00:00 60-9 DKA100: [ENV_ALPHA.QA.W]W017.QAF; 4 60-9 0.276771 through 0.307557 × 4-09 ×, × × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename ٥, 던. Yonəibilə əğenəvA

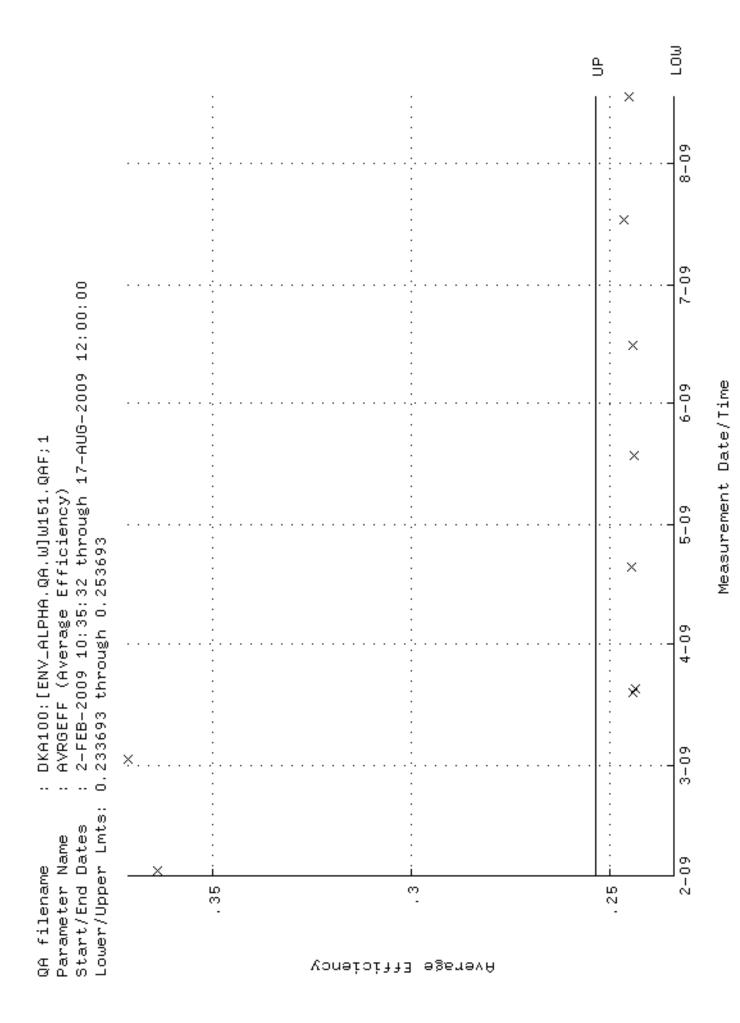


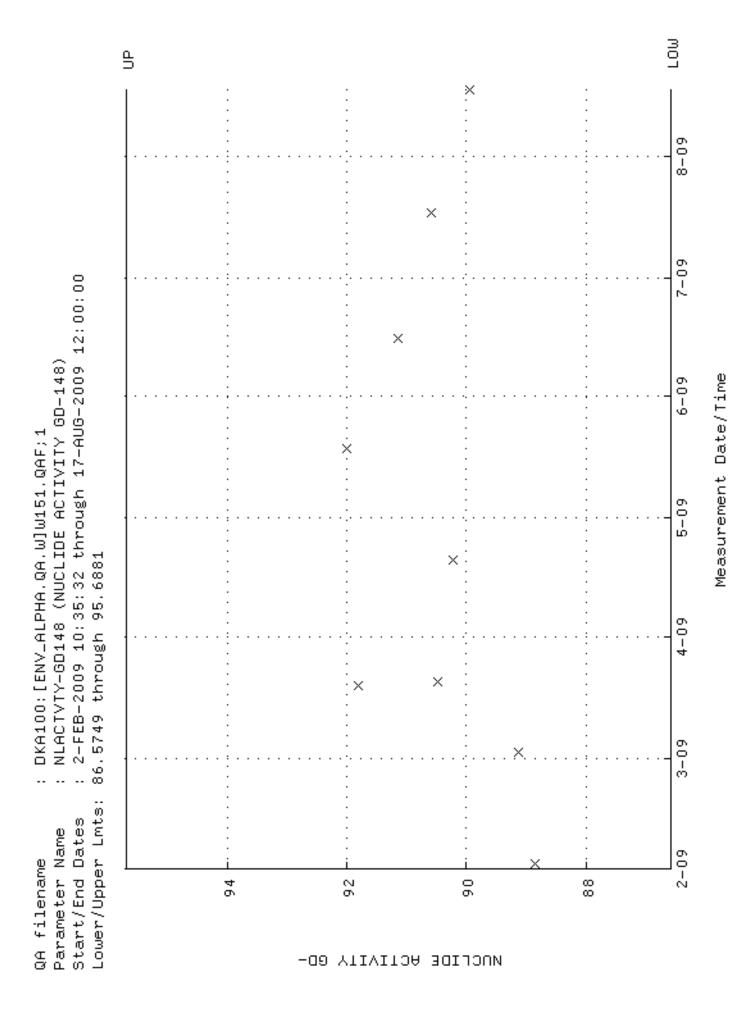

MOT 9 8-09 \times \times × 2-09 : 4-FEB-2009 07:05:54 through 3-AUG-2009 12:00:00 × 60-9 : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) : DKA100:[ENV_ALPHA.QA.W]W018.QAF;3 × 60-9 86.3167 through 95.4027 × 4-09 Х 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 X QA filename 92 9 8 9 4 NOCLIDE ACTIVITY 6D-

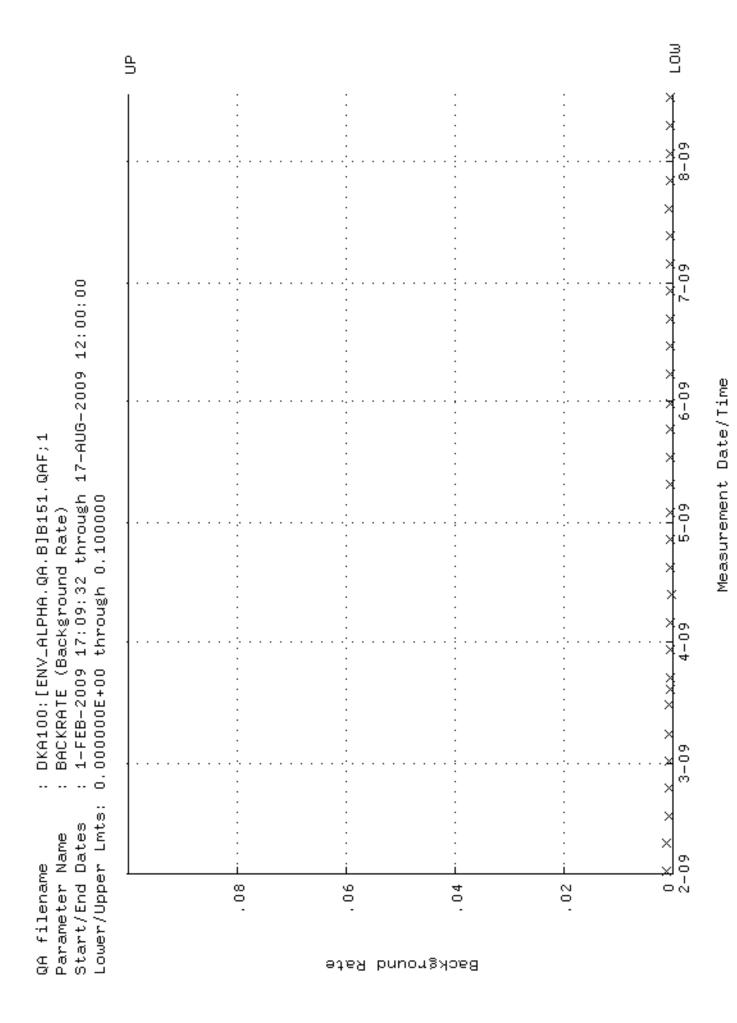


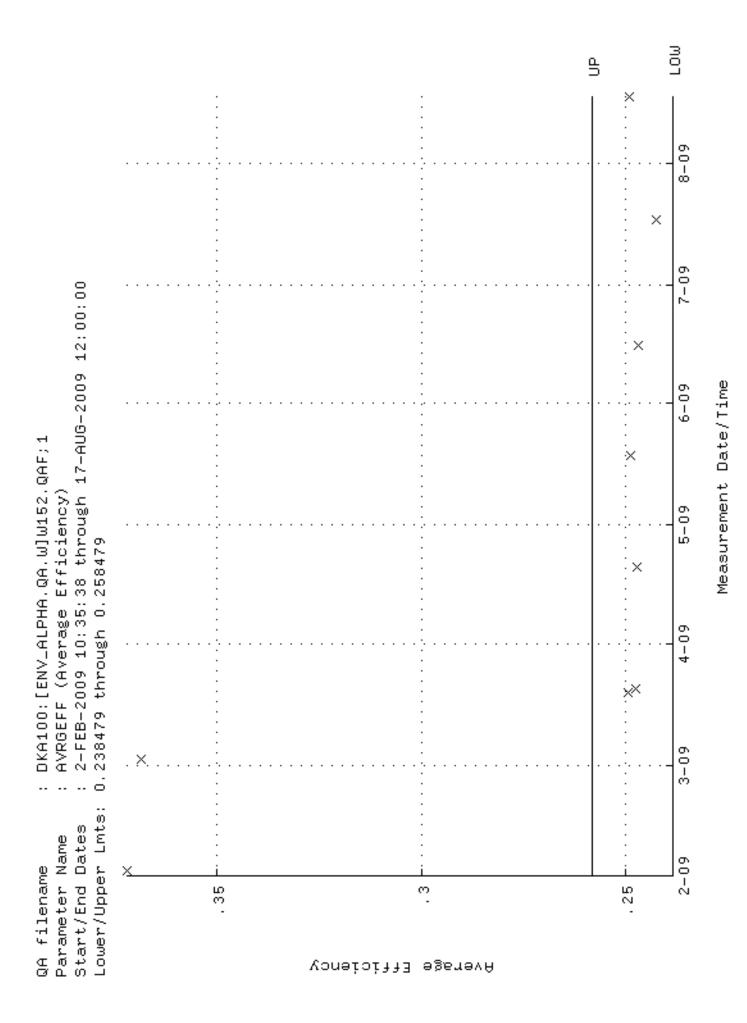


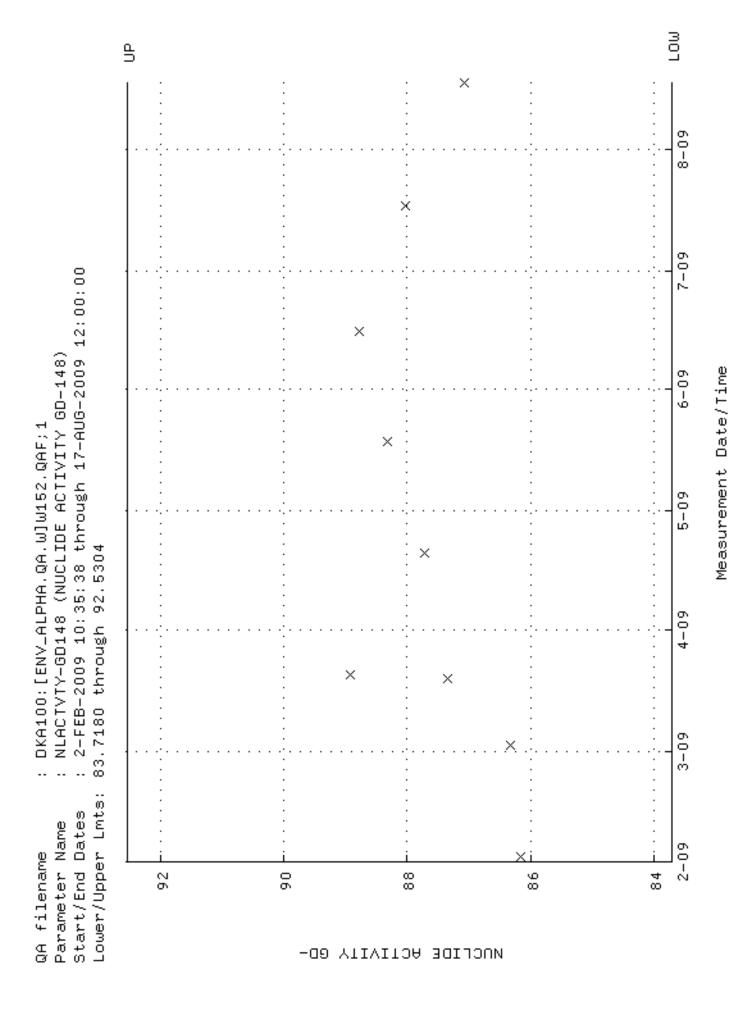

MOT 9 8-09 × × × X 2-09 : 4-FEB-2009 07:05:56 through 3-AUG-2009 12:00:00 × 60-9 NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) : DKA100:[ENV_ALPHA.QA.W]W027.QAF;4 × 60-9 81.2030 through 89.7506 × 4-09 × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename 8 98 84 82 NOCLIDE ACTIVITY 6D-

