


## LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

August 15, 2008

ERM 2525 Natomas Park Drive, Suite 350

Sacramento, CA 95833

ATTN: Ms. Maria Barajas-Albalawi

SUBJECT: BRC Tronox Parcel G, Data Validation

Dear Ms. Barajas-Albalawi

Enclosed are the final validation reports for the fractions listed below. This SDG was received on July 28, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

## **LDC Project # 19188:**

| SDG#      | <u>Fraction</u>                                                                                                                                                                                              |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F8F120180 | Volatiles, Semivolatiles, Chlorinated Pesticides, Polychlorinated Biphenyls, Metals, Wet Chemistry, Gasoline Range Organics, Diesel Range Organics, Polynuclear Aromatic Hydrocarbons, Dioxins/Dibenzofurans |

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

**Operations Manager/Senior Chemist** 

| §1.4.5                                             |                                                           | ارر           | Ţ         |           |          | T        | T      | T            | Т                  | Τ         | Π            |              | l .      |              |   |                                                  |   | · · · · · · · · · · · · · · · · · · · |          |          |   |          |   |   |   |   |          |   |          | T                   | T        | 57     |
|----------------------------------------------------|-----------------------------------------------------------|---------------|-----------|-----------|----------|----------|--------|--------------|--------------------|-----------|--------------|--------------|----------|--------------|---|--------------------------------------------------|---|---------------------------------------|----------|----------|---|----------|---|---|---|---|----------|---|----------|---------------------|----------|--------|
|                                                    |                                                           | s /           | $\dashv$  | 4         | 4        | -        | -      | +            | ╀                  | ┡         |              |              | _        |              |   |                                                  |   |                                       |          |          |   | _        |   |   |   |   |          |   |          |                     | _        | 0      |
|                                                    |                                                           | S W           |           | +         | +        | +        |        | +            | ╁                  | ╁         | ┢            | ļ            |          | H            |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          | $\dashv$            | +        | _      |
|                                                    |                                                           | $\dashv$      | $\dashv$  | $\dashv$  | +        | ╁        | ╁      | +            | ╁                  | ╁         | ╁            | -            |          | <del> </del> |   |                                                  |   |                                       |          |          |   | <br>     | _ | - |   |   | $\vdash$ |   |          | $\dashv$            | $\dashv$ | -      |
|                                                    |                                                           | 8             | $\dashv$  | +         | +        | -        |        | +            | +                  | ╁         | <u> </u>     | $\vdash$     |          | <u> </u>     |   |                                                  |   |                                       |          |          | _ | $\dashv$ |   |   |   |   | $\vdash$ |   |          | $\dashv$            | +        |        |
|                                                    |                                                           | S /           | $\dashv$  |           | +        | +        | +      | +            | ╀                  | $\vdash$  | ┢            |              |          |              |   |                                                  |   |                                       |          |          |   | $\dashv$ |   | _ |   |   | _        |   |          | -+                  | $\dashv$ | _      |
|                                                    |                                                           | ≯             | _         |           | +        | +        | $\bot$ | +            | +                  | <u> </u>  |              | ┝            |          |              |   |                                                  |   |                                       |          |          |   | 4        | _ |   |   |   |          |   |          |                     | $\dashv$ | _      |
|                                                    | O&G<br>(9071B)                                            | S             | 3         | -         | 4        | 4        | _      | _            | ╂                  | ╄-        | -            |              |          |              |   |                                                  |   |                                       |          |          |   | $\dashv$ | _ | _ |   |   | _        | L |          |                     | $\dashv$ | 4      |
|                                                    |                                                           | ≥             | _         | 0         |          |          |        | -            | +                  | ╁         | -            | <u> </u>     | _        |              |   |                                                  |   |                                       |          |          |   |          | _ |   |   |   |          |   | <u> </u> |                     | $\dashv$ |        |
|                                                    | SO <sub>4</sub>                                           | S             | 3         | -         | 4        | +        | $\bot$ | $\downarrow$ | _                  | ļ         |              | <u> </u>     |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   | _        | $\vdash$            | +        | _      |
| . 1                                                | <b></b>                                                   | ≯             | 0         | ٥         | 4        | $\bot$   | _      | _            | _                  | <u> </u>  | _            | _            | _        |              |   |                                                  |   |                                       |          |          |   | <br>     |   |   |   |   |          |   |          | $\vdash \vdash$     | -        | _      |
|                                                    | NO <sub>2</sub><br>NO <sub>2</sub><br>O-OP,               | S             | 3         | -         | _        | $\perp$  | 1      | _            | <u> </u>           | _         | <u> </u>     | ļ            | <u> </u> |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     | 4        | _      |
|                                                    |                                                           | ≯             | 0         | 0         | _        | _        | 1      | $\perp$      | $oldsymbol{\perp}$ | L         | L            | _            |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     | _        | _      |
| (5                                                 | Bromide Chloride<br>Bromine Chlorine<br>Chlorate Fluoride | S             | က         | •         |          |          |        | _            | _                  |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     |          | _      |
| <u>ار</u>                                          | S S S                                                     | ≥             | ٥         | 0         |          |          |        |              |                    |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     |          | _      |
| ırc                                                | nide<br>nine<br>orate                                     | S             | က         | -         |          |          |        |              |                    |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     |          | *      |
| P                                                  | Bror<br>Bror<br>Chlc                                      | ≯             | ٥         | Q         |          |          |        |              |                    |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     |          | •      |
| ox,                                                | Dioxins<br>(8290)                                         | S             | 3         |           |          |          |        |              |                    |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     |          | ,      |
| on                                                 | Dioxins<br>(8290)                                         | ≯             | 0         | 0         |          |          |        |              |                    |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     |          | (      |
| F                                                  | Hs<br>10)                                                 | S             | 3         | -         |          |          |        |              |                    |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     |          | ,      |
| LDC #19188 (ERM-Sacramento / BRC Tronox, Parcel G) | PAHs<br>(8310)                                            | ≯             | 0         | 0         |          |          |        |              |                    |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     |          | (      |
| 7                                                  | 0 5)                                                      | S             | 3         | -         |          |          |        |              |                    |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     |          | ,      |
| nto                                                | DRO<br>(8015)                                             | ≯             |           | 0         | 7        | $\top$   | 1      |              | T                  |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          | П                   | T        |        |
| шe                                                 | <u> </u>                                                  | s             |           | Ŧ         |          |          |        |              | T                  | 1         | 1            | <u> </u>     |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     | 1        | ,      |
| Sa                                                 | GRO<br>(8015)                                             | 3             |           | 0         | $\dashv$ | $\dashv$ | +      | +            | $\dagger$          | $\vdash$  | ╁            | ┢            |          |              |   | <del>                                     </del> |   |                                       | $\vdash$ |          |   |          |   |   |   |   |          |   | ļ        | $\vdash$            | 7        |        |
| Sa                                                 |                                                           | S             | 3         | -         | $\dashv$ | $\dashv$ |        |              | +                  | $\dagger$ | ╁            | ╁            |          |              |   | _                                                |   |                                       |          | $\vdash$ |   |          |   |   |   |   |          |   |          | $\vdash$            | 十        | _      |
| Ž                                                  | Metals<br>(SW846)                                         | 3             |           | 200       | $\dashv$ | $^{-}$   | -      | +-           | +                  | 十         | ╁            |              | T        | _            |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     | 十        | _      |
| (ER                                                |                                                           | S             | 3         |           | +        | +        | +      | +            |                    | ╁         | <del> </del> | <del> </del> | ╁        | _            |   | $\vdash$                                         |   |                                       |          |          |   | -        |   |   |   |   |          |   |          | Н                   | $\dashv$ |        |
| 88                                                 | PCBs<br>(8082)                                            | ┝╼┽           |           | 0         | +        | ╅        | -      | +            |                    | +         |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          | $\vdash$            |          | -      |
| 91                                                 |                                                           | ≥             |           |           | -        | +        | -      | -            | ╁                  | ┢         | ╁            |              | ┝        |              |   | _                                                | _ |                                       |          |          |   | <br>     |   |   |   | _ |          |   |          | $\vdash$            | $\dashv$ | _      |
| #                                                  | Pest.<br>(8081A)                                          | S             | 3         | •         | $\dashv$ | +        | +      | +            | ╀                  | ╀         | ╀            | H            | ┝        | _            |   | L                                                |   | -                                     | _        |          |   | <br>     |   |   |   |   |          |   |          |                     | $\dashv$ | _      |
|                                                    | 8                                                         | ≥             | 0         | 0         | _        | +        | - -    | +            | -                  | +         | ╀            | L            | ┝        |              |   |                                                  |   |                                       | <u> </u> |          |   | <br>     |   |   |   |   |          |   | _        | $\vdash$            | $\dashv$ | _      |
|                                                    | SVOA<br>(8270C)                                           | S             | 3         |           | $\dashv$ | +        | +      | +            | +                  | +         | ╀            | ┞            | L        |              |   | _                                                | _ |                                       |          |          |   |          |   |   |   |   | _        |   |          | $\square$           |          | _      |
|                                                    | 8 8                                                       | ≱             | ٥         | 0         | _        | +        | _      | _            | -                  | +         | ├-           | ┡            | $\vdash$ |              | _ | _                                                |   |                                       |          |          |   |          |   |   |   |   | -        | _ |          | $\vdash$            | $\dashv$ | _      |
|                                                    | VOA<br>(8260B)                                            | S             | 3         | -         | _        | _        | _      | _            | _                  | -         | <u> </u>     | ┞            | _        |              |   | _                                                |   |                                       |          |          |   |          |   |   | _ |   | _        | _ | _        |                     | 4        | _      |
|                                                    | > 8                                                       | 3             |           | 0         | 4        | 4        | $\bot$ | +            | lacksquare         | igapha    | <u> </u>     | ↓_           | _        |              |   | _                                                |   | <u> </u>                              |          |          |   |          |   |   | _ |   |          |   |          |                     | _        | _      |
|                                                    | (3)<br>DATE<br>DUE                                        |               | 08/18/08  | 08/18/08  |          |          |        |              |                    |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     |          |        |
|                                                    | 00                                                        |               |           |           | _        | 4        | $\bot$ | $\bot$       | _                  | 1         | ┡            | _            | _        |              |   |                                                  |   |                                       |          |          |   |          |   |   |   | ļ |          |   |          |                     | 4        | _      |
|                                                    | E 6                                                       |               | 8/08      | 8/08      |          |          |        |              |                    |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     |          |        |
|                                                    | DATE<br>REC'D                                             |               | 07/28/08  | 07/28/08  | _        |          |        |              |                    |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     | _        |        |
| 80/20                                              |                                                           | ]<br> -<br> - | õ         | 8         |          | T        |        |              |                    |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     |          |        |
| ಜ                                                  | SDG#                                                      | Water/Soil    | F8F120180 | F8F120180 |          |          |        |              |                    |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     |          | ۵<br>۲ |
| 80/20                                              | i is                                                      | Wai           | F8F       | F8F.      |          |          | ĺ      |              |                    |           |              |              |          |              |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          |                     |          | ۲      |
|                                                    | 0                                                         | Matrix:       | _         | _         | $\dashv$ | +        | +      | +            | -                  | -         | $\vdash$     | -            | -        |              | _ |                                                  | _ | _                                     | <u> </u> |          |   |          |   |   |   |   |          |   |          | $\vdash \downarrow$ | $\dashv$ | _      |
|                                                    | -DC                                                       | Σ             | ⋖         | ⋖         |          | 1        |        |              | 1                  | 1         |              |              |          | Ī            |   |                                                  |   |                                       |          |          |   |          |   |   |   |   |          |   |          | 1                   | - [      | Total  |

## Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel G

**Collection Date:** 

June 11, 2008

**LDC Report Date:** 

August 7, 2008

Matrix:

Soil/Water

Parameters:

Volatiles

Validation Level:

EPA Level III & IV

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F120180

TSB-GJ-09-10'

TSB-GJ-09-20'\*\*

TSB-GJ-09-30'

TSB-GJ-09-40'

TB-2 6/11/08

<sup>\*\*</sup>Indicates sample underwent EPA Level IV review

## Introduction

This data review covers 4 soil samples and one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent an EPA Level IV review. An EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

## I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

### II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

## III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination ( $r^2$ ) were greater than or equal to 0.990.

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were within method and validation criteria with the following exceptions:

| Date   | Compound | RRF (Limits)    | Associated Samples                   | Flag                                    | A or P |
|--------|----------|-----------------|--------------------------------------|-----------------------------------------|--------|
| 6/9/08 | Ethanol  | 0.00221 (≥0.05) | All soil samples in<br>SDG F8F120180 | J (all detects)<br>UJ (all non-detects) | Α      |

## IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria with the following exceptions:

| Date                  | Compound    | %D       | Associated Samples                    | Flag             | A or P |
|-----------------------|-------------|----------|---------------------------------------|------------------|--------|
| 6/19/08<br>(LCAL0317) | lodomethane | 67.71684 | All water samples in SDG<br>F8F120180 | J+ (all detects) | А      |

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds with the following exceptions:

| Date                  | Compound    | %D       | Associated Samples                    | Flag                                     | A or P |
|-----------------------|-------------|----------|---------------------------------------|------------------------------------------|--------|
| 5/28/08<br>(LICV9881) | lodomethane | 31.67513 | All water samples in SDG<br>F8F120180 | J+ (all detects)                         | А      |
| 5/28/08<br>(LICV9881) | 2-Hexanone  | 25.04476 | All water samples in SDG<br>F8F120180 | J- (all detects)<br>UJ (all non-detects) | Α      |

All of the continuing calibration RRF values were within method and validation criteria with the following exceptions:

| Date                  | Compound | RRF (Limits)    | Associated Samples                   | Flag                                    | A or P |
|-----------------------|----------|-----------------|--------------------------------------|-----------------------------------------|--------|
| 6/16/08<br>(FCAL1777) | Ethanol  | 0.00209 (≥0.05) | All soil samples in SDG<br>F8F120180 | J (all detects)<br>UJ (all non-detects) | А      |

## V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

Sample TB-2 6/11/08 was identified as a trip blank. No volatile contaminants were found in this blank with the following exceptions:

| Trip Blank ID | Sampling Date Compound |                 | Concentration | Associated Samples                |  |  |
|---------------|------------------------|-----------------|---------------|-----------------------------------|--|--|
| TB-2 6/11/08  | 6/11/08                | Dichloromethane | 0.47 ug/L     | All soil samples in SDG F8F120180 |  |  |

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks.

## VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

| Sample    | Surrogate          | %R (Limits)  | Compound          | Flag             | A or P |
|-----------|--------------------|--------------|-------------------|------------------|--------|
| 8172125MB | Bromofluorobenzene | 117 (79-115) | All TCL compounds | J+ (all detects) | P      |

## VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were not within QC limits. Since there were no associated samples, no data were qualified.

## VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Although the percent recoveries (%R) and relative percent difference (RPD) for some compounds in the LCS/LCSD were not within QC limits, the MS/MSD percent recoveries (%R) were within QC limits and no data were qualified.

## IX. Regional Quality Assurance and Quality Control

Not applicable.

## X. Internal Standards

All internal standard areas and retention times were within QC limits.

## XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

## XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

## XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

## XIV. System Performance

The system performance was acceptable for samples on which an EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

## XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

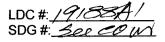
## XVI. Field Duplicates

No field duplicates were identified in this SDG.

## BRC Tronox Parcel G Volatiles - Data Qualification Summary - SDG F8F120180

| SDG       | Sample                                                             | Compound    | Flag                                     | A or P | Reason                          |
|-----------|--------------------------------------------------------------------|-------------|------------------------------------------|--------|---------------------------------|
| F8F120180 | TSB-GJ-09-10'<br>TSB-GJ-09-20'**<br>TSB-GJ-09-30'<br>TSB-GJ-09-40' | Ethanol     | J (all detects)<br>UJ (all non-detects)  | A      | Initial calibration (RRF)       |
| F8F120180 | TB-2 6/11/08                                                       | lodomethane | J+ (all detects)                         | А      | Continuing calibration (%D)     |
| F8F120180 | TB-2 6/11/08                                                       | lodomethane | J+ (all detects)                         | А      | Continuing calibration (ICV %D) |
| F8F120180 | TB-2 6/11/08                                                       | 2-Hexanone  | J- (all detects)<br>UJ (all non-detects) | A      | Continuing calibration (ICV %D) |
| F8F120180 | TSB-GJ-09-10'<br>TSB-GJ-09-20'**<br>TSB-GJ-09-30'<br>TSB-GJ-09-40' | Ethanol     | J (all detects)<br>UJ (all non-detects)  | А      | Continuing calibration (RRF)    |

BRC Tronox Parcel G Volatiles - Laboratory Blank Data Qualification Summary - SDG F8F120180

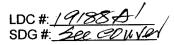

No Sample Data Qualified in this SDG

BRC Tronox Parcel G Volatiles - Field Blank Data Qualification Summary - SDG F8F120180

No Sample Data Qualified in this SDG

| SDG ;<br>Labor<br><b>MET</b> H | #: 19188A1<br>#: F8F120180<br>atory: Test America<br>IOD: GC/MS Volatiles (E                |                                   | L€<br>hod 8260E                                  | evel III/I\<br>3) | /                                     |            | Rev<br>2nd Rev                         |          |
|--------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------|-------------------|---------------------------------------|------------|----------------------------------------|----------|
|                                | ed validation findings wo                                                                   |                                   | T                                                | T                 |                                       |            |                                        |          |
|                                | Validation                                                                                  | Area                              |                                                  |                   |                                       | Comments   |                                        |          |
| 1.                             | Technical holding times                                                                     |                                   | A                                                | Sampling o        | lates: 6/                             | 11/08      |                                        |          |
| 11.                            | GC/MS Instrument performa                                                                   | nce check                         | A                                                |                   | · · · · · · · · · · · · · · · · · · · | ,          |                                        |          |
| 111.                           | Initial calibration                                                                         |                                   | M                                                | tes               | D. Y 2                                |            |                                        |          |
| IV.                            | Continuing calibration/ICV                                                                  |                                   | /w/                                              | 10V=              | 3 2570                                |            |                                        |          |
| V.                             | Blanks                                                                                      |                                   | A                                                |                   | /                                     |            |                                        |          |
| VI.                            | Surrogate spikes                                                                            |                                   | Ŵ                                                |                   |                                       |            |                                        | ,        |
| VII.                           | Matrix spike/Matrix spike dup                                                               | olicates                          | M                                                | 75B-0             | €J-08-10                              | 0'- No sq  | plass'd                                | No Cenal |
| VIII.                          | Laboratory control samples                                                                  |                                   | W/                                               | 100               |                                       | /          | · · · · · · · · · · · · · · · · · · ·  |          |
| IX.                            | Regional Quality Assurance                                                                  | and Quality Control               | N                                                |                   |                                       |            |                                        |          |
| X.                             | Internal standards                                                                          |                                   | 4                                                |                   |                                       |            |                                        |          |
| XI.                            | Target compound identificati                                                                | on                                | A                                                | Not review        | ed for Level III v                    | alidation. |                                        |          |
| XII.                           | Compound quantitation/CRC                                                                   |                                   | Â                                                |                   | ed for Level III v                    |            |                                        |          |
| XIII.                          | Tentatively identified compo                                                                |                                   | 11                                               |                   | ed for Level III v                    |            |                                        |          |
|                                |                                                                                             |                                   | <del>                                     </del> |                   | ed for Level III v                    |            |                                        |          |
| XIV.                           | System performance                                                                          |                                   |                                                  | Not review        | red for Level III v                   |            |                                        |          |
| XV.                            | Overall assessment of data                                                                  |                                   | N.                                               |                   |                                       |            | ****** ******************************* |          |
| XVI.                           | Field duplicates                                                                            |                                   | N                                                |                   |                                       |            |                                        |          |
| XVII.                          | Field blanks                                                                                |                                   | $\sim$                                           | TB=               | 5                                     |            |                                        |          |
| Note:<br>Validat               | A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples: ** Indicates samp | R = Rin<br>FB = Fi                | eld blank                                        | s detected        | D = Dup<br>TB = Tri<br>EB = Ed        |            |                                        |          |
| 1                              | TSB-GJ-09-10'                                                                               | 11 81702                          | 91MB                                             | 21                | (S)                                   | 31         | 1                                      |          |
| 2                              | TSB-GJ-09-20'**                                                                             | 11 81702<br>12 817212<br>13 81723 | SMB                                              | 22                | 4/                                    | 32         |                                        |          |
| 3                              | TSB-GJ-09-30'                                                                               | 13 8/723                          | 6/MF                                             | 3 23              | (N)                                   | 33         |                                        |          |
| 4                              | TSB-GJ-09-40'                                                                               | 14                                |                                                  | 24                |                                       | 34         |                                        |          |
| 5                              | TB-2 6/11/08                                                                                | 15                                |                                                  | 25                |                                       | 35         |                                        |          |
| 6                              | 10 2 0/1/100                                                                                | 16                                |                                                  | 26                |                                       | 36         |                                        |          |
| 7                              |                                                                                             | 17                                |                                                  | 27                |                                       | 37         |                                        |          |

19188A1W.wpd




## **VALIDATION FINDINGS CHECKLIST**

Page: \_\_of \_/ Reviewer: \_\_\_\_\_ 2nd Reviewer: \_\_\_\_\_

Method: Volatiles (EPA SW 846 Method 8260B)

| Validation Area                                                                                                                                                                | Yes      | No | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Findings/Comments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| I. Technical holding times                                                                                                                                                     |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| All technical holding times were met.                                                                                                                                          |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Cooler temperature criteria was met.                                                                                                                                           |          |    | The same of the sa |                   |
| III. GC/MS, instrument performance check                                                                                                                                       |          | ı  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Were the BFB performance results reviewed and found to be within the specified criteria?                                                                                       |          | _  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Were all samples analyzed within the 12 hour clock criteria?                                                                                                                   |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| III Initial calibration                                                                                                                                                        | T /      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                                                     |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?                                        |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Was a curve fit used for evaluation?                                                                                                                                           | 4        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?                                                                                                 | /        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Were all percent relative standard deviations (%RSD) ≤ 30% and relative response factors (RRF) ≥ 0.05?                                                                         |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| IV. Continuing calibration                                                                                                                                                     |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?                                                                               |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?                                                           |          | -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Were all percent differences (%D) $\leq$ 25% and relative response factors (RRF) $\geq$ 0.05?                                                                                  |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| V:Blanks                                                                                                                                                                       |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Was a method blank associated with every sample in this SDG?                                                                                                                   |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Was a method blank analyzed at least once every 12 hours for each matrix and concentration?                                                                                    | /        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.                                                                 |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Mi Surrogate spikes                                                                                                                                                            |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Were all surrogate %R within QC limits?                                                                                                                                        | <b>K</b> |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?                       |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| VIII-Maurix spike/Maurix spike/duplicates                                                                                                                                      |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | erith.            |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. |          | 7  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                         |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                       |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| VIII. Eaboratory control samples                                                                                                                                               |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Was an LCS analyzed for this SDG?                                                                                                                                              | /        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |



## **VALIDATION FINDINGS CHECKLIST**

Page:—of— Reviewer:——— 2nd Reviewer:———

| Validation Area                                                                                                                            | Yes | No | NA | Findings/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Was an LCS analyzed per analytical batch?                                                                                                  |     | ,  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                           |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IX-Regional Quality Assurance and Quality Control                                                                                          |     |    | -  | en Paris de la Companya de la Compa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Were performance evaluation (PE) samples performed?                                                                                        |     | /  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the performance evaluation (PE) samples within the acceptance limits?                                                                 |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X Internal standards                                                                                                                       |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were internal standard area counts within -50% or +100% of the associated calibration standard?                                            |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were retention times within ± 30 seconds of the associated calibration standard?                                                           |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XI. Target compound identification                                                                                                         |     |    |    | Sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?                                                             |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Did compound spectra meet specified EPA "Functional Guidelines" criteria?                                                                  |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were chromatogram peaks verified and accounted for?                                                                                        | /   |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XII. Compound quantitation/CRQLs                                                                                                           |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?              | /   |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?    |     | _  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XIII: Tentatively identified compounds (TIGs)                                                                                              |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?                              |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were relative intensities of the major ions within $\pm$ 20% between the sample and the reference spectra?                                 |     |    | /  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)? |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XIV. System performance                                                                                                                    |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| System performance was found to be acceptable.                                                                                             |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XV ⊙verall assessment of data                                                                                                              |     |    |    | terania de la companya de la company |
| Overall assessment of data was found to be acceptable.                                                                                     |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XVI : Flaid duplicates                                                                                                                     |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Field duplicate pairs were identified in this SDG.                                                                                         |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Target compounds were detected in the field duplicates.                                                                                    |     |    | /  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XVII» Field iblanks                                                                                                                        |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Field blanks were identified in this SDG.                                                                                                  |     | /  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Target compounds were detected in the field blanks.                                                                                        | 7   |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## TARGET COMPOUND WORKSHEET

# METHOD: VOA (EPA SW 846 Method 8260B)

| A. Chloromethane*            | U. 1,1,2-Trichloroethane        | OO. 2,2-Dichloropropane       | III. n-Butylbenzene                        | CCCC.1-Chlorohexane       |
|------------------------------|---------------------------------|-------------------------------|--------------------------------------------|---------------------------|
| B. Bromomethane              | V. Benzene                      | PP. Bromochloromethane        | JJJ. 1,2-Dichlorobenzene                   | DDDD. Isopropyl alcohol   |
| C. Vinyl choride**           | W. trans-1,3-Dichloropropene    | QQ. 1,1-Dichloropropene       | KKK. 1,2,4-Trichlorobenzene                | EEEE. Acetonitrile        |
| D. Chloroethane              | X. Bromoform*                   | RR. Dibromomethane            | LLL. Hexachlorobutadiene                   | FFFF. Acrolein            |
| E. Methylene chloride        | Y. 4-Methyl-2-pentanone         | SS. 1,3-Dichloropropane       | MMM. Naphthalene                           | GGGG. Acrylonitrile       |
| F. Acetone                   | Z. 2-Hexanone                   | TT. 1,2-Dibromoethane         | NNN. 1,2,3-Trichlorobenzene                | HHHH. 1,4-Dioxane         |
| G. Carbon disulfide          | AA. Tetrachloroethene           | UU. 1,1,1,2-Tetrachloroethane | OOO. 1,3,5-Trichlorobenzene                | IIII. Isobutyl alcohol    |
| H. 1,1-Dichloroethene**      | BB. 1,1,2,2-Tetrachloroethane*  | VV. isopropylbenzene          | PPP. trans-1,2-Dichloroethene              | JJJJ. Methacrylonitrile   |
| I. 1,1-Dichloroethane*       | CC. Toluene**                   | WW. Bromobenzene              | QQQ. cis-1,2-Dichloroethene                | KKKK. Propionitrile       |
| J. 1,2-Dichloroethene, total | DD. Chlorobenzene*              | XX. 1,2,3-Trichloropropane    | RRR. m,p-Xylenes                           | LLLL. Ethyl ether         |
| K. Chloroform**              | EE. Ethylbenzene**              | YY. n-Propylbenzene           | SSS. o-Xylene                              | MMMM. Benzyl chloride     |
| L. 1,2-Dichloroethane        | FF. Styrene                     | ZZ. 2-Chlorotoluene           | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | NNNN. 2,2-DiMethy Fortand |
| M. 2-Butanone                | GG. Xylenes, total              | AAA. 1,3,5-Trimethylbenzene   | UUU. 1,2-Dichlorotetrafluoroethane         | 0000 Dimetly disultide    |
| N. 1,1,1-Trichloroethane     | HH. Vinyl acetate               | BBB. 4-Chlorotoluene          | VVV. 4-Ethyltoluene                        | - dddd                    |
| O. Carbon tetrachloride      | II. 2-Chloroethyivinyl ether    | CCC. tert-Butylbenzene        | WWW. Ethanol                               | 2000                      |
| P. Bromodichloromethane      | JJ. Dichlorodifluoromethane     | DDD. 1,2,4-Trimethylbenzene   | XXX. Di-isopropyl ether                    | RRRR.                     |
| Q. 1,2-Dichloropropane**     | KK. Trichlorofluoromethane      | EEE. sec-Butylbenzene         | YYY. tert-Butanol                          | SSSS.                     |
| R. cis-1,3-Dichloropropene   | LL. Methyl-tert-butyl ether     | FFF. 1,3-Dichlorobenzene      | ZZZ. tert-Butyl alcohol                    | TTTT.                     |
| S. Trichloroethene           | MM. 1,2-Dibromo-3-chloropropane | GGG. p-Isopropyltoluene       | AAAA. Ethyl tert-butyl ether               | ນນນນ.                     |
| T. Dibromochloromethane      | NN. Methyl ethyl ketone         | HHH. 1,4-Dichlorobenzene      | BBBB. tert-Amyl methyl ether               | ww.                       |

<sup>\* =</sup> System performance check compounds (SPCC) for RRF; \*\* = Calibration check compounds (CCC) for %RSD.

LDC #: 19188#1 SDG #: 20 COVIUM

## **VALIDATION FINDINGS WORKSHEET** Initial Calibration

Reviewer:

2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Plgase see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Did the laboratory perform a 5 point calibration prior to sample analysis?

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation? 

Did the initial calibration meet the acceptance criteria? Y N N/A

Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF?

|                               |          | Ī         | Ī | Ī . |  |  |  |  |   |  |  |  | Γ | Γ | T |
|-------------------------------|----------|-----------|---|-----|--|--|--|--|---|--|--|--|---|---|---|
| Qualifications                | A/ 20/7  |           |   |     |  |  |  |  |   |  |  |  |   |   |   |
| Associated Samples            | M 50, 5. | 8/7029/MB |   |     |  |  |  |  |   |  |  |  |   |   |   |
| Finding RRF<br>(Limit: >0.05) | 100000   |           |   |     |  |  |  |  |   |  |  |  |   |   |   |
| Finding %RSD (Limit: <30.0%)  |          |           |   |     |  |  |  |  |   |  |  |  |   |   |   |
| Compound                      | MMW      |           |   |     |  |  |  |  |   |  |  |  |   |   |   |
| Standard ID                   | 1941     |           |   |     |  |  |  |  | , |  |  |  |   |   |   |
| Date                          | 6/9/18   |           |   |     |  |  |  |  |   |  |  |  |   |   |   |
| *                             |          |           |   |     |  |  |  |  |   |  |  |  |   |   |   |

LDC #:19.8841 SDG #:200 COW

## VALIDATION FINDINGS WORKSHEET Continuing Calibration

Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF?

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Qualifications  The factor of |             |
| Associated Samples  5.817175 MB  8.7091 MB  6.817475 MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| Finding RRF (Limit: ≥0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Finding %D<br>(Limit: <25.0%)<br>3 / 67573<br>2 5 0 4 4 7 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| Compound  Codomethans  AMN  Codomethans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| Standard ID  1121/9881  (1CV)  201/203/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| Date Date 52/2/8 54/2/8 54/2/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del> |

## **VALIDATION FINDINGS WORKSHEET** Field Blanks

Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

| A War fall black dangers in this OPCS                                    |                     |
|--------------------------------------------------------------------------|---------------------|
| Were lield planks identified in this SDG?                                |                     |
| Were target compounds detected in the field blanks?                      |                     |
| lank units: Mac Associated sample units: Mates                           |                     |
| ampling date: 6/11/0 8                                                   |                     |
| ield blank type; (circle one) Field Blank / Rinsate / Trip Blank) Other: | Associated Samples: |

| Compound            | Blank ID                 |            | S | Sample Identification | ion |  |  |
|---------------------|--------------------------|------------|---|-----------------------|-----|--|--|
|                     | 5                        |            |   |                       |     |  |  |
| Methylene chloride  |                          |            |   |                       |     |  |  |
| Acetone             |                          |            |   | •                     |     |  |  |
| Chloroform          |                          |            |   |                       |     |  |  |
| Didloconethans 0.47 | 147                      |            |   |                       |     |  |  |
|                     |                          |            |   |                       |     |  |  |
|                     |                          |            |   |                       |     |  |  |
| сяаг                |                          |            |   |                       |     |  |  |
| Blank units: As     | Associated sample units: | ple units: |   |                       |     |  |  |

| Sampling date: Field blank type: (circle one) Field Blank / Rinsa | e) Field Blank / Rinsa | / Rinsate / Trip Blank / Other: | Associated Samples:   |
|-------------------------------------------------------------------|------------------------|---------------------------------|-----------------------|
| Compound                                                          | Blank ID               |                                 | Sample Identification |

| Compound           | Blank ID |   | Sam | Sample Identification | no |  |  |
|--------------------|----------|---|-----|-----------------------|----|--|--|
|                    |          |   |     |                       |    |  |  |
| Methylene chloride |          |   |     |                       |    |  |  |
| Acetone            |          | - |     |                       |    |  |  |
| Chloroform         |          |   |     |                       |    |  |  |
|                    |          |   |     |                       |    |  |  |
|                    |          |   |     |                       |    |  |  |
|                    |          |   |     |                       |    |  |  |
| CROL               |          |   |     |                       |    |  |  |

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disultide that were detected in samples within ten times the associated field blank concentration were also qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

LDC #: 1918841

## VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please, see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all surrogate %R within QC limits?

