

Laboratory Data Consultants, Inc.

7750 El Camino Real, Ste. 2L Carlsbad, CA 92009

Phone 760.634.0437

Web www.lab-data.com

Fax 760.634.0439

Northgate Environmental Management, Inc.

January 4, 2011

1100 Quail Street Ste. 102 Newport Beach, CA 92660 ATTN: Ms. Cindy Arnold

SUBJECT: Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada,

Data Validation

Dear Ms. Arnold,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on December 7, 2010. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 24523:

SDG # Fraction

280-7662-2, 280-8461-1 Semivolatiles, Chlorinated Pesticides, Metals, 280-8572-1, 280-8606-1 Perchlorate

The data validation was performed under Stage 2B/4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Standard Operating Procedures (SOP) 40, Data Review/Validation, BRC 2009
- Quality Assurance Project Plan Tronox LLC Facility, Henderson Nevada, June 2009
- NDEP Guidance, May 2006
- USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June 2008
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

Please feel free to contact us if you have any questions.

Sincerely,

Erlindá T. Rauto

Operations Manager/Senior Chemist

		i							L						<u> </u>																			
		<u> </u>	≥																														0	
			တ																														0	
			3										<u>Г</u>																				0	
			S					<u> </u>																										
						┢	\vdash						\vdash								 							-		┝				
			8							\vdash	_		├	\vdash	┝			\vdash										\vdash		\vdash			0	
						_		_		_			_							_								\vdash				_	-1	
	g)		≥																		_		<u> </u>					<u> </u>	_	_			_	
Ì	Sampling		S			_	_								L						 		_										믜	
	ᇤ		₹																														0	
	Sa		S			ļ		-																									0	
			3																														0	
	<u>io</u>		S																														0	
	Additional		3						Г																							_		
Ì	Ad		s										_	_	<u> </u>						 		_									\dashv		
	SS		3					\vdash	┢			_																				_		
	Р(\vdash	Н					<u> </u>	_	_			- 1	 										-			
	Ŏ		S						_	\vdash						_											_						4	
	on		8											_	_						 				_			-					_	
l	/ Tı		S						_						_																		0	
	>		۸																														의	
Ξ	n N		S						:																								0	
neu	os.		3																															
Attachment 1	Henderson NV / Tronox PCS	(0: 0'	S	X	-	-	3	繊	10	12																							1	
Atte	en	CLO ₄ (314.0)	≯	0.0	,	1	0	30 2	1	£0.								-			 												$\overline{\parallel}$	
			S	1	<u>-</u>	-	4			t distance of	\neg														ヿ								2	
	rthgate,	Mg (6020)	3	1		-	0	100	_	╗									\neg				_	_	\exists									
	hg		S	-			4	和第0条	-	H	_	-				-	_	_	\dashv													\dashv	4	
		Mn (6020)	_	-	\dashv		_	資源	_										-												\dashv	-+		
	Ž		⋧			•	3	¥0)	-	100	_					\dashv								_		_					\dashv	•		
	CC	As (6020)	S			'	4	10	12	3,8	_	_							_													•	19	
	Ϋ́	9)	≶	_'	긔	1	0	40	,	\$9																								
	no.	st. 31A)	S	٠	7		1	t	•	·																						,	∞	
	ro	Pest. (8081A)	≥	,	٥	*0	- 1	t	•																							-		
) (T	SVOA (8270C)	S	,	11	***	10	松	15	£24																							42	
	523	SV(827	3	ı	0	\$03	0	10	2	102																							7	
	24			10	9		10		10																						\dashv		\exists	
	# ((3) DATE DUE		12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10	12/28/10																								
	LDC #24523 (Tronox LLC-No						0 12		0 12	0 12		\dashv				\dashv			4			_		-	_	\dashv	\dashv	_			\dashv			
	1	DATE REC'D		12/07/10	12/07/10	12/07/10	12/07/10	12/07/10	12/07/10	12/07/10																								
		7 H		12/	12	12/	12/	12/	12/(12/																								
10	4/	==+	: <u>=</u>	2-2	핕	1	2-1	2-1	6-1	6-1																								
2/07,	e 2B	*SDG*	ır/So	280-7662-2	280-8461-1	280-8461-1	280-8572-1	280-8572-1	280-8606-1	280-8606-1																							T/LR	
DL 12/07/10	Stage 2B/4	, ,,	Water/Soil	280	780	280	280	280	280	280																						.	·	
-			1	_					_		_		_																					
		rpc	Matrix:	4	_	В	ပ	ပ	٥	۵																					寸		Total	
<u>l</u>				1							!				<u> </u>						 				 1						!		لط	

S

66

LDC #: 24523 SDG #: 280-7662-1, 280-8641-1, 280-8572-1, 280-8606-1 Page: 1 of 1 Reviewer: JE 2nd Reviewer: BC

Tronox Northgate Henderson Worksheet

EDD Area	Yes	No	NA	Findings/Comments
I. Completeness				
Is there an EDD for the associated Tronox validation report?	X			
II. EDD Qualifier Population				
Were all qualifiers from the validation report populated into the EDD?	X			·
III. EDD Lab Anomalies				
Were EDD anomalies identified?		Х		
If yes, were they corrected or documented for the client?			х	See EDD_discrepancy_ form_LDC24523_122810.doc
IV, EDD Delivery		4. 7% S 30. 1		
Was the final EDD sent to the client?	x			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

October 12, 2010

LDC Report Date:

December 21, 2010

Matrix:

Soil

Parameters:

Semivolatiles

Validation Level:

Stage 2B & 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-8461-1

Sample Identification

SSAK4-03-0_01_BPC SSAK4-03-1_01_BPC

SSAK4-03-2_01_BPC

SSAK4-03-3 01 BPC

SSAL2-04-1_01_BPC

SSAL2-04-2_01_BPC

SSAL2-04-3_01_BPC

SSAL2-04-4_01_BPC

SSAL2-05-1_01_BPC

SSAL2-05-2_01_BPC

SSAL2-05-3_01_BPC SSAL2-05-4_01_BPC**

33ALZ-03-4_01_BPC*** \$\$&K/_03_1_01_BPCM*

SSAK4-03-1_01_BPCMS SSAK4-03-1_01_BPCMSD

SSAL2-04-3 01 BPCMS

SSAL2-04-3_01_BPCMSD

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 16 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for Semivolatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within method and validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs) and 25.0% for all other compounds.

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
MB 280-36114/1-A	10/17/10	Benzo(b)fluoranthene Dibenzo(a,h)anthracene Di-n-octylphthalate	28.9 ug/Kg 108 ug/Kg 80.8 ug/Kg	All samples in SDG 280-8461-1

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

No field blanks were identified in this SDG.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

Vill. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XII. Project Quantitation Limit

All compound quantitation and CRQLs were within validation criteria for samples on which a Stage 4 review was performed.

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-8461-1	All compounds reported below the PQL.	J (all detects)	Α

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Semivolatiles - Data Qualification Summary - SDG 280-8461-1

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-8461-1	SSAK4-03-0_01_BPC SSAK4-03-1_01_BPC SSAK4-03-2_01_BPC SSAK4-03-3_01_BPC SSAL2-04-1_01_BPC SSAL2-04-2_01_BPC SSAL2-04-3_01_BPC SSAL2-04-4_01_BPC SSAL2-05-1_01_BPC SSAL2-05-2_01_BPC SSAL2-05-3_01_BPC SSAL2-05-4_01_BPC**	All compounds reported below the PQL.	J (all detects)	А	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 280-8461-1

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Semivolatiles - Field Blank Data Qualification Summary - SDG 280-8461-1

No Sample Data Qualified in this SDG

Tronox Northgate Henderson

LDC #:24523B2a	_ VALIDATION COMPLETENESS WORKSHEET
SDG #: <u>280-8461-1</u>	Stage 2B/4
Laboratory: Test America	_

	Date:	2/17/W
	Page:	of /
	Reviewer:_	316
2nd	Reviewer:_	
		91

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	^	Sampling dates: 10 /12 /10
- II.	GC/MS Instrument performance check	A	,
HI.	Initial calibration	A	1/2 RSD r V
IV.	Continuing calibration/ICV	A	1/2 KSD r 2 COM/100 & 257
V.	Blanks	SW A	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	A	
VIII.	Laboratory control samples	A-	ics
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	·
XI.	Target compound identification	A`	Not reviewed for Stage 2B validation.
XII.	Compound quantitation/CRQLs	A	Not reviewed for Stage 2B validation.
XIII.	Tentatively identified compounds (TICs)	N	Not reviewed for Stage 2B validation.
XIV.	System performance	А	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data	Α	
XVI.	Field duplicates	N	
XVII.	Field blanks	N	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank

Validated Samples:

** Indicates sample underwent Stage 4 validation

		<u>и S</u>	Ø 15				
1	SSAK4-03-0_01_BPC	11	SSAL2-05-3_01_BPC	21	MB 280-36114/-4	31	
2	SSAK4-03-1_01_BPC	12	SSAL2-05-4_01_BPC**	22		32	
3_	SSAK4-03-2_01_BPC	13	SSAK4-03-1_01_BPCMS	23		33	
4	SSAK4-03-3_01_BPC	14	SSAK4-03-1_01_BPCMSD	24		34	
5	SSAL2-04-1_01_BPC	15	SSAL2-04-3_01_BPCMS	25		35	
6	SSAL2-04-2_01_BPC	16	SSAL2-04-3_01_BPCMSD	26		36	
7	SSAL2-04-3_01_BPC	17		27		37	
8	SSAL2-04-4_01_BPC	18		28	·	38	
9	SSAL2-05-1_01_BPC	19		29		39	
10	SSAL2-05-2_01_BPC	20		30		40	

VALIDATION FINDINGS CHECKLIST

Method: Semivolatiles (EPA SW 846 Method 8270C)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times (1	
All technical holding times were met.	-			
Cooler temperature criteria was met.			1000	
I): GC/MS Instrument performance check			(A)A(S	
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?			142	
III. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?		-		
Was a curve fit used for evaluation?				
Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?				
Were all percent relative standard deviations (%RSD) \leq 30% and relative response factors (RRF) \geq 0.05?				
IV: Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?		,	-	
V. Blanks				
Was a method blank associated with every sample in this SDG?	/			
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/ ,		
VI. Surrogate spikes				
Were all surrogate %R within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?			_	
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?	v	Nacional Patricks		
MII. Matrix spike/Matrix spike duplicates		10.74		
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		_		
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		jagodkazo -		washed was a second of the sec
VIII. Laboratory control samples	27.7	y) ir	a e n	
Was an LCS analyzed for this SDG?				

LDC#: 745-73 829

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: 76
2nd Reviewer: 76

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?	165	NO	IVA	rinungs/comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	7			
IX. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		_		
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?		/		
Were retention times within + 30 seconds from the associated calibration standard?		Section and the Section Sectio		and says and the says and the says are says as the says are says as the says are says and the says are
XI. Target compound Identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XII. Compound quantitation/CRQLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				,
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		/		
XIII. Tentatively identified compounds (TICs)		ny to		
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				<u> </u>
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?			1	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?			-	:
XIV. System performance				
System performance was found to be acceptable.				1985 - 1995 - Maria M
XV. Overall assessment of data			1	
Overall assessment of data was found to be acceptable.				
XVI::Field duplicates				
Field duplicate pairs were identified in this SDG.			_	
Target compounds were detected in the field duplicates.				
XVII. Field blanks				
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.]		_}	

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

A. Phenol**	P. Bis(2-chloroethoxy)methane	EE. 2,6-Dinitrotoluene	TT. Pentachlorophenol**	III. Benzo(a)pyrene**
B. Bis (2-chloroethyl) ether	Q. 2,4-Dichlarophenol**	FF. 3-Nitroaniline	UU. Phenanthrene	JJJ. Indeno(1,2,3-cd)pyrene
C. 2-Chlorophenol	R. 1,2,4-Trichlorobenzene	GG. Acenaphthene**	VV. Anthracene	KKK. Dibenz(a,h)anthracene
D. 1,3-Dichlorobenzene	S. Naphthalene	HH. 2,4-Dinitrophenol*	WW. Carbazole	LLL. Benzo(g,h,i)perylene
E. 1,4-Dichlorobenzene**	T. 4-Chloroaniline	II. 4-Nitrophenol*	XX. Di-n-butylphthalate	MMM. Bis(2-Chloroisopropyl)ether
F. 1,2-Dichlorobenzene	U. Hexachlorobutadiene**	JJ. Dibenzofuran	YY. Fluoranthene**	NNN. Aniline
G. 2-Methylphenol	V. 4-Chioro-3-methylphenol**	KK. 2,4-Dinitrotoluene	ZZ. Pyrene	OOO. N-Nitrosodimethylamine
H. 2,2'-Oxybis(1-chloropropane)	W. 2-Methylnaphthalene	LL. Diethylphthalate	AAA. Butylbenzylphthalate	PPP. Benzoic Acid
l, 4-Methylphenol	X. Hexachlorocyclopentadiene*	MM. 4-Chlorophenyl-phenyl ether	BBB. 3,3'-Dichlorobenzidine	QQQ. Benzyl alcohol
J. N-Nitroso-di-n-propylamine*	Y. 2,4,6-Trichlorophenol**	NN. Fluorene	CCC. Benzo(a)anthracene	RRR. Pyridine
K. Hexachloroethane	Z. 2,4,5-Trichlorophenol	00. 4-Nitroaniline	DDD. Chrysene	SSS. Benzidine
L. Nitrobenzene	AA. 2-Chloronaphthalene	PP. 4,6-Dinitro-2-methylphenol	EEE. Bis(2-ethylhexyl)phthalate	TTT,
M. Isophorone	BB. 2-Nitroaniline	QQ. N-Nitrosodiphenylamine (1)**	FFF. Di-n-octylphthalate**	กกก
N. 2-Nitrophenol [™]	CC. Dimethylphthalate	RR. 4-Bromophenyl-phenylether	GGG. Benzo(b)fluoranthene	VVV.
O. 2,4-Dirnethylphenol	DD. Acenaphthylene	SS. Hexachlorobenzene	HHH. Benzo(k)fluoranthene	WWW.

Notes:* = System performance check compound (SPCC) for RRF; ** = Calibration check compound (CCC) for %RSD.

Bea	
25 y	
_DC #:	

VALIDATION FINDINGS WORKSHEET

- -	346	0	(
Tage:	Reviewer:	2nd Reviewer:	

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

_ •
-
\leq
~
70
ed as
_
ä
Œ
≒
ক
ŏ
9
σ
S
Ξ
st
<u>a</u>
⊇
2
<u>a</u>
ō
60
≝
Q
믔
ਰ
Z
-
_
_
ed
ered '
wered
swered
nswered
answered
is answered
ons answered
tions answered
estions answered
uestions answered
questions answered
Il questions answered
all questions answered
Il questions answer
ifications below for all questions answer
ifications below for all questions answer
ifications below for all questions answer
ifications below for all questions answer
e qualifications below for all questions answer
e qualifications below for all questions answer
ifications below for all questions answer

Was a method blank analyzed for each matrix? YN N/A

Was a method blank analyzed for each concentration preparation level? Y N/A

Was a method blank associated with every sample? Y/N N/A

Was the blank contaminated? If yes, please see qualification below. √ N N/A

Blank extraction date: 15 /12/12 Blank analysis date: _

VW > Sample Identification Associated Samples: ME 1280- 36114 K-A Blank ID 80.8 28.9 108 **ナ**た戸 666 アスス Compound Conc. units: ५५

Blank extraction date:	Blank analysis date:
Conc. units:	Associated Samples:

F		 <u> </u>	Т		ī	 	
	·						
	uo						•••
	Sample Identification						
	Sa						
						-	
	Blank ID						
	nd						
	Compound						

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC# 24522 Bra

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 1 of 1

Reviewer: JVG

2nd Reviewer: 2

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards

 A_x = Area of Compound C_x = Concentration of compound,

 $A_{ls} = \mbox{Area of associated internal standard} \\ C_{ls} = \mbox{Concentration of internal standard} \\$

%RSD = 100 * (S/X)

S= Standard deviation of the RRFs,

X = Mean of the RRFs

Recalculated

%RSD

10.66

7.28

2.72

10.66

4.52

				-	Reported	Recalculated	Reported	Recalculated	Reported
		Calibration			RRF	RRF	Average RRF	Average RRF	%RSD
#	Standard ID Date	Date	Compound (Internal Standard)	ındard)	(50 std)	(50 std)	(Initial)	(Initial)	
-	ICAL	9/21/2010 1	1,4-Dioxane	(1S1)	0.6263	0.6263	0.6240	0.6240	2.7
	MSSD		Naphthalene	(182)	1.0235	1.0235	1.0743	1.0743	7.3
			Fluorene	(183)	1.2764	1.2764	1.3329	1.3329	10.7
			Hexachlorobenzene	(184)	0.2230	0.2230	0.2407	0.2407	13.0
			Chrysene	(185)	0.9756	0.9756	0.9999	6666.0	4.5
			Benzo(g,h,i)perylene	(1S6)	1.0065	1.0065	1.0449	1.0449	10.7

Area IS	267408	1007644	653293	1133711	1288617	1142483	
Area cpd	209359	1289187	1042290	316061	1571420	1437432	
onc IS/Cpd	40/20	40/20	40/20	40/20	40/20	40/20	

Conc	1,4-Dioxane	Naphthalene	Fluorene	Hexachlorob	Chrysene	Benzo(g,h,i)per
4.00	0.5953	0.9988	1.1295		0.9731	0.9113
10.00	0.6339	0.9818	1.2018	0.2074	0.9297	0.9108
20.00	0.6534	1.0217	1.2438	0.2052	0.9634	0.9715
50.00	0.6263	1.0235	1.2764	0.2230	0.9756	1.0065
80.00	0.6166	1.0910	1.3901	0.2398	1.0347	1.0800
120.00	0.6217	1.1365	1,4103	0.2516	1.0304	1.1253
160.00	0.6316	1.1530	1.4687	0.2703	1.0579	1.1489
200.00	0.6134	1.1877	1.5425	0.2876	1.0346	1.2048
×	0.6240	1.0743	1.3329	0.2407	0.9999	1.0449
S	0.0170	0.0782	0.1421	0.0313	0.0452	0.1113

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

Continuing Calibration Results Verification VALIDATION FINDINGS WORSHEET

Page \ of 2nd Reviewer:__ Reviewer:_

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

RRF = (Ax)(Cis)/(Ais)(Cx)

ave. RRF = initial calibration average RRF Ax = Area of compound

Where:

Ais = Area of associated internal standard RRF = continuing calibration RRF

Cx = Concentration of compound

Cis = Concentration of internal standard

ed Recalculated												
d Reported %D		5.8	3.0	3.0	3.0	3.0 3.0 3.1 16.6 2.4	3.0 3.0 3.1 16.6 2.4 8.8	5.8 3.0 3.1 16.6 8.8	3.0 3.1 16.6 8.8 8.8	3.0 3.1 16.6 16.6 8.8 8.8	5.8 3.0 3.1 16.6 8.8 8.8	5.8 3.0 3.1 16.6 8.8 8.8
Recalculated (CC RRF)		0.6602	0.6602	0.6602 1.1062 1.3742	0.6602 1.1062 1.3742 0.2808	0.6602 1.1062 1.3742 0.2808 1.0243	0.6602 1.1062 1.3742 0.2808 1.0243 1.1368	0.6602 1.1062 1.3742 0.2808 1.0243 1.1368	0.6602 1.1062 1.3742 0.2808 1.0243 1.1368	0.6602 1.1062 1.3742 0.2808 1.0243 1.1368	0.6602 1.1062 1.3742 0.2808 1.0243 1.1368	0.6602 1.1062 1.3742 0.2808 1.0243 1.1368
Reported (CC RRF)	0.6602		1.1062	1.1062	1.1062 1.3742 0.2808	1.1062 1.3742 0.2808 1.0243	1.1062 1.3742 0.2808 1.0243 1.1368	1.1062 1.3742 0.2808 1.0243 1.1368	1.1062 1.3742 0.2808 1.0243 1.1368	1.1062 1.3742 0.2808 1.0243 1.1368	1.1062 1.3742 0.2808 1.0243 1.1368	1.1062 1.3742 0.2808 1.0243 1.1368
Average RRF (Initial RRF)	0.6240		1.0743	1.0743	1.0743 1.3329 0.2407	1.0743 1.3329 0.2407 0.9999	1.0743 1.3329 0.2407 0.9999 1.0449	1.0743 1.3329 0.2407 0.9999 1.0449	1.0743 1.3329 0.2407 0.9999 1.0449	1.0743 1.3329 0.2407 0.9999 1.0449	1.0743 1.3329 0.2407 0.9999 1.0449	1.0743 1.3329 0.2407 0.9999 1.0449
ince IS)	(181)	(651)	(301)	(183)	(IS3) (IS3) (IS4)	(1S3) (1S4) (1S5)						
Compound (Reference IS)	1,4-Dioxane	Naphthalene		Fluorene	Fluorene Hexachlorobenzene	Fluorene Hexachlorobenzene Chrysene	Fluorene Hexachlorobenzene Chrysene Benzo(g,h,i)perylene	Fluorene Hexachlorobenzene Chrysene Benzo(g,h,i)perylene	Fluorene Hexachlorobenzene Chrysene Benzo(g,h,i)perylene	Fluorene Hexachlorobenzene Chrysene Benzo(g,h,i)perylene	Fluorene Hexachlorobenzene Chrysene Benzo(g,h,i)perylene	Fluorene Hexachlorobenzene Chrysene Benzo(g,h,i)perylene
Calibration Date	10/19/10											
Standard ID	D9542											
#	-											

Compound (Reference IS)	ice IS)	Concentration	Area Cpd	Area IS
	i	(IS/Cpd)		
1,4-Dioxane	(1S1)	40/80	434235	328854
Naphthalene	(182)	40/80	2817624	1273556
Fluorene	(183)	40/80	2293481	834491
Hexachlorobenzene	(1S4)	40/80	764895	1362154
Chrysene	(185)	40/80	3372481	1646160
Benzo(g,h,i)perylene	(1S6)	40/80	3459656	1521664

VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

Page:_	<u> </u>
Reviewer:	M
2nd reviewer:	o.
	7.

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

Sample ID

o: #] \(\square \)	SS = Surrogate Spiked

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	100	78.6	79	79	۵
2-Fluorobiphenyl		75.0	75	75	1
Terphenyl-d14		105.9	106	106	
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					<u> </u>

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

LDC# 295/20 Bya

Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

2nd Reviewer: Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where:

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

SSC = Spiked sample concentration SA = Spike added

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: | १ / १ 4

Compound	לאואל		Sample	Spiked	Sample	Matrix Spike	Spike	Matrix Spike Duplicate	Duplicate	MS/MSD	Q
	Added (F)	()	Concentration	Concentration	tration	Percent Recovery	есоvегу	Percent Recovery	ecovery	RPD	
) sw	MSD	0	MS	MSD	Reported	Recalc	Reported	Recalc	Renorted	Recalculated
dio				:							
N-Nitroso-di-n-propylamine											
4-Chioro-3-methyiphenal											
Acenaphthene 23	09.KZ	2/20	0	0742	24to	2%	8	8%	٨	~	~
Pentachlorophenol	_)	
Pyrene		7		28 72	2660	26	17	96	26	7	_
											_

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC# 7523 PX

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

2nd Reviewer: Reviewer:_

Page: lof 1

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = ILCSC - LCSDC I* 2/(LCSC + LCSDC)

LCSC = Laboraotry control sample concentration
LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples:

280-36119 12-A

	dS	ike	dS	ike	31	LCS		CSD	100	490 1790
Compound	(2.5 Ag	Added (いか/た)	Concentration	ntration	Percent Recovery	Recovery	Percent	Percent Recovery	32	RPD
	ICS	J csp	108) I CSD	Reported	Recalc.	Reported	Recal	Cotrodo	Donalanda
Phenol	2590									veraltimaten
N-Nitroso-di-n-propylamine										
4-Chloro-3-methylphenol										
Acenaphthene	25.90	4/1	my	₩.	87	278				,
Pentaetherophemol										
Pyrene	\ -	7	E	_	97	97				
	-					\ \				
		,		,						
					1					

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 745m Bra

Dilution Factor.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	<u>_l</u> of <u>_1</u>
Reviewer:_	No
2nd reviewer:	0.

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Percent solids, applicable to soil and solid matrices only.

	,	
Υ	N	N/A)
Υ	M	N/A/
		7

Df

%S

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conc	/ entratio	n = <u>(A_s)(I_s)(V_s)(DF)(2.0)</u> (A _s)(RRF)(V _s)(V _s)(%S)	Example:
Α,	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D,
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = ()()()()(
Vc	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	
V_i	=	Volume of extract injected in microliters (ul)	=
V_{t}	=	Volume of the concentrated extract in microliters (ul)	

2.0	= Factor of 2 to accour	nt for GPC cleanup				
#	Sample ID	Compound		Reported Concentration ()	Calculated Concentration	Qualification
<u> </u>						
				•		
	•					
						···· <u>-</u>
			,			
						į
				,		
İ						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date: October 13, 2010

LDC Report Date: December 23, 2010

Matrix: Soil

Parameters: Semivolatiles

Validation Level: Stage 2B & 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-8572-1

Sample Identification

SSAP3-05-1_01_BPC SSAP3-05-2_01_BPC** SSAP3-05-3_01_BPC SSAP3-05-4_01_BPC SSAP3-05-5_01_BPC SSAP4-03-1_01_BPC SSAP4-03-2_01_BPC SSAP4-03-3_01_BPC

SSAP4-03-4_01_BPC

SSAP4-03-5_01_BPC

SSAP4-03-6_01_BPC

SSAP4-03-7_01_BPC**

SSAP3-05-2_01_BPCMS

SSAP3-05-2_01_BPCMSD

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 14 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for Semivolatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within method and validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs) and 25.0% for all other compounds.

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
MB 280-36401/1-A	10/19/10	Bis(2-ethylhexyl)phthalate	68.8 ug/Kg	All samples in SDG 280-8572-1

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
SSAP3-05-1_01_BPC	Bis(2-ethylhexyl)phthalate	71 ug/Kg	71U ug/Kg
SSAP3-05-3_01_BPC	Bis(2-ethylhexyl)phthalate	75 ug/Kg	75U ug/Kg
SSAP3-05-5_01_BPC	Bis(2-ethylhexyl)phthalate	73 ug/Kg	73U ug/Kg
SSAP4-03-1_01_BPC	Bis(2-ethylhexyl)phthalate	72 ug/Kg	72U ug/Kg
SSAP4-03-2_01_BPC	Bis(2-ethylhexyl)phthalate	. 76 ug/Kg	76U ug/Kg
SSAP4-03-3_01_BPC	Bis(2-ethylhexyl)phthalate	75 ug/Kg	75U ug/Kg
SSAP4-03-4_01_BPC	Bis(2-ethylhexyl)phthalate	75 ug/Kg	75U ug/Kg
SSAP4-03-5_01_BPC	Bis(2-ethylhexyl)phthalate	69 ug/Kg	69U ug/Kg

No field blanks were identified in this SDG.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Compound	Flag	A or P
SSAP3-05-4_01_BPC	Nitrobenzene-d5 2-Fluorobiphenyl	43 (50-120) 46 (50-120)	All TCL compounds	J- (all detects) UJ (all nondetects)	А

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Although the MS or MSD relative percent recoveries (%R) were not within QC limits for several compounds, the MS or MSD percent recoveries (%R) were within QC limits and no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XII. Project Quantitation Limit

All compound quantitation and CRQLs were within validation criteria for samples on which a Stage 4 review was performed.

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-8572-1	All compounds reported below the PQL.	J (all detects)	Α

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Semivolatiles - Data Qualification Summary - SDG 280-8572-1

SDG	Sample	Compound	Flag	A or P	Reason (Code)					
280-8572-1	SSAP3-05-4_01_BPC	All TCL compounds	J- (all detects) UJ (all nondetects)	Α	Surrogate spikes (%R) (s)					
280-8572-1	SSAP3-05-1_01_BPC SSAP3-05-2_01_BPC** SSAP3-05-3_01_BPC SSAP3-05-4_01_BPC SSAP3-05-5_01_BPC SSAP4-03-1_01_BPC SSAP4-03-2_01_BPC SSAP4-03-3_01_BPC SSAP4-03-4_01_BPC SSAP4-03-5_01_BPC SSAP4-03-6_01_BPC SSAP4-03-7_01_BPC**	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)					

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 280-8572-1

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P	Code
280-8572-1	SSAP3-05-1_01_BPC	Bis(2-ethylhexyl)phthalate	71 ug/Kg	А	bl
280-8572-1	SSAP3-05-3_01_BPC	Bis(2-ethylhexyl)phthalate	75 ug/Kg	А	bl
280-8572-1	SSAP3-05-5_01_BPC	Bis(2-ethylhexyl)phthalate	73 ug/Kg	А	bl
280-8572-1	SSAP4-03-1_01_BPC	Bis(2-ethylhexyl)phthalate	72 ug/Kg	А	bl
280-8572-1	SSAP4-03-2_01_BPC	Bis(2-ethylhexyl)phthalate	76 ug/Kg	А	bl
280-8572-1	SSAP4-03-3_01_BPC	Bis(2-ethylhexyl)phthalate	75 ug/Kg	А	bl
280-8572-1	SSAP4-03-4_01_BPC	Bis(2-ethylhexyl)phthalate	75 ug/Kg	А	bl
280-8572-1	SSAP4-03-5_01_BPC	Bis(2-ethylhexyl)phthalate	69 ug/Kg	А	bl

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Semivolatiles - Field Blank Data Qualification Summary - SDG 280-8572-1

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #: 24523C2a VALIDATION COMPLETENE
SDG #: 280-8572-1 Stage 2B/4
Laboratory: Test America

Date: [2/17/lc]
Page: 1 of]
Reviewer: 5//,
2nd Reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	¥	Sampling dates: 10 /13 /10
11.	GC/MS Instrument performance check	A	
III.	Initial calibration	Α	1. KSD r
IV.	Continuing calibration/ICV	A	COU LOU E 25 %
V.	Blanks	SW	
VI.	Surrogate spikes	SN)	
VII.	Matrix spike/Matrix spike duplicates	SW	
VIII.	Laboratory control samples	A	LCS
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	
XI.	Target compound identification	A	Not reviewed for Stage 2B validation.
XII.	Compound quantitation/CRQLs	. A	Not reviewed for Stage 2B validation.
XIII.	Tentatively identified compounds (TICs)	N	Not reviewed for Stage 2B validation.
XIV.	System performance	A	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data	Á	
XVI.	Field duplicates	Ŋ	
XVII.	Field blanks	<u>N</u>	

Note:

A = Acceptable

ND = No compounds detected

D = Duplicate TB = Trip blank

N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank

EB = Equipment blank

Validated Samples:

** Indicates sample underwent Stage 4 validation

1	SSAP3-05-1_01_BPC	11	SSAP4-03-6_01_BPC	21	MB 280- 36401/1-1	131
2	SSAP3-05-2_01_BPC**	12	SSAP4-03-7_01_BPC**	22		32
3	SSAP3-05-3_01_BPC	13	SSAP3-05-2_01_BPCMS	23		33
4	SSAP3-05-4_01_BPC	14	SSAP3-05-2_01_BPCMSD	24		34
5	SSAP3-05-5_01_BPC	15		25		35
6	SSAP4-03-1_01_BPC	16		26		36
7	SSAP4-03-2_01_BPC	17		27		37
8	SSAP4-03-3_01_BPC	18		28		38
9	SSAP4-03-4_01_BPC	19		29		39
10	SSAP4-03-5_01_BPC	20		30		40

Method: Semivolatiles (EPA SW 846 Method 8270C)

Validation Area	Yes	No	NA	Findings/Comments
J. Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check			a pala de	
Were the DFTPP performance results reviewed and found to be within the specified criteria?		<u> </u>		
Were all samples analyzed within the 12 hour clock criteria?	_			
III. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Was a curve fit used for evaluation?	_			
Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?				
Were all percent relative standard deviations (%RSD) \leq 30% and relative response factors (RRF) \geq 0.05?		ļ		
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	_			
Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?				
V. Blanks		0.4		
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Surrogate spikes				
Were all surrogate %R within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?		/		
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				And the state of the second se
VII. Matrix spike/Matrix spike duplicates			nn y	A COMPANIE AND A COMP
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII. Laboratory control samples	A A		4.4	produced Control of the second
Was an LCS analyzed for this SDG?				

LDC#: 24573C29

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	_	V	1	
IX. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		_		
Were the performance evaluation (PE) samples within the acceptance limits?	Cassioner card		_/	Access 100 to 1.00 to
X.Internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?		,		
Were retention times within + 30 seconds from the associated calibration standard?	/			
XI. Target compound identification			4	
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XII. Compound quantitation/CRQLs	//			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?		^		
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		,		
XIII. Tentatively identified compounds (TICs)				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				-
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?			2	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?			/	
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data		A.		
Overall assessment of data was found to be acceptable.				
XVI. Field duplicates				
Field duplicate pairs were identified in this SDG.			-	
Target compounds were detected in the field duplicates.			1	
XVII. Field blanks		arioni Birini		
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

A. Phenol™	P. Bis(2-chloroethoxy)methane	EE. 2,6-Dinitrotoluene	TT. Pentachlorophenol**	III. Benzo(a)nyrene**
B. Bis (2-chloroethyl) ether	Q. 2,4-Dichlorophenol**	FF. 3-Nitroaniline	UU. Phenanthrene	JJJ. Indeno(1,2,3-cd)pyrene
C. 2-Chlorophenol	R. 1,2,4-Trichlorobenzene	GG. Acenaphthene**	VV. Anthracene	KKK. Dibenz(a,h)anthracene
D. 1,3-Dichlorobenzene	S. Naphthalene	HH. 2,4-Dinitrophenol*	WW. Carbazole	LLL. Benzo(g,h,i)perylene
E. 1,4-Dichlorobenzene**	T. 4-Chloroaniline	II. 4-Nitrophenol*	XX. Di-n-butylphthalate	MMM. Bis(2-Chloroisopropyl)ether
F. 1,2-Dichlorobenzene	U. Hexachlorobutadiene⁺	JJ. Dibenzofuran	YY. Fluoranthene*	NNN. Aniline
G. 2-Methylphenol	V. 4-Chloro-3-methylphenol**	KK. 2,4-Dinitrotoluene	ZZ. Pyrene	000. N-Nitrosodimethylamine
H. 2,2'-Oxybis(1-chloropropane)	W. 2-Methylnaphthalene	LL. Diethylphthalate	AAA. Butylbenzylphthalate	PPP. Benzoic Acid
1. 4-Methylphenol	X. Hexachlorocyclopentadiene*	MM. 4-Chlorophenyl-phenyl ether	BBB. 3,3'-Dichlorobenzidine	QQQ. Benzyl alcohol
J. N-Nitroso-di-n-propylamine*	Y. 2,4,6-Trichlorophenol**	NN. Fluorene	CCC. Benzo(a)anthracene	RRR. Pyridine
K. Hexachloroethane	Z. 2,4,5-Trichlorophenol	OO. 4-Nitroaniline	DDD, Chrysene	SSS. Benzidine
L. Nitrobenzene	AA. 2-Chloronaphthalene	PP. 4,6-Dinitro-2-methylphenol	EEE. Bis(2-ethylhexyl)phthalate	111.
M. Isophorone	BB. 2-Nitroanlline	QQ. N-Nitrosodiphenylamine (1)**	FFF. Di-n-octylphthalate**	UUU
N. 2-Nitrophenol ^{**}	CC. Dimethylphthalate	RR. 4-Bromophenyl-phenylether	GGG. Benzo(b)fluoranthene	WW.
O. 2,4-Dimethylphenol	DD. Acenaphthylene	SS. Hexachlorobenzene	HHH. Benzo(k)fluoranthene	WWW.

Notes:* = System performance check compound (SPCC) for RRF; ** = Calibration check compound (CCC) for %RSD.

7	
S	
(723	
7	
#	•

VALIDATION FINDINGS WORKSHEET Blanks

† 5)\C	٩
Page:	Reviewer:	2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Elease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank analyzed for each matrix? Y N N/A

Was a method blank analyzed for each concentration preparation level?

Was a method blank associated with every sample? Y/N N/A

V N N/A Was the blank contaminated? If yes, please see qualification below. Blank extraction date: 10/14/0 Blank analysis date: 16/27/0 V N/A

٥ 5 S K 7 Sample Identification × Associated Samples: 7 73 M 75 2 MB 1280-364011 Blank ID 8.8 9 五年 Conc. units: 🐠 /೬< Compound

Associated Samples: Blank analysis date: Blank extraction date: Conc. units:

-				
Sample Identification				
		;		
Blank ID				
Compound				
Comp				

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC# 24573626

VALIDATION FINDINGS WORKSHEET

ا

Page Reviewer. 2nd Reviewer:

Surrogate Recovery METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

Were percent recoveries (%R) for surrogates within QC limits?