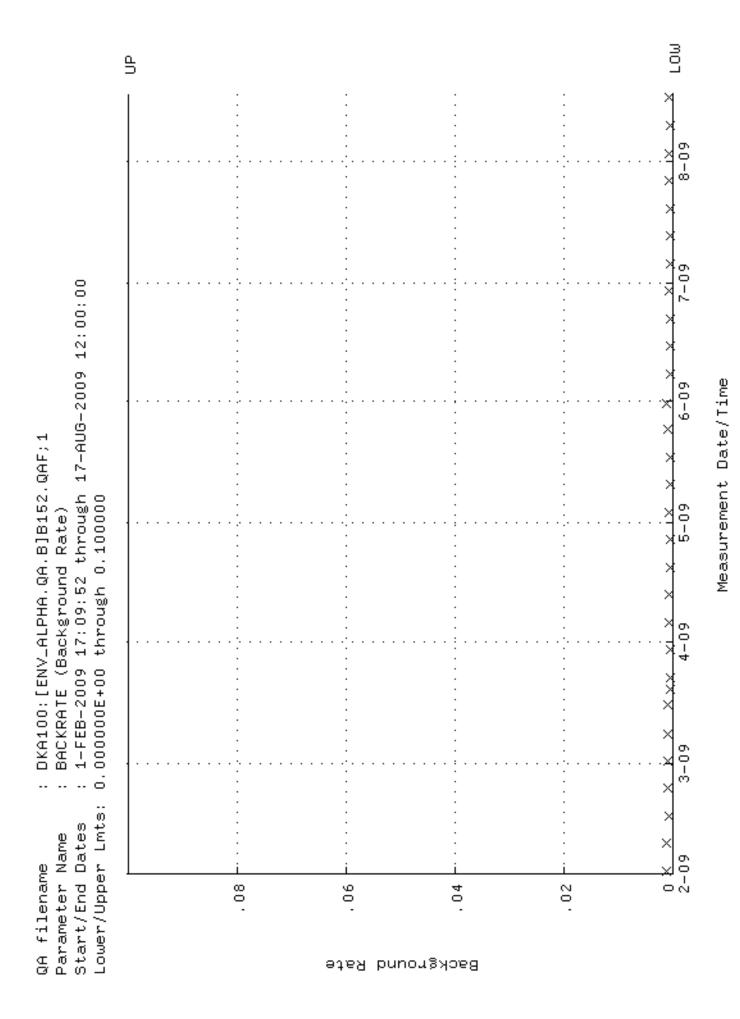

Measurement Date/Time

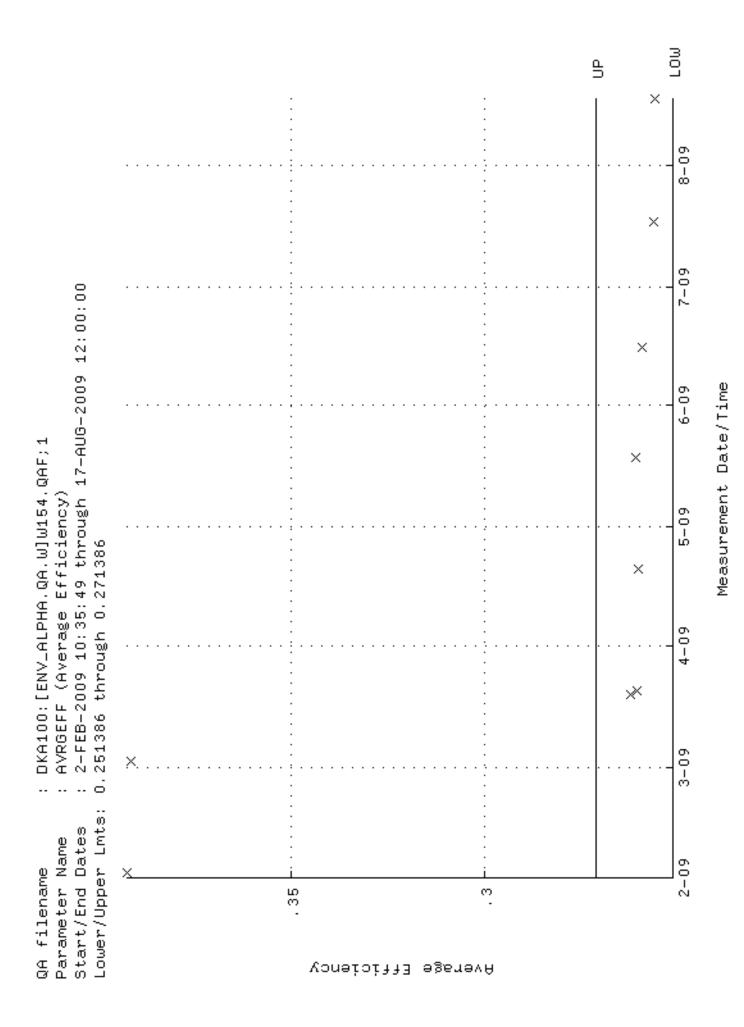


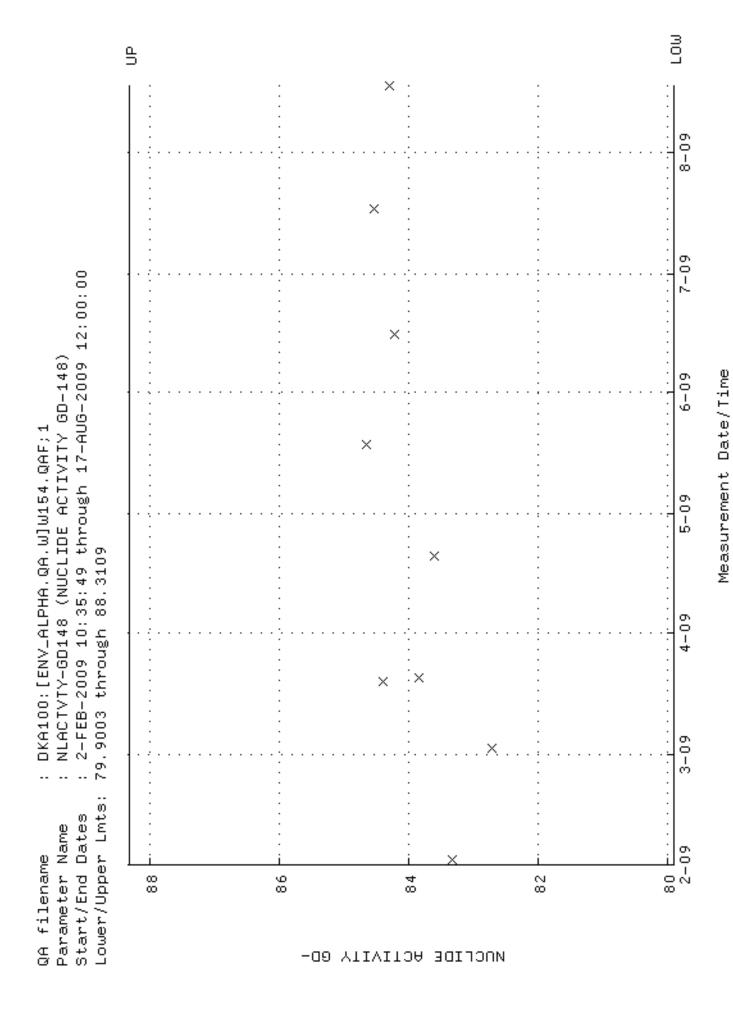


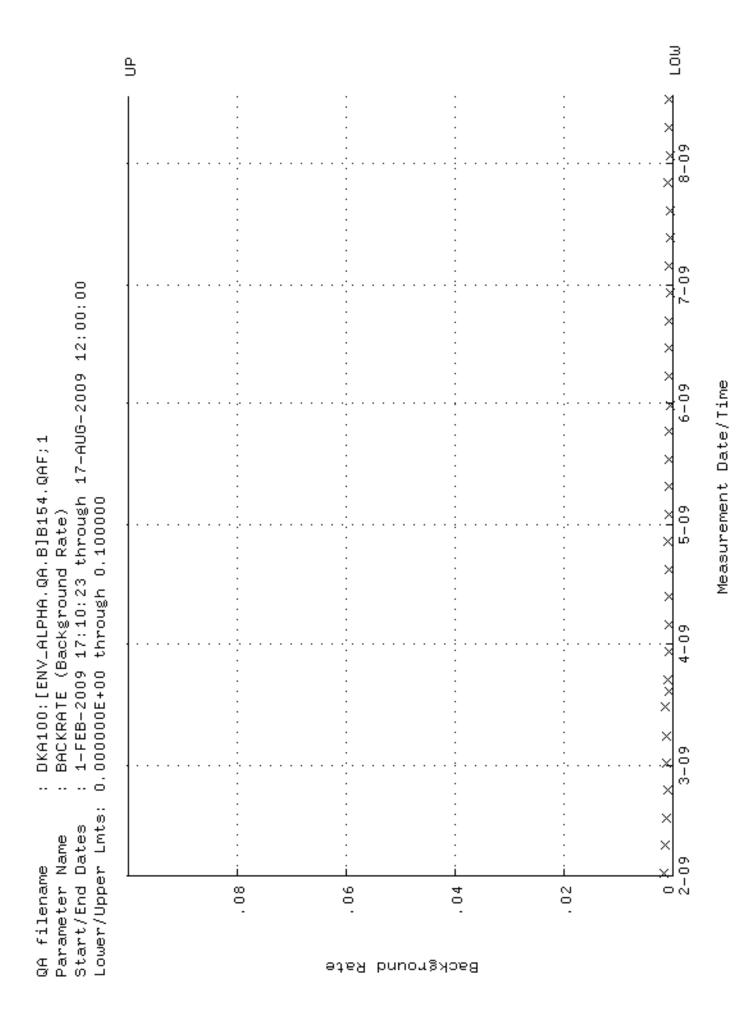


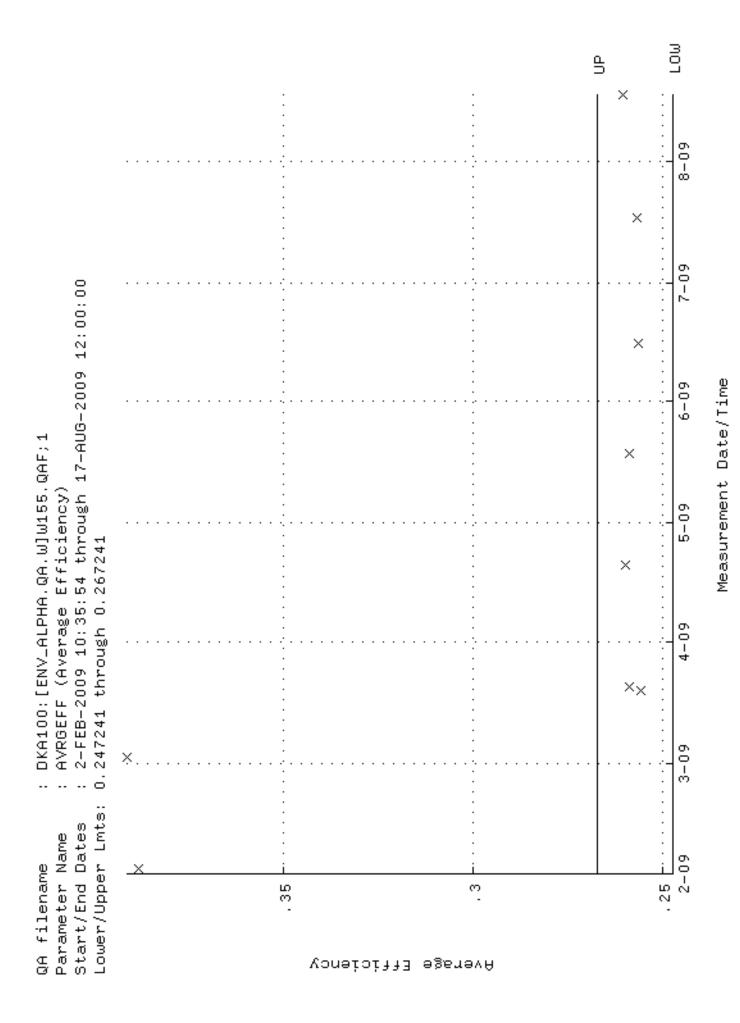


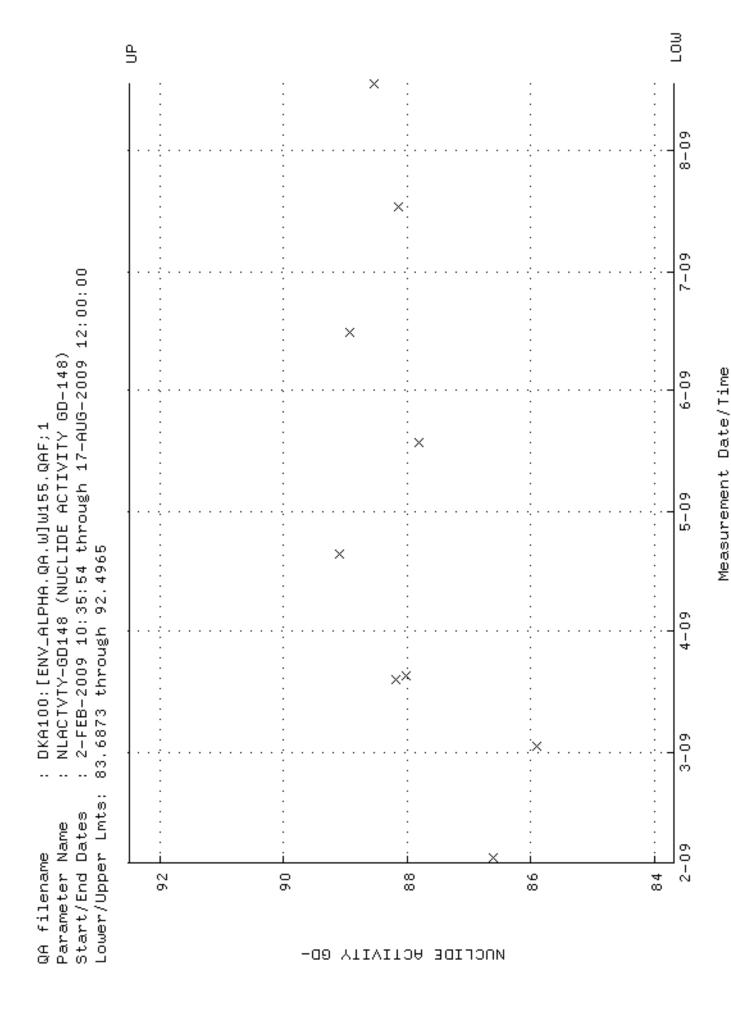


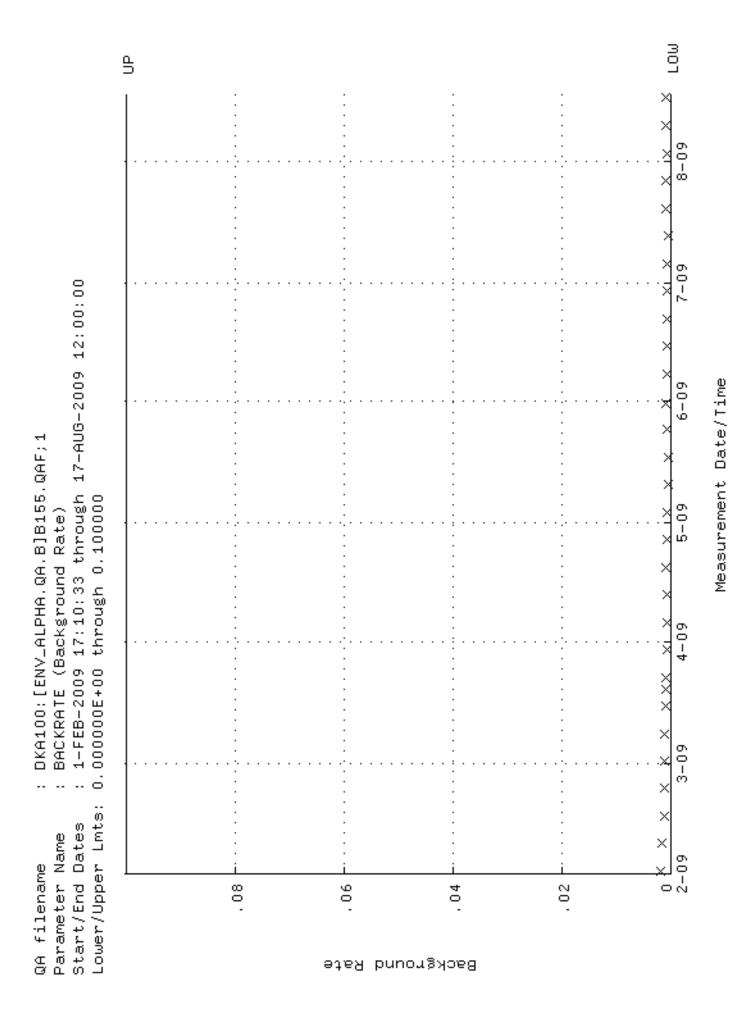


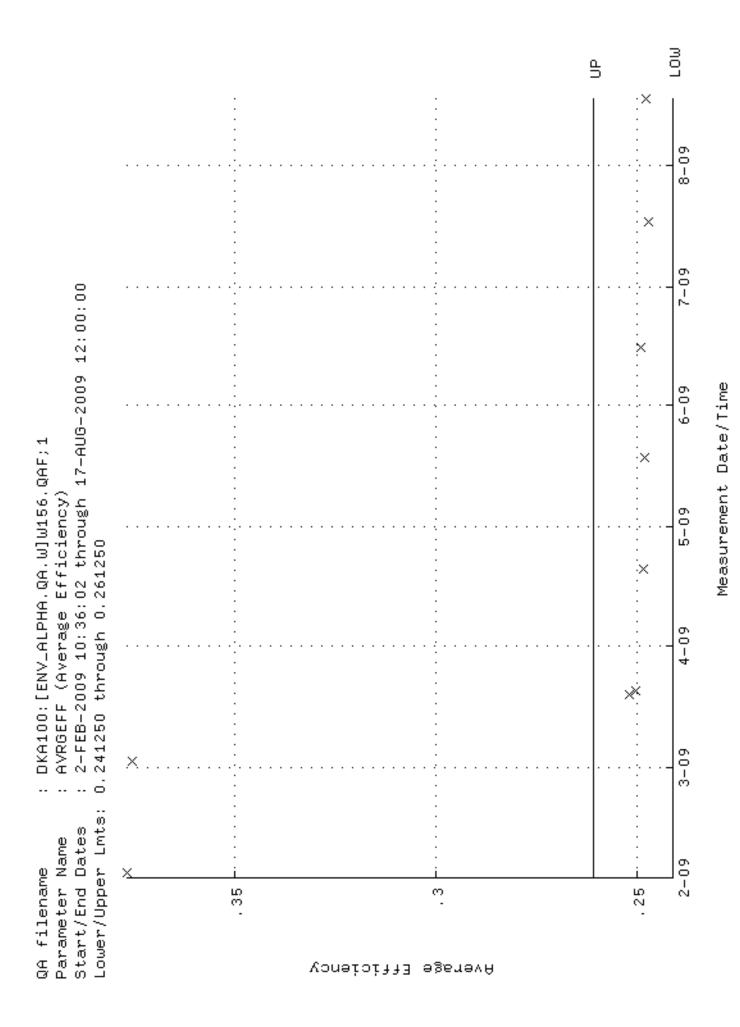


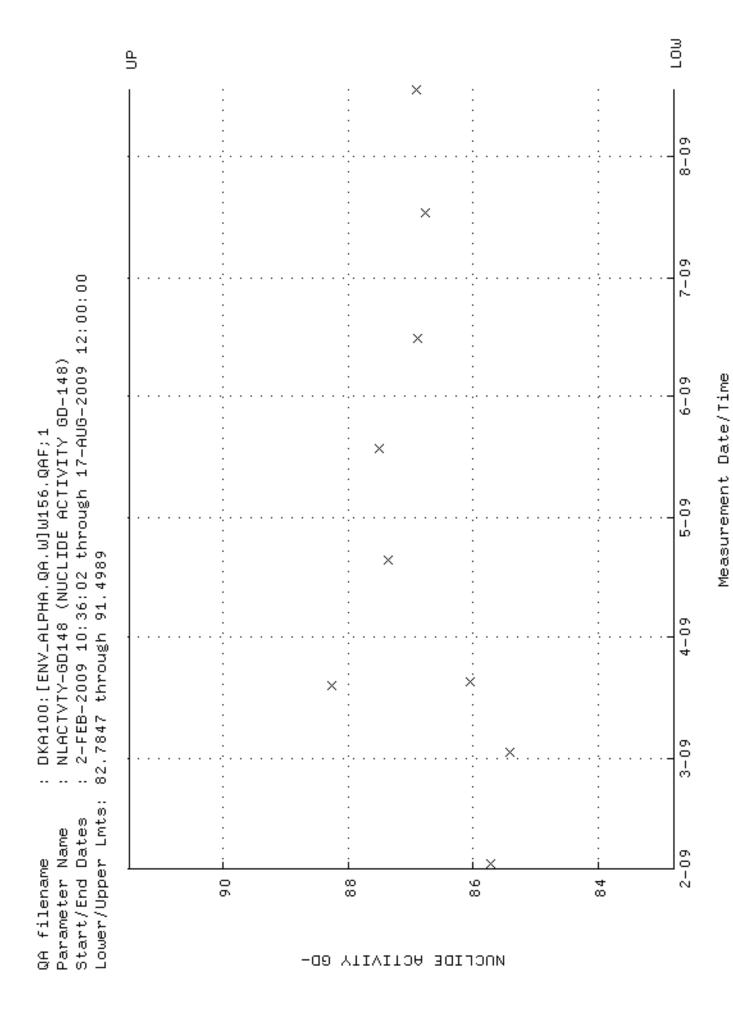


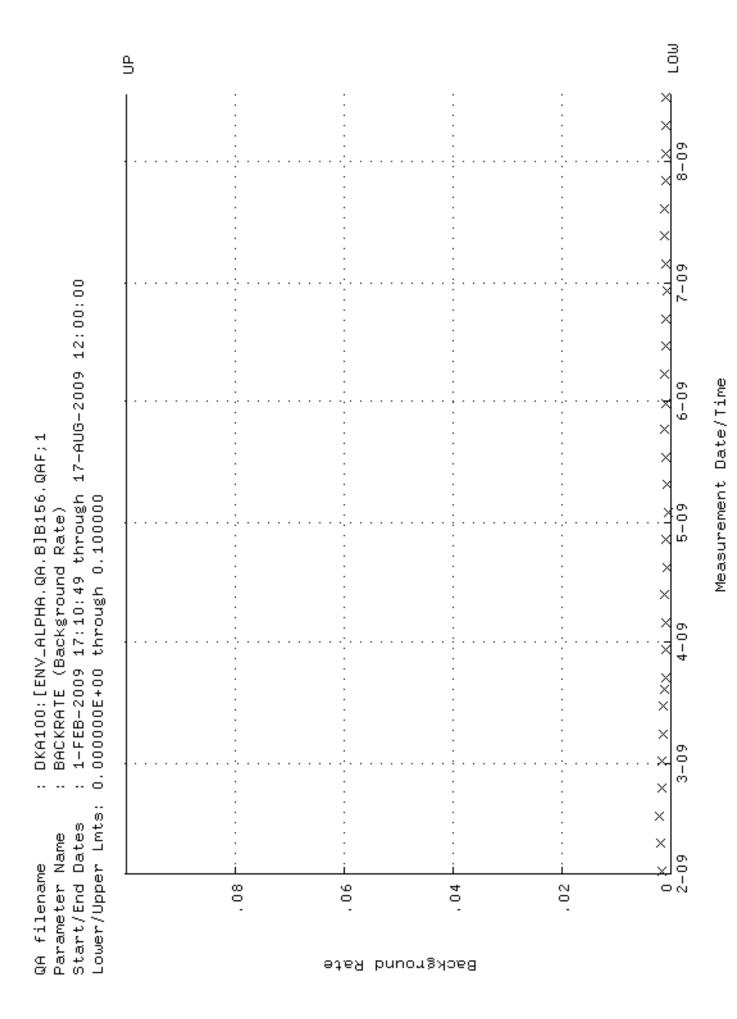


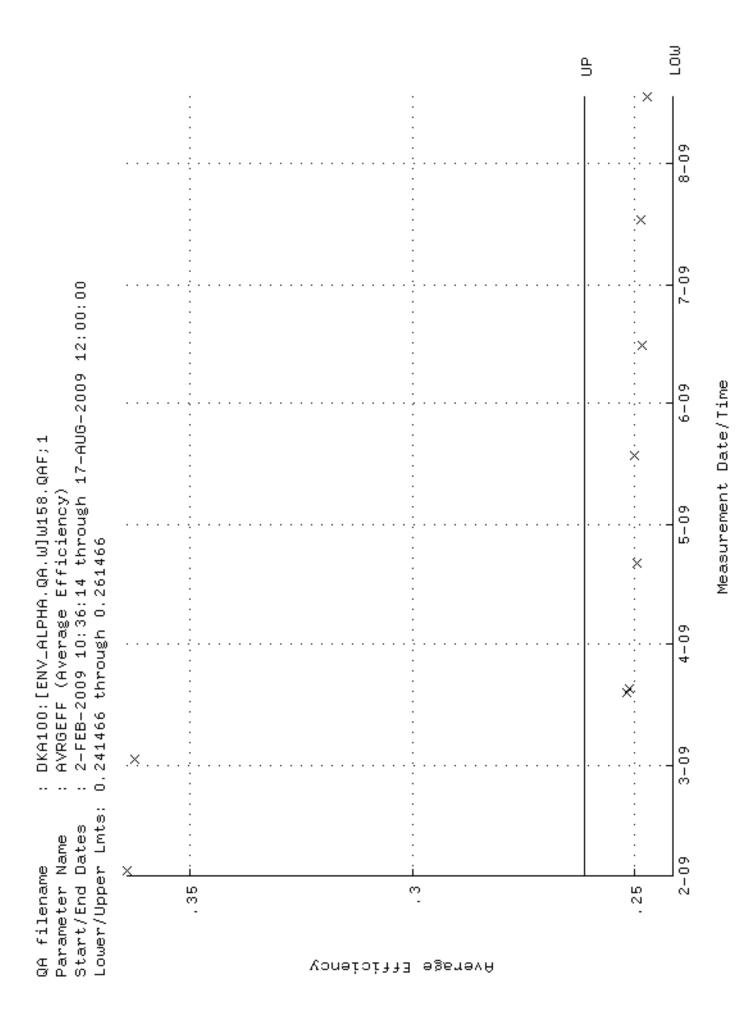


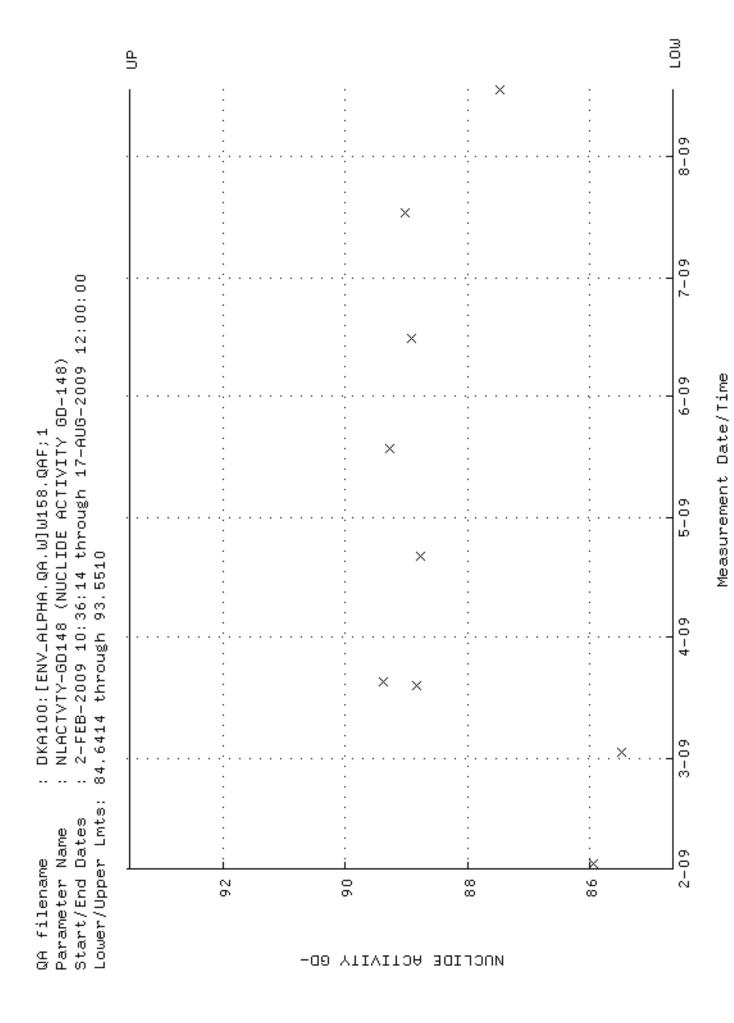


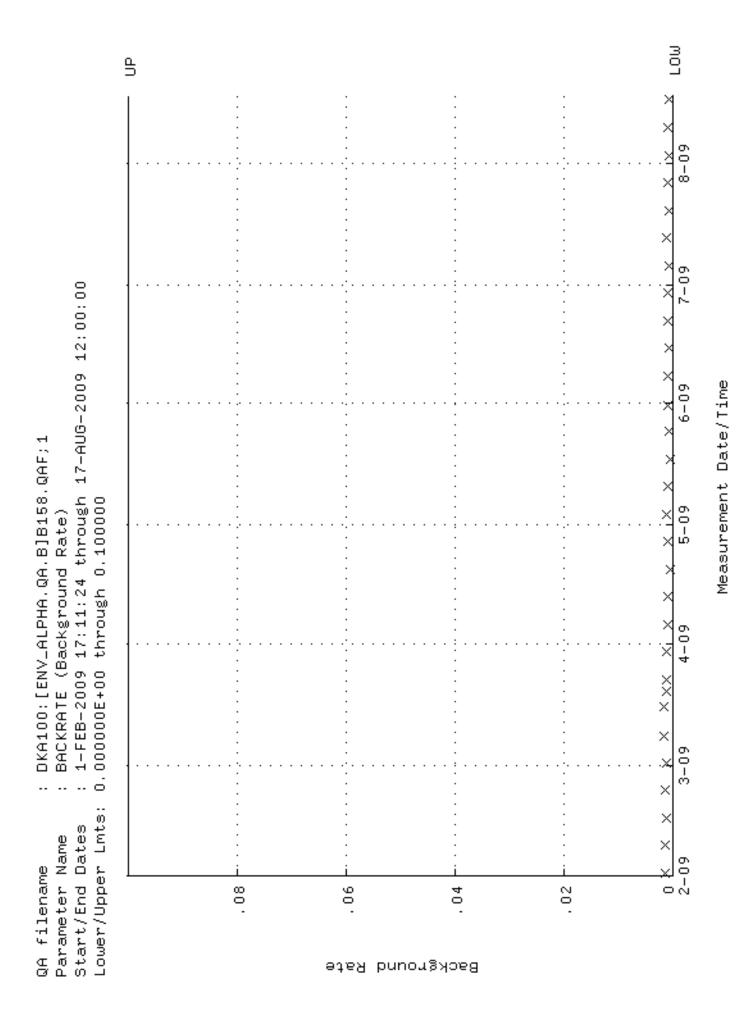


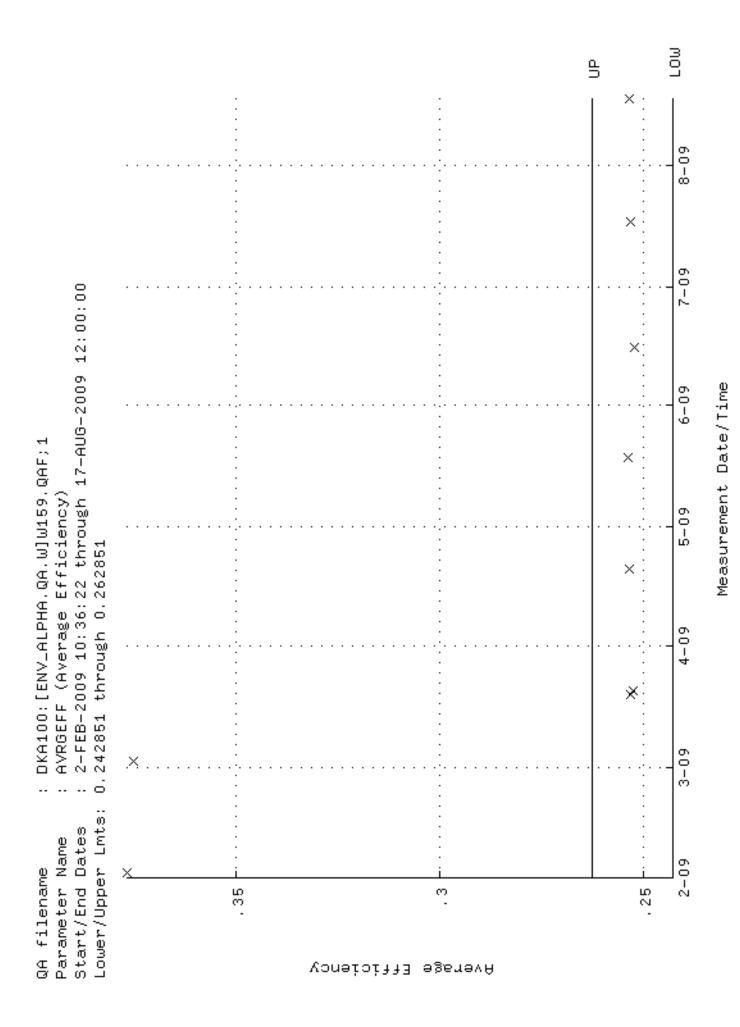


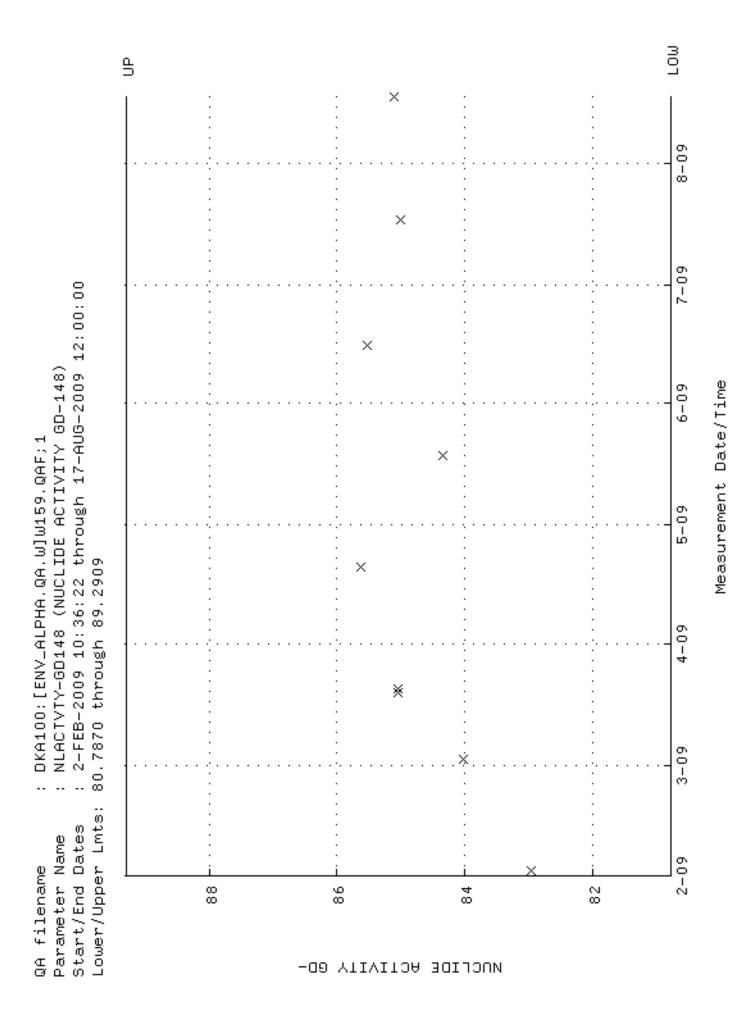


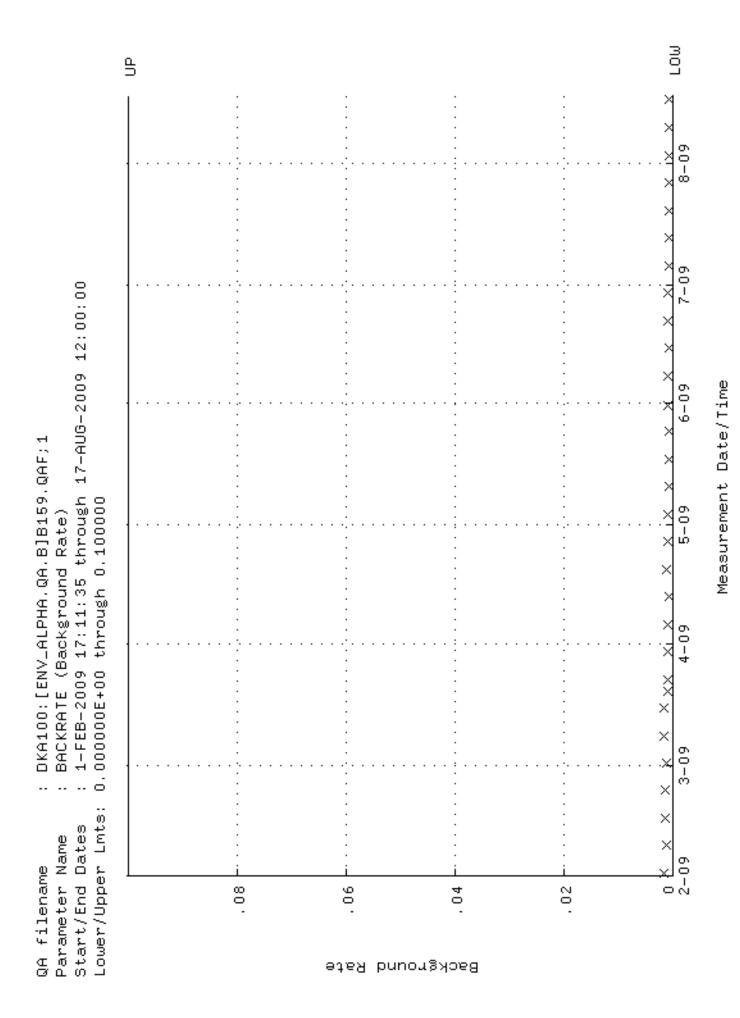


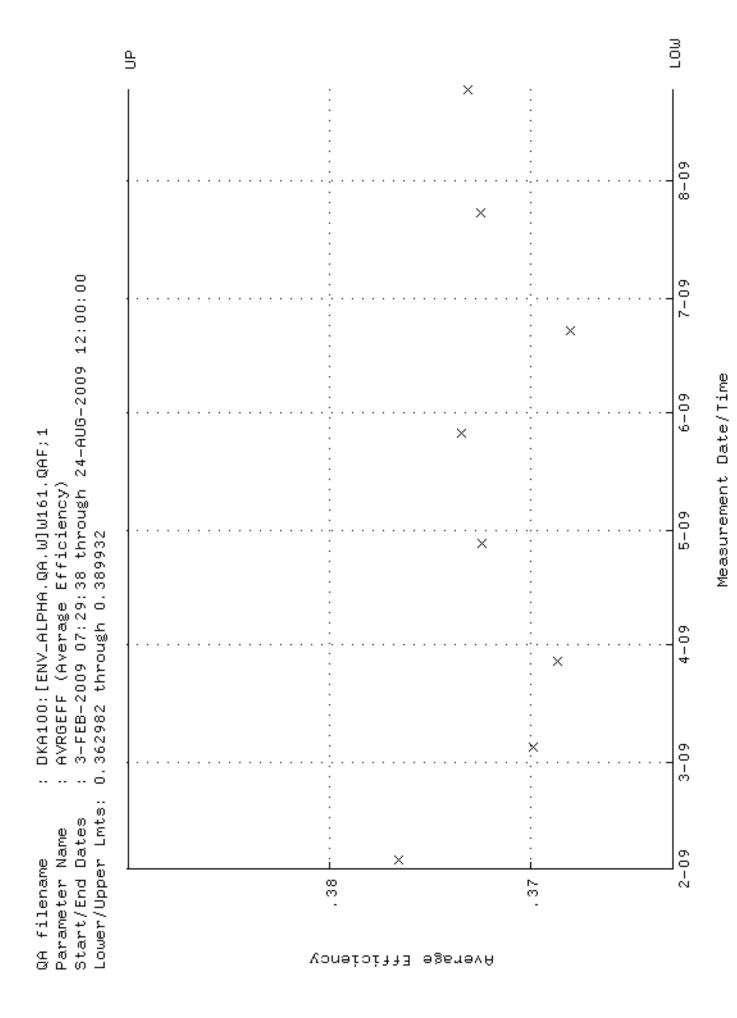


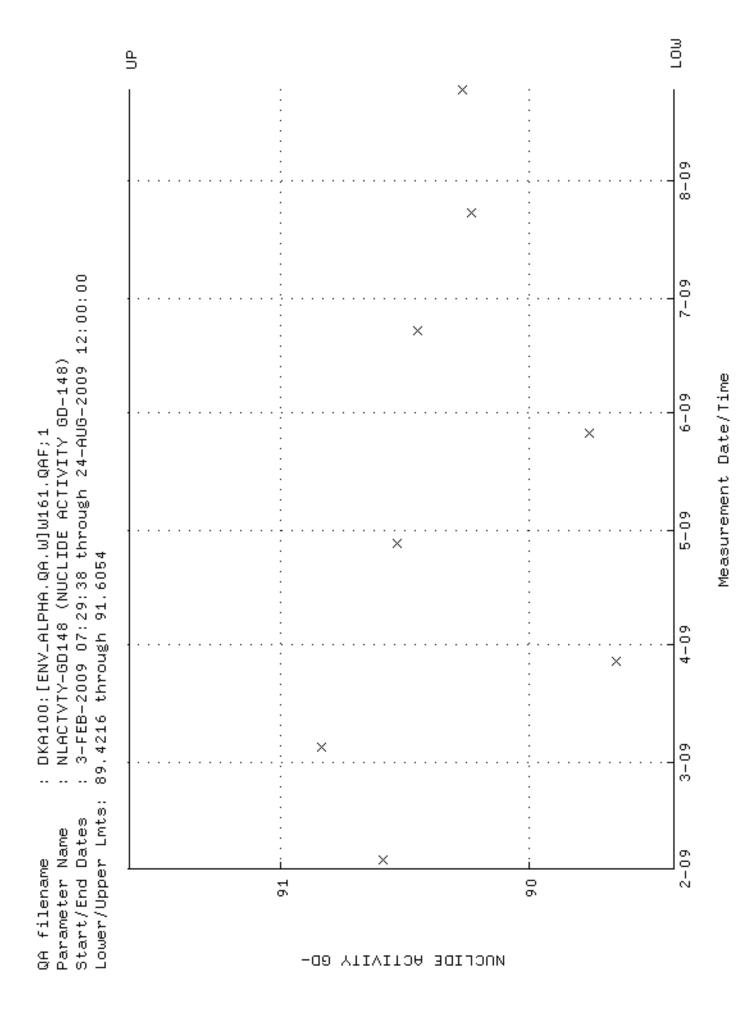


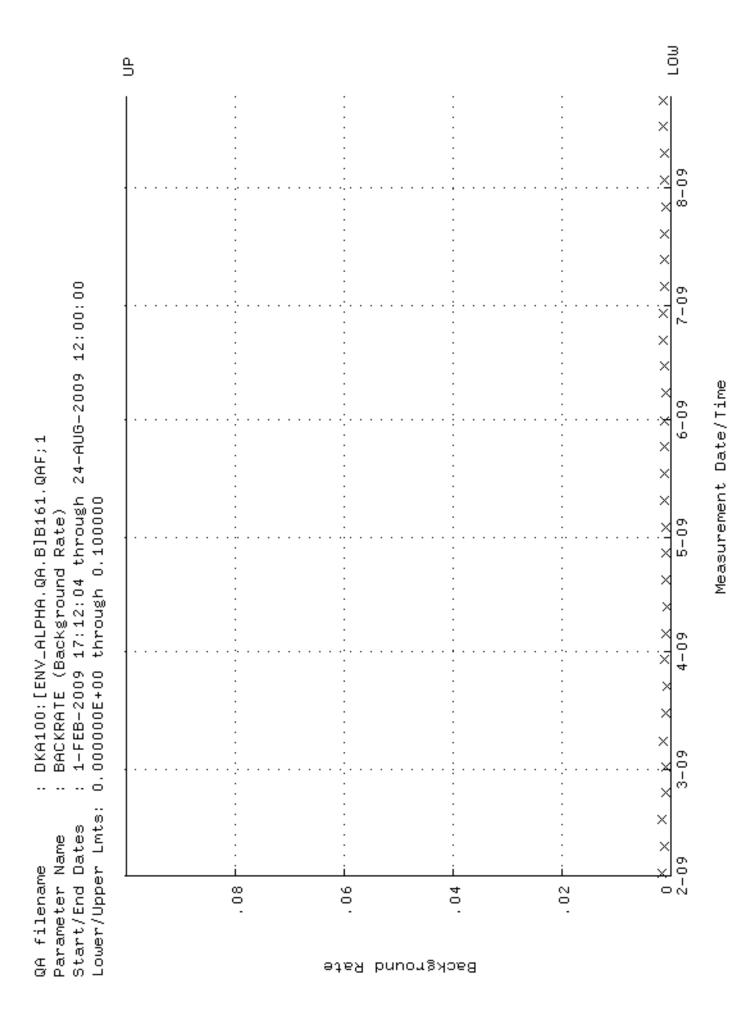


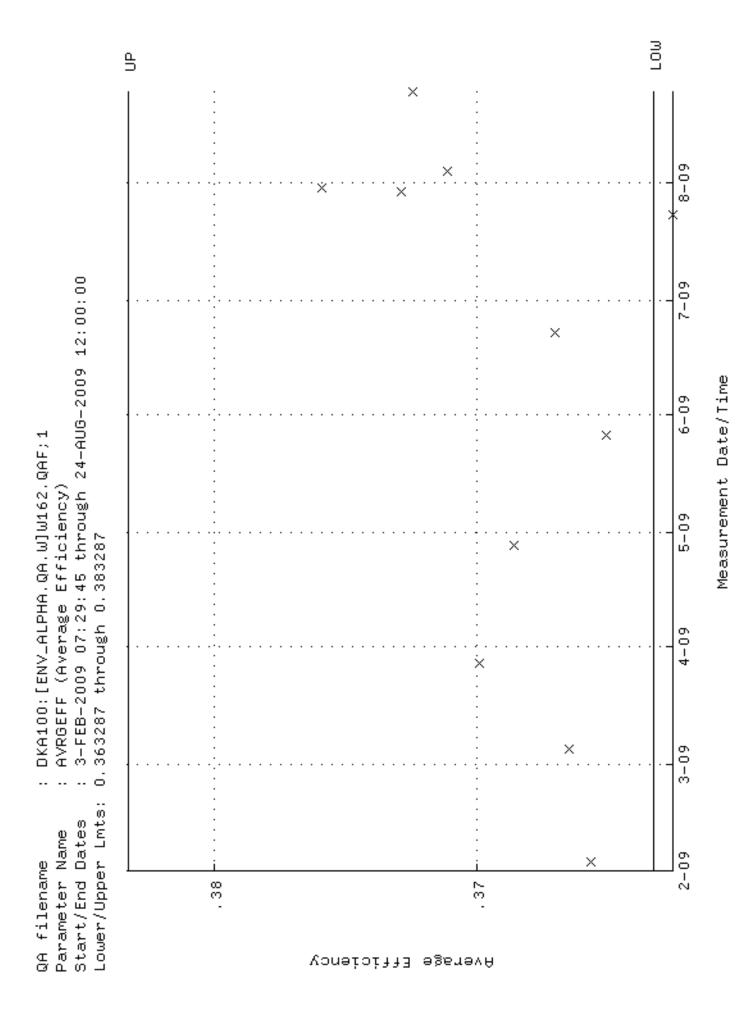


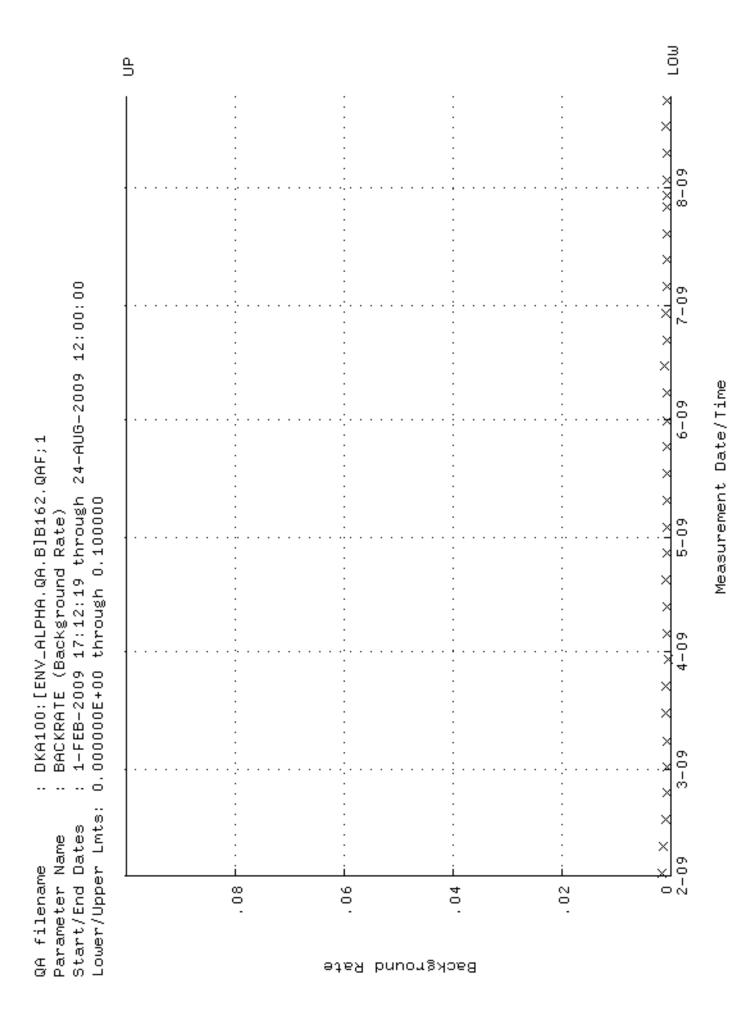


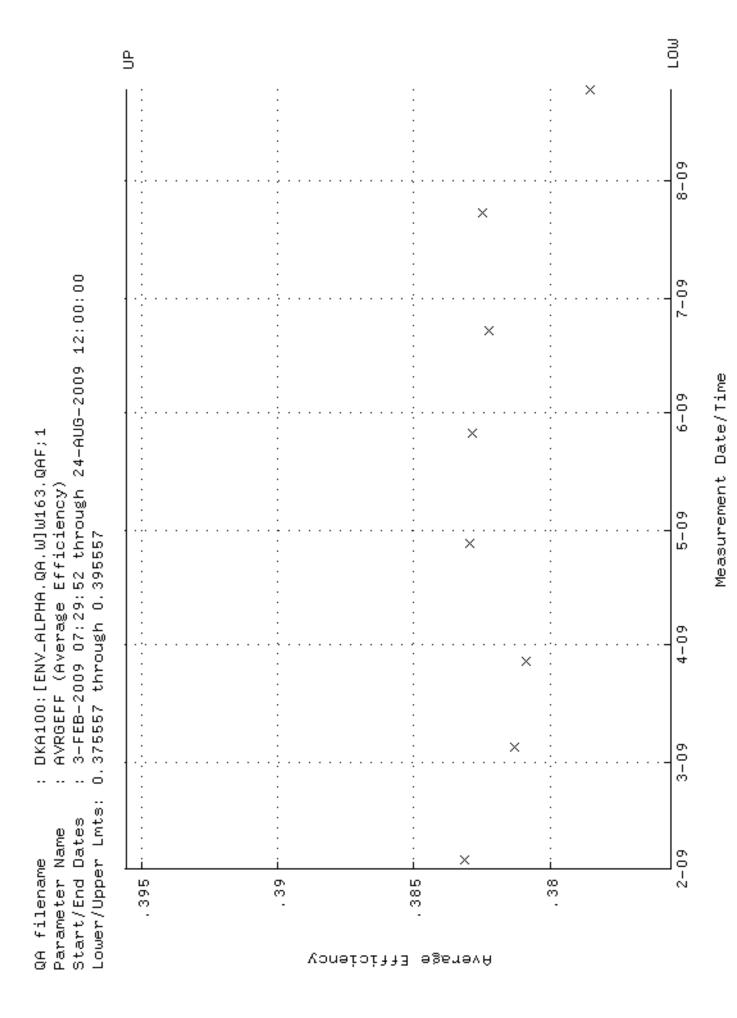




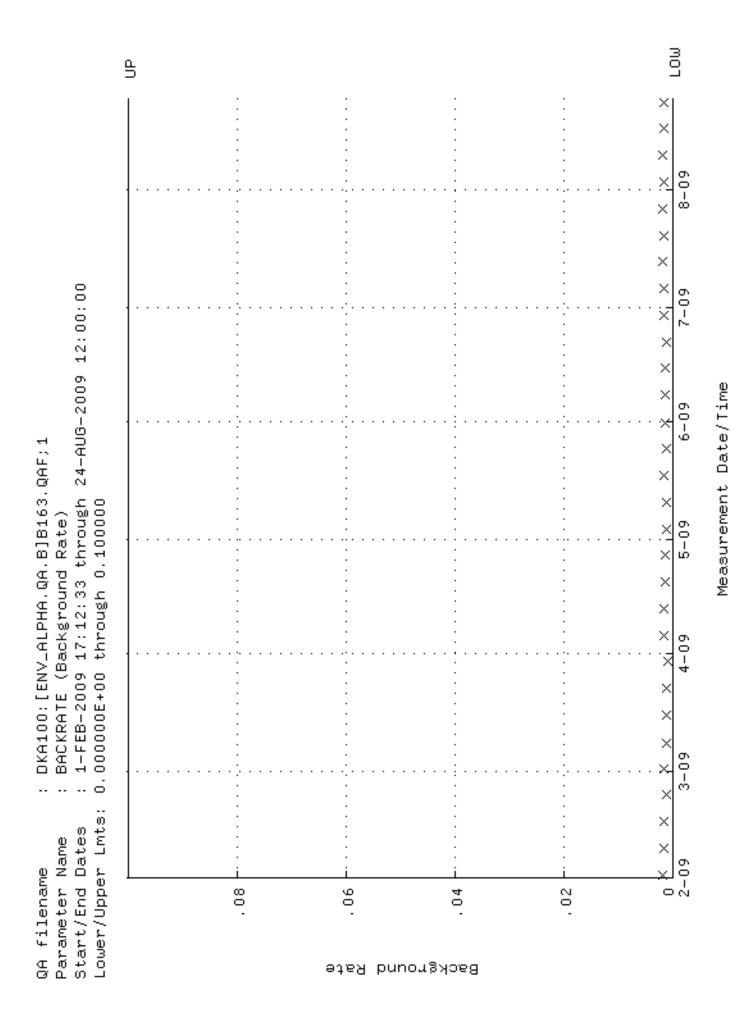


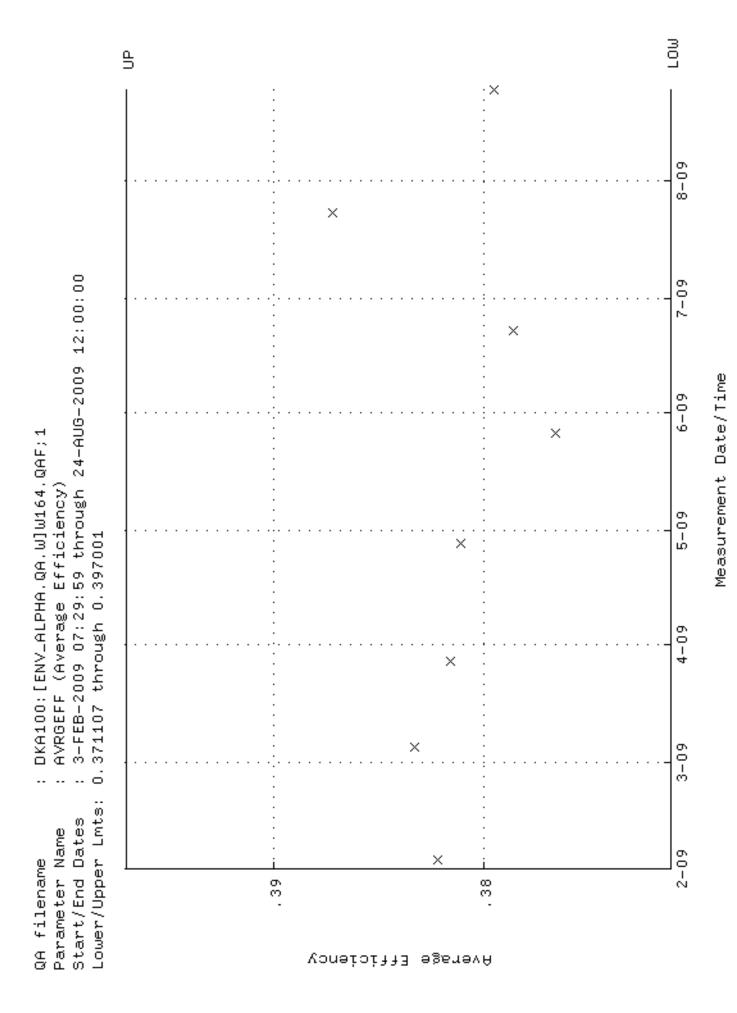


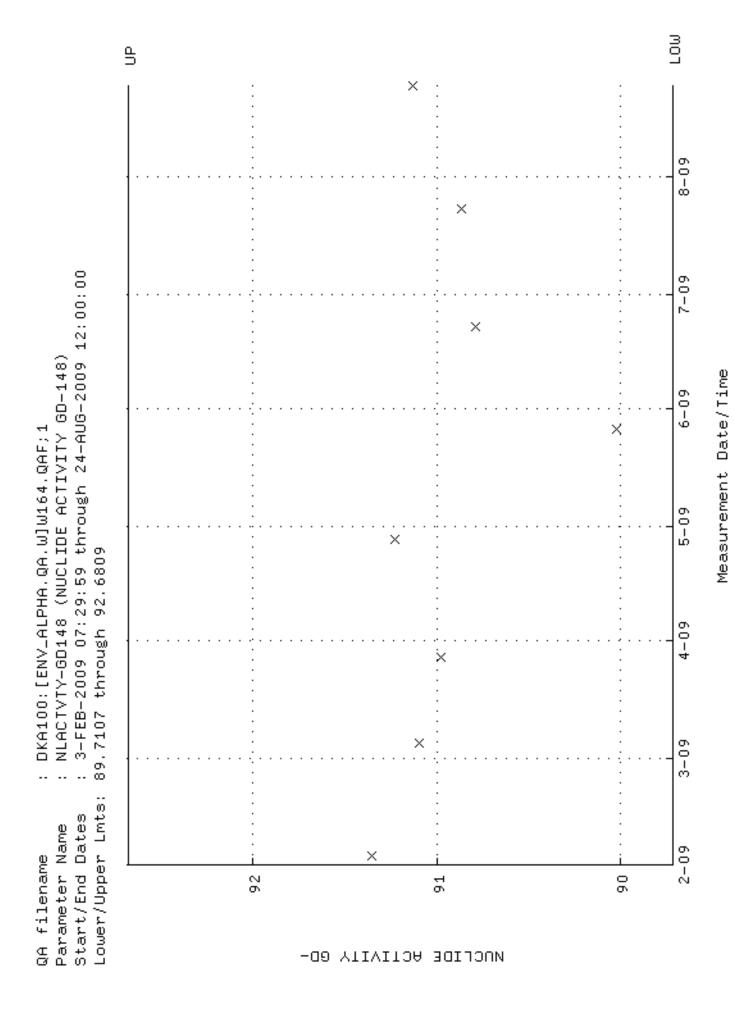


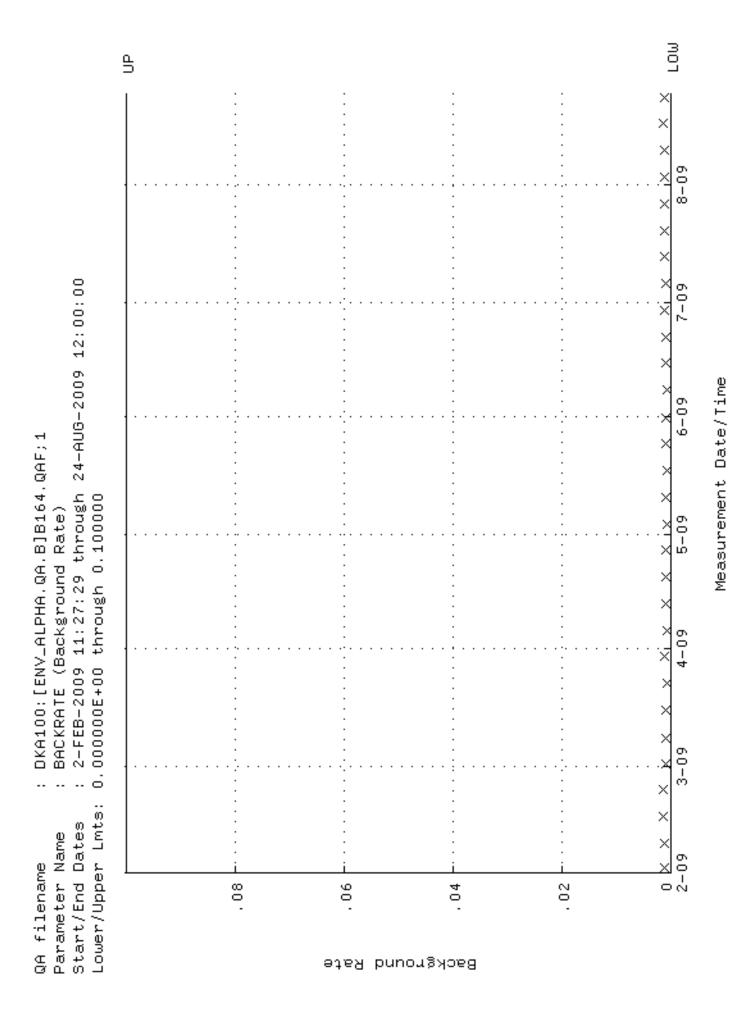


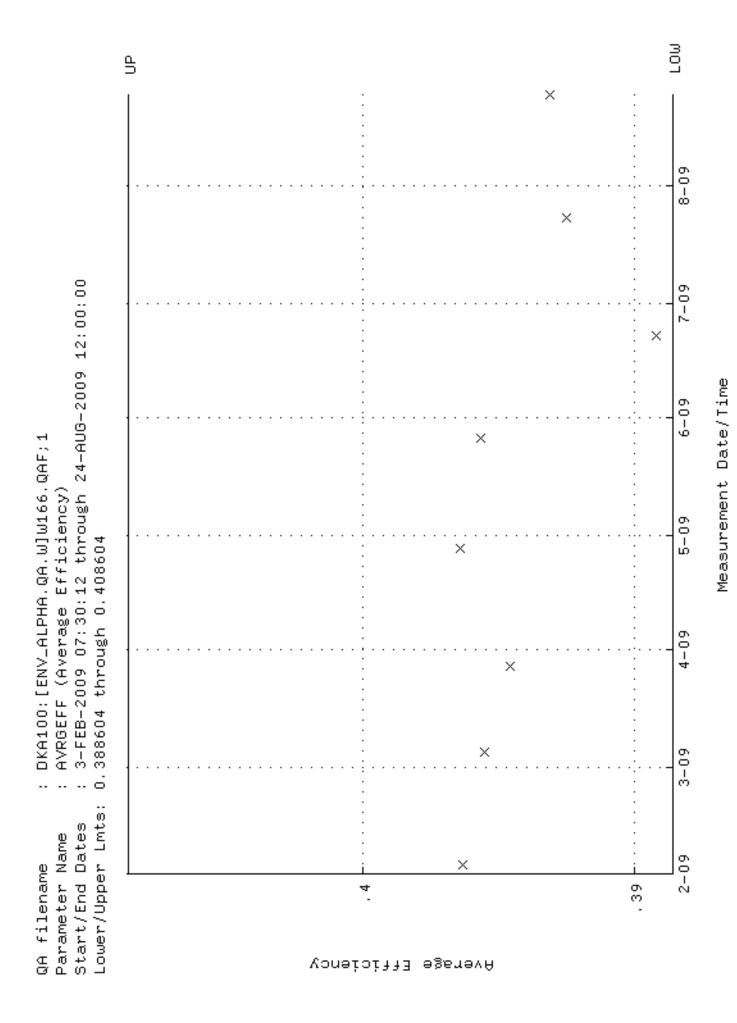
MOT 9 × 8-09 × : 3-FEB-2009 07:29:45 through 24-AUG-2009 12:00:00 2-09 × : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 : DKA100:[ENV_ALPHA.QA.W]W162.QAF;1 Х 60-9 × 85.8969 through 94.9387 4-09 × × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 86 E.: 2-09 QA filename 9 94 92 8 NOCLIDE ACTIVITY 6D-