If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside

of criteria?

| Qualifications     | 1 Hote A   |     |   |     |     |     |     |          |   |     |              |   |   |          |     |          |     |     |     |     |
|--------------------|------------|-----|---|-----|-----|-----|-----|----------|---|-----|--------------|---|---|----------|-----|----------|-----|-----|-----|-----|
| mits)              | (79715)    | ( ) | ( | ( ) | ( ) | ( ) | ( ) | <u> </u> | ( | ( ) | <br><u> </u> | ( | ( | <u> </u> | ( ) | <u> </u> | ( ) | ( ) | ^ · | ( ) |
| %Recovery (Limits) | 711        |     |   |     |     |     |     |          |   |     |              |   |   |          |     |          |     |     |     |     |
| Surrogate          | PFB        |     |   |     |     |     |     |          |   |     |              |   |   |          |     |          |     |     |     |     |
| Sample ID          | 8172125 MB | ,   |   |     |     |     |     |          |   |     |              |   |   |          |     |          |     |     |     |     |
| Date               |            |     |   |     |     |     |     |          |   |     |              |   |   |          |     |          |     |     |     |     |
| #                  |            |     |   |     |     |     |     |          |   |     |              |   |   |          |     |          |     |     |     |     |

QC Limits (Water)

QC Limits (Soil)

81-117

88-110

86-115 80-120 86-118

74-121 80-120 80-120

SMC1 (TOL) = Toluene-d8 SMC2 (BFB) = Bromofluorobenzene SMC3 (DCE) = 1,2-Dichloroethane-d4 SMC4 (DFM) = Dibromofluoromethane

LDC #: 191887/ SDG #: 2000V

## VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y IN N/A

Was a LCS required? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

|                     | 11           |                        | $\widehat{=}$ | <del>\</del> |     |     |     | ,   |     |     | <del>,</del> | -   |     |     |     | _   | _   |     | _   | <del></del> |     | <del></del> | <del>,</del> |     |
|---------------------|--------------|------------------------|---------------|--------------|-----|-----|-----|-----|-----|-----|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-------------|-----|-------------|--------------|-----|
| Qualifications      | No lange     | 7                      | MS/NSD W      | 1            |     |     |     |     |     |     |              |     |     |     |     |     |     |     |     |             |     |             |              |     |
| Associated Samples  | 8.817×XX     | ,                      |               |              |     |     |     |     |     |     |              |     |     |     |     |     |     |     |     |             |     |             |              |     |
| RPD (Limits)        | ( 02×) c//   | ( )                    | ( )           | ( )          | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( )          | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( )         | ( ) | ( )         | ( )          | ( ) |
| LCSD<br>%R (Limits) | ( )          | (C+1-5+) 181           | ( )           | ( )          | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( )          | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( )         | ( ) | ( )         | ( )          | ( ) |
| LCS<br>%R (Limits)  | 293 (42-140) | 10domestand 16645-140) | ( )           | ( )          | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( )          | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( )         | ( ) | ( )         | ( )          | ( ) |
| Compound            | NN           | ladomerka              |               |              |     |     |     |     |     |     |              |     |     |     |     |     |     |     |     |             |     |             |              |     |
| TCS/TCSD ID         | 81721269     | , D                    |               |              |     |     |     |     |     |     |              |     |     |     |     |     |     |     |     |             |     |             |              |     |
| . Date              |              |                        |               |              |     |     |     |     |     |     |              |     |     |     |     |     |     |     |     |             |     |             |              |     |
| *                   |              |                        |               |              |     |     |     |     |     |     |              |     |     |     |     |     |     |     |     |             |     |             |              |     |

LDC#.A SDG#:

## Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Reviewer:\_ 2nd Reviewer:\_ Page:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

A<sub>x</sub> = Area of compound,
C<sub>x</sub> = Concentration of compound,
S = Standard deviation of the RRFs
X = Mean of the RRFs

 $A_{\rm s}$  = Area of associated internal standard  $C_{\rm s}$  = Concentration of internal standard

 $RRF = (A_x)(C_{\bf k})/(A_{\bf k})(C_x)$  average RRF = sum of the RRFs/number of standards %RSD = 100  $^{\circ}$  (S/X)

|   |             |                     |                                        | Reported        | Recalculated         | Reported                     | Recalculated             | Reported       | Recalculated  |
|---|-------------|---------------------|----------------------------------------|-----------------|----------------------|------------------------------|--------------------------|----------------|---------------|
| * | Standard ID | Calibration<br>Date | Compound (Reference Internal Standard) | RRF<br>(Se std) | RRF<br>(\$2\std)     | Average RRF<br>(initial)     | Average RRF<br>(initial) | %RSD           | %RSD          |
| - | 1941        | 80/6/9              | ★ (1st internal standard)              | 126050          | 126050               | 1885.0 17p020 17p020         | 0.52831                  | 2040,7 18040,7 | 7.0405        |
|   |             | ///                 | 4 (2nd internal standard)              | - 85E 0         | 1.35512              | 255 1 35512 0 29404 0 2926 0 | +oxb=0                   | 07/201         | 127450 157450 |
|   |             |                     |                                        | 3.51047         | 3.5TB47              | 3.57047 3.57047 3.42549      |                          | 1              | 135c X        |
| 2 | Xe.         | A/6//               |                                        | P=1+70          | 18510 651 470 6-1450 |                              | 178871                   |                | 77952         |
|   |             | 8/4/6               | (                                      | 802650          | 0.59203              | 0                            | 0.55366                  | 1347144        | 134718        |
|   | (+)         |                     | 000 (3rd internal standard)            | 895/11:1        | 1.11568              | 1.11150                      | 25111:1                  | 2.41699        | 24169         |
| က |             |                     | (1st internal standard)                |                 |                      |                              |                          | _              |               |
|   |             |                     | (2nd internal standard)                |                 |                      |                              |                          |                |               |
|   |             |                     | (3rd internal standard)                |                 |                      |                              |                          |                |               |
| 4 |             |                     | (1st internal standard)                |                 |                      |                              |                          |                |               |
|   |             |                     | (2nd internal standard)                |                 |                      |                              |                          |                |               |
|   |             |                     | (3rd internal etandord)                |                 |                      |                              |                          |                |               |

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results

LDC #: 19/98/4/ SDG #: 32/02/WY

# VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

| /of / | 4         |                |
|-------|-----------|----------------|
| Page: | Reviewer: | 2nd Reviewer:_ |

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave. RRF - RRF)/ave. RRF RRF =  $(A_x)(C_x)/(A_y)(C_x)$ 

Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF

Ax = Continuing calibration KKF
A<sub>x</sub> = Area of compound,
C<sub>x</sub> = Concentration of compound,

 $A_{\rm k}$  = Area of associated internal standard  $C_{\rm k}$  = Concentration of internal standard

|   |                 |                     |                                          |                       | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |                 |                |              |
|---|-----------------|---------------------|------------------------------------------|-----------------------|-----------------------------------------|-----------------|----------------|--------------|
|   |                 |                     |                                          |                       | керопео                                 | Recalcillated   | Keported       | Recalculated |
| * | Standard ID     | Calibration<br>Date | Compound (Reference internal Standard)   | Average RRF (initial) | RRF<br>(CC)                             | RRF<br>(CC)     | Q%             | <b>Q</b> %   |
| - | FC41778 6/16/08 | 80/91/9             | (1st internal standard)                  | 1.5802.0              | 0.57288                                 | 88615.0 88515.0 | 0.89949 0.899  | 0.899        |
|   |                 | `                   | (2nd internal standard)                  | potheo                | 2/0/8.0                                 | 8/2/8.0 Stel8.0 | 891919         | 61612        |
|   |                 |                     | $\mathcal{ODP}$ (3rd internal standard)  | 34299 36503           | 36503                                   | AA .            | 87826.5978     | 6.5978       |
| 2 | F04-1777        | Feb-1777 6/16/08    | $\mathcal{NNNN}$ (1st internal standard) | 0.73871               | 45/62.0 45/6%                           |                 | 2.324-6 2 3244 | 2 3244       |
|   |                 | \<br>\<br>\         | 000 0 (2nd internal standard)            | 0.55366               | 858/5.0                                 | $\Pi$           | 35975          | 3.5.985      |
|   |                 |                     | 000 (3rd internal standard)              | 171150                | 06401.1                                 | 1-10470         | 8119.0 551190  | 8119.0       |
| က |                 |                     | (1st internal standard)                  |                       |                                         |                 |                |              |
|   |                 |                     | (2nd internal standard)                  |                       |                                         |                 |                |              |
|   | -               |                     | (3rd internal standard)                  |                       |                                         |                 |                |              |
| 4 |                 |                     | (1st internal standard)                  |                       |                                         |                 |                |              |
|   |                 |                     | (2nd internal standard)                  |                       |                                         |                 |                |              |
|   |                 |                     | (3rd internal standard)                  |                       |                                         |                 |                |              |

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.



## **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification**

| Page:_        |   |
|---------------|---|
| Reviewer:     | 9 |
| 2nd reviewer: |   |

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

| The percent recoveries (%I | R) of surrogates were re | ecalculated for the compounds in | dentified below using the | following calculation |
|----------------------------|--------------------------|----------------------------------|---------------------------|-----------------------|
|----------------------------|--------------------------|----------------------------------|---------------------------|-----------------------|

% Recovery: SF/SS \* 100

Where: SF = Surrogate Found

Sample ID:\_

 $\sim$ 

| Ο. |   | Cumogato  |        |
|----|---|-----------|--------|
| SS | = | Surrogate | Spiked |
|    |   |           |        |

|                       | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Toluene-d8            | 50                  | 45-0289            | 90,                             | 90                                  | 0                     |
| Bromofluorobenzene    | 1                   | 42.1691            | 84                              | 84                                  |                       |
| 1,2-Dichloroethane-d4 | 1,                  | 45.1855            | 90                              | 90                                  |                       |
| Dibromofluoromethane  | <i>Y</i>            | 44.0752            | 88                              | 38                                  |                       |

Sample ID:

|                       | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Toluene-d8            |                     |                    |                                 |                                     |                       |
| Bromofluorobenzene    |                     |                    |                                 |                                     |                       |
| 1,2-Dichloroethane-d4 |                     |                    |                                 |                                     |                       |
| Dibromofluoromethane  |                     |                    |                                 |                                     |                       |

Sample ID:\_

|                       | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Toluene-d8            |                     |                    |                                 |                                     |                       |
| Bromofluorobenzene    |                     |                    |                                 |                                     |                       |
| 1,2-Dichloroethane-d4 |                     |                    |                                 |                                     |                       |
| Dibromofluoromethane  |                     |                    |                                 |                                     |                       |

Sample ID:

|                       | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Toluene-d8            |                     |                    |                                 |                                     |                       |
| Bromofluorobenzene    |                     |                    |                                 |                                     |                       |
| 1,2-Dichloroethane-d4 |                     |                    |                                 |                                     |                       |
| Dibromofluoromethane  |                     |                    |                                 |                                     |                       |

Sample ID:

|                       | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Toluene-d8            |                     |                    |                                 |                                     |                       |
| Bromoffuorobenzene    |                     |                    |                                 |                                     |                       |
| 1,2-Dichloroethane-d4 |                     |                    |                                 |                                     |                       |
| Dibromofluoromethane  |                     |                    |                                 |                                     |                       |

LDC#:1918841 SDG#:50c.com

# VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: of Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 \* SSC/SA Where:

Where: SSC = Spiked sample concentration SA = Spike added

O COCOST CALLER COCOST COCOST

LCSC = Laboraotry control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS ID: 817029/

RPD = I LCSC - LCSDC I \* 2/(LCSC + LCSDC)

|          |                  |              |                    |                 |         |         |               |  |  | <br> |  |
|----------|------------------|--------------|--------------------|-----------------|---------|---------|---------------|--|--|------|--|
| CS/I CSD | RPD              | Recalculated |                    |                 |         |         |               |  |  |      |  |
| 1 CS/I   | RF               | Reported     |                    |                 |         |         |               |  |  |      |  |
|          | ecovery          | Recalc       |                    |                 |         |         |               |  |  |      |  |
| LCSD     | Percent Recovery | Reported     |                    |                 |         |         |               |  |  |      |  |
| S        | ecovery          | Recalc       | 96                 | 66              | 88      | 201     | (0)           |  |  |      |  |
| SD I     | Percent Recovery | Reported     | 96                 | 66              | B       | 100     | 201           |  |  |      |  |
| ample    | ration<br>(O)    | 1 CSD        | XX                 |                 |         |         | $\nearrow$    |  |  |      |  |
| Spiked   | Concentration    | 1.08         | 47.8               | 79.5            | 49.6    | 2.25    | 49.9          |  |  |      |  |
| ike      | Added            | I CSD        | νŁ                 | ,               |         |         | <i>\</i>      |  |  |      |  |
| ďS       | A A              | LCS          | 25                 |                 |         | ,       | <b>/</b>      |  |  |      |  |
|          | Compound         |              | 1,1-Dichloroethene | Trichloroethene | Benzene | Toluene | Chlorobenzene |  |  |      |  |

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

| LDC #: 191884 |
|---------------|
| SDG #: Secous |

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

| Page:_        | of |
|---------------|----|
| Reviewer:     | 4  |
| 2nd reviewer: |    |

| METHOD: | GC/MS VO | (EPA SW | 846 Method | 8260B) |
|---------|----------|---------|------------|--------|
|---------|----------|---------|------------|--------|

Percent solids, applicable to soils and solid matrices

| TY       | N | N/A |
|----------|---|-----|
| $\nabla$ | Ν | N/A |

%S

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

| Concer         | tratio | $n = \frac{(A_{\bullet})(I_{\bullet})(DF)}{(A_{\bullet})(RRF)(V_{\bullet})(\%S)}$ | Example:                |
|----------------|--------|-----------------------------------------------------------------------------------|-------------------------|
| $A_{x}$        | =      | Area of the characteristic ion (EICP) for the compound to be measured             | Sample I.D. 2, ND:      |
| $A_{is}$       | =      | Area of the characteristic ion (EICP) for the specific internal standard          |                         |
| l <sub>s</sub> | =      | Amount of internal standard added in nanograms (ng)                               | Conc. = ( ) ( ) ( ) ( ) |
| RRF            | =      | Relative response factor of the calibration standard.                             |                         |
| V <sub>o</sub> | =      | Volume or weight of sample pruged in milliliters (ml) or grams (g).               | =                       |
| Df             | =      | Dilution factor.                                                                  | +                       |

| fication |
|----------|
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
| _        |

## Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel G

**Collection Date:** 

June 11, 2008

LDC Report Date:

August 6, 2008

Matrix:

Soil

Parameters:

Semivolatiles

Validation Level:

EPA Level III & IV

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F120180

Sample Identification

TSB-GJ-09-10'

TSB-GJ-09-20'\*\*

TSB-GJ-09-30'

TSB-GJ-09-40'

<sup>\*\*</sup>Indicates sample underwent EPA Level IV review

## Introduction

This data review covers 4 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for Semivolatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

## I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

## II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

### III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all semivolatile target compounds and system performance check compounds (SPCCs) were greater than or equal to 0.05 as required with the following exceptions:

| Date    | Compound                     | RRF (Limits)    | Associated Samples              | Flag                                    | A or P |
|---------|------------------------------|-----------------|---------------------------------|-----------------------------------------|--------|
| 6/18/08 | Phthalic acid                | 0.01422 (≥0.05) | All samples in SDG<br>F8F120180 | J (all detects) UJ (all non-detects)    | А      |
|         | N-(Hydroxymethyl)phthalimide | 0.04408 (≥0.05) |                                 | J (all detects)<br>UJ (all non-detects) |        |

## IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria with the following exceptions:

| Date    | Compound      | %D       | Associated<br>Samples                                              | Flag                                     | A or P |
|---------|---------------|----------|--------------------------------------------------------------------|------------------------------------------|--------|
| 6/19/08 | Phthalic acid | 25.06878 | TSB-GJ-09-10'<br>TSB-GJ-09-20'**<br>TSB-GJ-09-30'<br>TSB-GJ-09-40' | J- (all detects)<br>UJ (all non-detects) | A      |

The percent difference (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration RRF values were within method and validation criteria with the following exceptions:

| Date    | Compound                                   | RRF (Limits)                       | Associated Samples                                                 | Flag                                                                      | A or P |
|---------|--------------------------------------------|------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|--------|
| 6/18/08 | Phthalic acid N-(Hydroxymethyl)phthalimide | 0.01330 (≥0.05)<br>0.04331 (≥0.05) | 81 68439MB                                                         | J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects) | A      |
| 6/19/08 | Phthalic acid N-(Hydroxymethyl)phthalimide | 0.01066 (≥0.05)<br>0.04523 (≥0.05) | TSB-GJ-09-10'<br>TSB-GJ-09-20'**<br>TSB-GJ-09-30'<br>TSB-GJ-09-40' | J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects) | А      |

## V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks.

No field blanks were identified in this SDG.

## VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

## VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

## **VIII. Laboratory Control Samples (LCS)**

Laboratory control samples were reviewed for each matrix as applicable. Although the LCS percent recovery (%R) was not within QC limits for one compound, the MS/MSD percent recoveries (%R) were within QC limits and no data were qualified.

## IX. Regional Quality Assurance and Quality Control

Not applicable.

## X. Internal Standards

All internal standard areas and retention times were within QC limits with the following exceptions:

| Sample          | Internal Standards | Area (Limits)           | Compound                                                                                                                                       | Flag                                    | A or P |
|-----------------|--------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|
| TSB-GJ-09-10'   | Perylene-d12       | 198321 (281395-1125580) | Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | J (all detects)<br>UJ (all non-detects) | A      |
| TSB-GJ-09-20'** | Perylene-d12       | 191974 (281395-1125580) | Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | J (all detects)<br>UJ (all non-detects) | A      |
| TSB-GJ-09-30'   | Perylene-d12       | 206248 (281395-1125580) | Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | J (all detects)<br>UJ (all non-detects) | А      |
| TSB-GJ-09-40'   | Perylene-d12       | 212988 (281395-1125580) | Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | J (all detects)<br>UJ (all non-detects) | А      |

## XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

## XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

## XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

## XIV. System Performance

The system performance was acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

## XV. Overall Assessment of Data

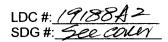
Data flags have been summarized at the end of the report if data has been qualified.

## XVI. Field Duplicates

No field duplicates were identified in this SDG.

## BRC Tronox Parcel G Semivolatiles - Data Qualification Summary - SDG F8F120180

| SDG       | Sample                                                             | Compound                                                                                                                                       | Flag                                                                      | A or P | Reason                          |
|-----------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------|---------------------------------|
| F8F120180 | TSB-GJ-09-10'<br>TSB-GJ-09-20'**<br>TSB-GJ-09-30'<br>TSB-GJ-09-40' | Phthalic acid N-(Hydroxymethyl)phthalimide                                                                                                     | J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects) | А      | Initial calibration (RRF)       |
| F8F120180 | TSB-GJ-09-10'<br>TSB-GJ-09-20'**<br>TSB-GJ-09-30'<br>TSB-GJ-09-40' | Phthalic acid                                                                                                                                  | J- (all detects)<br>UJ (all non-detects)                                  | А      | Continuing calibration<br>(%D)  |
| F8F120180 | TSB-GJ-09-10'<br>TSB-GJ-09-20'**<br>TSB-GJ-09-30'<br>TSB-GJ-09-40' | Phthalic acid<br>N-(Hydroxymethyl)phthalimide                                                                                                  | J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects) | А      | Continuing calibration<br>(RRF) |
| F8F120180 | TSB-GJ-09-10'<br>TSB-GJ-09-20'**<br>TSB-GJ-09-30'<br>TSB-GJ-09-40' | Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | J (all detects)<br>UJ (all non-detects)                                   | A      | Internal standards (area)       |


BRC Tronox Parcel G Semivolatiles - Laboratory Blank Data Qualification Summary - SDG F8F120180

No Sample Data Qualified in this SDG

BRC Tronox Parcel G Semivolatiles - Field Blank Data Qualification Summary - SDG F8F120180

No Sample Data Qualified in this SDG

| SDG<br>Labor    | #: 19188A2<br>#: F8F120180<br>ratory: Test America                         | •       |                | Le          | evel III |        | SS WORKSHEET                                                       |          | Date: <u>8/5/0</u> 2<br>Page: _/of /_<br>Reviewer:<br>2nd Reviewer: |
|-----------------|----------------------------------------------------------------------------|---------|----------------|-------------|----------|--------|--------------------------------------------------------------------|----------|---------------------------------------------------------------------|
| The s           | amples listed below were<br>ned validation findings wo                     | revie   | ewed for ead   |             | ·        | g val  | idation areas. Validatior                                          | n findir | ngs are noted in                                                    |
|                 | Validation                                                                 | Area    |                |             |          |        | Comme                                                              | nts      |                                                                     |
| 1.              | Technical holding times                                                    |         |                | A           | Samplii  | ng dat | es: 6/11/08                                                        |          |                                                                     |
| 11.             | GC/MS Instrument performa                                                  | nce cl  | neck           | 4           |          |        |                                                                    |          |                                                                     |
| 111.            | Initial calibration                                                        |         |                | W           | ļ        |        |                                                                    |          |                                                                     |
| IV.             | Continuing calibration/ICV                                                 |         |                | W           | KEY      | 32     | 25/0                                                               |          |                                                                     |
| V.              | Blanks                                                                     |         |                | 4           | ļ        |        | /                                                                  |          |                                                                     |
| VI.             | Surrogate spikes                                                           |         |                | 1           |          |        |                                                                    |          |                                                                     |
| VII.            | Matrix spike/Matrix spike du                                               | plicate | s              | $\neq$      | TSI      | 3-6    | EJ-08-10/                                                          |          |                                                                     |
| VIII.           | Laboratory control samples                                                 |         |                | W           | 10       | 2      |                                                                    |          |                                                                     |
| IX.             | Regional Quality Assurance                                                 | and C   | uality Control | N           |          |        |                                                                    |          |                                                                     |
| X.              | Internal standards                                                         |         |                | SW          |          |        |                                                                    |          |                                                                     |
| XI.             | Target compound identificat                                                | ion     |                | 1           | Not re   | viewe  | d for Level III validation.                                        |          |                                                                     |
| XII.            | Compound quantitation/CRO                                                  | QLs     |                | À           | Not re   | viewe  | d for Level III validation.                                        |          |                                                                     |
| XIII.           | Tentatively identified compo                                               | unds (  | TICs)          | $ \lambda $ | Not re   | viewe  | d for Level III validation.                                        |          |                                                                     |
| XIV.            | System performance                                                         |         |                | Ā           | Not re   | viewe  | d for Level III validation.                                        |          |                                                                     |
| XV.             |                                                                            |         |                | 4           |          |        |                                                                    |          |                                                                     |
| XVI.            | Field duplicates                                                           |         |                | <b>N</b>    |          |        |                                                                    |          |                                                                     |
| XVII            | . Field blanks                                                             |         |                | N_          |          |        |                                                                    |          |                                                                     |
| Note:<br>Valida | A = Acceptable N = Not provided/applicable SW = See worksheet ted Samples: |         | R = Rin        | eld blank   |          |        | D = Duplicate<br>TB = Trip blank<br>EB = Equipment blank<br>dation |          |                                                                     |
|                 | TOD 0.100.401                                                              |         | 81684          | 39118       |          | 21     |                                                                    | 31       |                                                                     |
| 1               | TSB-GJ-09-10'                                                              |         | 01007          | - John      |          | 22     |                                                                    | 32       |                                                                     |
| 2               | TSB-GJ-09-20'**                                                            | 12      |                |             |          | 23     |                                                                    | 33       |                                                                     |
| 3               | TSB-GJ-09-30'                                                              | 13      |                |             |          | 24     |                                                                    | 34       |                                                                     |
| 4               | TSB-GJ-09-40' V                                                            | 14      |                |             |          | 25     |                                                                    | 35       |                                                                     |
| 5               |                                                                            | 15      |                |             |          | 26     |                                                                    | 36       |                                                                     |
| 6               |                                                                            | 16      |                |             |          |        |                                                                    | 37       |                                                                     |
| 7               |                                                                            | 17      |                |             |          | 27     |                                                                    | 38       |                                                                     |
| 8               |                                                                            | 18      | i              |             |          | 28     |                                                                    | 100      |                                                                     |



## **VALIDATION FINDINGS CHECKLIST**

Page: \_/of \_= Reviewer: \_\_\_\_ 2nd Reviewer: \_\_\_\_

Method: Semivolatiles (EPA SW 846 Method 8270C)

| Validation Area                                                                                                                                                                | Yes | No | NA | Findings/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J. Technical holding times                                                                                                                                                     |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| All technical holding times were met.                                                                                                                                          |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cooler temperature criteria was met.                                                                                                                                           |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| II. GCMS Instrument performance check                                                                                                                                          |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the DFTPP performance results reviewed and found to be within the specified criteria?                                                                                     | 1   |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all samples analyzed within the 12 hour clock criteria?                                                                                                                   | Ľ   |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| III. Initial calibration                                                                                                                                                       |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                                                     |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?                                        |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a curve fit used for evaluation?                                                                                                                                           | W   |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?                                                                                                 |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all percent relative standard deviations (%RSD) $\leq$ 30% and relative response factors (RRF) $\geq$ 0.05?                                                               |     | /  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IV. Continuing calibration                                                                                                                                                     |     |    |    | primit internal tracks for the second of the |
| Was a continuing calibration standard analyzed at least once every 12 hours for<br>each instrument?                                                                            |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?                                                           |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?                                                                                            |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V. Blanks                                                                                                                                                                      |     |    |    | $\mathcal{L}_{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Was a method blank associated with every sample in this SDG?                                                                                                                   | /   |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a method blank analyzed for each matrix and concentration?                                                                                                                 | /   |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.                                                                 |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VI. Surrogate spikes                                                                                                                                                           |     |    |    | And the second s |
| Were all surrogate %R within QC limits?                                                                                                                                        |     |    | :  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?                                                                 |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| If any %R was less than 10 percent, was a reanalysis performed to confirm %R?                                                                                                  |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VII. Matrix spike/Matrix spike duplicates                                                                                                                                      |     |    |    | Fig. 1. Probable CHINGS TWO THE STREET OF TH |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. |     | ,  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                         |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                       |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VIII. Laboratory control samples                                                                                                                                               |     |    |    | Andrew Company of the |
| Was an LCS analyzed for this SDG?                                                                                                                                              |     |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



## **VALIDATION FINDINGS CHECKLIST**

Page: of 2 Reviewer: 2nd Reviewer:

|                                                                                                                                            |                   | <del></del>   | <del>T</del> | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Validation Area                                                                                                                            | Yes               | No            | NA           | Findings/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Was an LCS analyzed per extraction batch?                                                                                                  | /                 | <u> </u>      | <u> </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                           |                   |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IX Regional Quality Assurance and Quality Control                                                                                          |                   | 4,55          |              | and the state of t |
| Were performance evaluation (PE) samples performed?                                                                                        |                   |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the performance evaluation (PE) samples within the acceptance limits?                                                                 |                   |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X. Internal standards                                                                                                                      |                   |               |              | And the second s |
| Were internal standard area counts within -50% or +100% of the associated calibration standard?                                            | Ø                 |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were retention times within ± 30 seconds from the associated calibration standard?                                                         | /                 |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XI. Target compound Identification                                                                                                         |                   |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?                                                             | 4                 |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Did compound spectra meet specified EPA "Functional Guidelines" criteria?                                                                  |                   |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were chromatogram peaks verified and accounted for?                                                                                        |                   |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XII. Compound quantitation/CRQLs                                                                                                           |                   | r             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?              |                   |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?    |                   |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XIII. Tentatively identified compounds (TICs)                                                                                              |                   |               |              | over the second of the second  |
| Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?                              |                   |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were relative intensities of the major ions within $\pm$ 20% between the sample and the reference spectra?                                 |                   |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)? |                   |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XIV <sub>s</sub> System performance                                                                                                        |                   |               |              | and the second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| System performance was found to be acceptable.                                                                                             |                   |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XV Overell assessment of data                                                                                                              |                   |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Overall assessment of data was found to be acceptable.                                                                                     | 7                 |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XVI. Field duplicates (4. 32 v) halving the second                                                                                         |                   |               |              | A programme a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Field duplicate pairs were identified in this SDG.                                                                                         | ishiin ii iinn ii |               | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Target compounds were detected in the field duplicates.                                                                                    |                   |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XVII, Field blanks                                                                                                                         |                   |               |              | B THE STATE OF THE |
|                                                                                                                                            |                   |               |              | e la company de la company<br>La company de la company d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Field blanks were identified in this SDG.                                                                                                  | <b></b>           | $\mathcal{A}$ | <del>_</del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Target compounds were detected in the field blanks.                                                                                        |                   |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

| ****                                        |                               |                                  |                                 |                                  |
|---------------------------------------------|-------------------------------|----------------------------------|---------------------------------|----------------------------------|
| A, Phenol:                                  | P. Bis(2-chloroethoxy)methane | EE. 2,6-Dinitrotoluene           | TT. Pentachiorophenoi**         | III. Benzo(a)pyrene**            |
| B. Bis (2-chloroethyl) ether                | Q. 2,4-Dichlorophenol**       | FF. 3-Nitroaniline               | UU. Phenanthrene                | JJJ. Indeno(1,2,3-cd)pyrene      |
| C. 2-Chlorophenol                           | R. 1,2,4-Trichiorobenzene     | GG. Acenaphthene**               | W. Anthracene                   | KKK. Dibenz(a,h)anthracene       |
| D. 1,3-Dichlorobenzene                      | S. Naphthalene                | HH. 2,4-Dinitrophenol*           | WW. Carbazole                   | LLL. Benzo(g,h,l)perylene        |
| E. 1,4-Dichlorobenzene**                    | T. 4-Chloroaniline            | II. 4-Nitrophenoi*               | XX. Di-n-butyiphthalate         | MMM. Bis(2-Chloroisopropyl)ether |
| F. 1,2-Dichlorobenzene                      | U. Hexachlorobutadiene**      | JJ. Dibenzofuran                 | YY. Fluoranthene**              | NNN. Aniline                     |
| G. 2-Methylphenol                           | V. 4-Chloro-3-methylphenol**  | KK. 2,4-Dinitrotoluene           | ZZ. Pyrene                      | OOO. N-Nitrosodimethylamine      |
| H. 2,2'-Oxybis(1-chloropropane)             | W. 2-Methylnaphthalene        | LL. Diethylphthalate             | AAA. Butylbenzylphthalate       | PPP. Benzoic Acid                |
| I. 4-Methylphenol                           | X. Hexachlorocyclopentadiene* | MM. 4-Chlorophenyl-phenyl ether  | BBB, 3,3'-Dichlorobenzidine     | QQQ. Benzyl alcohol              |
| J. N-Nitroso-di-n-propylamine*              | Y. 2,4,6-Trichlorophenol**    | NN. Fluorene                     | CCC. Benzo(a)anthracene         | RRR. Pyridine                    |
| K. Hexachloroethane                         | Z. 2,4,5-Trichlorophenol      | 00. 4-Nitroaniline               | DDD. Chrysene                   | SSS. Benzidine                   |
| L. Nitrobenzene                             | AA. 2-Chloronaphthalene       | PP. 4,6-Dinitro-2-methylphenol   | EEE. Bis(2-ethylhexyl)phthalate | TT.                              |
| M. Isophorone                               | BB. 2-Nitroaniline            | QQ. N-Nitrosodiphenylamine (1)** | FFF. Di-n-octylphthalate**      | unu.                             |
| N. 2-Nitrophenol**                          | CC. Dimethylphthalate         | RR. 4-Bromophenyl-phenylether    | GGG. Benzo(b)fluoranthene       | w.                               |
| O. 2,4-Dimethylphenol                       | DD. Acenaphthylene            | SS. Hexachlorobenzene            | HHH. Benzo(k)fluoranthene       | www.  4-Ch (No be wenth; e)      |
| XXX. A-ft/johoxymethy<br>AAAA 4-ch(notheny) | ly)>+h+halimide               | XXX. Phenyl sultide              | de 222. phenyl                  | olisul fide                      |

VALIDATION FINDINGS WORKSHEET Initial Calibration

Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

SDG #: See COUN

LDC #: ////

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Did the laboratory conduct an acceptable 5 point calibration prior to sample analysis?

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?

Did the initial calibration meet the acceptance criteria?

マ N N/A N/A Y/N N/A

N N/A

Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF ?

|                                 |                 |         | <br> | <br> | <br> | <br> | <br> |  |  |  | <br> |  |  |  |  |
|---------------------------------|-----------------|---------|------|------|------|------|------|--|--|--|------|--|--|--|--|
| Qualifications                  | 1,121           |         |      |      |      |      |      |  |  |  |      |  |  |  |  |
| Associated Samples              | M+BACE          |         |      |      |      |      |      |  |  |  |      |  |  |  |  |
| Finding RRF<br>(Limit: ≥0.05)   | KC410.0         | 0.04408 |      |      |      |      |      |  |  |  |      |  |  |  |  |
| Finding %RSD<br>(Limit: <30.0%) |                 |         |      |      |      |      |      |  |  |  |      |  |  |  |  |
| Compound                        | # HAThalic acid | XXX     |      |      |      |      |      |  |  |  |      |  |  |  |  |
| Standard ID                     | 19/2            |         |      |      |      |      |      |  |  |  |      |  |  |  |  |
| Date,                           | 6/8/8           | \       |      |      |      |      |      |  |  |  |      |  |  |  |  |
| #                               |                 |         |      |      |      |      |      |  |  |  |      |  |  |  |  |

VALIDATION FINDINGS WORKSHEET

LDC #: 19188.42

Continuing Calibration

2nd Reviewer:

pease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument? Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF?

X N N X N/N N/A

Qualifications Associated Samples MITNE Finding RRF (Limit: >0.05) (J.) 0433 0 (Limit: <25.0%) Finding %D 25.068 #HWIN acid Actualize aci Compound × 10405220 1CX-1519 Standard ID  $\infty$ 0/6 Date #

LDC #:1918842 SDG #50e COWN

## **VALIDATION FINDINGS WORKSHEET** Laboratory Control Samples (LCS)

Reviewer: \_ Page: 2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| N | N | N/A | Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

| Qualifications      | This is    | Notheral | 1   | (No 05W/5W) |     |     |     |     |     |   |     |     |     |     |     |   |     |     |     |     |     |     |     |   |
|---------------------|------------|----------|-----|-------------|-----|-----|-----|-----|-----|---|-----|-----|-----|-----|-----|---|-----|-----|-----|-----|-----|-----|-----|---|
| Associated Samples  | 7£+M       |          |     |             |     |     |     |     |     |   |     |     |     |     |     |   |     |     |     |     |     |     |     |   |
| RPD (Limits)        |            | ( )      | ( ) | ( )         | ( ) | ( ) | ( ) |     | ( ) | ( |     | ( ) | ( ) | ( ) | ( ) | ( | )   | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) |   |
| LCSD<br>%R (Limits) | ( )        | ( )      | ( ) | ( )         | ( ) | ( ) | ( ) | ( ) | ( ) |   | ( ) | ( ) | ( ) | ( ) | ( ) |   | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) |   |
| LCS<br>%R (Limitş)  | 19 (54.90) | ( )      | ( ) |             | ( ) | ( ) | ( ) | ( ) | ( ) |   |     |     |     |     | ( ) |   | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( |
| Compound            | ) ## I     |          |     |             |     |     |     |     |     |   |     |     |     |     |     |   |     |     |     |     |     |     |     |   |
| CS/ICSD ID          | 5076843918 |          |     |             |     |     |     |     |     |   |     |     |     |     |     |   |     |     |     |     |     |     |     |   |
| # Date              |            |          |     |             |     |     |     |     |     |   |     |     |     |     |     |   |     |     |     |     |     |     |     |   |

SDG #: 280 (2011) LDC #: 0/884

## VALIDATION FINDINGS WORKSHEET Internal Standards

Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all internal standard area counts within -50 to +100 of the associated calibration standard?

Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard? Y N/A

| 1  |      |           | Internal |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|----|------|-----------|----------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|    | Date | Sample ID | Standard | Area (Limits)          | RT (Limits)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qualifications |
|    |      | /         | PRY      | 0835211-5651800)185861 | ( 885)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | オートスト          |
|    |      |           | / ,      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      | 7         | FXY      | 191974 (               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 1. |      |           | `        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      | 8         | PRY      | 206248(                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \              |
|    |      | 7         | PRY      | 2/2988C                | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | >              |
|    |      |           |          |                        | The state of the s | (FF - 444)     |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          | ć.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| ď  |      |           |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |

\* QC limits are advisory IS1 (DCB) = 1,4-Dichlorobenzene-d4 IS2 (NPT) = Naphthalene-d8 IS3 (ANT) = Acenaphthene-d10

IS4 (PHN) = Phenanthrene-d10 IS5 (CRY) = Chrysene-d12 IS6 (PRY) = Perylene-d12

SDG #: 200 COW

## Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the

 $\label{eq:RFF} $$RF = (A_{\mu})(C_{\mu})/(A_{\mu})(C_{\mu})$$ average RRF = sum of the RRFs/number of standards $$RSD = 100 * (S/X)$$$ 

A<sub>x</sub> = Area of compound, C<sub>x</sub> = Concentration of compound, S = Standard deviation of the RRFs,

 $A_{\mathbf{k}} = \text{Area of associated internal standard}$   $C_{\mathbf{k}} = \text{Concentration of internal standard}$  X = Mean of the RRFs

| =       |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |             |              |           |             |
|---------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|-------------|--------------|-----------|-------------|
| _       |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |             |              |           |             |
|         |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reported            | Recalculated | Reported    | Recalculated | Reported  | Receivment  |
| *       | Standard ID | Calibration | Compound (Reference Internal Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RRF                 | RRF          | Average RRF | Average RRF  | %RSD      | %RSD        |
| -       | 10/2        | A / / /     | Phenol (1st internal standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11 / 3/1            | 1 87 81d)    | (initial)   | (initial)    |           |             |
| $\perp$ |             | 00/2/0      | Naphthalene (2nd internal standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109438              | -+0-         | 100011      | 1,8653/      | 0/01      | 1.070       |
|         |             |             | Fluorene (3rd internal standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.41778             | 14 TX0       | 14549       | 050          | 1.510     | 1.328       |
|         |             |             | Pentachlorophenol (4th internal standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02020               | 2000         |             | _            | 0.5/3     | 0.573       |
|         |             |             | Bis(2-ethylhexyl)phthalate (5th Internal standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 90762             | 0 001/2      |             | 0.19014      | 10.05     | 10.356      |
|         |             |             | Benzo(a)pyrene (6th internal standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Omega \mathbb{C}$ | 01.000       | 0.0042      | 0.8643       | 4.524     | 9524        |
| Ø       | 1945        | /~/~        | Then of interest of the state o | 0000                | 1.12800      | 11182       | 11182        | 6.486     | 6486        |
|         |             | 80/8/08     | tiend (19) internal standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.57776             | 0.51926      | 0.57274     | 151274       | 112170    | - 1 / 3 / 1 |
|         |             | \           | Naphihalone (2nd internal standard) $MM$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.20 177            | 1.20,77      | 18222       | X CC X       | 2//2010   | 0.(151)     |
|         |             |             | Fluorene (3rd internal standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |              |             | 01:          | non-      | 1.9366      |
|         |             |             | Pentachlorophenol (4th internal standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |              |             | \            |           |             |
|         |             | -           | Bis(2-ethylhexyl)phthalate (5th internal standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |              |             |              |           |             |
|         |             |             | Benzo(a)pyrene (6th internal standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |              |             |              |           |             |
| е       | 1941        | 8/7/        | Phenol-(1st Internal standard) VVV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 411091              | 7110/        | 1 27-43     | - FT F.      | 100/      |             |
|         |             | 00/21/5     | Naphthalene (2nd internal standard) ${\cal WW}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.33910             | 00000        | 3300        | 0000         | 1,0+0.    | 26427       |
|         |             |             | Elucrage (3rd internal standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13639               | 02/28        | 10000       | 0.53002      | 别         | 449540      |
|         |             |             | Pentachlorophenol (4th internal standard) 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ╁                   |              | 2000        | Ŋζ           | $\sqrt{}$ | 12021       |
|         |             | _1          | Bio(2 othylhoxyl)phithalete (5th internal standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                   | NO TE        | 2426        | 寸            |           | 87548       |
|         |             |             | Benzo(a)pyrene (6th internal standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ╁                   | 2            | 20-10-1     | 0.59265      | 2,58836   | 18852       |

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the

LDC #: 18188Az SDG #: Sec 20W

# VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: of / Reviewer: Cnd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave, RRF - RRF)/ave, RRF RFF =  $(A_{\nu})(C_{\mu})/(A_{\mu})(C_{\nu})$ 

Where: ave, RRF = initial calibration average RRF RRF = continuing calibration RRF

 $A_x = Area$  of compound,  $C_x = Concentration$  of compound,

 $A_{\mathbf{k}} = Area$  of associated internal standard  $C_{\mathbf{k}} = Concentration$  of internal standard

5830 0450 Recalculated 1885 0101-1 588 2 ひとひとら 9784C 1480h Reported O% age 2.89 Recalculated 432 RRF (CC) 108 n Q 33952 20730 34 5915 Reported RRF (CC) 2016 80 Ţ, **∞** 8223 4122 8333 Average RRF 200 20 972 W 123xh 0.33002 (Initial) in Bis(2-ethylhexyl)phthalate (5th internal standard) Bis(2-ethylhexyl)phthalate (5th internal standard) Pentachlorophenol (4th internal standard) Bis(2-ethylhexyl)phthalate (5th internal standard) Naphthalene (2nd internal standard)  $MM_{
m M}$ Naphithalene (2nd internal standard)  $\mathcal{UU}($ Compound (Reference Internal Pentachlorophenol (4th internal standard) Fl<del>uorene</del> (3rd internal standard) Pentachlorophenol (4th internal standard) Benzo(a)pyrene (6th internal standard) Benzo(a)pyrene (6th internal standard) Benzo(a)pyrene (6th internal standard) Naphthalene (2nd internal standard) Fluorene (3rd internal standard) Fluorene (3rd internal standard) Standard) Prenok (1st internal standard) Phenol (1st internal standard) Phenol (1st internal standard) 168 ) 8 Calibration Date 6 ā 6/1 575 JCA829 Standard ID 10.45=28 X \*

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 19,1884> SDG #:

## Continuing Calibration Results Verification VALIDATION FINDINGS WORKSHEET

Page: 2nd Reviewer: Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave, RRF - RRF)/ave, RRF RRF =  $(A_{\nu})(C_{\nu})/(A_{\nu})(C_{\nu})$ 

ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Where:

 $A_x = Area$  of compound,  $C_x = Concentration$  of compound,

 $A_{\mathbf{k}}=Area$  of associated internal standard  $C_{\mathbf{k}}=Concentration$  of internal standard

|   |             |                     |                                                    |                          | Reported    | Receiculated                                 | Bonorted    | Latelization       |
|---|-------------|---------------------|----------------------------------------------------|--------------------------|-------------|----------------------------------------------|-------------|--------------------|
| * | Standard ID | Calibration<br>Date | Compound (Reference Internal<br>Standard)          | Average RRF<br>(Initial) | RRF<br>(CC) | RRF<br>(CC)                                  | Q%          | necalculated<br>%D |
|   | JCAN 5195   | 8.0/81/2            | Phenol (1st internal standard)                     | 1.85537                  | 1.8774      | 1.87174                                      | 0/288       | - 00 0             |
|   | _           | / /                 | Naphthalene (2nd internal standard)                | 1.1090                   | 1013        | 1.10130                                      | OKAOTO      | 0 6000             |
|   |             |                     | Fluorene (3rd internal standard)                   | 1.41229                  | 1.39801     | 1.34801                                      | 8000        | 20.0               |
|   |             |                     | Pentachlorophenol (4th internal standard)          | 0.19634                  | 0.20270     | 0.203/0                                      | 374085      | >7477              |
|   | ,           |                     | Bis(2-ethylhexyl)phthalate (5th internal standard) | 0.86343                  | 0.87788     | 0.87088                                      | 1'`         | 0 8658             |
|   |             |                     | Benzo(a)pyrene (6th internal standard)             | 1.1118                   | 1.11507     | 1.11507                                      | 0.2028      | 0 X X X            |
| ~ | VCA15196    | 6/18/08             | Phenol (1st internal standard)                     | 0.51274                  | 25/25.0     | 182187                                       | - トレグル      | 1/1                |
|   |             | / /                 | Naphthalene (2nd internal standard) UUU            | Eze81.)                  | 1.17316     | 1.17316                                      | 076746      | 0 767 19           |
|   |             |                     | Fluorene (3rd internal standard)                   |                          |             |                                              | \frac{1}{2} | 6:6                |
|   |             |                     | Pentachlorophenol (4th internal standard)          |                          |             |                                              |             |                    |
|   |             |                     | Bis(2-ethylhexyl)phthalate (5th internal standard) |                          | -           |                                              |             |                    |
|   |             |                     | Benzo(a)pyrene (6th internal standard)             |                          |             |                                              |             |                    |
| ო | JCA46197    | 8/8/9               | Phenol (1st internal standard) // //               | 1.67590                  | 1.60400     | 1.60400                                      | 1.78300     | 17830              |
|   |             |                     | Maphihelene (2nd internal standard) ${ m MMM}$     | 0.33002                  | 0.33744     | 0.33744                                      |             | 7 200              |
|   |             |                     | Fluorene (3rd internal standard)                   | 1.02385                  | 1.0336      | 0.880.                                       |             | 00000              |
|   |             |                     | Pentachlorophenol (4th internal standard)          | 0.36637                  | 0.38274     | 0.2834                                       | 74821       | 4112               |
|   |             |                     | Bis(2-ethylhexyl)phthalate (5th interfallstandard) | 0.39265                  | 039671      | 0.39671                                      | 102201      | 0334               |
|   |             |                     | Benzo(a)pyrene (6th internal standard)             |                          |             | <i>,</i> , , , , , , , , , , , , , , , , , , |             |                    |

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 19188A> SDG #: <u>See COW</u>

## VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

| Page:         | <u>/</u> of_/_ |
|---------------|----------------|
| Reviewer:_    | 0              |
| 2nd reviewer: |                |

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS \* 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID:\_\_\_\_\_

|                        | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Nitrobenzene-d5        |                     | 33.9134            | 65                              |                                     |                       |
| 2-Fluorobiphenyl       |                     | 35.9420            | 68                              |                                     |                       |
| Terphenyl-d14          |                     | 39.8482            | 78                              |                                     |                       |
| Phenol-d5              |                     | 52.05/37           | 66                              |                                     |                       |
| 2-Fluorophenol         |                     | 50,9295            | 65                              |                                     |                       |
| 2,4,6-Tribromophenol   |                     | 52.8840            | 69                              |                                     |                       |
| 2-Chlorophenol-d4      |                     |                    |                                 |                                     |                       |
| 1,2-Dichlorobenzene-d4 |                     |                    |                                 |                                     |                       |

Sample ID: -

|                        | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Nitrobenzene-d5        | 50                  | 32.5367            | 65                              | 65                                  | 0                     |
| 2-Fluorobiphenyl       | 1                   | 33.9843            | 68                              | 68                                  | 1                     |
| Terphenyl-d14          |                     | 38.7625            | 78                              | 78                                  |                       |
| Phenol-d5              | 75                  | 49.6403            | 66                              | 66                                  |                       |
| 2-Fluorophenol         |                     | 49.0421            | 65                              | 65                                  |                       |
| 2,4,6-Tribromophenol   |                     | 52.0744            | 69                              | 69                                  |                       |
| 2-Chlorophenol-d4      |                     |                    | ,                               |                                     |                       |
| 1,2-Dichlorobenzene-d4 |                     |                    |                                 |                                     |                       |

Sample ID:

|                        | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Nitrobenzene-d5        |                     |                    |                                 |                                     |                       |
| 2-Fluorobiphenyl       |                     |                    |                                 |                                     |                       |
| Terphenyl-d14          |                     |                    |                                 |                                     |                       |
| Phenol-d5              |                     |                    |                                 |                                     |                       |
| 2-Fluorophenol         |                     |                    |                                 |                                     |                       |
| 2,4,6-Tribromophenol   |                     |                    |                                 |                                     |                       |
| 2-Chlorophenol-d4      |                     |                    |                                 |                                     |                       |
| 1,2-Dichlorobenzene-d4 |                     |                    |                                 |                                     |                       |

SDG #: See Com LDC#: 01004>

# Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

/of/ Page: Reviewer:\_ 2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 \* (SC/SA

SSC = Spike concentration SA = Spike added Where:

RPD = I LCSC - LCSDC I \* 2/(LCSC + LCSDC)

LCSC = Laboraotry control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: スルタスチュア

|                         |                          | و ا          |        |                            |                         |              |                   |          |  |  |  |
|-------------------------|--------------------------|--------------|--------|----------------------------|-------------------------|--------------|-------------------|----------|--|--|--|
| CS/I CSD                | RPD                      | Recalculated |        |                            |                         |              |                   |          |  |  |  |
| I/SJ I                  | ià.                      | Renorted     |        |                            |                         |              |                   |          |  |  |  |
| C)                      | ecovery                  | Recalc       |        |                            |                         |              |                   |          |  |  |  |
| I CSD                   | Percent Recovery         | Reported     |        |                            |                         |              |                   |          |  |  |  |
| CS                      | Recovery                 | Recalc       | 12     | 77                         | 77                      | 75           | 79                | 70       |  |  |  |
| 31                      | Percent Recovery         | Reported     | 14     | 22                         | 77                      | 75           | 29                | 70       |  |  |  |
| ke                      | tration<br>(カ)           | I CSD        | YN     |                            |                         |              | ,                 | <b>\</b> |  |  |  |
| Spike                   | Concentration<br>(人や) タ) | SOI          | 3356   | 0250                       | 0956                    | 0152         | 2240              | 2382     |  |  |  |
| Spike<br>Added<br>(ACK) |                          | LCSD         | ΝĂ     |                            |                         |              |                   | Ņ        |  |  |  |
| ds                      | Agi, )                   | SDT          | 33 70  |                            |                         |              |                   | <i>\</i> |  |  |  |
|                         | Compound                 |              | Phenol | N-Nitroso-di-n-propylamine | 4-Chloro-3-methylphenol | Acenaphthene | Pentachlorophenoi | Pyrene   |  |  |  |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 19188A2 SDG #: Sec COWN

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

| Page:         | (of |
|---------------|-----|
| Reviewer:_    | 9   |
| 2nd reviewer: |     |

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

| 4 | Y  | N | N/A |
|---|----|---|-----|
| - | V/ |   |     |

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

| Conce           | entratic | on = $\frac{(A_{\bullet})(I_{\bullet})(V_{\bullet})(DF)(2.0)}{(A_{\bullet})(RRF)(V_{\bullet})(V_{\bullet})(\%S)}$ | Example:                        |
|-----------------|----------|-------------------------------------------------------------------------------------------------------------------|---------------------------------|
| A <sub>x</sub>  |          | Area of the characteristic ion (EICP) for the compound to be measured                                             | Sample I.D. Q., NO:             |
| A <sub>is</sub> | =        | Area of the characteristic ion (EICP) for the specific internal standard                                          |                                 |
| l,              | =        | Amount of internal standard added in nanograms (ng)                                                               | Conc. = $( )( )( )( )( )( )( )$ |
| V <sub>o</sub>  | =        | Volume or weight of sample extract in milliliters (ml) or grams (g).                                              |                                 |
| $V_{t}$         | =        | Volume of extract injected in microliters (ul)                                                                    | =                               |
| V,              | =        | Volume of the concentrated extract in microliters (ul)                                                            |                                 |
| Df              | =        | Dilution Factor.                                                                                                  |                                 |
| %S              | =        | Percent solids, applicable to soil and solid matrices only.                                                       |                                 |
| 20              | =        | Factor of 2 to account for GPC cleanup                                                                            |                                 |

| 2.0 | = Factor of 2 to accou | int for GPC cleanup |  |                                  |                                    |               |  |  |  |  |  |
|-----|------------------------|---------------------|--|----------------------------------|------------------------------------|---------------|--|--|--|--|--|
| #   | Sample ID              | Compound            |  | Reported<br>Concentration<br>( ) | Calculated<br>Concentration<br>( ) | Qualification |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     | ·                      |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    |               |  |  |  |  |  |
|     |                        |                     |  |                                  |                                    | L             |  |  |  |  |  |

## Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox, Parcel G

**Collection Date:** 

June 11, 2008

LDC Report Date:

August 6, 2008

Matrix:

Soil

Parameters:

Chlorinated Pesticides

Validation Level:

EPA Level III & IV

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F120180

Sample Identification

TSB-GJ-09-10'

TSB-GJ-09-20'\*\*

TSB-GJ-09-30'

TSB-GJ-09-40'

<sup>\*\*</sup>Indicates sample underwent EPA Level IV review

## Introduction

This data review covers 4 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8081A for Chlorinated Pesticides.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

## I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

## II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

## III. Initial Calibration

Initial calibration of single compounds were performed for the primary (quantitation) column and confirmation column as required by this method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r²) was greater than or equal to 0.990.

Retention time windows were evaluated and considered technically acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples on which a Level III review was performed.

## IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 15.0% QC limits with the following exceptions:

| Date    | Standard | Channel | Compound  | %D   | Associated<br>Samples          | Flag             | A or P |
|---------|----------|---------|-----------|------|--------------------------------|------------------|--------|
| 6/18/08 | KCAL092  | А       | Toxaphene | 15.2 | TSB-GJ-09-30'<br>TSB-GJ-09-40' | J+ (all detects) | A      |
| 6/18/08 | KCAL095  | А       | 2,4'-DDD  | 22.6 | TSB-GJ-09-30'<br>TSB-GJ-09-40' | J+ (all detects) | Р      |

The percent differences (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

Retention times (RT) of all compounds in the calibration standards were within QC limits for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples on which a Level III review was performed.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

### V. Blanks

Method blanks were reviewed for each matrix as applicable. No chlorinated pesticide contaminants were found in the method blanks.

No field blanks were identified in this SDG.

## VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

## VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

## VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

## IX. Regional Quality Assurance and Quality Control

Not applicable.

## X. Pesticide Cleanup Checks

## a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

### b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

## XI. Target Compound Identification

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

## XII. Compound Quantitation and Reported CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

## XIII. Overall Assessment of Data

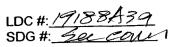
Data flags are summarized at the end of this report if data has been qualified.

## XIV. Field Duplicates

No field duplicates were identified in this SDG.

## BRC Tronox, Parcel G Chlorinated Pesticides - Data Qualification Summary - SDG F8F120180

| SDG       | Sample                         | Compound  | Flag             | A or P | Reason                      |
|-----------|--------------------------------|-----------|------------------|--------|-----------------------------|
| F8F120180 | TSB-GJ-09-30'<br>TSB-GJ-09-40' | Toxaphene | J+ (all detects) | А      | Continuing calibration (%D) |
| F8F120180 | TSB-GJ-09-30'<br>TSB-GJ-09-40' | 2,4'-DDD  | J+ (all detects) | Р      | Continuing calibration (%D) |


BRC Tronox, Parcel G Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG F8F120180

No Sample Data Qualified in this SDG

BRC Tronox, Parcel G Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG F8F120180

No Sample Data Qualified in this SDG

| SDG #<br>₋abora | #:19188A3a <b>VALIDA</b> #:F8F120180 atory: <u>Test America</u> HOD: GC Chlorinated Pesticides (EF |                                                                   | evel III/IV      | Date: 8/-/<br>Page:/of /<br>Reviewer:<br>2nd Reviewer:   |                               |
|-----------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------|----------------------------------------------------------|-------------------------------|
|                 | amples listed below were reviewed t<br>tion findings worksheets.                                   | for each of the f                                                 | following valida | ation areas. Validation                                  | findings are noted in attache |
| ****            | Validation Area                                                                                    |                                                                   |                  | Comme                                                    | nts                           |
| I.              | Technical holding times                                                                            | _ A                                                               | Sampling dates   | : 6/11/08                                                | <i>Y</i>                      |
| II.             | GC/ECD Instrument Performance Check                                                                | A                                                                 |                  |                                                          |                               |
| 111.            | Initial calibration                                                                                | <b>A</b> ,                                                        | KSD.             | y 2_                                                     |                               |
| IV.             | Continuing calibration/ICV                                                                         | /w/                                                               | CVE              | 1570                                                     |                               |
| V.              | Blanks                                                                                             | <del></del>                                                       |                  |                                                          |                               |
| VI.             | Surrogate spikes                                                                                   |                                                                   |                  |                                                          |                               |
| VII.            | Matrix spike/Matrix spike duplicates                                                               | 4                                                                 | 15B-G            | 1-08-10                                                  |                               |
| VIII.           | Laboratory control samples                                                                         |                                                                   | 100              |                                                          |                               |
| IX.             | Regional quality assurance and quality co                                                          | ntrol N                                                           |                  |                                                          |                               |
| Xa.             | Florisil cartridge check                                                                           | N                                                                 |                  |                                                          |                               |
| Xb.             | GPC Calibration                                                                                    | N                                                                 |                  |                                                          |                               |
| XI.             | Target compound identification                                                                     | A                                                                 | Not reviewed for | or Level III validation.                                 |                               |
| XII.            | Compound quantitation and reported CRC                                                             | QLs D                                                             | Not reviewed for | or Level III validation.                                 |                               |
| XIII.           | Overall assessment of data                                                                         | 4                                                                 |                  |                                                          |                               |
| XIV.            | Field duplicates                                                                                   | 1                                                                 |                  |                                                          |                               |
| XV.             | Field blanks                                                                                       |                                                                   |                  | <del> </del>                                             |                               |
| Note:           | A = Acceptable N = Not provided/applicable F                                                       | ND = No compound R = Rinsate FB = Field blank Level IV validation |                  | D = Duplicate<br>TB = Trip blank<br>EB = Equipment blank |                               |
|                 | ·                                                                                                  | 10.11                                                             | B I I            | <del></del>                                              |                               |
| 1               | TSB-GJ-09-10' 3 11 8/a                                                                             | 68164 M                                                           | <b>2</b> 1       | 3                                                        | 31                            |
| 2               | TSB-GJ-09-20'** 12                                                                                 |                                                                   | 22               | 3                                                        | 32                            |
| 3               | TSB-GJ-09-30' 13                                                                                   |                                                                   | 23               | 3                                                        | 33                            |
| 4               | TSB-GJ-09-40'                                                                                      |                                                                   | 24               | 3                                                        | 34                            |
| 5               | 15                                                                                                 |                                                                   | 25               | 3                                                        | 35                            |
| 6               | 16                                                                                                 |                                                                   | 26               | 3                                                        | 36                            |



## VALIDATION FINDINGS CHECKLIST

| Page: /of 2   |
|---------------|
| Reviewer:     |
| 2nd Reviewer: |

| Method: | / | GC | <br><b>HPLC</b> |
|---------|---|----|-----------------|

| Method: GC HPLC                                                                                                                                          |                | -        |          |                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|----------|----------------------------------------------------------------------------------------------------------------|
| Validation Area                                                                                                                                          | Yes            | No       | NA       | Findings/Comments                                                                                              |
| r-restricationing times                                                                                                                                  |                |          |          |                                                                                                                |
| All technical holding times were met.                                                                                                                    |                |          |          |                                                                                                                |
| Cooler temperature criteria was met.                                                                                                                     |                |          |          |                                                                                                                |
|                                                                                                                                                          |                |          |          |                                                                                                                |
| If this callection  Did the laboratory perform a 5 point calibration prior to sample analysis?                                                           |                |          |          |                                                                                                                |
| Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) < 20%?                                                | /              |          |          |                                                                                                                |
| Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?                                                                      |                |          |          |                                                                                                                |
| Did the initial calibration meet the curve fit acceptance criteria?                                                                                      |                |          |          |                                                                                                                |
| Were the RT windows properly established?                                                                                                                |                |          |          |                                                                                                                |
| IV Continuing calibration                                                                                                                                |                |          |          |                                                                                                                |
| What type of continuing calibration calculation was performed?%D or %R                                                                                   |                |          |          |                                                                                                                |
| Was a continuing calibration analyzed daily?                                                                                                             |                |          |          |                                                                                                                |
| Were all percent differences (%D) < 15%.0 or percent recoveries 85-115%?                                                                                 | Ĺ              | $\perp$  | <u> </u> |                                                                                                                |
| Were all the retention times within the acceptance windows?                                                                                              |                | <u> </u> |          |                                                                                                                |
| V-Blacks                                                                                                                                                 |                |          |          |                                                                                                                |
| Was a method blank associated with every sample in this SDG?                                                                                             |                | 1        | <u> </u> |                                                                                                                |
| Was a method blank analyzed for each matrix and concentration?                                                                                           |                |          |          |                                                                                                                |
| Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.                                           |                | /        |          |                                                                                                                |
| V) Surrigate spikes                                                                                                                                      |                |          |          |                                                                                                                |
| Were all surrogate %R within the QC limits?                                                                                                              | /              | 1        |          |                                                                                                                |
| If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?                                  |                |          |          |                                                                                                                |
| If any %R was less than 10 percent, was a reanalysis performed to confirm %R?                                                                            |                |          |          |                                                                                                                |
| VII. Matrix spike/Matrix spike duplicates                                                                                                                |                |          |          | 303                                                                                                            |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated |                |          |          |                                                                                                                |
| MS/MSD. Soil / Water.  Was a MS/MSD analyzed every 20 samples of each matrix?                                                                            | 17             | 1        | 1        |                                                                                                                |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                 |                |          |          |                                                                                                                |
| VIII*Laboratory.control/samples*                                                                                                                         |                |          |          | enter de la companya |
| Was an LCS analyzed for this SDG?                                                                                                                        | $ \downarrow $ | 4_       | _        |                                                                                                                |
| Was an LCS analyzed per extraction batch?                                                                                                                |                |          |          |                                                                                                                |



## VALIDATION FINDINGS CHECKLIST

| Page: <u>∂</u> of <u>→</u> |
|----------------------------|
| Reviewer:                  |
| 2nd Reviewer:              |

| Validation Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes          | No                              | NA        | Findings/Comments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|-----------|-------------------|
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /            |                                 |           |                   |
| IX: Regional Guality Assulaince and Guality Control 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                 |           |                   |
| Were performance evaluation (PE) samples performed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                 |           | /                 |
| Were the performance evaluation (PE) samples within the acceptance limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F32 +76-3800 | ******************************* |           |                   |
| X Target compound dentineation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                 |           |                   |
| Were the retention times of reported detects within the RT windows?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O COLUMN TO  | na de Andres en                 | 122712324 |                   |
| XI: Composind quantitation/CRQUs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                 |           |                   |
| Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                 |           |                   |
| XII System performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                 |           |                   |
| System performance was found to be acceptable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                 |           |                   |
| XIII)Overall assessment of data Sacrative Control of the Control o |              |                                 |           | Page 19           |
| Overall assessment of data was found to be acceptable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                 |           |                   |
| XIV_Field doblicates as the second of the se |              |                                 |           |                   |
| Were field duplicate pairs identified in this SDG?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                 |           |                   |
| Were target compounds idetected in the field duplicates?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                 |           |                   |
| XV. Field planks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                 |           |                   |
| Were field blanks identified in this SDG?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                 | /         |                   |
| Were target compounds detected in the field blanks?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                 | /         |                   |

## **VALIDATION FINDINGS WORKSHEET**

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

| A. alpha-BHC          | I. Dieldrin           | Q. Endrin ketone   | Y. Aroclor-1242  | .96 |
|-----------------------|-----------------------|--------------------|------------------|-----|
| B. beta-BHC           | J. 4,4'-DDE           | R. Endrin aldehyde | Z. Aroclor-1248  | HH. |
| C. delta-BHC          | K. Endrin             | S. alpha-Chlordane | AA. Aroclor-1254 | II. |
| D. gamma-BHC          | L. Endosulfan II      | T. gamma-Chlordane | BB. Aroclor-1260 | JJ. |
| E. Heptachlor         | M. 4,4'-DDD           | U. Toxaphene       | CC. DB 608       | KK. |
| F. Aldrin             | N. Endosulfan sulfate | V. Aroclor-1016    | DD. DB 1701      | LL. |
| G. Heptachlor epoxide | O. 4,4'-DDT           | W. Aroclor-1221    | EF.              | MM. |
| H. Endosulfan I       | P. Methoxychlor       | X. Aroclor-1232    | FF.              | NN. |

| ition Worksheets/Pesticides/COMPLST-3S.wpd |
|--------------------------------------------|
| V:\Validation Worl                         |
|                                            |

Notes:

LDC#: 1958/139 SDG#: 1200WV

METHOD:

## VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: \_\_of\_\_ Reviewer: \_\_\_\_\_\_\_

2nd Reviewer:\_

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Did the continuing calibration standards meet the %D / RPD validation criteria of <15.0%?