Y N N/A X DE NIA

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

					7				T	T	•.		T	T	T					T	T	Ī	
Qualifications	J- /NT /4				No gue (only) BNA sum of	•																	
(£)	(521-120)	(ar)-05)))	(22-129)	()	(((()				((()	()		,,,,	~ ~
%R (Limi	43	76			7															İ			
Surrogate	NBZ	FBP			NB2																		
Sample ID	4	-			2																		
Date																							
#±																							

QC Limits (Water) 21-100 10-123 33-110* 16-110*

OC Limits (Soil) 25-121 19-122 20-130*

S5 (2FP)= 2-Fluorophenol S6 (TBP) = 2,4,6-Tribromophenol S7 (2CP) = 2-Chlorophenol-d4 S8 (DCB) = 1,2-Dichlorobenzene-d4

OC Limits (Water) 35-114 43-116 33-141 10-94

30-115 18-137 24-113

S1 (NBZ) = Nitrobenzene-d5 S2 (FBP) = 2-Fluorobiphenyl S3 (TPH) = Terphenyl-d14 S4 (PHL) = Phenol-d5

QC Limits (Soil) 23-120

QC limits are advisory

LDC #: 245 22 C 24

VALIDATION FINDINGS WORKSHEET

Page: 1 of

Reviewer:_ 2nd Reviewer:

Matrix Spike/Matrix Spike Duplicates

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y)N N/A

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated

MS/MSD. Soil / Water.

Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

, 			_	_					-				_					_
Qualifications	No See 1	Critical MC DKN	(1, 27, 7)															
Associated Samples	>																	
RPD (Limits)	With form R	()	()	()	()		()	(())	(()		())	()	
MSD %R (Limits)	intsillo limits for P. R	()	()	()	()	()	()	()	()	(()	()	()	() .	()	()	()	,
MS %R (Limits)	"	()	(·	()	()	()	(()	()	()	()	()	()	()	()	()	(
Compound	several																	
OI OSWISW	41/4																	
# Date																		

	Compound	QC Limits (Soil)	RPD (Soil)	QC Limits (Water)	RPD (Water)	-	Compound	QC Limits	RPD (Soil)	QC Limits (Water)	RPD
٨	Phenol	26-90%	×35%	12-110%	< 42%	99	Acenaphthene	31:137%	< 19%	46-118%	/ 210/
(1			200		5	0/10/
ز	Z-Chiorophenol	25-102%	× 20%	27-123%	< 40%	-	4-Nitrophenol	11-114%	× 50%	10-80%	< 50%
ш	1,4-Dichlorobenzene	28-104%	< 27%	36-97%	< 28%	KK.	2.4-Dinitrotoluene	78-89%	< 47%	24-96%	7380/
~;	N-Nitroso-di-n-propylamine	41-126%	%8E >	41-116%	< 38%	ļ	Pontachlorophonal	17 1009/	7027	0,00-12	0/00/
							- critecillotopileiloi	02.601-71	< 47.70	9-103%	%0c >
œ	1,2,4-Trichlorobenzene	38-107%	< 23%	39-98%	< 28%	77	Pyrene	35-142%	× 36%	26_127%	× 310/
:						I		2/2/100	200	0/ 171-07	9/10/
>	4-Chloro-3-methylphenol	26-103%	× 33%	23-97%	< 42%					-	

LDC# YYS'SOC'SA

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards

A_x = Area of Compound

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

X = Mean of the RRFs S= Standard deviation of the RRFs, C_x = Concentration of compound,

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
	Standard ID Date	Date	Compound (IS)		(50 std)	(50 std)	(Initial)	(Initial)		
\Box	ICAL	10/21/2010	10/21/2010 1,4-Dioxane	(181)	0.5276	0.5276	0.5398	0.5399	4.8	4.82
	MSS Y		Naphthalene	(182)	1.0330	1.0330	1.0263	1.0263	3.0	3.00
			Fluorene	(183)	1.2852	1.2852	1.2599	1.2599	1.7	1.65
ヿ			Hexachlorobenzene	(184)	0.2387	0.2387	0.2392	0.2392	2.5	2.55
			bis(2eh)phthalate	(185)	see r2 calculations	su				
			Benzo(g,h,i)perylene	(186)	0.9867	0.9867	0.9702	0.9702	7.6	7.64

Area IS	262843	1055622	640883	1100046	1227402	1179220
Area cpd	173342	1363100	1029593	328282	1620175	1454460
nc IS/Cpd	40/50	40/50	40/50	40/50	40/50	40/50

Conc	1,4-Dioxane	Naphthalene	Fluorene	Hexachlorob	bis(2eh)phthalat Benzo(g.h,i)per	Benzo(g,h,i)per
4.00	0.5556	1.0630	1.2369		12	0.8201
10.00	0.5952	1.0515	1.2647	0.2338		0.9115
20.00	0.5481	1.0484	1.2425	0.2301		0.9507
50.00	0.5276	1.0330	1.2852	0.2387		0.9867
80.00	0.5258	1.0388	1.2718	0.2376		1.0052
120.00	0.5245	1.0037	. 1.2880	0.2459		1.0260
160.00	0.5153	0.9954	1.2542	0.2414		1.0226
200.00	0.5268	0.9765	1.2360	0.2469		1.0388
×	0.5399	1.0263	1.2599	0.2392	0.0000	0.9702
S =	0.0260	0.0307	0.0208	0.0061	#DIV/0i	0.0741

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC # 245/26 22

VALIDATION FINDINGS WORSHEET Continuing Calibration Results Verification

Page (of)
Reviewer: <u>JVG</u>
2nd Reviewer: <u><</u>

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

ave. RRF = initial calibration average RRF

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

RRF = (Ax)(Cis)/(Ais)(Cx)

RRF = continuing calibration RRF

Cx = Concentration of compound
Ais = Area of associated internal standard
Cis = Concentration of internal standard

Ax = Area of compound

		Calibration			Average RRF	Reported	Recalculated	Reported	Recatculated
#	Standard ID	Date	Compound (IS)		(Initial RRF)	(CC RRF)	(CC RRF)	Q%	Q%
1	Y6355	10/26/10	1,4-Dioxane	(IS1)	0.5398	0.5392	0.5392	0.1	0.1
			Naphthalene	(IS2)	1.0263	1.0725	1.0725	4.5	4.5
			Fluorene	(183)	1.2599	1.3482	1.3482	7.0	7.0
			Hexachlorobenzene	(184)	0.2392	0.2512	0.2512	5.0	5.0
			bis(2eh)phthalate	(185)	80.0000	87.2000	87.2021	9.0	9.0
		į	Benzo(g,h,i)perylene	(186)	0.9702	1.0552	1.0552	8.8	8.8
2	Y6398	10/27/10	1,4-Dioxane	(181)	0.5398	0.5567	0.5567	3.1	3.1
			Naphthalene	(182)	1.0263	1.0773	1.0773	5.0	5.0
			Fluorene	(183)	1.2599	1.3403	1.3403	6.4	6.4
			Hexachlorobenzene	(184)	0.2392	0.2475	0.2475	3.5	3.5
			bis(2eh)phthalate	(185)	80.0000	82.8000	82.8223	3.5	3.5
			Benzo(g,h,i)perylene (IS6)	(186)	0.9702	1.0683	1.0683	10.1	10.1

Compound (Reference IS)	S) Concentration	Area Cpd	Area IS	Area Cpd	Area IS
	(IS/Cpd)				
1,4-Dioxane (IS1)	1) 40/80	353421	327749	403624	362489
Naphthalene (IS	152) 40/80	2773828	1293189	3039462	1410695
Fluorene (IS	153) 40/80	2148006	796645	2278429	849996
Hexachlorobenzene (IS4)	4) 40/80	681621	1356747	707315	1428925
bis(2eh)phthalate (1S	185) 40/80	2078020	1522166	2043853	1578240
Benzo(g,h,i)perylene (IS6)	5) 40/80	3150993	1493061	3137961	1468679

Conc	87.20209517	82.82234509
Response Ratio*40	1.365173049	1.295020402
q	0.0493	0.0493
٤	0.6407	0.6407
	bis(2eh)phthala	bis(2eh)phthala
	CCV1	CCV2

LDC#: >4< v2<24

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	lof_1_
Reviewer:_	Ne
2nd reviewer:_	رزت
	F

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:_

	Surrogate Splked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	(9)	74,6	75	75	٩
2-Fluorobiphenyl		77.9	78	7 8	
Terphenyl-d14		103.4	103	103	4
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol		:			
2-Chlorophenol-d4		·			
1,2-Dichlorobenzene-d4					

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyi					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

LDC # 24573 C24

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

- ot -	\$7.	0
Page:	Reviewer:	2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

SA = Spike added

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples:

12 // 4/

Spike Sample Spiked Sample Matrix Spike M												
Added Concentration Conc		Spik	9	Sample	Spiked	Sample	Matrix	Spike	Matrix Spike	Duplicate	MSMSD	SD
MS	Compound	Adde (1967)	ed ()	Concentration (49 //c,)	Concer (M)	tration (c_)	Percent R	ecovery	Percent R	ecovery	RPD	
2726 2760 0 2280 2070 84 84 77 77 77 17 17 17 17 17 17 17 17 17 17		MS	0 MSD	0	MS	0 MSD	Reported	Recalc	Reported	Recalc	н	Poralculated
2726 2760 0 2280 2070 84 84 77 77 77 17 17 17 17 17 17 17 17 17 17												
2700 0 3280 2070 84 84 77 77 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N-Nitroso-di-n-propylamine											
2726 2760 0 2280 2070 84 84 77 77 77 17 17 17 17 17 17 17 17 17 17	henol											
257 G7		2726	2700	D	22%0	20 70	78	84	77	77	4	9
40 2576 97 93	1		_	,								
		->0		_	26 40	2570	97	47	2 %	53	h	٧
							\					i.

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 245x3 (29

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

Reviewer:_

Page: lof 1 2nd Reviewer:_

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = ILCSC - LCSDC I* 2/(LCSC + LCSDC)

L(3 280-LCS/LCSD samples: _

		<u> </u>	<u> </u>	T	T	Γ				<u> </u>	T	Ī	Γ
CSD	LCS/LCSD RPD	Recalculated					<u> </u>						
1 CS/I	RI	Reported											
Q	ecovery	Recaic											
I CSD	Percent Recovery	Reported							\				
S	ecovery	Recalc.				88		7.6					
SJI	Percent Recovery	Reported				×		26					
ike	ntration (A)	/ LCSD				MA							
ds	Concentration (k_{ζ}/k_{χ})	l CS				2270		X70					
ike	ded ارج)	dsol 6				KA.	1	7					
ds —	Added ((//)	1 CS				2670	_						
	Compound		Phenol	N-Nitroso-di-n-propylamine	4-Chloro-3-methylphenol	Acenaphthene	Pentachtorophenol	Pyrene					

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 745 27 (29

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	<u> </u>
Reviewer:	JL
nd reviewer:	0/

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Υ	N	M/A)
Υ	N	(N/A)
		∇

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

	-		
Conc	entratio	$n = (A_{a})(L_{1})(V_{1})(DF)(2.0)$ $(A_{a})(RRF)(V_{a})(V_{1})(%S)$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D.
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
1,	=	Amount of internal standard added in nanograms (ng)	Conc. = ()()()()()()
V _e	=	.Volume or weight of sample extract in milliliters (ml) or grams (g).	
V,	=	Volume of extract injected in microliters (ul)	=
V_{t}	=	Volume of the concentrated extract in microliters (ul)	
Df	=	Dilution Factor,	
%S	=	Percent solids, applicable to soil and solid matrices only.	

2.0	= Factor of 2 to accou	int for GPC cleanup				
#	Sample ID	Compound		Reported Concentration ()	Calculated Concentration ()	Qualification
<u> </u>						
<u> </u>						
-						,
_ 		,			····	
					·	
			-			,
			· ·			
	· · · · · · · · · · · · · · · · · · ·		<u> </u>			<u> </u>
_						
1						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

October 14, 2010

LDC Report Date:

December 21, 2010

Matrix:

Soil/Water

Parameters:

Semivolatiles

Validation Level:

Stage 2B & 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-8606-1

Sample Identification

SSAR6-06-0 01 BPC SSAR6-06-1 01 BPC SSAR6-06-2 01 BPC SSAR6-06-3 01 BPC SSAR6-06-4 01 BPC** SSAR6-06-4 01 BPC FD SSAR6-06-5 01 BPC SSAR6-06-6 01 BPC SSAR6-06-7_01_BPC SSAR6-06-8 01 BPC SSAR6-06-9_01_BPC SSAR6-06-10 01 BPC** SA94-11 01 BPC SA94-12 01 BPC SA94-13 01 BPC SSAL4-04-2 01 BPC SSAL4-04-3 01 BPC SSAL4-04-4 01 BPC** EB-10142010 1 EB-10142010 2

SSAR6-06-0_01_BPCMS SSAR6-06-0_01_BPCMSD

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 20 soil samples and 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for Semivolatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within method and validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs) and 25.0% for all other compounds.

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
MB 280-36377/1-A	10/19/10	Bis(2-ethylhexyl)phthalate	2.07 ug/L	All water samples in SDG 280-8606-1
MB 280-36476/1-A	10/19/10	Bis(2-ethylhexyl)phthalate	66.0 ug/Kg	All soil samples in SDG 280-8606-1

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
EB-10142010_1	Bis(2-ethylhexyl)phthalate	2.1 ug/L	2.1U ug/L
EB-10142010_2	Bis(2-ethylhexyl)phthalate	2.1 ug/L	2.1U ug/L
SSAR6-06-0_01_BPC	Bis(2-ethylhexyl)phthalate	97 ug/Kg	97U ug/Kg
SSAR6-06-1_01_BPC	Bis(2-ethylhexyl)phthalate	87 ug/Kg	87U ug/Kg
SSAR6-06-2_01_BPC	Bis(2-ethylhexyl)phthalate	110 ug/Kg	110U ug/Kg
SSAR6-06-3_01_BPC	Bis(2-ethylhexyl)phthalate	80 ug/Kg	80U ug/Kg
SSAR6-06-4_01_BPC**	Bis(2-ethylhexyl)phthalate	94 ug/Kg	.94U ug/Kg
SSAR6-06-4_01_BPC_FD	Bis(2-ethylhexyl)phthalate	78 ug/Kg	78U ug/Kg
SSAR6-06-5_01_BPC	Bis(2-ethylhexyl)phthalate	84 ug/Kg	84U ug/Kg
SSAR6-06-6_01_BPC	Bis(2-ethylhexyl)phthalate	81 ug/Kg	81U ug/Kg
SSAR6-06-7_01_BPC	Bis(2-ethylhexyl)phthalate	80 ug/Kg	80U ug/Kg
SSAR6-06-8_01_BPC	Bis(2-ethylhexyl)phthalate	81 ug/Kg	81U ug/Kg
SSAR6-06-9_01_BPC	Bis(2-ethylhexyl)phthalate	80 ug/Kg	80U ug/Kg
SSAR6-06-10_01_BPC**	Bis(2-ethylhexyl)phthalate	80 ug/Kg	80U ug/Kg
SA94-11_01_BPC	Bis(2-ethylhexyl)phthalate	77 ug/Kg	77U ug/Kg
SA94-12_01_BPC	Bis(2-ethylhexyl)phthalate	81 ug/Kg	81U ug/Kg
SA94-13_01_BPC	Bis(2-ethylhexyl)phthalate	91 ug/Kg	91U ug/Kg

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
SSAL4-04-2_01_BPC	Bis(2-ethylhexyl)phthalate	79 ug/Kg	79U ug/Kg
SSAL4-04-3_01_BPC	Bis(2-ethylhexyl)phthalate	77 ug/Kg	77U ug/Kg
SSAL4-04-4_01_BPC**	Bis(2-ethylhexyl)phthalate	75 ug/Kg	75U ug/Kg

Samples EB-10142010_1 and EB-10142010_2 were identified as equipment blanks. No semivolatile contaminants were found in these blanks with the following exceptions:

Equipment Blank ID	Sampling Date	Compound	Concentration	Associated Samples
EB-10142010_1	10/14/10	Bis(2-ethylhexyl)phthalate	2.1 ug/L	SSAR6-06-0_01_BPC SSAR6-06-1_01_BPC SSAR6-06-2_01_BPC SSAR6-06-3_01_BPC SSAR6-06-4_01_BPC** SSAR6-06-4_01_BPC_FD SSAR6-06-5_01_BPC SSAR6-06-6_01_BPC SSAR6-06-7_01_BPC SSAR6-06-8_01_BPC SSAR6-06-9_01_BPC SSAR6-06-9_01_BPC**
EB-10142010_2	10/14/10	Bis(2-ethylhexyl)phthalate	2.1 ug/L,	SA94-11_01_BPC SA94-12_01_BPC SA94-13_01_BPC

Sample concentrations were compared to concentrations detected in the equipment blanks as required by the QAPP. No sample data was qualified.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Although the MS/MSD relative percent differences (RPD) were not within QC limits for several compounds, the MS/MSD percent recoveries (%R) were within QC limits and no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XII. Project Quantitation Limit

All compound quantitation and CRQLs were within validation criteria for samples on which a Stage 4 review was performed with the following exceptions:

Sample	Compound	Finding	Flag	A or P
SSAR6-06-0_01_BPC SSAR6-06-4_01_BPC_FD	Benzo(b)fluoranthene Benzo(k)fluoranthene	Due to lack of resolution between these compounds in the samples, the laboratory performed the quantitation using the total peak area.	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р

The reported results for the compounds listed above are biased high. The actual values of these compounds are lower than the values reported by the laboratory.

