

Laboratory Data Consultants, Inc.

7750 El Camino Real, Ste. 2L Carlsbad, CA 92009

Phone 760.634.0437

Web www.lab-data.com

Fax 760.634.0439

Northgate Environmental Management, Inc.

December 20, 2010

1100 Quail Street Ste. 102 Newport Beach, CA 92660 ATTN: Ms. Cindy Arnold

SUBJECT: Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada,

Data Validation

Dear Ms. Arnold,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on November 23, 2010. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 24450:

SDG #	<u>Fraction</u>
280-7103-2, 280-7117-2 280-7233-2, 280-7342-2 280-7444-1, 280-7545-2 280-7662-1, 280-7796-1	Volatiles, Semivolatiles, Chlorinated Pesticides, Metals, Wet Chemistry

The data validation was performed under Stage 2B/4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Standard Operating Procedures (SOP) 40, Data Review/Validation, BRC 2009
- Quality Assurance Project Plan Tronox LLC Facility, Henderson Nevada, June 2009
- NDEP Guidance, May 2006
- USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June 2008
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

						_				_	_																						_
			S																														13
			3						Г																			Г				\neg	ᆒ
			S																													一	
			3						H											Т											H	一	ᅦ
			S		-		_	-			_		┢										_					_			\vdash	\dashv	
			-	<u>. </u>			_	┝	\vdash				┝	_															_		\vdash	\dashv	
			≥								_	_	_	_	_	_		_	_												Ш	4	
			S									_	_					_			 		_								Щ	ightharpoonup	٥
	£		≥										_																				٥
	inç		S																												İ		0
	ldυ		8										Γ																				0
	Henderson NV / Tronox PCS Additional Sampling	(0	S	ı	1	ı	_	,	١,		8			,																	H	ヿ	4
	S Is	CLO ₄ (314.0)	3					 			0								_		 <u> </u>										H	\dashv	
	ne			'	Ė	'	_	Ļ.	H																						\vdash		
	itic	Chlorate (9045A)	S	1	-	1	'	<u> </u>	Ľ	-	3		_	'																	Ш	\dashv	4
	dd	Chl (90	*	_		-	-	'	Ŀ	-	0			'														_					
	S A	CI (9056)	S	•	١	ı	-	٠	•	•	3	鬱		٠																	Ш		4
	ပ္သ	06)	8	-		-	-	,		-	0	100		,																			
	х	×Ξ	S	-	•	-	-	Ţ	,		3			,																			4
	no.	NH3-N (350.1)	3		-				 	_	0		\vdash	,																			
	ŗ		\dashv	_	_,	_	4	<u> </u>	_	_	_		<u> </u>	STATE OF	 	_	_	_	_	_				_							\dashv	\dashv	5
	<i>1</i> T	Mn (6020)	S					 	<u> </u>				2		ļ				_		 					_	_			_	\dashv	\dashv	-11
	>		₹	-	,	٠	0	<u>'</u>					0	C	_																	_	ᆀ
t 1	l u	Pb (6020)	တ	ŀ	ı	١	1	'	1		1	1	က	解							 												ဖ
neu	s.	99)	3	ı	ı	t	-	۱, ۱	1	•	1	-	0	100																			
Attachment 1	deı) (0)	S	1	- 1	_	2	,	-	-	1	-	5	蠶																		П	80
Atte	en	Co (6020)	3	-	-	-	0			•	,	-	0	O.										-							\Box	寸	0
	Ĭ		S	6	3	2	4	١,	8		<u> </u>		5																		\dashv	寸	25
	ıgate,	As (6020)	3	0	0	0	0	<u> </u>	0			-	0	100 m	 						 						_	_	Н		\dashv	\dashv	
ĺ	ıgε		\dashv		\vdash			Ŀ	Н		!	i I			_																\dashv	\dashv	
	Ŧ	Metals (SW846)	Υ	_			_	Ľ	<u> </u>		3				<u> </u>					_	 	_		_							\dashv	\dashv	4
	Ž	¥ S	3	•	·	•	١	'		•	0	1 0 1	•	•				į											·		\Box	_	릐
	ပြ	Pest. (8081A)	တ	•	٠	•	•	•		• •	ო	U	•	٠																			4
	1	Pe (808)	3	•	١	-		١,	•	,	0	K 02	,	•																			
	×o	∀ ()	S	-	ı	,	-	,		•	3	3 /8	5																				9
	ron	SVOA (8270C)	≥		-	-	ı	,	-	-	0	0	0	80																		寸	
	E	- 6	S					4			3		1	響				_			 				\dashv				Н		\dashv	7	23
	50	VOA (8260B)	 }	_	\dashv	_	_	-													 -	_	_		-					_	\dashv	\dashv	_
	44		≥			ᆜ	٦.	1) 1		7	2					Н										_		\dashv	\dashv	3
	#2	(3) DATE DUE		12/16/10	12/16/10	16/10	16/10	16/10	1/9	16/10	16/10	16/10	16/10	10/10																			
18	LDC #24450 (Tronox LLC-North			12/1	12/1	12/16/10	12/16/10	11/23/10 12/16/10	11/23/10 12/16/10	11/23/10 12/16/10	12/1	11/23/10 12/16/10 10 10 10 10 10 10 10	11/23/10 12/16/10	11/23/10 12/16/10 概0論 編7點 製0数 数5数																			
Delivery 18	ן ב	μР	Ì		\rightarrow		/10	/10	/10	/10	/10	/10	/10	/10																		コ	
<u>je</u>		DATE REC'D		11/23/10	11/23/10	11/23/10	11/23/10	1/23	1/23	1/23	1/23	1/23	1/23	1/23,																			
-		12	}	-	+	` -	1	-	+	-	<u> </u>	1	÷	÷							 		_						_		\dashv	\dashv	$-\parallel$
9/10	B/4	浩	<u>.</u>	03-2	17-2	33-2	42-2	44-1	45-2	45-2	62-1	62-1	.96-1	96-1													-					Ī	\mathbb{Z}
DL 11/09/10	Stage 2B/4	SDG#	Water/Soil	280-7103-2	280-7117-2	280-7233-2	280-7342-2	280-7444-1	280-7545-2	280-7545-2	280-7662-1	280-7662-1	280-7796-1	280-7796-1																			T/LR
占	Sta		Wat	28	28	28	28	38	78	28	28	28	<u>78</u>	28																			
	<u> </u>		- 1						Ш						$oxed{oxed}$						 												
	EDD	LDC	Matrix:	∢	В	ပ	٥	ш	ᆈ	ш	G	ပ	Ŧ	ェ															.				Total
L										_					_			_	• • • • • •		 										_	_	

LDC #: <u>24450</u> SDG #: <u>280-7103-2, 280-7117-2, 280-7233-2, 280-7342-2</u> <u>280-7444-1, 280-7545-2, 280-7662-1, 280-7796-1</u> Page: 1 of 1 Reviewer: <u>JE</u> 2nd Reviewer: BC

Tronox Northgate Henderson Worksheet

EDD Area	Yes	No	NA	Findings/Comments
I. Completeness		(2) 17度 (他)人。	New York	
Is there an EDD for the associated Tronox validation report?	x			
II. EDD Qualifier Population			100	
Were all qualifiers from the validation report populated into the EDD?	x			
III. EDD Lab Anomalies				
Were EDD anomalies identified?		Х		
If yes, were they corrected or documented for the client?			х	See EDD_discrepancy_ form_LDC24450_111310.doc
IV. EDD Delivery.	À.		TO THE	
Was the final EDD sent to the client?	x			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

September 2, 2010

LDC Report Date:

December 8, 2010

Matrix:

Soil

Parameters:

Arsenic

Validation Level:

Stage 2B

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-7103-2

Sample Identification

SSAM7-06-4BPC

SSAM7-06-5BPC

SSAN7-04-4BPC

SSAN7-04-5BPC

SSAN7-07-4BPC

SSAN7-07-5BPC

Introduction

This data review covers 6 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6020 for Arsenic.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No arsenic was found in the initial, continuing and preparation blanks.

No field blanks were identified in this SDG.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-7103-2	All analytes reported below the PQL.	J (all detects)	Α

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic - Data Qualification Summary - SDG 280-7103-2

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-7103-2	SSAM7-06-4BPC SSAM7-06-5BPC SSAN7-04-4BPC SSAN7-04-5BPC SSAN7-07-4BPC SSAN7-07-5BPC	All analytes reported below the PQL.	J (all detects)	Α	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic - Laboratory Blank Data Qualification Summary - SDG 280-7103-2

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic - Field Blank Data Qualification Summary - SDG 280-7103-2

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #: 24450A4 VALIDATION COMPLETENE
SDG #: 280-7103-2 Stage 2B
Laboratory: Test America

Date: 12-1-10

Page: 1 of 1

Reviewer: 2

2nd Reviewer: 4

METHOD: As (EPA SW 846 Method 6020)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area	·	Comments
1.	Technical holding times	A	Sampling dates: 9210
11.	ICP/MS Tune	A	
III.	Calibration	A	
IV.	Blanks	P	
V	ICP Interference Check Sample (ICS) Analysis	A	
VI.	Matrix Spike Analysis	AA	Clients pecified or MSD (SD6+280-7117-Z)
VII.	Duplicate Sample Analysis	AN	4
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	A	
Χ.	Furnace Atomic Absorption QC	\sim	NOTUE 1780
XI.	ICP Serial Dilution	AJA	Ab+pertamedo2 (SD6m280-717-2)
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	A	
XIV.	Field Duplicates	N	
_XV	Field Blanks	70	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

	<u> </u>	1			
1	SSAM7-06-4BPC	11 PP5	21	31	
2	SSAM7-06-5BPC	12	22	32	
3	SSAN7-04-4BPC	13	23	33	
4	SSAN7-04-5BPC	14	24	34	
5	SSAN7-07-4BPC	15	25	35	
6	SSAN7-07-5BPC	16	26	36	
7		17	27	37	
8		18	28	38	
9		19	29	39	
10		20	30	40	

Notes:		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

September 7, 2010

LDC Report Date:

December 8, 2010

Matrix:

Soil

Parameters:

Arsenic

Validation Level:

Stage 2B

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-7117-2

Sample Identification

SSAN8-06-0.5BPC

SSAN8-05-0.5BPC

SSAN8-07-0.5BPC

SSAN8-06-0.5BPCMS

SSAN8-06-0.5BPCMSD

Introduction

This data review covers 5 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6020 for Arsenic.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No arsenic was found in the initial, continuing and preparation blanks.

No field blanks were identified in this SDG.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-7117-2	All analytes reported below the PQL.	J (all detects)	А

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic - Data Qualification Summary - SDG 280-7117-2

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-7117-2	SSAN8-06-0.5BPC SSAN8-05-0.5BPC SSAN8-07-0.5BPC	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic - Laboratory Blank Data Qualification Summary - SDG 280-7117-2

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic - Field Blank Data Qualification Summary - SDG 280-7117-2

No Sample Data Qualified in this SDG

Tronox Northgate Henderson

	rionox northgate henderson
LDC #: 24450B4	VALIDATION COMPLETENESS WORKSHEET
SDG #: 280-7117-2	Stage 2B
Laboratory: Test America	- -

Date: 12-1-16
Page:of_ <u> </u> _
Reviewer:
2nd Reviewer:

METHOD: As (EPA SW 846 Method 6020)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	A	Sampling dates: 91710
11.	ICP/MS Tune	A.	
III.	Calibration	B	
IV.	Blanks	A	
V. <u>·</u>	ICP Interference Check Sample (ICS) Analysis	A	
VI.	Matrix Spike Analysis	A	ms D
VII.	Duplicate Sample Analysis	Ν	
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	À	
X.	Furnace Atomic Absorption QC	\sim	Norulinea
XI.	ICP Serial Dilution	A	, , , , , , , , , , , , , , , , , , ,
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	Q	
XIV.	Field Duplicates	N	
ΧV	Field Blanks	N	

Note: A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank
EB = Equipment blank

Validated Samples:

	50.					
1	SSAN8-06-0.5BPC	11	8655	21	31	
2	SSAN8-05-0.5BPC	12		22	32	
3	SSAN8-07-0.5BPC	13		23	33	
4	SSAN8-06-0.5BPCMS	14		24	34	
5	SSAN8-06-0.5BPCMSD	15		25	35	
6		16		26	36	
7		17		27	37	
8		18		28	38	
9		19		29	39	
10		20		30	40	

Notes:			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

September 8, 2010

LDC Report Date:

December 8, 2010

Matrix:

Soil

Parameters:

Arsenic

Validation Level:

Stage 2B

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-7233-2

Sample Identification

SSAJ2-06-9BPC SSAJ2-06-10BPC

SSAJ2-06-9BPCMS

SSAJ2-06-9BPCMSD

Introduction

This data review covers 4 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6020 for Arsenic.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No arsenic was found in the initial, continuing and preparation blanks.

No field blanks were identified in this SDG.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-7233-2	All analytes reported below the PQL.	J (all detects)	А

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic - Data Qualification Summary - SDG 280-7233-2

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-7233-2	SSAJ2-06-9BPC SSAJ2-06-10BPC	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic - Laboratory Blank Data Qualification Summary - SDG 280-7233-2

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic - Field Blank Data Qualification Summary - SDG 280-7233-2

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #: 24450C4 VALIDATION COMPLETENE
SDG #: 280-7233-2 Stage 2B
Laboratory: Test America

Date: 12-1-0 Page: _of_ Reviewer: ____ 2nd Reviewer: _____

METHOD: As (EPA SW 846 Method 6020)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	Ð	Sampling dates: 9-8-10
11.	ICP/MS Tune	A	
III.	Calibration	A	
IV.	Blanks	A	
V.	ICP Interference Check Sample (ICS) Analysis	A	
VI.	Matrix Spike Analysis	A	msp
VII.	Duplicate Sample Analysis	Ν	
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	А	
X.	Furnace Atomic Absorption QC	\mathcal{N}	Not utimed
XI.	ICP Serial Dilution	A	
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	A	,
XIV.	Field Duplicates	N	
ΧV	Field Blanks	N	

Note: A

A = Acceptable

N = Not provided/applicable

SW = See worksheet

CO:1

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

	G()					
1	SSAJ2-06-9BPC	11	805	21	31	
2	SSAJ2-06-10BPC	12	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	22	32	
3	SSAJ2-06-9BPCMS	13		23	33	
4	SSAJ2-06-9BPCMSD	14		24	34	
5		15		25	35	
6		16		26	36	
7		17		27	37	
8		18		28	38	
9		19		29	39	
10		20		30	40	

Notes:	<u> </u>			
	<u> </u>		*	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

September 10, 2010

LDC Report Date:

December 8, 2010

Matrix:

Soil

Parameters:

Arsenic, Cobalt, & Manganese

Validation Level:

Stage 2B

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-7342-2

Sample Identification

SSA07-08-0.5BPC

SSA07-07-0.5BPC

SSAO8-09-0.5BPC

SSAO8-06-0.5BPC

Introduction

This data review covers 4 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6020 for Arsenic, Cobalt, and Manganese.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No arsenic, cobalt, and manganese contaminants were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Manganese	0.0652 mg/Kg	All samples in SDG 280-7342-2

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

No field blanks were identified in this SDG.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-7342-2	All analytes reported below the PQL.	J (all detects)	A

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic, Cobalt, & Manganese - Data Qualification Summary - SDG 280-7342-2

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-7342-2	SSAO7-08-0.5BPC SSAO7-07-0.5BPC SSAO8-09-0.5BPC SSAO8-06-0.5BPC	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic, Cobalt, & Manganese - Laboratory Blank Data Qualification Summary - SDG 280-7342-2

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic, Cobalt, & Manganese - Field Blank Data Qualification Summary - SDG 280-7342-2

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #:	_ 24450D4	_ VALIDATION COMPLETENESS
SDG #:	280-7342-2	_ Stage 2B
Laborator	y: <u>Test America</u>	<u> </u>

Date: 12-1-10
Page: Lof
Reviewer: <i>O</i> ∠
2nd Reviewer:

METHOD: As, Co, & Mn (EPA SW 846 Method 6020)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
J.	Technical holding times	A	Sampling dates: 9 (10110
11.	ICP/MS Tune	A	
111.	Calibration	A	
IV.	Blanks	SW	
V.	ICP Interference Check Sample (ICS) Analysis	A	
VI.	Matrix Spike Analysis	A	MSID (SD6x 250-7117-2)
VII.	Duplicate Sample Analysis	N	
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	A	
X.	Furnace Atomic Absorption QC	Ν	Nonvenized
XI.	ICP Serial Dilution	A	(SD6x: 280-7117-Z)
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	A	
XIV.	Field Duplicates	N	
xv	Field Blanks	~	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

	<u> </u>					
1	SSAO7-08-0.5BPC	11	80 K	21	31	
2	SSAO7-07-0.5BPC	12	,	22	32	
3	SSAO8-09-0.5BPC	13	<u>.</u>	23	33	
4	SSAO8-06-0.5BPC	14		24	34	
5		15		25	35	
6		16		26	36	
7		17		27	37	
8		18		28	38	
9		19		29	39	
10		20		30	40	

Notes:	,

LDC# 244500

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: ____of __/ Reviewer: _____ 2nd reviewer: _____

All circled elements are applicable to each sample.

Sample ID	_Matrix	Target Analyte List (TAL)
1,4		Al, Sb As, Ba, Be, Cd, Ca, Cr, Co Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
23		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN.
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN
	·	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
,		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Ał, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN.
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	<u> </u>	Al, Sb. As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Analysis Method.
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN
ICP-MS		Ai, Sb,(As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, (M), Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
GEAA		Al Sh. As. Ba. Be, Cd. Ca. Cr. Co. Cu. Fe, Ph. Ma. Mn. Hq. Ni, K. Se, Aq. Na, Tl. V. Zn. Mo. B. Si, CN.

Comments:	Mercury by CVAA if performed	 <u> </u>	<u>.</u> .	
= .				

VALIDATION FINDINGS	

LDC #: 24450D4

WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES Soil preparation factor applied: 100x Associated Samples: All METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: mg/Kg

Page:

-		
	No Qualifiers	
	Action Limit	
	Maximum ICB/CCB* (ug/L)	
	Maximum PB³ (ug/L)	
	Maximum PB ^a (mg/Kg)	0.0652
	Analyte	Mn

a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element. Note:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

September 15, 2010

LDC Report Date:

December 8, 2010

Matrix:

Soil/Water

Parameters:

Volatiles

Validation Level:

Stage 2B

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-7444-1

Sample Identification

TB-09152010_1

SB02-31_01_BPC

SB02-34_01_BPC

SB03-31 01 BPC

SB03-34_01_BPC

Introduction

This data review covers 4 soil samples and one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
All samples in SDG 280-7444-1	All TCL compounds	Freezer storing samples went out of temperature control limits for 11 hours.	Cooler temperature must be 4±2°C	J- (all detects) UJ (all non-detects)	А

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
8/31/10	tert-Butyl alcohol	0.0243 (≥0.05)	\$B02-31_01_BPC \$B02-34_01_BPC \$B03-34_01_BPC MB 280-32534/3-A	J (all detects) UJ (all non-detects)	А
9/27/10	tert-Butyl alcohol	0.0042 (≥0.05)	All water samples in SDG 280-7444-1	J (all detects) UJ (all non-detects)	A
9/13/10	tert-Butyl alcohol	0.0026 (≥0.05)	SB03-31_01_BPC MB 280-32761/1-A	J (all detects) UJ (all non-detects)	Α

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs) and 25.0% for all other compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
9/24/10	Bromomethane	25.1	SB03-31_01_BPC MB 280-32761/1-A	J- (all detects) UJ (all nondetects)	Α
9/24/10	2-Butanone 4-Methyl-2-pentanone 2-Hexanone n-Butylbenzene	40.4 34.8 38.5 25.5	SB03-31_01_BPC MB 280-32761/1-A	J+ (all detects) J+ (all detects) J+ (all detects) J+ (all detects)	А

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
9/13/10 (P1029)	Trichlorofluoromethane trans-1,2-Dichloroethene	30.7 30.9	SB03-31_01_BPC MB 280-32761/1-A	J+ (all detects) J+ (all detects)	А
9/13/10 (P1031)	tert-Butyl alcohol	113.1	SB03-31_01_BPC MB 280-32761/1-A	J+ (all detects)	Α

All of the continuing calibration relative response factors (RRF) were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
9/23/10	tert-Butyl alcohol	0.0227 (≥0.05)	SB02-31_01_BPC SB02-34_01_BPC SB03-34_01_BPC MB 280-32534/3-A	J (all detects) UJ (all non-detects)	А
9/28/10	tert-Butyl alcohol	0.0035 (≥0.05)	All water samples in SDG 280-7444-1	J (all detects) UJ (all non-detects)	А
9/24/10	tert-Butyl alcohol	0.0030 (≥0.05)	SB03-31_01_BPC MB 280-32761/1-A	J (all detects) UJ (all non-detects)	А

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
MB 280-32534/3-A 9/23/10 1,2,3-Trichlorobenzene Methylene chloride Naphthalene		0.792 ug/Kg SB02-31_01_BPC 1.74 ug/Kg SB02-34_01_BPC 0.735 ug/Kg SB03-34_01_BPC		
MB 280-33537/6	9/28/10	Acetone Methylene chloride	3.55 ug/L 0.610 ug/L	All water samples in SDG 280-7444-1

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
SB02-31_01_BPC	Methylene chloride	1.7 ug/Kg	1.7U ug/Kg
SB02-34_01_BPC	Methylene chloride	1.3 ug/Kg	1.3U ug/Kg
SB03-34_01_BPC	Methylene chloride	2.9 ug/Kg	2.9U ug/Kg
TB-09152010_1	Acetone Methylene chloride	2.6 ug/L 0.44 ug/L	2.6U ug/L 0.44U ug/L

Sample TB-09152010_1 was identified as a trip blank. No volatile contaminants were found in this blank with the following exceptions:

Trip Blank ID	Sampling Date	Compound	Concentration	Associated Samples
TB-09152010_1	9/15/10	Acetone Chloromethane Methylene chloride	2.6 ug/L 0.43 ug/L 0.44 ug/L	All soil samples in SDG 280-7444-1

Sample concentrations were compared to concentrations detected in the trip blanks as required by the QAPP. No sample data was qualified.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Compound	Flag	A or P
SB02-31_01_BPC	Bromofluorobenzene	178 (76-127)	All TCL compounds except Chloroform Tetrachloroethene Trichloroethene	J+ (all detects)	А
SB02-31_01_BPC	1,2-Dichloroethane-d4 Bromofluorobenzene Dibromofluoromethane Toluene-d8	49 (50-139) 61 (62-133) 45 (60-133) 45 (68-143)	Chloroform Tetrachloroethene Trichloroethene	J- (all detects) UJ (all nondetects)	Α .
SB02-34_01_BPC	Toluene-d8	63 (68-143)	Chloroform	J- (all detects) UJ (all nondetects)	А
SB03-31_01_BPC	Toluene-d8	63 (68-143)	All TCL compounds	J- (all detects) UJ (all nondetects)	А
SB03-34_01_BPC	Bromofluorobenzene	145 (76-127)	All TCL compounds except Chloroform Tetrachloroethene	J+ (all detects)	А
SB03-34_01_BPC	1,2-Dichloroethane-d4 Bromofluorobenzene Dibromofluoromethane Toluene-d8	47 (50-139) 53 (62-133) 44 (60-133) 42 (68-143)	Chloroform Tetrachloroethene	J- (all detects) UJ (all nondetects) J- (all detects) UJ (all nondetects)	А
MB 280-32761/1-A	Dibromofluoromethane Toluene-d8	71 (75-121) 76 (80-126)	All TCL compounds	J- (all detects) UJ (all nondetects)	Р

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Flag	A or P
LCS/D 280-32761/2,3-A (SB03-31_01_BPC MB 280-32761/1-A)	1,2,4-Trichlorobenzene Isopropylbenzene Naphthalene p-Isopropyltoluene 1,2,3-Trichlorobenzene	125 (73-120) 137 (71-120) 124 (65-120) 127 (73-120)	130 (65-120)		J+ (all detects)	P

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits with the following exceptions:

Sample	Internal Standards	Area (Limits)	Compound	Flag	A or P
\$B02-31_01_BPC	1,2-Dichlorobenzene-d4	380078 (664436-2657742)	Isopropylbenzene 1,1,2,2-Tetrachloroethane Bromobenzene 1,2,3-Trichloropropane n-Propylbenzene 2-Chlorotoluene 1,3,5-Trimethylbenzene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene	J (all detects) UJ (all non-detects)	A

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-7444-1	All compounds reported below the PQL.	J (all detects)	Α

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Volatiles - Data Qualification Summary - SDG 280-7444-1

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-7444-1	TB-09152010_1 SB02-31_01_BPC SB02-34_01_BPC SB03-31_01_BPC SB03-34_01_BPC	All TCL compounds	. J- (all detects) UJ (all non-detects)	А	Freezer storage temperature (o)
280-7444-1	TB-09152010_1 SB02-31_01_BPC SB02-34_01_BPC SB03-31_01_BPC SB03-34_01_BPC	tert-Butyl alcohol	J (all detects) UJ (all non-detects)	A	Initial calibration (RRF) (c)
280-7444-1	SB03-31_01_BPC	Bromomethane	J- (all detects) UJ (all nondetects)	Α	Continuing calibration (%D) (c)
280-7444-1	SB03-31_01_BPC	2-Butanone 4-Methyl-2-pentanone 2-Hexanone n-Butylbenzene	J+ (all detects) J+ (all detects) J+ (all detects) J+ (all detects)	А	Continuing calibration (%D) (c)
280-7444-1	SB03-31_01_BPC	Trichlorofluoromethane trans-1,2-Dichloroethene tert-Butyl alcohol	J+ (all detects) J+ (all detects) J+ (all detects)	А	Continuing calibration (ICV %D) (c)
280-7444-1	TB-09152010_1 SB02-31_01_BPC SB02-34_01_BPC SB03-31_01_BPC SB03-34_01_BPC	tert-Butyl alcohol	J (all detects) UJ (all non-detects)	А	Continuing calibration (RRF) (c)
280-7444-1	SB02-31_01_BPC	All TCL compounds except Chloroform Tetrachioroethene Trichloroethene	J+ (all detects)	A	Surrogate spikes (%R) (s)
280-7444-1	SB02-31_01_BPC	Chloroform Tetrachloroethene Trichloroethene	J- (all detects) UJ (all nondetects)	A	Surrogate spikes (%R) (s)
280-7444-1	SB02-34_01_BPC	Chloroform	J- (all detects) UJ (all nondetects)	Α	Surrogate spikes (%R) (s)
280-7444-1	SB03-31_01_BPC	All TCL compounds	J- (all detects) UJ (all nondetects)	Α	Surrogate spikes (%R) (s)
280-7444-1	SB03-34_01_BPC	All TCL compounds except Chloroform Tetrachloroethene	J+ (all detects)	Α	Surrogate spikes (%R) (s)

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-7444-1	SB03-34_01_BPC	Chloroform Tetrachloroethene	J- (all detects) UJ (all nondetects) J- (all detects) UJ (all nondetects)	Α	Surrogate spikes (%R) (s)
280-7444-1	SB03-31_01_BPC	1,2,4-Trichlorobenzene Isopropylbenzene Naphthalene p-Isopropyltoluene 1,2,3-Trichlorobenzene	J+ (all detects)	Р	Laboratory control samples (%R) (I)
280-7444-1	SB02-31_01_BPC	Isopropylbenzene 1,1,2,2-Tetrachloroethane Bromobenzene 1,2,3-Trichloropropane n-Propylbenzene 2-Chlorotoluene 1,3,5-Trimethylbenzene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 1,3-Dichlorobenzene 4-Isopropyltoluene 1,4-Dichlorobenzene n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene Naphthalene 1,2,3-Trichlorobenzene	J (all detects) UJ (all non-detects)	A	Internal standards (area) (i)
280-7444-1	TB-09152010_1 SB02-31_01_BPC SB02-34_01_BPC SB03-31_01_BPC SB03-34_01_BPC	All compounds reported below the PQL.	J (all detects)	А	Project Quantitation Limit (PQL) (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-7444-1

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P	Code
280-7444-1	SB02-31_01_BPC	Methylene chloride	1.7U ug/Kg	А	bl
280-7444-1	SB02-34_01_BPC	Methylene chloride	1.3U ug/Kg	А	bl
280-7444-1	SB03-34_01_BPC	Methylene chloride	2.9U ug/Kg	А	bl
280-7444-1	TB-09152010_1	Acetone Methylene chloride	2.6U ug/L 0.44U ug/L	A	bl

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Volatiles - Trip Blank Data Qualification Summary - SDG 280-7444-1

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VORKSHEET

LDC #: 24450E1	VALIDATION COMPLETENESS W
SDG #: 280-7444-1	Stage 2B
Laboratory: Test America	-

Reviewer:_ 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	SW	Sampling dates: 9/15/10
11.	GC/MS Instrument performance check	A	,
111.	Initial calibration	Sn	7 RSD VY
IV.	Continuing calibration/ICV	WZ	2 RSD W CW/W = 25)
V.	Blanks	SW	
VI.	Surrogate spikes	(N2	
VII.	Matrix spike/Matrix spike duplicates	Ŋ	client spec
VIII.	Laboratory control samples	SN)	les 10
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	SW	
XI.	Target compound identification .	N	
XII.	Compound quantitation/CRQLs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	N	
XVII.	Field blanks	SN	TB =]

Note: A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank
EB = Equipment blank

Validated Samples:

Water + Soil

1 3	TB-09152010_1	W 11 1	MB 280-32534/3-A	21	31	
2/1	SB02-31_01_BPC	5 12 Y	MB 280-32534/3-A MB 280- 32761/1-A	22	32	
3 ² /1	SB02-34_01_BPC	13 3	MB 780 - 33537/6	23	33	
4	SB03-31_01_BPC	14	/	24	34	
5 ² /1	SB03-34_01_BPC	15		25	35	
6		16	,	26	36	
7		17		27	37	
8		18		28	. 38	
9		19		29	39	
10		20		30	40	

4 - All TCL 24450E1W.wpd 44

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Buty(benzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD, isopropyl atcohol
C. Vinyl choride**	W. trans-1,3-Dichloropropane	QQ. 1,1-Dichloropropene	KKK, 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X, Bromoform*	RR. Dibromomethene	LLL. Hexachlorobutadiene	FFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG, Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	III. isobutyl alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane*	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ, Methacrylonitrile
1.1.1-Dichloroethane*	CC, Toluene**	WW. Bromobenzene	QQQ, cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene*	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform**	EE. Ethylbenzene"	YY, n-Propylbenzene	SSS. o-Xylane	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ, 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN.
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	.0000
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB, 4-Chlorotoluene	VVV. 4-Ethyltoluene	'dddd
O. Carbon tetrachloride	II. 2-Chioroethylvinyl ether	CCC, tert-Butylbenzene	WWW. Ethanol	0000 .
P. Bromodichloromethane	JJ, Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-Isopropyi ether	RRRR.
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY, tert-Butanol	ssss,
R, cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	TTTT.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG, p-lsopropyltoluene	AAAA. Ethyl tert-butyl ether	יחחח.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	ww.

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

LDC#: 2(450 E)
SDG#: Su (200)

VALIDATION FINDINGS WORKSHEET Technical Holding Times

All circled dates have exceeded the technical holding times.

Y(N,N/A) Were all cooler temperatures within validation criteria?

	atrix Freez	Preserved Ler Sto	Sampling Cons		Extraction went	on date ont hours	Analysis date	Total # of Days	73-
AIIS	Free 2	er sto	ring	Sample tral	for II	hours	of		
	Hemi	peratur	Cons	1501	for II	hours			
									
	ı	1							
			_						
	·								
			· · · · · · · · · · · · · · · · · · ·						<u> </u>
					···				
							- · · · · · · · · · · · · · · · · · · ·		
								 	
									
					· · ·				
					<u></u>				

TECHNICAL HOLDING TIME CRITERIA

Water unpreserved:

Aromatic within 7 days, non-aromatic within 14 days of sample collection.

Water preserved:

Both within 14 days of sample collection. Both within 14 days of sample collection.

Soil:

24 450 to	
LDC#:	

VALIDATION FINDINGS WORKSHEET Initial Calibration

Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A

Did the laboratory perform a 5 point calibration prior to sample analysis?

N N/A

Y(N)N/A

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Was a curve fit used for evaluation? $\frac{r}{r} \stackrel{>}{=} \frac{o}{o}$, $\frac{q}{q}$

Did the initial calibration meet the acceptance criteria? N N/A N/N/A

_
TT C
α
.05 R
0.0
~
an (
ő
ď
%
×3(
ö
<u>.</u>
ite.
C
Ę,
ida
<u> </u>
þe
T
Ē
3 €
분
2
낊
SS
S
%F
ᇹ
Ð
Ne

	Ú	۱ <u>۱</u> (<u> </u>					 	 				
Qualifications	32534 K. A INITA					Y-A										
Associated Samples	ı			A(1 N)	1	4 MB 280- 22761	Υ									
Finding RRF (Limit: >0.05)	0,0248		,	0.0047		0.0026	-									
Finding %RSD (Limit: <30.0%)				•												
Compound	22.23	>		222		. 222										
Standard ID	1CAL - NSJ			1CA1 - MS1		d 34 - 7471			-							
# Date	8/31/10	/		9/27/10		9/4/8										

LDC# 299 50 E

VALIDATION FINDINGS WORKSHEET

of

Page: Reviewer: 2nd Reviewer.

Continuing Calibration

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". METHOD: GC/MS VOA (EPA SW 846 Method 8260B) X N N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF?

Qualifications			335376) whicher	*		32761/A-4 J-/NJ A			•)	XX SWIT			J+40ts A					,			
Associated Samples	2, 3, 5, MB 280-37343-A		(1 MB 250- 32	- /		4 MB 780-327	1						-	-			1					
Finding RRF (Limit: >0.05)	0.0227		2600,0								0 . 00 30	-						-				
Finding %D (Limit: <25.0%)						25.1	40.4	34.8	38.5	25,5				30.7	20.9		[13,]					
Compound	722		222			(-) 8	(+) (4)		2 (+)	(セ) ユエエ				KK (+)	Ppp (+)		222 (+)					
Standard ID	1111	1 1	ms 3790			P 1267	•							P 10 29	(M)	`,	P 1031	(101)				
# Date	9/22/b		01/82/6		,	9/24/10	,							9/13/10								
		 				-	-						 	_				_		 	 	

LDC# 2450 to

VALIDATION FINDINGS WORKSHEET Blanks

2nd Reviewer: Reviewer: Page:_

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Phase see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A" Y N/A

Was a method blank analyzed at least once every 12 hours for each matrix and concentration? Was a method blank associated with every sample in this SDG? Y/N N/A

Was there contamination in the method blanks? If yes, please see the qualifications below.

Blank analysis date: 4

N/A

.584

5 ~; &

(PX) مع ع Sample Identification W Associated Samples: 4 N Λ ц ų. _ 485-6-084 0.797 0.735 Blank ID .74 128 128 **4**2 マママ MMM Compound Conc. units: 145 Methylene chloride Aceteme CEDI

16	2.6 /4	0, 44 /N				
16586-000	3.55	419'0				
48	1	4				
	1 9/4256-00 34	## 100 - 335 37 /6 1	4	# 10-3353 - F 3.55 6 0,610		

Associated Samples:

Blank analysis date:

Conc. units:

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were also qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC#: 24450 E/

VALIDATION FINDINGS WORKSHEET Field Blanks

Page: of Reviewer: 0%

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

							ŕ		
¥11 S									
	ıtion								
Associated Samples:	Sample Identification					ļ			
Assoc	Š	72			29				
ç nər:		+	(p)		(93)				
ii; e field blanks; for /kS to Blank/ Ott		3		(1.2)				
d in this SDC etected in the le units: le units: l		^			(1,7)				
Were field blanks identified in this SDG? Were target compounds detected in the field blanks? $\sqrt{2}/L$ Associated sample units: $\sqrt{5}/kS$ $\sqrt{5}/\sqrt{6}$ $\sqrt{5}/\sqrt{6}$ e; (circle one) Field Blank / Rinsate / Kip Blank) Other	Blank ID		2.6	0, 43	0,44			-	
Were field bit Were target of the Association of th	pun		14	4	: 11	}			
Y N N/A Were field blanks identified in this SUG? N N/A Were target compounds detected in the field blanks? Blank units: 1/2 / Associated sample units: 1/5 / kS Sampling date: 9 / 5 / 1/0 Field blank type: (circle one) Field Blank / Rinsate / Kip Blank / Other:	Compound	a de	Methyene chloride	Asstone-	Chloroform				
	<u> </u>	<u>سار</u> ک			25		· A	4	

Sample Identification Associated Samples: Field blank type: (circle one) Field Blank / Rinsate / Trip Blank / Other: Blank ID Compound Methylene chloride Chlaroform Acetone

Associated sample units:

Sampling date:

Blank units:

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were also qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

LDC # 29 450 E

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page: of 2nd Reviewer:_ Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| N N/A | Were all surrogate %R within QC limits?
| Y N N/A | If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside

	ot criteria?	teria?						
**	Date	Sample ID	Surrogate	"ABacovery (Limite)	ite)	2:Te : C	O I I I I I I I I I I I I I I I I I I I	
		7	BFB	32	(76-127)	J+ 445/4	A GII excuttoft	≻ \$
					()		Ι.	<u> </u>
		γ,	bc€	49	(661-06)	J- /N5 /A	C K S AA	9
			b F B	19	(62-133)		\overline{L}	\
			NEW	44	(60-123)			
			704,	45	(68-143)			_ -
					<u> </u>			
		r	7eT	63	(68-1431	J-115 A	S) ("may)	
	·				() ()	11	10	
		7	701	63	\ \ \ \	J- MJ/A	(Anta) (S)	
					(,	
		l,	BFB.	145	(75-1-97)	J+ 1117/A	(all excut K, A+	.s
					(/)	L		
		77	bæ	47	(661-05)	J-/15/A	(K, AA) (S)	
			BFB	53	(62-133)			
			DFM	77	(60-123)			
			7.0.7	47	(c3-123)			
		MB 280 - 32761 /1-A	DFM	1/	(121-21)	4-74-7	(2) (M) (G)	
			701	76	1.961-08			

	QC Limits (Soil)	ac Lir
SMC1 (TOL) = Toluene-d8	85-115	85-
SMC2 (BFB) = Bromofluorobenzene	85-120	75-
SMC3 (DCE) = 1,2-Dichloroethane-d4	60-120	70-1
SMC4 (DFM) = Dibromofluoromethane	75-125	85-

LDC#: 24450 £/

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Reviewer: Page: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

V IN N/A

Was a LCS required? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

												<u>'</u>							_				<u> </u>		ก
Qualifications	J+ d(4/2))			\hat{\chi}	No ruck	<u>.</u>					Pither LCS of LGSD	or both in												
Associated Samples	4-7	,										/		<u>/_</u>											
RPD (Limits)	()	()	()		()	()	23 (20)	()	()	()	()	()	()		()	()	()	()	()	()	()	()	()	(
LCSD %R (Limits)	(22-67) (21)	(0=1-14) 78]	(05)-10) 061	12x (73-130)	122 (69-120)	()	· ·	()		()	()	()	()		()	()	()	()	()	()	()	()	()	(
LCS %R (Limits)	(0	((021-39) 221	(01-61) 21	() ,	(54-4) St	()	137 (66-130)	~		(27 (77-12¢)		()	()	()	()	()	()	()	()	()	()	()	()	
Compound	A KKK	۸۸	MMM	666	NNN	4 A.A	71	ブエエ	7.7	444	222														
rcs/rcsd id	165/6 280-32761 63A KKK																		-			;			
Date																									
*	L	<u> </u>				<u>'</u>														<u> </u>					<u>J</u>

_0 # _0	7
244 20	ن
LDC #:	SDG#:

VALIDATION FINDINGS WORKSHEET Internal Standards

101	716	۲
Page:_	Reviewer:	2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

fications	A (i)													
Quali	JATA				·							:		
RT (1 imits)	3774x)							- Andrews - Andrews						
Area (Limits)	300 7													
Internal Standard	4 DCB													
Sample ID	7													
Date													-	
#	<u>چ</u>	<u> </u>							 		 			

(BCM) = Bromochloromethane (DFB) = 1,4-Difluorobenzene (CBZ) ≈ Chlorobenzene-d5

(PFB) = Pentafluorobenzene (4DCB) = 1,4-Dichlorobenzene-d4 (2DCB) = 1,2-Dichlorobenzene-d4

(FBZ) = Fluorobenzene

Fluorobenzene	Chlorobenzene-d5	1,4-Dichlorobenzene-d4
Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Acetone Methylene chloride tetr-Butyl alcohol trans-1,2-Dichloroethene 1,1-Dichloroethane Diisopropyl ether 2-Butanone cis-1,2-Dichloroethene 2,2-Dichloroethene 2,2-Dichloroethane Bromochloromethane Chloroform 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride Benzene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene Dibromomethane Bromodichloromethane Bromodichloromethane Cis-1,3-Dichloropropene 4-Methyl-2-pentanone Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane MTBE ETBE TAME	Tetrachloroethene 1,3-Dichloropropane 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Chlorobenzene 1,1,1,2-Tetrachloroethane m/p-Xylene o-Xylene Styrene Bromoform	Isopropylbenzene 1,1,2,2-Tetrachloroethane Bromobenzene 1,2,3-Trichloropropane n-Propylbenzene 2-Chlorotoluene 1,3,5-Trimethylbenzene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

September 16, 2010

LDC Report Date:

December 8, 2010

Matrix:

Soil

Parameters:

Arsenic

Validation Level:

Stage 2B & 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-7545-2

Sample Identification

SSAO7-09-6_01_BPC

SSAO7-09-7_01_BPC SSAO7-09-8_01_BPC

SSA07-09-9_01_BPC**

SSAO7-09-6_01_BPCMS

SSAO7-09-6_01_BPCMSD

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 6 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Methods 6020 for Arsenic.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No arsenic contaminants were found in the initial, continuing and preparation blanks.

No field blanks were identified in this SDG.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable for samples on which a Stage 4 review was performed.