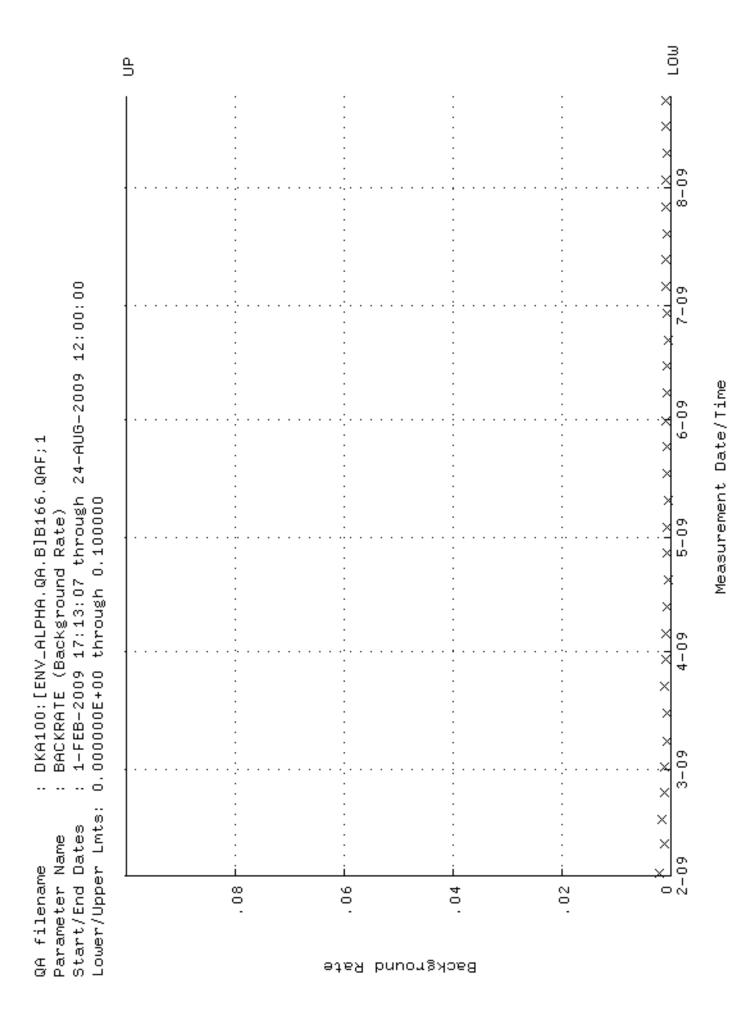

Measurement Date/Time

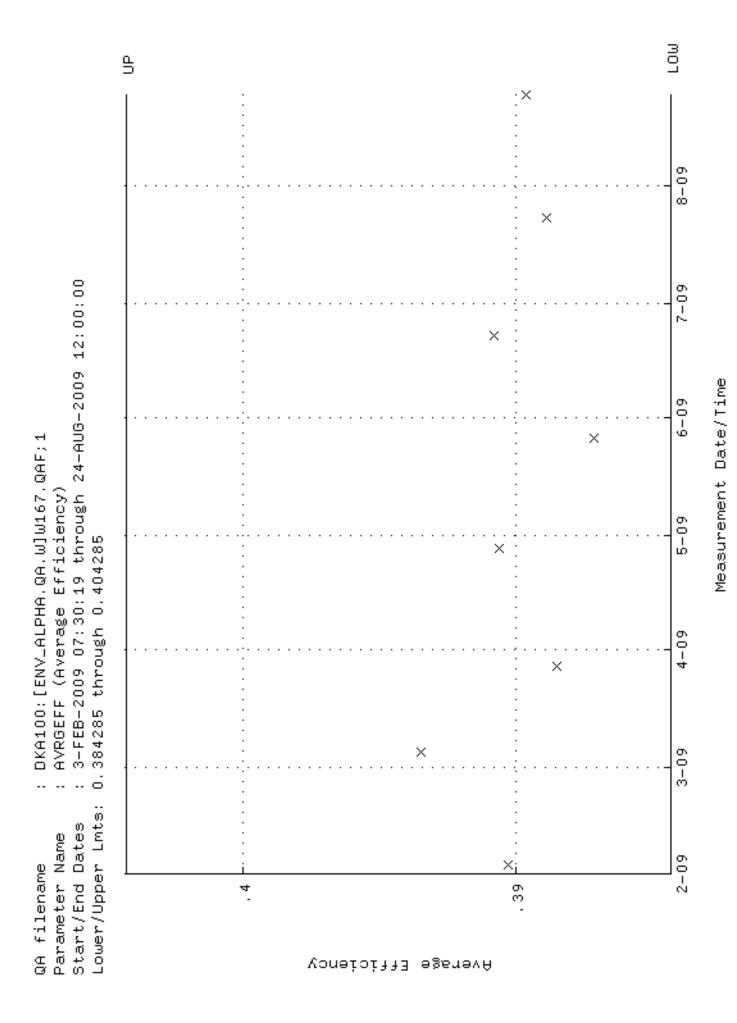


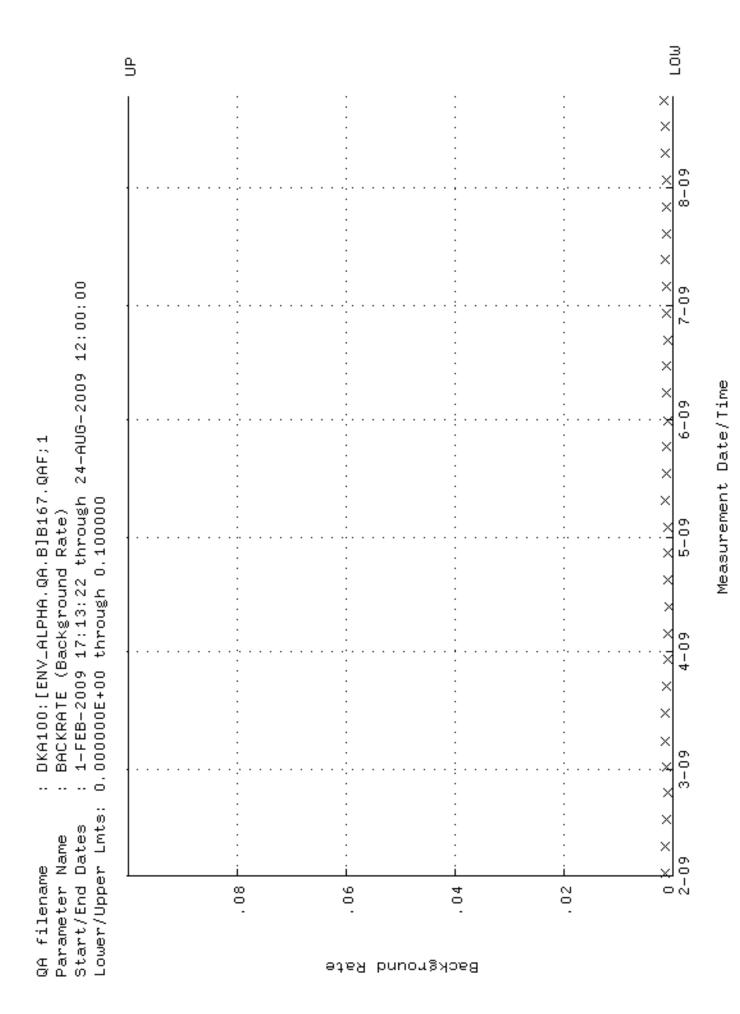


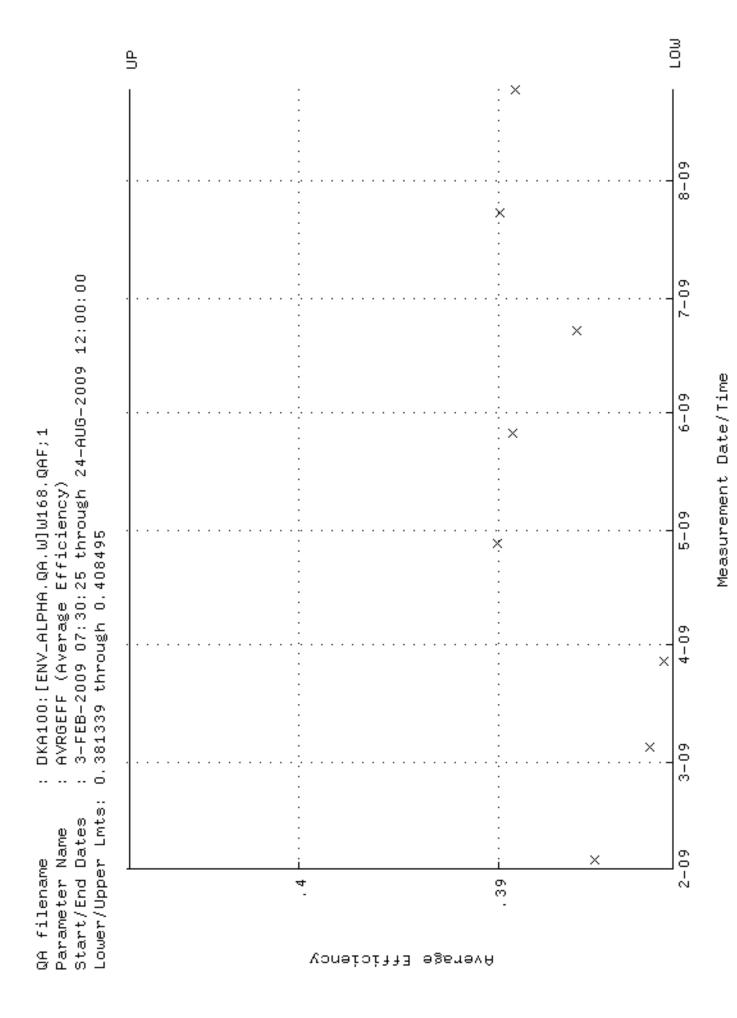

30 10 10 9 8-09 : 3-FEB-2009 07:29:52 through 24-AUG-2009 12:00:00 2-09 × NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 × : DKA100:[ENV_ALPHA.QA.W]W163.QAF;1 60-9 × 84.0322 through 92.8777 4-09 × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename 92 6 8 98 NOCLIDE ACTIVITY 6D-

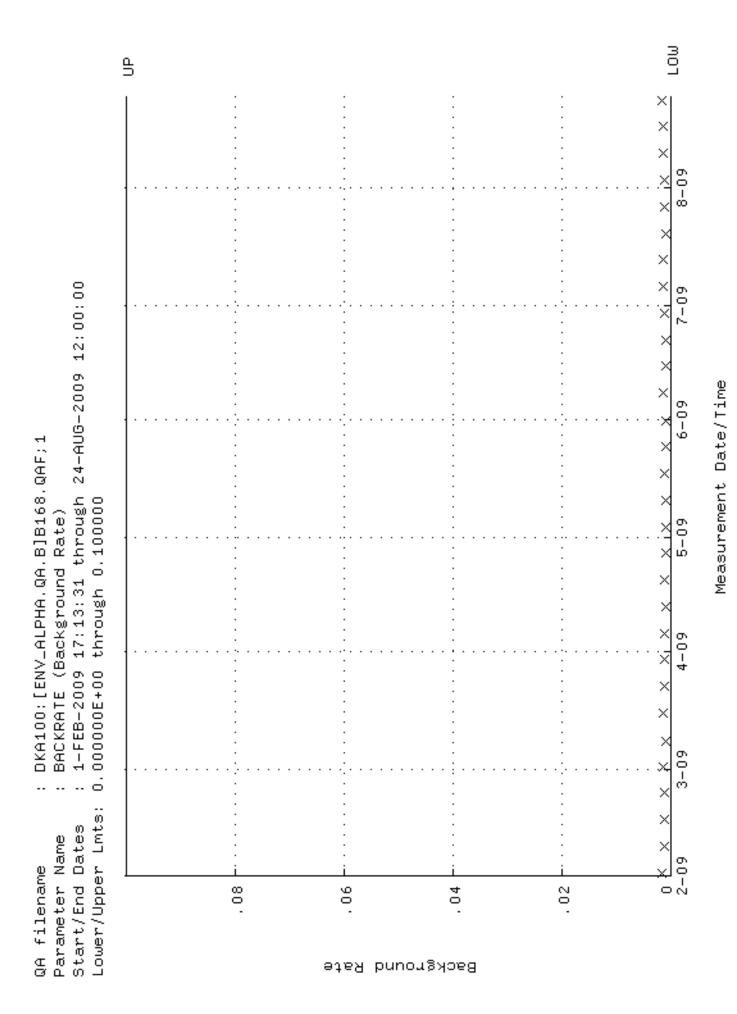

Measurement Date/Time

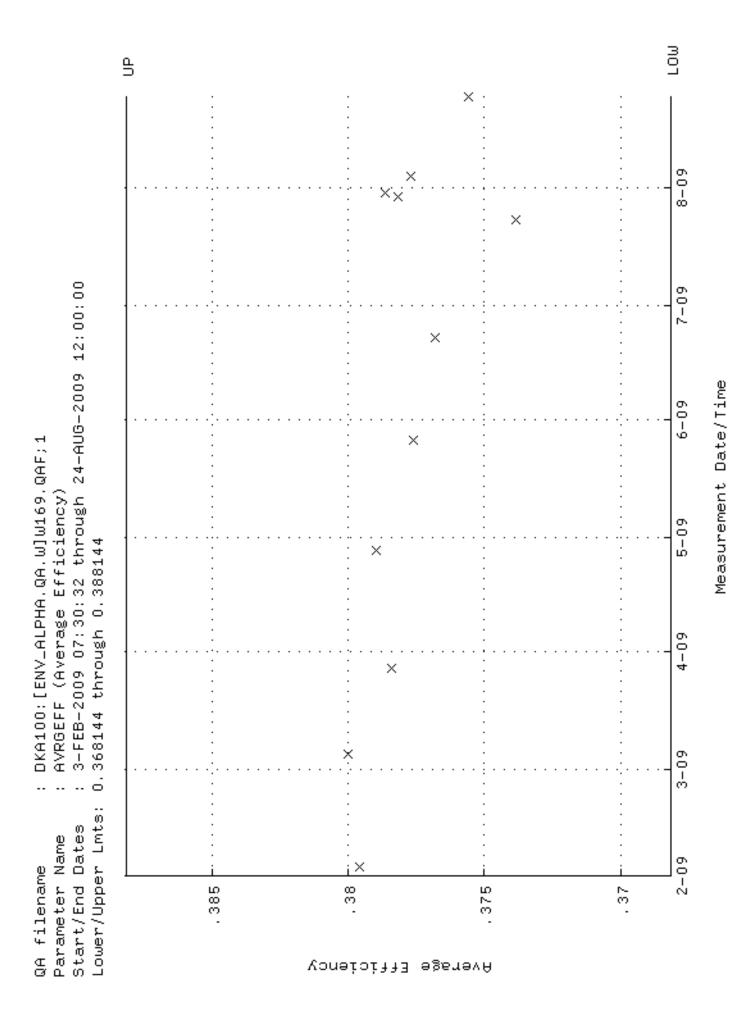


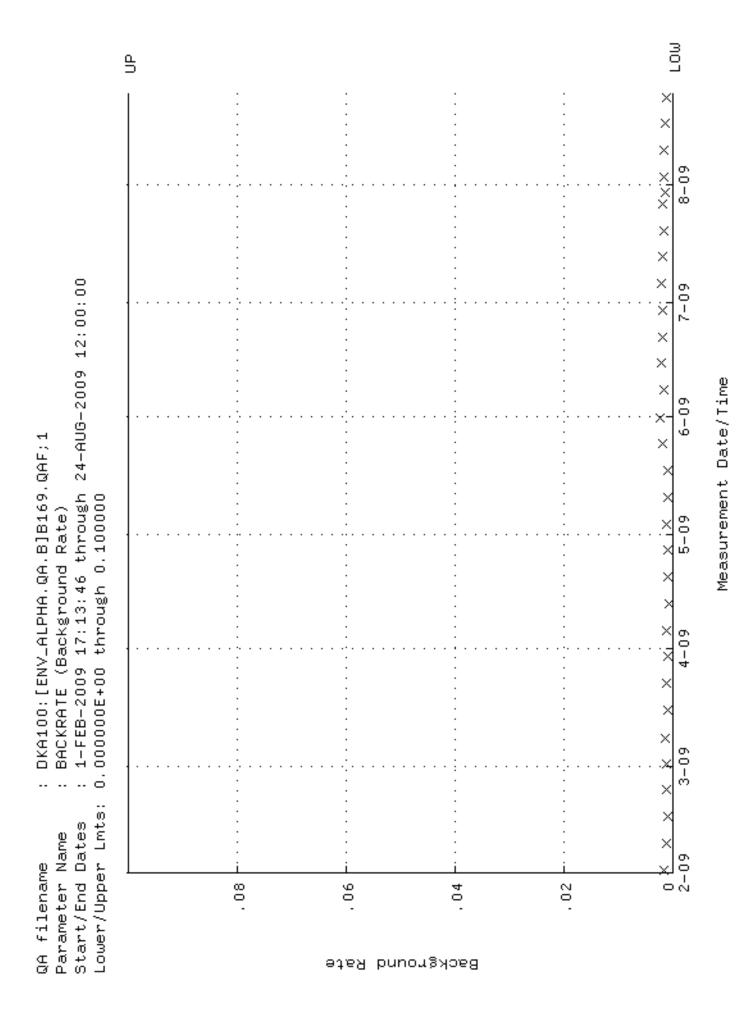




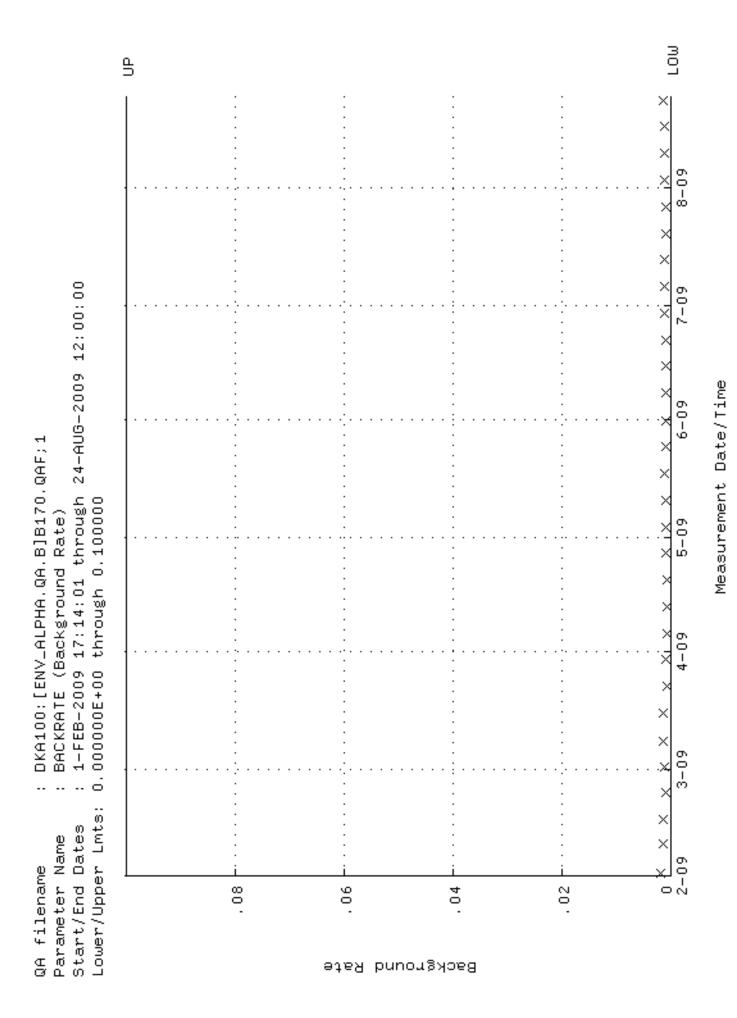

3 0 1 9 × 8-09 × : 3-FEB-2009 07:30:12 through 24-AUG-2009 12:00:00 2-09 × : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 : DKA100:[ENV_ALPHA.QA.W]W166.QAF;1 60-9 84.7448 through 93.6654 4-09 × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename 90 92 8 98 NOCLIDE ACTIVITY 6D-

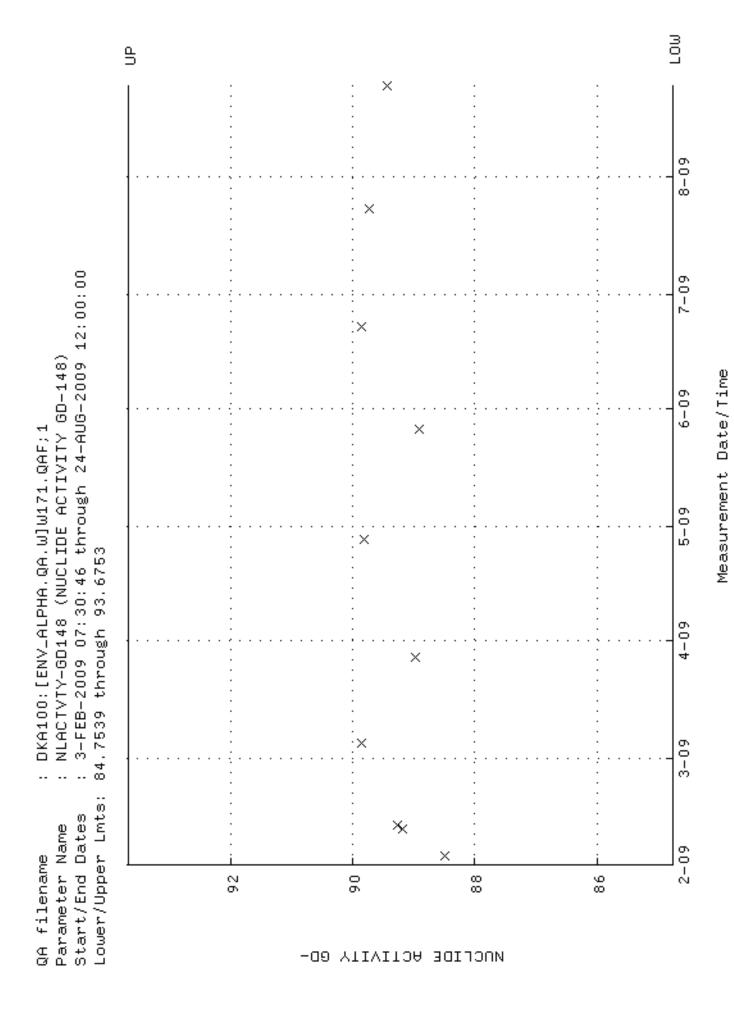


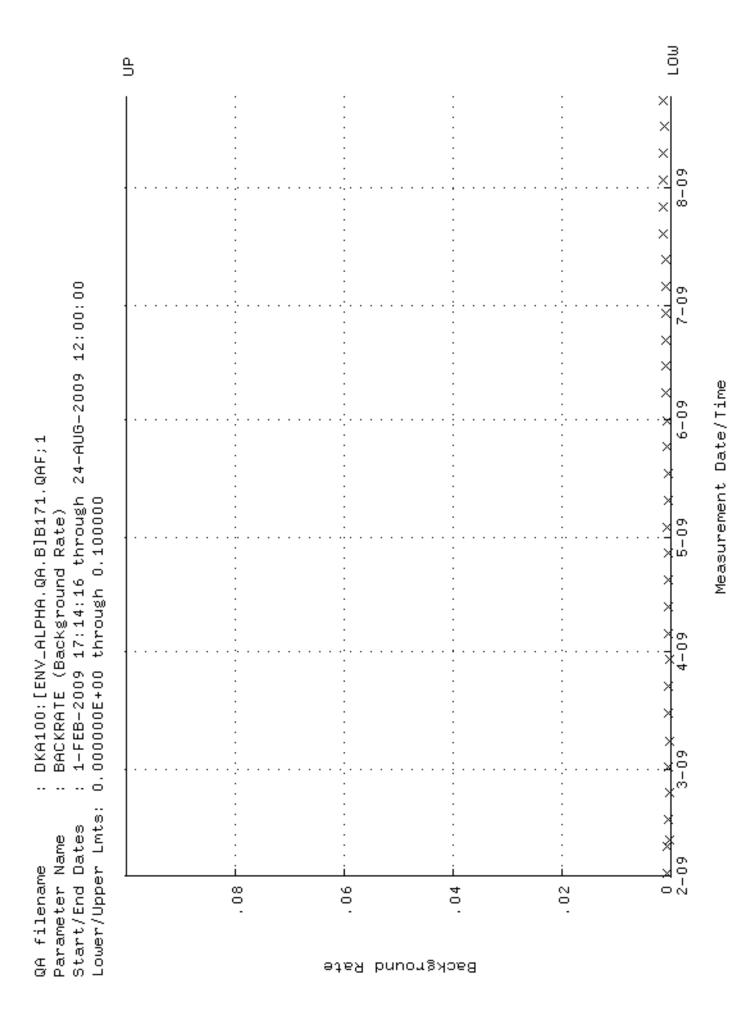

3 0 1 9 × 8-09 × : 3-FEB-2009 07:30:19 through 24-AUG-2009 12:00:00 2-09 × : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 × : DKA100:[ENV_ALPHA.QA.W]W167.QAF;1 60-9 × 86.7740 through 95.9082 4-09 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 Х QA filename 92 90 8 94 NOCLIDE ACTIVITY 6D-

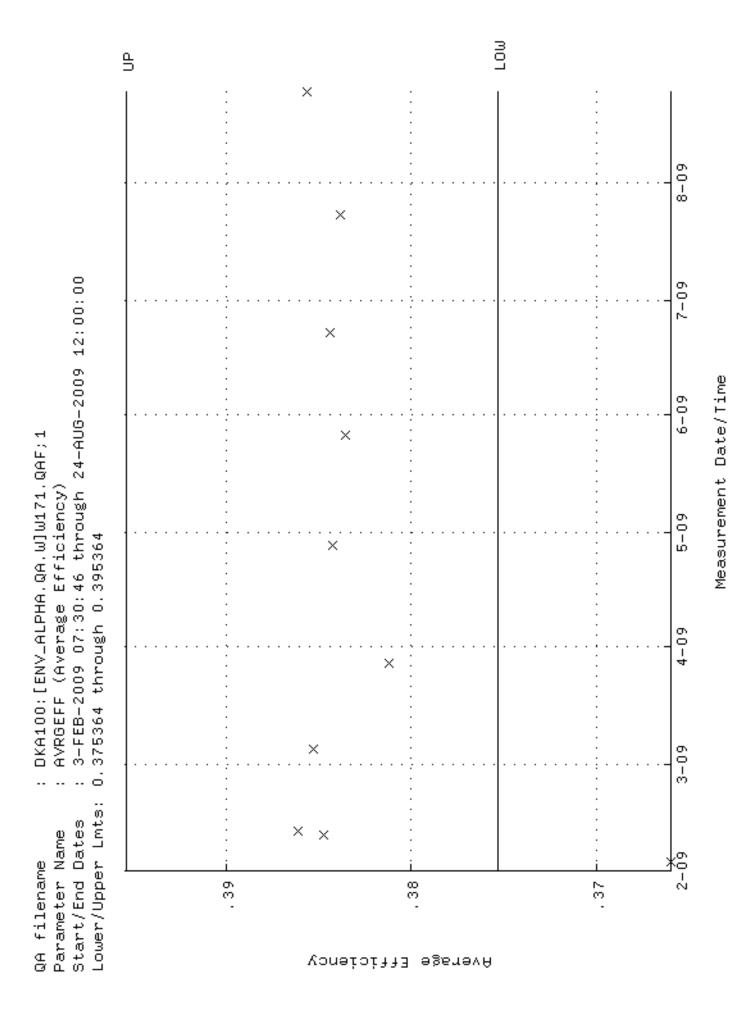


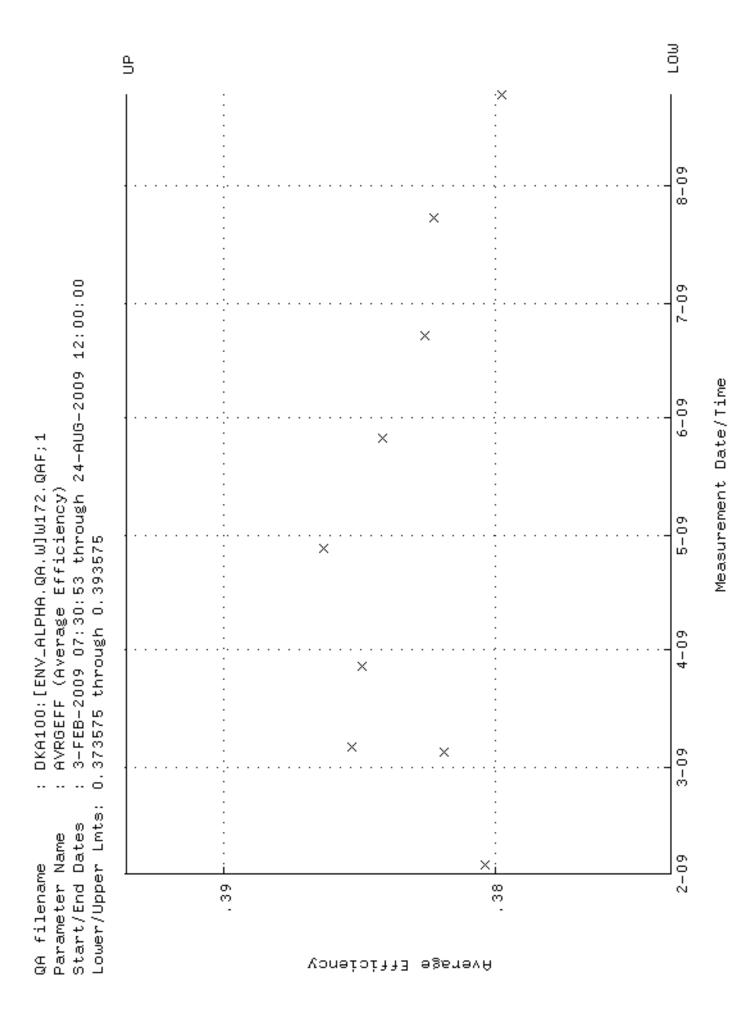
307 9 × 8-09 × : 3-FEB-2009 07:30:25 through 24-AUG-2009 12:00:00 2-09 : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 × : DKA100:[ENV_ALPHA.QA.W]W168.QAF;1 5-09 × 86.8544 through 90.7976 4-09 Х × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 × QA filename 9 6 8 NOCLIDE ACTIVITY 6D-

