

Laboratory Data Consultants, Inc.

7750 El Camino Real, Ste. 2L Carlsbad, CA 92009

Phone 760.634.0437

Web www.lab-data.com

Fax 760.634.0439

Northgate Environmental Management, Inc.

December 9, 2010

1100 Quail Street Ste. 102 Newport Beach, CA 92660 ATTN: Ms. Cindy Arnold

SUBJECT: Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada,

Data Validation

Dear Ms. Arnold,

Enclosed is the final validation report for the fraction listed below. This SDG was received on November 9, 2010. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 24493:

SDG#

Fraction

G0I280539

Dioxins/Dibenzofurans

The data validation was performed under Stage 2B/4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Standard Operating Procedures (SOP) 40, Data Review/Validation, BRC 2009
- Quality Assurance Project Plan Tronox LLC Facility, Henderson Nevada, June 2009
- NDEP Guidance, May 2006
- USEPA, Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Diobenzofurans Data Review, September 2005

Please feel free to contact us if you have any questions.

Sincerely

Erlinda T. Rauto

Operations Manager/Senior Chemist

			S																					-	<u> </u>							3
			3														 _															0
			S																													0
i			×																													0
			S																													0
			≥																													0
		~~~	S																												П	0
	<u> </u>		≥																													0
	<u>li</u>		S																													0
	du		≥																													0
	Sai		S																													0
	a		≥																													
	ion		S	_		$\overline{}$		_																							$\neg$	0
ļ	dit		3																	_	****										$\dashv$	
	Ac		S				_				 															_	┢				$\Box$	0
ļ	gate, Henderson NV / Tronox PCS, Additional Sampling)		3						Н																		$\vdash$	<u> </u>			ヿ	0
	P		S																											$\Box$	$\dashv$	0
	<u>@</u>		3	_						_																						
	힏		S	-																												
	۱,		3														-		-	_							$\vdash$	_			$\dashv$	
	2		S																													
Attachment 1	uo		3																								<del> </del>				$\dashv$	
ř	ers		S									_	$\vdash$	-																Н	$\dashv$	0
λttaα	pu		3		$\dashv$												 				i				-	-	<del>                                     </del>					0
	윈		S										$\vdash$									-					$\vdash$				$\dashv$	0
	ite.		3				_								_										-	$\vdash$	$\vdash$				$\dashv$	0
	g		S		-				Н		_			-	_											$\vdash$	$\vdash$			$\vdash$		0
	ort		3	_	$\dashv$	_																					<del> </del>				$\dashv$	0
	Ž		S										_			_							_								$\dashv$	0
	[일		3	-		_									_	_		_													$\dashv$	0
	χ		S																												$\dashv$	0
	)uc		3								 	_																			$\dashv$	0
	Ľ	S (	<u>&gt;</u>	_	<b>E</b>												 									$\vdash$				$\vdash$	$\dashv$	3
	93	Dioxins (8290)	3,														_	_		_							$\vdash$				$\dashv$	0
	44		>	9	0					_	 			_											-	$\vdash$	$\vdash$				$\dashv$	$\ddot{\dashv}$
Tracker 12/02/10	LDC #24493 (Tronox LLC-North	(3) DATE DUE		11711	11/09/10 12/17/10 数6																											
r 12/			ŀ	0 12	0 12												 								_	┝	┞		_	$\vdash$	$\dashv$	-
acke		DATE REC'D		1,00	109/1																											
<u>-</u>	2B/4	0 2		11/	11/	_														_					_			<u> </u>		$\square$		$\parallel$
	Stage 2B/4																															
9/10	8	费	jō	0539	0539																											يد
DL 11/09/10	_	SDG#	Water/Soil	G01280539	G01280539																											T/LR
占	EDD			ဗ	၅																											
			Matrix:	_	$\dashv$			$\vdash$	$\vdash$		-	$\vdash$	$\vdash$		_	$\vdash$							$\vdash$	<u> </u>	<del> </del>	$\vdash$	$\vdash$	$\vdash$		$\mid \rightarrow \mid$	$\dashv$	<u> </u>
		TDC	ž	٧	∢														<u> </u>						<u> </u>	<u> </u>	<u> </u>				Ш	Total

LDC #: <u>24493</u> SDG #: <u>G0I280539</u> Page: 1 of 1 Reviewer: JE 2nd Reviewer: BC