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-8606-1	All compounds reported below the PQL.	J (all detects)	А

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples SSAR6-06-4_01_BPC** and SSAR6-06-4_01_BPC_FD were identified as field duplicates. No semivolatiles were detected in any of the samples with the following exceptions:

	Concentra					
Compound	SSAR6-06-4_01_BPC**	SSAR6-06-4_01_BPC_FD	RPD (Limits)	Difference (Limits)	Flags	A or P
Benzo(b)fluoranthene	340U	34	-	306 (≤340)	-	-
Benzo(g,h,i)perylene	. 22	23	-	1 (≤350)	-	-
Bis(2-ethylhexyl)phthalate	94	78	-	16 (≤350)	-	-
Di-n-butylphthalate	57	32	-	25 (≤350)	-	-
Pyrene	14	19	-	5 (≤350)	-	-

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Semivolatiles - Data Qualification Summary - SDG 280-8606-1

<u> </u>					1
SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-8606-1	SSAR6-06-0_01_BPC SSAR6-06-4_01_BPC_FD	Benzo(b)fluoranthene Benzo(k)fluoranthene	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р	Project Quantitation Limit (q)
280-8606-1	SSAR6-06-0_01_BPC SSAR6-06-1_01_BPC SSAR6-06-2_01_BPC SSAR6-06-3_01_BPC** SSAR6-06-4_01_BPC** SSAR6-06-4_01_BPC_FD SSAR6-06-5_01_BPC SSAR6-06-5_01_BPC SSAR6-06-7_01_BPC SSAR6-06-7_01_BPC SSAR6-06-9_01_BPC SSAR6-06-10_01_BPC** SA94-11_01_BPC SA94-12_01_BPC SSA44-04-2_01_BPC SSAL4-04-3_01_BPC SSAL4-04-3_01_BPC SSAL4-04-4_01_BPC** EB-10142010_1 EB-10142010_2	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 280-8606-1

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P	Code
280-8606-1	EB-10142010_1	Bis(2-ethylhexyl)phthalate	2.1U ug/L	А	bl
280-8606-1	EB-10142010_2	Bis(2-ethylhexyl)phthalate	2.1U ug/L	Α	bi
280-8606-1	SSAR6-06-0_01_BPC	Bis(2-ethylhexyl)phthalate	97U ug/Kg	А	bl
280-8606-1	SSAR6-06-1_01_BPC	Bis(2-ethylhexyl)phthalate	87U ug/Kg	Α	ы
280-8606-1	SSAR6-06-2_01_BPC	Bis(2-ethylhexyl)phthalate	110U ug/Kg	А	ы
280-8606-1	SSAR6-06-3_01_BPC	Bis(2-ethylhexyl)phthalate	80U ug/Kg	А	ы
280-8606-1	SSAR6-06-4_01_BPC**	Bis(2-ethylhexyl)phthalate	94U ug/Kg	А	ы
280-8606-1	SSAR6-06-4_01_BPC_FD	Bis(2-ethylhexyl)phthalate	78U ug/Kg	Α	ы
280-8606-1	SSAR6-06-5_01_BPC	Bis(2-ethylhexyl)phthalate	84U ug/Kg	Α	bl

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P	Code
280-8606-1	SSAR6-06-6_01_BPC	Bis(2-ethylhexyl)phthalate	81U ug/Kg	А	bl
280-8606-1	SSAR6-06-7_01_BPC	Bis(2-ethylhexyl)phthalate	80U ug/Kg	А	bl
280-8606-1	SSAR6-06-8_01_BPC	Bis(2-ethylhexyl)phthalate	81U ug/Kg .	Α	bl
280-8606-1	SSAR6-06-9_01_BPC	Bis(2-ethylhexyl)phthalate	80U ug/Kg	Α	bl
280-8606-1	SSAR6-06-10_01_BPC**	Bis(2-ethylhexyl)phthalate	80U ug/Kg	· А	bl
280-8606-1	SA94-11_01_BPC	Bis(2-ethylhexyl)phthalate	77U ug/Kg	Α	ы
280-8606-1	SA94-12_01_BPC	Bis(2-ethylhexyl)phthalate	81U ug/Kg	Α	bl
280-8606-1	SA94-13_01_BPC	Bis(2-ethylhexyl)phthalate	91U ug/Kg	Α	ы
280-8606-1	SSAL4-04-2_01_BPC	Bis(2-ethylhexyl)phthalate	79U ug/Kg	Α	bi
280-8606-1	SSAL4-04-3_01_BPC	Bis(2-ethylhexyl)phthalate	77U ug/Kg	Α	bl
280-8606-1	SSAL4-04-4_01_BPC**	Bis(2-ethylhexyl)phthalate	75U ug/Kg	Α	bl

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Semivolatiles - Equipment Blank Data Qualification Summary - SDG 280-8606-1

No Sample Data Qualified in this SDG

Tronox Northgate Henderson

LDC #: 24523D2a	VALIDATION COMPLETENESS WORKSHEET
SDG #: 280-8606-1	Stage 2B/4
Laboratory: Test America	_

Date: 12/17/4
Page: 1 of 1
Reviewer: 3/6
2nd Reviewer: 4

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1	Technical holding times	A	Sampling dates: 16 /14 /60
11.	GC/MS Instrument performance check	À	
Ht.	Initial calibration	Á	Z KED IY
IV.	Continuing calibration/ICV	A	CW /W & 25 b
V.	Blanks	SW	,
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	Sw	
VIII.	Laboratory control samples	A	LCS /b
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	
XI.	Target compound identification	Á'	Not reviewed for Stage 2B validation.
XII.	Compound quantitation/CRQLs	SW	Not reviewed for Stage 2B validation.
XIII.	Tentatively identified compounds (TICs)	N	Not reviewed for Stage 2B validation.
XIV.	System performance	A	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data	A	·
XVI.	Field duplicates	SW	D = 5 6
XVII.	Field blanks	WZ	EB = 19 20

Note: A = Acceptable

N = Not provided/applicable

ND = No compounds detected

R = Rinsate

D = Duplicate

TB = Trip blank

SW = See worksheet

FB = Field blank

EB = Equipment blank

Validated Samples: ** Indicates sample underwent Stage 4 validation

	- Sall +	<i>V</i> V	Men						
1	SSAR6-06-0_01_BPC \(\mathcal{S} \)	11	SSAR6-06-9_01_BPC	21	SSAR6-06-0_01_BPCMS	31 1	MB	280-	36476/I-A
2	SSAR6-06-1_01_BPC	12	SSAR6-06-10_01_BPC**	22	SSAR6-06-0_01_BPCMSD	32 7	nn	280-	36377/-
3	SSAR6-06-2_01_BPC	13	SA94-11_01_BPC	23_		33	ļ		,
4	SSAR6-06-3_01_BPC	14	SA94-12_01_BPC	24		34			
5	SSAR6-06-4_01_BPC** P	15	SA94-13_01_BPC	25		35			
6	SSAR6-06-4_01_BPC_FD	16	SSAL4-04-2_01_BPC	26		36 ·			
7	SSAR6-06-5_01_BPC	17	SSAL4-04-3_01_BPC	27		37			
8	SSAR6-06-6_01_BPC	18	SSAL4-04-4_01_BPC**	28		38			
9	SSAR6-06-7_01_BPC	ر 19ر	ĘΒ-10142010_1 Ψ	29		39			
10	SSAR6-06-8_01_BPC V	20 1	EB-10142010_2	30		40			

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: JV
2nd Reviewer:

Method: Semivolatiles (EPA SW 846 Method 8270C)

Validation Area	Yes	No	NA	Findings/Comments
Technical holding times				en et albaria en la prosection de como de como de como de como de como de como de como de como de como de como
All technical holding times were met.		_		
Cooler temperature criteria was met.		-		TOTAL PROPERTY AND THE PROPERTY COMPANIES TO A CONTROL OF THE PROPERTY OF THE
II. GC/MS Instrument performance check	ī	ı		
Were the DFTPP performance results reviewed and found to be within the specified criteria?		·		,
Were all samples analyzed within the 12 hour clock criteria?		and the same of th	a a single Wangin	A STATE OF THE STA
III. Initial calibration	T T	I.		
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Was a curve fit used for evaluation?	/			
Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?				
Were all percent relative standard deviations (%RSD) \leq 30% and relative response factors (RRF) \geq 0.05?				
IV: Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?		1		<u> </u>
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?	_			
V. Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.			Onio catrigua	
VI. Surrogate spikes				
Were all surrogate %R within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?		A security to a second		
VII. Matrix spike/Matrix spike duplicates				是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII. Laboratory control samples	1.946			
Was an LCS analyzed for this SDG?				

LDC#: 24523 DK

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: 3/6
2nd Reviewer: 4

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?	/	1		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
IX: Regional Quality Assurance and Quality Control		1.0		
Were performance evaluation (PE) samples performed?	<u> </u>		_	
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?				
Were retention times within ± 30 seconds from the associated calibration standard?				
XI, Target compound Identification		37.0	1.7	
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/	<u> </u>		•
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XII. Compound quantitation/CRQLs	/			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Tentatively identified compounds (TICs)				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				/
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?				,
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?				
XIV: System performance		4.71		
System performance was found to be acceptable.				
XV. Overall assessment of data		l e e		Augustus (Table)
Overall assessment of data was found to be acceptable.				
XVI.:Field.duplicates				
Field duplicate pairs were identified in this SDG.		•		Secretarian de la contraction
Target compounds were detected in the field duplicates.	\overline{A}			
XVII. Field blanks			W. 12.	
Field blanks were identified in this SDG,	1			
Target compounds were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

			73	
A. Phenol**	P. Bis(2-chloroethoxy)methane	EE. 2,6-Dinitrotoluene	TT. Pentachlorophenol**	III. Benzo(a)pyrene**
B. Bis (2-chloroethyl) ether	Q. 2,4-Dichlorophenol**	FF. 3-Nitroaniline	UU. Phenanthrene	JJJ. Indeno(1,2,3-cd)pyrene
C. 2-Chlorophenol	R. 1,2,4-Trichlorobenzene	GG. Acenaphthene™	VV. Anthracene	KKK. Dibenz(a,h)anthracene
D. 1,3-Dichlorobenzene	S. Naphthalene	HH. 2,4-Dinitrophenol*	WW. Carbazole	LLL. Benzo(g,h,i)perylene
E. 1,4-Dichlorobenzene**	T. 4-Chloroaniline	II, 4-Nitrophenol*	XX. Di-n-butylphthalate	MMM. Bis(2-Chloroisopropyl)ether
F. 1,2-Dichlorobenzene	U. Hexachlorobutadiene**	JJ. Dibenzofuran	YY, Fluoranthene**	NNN. Aniline
G. 2-Methylphenol	V. 4-Chloro-3-methylphenol**	KK. 2,4-Dinitrotoluene	ZZ. Pyrene	000. N-Nitrosodimethylamine
H. 2,2'-Oxybis(1-chloropropane)	W. 2-Methylnaphthalene	LL. Diethylphthalate	AAA. Butylbenzylphthalate	PPP. Benzoic Acid
1. 4-Methylphenol	X. Hexachlorocyclopentadiene*	MM. 4-Chlorophenyl-phenyl ether	BBB. 3,3'-Dichlorobenzidine	QQQ. Benzyl alcohol
J. N-Nitroso-di-n-propylamine*	Y. 2,4,6-Trichlorophenol**	NN. Fluorene	CCC. Benzo(a)anthracene	RRR. Pyridine
K. Hexachloroethane	Z. 2,4,5-Trichlorophenol	00. 4-Nitroaniline	DDD. Chrysene	SSS. Benzidine
L. Nitrobenzene	AA. 2-Chloronaphthalene	PP. 4,6-Dinitro-2-methylphenol	EEE. Bis(2-ethylhexyl)phthalate	TTT.
M. Isophorone	BB, 2-Nitroaniline	QQ. N-Nitrosodiphenylamine (1)**	FFF. Di-n-octylphthalate**	nnn
N. 2-Nitrophenol™	CC. Dimethylphthalate	RR. 4-Bromophenyl-phenylether	GGG. Benzo(b)fluoranthene	ww.
0. 2,4-Dimethylphenol	DD. Acenaphthylene	SS. Hexachlorobenzene	HHH. Benzo(k)fluoranthene	WWW.

Notes:* = System performance check compound (SPCC) for RRF: ** = Calibration check compound (CCC) for %RSD.

LDC# 24523 bra

VALIDATION FINDINGS WORKSHEET

2nd Reviewer:__ Page: Reviewer:_

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N/A

Was a method blank analyzed for each matrix?

Was a method blank analyzed for each concentration preparation level? Was a method blank associated with every sample?

Y/N N/N Y Á N/A N/N N/A

Was the blank contaminated? If yes, please see qualification below. Blank extraction date: 10/2/ha

(p) Sample Identification Associated Samples: 20 7 2 中的-36×72米+ Blank ID 707 βP THE THE Compound Conc. units:

Associated Samples: Blank extraction date: 10/14/6 Blank analysis date: 10/25/1/5 Conc. units:

K 044

Compound	Blank ID				S	Sample Identification	tion			
MS	MB 280-3476 1-A	1-4-1	4	۶	4	5	3	7	8	6
EEE	66,0	47 /4	87/4	116/4	n/08	94 /4	N 81	N 48	81 /4	1/08
			,	,	,					
		-								
							•			

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

スクをスタウス HDCH

VALIDATION FINDINGS WORKSHEET

Page: Vof 2nd Reviewer:__ Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank analyzed for each matrix? Y N/A Y N N/A

Was a method blank analyzed for each concentration preparation level? Was a method blank associated with every sample?

Y/N N/A

Was the blank contaminated? If yes, please see qualification below. V N N/A

/ro Associated Samples; /22/ Blank extraction date: 10 /6 / Blank analysis date:

00 (2d) 79 $\overline{\rho}$ Sample Identification 6 $\overline{\infty}$ 7 7/08 4 Š ٥ <u>~</u> MB 1280-24476/1-A Blank ID 66.0 死 Compound Conc. units: นุค

Sample Identification Associated Samples: Blank ID Compound Conc. units:

Blank analysis date:

Blank extraction date:

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC# 24523 D2C SDG # _ Stx_ Car-

VALIDATION FINDINGS WORKSHEET Field Blanks

Page: of 2nd Reviewer:_ Reviewer

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Were field blanks identified in this SDG? Y N/A

Were target compounds detected in the field blanks? 1 Associated sample units: US Blank units:

Sampling date: 10 /14

臣路 Field blank type: (circle one) Field Blank / Rinsate / Other:

1-12

Associated Samples: Riank ID

Compound	Blank ID	Samp	Sample Identification
	19		
Diethylphthatate FEE	2.1	All results > 5x FB	
Di-n-butyiphthalate			
Bis(2-ethylhexyl)phthalate			
CROL			
η		/	

Associated sample units: Works 7/ Gn Blank units:

Sampling date: 10 /14 10 Field Blank / Rinsate / Other:

Field blank type: (circle one) Field Blank / Rinsate / Other:	e) Field Blank /	/ Rinsate / Other:	亞	EB Associated Samples:	51-61		
Compound	Blank ID			37	Sample Identification		
	90						
Diethylphinalate EFE	2,	All	isa t	5 7 EX EB			
Di-n-butylphthalate	•						
Bis(2-ethythexyl)phthalate							
CROL							
						The second secon	

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated field blank concentration were also qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

LDC #: 24523 DW

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: of 2nd Reviewer:_ Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

স্থিৰse see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A"

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated XN N/A

MS/MSD. Soil / Water.

N N/A

Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

			_			_					_							
Qualifications	110 0000	(Mc /wcm is	(Asul) Ell															
Associated Samples																		
RPD (Limits)	.)	(()	`	()	()		(_	· ·)	()	. •	()		^	,
	.,	((((((_	()	(((•	^	
MSD %R (Limits)	ord))))))	_))))					
MS %R (Limits)	Lomb(ornds)	for 12 RPD)	()	()	()	(())	()	()	()		(()	()	()	()	()
Compound	several																	
MS/MSD ID	72/ [2																	
Date																		
#																		

L											
	Compound	QC Limits (Soil)	RPD (Soil)	QC Limits (Water)	RPD (Water)		Compound	QC Limits	RPD (Soil)	QC Limits	RPD (Weter)
∢	Phenoi	%06-92	×35%	12-110%		99	Acenaphthene	31-137%	< 19%	46-118%	/310/
Ü	2-Chlorophenol	25-102%	< 50%	27-123%	× 40%	=	4 Mitrophonel	4 4 4 5 5	200	8/OL -OF	2/2/
				2/ - 12 //8	e/ 0+/ /	=	4-IVII Opnenoi	11-114%	< 50%	10-80%	× 20%
ш	1,4-Dichlorobenzene	28-104%	< 27%	36-97%	< 28%	첫	2,4-Dinitrotoluene	28-89%	< 47%	24-96%	< 38%
∽ં	N-Nitroso-di-n-propylamine	41-126%	< 38%	41-116%	< 38%	F	Pentachlorophenol	17-109%	< 47%	9-103%	2 50 %
œ	1,2,4-Trichtorobenzene	38-107%	< 23%	39-98%	< 28%	N	Pyrene	35-142%	%9E >	26-127%	33.0
>	4-Chlora-3-methylphenol	26-103%	< 33%	23-97%	< 42%				200	07 171-07	0/10/

LDC#: 24523 D24

Compound Quantitation and Reported CRQLs VALIDATION FINDINGS WORKSHEET

Page: Reviewer:

2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? V N/A N N/A

Qualifications	5/NT/P (4)										
Associated Samples	resalved,	56									
Finding	GGG, 44# peaks UN	result reported as 656	,							9 9 9 9	
Sample ID	9	-									
Date		·									
#											

Comments: See sample calculation verification worksheet for recalculations

LDC#:24523D2a

VALIDATION FINDINGS WORKSHEET Field Duplicates

	Page:	l _{of_})_
	Reviewer:_	<u> </u>	16
2nd	Reviewer:		
		r	

METHOD: GC MS Semivolatiles (EPA SW 846 Method 8270C)

Y N NA Y N NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentra	ation (ug/Kg)	(≤50)	(mg/Kg)	(mg/Kg)	Qualifications
Compound	5	6	RPD	Difference	Limits	(Parent Only)
Benzo(b)fluoranthene	340U	34		306	(≤340)	
Benzo(g,h,i)perylene	22	23		1	(≤350)	
bis(2-ethylhexyl)phthalate	94	78		16	(≤350)	
Di-n-butyl phthalate	57	32		25	(≤350)	
Pyrene	14	19		5	(≤350)	

V:\FIELD DUPLICATES\24523D2a.wpd

LDC# 24522022

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Page:

Reviewer: 2nd Reviewer:

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

S= Standard deviation of the RRFs, $C_x = Concentration of compound,$ A_x = Area of Compound

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard X = Mean of the RRFs

potelinological	potelliological	Bestelliological	potelliological	L	۵	4040	D. 2010. 124. J		
<u> </u>	nellodev. –			Recalculated		керопеа	Kecalculated	Керопед	Recalculated
Calibration RRF RRF	RRF			RRF		Average RRF	Average RRF	%RSD	%RSD
Standard ID Date Compound (IS) (50 std) (50 std)	Compound (IS) (50 std) ((50 std)		(50 std)		(Initial)	(Initial)		
ICAL 9/28/2010 1,4-Dioxane (IS1) 0.5880 0.5880	(1S1) 0.5880	(1S1) 0.5880		0.5880	Т	0.5957	0.5957	6.6	6.56
MSS B Naphthalene (IS2) 1.0327 1.0327	(1S2) 1.0327	(1S2) 1.0327	_	1.0327		1.0105	1.0105	7.6	7.59
Fluorene (IS3) 1.2891 1.2891	(1S3) 1.2891	(1S3) 1.2891		1.2891		1.2310	1.2310	8.5	8.52
Hexachlorobenzene (IS4) 0.2160 0.2160	0.2160	0.2160		0.2160		0.2116	0.2116	4.5	4.46
bis(2-ethylhexyl)phth (IS5) see r2 calculations	phth (IS5)	phth (IS5)	see r2 calculations	Su					
Benzo(a)pyrene (IS6) 1.0568 1.0568	(1S6) 1.0568	(1S6) 1.0568		1.056		1.0018	1.0018	4.8	4.85

Area IS	199977	791575	461785	772497	817425	790214
Area cpd	146990	1021776	744086	208557	709742	1043827
onc IS/Cpd	40/20	40/20	40/20	40/20	40/20	40/20

Conc	1,4-Dioxane	Naphthalene	Fluorene	Hexachlorob	bis(2eh)phthal	Benzo(a)py
4.00	0.6881	1.1010	1.3136		12	0.9222
10.00	0.5921	1.0854	1.3424	0.2234		0.9811
20.00	0.5846	1.0767	1.3105	0.2223		1.0510
50.00	0.5880	1.0327	1.2891	0.2160		1.0568
80.00	0.5960	1.0027	1.2479	0.2115		1.0469
120.00	0.5860	0.9649	1.1845	0.2063		1.0157
160.00	0.5635	0.9226	1.0835	0.2013		0.9767
200.00	0.5672	0.8983	1.0765	0.2003		0.9636
×	0.5957	1.0105	1.2310	0.2116	0.0000	1.0018
(V)	0.0391	0.0767	0.1049	0.0094	#DIV/0i	0.0486
•						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC # 245 pr # DOL

