Prepared for: Tronox LLC Henderson, Nevada

Revised Work Plan to Evaluate Effective Groundwater Capture at Tronox Extraction Systems, Tronox LLC, Henderson, Nevada

ENSR Corporation August 2007 Document No.: 4020-023-160

Prepared for: Tronox LLC Henderson, Nevada

Revised Work Plan to Evaluate Effective Groundwater Capture at Tronox Extraction Systems, Tronox LLC, Henderson, Nevada

ENSR Corporation August 2007 Document No.: 4020-023-160

Susan Crowley Staff Environmental Specialist

(702) 651-2234 Fax (405) 302-4607 Susan.crowley@tronox.com

August 29, 2007

Ms. Shannon Harbour, P.E. Nevada Division of Environmental Protection 2030 East Flamingo Road, Suite 230 Las Vegas, Nevada 89119-0818

Subject: Revised Work Plan to Evaluate Effective Groundwater Capture at Tronox LLC, Henderson, Nevada

Dear Ms. Harbour:

Tronox LLC (Tronox) has undertaken an Environmental Conditions Assessment (ECA) as directed by the Nevada Division of Environmental Protection (NDEP). In response to the comments contained in the NDEP June 26, 2007 letter, Tronox has revised the enclosed Work Plan to Evaluate Effective Groundwater Capture. The NDEP letter and Tronox's annotated response to the comments are also included.

Please contact me at (702) 651-2234 if you have any comments or questions concerning this correspondence.

Sincerely,

Smhowley

Susan M. Crowley Staff Environmental Specialist

Overnight Mail

Attachment: As stated CC: See attached Distribution List

Tronox Document Distribution List

Document Name: Combined Perchlorate and Chromium Performance Report

Name		Firm	[Distribution		
(Las	t, First)		Hard	e-Copy	Cvr Only	
Croft King	Todd Val	NDEP NDEP	2	X X		
Najima	Jim	NDEP	Х	X		
Rakvica	Brian	NDEP	1	1		
Sous	Nadir	NDEP		•		
Tinney	Al	NDEP		Х		
Palm	Jon	NDEP		Х		
Gratson	Dave	Neptune	Х	Х		
Harbour	Shannon	NDEP	Х	Х		
Pohlmann Conaty	Brenda Barry	COH COH Counsel		X X		
Durr Hunsaker Beckstead Jorgenson	Paul Ross Richard Carolyn	DAQEM DAQEM DAQEM DAQEM Counsel				
Mrowka Liang Mulroy Goff Liesing	Rob Sun Pat Mike Joe	CCCP MWD SNWA SNWA SNWA		x x x x		
Kaplan	Mitch	EPA, Reg 9		Х		
Compliance Corrdonator Compliance Coordinator		NDEP DAQEM				
Public Repo	sitory	Library	Х	Х		

	lame	Firm	Distribution		
(Las	st, First)		Hard	e-Copy	Cvr Only
Bailey	Keith	Env. Answers	Х	Х	
Corbett	Pat	Tronox		Х	
Elmer	Dana	Tronox			
Hatmaker	John	Tronox			
Reed	Tom	Tronox	Х	Х	
Hurst	Elizabeth	Tronox Counsel		Х	
Stater	Rick	Tronox		Х	
Crowley	Susan	Tronox	2	2	
-			& Har	d Data	
Krish	Ed	ENSR	Х	Х	
Bilodeau	Sally	ENSR	Х	Х	
Gerry	Dave	ENSR		Х	
Lambeth	Jeff	Veolia		Х	
McDaniel	Tom	Veolia			
Cheung	Mary	Veolia		Х	
Guerriero	Joe	AIG		Х	
Giroux	Barry	GEI		Х	
Stowers	Kirk	Broadbent			
Sahu	Rahnijit	BMI		Х	
Crouse	George	Syngenta		Х	
Erickson	Lee	Stauffer		Х	
Kelly	Joe	Montrose			
Sundberg	Paul	Montrose		Х	
Gibson	Jeff	AmPac		Х	
Sylvia	Chris	Pioneer		Х	
Wilkinson	Craig	Timet		Х	
Mack	Joel	Montrose Counsel			

Revised Work Plan to Evaluate Effective Groundwater Capture at Tronox Extraction Systems Tronox LLC Henderson, Nevada

Responsible CEM for this project

I hereby certify that I am responsible for the services described in this document and for the preparation of this document. The services described in this document have been provided in a manner consistent with the current standards of the profession and, to the best of my knowledge, comply with all applicable federal, state and local statutes, regulations and ordinances.

Munda

Susan M. Crowley, CEM 1428 Exp.:03/08/09 Staff Environmental Specialist Tronox LLC

Individuals who provided input to this document

Keith Bailey, Environmental Answers, LLC Tom Reed, Tronox Ed Krish, ENSR Michael Flack, ENSR

Contents

1.0 Introd	duction	1-1					
1.1	Operational History 1-1						
1.2	NDEP Comments to Tronox Quarterly Reports	1-2					
2.0 PROF	POSED APPROACH FOR FURTHER CAPTURE ZONE EVALUATION	2-1					
2.1	On-Site Slurry Wall and Interceptor Wells						
	2.1.1 Performance Evaluation						
	2.1.2 Evaluation of Groundwater Velocity Downgradient of the Barrier						
	2.1.3 Data Gaps and Proposed Additional Evaluation						
2.2	Athens Road Well Field						
	2.2.1 Performance Evaluation						
	2.2.2 Data Gaps and Proposed Additional Evaluation						
2.3	Seep Area Well Field and Seep Stream Collection System						
	2.3.1 Performance Evaluation						
	2.3.2 Data Gaps and Proposed Additional Evaluation						
3.0 REFE	RENCES CITED	3-1					

APPENDIX

Α	RESPONSE TO NDEP (JUNE 26) COMMENTS TO THE MAY 30, 2007 DRAFT
	WORK PLAN
В	FLOW BUDGET ESTIMATES – INTERCEPTOR, ATHENS ROAD AND SEEP
	WELL FIELDS
С	GROUNDWATER VELOCITY ESTIMATES, NORTH OF THE INTERCEPTOR

C	GROUNDWATER VELOCITY ESTIMATES, NORTH OF THE INTERCEPTO
	WELL FIELD AND BARRIER WALL

Contents (Continued)

List of Figures

Figure -1 Site Plan

Figure -2 Proposed Wells at the Interceptor Well Field

Figure -3 Proposed Wells at the Athens Road Well Field

Figure -4 Proposed Wells at the Seep Well Field

Figure -5 Expanded Legend Elements

List of Tables

Table -1 Proposed Monitor and Recovery Wells

1.0 Introduction

In commenting on the Tronox LLC (Tronox) Semi-annual Performance Report (February 28, 2007), the Nevada Division of Environmental Protection NDEP (2007a) requested that Tronox evaluate the effectiveness of its groundwater capture systems by utilizing at least three of six United States Environmental Protection Agency (USEPA) "lines of evidence" (USEPA 2002, 2005). In response to that request, a draft work plan was provided to NDEP on May 30, 2007. Comments to that work plan were provided by NDEP on June 26, and responses to those comments are included as **Appendix A** of this report. The responses are also included in the *Annual Performance Report for Chromium and Perchlorate, July 2006-June 2007* (ENSR 2007b). Subsequent to the NDEP (2007b) comments, McGinley and Associates (2007) provided a report June 30, 2007 describing the results of capture analysis using both an analog approach and a numerical groundwater model constructed for the Athens Road well field. In their report, McGinley evaluated well field capture efficiency using both the analog and numerical methods and provided recommendations to further evaluate the capture zone at Athens Road.

In consideration of the NDEP (2006b) comments and recommendations provided by McGinley (2007), Tronox has revised the May 30, 2007 work plan to evaluate the effectiveness of its groundwater capture systems. The revised work plan provides both:

- a discussion of the existing lines of evidence for capture and a data gap analysis; and,
- a scope of work to improve and strengthen the evidence that hydraulic capture is adequate for each of the facilities.

Enhancements to the monitoring well field and extraction program are recommended, along with other methods to evaluate the hydraulic data in support of converging lines of evidence that hydraulic capture is occurring at each location.

1.1 Operational History

Tronox operates three primary groundwater containment and extraction systems associated with its Henderson Facility (Figure 1):

- <u>On-Site Slurry Wall and Interceptor Well Field</u> A slurry wall constructed as a barrier to groundwater flow extends 1600 feet in length, is about 60 feet deep, and is combined with an upgradient series of 23 extraction wells. The upgradient well field pumps about 65 gallons per minute (gpm) of impacted water, effectively dewatering the alluvial aquifer in the vicinity of the barrier.
- <u>Athens Road Well Field</u> Located approximately 8,200 feet north of the On-Site collection system, the Athens Road Well Field includes a series of 14 extraction wells at seven paired well locations. The wells span roughly 1200 feet of the alluvial paleochannel and pump at a combined rate of about 260 gpm.
- <u>Seep Area Collection System</u> Located near Las Vegas Wash, approximately 4,500 feet north of the Athens Road Well Field, the system includes a surface capture pump for the intermittent

surface stream (Seep) flow and 10 wells in the Seep well field to capture subsurface flow. The Seep Area Collection System pumps at a combined rate of about 670 gpm.

All groundwater from the hydraulic containment systems is routed for treatment to the Tronox facility and is discharged under an NPDES permit (ENSR 2007b).

1.2 NDEP Comments to Tronox Quarterly Reports

NDEP requires verification that the Tronox systems are effectively removing contaminants passing through the capture zone. The evaluation of the containment must consider a three-dimensional capture including flow contributions from both the alluvium in the paleochannels and the upper portion of the Muddy Creek Formation (NDEP 2007a).

At least three of the six possible lines of evidence are required by the USEPA (2002, 2005) to demonstrate adequate capture. The possible lines of evidence include the following:

- 1. Capture zone estimated through calculations of flow-budget or analytical modeling
- 2. Demonstration of overlapping cones of depression via flow nets both in plan view and vertical cross section
- 3. Demonstration of inward flow from a compliance boundary using groundwater elevations at two or more locations perpendicular to the boundary
- 4. Concentration trends over time at sentinel wells located downgradient of the containment
- 5. Particle tracking using a calibrated numerical model
- 6. Tracer testing

2.0 PROPOSED APPROACH FOR FURTHER CAPTURE ZONE EVALUATION

Section 2 discusses each of the three groundwater capture systems and provides a performance evaluation based on recent data (ENSR 2007b). Data gaps in demonstrating effective capture are identified, and a scope of work to address those gaps is presented. Tronox proposes to install several new wells in each well field and to address those data gaps and further evaluate groundwater capture based on results from those wells. **Figures 2 through 4** show the locations of the proposed additional monitor and extraction wells, and **Table 1** presents the proposed rationale and well completion information.

2.1 On-Site Slurry Wall and Interceptor Wells

There is a significant interaction between the perchlorate and hexavalent chromium plumes and the total dissolved solids plume, which affect plume geometry at the groundwater capture systems off the site. The location and extent of the perchlorate, chromium and total dissolved solids (TDS) plumes interpreted from groundwater samples collected in April and May 2007 are shown on Plates 6, 7 and 8, respectively, of the *Annual Performance Report for Chromium and Perchlorate, July 2006-June 2007* (ENSR 2007b). Plate 8 shows that very high TDS, up to 51,000 milligrams per liter (mg/L), exists west of the Tronox facility and that this plume of high TDS enters the Main Channel beneath the northwestern corner of Tronox property. Likewise, east of the facility a high TDS area, up to 17,600 mg/L, exists beneath the northern portion of the Timet property. South of the Tronox slurry wall the highest TDS encountered is in the immediate area of the Interceptor well field; all concentrations south of the well field are significantly lower. This is an indication that the area beneath the process plants is cleaning up over time. North of the slurry wall TDS concentrations are in the 2,800-8,000 mg/L range due to the effective groundwater capture at the collection system and the recharge of low-TDS Lake Mead water.

It is interesting to note the plume configuration along the Tronox-Timet boundary (Insert B on Plate 8, ENSR 2007b). Here TDS less than 5,000 mg/L is mapped extending north to M-19 and that the highest TDS at the eastern end of the barrier wall is only 5,610 mg/L. Note also that a re-entrant of high TDS extends from the Timet side (well CLD2-R) onto the Tronox side (wells M-74 and M-88).

Plates 6 and 7 (ENSR 2007b) show the configuration of the chromium and perchlorate plumes, respectively through their length from the site to the Las Vegas Wash. As mapped both plumes occupy the inter-fluvial area east of the Main Channel from south of Warm Springs Road to Sunset Road where they begin to enter the channel. This is due to the higher density high TDS-bearing groundwater in the channel prohibiting the chromium and perchlorate plumes from entering the channel until the density difference dissipates down-gradient. Both chromium and perchlorate behave as soluble ions and migrate at the rate of groundwater flow.

2.1.1 Performance Evaluation

The current lines of evidence for effective groundwater capture include:

<u>Capture Zone:</u> The 1,600-foot wide slurry wall was designed to provide a physical barrier to groundwater migration across most of the identified perchlorate plume. As mapped on Plate 7 (ENSR 2007b) the wall is stopping the downgradient flow of perchlorate above 10 mg/L on the east end and 25 mg/L on the west end. At

an average plume concentration of 1,089 mg/L perchlorate upgradient of the slurry wall, this equates to an effective capture rate of about 98 percent [(1,089-25)/1,089=0.977]).

<u>Flow Budget:</u> The slurry wall, installed in 2001, has dramatically improved groundwater capture. Current capture rates of about 65 gpm are double those before the wall was installed. Water level data indicate the alluvial aquifer has been mined and is effectively dewatered behind the barrier. The wall is keyed into at least 30 feet of the Muddy Creek Formation. The presumed upward flow of groundwater is further enhanced by the pumping upgradient of the barrier. Given this enhancement to upward flow, it would be anticipated that perchlorate mass if present within the upper portion of the Muddy would be locally influenced in the vicinity of the barrier and interceptor well field.

A preliminary estimate of the groundwater flow at the Interceptor well line and slurry wall was developed based on a solution of Darcy's Law assuming three main sources of groundwater potentially available for capture:

- Groundwater in the alluvium, subsequently "dammed up" behind the slurry wall;
- Groundwater in the Muddy Creek, subsequently "dammed up" behind the groundwater barrier wall, and
- Groundwater flowing vertically and "daylighting" from the Muddy Creek upwards into the incised alluvial channels up-gradient from the slurry wall. The third flow element is included in the budget, since the estimates of flow from the alluvium and Muddy Creek dammed behind the barrier do not adequately account for the water being pumped at the interceptor well field. The calculations and input parameters are provided in **Appendix B**.

Using these variables the calculated groundwater flow to the well field is estimated to be 67.0 gpm; 5.7 gpm from the Muddy Creek dammed behind the barrier, 23.5 gpm in the alluvium behind the barrier and 37.8 gpm from groundwater daylighting from the Muddy Creek to the alluvium upgradient of the barrier. This estimated flow is about two gpm higher than what is currently being pumped at the interceptor well field and suggests that a small flow may not being captured by the barrier well field, possibly at the ends of the wall. Further evaluation of the flow west and east of the barrier will be completed upon installation of the additional piezometers proposed in Section 2.1.2.

<u>Downgradient Concentration Declines over Time:</u> Perchlorate itself is an effective tracer, since it migrates advectively, and is not readily adsorbed to soils. Plume maps (ENSR 2007b) indicate expansion of a zone containing less than 100 mg/L perchlorate downgradient of the recharge trenches where stabilized lake water is added to offset extracted groundwater and maintain groundwater flow. As the recharge water flow is slightly less than the water volume being extracted upgradient of the slurry wall, the rapidly expanding area containing less than 100 mg/L perchlorate indicates perchlorate capture. Comparison of the current plume map with previous maps shows a continuing trend moving the 100 mg/L perchlorate contour lines eastward. Tronox expects that the trend will continue as discussed below in Section 2.1.2.

The expansion of the less than 100 mg/L perchlorate zone is occurring in an area that has historically contained greater than 1,000 mg/L perchlorate. This is a 10:1 (90 percent) decrease. If the infiltration of about 60 gpm of clean (<5 ug/L perchlorate) Lake Mead water in the recharge trenches is totally responsible for this 10:1 decrease then no more than 6 gpm (60 gpm X 10 percent remaining) can be leaking around the barrier wall to keep the downgradient perchlorate plume at about 100 mg/L. The Interceptor well field was pumping

64.2 gpm in June 2007 (ENSR 2007b). The flow budget at the well field is therefore no more than 70.2 gpm (64.2 + 6), which demonstrates a greater than 91 percent capture efficiency [(70.2-6)/70.2=0.914].

2.1.2 Evaluation of Groundwater Velocity Downgradient of the Barrier

As suggested by NDEP (2007b) Tronox has completed a qualitative evaluation to determine the times at which perchlorate and chromium plumes might reach the Athens Road well field (**Appendix C**). The evaluation was done through an analysis of "break over", wherein the effect of the recharged Lake Mead water was used to approximate the groundwater velocity south of the barrier. The resulting groundwater velocity was used to approximate the travel time to the Athens Road well field for both the perchlorate and chromium plumes. The calculations indicate that the mitigating effects of the on-site slurry wall will reach the Athens Road well field between the years 2010 and 2015, depending on velocity.

2.1.3 Data Gaps and Proposed Additional Evaluation

The physical barrier wall on the Tronox Site simplifies evaluation of capture and is additive to the criteria established by USEPA. To strengthen the lines of evidence for capture, Tronox has identified several data gaps and corresponding proposals to address them:

• **Data Gap**: Demonstrate the slurry wall is continuous and does not leak significantly along its length.

Proposal: Pump wells M-70 and M-71 on the downgradient side of the slurry wall and monitor the perchlorate concentrations over time. Concentrations of perchlorate are expected to decrease over time indicating that the slurry wall is functioning as designed. Tronox proposes to pump these two wells north of the slurry wall at a rate of about one gpm each or as formation transmissivity permits. Capacity to handle the water in the Groundwater Treatment Plant (GWTP) will be made available by routing the discharge from selected wells connected to the west header and containing very low chromium concentrations, directly to the GW-11 pond.

• Data Gap: Demonstrate the upward gradient from the Muddy Creek to the alluvium.

Proposal: Install two new nested monitoring wells at the west and east end of the barrier, and compare water levels to determine the head differential between the Muddy Creek and the alluvium. Proposed well locations (IM-5 and IM-6) are shown on **Figure 2**. The proposed nested wells will consist of two wells each completed in the Muddy Creek adjacent to shallow wells that will be used to evaluate horizontal flow around the west and east end of the slurry wall. The proposed well completions are provided on **Table 1**.