Y M N/A Level IV Only Y N N/A

Were the retention times for all calibrated compounds within their respective acceptance windows?

| Qualifications             | 1+ Lety/ |          |     |   |     |   |   |  |  |   |  |   |     |   |  |  |  |
|----------------------------|----------|----------|-----|---|-----|---|---|--|--|---|--|---|-----|---|--|--|--|
| Associated Samples         | 3-4      | ·        |     |   |     |   |   |  |  |   |  |   |     |   |  |  |  |
| RT (ilmit)                 | (        | ( )      | ( ) | ( | ( ) | ( | ) |  |  | , |  | ( | ( ) | ) |  |  |  |
| %D / RPD<br>(Limit s 15.0) | 3.3      | 0 .      |     |   |     |   |   |  |  |   |  |   |     |   |  |  |  |
| Compound                   | 246.40   | 1991     |     |   |     |   |   |  |  |   |  |   |     |   |  |  |  |
| Detector/<br>Column        | 1 2 1    | <i>y</i> |     |   |     |   |   |  |  |   |  |   |     |   |  |  |  |
| Standard ID                | KOHLO    |          |     |   |     |   |   |  |  |   |  |   |     |   |  |  |  |
| # Date   6/18/68           |          |          |     |   |     |   |   |  |  |   |  |   |     |   |  |  |  |

LDC #: 19188/139 SDG#: Secon

## Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

| Lot L | 4         |               |
|-------|-----------|---------------|
| Page: | Reviewer: | 2nd Reviewer: |
|       |           | 2nd           |

HPLC METHOD: GC\_ The calibration Factor (CF), average CF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

CF # A/C

average CF \* sum of the CF/number of standards %RSD = 100 \* (S/X)

A = Area of compound,
C = Concentration of compound,
S = Standard deviation of the CF
X = Mean of the CFs

|   |             |                     |           | Reported      | Recalculated | Reported                                                                                                   | Recalculated            | Reported           | Recalculated |
|---|-------------|---------------------|-----------|---------------|--------------|------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|--------------|
| # | Standard ID | Calibration<br>Date | Compound  | CF<br>00 Std) | C. Sstd)     | Average CF<br>(initial)                                                                                    | Average CF<br>(initial) | %RSD               | %RSD         |
| - | 1346        | 80/21/9             |           | 3/366840      | 3/366840     | 3/366840 3/36840 3/378540 3/378560 1.30108 1.3011                                                          | 3/3/28/26               | 80/08.1            | 1.301/       |
|   |             | ,                   | F (ch. A) | 21121/200     | 0025CH2520   | 21121/20 21121/2021/2021/8 2038021/8 21/0044 2.1004<br>4454220265545320 881332132 681332137 2.76188 2.7619 | 20380219                | 2.10044<br>2.76188 | 2.7619       |
| 2 |             | 7//                 | 1 ) 0     | 2823380       | 8282850 C    | 28233860 28233800 30/26/26/26/26/26/26/26/26/26/26/26/26/26/                                               | 30/26/08                | 8x7=117            | p2///        |
|   | 10/2        | 81/91/9             | F (ORB)   | 3635 /100     | 36359/000    | 0788. = 24388. = 12868/086 28868/088 000/1226 500/12686                                                    | 381828d                 | 2.83696            | 2.8370       |
|   |             |                     | V 0       | 128/560       | 0/268/560    | 128/5600 1268/1400 133202078 133202078 8.79750 8.7920                                                      | 13320208                | 8.79250            | 8.7925       |
| ю |             |                     |           |               |              |                                                                                                            |                         |                    |              |
|   |             |                     |           |               |              |                                                                                                            |                         |                    |              |
|   |             |                     |           |               |              |                                                                                                            |                         |                    |              |
| 4 |             |                     |           |               |              |                                                                                                            |                         |                    |              |
|   |             |                     |           |               |              |                                                                                                            |                         |                    |              |
|   |             |                     |           |               |              |                                                                                                            |                         |                    |              |

Comments: Referto Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

SDG #260 COM LDC #: (1/1/2/2)

## Continuing Calibration Results Verification VALIDATION FINDINGS WORKSHEET

| Page: /of / | Reviewer: | 2nd Reviewer: |
|-------------|-----------|---------------|
|             |           | 2nd           |

HPLC METHOD: GC\_

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below

% Difference = 100 \* (ave. CF - CF)/ave. CF .CF = A/C

using the following calculation:

Where: ave. CF ≈ initial calibration average CF
CF = continuing calibration CF
A = Area of compound
C = Concentration of compound

|   |             |                     |              |                                | Reported        | Recalculated    | Reported | Recalculated |
|---|-------------|---------------------|--------------|--------------------------------|-----------------|-----------------|----------|--------------|
| # | Standard ID | Calibration<br>Date | Compound     | Average CF(Ical)/<br>CCV Conc. | CF/Conc.<br>CCV | CF/Conc.<br>CCV | %D       | Q%           |
| - | 404 LOBEL   | 84/8/19             | F (ch. 4)    | 0.035                          | [250.0]         | 10.0357         | 9.8      | 8.6          |
|   |             |                     | 0.           | 1                              | 20.0 120.0      | 1/20.0          | 5.0      | 25.0         |
| l |             |                     | 24-DE (dr.f) | 0.035                          | 8500            | 0.038           | 33       | 3.7          |
| 7 | CS07 123    | 4/0//               | F (Ant)      | 0.035                          | 0.0355          | 2550.0          | 8.       | 8 /          |
|   |             | 0/10/10             | 0            | /                              | 1200            |                 | 2.7      | 12           |
|   |             | `                   | 2.4-00E      |                                | 22550           | 0.0 25/5        | 2.2      | رح زک        |
| ო |             |                     |              |                                |                 |                 |          |              |
|   |             |                     |              |                                |                 |                 |          |              |
|   |             |                     |              |                                |                 |                 |          |              |
| 4 |             |                     |              |                                |                 |                 |          |              |
|   |             |                     |              |                                |                 |                 |          |              |
|   |             |                     |              |                                |                 |                 |          |              |

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

METHOD: \_\_GC\_\_ HPLC

## VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: Reviewer:\_ 2nd reviewer:

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS \* 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

| Surrogate | Column/Detector | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|-----------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|           |                 |                     |                    | Reported            | Recalculated        |                       |
| TONX      | Ch. A           | 0000                | 0.01860            | 8                   | 8                   | 0                     |
| DC13      | 1               | 1                   | 0.01958            | l                   | 8                   |                       |
|           |                 |                     |                    |                     |                     |                       |
|           |                 |                     |                    |                     |                     |                       |

| Sample ID: |                 |                     | :                  |                     |                     |                       |
|------------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------|
| Surrogate  | Column/Detector | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|            |                 |                     |                    | Reported            | Recalculated        |                       |
|            |                 |                     |                    |                     |                     |                       |
|            |                 |                     |                    |                     |                     |                       |
|            |                 |                     |                    |                     |                     |                       |
|            |                 |                     |                    |                     |                     |                       |

Sample ID:

|                       | T            | l | 1 | Ī |
|-----------------------|--------------|---|---|---|
| Percent<br>Difference |              |   |   |   |
| Percent<br>Recovery   | Recalculated |   |   |   |
| Percent<br>Recovery   | Reported     |   |   |   |
| Surrogate<br>Found    |              |   |   |   |
| Surrogate<br>Spiked   |              |   |   |   |
| Column/Detector       |              |   |   |   |
| Surrogate             |              |   |   |   |

LDC #: 1918 # 34 SDG # 346 @ WV

# Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification VALIDATION FINDINGS WORKSHEET

Page: of Reviewer: 2nd Reviewer:

METHOD: 4 GC HPLC

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100\* (SSC-SC)/SA

SSC = Spiked sample concentration SA = Spike added

Where:

SC = Concentration

RPD = I SSCLCS - SSCLCSD I \* 2/(SSCLCS + SSCLCSD)

LCS/LCSD samples: 576 87

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

|                              | S    | Spike | Spiked | l Sample                 | 1        | rcs              | dsol             | ζΣ      | /SOT         | CS/LCSD |
|------------------------------|------|-------|--------|--------------------------|----------|------------------|------------------|---------|--------------|---------|
| Compound                     |      |       | Sono:  | Concentration<br>(We 13) | Percent  | Percent Recovery | Percent Recovery | ecovery | <del>«</del> | RPD     |
|                              | TCS  | LCSD  | SOT    | dson ,                   | Reported | Recalc.          | Reported         | Recalc. | Reported     | Recalc. |
| Gasoline (8015)              |      |       |        |                          |          |                  |                  |         |              |         |
| Diesel (8015)                |      |       |        |                          |          |                  |                  |         |              |         |
| Benzene (8021B)              |      |       |        |                          |          |                  |                  |         |              |         |
| Methane (RSK-175)            |      |       |        |                          |          |                  |                  |         |              |         |
| 2,4-D (8151)                 |      |       |        |                          |          |                  |                  |         |              |         |
| Dinoseb (8151)               |      |       |        |                          |          |                  |                  |         |              |         |
| Naphthalene (8310)           |      |       |        |                          |          |                  |                  |         |              |         |
| Anthracene (8310)            |      |       |        |                          |          |                  |                  |         |              |         |
| HMX (8330)                   |      |       |        |                          |          |                  |                  |         |              |         |
| 2,4,6-Trinitrotoluene (8330) |      |       |        |                          |          |                  |                  |         |              |         |
| 4                            | 16.T | NA    | 0.51   | NA                       | 06       | 90               |                  |         |              |         |
| 0                            | 1    | //    | 8.91   |                          | 101      | - 0 -            |                  |         |              |         |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #<u>/7/884</u>39 SDG #:\$<u>a\_co</u>w/

## **VALIDATION FINDINGS WORKSHEET** Sample Calculation Verification

2

| GC HF   | Were all rep<br>Were all rec |
|---------|------------------------------|
| METHOD: | N/A<br>N/A<br>N/A            |

ported results recalculated and verified for all level IV samples? calculated results for detected target compounds agree within 10% of the reported results?

| Concentration= (A)(Ev)(Df)                                                   | Example:  |               |   |
|------------------------------------------------------------------------------|-----------|---------------|---|
| (001/09/)(244-10-24)(34)                                                     | Sample II | Compound Name | 6 |
| A= Area or height of the compound to be measured Fv= Final Volume of extract |           |               |   |
| Df= Dilution Factor                                                          |           |               |   |

Concentration =\_

RF= Average response factor of the compound In the initial calibration Vs= Initial volume of the sample Ws= initial weight of the sample %S= Percent Solid

|                                     |  | <br> | <br> | _ |  |
|-------------------------------------|--|------|------|---|--|
| Qualifications                      |  |      |      |   |  |
| Recalculated Results Concentrations |  |      |      |   |  |
| Reported Concentrations             |  |      |      |   |  |
| Compound                            |  |      |      |   |  |
| Sample ID                           |  |      |      |   |  |
| #                                   |  |      |      |   |  |
|                                     |  |      | <br> |   |  |

SAMPCALew.wpd

Somments:

## Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel G

**Collection Date:** 

June 11, 2008

LDC Report Date:

August 6, 2008

Matrix:

Soil

Parameters:

Polychlorinated Biphenyls

Validation Level:

EPA Level III & IV

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F120180

Sample Identification

TSB-GJ-09-10'

TSB-GJ-09-20'\*\*

TSB-GJ-09-30'

TSB-GJ-09-40'

<sup>\*\*</sup>Indicates sample underwent EPA Level IV review

### Introduction

This data review covers 4 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8082 for Polychlorinated Biphenyls.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

## I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

## II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

### III. Initial Calibration

Initial calibration of multicomponent compounds was performed for the primary (quantitation) column as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Retention time windows were evaluated and considered technically acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples on which a Level III review was performed.

## IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 15.0% QC limits.

The percent differences (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

Retention times (RT) of all compounds in the calibration standards were within QC limits for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples on which a Level III review was performed.

### V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated biphenyl contaminants were found in the method blanks.

No field blanks were identified in this SDG.

## VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

## VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

## VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

## IX. Regional Quality Assurance and Quality Control

Not applicable.

## X. Pesticide Cleanup Checks

## a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

### b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

## XI. Target Compound Identification

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

## XII. Compound Quantitation and Reported CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

### XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

## XIV. Field Duplicates

No field duplicates were identified in this SDG.

BRC Tronox Parcel G
Polychlorinated Biphenyls - Data Qualification Summary - SDG F8F120180

No Sample Data Qualified in this SDG

BRC Tronox Parcel G
Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG
F8F120180

No Sample Data Qualified in this SDG

BRC Tronox Parcel G
Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG
F8F120180

No Sample Data Qualified in this SDG

| LDC #: 19188A3b          | VALIDATION COMPLETENESS WORKSHEET |     |
|--------------------------|-----------------------------------|-----|
| SDG #: F8F120180         | Level III/IV                      |     |
| Laboratory: Test America |                                   |     |
|                          | LD:                               | 2nd |

| Date:8/4/08   |
|---------------|
| Page:         |
| Reviewer:     |
| 2nd Reviewer: |

**METHOD:** GC Polychlorinated Biphenyls (EPA SW 846 Method 8082)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                                |          | Comments                               |
|-------|------------------------------------------------|----------|----------------------------------------|
| I.    | Technical holding times                        | A        | Sampling dates: 6/11/0-8               |
| II.   | GC/ECD Instrument Performance Check            | N        | / /                                    |
| 111.  | Initial calibration                            | A        |                                        |
| IV.   | Continuing calibration/ICV                     | A        | 1CV=1570                               |
| V.    | Blanks                                         | <b>A</b> |                                        |
| VI.   | Surrogate spikes                               | 1        |                                        |
| VII.  | Matrix spike/Matrix spike duplicates           | A        | 15B-61-08-10'                          |
| VIII. | Laboratory control samples                     | A        | 105                                    |
| IX.   | Regional quality assurance and quality control | N        |                                        |
| Xa.   | Florisil cartridge check                       | N        |                                        |
| Xb.   | GPC Calibration                                | N        |                                        |
| XI.   | Target compound identification                 | A        | Not reviewed for Level III validation. |
| XII.  | Compound quantitation and reported CRQLs       | A        | Not reviewed for Level III validation. |
| XIII. | Overall assessment of data                     |          |                                        |
| XIV.  | Field duplicates                               | N        |                                        |
| XV.   | Field blanks                                   |          |                                        |

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

Validated Samples:

<sup>\*\*</sup> Indicates sample underwent Level IV validation

| 1  | TSB-GJ-09-10'   | 11  | 3768762MB | 21 | 31     |  |
|----|-----------------|-----|-----------|----|--------|--|
| 2  | TSB-GJ-09-20'** | 12  | •         | 22 | <br>32 |  |
| 3  | TSB-GJ-09-30'   | /13 |           | 23 | 33     |  |
| 4  | TSB-GJ-09-40'   | 14  |           | 24 | 34     |  |
| 5  |                 | 15  |           | 25 | <br>35 |  |
| 6  |                 | 16  |           | 26 | 36     |  |
| 7  |                 | 17  |           | 27 | 37     |  |
| 8  |                 | 18  |           | 28 | 38     |  |
| 9  |                 | 19  |           | 29 | 39     |  |
| 10 |                 | 20  |           | 30 | 40     |  |

LDC #: 19188A3b SDG #: <u>5æ COW</u>

## VALIDATION FINDINGS CHECKLIST

Page: \_/of \_\_\_ Reviewer: \_\_\_\_\_ 2nd Reviewer:\_\_\_\_\_

| Method: | V | GC | HPLC |
|---------|---|----|------|

| Method: <u>// GCHPLC</u>                                                                                                                                                       | <del></del> |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Validation Area                                                                                                                                                                | Yes         | No           | NA                 | Findings/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| r Headical holding times                                                                                                                                                       |             |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| All technical holding times were met.                                                                                                                                          |             |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cooler temperature criteria was met.                                                                                                                                           |             |              | W. W. W.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| p faila calbation                                                                                                                                                              |             |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                                                     |             |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) < 20%?                                                                      |             |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?                                                                                            |             |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Did the initial calibration meet the curve fit acceptance criteria?                                                                                                            | <u> </u>    |              | _                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were the RT windows properly established?                                                                                                                                      |             | ******       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| iV. Continuing calibration                                                                                                                                                     | <u> </u>    |              | Tarky.             | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| What type of continuing calibration calculation was performed?%D or                                                                                                            |             |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was a continuing calibration analyzed daily?                                                                                                                                   | ν,          | ļ            | <u> </u>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were all percent differences (%D) ≤ 15%.0 or percent recoveries 85-115%?                                                                                                       | /           |              | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were all the retention times within the acceptance windows?                                                                                                                    |             |              | Clare              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V»Blanks                                                                                                                                                                       |             | <del>1</del> | T -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was a method blank associated with every sample in this SDG?                                                                                                                   | 1           | _            | <del> </del>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was a method blank analyzed for each matrix and concentration?                                                                                                                 | /           |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.                                                                 |             |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| VI-Surrigate spikes                                                                                                                                                            |             |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were all surrogate %R within the QC limits?                                                                                                                                    | /           | ļ            | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?                                                        |             |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| If any %R was less than 10 percent, was a reanalysis performed to confirm %R?                                                                                                  |             |              | /                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| VII. Mairix spike/Mardx spike duplicates                                                                                                                                       |             |              | _                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. |             |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                         | 1/          |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                       |             |              |                    | NASARAN NEW TOWN THE PROPERTY OF THE PROPERTY |
| VIII*Laboratory control samples                                                                                                                                                |             |              |                    | The source of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Was an LCS analyzed for this SDG?                                                                                                                                              | 1           | 4_           | $oldsymbol{\perp}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was an LCS analyzed per extraction batch?                                                                                                                                      | 1/          |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



------

## **VALIDATION FINDINGS CHECKLIST**

Page: of 2 Reviewer: 2nd Reviewer:

| Validation Area                                                                                                                         | Yes           | No                 | NA               | Findings/Comments |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|------------------|-------------------|
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                        |               |                    |                  |                   |
| IX Regional Gualify Assurance and Gualify Control                                                                                       |               |                    |                  |                   |
| Were performance evaluation (PE) samples performed?                                                                                     |               |                    |                  |                   |
| Were the performance evaluation (PE) samples within the acceptance limits?                                                              | 304-250-00-00 | de a remoder       |                  |                   |
| X garget compound identification                                                                                                        |               |                    |                  |                   |
| Were the retention times of reported detects within the RT windows?                                                                     |               | ACTOR A SOCIETY OF | -511-26-11-28-34 |                   |
| XI: Composind quantitation/CRQLS                                                                                                        |               |                    | 7 72             |                   |
| Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? |               |                    |                  |                   |
| XII/SS/stem-periormance                                                                                                                 |               |                    |                  |                   |
| System performance was found to be acceptable.                                                                                          |               |                    |                  |                   |
| XIII. Toverall assessment of data: ***********************************                                                                  | 7             |                    |                  |                   |
| Overall assessment of data was found to be acceptable.                                                                                  | /             |                    |                  |                   |
| XIV Field triplicates                                                                                                                   |               |                    |                  |                   |
| Were field duplicate pairs identified in this SDG?                                                                                      |               |                    |                  |                   |
| Were target compounds idetected in the field duplicates?                                                                                |               |                    | /                |                   |
| XV. Fjéld blánks                                                                                                                        |               |                    |                  |                   |
| Were field blanks identified in this SDG?                                                                                               |               |                    |                  |                   |
| Were target compounds detected in the field blanks?                                                                                     |               |                    |                  |                   |

## **VALIDATION FINDINGS WORKSHEET**

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

| A. aipha-BHC          | 1. Dieldrin           | Q. Endrin ketone   | Y. Aroclor-1242  | .99   |
|-----------------------|-----------------------|--------------------|------------------|-------|
| В. beta-ВНС           | J. 4,4'-DDE           | R. Endrin aldehyde | Z. Aroclor-1248  | ÷     |
| C. delta-BHC          | K. Endrin             | S. aipha-Chlordane | AA. Aroclor-1254 | =     |
| D. gamma-BHC          | L. Endosulfan II      | T. gamma-Chlordane | BB. Aroclor-1260 | J.L.  |
| E. Heptachlor         | M. 4,4'-DDD           | U. Toxaphene       | CC. DB 608       | KK.   |
| F. Aldrin             | N. Endosulfan sulfate | V. Aroclor-1016    | DD. DB 1701      | , LL. |
| G. Heptachlor epoxide | O. 4,4'-DDT           | W. Aroclor-1221    | H.               | MM.   |
| H. Endosulfan I       | P. Methoxychlor       | X. Aroclor-1232    | FF.              | NN.   |

V:\Validation Worksheets\Pesticides\COMPLST-3S.wpd

Notes:

LDC #: 18788436 SDG #: 200

## Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

| ot    | 4          |              |
|-------|------------|--------------|
| Page: | Reviewer:_ | and Reviewer |

METHOD: GC\_

The calibration Factor (CF), average CF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD =  $100^{\circ}$  (S/X)

A = Area of compound,

C = Concentration of compound, S = Standard deviation of the CF X = Mean of the CFs

| Calibration   Campound   CF   CF   Average CF   Average CF   WRSD   WRSD     CA   S   S   S   C   S   S   S   S   S   S                                 |    |             |                     |               | Reported               | Recalculated                                     | Reported                | Recalculated            | Reported | Recalculated |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------|---------------------|---------------|------------------------|--------------------------------------------------|-------------------------|-------------------------|----------|--------------|
| 5/1/8 FB CAX-c2ps + 3 3154 33154 37077 120<br>FB C J II) 45676 45676 39164 3914 9582<br>B C J III) 45676 15677 120<br>B C J III) 45676 39164 39164 9582 |    | Standard ID | Calibration<br>Date | Compound      | CF<br>( <i>SD</i> std) | CF<br>(572 std)                                  | Average CF<br>(initial) | Average CF<br>(initial) | %RSD     | %RSD         |
| 5/08 FB ( 1, II) 45676 39164 39164 9482                                                                                                                 | IL | 10          |                     | BB (Ax-apost) | 33154                  | 33154                                            | 27977                   | 27977                   | 22)      | (2.0         |
|                                                                                                                                                         |    | 1           | 20/12/5             | )<br>->       | 45676                  | <del>                                     </del> | 39164                   | 39164                   | = &ib    | d.582        |
|                                                                                                                                                         | 1  |             |                     |               |                        | J                                                |                         |                         |          |              |
|                                                                                                                                                         | IL |             |                     |               |                        |                                                  |                         |                         |          |              |
|                                                                                                                                                         |    |             |                     |               |                        |                                                  |                         |                         |          |              |
|                                                                                                                                                         |    |             |                     |               |                        |                                                  |                         |                         |          |              |
|                                                                                                                                                         |    |             |                     |               |                        |                                                  |                         |                         |          |              |
|                                                                                                                                                         |    |             |                     |               |                        |                                                  |                         |                         |          |              |
|                                                                                                                                                         |    |             |                     |               |                        |                                                  |                         |                         |          |              |
|                                                                                                                                                         |    |             |                     |               |                        |                                                  |                         |                         |          |              |
|                                                                                                                                                         |    |             |                     |               |                        |                                                  |                         |                         |          |              |
|                                                                                                                                                         |    |             |                     |               |                        |                                                  |                         |                         |          |              |

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 19 88 A.M. SDG#: Ser Cou

## Continuing Calibration Results Verification VALIDATION FINDINGS WORKSHEET

| Page:of | Reviewer: | and Deviewer. |
|---------|-----------|---------------|
|         |           | $\sim$        |

HPLC METHOD: GC\_

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave. CF - CF)/ave. CF CF = A/C

Where: ave. CF = initial calibration average CF
CF = continuing calibration CF
A = Area of compound
C = Concentration of compound

|                                 |                     |        |                |                                | Reported        | Recalculated    | Reported  | Recalculated |
|---------------------------------|---------------------|--------|----------------|--------------------------------|-----------------|-----------------|-----------|--------------|
| Calibration<br>Standard ID Date | Calibration<br>Date |        | Compound       | Average CF(Ical)/<br>CCV Conc. | CF/Conc.<br>CCV | CF/Conc.<br>CCV | <b>Q%</b> | <b>0%</b>    |
| 1) SE 81/8/19 E80ADE            |                     |        | BB (XX-cufest) | 0001                           | 2061:256        | 9               | 8.7       | 4.8          |
|                                 |                     |        |                |                                |                 |                 |           |              |
| 2 present 6/8/08 1881 R         | 1/8/08 BBCK         | \$38CK | 1x-fegst)      | (000)                          | 937.3342        | 937.3           | M. 0      | 6            |
|                                 |                     |        |                |                                |                 |                 |           |              |
|                                 |                     |        |                |                                |                 |                 |           |              |
|                                 |                     |        |                |                                |                 |                 |           |              |
|                                 |                     |        |                |                                |                 |                 |           |              |
|                                 |                     |        |                |                                |                 |                 |           |              |
|                                 |                     |        |                |                                |                 |                 |           |              |
|                                 |                     |        |                |                                |                 |                 |           |              |

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

## **VALIDATION FINDINGS WORKSHEET** Surrogate Results Verification

Page: Reviewer: 2nd reviewer:

METHOD: VGC \_\_ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS \* 100

Where: SF = Surrogate Found SS = Surrogate Spiked

p

Sample ID:

| Surrogate  | Column/Detector | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|------------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|            |                 |                     |                    | Reported            | Recalculated        |                       |
| 000        | Ch. A.          | 20                  | 85475              | 102                 | 601                 | 0                     |
|            |                 |                     |                    |                     |                     |                       |
|            |                 |                     |                    |                     |                     |                       |
|            |                 |                     |                    |                     |                     |                       |
| Sample ID: |                 |                     |                    |                     |                     |                       |
| Surrogate  | Column/Detector | Surrogate<br>Spiked | Surrogate          | Percent<br>Recovery | Percent<br>Recovery | Percent               |
|            |                 |                     |                    | Reported            | Recalculated        |                       |
|            |                 |                     |                    |                     |                     |                       |
|            |                 |                     |                    |                     |                     |                       |
|            |                 |                     |                    |                     |                     |                       |
|            |                 |                     |                    |                     |                     |                       |

| · |  |
|---|--|
| 5 |  |
| • |  |
| ÷ |  |
| ż |  |
| È |  |

| o de constant |
|---------------|
| Spiked        |
|               |
|               |
|               |
|               |
|               |

SDG #: See COWN LDC #: 19188A36

# VALIDATION FINDINGS WORKSHEET

2nd Reviewer:

Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

METHOD: VGC HPLC

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100\* (SSC-SC)/SA

Where:

SC = Concentration

RPD = I SSCLCS - SSCLCSD I \* 2/(SSCLCS + SSCLCSD)

SSC = Spiked sample concentration
SA = Spike added
LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: 8/6876

|                              | S .  | Spike | Spiked | Sample        | PC               | rcs      | רכ       | TCSD             | /SOT     | CS/LCSD |
|------------------------------|------|-------|--------|---------------|------------------|----------|----------|------------------|----------|---------|
| Compound                     | A Ac |       | Conce  | Concentration | Percent Recovery | Recovery | Percent  | Percent Recovery | <u>α</u> | RPD     |
|                              | l.cs | TCSD  | rcs    | TCSD          | Reported         | Recalc.  | Reported | Recalc.          | Reported | Recalc. |
| Gasoline (8015)              |      |       |        |               |                  |          |          |                  |          |         |
| Diesel (8015)                |      |       |        |               |                  |          |          |                  |          |         |
| Benzene (8021B)              |      |       |        |               |                  |          |          |                  |          |         |
| Methane (RSK-175)            |      |       |        |               |                  |          |          |                  |          |         |
| 2,4-D (8151)                 |      |       |        |               |                  |          |          |                  |          |         |
| Dinoseb (8151)               |      |       |        |               |                  |          |          |                  |          |         |
| Naphthalene (8310)           |      |       |        |               |                  |          |          |                  |          |         |
| Anthracene (8310)            |      |       |        |               |                  |          |          |                  |          |         |
| HMX (8330)                   |      |       |        |               |                  |          |          |                  |          |         |
| 2,4,6-Trinitrotoluene (8330) |      |       |        |               |                  |          |          |                  |          |         |
| 88                           | 191  | NA    | 121    | NA            | 501              | 102      |          |                  |          |         |
|                              | •    |       |        |               |                  |          |          |                  |          |         |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:/878843/ SDG #: 2000

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: Lof Reviewer: 🚣 2nd Reviewer:

> 77 GC HPLC METHOD:

Were all reported results recalculated and verified for all level IV samples? Y N N/A

Were all recalculated results for detected target compounds agree within 10% of the reported results?

Compound Name Sample ID. Example: (RF)(Vs or Ws)(%S/100) (A)(Fv)(Df) Concentration=

A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor

RF= Average response factor of the compound in the initial calibration

Concentration =\_

Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid

|                                       | i <del>r —</del> | T | <br> | <br><u> </u> | <del></del> | <del></del> |
|---------------------------------------|------------------|---|------|--------------|-------------|-------------|
| Qualifications                        |                  |   |      |              |             |             |
| Recalculated Results Concentrations ( |                  |   |      |              |             |             |
| Reported<br>Concentrations            |                  |   |      |              |             |             |
| Compound                              |                  |   |      |              |             |             |
| Sample ID                             |                  |   |      |              |             |             |
| #                                     |                  |   |      | -            | _           |             |

Somments:

## Laboratory Data Consultants, Inc. Data Validation Report

**Project/Site Name:** 

BRC Tronox Parcel G

**Collection Date:** 

June 11, 2008

LDC Report Date:

August 8, 2008

Matrix:

Soil

Parameters:

Metals

Validation Level:

EPA Level III & IV

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F120180

Sample Identification

TSB-GJ-09-10'

TSB-GJ-09-20'\*\*

TSB-GJ-09-30'

TSB-GJ-09-40'

<sup>\*\*</sup>Indicates sample underwent EPA Level IV review

### Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Methods 6010B, 6020, and 7000 for Metals. The metals analyzed were Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Lithium, Magnesium, Manganese, Molybdenum, Mercury, Nickel, Niobium, Palladium, Phosphorus, Platinum, Potassium, Selenium, Silicon, Silver, Sodium, Strontium, Sulfur, Thallium, Tin, Titanium, Tungsten, Uranium, Vanadium, Zinc, and Zirconium.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

## I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

## II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

### III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

| Method Blank ID | Analyte                                                            | Maximum<br>Concentration                                              | Associated Samples           |
|-----------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------|
| ICB/CCB         | Antimony<br>Thallium<br>Tungsten<br>Vanadium<br>Lithium<br>Mercury | 1.3 ug/L<br>1.1 ug/L<br>1.4 ug/L<br>2.7 ug/L<br>8.0 ug/L<br>0.1 ug/Kg | All samples in SDG F8F120180 |

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

| Sample        | Analyte            | Reported<br>Concentration | Modified Final<br>Concentration |
|---------------|--------------------|---------------------------|---------------------------------|
| TSB-GJ-09-10' | Lithium            | 6.7 mg/Kg                 | 26.6U mg/Kg                     |
| TSB-GJ-09-40' | Lithium<br>Mercury | 111 mg/Kg<br>22.0 ug/Kg   | 157U mg/Kg<br>52.4U ug/Kg       |

No field blanks were identified in this SDG.

## IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

## V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

| Spike ID<br>(Associated<br>Samples)                      | Analyte                                                                            | MS (%R)<br>(Limits)                                                                  | MSD (%R)<br>(Limits)                                                                                                                 | RPD<br>(Limits)            | Flag                                     | A or P |
|----------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------|--------|
| TSB-GJ-08-10'MS/MSD<br>(All samples in SDG<br>F8F120180) | Sulfur<br>Phosphorus                                                               | 140.1 (75-125)<br>134.8 (75-125)                                                     | 135.4 (75-125)<br>-                                                                                                                  |                            | J+ (all detects)<br>J+ (all detects)     | А      |
| TSB-GJ-08-10'MS/MSD<br>(All samples in SDG<br>F8F120180) | Antimony<br>Copper<br>Silicon<br>Vanadium<br>Lithium<br>Nickel<br>Tungsten<br>Zinc | 55.2 (75-125)<br>72.5 (75-125)<br>65.4 (75-125)<br>68.4 (75-125)<br>-<br>-<br>-<br>- | 39.4 (75-125)<br>60.9 (75-125)<br>44.6 (75-125)<br>56.0 (75-125)<br>69.8 (75-125)<br>71.1 (75-125)<br>60.6 (75-125)<br>62.2 (75-125) | -<br>-<br>-<br>-<br>-<br>- | J- (all detects)<br>UJ (all non-detects) | А      |
| TSB-GJ-08-10'MS/MSD<br>(All samples in SDG<br>F8F120180) | Niobium                                                                            | -                                                                                    | 29.7 (75-125)                                                                                                                        | -                          | J- (all detects)<br>R (all non-detects)  | А      |

## VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

## VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

## VIII. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits for samples on which a Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

## IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

### X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met with the following exceptions:

| Diluted Sample | Analyte | %D (Limits) | Associated Samples              | Flag            | A or P |
|----------------|---------|-------------|---------------------------------|-----------------|--------|
| TSB-GJ-08-10'L | Iron    | 10.4 (≤10)  | All samples in SDG<br>F8F120180 | J (all detects) | А      |

## XI. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

## XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

## XIII. Field Duplicates

No field duplicates were identified in this SDG.

## BRC Tronox Parcel G Metals - Data Qualification Summary - SDG F8F120180

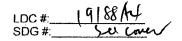
| SDG       | Sample                                                             | Analyte                                                                            | Flag                                     | A or P | Reason                                       |
|-----------|--------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|--------|----------------------------------------------|
| F8F120180 | TSB-GJ-09-10'<br>TSB-GJ-09-20'**<br>TSB-GJ-09-30'<br>TSB-GJ-09-40' | Sulfur<br>Phosphorus                                                               | J+ (all detects)<br>J+ (all detects)     | А      | Matrix spike/Matrix spike<br>duplicates (%R) |
| F8F120180 | TSB-GJ-09-10'<br>TSB-GJ-09-20'**<br>TSB-GJ-09-30'<br>TSB-GJ-09-40' | Antimony<br>Copper<br>Silicon<br>Vanadium<br>Lithium<br>Nickel<br>Tungsten<br>Zinc | J- (all detects)<br>UJ (all non-detects) | А      | Matrix spike/Matrix spike<br>duplicates (%R) |
| F8F120180 | TSB-GJ-09-10'<br>TSB-GJ-09-20'**<br>TSB-GJ-09-30'<br>TSB-GJ-09-40' | Niobium                                                                            | J- (all detects)<br>R (all non-detects)  | А      | Matrix spike/Matrix spike<br>duplicates (%R) |
| F8F120180 | TSB-GJ-09-10'<br>TSB-GJ-09-20'**<br>TSB-GJ-09-30'<br>TSB-GJ-09-40' | Iron                                                                               | J (all detects)                          | А      | ICP serial dilution (%D)                     |

## BRC Tronox Parcel G Metals - Laboratory Blank Data Qualification Summary - SDG F8F120180

| SDG       | Sample        | Analyte            | Modified Final<br>Concentration | A or P |
|-----------|---------------|--------------------|---------------------------------|--------|
| F8F120180 | TSB-GJ-09-10' | Lithium            | 26.6U mg/Kg                     | Α      |
| F8F120180 | TSB-GJ-09-40' | Lithium<br>Mercury | 157U mg/Kg<br>52.4U ug/Kg       | А      |

BRC Tronox Parcel G Metals - Field Blank Data Qualification Summary - SDG F8F120180

No Sample Data Qualified in this SDG


| SDG #<br>Labora   | :: 19188A4<br>#: F8F120180<br>atory: <u>Test America</u>                                    |              |                      | Le        | evel III/l' | ESS WORKSI                                    | HEET            | Date: 8/4/°) Page:(of  Reviewer: 2nd Reviewer: |
|-------------------|---------------------------------------------------------------------------------------------|--------------|----------------------|-----------|-------------|-----------------------------------------------|-----------------|------------------------------------------------|
| The sa            | IOD: Metals (EPA SW 8 amples listed below were tion findings worksheets                     | e review     |                      |           | •           | alidation areas. V                            | alidation findi | ngs are noted in attached                      |
|                   | Validation                                                                                  |              |                      |           |             |                                               | Commonto        |                                                |
|                   |                                                                                             | Alea         |                      | Δ         | Sampling    |                                               | <u>Comments</u> |                                                |
| <u>l.</u>         | Technical holding times  Calibration                                                        |              |                      | A         | Sampling    | dates. 7/1/08                                 |                 |                                                |
| II.<br>III.       | Blanks                                                                                      |              |                      | SW        |             |                                               |                 |                                                |
| IV.               | ICP Interference Check Sar                                                                  | mnle (ICS)   | Analysis             | A         |             |                                               |                 |                                                |
| V.                | Matrix Spike Analysis                                                                       | TIPIC (100)  | Analysis             | SW        | 749         | /msp                                          |                 |                                                |
| VI.               | Duplicate Sample Analysis                                                                   |              |                      | N         |             | 1.4.2.2                                       |                 |                                                |
| VII.              | Laboratory Control Samples                                                                  | s (LCS)      |                      | A         | Les         |                                               |                 |                                                |
| VIII.             | Internal Standard (ICP-MS)                                                                  |              |                      | A-        | r.t         | berieved for                                  | len 3           |                                                |
| IX.               | Furnace Atomic Absorption                                                                   |              |                      | N         | 14          | Mt. hize i                                    |                 |                                                |
| X.                | ICP Serial Dilution                                                                         |              |                      | 3W        | , ,         | J. G. S. J. S.                                |                 |                                                |
| XI.               | Sample Result Verification                                                                  |              |                      | A         | Not revie   | ved for Level III valida                      | tion.           |                                                |
| XII.              | Overall Assessment of Data                                                                  | a            |                      | À         |             |                                               |                 |                                                |
| XIII.             | Field Duplicates                                                                            |              |                      | ν,        |             |                                               |                 |                                                |
| XIV.              | Field Blanks                                                                                |              |                      | h         |             |                                               |                 |                                                |
| Note:<br>/alidate | A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples: ** Indicates samp |              | R = Rins<br>FB = Fie | eld blank | s detected  | D = Duplicate<br>TB = Trip bla<br>EB = Equipm | nk              |                                                |
|                   | 501)                                                                                        |              |                      |           |             |                                               |                 |                                                |
|                   | TSB-GJ-09-10'                                                                               | 11           |                      |           | 21          |                                               | 31              |                                                |
|                   | TSB-GJ-09-20'**                                                                             | 12           |                      |           | 22          |                                               | 32              |                                                |
|                   | TSB-GJ-09-30'                                                                               | 13           |                      |           | 23          |                                               | 33              |                                                |
|                   | TSB-GJ-09-40'                                                                               | 14           |                      |           | 24          |                                               | 34              |                                                |
| 5                 | <u> </u>                                                                                    | 15           |                      |           | 25<br>26    |                                               | 35<br>36        |                                                |
| 7                 |                                                                                             | 16           |                      |           | 27          |                                               | 37              |                                                |
| 8                 |                                                                                             | 18           |                      |           | 28          |                                               | 38              |                                                |
| 9                 |                                                                                             | 19           |                      |           | 29          |                                               | 39              |                                                |
| 10                |                                                                                             | 20           |                      |           | 30          |                                               | 40              |                                                |
| Votes             | ,                                                                                           | <u>, *  </u> |                      |           |             |                                               | 1.5 L           |                                                |

