

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

August 6, 2008

ERM 2525 Natomas Park Drive, Suite 350

Sacramento, CA 95833

ATTN: Ms. Maria Barajas-Albalawi

SUBJECT: BRC Tronox Parcel F, Data Validation

Dear Ms. Barajas-Albalawi

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on July 14, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 19099:

SDG#	<u>Fraction</u>
F8F050256, F8F110173	Volatiles, Semivolatiles, Chlorinated Pesticides, Polychlorinated Biphenyls, Metals, Wet Chemistry, Gasoline Range Organics, Diesel Range Organics, Polynuclear Aromatic Hydrocarbons, Dioxins/Dibenzofurans

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

		S		Ш	\dashv	\downarrow							$oldsymbol{\perp}$		L	$oxed{oxed}$	L	L		L									L				L
		≥			\dashv	\dashv	\dashv	\dashv	\dashv	Н	┝	╁	-		╀	╁┈	+	-	H		-	-	-	_			-	_	┞	┞	<u> </u>	_	_
		S			\dashv		_			$\vdash\vdash$		╁	-	╀	╀	╁	+	╀		-	╀	╂	-	-	┝		-	_	-		╀		L
		≥	-		+	+	+	_	\dashv			┼	-	╀			+	╀		_	╀	-			H	_	-	_	┝	├	<u> </u>		H
		S			+	+	-	\dashv	_		<u> </u>	╀	╀	╀	┢	-	-	┢	_	<u> </u>	_	-	-		_	_	<u> </u>	<u> </u>	<u> </u>	L	┝	_	_
	m 2	S W	3	2	+	\dashv	\dashv	\dashv	_			H	╁	 	\vdash	╀	╀	┼		\vdash		-					┝	<u> </u>	-	_	┝		\vdash
	O&G (9071B 1664A)	×	0	0	+	\dashv	\dashv	\dashv	\dashv		-		┢	\vdash	-	┢	\vdash	-				-								_			_
		S	-	5 (+	+	\dashv	\dashv			┝	╁	┢	╁		-	┢		┢	├-	├-	\vdash				<u> </u>	-				-		_
	SO ₄		0	0	+	+	+	+	\dashv	\neg	 	╁	┢	+	-		+	├-	\vdash	╀		-		-	_				<u> </u>		\vdash		H
	·	S	3	2	+	╅		\dashv	\dashv	-	<u> </u>	-	┢	+	-	-		-	 	_		\vdash		\vdash	\vdash	_			_	-	\vdash		_
	NO. OOP.	×	0	0	+	+	\dashv	+	\dashv				<u> </u>	-			-		\vdash	\vdash	-	-				ļ	_				┢		-
	9 e 9	S	3	2	+	\dashv	\dashv	+	\dashv	_		_	ļ	 			┢	<u> </u>	\vdash	┢	_	<u> </u>			_		_	<u> </u>	┝			Н	-
Œ	Bromide Chloride Bromine Chlorine Chlorate Fluoride	×	0	0	+	+	\dashv	\dashv	\dashv	\dashv	_	╁	╁	\vdash	 	╁—	┢	\vdash	-	-	-	\vdash		<u> </u>				\vdash	├	_	-		<u> </u>
ce	de de T	S	3	5	+	\dagger	\dashv	+	\dashv	\dashv		-			 	-		\vdash	┢	\vdash	\vdash	\vdash		 	_	\vdash		\vdash		ļ		Н	
Par	romi	3	0	0	+	\dagger	\dashv	\dashv		\dashv		H	H	╁		H	-	<u> </u>			\vdash	-				<u> </u>			_	┢			_
×	S C	S	Н	5	+	\dagger	\dashv	T		\dashv		-	H	\vdash	├	┢		 								_				\vdash			
)uo	Dioxins (8290)	*	0	1	+	$^{+}$	\dashv	+		\dashv		╁	H		\vdash	╁		\vdash	-		\vdash		ļ				-		_	┞─			
F	1	S	3	2	十	1	\dashv	_	\dashv	\dashv		┢	H	\vdash	┢	╁		H	-											\vdash			
SE	PAHs (8310)	3	0	0	\dashv		1	\dashv	+	\dashv		\vdash	\vdash			<u> </u>			-		 								 			H	_
ERM-Sacramento / BRC Tronox Parcel F)		S	3	5	\top	\dagger	1	1		_			I^{-}																\vdash				
ramento /	DRO (8015)	3	0	0	+	\dashv	\dashv	\dagger	\dashv	\dashv				-	┢	\vdash	-														_	H	
me		S	3	5	_	\dagger	\top		+	\dashv			\vdash																			\dashv	_
Cra	GRO (8015)	3	0		+	+	+	+	\dashv	\dashv		_	-			 	\vdash														<u> </u>		
-Sa		S	3	2	\dashv	+	+	+	\dashv	_			-			-	┢					-									_	\vdash	_
R M	Metals (SW846)	3	0	7	_	+	+	1	1	\dashv					-				-													\dashv	_
	1	S		2	+	\top	\top		十	_		┢	 			 	<u> </u>		_														
LDC #19099	PCBs (8082)	3			1	+	\dagger		\dashv	\dashv			\vdash			\vdash					\vdash				-								
119		S	9	2	+	\dagger	+	\dashv	+	\dashv	_		H			\vdash	<u> </u>	\vdash			-	H										\dashv	
*	Pest. (8081A)	≥	7	 	+	$^{+}$	1	\top	\dashv	\dashv				-	_	\vdash	_					H										\dashv	
9	∢ છે	S	6	2	+	╅	\dashv	\dagger	\dashv	\dashv		┢	 											_									_
	SVOA (8270C)	≥	0		+	\dagger	+	\dagger	T	\dashv		\vdash	\vdash									Н		\dashv		_	\vdash	\dashv				+	
	A 8	S	က	9	+	\dagger	\dagger	\top	†	\dashv		\vdash	\vdash		\vdash							H			\dashv							_	
	VOA (8260B)	3	-	-	十	\dagger	\dagger	\top	\dagger	\dashv						ļ		П				H		\dashv								\dashv	_
	(3) DATE DUE		/04/08	/04/08			\dagger	1	1	\top																						1	
		}	8	8	+	+	+	+	+	\dashv					\vdash		_							_		_		_	_			\dashv	
	DATE REC'D		07/14/08 08/04/08	07/14/08 08/04/08																													
80/20	*SDG*	Water/Soil	F8F050256	F8F110173																													
	-DC	Matrix:	4	В	+		-	+	+	+													-	-	\dashv			-	-	\dashv		+	_

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel F

Collection Date:

June 10, 2008

LDC Report Date:

August 6, 2008

Matrix:

Soil/Water

Parameters:

Volatiles

Validation Level:

EPA Level III

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F110173

TSB-FJ-06-02-10'

TSB-FJ-06-02-20'

TSB-FJ-06-02-20'DL

TSB-FJ-06-02-30'

TSB-FR-02-02-10'

TSB-FR-02-02-10'-FD

TB-1 6/10/08

Introduction

This data review covers 6 soil samples and one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination (r^2) were greater than or equal to 0.990.

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
6/12/08	Ethanol	0.00148 (≥0.05)	All soil samples in SDG F8F110173	J (all detects) UJ (all non-detects)	А

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
6/19/08	lodomethane	67.71684	TB-1 6/10/08 F8F200000-125	J+ (all detects)	А

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
5/28/08	lodomethane	31.67513	TB-1 6/10/08 F8F200000-125	J+ (all detects)	А
5/28/08	2-Hexanone	25.04476	TB-1 6/10/08 F8F200000-125	J- (all detects) UJ (all non-detects)	А
5/23/08	Dichloromethane	29.90220	TSB-FJ-06-02-10' TSB-FJ-06-02-20' TSB-FJ-06-02-30' TSB-FR-02-02-10' TSB-FR-02-02-10'-FD F8F120000-446	J- (all detects) UJ (all non-detects)	А

All of the continuing calibration RRF values were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
F8F120000-446	6/12/08	Tetrachloroethene	1.5 ug/Kg	TSB-FJ-06-02-10' TSB-FJ-06-02-20' TSB-FJ-06-02-30' TSB-FR-02-02-10' TSB-FR-02-02-10'-FD

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
TSB-FJ-06-02-10'	Tetrachloroethene	1.6 ug/Kg	5.3B ug/Kg
TSB-FJ-06-02-20'	Tetrachioroethene	2.4 ug/Kg	6.4B ug/Kg
TSB-FJ-06-02-30'	Tetrachioroethene	1.7 ug/Kg	5.4U ug/Kg
TSB-FR-02-02-10'	Tetrachloroethene	1.2 ug/Kg	5.7U ug/Kg
TSB-FR-02-02-10'-FD	Tetrachloroethene	1.2 ug/Kg	5.4U ug/Kg

Sample TB-1 6/10/08 was identified as a trip blank. No volatile contaminants were found in this blank with the following exceptions:

Trip Blank ID	Sampling Date	Compound	Concentration	Associated Samples
TB-1 6/10/08	6/10/08	Chloroform	0.084 ug/L	All soil samples in SDG F8F110173

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Compound	Flag	A or P
F8F200000-125	Bromofluorobenzene	117 (79-115)	All TCL compounds	J+ (all detects)	Р

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were not within QC limits. Since there were no associated samples, no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Although the percent recoveries for some compounds and relative percent difference (RPD) for one compound in the LCS/LCSD were not within QC limits, the MS/MSD and LCS percent recoveries (%R) were within QC limits and no data were qualified.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits with the following exceptions:

Sample	Internal Standards	Area (Limits)	Compound	Flag	A or P
TSB-FJ-06-02-20'	1,4-Dichlorobenzene-d4		1,1,2,2-Tetrachloroethene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzne 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 2-Chlorotoluene 4-Chlorotoluene Bromobenzene Isopropylbenzene n-Butylbenzene n-Propylbenzene p-Cymene sec-Butylbenzene tert-Butylbenzene 1,3,5-Trichlorobenzene Nonanal Bromoform	J (all detects) UJ (all non-detects)	A

Sample	Internal Standards	Area (Limits)	Compound	Flag	A or P
TSB-FR-02-02-10'-FD	1,4-Dichlorobenzene-d4	168365 (187131-748522)	1,1,2,2-Tetrachloroethene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzne 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Chlorotoluene 4-Chlorotoluene Bromobenzene Isopropylbenzene n-Butylbenzene n-Propylbenzene p-Cymene sec-Butylbenzene tert-Butylbenzene 1,3,5-Trichlorobenzene Nonanal Bromoform	J (all detects) UJ (all non-detects)	Р

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
TSB-FJ-06-02-20'	Chloroform	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	A

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags have been summarized at the end of the report if data has been qualified.