• Data Gap: Reconcile the flow budget around the west and east end of the slurry wall.

Proposal: To evaluate the movement of groundwater around the west and east ends of the barrier wall, Tronox proposes to install monitor wells IM-2 and IM-4 and wells IM-1 and IM-3, respectively (Figure 2). Proposed well completion data for these wells are provided on **Table 1**.

• **Data Gap:** Demonstrate that there are overlapping cones of depression for the interceptor extraction wells.

Proposal: Conduct short-term shutdowns of up to four interceptor wells with low pumping rates in areas lacking monitoring coverage within the well field in order to obtain water elevation data to aid in contouring cones of depression. Perform distance drawdown plots following procedures outlined in Driscoll (1986) to evaluate pumping well drawdown and efficiency.

Though not a data gap, in response to trends in perchlorate concentrations in monitor wells on the west end of the barrier, and to improve capture near the terminus of the barrier, an additional groundwater extraction well (IEX-1) is proposed in this area (Figure 2). Performance of this well will be monitored by the proposed monitor wells IM-2 and IM-4. This well is proposed in addition to the increased pumping of well IAR as described in the annual report (ENSR 2007b).

2.2 Athens Road Well Field

In their assessment of the Athens Road well field, McGinley (2007) compared both analog methods and numerical groundwater modeling to USEPA guidance for determining capture effectiveness and mass recovery efficiency.

Results of the numerical groundwater model showed:

- Two-hundred and sixty (260) particles released at the southern boundary of the model were all captured by the well field along Athens Road; and,
- A mass flux evaluation indicated the well field was over 99 percent efficient in mass recovery along Athens Road.

Results of the analog assessment showed:

• Flow vectors using triangulated extraction wells (ART) and down-gradient monitor wells (ARP) did not show inward flow, suggesting capture might not be achieved using the ARP wells as the compliance boundary.

McGinley concluded that the numerical groundwater model provided some use in showing the well field had a high degree of efficiency, but that existing well pairs did not exist that could validate model predictions. They recommended that:

- Analog capture analysis be considered using a standard procedure,
- Additional nested monitor wells be located to evaluate inward flow and to provide vertical definition across the extraction well field,
- Pumping tests conducted on the proposed new wells and that the data gathered be used in expanding the site conceptual model and for possible updating of the numerical groundwater model.

The McGinley groundwater modeling results fairly match the results from a model previously constructed by Tronox that was used in designing the Athens Road well field. In both cases, calibrated numerical models, constructed independently, demonstrated complete particle capture, one of the USEPA criteria required to

demonstrate capture. Further, McGinley's 99+ percent mass recovery is also a significant result that would support the demonstration of effective well field capture.

Tronox agrees, as discussed below, that additional wells are needed to demonstrate inward flow from the ARP well compliance boundary. However, Tronox believes there is sufficient hydraulic data from pumping tests conducted on the ART wells making additional pumping tests unnecessary.

2.2.1 Performance Evaluation

<u>Capture Zone</u>: The Athens Road well field was designed to provide a hydraulic barrier spanning the approximately 1,200-foot width of the identified perchlorate plume in this area. Perchlorate is an effective tracer to assess groundwater capture. As mapped on Plate 7 (ENSR 2007b) the well field is stopping the down-gradient flow of perchlorate above about 1 mg/L perchlorate on the west end and about 5 mg/L on the east end. At an average concentration of 225 mg/L perchlorate approaching the well field, this equates to an effective capture rate of about 98 percent (225-5)/225=0.978). This means that the capture zone is defined as extending from 50 feet west of ART-2 to 50 feet east of PC-122.

<u>Flow Budget</u>: The Athens Road wells are extracting about 260 gallons of groundwater per minute and perchlorate at a rate of approximately 700 pounds per day. This volume of groundwater and perchlorate removal compares favorably with the flow budget and mass flux calculated from the May 2007 flow budget calculations at Sunset Road, 1,375 feet up-gradient of the well field **(Appendix B)**. The results indicate that about 196 gpm and 495 lbs/day perchlorate were present at Sunset Road in May 2007. This calculation is the result of using hydraulic conductivity data from slug tests performed on the Sunset Road wells.

<u>Overlapping Cones of Depression</u>: Overlapping cones of depression are evident from data collected from adjacent piezometers and monitoring wells, indicating that the well field has developed a capture zone sufficient to encompass the width of the plume in this area. In fact, the entire 1,200 feet length of the target capture zone is within an area of overlapping cones of depression and significant drawdown of as much as 11.1 feet in ART-3 (see Plate 4, ENSR 2007b).

<u>Numerical Modeling</u>: A numerical evaluation by an NDEP contractor (McGinley 2007) using MODFLOW showed that particles released in the model were completely captured by the Athens Road well field and that mass flux within the model showed greater than 99 percent capture efficiency.

Downgradient Concentration Declines over Time: Figure 20, the COH WRF Well Line Perchlorate Trend graph (ENSR 2007b) shows that downgradient wells PC-98R and MW-K5 have exhibited consistent decreasing trends of perchlorate concentrations with time. Since full-scale system operation of the Athens Road well field in October 2002, perchlorate concentrations in groundwater samples from well PC-98C and MW-K5 have been reduced 88 and 95 percent respectively. These wells are located about 2,000 feet downgradient of the Athens Road well field.

2.2.2 Data Gaps and Proposed Additional Evaluation

To further evaluate the capture zone at Athens Road, Tronox has identified several data gaps and has developed proposals to address them:

• **Data Gaps:** In contrast to numerical modeling results, McGinley (2007) was not able to demonstrate inward flow using water level data from the second half of 2006 due to the absence

of sufficient monitor wells. Also, there is insufficient data to demonstrate influence from pumping of the Athens Road well field on water within the underlying Muddy Creek.

Proposal: In order to demonstrate upward vertical head and inward flow, two additional nested piezometers, AM-1 and AM-2 will be completed 100 feet down-gradient of recovery wells ART-3 and ART-9 in the western and eastern sub-channels, respectively. Proposed well locations are shown on **Figure 3**. The new wells will allow calculation of flow vectors and vertical head to confirm capture.

Additionally, the three recently abandoned ARP-series piezometers, ARP-4R, ARP-5R and ARP-6R downgradient of the well field will be re-established nearby their former locations (Figure 3). Proposed well completion data are provided on Table 1.

2.3 Seep Area Well Field and Seep Stream Collection System

2.3.1 Performance Evaluation

The goal of the Seep Area Collection System is to provide a hydraulic containment along the approximately 800-foot width of the perchlorate plume and to reduce the concentration in the surface water of the Las Vegas Wash to below 100 μ g/L at Northshore Road. The Seep Area system is less than 1,000 feet from the Las Vegas Wash and multiple lines of evidence such as decreasing analyte concentrations in downgradient monitor wells (Plate 7, ENSR 2007b) indicate that the Las Vegas Wash underflow is encroaching on the well field. Because of this complex situation the Seep well field capture zone is defined as that area influenced by the current overlapping drawdown cone (Plate 5, ENSR 2007b).

<u>Flow Budget</u>: A flow budget calculation was prepared and input parameters are presented in **Appendix B**. The cross sectional area used in the calculations is shown on the Seep well field hydrogeologic cross-section (Figure 4, ENSR 2007b). The area extends from 50 feet west of PC-120 to 175 feet east of PC-133. The System, which was installed beginning in 2001, is currently extracting about 670 gpm of groundwater at an average concentration of 12.7 mg/L perchlorate. This equates to about 102 lbs/day of perchlorate that would otherwise discharge into the adjacent Las Vegas Wash. The estimate derived from the Seep well field pump tests show that 561 gpm and 88 lbs/day perchlorate are flowing toward the well field and that the extra water being pumped is probably Las Vegas Wash underflow. The mass flux calculation suggests that the well field demonstrates significant capture efficiency.

<u>Overlapping Cones of Depression</u>: Plate 5, the *Net Drawdown Map, Seep Well Field* (ENSR 2007b) shows a greater than 2,000-foot wide zone where there are overlapping cones of depression.

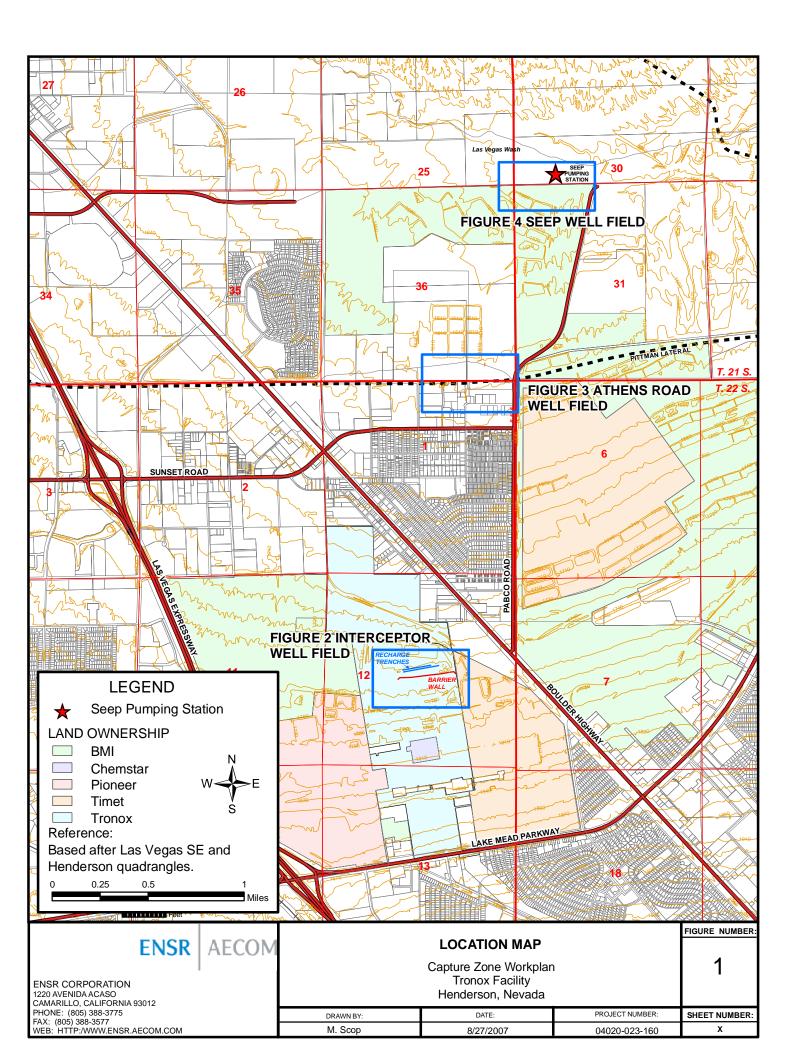
<u>Inward Flow</u>: Partial inward flow is demonstrated by potentiometric surface maps (Plate 2, ENSR 2007b) created with groundwater level data from monitoring wells in the area. Additional monitor wells are required to close data gaps in areas where there is insufficient well coverage to adequately evaluate drawdown in the pumping wells, and thus confirm inward flow.

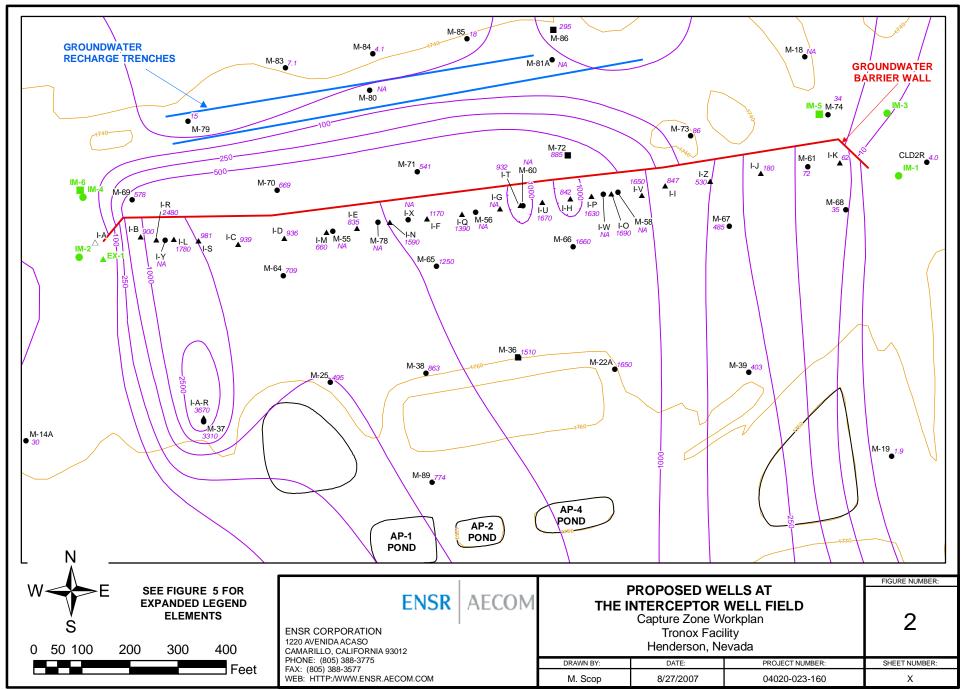
<u>Down-gradient Concentration Declines over Time:</u> Perchlorate loading in the SNWA irrigation wells in Las Vegas Wash downstream of the Seep Area Collection System shows significant decreasing trends (Plate 7, ENSR 2007b). Additionally, Las Vegas Wash surface water sampling shows a 91.5 percent decrease between May 1999 (950 µg/L) and May 2007 (80 µg/L).

2.3.2 Data Gaps and Proposed Additional Evaluation

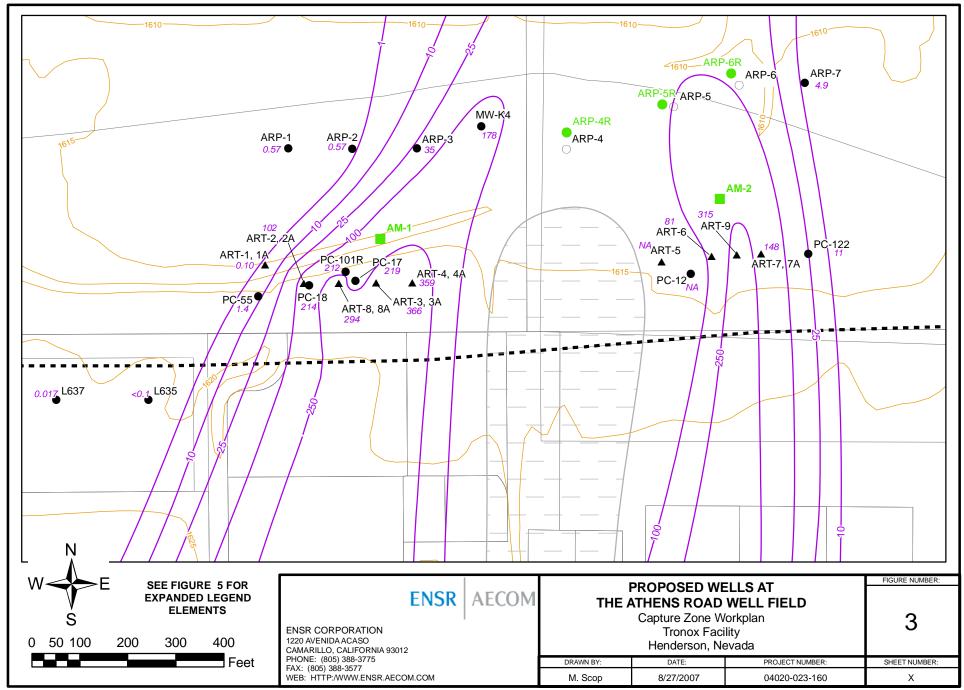
To further evaluate the capture zone at the Seep Area Collection System, the following data gaps have been identified and measures to address them are proposed:

• Data Gap: Demonstrate inward flow within the overlapping cones of depression.


Proposal: Install three additional piezometers (SM-1, SM-2 and SM-3) near recovery wells PC-117, PC-118 and PC-133 to support the understanding of drawdown in these wells and the delineation of the capture zone (**Figure 4**). Proposed well completions are provided on **Table 1**.


Additionally, use the water level data from the new wells and the current well field to construct plan-view and cross-sectional view flow nets from which to demonstrate the inward flow of groundwater and to calculate capture zone width.

Lastly, develop distance drawdown plots following procedures outlined in Driscoll (1986) to evaluate pumping well drawdown and efficiency supporting the evaluation of inward flow at the Seep Well Field.


3.0 REFERENCES CITED

- Driscoll, F.G., 1986, Groundwater and Wells: Johnson Well Division, Saint Paul, Minnesota, 1089 pp. (Well Efficiency Discussion, pp 244-245).
- ENSR 2007a, Draft Work Plan to Evaluate Effective Groundwater Capture at Tronox Extraction Systems, Tronox, LLC, Henderson, Nevada: ENSR, Camarillo, California, May 30, 2007, 4020-023-160.
- ENSR 2007b, Annual Performance Report for Chromium and Perchlorate, July 2006-June 2007, Submitted in Accordance with Chromium Mitigation Program and Perchlorate Performance Consent Orders: ENSR, Camarillo, California, August 29, 2007, 4020-023-110.
- McGinley 2007, Athens Road Well Field Modeling Report Near BMI Industrial Complex, Henderson, Nevada: McGinley and Associates, Reno, Nevada, June 30, 2007.
- NDEP 2007a, Semi-Annual Performance Report for Chromium and Perchlorate, dated February 26, 2007: Nevada Division of Environmental Protection, Las Vegas, Nevada, March 29, 2007.
- NDEP 2007b, Response to NDEP Comments of the Tronox Semi-Annual Performance Report Dated February 28, 2007 and the Required Work Plan to Evaluate Effective Groundwater Capture at Tronox Extraction Systems, Henderson, Nevada, Dated May 30, 2007: Nevada Division of Environmental Protection, Las Vegas, Nevada, June 26, 2007.
- USEPA 2002, Elements for Effective Management of Operating Pump and Treat Systems, EPA 542-R-02-009: United States Environmental Protection Agency, Washington, D.C., December 2002.
- USEPA 2005, Capture Zone Analysis for Pump-and-Treat Systems, EPA NARPM Conference May 24, 2005: United States Environmental Protection Agency, Washington, D.C., May 24, 2005.