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Page:_ Reviewer: 2nd Reviewer:

METHOD: GCMS Semivolatiles (EPA SW 846 Method 8270C)

Parameter: bis(2-ethylhexyl) phthalate

Order of regression:

Linear

r			_	,—		1			_
y conc ratio	0.100	0.250	0.500	1.250	2.000	3.000	4.000	5.000	
× area ratio	0.040456988	0.139427432	0.319337871	0.86826559	1,44506605	2.114757735	2.78197209	3.431946627	
Points	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8	
Compound	bis(2-ethylhexyl) phthalate								
Column	Vf-5MS								
Date	28-Sep-10		— t		,	1	1		

0.4046 0.5577 0.6387 0.6946 0.7225 0.7049 0.6955 Ave 0.6381

Regression Output: Regre	tt: Regression Output:		Reported WLR	
		0.01781	= 0	0.04440
Std Err of Y Est	# 6-1	0.04		
R Squared		0.99929	r^2 =	0.99920
No of Observations		00.9		
Degrees of Freedom		4.00		
		5	m1=	0.7097
X Coefficient(s)	0.69768			
Std Err of Coef.	0.01		ì	

LDC # 265-17 Dra

Continuing Calibration Results Verification VALIDATION FINDINGS WORSHEET

Page_ 2nd Reviewer:__ Reviewer:_

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

RRF = (Ax)(Cis)/(Ais)(Cx)

ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

Ais = Area of associated internal standard Cx = Concentration of compound

Ax = Area of compound

Cis = Concentration of internal standard

		1			1	T	ī	_	Т	Т	1		-
Recalculated	Q%	6.0	2.6	5.5	8.4	8.1	7.0						
Reported	Q%	6'0	2.6	5.5	8.4	8.1	7.0						
Recalculated	(CC RRF)	0.601	1.037	1.299	0.229	86.501	1.072						
Reported	(CC RRF)	0.601	1.037	1.299	0.229	86.500	1.072						
Average RRF	(Initial RRF)	0.596	1.011	1.231	0.212	80.000	1.002						
	Compound (Reference IS)	1,4-Dioxane (IS1)	Naphthalene (IS2)	Fluorene (IS3)	Hexachlorobenzene (IS4)	bis(2-ethylhexyl)phth (IS5)	Benzo(a)pyrene (1S6)			,			
Calibration	Date	10/25/10											
	Standard ID	B1315											į
	#	-				T							

		CCV1		CCV2	
Compound (Reference IS)	Concentration (IS/Cpd)	Area Cpd	Area IS	Area Cpd	Area IS
1,4-Dioxane (IS1)	40/80	209102	173903		
(IS2)	40/80	1425076	687301		
Fluorene (IS3)	40/80	1029653	396345		
Hexachlorobenzene (IS4)	40/80	305394	665612		
bis(2-ethylhexyl)phth (IS5)	40/80	1032201	686652		
Benzo(a)pyrene (IS6)	40/80	1494660	696926		:

bis(2eh)phthala

0.7097 Ε

ρ

Response Ratio*40 1.503237448

0.0444

86.50123307 Conc

LDC#: 24523 124

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Reviewer:__

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

#5 Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	190	88.5	88	88	0
2-Fluorobiphenyl		89.7	90	90	
Terphenyl-d14	J	94,9	95	95	
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					-
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

LDC#: 74573 DM

Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

- - -	M	, o
Page:	Reviewer:	2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where:

SC = Sample concentation

RPD = IMSC - MSC I * 2/(MSC + MSDC)

SSC = Spiked sample concentration SA = Spike added

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

ž MS/MSD samples: __

Matrix Spike Duplicate Percent Recovery Reported Recalc Percent Recovery Matrix Spike Spiked Sample Concentration (M/let) Sample Concentration (T) **MSD** Spike Added 3 N-Nitroso-di-n-propylamine Compound Phenol

Recalculated

Reported

MS/MSD

 RPD

3

4

3

3

3

S

88

222

P

282

7845

4-Chloro-3-methylphenol

104

× 4

22

20

250%

27a

5

24.00

Pentachlorophonel Acenaphthene

Pyrene

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within
10.0% of the recalculated results.

LDC# Toff 17 bra

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

Reviewer.

Page: Lof_1 2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample, duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I* 2/(LCSC + LCSDC)

LCSC = Laboraotry control sample concentration
LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: 168 740 -

6,		Recalculated						-			
dec lisc.	RPD	Renorfed									
	ecovery	Recalc									
USU	Percent Recovery	Reported									
l Cs	Percent Recovery	Recalc				٤3		36			
	Percent	Reported				87		95			
ike	tration (c,)	J CSD				NA					
dS	Concentration	l CS				area		25 70			
ike	Adged (49/Kg)	O LCSD				1/4					
Š	β V	ICS				29 92					
	Compound		Phenol	N-Nitroso-di-n-propylamine	4-Chloro-3-methylphenol	Acenaphthene	Pentachlorophenot*	Pyrene	,		·

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	l_of <i>1_</i>
Reviewer:	W_
2nd reviewer:	JV7 //~
•	

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

YN	N/A
YN	N/A
$\overline{}$	

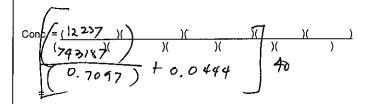
Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration =	(A,)(I,)(V,)(DF)(2.0)
(A	(s)(RRF)(V _o)(V _i)(%S)

Area of the characteristic ion (EICP) for the compound to be measured

Area of the characteristic ion (EICP) for the specific internal standard

Amount of internal standard added in nanograms (ng)


Volume or weight of sample extract in milliliters (ml) or ٧ grams (g).

Volume of extract injected in microliters (ul)

Volume of the concentrated extract in microliters (ul) ٧,

Dξ Dilution Factor.

Percent solids, applicable to soil and solid matrices only. %5

x = 2.704 final conc. = (2.704) (1ml) (W80)

2.0	= Factor of 2 to accor	unt for GPC cleanup	tinal co	$n(. = \frac{2.700}{}$	31,7) 0	<u> </u>
#	Sample ID	Compound		Reported Concentration ()	Calculated Concentration	Qualification
				= 93.	7	
				7 94	ug /ley	
			<u>-</u>		° 0	
			-			
	•					
				-		
		· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·	,		
	,					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: '

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

October 12, 2010

LDC Report Date:

December 21, 2010

Matrix:

Soil

Parameters:

Chlorinated Pesticides

Validation Level:

Stage 2B & 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-8461-1

Sample Identification

SSAL2-04-1 01 BPC

SSAL2-04-2_01_BPC

SSAL2-04-3 01 BPC

SSAL2-04-4 01 BPC

SSAL2-05-1_01_BPC

SSAL2-05-2 01 BPC

SSAL2-05-3_01_BPC

SSAL2-05-4 01 BPC**

SSAL2-04-3 01 BPCMS

SSAL2-04-3 01 BPCMSD

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 10 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8081A for Chlorinated Pesticides.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of single compounds were performed for the primary (quantitation) column and confirmation column as required by this method.

A curve fit, based on the initial calibration, was established for quantitation for all compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

Retention time windows were evaluated and considered technically acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples on which a Stage 2B review was performed.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

Retention times (RT) of all compounds in the calibration standards were within QC limits for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples on which a Stage 2B review was performed.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No chlorinated pesticide contaminants were found in the method blanks.

No field blanks were identified in this SDG.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Column	Surrogate	%R (Limits)	Compound	Flag	A or P
SSAL2-04-1_01_BPC	RTX-XLB RTI-35S	Decachlorobiphenyl Decachlorobiphenyl	193 (63-124) 189 (63-124)	All TCL compounds except Hexachlorobenzene	J+ (all detects)	A
SSAL2-04-4_01_BPC	RTX-XLB RTI-35S	Decachlorobiphenyl Decachlorobiphenyl	692 (63-124) 692 (63-124)	All TCL compounds except 4,4'-DDE beta-BHC Hexachlorobenzene	J+ (all detects)	Α
SSAL2-05-1_01_BPC	RTX-XLB RTI-35S	Decachlorobiphenyl Decachlorobiphenyl	285 (63-124) 315 (63-124)	All TCL compounds except Hexachlorobenzene	J+ (all detects)	Α
SSAL2-05-3_01_BPC	RTX-XLB RTI-35S	Decachlorobiphenyl Decachlorobiphenyl	540 (63-124) 528 (63-124)	All TCL compounds except Hexachlorobenzene	J+ (all detects)	А

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Although the MS/MSD percent recoveries (%R) were not within QC limits for one compound, the LCS percent recovery (%R) was within QC limits and no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

XI. Target Compound Identification

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XII. Project Quantitation Limit

All compound quantitation and CRQLs were within validation criteria for samples on which a Stage 4 review was performed.

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-8461-1	All compounds reported below the PQL.	J (all detects)	Α

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Chlorinated Pesticides - Data Qualification Summary - SDG 280-8461-1

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-8461-1	SSAL2-04-1_01_BPC SSAL2-05-1_01_BPC SSAL2-05-3_01_BPC	All TCL compounds except Hexachlorobenzene	J+ (all detects)	A	Surrogate recovery (%R) (s)
280-8461-1	SSAL2-04-4_01_BPC	All TCL compounds except 4,4'-DDE beta-BHC Hexachlorobenzene	J+ (all detects)	A	Surrogate recovery (%R) (s)
280-8461-1	SSAL2-04-1_01_BPC SSAL2-04-2_01_BPC SSAL2-04-3_01_BPC SSAL2-04-4_01_BPC SSAL2-05-1_01_BPC SSAL2-05-2_01_BPC SSAL2-05-3_01_BPC SSAL2-05-4_01_BPC**	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 280-8461-1

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG 280-8461-1

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Date: 17/12/10
Page:of
Reviewer:
and Daviouser:

2nd Reviewer:

METHOD: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: lo /12 /10
II.	GC/ECD Instrument Performance Check	A	'
111.	Initial calibration	A	r~
IV.	Continuing calibration/ICV	A	· cw/10 € 20 }
V.	Blanks	A	
V <u>I</u> ,	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	SW	
VIII.	Laboratory control samples	A	ιςς .
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	A	Not reviewed for Stage 2B validation.
XII.	Compound quantitation and reported CRQLs	A	Not reviewed for Stage 2B validation.
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	2	
XV.	Field blanks	N	

Note:

A = Acceptable

LDC #: 24523B3a

SDG #: 280-8461-1 Laboratory: Test America

> N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

Validated Samples: ** Indicates sample underwent Stage 4 validation

		<u> </u>	Soils		 	
1	SSAL2-04-1_01_BPC	11	MB 280_ 359 38/34	-21	31	
2	SSAL2-04-2_01_BPC	12		22	 32	
3	SSAL2-04-3_01_BPC	13		23	33	
4	SSAL2-04-4_01_BPC	14		24	34	
5	SSAL2-05-1_01_BPC	15		25	 35	
6	SSAL2-05-2_01_BPC	16	••••	26	 36	
7	SSAL2-05-3_01_BPC	17		27	37	
8	SSAL2-05-4_01_BPC**	18		28	38	
9	SSAL2-04-3_01_BPCMS	19		29	 39	
10	SSAL2-04-3_01_BPCMSD	20		30	40	

VALIDATION FINDINGS CHECKLIST

Page: _of 2
Reviewer: _JVG
2nd Reviewer: __

Method: Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.	1		·	
II. GC/ECD instrument performance check				
Was the instrument performance found to be acceptable?				
III. Initial calibratión.	T	-		A COMPANY
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) \leq 20%?				·
Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?				
Did the initial calibration meet the curve fit acceptance criteria?				
Were the RT windows properly established?				
Were the required standard concentrations analyzed in the initial calibration?			Nacionali de soc	
IV: Continuing calibration				
What type of continuing calibration calculation was performed?%D or%R				
Were Evaluation mix standards analyzed prior to the initial calibration and sample analysis?				
Were endrin and 4,4'-DDT breakdowns ≤ 15%.0 for individual breakdown in the Evaluation mix standards?				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) ≤ 20%.0 or percent recovieries 80-120%?				
Were all the retention times within the acceptance windows?	1/			
V. Blanks				
Was a method blank associated with every sample in this SDG?		-	:	
Was a method blank analyzed for each matrix and concentration?				
Were extract cleanup blanks analyzed with every batch requiring clean-up?	4			
Was there contamination in the method blanks or clean-up blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Surrogate spikes				
Were all surrogate %R within the QC limits?				
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				

VALIDATION FINDINGS CHECKLIST

Page: 2of 2 Reviewer: JV6 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
VII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII. Laboratory control samples		·		
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
IX_Regional Quality Assurance and Quality Control.				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?			/	
X. Target compound identification				
Were the retention times of reported detects within the RT windows?			200 0 (0.00)	
XI, Compound quantitation/CRQLs				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation?				
XII. System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.		·		
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.				/
XV. Field blanks			11.	
Field blanks were identified in this SDG.			/	
Target compounds were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	I. Dieldrin	Q. Endrin kelone	Y. Aroclor-1242	GG. Chlordane
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Aroclar-1248	HH. Chlordane (Technical)
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Aroclor-1254	II. Arochlor 1262
D. gamma-BHC	L. Endosulfan II	T. gamma-Chlordane	BB. Aroctor-1260	JJ. Arochlor 1268
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	cc. 2,4'-DDD	KK. oxy Chlordane
F. Aldrin	N. Endosulfan sulfate	V. Aroclor-1016	DD.2,4'-DDE	LL. trans-Nonachlor
G. Heptachlor epoxide	O.4,4'-DDT	W. Aroclor-1221	EE. 2,4'.DDT	MM. cis-Nonachlor
H. Endosulfan I	P. Methoxychlor	X. Aroclor-1232	FF. Hexachlorobenzene	NN.

	7.771.788.448.8.	
Notes:		

LDC #: 245 23 B39

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page: lof > 2nd Reviewer._ Reviewer:_

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

Were surrogates spiked into all samples, standards and blanks?

Y(N)N/A

Did all surrogate percent recoveries (%R) meet the QC limits?

			_						4	`								
Qualifications	3+ dats / A law excent FF			No guil			No male		J+ Acts /A (All except J. B)		No quel					J+ dets /A (all +xagt 17)	1	
%R (Limits)	193 (63-124)	(89 (.)	()	() 121	147 (🗸)	46, (54-115)	6 × (63-124)	()	69× ()	() 269	767 ()	640 (1/)	15/11/S) 25	(1)0	()	285 (63-124)	3/5 (1)	()
Surrogate Compound	8	<i>P</i> 3		.	4	*	ĸ	-	چ.	જ	8	\$	Ą	#		8	В	
Column	KTX-XLB	RTZ- 355		RTX-XLB	RIAC 35.5		RIT- 35-5		RTK- XLB	RTI- 355	RTX - XLB	RTE- 355	RTX- XLB	RTI- 555		RTX- XLB	RTI-355	
Sample ID				1 (20x)			3 (4x)		4		4 (50x)					۶		
Date																		
#																		

Comments

Recovery QC Limits (Water)

Recovery QC Limits (Soil)

Surrogate Compound

Letter Designation

Tetrachoro-m-xylene Decachlorobiphenyl

LDC#: 74523 834

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page: Yof 2 Reviewer: INC 2nd Reviewer:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A

Were surrogates spiked into all samples, standards and blanks? N/A N/A

Did all surrogate percent recoveries (%R) meet the QC limits?

Qualifications	No mal				3+ acts A (qu excust FF)		No rule	1 1									
%R (Limits)	317 (63-124)	314 (1)	133 (59-115)	()	540 (63-124)	528 (·)	523 ()	484 (/)	32 (51-115)		()			()	()	(
Surrogate Compound		<u>ත</u>	*		8	В	4	4	*	4							
Column	RTM- XLA				RFX- XLB	RTI-355	RTX-XLB	RTX= 355	RTX-XLB	RTI- 355							_
Sample ID	5 (20x)				7		7 (50x)	\ \ \									
Date																	
*																	

Letter Decises tion				
renet Designation	Surrogate Compound	Recovery QC Limits (Soil)	Recovery QC Limits (Water)	Comments
∢	Tetrachoro-m-xylene			
ш	Decachlorobiohenvl			
				-

Page: Lof L Reviewer:还 2nd Reviewer:天

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

24523 B34

LDC #:

SDG #: 52 Con

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y NIA

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? Was a MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed? Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

	_																									
Qualifications	No gual	(1,571)																								
Associated Samples	<																									
RPD (Limits)	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	((
MSD %R (Limits)	J1-83 (58-1K	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
MS %R (Limits)	52 (58-116)	()	()	()	()	()	(())	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	(.)
Сотроии	Ъ	_				-																				
MS/MSD ID	d /D	,																:								
# Date																										

LDC#: 245 22 B 22

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 1 of 4
Reviewer: 12/2
2nd Reviewer:

Method: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

Calibration				ε	8	(X2)
Date	Instrument/Column	Compound	Standard	Response	Concentration	Concentration
0/22/2010	ว รวย	Hexachorobenzene	1	146588	5	0
			2	339427	10	25
	RTX-XLB		8	791393	25	625
			4	1538507	920	2500
			5	2146282	75	5625
		•	9	2793606	100	10000

29318 33943 31656

30770 28617 27936 30373

Regression Output	Calculated		Reported	
Constant	= 0	0.0000E+00	II U	0.00003
Std Err of Y Est				
Coefficient of Determination (r^2)	r^2	0.9998546	۲ ^۸ 2	0.9997
Degrees of Freedom				
	II CS	= q	i a	= q
X Coefficient(s)	3.28384E+04	-5.0331E+01	2.597E-01	2.386E-12
Std Err of Coef.				
Correlation Coefficient		0.999927		

LDC#: SYEN BIC

VALIDATION FINDINGS WORKSHEET

Page: Yof 4 Reviewer: DL 2nd Reviewer:

Initial Calibration Calculation Verification

Method: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

			(λ)	X
Instrument/Column	Compound	Standard	Response	Concentration
ວັຮວອ	Hexachorobenzene	1	219395	5
		2	507379	10
RTI-35silms		3	1209105	25
		4	2434317	50
		5	3486824	75
		9	4645627	100

43879 50738 48364 48686 46491 46456 47436

Regression Output	Calculated	Reported
Constant	38987.705404	0.277280
Std Err of Y Est		
R Squared	0.999323	0.996800
Degrees of Freedom		
X Coefficient(s)	46297.05950029	48374.000000
Std Err of Coef.		
Correlation Coefficient	0.999662	
Coefficient of Determination (r^2)	0.999323	0.996800