## VALIDATION FINDINGS CHECKLIST

Page: of A Reviewer: wu 2nd Reviewer:

Method: Metals (EPA SW 846 Method 6010/7000/6020)

|                                                                                                                                                                                                                                                                                | T.           | T                                     | Ī        |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------|----------|-------------------|
| Validation Area                                                                                                                                                                                                                                                                | Yes          | No                                    | NA<br>** | Findings/Comments |
| I. Technical holding times                                                                                                                                                                                                                                                     | 41441<br>  7 | i i i i i i i i i i i i i i i i i i i |          |                   |
| All technical holding times were met.                                                                                                                                                                                                                                          | 1            | <u> </u>                              |          |                   |
| Cooler temperature criteria was met.                                                                                                                                                                                                                                           |              | 1000 80000                            |          |                   |
| II. Galibration                                                                                                                                                                                                                                                                |              |                                       |          |                   |
| Were all instruments calibrated daily, each set-up time?                                                                                                                                                                                                                       | 1            |                                       |          |                   |
| Were the proper number of standards used?                                                                                                                                                                                                                                      | /            |                                       |          |                   |
| Were all initial and continuing calibration verification %Rs within the 90-110% (80-<br>120% for mercury and 85-115% for cyanide) QC limits?                                                                                                                                   | /            |                                       |          |                   |
| Were all initial calibration correlation coefficients ≥ 0.995? (Level IV only)                                                                                                                                                                                                 | /            |                                       |          |                   |
| III/Blanks                                                                                                                                                                                                                                                                     |              |                                       |          |                   |
| Was a method blank associated with every sample in this SDG?                                                                                                                                                                                                                   | /            |                                       |          |                   |
| Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.                                                                                                                                                                 | /            |                                       |          |                   |
| IV: IGI-state recrease Check Sample                                                                                                                                                                                                                                            |              |                                       |          |                   |
| Were ICP interference check samples performed daily?                                                                                                                                                                                                                           | \            |                                       |          |                   |
| Were the AB solution percent recoveries (%R) with the 80-120% QC limits?                                                                                                                                                                                                       |              |                                       |          |                   |
| IV-Matos spike/Matos spike/duplicates                                                                                                                                                                                                                                          |              |                                       |          |                   |
| Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, Indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.                                                                                                    |              |                                       |          |                   |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.                                                    |              | /                                     |          |                   |
| Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were ≤ 5X the RL, including when only one of the duplicate sample values were ≤ 5X the RL. |              | /                                     |          |                   |
| V. Laboratory control samples:                                                                                                                                                                                                                                                 |              |                                       |          |                   |
| Was an LCS anayized for this SDG?                                                                                                                                                                                                                                              |              |                                       |          |                   |
| Was an LCS analyzed per extraction batch?                                                                                                                                                                                                                                      | /            |                                       |          |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?                                                                                                      | /            |                                       |          |                   |
| VI; Furriace Atomic Absorption QC                                                                                                                                                                                                                                              |              |                                       |          |                   |
| If MSA was performed, was the correlation coefficients > 0.995?                                                                                                                                                                                                                |              |                                       | _        |                   |
| Do all applicable analysies have duplicate injections? (Level IV only)                                                                                                                                                                                                         |              |                                       |          |                   |
| For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)                                                                                                                                                                           |              |                                       |          | ,                 |
| Were analytical spike recoveries within the 85-115% OC limits?                                                                                                                                                                                                                 | l            |                                       |          |                   |



## **VALIDATION FINDINGS CHECKLIST**

Page: 2 of 2
Reviewer: WM
2nd Reviewer: 0

| Validation Area                                                                                                                          | Yes          | No | NA | Findings/Comments                    |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|----|--------------------------------------|
| VILICA Senat Dilution                                                                                                                    | 9 7<br>2 1 1 |    |    | TENETOTISTICS<br>TENEDOS TOTOS TOTOS |
| Was an ICP serial dilution analyzed if analyte concentrations were > 50X the IDL?                                                        |              |    |    |                                      |
| Were all percent differences (%Ds) < 10%?                                                                                                |              | 1  |    |                                      |
| Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.                            |              | /  |    |                                      |
| VIII. Internat Standards (EPA-SW-846-Method 6020)                                                                                        |              |    |    |                                      |
| Were all the percent recoveries (%R) within the 30-120% of the intensity of the internal standard in the associated initial calibration? |              |    |    |                                      |
| If the %Rs were outside the criteria, was a reanalysis performed?                                                                        |              |    |    |                                      |
| IX-Regional Quality Assurance and Quality Control t                                                                                      |              |    |    |                                      |
| Were performance evaluation (PE) samples performed?                                                                                      |              |    | 1  |                                      |
| Were the performance evaluation (PE) samples within the acceptance limits?                                                               |              |    | /  |                                      |
| X. Sample Result Verification (1988)                                                                                                     |              |    |    |                                      |
| Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?                              |              |    |    |                                      |
| Xi Overall assessment of data                                                                                                            |              |    |    |                                      |
| Overall assessment of data was found to be acceptable.                                                                                   | /            |    |    |                                      |
| XII Field duplicates                                                                                                                     |              |    |    |                                      |
| Field duplicate pairs were identified in this SDG.                                                                                       |              | /  |    |                                      |
| Target analytes were detected in the field duplicates.                                                                                   |              |    |    |                                      |
| XIII. Field blanks (s. 1997)                                                                                                             |              |    |    |                                      |
| Field blanks were identified in this SDG.                                                                                                |              | /  |    |                                      |
| Target analytes were detected in the field blanks.                                                                                       |              |    | 7  |                                      |

LDC #: 19188/14 SDG #: <u>Cel</u> comer

## VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

| Page:_        | _of      |
|---------------|----------|
| Reviewer:_    | h        |
| 2nd reviewer: | <u>a</u> |

All circled elements are applicable to each sample.

| Sample ID |      | Target Analyte List (TAL)                                                                            |
|-----------|------|------------------------------------------------------------------------------------------------------|
| 1-4       | 50,  | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, |
|           |      | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, |
|           |      | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, |
|           |      | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, |
|           |      | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, |
|           |      | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, |
|           |      | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, |
|           |      | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, |
|           |      | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, |
|           |      | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, |
|           |      | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, |
|           |      | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, |
|           |      |                                                                                                      |
| 1-4       | 50:1 | (Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr, )                                                       |
|           |      | Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,                                                          |
|           |      | Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,                                                          |
|           |      | Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,                                                          |
|           |      | Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,                                                          |
|           |      | Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,                                                          |
|           |      | Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,                                                          |
|           |      | Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,                                                          |
|           |      | Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,                                                          |
|           |      | Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,                                                          |
|           |      | Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,                                                          |
|           |      | Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,                                                          |
|           |      | Analysis Method                                                                                      |
| ICP       | ·    | Li. 8,                                                                                               |
| CP-MS     |      | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si,     |
| CP-MS     |      | Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Zr, )                                                               |
| GFAA      |      | Al Sh As Ba Be Cd Ca Cr Co Cu Fe Ph Mg Mn Hg Ni K Se Ag Na Tl V Zn Mo B Si CN                        |

| Comments:   | : Mercury by CVAA if performed                                                                    |   |
|-------------|---------------------------------------------------------------------------------------------------|---|
| Nb: Niobiun | um, Pd: Palladium, P: Phosphorus, Pt: Platinum, S: Sulfur, W: Tungsten, U: Uranium, Zr: Zirconium | 1 |
|             |                                                                                                   |   |

SDG #: See Cover LDC #: 19188A4

Maximum PB<sup>a</sup> mg/Kg

Analyte

S

≷ F

VALIDATION FINDINGS WORKSHEET

Reviewer: 2nd Reviewer: Sample Identification ₹ Associated Samples: PB/ICB/CCB QUALIFIED SAMPLES Soil preparation factor applied: 22.0 / 52.4 111 / 157 4 Sample Concentration units, unless otherwise noted: mg/Kg, except Hg ug/Kg 6.7 / 26.6 METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000) Blank Action 0.22 Maximum ICB/CCB<sup>a</sup> 2.7 8.0 0.1 Maximum (1)011 PB<sub>a</sub>

Hg (ug/Kg)

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

LDC #: 19188AT

## Matrix Spike/Matrix Spike Duplicates VALIDATION FINDINGS WORKSHEET

Reviewer:\_\_ 2nd Reviewer:\_\_ Page:\_

METHOD: Trace metals (EPA SW 846 Method 6010/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was a matrix spike analyzed for each matrix in this SDG?

Y 'N N/A

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor

of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD)  $\leq$  20% for water samples and  $\leq$ 35% for soil samples? Y (1) N/A WE LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. N N/A

| 84.4<br>34.4<br>34.4<br>66.4<br>66.4<br>60.6<br>60.6<br>60.6<br>60.6<br>60.6<br>7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                 |            |             | MS        | OSW       | 3,1          |                    |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|-------------|-----------|-----------|--------------|--------------------|----------------|
| 50,   50   140,   134,4   M1   J+ 127     50,   50,   50,     140,   134,4     140,   134,4     140,   134,4     140,   134,4     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,6     140,   140,   140,6     140,   140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140,   140,6     140   |                   | Watrix     | Analyte     | %Recovery | %Recovery | RPD (Limits) | Associated Samples | Qualifications |
| 5h 55,2 34,4  Wh 40.6 29,7  V 134,8  Li 61,8  Will 60.6  Li 7,7  20.9  Will 7,7  20.9  Will 7,7  20.9  Li 1,7  20.9  L | 8-10              | 10%        | V           | 140.1     | 134.4     |              | A1)                | W+1+5          |
| Ch 12-5 59.7  No 40.6 29.7  Si 65.4 44.6  Li 66.8  Ni Ni 60.6  So 20.2  So 3  No 4, Mn X 5y: T: 74.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | -          | 45          | んだ        | 79.4      |              | -                  | 1-1 m 1/1      |
| Nb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |            | z           | 7246      | 6009      | ,            |                    | ٦,             |
| \$\partial \chi \chi \chi \chi \chi \chi \chi \chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |            | <b>4</b> /4 | 40.6      | 29.7      |              |                    | J-/k/A         |
| 5; 65.4 44.6 7-141.0 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |            | đ           | 8761      |           |              |                    | 4/+T+T         |
| Li 65.4 56.0  Li Ail 69.8  Wi Fin 60.6  Li 60.6  |                   |            | \<br>\<br>\ | 4:59      | 9,45      |              |                    | J-/n1/4        |
| Li 69.8  Ni All 60.6  En 60.0  |                   |            | Λ           | カ・89      | 5610      |              |                    |                |
| N;   9h, b   60, b   25, c   20, 9   1, 9cul   |                   |            | 77          |           | 8.69      |              |                    |                |
| 2n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |            | ίN          |           | 1 1 6     |              |                    |                |
| 20, 20, 33, 32, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            | 3           |           | 9.09      |              |                    |                |
| Li Soig Wight of the stand of t |                   |            | 7n          |           | 2.29      |              |                    | <u></u>        |
| Li<br>Sa<br>Sa<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |            |             |           |           | 1            |                    |                |
| 56<br>Co.<br>Co.<br>Co.<br>Ti.<br>W<br>W<br>W<br>W<br>W<br>W<br>W<br>W<br>W<br>W<br>W<br>W<br>W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |            | ۲٦          |           |           | 2,00         |                    | -              |
| Bec<br>Co<br>Co<br>Tri<br>W<br>U<br>U<br>M<br>W<br>CA<br>Tri<br>Tri<br>AX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |            | 5h          |           |           | 1.8 + X      |                    |                |
| Co<br>Ti<br>W<br>U<br>U<br>M<br>Sr; Ti<br>> TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |            | Be          |           |           | 29.32        |                    |                |
| M<br>U<br>U<br>Mg, My, K Sr; Tr, 74X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |            | Z           |           |           | >1, 4        |                    |                |
| 五: W U M K SY; 下: フザメ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |            | Co          |           |           | 26.0         |                    |                |
| W<br>U<br>Mg, Mu, K Sr; Tr, >4X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |            | いた          |           | :         | 5'92         |                    | 4              |
| Mg, Mu, \$ 5x; Tr, > 4x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |            | Ň           |           |           | 280          |                    | / ]            |
| Mg, Mn, K Sr; F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |            | 5           |           |           | 9.22         | 7                  | J              |
| Mg, Mu, K Sr; Tr,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |            |             |           |           |              |                    |                |
| , 119, M 3Y; 11,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                 | <b>⊣</b> I | 1           |           |           |              |                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | الا<br>الا<br>الا | 4          | 1           | 7         | 743       |              |                    |                |

19156/24 SDG #: LDC #:\_

## **VALIDATION FINDINGS WORKSHEET ICP Serial Dilution**

Page:\_\_ Reviewer:\_ 2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

If analyte concentrations were > 50X the MDL (ICP) ,or >100X the MDL (ICP/MS), was a serial dilution analyzed? Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y) N/A

Y O N/A

Were ICP serial dilution percent differences (%D) <10%? Is there evidence of negative interference? If yes, professional judgement will be used to qualify the data.

CEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

|                                                                                         | Qualifications     | J1+/4       |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|--------------------|-------------|--|--|--|--|--|--|--|--|--|--|--|--|
| vicio recalculated results acceptable : Ode Level IV Necesculation vicio recalculations | Associated Samples | Ā           |  |  |  |  |  |  |  |  |  |  |  |  |
| vecalculation vvo                                                                       | %D (Limits)        | 4.0)        |  |  |  |  |  |  |  |  |  |  |  |  |
| מפפ רפאפו וא                                                                            | Analyte            | Fe          |  |  |  |  |  |  |  |  |  |  |  |  |
| acceptable:                                                                             | Matrix             | 1305        |  |  |  |  |  |  |  |  |  |  |  |  |
| Vere recalculated result                                                                | Diluted Sample ID  | 158-67-0870 |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                         | # Date             |             |  |  |  |  |  |  |  |  |  |  |  |  |

-140 X Mr.

5

\$

Comments:

LDC#: (9188A)

## Initial and Continuing Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Reviewer: Page: 2nd Reviewer:\_\_

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

Where, %R = Found × 100 True

|             |                                |          |              |             | Recalculated | Reported |                     |
|-------------|--------------------------------|----------|--------------|-------------|--------------|----------|---------------------|
| Standard ID | Type of Analysis               | Element  | Found (ug/L) | True (ug/L) | %R           | %R       | Acceptable<br>(Y/N) |
| 7.6V        | ICP (initial calibration)      | <b>S</b> | 42700        | 0000        | 8.401        | 3.90)    | 7                   |
|             | GFAA (Initial calibration)     |          |              |             |              |          |                     |
| Icv         | CVAA (Initial calibration)     | Hg       | 2,23         | asi'z       | 43.2         | 43.2     | ۶                   |
| M           | ICP (Continuing calibration)   | ,<br>L,  | 4754         | ८००८        | 1-56         | 1-56     | 7                   |
|             | GFAA (Continuing calibration)  |          |              |             |              |          |                     |
| MO          | CVAA (Continuing calibration)  | 145      | 867          | 2-0         | 3.18         | 966      | 7                   |
| MI          | ICP/MS (Initial calibration)   | کر       | p.80)        | (000)       | 8-201        | 8-00)    |                     |
| Cov         | ICP/MS (Continuing calibation) | B        | 908.3        | رمور)       | 8.06         | 808      | 1                   |

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: (4189/M)
SDG#: 518 CONEN

## VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

Page: of 2nd Reviewer: C Reviewer: htt

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found x 100 True

Where, Found = Concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent cifference (RPD) was recalculated using the following formula:

RPD =  $|S-D| \times 100$ (S+D)/2

S = Original sample concentration D = Duplicate sample concentration Where,

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

%D = [I-SDR] × 100

Where, I = Initial Sample Result (mg/L) SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

|                           |                              |         |                                               |                        | Recalculated | Reported  |                     |
|---------------------------|------------------------------|---------|-----------------------------------------------|------------------------|--------------|-----------|---------------------|
| Sample ID                 | Type of Analysis             | Element | Found / S / 1<br>(units)                      | True / D / SDR (units) | %R/RPD/%D    | %R/RPD/%D | Acceptable<br>(Y/N) |
| TUSAB                     | TUSAR ICP Interference check | 4       | (040)                                         | مه)                    | <b>∱</b> ∘1  | 40)       | 7                   |
| 45                        | Laboratory control sample    | 43      | 896                                           | (2)                    | 46.2         | 76.2      |                     |
| TSB-4J-08-10 Matrix spike | / Matrix spike               | 22      | (ssr-sr) $\langle \phi, \psi, \gamma \rangle$ | 60,(0)                 | 97.3         | 91.3      |                     |
| _                         | Duplicate                    | ζ       | 20.05                                         | y in                   | - 2          | 1.0       |                     |
| 3                         | ICP serial dilution          | TR      | Z[19]                                         | 8959)                  | 2.8          | 2.8       | R                   |

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

| LDC #: | 19188/AV |
|--------|----------|
| SDG #: | Su cour  |

Detected analyte results for \_\_\_

Dil

%S

## **VALIDATION FINDINGS WORKSHEET Sample Calculation Verification**

| Page:         | 101/ |
|---------------|------|
| Reviewer:     | My   |
| 2nd reviewer: |      |

were recalculated and verified using the

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

M N N/A Have results been reported and calculated correctly?

N N/A Are results within the calibrated range of the instruments and within the linear range of the ICP?

Are all detection limits below the CRDL? 4) N N/A

Dilution factor

Decimal percent solids

| followin       | ıg equat | ion:                                                   |                                   |              |
|----------------|----------|--------------------------------------------------------|-----------------------------------|--------------|
| Concenti       | ration = | (RD)(FV)(Dil)                                          | Recalculation:                    |              |
| RD             | =        | (in. Vol.)(%S)  Raw data concentration                 | S= 84.86 mg/ X0.05lx 5 X1000 g/mg | = 53291 mg/c |
| FV<br>In. Vol. | =        | Final volume (ml)<br>Initial volume (ml) or weight (G) | 0-58 X 0-9961                     | =3341.4/2    |

| Sample ID | Analyte         | Reported Concentration ( Mg/Rg ) | Calculated Concentration | Acceptable<br>(Y/N) |
|-----------|-----------------|----------------------------------|--------------------------|---------------------|
| 7         | S               | I3300                            | t)300                    | Y                   |
|           | Al              | (0100                            | t)300<br>(0100           | /i                  |
|           | As<br>Ba<br>Be  | 27-6<br>64-6                     | 27-6                     |                     |
|           | Ba              | 646                              | 64-6                     |                     |
|           | l Be            | 0.64                             | 0.64                     |                     |
|           | Ca              | 15800                            | 75800                    |                     |
|           | CV              | 22.2                             | 22,2                     |                     |
|           | Co              | 2.7                              | 5.6                      |                     |
|           | Cu<br>Fe        | 13-5                             | 13-5                     |                     |
|           | Fe              | 13200                            | 13200                    |                     |
|           | Pb              | 1.1                              | 7.1                      |                     |
|           | Mg              | (8200                            | 18200                    |                     |
|           | My O            | 170                              | 110                      |                     |
|           | NI              | 14.7                             | 14.6                     |                     |
|           | p d             |                                  | 1.1                      |                     |
|           | P               | tis                              | tre                      |                     |
|           | K               | 210                              | 2/10                     |                     |
|           | 51              | 549                              | 549                      |                     |
|           | AS              | 0.14'                            | 0,14                     |                     |
|           | Va <sup>0</sup> | 944                              | 943                      |                     |
|           | 5 <sub>V</sub>  | 202                              | 505                      |                     |
|           | T               | 218                              | ts7                      |                     |

| LDC #: | 19188/14 |
|--------|----------|
| SDG #: | Set com  |

%S

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

| Page:_        | 2017 |
|---------------|------|
| Reviewer:     | my   |
| 2nd reviewer: | V    |

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

| Please see | qualifications | below for a | I questions answered | "N". | Not applicable | questions are | identified a | as "N | N/A". |
|------------|----------------|-------------|----------------------|------|----------------|---------------|--------------|-------|-------|
|------------|----------------|-------------|----------------------|------|----------------|---------------|--------------|-------|-------|

N N/A Have results been reported and calculated correctly?

Are results within the calibrated range of the instruments and within the linear range of the ICP?

PN N/A Are all detection limits below the CRDL?

Decimal percent solids

|          | d analyt<br>g equati | te results for<br>ion:            | <u> </u>       | were recalculated and verified using the |
|----------|----------------------|-----------------------------------|----------------|------------------------------------------|
| Concentr | ation =              | (RD)(FV)(Dil)<br>(In. Vol.)(%S)   | Recalculation: | 10.15                                    |
| RD       | =                    | Raw data concentration            | V= 4591 8/2X0. | = 57.67 mg/m                             |
| FV       | =                    | Final volume (ml)                 | 0.59 X         | 0.0661                                   |
| In. Vol. | =                    | Initial volume (ml) or weight (G) | 0.3 8 >        | . *. 17"                                 |
| Dil      | =                    | Dilution factor                   | ·              |                                          |

| Sample ID | Analyte | Reported Concentration ( Mg/Kg ) | Calculated Concentration ( W. / // ) | Acceptable<br>(Y/N) |
|-----------|---------|----------------------------------|--------------------------------------|---------------------|
| 7         | И       | シ, <b>つ</b>                      | →, 'γ <sup>0</sup>                   | Y                   |
|           | V       | 37.7                             | サルケ                                  | ,<br>               |
|           | Zh      | 91.5                             | 91,2                                 |                     |
|           | 2V      | 31-7                             | 3/16                                 | 1                   |
|           |         | /                                | ,                                    |                     |
|           |         |                                  |                                      |                     |
|           |         |                                  |                                      |                     |
|           |         |                                  |                                      | ·                   |
|           |         |                                  |                                      |                     |
|           |         |                                  |                                      | :                   |
|           |         |                                  |                                      |                     |
|           |         |                                  |                                      |                     |
|           |         |                                  |                                      |                     |
|           |         |                                  |                                      |                     |
|           |         |                                  |                                      |                     |
|           |         |                                  |                                      |                     |
|           |         |                                  |                                      |                     |
|           |         |                                  |                                      |                     |
|           |         |                                  |                                      |                     |
|           |         |                                  |                                      |                     |
|           |         |                                  |                                      |                     |
|           |         |                                  |                                      |                     |

## Laboratory Data Consultants, Inc. Data Validation Report

**Project/Site Name:** 

BRC Tronox Parcel G

**Collection Date:** 

June 11, 2008

LDC Report Date:

August 7, 2008

Matrix:

Soil

Parameters:

Wet Chemistry

Validation Level:

EPA Level III & IV

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F120180

Sample Identification

TSB-GJ-09-10'

TSB-GJ-09-20'\*\*

TSB-GJ-09-30'

TSB-GJ-09-40'

<sup>\*\*</sup>Indicates sample underwent EPA Level IV review

### Introduction

This data review covers 4 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 300.0 for Bromide, Bromine, Chlorate, Chloride, Chorine, Fluoride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate as Phosphorus, and Sulfate and EPA SW 846 Method 9071B for Oil & Grease.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

## I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

### II. Calibration

## a. Initial Calibration

All criteria for the initial calibration of each method were met.

### b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

### III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

| Method Blank ID | Analyte             | Concentration | Associated Samples           |
|-----------------|---------------------|---------------|------------------------------|
| ICB/CCB         | Orthophosphate as P | 0.102 mg/L    | All samples in SDG F8F120180 |

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

| Sample          | Analyte             | Reported<br>Concentration | Modified Final<br>Concentration |
|-----------------|---------------------|---------------------------|---------------------------------|
| TSB-GJ-09-20'** | Orthophosphate as P | 1.5 mg/Kg                 | 6.3U mg/Kg                      |

No field blanks were identified in this SDG.

## IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

| Spike ID<br>(Associated<br>Samples)                     | Analyte        | MS (%R)<br>(Limits) | MSD (%R)<br>(Limits) | RPD<br>(Limits) | Flag                                     | A or P |
|---------------------------------------------------------|----------------|---------------------|----------------------|-----------------|------------------------------------------|--------|
| TSB-CJ-09-0'MS/MSD<br>(All samples in SDG<br>F8F120180) | Oil and grease | 63 (75-125)         | 63 (75-125)          | -               | J- (all detects)<br>UJ (all non-detects) | А      |

## V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

## VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

## VII. Sample Result Verification

All sample result verifications were acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

## VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

## IX. Field Duplicates

No field duplicates were identified in this SDG.

## BRC Tronox Parcel G Wet Chemistry - Data Qualification Summary - SDG F8F120180

| SDG       | Sample                                                    | Analyte        | Flag                                     | A or P | Reason                                       |
|-----------|-----------------------------------------------------------|----------------|------------------------------------------|--------|----------------------------------------------|
| F8F120180 | TSB-GJ-09-10' TSB-GJ-09-20'** TSB-GJ-09-30' TSB-GJ-09-40' | Oil and grease | J- (all detects)<br>UJ (all non-detects) | A      | Matrix spike/Matrix spike<br>duplicates (%R) |

## BRC Tronox Parcel G Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG F8F120180

| SDG       | Sample          | Analyte             | Modified Final<br>Concentration | A or P |
|-----------|-----------------|---------------------|---------------------------------|--------|
| F8F120180 | TSB-GJ-09-20'** | Orthophosphate as P | 6.3U mg/Kg                      | А      |

BRC Tronox Parcel G
Wet Chemistry - Field Blank Data Qualification Summary - SDG F8F120180

No Sample Data Qualified in this SDG

| DG#               | : 19188A6<br>f: F8F120180<br>atory: <u>Test America</u>                               | F8F120180 Level III/IV |                          |                          |                                        |                                                         |                                  |  |  |
|-------------------|---------------------------------------------------------------------------------------|------------------------|--------------------------|--------------------------|----------------------------------------|---------------------------------------------------------|----------------------------------|--|--|
| /IETH<br>EPA      | OD: (Analyte) Bromic<br>Method 300.0), O & G                                          | de, Bromi<br>6 (EPA S' | ne, Chlorat<br>W846 Meth | e, Chloride<br>nod 9071B | e, Chorine, F                          | luoride, Nitrate-N, Nitri                               | te-N, Orthophosphate-P, Sulfate  |  |  |
|                   | amples listed below w<br>tion findings workshee                                       |                        | wed for ea               | ch of the f              | ollowing val                           | idation areas. Validatio                                | n findings are noted in attached |  |  |
|                   | Validatio                                                                             | on Area                |                          |                          |                                        | Comm                                                    | ents                             |  |  |
| I.                | Technical holding times                                                               |                        |                          | A                        | Sampling da                            | es: 6/11/8                                              |                                  |  |  |
| lla.              | Initial calibration                                                                   |                        |                          | A                        |                                        | , ·                                                     |                                  |  |  |
| IIb.              | Calibration verification                                                              |                        |                          | A                        |                                        |                                                         |                                  |  |  |
| III.              | Blanks                                                                                |                        |                          | SW                       |                                        |                                                         |                                  |  |  |
| IV                | Matrix Spike/Matrix Spike                                                             | e Duplicate            | s                        | SW                       | 2 M                                    | Jusp Dup                                                |                                  |  |  |
| ٧                 | Duplicates                                                                            |                        |                          | A                        | > '                                    | / / /                                                   |                                  |  |  |
| VI.               | Laboratory control samp                                                               | les                    |                          | A                        | Les                                    |                                                         |                                  |  |  |
| VII.              | Sample result verification                                                            | n                      |                          | A                        | Not reviewed for Level III validation. |                                                         |                                  |  |  |
| VIII.             | Overall assessment of d                                                               | ata                    |                          | A                        |                                        |                                                         |                                  |  |  |
| IX.               | Field duplicates                                                                      |                        |                          | N                        |                                        |                                                         |                                  |  |  |
| _x_               | Field blanks                                                                          |                        | - 300                    | N                        |                                        |                                                         |                                  |  |  |
| lote:<br>/alidate | A = Acceptable N = Not provided/applica SW = See worksheet ed Samples: **\indicates s |                        | R = Rin<br>FB = Fi       | eld blank                |                                        | D = Duplicate<br>TB = Trip blank<br>EB = Equipment blan | k                                |  |  |
|                   | <u>Soi</u>                                                                            | T                      |                          |                          |                                        |                                                         |                                  |  |  |
|                   | TSB-GJ-09-10'                                                                         | 11                     | .,                       |                          | 21                                     |                                                         | 31                               |  |  |
| 2                 | TSB-GJ-09-20'**                                                                       | 12                     |                          |                          | 22                                     |                                                         | 32                               |  |  |
| 3                 | TSB-GJ-09-30'                                                                         | 13                     |                          |                          | 23                                     |                                                         | 33                               |  |  |
| 4                 | TSB-GJ-09-40'                                                                         | 14                     |                          |                          | 24                                     |                                                         | 34                               |  |  |
| 5                 | PB                                                                                    | 15                     |                          |                          | 25                                     |                                                         | 35                               |  |  |
| 6                 |                                                                                       | 16                     |                          |                          | 26                                     |                                                         | 36                               |  |  |
| 7                 |                                                                                       | 17                     |                          |                          | 27                                     |                                                         | 37                               |  |  |
| 8                 |                                                                                       | 18                     |                          |                          | 28                                     |                                                         | 38                               |  |  |
| 9                 |                                                                                       | 19                     |                          |                          | 29                                     |                                                         | 39                               |  |  |
| 10                |                                                                                       | 20                     |                          |                          | 30                                     |                                                         | 40                               |  |  |

Notes:\_

| LDC #:  | 19188 |       |
|---------|-------|-------|
| SDG #:_ | Sel   | cover |

## **VALIDATION FINDINGS CHECKLIST**

Page: 1 of 1
Reviewer: WM
2nd Reviewer:

Method:Inorganics (EPA Method Su wyw

| Method:Inorganics (EPA Method ) W WY C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del>,</del> | <del></del> | <del>;</del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Validation Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes          | No          | NA           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Careting the company of the company  |              | 115         |              | in the last |
| All technical holding times were met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Coolor temperature criteria was met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (Realization)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 448          | Hill        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were all instruments calibrated daily, each set-up time?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were the proper number of standards used?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were all initial calibration correlation coefficients > 0.995?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were titrant checks performed as required? (Level IV only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             | /            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were balance checks performed as required? (Level IV only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V            |             | K            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was a method blank associated with every sample in this SDG?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TO COME PROPERTY OF THE PROPER |              |             |              | <b>新國新四班中共共和國國</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | /           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were the MS/MSD or duplicate relative percent differences (RPD) $\leq$ 20% for waters and $\leq$ 35% for soil samples? A control limit of $\leq$ CRDL( $\leq$ 2X CRDL for soil) was used for samples that were $\leq$ 5X the CRDL, including when only one of the duplicate sample values were $\leq$ 5X the CRDL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Bucketting and San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was an LCS anaytzed for this SDG?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was an LCS analyzed per extraction batch?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| VI. Regional Ocality Assirance and Quality Control 1882 252 252 252 252 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were performance evaluation (PE) samples performed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |             | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were the performance evaluation (PF) samples within the acceptance limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             | $\Delta$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| LDC #: | 19  | 188 A | Y6 , |
|--------|-----|-------|------|
| SDG #: | Ţ., | J.    | ww   |
|        | ,   |       |      |

### VALIDATION FINDINGS CHECKLIST

Page: Vof Y Reviewer: M4 2nd Reviewer: V

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T     | T     | T- | The state of the s |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Validation Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes   | No    | NA | Findings/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ML Sample Result Verification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 × 1 | terka |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /     |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were detection limits < RL?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /     |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A PROPERTY OF THE PROPERTY OF |       |       |    | <b>Matrice</b> Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Overall assessment of data was found to be acceptable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7     |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Field duplicate pairs were identified in this SDG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Target analytes were detected in the field duplicates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Field blanks were identified in this SDG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | /     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Target analytes were detected in the field blanks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       | 7  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

LDC #: 19/88/Ab SDG #: \_\_\_\_\_\_ cover

## VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: \_\_\_of \_/ Reviewer: \_\_\_\_\_\_ 2nd reviewer: \_\_\_\_\_\_

All circled methods are applicable to each sample.

| Sample ID | Matrix   | Parameter                                                                                                                    |
|-----------|----------|------------------------------------------------------------------------------------------------------------------------------|
| 1-4       | Soil     | Br Bromine Cl Chlorine F NO, NO, SO, O-PO, Chlorate ClO, O+G/TPH                                                             |
|           | <i>r</i> | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
| ·         |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           | ·        | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           |          | Br Bromine Cl Chlorine F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Chlorate ClO <sub>4</sub> O+G/TPH |
|           | ·        |                                                                                                                              |
|           |          |                                                                                                                              |
|           |          |                                                                                                                              |
|           |          |                                                                                                                              |

| Comments: |  |
|-----------|--|
| F -       |  |

LDC #: (9188A6

# VALIDATION FINDINGS WORKSHEET

| TO T  | }         | 9             |
|-------|-----------|---------------|
| rage: | Reviewer: | 2nd Reviewer: |
|       |           | 2nd           |

METHOD: Inorganics, Method

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| Y | N | N/A | Were all samples associated with a given method blank?
| Y | N | N/A | Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Sample Identification Associated Samples: 1.5/6.3 Y Blank Action Limit Maximum ICB/CCB 40,0 Conc. units: Wg/kg Blank ID 0-por-p Analyte

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the methoc blank concentration were qualified as not detected, "U".