J:\TronoxGIS\mxd\task-160\Interceptor_WF.mxd

J:\TronoxGIS\mxd\task-160\Athens_Road_WF.mxd

LEGEND

Perchlorate Concentration (mg/L) 15 Monitoring Well May (ENSR 2007b Plate 7) Appendix J Monitoring Well Perchlorate Contour (mg/L) (Dashed where approximate) Recovery Well May (ENSR 2007b Plate 7) Abandoned Monitoring Well Closed Perchlorate Contour (mg/L) Concentrations are lower inside \triangle Abandoned Recovery Well relative to surrounding values May (ENSR 2007b Plate 7) Proposed Monitor Well Unsaturated Alluvium Proposed Nested Monitoring Well Wells will be installed either one Topographic Contour Line -1760bore hole or in seperate boreholes at in close proximity to one another. Proposed Recovery Well ★ Seep Pumping Station

				FIGURE NUMBER:
ENSR AECOM	EXP			
ENSR CORPORATION 1220 AVENIDA ACASO CAMARILLO, CALIFORNIA 93012		Capture Zone W Tronox Fac Henderson, N	ility	5
PHONE: (805) 388-3775	DRAWN BY:	DATE:	PROJECT NUMBER:	SHEET NUMBER:
FAX: (805) 388-3577 WEB: HTTP:/WWW.ENSR.AECOM.COM	M. Scop	8/27/2007	04020-023-160	х

TABLE -1PROPOSED MONITOR AND RECOVERY WELLSWORK PLAN TO EVALUATE EFFECTIVE CAPTUREAT TRONOX EXTRACTION SYSTEMS, HENDERSON, NEVADA

Proposed Well ¹	LOCATION ²	WELL	CASING DIAMETER	COMPLETION ⁴	Screen Interval ⁶	Depth to Water ⁷	RATIONALE	
i ioposed Weil	LOOKIION	CONSTRUCTION ³	inches		feet-bgs	feet-bgs	RATIONALE	
INTERCEPTOR WE	ELL FIELD							
IM-1	East end of the barrier wall.	Single	2	(Alluvium) Muddy Creek⁵	20-40	27	Proposed in response to NDEP Comment 10 (June 26) to evaluate flow around the east end of the barrier wall.	
IM-2	West end of the barrier wall.	Single	2	(Alluvium) Muddy Creek⁵	20-40	25	Proposed to evaluate flow around the west end of the barrier wall, and as companion monitor well to IEX-1. Also in response to NDEP Comment 10.	
IM-3	East end of barrier wall.	Single	2	(Alluvium) Muddy Creek⁵	20-45	29	Proposed in response to NDEP Comment 10 (June 26) to evaluate flow around the east end of the barrier wall.	
IM-4	West end of barrier wall.	Single	2	(Alluvium) Muddy Creek⁵	20-45	25	Proposed to evaluate flow around the west end of the barrier wall and as companion monitor wells to IEX-1. Also in response to NDEP Comment 10.	
IM-5	A nested well north of the barrier adjacent to well M74.	Nested (2)	2/2	Muddy Creek	60-70 and 80-90	30	Proposed to evaluate underflow below barrier wall and vertical gradient in Muddy Creek. Response to NDEP Comment 8 (June 26).	
IM-6	A nested well north of the barrier adjacent to well IM-4.	Nested (2)	2/2	Muddy Creek	60-70 and 80-90	30	Proposed to evaluate underflow below barrier wall and vertical gradient in Muddy Creek. Response to NDEP Comment 8 (June 26).	
IEX-1	Extraction well at the west end of barrier wall.	Single	6	(Alluvium) Muddy Creek⁵	25-45	25	Proposed in the May 30 Work Plan to enhance capture around west end of the barrier. Proposed north-northwest of well IAR.	
ATHENS ROAD WE	ELL FIELD			• •				
AM-1	100 feet north of Extraction Well ART-3.	Nested (2)	2	Alluvium and Muddy Creek	25-40 and 55-65	30	Response to NDEP Comment 21 (June 26) and McGinley (June 30) recommendation for additional wells to demonstrate inward flow.	
AM-2	100 feet north of Extraction Well ART-9.	Nested (2)	2	Alluvium and Muddy Creek	25-40 and 55-65	30	Response to NDEP Comment 21 (June 26) and McGinley (June 30) recommendation for additional wells to demonstrate inward flow.	
ARP-4R	Replacement for Monitor Well ARP- 4.	Single	2	Alluvium	15-30	24	Replacement well. Proposed to demonstrated inward flow in response to NDEP Comment 21 (June 26) and McGinley (June 30) recommendation.	
ARP-5R	Replacement for Monitor Well ARP- 5.	Single	2	Alluvium	20-40	30	Replacement well. Proposed to demonstrated inward flow in response to NDEP Comment 21 (June 26) and McGinley (June 30) recommendation.	
ARP-6R	Replacement for Monitor Well ARP- 5.	Single	2	Alluvium	20-40	30	Replacement well. Proposed to demonstrated inward flow in response to NDEP Comment 21 (June 26) and McGinley (June 30) recommendation.	

TABLE -1PROPOSED MONITOR AND RECOVERY WELLSWORK PLAN TO EVALUATE EFFECTIVE CAPTUREAT TRONOX EXTRACTION SYSTEMS, HENDERSON, NEVADA

SEEP WELL FIEI	LD						
SM-1	Monitor well for Extraction Well 117.	Single	2	Muddy Creek	5-35	9	Proposed in the May 30 work plan and in response to NDEP Comment 25 (June 26) for additional wells to support mapping of the cone of depression.
SM-2	Monitor well for Extraction Well 118.	Single	2	Muddy Creek	5-25	6	Proposed in the May 30 work plan and in response to NDEP Comment 25 (June 26) for additional wells to support mapping of the cone of depression.
SM-3	Monitor well for Extraction Well 133.	Single	2	Muddy Creek	5-30	10	Proposed in the May 30 work plan and in response to NDEP Comment 25 (June 26) for additional wells to support mapping of the cone of depression.
NOTES	Locations for the proposed wells are she	ell 2007) Draft Work Plan a own on Figures 2, 3 ar	ind in response to comm	ents from NDEP (June 26, 2007)	and McGinley	and Associat	es Groundwater Modeling Report (June 30, 2007).
4 5 6 7 8	Wells will be constructed of PVC casing and screen. Single, equates to one PVC well screen per borehole; Nested (2) indicates two screens will be placed in one single borehole or in separate borings in do The well completion will depend upon conditions encountered during the boring. Wells will be installed in either the Alluvium and Muddy Creek or in some cases across the contact. Indicates that the well may be installed across the contact between the Alluvium and Muddy Creek. Interval will depend on lithology and moisture content encountered during drilling. The screen interval and slot size will depend upon formation conditions encountered during drilling. Depth to groundwater is from May 2007 and from wells adjacent to the proposed well location as shown on Cross Sections A, B and C in the Annual Performance Report (ENSR 2007b). Rationale as proposed in the draft work plan (May 30, 2007) and in response to comments received from NDEP (June 26) and McGinley and Associates (June 30).						
DEFINITIONS feet-bgs feet below ground surface							
REFERENCES							
ENSR 2007a (May 30, 2007), Draft Work Plan to Evaluate the Effective Groundwater Capture at TRONOX Extraction Systems, Henderson, Nevada: ENSR, Camarillo, California. ENSR 2007b, Annual Performance Report for Chromium and Perchlorate, July 2006-June 2007, Submitted in Accordance with Chromium Mitigation Program and Perchlorate Performance Consent Orders: ENSR, Camarillo, California, August 29, 2007, 4020-023-110. NDEP June 26, 2007, Response to NDEP Comments of the Tronox Semi-Annual Performance Report Dated February 28, 2007 and the Required Work Plan to Evaluated effective Groundwater Capture at Tronox Extraction Systems, Henderson, Nevada:, dated May 30, 2007: Nevada Division of Enviornmental Protection, Las Vegas, Nevada. McGinley June 30, 2007, Athens Road Well Field Modeling Report - Near BMI Industrical Complex, Henderson, Nevada: McGinley and Associates, Reno Nevada.							

Appendix A

Response to NDEP (June 26) Comments to the May 30, 2007 Draft Work Plan

Tronox Response to NDEP June 26, 2007 Comments on the Draft Groundwater Capture Work Plan dated May 30, 2007

1. NDEP Comment

The subject work plan must be signed by a CEM per NAC 459.9719.

Tronox Response

The revised work plan will have a CEM jurat and signature.

2. NDEP Comment

The Flow Budgets presented herein could be improved by calculating the estimated groundwater flow at one or more cross sectional areas and comparing these values to the volume of groundwater extracted at the respective well field.

Tronox Response

The Flow Budgets will be evaluated as suggested and provided in the revised work plan.

3. NDEP Comment

TRX must discuss the relationship between perchlorate, hexavalent chromium and other Site-related chemicals. Some portions of the plume which contain high TDS water may migrate in a fashion that is atypical (due to density gradients or other reasons).

Tronox Response

TRX will include a generalized discussion of the relationship of perchlorate, total chromium, and other specific site-related chemicals to TDS and how the plume(s) relate to the various recovery areas.

4. NDEP Comment

TRX must include a map(s) illustrating the proposed locations of piezometers and groundwater monitoring wells.

Tronox Response

Maps illustrating the proposed locations of piezometers and groundwater monitoring wells will be provided in the revised work plan.

5. NDEP Comment

Section I, page 1 of 7, footnote #1, the NDEP recommends adding the following reference: Capture Zone Analysis for Pump-and-Treat Systems, EPA NARPM Conference May 24, 2005.

Tronox Response

The reference will be added.

6. NDEP Comment

Section I, page 2 of 7, 2nd paragraph, 2nd bullet, "Demonstration of overlapping cones of depression via flow nets both in plan view and vertical cross section." This is not included in EPA (2002) reference as a line of evidence. The EPA (2005) clearly indicates that drawdown (cone of depression) and capture zone are not the same. The capture zone and cone of depression will only be the same if background hydraulic gradient is zero. However, given the geometry of the line of extraction wells within and extending across a mapped paleochannel, the NDEP acknowledges that overlapping cones of depression can be a line of evidence. This comment is applied to a number of Sections of the report and will not be repeated.

Tronox Response

TRX generally agrees with the information discussed in this comment. TRX also believes that the presence of the slurry wall plays a major role in the capture of the onsite plume. TRX will endeavor to better define the impact of the wall on the USEPA's capture zone line of evidence.

7. NDEP Comment

Section II, page 2 of 7, Capture Zone, TRX indicates that the barrier wall was designed "to provide a physical barrier to groundwater migration across the width of the identified perchlorate plume." It is important to frame this discussion in terms of concentration because it is obvious that the lower concentration portions of the perchlorate plume are not being captured.

Tronox Response

The length of the slurry wall was limited by physical barriers both to the east and the west at the time of installation. The discussion of the wall can be revised to be more accurate by saying it is a physical barrier across the higher concentration portion of the perchlorate plume.

8. NDEP Comment

Section II, page 2 of 7, Flow Budget, TRX needs to support the argument about upward hydraulic gradient with on-site data including both water level elevation and water quality. In addition, TRX states "Current capture rates (70 gpm) are double those before the wall was installed." Please note that the rate of capture is irrelevant when the upgradient flow rate is unknown.

Tronox Response

TRX will be installing two nested piezometers to demonstrate the vertical component of the groundwater regime under the facility. These piezometers will be installed at appropriate multiple depths and will be located in an area outside the main groundwater impact plume to minimize potential cross contamination. The groundwater will also be sampled for appropriate water quality parameters

9. NDEP Comment

Section II, page 3 of 7, 1st paragraph 2nd sentence, Flow Budget, please provide the calculations and input parameters.

Tronox Response

TRX will provide calculations in the revised work plan based on known and estimated input parameters for the flow budget at the onsite recovery area.

10. NDEP Comment

Section II, page 3 of 7, 2nd and 3rd paragraphs, last sentences, Flow Budget, the NDEP has the following comments:

- a. The NDEP requests that this statement be supported with the installation of at least two monitoring wells at both locations as illustrated in Figure 1 (see following comment) to measure gradient. Flow may then be calculated using these newly installed monitoring wells and M69 (west side) and M74 (east side).
- b. Please note that the NDEP is including Figure 1 as example of possible well locations for comment clarity. TRX may propose different well locations.
- c. TRX should include a map illustrating the proposed locations of the monitoring wells. This comment applies to other portions of the work plan as well.
- d. TRX states "the volume of groundwater migrating around the...end of the barrier wall is estimated to be less than 1 gpm." It is not evident how this number was derived and what concentration applies to the 1 gpm number. Based on the data provided by TRX and others, the NDEP believes that a >1 mg/l plume impacts the northern 50 percent of the TIMET property. The source of this plume appears to be TRX.

Tronox Response

a. /b. /c. TRX will install groundwater monitor wells at each end of the barrier wall at locations shown in Figure 2 of the Revised Work Plan to Evaluate Effective Capture at Tronox Extraction Systems (August 2007). TRX will provide a map showing the proposed well locations along with any other proposed monitor wells,, piezometers, or additional recovery wells in the revised work plan.

d. TRX will be reevaluating the eastern edge of the plume boundaries following installation of the proposed monitor wells. Whether the chromium and perchlorate plumes on TIMET property are residual (prior to slurry wall installation) or ongoing has yet to be determined. Based on second quarter 2007 data, it is unclear why the total chromium and perchlorate concentrations are higher in well CLD-1R further away from the TRX boundary than those in well CLD-2R, adjacent to TRX property. Also, the TDS value for CLD-2R is more than three times higher than the groundwater values on adjacent TRX property and the TDS concentration in CLD-1R.

11. NDEP Comment

Section II, page 3 of 7, 4th paragraph, Flow Budget, TRX must provide basis for this evaluation, i.e., calculations and input parameters.

Tronox Response

TRX will provide the requested information in the revised work plan. We intend to further refine this estimate using the additional data from the proposed east and west monitor wells.

12. NDEP Comment

Section II, page 3 of 7, Downgradient Concentration Declines over Time, water from Lake Mead is likely 0.010 mg/L or less based on historical analysis. Thus, the expansion of a zone containing less than 100 mg/L could occur through dilution alone by the addition of low perchlorate concentration water regardless whether the extraction wells were achieving capture at the rate in which TRX describes.

Tronox Response

The expansion of the less than 100 mg/L perchlorate zone is occurring in an area that historically contained perchlorate concentrations exceeding 1,000 mg/L (see Plate 6, Phase II Groundwater Perchlorate Investigation Report, July 15, 1998). If ~60 gpm recharge of stabilized Lake Mead water with less than 4 µg/L perchlorate (3/17/07 value from April 26, 2007 UIC Permit report) is capable of a ten to one reduction of perchlorate by simple dilution only, then the groundwater flow in this area would have to be ~6 gpm or less. If this is true, then based on the current capture rate, the extraction wells must be capturing more than 90 percent of the flow as we now perceive it.

13. NDEP Comment

Section II, page 3 of 7, Downgradient Concentration Declines over Time, please delete the last two sentences from this paragraph because the addition of low perchlorate concentration water invalidates the analysis.

Tronox Response

Based on the analysis presented under #12 above, there is some rationale for the statements, however, TRX will evaluate the sentences and revise or eliminate them if appropriate.

14. NDEP Comment

Section II, page 4 of 7, Proposed Additional Evaluation, 1st bullet, as noted above, the NDEP is not sure what this will prove because low perchlorate concentration water from Lake Mead is being injected downgradient of these wells.

Tronox Response

Wells M-71 and M-72 are two of the wells in the "dead zone" immediately downgradient from the slurry wall but upgradient from the recharge trenches. TRX believes that the impacted groundwater in this area is trapped between the slurry wall and the recharge trenches in an area of essentially no groundwater flow. There is recent evidence that this area is beginning to "drain" downgradient to the northeast towards monitor well M-86. TRX has noted that well M-72 has declined in concentration while well M-86 has correspondingly increased.

TRX is planning to pump these wells to extract (or "mine") much of the impacted groundwater from this area in an attempt to clean it out. In response to the groundwater extraction, injected Lake Mead water could migrate further into this area and assist in lowering the groundwater concentrations via flushing or dilution.

15. NDEP Comment

Section II, page 4 of 7, Proposed Additional Evaluation, 3rd bullet, the NDEP requests three shallow (water table) monitoring wells at each end of the barrier wall to evaluate effectiveness of the barrier. (See also comment above.)

Tronox Response

TRX has proposed the installation of groundwater monitor wells and/or piezometers on the east end of the barrier wall (see RTC 10 a/b/c), and plans to install at least one new recovery well with attendant monitor wells or piezometers on the west end. This request for three shallow monitor wells at each end of the barrier wall will be reviewed in conjunction with the planned well installation proposals.

16. NDEP Comment

Section II, page 4 of 7, Proposed Additional Evaluation, 5th bullet, the NDEP requires contouring water level elevation excluding the use of pumping water levels from extraction wells. TRX may propose a method to estimate water levels for pumping wells taking into account well losses (inefficiency). Alternately, TRX could install piezometers in this area.

Tronox Response

TRX will base water level contouring on existing monitor wells and non-pumping extraction wells along the Interceptor well line and may add additional piezometer(s) in areas with minimal coverage. Further, data from the monitor and non-pumping wells may be used to estimate well efficiency such that the pumping wells can be included in the contouring. A method to estimate well efficiency will be considered and may be included in the revised work plan.

17. NDEP Comment

Section II, page 4 of 7, Proposed Additional Evaluation, the NDEP suggests that TRX consider installation of monitoring wells in a north south line along the TIMET-TRX border to delineate the extent of the plume in this area. Alternately, TRX could utilize some existing TIMET wells if they are adequate. Based upon the recently completed TIMET CSM the concentrations of perchlorate at TIMET range from 0.069 mg/l (along Lake Mead Parkway) to a high of 4.3 mg/l on the western side of the TIMET property (well CLD1-R).

Tronox Response

TRX will consider this well placement proposal in conjunction with the monitor well installation already proposed in this area (see RTC 10 a/b/c). TRX will utilize Timet wells CLD1-R, 2-R and 4-R to delineate the plume.

18. NDEP Comment

Section II, page 4 of 7, Performance Evaluation, TRX should examine the concentration versus time trend graphs for the Athens Road well field. The NDEP notes that no appreciable change can be discerned from September 2001 to the most current quarterly report. The NDEP acknowledges that some of the declines may be obscured by the scale of the Figure. In any case, TRX should discuss these trends specifically and present Figures which are legible and appropriately scaled. In addition, TRX should discuss these concentrations versus time trend graphs in relation to the estimated travel times of the remedial system. For example, discuss the concentrations in the Athens Road well field from the time of the installation of the slurry wall until the present time and then explain why the concentrations are not declining. It appears to the NDEP that some portion of the 100 mg/l perchlorate plume is not being captured on-Site.