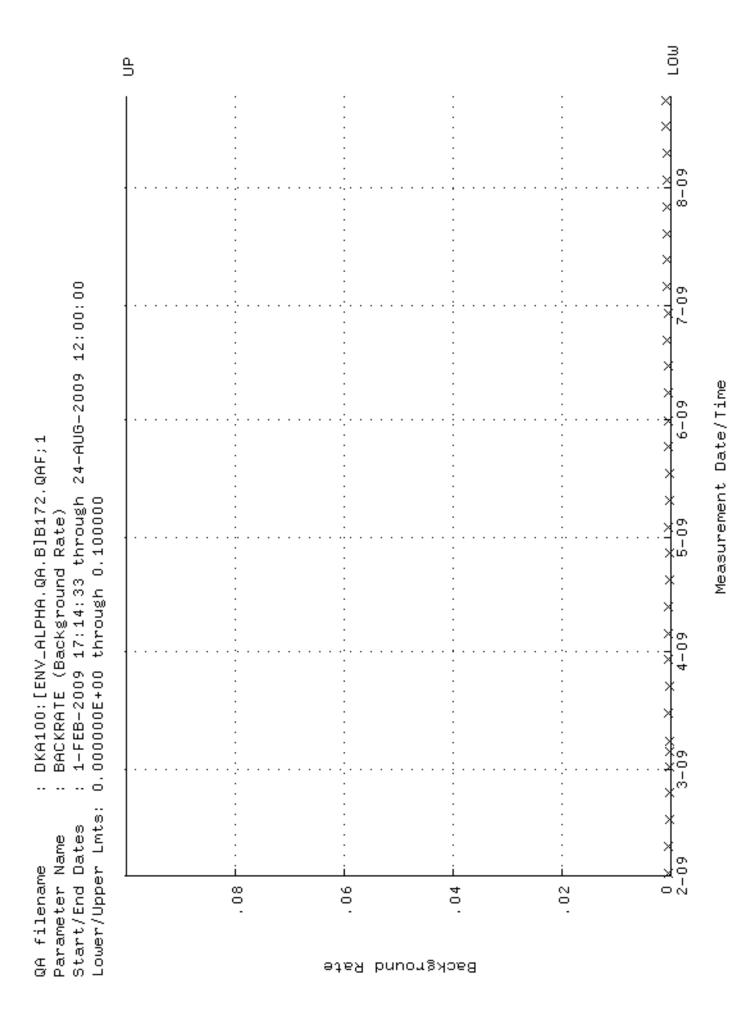


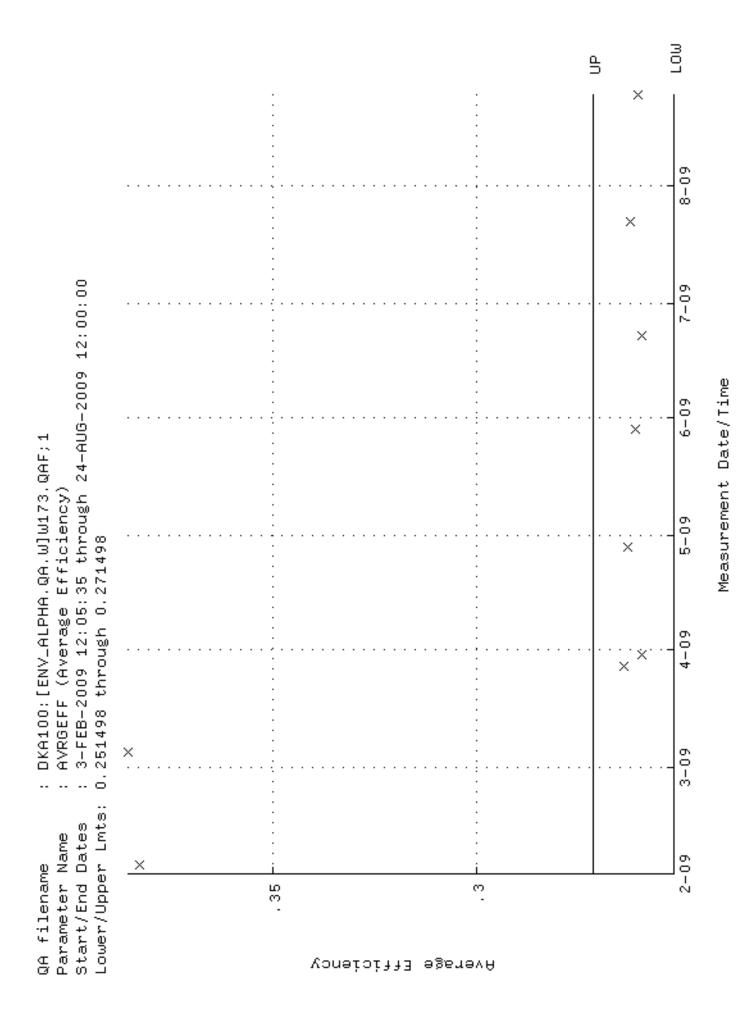

307 9 × 8-09 : 3-FEB-2009 07:30:32 through 24-AUG-2009 12:00:00 2-09 × : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 × : DKA100:[ENV_ALPHA.QA.W]W169.QAF;1 5-09 × 87.7141 through 96.9471 4-09 X × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename 96 92 90 8 94 NOCLIDE ACTIVITY 6D-

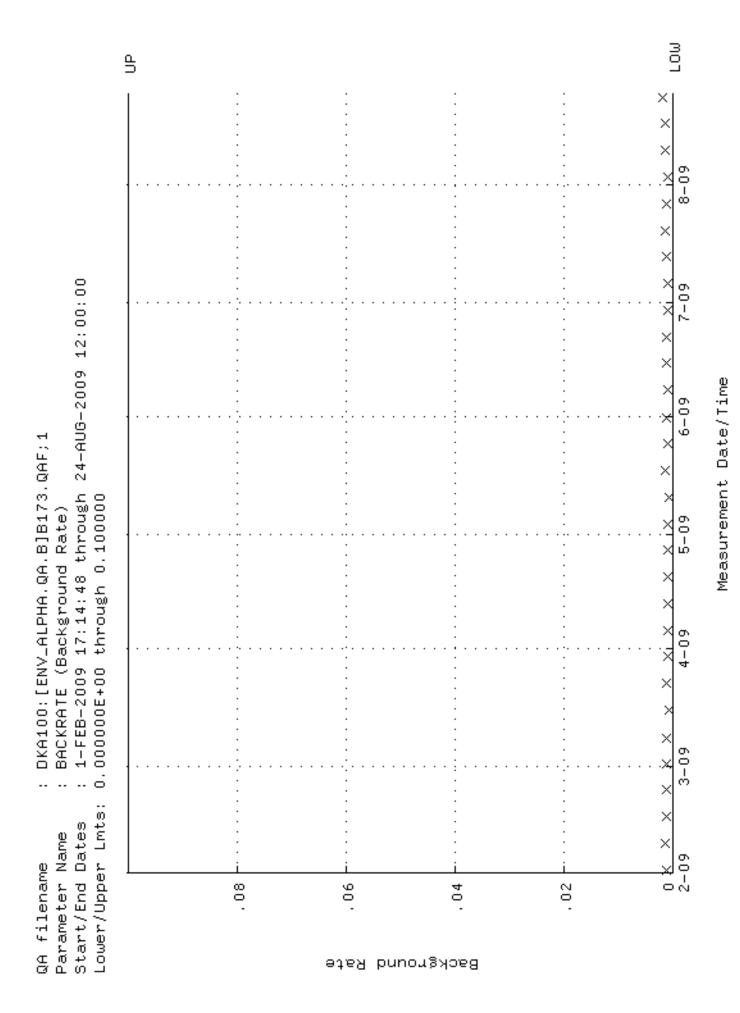


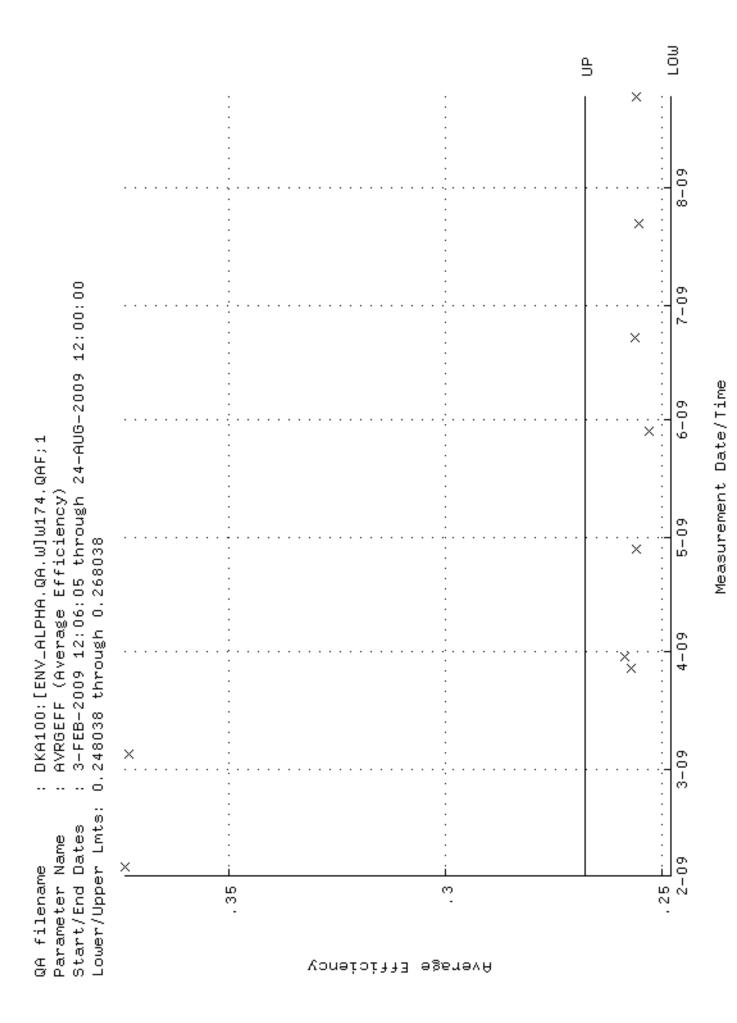

30 10 10 9 × 8-09 Х AVRGEFF (Average Efficiency) 3-FEB-2009 07:30:39 through 24-AUG-2009 12:00:00 2-09 × 60-9 \times DKA100: [ENV_ALPHA.QA.W]W170.QAF;1 60-9 0.360563 through 0.380563 4-09 × × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename .365 . 38 375 37 Yonəibilə əğenəvA

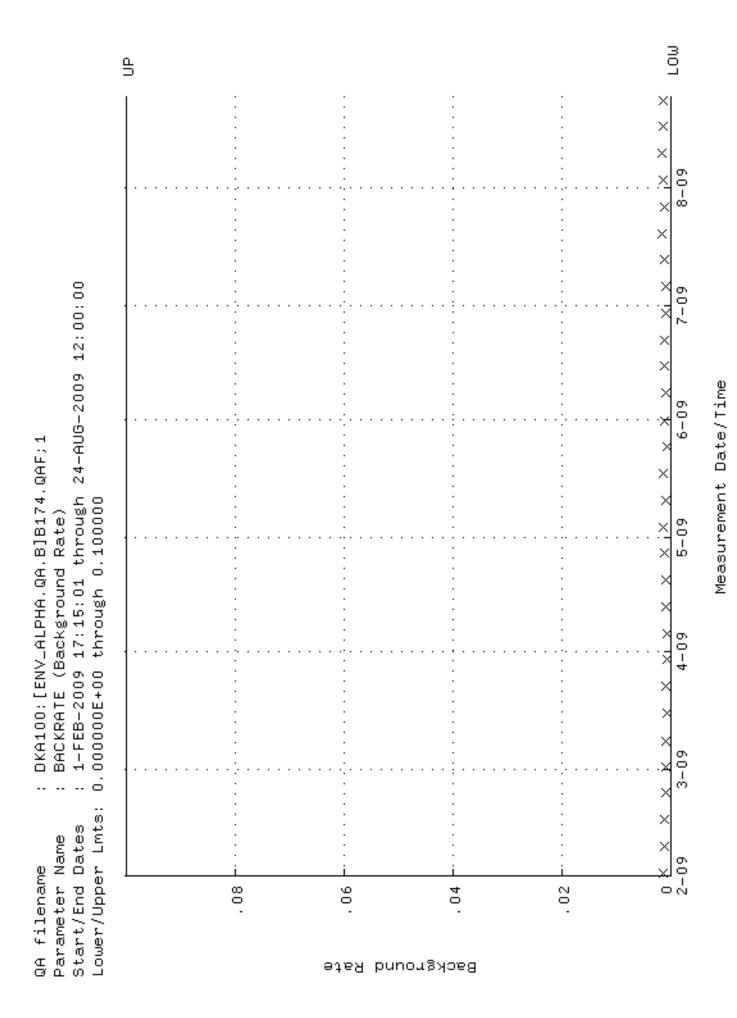

MOT 9 Х 8-09 × : 3-FEB-2009 07:30:39 through 24-AUG-2009 12:00:00 2-09 × : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 : DKA100:[ENV_ALPHA.QA.W]W170.QAF;1 5-09 89.5841 through 99.0139 4-09 × × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename 8 94 92 96 NOCLIDE ACTIVITY 6D-

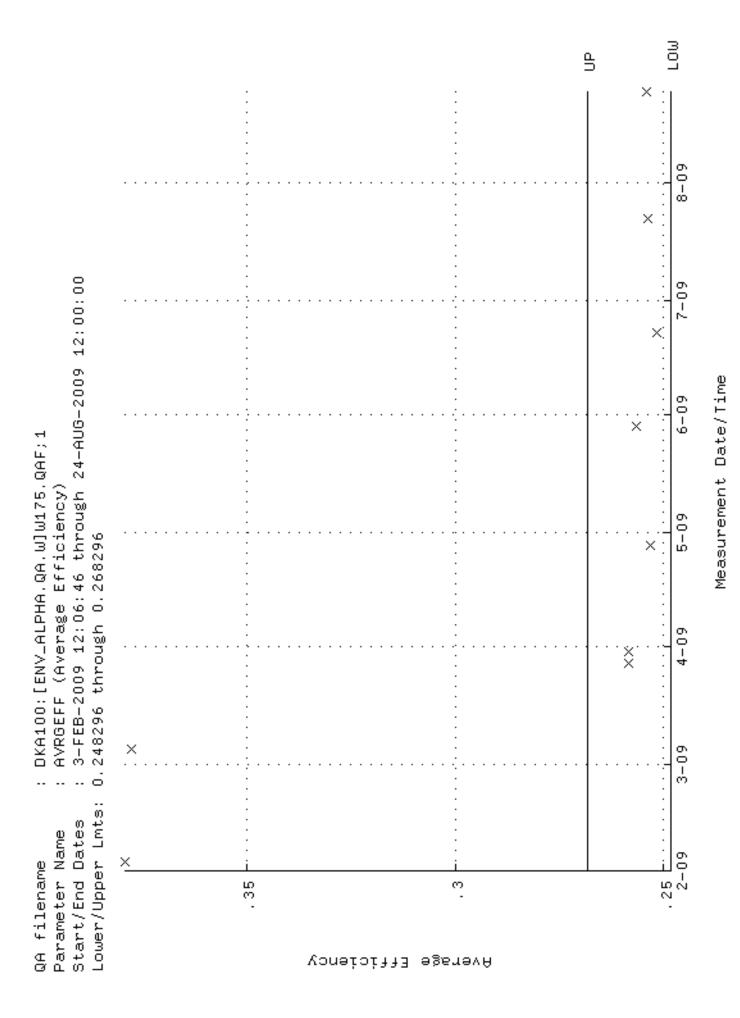


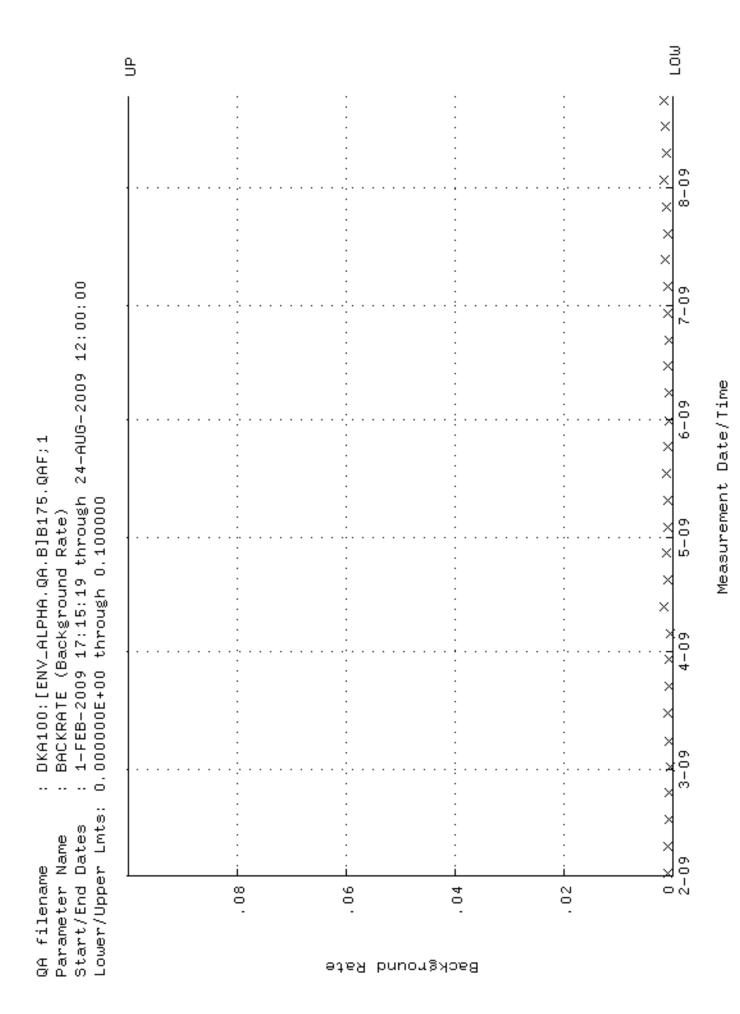


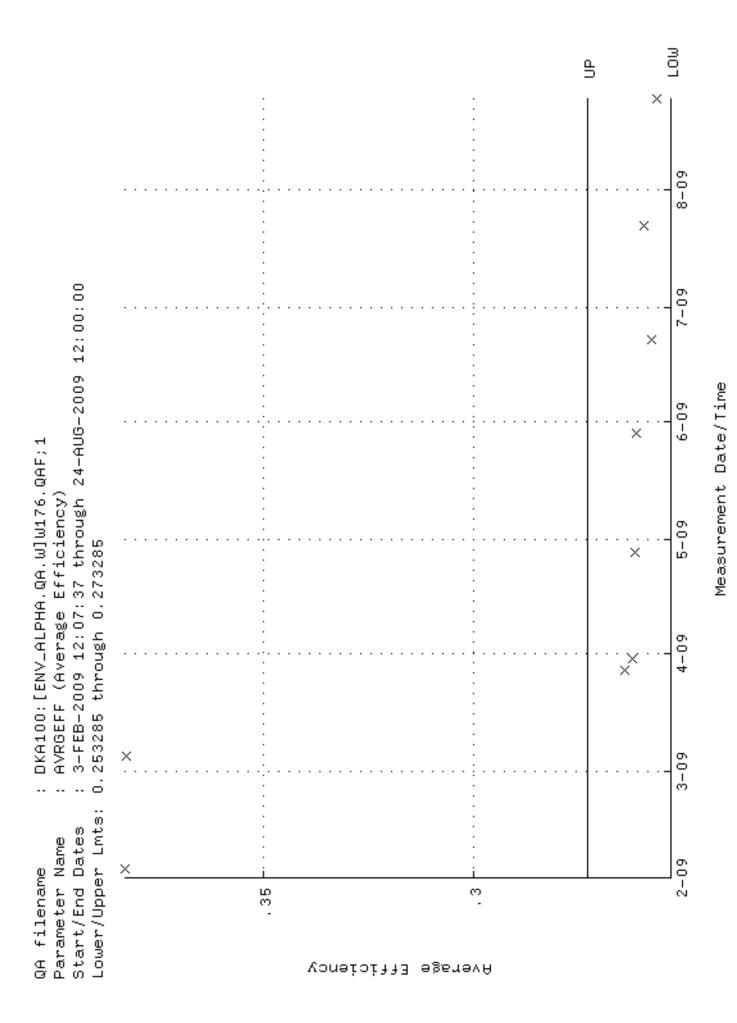


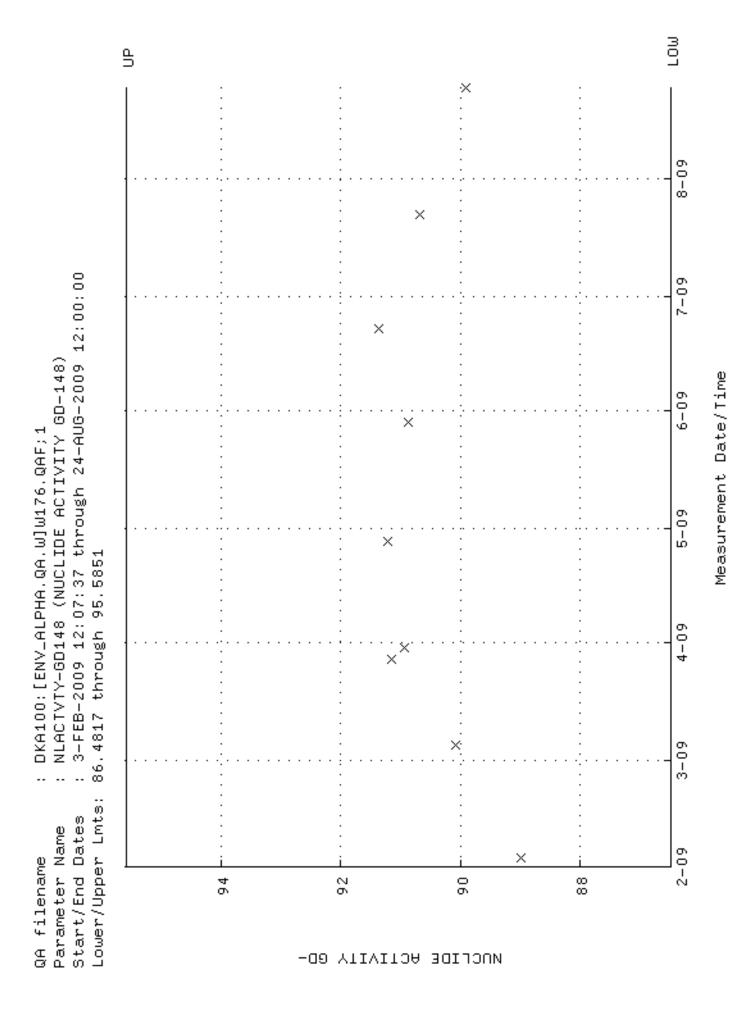

30 10 10 9 8-09 × : 3-FEB-2009 07:30:53 through 24-AUG-2009 12:00:00 2-09 × : : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 × : DKA100:[ENV_ALPHA.QA.W]W172.QAF;1 60-9 86.5089 through 95.6151 4-09 Х × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename 9 94 92 8 NOCLIDE ACTIVITY 6D-

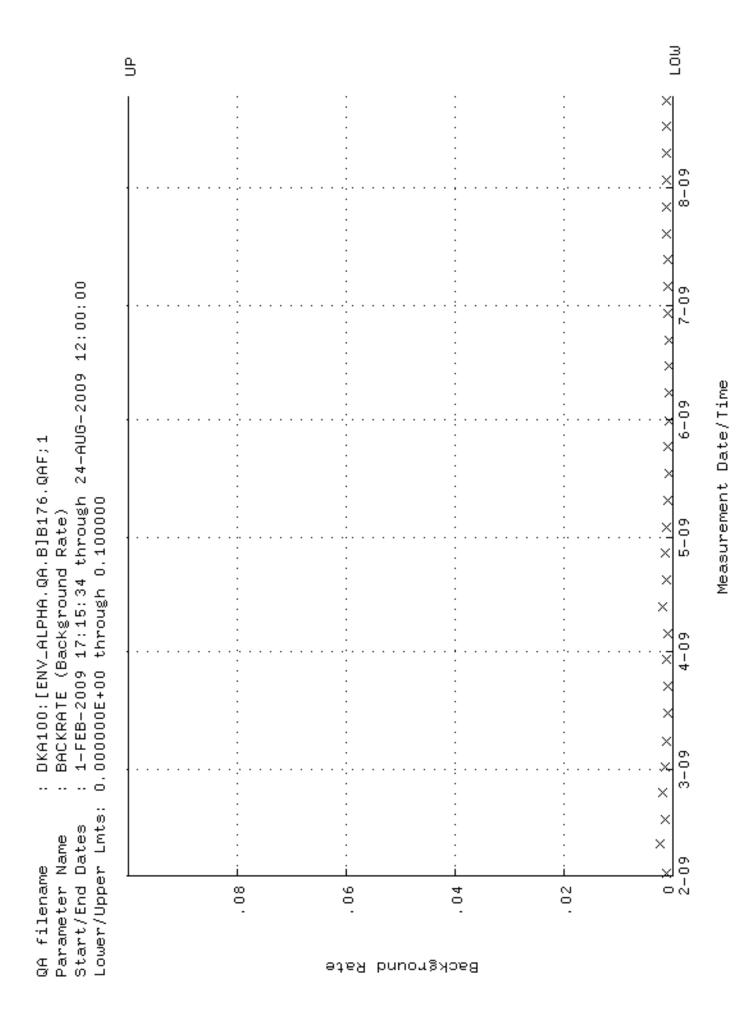


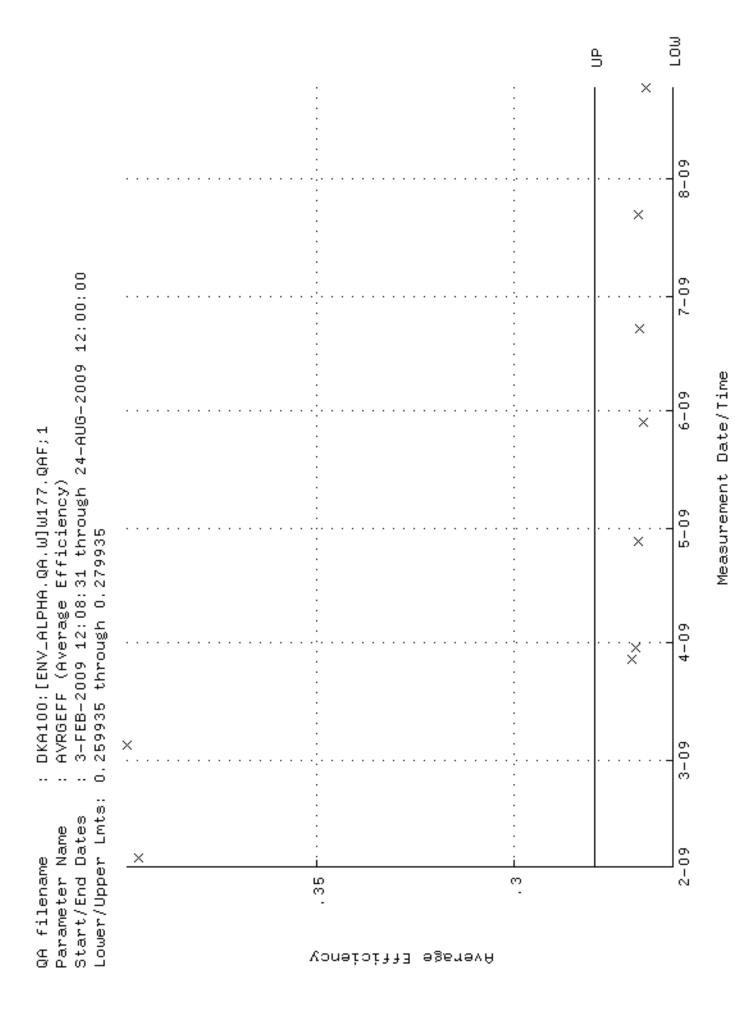

307 9 × 8-09 Х : 3-FEB-2009 12:05:35 through 24-AUG-2009 12:00:00 2-09 : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 : DKA100:[ENV_ALPHA.QA.W]W173.QAF;1 5-09 × 87.8322 through 97.0776 4-09 ×× × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename 8 96 94 92 9 NOCLIDE ACTIVITY 6D-

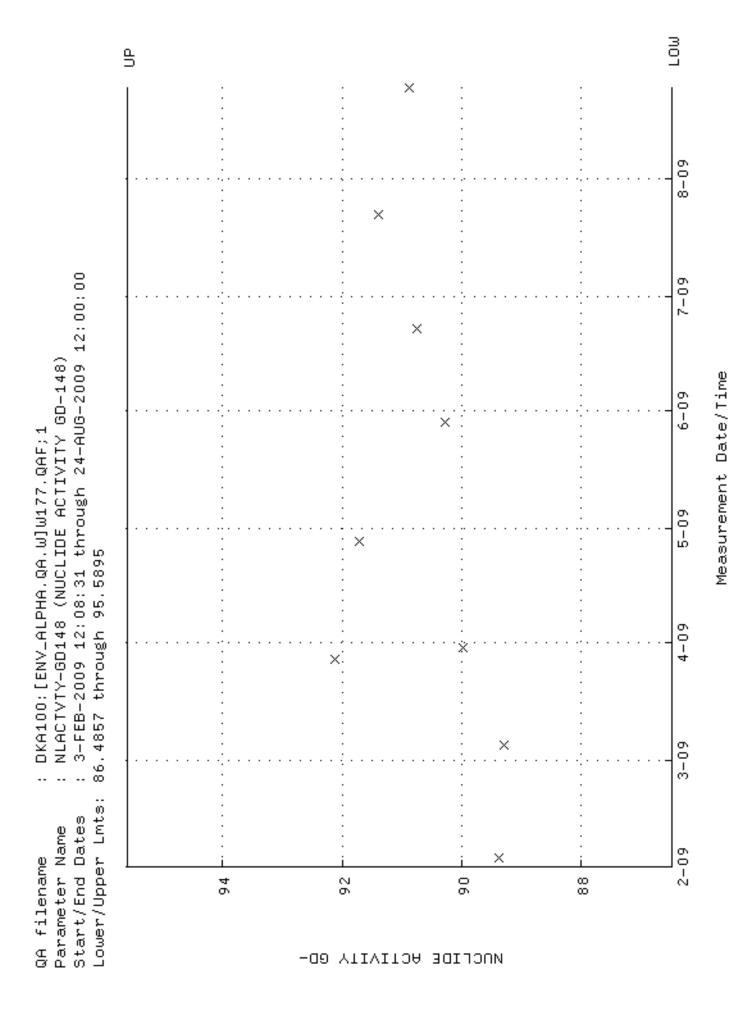


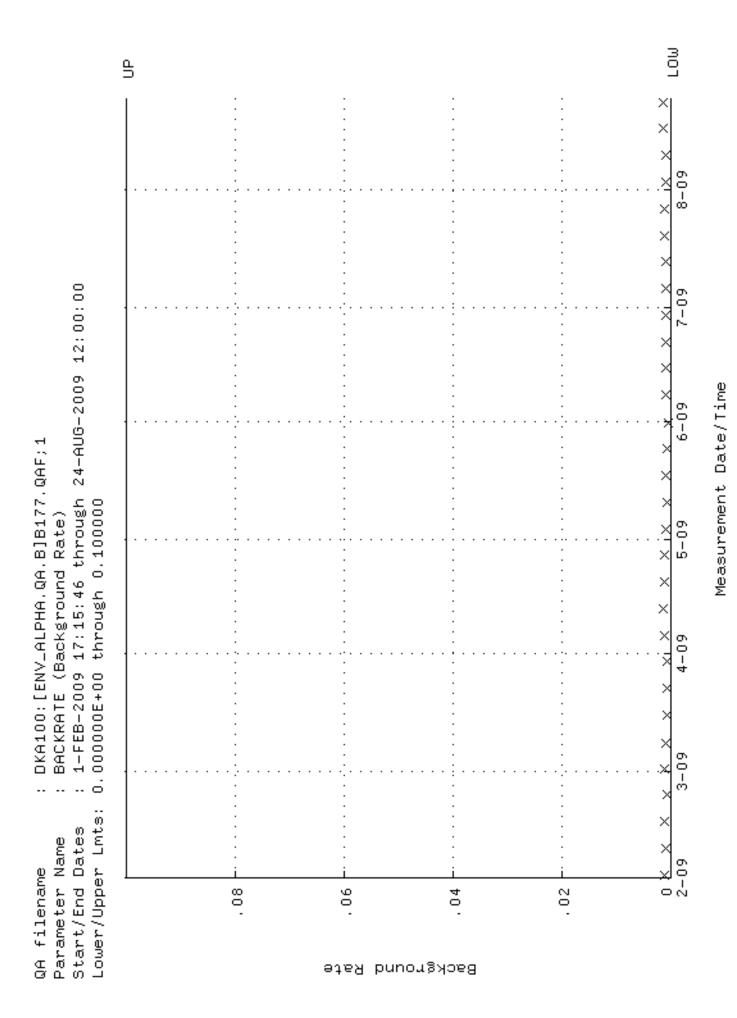

307 9 × 8-09 × : 3-FEB-2009 12:06:05 through 24-AUG-2009 12:00:00 2-09 × : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 × : DKA100:[ENV_ALPHA.QA.W]W174.QAF;1 5-09 85.6304 through 94.6442 4-09 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 × QA filename 92 0 8 94 NOCLIDE ACTIVITY 6D-

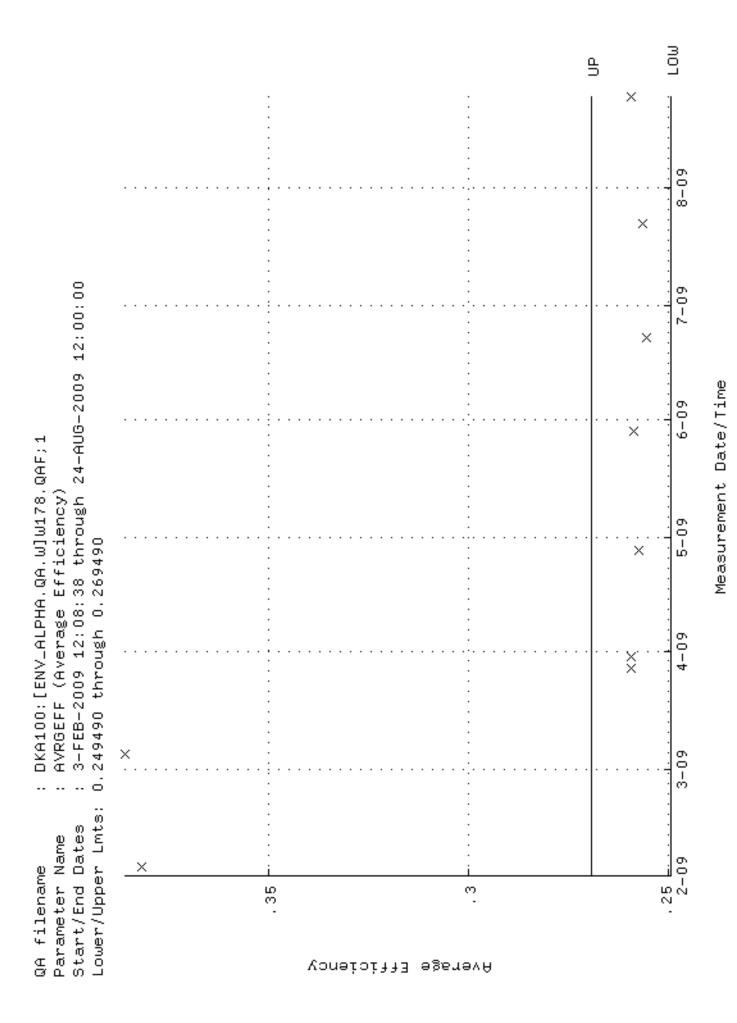


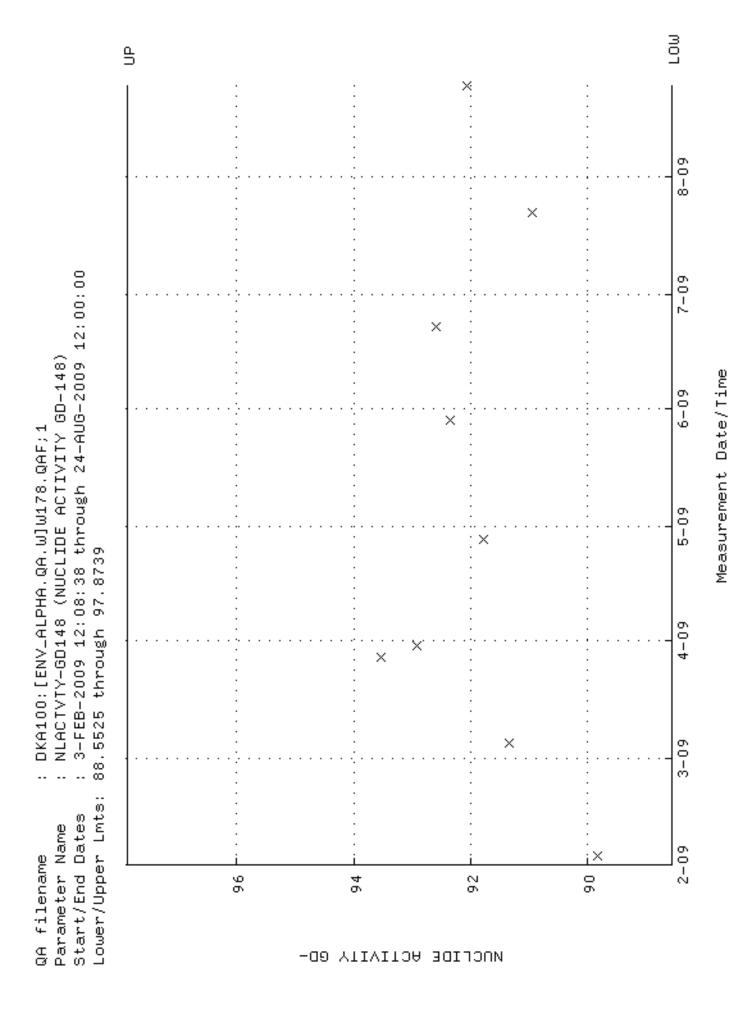


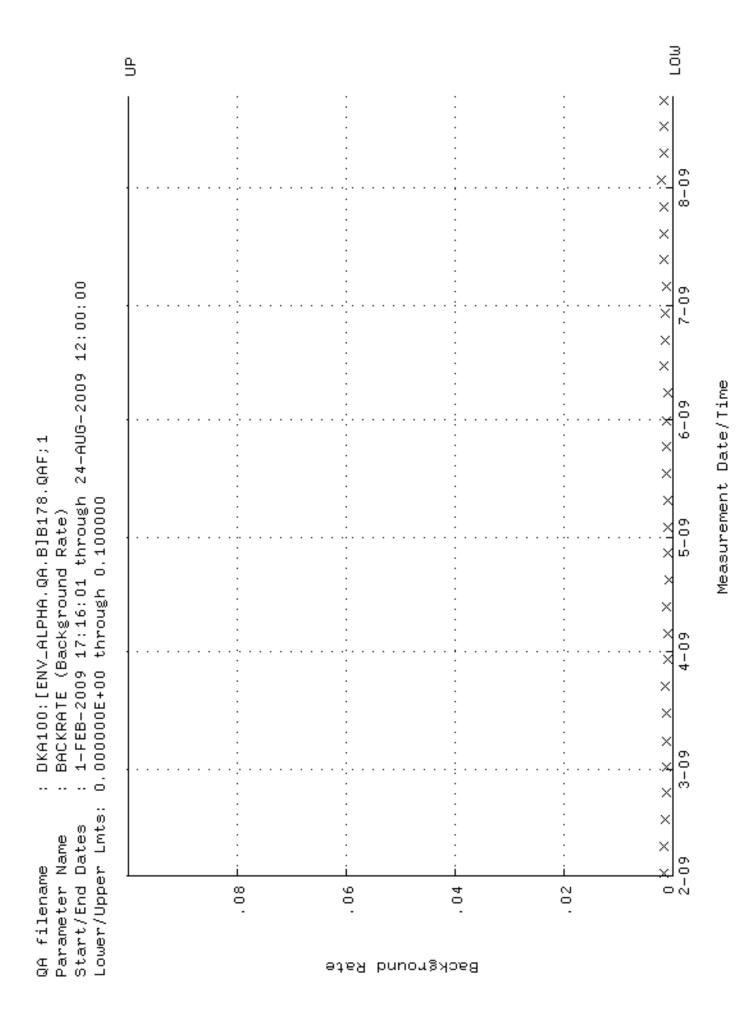

30 10 10 9 × 8-09 : 3-FEB-2009 12:06:46 through 24-AUG-2009 12:00:00 2-09 × : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 : DKA100:[ENV_ALPHA.QA.W]W175.QAF;1 60-9 × 90.6224 through 100.162 4-09 × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename 100 8 96 94 8 NOCLIDE ACTIVITY 6D-