XVI. Field Duplicates

Samples TSB-FR-02-02-10' and TSB-FR-02-02-10'-FD were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/Kg)	DDD	D.#		
Compound	TSB-FR-02-02-10'	TSB-FR-02-02-10'-FD	RPD (Limits)	Difference (Limits)	Flag	A or P
Tetrachloroethene	1.2	1.2	-	0 (≤5.7)	-	~

BRC Tronox Parcel F Volatiles - Data Qualification Summary - SDG F8F110173

SDG	Sample	Compound	Flag	A or P	Reason
F8F110173	TSB-FJ-06-02-10' TSB-FJ-06-02-20' TSB-FJ-06-02-20'DL TSB-FJ-06-02-30' TSB-FR-02-02-10' TSB-FR-02-02-10'-FD	Ethanol	J (all detects) UJ (all non-detects)	А	Initial calibration (RRF)
F8F110173	TB-1 6/10/08	lodomethane	J+ (all detects)	А	Continuing calibration (%D)
F8F110173	TB-1 6/10/08	lodomethane	J+ (all detects)	А	Continuing calibration (ICV %D)
F8F110173	TB-1 6/10/08	2-Hexanone	J- (all detects) UJ (all non-detects)	А	Continuing calibration (ICV %D)
F8F110173	TSB-FJ-06-02-10' TSB-FJ-06-02-20' TSB-FJ-06-02-30' TSB-FR-02-02-10' TSB-FR-02-02-10'-FD	Dichloromethane	J- (all detects) UJ (all non-detects)	А	Continuing calibration (ICV %D)
F8F110173	TSB-FJ-06-02-20'	1,1,2,2-Tetrachloroethene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzne 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Chlorotoluene Bromobenzene lsopropylbenzene n-Butylbenzene n-Propylbenzene p-Cymene sec-Butylbenzene tert-Butylbenzene 1,3,5-Trichlorobenzene Nonanal Bromoform	J (all detects) UJ (all non-detects)	A	Internal standards (area)

SDG	Sample	Compound	Flag	A or P	Reason
F8F110173	TSB-FR-02-02-10'-FD	1,1,2,2-Tetrachloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzne 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Chlorotoluene Bromobenzene lsopropylbenzene n-Butylbenzene n-Propylbenzene p-Cymene sec-Butylbenzene tert-Butylbenzene 1,3,5-Trichlorobenzene Nonanal Bromoform	J (all detects) UJ (all non-detects)	P	Internal standards (area)
F8F110173	TSB-FJ-06-02-20'	Chloroform	J (all detects)	А	Compound quantitation and CRQLs

BRC Tronox Parcel F Volatiles - Laboratory Blank Data Qualification Summary - SDG F8F110173

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P
F8F110173	TSB-FJ-06-02-10'	Tetrachloroethene	5.3B ug/Kg	Α
F8F110173	TSB-FJ-06-02-20'	Tetrachloroethene	6.4B ug/Kg	Α
F8F110173	TSB-FJ-06-02-30'	Tetrachloroethene	5.4U ug/Kg	Α
F8F110173	TSB-FR-02-02-10'	Tetrachloroethene	5.7U ug/Kg	А
F8F110173	TSB-FR-02-02-10'-FD	Tetrachloroethene	5.4U ug/Kg	А

BRC Tronox Parcel F Volatiles - Field Blank Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

SDG#	: 19099B1 VALIDATIOI : F8F110173 atory: Test America		PLETENESS WORKSHEET Level III Page: _/ot Reviewer:/ 2nd Reviewer:/
METH	OD: GC/MS Volatiles (EPA SW 846 Met	hod 8260E	2nd Reviewer:/
The sa	imples listed below were reviewed for ear ed validation findings worksheets.	ch of the f	ollowing validation areas. Validation findings are noted in
	Validation Area		Comments
l.	Technical holding times	Δ	Sampling dates: 4/10/08
II.	GC/MS Instrument performance check	A	
111.	Initial calibration	4	% PD (2 20.990)
IV.	Continuing calibration/ICV	SW	101 = 25
V.	Blanks	SW	
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	Ą	TSB-GJ-08-10' Rinsate-2
VIII.	Laboratory control samples	W ي.	LCSID
IX.	Regional Quality Assurance and Quality Control	N .	
X.	Internal standards	SW	
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	SW	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	Α	
XVI.	Field duplicates	SW	D= 5+6
XVII.	Field blanks	SW	TB=7
Note:	N = Not provided/applicable R = Rins	o compound sate eld blank	s detected D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: sou + water

	8011 7	· w	aces				
11	TSB-FJ-06-02-10'	11 /	F8F120000-446	21 ·	8164446	31	
2 /	TSB-FJ-06-02-20'	12 2	F8F180000-29/	2 2	817029/	32	
3 2	た・^~ TSB-FJ-06-02-20'DL	133	F8F200000-125	23	8172125	33	
4 /	TSB-FJ-06-02-30'	14 4	F8 F200000 - 36/	24	8/7236/	34	
5 ⁺ /	TSB-FR-02-02-10'	15		25		35	
6 [‡] /	TSB-FR-02-02-10'-FD	16		26		36	
73	TB-1 6/10/08	17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride**	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform*	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	000. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane*	VV. Isopropylbenzene	PPP, trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane*	CC. Toluene**	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene*	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform**	EE. Ethylbenzene**	YY, n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	22. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN.
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.
N. 1,1,1-Trichloroethane	HH. Vinyi acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	gapp.
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC, tert-Butylbenzene	www. Ethanol	2000.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-Isopropyl ether	RRRR.
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	EEE, sec-Butylbenzene	YYY. tert-Butano!	\$55S.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	222, tert-Butyl alcohol	1111.
S. Trichloroethene	MM. 1,2-Dibromo-3-chioropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	מחחת.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	vvvv.

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

•

VALIDATION FINDINGS WORKSHEET

Initial Calibration

Page: __of__ 2nd Reviewer: Reviewer:__

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Did the laboratory perform a 5 point calibration prior to sample analysis?

Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation? Did the initial calibration meet the acceptance criteria? N N/A N-N/A

Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF?

A/N/A

Standard ID				יייייייייייייייייייייייייייייייייייייי		
	ard ID	Compound	(Limit: <30.0%)	Limit: >0.05)	Associated Samples	Qualifications
1						
•						
, L	ICA LX — BRC	33		0.00148	All soils +	4/57/5
					F8 F12 0000 - 446,	
					1 pr -00000 819 891	

19099B) SDG#: LDC #:__

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: Lof Z 2nd Reviewer: Reviewer:_

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". MN N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?
Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?
Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF?

Y N N/A

Qualifications	J+/Adet	J-/43/A			J-/43/A			14/Adut								
Associated Samples	F8 F200000-12	7			F8 F120000-496,	1,2,4-66		F8 F2 00000-15	7							
Finding RRF (Limit: >0.05)																
Finding %D (Limit: <25.0%)	31.67513	25. 04476		2	29.90220			e 67.71684								
Compound	Todomethane	7		acchlerom than	- M			Indo mathank								
Standard ID	11009881			1	x + c v 2 2 8 8			Lea Lo317								
# Date	90/82/5/+	-			20169 -	-	•	80/61/9 +	-							

_	
-1/0-1 WE	Au cour
	*
E C	SDG

VALIDATION FINDINGS WORKSHEET

2nd Reviewer: Page: Reviewer:

> Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". METHOD! GC/MS VOA (EPA SW 846 Method 8260B) N N/A

Was a method blank associated with every sample in this SDG?

Was a method blank analyzed at least once every 12 hours for each matrix and concentration? Was there contamination in the method blanks? If yes, please see the qualifications below.

Ø Blank analysis date: Conc. units: Y N'A

Y N/A

1,2,4 Associated Samples:_

9

Compound	Blank ID			•	ู้ ชื่	Sample Identification	Identification		
	F8 F12000	,	-						į
	- 4%6	\	b	4	5	J			
Methylene chippiee AA	5.1	1.6 /5.38	2.4/6.40	1.7 1c4W	+16.40 1.715.44 1.2 15.74 1.2 15.44	1.2 /c. UM			
Acetone		,	,			12/2/			
		.							
CROL									
Blank analysis date:									
Cone. units:			Assic	Associated Samples:	;;				

Compound	Blank ID		Sample Identification	tion			
Methylene chloride							
Acetone							
		•	 				
					-		
CROL							
				_		•	

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

en con SDG#:

VALIDATION I INDINGO MONTONICE Field Blanks

// IN , ORD .. Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Y N/N/A Were field blanks identified in this SDG Y N/A Were target compounds detected in th	AS VOA (EPA SW 846 Method 8260B) Were field blanks identified in this SDG? Were target compounds detected in the t	othod 8260B) Id in this SDG1 etected in the	ን i field, blanks?					K
Blank units: (4)/L Associated sample units: (4) Field blank type: (circle one) Field Blank / Rinsate / Trip I	ociated samp	le units: 2	p // / Dilank / Other: TB	Associated Samples:		A1/801/5 (NO+>5x)	+ ON)	(×5 ×
Compound	Blank ID	Blank ID		Sam	Sample Identification	(
A CONTRACTOR OF THE SECOND SEC	7							
Methydene chlogide								
Acetena								
Chioroform	0.084							
CROL								
Blank units: Associated sample units: Associat	Associated sample units:	le units:	Block / Other	Associated Samples	noles:			
Compound	Blank ID	Blank ID		Sam	Sample Identification	u		
Table of the second sec	202							
Methylene chloride								
Acatona								

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

CROL

Chloroform

190998) SDG #: LDC #:

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page: / of / Reviewer:_ 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y (N/N/A) Were all surrogate %R within QC limits?

If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

Qualifications	J+/Pdt																				
nits)	(79-1/57)	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	
%Becovery (Limits)	117																				
Surrogate	8F8																				
Sample ID	F8F200000-175																				
Date																					
*																					
			!			<u>L</u>	 \					!							1		

QC Limits (Water) 88-110 86-115 80-120 86-118 QC Limits (Soil) 74-121 80-120 80-120 81-117 SMC2 (BFB) = Bromofluorobenzene SMC3 (DCE) = 1,2-Dichloroethane-d4 SMC4 (DFM) = Dibromofluoromethane SMC1 (TOL) = Toluene-d8

(2)240/E) LDC #: SDG #:

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

\ o / Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| N/A | N/A | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

Y/N/N/A

Was a MS/MSD analyzed every 20 samples of each matrix? Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

Qualifications						no grant												or state of the control of the contr	RPD (Water)	< 14%	≥ 4° ≥	V √ 1		NO.
Associated Samples						mo													QC Limits (Water)	61-145%	71-120%	76-127%	9,97,-9.	(5.100%)
RPD (Limits)	(39 20 1	()	()	· ·	12 (W) 12	()			()	()	()	()	()		()	•	()	RPD (Soll)	< 22%	< 24%	> 21%	\$ ** \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	der commé
MSD %R (Limits)				()	()	(()	()	()	()	()	()	()	((()	()	ts (Soil)	0,007		me.		
MS %R (Limits)	124 (19-123)		^ _	()	()	() 7~1	()	()	()	()	()	()	()	()	()	()	() ·	()	QC Limits (Soil)	%2.11-68				
Compound	$1 \setminus 7 \setminus 1$	FadonAllax	/ _			Todonathane													Compound					
di dsw/sw						KInsat -2	U/SW												Comp	1,1-Dichloroethene	Trichloroethene	Benzene	Toluene	Chlorobenzene
# Date	1446/					\\ \			:											Ï	Ś	>	<u>.</u>	DC.