(9188 AL LDC #:

## Matrix Spike/Matrix Spike Duplicates VALIDATION FINDINGS WORKSHEET

| of    | 4         | J             |
|-------|-----------|---------------|
| Page: | Reviewer: | 2nd Reviewer: |

METHOD: Inorganics, EPA Method\_

Phase see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a matrix spike analyzed for each matrix in this SDG?

Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD) < 20% for water samples and <35% for soil samples?

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. EVEL IV ONLY: Y N/A

| (S)              | $\vdash$    |   |  |  |  |  |  |  |   |  | , |  |  |
|------------------|-------------|---|--|--|--|--|--|--|---|--|---|--|--|
| RPD (Limits)     |             |   |  |  |  |  |  |  | , |  | , |  |  |
| MSD<br>%Recovery | 63          |   |  |  |  |  |  |  |   |  |   |  |  |
| MS<br>%Recovery  |             |   |  |  |  |  |  |  | - |  |   |  |  |
| 1                | 0+6         |   |  |  |  |  |  |  |   |  |   |  |  |
| Matrix           | ا (۲۰۵۶     | , |  |  |  |  |  |  |   |  |   |  |  |
| MS/MSD ID        | TSB-CJ-09-6 |   |  |  |  |  |  |  |   |  |   |  |  |

19188 AG LDC#:\_

# Initial and Continuing Calibration Calculation Verification Validatin Findings Worksheet

2nd Reviewer: Reviewer:\_\_\_

Method: Inorganics, Method \_\_\_

8./37/9 \_ was recalculated.Calibration date:\_ The correlation coefficient (r) for the calibration of  $- \ket{SY}$  An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found X 100

Found = concentration of each analyte measured in the analysis of the ICV or CCV solution

True = concentration of each analyte in the ICV or CCV source

|                                                         |          |          |              |       | Recalculated | Reported | Acceptable |
|---------------------------------------------------------|----------|----------|--------------|-------|--------------|----------|------------|
| Type of analysis                                        | Analyte  | Standard | Conc. (ug/L) | Area  | r or r²      | r or r²  | (Y/N)      |
| Initial calibration                                     |          | s1       | 250          | 0.02  |              |          |            |
|                                                         | Ā        | s2       | 200          | 0.039 | 0.99997      | 0.99997  | 7          |
|                                                         |          | 83       | 1000         | 0.076 |              |          |            |
|                                                         |          | s4       | 2500         | 0.196 |              |          |            |
|                                                         |          | SS       | 2000         | 0.396 |              |          |            |
| $\mathcal{L}\mathcal{O}$ Calibration verification       | LOS      | 4000     | 79.4         |       | 86           | M        | 7          |
| $\mathbb{C}_{\mathcal{N}}$ Calibration verification     | 1        | 000)     | 9495         |       | 9495         | 9495     | -          |
| $\mathcal{C} \sim \mathcal{N}$ Calibration verification | obut 600 | 8°e      | 1856         |       | d8:m         | 9820     | -)         |

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.\_

DC#: 19188 A6 SDG#: See con-

### VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

2nd Reviewer:\_ Page: Reviewer:

> 3 METHOD: Inorganics, Method\_

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

Where, %R = Found x 100

Found =

concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result), concentration of each analyte in the source.

True =

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = \underbrace{1S \cdot D!}_{(S+D)/2} \times 100 \text{ Where,}$ 

() () () ()

Original sample concentration Duplicate sample concentration

|               | -                         |         |                      |                     | Recalculated | Reported |                  |
|---------------|---------------------------|---------|----------------------|---------------------|--------------|----------|------------------|
| Sample ID     | Type of Analysis          | Element | Found / S<br>(unite) | True / D<br>(units) | %R / RPD     | %R / RPD | Acceptable (Y/N) |
|               | Laboratory control sample |         |                      |                     |              |          |                  |
| 27            |                           | W2-14   | Ţ                    | ٠ ٩ ٩               | 9/8          | 86       | <del>&gt;</del>  |
|               | Matrix spike sample       |         | (SSR-SR)             |                     |              |          | -                |
| 758-01-09-0   | 0-                        | 019     | 2880                 | (390                | 6 >          | 63       |                  |
| $\rightarrow$ | Duplicate sample          | 10)     | -                    | 0471                |              | ~        | B                |
| r             |                           | 7       | 000                  | 0                   | <u>~</u>     | ^        |                  |

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

| LDC #: (9<br>SDG #:                             | 188/16<br>re com                             | VALIDATION FINDING<br>Sample Calculation                                                                                |                 | Page:of<br>Reviewer:<br>2nd reviewer: |
|-------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------|
| METHOD: Inor                                    | ganics, Method                               | Se our                                                                                                                  | -               |                                       |
| Please see que<br>Y N N/A<br>Y N N/A<br>Y N N/A | Have results been r<br>Are results within th | all questions answered "N". I<br>reported and calculated corr<br>ne calibrated range of the ins<br>nits below the CRQL? | ectly?          | s are identified as "N/A".            |
| Compound (ar                                    | nalyte) results for<br>nd verified using the | following equation:                                                                                                     | re              | ported with a positive detect were    |
| Concentration =                                 |                                              | Recalculation:                                                                                                          | 200             |                                       |
| £103=-                                          | Aven x 40ml                                  | X6811 do3                                                                                                               | 0.079 x 45 x 0. | 796=3.66 mg/vg                        |

| #        | Sample ID | Analyte                 | Reported Concentration (Wg/kg) | Calculated Concentration | Acceptable<br>(Y/N) |
|----------|-----------|-------------------------|--------------------------------|--------------------------|---------------------|
| 1        | ۷         | 0-p04-p Chlowty Cl Cl F | 1.5                            | 1-5                      | Y                   |
|          |           | Chlority                | 3.7                            | 3.7                      |                     |
|          |           | cl                      | 244                            | 244                      |                     |
|          |           | U2                      | 488                            | 488                      |                     |
|          |           | F                       | 0-58                           | 0,59                     |                     |
|          |           | 102-N<br>504            | 5,3                            | 2.3                      |                     |
|          |           | 7º 4                    | 11600                          | 11600                    | اد ا                |
|          |           |                         |                                |                          |                     |
|          |           |                         |                                |                          |                     |
|          |           |                         |                                |                          |                     |
|          |           |                         |                                |                          |                     |
| <u></u>  |           |                         |                                |                          |                     |
| <b></b>  |           |                         |                                |                          |                     |
| <b> </b> |           |                         |                                |                          |                     |
|          |           |                         |                                | <u> </u>                 | <del> </del>        |
|          |           |                         |                                |                          |                     |
|          |           |                         | <u> </u>                       | <del> </del>             |                     |
| <b> </b> |           |                         |                                |                          |                     |
| <b> </b> |           |                         | <u> </u>                       |                          |                     |
| I        |           |                         |                                | <u> </u>                 |                     |

| Note: |  |
|-------|--|
|       |  |

### Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel G

**Collection Date:** 

June 11, 2008

LDC Report Date:

August 6, 2008

Matrix:

Soil

Parameters:

Gasoline Range Organics

Validation Level:

EPA Level III & IV

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F120180

Sample Identification

TSB-GJ-09-10'

TSB-GJ-09-20'\*\*

TSB-GJ-09-30'

TSB-GJ-09-40'

<sup>\*\*</sup>Indicates sample underwent EPA Level IV review

### Introduction

This data review covers 4 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8015B for Gasoline Range Organics.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

### II. Calibration

### a. Initial Calibration

Initial calibration of compounds was performed as required by the method.

The percent relative standard deviations (%RSD) of calibration factors for compounds were less than 20.0%.

### b. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 15.0% QC limits.

The percent differences (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

### III. Blanks

Method blanks were reviewed for each matrix as applicable. No gasoline range organic contaminants were found in the method blanks.

No field blanks were identified in this SDG.

### IV. Accuracy and Precision Data

### a. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

### b. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

### c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

### V. Target Compound Identification

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

### VI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

### VII. System Performance

The system performance was acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

### VIII. Overall Assessment of Data

Data flags have been summarized at the end of this report if data has been qualified.

### IX. Field Duplicates

No field duplicates were identified in this SDG.

### BRC Tronox Parcel G Gasoline Range Organics - Data Qualification Summary - SDG F8F120180

No Sample Data Qualified in this SDG

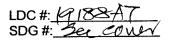
BRC Tronox Parcel G
Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG
F8F120180

No Sample Data Qualified in this SDG

BRC Tronox Parcel G
Gasoline Range Organics - Field Blank Data Qualification Summary - SDG
F8F120180

No Sample Data Qualified in this SDG

| Labora<br><b>METH</b><br>The sa | #: F8F120180 atory: Test America  IOD: GC Gasoline Rang amples listed below were tion findings worksheets | e revie  | •            | SW846 N         |        | i 80′                                         | I5B)             | as. Validatio                            | n finc                                           | Page:of/_<br>Reviewer:<br>2nd Reviewer:<br>dings are noted in attached |
|---------------------------------|-----------------------------------------------------------------------------------------------------------|----------|--------------|-----------------|--------|-----------------------------------------------|------------------|------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|
|                                 | Validation                                                                                                |          |              |                 |        |                                               |                  | Comm                                     | ents                                             |                                                                        |
| l.                              | Technical holding times                                                                                   |          |              | 4               | Sampl  | ling d                                        | ates: 6          | /11/08                                   |                                                  |                                                                        |
| lla.                            | Initial calibration                                                                                       |          |              | A               |        |                                               | 7                | /                                        |                                                  |                                                                        |
| IIb.                            | Calibration verification/ICV                                                                              |          |              | 4               | 10     | 2V                                            | £1570            |                                          |                                                  |                                                                        |
| III.                            | Blanks                                                                                                    |          |              | A               |        |                                               |                  |                                          |                                                  |                                                                        |
| IVa.                            | Surrogate recovery                                                                                        |          |              | lack            |        |                                               |                  |                                          |                                                  |                                                                        |
| IVb.                            | Matrix spike/Matrix spike du                                                                              | uplicate | s            | NA              | 4      | 100                                           | d D              | itid.                                    | TSI                                              | B4J-08-10'                                                             |
| IVc.                            | Laboratory control samples                                                                                |          |              | $\triangleleft$ | 20     |                                               | $\triangleright$ |                                          |                                                  |                                                                        |
| V.                              | Target compound identifica                                                                                | tion     |              | 4               | Not re | •view                                         | ed for Level III | validation.                              |                                                  |                                                                        |
| VI.                             | Compound Quantitation an                                                                                  | d CRQI   | _S           | 4               | Not re | eview                                         | ed for Level III | validation.                              |                                                  |                                                                        |
| VII.                            | System Performance                                                                                        | •        |              | $\forall$       | Not re | eview                                         | ed for Level III | validation.                              |                                                  |                                                                        |
| VIII.                           | Overall assessment of data                                                                                | 1        |              | A               |        |                                               |                  |                                          |                                                  |                                                                        |
| IX.                             | Field duplicates                                                                                          |          |              | N               |        | <u> </u>                                      |                  |                                          |                                                  |                                                                        |
| X.                              | Field blanks                                                                                              |          |              |                 |        |                                               |                  |                                          |                                                  |                                                                        |
| Note:                           | A = Acceptable N = Not provided/applicab SW = See worksheet                                               |          | R = Rin      | eld blank       |        |                                               | TB = T           | uplicate<br>rip blank<br>Equipment blanl | <                                                |                                                                        |
| П                               |                                                                                                           | 11       | 1            |                 |        |                                               |                  |                                          | 24                                               |                                                                        |
|                                 | 1                                                                                                         | 1        | 816521       | STAL            |        | 21                                            |                  |                                          | 31                                               |                                                                        |
|                                 | TSB-GJ-09-20'**                                                                                           | 12       |              |                 |        | 22                                            |                  |                                          | 32                                               |                                                                        |
|                                 | TSB-GJ-09-30'                                                                                             | /13      |              |                 |        | 23                                            |                  |                                          | 33<br>34                                         |                                                                        |
| 5                               | TSB-GJ-09-40' <b>↓</b>                                                                                    | 15       |              |                 |        | 24<br>25                                      |                  |                                          | 35                                               |                                                                        |
|                                 |                                                                                                           | 16       |              |                 |        | <u>25                                    </u> |                  |                                          | 36                                               |                                                                        |
| 7                               |                                                                                                           | 17       |              |                 |        | <del>20</del><br>27                           |                  |                                          | 37                                               |                                                                        |
| 8                               |                                                                                                           | 18       |              |                 |        | 28                                            |                  |                                          | 38                                               |                                                                        |
| 9                               |                                                                                                           | 19       |              |                 |        | <u>20</u><br>29                               |                  |                                          | 39                                               |                                                                        |
| ا ا                             |                                                                                                           | 1 3      | <del> </del> |                 | -+     |                                               |                  |                                          | <del>                                     </del> |                                                                        |


Notes:\_\_

LDC#: 19188 \$7 SDG#: 20 COUN

### **VALIDATION FINDINGS CHECKLIST**

| Page: /of ≥   |   |
|---------------|---|
| Reviewer:     | _ |
| 2nd Reviewer: |   |

| Method: GC HPLC                                                                                                                                                                |             | <del></del> ,                         | <del></del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Validation Area                                                                                                                                                                | Yes         | No                                    | NA          | Findings/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| f Technical holding times                                                                                                                                                      |             |                                       | - I         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| All technical holding times were met.                                                                                                                                          |             |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cooler temperature criteria was met.                                                                                                                                           | -           | **********                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H*Initial calibration                                                                                                                                                          |             |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                                                     |             |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) < 20%?                                                                      |             |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?                                                                                            |             | /                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Did the initial calibration meet the curve fit acceptance criteria?                                                                                                            |             |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the RT windows properly established?                                                                                                                                      |             | and the second                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IV Continuing calibration                                                                                                                                                      | · · · · · · | · · · · · · · · · · · · · · · · · · · | r<br>I      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| What type of continuing calibration calculation was performed?%D or%R                                                                                                          | /           |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a continuing calibration analyzed daily?                                                                                                                                   |             |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all percent differences (%D) < 15%.0 or percent recoveries 85-115%?                                                                                                       | /           |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all the retention times within the acceptance windows?                                                                                                                    |             |                                       | 100000000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V.:Blanks                                                                                                                                                                      | T           | i<br>I                                | T -         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Was a method blank associated with every sample in this SDG?                                                                                                                   | /           |                                       | <u> </u>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a method blank analyzed for each matrix and concentration?                                                                                                                 | _           |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.                                                                 |             |                                       |             | and the second s |
| VI: Surrogate spikes                                                                                                                                                           | T 7         | T T                                   |             | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Were all surrogate %R within the QC limits?                                                                                                                                    | /           |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?                                                        |             |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| If any %R was less than 10 percent, was a reanalysis performed to confirm %R?                                                                                                  |             | riexavaaa                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VII. Matrix spike/Matrix spike duplicates                                                                                                                                      | · /         | T                                     | T           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. |             |                                       | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                         |             |                                       | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                       |             |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VIII*Laboratory/control samples :: 1.1                                                                                                                                         |             |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was an LCS analyzed for this SDG?                                                                                                                                              |             | 1                                     |             | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Was an LCS analyzed per extraction batch?                                                                                                                                      | /           |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



### **VALIDATION FINDINGS CHECKLIST**

| Page: →of →    |
|----------------|
| Reviewer:      |
| 2nd Reviewer:' |

| Validation Area                                                                                                                         | Yes                  | No | NA | Findings/Comments                     |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|----|----|---------------------------------------|
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                        |                      |    |    |                                       |
| IX. Regional Quality Assurance and Quality Control                                                                                      |                      |    |    |                                       |
| Were performance evaluation (PE) samples performed?                                                                                     |                      |    |    |                                       |
| Were the performance evaluation (PE) samples within the acceptance limits?                                                              | A CALL OF THE PARTY. |    |    |                                       |
| X Target compound identification +                                                                                                      |                      |    |    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| Were the retention times of reported detects within the RT windows?                                                                     |                      |    |    |                                       |
| XI: Compound quantitation/CROLs                                                                                                         |                      | r  |    |                                       |
| Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? |                      |    |    |                                       |
| XII: System performance                                                                                                                 |                      |    |    |                                       |
| System performance was found to be acceptable.                                                                                          |                      |    |    |                                       |
| XIII Overall assessment of data (i.e., i.e.,                          |                      |    |    |                                       |
| Overall assessment of data was found to be acceptable.                                                                                  | /                    |    |    |                                       |
| XIV. Field duplicates                                                                                                                   |                      |    |    |                                       |
| Were field duplicate pairs identified in this SDG?                                                                                      |                      | /  | 1  |                                       |
| Were target compounds idetected in the field duplicates?                                                                                |                      |    | /  |                                       |
| XV: Field:blanks                                                                                                                        |                      |    |    | 1<br>- 200 CI                         |
| Were field blanks identified in this SDG?                                                                                               |                      |    |    |                                       |
| Were target compounds detected in the field blanks?                                                                                     |                      |    | /  |                                       |

SDG #: See COM LDC #: 191888

## Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

o o Reviewer: 2nd Reviewer:

METHOD: GC

The calibration Factor (CF), average CF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD =  $100 \cdot (S/X)$ 

A = Area of compound, C = Concentration of compound, S = Standard deviation of the CF X = Mean of the CFs

|              |                         |                                        |   |   | <br>, | <br> |
|--------------|-------------------------|----------------------------------------|---|---|-------|------|
| Recalculated | %RSD                    | 3915                                   |   |   |       |      |
| Reported     | %RSD                    | 3/68                                   |   |   |       |      |
| Recalculated | Average CF<br>(initial) | 1718=732                               |   |   |       |      |
| Reported     | Average CF<br>(initial) | 516 E 216 8 28/21/28/21/28/28/20/58/8/ |   |   |       |      |
| Recalculated | CF<br>( Ø, /std)        | 1835.70                                |   |   |       |      |
| Reported     | CF<br>(// . / std)      | ades ESI                               |   |   |       |      |
|              | Compound                | 025                                    |   |   |       |      |
|              | Calibration<br>Date     | 81/6=/5                                |   |   |       |      |
|              | Standard ID             | 1940                                   |   |   |       |      |
|              | #                       | -                                      | 2 | е | 4     |      |

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

SDG #: Set COMM LDC #: 1918847

# Continuing Calibration Results Verification VALIDATION FINDINGS WORKSHEET

| /of / | 3          |                |
|-------|------------|----------------|
| Page: | Reviewer:_ | 2nd Reviewer:_ |

METHOD: GC /

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave. CF - CF)/ave. CF CF = A/C

Where: ave. CF = initial calibration average CF CF = continuing calibration CF A = Area of compound C = Concentration of compound

| Recalculated | <b>Q</b> %                     | 6.5            | do .         |          |   |
|--------------|--------------------------------|----------------|--------------|----------|---|
| Reported     | %D                             | 4              | 2            |          |   |
| Recalculated | CF/Conc.<br>CCV                | 0.9982         | 7286.0       |          |   |
| Reported     | CF/Conc.<br>CCV                | 7              | The 86.0     |          |   |
|              | Average CF(Ical)/<br>CCV Conc. | 0'1            | 0.7          |          |   |
|              | Compound                       | ₹R0            | 9RO          |          |   |
|              | Calibration<br>Date            | 042348 6/13/08 | 81/11/9 3904 |          |   |
|              | Standard ID                    |                | Cho          |          |   |
| L_           | #                              |                | 72           | <u>۳</u> | 4 |

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 19/3847 SDG #: 500 conn

# VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: METHOD: ∠GC \_\_ HPLC

% Recovery: SF/SS \* 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Percent Difference

Recalculated Percent Recovery g Percent Recovery Reported X 03383 Surrogate Found Surrogate Spiked Column/Detector N Surrogate Sample ID:

| l |        |
|---|--------|
|   |        |
|   |        |
|   |        |
|   |        |
|   |        |
|   |        |
|   |        |
| l |        |
|   |        |
| ı |        |
|   |        |
|   |        |
|   |        |
|   |        |
|   |        |
|   |        |
|   |        |
|   |        |
|   |        |
|   |        |
|   |        |
|   | le ID: |
|   | mple   |
|   | ιŭL    |

Percent Difference Recalculated Percent Recovery Percent Recovery Reported Surrogate Found Surrogate Spiked Column/Detector

Sample ID:

| t Percent<br>ry Difference |              |  |  |
|----------------------------|--------------|--|--|
| Percent<br>Recovery        | Recalculated |  |  |
| Percent<br>Recovery        | Reported     |  |  |
| Surrogate<br>Found         |              |  |  |
| Surrogate<br>Spiked        |              |  |  |
| Column/Detector            |              |  |  |
| Surrogate                  |              |  |  |

LDC #: 91/284/ SDG #: 544 @W/

# Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification VALIDATION FINDINGS WORKSHEET

Reviewer:

METHOD: GC\_HPLC

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100\* (SSC-SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Concentration

RPD = I SSCLCS - SSCLCSD I \* 2/(SSCLCS + SSCLCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: タ765269

|                              | σ.      | Spike        | Spiked | Sample        | רנ       | rcs              | วา       | CSD              | /SOT     | TCS/TCSD |
|------------------------------|---------|--------------|--------|---------------|----------|------------------|----------|------------------|----------|----------|
| Compound                     | * )<br> | Added / WAAA |        | Concentration | Percent  | Percent Recovery | Percent  | Percent Recovery | ~        | RPD      |
|                              | SDT     | LCSD         | rcs    | rcsD          | Reported | Recalc.          | Reported | Recalc.          | Reported | Recalc.  |
| Gasoline (8015)              | 6.1     | 1.0          | 0.1    | D.944         | 100      | 26/              | 76       | 76               |          | 8.8      |
| Diesel (8015)                |         |              |        |               |          |                  |          |                  |          |          |
| Benzene (8021B)              |         |              |        |               |          |                  |          |                  |          | -        |
| Methane (RSK-175)            |         |              |        |               |          |                  |          |                  |          |          |
| 2,4-D (8151)                 |         |              |        |               |          |                  |          |                  |          |          |
| Dinoseb (8151)               |         |              |        |               |          |                  |          |                  |          |          |
| Naphthalene (8310)           |         |              |        |               | 1        |                  |          |                  |          |          |
| Anthracene (8310)            |         |              |        |               |          |                  |          |                  |          |          |
| HMX (8330)                   |         |              |        |               |          |                  |          |                  |          |          |
| 2,4,6-Trinitrotoluene (8330) |         |              |        |               |          |                  |          |                  |          |          |
|                              |         |              |        |               |          |                  |          |                  |          |          |
|                              |         |              |        |               |          |                  |          |                  |          |          |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

2nd Reviewer:

HPLC

| ا<br>ا | Were a<br>Were a |
|--------|------------------|
|        | Y N N/A          |
|        | _                |

il recalculated results for detected target compounds agree within 10% of the reported results? ill reported results recalculated and verified for all level IV samples?

| Example:                   |                        | Sample ID. |
|----------------------------|------------------------|------------|
| Concentration= (A)(Fv)(Df) | (RF)(Vs or Ws)(%S/100) |            |

A= Area or height of the compound to be measured Fv= Final Volume of extract

Df= Dilution Factor

RF= Average response factor of the compound Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid In the initial calibration

Concentration =\_

Compound Name\_

|                                       | Ī | <u> </u> | Γ- | Γ | l l |  |
|---------------------------------------|---|----------|----|---|-----|--|
| Qualifications                        |   |          |    |   |     |  |
| Recalculated Results Concentrations ( |   |          |    |   |     |  |
| Reported<br>Concentrations<br>(       |   |          |    |   |     |  |
| Compound                              |   |          |    |   |     |  |
| Sample ID                             |   |          |    |   |     |  |
| #                                     | - |          |    |   |     |  |

Comments:

### Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel G

**Collection Date:** 

June 11, 2008

LDC Report Date:

August 6, 2008

Matrix:

Soil

Parameters:

Diesel Range Organics

Validation Level:

EPA Level III & IV

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F120180

Sample Identification

TSB-GJ-09-10'

TSB-GJ-09-20'\*\*

TSB-GJ-09-30'

TSB-GJ-09-40'

<sup>\*\*</sup>Indicates sample underwent EPA Level IV review

### Introduction

This data review covers 4 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8015B for Diesel Range Organics.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

### II. Calibration

### a. Initial Calibration

Initial calibration of compounds was performed as required by the method.

The percent relative standard deviations (%RSD) of calibration factors for compounds were less than 20.0%.

### b. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 15.0% QC limits.

The percent differences (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

### III. Blanks

Method blanks were reviewed for each matrix as applicable. No diesel range organic contaminants were found in the method blanks.

No field blanks were identified in this SDG.

### IV. Accuracy and Precision Data

### a. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

### b. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

### c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

### V. Target Compound Identification

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

### VI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

### VII. System Performance

The system performance was acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

### VIII. Overall Assessment of Data

Data flags have been summarized at the end of this report if data has been qualified.

### IX. Field Duplicates

No field duplicates were identified in this SDG.

BRC Tronox Parcel G Diesel Range Organics - Data Qualification Summary - SDG F8F120180

No Sample Data Qualified in this SDG

BRC Tronox Parcel G Diesel Range Organics - Laboratory Blank Data Qualification Summary - SDG F8F120180

No Sample Data Qualified in this SDG

BRC Tronox Parcel G
Diesel Range Organics - Field Blank Data Qualification Summary - SDG
F8F120180

No Sample Data Qualified in this SDG

| SDG<br>Labor | #: 19188A8<br>#: F8F120180<br>ratory: Test America            |                   | Le                                | evel III/I\                            |                                                         | Date:8/4/v<br>Page: /of/<br>Reviewer:<br>2nd Reviewer: |  |  |  |
|--------------|---------------------------------------------------------------|-------------------|-----------------------------------|----------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--|--|--|
| Γhe s        | _                                                             |                   |                                   |                                        |                                                         | n findings are noted in attached                       |  |  |  |
|              | Validation A                                                  | \rea              |                                   |                                        | Comme                                                   | ents                                                   |  |  |  |
| ı.           | Technical holding times                                       |                   | 4                                 | Sampling d                             | ates: 6/11/08                                           |                                                        |  |  |  |
| lla.         | Initial calibration                                           |                   | 4                                 |                                        |                                                         |                                                        |  |  |  |
| IIb.         | Calibration verification/ICV                                  |                   | A                                 | K21 =                                  | = 1570                                                  |                                                        |  |  |  |
| 111.         | Blanks                                                        |                   | A                                 |                                        | 7                                                       |                                                        |  |  |  |
| lVa.         | Surrogate recovery                                            |                   | 4                                 | ,                                      |                                                         |                                                        |  |  |  |
| IVb.         | Matrix spike/Matrix spike dupl                                | licates           | HA                                | a le                                   | ul perties                                              | - TSB 41-08-10                                         |  |  |  |
| IVc.         | Laboratory control samples                                    |                   | A                                 | 100                                    | _                                                       |                                                        |  |  |  |
| V.           | Target compound identification                                |                   |                                   | Not review                             | ed for Level III validation.                            |                                                        |  |  |  |
| VI.          | Compound Quantitation and CRQLs                               |                   |                                   | Not reviewed for Level III validation. |                                                         |                                                        |  |  |  |
| VII.         | System Performance                                            |                   |                                   | Not reviewed for Level III validation. |                                                         |                                                        |  |  |  |
| VIII.        | Overall assessment of data                                    |                   | A                                 |                                        |                                                         |                                                        |  |  |  |
| IX.          | Field duplicates                                              |                   | _ N                               |                                        |                                                         |                                                        |  |  |  |
| X.           | Field blanks                                                  |                   |                                   |                                        |                                                         |                                                        |  |  |  |
| lote:        | A = Acceptable N = Not provided/applicable SW = See worksheet | R = Rinsate<br>FB | ) = No compounds<br>= Field blank | TE                                     | D = Duplicate<br>3 = Trip blank<br>EB = Equipment blank | (                                                      |  |  |  |
| /alidat      | ed Samples: ** Indica                                         |                   | derwent Level IV                  | validation<br>I                        |                                                         |                                                        |  |  |  |
| 1            |                                                               |                   | = 29/MD                           | 21                                     |                                                         | 31                                                     |  |  |  |
| 2            | TSB-GJ-09-20'**                                               | 12 <u>8170</u>    | 312 MB                            | 22                                     |                                                         | 32                                                     |  |  |  |
| 3 1          | TSB-GJ-09-30' /                                               | 13                |                                   | 23                                     |                                                         | 33                                                     |  |  |  |
| 4            | TSB-GJ-09-40'                                                 | 14                |                                   | 24                                     | ,                                                       | 34                                                     |  |  |  |
| 5            |                                                               | 15                |                                   | 25                                     |                                                         | 35                                                     |  |  |  |
| 6            |                                                               | 16                |                                   | 26                                     |                                                         | 36                                                     |  |  |  |
| 7            |                                                               | 17                |                                   | 27                                     |                                                         | 37                                                     |  |  |  |
| 8            |                                                               | 18                |                                   | 28                                     |                                                         | 38                                                     |  |  |  |
| 9            |                                                               | 19                |                                   | 29                                     |                                                         | 39                                                     |  |  |  |
| 10           |                                                               | 20                |                                   | 30                                     |                                                         | 40                                                     |  |  |  |

Notes:\_

LDC #: 19188 A8 SDG #: See cons

### **VALIDATION FINDINGS CHECKLIST**

Page: /of // Reviewer: \_\_\_\_\_\_

|                                                                                   | / 00 1101.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method:                                                                           | Validation Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes      | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA       | Findings/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| f Technical holding times                                                         | Validation Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11001    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| All technical holding times                                                       | were met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cooler temperature criteria                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| II Initial calibration                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                   | a 5 point calibration prior to sample analysis?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                   | aluation? If yes, were all percent relative standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a curve fit used for evused?                                                  | aluation? If Yes, what was the acceptance criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Did the initial calibration me                                                    | eet the curve fit acceptance criteria?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the RT windows prop                                                          | perly established?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| IV: Continuing calibration                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| What type of continuing ca<br>%R                                                  | libration calculation was performed?%D or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a continuing calibration                                                      | on analyzed daily?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all percent difference                                                       | es (%D) < 15%.0 or percent recoveries 85-115%?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all the retention time                                                       | s within the acceptance windows?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V. Blanks                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | I-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T ·      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a method blank asso-                                                          | ciated with every sample in this SDG?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a method blank analy                                                          | zed for each matrix and concentration?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was there contamination i validation completeness w                               | n the method blanks? If yes, please see the Blanks orksheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | OUR NORTH COMMITTEE COMMIT |
| VI. Surrogate spikes                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all surrogate %R wit                                                         | hin the QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b> </b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| If the percent recovery (%large) a reanalysis performed to                        | R) of one or more surrogates was outside QC limits, wa confirm %R?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ıs       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| If any %R was less than 1                                                         | percent, was a reanalysis performed to confirm %R?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | HALLAD DAVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VII. Matrix spike/Matrix spi                                                      | ke duplicates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - T      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were a matrix spike (MS)<br>matrix in this SDG? If no, i<br>MS/MSD. Soil / Water. | and matrix spike duplicate (MSD) analyzed for each ndicate which matrix does not have an associated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                   | every 20 samples of each matrix?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the MS/MSD percen<br>(RPD) within the QC limits                              | t recoveries (%R) and the relative percent differences ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | No. of the Control of | /        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VIII. Laboratory control sa                                                       | mples The state of | jýr<br>T | 7<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Was an LCS analyzed for                                                           | this SDG?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was an I CS analyzed per                                                          | extraction hatch?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1/      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

LDC#: 1918848 SDG#: <u>Sec CO W</u>

### **VALIDATION FINDINGS CHECKLIST**

| Page: <u>→</u> of <u>→</u> |
|----------------------------|
| Reviewer:                  |
| 2nd Reviewer:              |

| Validation Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes              | No              | NA             | Findings/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IX. Regional Quality Assurance and Quality Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were performance evaluation (PE) samples performed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the performance evaluation (PE) samples within the acceptance limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Section Sections |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X Target compound identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the retention times of reported detects within the RT windows?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | e Zalechell (2) |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XI: Compound quantitation/CRQLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XII; System performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                 | (1) (1)<br>(1) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| System performance was found to be acceptable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XIII. Overall assessment of data and any first the second | Ż                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Overall assessment of data was found to be acceptable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XIV Field duplicates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                 |                | grand and the second se |
| Were field duplicate pairs identified in this SDG?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were target compounds idetected in the field duplicates?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                 | /              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XV. Field blanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 4               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were field blanks identified in this SDG?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were target compounds detected in the field blanks?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

LDC #: 1918848 SDG # Secon

## Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

| /ot/  | +         |               |
|-------|-----------|---------------|
| Page: | Reviewer: | 2nd Reviewer: |

HPLC METHOD: GC V The calibration Factor (CF), average CF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD = 100 \* (S/X)

A = Area of compound,
C = Concentration of compound,
S = Standard deviation of the CF
X = Mean of the CFs

|             |                     |          | Reported                    | Recalculated   | Reported                | Recalculated            | Reported | Recalculated |
|-------------|---------------------|----------|-----------------------------|----------------|-------------------------|-------------------------|----------|--------------|
| Standard ID | Calibration<br>Date | Compound | CF<br>(/ <sup>OTStd</sup> ) | CF<br>( /estd) | Average CF<br>(initial) | Average CF<br>(initial) | %RSD     | %RSD         |
|             | 2/19/2              | 280      | 768.51                      | 76851          | 16023                   |                         | 3.456    | 3.456        |
|             |                     |          |                             |                |                         |                         |          |              |
|             |                     |          |                             |                |                         |                         |          |              |
|             |                     |          |                             |                |                         |                         |          |              |
|             |                     |          |                             |                |                         |                         |          |              |
|             |                     |          |                             |                |                         |                         |          |              |
|             |                     |          |                             |                |                         |                         |          |              |
|             |                     |          |                             |                |                         |                         |          |              |
|             |                     |          |                             |                |                         |                         |          |              |
|             |                     |          |                             |                |                         |                         |          |              |
|             |                     |          | -                           |                |                         |                         |          |              |

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 191088-43 SDG#:2

# Continuing Calibration Results Verification VALIDATION FINDINGS WORKSHEET

| of    | 4         |               |
|-------|-----------|---------------|
| Page: | Reviewer. | 2nd Reviewer. |

HPLC METHOD: GC\_

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below

using the following calculation:

% Difference = 100 \* (ave. CF - CF)/ave. CF -CF = A/C

ave. CF = initial calibration average CF
CF = continuing calibration CF
A = Area of compound
C = Concentration of compound Where:

|   |             |                     |          |                                | Reported        | Recalculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reported   | Recalculated |
|---|-------------|---------------------|----------|--------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
|   | Standard ID | Calibration<br>Date | Compound | Average CF(Ical)/<br>CCV Conc. | CF/Conc.<br>CCV | CF/Conc.<br>CCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Q</b> % | <b>Q%</b>    |
|   | 54574D      | 80/7/2 SESTA        | ako.     | 0001                           | 3/2             | 85966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3        | 0.0          |
|   |             |                     |          |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |
| 2 | 44637       | 24537 6/17/08 DRO   | DRO      | 0001                           | K95/7601        | 25/200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.5        | 15 'E        |
|   |             |                     |          |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |
|   |             |                     |          |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |
| _ |             |                     |          |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |
|   |             |                     |          |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |
|   |             |                     |          |                                |                 | A THE STATE OF THE |            |              |
|   |             |                     |          |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |
|   |             |                     |          |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

| 8  | 3   |
|----|-----|
| 77 | S   |
| W  | Ø   |
| X  | for |
| 2  | Ŋ   |
| #  | #   |
| Ö  | ŏ   |
|    | S   |

METHOD: / GC \_\_ HPLC

# VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: \_\_\_of\_\_\_ Reviewer: \_\_\_\_\_\_\_ 2nd reviewer: \_\_\_\_\_\_\_

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS \* 100

Where: SF = Surrogate Found SS = Surrogate Spiked

|                       | Percent<br>Difference |              | <b>⊘</b>    |  |  |
|-----------------------|-----------------------|--------------|-------------|--|--|
|                       | Percent<br>Recovery   | Recalculated | 25          |  |  |
|                       | Percent<br>Recovery   | Reported     | <i>S</i> 82 |  |  |
| 1                     | Surrogate<br>Found    |              | 10/5-12     |  |  |
| oo - ourrogate opiked | Surrogate<br>Spiked   |              | 0.50        |  |  |
|                       | Column/Detector       |              | $\sqrt{s}$  |  |  |
| Sample ID; 🔑          | Surrogate             |              | TFH         |  |  |

| Sample ID: |                 |                     |                    |                     |                     |                       |
|------------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------|
| Surrogate  | Column/Detector | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|            |                 |                     |                    | Reported            | Recalculated        |                       |
|            |                 |                     |                    |                     |                     |                       |
|            |                 |                     |                    |                     |                     |                       |
|            |                 |                     |                    |                     |                     |                       |
|            |                 |                     |                    |                     |                     |                       |

| Sample ID: |                 |                     |                                       |                     |                     |                       |
|------------|-----------------|---------------------|---------------------------------------|---------------------|---------------------|-----------------------|
| Surrogate  | Column/Detector | Surrogate<br>Spiked | Surrogate<br>Found                    | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|            |                 |                     |                                       | Reported            | Recalculated        |                       |
|            |                 |                     |                                       |                     |                     |                       |
|            |                 |                     | · · · · · · · · · · · · · · · · · · · |                     |                     |                       |
|            |                 |                     |                                       |                     |                     |                       |
|            |                 |                     |                                       |                     |                     |                       |
|            |                 |                     |                                       |                     |                     |                       |

SDG #: Sec Cours LDC #:/9/8348

# Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification VALIDATION FINDINGS WORKSHEET

| \of<br>\of<br>\of |           |               |
|-------------------|-----------|---------------|
| Page:             | Reviewer. | 2nd Reviewer: |

METHOD:

GC HPLC

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100\* (SSC-SC)/SA

Where:

SC = Concentration

LCSD = Laboratory control sample duplicate percent recovery

RPD = I SSCLCS - SSCLCSD I \* 2/(SSCLCS + SSCLCSD) LCS/LCSD samples: 3/6529

SSC = Spiked sample concentration SA = Spike added LCS = Laboratory control sample percent recovery

|                              | dS      | ike          | Spiked      | Sample                 | SOT              | S        | rcsd             | D)      | I/SOI    | LCS/LCSD |
|------------------------------|---------|--------------|-------------|------------------------|------------------|----------|------------------|---------|----------|----------|
| Compound                     | Ad<br>M | Added (M7/S) | Concel ( M& | Concentration ( MAS 13 | Percent Recovery | tecovery | Percent Recovery | ecovery | R        | RPD      |
|                              | SOT     | rcsD         | rcs         | CSD                    | Reported         | Recalc.  | Reported         | Recalc. | Reported | Recalc.  |
| Gasoline (8015)              |         |              |             |                        |                  |          |                  |         |          |          |
| Diesel (8015)                | 83.3    | NA           | 68.9        | NA                     | 80               | W W      |                  |         |          |          |
| Benzene (8021B)              |         |              |             |                        |                  |          |                  |         |          |          |
| Methane (RSK-175)            |         |              |             |                        |                  |          |                  |         |          |          |
| 2,4-D (8151)                 |         |              |             |                        |                  |          |                  |         |          |          |
| Dinoseb (8151)               |         |              |             |                        |                  |          |                  |         |          |          |
| Naphthalene (8310)           |         |              |             |                        |                  |          |                  |         |          |          |
| Anthracene (8310)            |         |              |             |                        |                  |          |                  |         |          |          |
| HMX (8330)                   |         |              |             |                        |                  |          |                  |         |          |          |
| 2,4,6-Trinitrotoluene (8330) |         |              |             |                        |                  |          |                  |         |          |          |
|                              |         |              |             |                        |                  |          |                  |         |          |          |
|                              |         |              |             |                        |                  |          |                  |         |          |          |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: A B S 8

### **VALIDATION FINDINGS WORKSHEET** Sample Calculation Verification

2nd Reviewer:

ညှ

| _ | GC HP   |  |
|---|---------|--|
|   | тнор: 🗡 |  |
|   | METH    |  |

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10% of the reported results?

| (A)(Fv)(Df)    | (RF)(Vs or Ws)(%S/100) |  |
|----------------|------------------------|--|
| Concentration= | (R                     |  |

A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor

RF= Average response factor of the compound In the initial calibration

Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid

Concentration =\_

Compound Name

Sample ID.

Example:

| # | Sample ID | Compound | Reported<br>Concentrations<br>( | Recalculated Results<br>Concentrations<br>( | Qualifications |
|---|-----------|----------|---------------------------------|---------------------------------------------|----------------|
|   |           |          |                                 |                                             |                |
|   |           |          |                                 |                                             |                |
|   |           |          |                                 |                                             |                |
|   |           |          |                                 |                                             |                |
|   |           |          |                                 |                                             |                |
|   |           |          |                                 |                                             |                |
|   |           |          |                                 |                                             |                |
|   |           |          |                                 |                                             |                |
|   |           |          |                                 |                                             |                |

Comments:

### Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel G

**Collection Date:** 

June 11, 2008

LDC Report Date:

August 8, 2008

Matrix:

Soil

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

EPA Level III & IV

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F120180

Sample Identification

TSB-GJ-09-10'

TSB-GJ-09-20'\*\*

TSB-GJ-09-30'

TSB-GJ-09-40'

<sup>\*\*</sup>Indicates sample underwent EPA Level IV review

### Introduction

This data review covers 4 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8310 for Polynuclear Aromatic Hydrocarbons.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

### II. Calibration

### a. Initial Calibration

Initial calibration of compounds was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Retention time windows were evaluated and considered technically acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples on which a Level III review was performed.

### b. Calibration Verification

Calibration verification was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 15.0% QC limits with the following exceptions:

| Date    | Detector      | Compound             | %D   | Associated<br>Samples            | Flag             | A or P |
|---------|---------------|----------------------|------|----------------------------------|------------------|--------|
| 6/16/08 | Not specified | Benzo(g,h,i)perylene | 15.2 | TSB-GJ-09-10'<br>TSB-GJ-09-20'** | J+ (all detects) | А      |

The percent differences (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds with the following exceptions:

| Date   | Detector      | Compound             | %D   | Associated<br>Samples           | Flag             | A or P |
|--------|---------------|----------------------|------|---------------------------------|------------------|--------|
| 6/4/08 | Not specified | Benzo(k)fluoranthene | 16.6 | All samples in<br>SDG F8F120180 | J+ (all detects) | А      |

Retention time windows were evaluated and considered technically acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples on which a Level III review was performed.

### III. Blanks

Method blanks were reviewed for each matrix as applicable. No polynuclear aromatic hydrocarbon contaminants were found in the method blanks.

No field blanks were identified in this SDG.

### IV. Accuracy and Precision Data

### a. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

### b. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

### c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

### V. Target Compound Identification

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

### VI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

### VII. System Performance

The system performance was acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

### VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

### IX. Field Duplicates

No field duplicates were identified in this SDG.

### BRC Tronox Parcel G Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG F8F120180

| SDG                                                                 | Sample                           | Compound             | Flag             | A or P | Reason                          |
|---------------------------------------------------------------------|----------------------------------|----------------------|------------------|--------|---------------------------------|
| F8F120180                                                           | TSB-GJ-09-10'<br>TSB-GJ-09-20'** | Benzo(g,h,i)perylene | J+ (all detects) | А      | Continuing calibration<br>(%D)  |
| F8F120180 TSB-GJ-09-10' TSB-GJ-09-20'** TSB-GJ-09-30' TSB-GJ-09-40' |                                  | Benzo(k)fluoranthene | J+ (all detects) | А      | Continuing calibration (ICV %D) |

BRC Tronox Parcel G
Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary
- SDG F8F120180

No Sample Data Qualified in this SDG

BRC Tronox Parcel G Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG F8F120180

No Sample Data Qualified in this SDG

|        |                                                               |                                 |                          |                                  |                                        |            |                                                          |            | -11/                        |  |  |
|--------|---------------------------------------------------------------|---------------------------------|--------------------------|----------------------------------|----------------------------------------|------------|----------------------------------------------------------|------------|-----------------------------|--|--|
|        | #: <u>19188A9</u>                                             | LIDATIO                         | I COMPLETENESS WORKSHEET |                                  |                                        |            | Date 8/4/0                                               |            |                             |  |  |
|        | #: F8F120180                                                  |                                 | Le                       | evel II                          | II/I\                                  |            |                                                          | Page: /of/ |                             |  |  |
| Labo   | ratory: Test America                                          |                                 |                          |                                  |                                        |            |                                                          |            | Reviewer: 2nd Reviewer:     |  |  |
| METI   | HOD: GC Polynuclear A                                         | omati                           | c Hydrocarb              | ons (EPA                         | SW 8                                   | 846 ľ      | Method 8310)                                             |            |                             |  |  |
|        | amples listed below wer<br>ation findings worksheets          |                                 | ewed for eac             | ch of the fo                     | ollowin                                | ng va      | alidation areas. Validatio                               | n find     | dings are noted in attached |  |  |
|        | Validation                                                    | Validation Area                 |                          |                                  |                                        | Comments   |                                                          |            |                             |  |  |
| I.     | Technical holding times                                       |                                 |                          | 4                                | Sampling dates: 6/11/08                |            |                                                          |            |                             |  |  |
| Ila.   | Initial calibration                                           |                                 |                          |                                  |                                        |            |                                                          |            |                             |  |  |
| llb.   | Calibration verification/ICV                                  | Calibration verification/ICV    |                          |                                  | 10                                     | <b>√</b> ≤ | £1570                                                    |            |                             |  |  |
| 111.   | Blanks                                                        |                                 |                          | A                                | <u>'</u>                               |            |                                                          |            |                             |  |  |
| IVa.   | Surrogate recovery                                            |                                 |                          | *                                |                                        |            |                                                          |            |                             |  |  |
| IVb.   | Matrix spike/Matrix spike d                                   | uplicate                        | s                        | 4                                | 78B-GJ-08-10'                          |            |                                                          |            |                             |  |  |
| IVc.   | Laboratory control samples                                    | 3                               |                          | 4                                | 209                                    |            |                                                          |            |                             |  |  |
| V.     | Target compound identifica                                    | Target compound identification  |                          |                                  | Not reviewed for Level III validation. |            |                                                          |            |                             |  |  |
| VI.    | Compound Quantitation ar                                      | Compound Quantitation and CRQLs |                          |                                  | Not reviewed for Level III validation. |            |                                                          |            |                             |  |  |
| VII.   | System Performance                                            |                                 |                          | 4                                | Not reviewed for Level III validation. |            |                                                          |            |                             |  |  |
| VIII.  | Overall assessment of data                                    | a                               |                          | A                                |                                        |            |                                                          |            |                             |  |  |
| IX.    | Field duplicates                                              | Field duplicates                |                          |                                  |                                        |            |                                                          |            |                             |  |  |
| X.     | Field blanks                                                  |                                 |                          |                                  |                                        |            |                                                          |            |                             |  |  |
| Note:  | A = Acceptable N = Not provided/applicable SW = See worksheet | e                               | R = Rins                 | o compounds<br>sate<br>eld blank | s detect                               | ted        | D = Duplicate<br>TB = Trip blank<br>EB = Equipment blank | ς.         |                             |  |  |
| √alida | ted Samples: ** Indicates san                                 | nple und                        | derwent Level I          | IV validation                    |                                        |            |                                                          |            |                             |  |  |
| 1      | TSB-GJ-09-10'                                                 | 11                              | 81681                    | 58MV                             | 3 1                                    | 21         |                                                          | 31         |                             |  |  |
| 2      | TSB-GJ-09-20'**                                               | 12                              |                          |                                  | 2                                      | 22         |                                                          | 32         |                             |  |  |
| 3      | TSB-GJ-09-30'                                                 | / 13                            |                          |                                  |                                        | 23         |                                                          | 33         |                             |  |  |
| 4      | TSB-GJ-09-40'                                                 | 14                              |                          |                                  |                                        | 24         |                                                          | 34         |                             |  |  |
| 5      | •                                                             | 15                              |                          |                                  |                                        | 25         |                                                          | 35         |                             |  |  |
| 6      |                                                               | 16                              |                          |                                  |                                        | 26         |                                                          | 36         |                             |  |  |
| 7      |                                                               | 17                              |                          |                                  |                                        | 27         |                                                          | 37         |                             |  |  |
| 8      |                                                               | 18                              |                          |                                  |                                        | 28         |                                                          | 38         |                             |  |  |
| 9      |                                                               | 19                              |                          |                                  |                                        | 29         |                                                          | 39         |                             |  |  |
| 10     |                                                               | 20                              |                          |                                  |                                        | 30         |                                                          | 40         |                             |  |  |

Notes:

LDC #: 1918889 SDG #: <u>Sa cow</u>

### **VALIDATION FINDINGS CHECKLIST**

Page:\_/of\_\_\_ Reviewer:\_\_\_\_\_ 2nd Reviewer:\_\_\_\_\_

| Method: GC HPLC                                                                                                         |     |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------|-----|---------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Validation Area                                                                                                         | Yes | No                  | NA                                    | Findings/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| f Technical holding times                                                                                               |     |                     | · I                                   | A SHARE THE STATE OF THE STATE |
| All technical holding times were met.                                                                                   |     |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cooler temperature criteria was met.                                                                                    |     |                     | ar more than                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (Finitial calibration                                                                                                   |     |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                              |     |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) ≤ 20%?               |     |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?                                     |     |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Did the initial calibration meet the curve fit acceptance criteria?                                                     |     |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were the RT windows properly established?                                                                               |     |                     | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IV Continuing calibration                                                                                               |     |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| What type of continuing calibration calculation was performed?%D or %R                                                  |     |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was a continuing calibration analyzed daily?                                                                            |     |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were all percent differences (%D) ≤ 15%.0 or percent recoveries 85-115%?                                                |     |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were all the retention times within the acceptance windows?                                                             |     | con S. Wall Day 17. | ***                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| M/Blanks                                                                                                                |     |                     | T                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was a method blank associated with every sample in this SDG?                                                            |     |                     | ļ                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was a method blank analyzed for each matrix and concentration?                                                          |     |                     | ļ                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.          |     |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| VI Surrogate spikes                                                                                                     |     |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Were all surrogate %R within the QC limits?                                                                             | 1   | <u> </u>            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R? |     |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| If any %R was less than 10 percent, was a reanalysis performed to confirm %R?                                           |     |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

VIII: Laboratory control samples \*\*\*
Was an LCS analyzed for this SDG?

Was an LCS analyzed per extraction batch?

VII. Matrix spike/Matrix spike duplicates

MS/MSD. Soil / Water.

(RPD) within the QC limits?

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated

Were the MS/MSD percent recoveries (%R) and the relative percent differences

Was a MS/MSD analyzed every 20 samples of each matrix?

LDC#: 1918849 SDG#: 2000

### **VALIDATION FINDINGS CHECKLIST**

|     | Page:     | <u></u> _of |
|-----|-----------|-------------|
|     | Reviewer: | 9           |
| 2nd | Reviewer: |             |

| Validation Area                                                                                                                         | Yes      | No         | NA                                                                      | Findings/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                        |          | -          |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IX Regional Quality Assurance and Quality Control                                                                                       |          |            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were performance evaluation (PE) samples performed?                                                                                     |          |            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the performance evaluation (PE) samples within the acceptance limits?                                                              |          |            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X. Target compound identification                                                                                                       | ı        |            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the retention times of reported detects within the RT windows?                                                                     |          | *645398261 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XI: Compound quantifation/CRQLs                                                                                                         | <b>T</b> |            | į į į                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? |          |            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XII. System performance                                                                                                                 |          |            | 450<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1 | Here is a second of the second |
| System performance was found to be acceptable.                                                                                          |          |            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XIII. Overall assessment of data                                                                                                        |          |            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Overall assessment of data was found to be acceptable.                                                                                  | /        |            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XIV: Field duplicates                                                                                                                   |          |            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were field duplicate pairs identified in this SDG?                                                                                      |          |            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were target compounds idetected in the field duplicates?                                                                                |          |            | /                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XV. Field blanks                                                                                                                        |          |            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were field blanks identified in this SDG?                                                                                               |          |            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were target compounds detected in the field blanks?                                                                                     |          |            | /                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## VALIDATION FINDINGS WORKSHEET

METHOD: GC HPLC

| 8310                      | 8330                          | 8151                 | 8444                | × × × × × × × × × × × × × × × × × × × | 07000             |
|---------------------------|-------------------------------|----------------------|---------------------|---------------------------------------|-------------------|
|                           |                               |                      |                     | (1. uon): <b>+ : 0</b>                | 00710             |
| A. Acenaphthene           | A. HMX                        | A. 2,4-D             | A. Dichlorvos       | V. Fensulfothion                      | V. Benzene        |
| B. Acenaphthylene         | B. RDX                        | B. 2,4-DB            | B. Mevinphos        | W. Bolstar                            | CC. Toluene       |
| C. Anthracene             | C. 1,3,5-Trinitrobenzene      | C. 2,4,5-T           | C. Demeton-O        | X. EPN                                | EE. Ethyl Benzene |
| D. Benzo(a)anthracene     | D. 1,3-Dinitrobenzene         | D. 2,4,5-TP          | D. Demeton-S        | Y. Azinphos-methyl                    | SSS. O-Xylene     |
| E. Benzo(a)pyrene         | E. Tetryl                     | E. Dinoseb           | E. Ethoprop         | Z. Coumaphos                          | RRR. MP-Xylene    |
| F. Benzo(b)fluoranthene   | F. Nitrobenzene               | F. Dichlorprop       | F. Naled            | AA. Parathion                         | GG. Total Xylene  |
| G. Benzo(g,h,i)perylene   | G. 2.4.6-Trinitrotoluene      | G. Dicamba           | G. Sulfotep         | BB. Trichloronate                     |                   |
| H. Benzo(k)fluoranthene   | H. 4-Amino-2,6-dinitrotoluene | H. Dalapon           | H. Phorate          | CC. Trichlorinate                     |                   |
| I. Chrysene               | I. 2-Amino-4,6-dinitrotoluene | I. MCPP              | I. Dimethoate       | DD. Trifluralin                       |                   |
| J. Dibenz(a,h)anthracene  | J. 2,4-Dinitrotolune          | Ј. МСРА              | J. Diazinon         | EE. Def                               |                   |
| K. Fluoranthene           | K. 2,6-Dinitrotoluene         | K. Pentachlorophenol | K. Disulfoton       | FF. Prowl                             |                   |
| L. Fluorene               | L. 2-Nitrotoluene             | L 2,4,5-TP (silvex)  | L. Parathion-methyl | GG. Ethion                            |                   |
| M. Indeno(1,2,3-cd)pyrene | M. 3-Nitrotoluene             | M. Silvex            | M. Ronnel           | HH. Tetrachlorvinphos                 |                   |
| N. Naphthalene            | N. 4-Nitrotoluene             |                      | N. Malathion        | II. Sulprofos                         |                   |
| O. Phenanthrene           | О.                            |                      | O. Chlorpyrifos     |                                       |                   |
| P. Pyrene                 | <b>.</b>                      |                      | P. Fenthion         |                                       |                   |
| Ċ                         | 8                             |                      | Q. Parathion-ethyl  |                                       |                   |
| <br>                      |                               |                      | R. Trichloronate    |                                       |                   |
| ý.                        |                               |                      | S. Merphos          |                                       |                   |
|                           |                               |                      | T. Stirofos         |                                       |                   |
|                           |                               |                      | U. Tokuthion        |                                       |                   |

cmpd\_list.wpd

SDG #: LELCON LDC #: 19188

METHOD:

VALIDATION FINDINGS WORKSHEET **Continuing Calibration** 

Page:\_\_\_\_Reviewer:\_\_\_

2nd Reviewer:

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A

What type of continuing calibration calculation was performed? / %D or RPD Were continuing calibration standards analyzed at the required frequencies?

Did the continuing calibration standards meet the %D / RPD validation criteria of <15.0%?

Level IV Only Y N N/A

Were the retention times for all calibrated compounds within their respective acceptance windows?

| Oualifications             | 1 to to to  |   | 1 1 7    | Lasts 10 |   |       |  |   |   |                                       |   |   |   |   |  |   |   |
|----------------------------|-------------|---|----------|----------|---|-------|--|---|---|---------------------------------------|---|---|---|---|--|---|---|
| Associated Samples         | M+AC        |   | /        |          |   |       |  |   |   |                                       |   |   |   |   |  |   |   |
| RT (limit)                 |             |   |          |          |   | ( ) , |  | ) | ) | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ( | ( | ( | ( |  | ( | _ |
| %D / RPD<br>(Limit < 15.0) | 16.6        |   | 15.2     |          |   |       |  |   |   |                                       |   |   |   |   |  |   |   |
| Compound                   | 1           |   | #        | \ .      |   |       |  |   |   |                                       |   |   |   |   |  |   |   |
| Detector/<br>Column        | \<br>\<br>\ |   | NS       |          | , |       |  |   |   |                                       |   |   |   |   |  |   |   |
| Standard ID                | 101         | , | AC4-2873 | ,        |   |       |  |   |   |                                       |   |   |   |   |  |   | T |
| # Date                     | 7           |   | 8/19/18  |          |   |       |  |   |   |                                       |   |   |   |   |  |   |   |

SDG#: Secon LDC #: 19/887

### Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

| / ot/  | d          |              |
|--------|------------|--------------|
| Page:_ | Reviewer:_ | and Beyjawar |

HPLC METHOD: GC The calibration Factor (CF), average CF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD =  $100^{\circ}$  (S/X)

A = Area of compound,
C = Concentration of compound,
S = Standard deviation of the CF
X = Mean of the CFs

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 1718849 SDG#: \

### Continuing Calibration Results Verification VALIDATION FINDINGS WORKSHEET

HPLC METHOD: GC\_ The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave. CF - CF)/ave. CF CF = A/C

Where:

ave. CF = initial calibration average CF
CF = continuing calibration CF
A = Area of compound
C = Concentration of compound

|              |                                |          |             |                   |        |     |   | <br> |   | <br> |
|--------------|--------------------------------|----------|-------------|-------------------|--------|-----|---|------|---|------|
| Recalculated | Q%                             | 6.9      | w<br>W      | 6./               | 6 N    |     |   |      |   |      |
| Reported     | Q%                             |          | W           | 6./               | ė,     |     |   |      |   |      |
| Recalculated | CF/Conc.<br>CCV                | 0.5344   | 0.4834      | 0.5307            | 728h.0 |     |   |      |   |      |
| Reported     | CF/Conc.<br>CCV                |          | 0.4834      | 0.5307            | 7867.0 | , , |   |      |   |      |
|              | Average CF(Ical)/<br>CCV Conc. | 25.0     | <i>&gt;</i> | 0.50              | 1      |     |   |      |   |      |
|              | Compound                       | V        | A           | 9                 | b      |     |   |      |   |      |
|              | Calibration<br>Date            | 80/91/9  |             | 8/17/19           |        |     |   |      |   |      |
|              | Standard ID                    | &cd/2862 |             | 2 824-873 61,61,8 | /      |     |   |      |   |      |
|              | #                              | -        |             | 7                 |        |     | 9 |      | 4 |      |

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 718849 SDG#: 54 COUN

### VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Reviewer: C

METHOD: \_\_\_ GC \_\_ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS \* 100

4

Where: SF = Surrogate Found SS = Surrogate Spiked

| Surrogate         Surrogate         Surrogate         Percent Recovery         Percent Difference           7PH         NS         NS | Sample ID:   |                 | 30000               | •                  |                     |                     |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------|
| .4 NS 25.0 18.35.28 7.3 7.3 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Surrogate    | Column/Detector | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
| 4 NS Q50 183528 73 73 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                 |                     |                    |                     | Recalculated        |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>74</i> 74 | NS              | 035.0               | 18.3528            | ł                   | 73                  | 0                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                 |                     |                    |                     |                     |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                 |                     |                    |                     |                     |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                 |                     |                    |                     |                     |                       |

| ٥ | 1 |
|---|---|
| 9 | b |
| 3 | 2 |
| E | = |

| Percent<br>Difference    |              |  |  |
|--------------------------|--------------|--|--|
| Percent F<br>Recovery Di | Recalculated |  |  |
| Percent<br>Recovery      | Reported     |  |  |
| Surrogate<br>Found       |              |  |  |
| Surrogate<br>Spiked      |              |  |  |
| Column/Detector          |              |  |  |
| Surrogate                |              |  |  |

### Sample ID:

| ن<br> | Column/Detector | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|-------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|       |                 |                     |                    | Reported            | Recalculated        |                       |
|       |                 |                     |                    |                     |                     |                       |
|       |                 |                     |                    |                     |                     |                       |
|       |                 |                     |                    |                     |                     |                       |
|       |                 |                     |                    |                     |                     |                       |

LDC #/9/8849

## Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification VALIDATION FINDINGS WORKSHEET

Reviewer: 2nd Reviewer:

> GC / HPLC METHOD:

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100\* (SSC-SC)/SA

SSC = Spiked sample concentration Where:

SC = Concentration

RPD = I SSCLCS - SSCLCSD I \* 2/(SSCLCS + SSCLCSD)

SA = Spike added LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: \$768/58

|                              | S.   | oike           | Spiked | Sample        | רנ        | SOT              | rcsd             | as      | /SOT     | TCS/TCSD |
|------------------------------|------|----------------|--------|---------------|-----------|------------------|------------------|---------|----------|----------|
| Compound                     | \$2) | Added<br>Hales | Conce  | Concentration | Percent I | Percent Recovery | Percent Recovery | ecovery | R        | RPD      |
|                              | CCS  | LCSD           | rcs    | LCSD          | Reported  | Recalc.          | Reported         | Recalc. | Reported | Recalc.  |
| Gasoline (8015)              |      |                |        |               |           |                  |                  |         |          |          |
| Diesel (8015)                |      |                |        |               |           |                  |                  |         |          |          |
| Benzene (8021B)              |      |                |        |               |           |                  |                  |         |          |          |
| Methane (RSK-175)            |      |                |        |               |           |                  |                  |         |          |          |
| 2,4-D (8151)                 |      |                |        |               |           |                  |                  |         |          |          |
| Dinoseb (8151)               |      |                |        |               |           |                  |                  |         |          |          |
| Naphthalene (8310)           | 1.79 | 47             | 9:25   | NÅ            | 40        | 79               |                  |         |          |          |
| Anthracene (8310)            | /\   |                | 5/5    | >             | , 22      | 77               |                  |         |          |          |
| HMX (8330)                   | ,    |                |        |               | 1         | ,                |                  |         |          |          |
| 2,4,6-Trinitrotoluene (8330) |      |                |        |               |           |                  |                  |         |          |          |
|                              |      |                |        |               |           |                  |                  |         |          |          |
|                              |      |                |        |               |           |                  |                  |         |          |          |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 10/88/4/

### **VALIDATION FINDINGS WORKSHEET** Sample Calculation Verification

Reviewer: 2nd Reviewer:

> GC V HPLC METHOD

| İ        |     |  |
|----------|-----|--|
|          | A A |  |
| <u> </u> | N N |  |

Were all recalculated results for detected target compounds agree within 10% of the reported results? Were all reported results recalculated and verified for all level IV samples?

| Example:       | -<br>-                 | Sample ID. |
|----------------|------------------------|------------|
| (A)(Fv)(Df)    | (RF)(Vs or Ws)(%S/100) |            |
| Concentration= | <u>R</u>               | A -        |

Compound Name

A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor

RF= Average response factor of the compound

Concentration =\_

In the initial calibration
Vs= Initial volume of the sample
Ws= Initial weight of the sample
%S= Percent Solid

| 1 | <u></u>                                     | <br> | <del></del> | <br> | <br><del></del> |  |
|---|---------------------------------------------|------|-------------|------|-----------------|--|
|   | Qualifications                              |      |             |      |                 |  |
|   | Recalculated Results<br>Concentrations<br>( |      |             |      |                 |  |
|   | Reported<br>Concentrations<br>(             |      |             |      |                 |  |
|   | Compound                                    |      |             |      |                 |  |
|   | Sample ID                                   |      |             |      |                 |  |
|   | *                                           |      |             |      |                 |  |

Comments:

### Laboratory Data Consultants, Inc. Data Validation Report

**Project/Site Name:** 

BRC Tronox Parcel G

**Collection Date:** 

June 11, 2008

LDC Report Date:

August 8, 2008

Matrix:

Soil

Parameters:

Dioxins/Dibenzofurans

Validation Level:

EPA Level III & IV

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F120180

Sample Identification

TSB-GJ-09-10'

TSB-GJ-09-20'\*\*

TSB-GJ-09-30'

TSB-GJ-09-40'

<sup>\*\*</sup>Indicates sample underwent EPA Level IV review

### Introduction

This data review covers 4 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8290 for Polychlorinated Dioxins/Dibenzofurans.

This review follows USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Samples indicated by a double asterisk on the front cover underwent EPA Level IV review. EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by EPA Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

### II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The exact mass of 380.9760 of PFK was verified. The static resolving power was at least 10,000 (10% valley definition) for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

### III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio for each target compound was greater than or equal to 2.5 and and greater than or equal to 10 for each recovery and internal standard compound for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

### IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds with the following exceptions:

| Date   | Compound                     | %D   | Associated Samples | Flag             | A or P |
|--------|------------------------------|------|--------------------|------------------|--------|
| 7/7/08 | <sup>13</sup> C-2,3,7,8-TCDF | 37.2 | TSB-GJ-09-40'      | J+ (all detects) | Р      |

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

### V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks.

No field blanks were identified in this SDG.

### VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

### VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits with the following exceptions:

| LCS ID     | Compound                  | %R (Limits)                  | Associated Samples                                           | Flag                                 | A or P |
|------------|---------------------------|------------------------------|--------------------------------------------------------------|--------------------------------------|--------|
| 8170493LCS | 1,2,3,7,8,9-HxCDD<br>OCDD | 137 (71-129)<br>154 (74-144) | TSB-GJ-09-10'<br>TSB-GJ-09-30'<br>TSB-GJ-09-40'<br>8170493MB | J+ (all detects)<br>J+ (all detects) | Р      |

### VIII. Regional Quality Assurance and Quality Control

Not applicable.

### IX. Internal Standards

All internal standard recoveries were within QC limits with the following exceptions:

| Sample        | Internal Standards                                                                                                                                                                                                                                         | %R (Limits)                                                                                                           | Compound                                                                                                                                                                                                                                                                                                           | Flag                                    | A or P |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|
| TSB-GJ-09-30' | <sup>13</sup> C-2,3,7,8-TCDF<br><sup>13</sup> C-1,2,3,7,8-PeCDF<br><sup>13</sup> C-1,2,3,7,8-PeCDD<br><sup>13</sup> C-1,2,3,4,7,8-HxCDD<br><sup>13</sup> C-1,2,3,6,7,8-HxCDD<br><sup>13</sup> C-1,2,3,4,6,7,8-HpCDF<br><sup>13</sup> C-1,2,3,4,6,7,8-HpCDD | 38 (40-135)<br>26 (40-135)<br>27 (40-135)<br>18 (40-135)<br>21 (40-135)<br>11 (40-135)<br>16 (40-135)<br>9.7 (40-135) | 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8-PeCDF 2,3,7,8-TCDF 2,3,7,8-TCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF | J (all detects)<br>UJ (all non-detects) | Р      |

### X. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

### XI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

### XII. System Performance

The system performance was acceptable for samples on which EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by EPA Level III criteria.

### XIII. Overall Assessment of Data

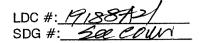
Data flags are summarized at the end of the report if data has been qualified.

### XIV. Field Duplicates

No field duplicates were identified in this SDG.