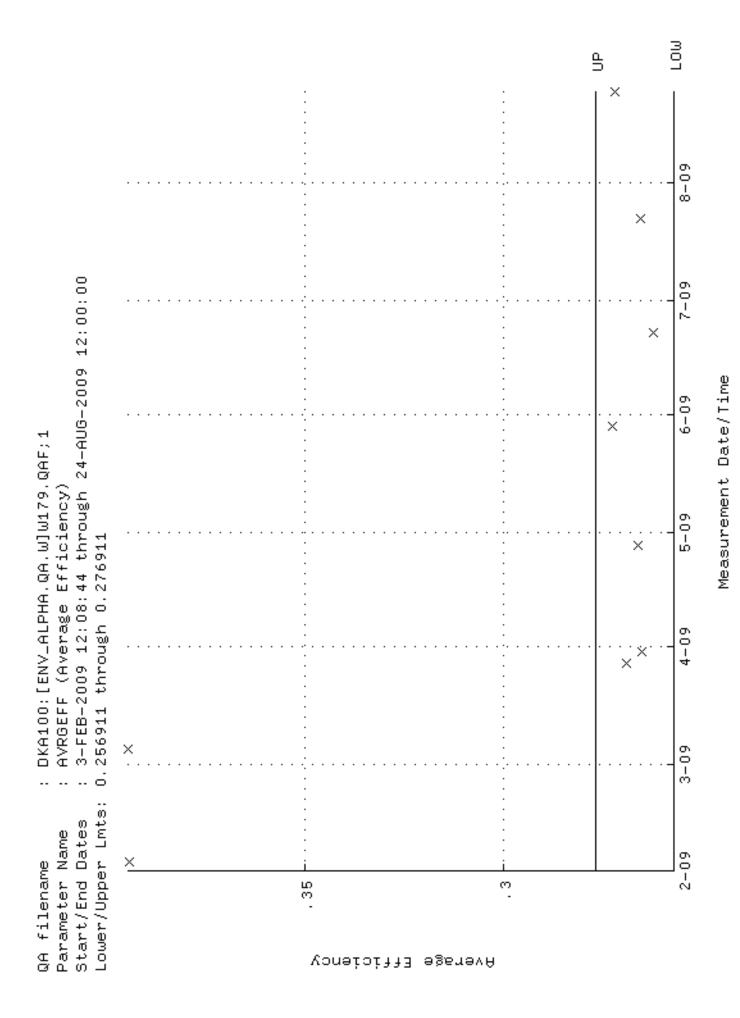


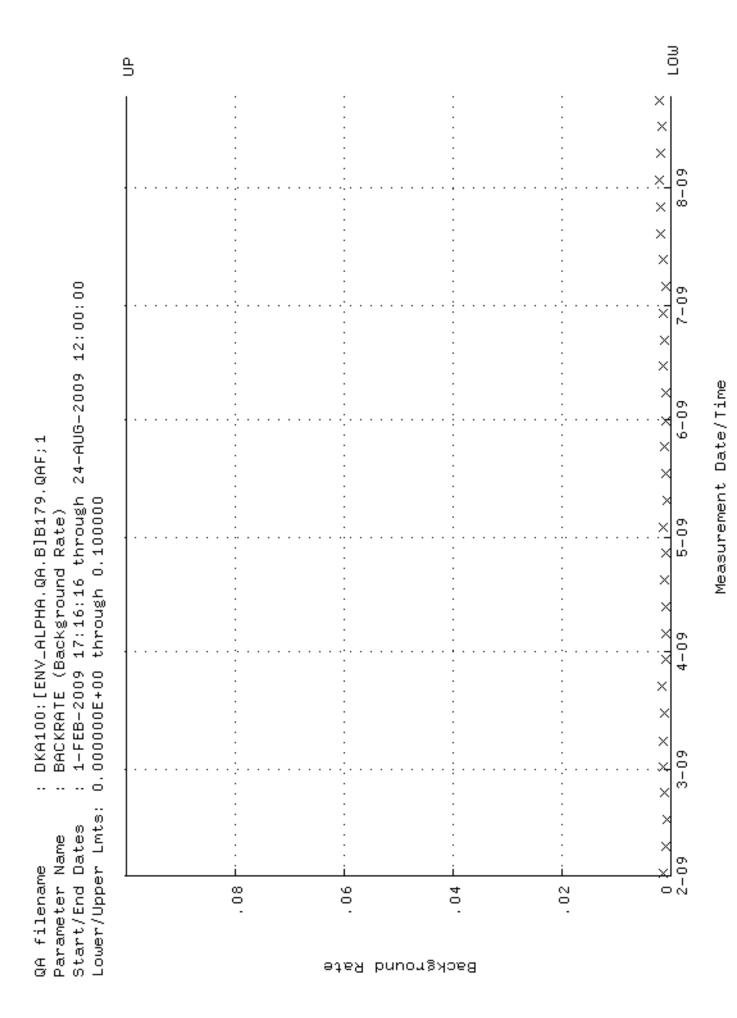


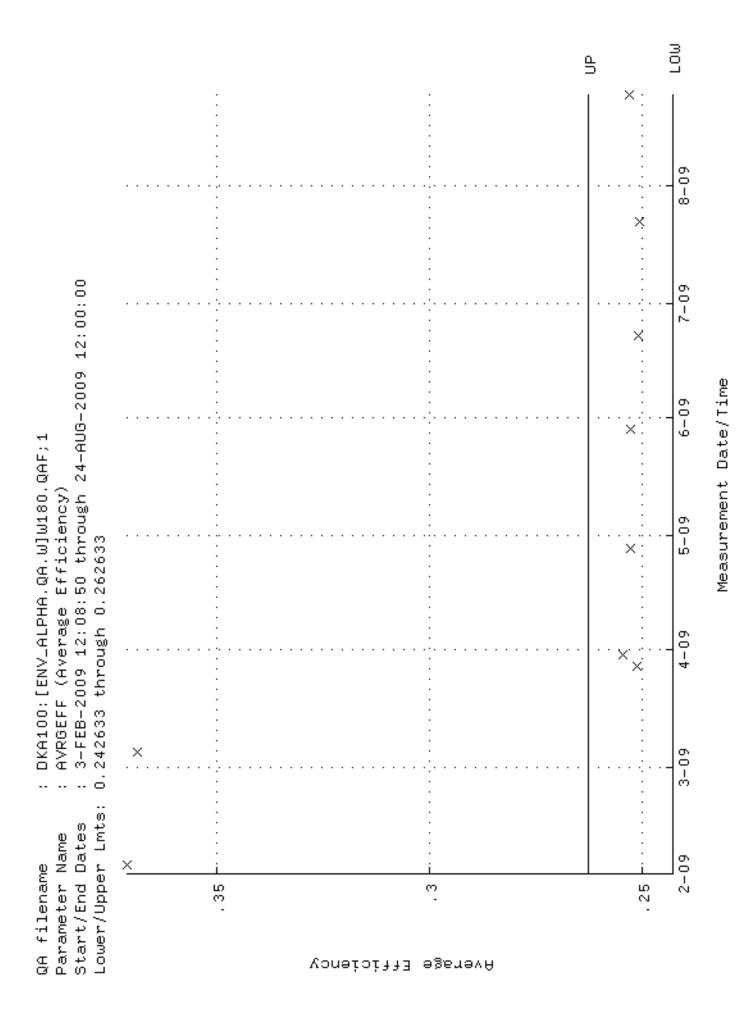


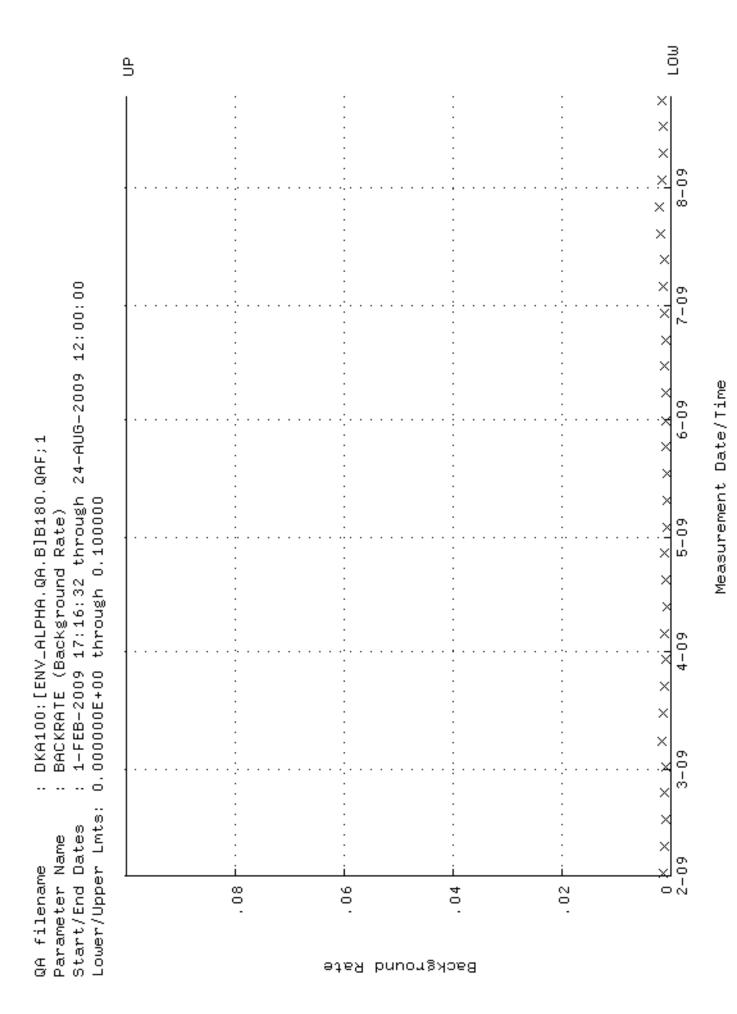


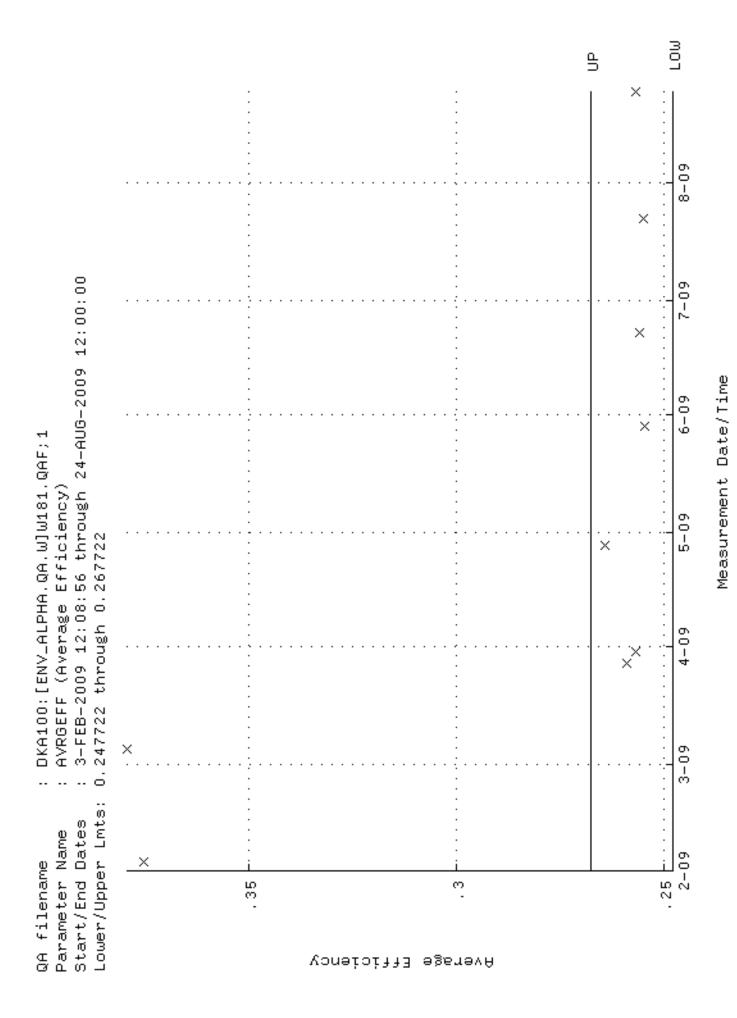


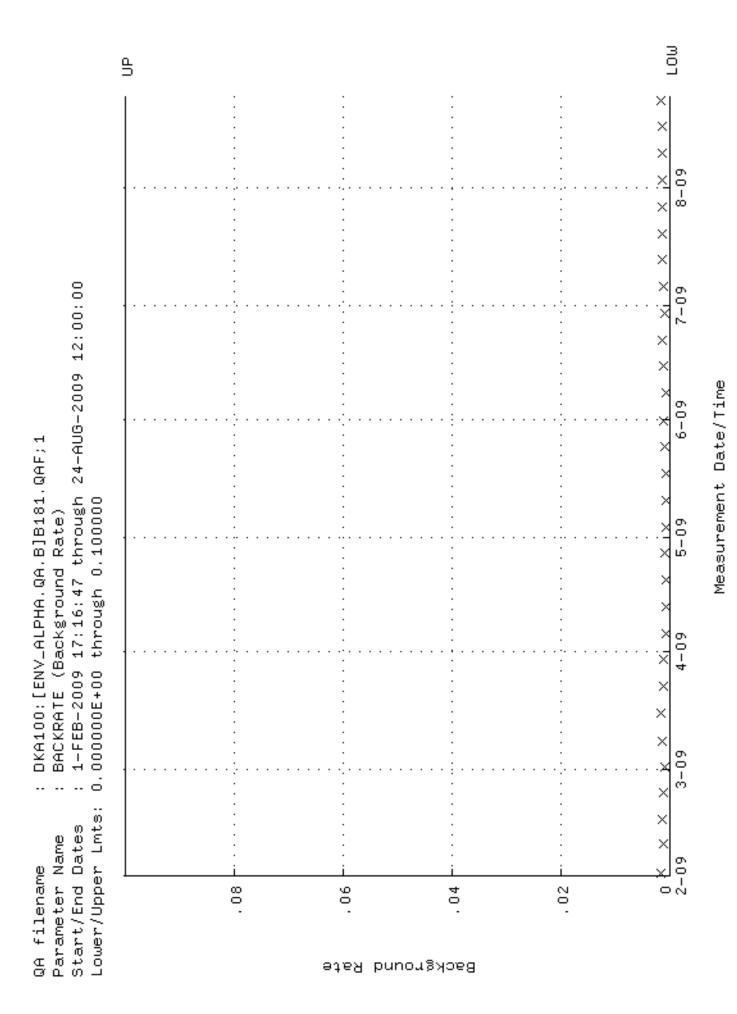


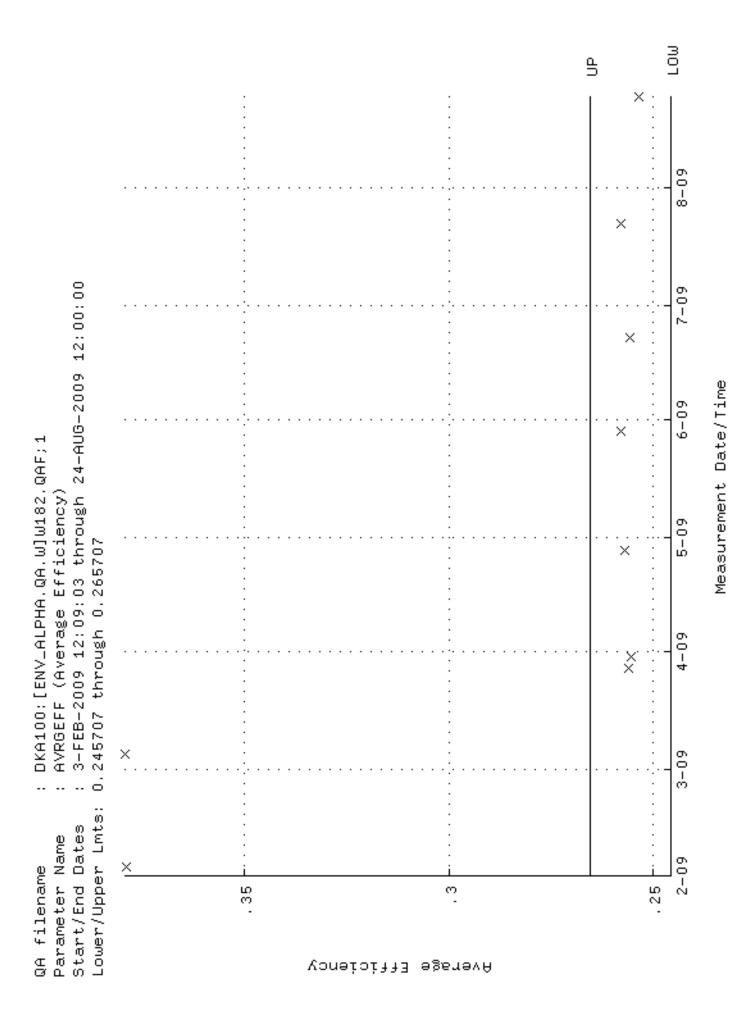


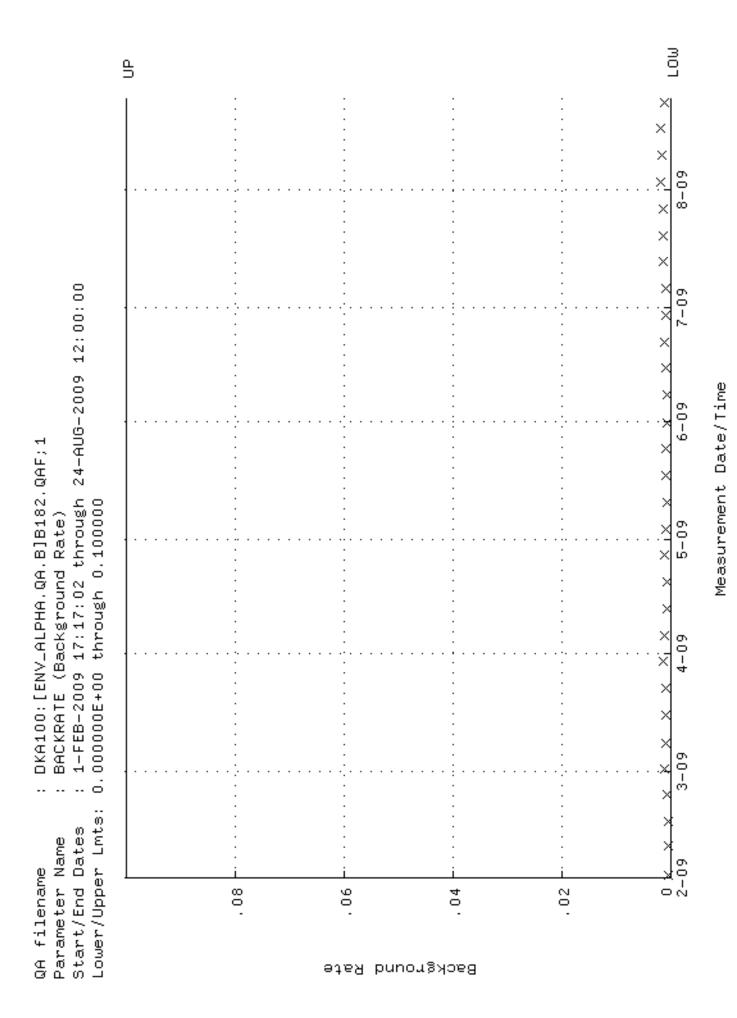


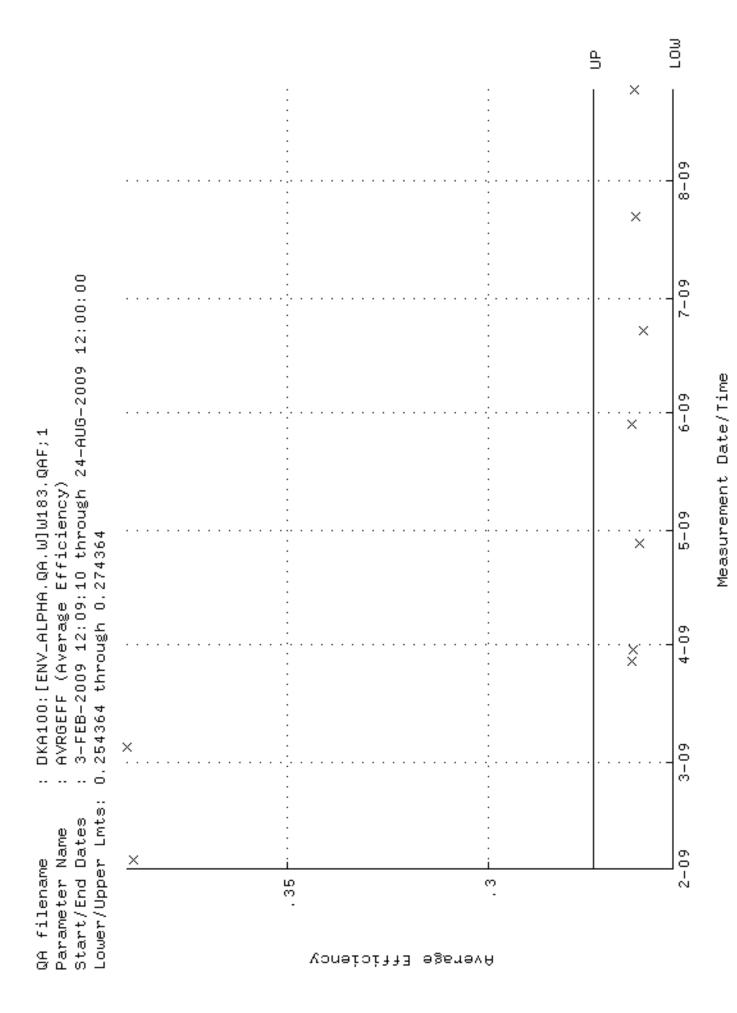


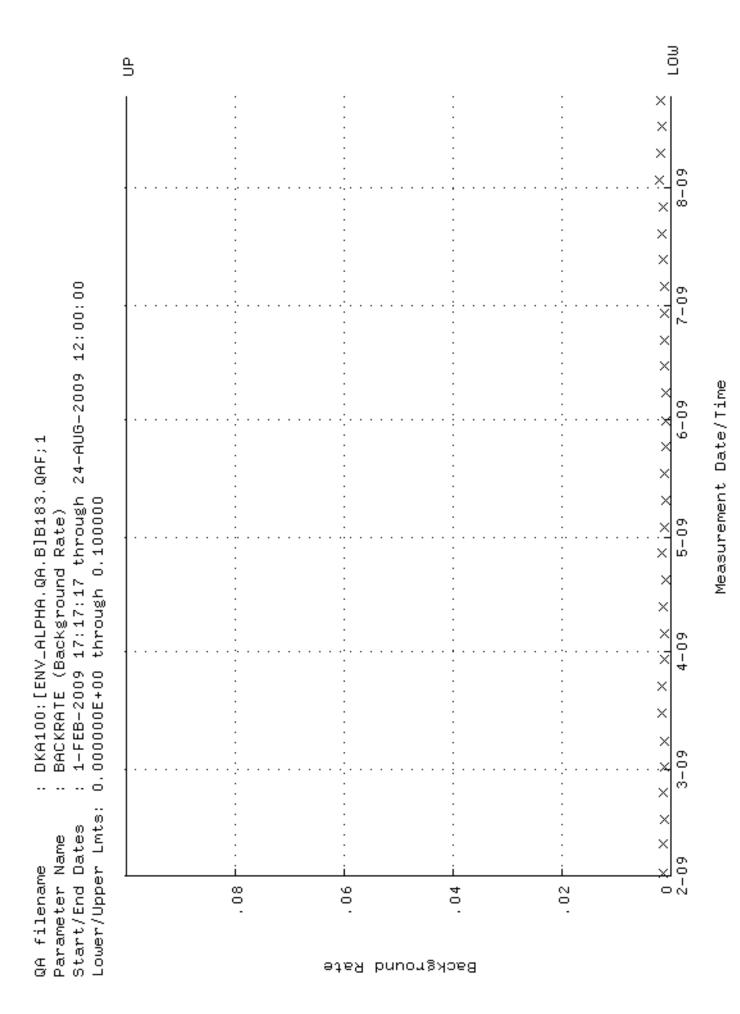

3 0 1 9 Х 8-09 Х : 3-FEB-2009 12:08:44 through 24-AUG-2009 12:00:00 2-09 × : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 : DKA100:[ENV_ALPHA.QA.W]W179.QAF;1 60-9 × 86.7434 through 95.8742 4-09 × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename 4 92 90 8 NOCLIDE ACTIVITY 6D-

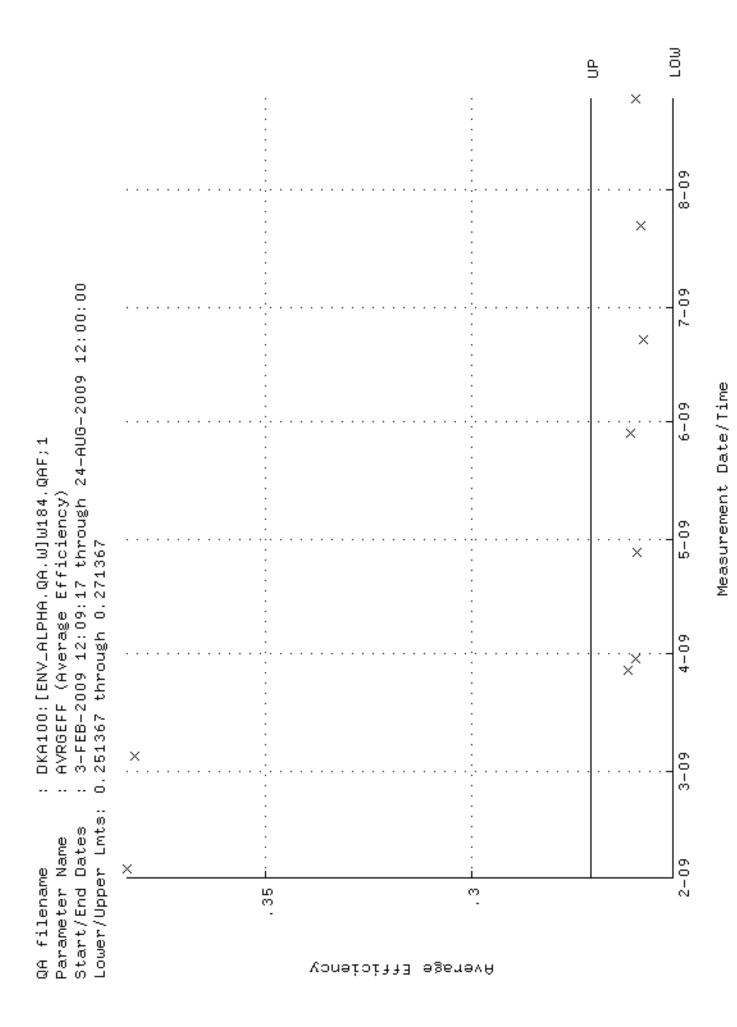


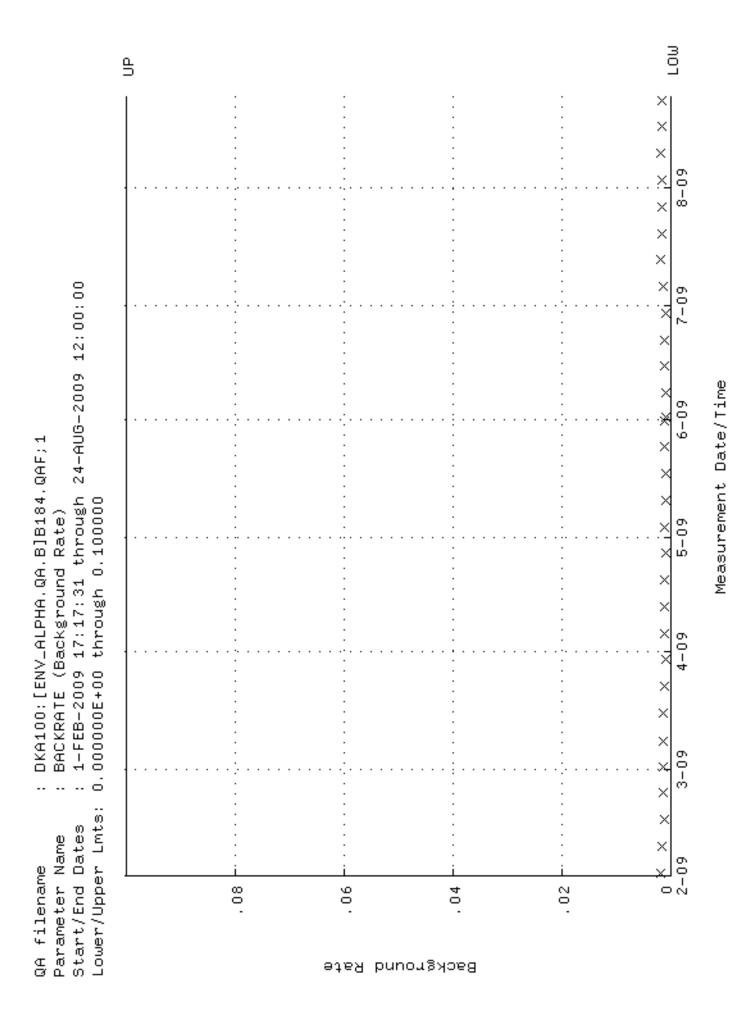

30 10 10 9 × 8-09 × : 3-FEB-2009 12:08:50 through 24-AUG-2009 12:00:00 2-09 × : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 : DKA100:[ENV_ALPHA.QA.W]W180.QAF;1 60-9 X 88.0803 through 97.3519 4-09 × × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename 6 96 94 NOCLIDE ACTIVITY 6D-

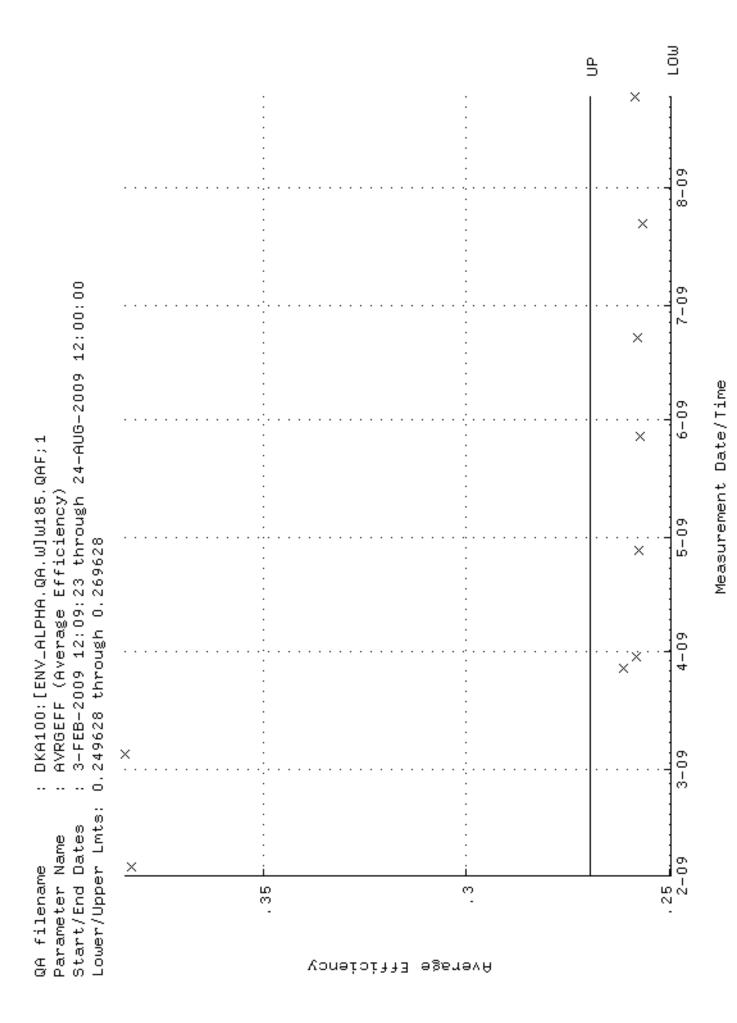


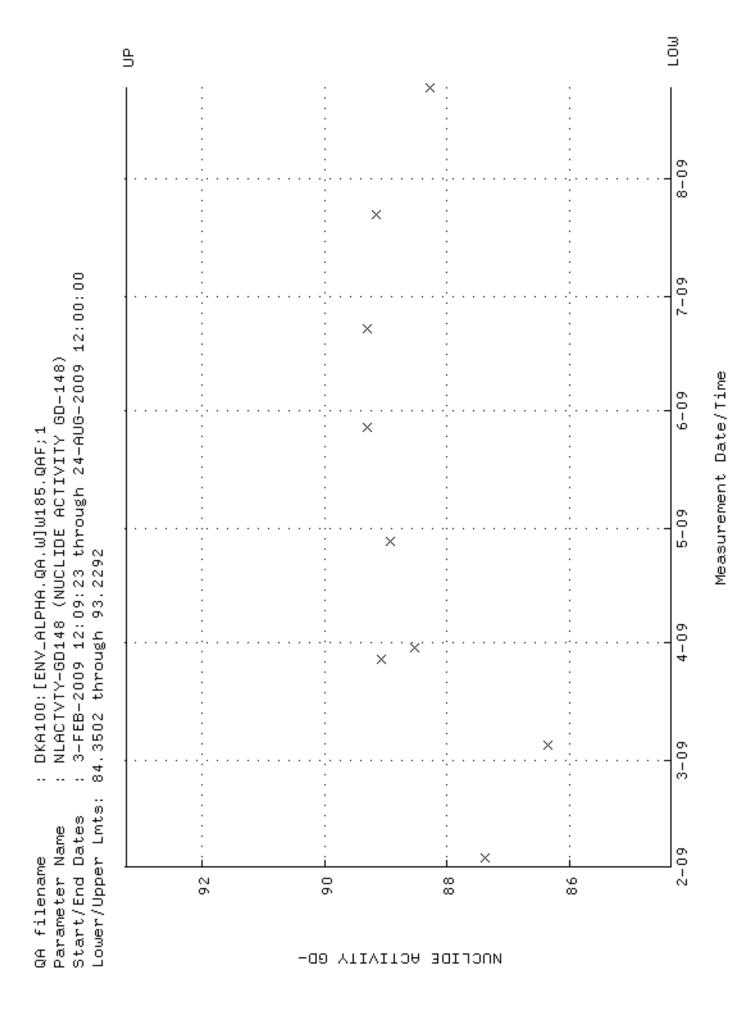

30 10 10 9 × 8-09 × : 3-FEB-2009 12:08:56 through 24-AUG-2009 12:00:00 2-09 × : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 . × : DKA100:[ENV_ALPHA.QA.W]W181.QAF;1 60-9 × 89.2737 through 98.6709 4-09 × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 × QA filename 86 96 94 92 9 NOCLIDE ACTIVITY 6D-