SDG #: 12 contr

VALIDATION FINDINGS WORKSDEET Laboratory Control Samples (LCS)

rage: / or Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? Was a LCS required?

	2	?																						
Qualifications	, no oual les	10 on 100 01																						
Associated Samples	F81-00000 R-18-1	2																						
RPD (Limits)	1/2 (20)	()	()	()	(()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
LCSD %R (Limits)	()	(0hl-sh) /81	(_	(()	()	(()	()	()	()	()	()	()	()	(()	()	()	()		()	()
LCS %R (Limits)	295 (49-140)	166 (45-14D)	()	()	()	()	()	()	()	()	()	()	()	()		()	()	()	()	()	()		()	()
Compound	<u>/</u>	Inforthand 166 (
TCS/TCSD ID	Okon -X/2L18																							
# Date																								

19991	fee const
LDC #: 16	SDG #:

VALIDATION FINDINGS WORKSHEET Internal Standards

5	7	P
ָר מַלְתָּי.	Reviewer:	Reviewer:
		2nd

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Were all internal standard area counts within -50 to +100% of the associated calibration standard? Please gee qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

N/A

			 			,		 	 	 		 		 	
alifications	1/43/A			Q.											
Ö	1/43/1			1/43/											
		-													
RT (Limits)											1 +				
RT (L	egline			<u> </u>				,							
	1852														
	187 131- 748 522		•	1	·										
Area (Limits)				د (
Ar	898181	-		598891											
				/									,		
Internal Standard	Арсв			1											
Sample ID	ا ا			e											
Sa	ゅ														
Date															
#															

(BCM) = Bromochloromethane (DFB) = 1,4-Difluorobenzene (CBZ) = Chlorobenzene-d5

(FBZ) = Fluorobenzene

(PFB) = Pentafluorobenzene (4DCB) = 1,4-Dichlorobenzene-d4 (2DCB) = 1,2-Dichlorobenzene-d4

Volatile Internal Standards

Fluorobenzene	Chlorobenzene-d5	1,4-Dichlorobenzene-d4
1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane Acetone Benzene Bromochloromethane Bromodichloromethane Bromodichloromethane Carbon tetrachloride Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromomethane Dichlorodifluoromethane Methyleret-butyl ether 2-Butanone Trichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloropropene Trichlorofluoromethane Vinyl chloride	1,1,1,2-Tetrachloroethane 1,2-Dibremoethane 1,3-Dichloropropane 1-Chlorohexane Bromoform Chlorobenzene Dibromochloromethane Ethylbenzene m,p-Xylene o-Xylene Styrene Tetrachloroethene 1,1,2-Trichloroethane To Mene trans-1,3-Dichloropropene 2-Nitropropane 4-Methyl-2-pentanene 2-Hexanone Dimethyl disultide Kylenes (total)	1,1,2,2-Tetrachloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichloropenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 2-Chlorotoluene 2-Chlorotoluene Bromobenzene 4-Chlorotoluene Bromobenzene Hexachlorobutadiene Isopropylbenzene Nathyl isobutyl ketene n-Butylbenzene n-Propylbenzene Naphthalene p-Isopropyttoluene sec-Butylbenzene tert-Butylbenzene 1, 3, 5 - Trichlorobenzene Nonanal Bromfor

```
Todomethane
Acetonitrile
Yinyl Acetate
1.1.2-Trichloror1.1.2-Trifluoroethane
Ethanol
3,3-Dimethylpentane
2.3-
2.2-
2.4-
2.3-Trimethyl butane
3-Ethylpentane
2-Methyl hexane
3-
Heptane
```

1,2-Dichluro ethene (total)

LDC #: 19099 B/ SDG #: 14 COMP

VALIDATION FINDINGS WORKSHEET Compound Quantitation and CRQLs

Page: of A Reviewer: 7 2nd Reviewer: 8

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please fee qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A

z >

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

Qualifications	J/A dut									-
Associated Samples	7									
Finding	exceeded cal Range									
co mpul Sampta HD	¥									
Date										,
*										

Comments: See sample calculation verification worksheet for recalculations

LDC#: 19099B

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

$/\underline{\mathbf{Y}}$	N	N/A
Y	N	N/A

Were field duplicate pairs identified in this SDG?

Were target compounds detected in the field duplicate pairs?

/ vvere target compounds dete		uno:	
	Concentrat	tion (ug/kg	Di Isesence
Compound	5	6	Di perence
AA	1.2	/.2	0 4 5.7
,,,,			J - J./
	Concentrat	ion ()	
Compound			RPD
	Concentrati	ion (
Compound			RPD
		1	
	Concentrati		= ·
Compound			RPD

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel F

Collection Date:

June 10, 2008

LDC Report Date:

July 24, 2008

Matrix:

Soil

Parameters:

Semivolatiles

Validation Level:

EPA Level III

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F110173

Sample Identification

TSB-FJ-06-02-10'

TSB-FJ-06-02-20'

TSB-FJ-06-02-30'

TSB-FR-02-02-10'

TSB-FR-02-02-10'-FD

Introduction

This data review covers 5 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for Semivolatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination (r^2) were greater than or equal to 0.990.

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all semivolatile target compounds and system performance check compounds (SPCCs) were greater than or equal to 0.05 as required with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
6/18/08	Phthalic acid n-(Hydroxymethyl)phthalimide	0.01422 (≥0.05) 0.04408 (≥0.05)	All samples in SDG F8F110173	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

The percent difference (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration RRF values were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
6/18/08	Phthalic acid	0.01330 (≥0.05)	All samples in SDG F8F110173	J (all detects) UJ (all non-detects)	Α
	n-(Hydroxymethyl)phthalimide	0.04331 (≥0.05)		J (all detects) UJ (all non-detects)	

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks.

No field blanks were identified in this SDG.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Although the LCS percent recovery (%R) was not within QC limits for one compound, the MS/MSD percent recovery (%R) was within QC limits and no data were qualified.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags have been summarized at the end of the report if data has been qualified.

XVI. Field Duplicates

Samples TSB-FR-02-02-10' and TSB-FR-02-02-10'-FD were identified as field duplicates. No semivolatiles were detected in any of the samples.

BRC Tronox Parcel F Semivolatiles - Data Qualification Summary - SDG F8F110173

SDG	Sample	Compound	Flag	A or P	Reason
F8F110173	TSB-FJ-06-02-10' TSB-FJ-06-02-20' TSB-FJ-06-02-30' TSB-FR-02-02-10' TSB-FR-02-02-10'-FD	Phthalic acid n-(Hydroxymethyl)phthalimide	J (all detects) UJ (all non-detects)	A	Initial calibration (RRF)
F8F110173	TSB-FJ-06-02-10' TSB-FJ-06-02-20' TSB-FJ-06-02-30' TSB-FR-02-02-10' TSB-FR-02-02-10'-FD	Phthalic acid n-(Hydroxymethyl)phthalimide	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А	Continuing calibration (RRF)

BRC Tronox Parcel F Semivolatiles - Laboratory Blank Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

BRC Tronox Parcel F Semivolatiles - Field Blank Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

SDG Labo	#:19099B2 #:F8F110173 ratory:_ <u>Test America</u> HOD: GC/MS Semivolati				Leve	el III	ESS I	WORKSH	EET	2nd	Date: 7/a 3/ Page: 1/of 1/ Reviewer: 7/ Reviewer: 7/
	samples listed below wer ned validation findings w	orksh	eets.	ch of the fo	ollow	ring va	alidatio	on areas. Va	lidation find	dings are	e noted in
	Validation	Area							omments		
I.	Technical holding times			<u> </u>	Sam	pling d	ates:	6/10/6	28		
11.	GC/MS Instrument perform	ance c	heck	<u> </u>		s 7	n d D	. 12	20.99	21 ()	
.	Initial calibration		· · · · · · · · · · · · · · · · · · ·	SW		<u> </u>	psD,	<u> </u>	20-1	10	
IV.	Continuing calibration/ICV			<u>الای</u> الا	1	CV	<u> </u>	<u> </u>			
V.	Blanks			\ \(\lambda\)							
VI.	Surrogate spikes	!: 4 -									
VII.	Matrix spike/Matrix spike du		:S	SW		LCS					
VIII.	Laboratory control samples		Viality Control								
IX.	Regional Quality Assurance Internal standards	and C	tuality Control	A							
X		tion		N							
XI. XII.	Target compound identification/CR			N				 			
XIII.			TICe)	N							
		Junus (1103)								
XIV.	System performance			N				· · · · · · · · · · · · · · · · · · ·			
XV.	Overall assessment of data			Δ							
XVI.	Field duplicates			ND	J	> -	4+	-5			
XVII	. Field blanks			₩							
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	Э	R = Rin	o compounds sate eld blank	s dete	cted		D = Duplicate TB = Trip blank EB = Equipmen			
/alida	red Samples:										
1	TSB-FJ-06-02-10'	11	F81=16	0000-4	139	21	8/4	68439	31		
1 2	TSB-FJ-06-02-20'	12				22			32		
3	TSB-FJ-06-02-30'	13				23			33		
			•						1	1	

2	TSB-FJ-06-02-20'	12	2	22	32	
3	TSB-FJ-06-02-30'	13	2	23	33	
4	TSB-FR-02-02-10'	14	2	24	34	
5	TSB-FR-02-02-10'-FD	15	2	25	35	
6		16	2	26	36	
7		17	2	27	37	
8		18	2	28	38	
9		19	2	29	39	
10		20	3	30	40	

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

A. Phenol**	P. Bis(2-chloroethoxy)methane	EE. 2,6-Dinitrotoluene	TT. Pentachlorophenol**	III. Benzo(a)pyrene**
B. Bis (2-chloroethyl) ether	Q. 2,4-Dichlorophenol**	FF. 3-Nitroaniline	UU. Phenanthrene	JJJ. Indeno(1,2,3-cd)pyrene
C. 2-Chlorophenol	R. 1,2,4-Trichlorobenzene	GG. Acenaphthene**	VV. Anthracene	KKK. Dibenz(a,h)anthracene
D. 1,3-Dichlorobenzene	S. Naphthalene	HH. 2,4-Dinitrophenol*	WW. Carbazole	LLL. Benzolg,h,i)pervlene
E. 1,4-Dichlorobenzene**	T. 4-Chloroaniline	II. 4-Nitrophenol*	XX. Di-n-butylphthalate	MMM. Bis(2-Chloroisopropyl)ether
F. 1,2-Dichlorobenzene	U. Hexachlorobutadiene**	JJ. Dibenzofuran	YY. Fluoranthene**	NNN. Aniline
G. 2-Methylphenol	V. 4-Chloro-3-methylphenol**	KK. 2,4-Dinitrotoluene	ZZ. Pyrene	OOO. N-Nitrosodimethylamine
H. 2,2'-Oxybis(1-chloropropane)	W. 2-Methylnaphthalene	LL. Diethylphthalate	AAA. Butylbenzylphthalate	PPP. Benzoic Acid
I. 4-Methylphenoi	X. Hexachlorocyclopentadiene*	MM. 4-Chlorophenyl-phenyl ether	BBB. 3,3'-Dichlorobenzidine	QQQ. Benzyl alcohol
J. N-Nitroso-di-n-propylamine*	Y. 2,4,6-Trichlorophenol**	NN. Fluorene	CCC. Benzo(a)anthracene	RRR. Pyridine
K. Hexachloroethane	Z. 2,4,5-Trichlorophenol	00. 4-Nitroaniline	DDD. Chrysene	SSS. Benzidine
L. Nitrobenzene	AA. 2-Chloronaphthalene	PP. 4,6-Dinitro-2-methylphenol	EEE. Bis(2-ethylhexyl)phthalate	TTT.
M. Isophorone	BB. 2-Nitroaniline	QQ. N-Nitrosodiphenylamine (1)**	FFF. Di-n-octylphthalate**	nnn
N. 2-Nitrophenol**	CC. Dimethylphthalate	RR. 4-Bromophenyl-phenylether	GGG. Benzo(b)fluoranthene	VVV.
O. 2,4-Dimethylphenol	DD. Acenaphthylene	SS. Hexachlorobenzene	HHH. Benzo(k)fluoranthene	www.