Tronox Response

There is no appreciable change in the concentrations at the Athens Road well field because the mitigating effect of the slurry wall has yet to reach the well field. If perchlorate is moving at approximately the same velocity as the groundwater, then the break-over point, the point at which steady concentration decline begins to occur in a given well due to the influence of the slurry wall and the recharge trenches, is still several years

ENSR

ENSR

away from reaching Athens Road. TRX will discuss the breakover analyses for several key wells downgradient from the onsite system and will present approximate time frames for expected declines in the perchlorate concentrations at the Athens Road well field.

19. NDEP Comment

Section II, page 5 of 7, Athens Road Extraction Gallery, Flow Budget, the NDEP requires TRX to provide the calculations and input parameters before the NDEP will comment on the results of the calculations.

Tronox Response

Calculations and input parameters will be provided in the revised work plan.

20. NDEP Comment

Section II, page 5 of 7, Athens Road Extraction Gallery, Overlapping Cones of Depression, see comment above regarding overlapping cones of depression. The 11 foot drawdown reported for ART-3 in the *Semi-Annual Performance Report for Chromium and Perchlorate* dated February 6, 2007 may be the result of well inefficiency.

Tronox Response

Plate 3 of the Semi-Annual Performance Report for Chromium and Perchlorate dated February 6, 2007 shows that the drawdown in ART-3 is 9.0 feet, not 11.0 feet. This drawdown is valid because at the time of calculation adjacent buddy well ART-3A was the pumping well whereas ART-3 was the monitor well.

21. NDEP Comment

Section II, page 5 of 7, Athens Road Extraction Gallery, Inward Flow, the NDEP does not agree that inward flow is demonstrated by the Potentiometric Surface Map, Fourth Quarter 2006. West of the Tertiary Muddy Creek Formation(TMCf) high the groundwater elevation contours and data as posted on the map show a gradient south to north, *i.e.*, towards the wash. East of the TMCf high there is insufficient data to support the closed (depression) contour as drawn on the map. No groundwater elevation data have been reported between the closed 1590 contour and the 1590 contour to the north to indicate a higher water level. An alternative way to map this data could include connecting the 1590 depression contour with the same 1590 contour to the north.

Tronox Response

Groundwater elevation data to be presented in the July 2006 – June 2007 Annual Performance Report show that a closed contour (depression) is mapped encircling Athens Road WF drawdown on both sides of the Muddy Creek Formation high. To test the validity of this interpretation of the potentiometric data TRX will install additional nested piezometer wells downgradient of the ART wells to demonstrate inward flow.

22. NDEP Comment

Section II, page 5 of 7, Athens Road Extraction Gallery, Proposed Additional Evaluation, 2nd bullet, unless the "available and accessible monitor wells along the width of Athens Road" lie between the ART-series and ARP-series wells there may still not be adequate groundwater level data to demonstrate inward flow. It may be necessary to install one or more well pairs to the ART "buddy" wells to achieve this purpose. If well pairs are installed NDEP should review and approve the location for these wells.

Tronox Response

The available and accessible monitor wells are currently being monitored. TRX will install additional nested piezometer wells downgradient of the ART wells at locations agreeable to the NDEP.

23. NDEP Comment

Section II, page 5 of 7, Numerical Modeling, this discussion has no references and hence cannot be verified by the NDEP. In addition, the NDEP noted that the numerical modeling completed previously (but not referenced in this report) does not demonstrate the 97.5 percent capture purported by TRX.

ENSR

Tronox Response

TRX will reference the numerical modeling report in the revised work plan. Under direction of NDEP McGinley [June 30, 2007] has recently completed a particle-tracking model indicating over 99 percent capture. The McGinley report identifies several data gaps which will need resolution to confirm capture. Tronox is working to address those data gaps which will allow a more robust demonstration of capture.

24. NDEP Comment

Section II, page 6 of 7, Seep Area Collection System, Flow Budget, no flow budget is presented or referenced in this section. The NDEP requires a flow budget calculation to be presented or referenced.

Tronox Response

A flow budget calculation will be presented in the revised work plan.

25. NDEP Comment

Section II, page 6 of 7, Seep Area Collection System, Overlapping Cones of Depression, see comment above. In addition, the NDEP does not believe that overlapping cones of depression have been demonstrated to exist in this area.

Tronox Response

Up to five additional piezometer wells were proposed by TNX in the Seep well field in order to map cones of depression. Plate 5 (ENSR, 2007b) shows an overlapping cone of depression based solely on monitoring well data. Considering the proximity of the well field to Las Vegas Wash it is unlikely that full capture can expected.

26. NDEP Comment

Section II, page 6 of 7, Seep Area Collection System, it is not clear to the NDEP that full capture in the Seep Area is warranted or feasible. The goals for this area should be discussed and a capture zone should be agreed upon. It is evident that the remedial system can be optimized in this well field and others.

Tronox Response

The goals for the Seep well field will be discussed in the revised work plan and a capture zone agreed upon.

Appendix B

Flow Budget Estimates – Interceptor, Athens Road and Seep Well Fields

APPENDIX B

FLOW BUDGET ESTIMATES INTERCEPTOR, ATHENS ROAD AND SEEP WELL FIELDS

INTERCEPTOR WELL AREA FLOW BUDGET ESTIMATE

An initial estimate of the groundwater flow available for capture at the On-Site Interceptor well line and groundwater barrier wall is necessary to determine in a more quantitative sense the quantity of groundwater that is being captured. This initial estimate is based on a solution of Darcy's Law assuming three main sources of groundwater potentially available for capture at the barrier wall: 1) groundwater in the alluvium, and subsequently "dammed up" behind the barrier wall; 2) groundwater flowing vertically and "daylighting" from the Muddy Creek upwards into the incised alluvial channels upgradient from the barrier wall. The third flow element was included in the budget, since the estimates of flow from the alluvium and Muddy Creek dammed behind the barrier do not adequately account for the water being pumped at the interceptor well field. Estimates of available groundwater from the three main areas are described below. These data are summarized in **Table B-1**.

1) Alluvial groundwater dammed up behind the barrier wall

The amount of saturated alluvium upgradient from the interceptor wells was estimated using a west-east traverse of monitor wells along the Interceptor well line shown on Figure 2 – Cross Section A-A' (ENSR 2007b). The maximum average cell saturation (based on May 2007 water elevation data) noted along this line was 4.25 feet. The estimate utilizes a horizontal gradient of 0.02 (from Plate 2, ENSR, 2007b) and a hydraulic conductivity from a monitor well (M-2) drawdown test for the alluvium of 453 gallons per day per foot squared (gpd/ft²). As shown on **Table B-1**, the calculated flow for the dammed saturated alluvium is 23.5 gallons per minute (gpm).

2) Muddy Creek groundwater dammed up behind the barrier wall

The barrier wall is approximately 1600 feet long and was installed approximately 60 feet below grade. Based on an average thickness of 30 feet for the alluvium in the area of the wall, approximately 30 feet of upper Muddy Creek is blocked by the barrier wall. The underflow for this portion of the Muddy Creek was estimated using a length of 1600 feet, a depth of 30 feet, and a hydraulic conductivity of 8.5 gpd/ft². The hydraulic conductivity was estimated from a pumping test in well M-11 which is completed within the Muddy Creek formation. As shown on **Table B-1** the calculated flow for the dammed portion of the Muddy Creek is 5.7 gpm.

3) Muddy Creek groundwater daylighting into the alluvium upgradient from the barrier wall

The bulk of the monitor wells upgradient from the slurry wall have groundwater levels in the upper Muddy Creek formation. Because there is an upward vertical gradient, groundwater from the Muddy Creek will discharge into the incised alluvial channels, and thus contribute to flow upgradient of the barrier. An estimate of this volume of groundwater was made as an additional source of groundwater within the alluvium behind the barrier wall. In order to account for this near vertical upflow, a cross-sectional area 1600 feet long (the west-east length of the barrier wall) by 200 feet width (south-north) was utilized to account for the area of the incised alluvial channels. This 200 foot width represents an estimate of the area that Muddy Creek groundwater is first daylighting into the alluvium upgradient from the barrier wall and takes into consideration the upgradient reach of alluvial channels cut into the Muddy Creek. It was assumed that water discharging to the alluvium would

flow under the same conditions as estimated for the alluvium dammed behind the barrier. As shown on **Table B-1** the calculated flow for the daylighting Muddy Creek is 37.8 gpm.

Adding up the available groundwater estimates presented in **Table B-1** yields a calculated flow budget of about 66.9 gpm. Evaluations from planned additional monitor well and recovery well installations will be necessary to fine tune this figure.

TABLE B-1 **GROUNDWATER UNDERFLOW - MAY 2007** INTERCEPTOR WELL FIELD

CELL ID ⁽¹⁾		AL		DAMMED			
	I-Y	M-55	I-X	I-G	I-U	I-Z	TRAVERSE
							TOTAL
Cell Width (ft)	230	180	200	100	100	550	1,360
Cell Height (ft) ⁽²⁾	2.25	1.25	4.25	2.25	1.25	3.25	
Cell Area (A) (ft ²)	517.5	225	850	225	125	1787.5	3,730
K (gpd/ft2) ⁽³⁾	453	453	453	453	453	453	
Q (gpd) (Q = KiA) ⁽⁴⁾	4,689	2,039	7,701	2,039	1,133	16,195	33,794
Q (gpm)	3.3	1.4	5.3	1.4	0.8	11.2	23.5
		MUDE	DY CREEK	- DAMMEI	D		
CELL ID	MCD						TRAVERSE
							TOTAL
Cell Width (ft)	1,600						1,600
Cell Height (ft)	30						
Cell Area (A) (ft ²)	48,000						48,000
K (gpd/ft2) ⁽⁵⁾	8.5						
Q (gpd) (Q = KiA) $^{(4)}$	8,160						8,160
Q (gpm)	5.7						5.7
		MUDE	DY CREEK	- UPFLOV	V		
CELL ID	MCU						TRAVERSE
							TOTAL
Cell Width (ft)	1,600						1,600
Cell Height/Width (ft) ⁽⁶⁾	200						
Cell Area (A) (ft ²)	320,000						320,000
K (gpd/ft2) ⁽⁵⁾	8.5						
Q (gpd) (Q = KiA) ⁽⁴⁾	54,400						54,400
Q (gpm)	37.8						37.8
 Cell ID is well name in Cell width was centered o Cell height is saturated 	on these bori d thickness of from well M-	ngs/wells. of alluvium	(ENSR 200	0		ent) and Figu	ure 2 (ENSR 2007
(4) Hydraulic Gradient (i)(5) Hydraulic conductivity	from well M-						
 (3) Hydraulic conductivity (4) Hydraulic Gradient (i) (5) Hydraulic conductivity (6) Since Muddy Creek up DEFINITIONS	from well M-			l dimension	ı = vertical o	dimension	
 (4) Hydraulic Gradient (i) (5) Hydraulic conductivity (6) Since Muddy Creek up DEFINITIONS 	from well M pflow is near			l dimension	i = vertical c	limension	
 (4) Hydraulic Gradient (i) (5) Hydraulic conductivity (5) Since Muddy Creek up (6) Since Muddy Creek up 	from well M- pflow is near Area	vertical the		l dimension	i = vertical c	limension	
(4) Hydraulic Gradient (i) ((5) Hydraulic conductivity (6) Since Muddy Creek up DEFINITIONS A ClO4	from well M- pflow is near Area Perchlorate	vertical the		l dimension	a = vertical c	limension	
(4) Hydraulic Gradient (i) ((5) Hydraulic conductivity (6) Since Muddy Creek up DEFINITIONS A CIO4 t	from well M- pflow is near Area Perchlorate feet	vertical the		l dimension	a = vertical c	dimension	
(4) Hydraulic Gradient (i) ((5) Hydraulic conductivity (6) Since Muddy Creek up DEFINITIONS A CIO4 ft t ²	from well M- pflow is near Area Perchlorate feet feet square	vertical the		l dimension	a = vertical o	limension	
(4) Hydraulic Gradient (i) ((5) Hydraulic conductivity (6) Since Muddy Creek up DEFINITIONS A CIO4 ft t ² gpd	from well M- pflow is near Area Perchlorate feet feet square gallons per	vertical the e ed r day	e horizonta		a = vertical o	limension	
(4) Hydraulic Gradient (i) ((5) Hydraulic conductivity (6) Since Muddy Creek up DEFINITIONS A CIO4 ft t ² gpd gpd/ft ²	from well M- pflow is near Area Perchlorate feet feet square gallons per gallons per	vertical the e ed r day r day per fo	e horizonta		a = vertical c	limension	
(4) Hydraulic Gradient (i) ((5) Hydraulic conductivity (6) Since Muddy Creek up DEFINITIONS A CIO4 ft t ² gpd gpd/ft ²	from well M- pflow is near Area Perchlorate feet feet square gallons per gallons per gallons per	vertical the e ed r day r day per fo	e horizonta		a = vertical c	limension	
(4) Hydraulic Gradient (i) (5) Hydraulic conductivity (6) Since Muddy Creek up DEFINITIONS A CIO4 ft t ² gpd gpd/ft ² gpm	from well M- pflow is near Area Perchlorate feet feet square gallons per gallons per gallons per gallons per gallons per gallons per	e e d day r day per fo r minute	e horizonta pot squared		a = vertical c	limension	
(4) Hydraulic Gradient (i) (5) Hydraulic conductivity (6) Since Muddy Creek up DEFINITIONS A CIO4 (t t ² gpd gpd/ft ² gpm	from well M- pflow is near Area Perchlorate feet feet square gallons per gallons per gallons per gallons per gallons per gallons per gallons per gallons per gallons per gallons per	vertical the e ed r day r day per fo r minute onductivity	e horizonta pot squared		a = vertical c	limension	
 (4) Hydraulic Gradient (i) (5) Hydraulic conductivity (5) Since Muddy Creek up (6) Since Muddy Creek up (7) DEFINITIONS (7) A (7) CIO4 (8) CIO4 (9) A (9) A (10) A 	from well M- pflow is near Area Perchlorate feet feet square gallons per gallons per gallo	vertical the e ed r day r day per fo r minute conductivity r day	e horizonta pot squarec	I	a = vertical c	limension	
(4) Hydraulic Gradient (i) (5) Hydraulic conductivity (6) Since Muddy Creek up DEFINITIONS A CIO4 t t t ² gpd gpd/ft ² gpm K bs/day MCD	from well M- pflow is near Area Perchlorate feet gallons per gallons per gallons per gradient hydraulic c pounds pe Muddy Cre	vertical the e ed r day per fo r minute conductivity r day eek "damme	e horizonta pot squarec , ed" ground	I			
(4) Hydraulic Gradient (i) (5) Hydraulic conductivity (6) Since Muddy Creek up DEFINITIONS A CIO4 t t t t t c Sppd gpd/ft ² gpm K bs/day MCD MCU	from well M- pflow is near Perchlorate feet gallons per gallons per gradient hydraulic c pounds pe Muddy Cre Muddy Cre	vertical the e ed r day per for r minute conductivity r day eek "damme eek "upward	e horizonta pot squarec , ed" ground	I			eek to Alluvium)
(4) Hydraulic Gradient (i) (5) Hydraulic conductivity (6) Since Muddy Creek up DEFINITIONS A CIO4 ft ft ² gpd gpd/ft ² gpm i K K lbs/day MCD MCU mg/L	from well M- pflow is near Perchlorate feet gallons per gallons per gradient hydraulic c pounds pe Muddy Cre Muddy Cre milligrams	vertical the e ed r day per for r minute conductivity r day eek "damme eek "upward	e horizonta pot squarec , ed" ground	I			eek to Alluvium)
(4) Hydraulic Gradient (i) (5) Hydraulic conductivity (6) Since Muddy Creek up DEFINITIONS A CIO4 t t t t t c Sppd gpd/ft ² gpm K bs/day MCD MCU	from well M- pflow is near Perchlorate feet gallons per gallons per gradient hydraulic c pounds pe Muddy Cre Muddy Cre	vertical the e ed r day per for r minute conductivity r day eek "damme eek "upward	e horizonta pot squarec , ed" ground	I			eek to Alluvium)
4) Hydraulic Gradient (i) (5) Hydraulic conductivity (6) Since Muddy Creek up DEFINITIONS A CIO4 t t ² gpd gpd/ft ² gpm K bs/day MCD MCU mg/L	from well M- pflow is near Perchlorate feet gallons per gallons per gradient hydraulic c pounds pe Muddy Cre Muddy Cre milligrams	vertical the e ed r day per for r minute conductivity r day eek "damme eek "upward	e horizonta pot squarec , ed" ground	I			eek to Alluvium)

TABLE B-2 GROUNDWATER UNDERFLOW AND MASS FLUX - MAY 2007 SUNSET ROAD TRAVERSE - USING SUNSET ROAD SLUG TEST PARAMETERS

				SLUG TE	ST PARA	METERS					
CELL ID ⁽¹⁾	PC132	PC131	PC50	PC130	PC129	PC128	PC25	PC127	PC24	PC126	TRAVERSE
											TOTAL
Cell Width (ft)	175	200	200	200	200	200	200	200	200	200	1,975
Cell Height (ft) (2)	22	29	29.9	28.6	20.2e	13.2	2.7e	13.9	7.0	13.5e	
Cell Area (A) (ft ²)	3850	5800	5980	5720	4040	2640	540	2780	1400	2700	35,450
Aquifer parameters (K) from well	PC132	PC131	PC50	PC130	PC129	PC128	PC127 &	PC127	PC24	PC126	-
							PC128(Av)	-			
K (gpd/ft ²) ⁽³⁾	670	577	594	390	731	235	581	926	473	473	
Q (gpd) (Q = KiA) $^{(4)}$	36113	46852	49730	31231	41345	8686	4392	36040	9271	17879	281,540
Q (gpm)	25	33	35	22	29	6	3	25	6	12	196
CIO4 mg/L (May 2007)	3.7	14.4	324	445	373	172	100e*	305	13*	9.0	
CIO4 lbs/day	1	6	134	116	129	12	4	92	0.5	1	495

NOTES

(1) Cell ID is well or soil boring name - locations shown on Plate 7 (ENSR 2007b). Cell width was centered on these borings/wells.