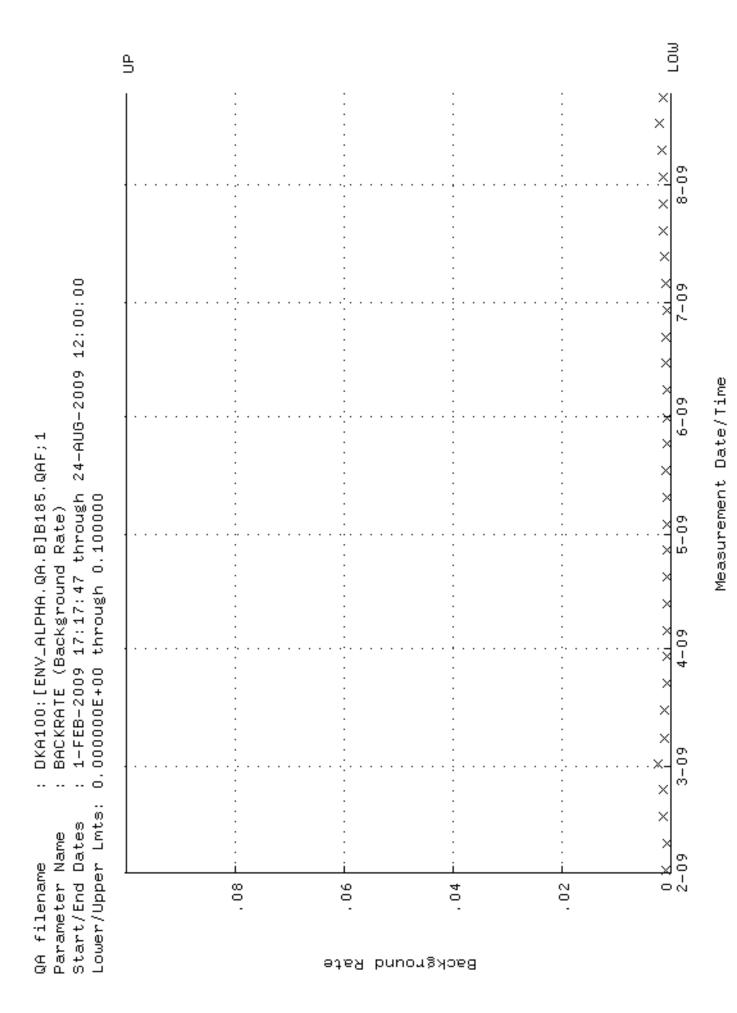


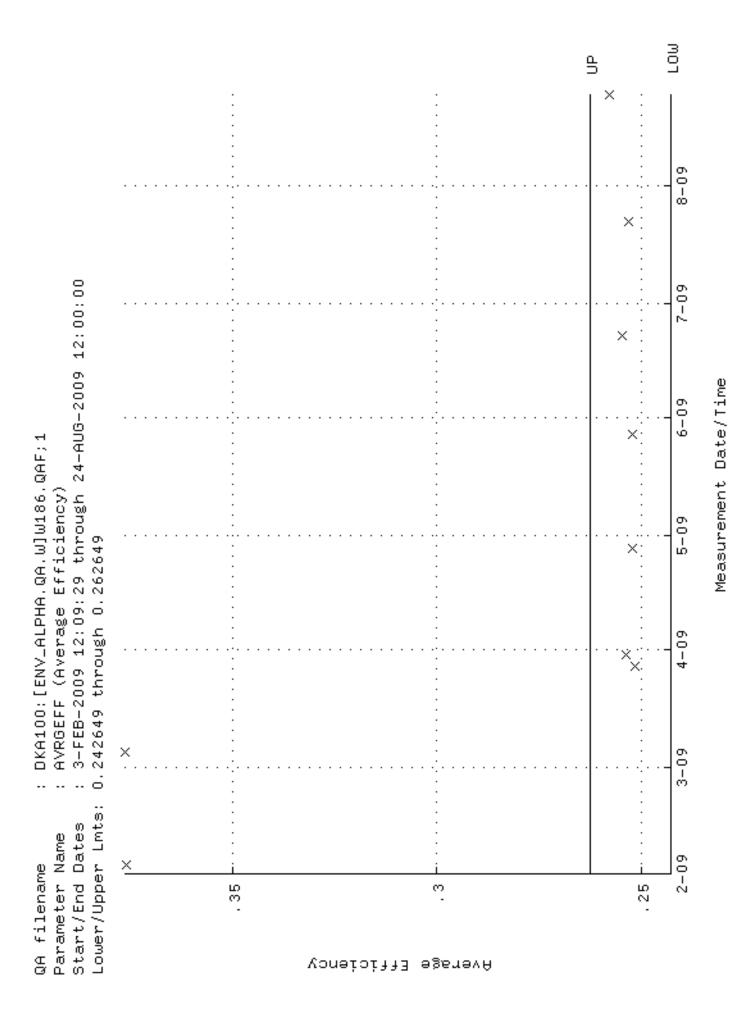

30 10 10 9 8-09 × : 3-FEB-2009 12:09:03 through 24-AUG-2009 12:00:00 2-09 × : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 : DKA100:[ENV_ALPHA.QA.W]W182.QAF;1 5-09 × 87.3454 through 96.5396 4-09 × 3-09 × Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename 9 96 92 8 94 NOCLIDE ACTIVITY 6D-

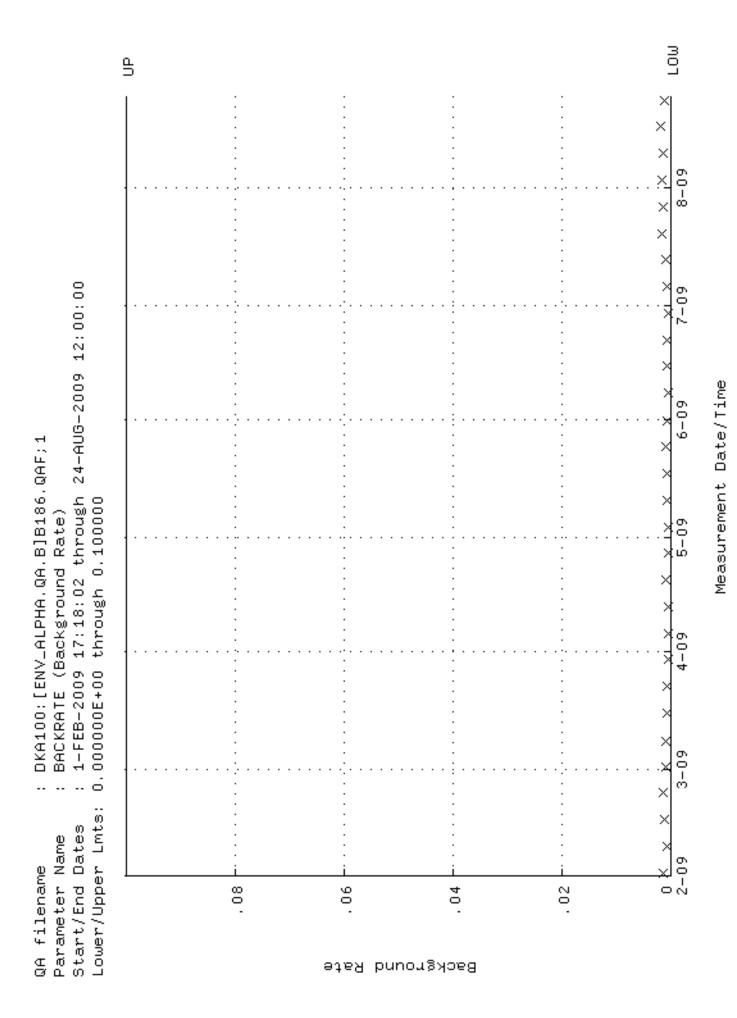


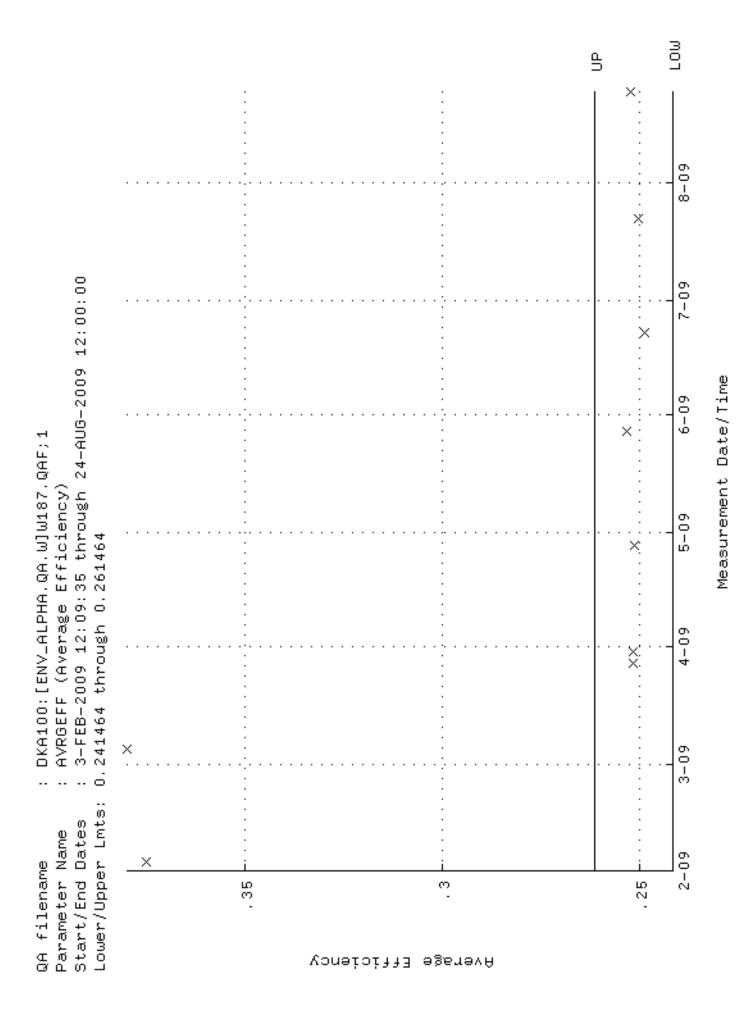

30 10 10 9 × 8-09 × : 3-FEB-2009 12:09:10 through 24-AUG-2009 12:00:00 2-09 : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 . × : DKA100:[ENV_ALPHA.QA.W]W183.QAF;1 60-9 × 86.8927 through 96.0393 4-09 ×. 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename 96 4 92 90 8 NOCLIDE ACTIVITY 6D-

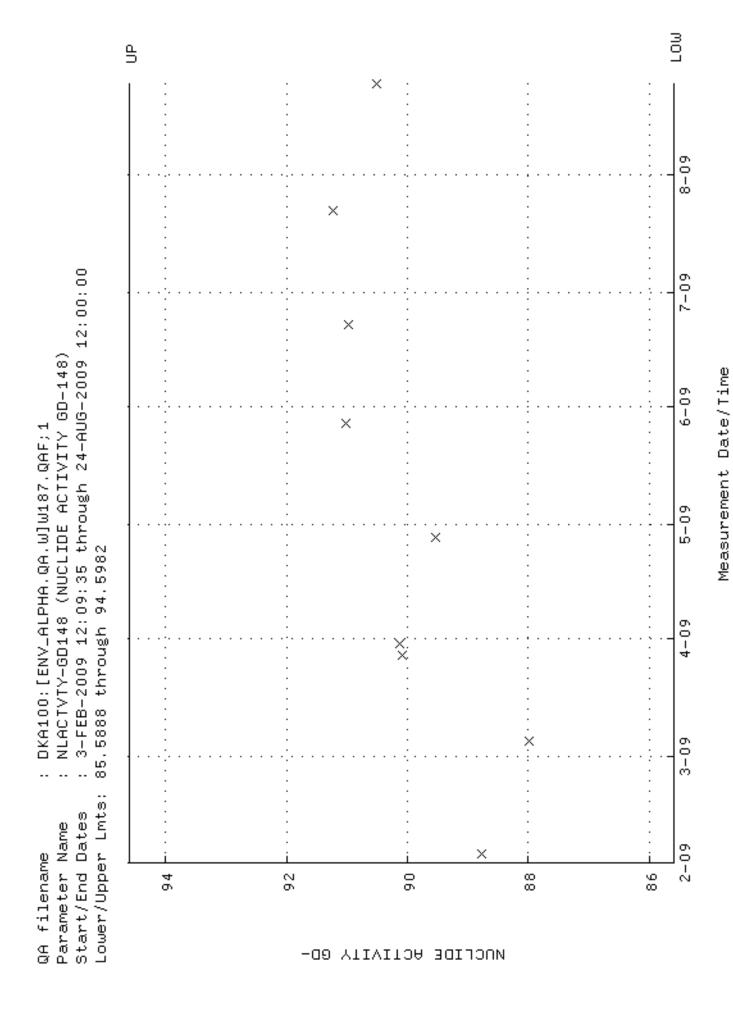


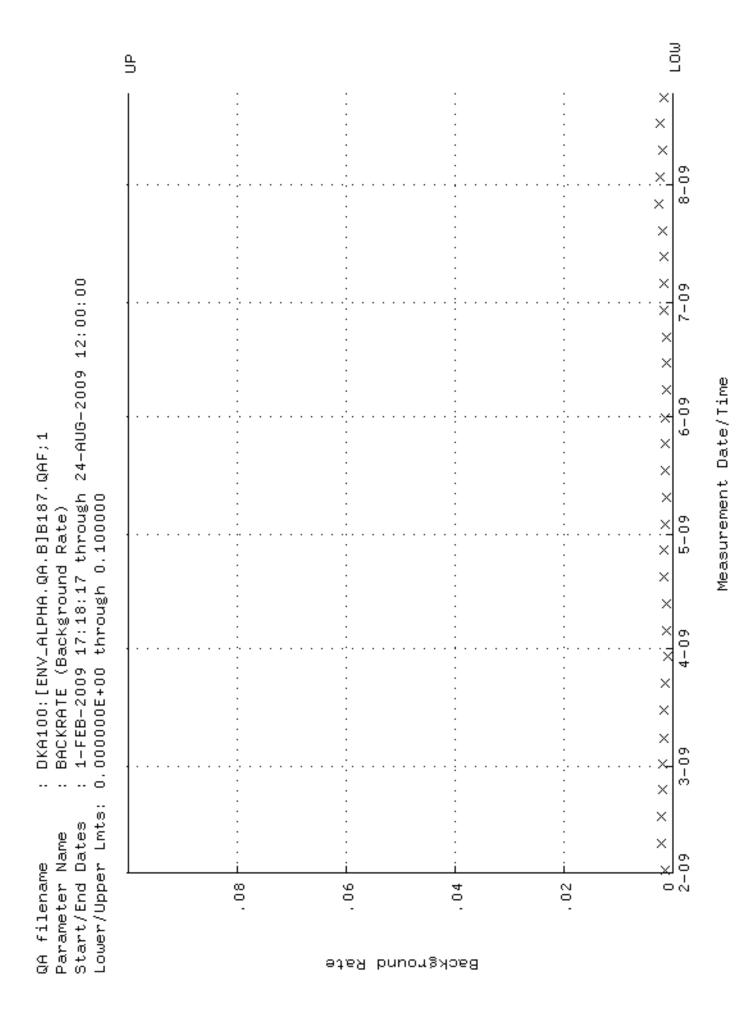


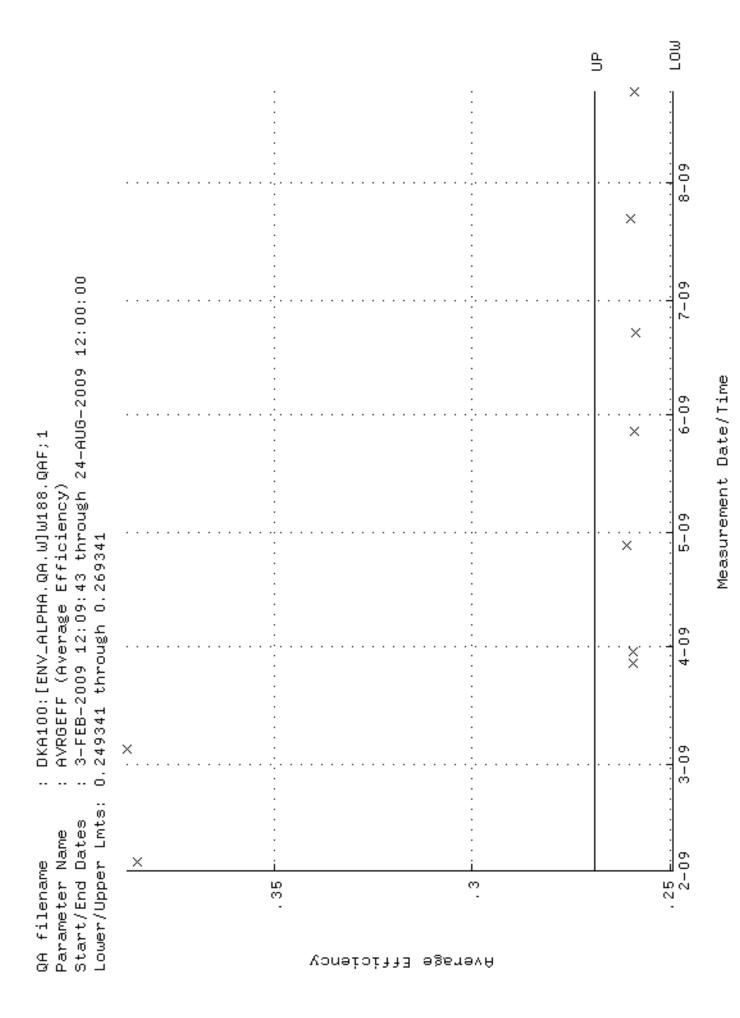

30 10 10 9 8-09 × : 3-FEB-2009 12:09:17 through 24-AUG-2009 12:00:00 2-09 : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 : DKA100:[ENV_ALPHA.QA.W]W184.QAF;1 5-09 85.4139 through 94.4049 4-09 × × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 × QA filename 92 90 8 98 94 NOCLIDE ACTIVITY 6D-

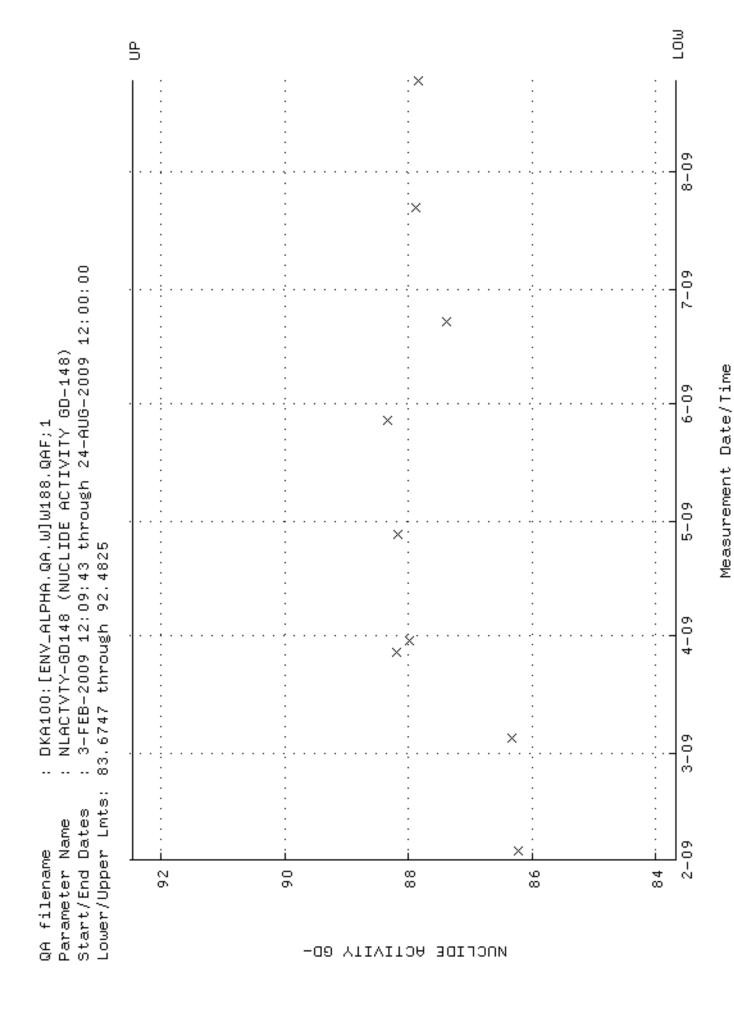


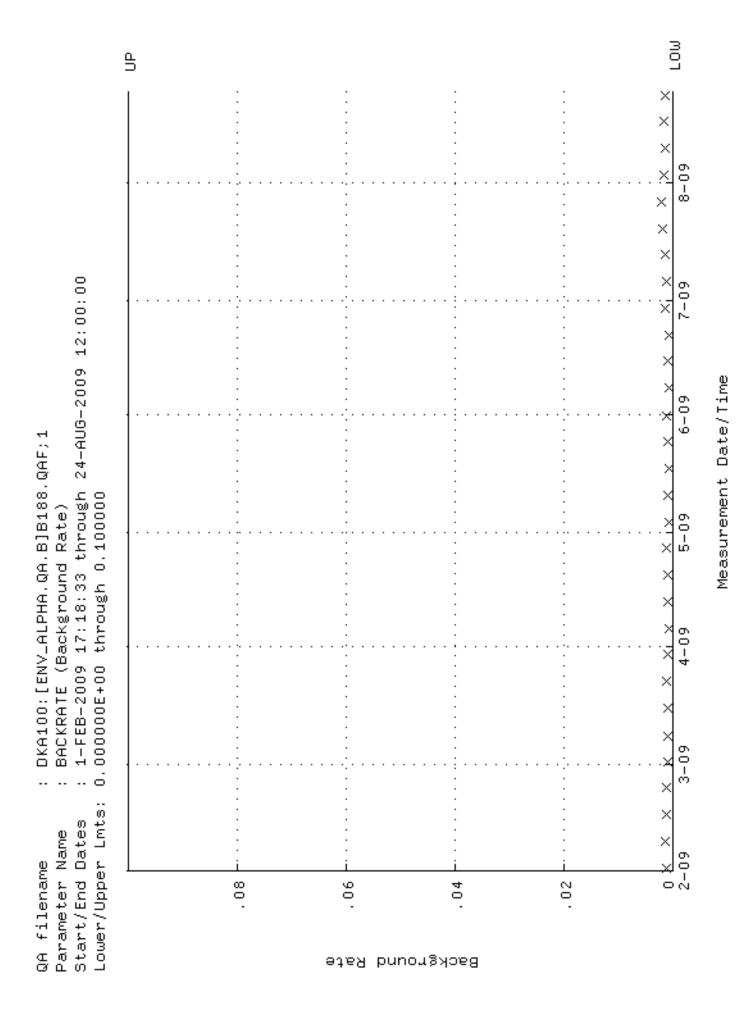


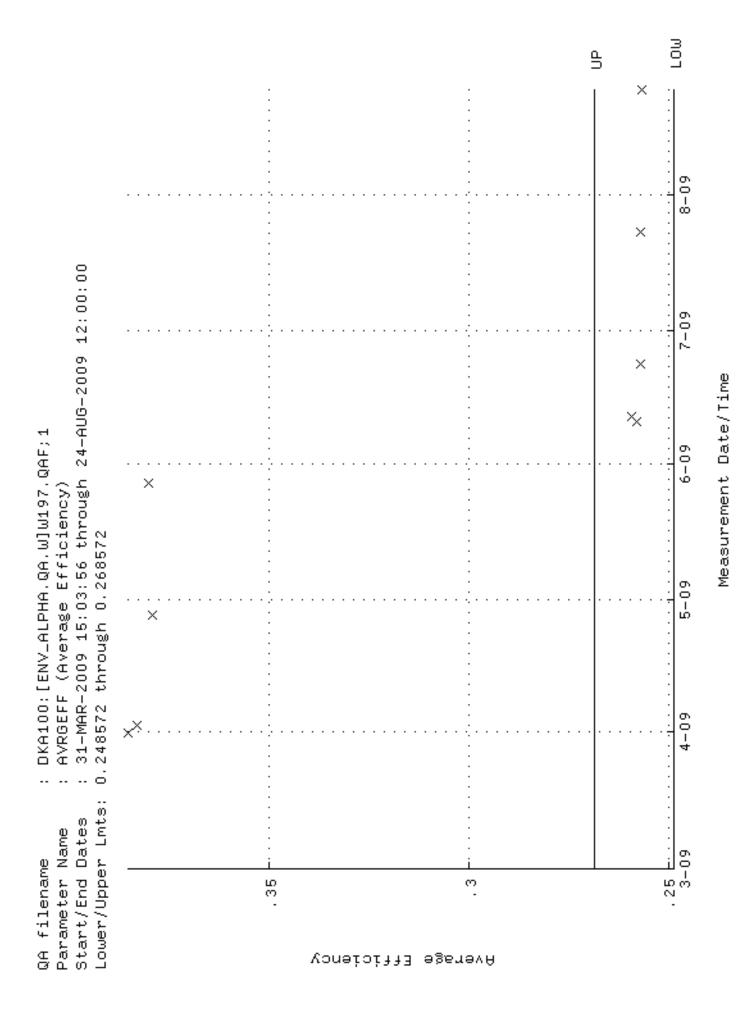


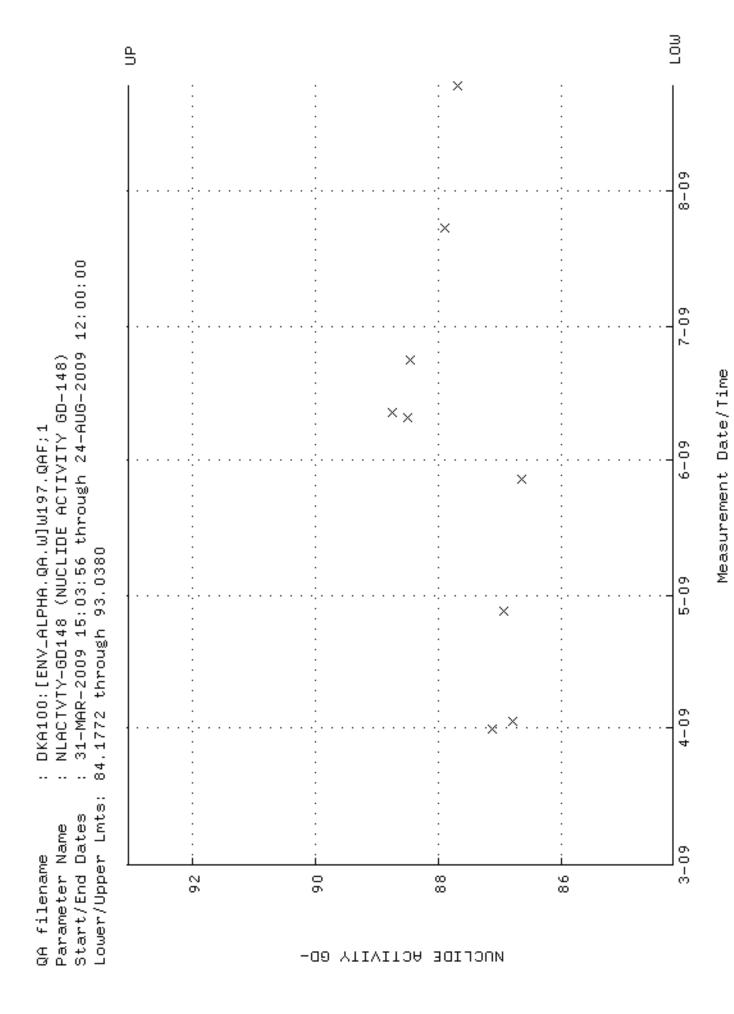


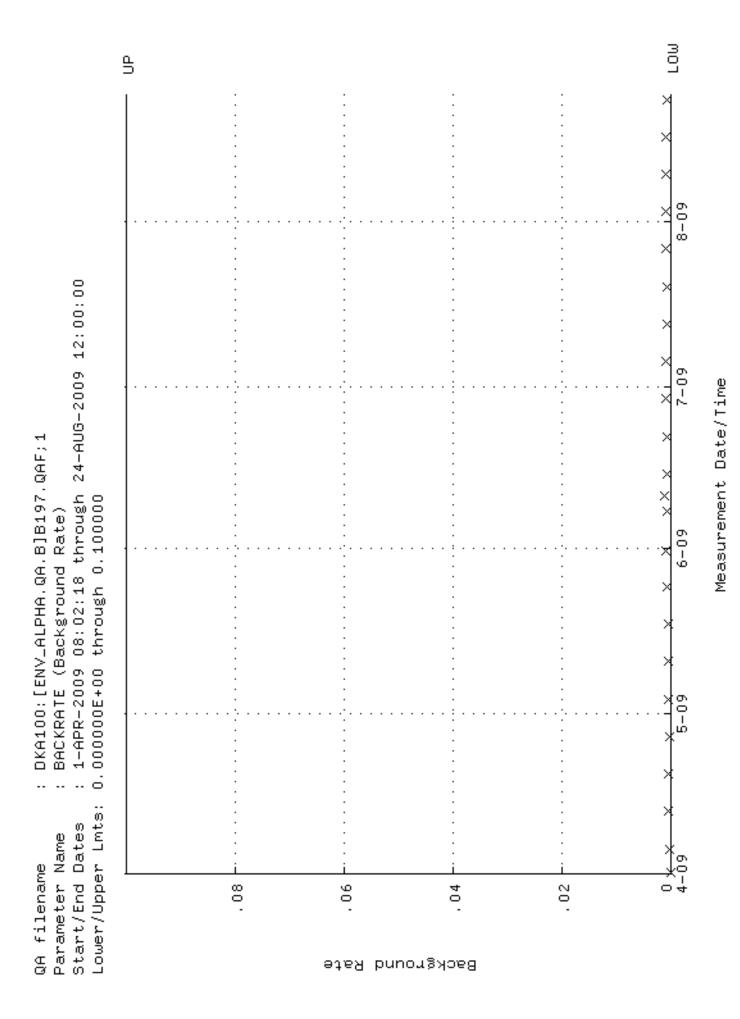

3 0 1 9 × 8-09 × : 3-FEB-2009 12:09:29 through 24-AUG-2009 12:00:00 2-09 : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) 60-9 × : DKA100:[ENV_ALPHA.QA.W]W186.QAF;1 60-9 × 82.6495 through 91.3495 4-09 × × 3-09 Lower/Upper Lmts: Start/End Dates Parameter Name 2-09 QA filename 98 0 8 ω 4 NOCLIDE ACTIVITY 6D-