Notes: * = System performance check compound (SPCC) for RRF; ** = Calibration check compound (CCC) for %RSD.

LDC #: <u>19099B3a</u> SDG #: <u>F8F110173</u>	VALIDATION COMPLETENESS WORKSHEET Level III	Date: 7/23/08
Laboratory: Test America		Page: <u> /</u> of <u> / </u>
METHOD OCCUPATION		2nd Reviewer: 7a

METHOD: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	Δ	Sampling dates: 60008
11.	GC/ECD Instrument Performance Check	Δ	
111.	Initial calibration	Δ	
IV.	Continuing calibration/ICV	A	1CV = 15
V.	Blanks		
VI.	Surrogate spikes	Δ	
VII.	Matrix spike/Matrix spike duplicates	A	TSB-GJ-08-10
VIII.	Laboratory control samples	Ą	د ح
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	N	
XII.	Compound quantitation and reported CRQLs	N	
XIII.	Overall assessment of data	Δ	
XIV.	Field duplicates	NP	D = 4+5
XV.	Field blanks	N	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

D = Duplicate TB = Trip blank
EB = Equipment blank

FB = Field blank

Validated Samples:

	SOIL						
1_	TSB-FJ-06-02-10'	11	F8F160000-164	21	8168164	31	6/14
2	TSB-FJ-06-02-20'	12	•	22		32	·
3	TSB-FJ-06-02-30'	13		23		33	
4	TSB-FR-02-02-10'	14		24		34	
5	TSB-FR-02-02-10'-FD	15		25		35	
6		16		26		36	
7		17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

1866061	se comes
LDC #:	SDG #:

VALIDATION FINDINGS WORKSHEET

Reviewer: 2nd Reviewer:

Initial Calibration

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". METHOD (GC/MS BNA (EPA SW 846 Method 8270)

Did the laboratory conduct an acceptable 5 point calibration prior to sample analysis?

AN N/A N/A N/N/A/N/A

N N

Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF?

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?_ Did the initial calibration meet the acceptance criteria?

	71				 , -	 	 	 	 	 	. تعنونند	 	 		 	 	
Qualifications	1/41/4																
Associated Samples	1/07/1V	7															
Finding RRF (Limit: ≥0.05)	0.01422	8ahho.o															
Finding %RSD (Limit: <30.0%)		Ph													•		
Compound	Phthalic Aud	N- (Hydroxymethy)	ph thatimide	J													
ırd ID	JICAL SPEC																
Date	99/81/7																
) *																	

1909967 LDC #: SDG#:

Y N/A N N N/A

VALIDATION FINDINGS WORKSHEET

Continuing Calibration

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

2nd Reviewer:

Page:__ Reviewer:

> Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument? Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF ?

Cole Standard ID Compound Finding %0 Finding %0 Compound Finding %0 Compound Comp		T	T	T	Т	T	T	T	T	Т	T	Т	T	T	T	1	T	T	Т	T	T	T	T	T	$\overline{}$	T	_	
Date Standard ID Compound Finding %D Finding RRF C//2/CD J.C.A.L.S./3 Third. 26.0% Umit: 26.0% C//2/CD J.C.A.L.S./3 Third. 26.0% Umit: 26.0% Umit: 26.0% C//2/CD J.C.A.L.S./3 Third. 26.0% Umit: 26.0% Umit: 26.0% Umit: 26.0% C//2/CD J.C.A.L.S./3 Third. 26.0% Umit: 26.0% Umit: 26.0% C//2/CD J.C.A.L.S./3 Third. 26.0% Umit: 26.0%	e de literation C	141 M																										
Compound (Limit: 25.0%)	Associated Samples	A(1 + B/K	/																									
Late Standard ID Compound Late 1977 Th Hraft P.C. Action Microscopies of the florical of the	Finding RRF (Limit: >0.05)	0.0/330	0.0433/																									
Date Standard ID 6/18/00 J 0.44 L 5/97	Finding %D (Limit: <25.0%)		(/																									
Date Standard ID 6/18/00 J 0.44 L 5/97	Compound	Phthalic Acid	M(Hydroxy methy	phthallmid	,																							
╼╫╌┼╌╁╌╂╼╂╼╂╼╂╼╂╼┼╾┼╾┼╾┼╾┼┼╢╌╌┼╌┼╌┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	Standard ID																											
*	Date	90/81/9																								·		
	#																											

VALIDATION FINDINGS WORKSHEET

Laboratory Control Samples (LCS)

Reviewer:

Page:

SDG #: 44 COND

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

حسنسه	7.																								
Qualifications	115M July 01																								
Associated Samples	A11 + B1K																								
RPD (Limits)	())	()	()	()))	()	()	())	(()	()	()	(()	()	()	(()	()
LCSD %R (Limits))	(()	()	()	()	(()		(((()	(()	()	()	((()		()
LCS %R (Limits)	(06-15) 61	()	(()	()	()	()	()	()	()	()	()	(()	()	()	()	()	()	()	()	()	()	()	()
Compound	HH																								
TCS/TCSD ID	507-6848918																								
Date																									
*																									

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel F

Collection Date:

June 10, 2008

LDC Report Date:

August 6, 2008

Matrix:

Soil

Parameters:

Chlorinated Pesticides

Validation Level:

EPA Level III

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F110173

Sample Identification

TSB-FJ-06-02-10'

TSB-FJ-06-02-20'

TSB-FJ-06-02-30'

TSB-FR-02-02-10'

TSB-FR-02-02-10'-FD

Introduction

This data review covers 5 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8081A for Chlorinated Pesticides.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of single and multicomponent compounds was performed for the primary (quantitation) column and confirmation column as required by this method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 15.0% QC limits.

The percent differences (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No chlorinated pesticide contaminants were found in the method blanks.

No field blanks were identified in this SDG.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

XI. Target Compound Identification

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and Reported CRQLs

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples TSB-FR-02-02-10' and TSB-FR-02-02-10'-FD were identified as field duplicates. No chlorinated pesticides were detected in any of the samples.

BRC Tronox Parcel F
Chlorinated Pesticides - Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

BRC Tronox Parcel F
Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG
F8F110173

No Sample Data Qualified in this SDG

BRC Tronox Parcel F Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

LDC #: 19099B3a	VALIDATION COMPLETENESS WORKSHEET	Da
SDG #:F8F110173	Level III	Pag
Laboratory: Test America		Review
		2nd Review

METHOD: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>l.</u>	Technical holding times	4	Sampling dates: 6)10 09
11.	GC/ECD Instrument Performance Check	Δ	,
III .	Initial calibration	Δ	
IV.	Continuing calibration/ICV	Α	1CV = 15
V	Blanks	A	
VI.	Surrogate spikes	Λ	
VII.	Matrix spike/Matrix spike duplicates	Z	
VIII.	Laboratory control samples	A	LCS
iX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	N	
XII.	Compound quantitation and reported CRQLs	N	
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	NO	D = 4+5
XV.	Field blanks	N	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

	SOIL						
1	TSB-FJ-06-02-10'	11	F8F160000-164	21	8168164	31	
2	TSB-FJ-06-02-20'	12		22		32	
3	TSB-FJ-06-02-30'	13		23		33	
- 4	TSB-FR-02-02-10'	14		24		34	
<u>5</u>	TSB-FR-02-02-10'-FD	15		25		35	
6		16		26		36	
7		17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel F

Collection Date:

June 10, 2008

LDC Report Date:

July 24, 2008

Matrix:

Soil

Parameters:

Polychlorinated Biphenyls

Validation Level:

EPA Level III

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F110173

Sample Identification

TSB-FJ-06-02-10'

TSB-FJ-06-02-20'

TSB-FJ-06-02-30'

TSB-FR-02-02-10'

TSB-FR-02-02-10'-FD

Introduction

This data review covers 5 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8082 for Polychlorinated Biphenyls.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of multicomponent compounds was performed for the primary (quantitation) column as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 15.0% QC limits.

The percent differences (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated biphenyl contaminants were found in the method blanks.

No field blanks were identified in this SDG.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

XI. Target Compound Identification

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and Reported CRQLs

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples TSB-FR-02-02-10' and TSB-FR-02-02-10'-FD were identified as field duplicates. No polychlorinated biphenyls were detected in any of the samples.