### Tronox Northgate Henderson Worksheet

EDD Area	Yes	No	NA	Findings/Comments
I. Completeness		1991 serv		
Is there an EDD for the associated Tronox validation report?	x			
II. EDD Qualifier Population;				T
Were all qualifiers from the validation report populated into the EDD?	X	Perioda Perioda	diserra	######################################
III/ EDD Lab Anomalies	100 A 2010 100 A 100 100 A			
Were EDD anomalies identified?		Х		
If yes, were they corrected or documented for the client?			х	See EDD_discrepancy_ form_LDC24493_120910.doc
IV. EDD Delivery		复数	後さ	
Was the final EDD sent to the client?	Х			

### Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

**Collection Date:** 

September 27, 2010

**LDC Report Date:** 

**December 8, 2010** 

Matrix:

Soil

Parameters:

Dioxins/Dibenzofurans

Validation Level:

Stage 2B & 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): G0l280539

Sample Identification

SSAO7-06-0BPC**
SSAO8-05-0BPC
SSAN6-08-0.5BPC
SSAN6-08-0.5BPCMS
SSAN6-08-0.5BPCMSD

^{**}Indicates sample underwent Stage 4 review

### Introduction

This data review covers 5 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8290 for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

### II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The exact mass of 380.9760 of PFK was verified. The static resolving power was at least 10,000 (10% valley definition) for samples on which Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

### III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio for each target compound was greater than or equal to 2.5 and greater than or equal to 10 for each recovery and internal standard compound for samples on which Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

### IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

### V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
0274292-MB	10/1/10	OCDD	0.51 pg/g	All samples in SDG G0l280539

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
SSAO8-05-0BPC	OCDD	1.0 pg/g	1.0U pg/g

No field blanks were identified in this SDG.

### VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Although the MS/MSD percent recovery (%R) and relative percent differences (RPD) were not within QC limits for several compounds, the LCS percent recoveries (%R) were within QC limits and no data were qualified.

### VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits.

### VIII. Regional Quality Assurance and Quality Control

Not applicable.

### IX. Internal Standards

All internal standard recoveries were within QC limits.

### X. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

### XI. Project Quantitation Limit

All compound quantitation and PQLs were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
SSAO8-05-0BPC			This compound must be confirmed on the 2nd column per the method.	None	Р

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG G0l280539	All compounds reported below the PQL.	J (all detects)	А

All compounds reported as EMPC were qualified as follows:

Sample	Compound	Flag	A or P
All samples in SDG G0l280539	All compounds reported by the lab as estimated maximum possible concentration (EMPC)	JK (all detects)	А

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

### XII. System Performance

The system performance was acceptable for samples on which Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

### XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

### XIV. Field Duplicates

No field duplicates were identified in this SDG.

### Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Dioxins/Dibenzofurans - Data Qualification Summary - SDG G0I280539

SDG	Sample	Compound	Flag	A or P	Reason (Code)
G0l280539	SSAO8-05-0BPC	2,3,7,8-TCDF	None	Р	Project Quantitation Limit (o)
G01280539	SSAO7-06-0BPC** SSAO8-05-0BPC SSAN6-08-0.5BPC	All compounds reported below the PQL.	J (all detects)	А	Project Quantitation Limit (sp)