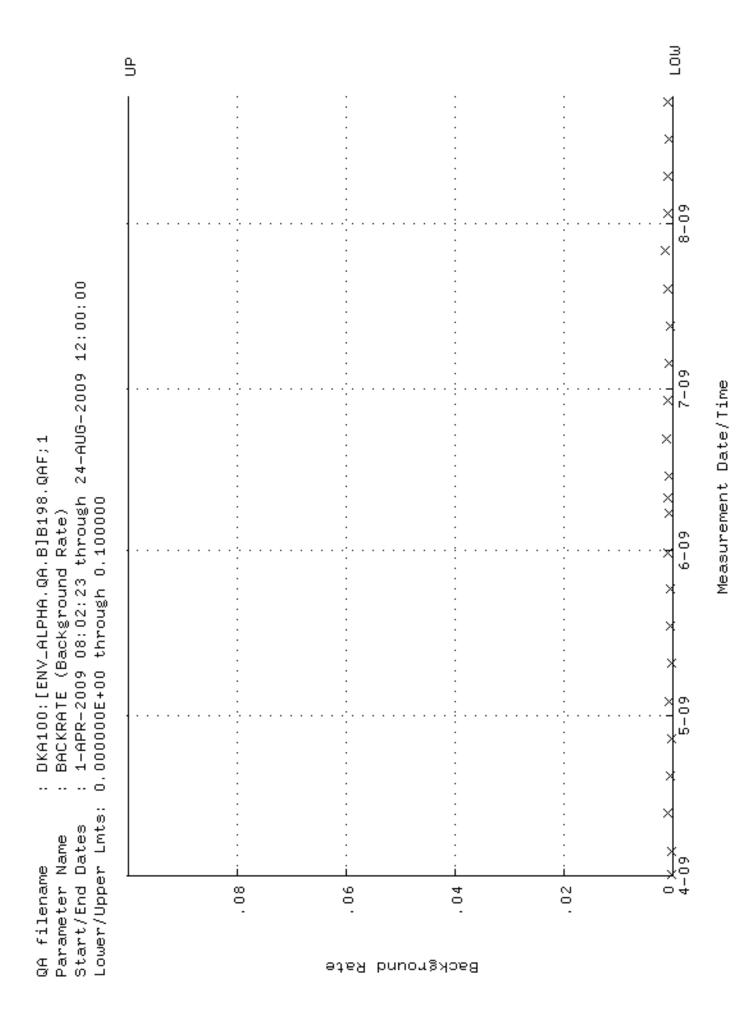


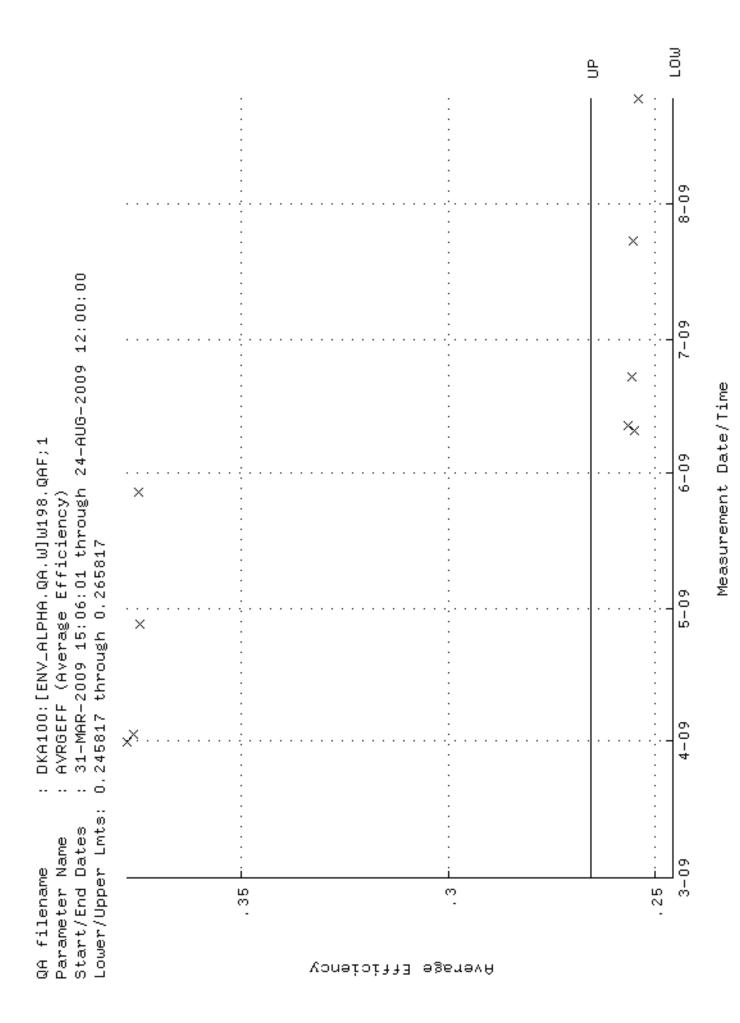


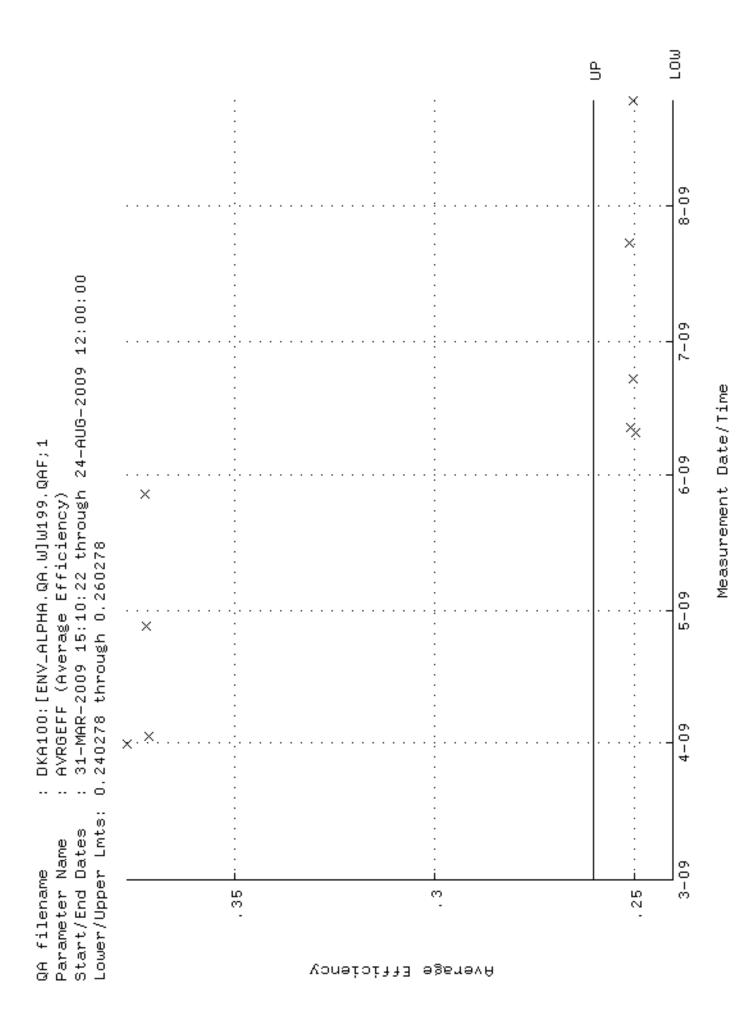


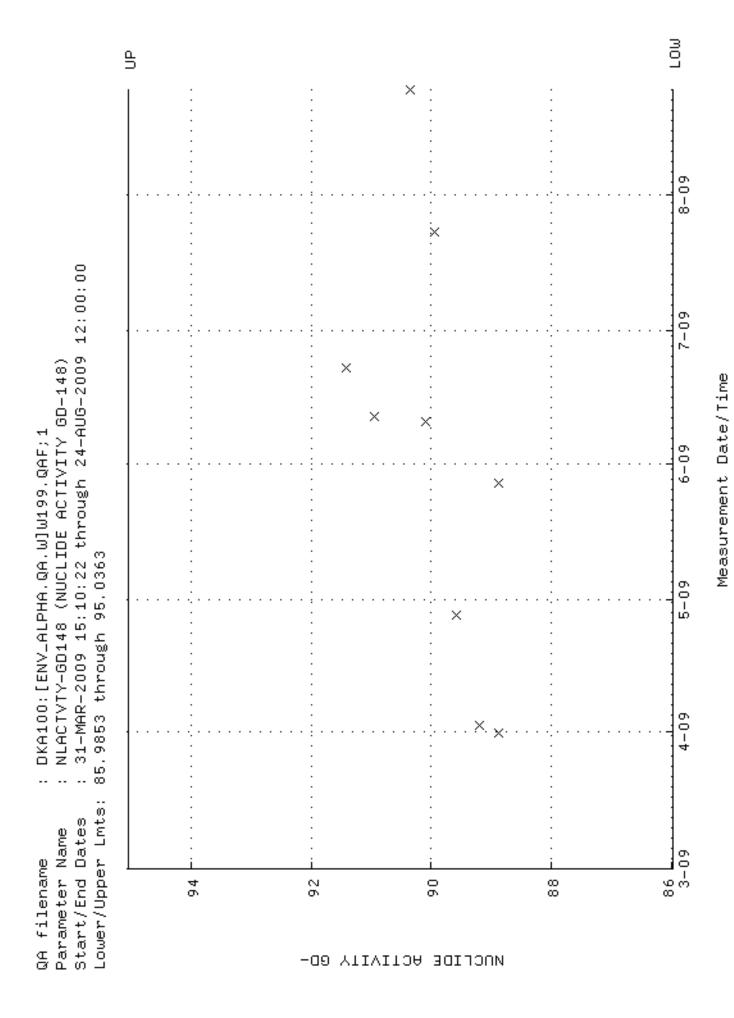


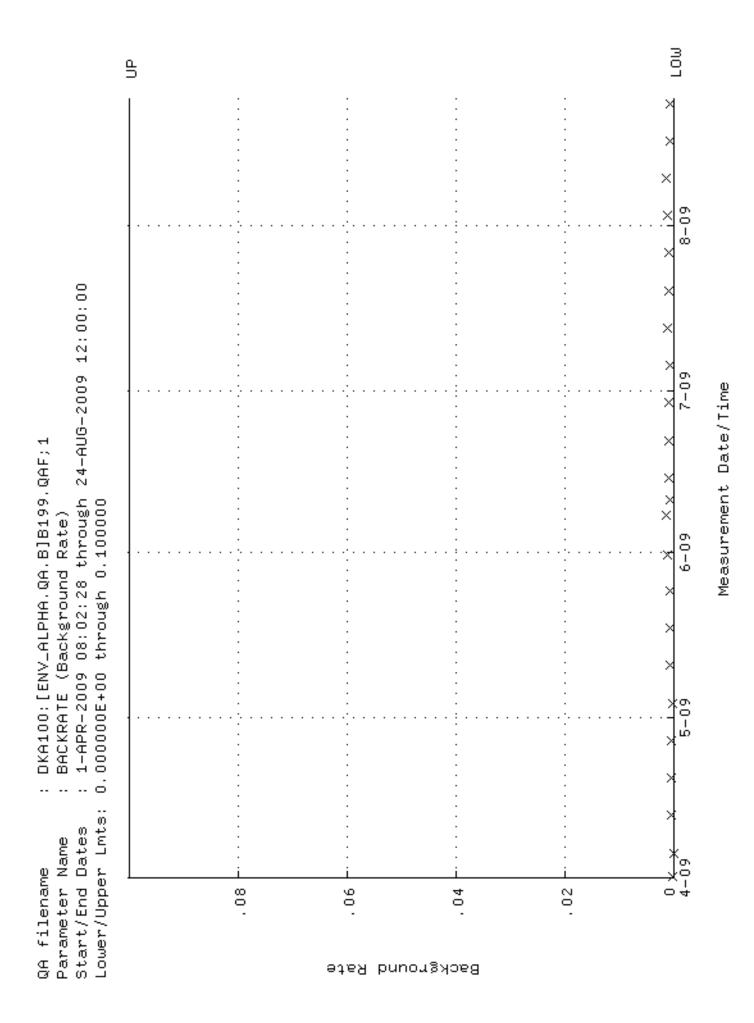


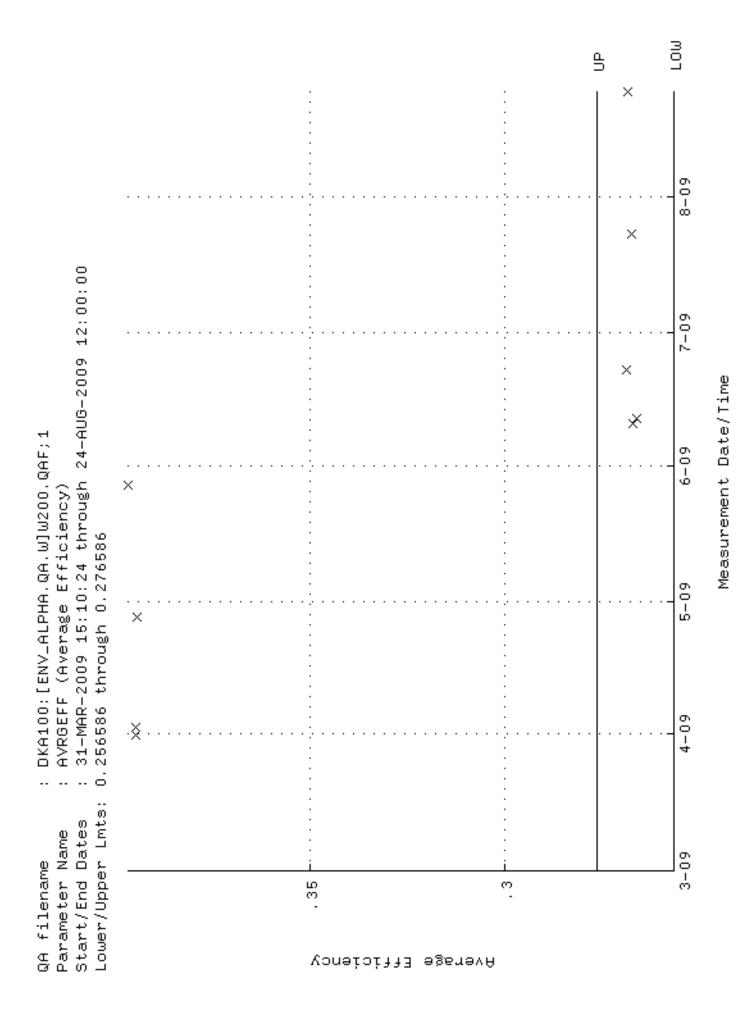


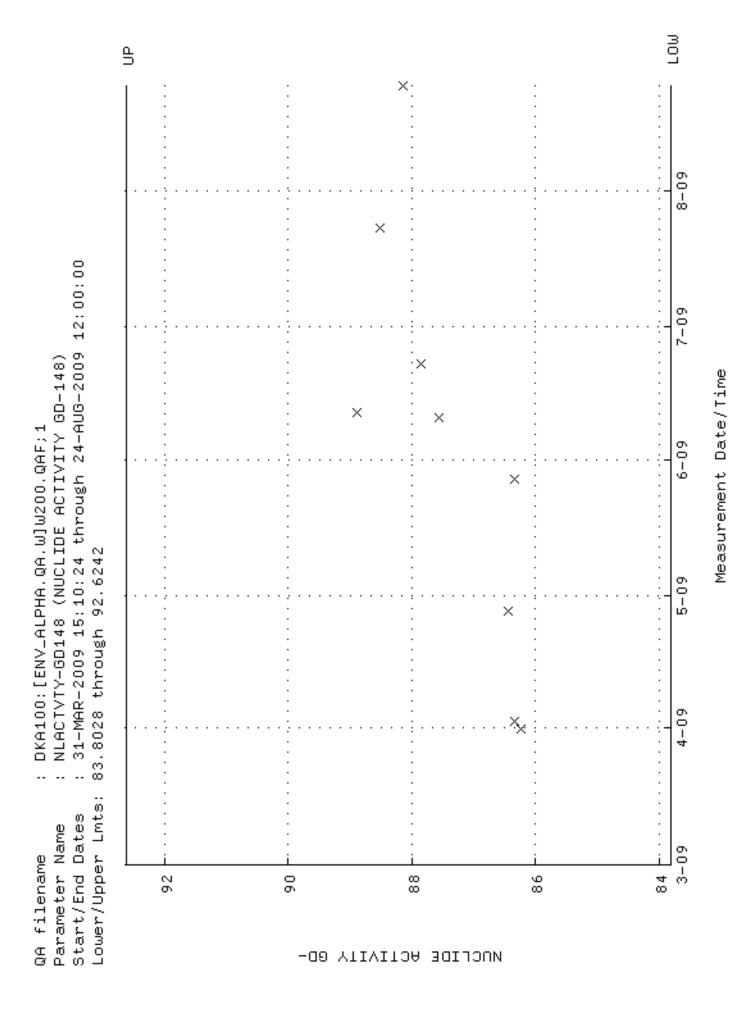


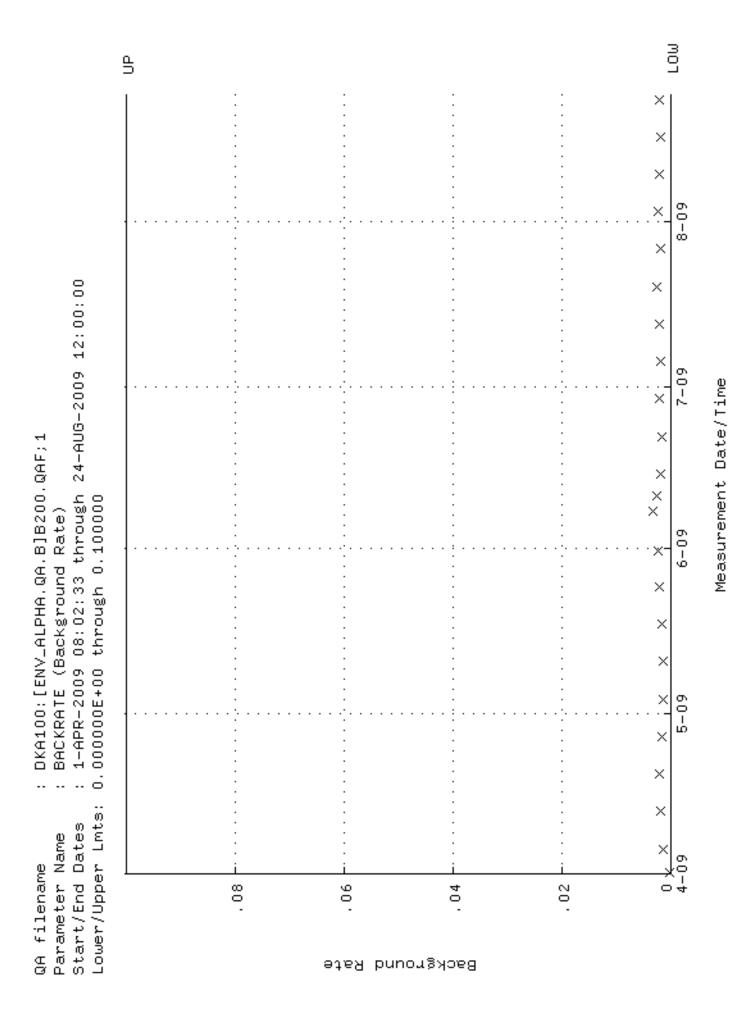


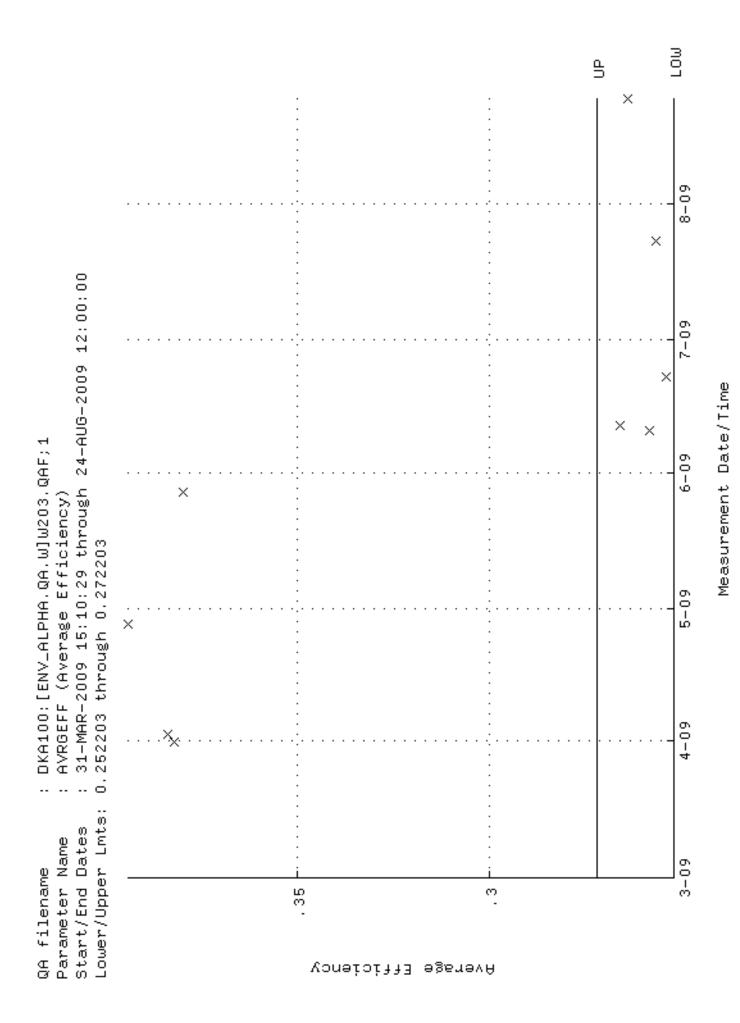

MOT 9 × 8-09 × : NLACTVTY-GD148 (NUCLIDE ACTIVITY GD-148) : 31-MAR-2009 15:06:01 through 24-AUG-2009 12:00:00 2-09 × × × : DKA100:[ENV_ALPHA.QA.W]W198.QAF;1 60-9 × 83.8978 through 92.7292 60-9 × 4-09 Lower/Upper Lmts: Start/End Dates Parameter Name 84 F: . 3-09 QA filename 8 9 8 98 NOCLIDE ACTIVITY 6D-