BRC Tronox Parcel F
Polychlorinated Biphenyls - Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

BRC Tronox Parcel F
Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG
F8F110173

No Sample Data Qualified in this SDG

BRC Tronox Parcel F
Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG
F8F110173

No Sample Data Qualified in this SDG

LDC #: 19099B3b VALIDATION COMPLETENESS WORKSHEET SDG #: F8F110173 Level III Laboratory: Test America

METHOD: GC Polychlorinated Biphenyls (EPA SW 846 Method 8082)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	Δ	Sampling dates: 6/10/08
II.	GC/ECD Instrument Performance Check	<u> </u>	
III.	Initial calibration	Δ	
IV.	Continuing calibration/ICV	A	1c1 = 15
V.	Blanks	A	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	A	75B-GJ-08-10'
VIII.	Laboratory control samples	A	LCS
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	N	
XII.	Compound quantitation and reported CRQLs	N	
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	ND	D=4+5
XV.	Field blanks	N	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

SOIL

	3016						
1	TSB-FJ-06-02-10'	11	F8F160000-162	21	8/68/62	31	
<u> </u>	TSB-FJ-06-02-20'	12		22		32	
<u>-</u> 3	TSB-FJ-06-02-30'	13		23		33	
4	TSB-FR-02-02-10'	14		24		34	
5	TSB-FR-02-02-10'-FD	15		25		35	
6		16		26		36	
7		17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel F

Collection Date:

June 10, 2008

LDC Report Date:

July 24, 2008

Matrix:

Soil

Parameters:

Metals

Validation Level:

EPA Level III

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F110173

Sample Identification

TSB-FJ-06-02-10'

TSB-FJ-06-02-20'

TSB-FJ-06-02-30'

TSB-FR-02-02-10'

TSB-FR-02-02-10'-FD

TSB-FJ-06-02-10'MS

TSB-FJ-06-02-10'MSD

Introduction

This data review covers 7 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Methods 6010B, 6020, and 7000 for Metals. The metals analyzed were Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Lithium, Magnesium, Manganese, Molybdenum, Mercury, Nickel, Niobium, Palladium, Phosphorus, Platinum, Potassium, Selenium, Silicon, Silver, Sodium, Strontium, Sulfur, Thallium, Tin, Titanium, Tungsten, Uranium, Vanadium, Zinc, and Zirconium.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Iron	12.1 mg/Kg	All samples in SDG F8F110173
ICB/CCB	Antimony Thallium Tungsten Vanadium	1.3 ug/L 1.1 ug/L 1.4 ug/L 2.7 ug/L	All samples in SDG F8F110173

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
TSB-FJ-06-02-10'	Tungsten	0.56 mg/Kg	1.1U mg/Kg
TSB-FJ-06-02-20'	Thallium	0.57 mg/Kg	0.64U mg/Kg
TSB-FR-02-02-10'-FD	Tungsten	0.60 mg/Kg	1.1U mg/Kg

No field blanks were identified in this SDG.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
TSB-FJ-06-02-10'MS/MSD (All samples in SDG F8F110173)	Antimony Barium Copper Magnesium Niobium Phosphorus Tungsten Zinc	50.0 (75-125) 61.1 (75-125) 73.2 (75-125) 43.4 (75-125) 38.8 (75-125) 43.6 (75-125) 71.5 (75-125)	50.0 (75-125) 61.0 (75-125) - 34.8 (75-125) 39.3 (75-125) 63.8 (75-125) 71.0 (75-125) 74.8 (75-125)		J- (all detects) UJ (all non-detects)	А

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Internal Standards (ICP-MS)

Raw data were not reviewed for this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met with the following exceptions:

Diluted Sample	Analyte	%D (Limits)	Associated Samples	Flag	A or P
TSB-FJ-06-02-10'L	Calcium Phosphorus Titanium	13.8 (≤10) 15.6 (≤10) 19.2 (≤10)	All samples in SDG F8F110173	J (all detects) J (all detects) J (all detects)	А

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

Samples TSB-FR-02-02-10' and TSB-FR-02-02-10'-FD were identified as field duplicates. No metals were detected in any of the samples with the following exceptions:

	Concentr	ation (mg/Kg)				
Analyte	TSB-FR-02-02-10'	TSB-FR-02-02-10'-FD	RPD (Limits)	Difference (Limits)	Flag	A or P
Aluminum	8620	8050	7 (≤50)	-	-	_
Arsenic	4.1	4.3	-	0.2 (≤2.3)	-	_
Barium	126	140	11 (≤50)	-	-	-
Beryllium	0.49	0.55	-	0.06 (≤0.23)	-	-
Cadmium	0.10	0.068	-	0.032 (≤0.11)	-	-
Calcium	60100	22200	92 (≤50)	-	J (all detects)	Α
Chromium	11.0	10.0	-	1 (≤2.3)	-	-
Cobalt	6.9	7.3	6 (≤50)	-	-	-
Copper	15.0	14.6	3 (≤50)	-	-	-
Iron	11000	12500	13 (≤50)	-	-	-
Lead	7.2	7.5	4 (≤50)	-	-	-

	Concentra	ation (mg/Kg)	RPD	Difference		
Analyte	TSB-FR-02-02-10'	TSB-FR-02-02-10'-FD	(Limits)	(Limits)	Flag	A or P
Magnesium	18900	12500	41 (≤50)	-	1	-
Manganese	301	290	4 (≤50)	-	J (all detects)	А
Molybdenum	0.39	0.31	-	0.08 (≤1.1)	-	-
Nickel	13.7	15.0	9 (≤50)	-	-	-
Palladium	0.64	0.41	-	0.23 (≤0.23)	-	-
Phosphorus	1200	1160	3 (≤50)	-	-	-
Potassium	1640	1540	6 (≤50)	-	-	-
Silicon	612	465	27 (≤50)	-	<u>-</u>	-
Silver	0.13	0.12	-	0.01 (≤0.46)	-	-
Sodium	860	911	6 (≤50)	-	-	-
Strontium	309	204	41 (≤50)	-	-	-
Tin	0.41	0.43	-	0.02 (≤0.46)	-	-
Titanium	556	530	5 (≤50)	-	-	-
Tungsten	0.57U	0.60	-	0.03 (≤1.1)	-	-
Uranium	2.1	1.5	33 (≤50)		-	-
Vanadium	30.0	38.5	25 (≤50)	-	-	-
Zinc	26.2	30.0	14 (≤50)	-	-	-
Zirconium	23.9	21.1	_	2.8 (≤22.8)	-	-
Lithium	16.7U	22.8	<u>-</u>	6.1 (≤114)	•	-
Sulfur	913	509	-	404 (≤1140)	-	-

	Concentr	ation (ug/Kg)	DDD	Diff		
Analyte	TSB-FR-02-02-10'	TSB-FR-02-02-10'-FD	RPD (Limits)	Difference (Limits)	Flag	A or P
Mercury	14.6	12.3U	-	2.3 (≤38.0)	-	-

BRC Tronox Parcel F Metals - Data Qualification Summary - SDG F8F110173

SDG	Sample	Analyte	Flag	A or P	Reason
F8F110173	TSB-FJ-06-02-10' TSB-FJ-06-02-20' TSB-FJ-06-02-30' TSB-FR-02-02-10' TSB-FR-02-02-10'-FD	Antimony Barium Copper Magnesium Niobium Phosphorus Tungsten Zinc	J- (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R)
F8F110173	TSB-FJ-06-02-10' TSB-FJ-06-02-20' TSB-FJ-06-02-30' TSB-FR-02-02-10' TSB-FR-02-02-10'-FD	Calcium Phosphorus Titanium	J (all detects) J (all detects) J (all detects)	A	ICP serial dilution (%D)
F8F110173	TSB-FR-02-02-10' TSB-FR-02-02-10'-FD	Calcium	J (all detects)	А	Field duplicates (RPD)

BRC Tronox Parcel F Metals - Laboratory Blank Data Qualification Summary - SDG F8F110173

SDG	Sample	Analyte	Modified Final Concentration	A or P
F8F110173	TSB-FJ-06-02-10'	Tungsten	1.1U mg/Kg	А
F8F110173	TSB-FJ-06-02-20'	Thallium	0.64U mg/Kg	А
F8F110173	TSB-FR-02-02-10'-FD	Tungsten	1.1U mg/Kg	А

BRC Tronox Parcel F Metals - Field Blank Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

	#:_F8F110173 atory:_Test America		_		Level III			Page: of Reviewer: 2nd Reviewer:
	HOD: Metals (EPA SW 8				•			
valida	amples listed below wer- tion findings worksheets	e revie	wed for ea	cn of the fo	Dilowing valid	ation areas. Va	ildation findin	igs are noted in attached
	Validation	Area				C	omments	
1.	Technical holding times			A	Sampling dates	s: 6/1º/08		
II.	Calibration			A				
111.	Blanks			SW				
IV.	ICP Interference Check Sai	mple (IC	S) Analysis	14				
V.	Matrix Spike Analysis			SW	3M5/1	15D		
VI.	Duplicate Sample Analysis			N				
VII.	Laboratory Control Samples	s (LCS)		A	Lcs			
VIII.	Internal Standard (ICP-MS)			N	u.t va	Whilips		
IX.	Furnace Atomic Absorption	QC		V	luit	Wilys		
Χ.	ICP Serial Dilution			SW				
XI.	Sample Result Verification			N				
XII.	Overall Assessment of Data	a		A				
XIII.	Field Duplicates			5W	145)		
XIV.	Field Blanks			N				
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	Э	R = Rin:	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipmen	k nt blank	
Validat	ed Samples:							
1	TSB-FJ-06-02-10'	11			21		31	
2	TSB-FJ-06-02-20'	12			22		32	
3	TSB-FJ-06-02-30'	13			23		33	
4	TSB-FR-02-02-10'	14			24		34	
5	TSB-FR-02-02-10'-FD	15			25		35	
6 7	TSB-FJ-06-02-10'MS	16			26		36	
7	TSB-FJ-06-02-10'MSD	17			27		37	
8	PB	18			28		38	
9		19			29		39	
10		20			30		40	
Notes		•						

VALIDATION COMPLETENESS WORKSHEET

LDC #: 19099B4

LDC#: 19099B4 SDG#: <u>See</u>cover

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1-5	505)	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si,
`	:	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si,
m6.7	40.1	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si,
	•	
1-5	١٥٥٢)	Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,
	1	Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,
mb.7	Soil	Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr
		Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,
		Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,
		Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,
		Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,
		Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,
		Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,
		Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,
		Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,
		Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Li, S, Zr,
	i -	Analysis Method
ICP		(i.s)
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, S).
ICP-MS		Nb, Pd, P, Pt, Sn, Sr, Ti, W, U, Zr,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN

Commonts:	Mercury by CVAA if performed		
Nb: Niobium.	Pd: Palladium, P: Phosphorus,	Pt: Platinum, S: Sulfur, W: Tungsten, U: Uranium, Zr: Zirconium	

SDG #: See Cover LDC #: 19099B4

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000) Sample Concentration units, unless otherwise noted: _mg/Kg

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Soil preparation factor applied: ₹ Associated Samples:

Reviewer: Page: of

2nd Reviewer:___

Sample Identification 0.60 / 1.1 2 0.57 / 0.64 2 0.56 / 1.1 Blank Action I imit 0.22 121 Maximum ICB/CCB^a (1/611) 1.3 4. 2.7 Maximum PB^a Maximum PB^a mg/Kg) 12.1 Analyte Sb æ ≥

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not defected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

19099 134 LDC #:

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: of Reviewer:__ 2nd Reviewer:_

METHOD: Trace metals (EPA SW 846 Method 6010/7000)

Y N NA

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| NA | N/A | Was a matrix spike analyzed for each matrix in this SDG?
| NA | N/A | Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor

of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD) < 20% for water samples and <35% for soil samples?