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-7545-2	All analytes reported below the PQL.	J (all detects)	А

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic - Data Qualification Summary - SDG 280-7545-2

SDG	Sample	Analyte	Flag	A or P	Reason
280-7545-2	SSAO7-09-6_01_BPC SSAO7-09-7_01_BPC SSAO7-09-8_01_BPC SSAO7-09-9_01_BPC**	All analytes reported below the PQL.	J (all detects)	А	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic - Laboratory Blank Data Qualification Summary - SDG 280-7545-2

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Arsenic – Equipment Blank Data Qualification Summary - SDG 280-7545-2

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #:_ 24450F4 Stage 2B/4 SDG #: 280-7545-2 Laboratory: Test America

Reviewer: 2nd Reviewer:

METHOD: As (EPA SW 846 Method 6020)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	0	Sampling dates: Q-16-10
II.	ICP/MS Tune	79	
III.	Calibration	A	
IV.	Blanks	A	
V.	ICP Interference Check Sample (ICS) Analysis	A	
VI.	Matrix Spike Analysis	A	msp
VI <u>I</u> .	Duplicate Sample Analysis	\sim	
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	A	
X.	Furnace Atomic Absorption QC	\mathcal{N}	Notualized
XI.	ICP Serial Dilution	A	
XII.	Sample Result Verification	A	Not reviewed for Stage 2B validation.
XIII.	Overall Assessment of Data	A	
XIV.	Field Duplicates	₩	
ΧV	Field Blanks	N	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples: ** Indicates sample underwent Stage 4 validation

	Soil						
1	SSA07-09-6_01_BPC	11	885	21		31	
2	SSAO7-09-7_01_BPC	12		22		32	
3	SSAO7-09-8_01_BPC	13		23		33	
4	SSAO7-09-9_01_BPC**	14		24	<u></u>	34	
5	SSAO7-09-6_01_BPCMS	15		25		35	
6	SSAO7-09-6_01_BPCMSD	16		26		36	
7		17		27		37	
		18		28		38	
8 9		19		29		39	
10		20		30		40	

Notes:		

VALIDATION FINDINGS CHECKLIST

Page: of Reviewer: 02
2nd Reviewer: _

Method: Metals (EPA SW 846 Method 6010B/7000/6020)

INCUTOD: Metals (EPA SW 846 Method 6010B/7000/6020)	T		T	
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.				
II. ICP/MS Tune	,			
Were all isotopes in the tuning solution mass resolution within 0.1 amu?				
Were %RSD of isotopes in the tuning solution ≤5%?			<u> </u>	
III. Calibration				
Were all instruments calibrated daily, each set-up time?		7		
Were the proper number of standards used?				
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury) QC limits?				
Were all initial calibration correlation coefficients > 0.995?		<u></u>	ļ	· ·
IV. Blanks	X,			
Was a method blank associated with every sample in this SDG?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
V. ICP Interference Check Sample				
Were ICP interference check samples performed daily?				
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?			<u> </u>	
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.		(
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.		/		
VII. Laboratory control samples				•
Was an LCS anaylzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	/			

VALIDATION FINDINGS CHECKLIST

Page: Zof S Reviewer: a S 2nd Reviewer: V

Validation Area	Yes	No	NA	Findings/Comments					
VIII. Furnace Atomic Absorption QC									
If MSA was performed, was the correlation coefficients > 0.995?									
Do all applicable analysies have duplicate injections? (Level IV only)									
For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)			/						
Were analytical spike recoveries within the 85-115% QC limits?									
IX. ICP Serial Dilution									
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?	/	ſ							
Were all percent differences (%Ds) < 10%?									
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.									
X. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)									
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?		-·							
If the %Rs were outside the criteria, was a reanalysis performed?	_	-	ļ						
XI. Regional Quality Assurance and Quality Control									
Were performance evaluation (PE) samples performed?									
Were the performance evaluation (PE) samples within the acceptance limits?									
XII. Sample Result Verification	<u> </u>		,						
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?									
XIII. Overall assessment of data									
Overall assessment of data was found to be acceptable.									
XIV. Field duplicates									
Field duplicate pairs were identified in this SDG.									
Target analytes were detected in the field duplicates.			/	<u> </u>					
XV. Field blanks									
Field blanks were identified in this SDG.									
Target analytes were detected in the field blanks.									

LDC#, 24450 FY

Initial and Continuing Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

2nd Reviewer:_ Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found x 100 True

Where, Found = concentration (in ug/L) of each analyte <u>measured</u> in the analysis of the JCV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

		,					
			-		Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
	ICP (Initial calibration)						
JJCN	ICP/MS (Initial calibration)	ΑŞ	15°0h	94	101	7,01	<i></i>
	CVAA (Initial calibration)						
	ICP (Continuing calibration)						
73	ICP/MS (Continuing calibration)	AS	5/95	50	101	(را))-
	CVAA (Continuing calibration)						
	GFAA (Initial calibration)						
	GFAA (Continuing calibation)						

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#:_24450F5

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page: 2nd Reviewer: Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found x 100 True

Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u>|S-D|</u> x 100 (S+D)/2

S = Original sample concentration D = Duplicate sample concentration Where,

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 $%D = 1-SDR_1 \times 100$

Where, 1= Initial Sample Result (mg/L) SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

					Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S / I	True / D / SDR (units)	%R/RPD/%D	%R/RPD/%D	Acceptable (Y/N)
TISHIS	ICP interference check	£	TCS Byddylptodeor 100%	र्वान्यका १००%	- 42	र्वत)-
527	Laboratory control sample		19.1	20	9.6	95	
5	Matrix spike		(ssr.sr)	18,3	98	25	
25	Duplicate		h'81	18,7	1,6		
	ICP serial dilution	7	5,9	2,77	5	5	7

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 24450F4

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	of_\
Reviewer:	a _
2nd reviewer:	1

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please Y N Y N Y N	e see qua N/A N/A N/A	Have results Are results w	been reported a	and calculated ed range of t	d correctly?	licable questions ar		
Detect equati	ted analy on:	te results for _		.As		were recalcu	ulated and verified	using the following
Concen	tration =	(RD)(FV)(Dil) (in. Vol.)		F	Recalculation:		- 6	1
RD FV In. Vol. Dil	= = = = = = = = = = = = = = = = = = = =	Raw data conce Final volume (m Initial volume (m Dilution factor	l)			100mL5)(6.4) (0 93)(1.1)	28) = 3	.1m8/kg
#	S:	ample iD		Analyte		Reported Concentration (MX/KQ/	Calculated Concentration (MY (CS)	Acceptable (Y/N)
		N		AS		3.1	3.1	Ĭ
				····	 			
				··· · · · · · · · · · · · · · · · · ·				
		•						
								
Note:	1							

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

September 22, 2010

LDC Report Date:

December 8, 2010

Matrix:

Soil

Parameters:

Semivolatiles

Validation Level:

Stage 2B & 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-7662-1

Sample Identification

SB01-25.0_01_BPC SB02-28.5 01 BPC**

SB02-28.5 01 BPC FD

SB03-28.5 01 BPC

SB01-25.0_01_BPCMS

SB01-25.0_01_BPCMSD

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 6 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for Semivolatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within method and validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs) and 25.0% for all other compounds.

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
MB 280 -33904/1-A	10/1/10	Bis(2-ethylhexyl)phthalate	88.6 ug/Kg	All samples in SDG 280-7662-1

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
SB01-25.0_01_BPC	Bis(2-ethylhexyl)phthalate	100 ug/Kg	100U ug/Kg
SB02-28.5_01_BPC**	Bis(2-ethylhexyl)phthalate	110 ug/Kg	110U ug/Kg
SB02-28.5_01_BPC_FD	Bis(2-ethylhexyl)phthalate	140 ug/Kg	140U ug/Kg
SB03-28.5_01_BPC	Bis(2-ethylhexyl)phthalate	150 ug/Kg	150U ug/Kg

No field blanks were identified in this SDG.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Compound	Flag	A or P
SB03-28.5_01_BPC	Nitrobenzene-d5 2-Fluorobiphenyl	36 (50-120) 42 (50-120)	All TCL compounds	J- (all detects) UJ (all nondetects)	A

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XII. Project Quantitation Limit

All compound quantitation and CRQLs were within validation criteria for samples on which a Stage 4 review was performed.

All compounds reported below the PQL were qualified as follows:

Sample Sample	Finding	Flag	A or P
All samples in SDG 280-7662-1	All compounds reported below the PQL.	J (all detects)	А

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples SB02-28.5_01_BPC** and SB02-28.5_01_BPC_FD were identified as field duplicates. No semivolatiles were detected in any of the samples with the following exceptions:

	Concentration (ug/Kg)						
Compound	SB02-28.5_01_BPC**	SB02-28.5_01_BPC_FD	RPD (Limits)	Difference (Limits)	Flags	. A or P	
Bis(2-ethylhexyl)phthalate	110	140	-	30 (≤480)	· -	-	

	Concentr					
Compound	SB02-28.5_01_BPC**	SB02-28.5_01_BPC_FD	RPD (Limits)	Difference (Limits)	Flags	A or P
Hexachlorobenzene	91	480U	•	389 (≤480)	-	-

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Semivolatiles - Data Qualification Summary - SDG 280-7662-1

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-7662-1	SB03-28.5_01_BPC	All TCL compounds	J- (all detects) UJ (all nondetects)	А	Surrogate spikes (%R) (s)
280-7662-1	SB01-25.0_01_BPC SB02-28.5_01_BPC** SB02-28.5_01_BPC_FD SB03-28.5_01_BPC	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 280-7662-1

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P	Code
280-7662-1	SB01-25.0_01_BPC	Bis(2-ethylhexyl)phthalate	100U ug/Kg	Α	bl
280-7662-1	SB02-28.5_01_BPC**	Bis(2-ethylhexyl)phthalate	110U ug/Kg	А	bl
280-7662-1	SB02-28.5_01_BPC_FD	Bis(2-ethylhexyl)phthalate	140U ug/Kg	А	þl
280-7662-1	SB03-28.5_01_BPC	Bis(2-ethylhexyl)phthalate	150U ug/Kg	А	bl

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Semivolatiles - Field Blank Data Qualification Summary - SDG 280-7662-1

No Sample Data Qualified in this SDG

Tronox Northgate Henderson

LDC #:	24450G2a	_VALIDATION COMPLETENESS WORKSHEET	
SDG #:	280-7662-1	_ Stage 2B/4	1
Laborator	y: Test America	-	Rev
			2nd Rev

Date: 12/07/10 Page: I of I viewer: JYC 2nd Reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 9 / 22 /60
11.	GC/MS Instrument performance check	À	
111.	Initial calibration	A	2 RSD r
IV.	Continuing calibration/ICV	À	car/100 = 25 }
V.	Blanks	SW	
VI.	Surrogate spikes	W2	
VII.	Matrix spike/Matrix spike duplicates	A	
VIII.	Laboratory control samples	A	LCS
IX.	Regional Quality Assurance and Quality Control	N	
Х.	Internal standards	A	
XI.	Target compound identification	A	Not reviewed for Stage 2B validation.
XII.	Compound quantitation/CRQLs	A	Not reviewed for Stage 2B validation.
XIII.	Tentatively identified compounds (TICs)	N	Not reviewed for Stage 2B validation.
XIV.	System performance	A	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data	Д	
XVI.	Field duplicates	WZ	b = 2, 3
XVII.	Field blanks	N	

Note: A = Acceptable

N = Not provided/applicable

ND = No compounds detected R = Rinsate

D = Duplicate TB = Trip blank

SW = See worksheet

FB = Field blank

EB = Equipment blank

Validated Samples:

** Indicates sample underwent Stage 4 validation

	Soils						
1	SB01-25.0_01_BPC	11 11	MB 280 - 33964 /1-	21		31	
2	SB02-28.5_01_BPC** D	12		22		32	
3	SB02-28.5_01_BPC_Fb D	13		23		33	
<u>4</u> 5	SB03-28.5_01_BPC	14		24	, ,	34	
5	SB01-25.0_01_BPCMS	15		25		35	
6	SB01-25.0_01_BPCMSD	16		26		36	
7		17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

VALIDATION FINDINGS CHECKLIST

Page: \ of \ \(\frac{2}{\frac{1}{2}} \)
Reviewer: \ \(\frac{1}{2} \)
2nd Reviewer: \(\frac{1}{2} \)

Method: Semivolatiles (EPA SW 846 Method 8270C)

Validation Area	Yes	No	NA	Findings/Comments
Is Technical holding times				<mark>elogie</mark> esta <mark>a pre</mark> senta de la composição de T
All technical holding times were met.	-	-		
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
ili:-Initial calibration				edical programmes and a surface.
Did the laboratory perform a 5 point calibration prior to sample analysis?	<u></u>	<u> </u>		
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	/	<u> </u>		
Was a curve fit used for evaluation?				
Did the initial calibration meet the curve fit acceptance criteria of > 0.990?	/			
Were all percent relative standard deviations (%RSD) ≤ 30% and relative response factors (RRF) ≥ 0.05?		}		
IV. Continuing calibration				Marina de la companya de la company La companya de la co
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?	<i>i</i>			
V/:Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		- 1	M	
VI. Surrogate spikes ii.				
Were all surrogate %R within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
VII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			[
VIII Laboratory control samples				
Was an LCS analyzed for this SDG?				

LDC#: 24450 Gm

VALIDATION FINDINGS CHECKLIST

				/
Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?			!	
IX: Regional Quality Assurance and Quality Control				Allengario de la Caración de la como de la c
Were performance evaluation (PE) samples performed?		/		
Were the performance evaluation (PE) samples within the acceptance limits?			_	
X Internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?				
Were retention times within + 30 seconds from the associated calibration standard?				
XI. Farget compound identification				
Were relative retention times (RRTs) within + 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XII. Compound quantilation/CRQLs				The second of the second
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?		_		
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Tentatively identified compounds (TiCs) and the property is also had a second to the compounds of the compounds.	i is o			
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?			7	
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?			1	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?		~		
KIV: System performance			40	
System performance was found to be acceptable.			T	
Overall assessment of data				Complete Construction (Construction)
Overall assessment of data was found to be acceptable.	<u> </u>	-		
CVI3Field:duplicates: 99990				
rield duplicate pairs were identified in this SDG.				
arget compounds were detected in the field duplicates.	7			
VII. Field blanks	<u> </u>			
ield blanks were identified in this SDG.		1		TO A THE LEW PROPERTY OF THE LOCAL AND ARROWS TO THE L
arget compounds were detected in the field blanks.			1	

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

A. Phenol**	P. Bis(2-chloroethoxy)methane	EE. 2,6-Dinitrotoluene	TT. Pentachlorophenol**	III. Benzo(a)pyrene**
B. Bis (2-chloroethyl) ether	Q. 2,4-Dichlorophenol**	FF. 3-Nitroaniline	UU. Phenanthrene	JJJ. Indeno(1,2,3-cd)pyrene
C. 2-Chlorophenol	R. 1,2,4-Trichlorobenzene	GG. Acenaphthene**	VV. Anthracene	KKK. Dibenz(a,h)anthracene
D. 1,3-Dichlorobenzene	S. Naphthalone	HH. 2, 4-Dinitrophenol*	WW. Carbazole	LLL. Benzo(g,h,i)perylene
E. 1,4-Dichlorobenzene**	T. 4-Chloroaniline	II. 4-Nitrophenol*	XX. Di-n-butyiphthalate	MMM. Bis(2-Chloroisopropyl)ether
F. 1,2-Dichlorobenzene	U. Hexachlorobutadiene**	JJ. Dibenzofuran	YY. Fluoranthene**	NNN. Aniline
G. 2-Methylphenol	V. 4-Chioro-3-methylphenol**	KK. 2,4-Dinitrotoluene	ZZ. Pyrene	OOO. N-Nitrosodimethylamine
H. 2,2'-Oxybis(1-chloropropane)	W. 2-Methylnaphthalene	LL. Diethylphthaiate	AAA. Butylbenzylphthalate	PPP. Benzolc Acid
i. 4-Methylphenol	X. Hexachlorocyclopentadiene*	MM. 4-Chlorophenyl-phenyl ether	BBB. 3,3'-Dichlorobenzidine	QQQ. Benzyl alcohol
J. N-Nitroso-di-n-propylamine*	Y. 2,4,6-Trichlorophenol**	NN. Fluorene	CCC. Benzo(a)anthracene	RRR. Pyridine
K. Hexachloroethane	Z. 2,4,5-Trichlorophenol	OO. 4-Nitroaniline	DDD. Chrysene	SSS. Benzidine
L. Nitrobenzene	AA. 2-Chloronaphthalene	PP. 4,6-Dinitro-2-methylphenol	EEE. Bis(2-ethylhexyl)phthalate	TTT.
M. Isophorone	BB. 2-Nitroaniline	QQ. N-Nitrosodiphenylamine (1)**	FFF. Di-n-octylphthalate**	nnn
N. 2-Nitrophenol**	CC. Dimethylphthalate	RR. 4-Bromophenyl-phenylether	GGG. Benzo(b)fluoranthene	WV.
O. 2,4-Dimethylphenol	DD. Acenaphthylene	SS. Hexachlorobenzene	HHH. Benzo(k)fluoranthene	WWW.

Notes: = System performance check compound (SPCC) for RRF; ** = Calibration check compound (CCC) for %RSD.

20
S
29450
##
LDC

VALIDATION FINDINGS WORKSHEET Blanks

	0/6	X
Lage:	Reviewer:	2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank analyzed for each matrix? N/A

Was a method blank analyzed for each concentration preparation level? N/A

Was a method blank associated with every sample? /N N/A

Was the blank contaminated? If yes, please see qualification below. V N N

Associated Samples: Blank extraction date: 10 61 /12 Blank analysis date: 18 /64 /10 Conc. units: 45 /c.

	colle. ullies. " 18.			ASSUCIA	Associated Salliples.	1. 1.1					ſ
	Compound	Blank ID					Sample Identification	ation			Γ
XS		MB 280-33904 1-A	- - 	7	۶	7					_
43	华	88.6	100 /y	110 /4	140 14	17 05 1					T
					,	,				j	T
											Γ-
											T
											Г
							ļ				$\overline{}$
	Blank extraction date: E	Blank analysis date:	sis date:								ì
-				Associal	Associated Samples:						
	Compound	Blank ID					Sample Identification	ıtion		,	
											П
											T
											_

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC# 24450 G2R

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Reviewer: 30% Page. of

2nd Reviewer.

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? If any %R was less than 10 percent, was a reanalysis performed to confirm %R? Were percent recoveries (%R) for surrogates within QC limits?

Ouslifications	1) No gue (nh Int)	1- MT/A (ang) (s)									((oil) QC Limits (Water) 21-100 10-123
%R (Limits)	49 (50-120	36 (47 ())))))	Ú)	Ù))	Ò)))	S5 (2FP)= 2-Fluorophenal 25-121 S6 (TBP) = 2,4,6-Tribromophenal 19-122 S7 (2CP) = 2-Chlorophenal-44 20-130*
Surrogate	NBZ	NBZ	Fbp																	OC Limits (Water) 35-114 43-116 S6 (TBP) = 2 33-141 S7 (2CP) = 2
Sample ID	7	4																		QC Limits (Soil) 23-120 30-115 18-137
# Date																				• QC limits are advisory S1 (NBZ) = Nitrobenzene-d5 S2 (FBP) = 2-Fluorobipheny S3 (TPH) = Terpheny-d14 S4 (PH!) = Phenny-d14

LDC#:24450G2a

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: l of l Reviewer: 2nd Reviewer:

METHOD: GC MS Semivolatiles (EPA SW 846 Method 8270C)

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrat	ion (ug/Kg)	(≤50)	(mg/Kg)	(mg/Kg)	Qualifications
Compound	2	3	RPD	Difference	Limits	(Parent Only)
Bis(2-ethylhexyl) phthalate	110	140		30	(≤480)	
Hexachlorobenzene	91	480U		389	(≤480)	

V:\FIELD DUPLICATES\24450G2a.wpd

LDC# 24450 620

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

of / Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards

A_x = Area of Compound

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard $C_x =$ Concentration of compound,

%RSD = 100 * (S/X)

S= Standard deviation of the RRFs,

X = Mean of the RRFs

				Donotod	Dotoliolog	7 - 1 - 1 - 2			
				palioday	recalculated	керопеа	Recalculated	керопеа	Recalculated
		Calibration		RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (Internal Standard)	(50 std)	(50 std)	(Initial)	(Initial)		
-	ICAL	9/23/2010	9/23/2010 1,4-Dioxane (1S1)	0.5414	0.5414	0.5467	0.5467	10.9	10.91
	MSS Y		Naphthalene (IS2)	1.0285	1.0285	1.0303	1.0303	1.4	1.37
			Fluorene (IS3)	1.2605	1.2605	1.2584	1.2584	4.8	4.81
			Hexachlorobenzene (IS4)	0.2358	0.2358	0.2435	0.2435	4.3	4.29
			Chrysene (IS5)	1.0046	1.0046	1.0284	1.0284	1.5	1.55
			Benzo(g,h,i)perylene (IS6)	0.9682	0.9682	0.9416	0.9416	12.7	12.68

Area IS	214563	872181	548947	911902	973988	876472
Area cpd	145195	1121337	864951	268731	1223088	1060714
anc IS/Cpd	40/50	40/50	40/50	40/50	40/50	40/50

_						
Conc	1,4-Dioxane	Naphthalene	Fluorene	Hexachlorob	Chrysene	Benzo(g,h,i)per
4.00	0.6894	1.0108	1.1578		1.0238	0.7223
10.00	0.5449	1.0504	1.1888	0.2352	1.0313	0.8117
20.00	0.5423	1.0213	1.2358	0.2306	1.0235	0.9185
50.00	0.5414	1.0285	1.2605	0.2358	1.0046	0.9682
80.00	0.5180	1.0495	1.3064	0.2403	1.0557	0.9819
120.00	0.5035	1.0338	1.2801	0.2533	1.0368	1.0222
160.00	0.5222	1.0184	1.3121	0.2558	1.0384	1.0472
200.00	0.5122	1.0298	1.3256	0.2536	1.0129	1.0611
" ×	0.5467	1.0303	1.2584	0.2435	1.0284	0.9416
S	0.0596	0.0141	0.0605	0.0104	0.0159	0.1194

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

Continuing Calibration Results Verification VALIDATION FINDINGS WORSHEET

2nd Reviewer: Page_ Reviewer:

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

RRF = (Ax)(Cis)/(Ais)(Cx)

ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

Ax = Area of compound

Ais = Area of associated internal standard Cis = Concentration of internal standard Cx = Concentration of compound

Recalculated 0.1 5.9 2.1 5.7 4. Reported 2% 0. 5.9 5.7 2.1 4. Recalculated (CC RRF) 0.5144 1.0523 1.3100 0.2573 1.0184 1.0109 Reported (CC RRF) 0.5144 1.0523 1.3100 0.2573 1.0184 1.0109 Average RRF (Initial RRF) 0.5467 1.0303 1.2584 0.2435 1.0284 0.9416 (181) (182) (183) (184) (185) (186) Compound (Reference IS) Benzo(g,h,i)perylene Hexachlorobenzene Naphthalene 1,4-Dioxane Chrysene Fluorene Calibration 10/04/10 Date Standard ID Y5486 #

			1)
		(IS/Cpd)		
1,4-Dioxane	(IS1)	40/80	264801	257392
Naphthalene	(182)	40/80	2141014	1017254
Fluorene	(183)	40/80	1714077	654218
Hexachlorobenzene	(IS4)	40/80	559205	1086688
Chrysene	(185)	40/80	2369918	1163508
Benzo(g,h,i)perylene	(9SI)	40/80	2110674	1043915

LDC#: 24450 6 20

VALIDATION FINDINGS WORKSHEET <u>Surrogate Results Verification</u>

Page:_	<u>lof_1</u>
Reviewer:_	JV6
2nd reviewer:	<u></u>

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID: +

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	[66	48.95	49	4-9	Ò
2-Fluorobiphenyl		53.10	53	53	
Terphenyl-d14	J .	87.02	87	87	1
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol	_				
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4			•		

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl		.,			
Terphenyl-d14		-			
Phenol-d5					
2-Fluorophenoi					
2,4,6-Tribromopheлol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					· .