(2) Cell height is saturated thickness of alluvium (ENSR 2007b).

(3) Hydraulic conducitivity is from slug test data.

(4) Hydraulic gradient (i) is 0.014 ft/ft.

DEFINITIONS

A	Area
CIO4	Perchlorate
e	estimate
e*	estimate from April 1998
ft	feet
ft ²	feet squared
gpd	gallons per day
gpd/ft ²	gallons per day per foot squared
gpm	gallons per minute
i	gradient
К	hydraulic conductivity
lbs/day	pounds per day
mg/L	milligrams per liter
Q	flow
*	concentration from May 2006

REFERENCES

ENSR 2007b, Annual Performance Report for Chromium and Perchlorate, July 2006-June 2007, Submitted in Accordance with Chromium Mitigation Program and Perchlorate Performance Consent Orders: ENSR, Camarillo, California, August 29, 2007, 4020-023-110.

TABLE B-3 GROUNDWATER UNDERFLOW AND MASS FLUX - MAY 2007 SEEP TRAVERSE - USING SEEP WELLS PUMP TEST PARAMETERS

CELL ID ⁽¹⁾	PC120	PC119	PC118	PC115R	PC99R	PC116R	PC117	PC133	TRAVERSE
									TOTAL
Cell Width (ft)	100	100	100	110	85	80	200	350	1,125
Cell Height (ft) ⁽²⁾	40	41	42.5	44.5	45.5	43	41	31	
Cell Area (A) (ft ²)	4,000	4,100	4,250	4,895	3,868	3,440	8,200	10,850	43,603
Aquifer parameters (K)									
from well	PC120	PC119	PC118	PC115R	PC99	PC116R	PC117	PC133	
K (gpd/ft ²) ⁽³⁾	6,768	34,112	1,052	128	5,000	5,000	207	95	
Q (gpd) (Q = KiA) $^{(4)}$	103,550	534,961	17,102	2,397	73,966	65,790	6,493	3,943	808,201
Q (gpm)	72	372	12	2	51	46	5	3	561
CIO4 mg/L (ENSR 2007b)	1.6	14.0	10.8	17.9	22.3	13.9	4.2	7.4	
CIO4 Ibs/day	1	62	2	0.4	14	8	0.2	0.2	88

NOTES:

(1) Cell ID is well name in center of cell - locations shown on Figure 4 (this document) and Figure 4 (ENSR 2007b). Cell width was centered on these borings/wells.

(2) Cell height is saturated thickness of alluvium (ENSR 2007b, Figure 4).

(3) Hydraulic Conducitivity was from pumping test data.

(4) Hydraulic Gradient (i) is 0.003825 ft/ft.

DEFINITIONS

A	Area
CIO4	Perchlorate
ft ft ²	feet
ft ²	feet squared
gpd	gallons per day
gpd/ft ²	gallons per day per foot squared
gpm	gallons per minute
i	gradient
к	hydraulic conductivity
lbs/day	pounds per day
mg/L	milligrams per liter
Q	flow

REFERENCES

ENSR 2007b, Annual Performance Report for Chromium and Perchlorate, July 2006-June 2007, Submitted in Accordance with Chromium Mitigation Program and Perchlorate Performance Consent Orders: ENSR, Camarillo, California, August 29, 2007, 4020-023-110.

Appendix C

Groundwater Velocity Estimates, North of the Interceptor Well Field and Barrier Wall

APPENDIX C

Evaluation of Groundwater Velocity Downgradient of the Barrier

An evaluation of the estimated groundwater velocity downgradient from the onsite slurry wall and recharge trenches was conducted to determine approximate travel times for the perchlorate and chromium plumes to reach the Athens Road well field. This evaluation was based on qualitative assessments of concentration versus time decline curves for monitor wells downgradient from the onsite recharge trenches.

The basis for the curve examinations was the determination of a "break-over point". This break-over point represents the approximate point in time when recharged Lake Mead water containing very low concentrations of total chromium and perchlorate has moved a sufficient distance in the groundwater to a monitor well and is recognized as the beginning of a fairly consistent decline in concentrations of these constituents. For this evaluation, the break-over point is defined as that point halfway between the last high concentration point and the next sample point of a consistent decline. This is related back to the time of installation of the slurry wall (October 2001) and must therefore be chosen at a time after installation of the wall. Figure C-1 is a timeseries graph that illustrates the break-over point interpreted for perchlorate in monitor well PC-54. The time of the break-over point, July 2005, is compared back to the slurry wall date (October 2001) and represents a time period of 1368 days. For the calculation of estimated groundwater velocity, the distance from the recharge trenches to the well (2,000 feet) is divided by the break-over point time, giving a velocity in feet per day at that well (1.5 ft/d). Table C-1 contains the estimated break-over time, distance from the recharge trenches, and estimated groundwater velocity for monitor wells down-gradient from the recharge trenches that show declines in constituent concentrations over time. Attachment CA to this appendix contains the time versus concentration graphs with plotted break over points for monitor wells down-gradient from the recharge trenches. Total chromium graphs for wells PC-64 and PC-65 were not prepared because too few total chromium analyses have been collected to date to create a meaningful graph.

Figures C-2 and C-3 are graphical presentations of the number of estimated groundwater velocities calculated for each constituent graph per well that fall within a given velocity range. The highest and lowest velocities from **Table C-1** were not included in the graphs, as these values were observed to be outliers to the majority of the perchlorate and chromium transport velocities generated from both the perchlorate and chromium transport velocities generated from both the perchlorate and chromium decline curves fall within the 1 to 4 ft/d intervals, however, the most common velocity noted in the estimations was between 1 and 2 ft/d. It is interesting to note the similarity between the predicted perchlorate and chromium transport velocities. It would be assumed that chromium in groundwater would be retarded more than perchlorate. However, this does not appear to be the case, and may reflect absorption characteristics of the aquifer matrix and general absence of organic material.

From this spread of values, a representative velocity of 1.5 ft/d can be utilized as an estimate to determine the approximate time for the on-site slurry wall and recharge trench effects to reach downgradient locations. For example, the downgradient distance from the on-site recharge trenches to the monitor well array at Sunset Road is approximately 6,600 feet. Based on the 1.5 feet per day estimate of groundwater velocity, the effects of the onsite barrier wall / recharge trenches could be noted in the Sunset Road monitor wells in 4400 days from October 2001 (barrier wall emplacement), or roughly by or before fourth quarter 2013. The same calculation for the Athens Road well field (8,000 feet downgradient) would be 14.6 years, or second quarter 2015.

Even though the bulk of the groundwater velocities from the qualitative break-over point estimations fall roughly in the 1.5 ft/d interval, there were a significant number of velocities in the 2 to 3 ft/d range. Utilizing an average groundwater velocity of 2.5 ft/d for these estimates, the above time frames for Sunset Road and Athens Road would be reduced to 7.2 years (fourth quarter 2008) and third quarter 2010), respectively.

Because of the variable nature of the alluvium, multiple groundwater velocities are to be expected both within alluvial channels and in inter-channel areas. The estimated 1.5 ft/d velocity could very easily represent an

overall average for the alluvial system with the understanding that channel areas may display greater velocities. Of note is an additional review of the perchlorate time versus concentration graphs for wells PC-64, -65, -66, and -67 in **Attachment CA**. The break-over point for both PC-64 and PC-65 is based on a minimal number of values and will require additional data from future sampling to confirm the timeframe. The perchlorate graphs for wells PC-66 and PC-67 tell a different story. In both cases, perchlorate values are still increasing, which would indicate that the break-over point has not as yet reached these wells. If this is the case, then the reduced concentration "front" in the alluvium in this down-gradient area is between PC-64 / -65 and PC-66 / -67, approximately 3,700 feet down-gradient from the recharge trenches.

This groundwater velocity evaluation based on a break-over point of declining groundwater constituent concentrations serves as an adequate, qualitative method for determining approximate time frames for the onsite remediation activities to impact down-gradient areas. The subjective determination of break-over points is "evergreen" in the sense that changes and adjustments can occur as additional groundwater data are collected.

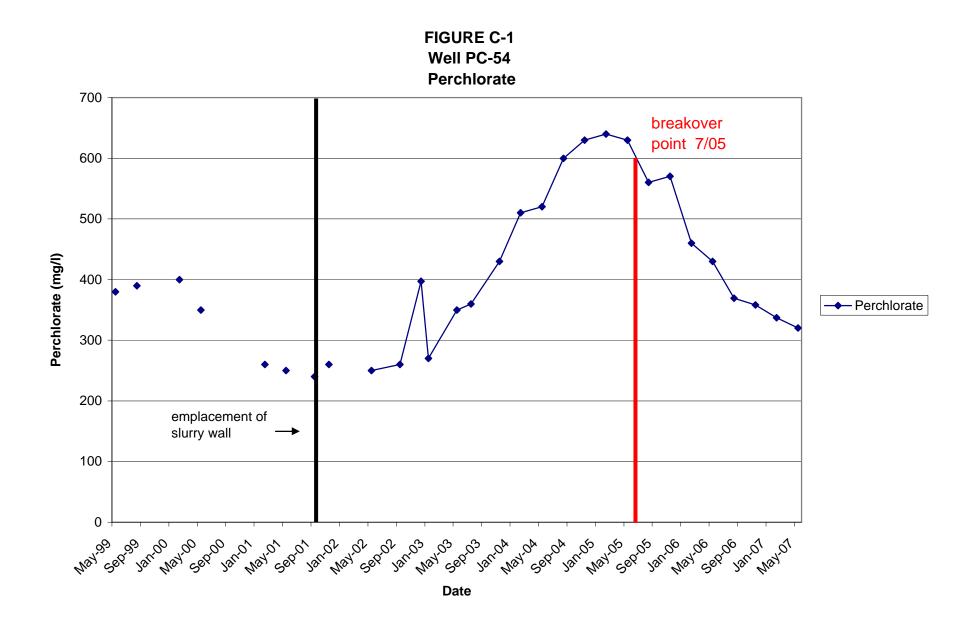
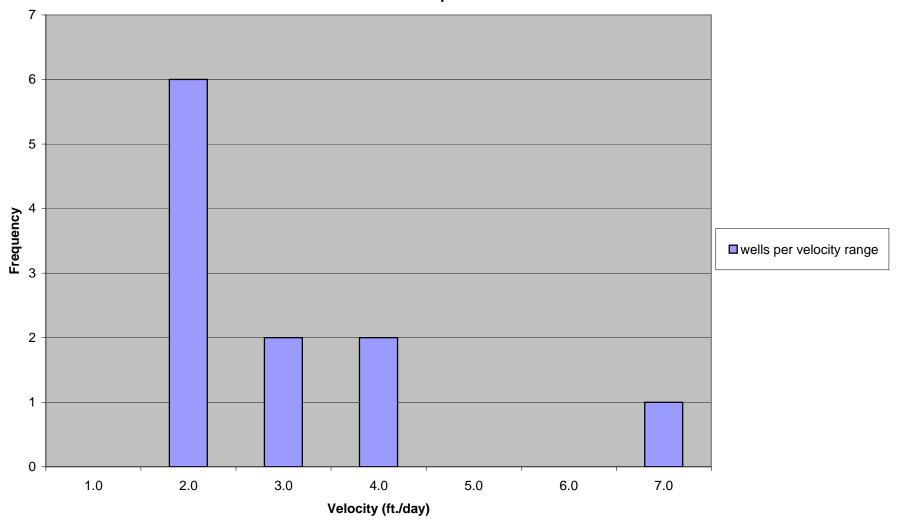
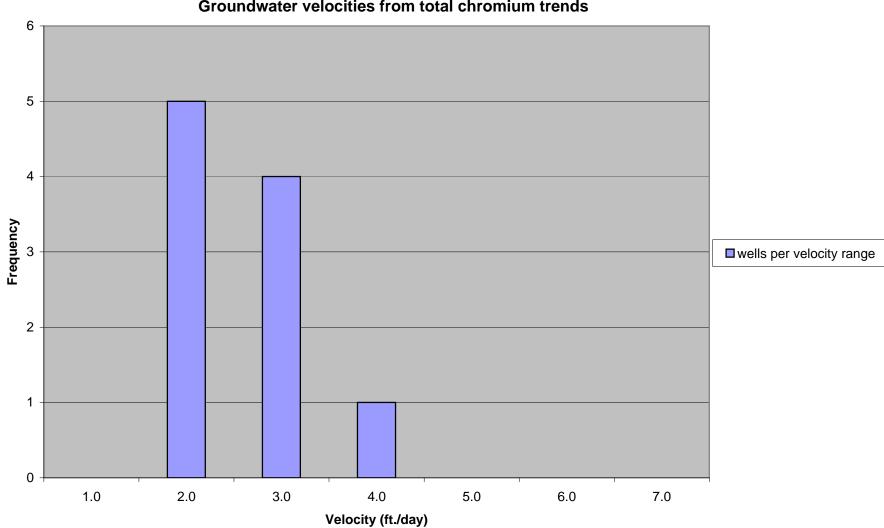



Figure C-2 Groundwater velocities from perchlorate trends



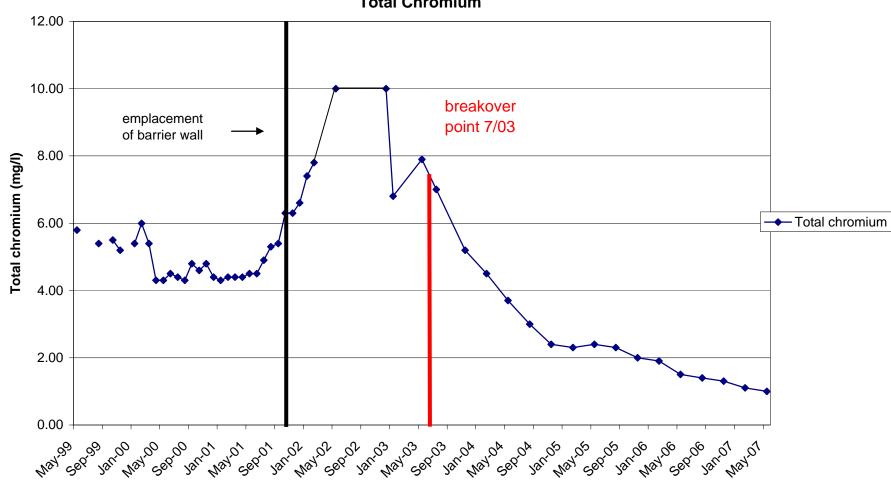
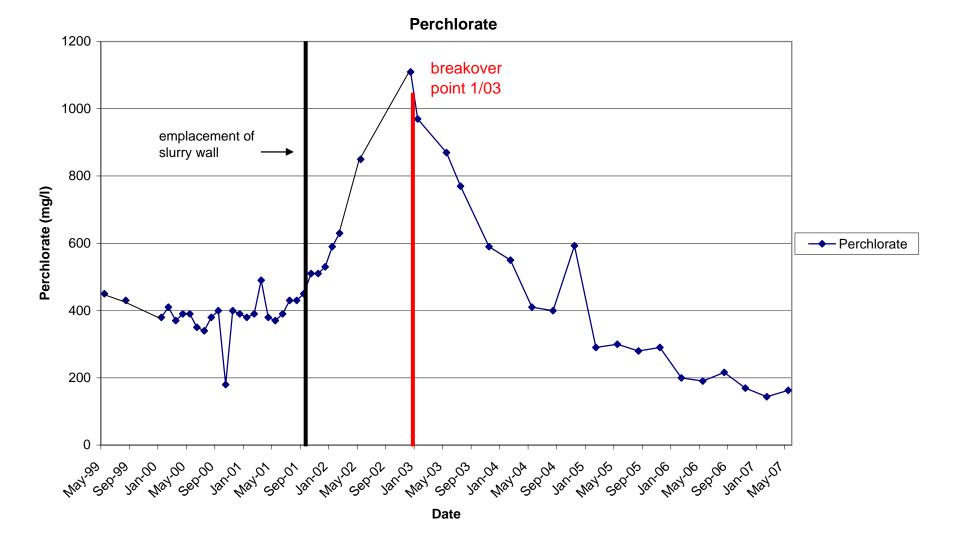
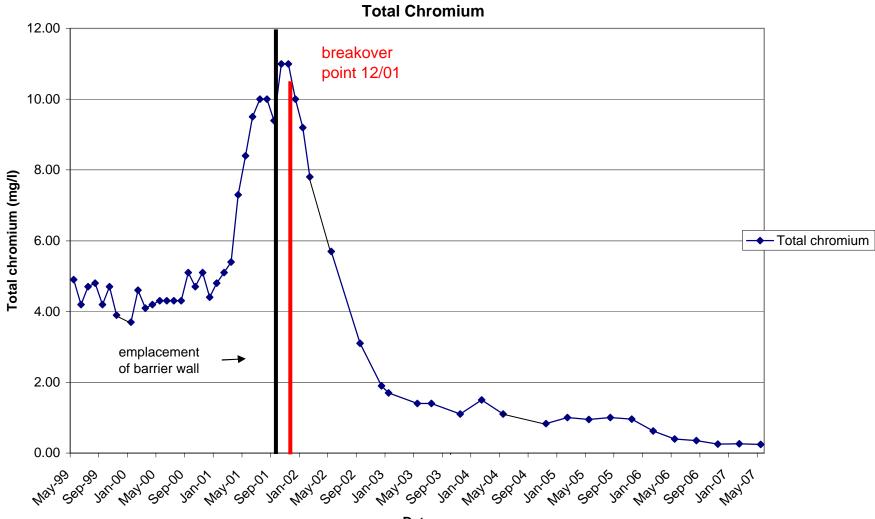
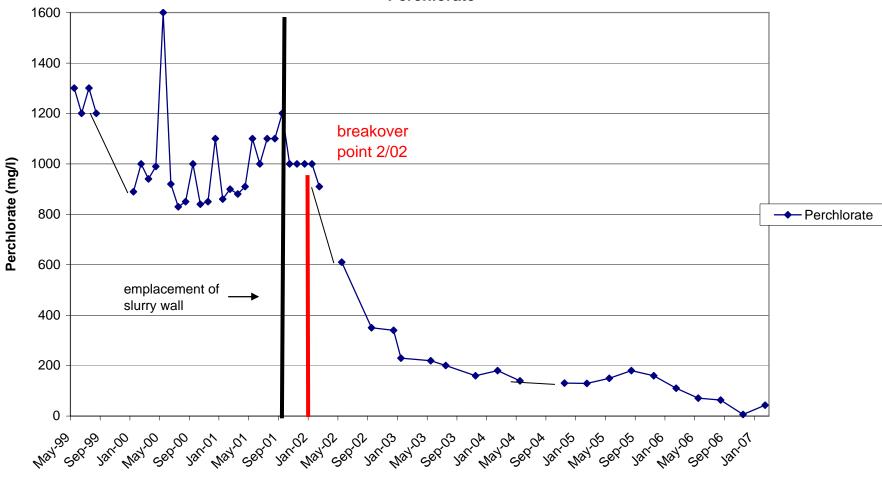