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

2b 50,0 50,0 61,0 61,0 61,0 61,0 61,0 61,0 61,0 6	*	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
Bo 61,1 61,0 Cu 73,2 Hy 43,4 34,8 Vbd 38.8 Vp 43.6 Ty.8 Ty.8 Ty.8 Ag. Fe, My, Si, Sy, Ti, Co, Sy, X			50,	95	o`a5	er es		41	J-/43/A
13,2 14,4 13,4 14,4 15,6 17,5 18,6 18,6 18,6 18,7				βo	1719	079			
43.4 V 43.4 Th 43.4 Th 7.5 Th 43.4 Th 43.4				2	13.2				
43.6 43.6 70 70 70 70 70 70 70 70 70 70				′³ H)	7.84	84.8			
43.6 75 75 76 77 78 78 78 78 78 78 78 78 78				p91/1	8-85	39.3			
7n 7h.5 7n 7h.5 1n				đ	43.6	8.69			
42, Fe, My 52, 54, T2, Ca. > 4X				ıΜ	りんち	074			
12, Fe, My, S2, SY, T2, Ca, > 4X				4 2		8-40			
AR, Fee, My, Si, Sy, Ti, Co.									
AR, Fee, Mu, Si, Sy, Ti, Co.									
48, Fee, My 52, 54, T. Ca.									
AR, Fee, Mu, Si, Sy, Ti, Co.									
AR, Fee, My, Si, Sy, Ti, Co.									
AR, Fee, My, Si, Sy, Ti, Co.									
AR, Fee, My, Si, Sy, Ti, Co.									
AR, Fee, Mu, Si, Sy, Ti, Co.									
AR, Fee, My, Si, Sy, Ti, Co.									
AR, Fee, My, Si, SY, Ti, Con		-							
AR, Fee, Mu, Si, SY, Ti, Co.									
18, Fe, Mu, Si, Sr, Ti, Ca									
AR, Fee, My, Si, Sy, Ti, Co.									
AR, Fee, My, Si, SY, Ti, Co.									
	Son	A K	Fe, My	- 1	ઉ	۲X			
				,	/				

SDG #: CAL COM 12040 HOOT

VALIDATION FINDINGS WORKSHEET ICP Serial Dilution

2nd Reviewer: Page: Reviewer:_

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

If analyte concentrations were > 50X the MDL (ICP) ,or >100X the MDL (ICP/MS), was a serial V Note ICP serial dilution percent differences (%D) <10%?

Were ICP serial dilution percent differences (%D) <10%?

Is there evidence of negative interference? If yes, professional judgement will be used to qualif

If analyte concentrations were > 50X the MDL (ICP) ,or >100X the MDL (ICP/MS), was a serial dilution analyzed? Were ICP serial dilution percent differences (%D) <10%?

Is there evidence of negative interference? If yes, professional judgement will be used to qualify the data.

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	Date	Diluted Sample ID	Matrix	Anaixte	%D (Limits)	Associated Samples	Qualifications
-			105	ક	13.8	(A)	4/tT I
				Р	15.6		
				\ <u></u>	19.2	Ţ	r
\Box							
ပိ	Comments:	7. V 1 1 × 10	745				
]						

LDC#:	19099B4	
SDG#:	See Cover	

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_	c	յ <u>է Հ</u>
Reviewer:		
2nd Reviewer:_	_(

METHOD: Metals (EPA Method 6010B/6020/7000)

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentration	on (mg/kg)	(≤50)	(mg/Kg)	(mg/Kg)	Qualifications
Compound	4	5	RPD	Difference	Limits	(Parent Only)
Aluminum	8620	8050	7			
Arsenic	4.1	4.3		0.2	(≤2.3)	
Barium	126	140	11			
Beryllium	0.49	0.55		0.06	(≤0.23)	
Cadmium	0.10	0.068		0.032	(≤0.11)	
Calcium	60100	22200	92			J det / A
Chromium	11.0	10.0		1	(≤2.3)	
Cobalt	6.9	7.3	6			
Copper	15.0	14.6	3			
Iron	11000	12500	13			
Lead	7.2	7.5	4			
Magnesium	18900	12500	41			
Manganese	301	290	4			
Molybdenum	0.39	0.31		0.08	(≤1.1)	
Nickel	13.7	15.0	9			
Palladium	0.64	0.41		0.23	(≤0.23)	
Phosphorus	1200	1160	3			
Potassium	1640	1540	6			
Silicon	612	465	27			

LDC#:	19099A4	
SDG#:	See Cover	

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: _____of ___ Reviewer: _____ 2nd Reviewer: _____

METHOD: Metals (EPA Method 6010B/6020/7000)

N NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentration (mg/kg)		(≤50)	(mg/Kg)	(mg/Kg)	Qualifications
Compound	4	5	RPD	Difference	Limits	(Parent Only)
Silver	0.13	0.12		0.01	(≤0.46)	
Sodium	860	911	6			
Strontium	309	204	41			
Tin	0.41	0.43		0.02	(≤0.46)	
Titanium	556	530	5			
Tungsten	0.57U	0.60		0.03	(≤1.1)	
Uranium	2.1	1.5	33			
Vanadium	30.0	38.5	25			
Zinc	26.2	30.0	14			
Zirconium	23.9	21.1		2.8	(≤22.8)	
Lithium	16.7U	22.8		6.1	(≤114)	
Sulfur	913	509		404	(≤1140)	
Mercury (ug/Kg)	14.6	12.3U		2.3	(≤38.0)	

V:\FIELD DUPLICATES\FD_inorganic\19099B4.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel F

Collection Date:

June 10, 2008

LDC Report Date:

July 24, 2008

Matrix:

Soil

Parameters:

Wet Chemistry

Validation Level:

EPA Level III

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F110173

Sample Identification

TSB-FJ-06-02-10'

TSB-FJ-06-02-20'

TSB-FJ-06-02-30'

TSB-FR-02-02-10'

TSB-FR-02-02-10'-FD

TSB-FJ-06-02-10'MS

TSB-FJ-06-02-10'DUP

Introduction

This data review covers 7 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 300.0 for Bromide, Bromine, Chlorate, Chloride, Chorine, Fluoride, Nitrate as Nitrogen, Nitrite as Nitrogen, Orthophosphate as Phosphorus, and Sulfate and EPA SW 846 Method 9071B for Oil & Grease.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration of each method were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Orthophosphate as P	1.1 mg/L	All samples in SDG F8F110173
CCB1	Orthophosphate as P	0.284 mg/L	TSB-FJ-06-02-10'
CCB2	Orthophosphate as P	0.237 mg/L	TSB-FR-02-02-10'-FD

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

No field blanks were identified in this SDG.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples TSB-FR-02-02-10' and TSB-FR-02-02-10'-FD were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concentration (mg/Kg)					
Analyte	TSB-FR-02-02-10'	TSB-FR-02-02-10'-FD	RPD (Limits)	Difference (Limits)	Flag	A or P
Chlorate	1.2	0.57	-	0.63 (≤5.7)	-	-
Chloride	22.6	11.0	69 (≤50)	-	J (all detects)	А
Chlorine	45.3	22.0	69 (≤50)	-	J (all detects)	А
Fluoride	3.0	1.8	-	1.2 (≤1.1)	J (all detects)	А
Nitrate as N	1.5	0.65	-	0.85 (≤0.21)	J (all detects)	А
Sulfate	305	175	54 (≤50)	-	J (all detects)	А

BRC Tronox Parcel F Wet Chemistry - Data Qualification Summary - SDG F8F110173

SDG	Sample	Analyte	Flag	A or P	Reason
F8F110177	TSB-FR-02-02-10' TSB-FR-02-02-10'-FD	Chloride Chlorine Sulfate	J (all detects) J (all detects) J (all detects)	А	Field duplicates (RPD)
F8F110177	TSB-FR-02-02-10' TSB-FR-02-02-10'-FD	Fluoride Nitrate as N	J (all detects) J (all detects)	А	Field duplicates (Difference)

BRC Tronox Parcel F
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

BRC Tronox Parcel F Wet Chemistry - Field Blank Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

LDC#: 19099B6 SDG#: See Cover

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: <u> </u>	of
Reviewer:_	
2nd Reviewer:	

Inorganics, Method: See Cover

MN NA PN NA

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentration (mg/Kg)					Qualification
Analyte	4	5	RPD (≤50)	Difference	Limits	(Parent only)
Chlorate	1.2	0.57		0.63	(≤5.7)	
Chloride	22.6	11.0	69			J det / A
Chlorine	45.3	22.0	69			J det / A
Fluoride	3.0	1.8		1.2	(≤1.1)	J det / A
Nitrate as N	1.5	0.65		0.85	(≤0.21)	J det / A
Sulfate	305	175	54			J det / A

V:\FIELD DUPLICATES\FD_inorganic\19099B6.wpd

SDG	#:19099B6 #:F8F110173 ratory:_Test America	_ VA 	LIDATIOI -		PLETEN Level III		DRKSHEET	J	Date: 7/2/28 Page:of Reviewer: 2nd Reviewer:
	HOD: (Analyte) <u>Bromide</u> od 300.0), O & G (EPA s				e, Chorine	e, Fluoride,	Nitrate, Nitrite	Ortho	phosphate-P, Sulfate (EPA
	samples listed below we ation findings worksheet		wed for eac	ch of the f	ollowing \	alidation a	areas. Validatio	n find	ings are noted in attached
	Validatio	n Area					Comm	ents	
I.	Technical holding times			A	Sampling	dates: 6/1	0108		
lla.	Initial calibration			A					
IIb.	Calibration verification			A					
111.	Blanks			ŚW					
IV	Matrix Spike/Matrix Spike	Duplicate	s	A	2 1	15/pup			
V	Duplicates			P		, • · ·			
VI.	Laboratory control sample	s		A	les				
VII.	Sample result verification			N					
VIII	Overall assessment of dat	а		A					
IX.	Field duplicates			5W.	(4	(5)			
x	Field blanks			W					
Note: Valida	A = Acceptable N = Not provided/applicab SW = See worksheet ted Samples:	le	R = Rins	o compound sate eld blank	s detected	ТВ	Duplicate = Trip blank = Equipment blar	ık	
1	TSB-FJ-06-02-10'	11			21			31	
2	TSB-FJ-06-02-20'	12			22			32	
3	TSB-FJ-06-02-30'	13			23			33	
4	TSB-FR-02-02-10'	14			24			34	
5	TSB-FR-02-02-10'-FD	15			25			35	
6	TSB-FJ-06-02-10'MS	16			26			36	
7	TSB-FJ-06-02-10'DUP	17			27			37	
8	MB	18			28			38	
9		19			29		······································	39	
10		20			30			40	
Notes	3:								

LDC #: 19099Bb SDG #: Sec Love

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: ___of ___ Reviewer: _____ 2nd reviewer: _____

All circled methods are applicable to each sample.

Sample ID	Matrix	Parameter
1-5	507	Br Bromine Cl Chlorine F NO, NO, SO, O-PO, Chlorate ClO, Q+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
m 6.9	70.0	Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
		Br Bromine Cl Chlorine F NO ₃ NO ₂ SO ₄ O-PO ₄ Chlorate ClO ₄ O+G/TPH
	,	

Comments:		
P.		
·	 	

LDC #: (4099 126 SDG #: Sel com

VALIDATION FINDINGS WORKSHEET Blanks

Page: __of___ Reviewer: ______

METHOD: Inorganics, Method & Com

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

\(\text{N}\) N/A Were all samples associated with a given method blank?
 \(\text{N}\) N/A Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

(F) CCBr: 5 Sample Identification Cel " Associated Samples: Blank Action Limit Maximum ICB/CCB 424.0 0,239 1/2/2 Conc. units: N-8/44 Blank ID <u>I</u> 7 8 had-0 d-had-o Analyte OFBAP E 25 3

 		 	 	 	 1

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the methoc blank concentration were qualified as not detected, "U".