G0l280539	SSAO7-06-0BPC** SSAO8-05-0BPC SSAN6-08-0.5BPC	All compounds reported by the lab as estimated maximum possible concentration (EMPC)	JK (all detects)	Α	Project Quantitation Limit (k)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG G0I280539

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
G0I280539	SSAO8-05-0BPC	OCDD	1.0U pg/g	А	bi

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG G0I280539

No Sample Data Qualified in this SDG

### Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET Stage 2B/4

LDC #: 24493A21	VALIDATION COMPLETE
SDG #: G0I280539	_ Stage 2E
Laboratory: Test America	

2nd Reviewer:	Reviewer: 77 2nd Reviewer: 0/-
---------------	--------------------------------

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1	Technical holding times	Δ	Sampling dates: 9/21/10
11.	HRGC/HRMS Instrument performance check	Δ	
	Initial calibration	Δ	
IV.	Routine calibration#CV	A	
V	Blanks	SW	
VI.	Matrix spike/Matrix spike duplicates	SW	
VII.	Laboratory control samples	A	LCS
VIII.	Regional quality assurance and quality control	N	
IX.	Internal standards	Δ	
Х.	Target compound identifications	Δ	Not reviewed for Stage 2B validation.
XI.	Compound quantitation and CRQLs	A	Not reviewed for Stage 2B validation.
XII.	System performance	Δ	Not reviewed for Stage 2B validation.
XIII.	Overall assessment of data	厶	
XIV.	Field duplicates	2	
XV.	Field blanks	N	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples: ** Indicates sample underwent Stage 4 validation

	<u> </u>	<del></del>			
1_	SSA07-06-0BPC**	11	0274292	21	31
2_	SSAO8-05-0BPC	12		22	32
3_	SSAN6-08-03.5BPC	13		23	33
4	SSAN6-08-08.5BPCMS	14		24	34
5	SSAN6-08-08.5BPCMSD	15		25	35
6		16		26	36
7		17		27	37
8		18_		28	38
9		19		29	39
10		20		30	40

Notes:		



### **VALIDATION FINDINGS CHECKLIST**

Page: /_of_2
Reviewer: ______
2nd Reviewer: ______

Method: Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.		-		
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check	1	·	· <b>.</b>	
Was PFK exact mass 380.9760 verified?				
Were the retention time windows established for all homologues?	_			
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers ≤ 25% ?				
Is the static resolving power at least 10,000 (10% valley definition)?				
Was the mass resolution adequately check with PFK?				
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?		<u>-</u>		
III. Initial calibration				
Was the initial calibration performed at 5 concentration levels?		-		
Were all percent relative standard deviations (%RSD) ≤ 20% for unlabeled standards and ≤ 30% for labeled standards?				
Did all calibration standards meet the Ion Abundance Ratio criteria?				
Was the signal to noise ratio for each target compound $\geq$ 2.5 and for each recovery and internal standard $\geq$ 10?		-		
IV: Continuing calibration	4	• ::		
Was a routine calibration performed at the beginning and end of each 12 hour period?		- 	j	
Were all percent differences (%D) ≤ 20% for unlabeled standards and ≤ 30% for labeled standards?				
Did all routine calibration standards meet the Ion Abundance Ratio criteria?			<u> </u>	
V. Blanks	in Silis Caron	161 134,54		
Was a method blank associated with every sample in this SDG?				
Was a method blank performed for each matrix and concentration?			<u> </u>	
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet?				
Vt Matrix spike/Matrix spike duplicates		18-14-15 18-15-15		
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VII Laboratory control samples				
Was an LCS analyzed for this SDG?		-		
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

LDC#: 2 4493A2 SDG#: _____

### **VALIDATION FINDINGS CHECKLIST**

	Page:_	_2_of	2_
	Reviewer:	FI	
2nd	Reviewer:	A	

장마, 목사가 어느 등이 얼마를 하지 않는 사람들이 되는 것이다.				
VIII Regional Quality Assurance and Quality Control	Γ	<u></u>		
Were performance evaluation (PE) samples performed?	<u> </u>		_	