### BRC Tronox Parcel G Dioxins/Dibenzofurans - Data Qualification Summary - SDG F8F120180

|           |                                                 |                                                                                                                                                                                                                                                                                                                                |                                         |        | <u> </u>                        |
|-----------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|---------------------------------|
| SDG       | Sample                                          | Compound                                                                                                                                                                                                                                                                                                                       | Flag                                    | A or P | Reason                          |
| F8F120180 | TSB-GJ-09-40'                                   | 2,3,7,8-TCDF                                                                                                                                                                                                                                                                                                                   | J+ (all detects)                        | Р      | Routine calibration (%D)        |
| F8F120180 | TSB-GJ-09-10'<br>TSB-GJ-09-30'<br>TSB-GJ-09-40' | 1,2,3,7,8,9-HxCDD<br>OCDD                                                                                                                                                                                                                                                                                                      | J+ (all detects)<br>J+ (all detects)    | Р      | Laboratory control samples (%R) |
| F8F120180 | TSB-GJ-09-30'                                   | 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 1,2,3,7,8-PeCDF 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 0CDF | J (all detects)<br>UJ (all non-detects) | Р      | Internal standards (%R)         |


BRC Tronox Parcel G Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG F8F120180

No Sample Data Qualified in this SDG

BRC Tronox Parcel G Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG F8F120180

No Sample Data Qualified in this SDG

| _DC #:19188A21  SDG #:F8F120180  _aboratory: Test America  METHOD: HRGC/HRMS Diox  The samples listed below were validation findings worksheets. | <br><br>ins/Dibenzofuran<br>reviewed for eac | Leve<br>es (EPA SW                               | el III/I\<br>846 Me | thod 8290)                                         |          | Date: 3/4/0 Page: of / Reviewer: 2nd Reviewer: |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|---------------------|----------------------------------------------------|----------|------------------------------------------------|
| Validation                                                                                                                                       | Area                                         |                                                  |                     | Co                                                 | mments   |                                                |
| Technical holding times                                                                                                                          |                                              | A s                                              | ampling d           | ates: 4/11/0                                       | 8        |                                                |
| II. GC/MS Instrument performa                                                                                                                    | ince check                                   | 4                                                |                     | 7 7                                                |          |                                                |
| III. Initial calibration                                                                                                                         |                                              | A                                                |                     |                                                    |          |                                                |
| IV. Routine calibration/I  √                                                                                                                     |                                              | W                                                |                     |                                                    |          |                                                |
| V. Blanks                                                                                                                                        |                                              | 4                                                |                     | _                                                  | _        |                                                |
| VI. Matrix spike/Matrix spike du                                                                                                                 | plicates                                     | <b>N</b> /                                       | die                 | ent Det                                            | 'od      |                                                |
| VII. Laboratory control samples                                                                                                                  | ,                                            | m                                                | 20                  | 9 1 1                                              | -        |                                                |
| VIII. Regional quality assurance                                                                                                                 | and quality control                          | N                                                |                     |                                                    |          |                                                |
| IX. Internal standards                                                                                                                           |                                              | W                                                |                     |                                                    |          |                                                |
| X. Target compound identificat                                                                                                                   | ions                                         | <u>#</u>                                         | ot review           | ed for Level III validation                        |          |                                                |
| XI. Compound quantitation and                                                                                                                    |                                              | 7                                                |                     | ed for Level III validation                        |          |                                                |
|                                                                                                                                                  | System performance                           |                                                  |                     | ed for Level III validation                        |          |                                                |
|                                                                                                                                                  |                                              |                                                  |                     |                                                    |          |                                                |
|                                                                                                                                                  |                                              |                                                  |                     |                                                    |          |                                                |
| XIV. Field duplicates                                                                                                                            |                                              | <del>                                     </del> |                     |                                                    | <u> </u> |                                                |
| XV. Field blanks                                                                                                                                 | *                                            |                                                  |                     |                                                    |          |                                                |
| Note: A = Acceptable N = Not provided/applicable SW = See worksheet  /alidated Samples: ** Indicates samp                                        | R = Rin<br>FB = Fid                          | eld blank                                        | etected             | D = Duplicate<br>TB = Trip blank<br>EB = Equipment | blank    |                                                |
| 1 / TSB-GJ-09-10'                                                                                                                                | 11 87704                                     | 93 ME                                            | \$ 21               |                                                    | 31       |                                                |
| 2 TSB-GJ-09-20'**                                                                                                                                | 12 8/7/5                                     | 9/MP                                             | > 22                |                                                    | 32       |                                                |
| 3 / TSB-GJ-09-30'                                                                                                                                | /13                                          |                                                  | 23                  |                                                    | 33       |                                                |
| 4 TSB-GJ-09-40'                                                                                                                                  | 14                                           |                                                  | 24                  |                                                    | 34       |                                                |
| 5                                                                                                                                                | 15                                           |                                                  | 25                  |                                                    | 35       |                                                |
| 6                                                                                                                                                | 16                                           |                                                  | 26                  |                                                    | 36       |                                                |
| 7                                                                                                                                                | 17                                           |                                                  | 27                  |                                                    | 37       |                                                |
| 8                                                                                                                                                | 18                                           |                                                  | 28                  |                                                    | 38       |                                                |
| 9                                                                                                                                                | 19                                           |                                                  | 29                  |                                                    | 39       |                                                |
| 10                                                                                                                                               | 20                                           |                                                  | 30                  |                                                    | 40       |                                                |
| Notes:                                                                                                                                           |                                              |                                                  |                     |                                                    |          |                                                |



### **VALIDATION FINDINGS CHECKLIST**

| Page: /of 3   |
|---------------|
| Reviewer: 9   |
| 2nd Reviewer: |

Method: Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

| Validation Area                                                                                                                                                                | Yes | No      | NA | Findings/Comments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|----|-------------------|
| I. Technical holding times                                                                                                                                                     |     |         |    |                   |
| All technical holding times were met.                                                                                                                                          |     |         |    |                   |
| Cooler temperature criteria was met.                                                                                                                                           |     |         |    |                   |
| IF GG/MS Instrument performance check                                                                                                                                          |     |         |    |                   |
| Was PFK exact mass 380.9760 verified?                                                                                                                                          |     |         |    |                   |
| Were the retention time windows established for all homologues?                                                                                                                |     |         |    |                   |
| Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers $\leq$ 25% ?                                                   |     |         |    |                   |
| is the static resolving power at least 10,000 (10% valley definition)?                                                                                                         |     |         |    |                   |
| Was the mass resolution adequately check with PFK?                                                                                                                             |     |         |    |                   |
| Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?                                                                                                                 |     |         |    |                   |
| III, Initial calibration                                                                                                                                                       |     |         |    |                   |
| Was the initial calibration performed at 5 concentration levels?                                                                                                               |     |         |    |                   |
| Were all percent relative standard deviations (%RSD) $\leq$ 20% for unlabeled standards and $\leq$ 30% for labeled standards?                                                  | /   |         |    |                   |
| Did all calibration standards meet the Ion Abundance Ratio criteria?                                                                                                           | /   |         |    |                   |
| Was the signal to noise ratio for each target compound $\geq$ 2.5 and for each recovery and internal standard $\geq$ 10?                                                       | /   |         |    |                   |
| IV. Continuing calibration                                                                                                                                                     | ,   |         |    |                   |
| Was a routine calibration performed at the beginning and end of each 12 hour period?                                                                                           |     |         |    |                   |
| Were all percent differences (%D) $\leq$ 20% for unlabeled standards and $\leq$ 30% for labeled standards?                                                                     |     | /       |    |                   |
| Did all routine calibration standards meet the Ion Abundance Ratio criteria?                                                                                                   |     |         |    |                   |
| V. Blanks                                                                                                                                                                      |     |         |    |                   |
| Was a method blank associated with every sample in this SDG?                                                                                                                   |     |         |    |                   |
| Was a method blank performed for each matrix and concentration?                                                                                                                | /   |         |    |                   |
| Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet?                                                                 |     |         |    |                   |
| VI. Matrix spike/Matrix spike duplicates                                                                                                                                       |     |         |    |                   |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. |     | _       |    |                   |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                       |     |         |    |                   |
| VII. Laboratory control samples                                                                                                                                                | ,   | <b></b> |    | 1                 |
| Was an LCS analyzed for this SDG?                                                                                                                                              |     |         |    |                   |

LDC #: 19188421 SDG #: <u>Sacouv</u>

### **VALIDATION FINDINGS CHECKLIST**

| Page:of       |
|---------------|
| Reviewer: 😙   |
| 2nd Reviewer: |

| Validation Area                                                                                                                                                                                                 | Yes | No | NA | Findings/Comments |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|-------------------|
| Was an LCS analyzed per extraction batch?                                                                                                                                                                       |     |    |    |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                                                                                                |     |    |    |                   |
| VIII. Regional Quality Assurance and Quality Control                                                                                                                                                            |     |    |    |                   |
| Were performance evaluation (PE) samples performed?                                                                                                                                                             |     |    |    |                   |
| Were the performance evaluation (PE) samples within the acceptance limits?                                                                                                                                      |     |    |    |                   |
| IX. Internal standards                                                                                                                                                                                          |     |    |    |                   |
| Were internal standard recoveries within the 40-135% criteria?                                                                                                                                                  |     |    |    |                   |
| Was the minimum S/N ratio of all internal standard peaks $\geq$ 10?                                                                                                                                             |     |    |    |                   |
| X. Target compound identification                                                                                                                                                                               |     |    |    |                   |
| For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?                              |     |    |    |                   |
| For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration? |     |    |    |                   |
| For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?                                                          |     |    |    |                   |
| Did compound spectra contain all characteristic ions listed in the table attached?                                                                                                                              |     |    |    |                   |
| Was the Ion Abundance Ratio for the two quantitation ions within criteria?                                                                                                                                      |     |    |    |                   |
| Was the signal to noise ratio for each target compound and labeled standard $\geq$ 2.5?                                                                                                                         |     |    | /  |                   |
| Does the maximum intensity of each specified characteristic ion coincide within $\pm$ 2 seconds (includes labeled standards)?                                                                                   |     |    |    |                   |
| For PCDF identification, was any signal (S/N $\geq$ 2.5, at $\pm$ seconds RT) detected in the corresponding PCDPE channel?                                                                                      |     |    |    |                   |
| Was an acceptable lock mass recorded and monitored?                                                                                                                                                             |     |    |    |                   |
| XI. Compound quantitation/CRQLs                                                                                                                                                                                 |     |    |    |                   |
| Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?                                                                                   |     |    |    |                   |
| Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?                                                                         |     |    |    |                   |
| XII, System performance                                                                                                                                                                                         |     | -  |    |                   |
| System performance was found to be acceptable.                                                                                                                                                                  |     |    |    |                   |
| XIII. Overall assessment of data                                                                                                                                                                                |     | -  |    |                   |
| Overall assessment of data was found to be acceptable.                                                                                                                                                          |     |    |    |                   |
| XIV. Field duplicates                                                                                                                                                                                           |     |    |    |                   |
| Field duplicate pairs were identified in this SDG.                                                                                                                                                              |     | /  |    |                   |

LDC #: 19188 A > SDG #: See COUN

### **VALIDATION FINDINGS CHECKLIST**

| Page: <u>∂</u> o | <u>f.≥</u> |
|------------------|------------|
| Reviewer:        |            |
| 2nd Reviewer:    |            |

| Validation Area                                         | Yes | No | NA | Findings/Comments |
|---------------------------------------------------------|-----|----|----|-------------------|
| Target compounds were detected in the field duplicates. |     |    |    |                   |
| XV. Field blanks                                        |     |    |    |                   |
| Field blanks were identified in this SDG.               |     |    |    | /                 |
| Target compounds were detected in the field blanks.     |     |    | 7  |                   |

## **VALIDATION FINDINGS WORKSHEET**

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

| A. 2,3,7,8-TCDD      | F. 1,2,3,4,6,7,8-HpCDD | K. 1,2,3,4,7,8-HxCDF   | P. 1,2,3,4,7,8,9-HpCDF | U. Total HpCDD |
|----------------------|------------------------|------------------------|------------------------|----------------|
| B. 1,2,3,7,8-PeCDD   | G. OCDD                | L. 1,2,3,6,7,8-HxCDF   | Q. OCDF                | V. Total TCDF  |
| C. 1,2,3,4,7,8-HxCDD | H. 2,3,7,8-TCDF        | M. 2,3,4,6,7,8-HxCDF   | R. Total TCDD          | W. Total PeCDF |
| D. 1,2,3,6,7,8-HxCDD | I. 1,2,3,7,8-PeCDF     | N. 1,2,3,7,8,9-HxCDF   | S. Total PeCDD         | X. Total HxCDF |
| E. 1,2,3,7,8,9-HxCDD | J. 2,3,4,7,8-PeCDF     | O. 1,2,3,4,6,7,8-HpCDF | T. Total HxCDD         | Y. Total HpCDF |

Notes:

LDC #: 1918842/ SDG #: 22 20 W

## VALIDATION FINDINGS WORKSHEET Routine Calibration

Reviewer: Cand Reviewer:

NOTIFIE CAIDIANT

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

N NA N NA

Were all percent differences (%D) of RRFs  $\leq$  20% for unlabeled compounds and  $\leq$  30% for labeled? Was a routine calibration was performed at the beginning and end of each 12 hour period?

Did all routine calibration standards meet the Ion Abundance Ratio criteria?

| OR 108102 E | Compound            |                     | Finding Ion Abundance Ratio | Associated Samples  | Qualifications           |
|-------------|---------------------|---------------------|-----------------------------|---------------------|--------------------------|
| 1           | ,                   | 1.7                 |                             | 4                   | That I                   |
|             |                     |                     |                             |                     |                          |
|             |                     |                     |                             |                     |                          |
|             |                     |                     |                             |                     |                          |
|             |                     |                     |                             |                     |                          |
|             |                     |                     |                             |                     |                          |
|             |                     |                     |                             |                     |                          |
|             | ,                   |                     |                             |                     |                          |
|             |                     |                     |                             |                     |                          |
|             |                     |                     |                             |                     |                          |
|             |                     |                     |                             |                     |                          |
|             |                     |                     |                             |                     |                          |
|             |                     |                     |                             |                     |                          |
|             |                     |                     |                             |                     |                          |
|             |                     |                     |                             |                     |                          |
|             | Selected ions (m/z) | Ion Abundance Ratio | PCDFs                       | Selected ions (m/z) | z)   Ion Abundance Ratio |
|             | M/M+2               | 0.65-0.89           | Tetra-                      | M/M+2               | 0.65-0.89                |
|             | M+2/M+4             | 1.32-1.78           | Penta-                      | M+2/M+4             | 1.32-1.78                |
|             | M+2/M+4             | 1.05-1.43           | Hexa-                       | M+2/M+4             | 1.05-1.43                |
|             | M/M+2               | 0.43-0.59           | Hexa-13C-HxCDF (IS) only    | M/M+2               | 0.43-0.59                |
|             | M/M+2               | 0.37-0.51           | Hepta-13C-HpCDF (IS) only   |                     | 0.37-0.51                |
|             | M+2/M+4             | 0.88-1.20           | Hepta-                      | M+2/M+4             | 0.88-1.20                |
|             | M+2/M+4             | 0.76-1.02           | Octa-                       | M+2/M+4             | 0.76-1.02                |

## VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

LDC #: 1918242

Reviewer:\_\_ Page:

2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Was a LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

N NA Y N NA

Qualifications Associated Samples Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? RPD (Limits) LCSD %R (Limits) 521(74/44 137 (71-12) LCS %R (Limits) Compound W W Lab ID/Reference Date \*

VALIDATION FINDINGS WORKSHEET Internal Standards

Page: Reviewer:

2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

LDC #: 10/88/1-8

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". YANA Are all internal standard recoveries were within the 40-135% criteria?

Was the S/N ratio all internal standard peaks  $\geq$  10?

| Qualifications              | JUJ (B-R)    |   |        |        |       |      |           |         |     |   |     |     |     |   |   |     |   |     |     |     | Check Standard Used |                     |                          |      |                     |                          |       |                            |                                        |          |
|-----------------------------|--------------|---|--------|--------|-------|------|-----------|---------|-----|---|-----|-----|-----|---|---|-----|---|-----|-----|-----|---------------------|---------------------|--------------------------|------|---------------------|--------------------------|-------|----------------------------|----------------------------------------|----------|
| % Recovery (Limit: 40-135%) | 38 (40-135-) | ) | 37 ( ) | ( ) &/ | ) / ~ | ) // | ( ) ) '7/ | ( ) Tib | ( ) | ) | ( ) | ( ) | ( ) |   | ( | ( ) | ( | ( ) | ( ) | ( ) | Recovery Standards  | K. 13C-1,2,3,4-TCDD | L. 1°C-1,2,3,7,8,9-HxCDD | M.   | N.                  | O.                       | Ъ.    | Ö                          | ď                                      |          |
| Internal Standard           | *            | U | R      | 7      | 7     | 4    | ++        | 77,     |     |   |     |     |     |   |   |     |   |     |     |     | Check Standard Used |                     |                          |      |                     |                          |       |                            |                                        |          |
| Lab ID/Reference            | X            |   |        |        |       |      |           |         |     |   |     |     |     |   |   |     |   |     |     |     | Internal Standards  | JF                  | ac                       | eCDF | eCDD                | HxCDF                    | HxCDD | 8-HpCDF                    | 8-HpCDD                                |          |
| # Date                      |              |   |        |        |       |      |           |         |     |   |     |     |     | * |   |     |   |     |     |     |                     | A. 13C-2,3,7,8-TCDF |                          |      | D. 13C-1,2,3,7,8-Pe | E. 13C-1,2,3,6,7,8-HxCDF | H     | G. 13C-1,2,3,4,6,7,8-HpCDF | H. <sup>13</sup> C-1,2,3,4,6,7,8-HpCDD | $\dashv$ |

LDC #: 19188424

## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: of L

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF =  $(A_{\lambda})(C_{\kappa})/(A_{\mu})(C_{\lambda})$ average RRF = sum of the RRFs/number of standards %RSD = 100 \* (S/X)

 $A_x = Area of compound,$   $A_k = C_x = C_x = C_x = C_x = S$  S = Standard deviation of the RRFs, X = P

 $A_{\bf k}=$  Area of associated internal standard  $C_{\bf k}=$  Concentration of internal standard X= Mean of the RRFs

| L      |             |                     |                                                           |                       |                       |          |              |          |              |
|--------|-------------|---------------------|-----------------------------------------------------------|-----------------------|-----------------------|----------|--------------|----------|--------------|
|        |             |                     |                                                           | Reported              | Recalculated          | Reported | Recalculated | Reported | Recalculated |
| *      | Standard ID | Calibration<br>Date | Compound (Reference Internal Standard)                    | Average RRF (initial) | Average RRF (initial) | RRF      | RRF          | 6        |              |
| Ŀ      | 141         |                     | 7378,100 (10,00,00)                                       | 000                   |                       |          | (ma )        | %RSD     | %HSD         |
|        |             | 8/2/1               | (AO) 10' 10' 10' 10' 10' 10' 10' 10' 10' 10'              | 0.140                 | 0.178                 | 0.0      | 0.84         | 12.61    | 018          |
| $\int$ |             | 00/11/              | 2,3,7,8-TCDD (13C-2,3,7,8-TCDD)                           | 5.63                  | 0,913                 | 083      | noo          | 102      | 10 3         |
|        |             |                     | 1,2,3,6,7,8-HxCDD ( <sup>13</sup> C-1,2,3,6,7,8-HxCDD)    | 1580                  | KXO                   | 187      | 1x0          | 000%     | 1/1/         |
|        |             |                     | 1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)              | 1.8det                | July 0                | 880      | 000          | N. C.    | 1.21         |
|        |             |                     | OCDF (4°C-OCDD)                                           | たん!                   | パルン                   | 7.80     | 000          | 5.0      | 13:1         |
| ,      |             |                     |                                                           |                       |                       | 0        | 1            | 10:      | 16 3         |
| ~      |             |                     | 2,3,7,8-TCDF ( <sup>13</sup> C-2,3,7,8-TCDF)              |                       |                       |          |              |          |              |
|        |             |                     | 2,3,7,8-TCDD (13C-2,3,7,8-TCDD)                           |                       |                       |          |              |          |              |
|        |             |                     | 1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)                 |                       |                       |          |              |          |              |
|        |             |                     | 1,2,3,4,6,7,8-HpCDD ( <sup>13</sup> C-1,2,4,6,7,8,-HpCDD) |                       |                       |          |              |          |              |
|        |             |                     | OCDF (19c-OCDD)                                           |                       |                       |          |              |          |              |
| e      |             |                     | 23.78-TODE ( <sup>18</sup> 0-23.78-TODE)                  |                       |                       |          |              |          |              |
|        |             |                     |                                                           |                       |                       |          |              |          |              |
|        |             | 1                   | 2,3,7,8-TCDD (13C-2,3,7,8-TCDD)                           |                       |                       |          |              |          |              |
|        |             |                     | 1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)                 |                       |                       |          |              |          |              |
|        |             |                     | 1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)              |                       |                       |          |              |          |              |
|        |             |                     | OCDF (4c-OCDD)                                            |                       |                       |          |              |          |              |

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

· SDG #: SECCOMY LDC #: 1918842

### Routine Calibration Results Verification VALIDATION FINDINGS WORKSHEET

Page: Reviewer:

2nd Reviewer:\_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave. RRF - RRF)/ave. RRF RFF =  $(A_{\nu})(C_{\nu})/(A_{\nu})(C_{\nu})$ 

ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Where:

 $A_{\rm s}=$  Area of associated internal standard  $C_{\rm s}=$  Concentration of internal standard  $A_x = Area$  of compound,  $C_x = Concentration$  of compound,

| L |             |                     |                                                          |                          |             |              |          |              |
|---|-------------|---------------------|----------------------------------------------------------|--------------------------|-------------|--------------|----------|--------------|
|   |             |                     |                                                          |                          | Reported    | Recalculated | Reported | Recalculated |
| * | Standard ID | Calibration<br>Date | Compound (Reference Internal Standard)                   | Average RRF<br>(initial) | RRF<br>(CC) | RRF<br>(CC)  | Q%       | 0%           |
|   | SOM80NIJE   | 89/639              | 23.7,8-TCDF (3C.2,3,7,8-TCDF)                            | 0.798                    | 0.85        | 0.83         | 5.9      | & 2          |
|   |             | 20///               | 2,3,7,8-TCDD ( <sup>13</sup> C-2,3,7,8-TCDD)             | 0.913                    | 0.82        | 0. XX        | 5 01     | 10.3         |
|   |             | 1                   | 1,2,3,6,7,8-HxCDD ( <sup>13</sup> C-1,2,3,6,7,8-HxCDD)   | 1-8.0                    | 0.94        | 0.93         | 9.11     | 11:11        |
|   |             |                     | 1,2,3,4,6,7,8-HpCDD ( <sup>3</sup> C-1,2,4,6,7,8,-HpCDD) | 0.844                    | 0.80        | 0.89         | 5.2      |              |
|   |             |                     | OCDF (3C-OCDD)                                           | 1.72/                    | 1.60        | 1.64         | AR       | 7            |
| 2 |             |                     | 2,3,7,8-TCDF (13C-2,3,7,8-TCDF)                          |                          |             |              |          |              |
|   |             | ·                   | 2,3,7,8-TCDD (13C-2,3,7,8-TCDD)                          |                          |             |              |          |              |
|   |             |                     | 1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)                |                          |             |              |          |              |
|   |             |                     | 1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)             |                          |             |              |          |              |
|   |             |                     | OCDF (13C-OCDD)                                          |                          |             |              |          |              |
| က |             |                     | 2,3,7,8-TCDF (13C-2,3,7,8-TCDF)                          |                          |             |              |          |              |
|   |             | <u></u>             | 2,3,7,8-TCDD (1°C-2,3,7,8-TCDD)                          |                          |             |              |          |              |
|   |             |                     | 1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)                |                          |             |              |          |              |
|   |             | ·                   | 1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)             |                          |             |              |          |              |
|   |             |                     | OCDF (13C-OCDD)                                          |                          |             |              |          |              |

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 1918842 SDG #: 26 COVE

## Laboratory Control Sample Results Verification VALIDATION FINDINGS WORKSHEET

Page: 2nd Reviewer: Reviewer:

METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 \* SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: \$17159

RPD = I LCS - LCSD I \* 2/(LCS + LCSD)

|                     | ďS   | ike            | Spiked S           | ample                       | รวา              | S       | I CSD            | SD.     | I/SD I   | CS/I CSD     |
|---------------------|------|----------------|--------------------|-----------------------------|------------------|---------|------------------|---------|----------|--------------|
| Compound            | ₽ ĝ  | Added<br>P9(4) | Concentration (PT) | tration                     | Percent Recovery | ecovery | Percent Recovery | ecovery | RPD      | ٥٠           |
|                     | 1.08 | I CSD          | SJI                | l CSD                       | Reported         | Recalc  | Reported         | Recalc. | Renorted | Recalculated |
| 2,3,7,8-TCDD        | 20.0 | NA             | 19.2               | $\mathcal{N}^{\mathcal{A}}$ | 36               | 96      |                  |         |          |              |
| 1,2,3,7,8-PeCDD     | 001  |                | 701,               |                             | 701              | 701     |                  |         |          |              |
| 1,2,3,4,7,8-HxCDD   | 1    |                | 90                 |                             | R                | 126     |                  |         |          |              |
| 1,2,3,4,7,8,9-HpCDF | 1    |                | 8.00               |                             | 16               | 16      |                  |         |          |              |
|                     | 300  | 1              | 438                | <u></u>                     | 6/               | 6/      |                  |         |          |              |
|                     |      |                |                    |                             |                  |         | -                |         |          |              |
|                     |      |                |                    |                             |                  |         |                  |         |          |              |
|                     |      |                |                    |                             |                  |         |                  |         |          |              |
|                     |      |                |                    |                             |                  |         |                  |         |          |              |
|                     |      |                |                    |                             |                  |         |                  |         |          |              |
|                     |      |                |                    |                             |                  |         |                  |         |          |              |
|                     |      |                |                    |                             |                  |         |                  |         |          |              |
|                     | ,    |                |                    |                             | 1                | 1       |                  |         |          | I            |

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

# lons Monitored for HRGC/HRMS Analysis of PCDDs/PCDFs

| Ion ID Elemental Composition                                                                                                                                                                                                                                     | Elemental Composition   |                                                             | Analyte    | Descriptor | Accurate Mass <sup>(s)</sup>                 | Ol nol                                  | Elemental Composition                                                                                                                                                                                       | Analyte                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------|------------|------------|----------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 2 C <sub>12</sub> H <sub>4</sub> **Cl <sub>4</sub> O<br>C <sub>12</sub> H <sub>4</sub> **Cl <sub>4</sub> **C10<br>'3C <sub>12</sub> H <sub>4</sub> **Cl <sub>4</sub> O<br>'3C <sub>12</sub> H <sub>4</sub> **Cl <sub>5</sub> **ClO                               |                         | 100T<br>100T<br>100T                                        | (S) (S)    | 4          | 407.7818<br>409.7788<br>417.8250<br>419.8220 | M M X X X X X X X X X X X X X X X X X X | C <sub>12</sub> H <sup>26</sup> Cl <sub>6</sub> 37ClO<br>C <sub>12</sub> H <sup>25</sup> Cl <sub>5</sub> 37Cl <sub>2</sub> O<br>13C <sub>12</sub> H <sup>25</sup> Cl <sub>7</sub> OClO                      | HPCDF<br>HPCDF<br>HPCDF (S)  |
| C <sub>12</sub> H, <sup>36</sup> C <sub>1</sub> O <sub>2</sub><br>C <sub>12</sub> H, <sup>36</sup> C <sub>1</sub> O <sub>2</sub><br>13C <sub>12</sub> H, <sup>36</sup> C <sub>1</sub> O <sub>2</sub>                                                             |                         | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100 | (S)        |            | 423.7767<br>425.7737<br>435.8169             | M M M + + + + + + + + + + + + + + + + + | C <sub>12</sub> H <sup>36</sup> Cl <sub>3</sub> 7ClO <sub>2</sub><br>C <sub>12</sub> H <sup>36</sup> Cl <sub>3</sub> 7ClO <sub>2</sub><br>C <sub>12</sub> H <sup>36</sup> Cl <sub>3</sub> 7ClO <sub>2</sub> | Нрсор<br>Нрсор<br>Нрсор (S)  |
| M+2 C <sub>12</sub> H <sub>4</sub> *Cl <sub>3</sub> *ClO <sub>2</sub> TCDD (S) M+2 C <sub>12</sub> H <sub>4</sub> *Cl <sub>5</sub> *ClO HxCDPE LOCK C <sub>9</sub> F <sub>13</sub> PFK                                                                           | 2                       | HXCDD<br>HXCDD<br>PFK                                       | <u>ெ</u> ப |            | 437.8140<br>479.7165<br>[430.9728]           | M M + 4<br>0 0 + 4<br>0 0 4 4           | 13C,2H <sup>35</sup> Cl <sub>2</sub> 37Cl <sub>2</sub> O<br>C,2H <sup>35</sup> Cl <sub>2</sub> 37Cl <sub>2</sub> O<br>C <sub>3</sub> F <sub>17</sub>                                                        | HPCDD (S)<br>NCDPE<br>PFK    |
| M+2 C <sub>12</sub> H <sub>3</sub> %Cl <sub>3</sub> 70lO PeCDF<br>M+4 C <sub>12</sub> H <sub>3</sub> %Cl <sub>3</sub> 70l <sub>2</sub> O PeCDF<br>M+2 13C <sub>1,7</sub> H <sub>3</sub> %Cl <sub>3</sub> 70ClO PeCDF                                             |                         | PecDF<br>PecDF                                              | Œ          | ις         | 441.7428<br>443.7399<br>457.7377             | ΣΣ<br>+ + -                             | C12**C15**C1C<br>C12**C16**C1C                                                                                                                                                                              | OCDF<br>OCDF                 |
| 10 C 12 4 20 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                              |                         | Pecde (                                                     |            |            | 459.7348<br>469.7780<br>471.7750             | Σ Σ Σ Σ Σ ;<br>+ + + + + ;<br>- 4       | C. aci, acio.                                                                                                                                                                                               | OCDD<br>OCDD (S)<br>OCDD (S) |
|                                                                                                                                                                                                                                                                  |                         | recup () PeCDD () HPCDPE                                    | (i) (ii)   |            | 513.6775<br>[422.9278]                       | M+4<br>COCK                             | C,2*C  <sub>2</sub> °C  <sub>2</sub> O<br>C,0 <sup>F</sup> 17                                                                                                                                               | DCDPE<br>PFK                 |
| M+2 C <sub>12</sub> H <sub>2</sub> **Cl <sub>3</sub> **ClO HxCDF<br>M+4 C <sub>12</sub> H <sub>2</sub> **Cl <sub>3</sub> **Cl <sub>2</sub> O HxCDF<br>M 13C H **ClO                                                                                              |                         | HXCDF                                                       |            |            |                                              |                                         |                                                                                                                                                                                                             |                              |
| 12,12,0%<br>10,24,30,00<br>10,24,30,30,00<br>10,24,30,30,00                                                                                                                                                                                                      |                         | HXODE<br>HXODE<br>S(S)                                      | ā 6        |            |                                              |                                         |                                                                                                                                                                                                             |                              |
| 19C <sub>12</sub> H <sub>2</sub> 35Cl <sub>3</sub> 7ClO <sub>2</sub> HXCDD<br>19C <sub>12</sub> H <sub>2</sub> 35Cl <sub>3</sub> 7Cl <sub>2</sub> O <sub>2</sub> HXCDD<br>C <sub>12</sub> H <sub>2</sub> 35Cl <sub>3</sub> 7Cl <sub>2</sub> O <sub>2</sub> OCDPE | HXCDD<br>HXCDD<br>OCDPE | HXCDD (HXCDD (OCDPE                                         | (S) (S)    |            |                                              |                                         |                                                                                                                                                                                                             |                              |
| LOCK C <sub>0</sub> F <sub>1</sub> ,                                                                                                                                                                                                                             |                         | PFK                                                         |            |            |                                              |                                         |                                                                                                                                                                                                             |                              |

(a) The following nuclidic masses were used:

H = 1.007825 C = 12.000000 <sup>13</sup>C = 13.003355 F = 18.9984

O = 15.994915 $^{36}CI = 34.968853$  $^{37}CI = 36.965903$ 

S = internal/recovery standard

LDC #: 1918847 SDG #: <u>See COV EN</u>

### **VALIDATION FINDINGS WORKSHEET**

Sample Calculation Verification

| Page:         | of |
|---------------|----|
| Reviewer:     | 9  |
| 2nd reviewer: |    |

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

| (Y)        | N | N/A<br>N/A |  |
|------------|---|------------|--|
| / <b>/</b> | N | N/A        |  |

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

| Conce           | ntration | $a = \frac{(A_s)(I_s)(DF)}{(A_s)(RRF)(V_o)(\%S)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A <sub>x</sub>  | =        | Area of the characteristic ion (EICP) for the compound to be measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A <sub>is</sub> | =        | Area of the characteristic ion (EICP) for the specific internal standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| l <sub>s</sub>  | =        | Amount of internal standard added in nanograms (ng)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| V <sub>o</sub>  | =        | Volume or weight of sample extract in milliliters (ml) or grams (g).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RRF             | =        | Relative Response Factor (average) from the initial calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Df              | ****     | Dilution Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0/0             |          | Danas and analysis and the state of the stat |

| Lample.     |   |    | 1  |   |
|-------------|---|----|----|---|
| Sample I.D. | a | _, | VD | : |
|             |   |    |    |   |
|             |   |    |    |   |
|             |   |    |    |   |

=

| # | Sample ID                             | Compound | Reported Concentration ( ) | Calculated<br>Concentration<br>( ) | Qualification |
|---|---------------------------------------|----------|----------------------------|------------------------------------|---------------|
|   | Sample ID                             | Compound |                            | <u> </u>                           |               |
|   |                                       |          |                            |                                    |               |
|   |                                       |          |                            |                                    |               |
|   |                                       |          |                            |                                    |               |
|   |                                       |          |                            |                                    |               |
|   |                                       |          |                            | <u> </u>                           |               |
|   |                                       |          |                            |                                    |               |
|   |                                       |          |                            |                                    |               |
|   |                                       |          |                            |                                    |               |
|   |                                       |          |                            |                                    |               |
|   |                                       |          |                            |                                    |               |
|   |                                       |          |                            |                                    |               |
|   |                                       |          |                            |                                    |               |
|   |                                       |          |                            |                                    |               |
|   |                                       |          |                            |                                    |               |
|   | · · · · · · · · · · · · · · · · · · · |          |                            |                                    |               |
|   |                                       |          |                            |                                    |               |
|   |                                       |          |                            |                                    | ,             |
|   |                                       |          |                            |                                    |               |
|   |                                       | ,        |                            |                                    |               |