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: BRC Tronox Parcel F

Collection Date: June 10, 2008

LDC Report Date: July 24, 2008

Matrix: Soil

Parameters: Gasoline Range Organics

Validation Level: EPA Level III

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): F8F110173

Sample Identification

TSB-FJ-06-02-10'

TSB-FJ-06-02-20'

TSB-FJ-06-02-30'

TSB-FR-02-02-10'

TSB-FR-02-02-10'-FD

TSB-FJ-06-02-10'MS

TSB-FJ-06-02-10'MSD

Introduction

This data review covers 7 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8015B for Gasoline Range Organics.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

Initial calibration of compounds was performed as required by the method.

The percent relative standard deviations (%RSD) of calibration factors for compounds were less than 20.0%.

b. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 15.0% QC limits.

The percent differences (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No gasoline range organic contaminants were found in the method blanks.

No field blanks were identified in this SDG.

IV. Accuracy and Precision Data

a. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

b. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits

c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Target Compound Identification

Raw data were not reviewed for this SDG.

VI. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

VII. System Performance

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags have been summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples TSB-FR-02-02-10' and TSB-FR-02-02-10'-FD were identified as field duplicates. No gasoline range organics were detected in any of the samples.

BRC Tronox Parcel F
Gasoline Range Organics - Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

BRC Tronox Parcel F Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

BRC Tronox Parcel F
Gasoline Range Organics - Field Blank Data Qualification Summary - SDG
F8F110173

No Sample Data Qualified in this SDG

.abora	: <u>19099B7</u> #: <u>F8F110173</u> atory: <u>Test America</u> I OD: GC Gasoline Range	_	LIDATION	L	_eve	111		VORKSH	EET	Date: 7/ Page:of_ Reviewer: 2nd Reviewer:
	amples listed below were tion findings worksheets.		wed for eac	ch of the fo	ollowi	ing va	lidatio	n areas. Va	lidation findi	ngs are noted in attache
	Validation	<u>Area</u>						<u>C</u>	omments	
1.	Technical holding times			Δ	Sam	oling da	ites:	6/10	108	
lla.	Initial calibration			Δ						
IIb.	Calibration verification/ICV	-		Δ		ICV	£	15		
III.	Blanks			Δ						
IVa.	Surrogate recovery			A						
IVb.	Matrix spike/Matrix spike du	plicate	s	A						
IVc.	Laboratory control samples			A	L	دے	10			
V.	Target compound identificat	tion		N						
VI.	Compound Quantitation and	J CRQI	_S	N						
VII.	System Performance			N						
VIII.	Overall assessment of data			Δ						
IX.	Field duplicates			ND	4	D -	4.	+ 5		
X.	Field blanks			N						
Note: √alidate	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:	eR=	= Rinsate	o compounds eld blank	s dete		= Trip I	D = Duplicate blank EB = Equipme		
î ·	TSB-FJ-06-02-10'	11	F8F1:	30000-2	267	21	81	65267	31	
- T	TSB-FJ-06-02-20'	12				22			32	
	TSB-FJ-06-02-30'	13				23			33	
	TSB-FR-02-02-10'	14				24			34	
	TSB-FR-02-02-10'-FD	15				25			35	
	TSB-FJ-06-02-10'MS	16				26			36	
	TSB-FJ-06-02-10'MSD	17				27			37	
		18				28			38	
9		19				29			39	

30

20

10

Notes:_

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel F

Collection Date:

June 10, 2008

LDC Report Date:

July 24, 2008

Matrix:

Soil

Parameters:

Diesel Range Organics

Validation Level:

EPA Level III

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F110173

Sample Identification

TSB-FJ-06-02-10'

TSB-FJ-06-02-20'

TSB-FJ-06-02-30'

TSB-FR-02-02-10'

TSB-FR-02-02-10'-FD

Introduction

This data review covers 5 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8015B for Diesel Range Organics.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

Initial calibration of compounds was performed as required by the method.

The percent relative standard deviations (%RSD) of calibration factors for compounds were less than 20.0%.

b. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 15.0% QC limits.

The percent differences (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No diesel range organic contaminants were found in the method blanks.

No field blanks were identified in this SDG.

IV. Accuracy and Precision Data

a. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

b. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

V. Target Compound Identification

Raw data were not reviewed for this SDG.

VI. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

VII. System Performance

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags have been summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples TSB-FR-02-02-10' and TSB-FR-02-02-10'-FD were identified as field duplicates. No diesel range organics were detected in any of the samples.

BRC Tronox Parcel F
Diesel Range Organics - Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

BRC Tronox Parcel F
Diesel Range Organics - Laboratory Blank Data Qualification Summary - SDG
F8F110173

No Sample Data Qualified in this SDG

BRC Tronox Parcel F
Diesel Range Organics - Field Blank Data Qualification Summary - SDG
F8F110173

No Sample Data Qualified in this SDG

SDG # Labora METH The sa		- -)rgani : revie	nics (EPA SV	L W846 Meth	Level thod 80	III 015B			Date:
	ion findings worksheets.				T				
	Validation /	<u>Area</u>			1		, ,,	mments	
<u>l.</u>	Technical holding times			A .	Sampli	ing da	ates: 6//	0/08	
IIa.	Initial calibration			Δ	 				
IIb.	Calibration verification/ICV			A	10	.V =	415		
III.	Blanks			<u> </u>	 				
IVa.	Surrogate recovery			Α	<u> </u>				
IVb.	Matrix spike/Matrix spike dup	licate	s	A	TSE	<u>B -</u>	GJ-08-10	1 TS	SB-CJ-09-0'
IVc.	Laboratory control samples			A		<u>C</u>			
<u>V.</u>	Target compound identification	on		N					
VI.	Compound Quantitation and	CRQI	∟S	N	ļ		***************************************		
VII.	System Performance			N	<u> </u>				
VIII.	Overall assessment of data			Α					
IX.	Field duplicates			ND	D	=	4+5		
X.	Field blanks			N					
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:		= Rinsate	o compounds eld blank	s detect		D = Duplicate B = Trip blank EB = Equipment	blank	
			P8F180	0000-3	12- :	a /	8170312	31	
			F8 1= 13			22 2	7	31	
- 2	TSB-FJ-06-02-20'	12	78. 7-	0000.0			0/604/		
	TSB-FJ-06-02-30'	13				23		33	
	TSB-FR-02-02-10'	14				24		34	
	TSB-FR-02-02-10'-FD	15				25		35	
6		16	<u> </u>			26		36	
7		17				27		37	

Notes:_

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel F

Collection Date:

June 10, 2008

LDC Report Date:

July 24, 2008

Matrix:

Soil

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

EPA Level III

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F110173

Sample Identification

TSB-FJ-06-02-10'

TSB-FJ-06-02-20'

TSB-FJ-06-02-30'

TSB-FR-02-02-10'

TSB-FR-02-02-10'-FD

Introduction

This data review covers 5 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8310 for Polynuclear Aromatic Hydrocarbons.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

Initial calibration of compounds was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

b. Calibration Verification

Calibration verification was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 15.0% QC limits.

The percent differences (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds with the following exceptions:

Date	Detector	Compound	%D	Associated Samples	Flag	A or P
6/4/08	Not specified	Benzo(k)fluoranthene	16.6	All samples in SDG F8F110173	J+ (all detects)	А

III. Blanks

Method blanks were reviewed for each matrix as applicable. No polynuclear aromatic hydrocarbon contaminants were found in the method blanks.

No field blanks were identified in this SDG.

IV. Accuracy and Precision Data

a. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

b. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

V. Target Compound Identification

Raw data were not reviewed for this SDG.

VI. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

VII. System Performance

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples TSB-FR-02-02-10' and TSB-FR-02-02-10'-FD were identified as field duplicates. No polynuclear aromatic hydrocarbons were detected in any of the samples.

BRC Tronox Parcel F Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG F8F110173

SDG	Sample	Compound	Flag	A or P	Reason
F8F110173	TSB-FJ-06-02-10' TSB-FJ-06-02-20' TSB-FJ-06-02-30' TSB-FR-02-02-10' TSB-FR-02-02-10'-FD	Benzo(k)fluoranthene	J+ (all detects)	А	Continuing calibration (ICV %D)

BRC Tronox Parcel F

Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

BRC Tronox Parcel F

Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

SDG : Labor	#: <u>19099B9</u> #: <u>F8F110173</u> atory: <u>Test America</u>			Le	vel III	ESS WORKSHE	ET	Date: 7/23/08/ Page: _/ of _ Reviewer:
METH	HOD: GC Polynuclear A	romati	c Hydrocart	oons (EPA S	W 846 I	Method 8310)		7
	amples listed below wer tion findings worksheets		ewed for ea	ch of the follo	owing v	alidation areas. Valid	dation find	dings are noted in attached
	T							1
	Validation	Area				<u>Co</u>	<u>mments</u>	
I.	Technical holding times			A s	ampling o	ates: 6/10/6	<u> </u>	
IIa.	Initial calibration		······································	A				
IIb.	Calibration verification/ICV			SW	101	=15		
111.	Blanks			Δ				
IVa.	Surrogate recovery			4				
IVb.	Matrix spike/Matrix spike de	uplicate	s	A	75 E	3-GJ-08-	<i>10'</i>	
IVc.	Laboratory control samples	<u> </u>		A	LCS)		
V.	Target compound identifica	ition		N				
VI.	Compound Quantitation an	d CRQI	Ls	N				
VII.	System Performance			N				
VIII.	Overall assessment of data	1		A				
IX.	Field duplicates			NP	D -	425		
Χ.	Field blanks			N				
Note:	A = Acceptable N = Not provided/applicabl SW = See worksheet	e	R = Rins	o compounds d sate eld blank	etected	D = Duplicate TB = Trip blank EB = Equipment	blank	
	ed Samples: &の/と							
1	TSB-FJ-06-02-10'	11	F8F160	0000-15	8 21	8 168158	31	
1 2 3	TSB-FJ-06-02-20'	12			22		32	
3	TSB-FJ-06-02-30'	13			23		33	
4	TSB-FR-02-02-10'	14			24		34	
5	TSB-FR-02-02-10'-FD	15			25		35	
6		16			26		36	
7		17			27		37	
8		18			28		38	
8 9		19			29		39	
10		20			30		40	