Were the performance evaluation (PE) samples within the acceptance limits?		<u> </u>		
IX: Internal/standards				
Were internal standard recoveries within the 40-135% criteria?				
Was the minimum S/N ratio of all internal standard peaks ≥ 10?		_		
X: Target compound identification	٠			·
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?				
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?	/	-		
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?				
Did compound spectra contain all characteristic ions listed in the table attached?			<u> </u>	
Was the Ion Abundance Ratio for the two quantitation ions within criteria?				
Was the signal to noise ratio for each target compound and labeled standard > 2.5?				
Does the maximum intensity of each specified characteristic ion coincide within $\pm$ 2 seconds (includes labeled standards)?				
For PCDF identification, was any signal (S/N $\geq$ 2.5, at $\pm$ seconds RT) detected in the corresponding PCDPE channel?				
Was an acceptable lock mass recorded and monitored?				
XI: Compound quantitation/CRQLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII System performance				
System performance was found to be acceptable.				
XIII Overall assessment of data				
Overall assessment of data was found to be acceptable.		-		
XIV Field duplicates				
Field duplicate pairs were identified in this SDG.			_	
Target compounds were detected in the field duplicates.				-
XVdField blanks 1995				
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				

### VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:

2
34
149
77
LDC

### VALIDATION FINDINGS WORKSHEET

Reviewer: FT 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A Were all samples associated with a method blank?

Y Ń N/A

Was a method blank performed for each matrix and whenever a sample extraction was performed?

Blank analysis date: 10/11/10 V/N N/A Was the method blank contaminated? Blank extraction date: 10 01 10 Blank analysi

=

Associated samples:

i												
ation		<u>-</u> -			-							
Sample Identification								-				
					:							
	7	1,0/M		 								
	мB											_
Blank ID	0274292- MB	0.5										
Compound		b			į				·			

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

1
9
#
ત
0
4
7
1,
#
LDC

### VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: Reviewer: FT 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

blease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N/A

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

A/N/N

Was a MS/MSD analyzed every 20 samples of each matrix? Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

Qualifications	no and Lesin	0				and a special																	
Associated Samples	٦	)				,																	
RPD (Limits)	i mith )	( )	( )	( )	( )	^	( )	( )	( )	(	( )	( )	( )	( )	( )	( )	( )	( )	( )	( )	( )	( )	(
	indista	,	) (	) [	(	ſ	,	1.	^	(	)	) (	)	)	)	(	(	(	(	),	) (	) (	(
MSD %R (Limits)	% RPD (0	)			)		)	,		)	)	)	)	)	)	)	)	)	) [	)	)	)	
MS %R (Limits)	6 + ast 90	( )	( )	( )	( )	( )	( )	(	( )	( )	( )	( )	( )	( )	( )	( )	( )	( )	( )	( )	( )	( )	(
Compound	peneral	,																					
MS/MSD ID	6+5																		1				
Date																							
*																							

LDC# 24493A2/

# VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page: __of__ Reviewer: __FT 2nd Reviewer: ______

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y M N/A

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

Qualifications	J/A detects (sp)		JK defects (k)			mare (O)	1			
Associated Samples	All		All			2				
Finding	All compounds reported below PQL		All compounds reported as EMPC			no sul column	Confirmation was	perper mes		
lgn an						+				
# Date		-								

Comments: See sample calculation verification worksheet for recalculations

SDG#: 2447 242/

## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: ___of___ Reviewer: _____2 2nd Reviewer: _____