LDC#: 245 27 834

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 7 of 4
Reviewer: 016
2nd Reviewer:

Method: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

(X) (X2)	Concentration	4 0		1001	10 100		
(x)	Response	114243	279331		681906	681906 1364551	681906 1364551 1916038
	Standard	-	2		3	3	£ 4 c
	Compound	4,4'-DDT					
	Instrument/Column	ວີຣວອ			RTX-XLB	RTX-XLB	RTX-XLB
Calibration	Date	10/22/2010					

28561 27933 27276 27291 25547 24989

26933

Regression Output	Calculated		Reported	
Constant	11	0.0000	II O	0.00003
Std Err of Y Est				
Coefficient of Determination (r^2)	L ₄ 2	0.9998910	r^2	0.9997
Degrees of Freedom				
	w III	= q	n	= q
X Coefficient(s)	2.86240E+04	-3.7035E+01	2.91E-01	2.48E-12
Std Err of Coef.				
Correlation Coefficient		0.999945		

LDC#: 24523 1739

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: $\frac{4}{\text{Of}}$ of $\frac{4}{\text{NU}}$ Reviewer: $\frac{4}{\text{NU}}$

Method: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

Calibration				(λ)	(X)	(X2)
Date	Instrument/Column	Compound	Standard	Response	Concentration	Concentration
10/22/2010	2_S35	4,4'-DDT	1	136373	4	0
			2	352297	10	100
	RTI-35silms		3	916740	25	625
			4	1908294	50	2500
			5	2768614	75	5625
			9	3720648	100	10000

35230 36670

34093

38166 36915 37206

36380

Regression Output	Calculated		Reported	
Constant	= 0	0.0000	 	0.00003
Std Err of Y Est				
Coefficient of Determination (r^2)	Lv 2	0.9998694	r^2	0.99974
Degrees of Freedom				
	11 03	= q	n 0	= q
X Coefficient(s)	3.74817E+04	-3.2093E+00	6.65E-01	2.26E-13
Std Err of Coef.				
Correlation Coefficient		0.999935		

LDC# 24500 Box

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Reviewer: M. 2nd Reviewer:

METHOD: GC HPLC

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration percent difference (%D) values were recalculated for the compounds identified below using the following calculation:

Percent difference (%D) = 100 * (N - C)/N

N = Initial Calibration Factor or Nominal Amount
C = Calibration Factor from Continuing Calibration

Where:

C = Calibration Factor from Continuing Calibration Standard or Calculated Amount

Recalculated 5.6 2.7 7 3.3 3.8 3.0 Reported 2.7 1.7 3.3 0.1 5.6 4.1 2.7 Recalculated Conc 48.6 49.2 48.4 52.8 49.8 50.1 51.5 48.1 Reported Conc 48.6 49.1 48.4 47.9 50.1 52.8 49.8 51.3 CCV Conc 2 2 2 50 50 20 20 4,4'-DDT RTX-XLB 4,4'-DDT RTX-XLB HCB RTI-35s 4,4'-DDT RTI-35s HCB RTX-XLB HCB RTX-XLB 4,4'-DDT RTI-35s HCB RTI-35s Compound 10/23/2010 10/23/2010 Calibration Date Standard ID 07757701 064F6401 N

Calculation	(-b+ ())/2a	(b^2 - 4aT) ()^1/2 (-b-())/2a	24982.6095 49.1614751	37173.0039			(b^2 - 4aT) ()^1/2 (-b-())/2a 773849227.9 27818.1457 50.0693975 606.064242 610749145.1 24713.3394 52.7968217 720.093687 1380197057 37151.0034 51.5247176 11627.5704
		T = Y-c	-1317690	-1795338			T = Y-c -1518268 -1408021 -1922715
		final conc					final conc
	Conc.	X 48 6330	49.1615	48.0971			X 50.0694 52.7968 51.5247
		ပ ပ ပ ပ	0.000	0.0000	Conc	48.36	0.0000 0.0000 0.0000 0.0000 Conc
0+		a 32828	28624	37482	O	0.27728	a 32828 28624 37482 c 0.27728
Y=a(X^2)+bX+c		b -50.0331	-37,0350	-3.2093	Ε	48374	b -50.0331 -37.0350 -3.2093 m
	Area	۲ 1478206	1317690	1795338	Response	2325758	Y 1518268 1408021 1922715 Response 2397191
		CCV1 HCB RTX-XLB	4,4'-DDT RTX-XLB	4,4'-DDT RTI-35s	CCV1	HCB RTI-35s	CCV2 HCB RTX-XLB 4,4'-DDT RTX-XLB 4,4'-DDT RTI-35s CCV2 HCB RTI-35s

LDC#: 24529 B>2

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	<u>l</u> of_l_
Reviewer:	JVC
2nd reviewer:	0

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percen	recoveries (%F) of surro	gates were	recalculated 1	or the comp	oounds identifie	ed below using	g the following	; calculation:
------------	----------------	------------	------------	----------------	-------------	------------------	----------------	-----------------	----------------

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID: #

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene	RTX- XLB	2.7	15.8	79	79	0
Tetrachloro-m-xylene	RTI-35S		16.0	.86	80	
Decachlorobiphenyl	RTX-YLB		17.5	88	88	
Decachlorobiphenyl	RTE-355	8	16.1	8/	[8]	

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene				·		
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene					•	
Tetrachloro-m-xylene						
Decachlorobiphenyl						_
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene				,		
Tetrachloro-m-xylene						
Decachlorobiphenyl		<u></u>				
Decachlorobiphenyl						

Notes:	

LDC#: HSM BIR

Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

Page: 1 of 1 Reviewer: OVC 2nd Reviewer:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) and Relative Percent difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

SC = Concentration

RPD = I MS - MSD I * 2/(MS + MSD)

Where: SSC = Spiked sample concentration SA = Spike added MS = Matrix spike percent recovery

MSD = Matrix spike duplicate percent recovery

MS/MSD samples:

9

	S	pike	Sample	Spiked	Spiked Sample	Matrix	Matrix Spike	Matrix Spil	Matrix Spike Duplicate	MS	MS/MSD
Compound	A0 (10%	Added (Mg /k)	Concentration (v_S/L)	Concentrat (MS /E,	Concentration (いく /ヒ,)	Percent	Percent Recovery	Percent	Percent Recovery	L.	RPD
	MS	MSD	(MS	δ MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
gamma-BHC	(2.)	1.7	0	19.BC	13. qy	18	18	79	79	4	ø
4,4'-DDT	_	\		12'51	15,5	41	7	2	-	0	۵
Aroclor 1260		\$									
									-		

Comments: Refer ot Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

245 m 379 LDC#:

VALIDATION FINDINGS WORKSHEET

Page: 1 of 1 Reviewer: ONE Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

2nd Reviewer:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

SSC = Spiked sample concentration SA = Spike added Where:

SC = Concentration

RPD = ILCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery

103 780-LCS/LCSD samples:_

	ds :	ike	Spiked	Sample	רכ	CCS	רכ	CSD	TCS/FCSD	
Compound	PA ኤ	Added (나숙 /左)	Concentration (1/5, /5,)	ntration /ts/)	Percent Recovery	Recovery	Percent F	Percent Recovery	RPD	
	SOT	O LCSD	FCS	PrcsD	Reported	Recalc.	Reported	Recalc.	Reported R	Recalc.
gamma-BHC	16.6	NA	14. 4	ል	22	67			Щ_	
4,4'-DDT	-		(۲,۶		64	26				
Aroclor 1260		•	,	>						
										İ

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: >4523 1934

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	l_of
Reviewer:	JVC
2nd reviewer:	0_

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

1	Y	N	N/A
ľ	Y/	Z	N/A
Ι,	\mathcal{I}		

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:
Sample I.D. # 8F
Conc. = (22 2072) (32838) X + (50 33)/
X = 6.8358 6.8358
final cone. = (6.8358)(10)
(31.6) (0.937)
= 2,3 u5/ley

_				· · · · · · · · · · · · · · · · · · ·	
#	Sample ID	Compound	Reporte Concentre (ed Calculated ation Concentration	Qualification
				•	
		· · · · · · · · · · · · · · · · · · ·			
					
	•				
					
1					
	· -				

Note:		 	 	
	•			
	•	 	 	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

October 13, 2010

LDC Report Date:

December 21, 2010

Matrix:

Soil

Parameters:

Metals [†]

Validation Level:

Stage 2B & 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-8572-1

Sample Identification

SSAN2-03-1_01_BPC SSAN2-03-2_01_BPC SSAN2-03-3_01_BPC SSAN2-03-4_01_BPC SSAP3-05-1_01_BPC SSAP3-05-2_01_BPC** SSAP3-05-3_01_BPC SSAP3-05-4_01_BPC SSAP3-05-5_01_BPC SSAP3-05-2_01_BPCMS

SSAP3-05-2 01 BPCMSD

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 11 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6020 for Metals. The metals analyzed were Arsenic, Magnesium, and Manganese.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No metals contaminants were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Magnesium	0.690 mg/Kg	SSAP3-05-1_01_BPC SSAP3-05-2_01_BPC** SSAP3-05-3_01_BPC SSAP3-05-4_01_BPC SSAP3-05-5_01_BPC
ICB/CCB	Magnesium	3.28 ug/L	SSAP3-05-1_01_BPC SSAP3-05-2_01_BPC** SSAP3-05-3_01_BPC SSAP3-05-4_01_BPC SSAP3-05-5_01_BPC

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

No field blanks were identified in this SDG.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable for samples on which a Stage 4 review was performed.

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-8572-1	All analytes reported below the PQL.	J (all detects)	A

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Metals - Data Qualification Summary - SDG 280-8572-1

SDG	Sample	-	Analyte	Flag	A or P	Reason
280-8572-1	SSAN2-03-1_01_BPC SSAN2-03-2_01_BPC SSAN2-03-3_01_BPC SSAN2-03-4_01_BPC SSAP3-05-1_01_BPC SSAP3-05-2_01_BPC** SSAP3-05-3_01_BPC SSAP3-05-4_01_BPC SSAP3-05-5_01_BPC		II analytes reported elow the PQL.	J (all detects)	A	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Metals - Laboratory Blank Data Qualification Summary - SDG 280-8572-1

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Metals - Field Blank Data Qualification Summary - SDG 280-8572-1

No Sample Data Qualified in this SDG

Tronox Northgate Henderson

		Tronox Northgate Henderson	
LDC #:	24523C4	VALIDATION COMPLETENESS WORKSHEET	Date: <u>I∂~I6~</u> IĆ
SDG #:	280-8572-1	_ Stage 2B/4	Page: <u> </u> of <u> </u>
Laborato	ry: <u>Test America Lab</u>	oratories, Inc.	Reviewer: M&
			2nd Reviewer: _ V

METHOD: Metals (EPA SW 846 Method 6020)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 10 - 13 - 10
II.	ICP/MS Tune	Α	
111.	Calibration	A	
IV.	Blanks	SW	
V.	ICP Interference Check Sample (ICS) Analysis	Ą	
VI.	Matrix Spike Analysis	Α	MS/MSO
VII.	Duplicate Sample Analysis	N	
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	A	
X.	Furnace Atomic Absorption QC	7	not utilized
XI.	ICP Serial Dilution	A	
XII.	Sample Result Verification	A	Not reviewed for Stage 2B validation.
XIII.	Overall Assessment of Data	Α	
XIV.	Field Duplicates	N	
XV	Field Blanks	N	

Note:

A = Acceptable
N = Not provided/applicable

ND = No compounds detected

SW = See worksheet

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: ** Indicates sample underwent Stage 4 validation

	all soil				
1	SSAN2-03-1_01_BPC	11	SSAP3-05-2_01_BPCMSD	21	31
2	SSAN2-03-2_01_BPC	12	PBS	22	 32
3	SSAN2-03-3_01_BPC	13		23	33
4	SSAN2-03-4_01_BPC	14		24	 34
5	SSAP3-05-1_01_BPC	15		25	35
6	SSAP3-05-2_01_BPC**	16	·	26	36
7	SSAP3-05-3_01_BPC	17		27	37
8	SSAP3-05-4_01_BPC	18		28	38
9	SSAP3-05-5_01_BPC	19		29	 39
10	SSAP3-05-2_01_BPCMS	20		30	40

Notes:			
· · · · · · · · · · · · · · · · · · ·		 · · · · · · · · · · · · · · · · · · ·	

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: 46
2nd Reviewer: _____

Method: Metals (EPA SW 846 Method 6010B/7000/6020)

WIELTOG. WELAS (EFA 3VV 640 WELTOG 00 T05/7 000/0020)			T	
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times	·			
All technical holding times were met.	/	· · · · · · · · · · · · · · · · · · ·		
Cooler temperature criteria was met.	V			
II. ICP/MS Tune				
Were all isotopes in the tuning solution mass resolution within 0.1 amu?	V			
Were %RSD of isotopes in the tuning solution ≤5%?	<u>/</u>			
III. Calibration				
Were all instruments calibrated daily, each set-up time?	/			
Were the proper number of standards used?	1			
Were all initial and continuing calibration verification %Rs within the 90-110% (80-120% for mercury) QC limits?	/			
Were all initial calibration correlation coefficients > 0.995?	/			
IV. Blanks				
Was a method blank associated with every sample in this SDG?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	1			
V. ICP Interference Check Sample				
Were ICP interference check samples performed daily?	/			
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?	/			
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	✓			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	/			
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.	√			
VII. Laboratory control samples				
Was an LCS anaylzed for this SDG?	/			
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	/			

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2 Reviewer: MG 2nd Reviewer: _____

Validation Area	Yes	No	NA	Findings/Comments
VIII. Furnace Atomic Absorption QC				
If MSA was performed, was the correlation coefficients > 0.995?			1	
Do all applicable analysies have duplicate injections? (Level IV only)			/	
For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)			1	
Were analytical spike recoveries within the 85-115% QC limits?				<u> </u>
IX. ICP Serial Dilution		·*		
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?	/			
Were all percent differences (%Ds) < 10%?	/			
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.		/		
X. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)		,		
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?	/			
If the %Rs were outside the criteria, was a reanalysis performed?			/	
XI. Regional Quality Assurance and Quality Control		Y		
Were performance evaluation (PE) samples performed?		V		
Were the performance evaluation (PE) samples within the acceptance limits?			√	
XII. Sample Result Verification	···	Y		
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	<u> </u>			
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	V		<u> </u>	
XIV. Field duplicates	· · · · · · · · · · · · · · · · · · ·	·	, .	
Field duplicate pairs were identified in this SDG.	ļ <u>.</u>	/		
Target analytes were detected in the field duplicates.			/	
XV. Field blanks	·	, ,		
Field blanks were identified in this SDG.		/		
Target analytes were detected in the field blanks.			<u> </u>	

LDC#: 24523C4

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page:_	<u></u>
Reviewer:	MG
2nd reviewer:	<u></u>

All circled elements are applicable to each sample.

· · · · · · · · · · · · · · · · · · ·	 1	
Sample ID	Matrix	Target Analyte List (TAL)
→ 4	S	Al, Sb(As)Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, (Mn) Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
5→9		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb (Mg) Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
QC 10,11		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg) Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
10,11	-	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
	***	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	,	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
	· · · · · · · · · · · · · · · · · · ·	Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
ICP-MS	S	Al, Sb, As Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
GEAA		Al Sh As Ba Be Cd Ca Cr Co Cu Fe Ph Mg Mn Hg Ni K Se Ag Na Tl V Zn Mo B Si CN

Comments: Mercury by CVAA if performed

LDC #: 24523C4

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: mg/Kg

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Page: Reviewer: 2nd Reviewer:

Soil preparation factor applied: 100x

Associated Samples: 5-9 (>RL)

4		
٠.	ļ	├ ──
1		
. 1		
1	[[
]	
]	
ļ.		
4		
	i i	
2.5		
1.		
	[]	
	$\vdash \vdash \vdash$	-
v		
.		
: 1	<u> </u>	├
7		
		Ш
6.5		
		<u> </u>
· .		
	νi	
	No Qual's.	
· ,	ਂ ਰੱ	
15.	우	
- 7/,		
	\ction Limit	
• 1	Action Limit	
13.1	4	
200		
5. T	Maximum ICB/CCB ^a (ug/L)	"
	E0.8	3.28
	돌였고	ຕ∥
	≥ ≤	
ď.		屵╡
) :	Maximum PB ^a (ug/L)	
	aximur PB ^a (ug/L)	
	<u>`ĕ</u> - Š	j
	Σ	
	┝╤╌╡	=
. F.	[B]	_
	Maximum PB ^a (mg/Kg)	0.690
:() :()	axi	ŏ∥
	¥ 5	
		الط
V.	çı,]
	Analyte	
Balli	""	
31.	~	§
- 1 '-		الستسا

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were

qualified as not detected, "U". Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

LDC# 34533C4

Initial and Continuing Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Page: 1 of 1 Reviewer.__ 2nd Reviewer._

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found x 100 True

Where, Found = concentration (in ug/L) of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
	ICP (Initial calibration)						
1439 ICV	ICP/IMS (Initial calibration)	Ma	00.861 h	0004	103	(03	Y
	CVAA (Initial calibration)	0					
	IČP (Continuing calibration)						
1603 CCV	ICP/MS (Continuing calibration)	M	5083.00	5 000	(0)	707	>
	CVAA (Continuing calibration)	0					·
	GFAA (Initial calibration)						
	GFAA (Continuing calibation)						

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. ******

:.....