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenoi-d5					
2-Fluorophenol				· · · · · · · · · · · · · · · · · · ·	
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4			···		

LDC # 7455 G 22 SDG #: See Cover

Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

lof	9	Y,
Page:_	Reviewer.	ind Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

Where:

SC = Sample concentation

% Recovery = 100 * (SSC - SC)/SA

SSC = Spiked sample concentration SA = Spike added

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: _

RPD = I MSC - MSC I* 2/(MSC + MSDC)

			_		_					_	_	_	
,		Recalculated				را		9					
	RPD	Reported				V		7					
	e culpuicate	Recalc				h2	,	96					
	Percent Recovery	Reported				74		90					
- 11-0	ecoverv	Recalc				89		8~					
All Suppose	Percent Recovery	Reported				80		£8					
	tration	MSD				2010		2520					
	Concentration	MS			•	1920		2310					
7	Concentration	0				0			2				
	- د و و	O MSD				2710			3				
	Added (1/6 //	MS				01گر	_	7					
	Compound		Phenol	N-Nitroso-di-n-propylamine	4-Chloro-3-methylphenol	Acenaphthene	Pentachlorophenol-	Pyrene					

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 26450 G 20

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Reviewer: 002 2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: 125 >8v -

1 200 - 22664 A.A.

										-
	<i>i</i> s .	oike	Ĭ,	Spike	31	l CS	I GSD	SD	USJ //SJ i	USU
Compound		Added (W//c)	Conce (Vs)	Concentration (VS/た)	Percent Recovery	Secovery	Perrent Recovery	Vacana		
		0		0				ecovery	N. P.	2
	S	ICSD	ICS	ıcsn	Reported	Recalc	Reported	Recair	Renorted	Recalculated
Phenol	·									
N-Nitroso-di-n-propylamine										
4-Chloro-3-methylphenal										
	05 20	<i>\</i> ^\	1830	2	X	77				
Pentachlorophenol										
Pyrene		\	our		90	96				
		-								

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 34450 620

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: lof 1
Reviewer: 1
2nd reviewer: 1

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Y N N/A Y N N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $(A_{\cdot \cdot})(I_{\cdot \cdot})(V_{\cdot})(DF)(2.0)$ $(A_{i \cdot})(RRF)(V_{\circ})(V_{\cdot})(\%S)$

A_x = Area of the characteristic ion (EICP) for the compound to be measured

A_s = Area of the characteristic ion (EICP) for the specific internal standard

l, = Amount of internal standard added in nanograms (ng)

V_o = Volume or weight of sample extract in milliliters (ml) or grams (n)

V_I = Volume of extract injected in microliters (ul)

V_t = Volume of the concentrated extract in microliters (ul)

Df = Dilution Factor,

%S = Percent solids, applicable to soil and solid matrices only.

Example:

Sample I.D. # 25

Conc. = (13615) 40) (1ml) (100)) (88126)(0.342)(31.42)(0.869)()

= 90,9

2 91 us/kg

2.0	= Factor of 2 to accour	nt for GPC cleanup	·		
#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration	Qualification
 					
<u> </u>	<u> </u>				
					·
		 			
<u> </u>	·				
			1	. —	
				-	
					-
	· · · · · · · · · · · · · · · · · · ·				
					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

September 22, 2010

LDC Report Date:

December 8, 2010

Matrix:

Soil

Parameters:

Chlorinated Pesticides

Validation Level:

Stage 2B & 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-7662-1

Sample Identification

SB01-25.0_01_BPC

SB02-28.5 01 BPC**

SB02-28.5 01 BPC FD

SB03-28.5 01 BPC

SB01-25.0 01 BPCMS

SB01-25.0_01_BPCMSD

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 6 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8081A for Chlorinated Pesticides.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of single compounds were performed for the primary (quantitation) column and confirmation column as required by this method.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

Retention time windows were evaluated and considered technically acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples on which a Stage 2B review was performed.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits for all compounds.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

Retention times (RT) of all compounds in the calibration standards were within QC limits for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples on which a Stage 2B review was performed.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No chlorinated pesticide contaminants were found in the method blanks.

No field blanks were identified in this SDG.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Although the MS/MSD percent recovery (%R) and relative percent differences (RPD) were not within QC limits for some compounds, the LCS percent recoveries (%R) were within QC limits and no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

XI. Target Compound Identification

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XII. Project Quantitation Limit

All compound quantitation and CRQLs were within validation criteria for samples on which an Stage 4 review was performed.

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
SB02-28.5_01_BPC**	alpha-Chlordane Chlordane (Technical) Methoxychlor delta-BHC	86.4 56.4 73.1 135.7	J (all detects) J (all detects) J (all detects) J (all detects)	А

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-7662-1	All compounds reported below the PQL.	J (all detects)	Α

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples SB02-28.5_01_BPC** and SB02-28.5_01_BPC_FD were identified as field duplicates. No chlorinated pesticides were detected in any of the samples with the following exceptions:

	Concentra	ation (ug/Kg)				
Compound	SB02-28.5_01_BPC**	SB02-28.5_01_BPC_FD	RPD (Limits)	Difference (Limits)	Flags	AorP
alpha-BHC	6.9	14	-	7.10 (≤2.6)	J (all detects)	А
alpha-Chlordane	0.73	0.49U	-	0.24 (≤2.6)	-	-
Chlordane (Technical)	1.8	1.9	-	0.10 (≤2.6)	-	_
delta-BHC	0.60	1.1	-	0.50 (≤2.6)	. -	-
gamma-BHC	0.90	2.3	-	1.40 (≤2.6)	-	-
Methoxychlor	1.5	2.7	-	1.20 (≤5.0)	_	<u>-</u>
Hexachlorobenzene	130	31	123 (≤50)	-	J (all detects)	А

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Chlorinated Pesticides - Data Qualification Summary - SDG 280-7662-1

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-7662-1	SB02-28.5_01_BPC**	alpha-Chlordane Chlordane (Technical) Methoxychlor delta-BHC	J (all detects) J (all detects) J (all detects) J (all detects)	А	Project Quantitation Limit (RPD) (dc)
280-7662-1	SB01-25.0_01_BPC SB02-28.5_01_BPC** SB02-28.5_01_BPC_FD SB03-28.5_01_BPC	All compounds reported below the PQL.	J (all detects)	А	Project Quantitation Limit (sp)
280-7662-1	SB02-28.5_01_BPC** SB02-28.5_01_BPC_FD	alpha-BHC	J (all detects)	А	Field duplicates (Differences) (fd)
280-7662-1	SB02-28.5_01_BPC** SB02-28.5_01_BPC_FD	Hexachlorobenzene	J (all detects)	Α	Field duplicates (RPD) (fd)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 280-7662-1

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG 280-7662-1

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Date:[2	2-10-10
Page:_/	of 1

Reviewer: 12 2nd Reviewer: 17

SDG #:_ 280-7662-1 Laboratory: Test America

LDC #: 24450G3a

METHOD: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	A	Sampling dates: 9/22/16
11.	GC/ECD Instrument Performance Check	A	
III.	Initial calibration	Ä	(2
IV.	Continuing calibration/ICV	A	JCV/CCV= 209.
y.	Blanks	A	7
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	SW	
VIII.	Laboratory control samples	A	LCS/P
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	A	Not reviewed for Stage 2B validation.
XII.	Compound quantitation and reported CRQLs	SW	Not reviewed for Stage 2B validation.
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	SW	FD=2+3
XV.	Field blanks	N	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

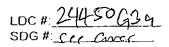
FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples: ** Indicates sample underwent Stage 4 validation


	ALSO		oment diage 4 valuation		
1	SB01-25.0_01_BPC	11	21	31	280-33882-BLX
2	SB02-28.5_01_BPC**	12	22	32	
3	SB02-28.5_01_BPC_FD	13	23	33	
4	SB03-28.5_01_BPC	14	24	34	
5	SB01-25.0_01_BPCMS	15	25	35	
6	SB01-25.0_01_BPCMSD	16	26	36	
7		17	27	37	
8		18	28	38	
9		19	29	39	
10		20	30	40	

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: 10
2nd Reviewer: 1

Method: Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical hölding limes		Γ		
All technical holding times were met.	/	ļ		
Cooler temperature criteria was met.	Y			
ji::GC/EC0 instrument performance check		<u> </u>	(¥.6%) 	er a mer er a er
Was the instrument performance found to be acceptable? III initial calibration	1	l		
	Ϊ̈́_	· · · · ·	*	
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Was a linear fit used for evaluation? If yes, were all percent relative standard deviations $(\%RSD) \leq 20\%$?			/	
Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?	/			
Did the initial calibration meet the curve fit acceptance criteria?			:	
Were the RT windows properly established?				
Were the required standard concentrations analyzed in the initial calibration?		Sports Service	§ 1, 24 as 6	and the state of t
IV. Continuing calibration				
What type of continuing calibration calculation was performed?%D or%R	,			
Were Evaluation mix standards analyzed prior to the initial calibration and sample analysis?	/	<u> </u>		
Were endrin and 4.4-DDT breakdowns \leq 15% for individual breakdown in the Evaluation mix standards?				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) ≤ 20% or percent recovieries 80-120%?	\wedge			
Were all the retention times within the acceptance windows?				
y Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?				
Were extract cleanup blanks analyzed with every batch requiring clean-up?				
Was there contamination in the method blanks or clean-up blanks? If yes, please see the Blanks validation completeness worksheet.		/		
VI, Surrogate spikes				
Were all surrogate %R within the QC limits?				
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?			/	
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
NEW MENTAL CONTROL OF THE STATE				

VALIDATION FINDINGS CHECKLIST

Page: 7 of 2
Reviewer: 100
2nd Reviewer: 1

Validation Area	Yes	No	NA	Findings/Comments
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water			-	
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII/Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC firnits?				
IX. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Target compound identification		<u> </u>		
Were the retention times of reported detects within the RT windows?				
XI Compound quantitation/CRQLs				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation?				
XII: System performance				
System performance was found to be acceptable.				
XIII: Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XIV: Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.				
XV: Field blanks			,	
Field blanks were identified in this SDG.				/
Target compounds were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A alpha-BHC	I. Dieldrin	O. Endrin ketone	Y. Aroclor-1242	GG. Chlordane
B beta-BHC	J. 4,4:DDE	R. Endrin aldehyde	2. Aroclor-1248	HH Chlordane (Technical)
C delta-BHC	K. Endrin	S alpha-Chlordane	AA Aroclor-1254	=
О датта-ВНС	L. Endosultan II	T gamma-Chlordane	BB Aroclor-1250	JJ.
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	CC 2.4:DDD	X.
F. Aldrin	N. Endosulfan sulfate	V Aroclor-1016	DD 2.4:DDE	17
G. Heptachlor epoxide	0.4,4'-DDT	W. Aroclar-1221	EE. 2.4:-DDT	MM
H Endosulfan 1	P Methoxychior	X Aroclar-1232	FF. Hexachlorobenzene	NN

Notes:

C:\Users\rthompson\AppData\Loca\tMicrosoft\\Vindows\Temporary Internet Files\Content Outlook\366E0K9Q\COMPLST.3S wpg

LDC # 1/50/3 SDG #54 CO/0/

METHOD: X GC __ HPLC

Y N N/A

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed? Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits?

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

2nd Reviewer:_ Page: Reviewer:

Qualifications	None	10577 1																							
Associated Samples																									
RPD (Limits)	()	44 (23)	() / /	()	()	()	()	()	()	(()	()	(()	()	()		()	(-		} (-	
Z 2,	50 (24-115)	1 62+25) Sh	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	
MS %R (Límits)	1 (54-415)	()	(()	()	()		()	()	()	()	()	()	()	()	()	()	()	()	()	()	()		()	
Compound	₩ ₩	d																							
# Mş/MSD ID	5/6																								***************************************

100 #2445093a SDG #: 54 COUG

METHOD: KGC_HPLC

VALIDATION FINDINGS WORKSHEET

Compound Quantitation and Reported CRQLs

Page: lof / Reviewer: H

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A.

Did the percent difference of detected compounds between two columns./detectors <40%?

Qualifications RPD %D Between Two Columns/Detectors Limit (≤ 40%) 135.7 7.98 3. Sample ID Compound Name ## te. #

LDC#24/23/23 34 SDG # 266 COUNT

VALIDATION FINDINGS WORKSHEET

Page: / of

Reviewer:

Field Duplicates

METHOD: MGC HPLC
(代 N/A Were field duplicate pairs identified in this SDG?

Composition	Concentration (& Kg.)	8/kg)	%RPO	Qualification
	7	E	Llait	Parent only)! All Samples
A	6.9	/4/	14 75 2) OF ALE	10,00 T 1.25/4 (21)
S	6,73	0.990	0.24	
##	/.6	.4.	0.10	
<i>y</i>	0.60	, / ·/		
	0.90	8.3	7 047	
Q	1.5	2.7	1.20 1250	75.10(
+F	130	3/		T. 15-4/4 (21)
				(A)
- Friedmon	Concentration (, %RPO	Qualification
			Limit	Parent only / All Samples
	-			

Validatin Findings Worksheet Initial Calibration Calculation Verification

Reviewer: ///

Page:

т. В 2000 М В 2000 М

SDG#: 24450634

Method: EPA 8081 Pesticides

Compound:

		(λ)	(x)	(X^2)
Date	Column	Response	Conc	Conc
9/29/2010	A	36482.00	4.000	16
		90921	10	100
·		230901	25	625
		493034	50	2500
		744485	75	5625
		1009602	100	10000

Constant	3	-4895.0122
Std Err of Y Est		
R Squared		0.9998869
Degrees of Freedom		
		q
X Coefficient(s)	9.5555E+03	5.944E+00
Std Err of Coef.		
Correlation Coefficient		0.999943
Coefficient of Determination (r^2)		0.999887

LDC#:244506,34 SDG#: 40 CO/LEC

Validatin Findings Worksheet Initial Calibration Calculation Verification

Page: 2 of 4
Reviewer: 12

Method: EPA 8081 Pesticides

Compound:

0

		3	8	(X ²)
Date	Column	Response	Conc	Conc
9/29/2010	¥	25209.00	4.000	16
-		62076	10	100
		. 153869	25	625
		332389	50	2500
		491590	7.5	5625
		641003	100	10000

Constant	Ü	-6722.9941
Std Err of Y Est		
R Squared		0.9995396
Degrees of Freedom		
	ø	q
X Coefficient(s)	6.9056E+03	-4.061E+00
Std Err of Coef.		
Correlation Coefficient		0.999770
Coefficient of Determination (r^2)		0.999540

LDC#: 24450632 SDG#: 2002

Validatin Findings Worksheet Initial Calibration Calculation Verification

Page: 2 of Large Reviewer: 2nd Reviewer: 2

Method: EPA 8081 Pesticides

Compound:

		3	8	(X^2)
Date	Column	Response	Conc	Conc
9/29/2010	8	74176.00	4.000	16
		177507	10	100
		420815	25	625
		848609	50	2500
		1204181	75	5625
		1570613	100	10000

Constant	υ	1938.7198
Std Err of Y Est		
R Squared		0.9997768
Degrees of Freedom		
	w	q
X Coefficient(s)	1.7648E+04	-1.986E+01
Std Err of Coef.		
Correlation Coefficient		0.999888
Coefficient of Determination (r^2)		0.999777

SDG #: 500-30

Validatin Findings Worksheet Initial Calibration Calculation Verification

Page: Or U Reviewer: 2nd Reviewer: 2

Method: EPA 8081 Pesticides

Compound:

0

		(λ)	(x)	(XvX)
Dafe	Column	Response	Conc	Conc
9/29/2010	В	51172.00	4.000	16
		122734	10	100
		288559	25	625
		575325	50	2500
		822922	75	5625
		1056260	100	10000

Constant	S	811.7791
Std Err of Y Est		
R Squared		0.9998937
Degrees of Freedom		
	в	q
X Coefficient(s)	1.2213E+04	-1.654E+01
Std Err of Coef.		
Correlation Coefficient		0.999947
Coefficient of Determination (r^2)		0.999894

100 # 24 450 634 SDG # 522 CALA

Continuing Calibration Results Verification VALIDATION FINDINGS WORKSHEET

2nd Reviewer._ Page:__ Reviewer

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Percent difference $(%D) = 100 \cdot (N - C)/N$

Where: N = 1 initial Calibration Factor or Nominal Amount (ng) C = 1 Calibration Factor from Continuing Calibration Standard or _ Calculated Amount (ng)

ā					T				T					-
Recalculated	Q%	1.8	4.2	47	2,6	****	74)	2-8	4.6	5:3				
Reported	Ω%	8.1	77	4.3	4.5		74)	23	2.6	6.3				
Recalculated	CF/COJe CBV	8.9	47.0	4.9%	45:3	,	37.6	7.75	78.7	4+4				
Reported	CFICENT	6.05	47.9	46.4	45.2		58-6	4.15	48.7	f-t-f				
4 C C C C C C C C C C C C C C C C C C C	က်သွေ့ လင်	0.05	SQ.0	50.0	50.0		0.05	50.D	50.0	0'25				
	Compound	D (CAF)	D 0	D (QUB)			D (COLA)	0	D (ONB)	\ \ \				
Callbration	Date/Time) / h/a	<u>. !</u>	3			10/2/01		i				L
	Standard ID	OSC 17050(1)					OOSTOSOD							
	₹t:	-				2				က		4		

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 2445 06 39 SDG # Ex cour

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	_of_	}
Reviewer:	125	
2nd reviewer:	6	
	/	

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene	A	20.00	15.9406	80	80	0
Tetrachloro-m-xylene	Ь	20-00	16.42760	82-	82	0
Decachlorobiphenyl	A	20.00	17.8020	89	89	O
Decachlorobiphenyl	B	20.00	16.9573	85	85	0

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachioro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						<u></u>
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Notes:	······································		
		 _	

TDC #、イイン・ツァイ SDG #: SLO COULD

Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

2nd Reviewer:_ Page: Reviewer:

> GC Pesticides/PCBs (EPA SW 846 Method 8081/8082) METHOD:

The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

"Recovery = 100 * (SSC - SC)/SA

Where

SSC = Spiked sample concentration SA = Spike added MS = Matrix spike

SC = Sample concentration

RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100

MS/MSD samples:

MSD = Matrix spike duplicate

195/位。 Percent Recovery Percent Recovery RPD 18	Spike Added	e g		Sample Conc.	Spike (Sample ptration	Matrix	Matrix spike	Matrix Spik	Matrix Spike Duplicate	MS/MSD	ISD
D Reported Recalc. Reported 1 81 41 84 3 2 88 88 78 10 3 10 10 10 4 10 10 10 5 10 10 10 6 10 10 10 7 10 10 10 8 10 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	(3/5)	(3/5)		<u>カ</u>)	ᆌ	K)	Percent I	Recovery	Percent F	Recovery	RP	0
85 88 18 18 18 18 18 18 18 18 18 18 18 18	MSD MSD WS)	2	MS	$\cdot \]$	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
98 38 38	17.6 R.S B 27.2	D 2:	12:	747		1.87	18	18	28	\$.k	W	2
	176 17.8 1.3 16.8	(.3		16.8		7:5/	88	88	78	38	0/	0/
										,		
												=

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#<u>24を</u>なる。 SDG#:S<u>そくob</u> 92。 <u>Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification</u>

Reviewer 2nd Reviewer:__ Page:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Concentration

RPD = ILCS - LCSD I * 2/(LCS + LCSD)

LOS = Laboratory control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery

280-3888- 125 LCS/LCSD samples:___

	ĭr	יי־נו	<u> ار</u>	T	1	<u> </u>	T-	T	ī		Ţ	<u> </u>
LCS/LCSD	RPD	Recele										
/SO/	צו	Reported						(
TCSD	Recovery	Recalc.										
27	Percent Recovery	Reported										
S	ecovery	Recalc.	(8	40								
SOT	Percent Recovery	Reported	/8	400								
Sample	(/K/K)	C LCSD	7/4	11/4								
Spiked		rcs	18.7	123								
pike	CE TUY	U LCSD	nla	ખાલ								
ς, ·	(<i>f</i> E	C SOT	15.7	4:3/								
	Compound		gamma-BHC	4,4'-DDT	Aroclor 1260							

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC # 2445043 < SDG # Excorge

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	
Reviewer:	N
2nd reviewer:	
	Ţ

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

YN N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

artbet
Q 2 5.944
b29.985 E3
L= -4895.0122
response = 18170
X= 2.44

Example:

Sample I.D.
$$2$$
 30.79 (1889)

= 0.89 4 4 4

			Reported Concentration	Calculated Concentration	S. Marsin
#	Sample ID	Compound	()	()	Qualification
 i					
1					
					•
		•			
			0.90 vc/kg		

Note:		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

September 22, 2010

LDC Report Date:

December 9, 2010

Matrix:

Soil

Parameters:

Metals

Validation Level:

Stage 2B & 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-7662-1

Sample Identification

SB01-25.0_01_BPC

SB02-28.5_01_BPC**

SB02-28.5 01 BPC FD

SB03-28.5 01 BPC

SB01-25.0 01 BPCMS

SB01-25.0_01_BPCMSD

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 6 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6010B and 7000 for Metals. The metals analyzed were Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Lead, Mercury, Molybdenum, Nickel, Selenium, Silver, Thallium, Vanadium, and Zinc.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

ICP-MS was not utilized in this SDG.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No metal contaminants were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Antimony Arsenic Barium	7.67 ug/L 6.65 ug/L 0.910 ug/L	All samples in SDG 280-7662-1

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

No field blanks were identified in this SDG.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
SB01-25.0_01_BPCMS/MSD (All samples in SDG 280-7662-1)	Antimony Arsenic Lead	60 (75-125) - -	57 (75-125) 68 (75-125) 70 (75-125)	- - -	J (all detects) UJ (all non-detects)	А

VII. Duplicate Sample Analysis

Duplicate sample analyses were reviewed for each matrix as applicable.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

ICP-MS was not utilized in this SDG.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met with the following exceptions:

Diluted Sample	Analyte	%D (Limits)	Associated Samples	Flag	A or P
SB01-25.0_01_BPCL	Cobalt Nickel	12 (≤10) 12 (≤10)	All samples in SDG 280-7662-1	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Α .