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 8290)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = \langle A_{u} \rangle (C_{u})/(A_{u}) \langle C_{v} \rangle$  average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 $A_{k} = \text{Area of associated internal standard} \\ C_{k} = \text{Concentration of compound,} \\ C_{ls} = \text{Concentration of internal standard} \\ S = \text{Standard deviation of the RRFs,} \\ X = \text{Mean of the RRFs} \\$ 

		<del></del>		Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Average RRF (initial)	RRF (くうつ、std)	RRF ( C \$ 3std)	%RSD	%RSD
	1,001	GIAILP	2,3,7,8-TCDF ("3C-2,3,7,8-TCDF)	0.984	h860	1.05	1.05	<i>≯</i> ·#	8-11
		11111	2,3,7,8-TCDD (1°C-2,3,7,8-TCDD)	1.032	1.03	١٠٥٠	00.	اه- ×	2.01
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	1.141	1.14	51-1	1.K	12.7	12.7
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	1.134	1.134	97:1	3.	6.5	12.3
		<b>.</b>	OCDE (13C,OCDD)	7.11.7	٦٠.١١	2-36	2.3(	5.3	15.3
2	1,CAL	7/20/10	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	1:05	1.056	1.02	1.02	13.32	3.32
		·••	2,3,7,8-TCDD ('3C-2,3,7,8-TCDD)						
		· · ·	1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)						
			OCDE (13C.OCDD)						
6			2,3,7,8-TCDF ("3C-2,3,7,8-TCDF)						
		<del></del>	2,3,7,8-TCDD ("3C-2,3,7,8-TCDD)						
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)						
			(000E-3¢)		-27				

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

SDG#: 244 93A2/

## VALIDATION FINDINGS WORKSHEET Routine Calibration Results Verification

Page: _____6f___ Reviewer: ______2 2nd Reviewer: _______

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method TO-9A)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF =  $(A_{\lambda})(C_{\mu})/(A_{\lambda})(C_{\lambda})$ 

Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF

 $A_x = Area of compound,$  $C_x = Concentration of compound,$ 

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
**	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	α%	Q%
1	eed s. 15	01/19	2,3,7,8-TCDF ('3C-2,3,7,8-TCDF)	hala	76.0	76.0	いら	5.9
		- -	2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	74 o·1	1.02	1.07	7.0	ō
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	. (41)	1.09	1.09	4.8	4.8
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	1.134	72.1	7.7	7.9	6.1
			OCDE (13C-OCDD)	γ·Ⅱ×	2.20	2.20	3.9	3.9
2	cev _ 5-2	10 KM	2,3,7,8-TCDF (¹3C-2,3,7,8-TCDF)	1.06	2 6.0	2960	9.2	7.6
			2,3,7,8-TCDD (13C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)					
		<b></b>	1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)					
			Oche (196-Ochn)					
3			2,3,7,8-TCDF (13C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD ('3C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)					
			OCDF (13C-OCDD)					

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

12456140 the cons LDC#: SDG#:

### Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

2nd Reviewer: < Page: / of Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSR - SR)/SA

SSR = Spiked sample result, SR = Sample result SA = Spike added Where:

MSR = Matrix spike percent recovery MSDR = Matrix spike duplicate percent recovery

MS/MSD samples:

RPD = I MSR - MSDR I * 2/(MSR + MSDR)

-	ds	ike	Sample	Spiked	Spiked Sample	Matrix Spike	Spike	Matrix Spik	Matrix Spike Duplicate	Reported	Recalculated
Compound	Adr ( co.)	Added	Concentration (のみ (水)	Conce	Concentration ( pg. 小)	Percent l	Percent Recovery	Percent I	Percent Recovery	RPD	RPD
		MSD	D 1 D 1	- SW	USM 0 t	Renorted	Recalc	Renorted	Decol		
2,3,7,8-TCDD	20.02	±,00€	C%	1.56	99.3	51	12	96	) b	<del>ب</del> س	4.3
1,2,3,7,8-PeCDD	801	102	082	285	429	47	Lb	143	(43	-	=
1,2,3,4,7,8-HxCDD	ر دوا ا	102	220	292	293	14	ηL	76	2	0.52	75.0
1,2,3,4,7,8,9-HpCDF	(03	102	7100	0×11	8280	16	lbo	415	574	4.2	4.9
OCDF	2006	401	51000	00015	255 ac	а	Q	2060	otor	0	۵
					_						