Notes:____

VALIDATION FINDINGS WORKSHEET

____GC___HPLC

8310	8330	8151	8141	8141(con't)	8021B
A. Acenaphthene	А. НМХ	A. 2,4-D	A. Dichlorvos	V. Fensulfothion	N Bonzaga V
B. Acenaphthylene	B. RDX	B. 2,4-DB	R Movimbos	W O W	1 '
C. Anthracene	C. 1,3,5-Trinitrobenzene	C. 2,4,5-T	C. Demeton-O	W. boistar	'
D. Benzo(a)anthracene	D. 1,3-Dinitrobenzene	D. 2.4.5-TP		A. Grin	
E. Benzo(a)pyrene	F Tetryl		D. Dellietoiro	r. Azinpnos-methyi	SSS. O-Xylene
	161101	E. Unoseo	E. Ethoprop	Z. Coumaphos	RRR. MP-Xylene
F. Benzo(b)fluoranthene	F. Nitrobenzene	F. Dichlorprop	F. Naled	AA. Parathion	GG. Total Xylene
G. Benzo(g,h,i)perylene	G. 2.4.6-Trinitrotoluene	G. Dicamba	G. Sulfotep	BB. Trichloronate	
H. Benzo(k)fluoranthene	H. 4-Amino-2,6-dinitrotoluene	H. Dalapon	H. Phorate	CC. Trichlorinate	
1. Chrysene	I. 2-Amino-4,6-dinitrotoluene	I. MCPP	I. Dimethoate	DD. Trifluralin	
J. Dibenz(a,h)anthracene	J. 2,4-Dinitrotolune	J. MCPA	J. Diazinon	EE. Def	
K. Fluoranthene	K. 2,6-Dinitrotoluene	K. Pentachlorophenol	K. Disulfoton	FF. Prowl	
L. Fluorene	L. 2-Nitrotoluene	L 2,4,5-TP (silvex)	L. Parathion-methyl	GG. Ethion	
M. Indeno(1,2,3-cd)pyrene	M. 3-Nitrotoluene	M. Silvex	M. Ronnel	HH. Tetrachlorvinphos	
N. Naphthalene	N. 4-Nitrotoluene		N. Malathion	II. Sulprofos	
O. Phenanthrene	o.		O. Chlorpyrifos		
P. Pyrene	a.		P. Fenthion		
Ö.	G		Q. Parathlon-ethyl		
ž			R. Trichloronate		
S,			S. Merphos		
			T. Stirofos		
			U. Tokuthlon		

Notes:

cmpd_list.wpd

LDC# 1909987 Ay com SDG #:

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: __of / Reviewer:__

2nd Reviewer:

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". CGC HPLC METHOD:

Did the continuing calibration standards meet the %D / RPD validation criteria of <15.0%?

evel JA Only

Y N N/A

Were the retention times for all calibrated compounds within their respective acceptance windows?

						7-	_		7	1	T	T	7		T	T	1	T	T	T	77	7
Qualifications	1+/Adt																					
Associated Samples	A11 + 1914																					
RT (limit)	((()			()	()	()	(((((((((
%D / RPD (Limit ≤ 15.0)	16.6																					
Compound	# 1																					
Detector/ Column	not specifie	0 /		•																		
Date Standard ID																	-					
Date	20/4/9	-																				
#	4																					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel F

Collection Date:

June 10, 2008

LDC Report Date:

July 23, 2008

Matrix:

Soil

Parameters:

Dioxins/Dibenzofurans

Validation Level:

EPA Level III

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F8F110173

Sample Identification

TSB-FJ-06-02-10'

TSB-FJ-06-02-20'

TSB-FJ-06-02-30'

TSB-FR-02-02-10'

TSB-FR-02-02-10'-FD

Introduction

This data review covers 5 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8290 for Polychlorinated Dioxins/Dibenzofurans.

This review follows USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks.

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
8170493LCS	1,2,3,7,8,9-HxCDD OCDD	137 (71-129) 154 (74-144)	TSB-FJ-06-02-20' 8170493MB	J+ (all detects) J+ (all detects)	P

VIII. Regional Quality Assurance and Quality Control

Not applicable.

IX. Internal Standards

All internal standard recoveries were within QC limits with the following exceptions:

Sample	Internal Standards	%R (Limits)	Compound	Flag	A or P
TSB-FJ-06-02-20'	¹³ C-1,2,3,4,6,7,8-HpCDD ¹³ C-OCDD ¹³ C-1,2,3,4,6,7,8-HpCDF	27 (40-135) 15 (40-135) 22 (40-135)	1,2,3,4,6,7,8-HpCDD OCDD OCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	J (all detects) UJ (all non-detects)	Р
TSB-FR-02-02-10'	¹³ C-1,2,3,6,7,8-HxCDD ¹³ C-1,2,3,4,6,7,8-HpCDD ¹³ C-OCDD ¹³ C-1,2,3,4,7,8-HxCDF ¹³ C-1,2,3,4,6,7,8-HpCDF	30 (40-135) 20 (40-135) 13 (40-135) 28 (40-135) 18 (40-135)	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD OCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF	J (all detects) UJ (all non-detects)	Р
8171606MB	¹³ C-1,2,3,4,7,8-HxCDF	38 (40-135)	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	J (all detects) UJ (all non-detects)	Р

X. Target Compound Identifications

Raw data were not reviewed for this SDG.

XI. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XII. System Performance

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of the report if data has been qualified.

XIV. Field Duplicates

Samples TSB-FR-02-02-10' and TSB-FR-02-02-10'-FD were identified as field duplicates. No polychlorinated dioxins/dibenzofurans were detected in any of the samples.

BRC Tronox Parcel F
Dioxins/Dibenzofurans - Data Qualification Summary - SDG F8F110173

SDG	Sample	Compound	Flag	A or P	Reason
F8F110173	TSB-FJ-06-02-20'	1,2,3,7,8,9-HxCDD OCDD	J+ (all detects) J+ (all detects)	Р	Laboratory control samples (%R)
F8F110173	TSB-FJ-06-02-20'	1,2,3,4,6,7,8-HpCDD OCDD OCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	J (all detects) UJ (all non-detects)	Р	Internal standards (%R)
F8F110173	TSB-FR-02-02-10'	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD OCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF	J (all detects) UJ (all non-detects)	Р	Internal standards (%R)

BRC Tronox Parcel F Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

BRC Tronox Parcel F Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG F8F110173

No Sample Data Qualified in this SDG

SDG#	:: 19099B21 #: F8F110173 atory: Test America	_ VA 	LIDATIO		PLETENES: Level III	S WORKSHEE	Т	Date: <u>7/19/م</u> Page: <u>ل</u> of <u>ا</u> Reviewer: بر
	IOD: HRGC/HRMS Dio	 xins/D	ibenzofuran	s (EPA S\	N 846 Method	i 8290)		2nd Reviewer:
	amples listed below wer tion findings worksheets		ewed for ead	ch of the f	ollowing valida	ation areas. Valida	tion findi	ngs are noted in attached
	Validation	ı Area				Com	ments	
1.	Technical holding times			4	Sampling dates:	6/10/08		
11.	GC/MS Instrument perform	nance cl	neck	À				
III.	Initial calibration			4				
IV.	Routine calibration/ICV			4				
V.	Blanks			<u>,</u>		······		
VI.	Matrix spike/Matrix spike d	luplicate	s	N	dunt &	rapid		
VII.	Laboratory control sample	s		SW	LCS			
VIII.	Regional quality assurance	e and qu	ality control	N				
IX.	Internal standards			SW				
Х.	Target compound identification	ations		N				
XI.	Compound quantitation an	d CRQL	.s	N				
XII.	System performance			N				
XIII.	Overall assessment of dat	а		A				
XIV.	Field duplicates			HD	D= 4+.	5		
XV.	Field blanks			N				
Note:	A = Acceptable N = Not provided/applicab SW = See worksheet	le	R = Rin:	o compound sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bl	ank	
	ed Samples: , Soul							
1 2	TSB-FJ-06-02-10'	11	8170493	SMB	21		31	
II . I	TSB-FJ-06-02-20'	12	8171606		22		32	
	TSB-FJ-06-02-30'	13 3	818446	IMB	23		33	
4 3	TSB-FR-02-02-10'	14	1 1		24		34	
5 ~	TSB-FR-02-02-10'-FD	15			25		35	
6		16			26		36	
7		17			27		37	
5 7 6 7 8 9 10		18			28		38	
9		19			29		39	
10		20			30		40	
Notes:								

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	a. ocdf	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:_

LDC #: 19099 B2 SDG #: 1801013

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

of of

Page:

Reviewer:_ 2nd Reviewer:_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Was a LCS required YN N/A Was a LCS analyzed YN N/A Were the LCS perce

Was a LCS required? Was a LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

			Ī	T	T			T	T	T	T	7	T	T	T	T	T		T	Т	T	7	T	- -	T	T	_
	Qualifications	TAIL A		*																							
	Associated Samples	2 8170492ME																									
	APD (LIMITS)	()	())	()))	()))	((· ·	()		()	<u> </u>	(
LCSD %B (1 imits)	(בוווווים)	<u></u>	()	()	()	()	()		()	<u> </u>	· ·	()						(()	· ·	()	()	<u> </u>	<u> </u>	()		
LCS %B (Limits)	1.0-1 1-1 1-01	77	(54 (76-147)		^)	()	()	()	()	(()	()	· ·	^ _	· ·	()	()		()	()	()	()	<u> </u>	<u> </u>	· ·	^	
Compound	4	U	3																								
Lab ID/Reference	102100	3/1047645																									
Date																											
*													1					T	\top	_	\parallel	\forall	\dashv				

LDC #: 19099821 SDG #: F8F110172

VALIDATION FINDINGS WORKSHEET Internal Standards

jo

Page:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Are all internal standard recoveries were within the 40-135% criteria?

Was the S/N ratio all internal standard peaks \geq 10?

*	Date	Lab ID/Reference	Internal Standard		% Recovery (Limit: 40-135%)	Qualifications
		٨	=‡	27	(<u>SEI-oh</u>)	3/47/P (F.X)
			-	7	()	
			9	2)	(> 0)
)	
					(
		-1	44.	R		(N-E X)
			‡	2)	.* * * *
				4)	
			Ų	م م)	(K-N X
			હ	81	()	Т
					()	
		8171606 MB	Φ	38		-
					()	
	*				()	
					()	
					()	
					()	
					()	
					()	
ĺ		Internal Standards	Check Standard Used		Recovery Standards	Check Standard I lead
V	¹³ C-2,3,7,8-TCDF)F		Z	¹³ C-1.2.3.4-TCDD	
8	¹³ C-2,3,7,8-TCDD	DD			¹³ C-1 2.3 7.8 9-HxCDD	
ci	¹³ C-1,2,3,7,8-PeCDF	eCDF		ž		
اه	¹³ C-1,2,3,7,8-PeCDD	eCDD		z		
ш	13C-1,2,3, b ,7,8-	HXCDF		o		
ıı'	12-1,2,3,6,7,8-HxCDD	HXCDD		Ь		
ල් :	¹³ C-1,2,3,4,6,7,8-HpCDF	8-HpCDF		Ö		
rj .	"C-1,2,3,4,6,7,8-HpCDD	8-HpCDD		æ		
$\ $	II "C-OCDD			ij		