XII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable for samples on which a Stage 4 review was performed.

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-7662-1	All analytes reported below the PQL.	J (all detects)	А

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples SB02-28.5_01_BPC** and SB02-28.5_01_BPC_FD were identified as field duplicates. No metal contaminants were detected in any of the samples with the following exceptions:

	Concentra	Concentration (mg/Kg)				
Analyte	SB02-28.5_01_BPC**	SB02-28.5_01_BPC_FD	RPD (Limits)	Difference (Limits)	Flags	A or P
Arsenic	10	15	40 (≤50)	-	-	-
Barium	160	260	48 (≤50)	-	-	-
Beryllium	0.29	0.47	-	0.18 (≤0.66)	-	-
Chromium	46	85	60 (≤50)	-	-	
Cobalt	4.3	3.4	<u>-</u>	0.9 (≤1.3)	-	-
Copper	11	11	0 (≤50)	-	<u>.</u>	-
Lead	5.3	3.3	47 (≤50)	-	-	<u>-</u>
Molybdenum	0.79	0.42	-	0.37 (≤2.7)	-	-
Nickel	7.9	8.0	-	0.1 (≤5.3)	<u>.</u>	-
Selenium	1.2	1.2U	-	0 (≤1.8)	-	-
Vanadium	26	28	7 (≤50)	_	<u>.</u>	_
Zinc	26	28	7 (≤50)	-	-	-

	Concentra	ition (ug/Kg)					
Analyte	SB02-28.5_01_BPC**	\$B02-28.5_01_BPC_FD	RPD (Limits)	Difference (Limits)	Flags	A or P	
Mercury	5.6U	8.2	-	2.6 (≤25)	-	-	

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Metals - Data Qualification Summary - SDG 280-7662-1

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-7662-1	SB01-25.0_01_BPC SB02-28.5_01_BPC** SB02-28.5_01_BPC_FD SB03-28.5_01_BPC	Antimony Arsenic Lead	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R) (m)
280-7662-1	SB01-25.0_01_BPC SB02-28.5_01_BPC** SB02-28.5_01_BPC_FD SB03-28.5_01_BPC	Cobalt Nickel	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А	ICP serial dilution (%D) (sd)
280-7662-1	SB01-25.0_01_BPC SB02-28.5_01_BPC** SB02-28.5_01_BPC_FD SB03-28.5_01_BPC	All analytes reported below the PQL.	J (all detects)	А	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Metals - Laboratory Blank Data Qualification Summary - SDG 280-7662-1

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Metals - Equipment Blank Data Qualification Summary - SDG 280-7662-1

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Date: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Page: Lof \
Reviewer:
2nd Reviewer: 1A

SDG #: 280-7662-1 Laboratory: Test America

24450G4

LDC #:

6010S

METHOD: Metals (EPA SW 846 Method-6020/7000)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
.1	Technical holding times	A	Sampling dates: 9122(10
II.	ICP/MS Tune	N	Notukilized
111.	Calibration	A	
IV.	Blanks	SW	
V.	ICP Interference Check Sample (ICS) Analysis	A	
VI.	Matrix Spike Analysis	SW	ms/D
VII.	Duplicate Sample Analysis	N	
VIII.	Laboratory Control Samples (LCS)	A	US
IX.	Internal Standard (ICP-MS)	N	No+Utilized
X.	Furnace Atomic Absorption QC	N	L L
XI.	ICP Serial Dilution	SW	
XII.	Sample Result Verification	A	Not reviewed for Stage 2B validation.
XIII.	Overall Assessment of Data	A	·
XIV.	Field Duplicates	SW	(CZ,3)
ΧV	Field Blanks	~	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

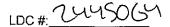
FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples: ** Indicates sample underwent Stage 4 validation


	Soil					
1	SB01-25.0_01_BPC	11_	9B5	21	31	
2	SB02-28.5_01_BPC**	12		22	32	
3	SB02-28.5_01_BPC_FO	13		23	33	
4	SB03-28.5_01_BPC	14		24	34	
5	SB01-25.0_01_BPCMS	15		25	35	
6	SB01-25.0_01_BPCMSD	16		26	36	
7		17		27	37	
8		18		28	38	
9		19		29	39	
10		20		30	40	

Notes:			•	

Page: 1 of 7 Reviewer: 02 2nd Reviewer: 1

Method: Metals (EPA SW 846 Method 6010B/7000/6020)

Method:Metals (EPA SW 846 Method 6010B/7000/6020)							
Validation Area	Yes	No	NA	Findings/Comments			
I. Technical holding times							
All technical holding times were met.		.,		·			
Cooler temperature criteria was met.							
II. ICP/MS Tune	···						
Were all isotopes in the tuning solution mass resolution within 0.1 amu?							
Were %RSD of isotopes in the tuning solution ≤5%?							
III. Calibration							
Were all instruments calibrated daily, each set-up time?							
Were the proper number of standards used?							
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury) QC limits?							
Were all initial calibration correlation coefficients > 0.995?	/						
IV. Blanks		,					
Was a method blank associated with every sample in this SDG?		,					
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	/	-		•			
V. ICP Interference Check Sample							
Were ICP interference check samples performed daily?		<i>/</i>					
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?	7						
VI. Matrix spike/Matrix spike duplicates							
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.							
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.							
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.							
VII. Laboratory control samples				•			
Was an LCS anaylzed for this SDG?		-					
Was an LCS analyzed per extraction batch?							
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?				···			

VALIDATION FINDINGS CHECKLIST

Page: Zof Z Reviewer: 0 Z 2nd Reviewer: 1

Validation Area	Yes	No	NA	Findings/Comments
VIII. Furnace Atomic Absorption QC				
If MSA was performed, was the correlation coefficients > 0.995?			_	-
Do all applicable analysies have duplicate injections? (Level IV only)			/	
For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)			/	· ·
Were analytical spike recoveries within the 85-115% QC limits?				
IX. ICP Serial Dilution	,	, —·-·-	,	
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?	/			
Were all percent differences (%Ds) < 10%?				
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.				
X. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)	 _			
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?				
If the %Rs were outside the criteria, was a reanalysis performed?			_	
XI. Regional Quality Assurance and Quality Control	, . 		12	,
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				<u> </u>
XII. Sample Result Verification		,	γ	
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?			<u> </u>	Based on wet ut or
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XIV. Field duplicates			,	
Field duplicate pairs were identified in this SDG.				
Target analytes were detected in the field duplicates.				
XV. Field blanks	•			
Field blanks were identified in this SDG.				
Target analytes were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page:	_of_	1
Reviewer:_	-	2
2nd reviewer:	ب	

All circled elements are applicable to each sample.

	 -	
Sample ID	Matrix	Target Analyte List (TAL)
.1-4		Al,(Sb, As, Ba, Be, Cd, Ca,(Cr, Co, Cu) Fe(Pb, Mg, Mn,(Hg, Ni) K, Se, Ag, Na, Tl, V, Zn, Mo) B, Si, CN,
QC56		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, PB, Mg, Mn, Hg, Ni) K, Se, Ag, Na, (II, V, Zn, Mo) B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN'.
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN',
		Al, Sb. As, Ba, Be, Cd. Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN
		Al, Sb. As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sì, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Co, Ca, Cr, Co, Cy, Fe, Pb, Mg, Mn, Hg, N, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
GEAA		Al, Sh, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, R, Si, CN;

Comments:	Mercury by CVAA if performed	

LDC #: 24450G4

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: mg/Kg

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES Soil preparation factor applied: 100x Associated Samples: All

Reviewer: CZ 2nd Reviewer: 1 Page:

i i				
,				
	No Qualifiers			
	Action Limit			
	Maximum ICB/CCB* (ug/L)	79.7	6.65	0.910
	Maximum PB ^a (ug/L)			
	Maximum PB³ (mg/Kg)			
	Analyte	Sb	As	Ва

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

LDC# 244SoGU

VALIDATION FINDINGS WORKSHEET Matrix Spike Duplicates

Page: of
Reviewer: (R2
2nd Reviewer: L2

METHOD: Trace metals (EPA SW 846 Method 6010/6020/7000)

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the contri

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor

of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD) ≤ 20% for water samples and ≤35% for soil samples? Y)N N/A

EVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. N N/A

	suons.														
	(C) U/+1/+														
Associated Samples	1 114	Ь.													
RPD (I imits)															
MSD %Recovery		L	7.0												
MS %Recovery	00														
Analyte	Sb	PS	৭৯												
Matrix	S														
MS/MSD ID	9/8														Comments:
*				<u> </u>					•					C	3

100 # Sunsper

VALIDATION FINDINGS WORKSHEET ICP Serial Dilution

Page: (2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

** N. N/A*** If analyte concentrations were > 50X the MDL (ICP), or >100X the MDL (ICP/MS), was a serial dilution analyzed? N A N

Were ICP serial dilution percent differences (%D) <10%? Is there evidence of negative interference? If yes, professional judgement will be used to qualify the data.

KN N/A IS

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. N N/A

TUJH (SC)	
Associated Samples	
%D (1 imits) 12 C ≤ 10) 12 J	
Analyte N. C.	
Natrix C	
Diluted Sample ID	-
# Date	Comments:

LDC#:_24450G4__

VALIDATION FINDINGS WORKSHEET _____Field Duplicates

/	\
Page:	_of
Reviewer:_	<u> </u>
2nd Reviewer:	<u></u>

METHOD: Metals (EPA Method 6020/7000)

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentration	on (mg/Kg)	(≤50)	(mg/Kg)	(mg/Kg)	Qualifications
Compound	2	3	RPD	Difference	Limits	(Parent Only)
Arsenic	10	15	40			
Barium	160	260	48			
Beryllium	0.29	0.47		0.18	(≤0.66)	
Chromium	46	85	60			
Cobalt	4.3	3.4		0.9	(≤1.3)	
Copper	11	11	0			
Lead	5.3	3.3	47			
Molybdenum	0.79	0.42		0.37	(≤2.7)	
Nickel	7.9	8.0		0.1	(≤5.3)	
Selenium	1,2	1,2U		0	(≤1.8)	
Vanadium	26	28	7			
Zinc	26	28	7			
Mercury (ug/Kg)	5.6U	8.2		2.6	(≤25)	

V:\FIELD DUPLICATES\FD_inorganic\24450G4.wpd

LDC#: 2445065/

Initial and Continuing Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

2nd Reviewer.__ Page:_ Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found x 100 True

Where, Found = concentration (in ug/L) of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported.	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
1CV	ICP (Initial calibration)	9	1257	252	(03)	103)-
	ICP/MS (Initial calibration)		·				
ICV	CVAA (Initial calibration)	178	6,55	7.80	hb	hb	<u>}</u>
72)	ICP (Continuing calibration)	71	0901	9	901	8	
	ICP/MS (Continuing calibration)						
Cev	CVAA (Continuing calibration)	1+8	5,02	Sæ	001	3	7
	GFAA (Initial calibration)						
	GFAA (Continuing calibation)						

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

100 # SOSABS # DOT

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

2nd Reviewer: Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found x 100 True

Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

Where,

RPD = <u>IS-DI</u> × 100 (S+D)/2

S = Original sample concentration D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

%D = []-SDR] × 100

Where, I = Initial Sample Result (mg/L) SDR = Serial Dilution Result (mg/L) (Instrument Reading \times 5)

					Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found 1 S 11 NS (units) prx	True / D / SDR (umits)	%R / RPD / %D	%R/RPD/%D	Acceptable (Y/N)
ICSPB	ICP interference check	Ag.	1122-18/L	1000mg/L	711	112)-
\ \ \ \	Laboratory control sample	£	81	100	13	23	
5	Matrìx spike	65	(SSR-SR)	43.1	9	09	
9/5	Duplicate	Zr.	L'99	64,9	9	9	
	ICP serial dilution	B	170	nd	7,5	2'2)

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 7445064 SDG #: Secores

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

YN		Light seem teholifed s	and calculated correctly? led range of the instruments a	ble questions are identified as "N/A". nd within the linear range of the ICP?
Detect following	ed analy	yte results fortion:	<u> </u>	were recalculated and verified using the
Concent	ration =	(RD)(FV)(Dil) (In. Vol.)(%S)	Recalculation:	
RD FV In. Vol. Dil %S	= =	Raw data concentration Final volume (ml) Initial volume (ml) or weight (G) Dilution factor	(1)	-)(0.48245mg/L) = 45,6mg/kg, 198)(0.889)

Sample (D	Analyte	Reported Concentration (MS-KS-)	Calculated Concentration (YY ()	Acceptable (Y/N)
2	As	10	10	7
	Ba	160	160	
	Be	0,29	0,29	
	-6	0.039 0		
	<u> </u>	46	46	
	Co	43	4,3	
	<u>Cv</u>		11	
	<u> </u>	5.3	5,3	
	\sim	0,79	0.79	
	N;	7,9	7,9	
·	Se,	1.7	1,2	
	<u> </u>	76	26	
	<u> </u>	26	76	4
	·····			
			<u> </u>	
			:	
	· · · · · · · · · · · · · · · · · · ·			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

September 22, 2010

LDC Report Date:

December 10, 2010

Matrix:

Soil

Parameters:

Wet Chemistry

Validation Level:

Stage 2B & 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-7662-1

Sample Identification

SB01-25.0_01_BPC

SB02-28.5 01 BPC**

SB02-28.5_01_BPC_FD

SB03-28.5 01 BPC

SB01-25.0 01 BPCMS

SB01-25.0 01 BPCMSD

SB01-25.0 01 BPCDUP

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 7 soil samples listed on the cover sheet. The analyses were per EPA Method 350.1 for Ammonia as Nitrogen, EPA SW 846 Method 9056 for Chloride, EPA SW 846 Method 9056A for Chlorate, and EPA Method 314.0 for Perchlorate.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

No field blanks were identified in this SDG.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable for samples on which a Stage 4 review was performed.

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-7662-1	All analytes reported below the PQL.	J (all detects)	Α

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

VIII. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples SB02-28.5_01_BPC** and SB02-28.5_01_BPC_FD were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concentra	ation (mg/Kg)				
Analyte	SB02-28.5_01_BPC**	SB02-28.5_01_BPC_FD	RPD (Limits)	Difference (Limits)	Flags	A or P
Chloride	1100	720	42 (≤50)	-	-	-
Ammonia as N	4.1	3.3	_	0.8 (≤3.1)	-	-
Chlorate	3600	7100	65 (≤50)	-	J (all detects)	Α
Perchlorate	370	720	64 (≤50)	-	J (all detects)	А

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Wet Chemistry - Data Qualification Summary - SDG 280-7662-1

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-7662-1	SB01-25.0_01_BPC SB02-28.5_01_BPC** SB02-28.5_01_BPC_FD SB03-28.5_01_BPC	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (sp)
280-7662-1	SB02-28.5_01_BPC** SB02-28.5_01_BPC_FD	Chlorate Perchlorate	J (all detects) J (all detects)	Α	Field duplicates (RPD) (fd)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-7662-1

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Wet Chemistry - Equipment Blank Data Qualification Summary - SDG 280-7662-1

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Date:12-2-1う
Page: \of \
Reviewer: 62_
2nd Reviewer:

SDG #: 280-7662-1 Laboratory: Test America

LDC #: 24450G6

METHOD: (Analyte) <u>Ammonia-N (EPA Method 350.1)</u>, <u>Chloride (EPA SW846 Method 9056)</u>, <u>Chlorate (EPA SW846 Method 9056)</u>, <u>Perchlorate (EPA Method 314.0)</u>

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	A	Sampling dates: 9/22/10
Ila.	Initial calibration	A	
IIb.	Calibration verification	A	
111.	Blanks	A	
IV	Matrix Spike/Matrix Spike Duplicates	A	MAD
V	Duplicates	А	04
VI.	Laboratory control samples	A	LCSD
VII.	Sample result verification	A	Not reviewed for Stage 2B validation.
VIII.	Overall assessment of data	A	
IX.	Field duplicates	SW	(23)
х	Field blanks	\	

Note:

A = Acceptable

ND = No compounds detected

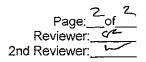
D = Duplicate TB = Trip blank

N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank

EB = Equipment blank

Validated Samples: ** Indicates sample underwent Stage 4 validation

	Soil				
1	SB01-25.0_01_BPC	11 985	21	31	
2	SB02-28.5_01_BPC**	12	22	32	
3	SB02-28.5_01_BPC-FO	13	23	33	
4	SB03-28.5_01_BPC	14	24	34	
5	SB01-25.0_01_BPCMS	15	25	35	
6	SB01-25.0_01_BPCMSD	16	26	36	
7	SB01-25.0_01_BPCDUP	17	27	37	······································
8		18	28	38	
9		19	29	39	
10		20	30	40	


Notes:	 	 	 	

Page: of Z Reviewer: crz 2nd Reviewer:

Method:Inorganics (EPA Method See Cover)				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	_			
Cooler temperature criteria was met.		<u> </u>		
II. Calibration				
Were all instruments calibrated daily, each set-up time?				
Were the proper number of standards used?		,		
Were all initial calibration correlation coefficients > 0.995?				
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	/			
Were titrant checks performed as required? (Level IV only)				
Were balance checks performed as required? (Level IV only)				
III. Blanks				
Was a method blank associated with every sample in this SDG?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
IV. Matrix spike/Matrix spike duplicates and Duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	-	^		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.		(
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL.				
V. Laboratory control samples				
Was an LCS anaylzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?]		
VI. Regional Quality Assurance and Quality Control			······································	
Were performance evaluation (PE) samples performed?				
Nere the performance evaluation (PE) samples within the acceptance limits?			./	

LDC#: 7445066

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification	· · · · · · · · · · · · · · · · · · ·			
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
Were detection limits < RL?				
VIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target analytes were detected in the field duplicates.				
X. Field blanks				,
Field blanks were identified in this SDG.				
Target analytes were detected in the field blanks.			7	

LDC#2445066

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: of Page: of Page: Of Pag

All circled methods are applicable to each sample.

ample ID	Matrix_	Parameter Parameter
1-4		PH TDS CO F NO NO SO PO ALK CN NH TKN TOC CR CTO C LOS
		PH TDS CLE NO. NO. SO. PO. ALK CN. NH3 TKN TOC CR. CIO.
X(: 5		DH TOS CO F NO NO SO PO ALK CN (NA TKN TOC CR (CIO4) (103)
6		DH TDS (C) F NO, NO, SO, PO, ALK CN (NH) TKN TOC CROT (CIO, CLO3)
17		pH TDS CI) F NO, NO, SO, PO, ALK CN (NH) TKN TOC CR8+ CIO, (CIO)
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4
		pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4
		pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4
		PH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4
		PH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4
		PH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4
,		ph TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4
		ph TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4
<u> </u>		ph TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4
		pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4
		pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4
		pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4
		pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4
		PH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR5+ CIO4
	 	ph tds ci f No, No, So, Po, Alk CN NH, TKN TOC CR6+ ClO,
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		PH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4
		ph tos ci f No ₃ No ₂ So ₄ Po ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		pH TDS CI F NO3 NO, SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4
		PH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ ClO4
		PH TOS CLE NO. NO. SO, PO. ALK CN. NH. TKN TOC CR6+ CIO.

Comments:	
Oommonto.	

LDC#: 24450G6

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page!_	of_\
Reviewer:	a.
2nd Reviewer:	

Inorganics, Method See Cover

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentration (mg/Kg)			·		Qualification
Analyte	2	3	RPD (≤50)	Difference	Limits	Qualification (Parent only)
Chloride	1100	720	42			
Ammonia as N	4.1	3.3		0.8	(≼3.1)	
Chlorate	3600	7100	65			Jdet/A (fd)
Perchlorate	370	720	64			Jdet/A (fd)

V:\FIELD DUPLICATES\FD_inorganic\24450G6.wpd

9905hn2 -:-

Initial and Continuing Calibration Calculation Verification Validatin Findings Worksheet

2nd Reviewer:

Method: Inorganics, Method

Se call

The correlation coefficient (r) for the calibration of MH^{γ} was recalculated.Calibration date: G-3G-C

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found X 100

Where,

Found = concentration of each analyte measured in the analysis of the ICV or CCV solution

True = concentration of each analyte in the ICV or CCV source

					Recalculated	Reported	Acceptable
Type of analysis	Analyte	Standard	Conc. (ug/l)	Height	r orr²	r or r²	(Y/N)
Initial calibration		s1	0	1889.036377			
		\$2	50	7849.749023	0.999991	0.999994	
	-	s3	100	15848.21777			
	NHZ	s4	200	92378.80469)~
	`	\$5	1000	196938.80469			_
		9s	2000	988992.81250			
		s7	10000	1969529.00000			
Calibration verification	Clay	CCV	30	190'CE	107		
Calibration verification	C/		78.52	15 mgc 25,561 mgc	201		
Calibration verification	C103	\	5	T 1978'h	6	\	8

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results._

LDC# 2556 &

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

Reviewer: 2nd Reviewer.