Comments: Refer to Matrix Spike/Matrix Spike Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

SDG #: 44 Cond

# VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = ILCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

0274292 - 10> LCS ID:

	8	ika	S besting	aloma		SJ	USDI	Ċ	I/SOT	CS/I CSD
7	Ag 5	Added	Concentration	ration	T to a company	20000	C accepted	74 6700	Can	o.
		491£,	9						1	2000
			e:		Каропао	Kecau	OHDOO HA	Right		
2,3,7,8-TCDD	20.0	ΔN	14.8	νV	94	Qd				
1,2,3,7,8-PeCDD	001	-	911		٦॥	116				
1,2,3,4,7,8-HxCDD	041		501		103	103				
1,2,3,4,7,8,9-HpCDF	100		701		201	102				
OCDF	20 02		881	->	hb	જાત	7 7 2			
							\			,
									,	
						-				
	7				4 breeze a series a s					

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

# ions Monitored for HRGC/HRMS Analysis of PCDDs/PCDFs

303.9016         M         CreH, 200,0         TCE           305.8897         M+2         CreH, 201,0         TCE           315.9419         M         CreH, 201,0         TCE           315.9897         M+2         CreH, 201,0         TCE           317.3899         M+2         TCEH, 201,0         TCE           317.3899         M+2         TCEH, 201,0         TCE           331.3868         M         TCEH, 201,0         TCE           317.8899         M+2         TCEH, 201,0         TCE           331.3868         M+2         TCEH, 201,0         TCE           M+2         TCEH, 201,0         TCE           333.839         M+2         TCEH, 201,0         TCE           341.8867         M+4         TCEH, 201,0         PCE           355.8546         M+4         TCEH, 201,0         PCE	Descriptor	Accurate mass ^(a)	בן מט	Elements Clarke						
308.3016   M+2		╢╌	CII IIIO	Elemental Composition	Analyte	Descriptor	Accurate Mass ^(a)	Ol nol	Elemental Composition	Analyte
305.8887   M+2   C_L_H^{MOL}   CDF (S)   407.788   M+4   C_L_H^{MOL}   CDF (S)   417.828   M+4   C_L_H^{MOL}   CDF (S)   417.718   M+4   C_L_H^{MOL}   CDF (S)   417	<b></b>	303,9016	Σ	O,3H,3GI,O	1005					Allalyte
17.5389		305.8987	M+2	C;H,**Cl,**C10	TCDF	<b>+</b>	407.7818	M+2	C ₁₂ H ³⁵ Cl ₃ 37ClO	HDCDF
319.8885		315.9419	×	C. O. H. H. O.	1007		409.7788	M+4	C ₁₂ H ³² Cl ₁ 37Cl ₃ O	HUCOT
1918.865   M		317,9389	M+2		1001	<u> </u>	417.8250	Σ	130, Haroto	HOODE (c)
321.8366		319.8965	Σ		(8)		419.8220	M+2	13C, H ³⁵ Cl, 37ClO	HODE (S)
333.9388   M+2		321.8936	2+×	C. H 350 37040	1000		423,7767	M+2	C.H. C. J. O.C.	בייל לי
1925.839		331,9368		12. 4 0.3 0.02 20 1 20 0 0			425.7737	M+4		מטטקיין
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100		333 0330	≥ :	12 T T T T T T T T T T T T T T T T T T T	TCDD (S)		435,8169	C - P4	12 12 22 25 25 25 25 25 25 25 25 25 25 25 25	
1384.9792    100K   1		000.000	M+2	13C12H43C137C1O2	TCDD (S)		437 8140	7+1/1		HpcDD (s)
1394.9792  LOCK   C_F_n   PFK   1430.9728    LOCK   C_F_T, PCDF   PFK   1430.9728    LOCK   C_F_T, PCDF   PFK		3/3,0304	M+2	C ₁₂ H, acl, aclo	HXCDPF		720 27 65	4+N:	_	HpCDD (S)
2 339.8637 M+2 C _{0.4} 4.%Cl ₃ rCl ₂ O PeCDF 5 41.7428 M+2 C _{0.4} Cl ₃ rCl ₂ O PeCDF 6 341.7428 M+2 C _{0.4} Cl ₃ rCl ₂ O PeCDF 6 341.7428 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDF 6 341.7428 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDF 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDF 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDF 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDF 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8657 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 351.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 352.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 352.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 352.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 352.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 352.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 352.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 352.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 352.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 352.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 352.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 352.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 352.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 361.8658 M+4 C _{0.4} Cl ₃ rCl ₂ O PeCDD 6 36		[354.9792]	505 X	C I	PFK		14/3:/100	M+4		NCDPE