LDC # 34533C4

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page: Reviewer:_ 2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found x 100

Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

S = Original sample concentration D = Duplicate sample concentration Where,

RPD = $|S-D|_X \times 100$ (S+D)/2

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

%D = 11-SDRI x 100

Where, I = Initial Sample Result (mg/L) SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

	Acceptable (Y/N)	\ \					
Reported	%R/RPD/%D	1-6	92	8	න	2.2	
Recalculated	%R/RPD/%D	1-6	92	8	8	2.2	
	True / D / SDR (units)	(7/Bm) 000011	3000 (mg/kg)	1930 (mg/kg)	11734.7 (mg/kg	9447.5 (mg/kg)	
	Found / S / I (units)	106500.00 (Mg/) 110000 (mg/)	1844.5 (mg/kg) 2000 (mg/kg	(SSR-SR) (Mg/)	10878.0 (mg/kg) 11734.7 (mg/kg	9246.6 (mg/kg)	#
	Element	bw	Ma O	Mq	Ma	o Mq	y
	Type of Analysis	ICP interference check	Laboratory control sample	Matrix spike	Duplicate	ICP serial dilution	
	Sample ID	1506 ICSAR	1535 1535	16.17	1617/1630	9 / 1911	

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

3 P. :

LDC#: 24523C4

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of
Reviewer:	MG
2nd reviewer:	V

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

	•	•			
Please see qu Y)N N/A Y)N N/A	Have results	ow for all questions answered "N". Not appl been reported and calculated correctly? rithin the calibrated range of the instrument			
Y) N N/A		tion limits below the CRDL?	s and within the line	ear range of the to	ı f
Detected anal	lyte results for _	#6, Mg	were recalcu	lated and verified	using the following
equation.		•			
Concentration =	(RD)(FV)(Dil) (In. Vol.)	Recalculation:)(c)		. •
RD = =V = n. Vol. = Dil =	Raw data conce Final volume (m Initial volume (m Dilution factor	1) (a	942)	= 9246.58	s mg/g or mg
#	: Sample ID	Analyte	Reported Concentration (Mg/kg)	Calculated Concentration	Acceptable (Y/N)
1	6	Mq	9300	9200	_ Y
		6		_	
			,		
					· · · · · · · · · · · · · · · · · · ·
<u> </u>					
				_	
	<u> </u>				
			,		•
Note:					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date: October 14, 2010

LDC Report Date: December 21, 2010

Matrix: Soil/Water

Parameters: Arsenic

Validation Level: Stage 2B & 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-8606-1

Sample Identification

SSAR6-06-0_01_BPC SSAR6-06-1 01 BPC SSAR6-06-2 01 BPC SSAR6-06-3 01 BPC SSAR6-06-4 01 BPC** SSAR6-06-4 01 BPC FD SSAR6-06-5_01_BPC SSAR6-06-6 01 BPC SSAR6-06-7_01_BPC SSAR6-06-8 01 BPC SSAR6-06-9 01 BPC SSAR6-06-10 01 BPC** SA198-1 01 BPC SA198-2 01 BPC SA198-3 01 BPC** EB-10142010 1 SSAR6-06-0_01_BPCMS SSAR6-06-0 01 BPCMSD EB-10142010 1MS EB-10142010 1MSD

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 17 soil samples and 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6020 for Arsenic.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No arsenic was found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Arsenic	0.0528 mg/Kg	All soil samples in SDG 280-8606-1

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

Sample EB-10142010_1 was identified as an equipment blank. No arsenic was found in this blank.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable for samples on which a Stage 4 review was performed.

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-8606-1	All analytes reported below the PQL.	J (all detects)	А

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples SSAR6-06-4_01_BPC** and SSAR6-06-4_01_BPC_FD were identified as field duplicates. No arsenic was detected in any of the samples with the following exceptions:

	Concentrat	ion (mg/Kg)				
Analyte	SSAR6-06-4_01_BPC**	SSAR6-06-4_01_BPC_FD	RPD (Limits)	Difference (Limits)	Flags	A or P
Arsenic	3.5	3.6	3 (≤50)	-	+	-

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic - Data Qualification Summary - SDG 280-8606-1

SDG	Samplė	Analyte	Flag	A or P	Reason
280-8606-1	SSAR6-06-0_01_BPC SSAR6-06-1_01_BPC SSAR6-06-2_01_BPC SSAR6-06-3_01_BPC SSAR6-06-4_01_BPC** SSAR6-06-4_01_BPC_FD SSAR6-06-5_01_BPC SSAR6-06-6_01_BPC SSAR6-06-7_01_BPC SSAR6-06-9_01_BPC SSAR6-06-10_01_BPC SSAR6-06-10_01_BPC** SA198-1_01_BPC SA198-2_01_BPC SA198-3_01_BPC** EB-10142010_1	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic - Laboratory Blank Data Qualification Summary - SDG 280-8606-1

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic - Equipment Blank Data Qualification Summary - SDG 280-8606-1

No Sample Data Qualified in this SDG

Trongy Northgate Henderson

		Tronox northgate richaeloon	
LDC #:	24523D4	VALIDATION COMPLETENESS WORKSHEET	Date: 12-16-10
SDG #:	280-8606-1	Stage 2B/4	Page: Lof L
Laborato	ry: <u>Test America Labo</u>	pratories, Inc.	Page: <u></u> Lof_L Reviewer: <u>⊬</u> G
			2nd Reviewer:
METHOD): Arsenic (EPA SW 8	346 Method 6020)	

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

-	Validation Area		Comments
l.	Technical holding times	Α	Sampling dates: 10 - 14 - 10
11.	ICP/MS Tune	Α	
111.	Calibration	A	
IV.	Blanks	SW	
V.	ICP Interference Check Sample (ICS) Analysis	Α	
VI.	Matrix Spike Analysis	Α	MS/MSD
VII.	Duplicate Sample Analysis	7	
VIII.	Laboratory Control Samples (LCS)	Α	LCS
IX.	Internal Standard (ICP-MS)	Α	
X.	Furnace Atomic Absorption QC	7	not utilized
X1.	ICP Serial Dilution	Α	
XII.	Sample Result Verification	A	Not reviewed for Stage 2B validation.
XIII.	Overall Assessment of Data	Α	
XIV.	Field Duplicates	5W	D=5+6
ΧV	Field Blanks	DN	EB= 16

Note:	A =	Acce	ptable
14010.	<i>/</i> ·\ –	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank

D = Duplicate

TB = Trip blank
EB = Equipment blank

Validated Samples: ** Indicates sample underwent Stage 4 validation

1	SSAR6-06-0_01_BPC S	11	SSAR6-06-9_01_BPC 5	<u>;</u>	21 [PBS	31	
2	SSAR6-06-1_01_BPC	12	SSAR6-06-10_01_BPC**	<u> </u> :	22)	PBW	32	
3	SSAR6-06-2_01_BPC	13	SA198-1_01_BPC	1	23		33	
4	SSAR6-06-3_01_BPC	14	SA198-2_01_BPC	12	24		34	
5	SSAR6-06-4_01_BPC**	15	SA198-3_01_BPC**	<u> </u>	25		35	
6	SSAR6-06-4_01_BPC_FD	162	EB-10142010_1		26		36	
7	SSAR6-06-5_01_BPC	17	SSAR6-06-0_01_BPCMS S	<u> </u> ;	27	•	37	
8	SSAR6-06-6_01_BPC	18	SSAR6-06-0_01_BPCMSD	1	28		38	
9	SSAR6-06-7_01_BPC	197	EB-10142010_1MS W	<u> </u>	29		39	
10	SSAR6-06-8_01_BPC	20 2	EB-10142010_1MSD	· [:	30		40	

Notes:		
	•	-

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: MG
2nd Reviewer: V

Method: Metals (EPA SW 846 Method 6010B/7000/6020)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times			ļ. <u> </u>	
All technical holding times were met.				
Cooler temperature criteria was met.	7			
II. ICP/MS Tune			I	
Were all isotopes in the tuning solution mass resolution within 0.1 amu?		•		
Were %RSD of isotopes in the tuning solution ≤5%?	/			
III. Calibration			I	
				, , , , , , , , , , , , , , , , , , ,
Were all instruments calibrated daily, each set-up time?	/			1.00
Were the proper number of standards used?	/			
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury) QC limits?	\ \ \ .			
Were all initial calibration correlation coefficients ≥ 0.995?	/			
IV. Blanks				
Was a method blank associated with every sample in this SDG?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	/			
V. ICP Interference Check Sample				
Were ICP interference check samples performed daily?	/			
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?	1			
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	/			
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.	√			
VII. Laboratory control samples			, <u></u>	
Was an LCS anaylzed for this SDG?	/			
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	V.			

LDC#: 24573D4

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: MG
2nd Reviewer: _____

Validation Area	Yes	No	NA	Findings/Comments
VIII. Furnace Atomic Absorption QC				
If MSA was performed, was the correlation coefficients > 0.995?			L/	
Do all applicable analysies have duplicate injections? (Level IV only)			<u> </u>	
For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)			/	
Were analytical spike recoveries within the 85-115% QC limits?				
IX. ICP Serial Dilution				
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?	/			·
Were all percent differences (%Ds) < 10%?	/		<u> </u>	
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.		/		
X. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)	· .			
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?	/			
If the %Rs were outside the criteria, was a reanalysis performed?			/	
XI. Regional Quality Assurance and Quality Control		,	···	
Were performance evaluation (PE) samples performed?		/	<u> </u>	
Were the performance evaluation (PE) samples within the acceptance limits?			/	
XII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/		Ĺ	
XIV. Field duplicates	, , , , , , , , , , , , , , , , , , ,	r: 		1
Field duplicate pairs were identified in this SDG.	/			
Target analytes were detected in the field duplicates.	<u>/</u>			
XV. Field blanks				
Field blanks were identified in this SDG.	/			
Target analytes were detected in the field blanks.			<u> </u>	

LDC #: 24523D4

Sample Concentration units, unless otherwise noted: mg/Kg

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES Soil preparation factor applied: 100x METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000)

Reviewer: Page:

2nd Reviewer:

Associated Samples: all soil (>RL)

-		
1.		
		1 .
-		
ŀ		
:		$\vdash \vdash$
: I]
.		
		\Box
I		
.		. I
-		
1		
.		
İ		
		.
		L
	*	
٠. ا		
.		
,		\vdash
	<i>ம்</i>	1
	<u>.</u>	
	ď	
.	2	
_	Action Limit No Qual's.	屵
	ا بے ا	
	Action Limit	
I	Aci Li	
믁		H
	Maximum ICB/CCB ^a (ug/L)	
-, [F S S	
	문문질	
ŀ	Maximum PB³ (ug/L)	
I	aximun PBª (ug/L)	
; I	aximu PB ^a (ug/L)	1 1
	_ Ma Ma	
.		<u></u>
- S I	E 🙃	
		8
	표 * 첫	י כטן
	aximu PB ^a ng/Kç	8
	Maximum PB³ (mg/Kg)	0.0528
	-	0.05
	e Maximu PBª (mg/Kç	0.05
	alyte Maximu PB³ (mg/Kç	0.05
	Analyte Maximu PB³ (mg/Kg	s 0.05

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

LDC#: 04503D4

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:	<u> </u> of_{
Reviewer:	MG
2nd Reviewer:	<u>~</u>

METHOD: Metals (EPA Method 6010B/6020/7000)

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrati	on (mg/kg)	(≤50)	(mg/Kg)	(mg/Kg)	Qualifications
Analyte	5	6	RPD	Difference	Limits	(Parent Only)
Arsenic	3.5	3.6	3			

V:\FIELD DUPLICATES\FD_inorganic\24523D4.wpd

LDC# 34523D4

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

Page: Lof L Reviewer: MG-2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = <u>Found</u> x 100 True

Where, Found = concentration (in ug/L) of each analyte $\underline{\text{measured}}$ in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
	ICP (Initial calibration)						
10V TCV	ICP/MS (Initial calibration)	As	41.07	40.0	103	।०३	Y
	CVAA (Initial calibration)				,		
	ICP (Continuing calibration)						
9306 CC V	ICP/MS (Continuing calibration)	As	50.12	50.0	100	001	>
	CVAA (Continuing calibration)						
	GFAA (Initial calibration)						
	GFAA (Continuing calibation)						

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC# 34533D4

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

Page: of 2nd Reviewer:__ Reviewer:_

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found x 100

Where,

Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u>IS-DI</u> x 100 (S+D)/2

S = Original sample concentration D = Duplicate sample concentration Where,

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 $%D = [1.SDR] \times 100$

Where, I = Initial Sample Result (mg/L) SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

							Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S / i (units)		True / D / SDR (units)	(units)	%R/RPD/%D	%R/RPD/%D	Acceptable (Y/N)
2135 ICSABA	ICP interference check	As	(7/8m) Oh.101	(7) Bn	00)	(7/Bm)	101	101	\
3146 6CS	Laboratory control sample	As	18.70	(mg/kg)	0.0%	(mg/kg)	hb	76	
C.066	Matrix spike	As	೨	(mg/kg)	18.8	(mg/kg)	40	06	
81/11	Duplicate	As	19.73	(mg/kg)	18.89 (mg/kg	(mg/kg	7	7	
3159 / 2155	ICP serial dilution	Αs	m) LL.6	(mg/kg)	2.73 (mg/kg	(mg/bm)	h·1	2.0	>

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 24523D4

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of_ l
Reviewer:	MG
2nd reviewer:	~

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

YN N/A Have result N N/A Are result YN N/A Are all de Detected analyte results for equation:	below for all questions answered "N". Not ults been reported and calculated correctly within the calibrated range of the instrurtection limits below the CRDL? or #5, AS (7.47 mg/L) Recalculation (0.100) (y? ments and within the line were recalcu	ear range of the IC	cP? using the following
# Sample ID	Analyte	Reported Concentration (Mg/k4)	Calculated Concentration (mg / Kq.)	Acceptable (Y/N)
5	As	3.5	3.50	Y
Note:				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

September 22, 2010

LDC Report Date:

December 21, 2010

Matrix:

Soil

Parameters:

Perchlorate

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-7662-2

Sample Identification

SB03-38.5_01_BPC SB03-38.5_01_BPCMSD SB03-38.5_01_BPCDUP

Introduction

This data review covers 4 soil samples listed on the cover sheet. The analyses were per EPA Method 314.0 for Perchlorate.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
All samples in SDG 280-7662-2	Perchlorate	30 days	28 days	J- (all detects) UJ (all nondetects)	Α

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

No field blanks were identified in this SDG.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable.

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-7662-2	All analytes reported below the PQL.	J (all detects)	Α

VIII. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Perchlorate - Data Qualification Summary - SDG 280-7662-2

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-7662-2	SB03-38.5_01_BPC	Perchlorate	J- (all detects) UJ (all nondetects)	A	Technical holding time (h)
280-7662-2	SB03-38.5_01_BPC	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Perchlorate - Laboratory Blank Data Qualification Summary - SDG 280-7662-2

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Perchlorate - Field Blank Data Qualification Summary - SDG 280-7662-2

No Sample Data Qualified in this SDG

Tronox Northgate Henderson

LDC #: 24523A6	VALIDATION COMPLETENESS WORKSHEET	Date: (2-15-10
SDG #: 280-7662-2	Stage 4	Page:of(_
Laboratory: Test America	- 	Reviewer: <u>M(</u> -
		2nd Reviewer: \
METHOD: (Analyte) Perchlora	ate (EPA Method 314.0)	

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	SW	Sampling dates: 9-22-10
Ila.	Initial calibration	Α	
Ilb.	Calibration verification	A	
III.	Blanks	Ą	
IV	Matrix Spike/Matrix Spike Duplicates	Α	MS/MSO.
	Duplicates	Α	DUP
VI.	Laboratory control samples	A	LCS/LCSD
VII.	Sample result verification	Α	
VIII.	Overall assessment of data	A	
iX.	Field duplicates	N	
X	Field blanks	Ν.	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank
EB = Equipment blank

Validated Samples:

	3011				
1	SB03-38.5_01_BPC	11	21	31	
2	SB03-38.5_01_BPCMS	12	22	32	
3	SB03-38.5_01_BPCMSD	13	. 23	33	
4	SB03-38.5_01_BPCDUP	14	24	34	
5	PBS	15	25	35	
6_		16	26	36	
7		17	27	37	
8		18	28	38	
9		.19	29	39	
10		20	30	40	

Notes:			

LDC#: 24503A6

VALIDATION FINDINGS CHECKLIST

Page: \(\begin{aligned} \text{ of } \\ \text{Reviewer: } \(\mathbb{MG} \end{aligned} \)
2nd Reviewer: \(\begin{aligned} \text{V} \\ \text{O} \end{aligned} \]

Method:Inorganics (EPA Method 314.0)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.		/		
Cooler temperature criteria was met.	/			
II. Calibration				
Were all instruments calibrated daily, each set-up time?	/			
Were the proper number of standards used?	/			
Were all initial calibration correlation coefficients > 0.995?	V			
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	/			·
Were titrant checks performed as required? (Level IV only)			<u>/</u>	
Were balance checks performed as required? (Level IV only)			/	
III. Blanks				
Was a method blank associated with every sample in this SDG?	√			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
IV. Matrix spike/Matrix spike duplicates and Duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	/			
Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of ≤ CRDL(≤ 2X CRDL for soil) was used for samples that were ≤ 5X the CRDL, including when only one of the duplicate sample values were ≤ 5X the CRDL.	/		:	
V. Laboratory control samples				
Was an LCS anaylzed for this SDG?				
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?	/			
VI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: MG
2nd Reviewer: V

							
Validation Area	Yes	No	NA	Findings/Comments			
VII. Sample Result Verification							
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/						
Were detection limits < RL?	/						
VIII. Overall assessment of data							
Overall assessment of data was found to be acceptable.	V						
IX. Field duplicates							
Field duplicate pairs were identified in this SDG.		/					
Target analytes were detected in the field duplicates.			/				
X. Field blanks							
Field blanks were identified in this SDG.		/	,				
Target analytes were detected in the field blanks.							

LDC#: 24523A6

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:	_of
Reviewer:_	'MG
2nd reviewer:	1/-

All circled dates have exceeded the technical holding time.

N N/A Were all samples preserved as applicable to each method?

Y)N N/A Were all coole	er temperatures	within validation	n criteria?				
Method:		314.0					ļ
Parameters:	Parameters:						
Technical holding tir	ne:	28 days	<u> </u>				
Sample ID	Sampling date	Analysis date	Analysis date	Analysis date	Analysis date	Analysis date	Qualifier
t .	9-22-10	10-22-10	(30 days)				J-/UJ/A
. 2	ł						1
3							
4							
			ļ				
		(rean	alysis)				
			. ,				

·					*		
							-
		T/AL.			-		
					:		
				,		!	
		· - · · · · · · · · · · · · · · · · · ·			!		
							
		· ·					<u> </u>
, _,							<u> </u>

LDC# 34533 A6

Initial and Continuing Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Page: __of_ Reviewer:_ 2nd Reviewer:

> 314.0 METHOD: Inorganics, Method_

01-18-01 was recalculated. Calibration date: C104 The correlation coefficient (r) for the calibration of

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found x 100

Where, Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

				7	Recalculated	Reported	
Type of Analysis	Analyte	Standard ID	Found (units)	True (units)	ror%R	ror%R	Acceptable (Y/N)
Initial calibration		Blank	J	}			
		Standard 1	1.0 (Mg/L)	0.00316			
		Standard 2	2.5 (0.00755			
	(Standard 3	5.0	0.01462			`
	<u>0</u>	Standard 4	0.01	0.02832	V=0.999811	V=0.999539	· >
		Standard 5	() 0.06	0.06.066	,		
		Standard 6	40.0	0.12249			
		Standard 7	j	,			
Calibration verification		940)					
	C104	CCV	10.375 (mg/	10.375 (Mg/L) 10.0 (Mg/L) 104	h01	101	>
Calibration verification							
	\	١)	}			l
Calibration verification	ì	١	1	1			in the state of th
		T			,		

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 34523A6

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

Page: Lof (Reviewer:___

2nd Reviewer:__

34.0 METHOD: Inorganics, Method_ Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = <u>Found</u> x 100

Where,

Found = concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

Where, RPD = [S-D] × 100 (S+D)/2

Original sample concentration Duplicate sample concentration

S ...