Figure C-3 Groundwater velocities from total chromium trends

TABLE C-1 GROUNDWATER VELOCITY DATA

Well number	Distance (ft) from	Breakover point	Calculated groundwater
	recharge trenches	time (days)	velocity (ft/d)
M-23 - P ⁽¹⁾	1400	123	11.4
M-23 - C	1400	426	3.3
M-23 - C M-48 - P	1300	420	2.8
M-48 - C	1300	638	2
M-87 - P ⁽¹⁾	500	547	0.9
M-87 - C	500	426	1.2
M-95 - P	2600	761	3.4
M-95 - C	2600	1126	2.3
M-96 - P	2600	822	3.2
M-96 - C	2600	912	2.9
M-100 - P	750	123	6.1
M-100 - C ⁽¹⁾	750	61	12.3
M-101 - P	700	547	1.3
M-101 - C	700	547	1.3
M-102 - P	800	638	1.3
M-102 - C	800	700	1.1
PC-37 - P	2400	1460	1.6
PC-37 - C	2400	1368	1.8
PC-54 - P	2000	1368	1.5
PC-54 - C	2000	1277	1.6
PC-64 - P	3600	1856	1.9
PC-65 - P	3600	1856	1.9
PC-72 - P	2900	1187	2.4
PC-72 - C	2900	1187	2.4
Notes (1)	Not included in Figure	es C-2 and C-3.	
Definitions			
P C ft	Velocity estimate from Velocity estimate from feet		
ft/d	feet per day		

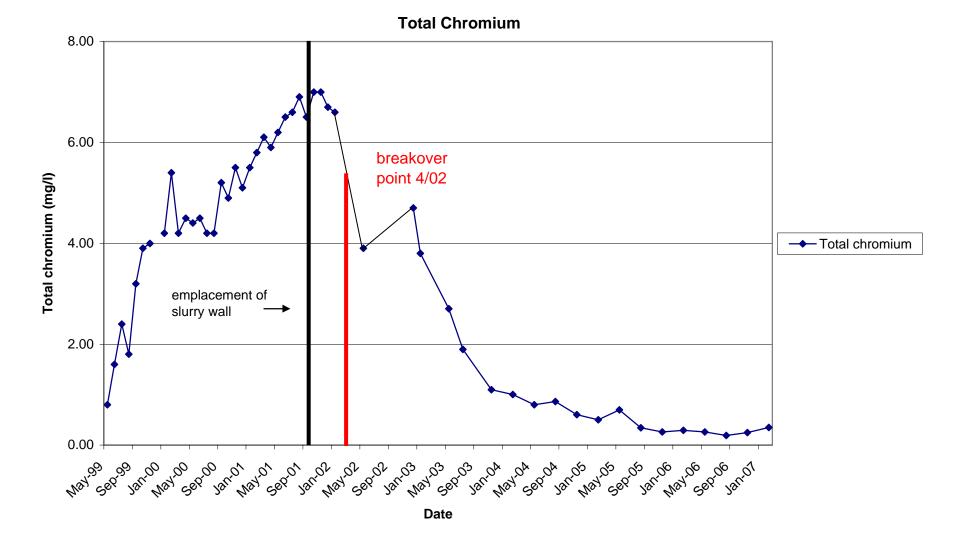

Attachment CA

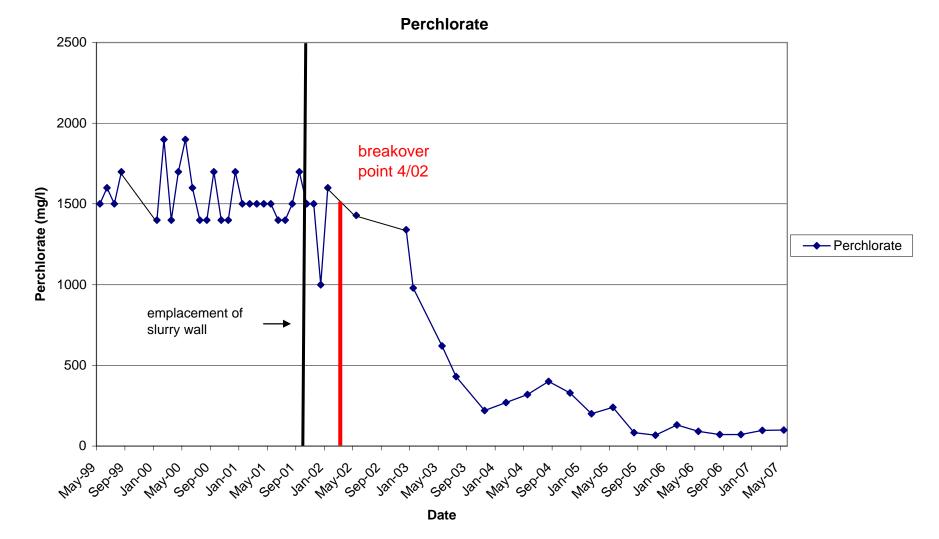

Perchlorate and Chromium Time-Series Graphs for Wells North of the Recharge Trenches