239.8597   M+2   C ₁₂ H ₃ WCl ₂ PClO   PeCDF   5   441.7428   M+2   C ₁₂ WCl ₃ PClO   PeCDF   5   539.8597   M+4   C ₁₂ H ₃ WCl ₃ PClO   PeCDF   5   441.7428   M+4   C ₁₂ H ₃ Cl ₃ PClO   PeCDF   5   441.7428   M+4   C ₁₂ WCl ₃ PClO   PeCDF   5   442.7337   M+2   C ₁₂ WCl ₃ PClO   PeCDF   5   457.7377   M+2   C ₁₂ WCl ₃ PClO   PeCDF   5   457.7377   M+2   C ₁₂ WCl ₃ PClO   PeCDF   5   5   5   5   5   5   5   5   5					-		[450.8728]	Ž COC		PFK
373 8208	٥	290 9507								
351.5000   M+4   C ₁ H ₂ H ₂ C ₁ PC ₁ C ₂   PeODF   M+4   C ₁ H ₂ C ₁ PC ₂ C ₃   PeODF   M+4   C ₁ H ₂ C ₁ PC ₂ C ₃   PeODF   M+4   C ₁ H ₂ C ₁ PC ₂ C ₃   PeODF   M+4   C ₁ H ₂ H ₂ C ₁ PC ₂ C ₃   PeODF   M+4   C ₁ H ₂ H ₂ C ₁ PC ₂ C ₃   PeODF   M+4   C ₁ H ₂ H ₂ C ₁ PC ₂ C ₃   PeODF   M+4   C ₁ H ₂ H ₂ C ₁ PC ₂ C ₃   PeODF   M+4   C ₁ H ₂ PC ₂ PC ₃ C ₃	ı	1020,000	M+2	C12H38C1,37C1O	PecDF,	u.	841 7408			
351,3000   M+2   10,14,120,170   PeCDF (8)   457,7339   M+4   C ₁ ,20 ₁ ,20 ₁ ,20 ₁   C ₁ ,20 ₁ ,20 ₁		341.8567	M+4	C ₁₂ H ₃ 3Cl ₃ O	PecDF	)	440.7460	M+2	C ₁₂ **Cl ₇ **ClO	OCDF
353.8970   M+4   "C ₁₂ H ₃ ² Cl ₃ ² Cl ₂ O ₂   FeCDF (S)   497.7377   M+2   C ₁₂ H ₃ ² Cl ₃ ² Cl ₂ O ₂   M+4   C ₁₂ H ₃ ² Cl ₃ ² Cl ₂ O ₂   M+4   C ₁₂ H ₃ ² Cl ₃ ² Cl ₂ O ₂   M+4   C ₁₂ H ₃ ² Cl ₃ ² Cl ₂ O ₂   M+4   C ₁₂ H ₃ ² Cl ₃ ² Cl ₂ O ₂   M+4   C ₁₂ H ₃ ² Cl ₃ ² Cl ₂ O ₂   M+4   C ₁₂ H ₃ Cl ₃ ² Cl ₂ O ₂   M+4   C ₁₂ H ₃ Cl ₃ ² Cl ₂ O ₂   M+4   C ₁₂ H ₃ Cl ₃ ² Cl ₂ O ₂   M+4   C ₁₂ H ₃ Cl ₃ ² Cl ₂ O ₂   M+4   C ₁₂ H ₃ Cl ₃ ² Cl ₂ O ₂   M+4   C ₁₂ H ₃ Cl ₃ ² Cl ₂ O ₂   M+4   C ₁₂ H ₃ Cl ₃ Cl ₂ O ₂   M+4   C ₁₂ H ₃ Cl ₃ Cl ₂ O ₂   M+4   C ₁₂ H ₃ Cl ₃ Cl ₂ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₂ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ Cl ₃ O ₂   M+5   C ₁₂ H ₃ Cl ₃ O ₂		351,9000	M+2	1,3C,4H,3CJ,3C10	Peche (e)		7777	M+4		OCDF
355.8546   M+2   C ₁₂ H ₃ *Cl ₁ *Cl ₁ *Cl ₂   FeCDD   459.7748   M+4   C ₁₂ *Cl ₃ *Cl ₂ *Cl ₂ *Cl ₂ *Cl ₃ *Cl ₂ *Cl ₃ *Cl ₂ *Cl ₃ *Cl ₃ *Cl ₂ *Cl ₃		353.8970	M+4	1.0. H.30. 30. 0	(5)		457.7377	M+2	-	
357.8516         M+4         Cirk 3 Chron 2 (200)         PecDD (3) (37.780)         469.7780         M+2 (200, 200)         M+2 (200, 200)         M+4 (200, 200)		355.8546	M+2	C. H 35Cl 37ClO	recor (s)		459.7348	M+4		
367.8949         MH + 2         Orange (Laboration) (La		357.8516	MAA	2000 To 1000 T	Pecpb	-	469.7780	M+2		3000
369.8919   M+4   10 ct.   10		367.8949	- C+W	12 13 Cla	recuo		471.7750	M+4		(8)
Mathematical Control of the contro		360 8040	71.	1, C. T.	Pecdo (S)		513 6775	7	2	(s) and a
443.728  M+2   C ₁₂ H ₃ VCl ₃ TClO		200,001	M+4	13C12H22C13O2	PecdD (S)		[422 9278]	4+14		DCDPE
[354.9792]   LOCK   C ₂ F ₁₃   C ₁₂ H ₂ *2Cl ₃ *7ClO   375.8178   M+4   C ₁₂ H ₂ *2Cl ₃ *7ClO   383.8639   M   C ₁₂ H ₂ *2Cl ₃ *7ClO   385.8610   M+2   C ₁₂ H ₂ *2Cl ₃ *7ClO   389.8156   M+2   C ₁₂ H ₂ *2Cl ₃ *7ClO   M+2   C ₁₂ H ₂ *2Cl ₃ *7ClO   M+4   C ₁₂ H ₂ *2Cl ₃ *7ClO   C ₁₂ H ₂ *2ClO   C ₁₂		409.7974	M+2	C ₁₂ H ₃ CCI 3 CIO	Hacope (		[0.756.0]	TOCK		J-FK
373.8208 M+2 C ₁₂ H ₂ 3cC ₁ 37ClO 375.8178 M+4 C ₁₂ H ₂ 3cC ₁ 37ClO 383.8639 M 15 _{C₁₂H₂3cC₁0 385.8610 M+2 15_{C₁₂H₂3cC₁0 389.8156 M+2 C₁₂H₂3Cl₂7ClO 391.8127 M+4 C₁₂H₂3Cl₃7ClO 401.8559 M+2 13C₁₂H₂3Cl₃7ClO 403.8529 M+4 13C₁₂H₂3Cl₃7ClO M+4 C₁₂H₂3Cl₃7ClO M+4 C₁₂H₂3Cl₃7ClO M+4 C₁₂H₂3Cl₃7ClO M+4 C₁₂H₂3Cl₃7ClO C₁₂H₂3Cl₃7ClO C₁₂H₂3Cl₃7ClO C₁₂H₂3Cl₃7ClO C₁₂H₂3Cl₃7ClO C₁₂H₂3Cl₃7ClO C₁₂H₂3Cl₃7ClO}}		[354.9792]	LOCK	г. г.	PFK	•				