Acceptable (Y/N) (O2 %R / RPD Reported 60 0.1 Recalculated 03 %R/RPD 109 \vec{o} ("3/kg) 0.0990 (mg/kg) 10.21 (mg/kg) 10.32 (mg/kg) (mg/kg) 7.12 (mg/kg) True / D (units) Found / S (units) 0.1083 7.30 (SSR-SR) C104 C104 C104 Element Laboratory control sample Type of Analysis Matrix spike sample Duplicate sample 1138 / 1149 LC5 Sample ID 1912 1634 7 J

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

:

•

{LDC#:} 24523A6	DC #:	1452	346
---------------------------	-------	------	-----

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	t.of(_
Reviewer:	MG
2nd reviewer:	1

METH	IOD: Inorganics, Metho	od_314.0			
Please ŶN ŶN	e see qualifications belo <u>N/A</u> Have results N/A Are results w	ow for all questions answered "N". Not ap been reported and calculated correctly? vithin the calibrated range of the instrume tion limits below the CRQL?		e identified as "N/	A".
Comp recalc	ound (analyte) results t ulated and verified usin	for <u># 1, C104</u> g the following equation:	repo	orted with a positi	ve detect were
Concer	ntration =	Recalculation: 0.04334 = 0.0030(2	× \- 0.0001		
	ere m= 0.0030 b=-0.0001 dil= 50 x	724 Mg/ = X	$\frac{\left(0.100 L\right)}{\left(0.702\right)} =$	10.211 Mg	/g or mg/v
		1100 (10.1.4)	Reported	Calculated Concentration	Acceptable
#	Sample ID	Analyte	Concentration (mg/kg)	(mg/kg)	(Y/N)
l	1	CIOY	10	10	Y
					ļ
					ļ.
					_
<u> </u>					
				1	
 			_		
ļ				<u> </u>	
<u> </u>				ļ	
 		· · · · · · · · · · · · · · · · · · ·		-	
<u></u>	<u> </u>			<u> </u>	<u> </u>
Note:_					
					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

October 13, 2010

LDC Report Date:

December 23, 2010

Matrix:

Soil

Parameters:

Perchlorate

Validation Level:

Stage 2B & 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-8572-1

Sample Identification

SSAM5-04-2_01_BPC SSAM5-04-3_01_BPC SSAM5-04-4_01_BPC_FD

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 4 soil samples listed on the cover sheet. The analyses were per EPA Method 314.0 for Perchlorate.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

No field blanks were identified in this SDG.

IV. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) analyses specified for the samples in this SDG, and therefore matrix spike analyses were not performed for this SDG.

V. Duplicates

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable for samples on which a Stage 4 review was performed.

All analytes reported below the PQL were qualified as follows:

		,	
Sample	Finding	Flag	A or P
All samples in SDG 280-8572-1	All analytes reported below the PQL.	J (all detects)	Α

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

VIII. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples SSAM5-04-4_01_BPC** and SSAM5-04-4_01_BPC_FD were identified as field duplicates. No perchlorate was detected in any of the samples with the following exceptions:

	Concentra	ition (mg/Kg)				
Analyte	SSAM5-04-4_01_BPC**	SSAM5-04-4_01_BPC_FD		Difference (Limits)	Flags	A or P
Perchlorate	340	340	9 (≤50)	-	-	•

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Perchlorate - Data Qualification Summary - SDG 280-8572-1

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-8572-1	SSAM5-04-2_01_BPC SSAM5-04-3_01_BPC SSAM5-04-4_01_BPC** SSAM5-04-4_01_BPC_FD	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Perchlorate - Laboratory Blank Data Qualification Summary - SDG 280-8572-1

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Perchlorate - Field Blank Data Qualification Summary - SDG 280-8572-1

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #: 24523C6 VALIDATION COMPLETENESS
SDG #: 280-8572-1 Stage 2B/4
Laboratory: Test America

Date: 13-16-10
Page: 1 of 1
Reviewer: MG
2nd Reviewer: ___

METHOD: (Analyte) Perchlorate (EPA Method 314.0)
--

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	Α	Sampling dates: 10 - 13 - 10
lla.	Initial calibration	Α	
llb <u>.</u>	Calibration verification	Α	
111.	Blanks	Α	
IV	Matrix Spike/Matrix Spike Duplicates	N	client specified
V	Duplicates	7	ic (s
VI.	Laboratory control samples	Α	LCS/LCSD
VII.	Sample result verification	Α	Not reviewed for Stage 2B validation.
VIII.	Overall assessment of data	Α	
IX.	Field duplicates	SW	D=3+4
L _X	Field blanks	7	

Note:

A = Acceptable

ND = No compounds detected

D = Duplicate

N = Not provided/applicable

R = Rinsate

TB = Trip blank EB = Equipment blank

SW = See worksheet FB = Field blank

Validated Samples: ** Indicates sample underwent Stage 4 validation

10					<u> </u>
1	SSAM5-04-2_01_BPC	11	21	31	
2	SSAM5-04-3_01_BPC	12	22	32	
3	SSAM5-04-4_01_BPC**	13	23	33	
4	SSAM5-04-4_01_BPC_FD	14	24	34	
5	PBS	15	25	35	
6		16	26	36	
7		17	27	37	
8		18	28	38	
9		19	29	39	
10		20	30	40	

Notes:	 		

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: MG
2nd Reviewer: _____

Method:Inorganics (EPA Method 314.0)

Validation Area	Yes	No	NA	Findings/Comments		
I. Technical holding times						
All technical holding times were met.						
Cooler temperature criteria was met.	_					
II. Calibration						
Were all instruments calibrated daily, each set-up time?						
Were the proper number of standards used?	1					
Were all initial calibration correlation coefficients > 0.995?	/					
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	/					
Were titrant checks performed as required? (Level IV only)			<u>/</u>			
Were balance checks performed as required? (Level IV only)	<u> </u>	_	/			
III. Blanks						
Was a method blank associated with every sample in this SDG?	/					
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/				
IV. Matrix spike/Matrix spike duplicates and Duplicates						
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no_indicate which matrix does not have an associated MS/MSD or MS/DUP(Soil) Water.		/				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			/			
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL.						
V. Laboratory control samples						
Was an LCS anaylzed for this SDG?	/					
Was an LCS analyzed per extraction batch?	/					
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?	/					
VI. Regional Quality Assurance and Quality Control						
Were performance evaluation (PE) samples performed?		/				
Were the performance evaluation (PE) samples within the acceptance limits?			/			

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: MG
2nd Reviewer: ______

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification			<u> </u>	
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
Were detection limits < RL?	/	,		
VIII. Overall assessment of data			•	
Overall assessment of data was found to be acceptable.	/			
IX. Field duplicates				
Field duplicate pairs were identified in this SDG,	/			
Target analytes were detected in the field duplicates.	/			
X. Field blanks				
Field blanks were identified in this SDG.		/		
Target analytes were detected in the field blanks.			V	

LDC#:_	24523C6
SDG#:	See Cover

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_	<u>l_of_i_</u>
Reviewer:	MG
2nd Reviewer:	

Inorganics, Method See Cover

(N NA (N NA

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrati	ion (mg/Kg)				
Analyte	3	4	RPD (≤50)	Difference	Limits	Qualification (Parent only)
Perchlorate	340	310	9			

V:\FIELD DUPLICATES\FD_inorganic\24523C6.wpd

LDC# 3453366

Initial and Continuing Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Page: Reviewer: 2nd Reviewer:

> 314.0 METHOD: Inorganics, Method_

01-18-01 was recalculated. Calibration date:_ C C L C The correlation coefficient (r) for the calibration of _

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = <u>Found</u> x 100 True

Where, Found ≈ concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

			(Recalculated	Reported	
			029	A rea			A
Type of Analysis	Analyte	Standard ID	Found (units)	True (units)	r or %R	r or %R	Acceptable (Y/N)
Initial calibration		Blank	1	,			
		Standard 1	1.0 (Mg/L)	0.00316			
		Standard 2	2.5 ()	0.00755			
		Standard 3	5.0 (0.01462			`
	0 0 2	Standard 4	() 0.01	0.02832	V=0.999811	V=0.999539	>-
		Standard 5	30.0 ()	0,06066			. —
		Standard 6	40.0 (1)	0.12249			
-		Standard 7	,	1			
Calibration verification		(338					
	C104	Ιςν	21.216 (mg/L)	. 316 (mg/L) 30.0 (mg/L)	901	901	→ >
Calibration verification	·						
		l	\	l	1	1	1
Calibration verification	1	l	À				

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 24523C6

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

Page: (2nd Reviewer:_ Reviewer:

> 314.0 METHOD: Inorganics, Method

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 $%R = Found \times 100$

Where,

Found = concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

Where, RPD = $|S-D| \times 100$ (S+D)/2

S 0

Original sample concentration Duplicate sample concentration

				Recalculated	Reported	
Element	ent	Found / S (units)	True / D (units)	%R/RPD	%R/RPD	Acceptable (Y/N)
C104	2-	0.1083 (mg/kg) 0.0990 (mg/kg)	10.0990 (mg/kg)	601	109	>
		(SSR-SR)	3	,		
}		١)	1	1	
				:		
ì		1	ı	1	١	(

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

į

.:

~

LDC#:<u>24523</u>C6

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of
Reviewer:	MG
2nd reviewer:	<u> </u>

METH	IOD: Inorganics, Metho	d 314.0				
Please Y N Y N Y N	<u>N/A </u>	ow for all question been reported a within the calibration limits below	ons answered "N". Not app and calculated correctly? ted range of the instrumen the CRQL?	licable questions are	e identified as "N/	A".
Comp	ound (analyte) results f ulated and verified usin	for #3, g the following of	C104 equation:	repo	orted with a positi	ve detect were
Y= 1	ntration = m× + 6 : m = 0.0030	0.04799 : 32060 /	Recalculation: $O \cdot 0030 \left(\frac{x}{2000} \right) - $	6.000 t		
	b=-0.0001 lil= 2000 x	then	(32060 mg/L)((10.1 g) ((0·100L) =	342.42 "	gly or mg/k
#	Sample ID		N Analyte	Reported Concentration (ma/ka)	Calculated Concentration (mg/kg)	Acceptable (Y/N)
	3		C10 4	340	340	Y
				····-		
ļ						
ļ						
-				,		
Note:_						
		<u> </u>				· · · · · · · · · · · · · · · · · · ·

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

October 14, 2010

LDC Report Date:

December 21, 2010

Matrix:

Soil/Water

Parameters:

Perchlorate

Validation Level:

Stage 2B & 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-8606-1

Sample Identification

SSAR6-06-0 01 BPC

SSAR6-06-1 01 BPC

SSAR6-06-2 01 BPC

SSAR6-06-3 01 BPC

SSAR6-06-4 01 BPC**

SSAR6-06-4 01 BPC FD

SSAR6-06-5 01 BPC

SSAR6-06-6, 01 BPC

SSAR6-06-7 01 BPC

SSAR6-06-8 01 BPC

SSAR6-06-9 01 BPC

SSAR6-06-10 01 BPC**

EB-10142010 1

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 12 soil samples and one water sample listed on the cover sheet. The analyses were per EPA Method 314.0 for Perchlorate.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

Sample EB-10142010_1 was identified as an equipment blank. No perchlorate was found in this blank.

IV. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) analyses specified for the samples in this SDG, and therefore matrix spike analyses were not performed for this SDG.

V. Duplicates

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable for samples on which a Stage 4 review was performed.

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-8606-1	All analytes reported below the PQL.	J (all detects)	Α

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

VIII. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples SSAR6-06-4_01_BPC** and SSAR6-06-4_01_BPC_FD were identified as field duplicates. No perchlorate was detected in any of the samples with the following exceptions:

	Concentra	ition (mg/Kg)				
Analyte	SSAR6-06-4_01_BPC**	SSAR6-06-4_01_BPC_FD	RPD (Limits)	Difference (Limits)	Flags	A or P
Perchlorate	2.2	2.3	4 (≤50)	-	-	-

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Perchlorate - Data Qualification Summary - SDG 280-8606-1

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-8606-1	SSAR6-06-0_01_BPC SSAR6-06-1_01_BPC SSAR6-06-2_01_BPC SSAR6-06-3_01_BPC SSAR6-06-4_01_BPC** SSAR6-06-4_01_BPC_FD SSAR6-06-5_01_BPC SSAR6-06-6_01_BPC SSAR6-06-7_01_BPC SSAR6-06-8_01_BPC SSAR6-06-9_01_BPC SSAR6-06-10_01_BPC** EB-10142010_1	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Perchlorate - Laboratory Blank Data Qualification Summary - SDG 280-8606-1

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Perchlorate - Equipment Blank Data Qualification Summary - SDG 280-8606-1

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Date: 12-17-10
Page:of
Reviewer: MG
2nd Reviewer:

SDG #: 280-8606-1 Laboratory: Test America

LDC #: 24523D6

METHOD: (Analyte) Perchlorate (EPA Method 314.0)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l	Technical holding times	A	Sampling dates: 10 - 14 - 10
lla.	Initial calibration	A	
IIb.	Calibration verification	Α	
111.	Blanks	Α	
IV	Matrix Spike/Matrix Spike Duplicates	7	client specified
V	Duplicates .	2	
VI.	Laboratory control samples	Α	LCS/LCSD
VII.	Sample result verification	Α	Not reviewed for Stage 2B validation.
VIII.	Overall assessment of data	A	
IX.	Field duplicates	sW	D= 5+6
_x	Field blanks	ND	EB=13

Note:

A = Acceptable

ND = No compounds detected

D = Duplicate

N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank TB = Trip blank EB = Equipment blank

Validated Samples: ** Indicates sample underwent Stage 4 validation

1	SSAR6-06-0_01_BPC	3 11	SSAR6-06-9_01_BPC S	21	31
2	SSAR6-06-1_01_BPC	12	SSAR6-06-10_01_BPC** ↓	22	32
3	SSAR6-06-2_01_BPC	13 2	EB-10142010_1 W	23	33
4	SSAR6-06-3_01_BPC	14 (PBS	24	34
5	SSAR6-06-4_01_BPC**	15 ²	PBW	25	35
6	SSAR6-06-4_01_BPC_FD	16		26	36
7	SSAR6-06-5_01_BPC	17		27	37
8	SSAR6-06-6_01_BPC	18		28	. 38
9	SSAR6-06-7_01_BPC	19		29	39
10	SSAR6-06-8_01_BPC •	20		30	40

Notes:			 ē.	

Page: 1 of 2
Reviewer: MG
2nd Reviewer: L

Method:Inorganics (EPA Method 314.0)

Method:Inorganics (EPA Method 314.0)	,			
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times			,····	
All technical holding times were met.	/			
Cooler temperature criteria was met.	<u> </u>			
II. Calibration				
Were all instruments calibrated daily, each set-up time?	/			
Were the proper number of standards used?	V			
Were all initial calibration correlation coefficients > 0.995?	✓			
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	/			
Were titrant checks performed as required? (Level IV only)		_		
Were balance checks performed as required? (Level IV only)			<u> </u>	
III. Blanks				
Was a method blank associated with every sample in this SDG?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
IV. Matrix spike/Matrix spike duplicates and Duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP(Soil / Wate).		/		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			/	
Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of ≤ CRDL(≤ 2X CRDL for soil) was used for samples that were ≤ 5X the CRDL, including when only one of the duplicate sample values were ≤ 5X the CRDL.			/	
V. Laboratory control samples				
Was an LCS anaylzed for this SDG?	1			
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?	/			
VI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?	<u> </u>		/	

VALIDATION FINDINGS CHECKLIST

Page:_	
Reviewer:	MG
2nd Reviewer:	

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification				,
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
Were detection limits < RL?	/	ē		
VIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.	/			
Target analytes were detected in the field duplicates.	V .			
X. Field blanks				
Field blanks were identified in this SDG.				
Target analytes were detected in the field blanks.				

LDC#:_	24523D6
SDG# [.]	See Cover

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_	<u>t</u> of(_
Reviewer:	Ma
2nd Reviewer:	حمد

Inorganics, Method See Cover

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrati	on (mg/Kg)	_			
Analyte	5	6	RPD (≤50)	Difference	Limits	Qualification (Parent only)
Perchlorate	2.2	2.3	4			

V:\FIELD DUPLICATES\FD_inorganic\24523D6.wpd

LDC# 34533D6

Initial and Continuing Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Page: _ Reviewer: 2nd Reviewer:

> 314.0 METHOD: Inorganics, Method _

01-18-01 was recalculated. Calibration date: Ċ Ō The correlation coefficient (r) for the calibration of

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = <u>Found</u> x 100 True

Where, Found ≈ concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

			ە ق ك	Are	Recalcillated	Reported	
Type of Analysis	Analyte	Standard ID	Found (units)	True (units)	ror%R	ror %R	Acceptable (Y/N)
Initial calibration		Blank	1	,			
		Standard 1	1.0 (49/L)	0.00316			
		Standard 2	2.5	0.00755			
	((Standard 3	5.0 (0.01462			`
	0 2 2	Standard 4	0.01	0.02832	V=0.999811	V=0.999539	>-
		Standard 5	90.06	0.06066	,		
-		Standard 6	40.0	0.12249			
		Standard 7	j	,			
Calibration verification		3132					
	C104	CCV	30.881 (mg)	30.881 (mg/L) 30.0 (mg/L)	. 103	603	>
Calibration verification							
	i	١	1	ı	l	İ	
Calibration verification	1	-	J			L	

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC# 3452306

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page: of 2nd Reviewer: Reviewer:_

> 314.0 METHOD: Inorganics, Method_

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 $%R = \frac{Found}{True} \times 100$

Where,

Found = concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

Where, $RPD = |S-D|_X \times 100$ (S+D)/2

S = 0

Original sample concentration Duplicate sample concentration

		-			Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S (units)	True / D (units)	%R/RPD	%R/RPD	Acceptable (Y/N)
1634	Laboratory control sample						
57		C104	0.1083 (m3/kg) 0.0990 (m3/kg)	0.0990 (m3/kg)	.60/	601	>
	Matrix spike sample		(SSR-SR)				
			1	j	١		l
	Duplicate sample						
		1	1		l	1	1

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: <u>24523</u>D6

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:_	of
Reviewer:	MG
and reviewer.	\sim

YN N/A Have results	ow for all questions answered "N". Not app been reported and calculated correctly?		e identified as "N/	A".
N N/A Are all detect	tion limits below the CRQL?			
Compound (analyte) results f recalculated and verified usin	or # 5, CIO4	repo	rted with a positiv	ve detect were
Concentration =	Recalculation: $06257 = 0.0030 \left(\frac{x}{10} \right) - 0.0001$ 208.9 Mg/L = x			
$b = -0.0001$ $di(=10 \times +1)$	hen $\frac{(2089 \text{Mg/L})(0.100 \text{L})}{(10.0 \text{g})(0.925)}$	— = J.258	ug/g or "	g/kg
# Sample ID	Analyte	Reported Concentration (Mg/kg)	Calculated Concentration (mg/kg)	Acceptable (Y/N)
5	C104	2.3	2.3	Y
			·····	
				-
Note:				