METHOD: Inorganics, Method See COVE

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found × 100

Where,

Found = concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

S 0

Where, $RPD = 1S-D1 \times 100$ (S+D)/2

Original sample concentration Duplicate sample concentration

			4		Recalcutated	Reported	
Sample ID	Type of Analysis	Element	Found / S (tunite) (XXX)	True / D (units) Mg/(s/	%R/RPD	%R/RPD	Acceptable (Y/N)
US	Laboratory control sample	C[0 _f	1300	20,0	89	87	<i>)</i>
5	Matrix spike sample	NH3-N	(SSR-SR)	107	8	(\$0	
7	Duplicate sample	5	390	385			}

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: ZUUSOUS

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page: ____of___ Reviewer: _____ 2nd reviewer: ____

				2nd revie	wer:
METH	HOD: Inorganics, Metho	od <u>See cover</u>			
ÝΝ	N/A Have results v	ow for all questions answered "N". Is been reported and calculated correwithin the calibrated range of the institution limits below the CRQL?	ectly?	re identified as "N	'A".
Comp	oound (analyte) results culated and verified usir	for	CO4 rep	orted with a positi	ve detect were
	ntration =	Recalculation:			
= O.A	W}x -0,0003		(0.09810)+0.00 6,003 (6,889)10	<u>203</u>)10	868,9°
#	Sample ID	Analyte	Reported Concentration (MSIK)	Calculated Concentration	Acceptable (Y/N)
	2	Cloy	310	370	<i>V</i> .
		NH3-N	4,1	4.1	
		CI	1100	1100	
		<u> </u>	3600	3600	
	,				
	·				
	· · · · · · · · · · · · · · · · · · ·				
Note:_				I	<u>i</u>

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

September 27, 2010

LDC Report Date:

December 8, 2010

Matrix:

Soil/Water

Parameters:

Volatiles

Validation Level:

Stage 2B & 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-7796-1

Sample Identification

SSAO8-10-0BPC

SSAO8-10-0.5BPC

SSAO8-08-0BPC

SSA08-08-0.5BPC

SSAO8-05-0BPC

SSAO8-05-0.5BPC

SSAO7-05-0BPC**

SSA07-05-0.5BPC

SSA07-06-0BPC

SSA07-06-0.5BPC

SSAO8-11-0BPC

SSA08-11-0.5BPC

TB-09272010 1

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 12 soil samples and one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
8/31/10	tert-Butyl alcohol	0.0243 (≥0.05)	All soil samples in SDG 280-7796-1	J (all detects) UJ (all non-detects)	Α
9/27/10	tert-Butyl alcohol	0.0042 (≥0.05)	All water samples in SDG 280-7796-1	J (all detects) UJ (all non-detects)	Α .

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs) and 25.0% for all other compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
10/2/10	Dichlorodifluoromethane	25.5	SSAO8-10-0BPC SSAO8-10-0.5BPC SSAO8-08-0BPC SSAO8-05-0BPC SSAO8-05-0.5BPC SSAO7-05-0.5BPC SSAO7-05-0.5BPC SSAO7-06-0.5BPC SSAO7-06-0.5BPC SSAO7-06-0.5BPC SSAO8-11-0.5BPC MB 280-34051/1-A	J- (all detects) UJ (all nondetects)	A

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
10/2/10	tert-Butyl alcohol	0.0253 (≥0.05)	SSAO8-10-0BPC SSAO8-10-0.5BPC SSAO8-08-0BPC SSAO8-05-0BPC SSAO8-05-0.5BPC SSAO8-05-0.5BPC SSAO7-05-0.5BPC SSAO7-06-0BPC SSAO7-06-0BPC SSAO7-06-0.5BPC SSAO7-06-0.5BPC SSAO8-11-0.5BPC MB 280-34051/1-A	J (all detects) UJ (all non-detects)	А
10/4/10	tert-Butyl alcohol	0.0251 (≥0.05)	SSAO8-11-0BPC MB 280-34206/1-A	J (all detects) UJ (all non-detects)	Α
10/7/10	tert-Butyl alcohol	0.0036 (≥0.05)	All water samples in SDG 280-7796-1	J (all detects) UJ (all non-detects)	Α

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
MB 280-34051/1-A	10/2/10	Methylene chloride	1.06 ug/Kg	SSAO8-10-0BPC SSAO8-10-0.5BPC SSAO8-08-0BPC SSAO8-08-0.5BPC SSAO8-05-0.5BPC SSAO8-05-0.5BPC SSAO7-05-0BPC** SSAO7-05-0.5BPC SSAO7-06-0BPC SSAO7-06-0.5BPC SSAO8-11-0.5BPC
MB 280-34206/1-A	10/4/10	Methylene chloride	2.12 ug/Kg	SSAO8-11-0BPC

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
SSAO8-10-0BPC	Methylene chloride	0.89 ug/Kg	0.89U ug/Kg
SSAO8-10-0.5BPC	Methylene chloride	0.90 ug/Kg	0.90U ug/Kg
SSAO8-08-0BPC	Methylene chloride	1.7 ug/Kg	1.7U ug/Kg
SSAO8-08-0.5BPC	Methylene chloride	0.93 ug/Kg	0.93U ug/Kg
SSAO8-05-0BPC	Methylene chloride	0.066 ug/Kg	0.066U ug/Kg
SSAO8-05-0.5BPC	Methylene chloride	1.1 ug/Kg	1.1U ug/Kg
SSA07-05-0BPC**	Methylene chloride	0.61 ug/Kg	0.61U ug/Kg
SSA07-05-0.5BPC	Methylene chloride	1.5 ug/Kg	1.5U ug/Kg
SSAO7-06-0BPC	Methylene chloride	1.6 ug/Kg	1.6U ug/Kg
SSA07-06-0.5BPC	Methylene chloride	1.6 ug/Kg	1.6U ug/Kg
SSA08-11-0.5BPC	Methylene chloride	0.84 ug/Kg	0.84U ug/Kg
SSAO8-11-0BPC	Methylene chloride	1.5 ug/Kg	1.5U ug/Kg

Sample TB-09272010_1 was identified as a trip blank. No volatile contaminants were found in this blank with the following exceptions:

Trip Blank ID	Sampling Date	Compound	Concentration	Associated Samples
TB-09272010_1	9/27/10	Acetone Methylene chloride	2.7 ug/L 0.72 ug/L	All soil samples in SDG 280-7796-1

Sample concentrations were compared to concentrations detected in the trip blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
SSAO8-10-0BPC	Methylene chloride	0.89 ug/Kg	0.89U ug/Kg
SSAO8-10-0.5BPC	Methylene chloride	0.90 ug/Kg	0.90U ug/Kg
SSAO8-08-0.5BPC	Acetone Methylene chloride	4.5 ug/Kg 0.93 ug/Kg	4.5U ug/Kg 0.93U ug/Kg
SSAO8-05-0BPC	Methylene chloride	0.66 ug/Kg	0.66U ug/Kg
SSAO8-05-0.5BPC	Acetone Methylene chloride	4.5 ug/Kg 1.1 ug/Kg	4.5U ug/Kg 1.1U ug/Kg
SSAO7-05-0BPC**	Methylene chloride	0.61 ug/Kg	0.61U ug/Kg
SSAO8-11-0.5BPC	Methylene chloride	0.84 ug/Kg	0.84U ug/Kg

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XII. Project Quantitation Limit

All project quantitation limits were within validation criteria for samples on which a Stage 4 review was performed.

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-7796-1	All compounds reported below the PQL.	J (all detects)	A

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Volatiles - Data Qualification Summary - SDG 280-7796-1

		· · · · · · · · · · · · · · · · · · ·			
SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-7796-1	SSAO8-10-0BPC SSAO8-10-0.5BPC SSAO8-08-0BPC SSAO8-08-0.5BPC SSAO8-05-0BPC SSAO7-05-0BPC** SSAO7-05-0.5BPC SSAO7-06-0BPC SSAO7-06-0.5BPC SSAO7-06-0.5BPC SSAO8-11-0BPC SSAO8-11-0.5BPC TB-09272010_1	tert-Butyl alcohol	J (all detects) UJ (all non-detects)	А	Initial calibration (RRF) (c)
280-7796-1	SSAO8-10-0BPC SSAO8-10-0.5BPC SSAO8-08-0BPC SSAO8-05-0BPC SSAO8-05-0.5BPC SSAO7-05-0.5BPC SSAO7-05-0.5BPC SSAO7-06-0BPC SSAO7-06-0.5BPC SSAO7-06-0.5BPC SSAO8-11-0.5BPC	Dichlorodifluoromethane	J- (all detects) UJ (all non-detects)	A	Continuing calibration (%D) (c)
280-7796-1	SSAO8-10-0BPC SSAO8-10-0.5BPC SSAO8-08-0BPC SSAO8-05-0BPC SSAO8-05-0.5BPC SSAO7-05-0BPC** SSAO7-05-0.5BPC SSAO7-06-0.5BPC SSAO7-06-0.5BPC SSAO8-11-0BPC SSAO8-11-0BPC TB-09272010_1	tert-Butyl alcohol	J (all detects) UJ (all non-detects)	A .	Continuing calibration (RRF) (c)
280-7796-1	SSAO8-10-0BPC SSAO8-10-0.5BPC SSAO8-08-0BPC SSAO8-05-0BPC SSAO8-05-0.5BPC SSAO7-05-0.5BPC SSAO7-06-0.5BPC SSAO7-06-0.5BPC SSAO7-06-0.5BPC SSAO8-11-0BPC SSAO8-11-0BPC SSAO8-11-0.5BPC TB-09272010_1	All compounds reported below the PQL.	J (all detects)	А	Project Quantitation Limit (PQL) (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-7796-1

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P	Code
280-7796-1	SSAO8-10-0BPC	Methylene chloride	0.89U ug/Kg	А	bl
280-7796-1	SSAO8-10-0.5BPC	Methylene chloride	0.90U ug/Kg	Α	bl
280-7796-1	SSAO8-08-0BPC	Methylene chloride	1.7U ug/Kg	А	bl
280-7796-1	SSAO8-08-0.5BPC	Methylene chloride	· 0.93U ug/Kg	Α	bi
280-7796-1	SSAO8-05-0BPC	Methylene chloride	0.066U ug/Kg	А	bl
280-7796-1	SSAO8-05-0.5BPC	Methylene chloride	1.1U ug/Kg	Α	bl
280-7796-1	SSA07-05-0BPC**	Methylene chloride	0.61U ug/Kg	А	bl
280-7796-1	SSAO7-05-0.5BPC	Methylene chloride	1.5U ug/Kg	А	bl
280-7796-1	SSAO7-06-0BPC	Methylene chloride	1.6U ug/Kg	А	ы
280-7796-1	SSA07-06-0.5BPC	Methylene chloride	1.6U ug/Kg	Α	þl
280-7796-1	SSA08-11-0.5BPC	Methylene chloride	0.84U ug/Kg	Α	þl
280-7796-1	SSA08-11-0BPC	Methylene chloride	1.5U ug/Kg	Α	bl

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Volatiles - Trip Blank Data Qualification Summary - SDG 280-7796-1

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
280-7796-1	SSAO8-10-0BPC	Methylene chloride	0.89U ug/Kg	А	bt
280-7796-1	SSAO8-10-0.5BPC	Methylene chloride	0.90U ug/Kg	А	bt
280-7796-1	SSAO8-08-0.5BPC	Acetone Methylene chloride	4.5U ug/Kg 0.93U ug/Kg	А	bt
280-7796-1	SSAO8-05-0BPC	Methylene chloride	0.66U ug/Kg	А	bt
280-7796-1	SSAO8-05-0.5BPC	Acetone Methylene chloride	4.5U ug/Kg 1.1U ug/Kg	А	bt

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
280-7796-1	SSA07-05-0BPC**	Methylene chloride	0.61U ug/Kg	А	bt
280-7796-1	SSA08-11-0.5BPC	Methylene chloride	0.84U ug/Kg	А	bt

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #: 24450H1 VALIDATION COMPLETENESS WORKSHEET
SDG #: 280-7796-1 Stage 2B/4
Laboratory: Test America

Date: 12/67/16
Page: __lof__
Reviewer: _____0
2nd Reviewer: _____0

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	<u> </u>	Sampling dates: 9 /27 /10
1].	GC/MS Instrument performance check	A	,
111.	Initial calibration	SM	3 RSD r
IV.	Continuing calibration/ICV	WZ	2 RSD +7 CW/W = 25 }
V.	Blanks	W2	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	Ŋ	client spec
VIII.	Laboratory control samples	A	Client spec
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	•
XI.	Target compound identification	A	Not reviewed for Stage 2B validation.
XII.	Compound quantitation/CRQLs	<u> </u>	Not reviewed for Stage 2B validation.
XIII.	Tentatively identified compounds (TICs)	N	Not reviewed for Stage 2B validation.
XIV.	System performance	A	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data	A	
XVI.	Field duplicates	Ŋ	·
XVII.	Field blanks	SW	TB = 13

Note: A ≍

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples: ** Indicates sample underwent Stage 4 validation

	Soil +	Water		
1	SSAO8-10-0BPC	11 SSAO8-11-0BPC S	1 NB 280-34051 /-A	31
2	SSAO8-10-0.5BPC	12 SSAO8-11-0.5BPC	22 MB 280 - 34206/1-A	32 -
3	SSAO8-08-0BPC	13 ³ TB-09272010_1 W	23 3 MB 280 - 34849/7	33
4	SSAO8-08-0.5BPC	14	24	34
5	SSAO8-05-0BPC	15	25	35
6	SSAO8-05-0.5BPC	16	26	36
7	SSAO7-05-0BPC**	17	27	37
8	SSAO7-05-0.5BPC	18	28	38
9	SSAO7-06-0BPC	,19	29	39
10	SSA07-06-0.5BPC	20	30	40

Page: 1 of \nearrow Reviewer: \nearrow 2nd Reviewer: \bigcirc

Method: Volatiles (EPA SW 846 Method 8260B)

Wethod: Volatiles (EPA SVV 846 Method 8260B)	T	<u> </u>		
Validation Area	Yes	No	NA	Findings/Comments
i: Technical holding times	T T	· · · · · ·	ı	
All technical holding times were met.				
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?		-		
Were all samples analyzed within the 12 hour clock criteria?				
III. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	_	-		
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Was a curve fit used for evaluation?				
Did the initial calibration meet the curve fit acceptance criteria of > 0.990?				
Were all percent relative standard deviations (%RSD) < 30% and relative response factors (RRF) > 0.05?		/		
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Were all percent differences (%D) < 25% and relative response factors (RRF) > 0.05?				
V. Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		-		
V , Surrogate spikes				
Were all surrogate %R within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				/
VII: Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.			,	
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII. Laboratory control samples				
Was an LCS analyzed for this SDG?				

LDC#: >4450#/

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: JV6
2nd Reviewer: ______

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per analytical batch?	/	<u> </u>	<u> </u>	
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
IX. Regional Quality Assurance and Quality Control			T	
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits? X.:Internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?	/			
Were retention times within + 30 seconds of the associated calibration standard?				
XI Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?		*************	*********	
XII. Compound quantitation/CRQLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?			:	
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Tentatively identified compounds (TICs)				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				
Were relative intensities of the major ions within ± 20% between the sample and the reference spectra?			~	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?				
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data	1			
Overall assessment of data was found to be acceptable.				
XVI. Field duplicates				
Field duplicate pairs were identified in this SDG.	,	./		
Target compounds were detected in the field duplicates.			7	
KVII. Field blanks				
rield blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

CCCC.1-Chlorohexane	DDDD. Isopropyl alcohol	EEEE. Acetonitrile	FFFF, Acrolein	GGGG. Acrylonitrile	HHHH. 1,4-Dioxane	III. Isobutyl alcohol	JJJJ. Methacrylonitrile	KKKK. Propionitrile	LLLL. Ethyl ether	MMMM. Benzyl chloride	Ż	Ö.	o	Ġ.	œ	ý		U.	/
III. n-Butylbenzene CCCC	JJJ. 1,2-Dichlorobenzene DDDE	KKK. 1,2,4-Trichlorobenzene EEEE	LLL. Hexachlorobutadiene FFFF	MMM. Naphthalene GGG	NNN. 1,2,3-Trichlorobenzene HHHI	OOO. 1,3,5-Trichlorobenzene	PPP. trans-1,2-Dichloroethene	QQQ. cis-1,2-Dichloroethene KKKK	RRR. m,p-Xylenes	SSS. o-Xylene MMM	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane NNNN.	UUU. 1,2-Dichlorotetrafluoroethane OOOO.	VVV. 4-Ethyltoluene	WWW. Ethanol	XXX. Di-isopropyl ether RRRR.	YYY. tert-Bulanol SSSS.	ZZZ. tert-Butyl alcohol	AAAA. Ethyl tert-butyl ether UUUU.	BBBB. tert-Amyl methyl ether VVVV.
OO. 2,2-Dichloropropane	PP. Bromochloromethane	QQ. 1,1-Dichloropropene	RR. Dibromomethane	SS. 1,3-Dichloropropane	TT. 1,2-Dibromoethane	UU. 1,1,1,2-Tetrachloroethane	VV. Isopropylbenzene	WW. Bromobenzene	XX. 1,2,3-Trichloropropane	YY. n-Propylbenzene	ZZ. 2-Chlorotoluene	AAA. 1,3,5-Trimethylbenzene	BBB. 4-Chiorotoluene	CCC, tert-Butylbenzene	DDD. 1,2,4-Trimethylbenzene	EEE, sec-Butylbenzene	FFF. 1,3-Dichlorobenzene	GGG. p-lsopropyltoluene	HHH. 1,4-Dichlorobenzene
U. 1,1,2-Trichloroethane	V. Benzene	W. trans-1,3-Dichloropropene	X. Bromoform*	Y. 4-Methyl-2-pentanone	Z, 2-Hexanone	AA. Tetrachloroethene	BB. 1,1,2,2-Tetrachloroethane*	CC. Toluene⁴*	DD. Chlorobenzene*	EE. Ethylbenzene**	FF. Styrene	GG. Xylenes, total	HH. Vinyl acetate	II. 2-Chloroethylvinyl ether	JJ. Dichlorodifluoromethane	KK. Trichlorofluoromethane	LL. Methyl-tert-butyl ether	MM. 1,2-Dibromo-3-chloropropane	NN. Methyl ethyl ketone
A. Chloromethane*	B. Bromomethane	C. Vinyl choride**	D. Chloroethane	E. Methylene chloride	F. Acetone	G. Carbon disulfide	H. 1,1-Dichloroethene**	I. 1,1-Dichloroethane*	J. 1,2-Dichloroethene, total	K, Chloroform**	L. 1,2-Dichloroethane	M. 2-Butanone	N. 1,1,1-Trichloroethane	O. Carbon tetrachloride	P. Bromodichloromethane	Q. 1,2-Dichloropropane**	R. cis-1,3-Dichloropropene	S. Trichloroethene	T. Dibromochloromethane

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

_
7
52
4
#
DC ₽

VALIDATION FINDINGS WORKSHEET Initial Calibration

Page:__ Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Did the laboratory perform a 5 point calibration prior to sample analysis?

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Was a curve fit used for evaluation?

Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation? Did the initial calibration meet the acceptance criteria? Y N N/A

Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF?

İ		[~			`												Ī
	Qualifications	1 JATA	L.			849 /												
	Associated Samples	A11 S + MB280- 24051/1-4	MB 280- 34201, 1-4			411 W + MB280-34849												
מונים במימם ויו	Finding RRF (Limit: >0.05)	6,0242		,	1	0.0647												
	Finding %RSD (Limit: <30.0%)																	
	Compound	727				272											`	
	Standard ID	1911-ASJ				1CHT - WS1												
	Date	oy 14/8	\ \			9/27/10		-										
	#																	

LDC #: 24 50 4

VALIDATION FINDINGS WORKSHEET Continuing Calibration

lof/ Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". X N N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? Were all %D and RRFs within the validation criteria of <25 %D and >0.05 RRF ?

Qualifications 5- MT A TMT A TMT A	
ALT A STATE A	1
Associated Samples 1-10, 12, MB 280 - 34 206 / - 4 II, MB 280 - 34 206 / - 4 All W + MB 280 - 34 244	
Finding RRF (Limit: >0.05) o. 0253 o. 025/	
Finding %D (Limit: <25.0%) 2 5 . 5	
Compound 3522 222 222 222	
6. J. 1455 J. 22. Solvy (Limit: 25.0%) (Limit: 25.0	
# Date \(\begin{align*} \dots \column{2}{	

#
8
な
7
#
ည္က

VALIDATION FINDINGS WORKSHEET Blanks

1 of 1	20	V
Page:	Reviewer:	2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N/A

Was a method blank associated with every sample in this SDG?

Was a method blank analyzed at least once every 12 hours for each matrix and concentration? Was there contamination in the method blanks? If yes, please see the qualifications below.

(b.l.)