373.8208     M+2     C ₁₂ H ₂ *Cl ₁ *7ClO       375.8178     M+4     C ₁₂ H ₂ *Cl ₁ *7ClO       383.8639     M     "C ₁₂ H ₂ *Cl ₁ *ClO       385.8610     M+2     "C ₁₂ H ₂ *Cl ₁ *ClO       389.8156     M+2     C ₁₂ H ₂ *Cl ₂ *ClO       401.8559     M+4     C ₁₂ H ₂ *Cl ₂ *ClO       403.8529     M+4     "C ₁₂ H ₂ *Cl ₃ *Cl ₂ Co       445.7555     M+4     C ₁₂ H ₂ *Cl ₃ *Cl ₂ Co       [430.9728]     LOCK     C ₁₂ H ₂ *Cl ₃ *Cl ₂ Co										
M+4   C ₁₂ H ₂ C ₁₃ C ₁ C ₁ C M   C ₁₂ H ₂ C ₁₃ C ₁₃ C ₁₂ C ₁₃	8	373.8208	MAD							
M+4 (1,2 H, 201,3'C)2O  M+2 (2,2 H, 200,0'O)  M+2 (2,2 H, 201,3'C)1O  M+4 (2,2 H, 201,3'C)1O  M+4 (3,2 H, 201,3'C)1O  M+4 (1,2 H, 201,3'C)1O  M+4 (1,2 H, 201,3'C)1O  M+4 (2,2 H, 201,3'C)1O  M+4 (2,2 H, 201,3'C)2O  C12 H, 201,3'C)2O  C12 H, 201,3'C)2O  C12 H, 201,3'C)2O  C12 H, 201,3'C)2O	_	375 8178	_		HXCDF	_				
M+2 ''C ₁₂ H ₂ ²³ C ₁₅ O M+2 ''C ₁₂ H ₂ ²³ C ₁₅ O M+2 C ₁₂ H ₂ ²³ C ₁₃ O ¹ C ₁₂ O M+4 C ₁₂ H ₂ ²³ C ₁₄ O ¹ C ₁₂ O M+2 ''C ₁₂ H ₂ ²³ C ₁₄ O ¹ C ₁₂ O M+4 C ₁₂ H ₂ ²³ C ₁₄ O ¹ C ₁₂ O M+4 C ₁₂ H ₂ ²³ C ₁₄ O ² C ₁₂ O C ₁₇ C ₁₇ C ₁₇ O S]		383 8630		0,0%,0%,0%,0%,0%,0%,0%,0%,0%,0%,0%,0%,0%	HXCDF					
M+2 'C ₁₂ H ₂ ³⁶ Cl ₃ ³⁷ ClO M+2 C ₁₂ H ₂ ³⁶ Cl ₃ ³⁷ ClO M+4 C ₁₂ H ₂ ³⁶ Cl ₄ ³⁷ Cl ₂ O ₂ M+2 '3C ₁₂ H ₂ ³⁶ Cl ₄ ³⁷ Cl ₂ O ₂ M+4 G ₁₂ H ₂ ³⁶ Cl ₄ ³⁷ Cl ₂ O ₂ M+4 C ₁₂ H ₂ ³⁶ Cl ₄ ³⁷ Cl ₂ O ₂ C ₁₇ H ₂ ³⁶ Cl ₄ ³⁷ Cl ₂ O ₂ C ₁₇ H ₂ ³⁶ Cl ₄ ³⁷ Cl ₂ O ₂ C ₁₇ H ₂ ³⁶ Cl ₄ ³⁷ Cl ₂ O ₂ C ₁₇ H ₂ ³⁶ Cl ₄ O ₂ O ₂ O ₂ C ₁₇ H ₂ ³⁶ Cl ₄ O ₂ O ₂ O ₃ O ₃ Cl ₄ O ₂ O ₂ O ₃ O ₃ Cl ₄ O ₃		285 0640			HXCDF (S)	_				
M+2 C ₁₂ H ₂ scG ₁ srClO ₂ M+4 C ₁₂ H ₂ scG ₁ srClO ₂ M+2 ¹³ C ₁₂ H ₂ scG ₁ srClO ₂ M+4 ¹³ C ₁₂ H ₂ scG ₁ srClO ₂ M+4 C ₁₂ H ₂ scG ₁ srCl ₂ O ₂ M+4 C ₁₂ H ₂ scG ₁ srCl ₂ O ₂ C ₂ CK C ₂ F ₁₇		0100,000			HXCDF (S)					
M+4 C ₁₂ H ₂ 3Cl ₄ 37Cl ₂ O ₂ HxCDD M+2 ¹⁹ C ₁₂ H ₂ 3Cl ₂ 37Cl ₂ O ₂ HxCDD M+4 ¹³ C ₁₂ H ₂ 3Cl ₄ 37Cl ₂ O ₂ HxCDD M+4 C ₁₂ H ₂ 3Cl ₄ 37Cl ₂ O ₂ HxCDD C ₁₂ H ₂ 3Cl ₄ 37Cl ₂ O ₂ OCDPE  LOCK C ₆ F ₁₇ PFK		303,0130		-	HXCDD					
M+2 13C ₁₂ H ₂ aC ₁₃ C ₁ C ₁ C ₂ HxCDD M+4 13C ₁₂ H ₂ aC ₁₃ C ₁ C ₂ C ₂ HxCDD M+4 C ₁₂ H ₂ aC ₁₃ C ₁₂ C ₂ OCDPE C ₂ C ₁₇ C ₂ C ₁₇ PFK		1310157		C ₁₂ H ₂ *Cl ₁ *Cl ₂ O ₂	HXCDD	•				
M+4 '3C ₁₂ H ₂ 3C ₁₂ O ₂ HxCDD M+4 C ₁₂ H ₂ 3C ₁₈ O ₂ O OCDPE  LOCK C ₆ F ₁₇ PFK		401.8339		13C ₁₂ H ₂ 3Cl ₃ 3ClO ₂	HXCDD (S)					
M+4 C ₁₂ H ₂ ²⁴ Cl ₆ ² 7Cl ₂ Ô OCDPE  LOCK C ₆ F ₁₇ PFK		403.8529		13C1, H, 25C1, O,	HXCDD (S)	_				
LOCK CoFi,		445.7555		C,H, scl, scl, o	OCDPF (9)					
		[430,9728]		C.F.,	P. Y.					
				<u> </u>						

The following nuclidic masses were used:

ø

H ≈ 1.007825 C = 12.000000 ¹³C = 13.003355 F = 18.9984

O = 15.994915 $^{35}Cl = 34.968853$  $^{37}Cl = 36.965903$ 

S = internal/recovery standard

LDC #:	24	4931	92/
SDG #:			

### **VALIDATION FINDINGS WORKSHEET**

Sample Calculation Verification

Page:_	/_of/
Reviewer:	FT
2nd reviewer:	2

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

/	Υ	M	N/A
	Υ	N	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:

Conce	entration	$= \frac{(A_{\star})(I_{\star})(DF)}{(A_{\star})(RRF)(V_{\star})(\%S)}$
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
A _k	=	Area of the characteristic ion (EICP) for the specific internal standard
I _s	=	Amount of internal standard added in nanograms (ng)
V.	=	Volume or weight of sample extract in milliliters (ml) or grams (g).
RAF	=	Relative Response Factor (average) from the initial calibration
Df	=	Dilution Factor.
%S	=	Percent solids, applicable to soil and solid matrices only.

Sample I.D. # | OCPF :

conc. = (38875/000) ( 4000 )( 2959462000) (2.17 )( 10.4) )( 0.9908)

240 pg/g

#	Sample ID	Compound	Reported Concentration ( )	Calculated Concentration ( )	Qualification
		2, 3, 7, 8- TCDF =	20494590	(2000)	
			475704000	<del></del>	(0.9903)
				<del>/                                    </del>	
	·	= 7.9	19/8		
	·				
<b></b>					 
			<u> </u>		
			<u> </u>		
	<del></del>				
<b></b>			<del>-</del>		
			<u></u>		
·					