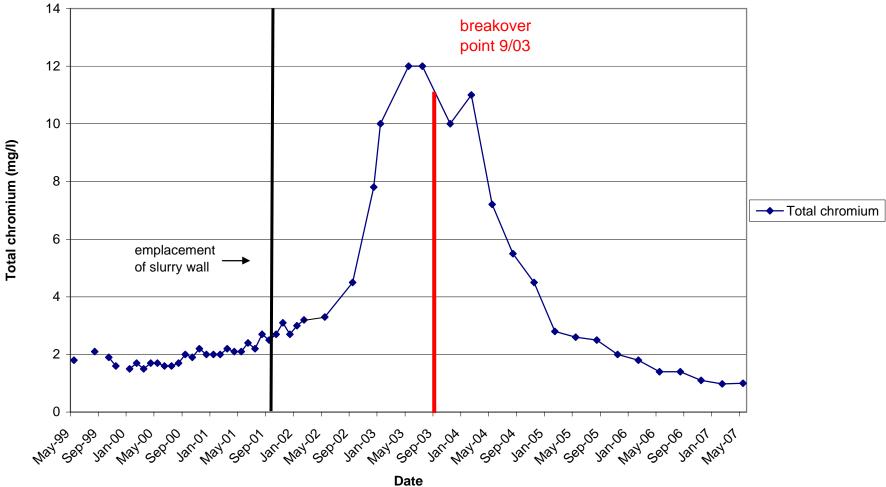


Well M-48

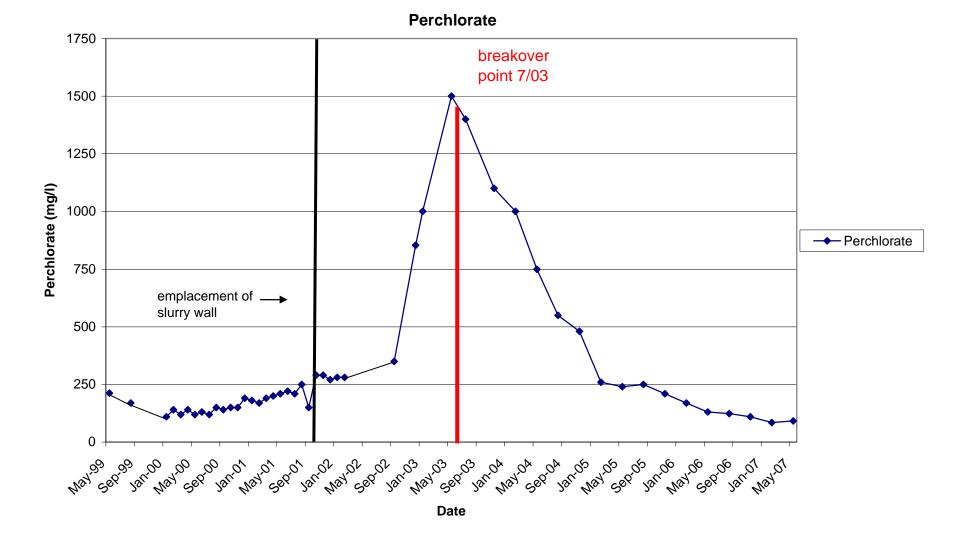
Total Chromium

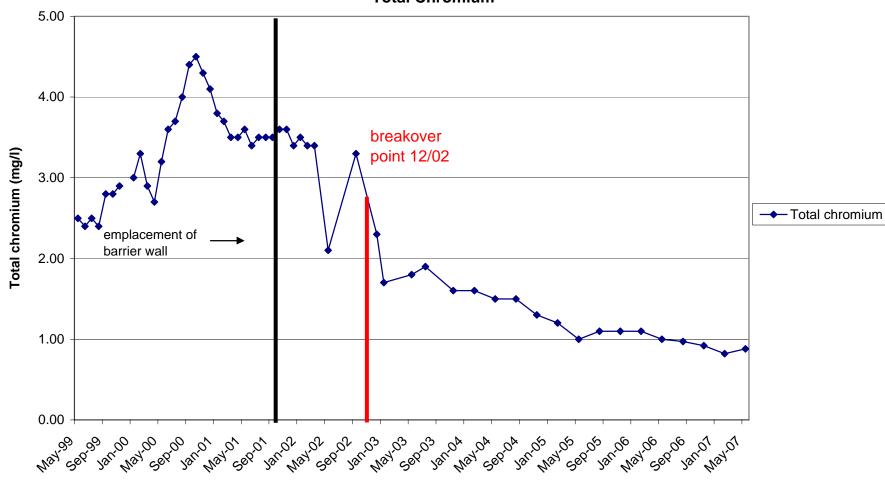


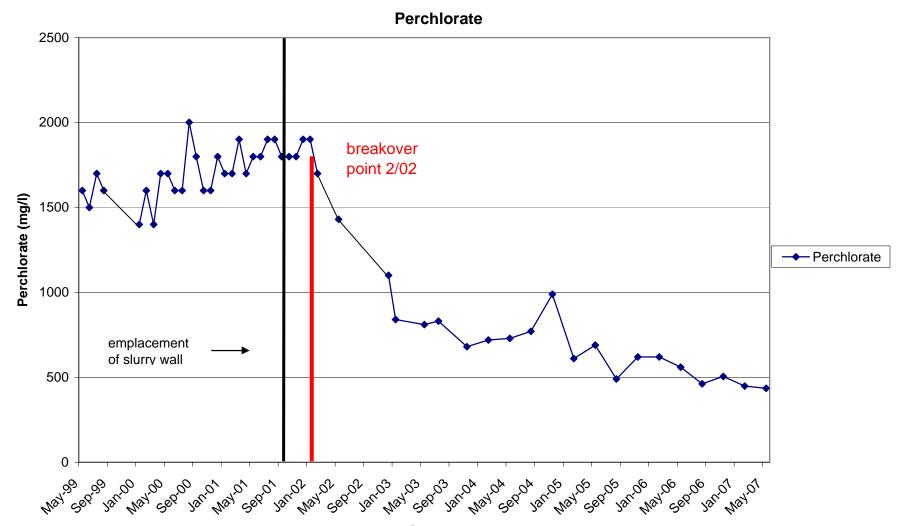


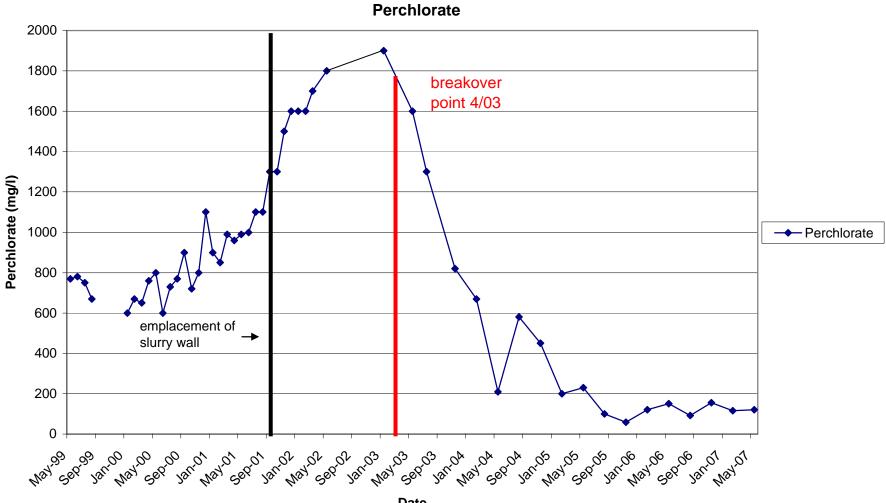


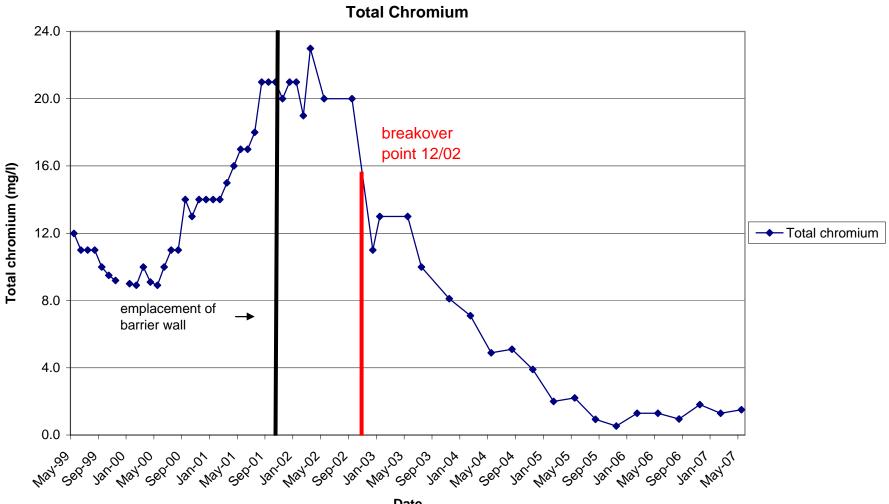
Well M-100


Perchlorate

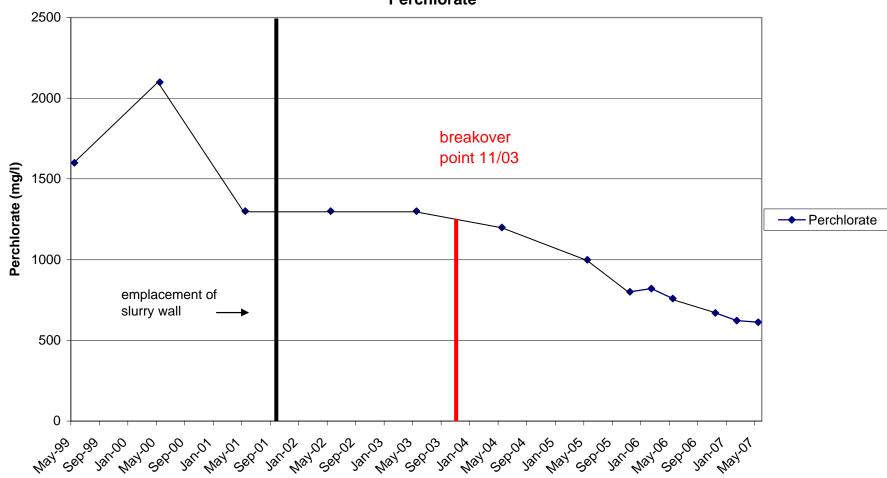


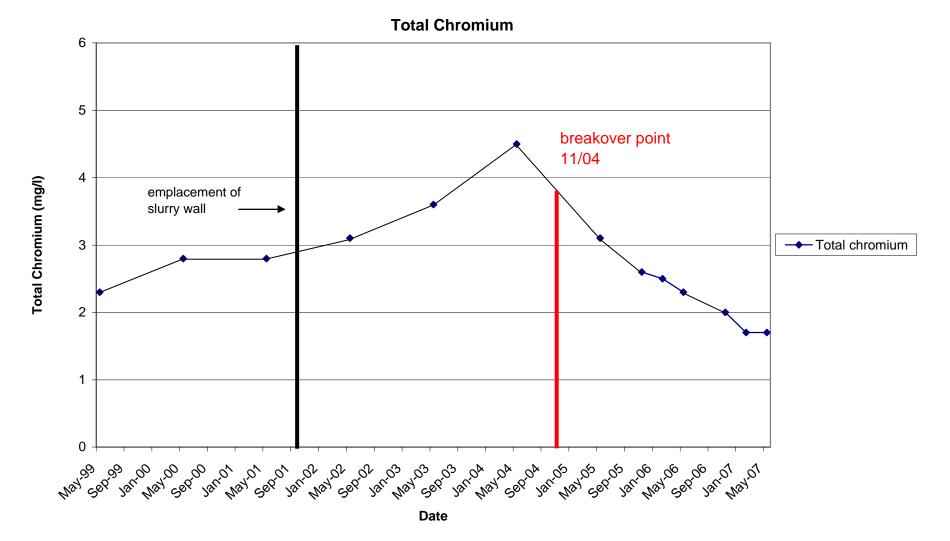


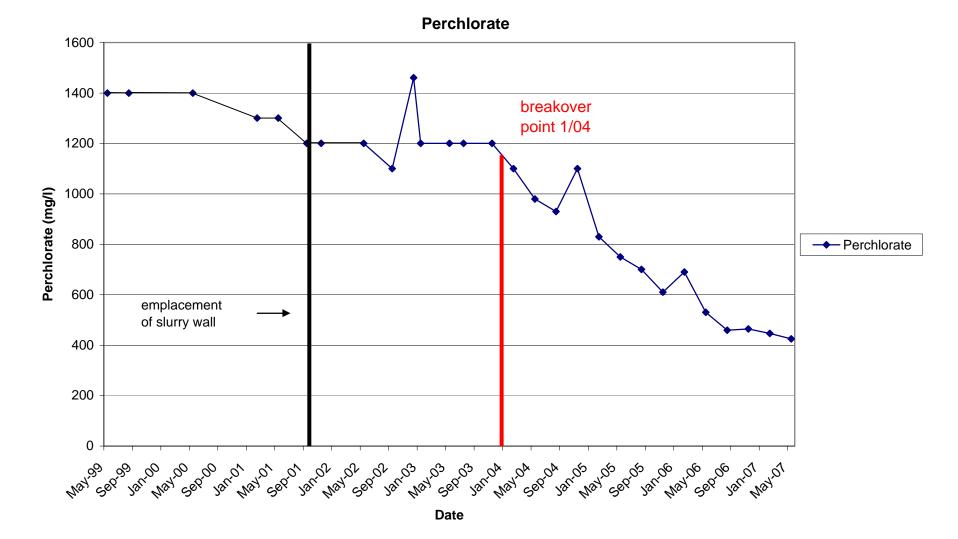

Total Chromium

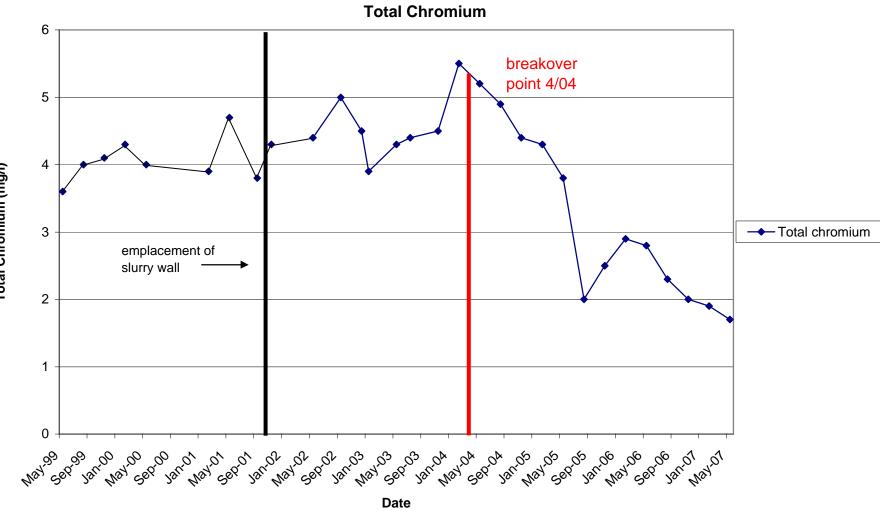


Total Chromium

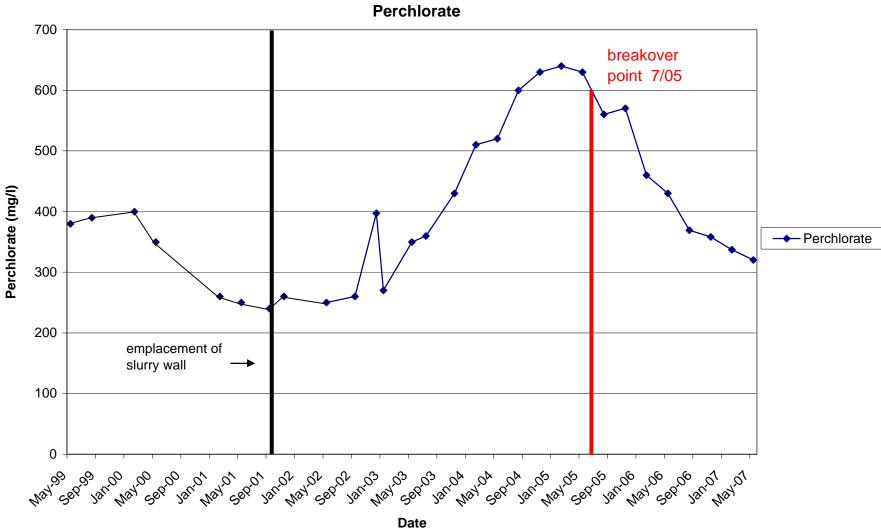



Well M-87

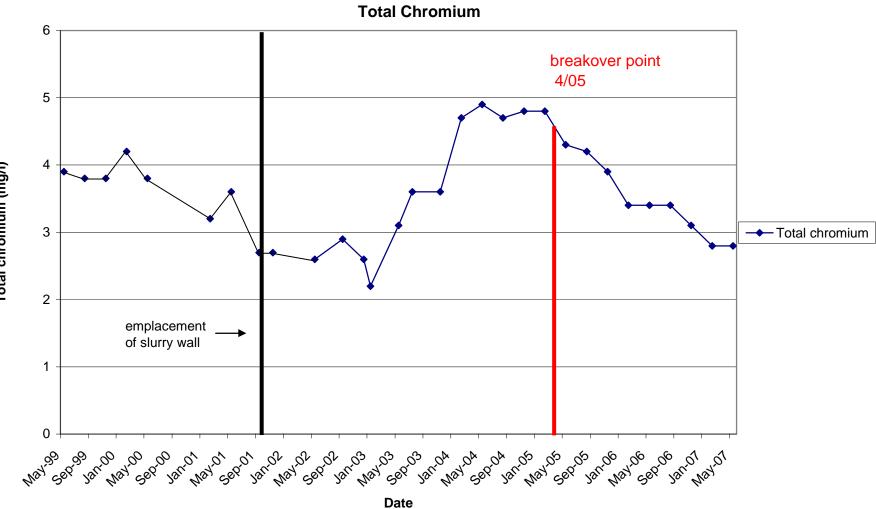

Well M-87



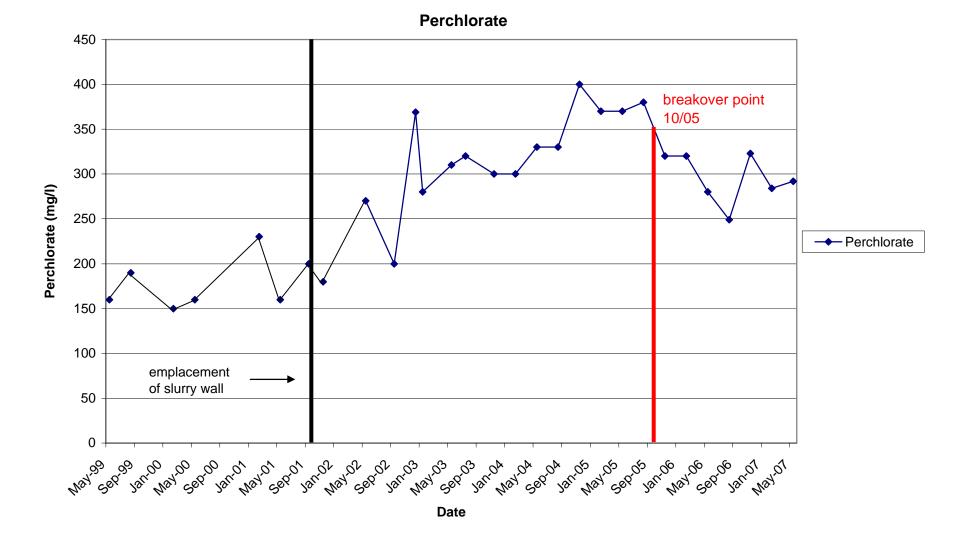
Perchlorate



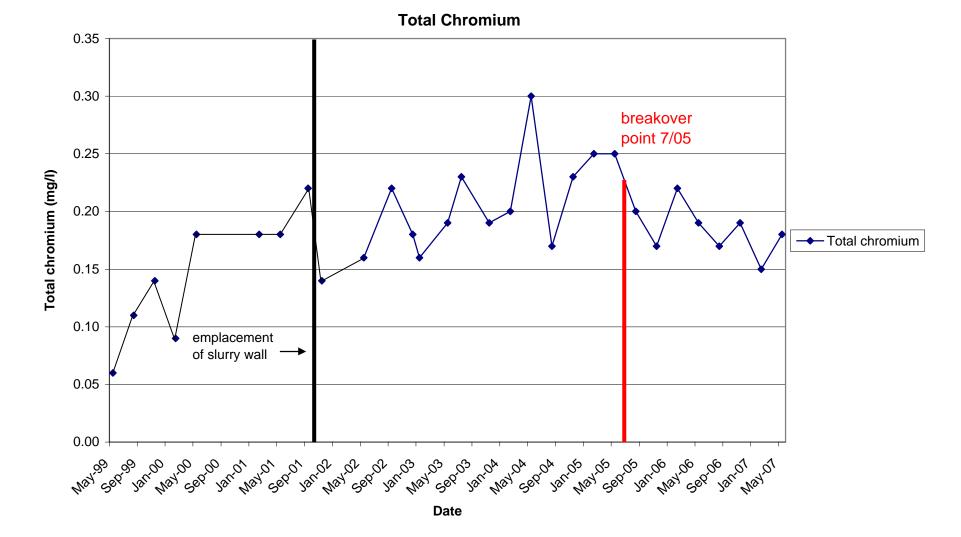
Well M-95



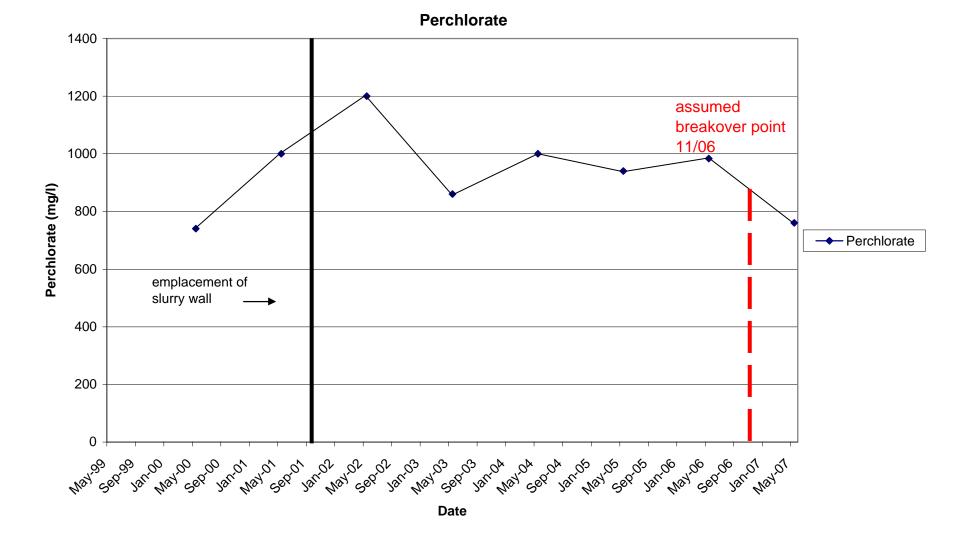
Total Chromium (mg/l)

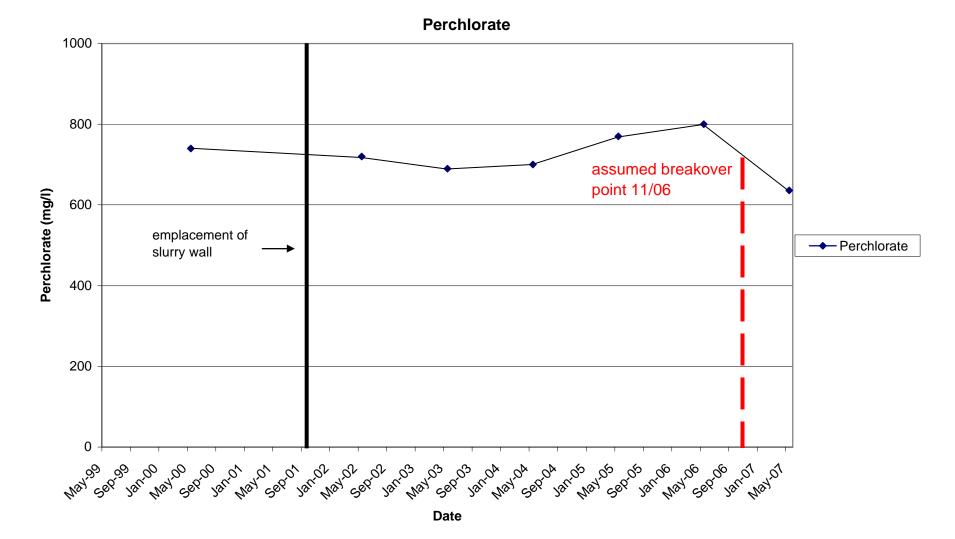


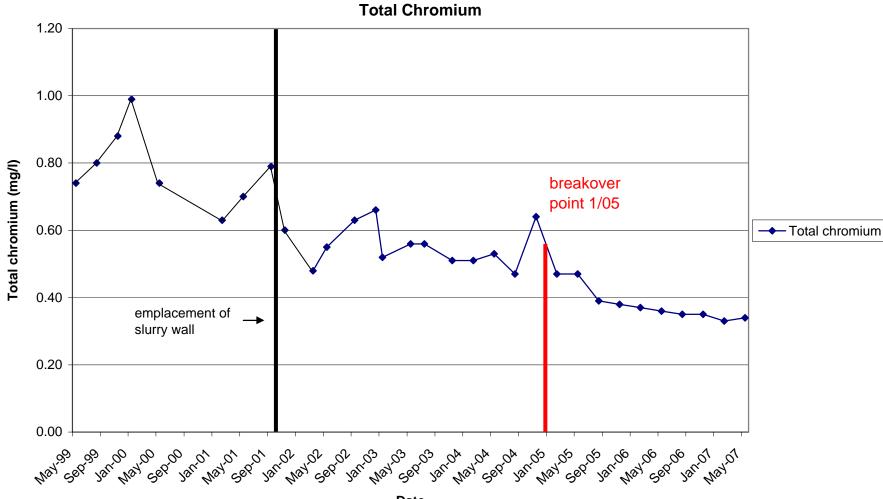
Well PC-54

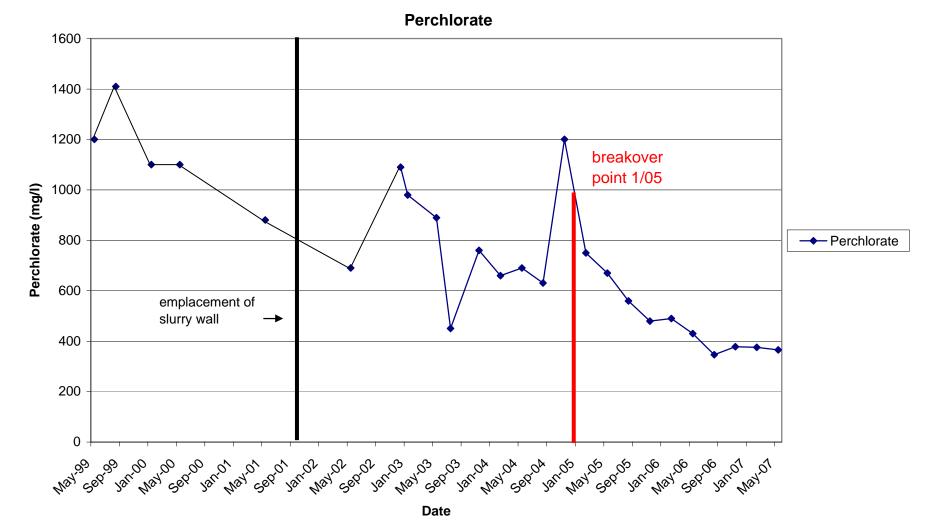


Well PC-54


Total chromium (mg/l)


Well PC-37


Well PC-37


Well PC-64

Well PC-65

Well PC-72

Well PC-72

APPENDIX C DATA TABLE PRECHLORATE AND TOTAL CHROMIUM TIME SERIES PLOTS REVISED CAPTURE ZONE ANALYSIS - INTERCEPTOR WELL FIELD AND BARRIER

(all values are in mg/L)	(all	values	are	in	mg/L)
--------------------------	------	--------	-----	----	-------