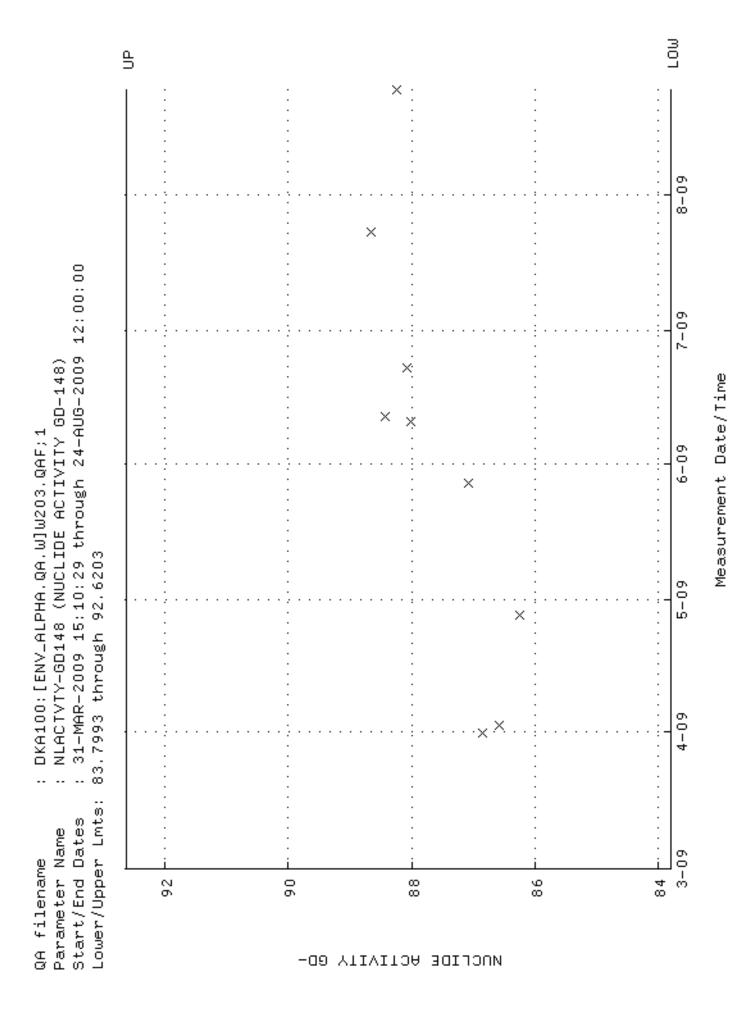

Measurement Date/Time

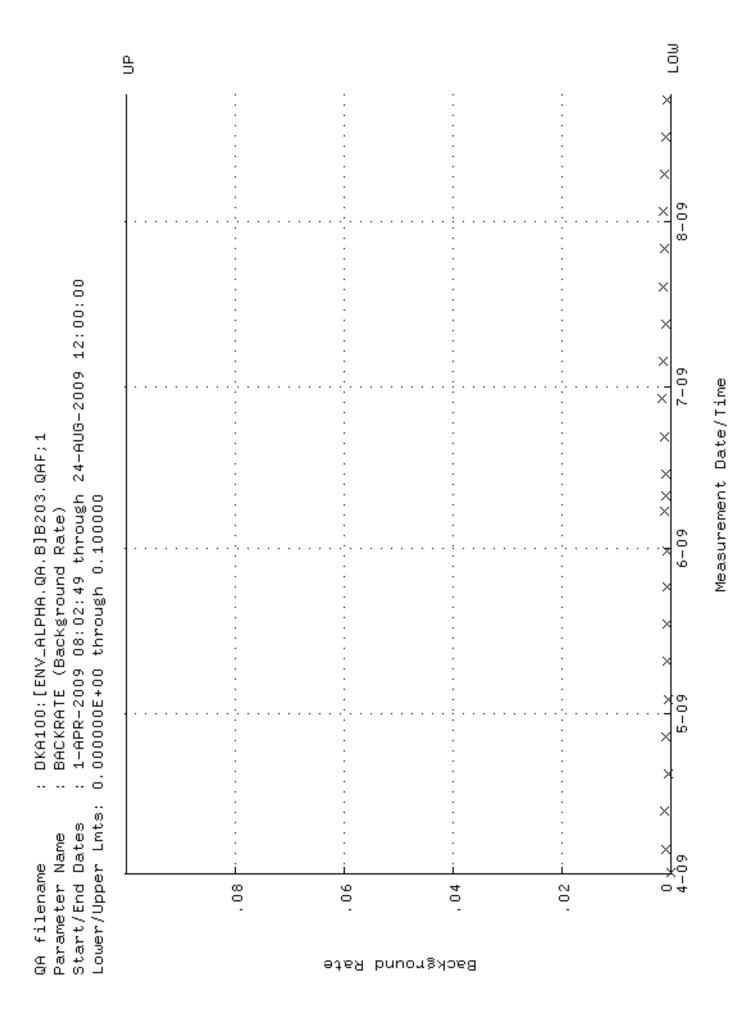


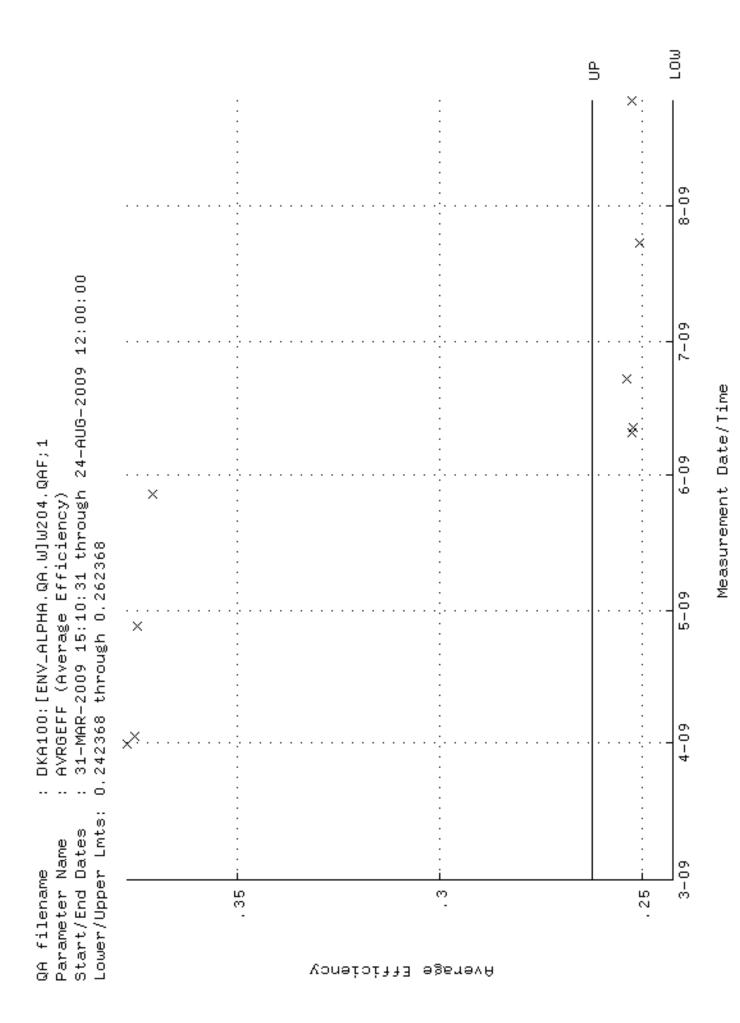


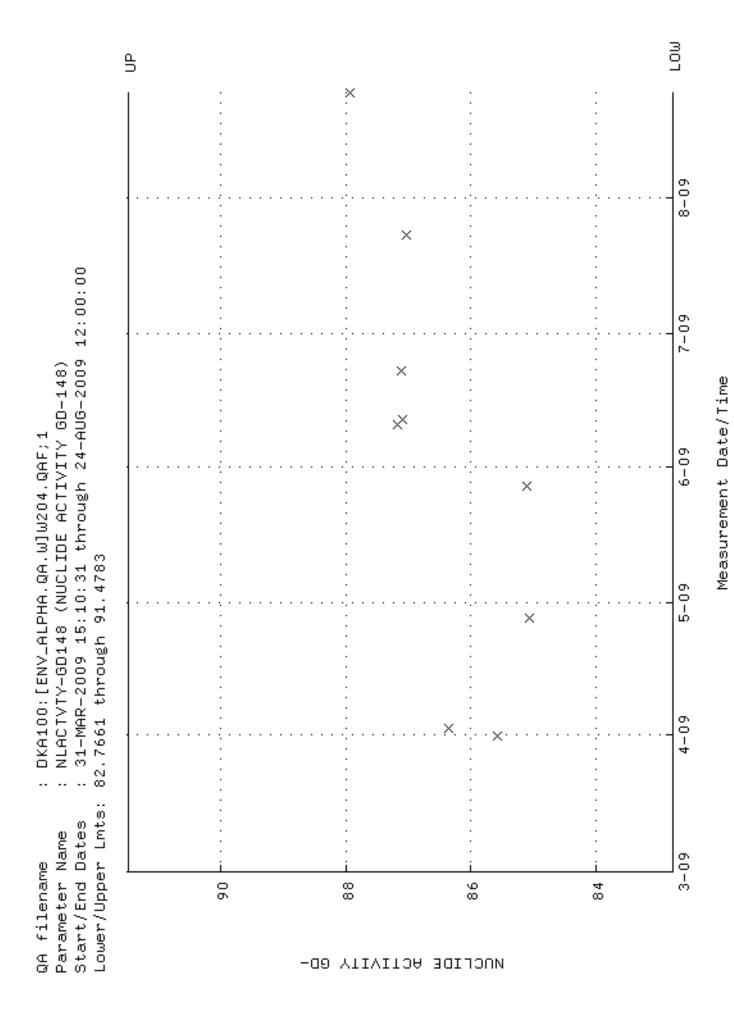


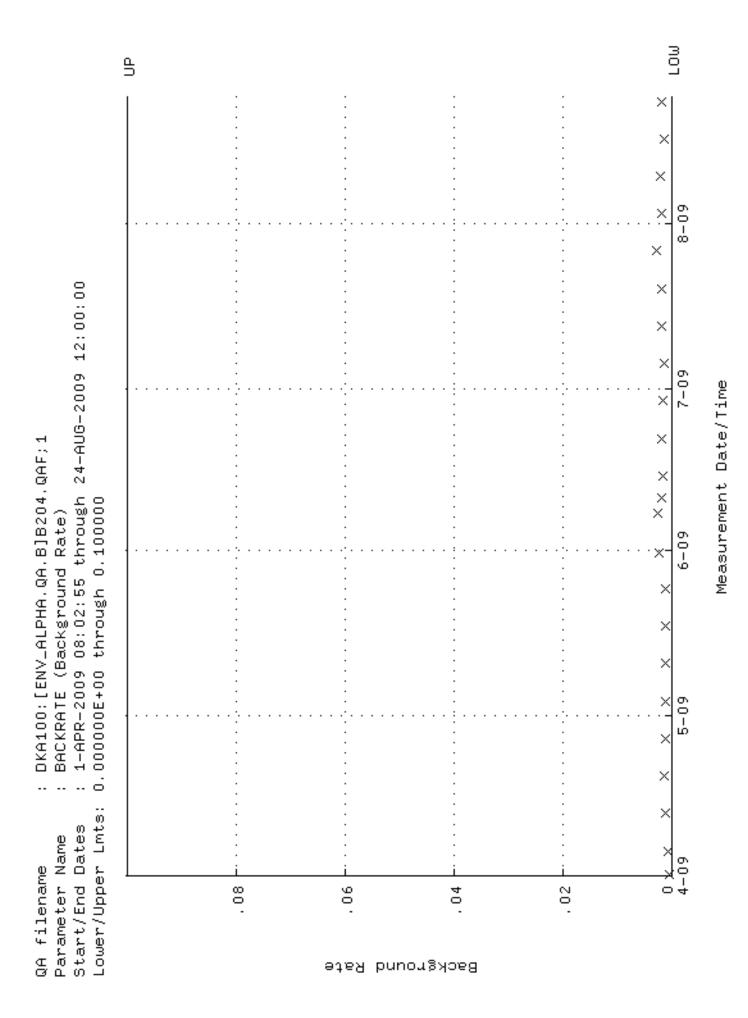


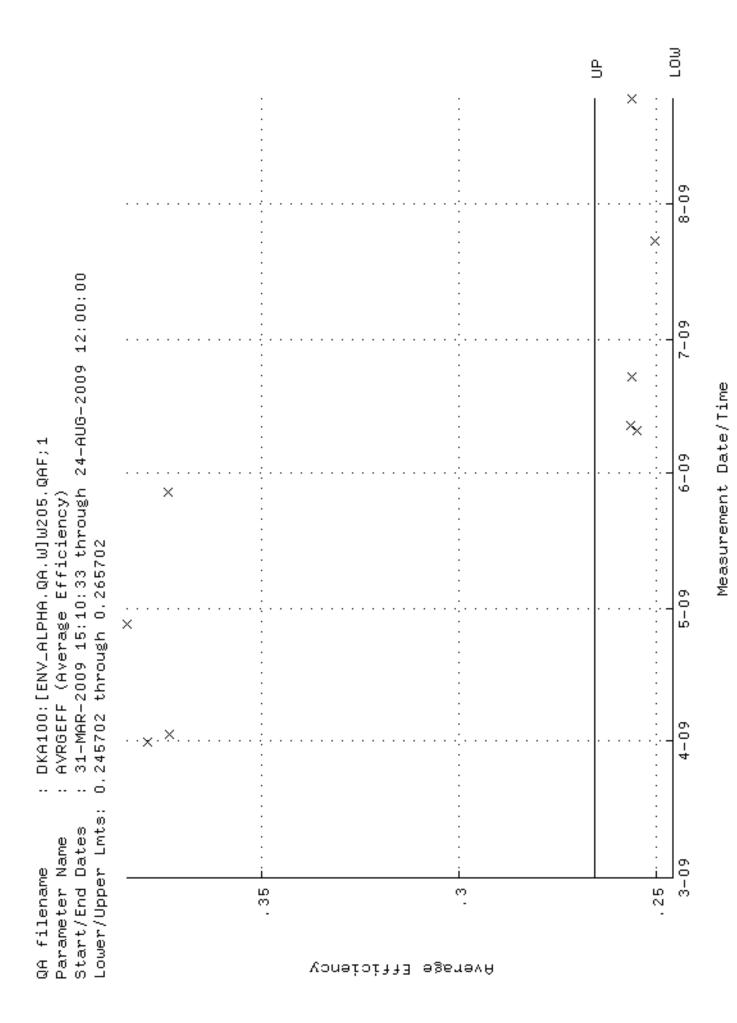


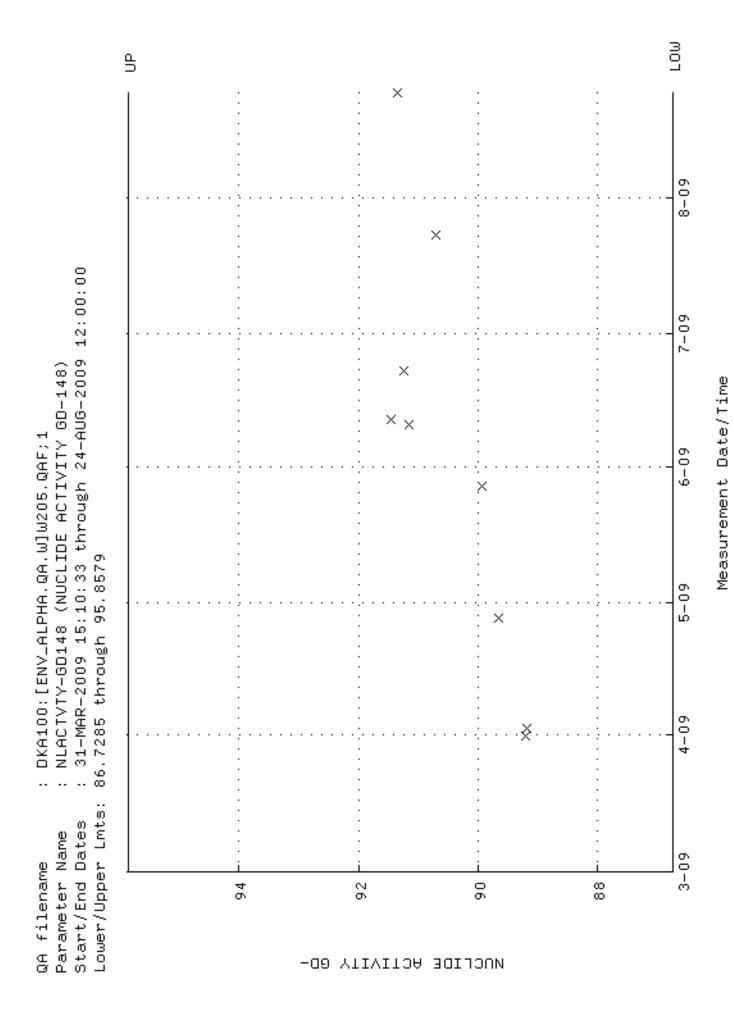


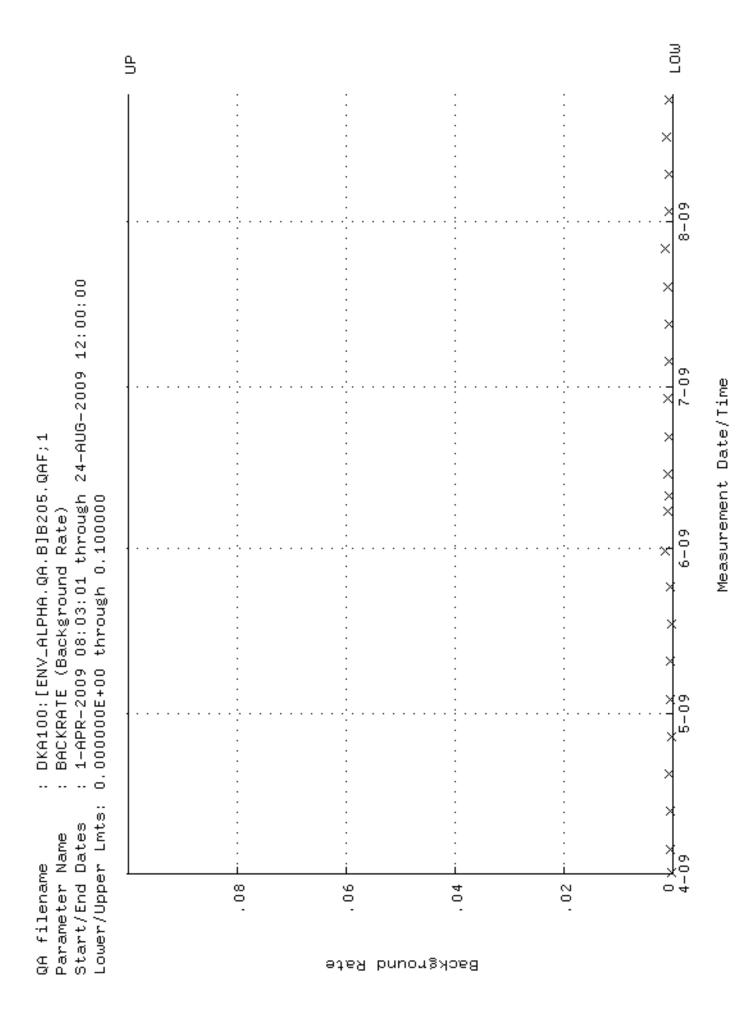


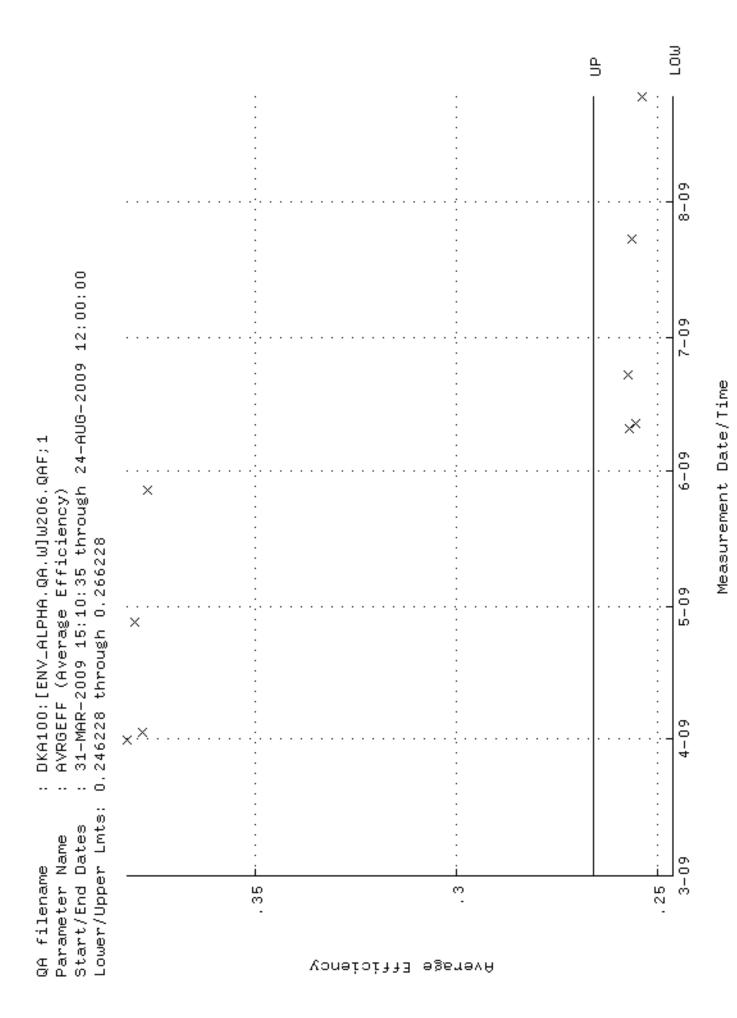


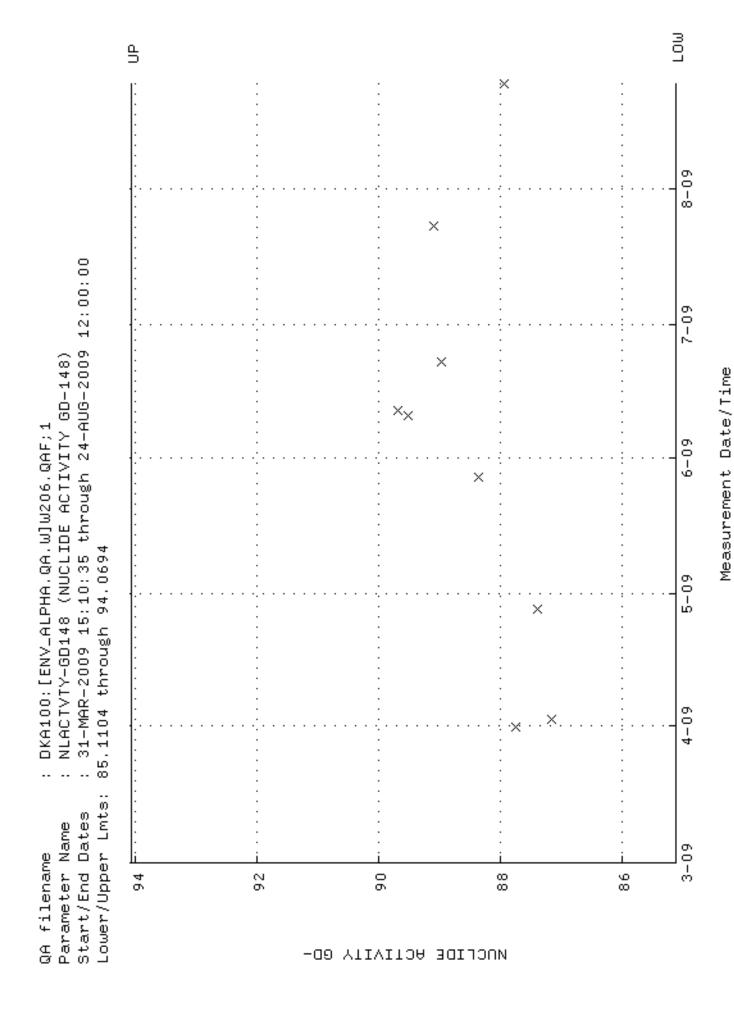


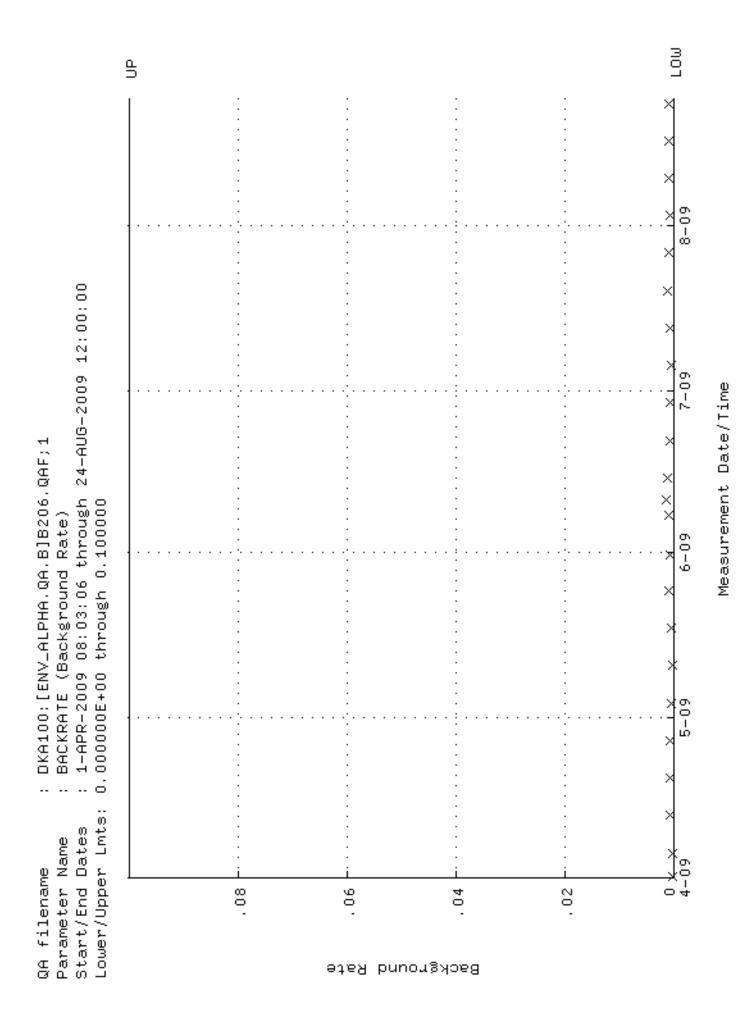


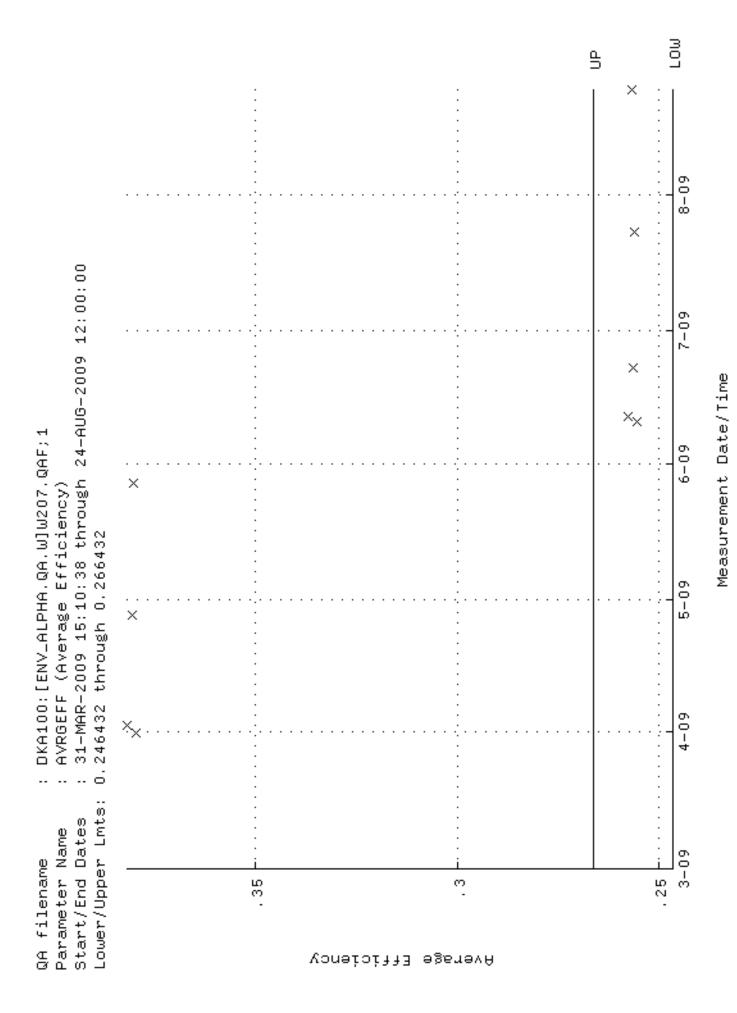


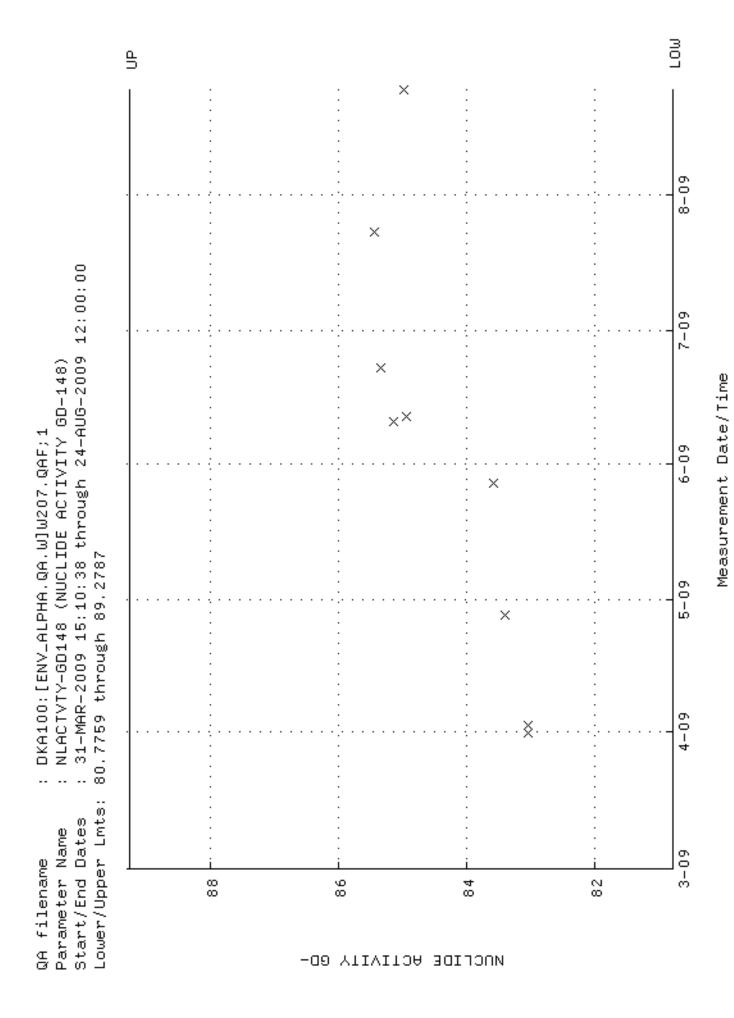


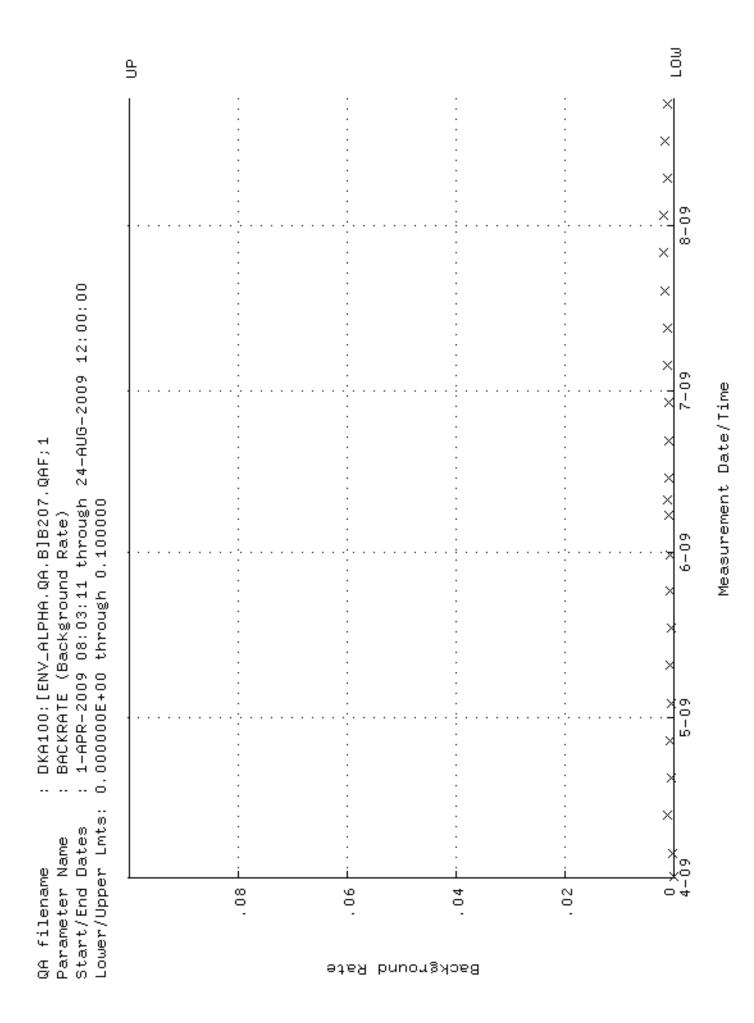


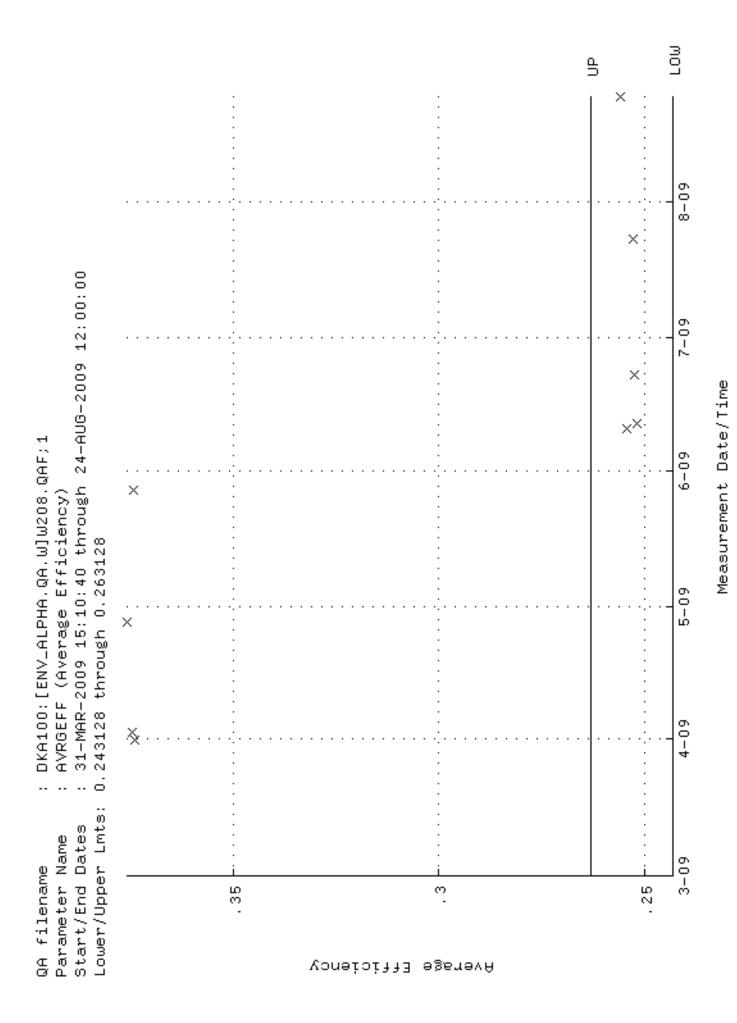


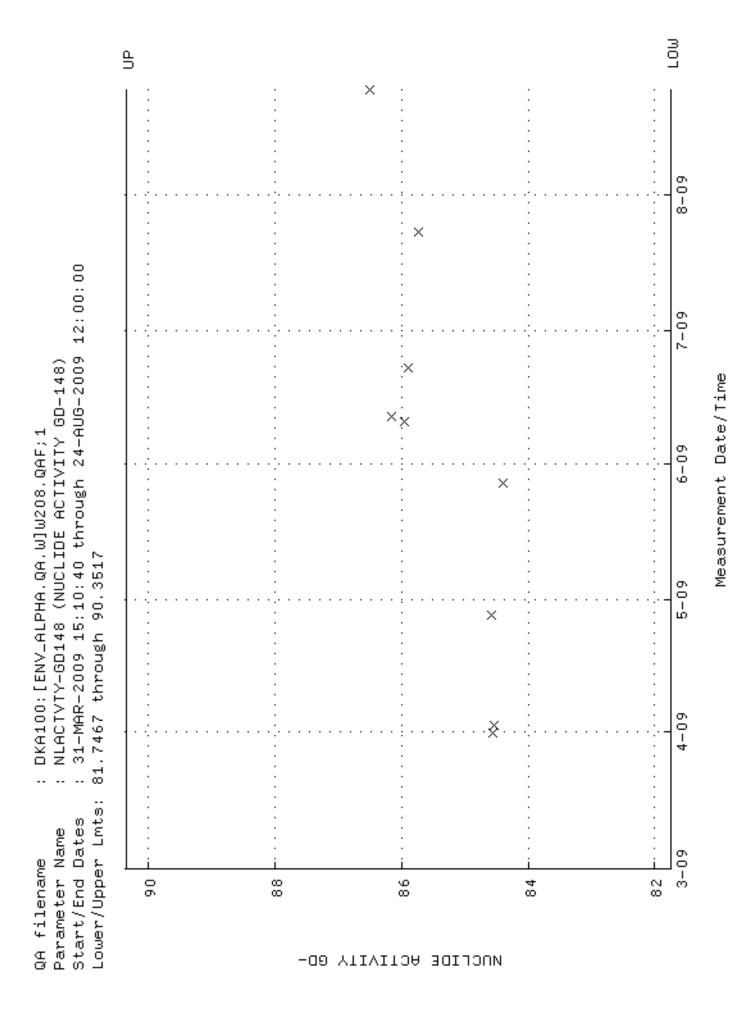


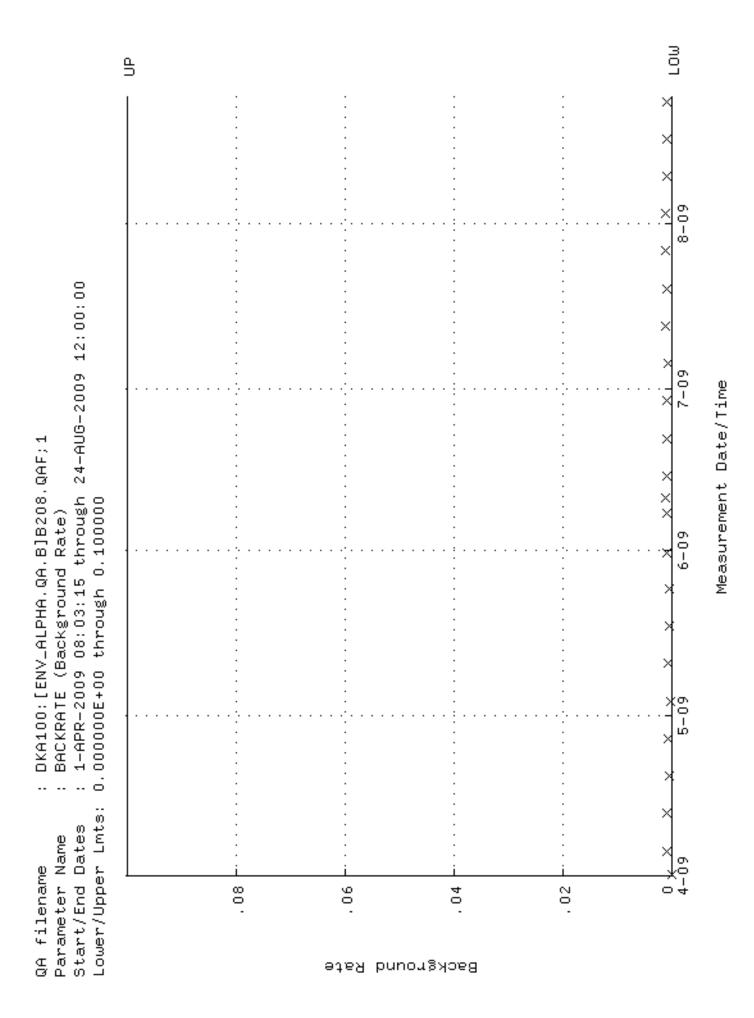












Instrument Type: GFPC Batch ID:891149

Sample ID	Sample Type	Analyst	Instrument	Run Date	Status	Geometry	Calibration Date
1201895427	'MS	JXC5	PIC8B	12-AUG-09 13:04	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267001	SAMPLE	JXC5	PIC5A	12-AUG-09 14:02	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267009	SAMPLE	JXC5	PIC7D	12-AUG-09 14:02	DONE	CeF on 25mm Filter	02-JUL-09 00:00
1201895425	5 MB	JXC5	PIC9C	12-AUG-09 14:02	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267020	SAMPLE	JXC5	PIC9A	12-AUG-09 14:02	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267008	SAMPLE	JXC5	PIC13A	12-AUG-09 14:19	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267005	SAMPLE	JXC5	PIC8C	12-AUG-09 14:25	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267004	SAMPLE	JXC5	PIC2A	12-AUG-09 14:25	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267006	SAMPLE	JXC5	PIC8A	12-AUG-09 14:32	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267002	SAMPLE	JXC5	PIC2D	12-AUG-09 14:32	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267010	SAMPLE	JXC5	PIC6D	12-AUG-09 14:41	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267011	SAMPLE	JXC5	PIC1A	12-AUG-09 14:55	DONE	CeF on 25mm Filter	02-JUL-09 00:00
1201895428	LCS	JXC5	PIC10D	12-AUG-09 15:15	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267003	SAMPLE	JXC5	PIC11D	12-AUG-09 19:24	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267007	SAMPLE	JXC5	PIC13A	12-AUG-09 19:25	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267012	SAMPLE	JXC5	PIC13B	12-AUG-09 19:25	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267015	SAMPLE	JXC5	PIC14B	12-AUG-09 19:25	DONE	CeF on 25mm Filter	02-JUL-09 00:00
1201895426	DUP	JXC5	PIC10D	12-AUG-09 19:28	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267016	SAMPLE	JXC5	PIC9A	12-AUG-09 19:28	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267017	SAMPLE	JXC5	PIC10B	12-AUG-09 19:29	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267019	SAMPLE	JXC5	PIC10C	12-AUG-09 19:29	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267013	SAMPLE	JXC5	PIC11D	14-AUG-09 09:59	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267014	SAMPLE	JXC5	PIC13A	14-AUG-09 10:00	DONE	CeF on 25mm Filter	02-JUL-09 00:00

Instrument Type: GFPC Batch ID:891394

Sample ID	Sample Type	Analyst	Instrument	Run Date	Status	Geometry	Calibration Date
234120018	SAMPLE	MXS2	PIC2A	12-AUG-09 10:07	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234267018	SAMPLE	MXS2	PIC2D	12-AUG-09 10:07	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234414019	SAMPLE	MXS2	PIC5A	12-AUG-09 10:08	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234414020	SAMPLE	MXS2	PIC5C	12-AUG-09 10:08	DONE	CeF on 25mm Filter	02-JUL-09 00:00
234414021	SAMPLE	MXS2	PIC6B	12-AUG-09 10:08	DONE	CeF on 25mm Filter	02-JUL-09 00:00
1201896008	B MB	MXS2	PIC6D	12-AUG-09 10:08	DONE	CeF on 25mm Filter	02-JUL-09 00:00
1201896009	LCS	MXS2	PIC2B	12-AUG-09 10:08	DONE	CeF on 25mm Filter	02-JUL-09 00:00
1201896010	LCSD	MXS2	PIC3A	12-AUG-09 10:08	DONE	CeF on 25mm Filter	02-JUL-09 00:00

Instrument Type: LUCAS CELL DETECTOR Batch ID:892760

Sample ID	Sample Type	Analyst	Instrument	Run Date	Status	Geometry	Calibration Date
234267018	SAMPLE	KSD1	LUCAS4	22-AUG-09 13:30	DONE Lucas	Cell	02-MAR-09 00:00
234414021	SAMPLE	KSD1	LUCAS2	22-AUG-09 14:05	DONE Lucas	Cell	19-DEC-08 00:00
234120018	SAMPLE	KSD1	LUCAS3	22-AUG-09 14:05	DONE Lucas	Cell	04-FEB-09 00:00
1201899207	LCS	KSD1	LUCAS4	22-AUG-09 14:05	DONE Lucas	Cell	02-MAR-09 00:00
234414019	SAMPLE	KSD1	LUCAS5	22-AUG-09 14:05	DONE Lucas	Cell	25-MAR-09 00:00
234414020	SAMPLE	KSD1	LUCAS6	22-AUG-09 14:05	DONE Lucas	Cell	04-AUG-09 00:00
1201899206	MB	KSD1	LUCAS3	22-AUG-09 15:05	DONE Lucas	Cell	04-FEB-09 00:00
1201899208	LCSD	KSD1	LUCAS5	22-AUG-09 15:05	DONE Lucas	Cell	25-MAR-09 00:00

Instrument Type: ALPHA SPECTROMETER Batch ID:892899

Sample ID	Sample Type	Analyst	Instrument	Run Date	Status	Geometry	Calibration Date
234267001	SAMPLE	KXM4	1197	19-AUG-09 12:29	DONE		
234267002	SAMPLE	KXM4	1199	19-AUG-09 12:29	DONE		
234267003	SAMPLE	KXM4	1200	19-AUG-09 12:29	DONE		
234267004	SAMPLE	KXM4	1203	19-AUG-09 12:29	DONE		
234267005	SAMPLE	KXM4	1204	19-AUG-09 12:29	DONE		
234267006	SAMPLE	KXM4	1207	19-AUG-09 12:29	DONE		
234267007	SAMPLE	KXM4	1208	19-AUG-09 12:29	DONE		
234267008	SAMPLE	KXM4	1173	19-AUG-09 16:18	DONE		
234267009	SAMPLE	KXM4	1174	19-AUG-09 16:19	DONE		
234267010	SAMPLE	KXM4	1175	19-AUG-09 16:19	DONE		
234267011	SAMPLE	KXM4	1176	19-AUG-09 16:19	DONE		
234267012	SAMPLE	KXM4	1177	19-AUG-09 16:19	DONE		
234267013	SAMPLE	KXM4	1178	19-AUG-09 16:19	DONE		
234267014	SAMPLE	KXM4	1179	19-AUG-09 16:19	DONE		
234267015	SAMPLE	KXM4	1180	19-AUG-09 16:19	DONE		
234267016	SAMPLE	KXM4	1181	19-AUG-09 16:19	DONE		
234267017	SAMPLE	KXM4	1182	19-AUG-09 16:19	DONE		
234267019	SAMPLE	KXM4	1183	19-AUG-09 16:19	DONE		
234267020	SAMPLE	KXM4	1184	19-AUG-09 16:19	DONE		
1201899547	MB	KXM4	1185	19-AUG-09 16:19	DONE		
1201899548	B DUP	KXM4	1186	19-AUG-09 16:19	DONE		
1201899549) MS	KXM4	1187	19-AUG-09 16:19	DONE		
1201899550	LCS	KXM4	1188	19-AUG-09 16:19	DONE		
1201899547	MB	KXM4	1205	25-AUG-09 16:33	DUSE		

Batch ID: 892901

Instrument Type: ALPHA SPECTROMETER

Sample ID	Sample Type	Analyst	Instrument	Run Date	Status	Geometry	Calibration Date
234267001	SAMPLE	KXM4	1149	19-AUG-09 21:20	DONE		
234267002	SAMPLE	KXM4	1150	19-AUG-09 21:20	DUSE		
234267003	SAMPLE	KXM4	1151	19-AUG-09 21:20	DONE		
234267004	SAMPLE	KXM4	1152	19-AUG-09 21:20	DONE		
234267005	SAMPLE	KXM4	1153	19-AUG-09 21:20	DUSE		
234267006	SAMPLE	KXM4	1154	19-AUG-09 21:20	DONE		
234267007	SAMPLE	KXM4	1155	19-AUG-09 21:20	DONE		
234267008	SAMPLE	KXM4	1156	19-AUG-09 21:20	DONE		
234267009	SAMPLE	KXM4	1157	19-AUG-09 21:20	DUSE		
234267010	SAMPLE	KXM4	1158	19-AUG-09 21:20	DONE		
234267011	SAMPLE	KXM4	1159	19-AUG-09 21:20	DONE		
234267012	SAMPLE	KXM4	1161	19-AUG-09 21:20	DONE		
234267013	SAMPLE	KXM4	1162	19-AUG-09 21:20	DONE		
234267014	SAMPLE	KXM4	1163	19-AUG-09 21:20	DONE		
234267015	SAMPLE	KXM4	1164	19-AUG-09 21:20	DONE		
234267016	SAMPLE	KXM4	1165	19-AUG-09 21:20	DUSE		
234267017	SAMPLE	KXM4	1166	19-AUG-09 21:21	DONE		
234267019	SAMPLE	KXM4	1167	19-AUG-09 21:21	DONE		
234267020	SAMPLE	KXM4	1168	19-AUG-09 21:21	DONE		
120189955	I MB	KXM4	1169	19-AUG-09 21:21	DONE		
1201899552	2 DUP	KXM4	1170	19-AUG-09 21:21	DONE		
1201899553	3 MS	KXM4	1171	19-AUG-09 21:21	DONE		
1201899554	4 LCS	KXM4	1172	19-AUG-09 21:21	DONE		
234267002	SAMPLE	KXM4	1013	25-AUG-09 14:07	DONE		
234267005	SAMPLE	KXM4	1014	25-AUG-09 14:07	DONE		
234267009	SAMPLE	KXM4	1016	25-AUG-09 14:07	DONE		
234267016	SAMPLE	KXM4	1018	25-AUG-09 14:07	DONE		

Instrument Type: ALPHA SPECTROMETER Batch ID:892925

Sample ID	Sample Type	Analyst	Instrument	Run Date	Status	Geometry	Calibration Date
234267018	SAMPLE	JXD2	1013	15-AUG-09 17:48	DONE		
234414019	SAMPLE	JXD2	1015	15-AUG-09 17:48	DONE		
234414020	SAMPLE	JXD2	1016	15-AUG-09 17:48	DONE		
1201899629	LCS	JXD2	1017	15-AUG-09 17:48	DONE		
1201899630	LCSD	JXD2	1018	15-AUG-09 17:48	DONE		
234120018	SAMPLE	JXD2	1009	15-AUG-09 17:52	DONE		
234414021	SAMPLE	JXD2	1161	15-AUG-09 18:00	DONE		
1201899628	B MB	JXD2	1162	15-AUG-09 18:00	DONE		

Instrument Type: LUCAS CELL DETECTOR Batch ID:893450

Sample ID	Sample Type	Analyst	Instrument	Run Date	Status	Geometry	Calibration Date
234267001	SAMPLE	KSD1	LUCAS1	26-AUG-09 12:50	DONE Lucas	Cell	29-AUG-08 00:00
234267002	SAMPLE	KSD1	LUCAS2	26-AUG-09 12:50	DONE Lucas	Cell	19-DEC-08 00:00
234267003	SAMPLE	KSD1	LUCAS3	26-AUG-09 12:50	DONE Lucas	Cell	04-FEB-09 00:00
234267004	SAMPLE	KSD1	LUCAS4	26-AUG-09 12:50	DONE Lucas	Cell	02-MAR-09 00:00
234267005	SAMPLE	KSD1	LUCAS5	26-AUG-09 12:50	DONE Lucas	Cell	25-MAR-09 00:00
234267006	SAMPLE	KSD1	LUCAS6	26-AUG-09 12:50	DONE Lucas	Cell	04-AUG-09 00:00
234267007	SAMPLE	KSD1	LUCAS1	26-AUG-09 13:20	DONE Lucas	Cell	29-AUG-08 00:00
234267008	SAMPLE	KSD1	LUCAS2	26-AUG-09 13:20	DONE Lucas	Cell	19-DEC-08 00:00
234267009	SAMPLE	KSD1	LUCAS3	26-AUG-09 13:20	DONE Lucas	Cell	04-FEB-09 00:00
234267010	SAMPLE	KSD1	LUCAS4	26-AUG-09 13:20	DONE Lucas	Cell	02-MAR-09 00:00
234267011	SAMPLE	KSD1	LUCAS5	26-AUG-09 13:20	DONE Lucas	Cell	25-MAR-09 00:00
234267012	SAMPLE	KSD1	LUCAS6	26-AUG-09 13:20	DONE Lucas	Cell	04-AUG-09 00:00
234267013	SAMPLE	KSD1	LUCAS1	26-AUG-09 13:55	DONE Lucas	Cell	29-AUG-08 00:00
234267014	SAMPLE	KSD1	LUCAS2	26-AUG-09 13:55	DONE Lucas	Cell	19-DEC-08 00:00
234267015	SAMPLE	KSD1	LUCAS3	26-AUG-09 13:55	DONE Lucas	Cell	04-FEB-09 00:00
234267016	SAMPLE	KSD1	LUCAS4	26-AUG-09 13:55	DONE Lucas	Cell	02-MAR-09 00:00
234267017	SAMPLE	KSD1	LUCAS5	26-AUG-09 13:55	DONE Lucas	Cell	25-MAR-09 00:00
234267019	SAMPLE	KSD1	LUCAS6	26-AUG-09 13:55	DONE Lucas	Cell	04-AUG-09 00:00
234267020	SAMPLE	KSD1	LUCAS1	26-AUG-09 14:25	DONE Lucas	Cell	29-AUG-08 00:00
1201900978	B MB	KSD1	LUCAS2	26-AUG-09 14:25	DONE Lucas	Cell	19-DEC-08 00:00
1201900979	DUP	KSD1	LUCAS3	26-AUG-09 14:25	DONE Lucas	Cell	04-FEB-09 00:00
1201900980	MS	KSD1	LUCAS4	26-AUG-09 14:25	DONE Lucas	Cell	02-MAR-09 00:00
1201900981	LCS	KSD1	LUCAS5	26-AUG-09 17:30	DONE Lucas	Cell	25-MAR-09 00:00

Instrument Type: ALPHA SPECTROMETER Batch ID:897494

Sample ID	Sample Type	Analyst	Instrument	Run Date	Status	Geometry	Calibration Date
234267018	SAMPLE	JXD2	1027	27-AUG-09 08:05	DONE		
234414019	SAMPLE	JXD2	1036	27-AUG-09 08:05	DONE		
234414020	SAMPLE	JXD2	1043	27-AUG-09 08:05	DONE		
234414021	SAMPLE	JXD2	1197	27-AUG-09 08:08	DONE		
1201911149) MB	JXD2	1198	27-AUG-09 08:08	DONE		
1201911150	LCS	JXD2	1205	27-AUG-09 08:08	DONE		
1201911151	LCSD	JXD2	1206	27-AUG-09 08:08	DONE		