b S.C. 4600 4300 4400 4400 4400 4400 4000 4000 3800 3600 3600 2300 4100 2200 3000 2700	Cr 2.50 2.40 2.50 2.40 2.80 2.80 2.90 3.00 3.30 2.70 3.20 3.60 3.70 4.00 4.40	CIO4 1600 1500 1700 1600 1400 1400 1700 1700 1600	Lab S.C. 12800 12200 11900 11800 11100 11200 11100 10800 11100 11200 11100	Cr 12.0 11.0 11.0 11.0 9.5 9.2 9.0	CIO4 770 780 750 670	Lab S.C. 12900 12800 12400 12400 11700 11400 10800	Cr 4.90 4.20 4.70 4.80 4.20 4.70	CIO4 1300 1200 1300 1200	Lab S.C. 13800 14100 14100 14300	Cr 0.80 1.60 2.40	CIO4 1500 1600	Lab S.C. 9120	Cr 1.8	CIO4 212	Lab S.C.	Cr 2.3	CLO4 1600	Lab S.C. 14300	Cr 3.6	CIO4 1400
4300 4400 4400 4000 4100 4400 3800 3800 3800 3600 1200 3600 0300 2300 4100 2200 3000	2.40 2.50 2.40 2.80 2.90 3.00 3.30 2.90 2.70 3.20 3.60 3.70 4.00	1500 1700 1600 1400 1600 1400 1700 1700	12200 11900 11800 11100 11200 11100 10800 11100 11200	11.0 11.0 10.0 9.5 9.2 9.0	780 750 670	12800 12400 12400 11700 11400	4.20 4.70 4.80 4.20	1200 1300	14100 14100	1.60	1600	9120	1.8	212		2.3	1600	14300	3.6	1400
4300 4400 4400 4000 4100 4400 3800 3800 3800 3600 1200 3600 0300 2300 4100 2200 3000	2.40 2.50 2.40 2.80 2.90 3.00 3.30 2.90 2.70 3.20 3.60 3.70 4.00	1500 1700 1600 1400 1600 1400 1700 1700	12200 11900 11800 11100 11200 11100 10800 11100 11200	11.0 11.0 10.0 9.5 9.2 9.0	780 750 670	12800 12400 12400 11700 11400	4.20 4.70 4.80 4.20	1200 1300	14100 14100	1.60	1600									
4400 4400 4000 4100 4400 3800 3800 3800 3600 1200 3600 0300 2300 4100 2200 3000	2.50 2.40 2.80 2.90 3.00 3.30 2.90 2.70 3.20 3.60 3.70 4.00	1700 1600 1400 1600 1400 1700 1700	11900 11800 11100 11200 11100 10800 11100 11200	11.0 11.0 9.5 9.2 9.0	750 670	12400 12400 11700 11400	4.70 4.80 4.20	1300	14100											1
4400 4000 4100 4400 3800 3800 3800 3600 1200 3600 0300 2300 4100 2200 3000	2.40 2.80 2.90 3.00 3.30 2.90 2.70 3.20 3.60 3.70 4.00	1600 1400 1600 1400 1700 1700	11800 11100 11200 11100 10800 11100 11200	11.0 10.0 9.5 9.2 9.0	670	12400 11700 11400	4.80 4.20				1500									1
4000 4100 4400 3800 3800 3600 1200 3600 0300 2300 4100 2200 3000	2.80 2.90 3.00 3.30 2.90 2.70 3.20 3.60 3.70 4.00	1400 1600 1400 1700 1700	11100 11200 11100 10800 11100 11200	10.0 9.5 9.2 9.0		11700 11400	4.20	1200		1.80	1700	8870	2.1	170				14400	4.0	140
4100 4400 3800 3800 3600 1200 3600 0300 2300 4100 2200 3000	2.80 2.90 3.00 3.30 2.90 2.70 3.20 3.60 3.70 4.00	1600 1400 1700 1700	11200 11100 10800 11100 11200	9.5 9.2 9.0		11400			14400	3.20	1700	00/0	2.1	170				14400	4.0	140
4400 4000 3800 3800 3600 1200 3600 0300 2300 4100 2200 3000	2.90 3.00 3.30 2.90 2.70 3.20 3.60 3.70 4.00	1600 1400 1700 1700	11100 10800 11100 11200	9.2 9.0			4.70		14500	3.90		8790	1.9							
4000 3800 3800 1200 3600 0300 2300 4100 2200 3000	3.00 3.30 2.90 2.70 3.20 3.60 3.70 4.00	1600 1400 1700 1700	10800 11100 11200	9.0		10600	2 00											14400	4.4	
3800 3800 1200 3600 0300 2300 4100 2200 3000	3.30 2.90 2.70 3.20 3.60 3.70 4.00	1600 1400 1700 1700	11100 11200				3.90		14400	4.00		8680	1.6					14400	4.1	
3800 3800 1200 3600 0300 2300 4100 2200 3000	3.30 2.90 2.70 3.20 3.60 3.70 4.00	1600 1400 1700 1700	11200			10100	0.70	000	14000	4.00	1 400	5540	4 5	110						
3800 3600 1200 3600 0300 2300 4100 2200 3000	2.90 2.70 3.20 3.60 3.70 4.00	1400 1700 1700			600	10100	3.70	890	14200	4.20	1400	5540	1.5	110				1 1000	4.0	
3600 1200 3600 0300 2300 4100 2200 3000	2.70 3.20 3.60 3.70 4.00	1700 1700	11100	8.9	670	9800	4.60	1000	14100	5.40	1900	8500	1.7	140				14200	4.3	
1200 3600 0300 2300 4100 2200 3000	3.20 3.60 3.70 4.00	1700		10.0	650	9900	4.10	940	13100	4.20	1400	8400	1.5	120						
3600 0300 2300 4100 2200 3000	3.60 3.70 4.00		11200	9.1	760	9600	4.20	990	14000	4.50	1700	8400	1.7	140						
0300 2300 4100 2200 3000	3.70 4.00	1600	11200	8.9	800	9000	4.30	1600	13300	4.40	1900	8050	1.7	120		2.8	2100	14000	4.0	140
2300 4100 2200 3000	4.00		11200	10.0	600	8700	4.30	920	12800	4.50	1600	8580	1.6	130						
4100 2200 3000		1600	8300	11.0	730	6700	4.30	830	10000	4.20	1400	6020	1.6	120						
2200 3000	4.40	2000	11100	11.0	770	8300	4.30	850	12500	4.20	1400	7760	1.7	150						
3000		1800	12200	14.0	900	9000	5.10	1000	13600	5.20	1700	8380	2.0	140						
	4.50	1600	11100	13.0	720	8100	4.70	840	11900	4.90	1400	7510	1.9	150						
2700	4.30	1600	10100	14.0	800	8700	5.10	850	12900	5.50	1400	8000	2.2	150						
	4.10	1800	12200	14.0	1100	8800	4.40	1100	12600	5.10	1700	8100	2.0	190						
2800	3.80	1700	12800	14.0	900	8800	4.80	860	12800	5.50	1500	8090	2.0	180						
2800	3.70	1700	12600	14.0	850	8800	5.10	900	12600	5.80	1500	7950	2.0	170				13600	3.9	13
2500	3.50	1900	13400	15.0	990	9700	5.40	880	12900	6.10	1500	8160	2.2	190					0.0	
2900	3.50	1700	13900	16.0	960	10800	7.30	910	12800	5.90	1500	8250	2.1	200						
2800	3.60	1800	13700	17.0	990	11300	8.40	1100	12600	6.20	1500	8250	2.1	210		2.8	1300	13300	4.7	13
2000 3200	3.40	1800	14200	17.0	1000	12200	9.50	1000	13200	6.50	1400	8520	2.1	210		2.0	1300	15500	4.7	13
2000	3.50	1900	13500	18.0	1100	11300	10.00	1100	12100	6.60	1400	7950	2.2	210						
1900	3.50	1900	14000	21.0	1100	11200	10.00	1100	12200	6.90	1500	7890	2.7	250				10710		1
1600	3.50	1800	14200	21.0	1300	11200	9.40	1200	11900	6.50	1700	7930	2.5	150				12710	3.8	120
1500	3.60	1800	14400	21.0	1300	11100	11.00	1000	11800	7.00	1500	7950	2.7	290						1
1500	3.60	1800	14200	20.0	1500	11100	11.00	1000	11800	7.00	1500	8010	3.1	290				14000	4.3	120
2900	3.40	1900	16400	21.0	1600	12700	10.00	1000		6.70	1000	8520	2.7	270						
1600	3.50	1900	14700	21.0	1600	10000	9.20	1000		6.60	1600	8250	3.0	280						
1230	3.40	1700	14700	19.0	1600	9990	7.80	910				8210	3.2	280						
2500	3.40		14100	23.0	1700															1
1600	2.10	1430	15800	20.0	1800	8820	5.70	610	12200	3.90	1430	8000	3.3			3.1	1300	14400	4.4	120
9440	3.30		15080	20.0		5570	3.10	350				9180	4.5	350				12030	5.0	110
3510	2.30	1100	14300	11.0		4740	1.90	340	10900	4.70	1340	11100	7.8	853				13100	4.5	146
7680	1.70	840	14800	13.0	1900	4200	1.70	230	9650	3.80	980	11500	10.0	1000				12340	3.9	120
700	1.80	810	13350	13.0	1600	4230	1.40	220	7920	2.70	620	13200	12.0	1500		3.6	1300	12820	4.3	120
7630	1.90	830	10670	10.0	1300	3840	1.40	200	6720	1.90	430	12200	12.0	1400				12460	4.4	120
7200	1.60	680	8590	8.1	820	3670	1.10	160	5150	1.10	220	10620	10.0	1100				12950	4.5	12
7030	1.60	720	7020	7.1	670	3670	1.50	180	6510	1.00	270	9680	11.0	1000				12270	5.5	11
600 6730	1.50	730	5630	4.9	210	3150	1.10	140	6350	0.80	320	7780	7.2	750		4.5	1200	11700	5.2	98
6590	1.50	770	5900	5.1	580	0.00		. 10	6630	0.86	400	6300	5.5	550				11200	4.9	93
5140	1.30	990	4060	3.9	450	2660	0.83	131	5410	0.60	330	5320	4.5	480				10600	4.4	11
5000	1.20	610	2960	2.0	200	2780	1.00	130	5360	0.50	200	4280	2.8	260				8840	4.4	83
1440			2960 3370	2.0		2780 3170			5360 5840			4280 4220		260 240		21	1000	8840 8610	4.3 3.8	
	1.00	690 400			230		0.95	150		0.70	240		2.6			3.1	1000			75
111/1/1	1.10	490	2080	0.9	100	3210	1.00	180	4270	0.34	84	3830	2.5	250		0.0	000	7780	2.0	70
1940																				61
5750																				69
5750 5400			2520			2350			5160			3000	1.4			2.3	760	9360		53
5750	0.97	462		1.0	92		0.35	63		0.19	72		1.4	123					2.3	45
5750 5400	0.92	505		1.8	155		0.25	6		0.25	71		1.1	110		2	670		2.0	46
5750 5400	0.82	449		1.3	116		0.26	43		0.35	98		0.98	85		1.7	623		1.9	44
5750 5400	0.02	436		1.5	121		0.24	13		0.54	100		1.00	92		1.7	612		1.7	42
5750 5400	0.88																			1
		1.10 1.10 1.00 0.97 0.92 0.82	1.10 620 1.10 620 1.00 560 0.97 462 0.92 505 0.82 449	1.10 620 1510 1.10 620 2390 1.00 560 2520 0.97 462 0.92 0.82 449 0.000		1.1062015100.5581.1062023901.31201.0056025201.31500.974621.0920.925051.81550.824491.3116	1.1062015100.55828501.1062023901.312029101.0056025201.315023500.974621.092920.925051.8155160.824491.311616	1.1062015100.55828500.961.1062023901.312029100.621.0056025201.315023500.400.974621.0920.350.925051.81550.250.824491.31160.26		1.1062015100.55828500.9616036001.1062023901.312029100.6211052001.0056025201.315023500.407151600.974621.0920.3563630.925051.81550.2560.824491.31160.2643	1.1062015100.55828500.9616036000.261.1062023901.312029100.6211052000.291.0056025201.315023500.407151600.260.974621.0920.35630.190.925051.81550.2560.250.824491.31160.26430.35	1.1062015100.55828500.9616036000.26681.1062023901.312029100.6211052000.291301.0056025201.315023500.407151600.26920.974621.0920.35630.19720.925051.81550.2560.25710.824491.31160.26430.3598	1.1062015100.55828500.9616036000.266828701.1062023901.312029100.6211052000.2913032901.0056025201.315023500.407151600.269230000.974621.0920.35630.1972100721000.925051.81550.2560.25711001001000.824491.31160.26430.3598100	1.1062015100.55828500.9616036000.266828702.01.1062023901.312029100.6211052000.2913032901.81.0056025201.315023500.407151600.269230001.40.974621.0920.35630.19721.40.925051.81550.2560.25711.10.824491.31160.26430.35980.98	1.1062015100.55828500.9616036000.266828702.02101.1062023901.312029100.6211052000.2913032901.81701.0056025201.315023500.407151600.269230001.41300.974621.0920.35630.19721.41230.925051.81550.2560.25711.11100.824491.31160.26430.35980.9885	1.1062015100.55828500.9616036000.266828702.02101.1062023901.312029100.6211052000.2913032901.81701.0056025201.315023500.407151600.269230001.41300.974621.0920.35630.19721.41230.925051.81550.2560.25711.11100.824491.31160.26430.35980.9885	1.10 620 1510 0.5 58 2850 0.96 160 3600 0.26 68 2870 2.0 210 2.6 1.10 620 2390 1.3 120 2910 0.62 110 5200 0.29 130 3290 1.8 170 2.5 1.00 560 2520 1.3 150 2350 0.40 71 5160 0.26 92 3000 1.4 130 2.3 0.97 462 1.0 92 0.35 63 0.19 72 1.4 123 0.92 505 1.8 155 0.25 6 0.25 71 1.1 110 2 0.82 449 1.3 116 0.26 43 0.35 98 0.98 85 1.7	1.10 620 1510 0.5 58 2850 0.96 160 3600 0.26 68 2870 2.0 210 2.6 800 1.10 620 2390 1.3 120 2910 0.62 110 5200 0.29 130 3290 1.8 170 2.5 820 1.00 560 2520 1.3 150 2350 0.40 71 5160 0.26 92 3000 1.4 130 2.3 760 0.97 462 1.0 92 0.35 63 0.19 72 1.4 123 760 0.92 505 1.8 155 0.25 6 0.25 71 1.1 110 2 670 0.82 449 1.3 116 0.26 43 0.35 98 0.98 85 1.7 623	1.10 620 1510 0.5 58 2850 0.96 160 3600 0.26 68 2870 2.0 210 2.6 800 8530 1.10 620 2390 1.3 120 2910 0.62 110 5200 0.29 130 3290 1.8 170 2.5 820 9380 9380 9380 9380 9380 9380 9380 9380 9.9 1.0 92 0.40 71 5160 0.26 92 3000 1.4 130 2.3 760 9360 <td>1.10 620 1510 0.5 58 2850 0.96 160 3600 0.26 68 2870 2.0 210 2.6 800 8530 2.5 1.10 620 2390 1.3 120 2910 0.62 110 5200 0.29 130 3290 1.8 170 2.5 820 9380 2.9 1.00 560 2520 1.3 150 2350 0.40 71 5160 0.26 92 3000 1.4 130 2.3 760 9360 2.8 0.97 462 1.0 92 0.35 63 0.19 72 1.4 123 - - 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.0 2.0 2.3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0<</td>	1.10 620 1510 0.5 58 2850 0.96 160 3600 0.26 68 2870 2.0 210 2.6 800 8530 2.5 1.10 620 2390 1.3 120 2910 0.62 110 5200 0.29 130 3290 1.8 170 2.5 820 9380 2.9 1.00 560 2520 1.3 150 2350 0.40 71 5160 0.26 92 3000 1.4 130 2.3 760 9360 2.8 0.97 462 1.0 92 0.35 63 0.19 72 1.4 123 - - 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.3 2.0 2.0 2.0 2.3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0<

Definitions

Specific Conductivity from Laboratory Analysis

Total Chromium

Lab S.C. Cr CIO4 Perchlorate

mg/L milligrams per liter

APPENDIX C DATA TABLE PRECHLORATE AND TOTAL CHROMIUM TIME SERIES PLOTS REVISED CAPTURE ZONE ANALYSIS - INTERCEPTOR WELL FIELD AND BARRIER (all values are in mg/L)

DATE		PC-54			PC-37			M-48		PC-64				PC-65			PC-72	
	Lab S.C.	Cr	CIO4	Lab S.C.	Cr	CIO4	Lab S.C.	Cr	CIO4	Lab S.C.	Cr	CIO4	Lab S.C.	Cr	CIO4	Lab S.C.	Cr	CIO4
May-99	10600	3.9	380	9350	0.06	160	10200	5.80	450								0.74	1200
Jun-99																		
Jul-99																		
Aug-99	10700	3.8	390	9400	0.11	190	9488	5.40	430								0.80	1410
Sep-99																		
Oct-99							9240	5.50										
Nov-99	10600	3.8		9100	0.14		9330	5.20									0.88	
Dec-99																		
Jan-00							9260	5.40	380								0.99	1100
Feb-00	10500	4.2	400	9210	0.09	150	9340	6.00	410									
Mar-00							9250	5.40	370									
Apr-00	10000	0.0	050	0040	0.40	100	9200	4.30	390	10070		740	40700		740		0.74	4400
May-00	10300	3.8	350	8940	0.18	160	9200	4.30	390	10870		740	10780		740		0.74	1100
Jun-00							8930	4.50	350									
Jul-00							6890 8630	4.40 4.30	340 380									
Aug-00 Sep-00							9880	4.30	400									
Oct-00							9880 8510	4.60	180									
Nov-00							9230	4.80	400									
Dec-00							9230 9090	4.40	390									
Jan-01							9090 9190	4.40	380									
Feb-01	9520	3.2	260	8930	0.18	230	9120	4.40	390								0.63	
Mar-01	3320	0.2	200	0300	0.10	200	9220	4.40	490								0.00	
Apr-01							9440	4.40	380									
May-01	9380	3.6	250	8940	0.18	160	9420	4.50	370	10720		1000					0.70	880
Jun-01		0.0	-00	00.0	0110		9690	4.50	390								0.1.0	000
Jul-01							9060	4.90	430									
Aug-01							9120	5.30	430									
Sep-01	8950	2.7	240	8460	0.22	200	9170	5.40	450								0.79	
Oct-01							9230	6.30	510									
Nov-01	9190	2.7	260	8740	0.14	180	9230	6.30	510								0.60	
Dec-01							9370	6.60	530									
Jan-02							9370	7.40	590									
Feb-02							9960	7.80	630									
Mar-02																	0.48	
May-02	9650	2.6	250	9370	0.16	270	12000	10.00	850	13500		1200	10800		720		0.55	690
Sep-02	8800	2.9	260	8460	0.22	200											0.63	
Dec-02	9600	2.6	397	9340	0.18	369	10600	10.00	1110								0.66	1090
Jan-03	8990	2.2	270	8850	0.16	280	9750	6.80	970								0.52	980
May-03	9530	3.1	350	9320	0.19	310	8900	7.90	870	11400		860	9920		690		0.56	890
Jul-03	9520	3.6	360	9230	0.23	320	8170	7.00	770								0.56	450
Nov-03	9960	3.6	430	9510	0.19	300	7430	5.20	590								0.51	760
Feb-04	9620	4.7	510	9080	0.20	300	6440	4.50	550	11700		1000	0000		700		0.51	660
May-04	9390	4.9	520	9020	0.30	330	5760 5220	3.70	410	11760		1000	9090		700		0.53	690 620
Aug-04 Nov-04	9340 9050	4.7 4.8	600 630	8760 8780	0.17 0.23	330 400	5220 4760	3.00 2.40	400 593								0.47 0.64	630 1200
Feb-05	9030 7830	4.8	640	7770	0.23	400 370	3950	2.40	290								0.04	750
May-05	7560	4.3	630	7850	0.25	370	4120	2.30	300	9790	2.7	940	7800	6.4	770		0.47	670
Aug-05	7580	4.3	560	7770	0.25	380	4120	2.40	280	3130	2.1	340	1000	0.4	110		0.47	560
Nov-05	7880	3.9	570	8240	0.20	320	4470	2.00	200								0.39	480
Feb-06	8360	3.4	460	6400	0.17	320	4610	1.90	200								0.37	490
May-06	8430	3.4	430	9300	0.19	280	4520	1.50	190	10000	3.4	984	9510	4.2	800		0.36	430
Aug-06	0.00	3.4	369	5000	0.13	249		1.40	216		0.1		50.0				0.35	347
Nov-06		3.1	358		0.19	323		1.30	169								0.35	378
Feb-07		2.8	337		0.15	284		1.10	144								0.33	376
May-07		2.8	320		0.18	292		1.00	163		2.9	760		3.6	636		0.34	365
-																		

Definitions

Lab S.C. Cr CIO4 Specific Conductivity from Laboratory Analysis

Total Chromium

Perchlorate

mg/L milligrams per liter