Blank analysis date: 10 162/10 Y N N/A Y/N N/A

1.6/4 4 0.61 7 Sample Identification 99.0 n/ eb 'o 4 Associated Samples: 11.7/4 0.90/4 0.89/ 180- XEST 7.06 Blank 10 3 ΥŢ Conc. units: Mg /kg Compound Methylene chloride Acetone 혎 7.7

,							!
							!
	lon						
(62)	Sample Identification						
11							
Associated Samples:							
As							
		11 17	1,5/W				
	Blank ID	MEDEO-34 201/LA	N. P.		·		
ta: 10/6 4 h	0 nund	SW	π				
Blank analysis date: $\frac{10}{10} \frac{6}{6} \frac{4}{10} \frac{10}{10}$ Conc. unlts: $\frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10}$	Compound		Methylene chloride	Acetone			i ca

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were also qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

_
#
2
4
4
١ ٨
#
O
\Box

VALIDATION FINDINGS WORKSHEET Field Blanks

2nd Reviewer:__ Reviewer:__ Page:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

_	Y N/N/A	Were field b Were target	lanks identifi compounds	Were field blanks identified in this SDG? Were target compounds detected in the field blanks?	3? ie field blanks	ئ					
	Blank units: 45/L Associated sample units: 15/kg	WG /L ASS	ociated sam	ple units:	1 / Kg/						(44)
	Sampling date: 7 /2/40 Field blank type: (circle one) Field Blank / Rinsate / Trip Blank / Other.	e: 7 /47 pe: (circle on	ري e) Field Blanl		rip Blank/ O	ther:	Asso	Associated Samples:	es: 411 S	И	(, , ,)
	Come	Compound	Blank ID				Ö	Sample Identification	ıtion		
Ϋ́			2	<u>-</u>	~	3	4	نى	9	7	Se
7 ->	Methylene-ehloride	П.	2.7	(ob	<u></u>	(e)	4.5/4	Œ	45/4	(3E)	(<u>1</u>
*		lτ	6.77	N 83.0	0,96,0	(7.1	6,906	1/210	1.1/4	0.61/4	(31)
_	ā)		-)
	Chlorotorm										
	Blank units:		Associated sample units:	ple units:		Same	as above	ž			

130

Field blank type: (circle one) Field Blank / Rinsate / Trip Blank /	e) Field Blank	/ Rinsate / T	rip Blank / Ol	Other:	Associated Samples:	
Compound	Blank ID				Sample Identification	
		Q	1	17		
Methylene chloride	2.7		(αc)	(7,3)		
Acetope	2.7	(1,6)	(5,1	0.84 W		
- Uhlususususususususususususususususususus				,		
			1			

Same

Sampling date:

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were also qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

LDC# 24450 #1

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 1 of 1.

Reviewer: JVG

2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

 A_x = Area of Compound C_x = Concentration of compound

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard X = Mean of the RRFs

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

S= Standard deviation of the RRFs

Recalculated %RSD 6.84 4.00 3.34 Reported %RSD 6.9 4.0 3.3 Average RRF Recalculated 0.0538 2.8329 (Initial) 1.0017 Average RRF Reported (Initial) 0.0538 2.8329 1.0017 Recalculated (RRF 50 std) 2.8714 1.0214 0.0551 (RRF 50 std) Reported 2.8714 0.0551 1.0214 (181) (183) (182) Compound (IS) Chlorobenzene ,1,2,2-TCA Acetone 8/31/2010 Calibration Date Standard ID GC MSV J

ω 4 ω φ

N

#

	=			
Area IS	2512331	626482	1063598	
Area cpd	553331	198861	1086352	
Conc IS/Cpd	50/200	50/50	50/50	

1,1,2,2-TCA	1.0270	1.0063	0.9683	0.9462	1.0214	1.0029	1.0401	1.0017	0.0335
Chlorobenzene	3.0150	2.8949	2.7978	2.8109	2.8714	2.7961	2.6444	2.8329	0.1133
Acetone		0.0600	0.0539	0.0492	0.0551	0.0533	0.0513	0.0538	0.0037
Conc	7	20	10	20	50	100	200	×	S

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

Continuing Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

NG Page: 1 of 1 Reviewer: 2nd Reviewer:_

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

RRF = (Ax)(Cis)/(Ais)(Cx)

ave. RRF = initial calibration average RRF RRF = continuing calibration RRF

Ax = Area of compound

Ais = Area of associated internal standard Cis = Concentration of internal standard Cx = Concentration of compound,

					Γ	T	T	T	Τ	П	T	Т]
Recalculated	۵%		2.1	2.0	2.2								
Reported	Q %		2.1	2.0	2.2								
Recalculated	RRF	(ccv)	0.053	2.888	0.980								
Reported	RRF	(CCV)	0.053	2.888	0.980								
	Average RRF	(Initial)	0.054	2.833	1.002								
		(IS)	(1S1)	(182)	(183)								
		Compound (IS)		Chlorobenzene	1,1,2,2-TCA								
	Calibration	Date	10/2/2010 Acetone										
		Standard ID	J1455	GC MSV J									
		#	-			 2				3			

į		CCV1		CCV2		CCV3	
punodu	Cis/Cx	Ax	Ais	Ax	Ais	Ax	Ais
	50/200	657752	3122090				
hlorobenzene	20/20	2426508	840146		:		
1,1,2,2-TCA	92/29	1456347	1486024				

LDC#: >4450 H/

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	lof
Reviewer:	JVG
2nd reviewer:	<i>b</i>
	7

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

Sample ID: #7

SS = Surr	ogate Spiked		
	Percent	 Γ	=

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8	50	99.2	98	98	0
Bromofluorobenzene	1	44 2	88	88	
1,2-Dichloroethane-d4		44.7	89	89	
Dibromofluoromethane	1 8	54.0	108	108	0

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					·
Dibromofluoromethane					

LDC #: >44 50 # /

Laboratory Control Sample Results Verification VALIDATION FINDINGS WORKSHEET

Page: 1 of 1 Reviewer: かん 2nd Reviewer.

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC \rightleftharpoons Spiked sample concentration . SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LS/2 280- 34051

	S	ike	Spiked	Sample	SOI	S	ICSD	G.	I CS	CS/I CSD
Compound	Ad (UG	Added (44 /k.)	Concei (لام	Concentration (いん)た)	Percent Recovery	ecovery	Percent Recovery	всоvелу	2	RPD
	ICS	O I CSD	108	CSD	Reported	Recalc	Reported	Recalc	Reported	Rocalculated
1,1-Dichloroethene	so.o	53.0	0.45	50,5	809	<u>o</u> ∝	19	1 0/	^	٨
Trichloroethene	-		52.9	49.7	101	10%	86	8,6	4	<u>\</u>
Benzene			54.0	50.0	801	801	(6)	رم/	~	Š
Toluene			53.6	52.0	201	<u>6</u> 0/	00/	(B)	7	١
Chlorobenzene	7	_	5.6	48.4	401	25 25	47	97	\subset	Q
	•									

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 24450#/

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	l_of	1
Reviewer:	JI	16
2nd reviewer:		$\overline{}$
_	$\overline{}$	_

MFTHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Y N N/A Were all reported results recalculated and verified for all level IV samples?

 $\sqrt{N N/A}$ Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example: Concentration = - $(A_{\star})(I_{\star})(DF)$ (A,)(RRF)(V,)(%S) Sample I.D. # 7 . _______. Area of the characteristic ion (EICP) for the compound Area of the characteristic ion (EICP) for the specific internal standard Conc. = (215367) (50) (5m/)
(290405) (6.0538) (9.9378) (0.982) Amount of internal standard added in nanograms (ng) RRF Relative response factor of the calibration standard. Volume or weight of sample pruged in milliliters (ml) or grams (g). Df Dilution factor. 3 35 us/kg %S Percent solids, applicable to soils and solid matrices

#	Sample ID	Compound	Reported Concentration	Calculated Concentration	Qualification
				,	
			-		
				·	
					,
			·		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

September 27, 2010

LDC Report Date:

December 8, 2010

Matrix:

Soil

Parameters:

Semivolatiles

Validation Level:

Stage 2B & 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-7796-1

Sample Identification

SSAO8-10-0BPC

SSA08-08-0BPC

SSA08-05-0BPC

SSAO7-05-0BPC**

SSA07-06-0BPC

SSA08-11-0BPC

SSAO8-10-0BPCMS

SSAO8-10-0BPCMSD

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 8 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for Semivolatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within method and validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs) and 25.0% for all other compounds.

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
MB 280 -33904/1-A	10/1/10	Bis(2-ethylhexyl)phthalate	88.6 ug/Kg	SSAO8-08-0BPC SSAO8-05-0BPC SSAO7-05-0BPC** SSAO7-06-0BPC SSAO8-11-0BPC

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
SSAO8-08-0BPC	Bis(2-ethylhexyl)phthalate	110 ug/Kg	110Ü ug/Kg
SSAO8-05-0BPC	Bis(2-ethylhexyl)phthalate	92 ug/Kg	92U ug/Kg
SSAO7-06-0BPC	Bis(2-ethylhexyl)phthalate	91 ug/Kg	· 91U ug/Kg
SSAO8-11-0BPC	Bis(2-ethylhexyl)phthalate	89 ug/Kg	89U ug/Kg

No field blanks were identified in this SDG.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Although the MS percent recovery (%R) was not within QC limits for one compound, the MSD percent recovery (%R) was within QC limits and no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits with the following exceptions:

Sample	Internal Standards	Area (Limits)	Compound	Flag	A or P
SSAO8-05-0BPC	Perylene-d12	67297 (459041-1836162)	Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	J (all detects) R (all non-detects)	А
SSA07-06-0BPC	Perylene-d12	258304 (459041-1836162)	Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	J (all detects) UJ (all non-detects)	А

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XII. Project Quantitation Limit

All compound quantitation and CRQLs were within validation criteria for samples on which a Stage 4 review was performed.

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-7796-1	All compounds reported below the PQL.	J (all detects)	А

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Semivolatiles - Data Qualification Summary - SDG 280-7796-1

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-7796-1	SSAO8-05-0BPC	Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	J (all detects) R (all non-detects)	A	Internal standards (area) (i)
280-7796-1	SSAO7-06-0BPC	Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	J (all detects) UJ (all non-detects)	А	Internal standards (area) (i)
280-7796-1	SSAO8-10-0BPC SSAO8-08-0BPC SSAO8-05-0BPC SSAO7-05-0BPC** SSAO7-06-0BPC SSAO8-11-0BPC	All compounds reported below the PQL.	J (all detects)	Α	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 280-7796-1

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P	Code
280-7796-1	SSAO8-08-0BPC	Bis(2-ethylhexyl)phthalate	110U ug/Kg	A	bl
280-7796-1	SSAO8-05-0BPC	Bis(2-ethylhexyl)phthalate	92U ug/Kg	Ā	bl
280-7796-1	SSAO7-06-0BPC	Bis(2-ethylhexyl)phthalate	91U ug/Kg	А	bl
280-7796-1	SSAO8-11-0BPC	Bis(2-ethylhexyl)phthalate	89U ug/Kg	Α	bl

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Semivolatiles - Field Blank Data Qualification Summary - SDG 280-7796-1

No Sample Data Qualified in this SDG

Tronox Northgate Henderson

LDC #: 24450H2a	VALIDATION COMPLETENESS WORKSHEET
SDG #: 280-7796-1	Stage 2B/4
Laboratory: Test America	

Page: 1 of Reviewer: 2nd Reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	A	Sampling dates: 9 /27 /to
II.	GC/MS Instrument performance check	A	,
111.	Initial calibration	A	% RSD r~
IV.	Continuing calibration/ICV	Ä	Ca /a = 25 8
V.	Blanks	SM	·
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	SN	
VIII.	Laboratory control samples	A	LCS
IX.	Regional Quality Assurance and Quality Control	N	
Χ.	Internal standards	SN)	
XI.	Target compound identification	A-	Not reviewed for Stage 2B validation.
XII.	Compound quantitation/CRQLs	A	Not reviewed for Stage 2B validation.
XIII.	Tentatively identified compounds (TICs)	À	Not reviewed for Stage 2B validation.
XIV.	System performance	A	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data	¥	
XVI.	Field duplicates	N	
XVII.	Field blanks	N	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

** Indicates sample underwent Stage 4 validation Validated Samples:

	#IL 36	'' 15			
1	SSAO8-10-0BPC	11 MB 28	0- 33964/1-421	31	
2	SSAO8-08-0BPC	12 MB 280	0- 33964/1-A21 0-34910/1-A 22	32	
3	SSAO8-05-0BPC	13	23	33	
4 !	SSAO7-05-0BPC**	14	24	34	
5	SSAO7-06-0BPC	15	25	35	
6	SSAO8-11-0BPC	16	26	36	
7 ン	SSAO8-10-0BPCMS	17	27	37	
8 8	SSAO8-10-0BPCMSD	18	28	38	
9		19	29	39	
10		20	30	40	

Method: Semivolatiles (EPA SW 846 Method 8270C)

				
Validation Area	Yes	No	N/	Findings/Comments
J. Technical hölding times		ing a	1	in professional description of the second of
All technical holding times were met.	<u> </u>]_	+	
Cooler temperature criteria was met.				
III. GC/MS-Instrument performance check 2007 and a 2008 for the 2007 and a 2008 for the performance check 2007 and		T T	T T	
Were the DFTPP performance results reviewed and found to be within the specified criteria?	_	<u> </u>	\perp	
Were all samples analyzed within the 12 hour clock criteria?		-		
ill: Initial calibration		ļ		HERTANIS CONTRACTOR
Did the laboratory perform a 5 point calibration prior to sample analysis?		1_		
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Was a curve fit used for evaluation?		<u> </u>		
Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?				
Were all percent relative standard deviations (%RSD) ≤ 30% and relative response factors (RRF) ≥ 0.05?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	_	<u> </u>		
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	_			
Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?		1		
V:Blanks	- 4		18	
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VII.Surrogate spikes at a last the property of	n is a second			
Were all surrogate %R within QC limits?		7		
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		,		
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences RPD) within the QC limits?			/	
VIII Laboratory control samples			Sarij.	
Was an LCS analyzed for this SDG?	$\overline{}$			

LDC#: 74450 Ara

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: 100
2nd Reviewer: 4

	1	*		
Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?		ļ		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
IX.:Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		/		
Were the performance evaluation (PE) samples within the acceptance limits?				
X:Internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?				
Were retention times within ± 30 seconds from the associated calibration standard?				
XI. Target compound identification:		-		Augusticans (1914), area (1914), grander
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XII. Compound quantitation/CRQLS	3.00			Black Constitution of the Constitution
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		/		
XIII: Tentatively identified compounds (ITICs)		11114		ger a decretore, com como como como como como como como
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				The state of the s
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?				/
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?		7		
XIV/:System performance		alleria (
System performance was found to be acceptable.	7	1		200 - 100 -
XV. Overall assessment of data.		4.4		
Overall assessment of data was found to be acceptable.	7	AT (TO PERSONAL PROGRAMMENT AND AND AND AND AND AND AND AND AND AND
XVI: Field:duplicates			1	All Market Bloom and Bloom and Application
Field duplicate pairs were identified in this SDG.			Statesca,	STATE OF THE STATE
Target compounds were detected in the field duplicates.	$ \top $		7	
KVII. Field blanks				
Field blanks were identified in this SDG.		7		
farget compounds were detected in the field blanks.			1	

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

A Dhonoltt				
A Thermon	ド. Bis(Ζ-chloroethoxy)methane	EE. 2,6-Dinitrotoluene	TT. Pentachlorophenol**	III. Benzo(a)pyrene**
B. Bis (2-chloroethyl) ether	Q. 2,4-Dichlorophenol	FF. 3-Nitroaniline	UU. Phenanthrene	JJJ. Indeno(1,2,3-cd)pyrene
C. 2-Chlorophenol	R. 1,2,4-Trichlorobenzene	GG. Acenaphthene**	VV. Anthracene	KKK. Dibenz(a,h)anthracene
D. 1,3-Dichlorobenzene	S. Naphthalene	HH. 2,4-Dinitrophenol*	WW. Carbazole	Lt.L. Benzo(g,h,i)perylene
E. 1,4-Dichlorobenzene**	T. 4-Chloroaniline	II. 4-Nitrophenol*	XX. Di-n-butylphthalate	MMM, Bis(2-Chloroisopropyl)ether
F. 1,2-Dichlorobenzene	U. Hexachlorobutadiene**	JJ. Dibenzofuran	YY. Fluoranthene**	NNN. Aniline
G. 2-Methylphenol	V. 4-Chloro-3-methylphenol**	KK. 2,4-Dinitrotoluene	ZZ. Pyrene	OOO. N-Nitrosodimethylamine
H. 2,2'-Oxybis(1-chloropropane)	W. 2-Methylnaphthalene	LL. Diethylphthalate	AAA. Butylbenzylphthalate	PPP. Benzoic Acid
I. 4-Methylphenol	X. Hexachlorocyclopentadiene*	MM. 4-Chlorophenyl-phenyl ether	BBB. 3,3'-Dichlorobenzidine	QQQ. Benzyl alcohol
J. N-Nitroso-di-n-propy lamine*	Y. 2,4,6-Trichlorophenol**	NN. Fluorene	CCC. Benzo(a)anthracene	RRR. Pyridine
K. Hexachloroethane	Z. 2,4,5-Trichlorophenol	OO. 4-Nitroaniline	DDD. Chrysene	SSS. Benzidine
L. Nitrobenzene	AA. 2-Chloronaphthalene	PP. 4,6-Dinitro-2-methylphenol	EEE. Bis(2-ethylhexyl)phthalate	TTT.
M. Isophorone	BB. 2-Nitroaniline	QQ. N-Nitrosodiphenylamine (1)**	FFF. Di-n-octylphthalate**	nnn
N. 2-Nitrophenol**	CC. Dimethylphthalate	RR. 4-Bromophenyl-phenylether	GGG. Benzo(b)fluoranthene	WV.
O. 2,4-Dimethylphenol	DD. Acenaphthylene	SS. Hexachlorobenzene	HHH. Benzo(k)fluoranthene -本	WWW.

Notes:* = System performance check compound (SPCC) for RRF; ** = Calibration check compound (CCC) for %RSD.

DRY *

28
土,
24450
#
LDC

VALIDATION FINDINGS WORKSHEET Blanks

of	86	0
Page:	Reviewer:_	2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank analyzed for each matrix? N/A N/A

Was a method blank analyzed for each concentration preparation level? Was a method blank associated with every sample?

Y N N/A

Was the blank contaminated? If yes, please see qualification below. Blank extraction date: 10 /01 /0 Blank analysis date: 10 /04 Y/N N/A

(88) Sample Identification 2-6 Q క్ష Associated Samples: <u>~</u> 'n 6 <u>0</u> - A MB 280-23904 بو 8 Blank 10 14.44 Compound Conc. units: Ub 462

Associated Samples: Blank analysis date: Blank extraction date:_ Conc. units:

Compound	Blank ID	Sample Identification

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC# 29450 H2R

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: | of 2nd Reviewer: Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated CAN N/A

MS/MSD. Soil / Water.

N/N/A

Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

		- \	_	T	1	_	,	, -		_	1		ir	_	1	_	_	=
Qualifications	No great (ASD in	1																
Associated Samples																		
RPD (Limits)	()	()		()	()		()	(()	(()	()	()	()	()	()	()	
MSD %R (Limits)		()	()	()	()	(()	()	()	()	()	()	()	()	()	()	()	
	128 (52-120)	()	()	()	()	()	()	()	()	(()	()	()	()	()	()	()	
Compound	999		-															-
∑	7/8	,	;															
# Date																		

	Compound	QC Limits (Soil)	RPD (Soil)	QC Limits (Water)	RPD (Water)		Compound	QC Limits (Soil)	RPD (Soil)	QC Limits	RPD (Water)
∢	Phenol	26-90%	< 35%	12-110%	< 42%	99	Acenaphthene	31:137%	< 19%	46-118%	< 31%
ن ن	C. 2-Chlorophenol	25-102%	< 50%	27-123%	< 40%	=	4-Nitrophenol	11-114%	< 50%	10-80%	2/10/V
ші	1,4-Dichlorobenzene	28-104%	< 27%	36-97%	< 28%	Ž	2 4-Dinitrotoluene	28 80%	7.70	74.06%	N 00 '
→	N-Nitroso-di-n-propylamine	41-126%	> 38%	41.116%	7380%		Domination of the second	74 4000	0/14/	24-30%	< 30%
Ω		28 1076/	a co	20000	8,00		r el itaci il olonenoi	%A01-71	< 47%	9-103%	< 50%
	1,4,4-111011010101126116	20-10776	× 23%	39-98%	< 28%	7	Pyrene	35-142%	< 36%	26-127%	× 31%
>	4-Chloro-3-methylphenol	26-103%	< 33%	23-97%	< 42%						

LDC# 29450 12 SDG #: Fed Com

VALIDATION FINDINGS WORKSHEET Internal Standards

Reviewer: 072 Page: of / 2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A

Were all internal standard area counts within -50 to +100 of the associated calibration standard?

Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

Qualifications	J/R/4 (i)	+ / + /	1/M3/#	(See TCL)											
RT (Limits) Qu	(2010881														
Area (Limit	67297 (459041+	258 204			,										
Internal Standard	#RY														
Sample ID	ሐ		<i>y</i>												
Date														:	
#	رم 	69						-							

IS1 (DCB) = 1,4-Dichlorobenzene-d4 IS2 (NPT) = Naphthalene-d8 IS3 (ANT) = Acenaphthene-d10 * QC limits are advisory

IS4 (PHN) = Phenanthrene-d10 IS5 (CRY) = Chrysene-d12 IS6 (PRY) = Perylene-d12

LDC#: 24450 #24

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

) of / Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards

S= Standard deviation of the RRFs, $C_x = Concentration of compound,$ A_x = Area of Compound

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard X = Mean of the RRFs

%RSD = 100 * (S/X)

#

Recalculated %RSD 10.91 12.68 4.29 1.55 4.81 1.37 Reported %RSD 10.9 4. 4.8 4.3 5 12.7 Average RRF Recalculated 1.0303 0.2435 0.9416 (Initial) 0.5467 1.2584 1.0284 Average RRF Reported 1.0303 0.9416 0.5467 1.2584 0.2435 1.0284 (Initial) Recalculated 50 std) 0.5414 1.0285 1.2605 0.2358 1.0046 0.9682 RRF Reported (50 std) 1.0285 1.2605 0.2358 0.5414 1.0046 0.9682 RRF (182) (183) (131) (IS4) Compound (Internal Standard) (186) Benzo(g,h,i)perylene Hexachlorobenzene Naphthalene 9/23/2010 1,4-Dioxane Fluorene Chrysene Calibration Date Standard ID MSS Y GAL

onc IS/Cpd	Area cpd	Area IS
40/50	145195	214563
40/50	1121337	872181
40/50	864951	548947
40/50	268731	911902
40/50	1223088	973988
40/50	1060714	876472

1,4-Dig	Naphthalene				
		rinorene	Hexachlorob	Chrysene	Benzo(g,h,i)per
	1.0108	1.1578		1.0238	0.7223
	1.0504	1.1888	0.2352	1.0313	0.8117
	1.0213	1.2358	0.2306	1.0235	0.9185
50.00	1.0285	1.2605	0.2358	1.0046	0.9682
80.00 0.5180	1.0495	1.3064	0.2403	1.0557	0.9819
120.00 0.5035	1.0338	1.2801	0.2533	1.0368	1.0222
160.00 0.5222	1.0184	1.3121	0.2558	1.0384	1.0472
200.00 0.5122	1.0298	1.3256	0.2536	1.0129	1.0611
X = 0.5467	1.0303	1.2584	0.2435	1.0284	0.9416
S = 0.0596	0.0141	0.0605	0.0104	0.0159	0.1194

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

Continuing Calibration Results Verification VALIDATION FINDINGS WORSHEET

l of Page Reviewer:_ 2nd Reviewer:

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

ave. RRF = initial calibration average RRF

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

RRF = (Ax)(Cis)/(Ais)(Cx)

RRF = continuing calibration RRF

Ax = Area of compound

Ais = Area of associated internal standard

Cis = Concentration of internal standard Cx = Concentration of compound

		Calibration		Average RRF	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Date	Compound (Reference IS)	(Initial RRF)	(CC RRF)	(CC RRF)	%D	Q%
-	Y5486	10/04/10	1,4-Dioxane (IS1)	0.5467	0.5144	0.5144	5.9	5.9
	-		Naphthalene (IS2)	1.0303	1.0523	1.0523	2.1	2.1
			Fluorene (IS3)	1.2584	1.3100	1.3100	4.1	4.1
			Hexachlorobenzene (IS4)	0.2435	0.2573	0.2573	5.7	5.7
			Chrysene (IS5)	1.0284	1.0184	1.0184	1.0	1.0
			Benzo(g,h,i)perylene (IS6)	0.9416	1.0109	1.0109	7.4	7.4

(IS/Cpd)	
,	
40/80 264801	257392
40/80 2141014	1017254
40/80 1714077	654218
559205	1086688
2369918	1163508
2110674	1043915
40/80	

LDC#: 24400 429

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:	<u>lof 1</u>
Reviewer:_	₫/ /
2nd reviewer:_	0

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: #

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	(1)	69.59	70	70	9
2-Fluorobiphenyl		74.63	75	75	
Terphenyl-d14		97.88	78	98	8
Phenol-d5					
2-Fluorophenol			<u> </u>		
2,4,6-Tribromophenol			· -		
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol		···			
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4				-	<u> </u>

LDC#: 24450 HZ SDG #: See Core

Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

Page: lof | 2nd Reviewer: Reviewer:_

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: ___

	Spil		Sample	Spiked 5)ample	Matrix	Matrix Spike	Matrix Spike Duplicate	Duplicate	OSW/SW	OS
Compound	Added (1/5)	b (1	Concentration (VR /c)	Concentration	tration /c)	Percent Recovery	ecovery	Percent Recovery	есочегу	RPD	
	MS	O MSD	0	MS	MSD	Reported	Recatc.	Reported	Recalc	Reported	Recalculated
Phenoi											
N-Nitroso-di-n-propylamine											
4-Chloro-3-methylphenol											
Acenaphthene	26 10	2630	0	1910	2120	73	73	8 1	B	11	1,
Pentachlerophenol*									-		•
Pyrene	-			2040	22/10	78	84	78	84	%	8
		7									
						٠					

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC# 24450 AZ

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: Lof 1 2nd Reviewer: Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

SSC = Spike concentration SA = Spike added Where:

RPD = ILCSC - LCSDC I* 2/(LCSC + LCSDC)

, F	
LCS/LCSD samples: US 180 - 3769 A	

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 7450 Hza

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	<u>l</u> of <u>1</u>
Reviewer:_	JV
2nd reviewer:_	V

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

$\left(\underline{\mathbf{Y}}\right)$	N	N/A
∇	N	N/A

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $(A_{\bullet})(1_{\bullet})(V_{\bullet})(DF)(2.0)$ (A_b)(RRF)(V_o)(V_i)(%S)

Area of the characteristic ion (EICP) for the compound

Area of the characteristic ion (EICP) for the specific internal standard

Amount of internal standard added in nanograms (ng)

Volume or weight of sample extract in milliliters (ml) or grams (g).

Volume of extract injected in microliters (ul)

V, Volume of the concentrated extract in microliters (ul)

Df Dilution Factor.

%S Percent solids, applicable to soil and solid matrices only. Example:

Sample I.D. #

Conc. = $\frac{(94 \times)(40)(100)(100)(100)(100)}{(825278)(0.24)5}$

= 60.46 = 60 ng/lg

2.0	= Factor of 2 to account	for GPC cleanup	·		
#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Qualification
		-			
ļ				····	
<u> </u>					
					-
				-	
 					
<u> </u>					
				···	
-					
 					
					
<u> </u>	<u> </u>				

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date:

August 27, 2010

LDC Report Date:

December 9, 2010

Matrix:

Soil

Parameters:

Metals

Validation Level:

Stage 2B & 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-7796-1

Sample Identification

SSAO8-10-0BPC

SSAO8-08-0BPC

SSAO8-05-0BPC

SSAO7-05-0BPC**

SSA07-06-0BPC

SSAO8-11-0BPC

SSAO8-10-0BPCMS

SSAO8-10-0BPCMSD

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 8 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Methods 6020 for Metals. The metals analyzed were Arsenic, Cobalt, Lead, and Manganese.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No metal contaminants were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Manganese	0.0452 mg/Kg	All samples in SDG 280-7796-1
ICB/CCB	Manganese Cobalt	1.46 ug/L 0.0395 ug/L	All samples in SDG 280-7796-1

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

No field blanks were identified in this SDG.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
SSAO8-10-0BPCMS/MSD (All samples in SDG 280-7796-1)	Cobalt	61 (75-125)	67 (75-125)	-	J (all detects) UJ (all non-detects)	А

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable for samples on which a Stage 4 review was performed.

All analytes reported below the PQL were qualified as follows:

Sample .	Finding	Flag	A or P
All samples in SDG 280-7796-1	All analytes reported below the PQL.	J (all detects)	А

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Metals - Data Qualification Summary - SDG 280-7796-1

SDG	Sample	Analyte	Flag	AorP	Reason
280-7796-1	SSAO8-10-0BPC SSAO8-08-0BPC SSAO8-05-0BPC SSAO7-05-0BPC** SSAO7-06-0BPC SSAO8-11-0BPC	Cobalt	J (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicate (%R) (m)
280-7796-1	SSAO8-10-0BPC SSAO8-08-0BPC SSAO8-05-0BPC SSAO7-05-0BPC** SSAO7-06-0BPC SSAO8-11-0BPC	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Metals - Laboratory Blank Data Qualification Summary - SDG 280-7796-1

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Metals – Equipment Blank Data Qualification Summary - SDG 280-7796-1

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Date: 166	1
Page: Lof]	
Reviewer: <u>つ之</u>	
2nd Reviewer:	,

METHOD: Metals (EPA SW 846 Method 6020)

24450H4

Laboratory: Test America

280-7796-1

LDC #:

SDG #:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l,	Technical holding times	も	Sampling dates: 9 27/10
II.	ICP/MS Tune	Ð	
111.	Calibration	A	
IV.	Blanks	BW	
V.	ICP Interference Check Sample (ICS) Analysis	A	
VI.	Matrix Spike Analysis	SW	m5/0
VII.	Duplicate Sample Analysis	\mathcal{N}	
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	A	
X.	Furnace Atomic Absorption QC	$ \mathcal{N} $	Notutilized
XI.	ICP Serial Dilution	A	
XII.	Sample Result Verification	A	Not reviewed for Stage 2B validation.
XIII.	Overall Assessment of Data	A	
XIV.	Field Duplicates	N	
ΧV	Field Blanks	N	

Note: A = Acceptable

N = Not provided/applicable

ND = No compounds detected R = Rinsate

D = Duplicate TB = Trip blank

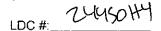
SW = See worksheet

FB = Field blank

EB = Equipment blank

Validated Samples: ** Indicates sample underwent Stage 4 validation

	Soll						
1	SSAO8-10-0BPC	11	GB5	21		31	
2	SSAO8-08-0BPC	12		22		32	
3	SSAO8-05-0BPC	13		23		33	
4	SSAO7-05-0BPC**	14		24		34	
5	SSA07-06-0BPC	15		25		35	
6	SSAO8-11-0BPC	16		26		36	
7	SSAO8-10-0BPCMS	17		27		37	
8	SSAO8-10-0BPCMSD	18		28		38	
9		19		29		39	
10		20		30	,	40	


Notes:		

VALIDATION FINDINGS CHECKLIST

Page: of _____ Reviewer: ______ 2nd Reviewer: ______

Method: Metals (EPA SW 846 Method 6010B/7000/6020)

Method:Metals (EPA SW 846 Method 6010B/7000/6020)				·
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times	,		,	· · · · · · · · · · · · · · · · · · ·
All technical holding times were met.				
Cooler temperature criteria was met.			L	
II. ICP/MS Tune	,. <u></u> .			
Were all isotopes in the tuning solution mass resolution within 0.1 amu?				
Were %RSD of isotopes in the tuning solution ≤5%?				
III. Calibration				
Were all instruments calibrated daily, each set-up time?		-		
Were the proper number of standards used?	/			
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury) QC limits?		,		
Were all initial calibration correlation coefficients > 0.995?				
IV. Blanks				
. Was a method blank associated with every sample in this SDG?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				,
V. ICP Interference Check Sample				
Were ICP interference check samples performed daily?				
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?				
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.		-		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	•	/		
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.		-		
VII. Laboratory control samples				•
Was an LCS anaylzed for this SDG?				
Was an LCS analyzed per extraction batch?	1	/		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	/			

VALIDATION FINDINGS CHECKLIST

Page: Zof Z Reviewer: c Z 2nd Reviewer: V

Validation Area	Yes	No	NA	Findings/Comments		
VIII. Furnace Atomic Absorption QC						
If MSA was performed, was the correlation coefficients > 0.995?		_	_			
Do all applicable analysies have duplicate injections? (Level IV only)						
For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)						
Were analytical spike recoveries within the 85-115% QC limits?						
IX. ICP Serial Dilution	·····	-				
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?						
Were all percent differences (%Ds) < 10%?						
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.						
X. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)		,	,			
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the internal standard in the associated initial calibration?	_					
If the %Rs were outside the criteria, was a reanalysis performed?		ļ				
XI. Regional Quality Assurance and Quality Control			,			
Were performance evaluation (PE) samples performed?		_	Ĺ.,			
Were the performance evaluation (PE) samples within the acceptance limits?	<u> </u>	<u> </u>	<u></u>			
XII. Sample Result Verification			-r			
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		<u> </u>				
XIII. Overall assessment of data						
Overall assessment of data was found to be acceptable.		1				
XIV. Field duplicates						
Field duplicate pairs were identified in this SDG.	<u> </u>					
Target analytes were detected in the field duplicates.			Ľ			
XV. Field blanks			<u></u>			
Field blanks were identified in this SDG.						
Target analytes were detected in the field blanks.		<u> </u>	<u>Ľ</u>			

and the second s

LDC#: ZYYSOHY

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: ___of ___ Reviewer: _____ 2nd reviewer: _____

All circled elements are applicable to each sample.

		
Sample ID	_Matrix	Target Analyte List (TAL)
120		Al, Sb (As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Ph, Mg, Min, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
CC: 1,18		Al, Sb (Ag, Ba, Be, Cd, Ca, Cr, Cd, Cu, Fe, Pl, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sì, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN;
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	:	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ .
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ .
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN.
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	<u> </u>	Analysis Method
ICD]	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
ICP	 	
ICP-MS		Al, Sb, KS, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN',
GEAA	<u> </u>	Al Sh As Ba Be Cd Ca Cr Co Cu Fe Ph Mg Mn Hg Ni K Se Ag Na Tl V, Zn Mo B Si CN

Comments: Mercury by CVAA if performed

LDC #: 24450H4

Sample Concentration units, unless otherwise noted: mg/Kg

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Page:

Soil preparation factor applied: 100x x 5xdii Associated Samples: All

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000)

11.				
4.				
			_	
		\vdash		
٠.				
		igsqcup		
	ည			Ì
	S iii			
	No Qualifiers			
L		H		
٠,	nit nit	0.73		
	Action Limit	0		
Al se	Maximum ICB/CCB ^a (ug/L)		Ŋ	
* * j1	Gin I	1.46	0.0395	
. 96.	May ICB (π		Ö	
		\vdash		
	Maximum PB ^a (ug/L)			
	axir. PE (ug/			
3	1 1			
	Ē 2			
	Maximum PB* (mg/Kg)	0.0452		
11.2 3.33	Max (mg	0		
		<u> </u>		
	Analyte			
	nal)			
		Mn	ပိ	
	<u> </u>			

a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element. Note:

LDC#: CHYSOHU

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

2nd Reviewer:

METHOD: Trace metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a matrix spike analyzed for each matrix in this SDG? X N N/A

Were matrix spike percent recoveries (%R) within the control limits of 75-1259 If the sample concentration exceeded the spike concentration by a factor

of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD) ≤ 20% for water samples and ≤35% for soil samples? ON N/A

EVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. Y/N N

				SE	CSM			
#	OLOSM/SM	Matrix	Analyte	%Recovery		RPD (Limits)	Associated Samples	il
	218	>	တ	<u>ا</u>	B		Hell	(W) 4/40/L
`								
			,					
			-					
		:						
		-						
C	· · · · · · · · · · · · · · · · · · ·							
5	Comments:							

100 # 2420 Hg

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

Page: of Beviewer: CS

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found × 100 True

Where, Found = concentration (in ug/L) of each analyte $\underline{\text{measured}}$ in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
	ICP (Initial calibration)						
B	ICP/MS (Initial calibration)	48	0.0h	0,04	100	Ē	7
	CVAA (Initial calibration)						
	ICP (Continuing calibration)						
3	ICP/MS (Continuing calibration)	(AS	51,6	50	5,01	201	$\mathcal{I}_{\mathcal{A}}$
	CVAA (Continuing calibration)						
	GFAA (Initial calibration)						
	GFAA (Continuing calibation)						

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

100 # 2420 # Y

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

Reviewer: Page: 2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found x 100

Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = $1S-D1 \times 100$ (S+D)/2

Where, S = Original sample concentration
D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

%D = [1-SDR] × 100

Where, 1 = Initial Sample Result (mg/L) SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

					Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found 18/1	True / D / SDR (unity)	%R / RPD / %D	%R/RPD/%D	Acceptable (Y/N)
1155 PPS	ICP interference check	28x	CAX 10228/T	100 mg/L	7.01	ک۵	7
22	Laboratory control sample	X	1/8/1	20	hb	20	
7	Matrix spike	Qd	(SSR-SR)	20.4	98	85	
2,8	Duplicate	کح	09Ch	0b2h	2		
	ICP serial dilution	Mn	4800	4730	1.5	1,6	7

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 7445044

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: <u>↓</u>	of
Reviewer:_	Q
2nd reviewer:_	

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please Y N I Y N I	<u>N/A</u> N/A	alifications below for all quest Have results been reported Are results within the calibr Are all detection limits belo	and calculated correctly ated range of the instrur	f?		
Detect equation		te results for	<u> </u>	were recalcu	ılated and verified ı	using the following
Concen RD FV In. Vol. Dil	tration =	(RD)(FV)(Dil) (In. Vol.) Raw data concentration Final volume (ml) Initial volume (ml) or weight (G) Dilution factor	Recalculatio	100mL)(5)(121. (0,982)(1.0	1001) = 60 20)	5,45 mg/kg
#		sample ID	Analyte	Reported Concentration (MP(KC)	Calculated Concentration (We/SC)	Acceptable (Y/N)
-		4	AS.	5,4	5,4	Ų
			WU .	3300	3300	{
			- Co	66	60	
-			Oh.	19	19	
ļ			<u>(L1)</u>			
 	<u> </u>					
<u> </u>	ļ					
<u> </u>	ļ. <u>.</u>					
	ļ		<u> </u>			
						
-						
Note:						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility, PCS Additional Sampling,

Henderson, Nevada

Collection Date: September 22, 2010

LDC Report Date: December 8, 2010

Matrix: Soil/Water

Parameters: Volatiles

Validation Level: Stage 2B & 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-7662-1

Sample Identification

TB-09222010_1
SB01-25.0_01_BPC
SB01-35.0_01_BPC
SB02-28.5_01_BPC**
SB02-28.5_01_BPC_FD
SB02-38.5_01_BPC
SB03-28.5_01_BPC
SB03-28.5_01_BPC
SB03-38.5_01_BPC
SB01-25.0_01_BPCMS
SB01-25.0_01_BPCMS

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers 9 soil samples and one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
8/31/10	tert-Butyl alcohol	0.0243 (≥0.05)	All soil samples in SDG 280-7662-1	J (all detects) UJ (all non-detects)	A
9/28/10	tert-Butyl alcohol	0.0053 (≥0.05)	All water samples in SDG 280-7662-1	J (all detects) UJ (all non-detects)	Α

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs) and 25.0% for all other compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
10/1/10	tert-Butyl alcohol	32.9	All water samples in SDG 280-7662-1	J- (all detects) UJ (all nondetects)	А

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
9/28/10	tert-Butyl alcohol	32.3	All water samples in SDG 280-7662-1	J+ (all detects)	A

All of the continuing calibration relative response factors (RRF) were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
9/30/10	tert-Butyl alcohol	0.0193 (≥0.05)	All soil samples in SDG 280-7662-1	J (all detects) UJ (all non-detects)	A
10/1/10	tert-Butyl alcohol	0.0036 (≥0.05)	All water samples in SDG 280-7662-1	J (all detects) UJ (all non-detects)	Α

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
MB 280-33800/1-A	9/30/10	Methylene chloride	1.74 ug/Kg	All soil samples in SDG 280-7662-1

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
SB01-25.0_01_BPC	Methylene chloride	1.3 ug/Kg	1.3U ug/Kg
SB01-35.0_01_BPC	Methylene chloride	2.5 ug/Kg	2.5U ug/Kg
SB02-28.5_01_BPC**	Methylene chloride	1.3 ug/Kg	1.3U ug/Kg
SB02-28.5_01_BPC_FD	Methylene chloride	1.9 ug/Kg	1.9U ug/Kg
SB02-38.5_01_BPC	Methylene chloride	2.0 ug/Kg	2.0U ug/Kg

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
SB03-28.5_01_BPC	Methylene chloride	2.1 ug/Kg	2.1U ug/Kg
SB03-38.5_01_BPC	Methylene chloride	1.6 ug/Kg	1.6U ug/Kg

Sample TB-09222010_1 was identified as a trip blank. No volatile contaminants were found in this blank.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Compound	Flag	A or P
SB01-35.0_01_BPC	Toluene-d8	58 (68-143)	Chloroform Tetrachloroethene	J- (all detects) UJ (all nondetects) J- (all detects) UJ (all nondetects)	Р

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Although the MS or MSD percent recoveries (%R) were not within QC limits for several compounds, the MS or MSD percent recoveries (%R) were within QC limits and no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XII. Project Quantitation Limit

All project quantitation limits were within validation criteria for samples on which a Stage 4 review was performed.

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-7662-1	All compounds reported below the PQL.	J (all detects)	Α

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples SB02-28.5_01_BPC** and SB02-28.5_01_BPC_FD were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentrat					
Compound	SB02-28.5_01_BPC**	SB02-28.5_01_BPC_FD	RPD (Limits)	Difference (Limits)	Flags	A or P
1,2,4-Trichlorobenzene	0.78	0.97	-	0.19 (≤5.7)	-	-
1,2-Dichlorobenzene	1.4	2.3	•	0.90 (≤5.7)	-	-
Chloroform	37	100	-	63.00 (≤11)	J (all detects)	Α
Hexachlorobutadiene	3.7	5.8	-	2.10 (≤5.7)	-	-
Methylene chloride	1.3	1.9	-	0.60 (≤5.7)	-	-
Tetrachloroethene	63	130	69 (≤50)	-	J (all detects)	Α

	Concentration (ug/Kg)						
Compound	SB02-28.5_01_BPC**	SB02-28.5_01_BPC_FD	RPD (Limits)	Difference (Limits)	Flags	A or P	
Trichloroethene	8.2	21	-	12.80 (≤5.7)	J (all detects)	А	

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Volatiles - Data Qualification Summary - SDG 280-7662-1

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-7662-1	TB-09222010_1 SB01-25.0_01_BPC SB01-35.0_01_BPC SB02-28.5_01_BPC** SB02-28.5_01_BPC_FD SB02-38.5_01_BPC SB03-28.5_01_BPC SB03-38.5_01_BPC	tert-Butyl alcohol	J (all detects) UJ (all non-detects)	A	Initial calibration (RRF) (c)
280-7662-1	TB-09222010_1	tert-Butyl alcohol	J- (all detects) UJ (all non-detects)	A.	Continuing calibration (%D) (c)
280-7662-1	TB-09222010_1	tert-Butyl alcohol	J+ (all detects)	Α	Continuing calibration (ICV %D) (c)
280-7662-1	TB-09222010_1 SB01-25.0_01_BPC SB01-35.0_01_BPC SB02-28.5_01_BPC** SB02-28.5_01_BPC_FD SB02-38.5_01_BPC SB03-28.5_01_BPC SB03-38.5_01_BPC	tert-Butyl alcohol	J (all detects) UJ (all non-detects)	A	Continuing calibration (RRF) (c)
280-7662-1	SB01-35.0_01_BPC	Chloroform Tetrachloroethene	J- (all detects) UJ (all nondetects) J- (all detects) UJ (all nondetects)	Р	Surrogate spikes (%R) (s)
280-7662-1	TB-09222010_1 SB01-25.0_01_BPC SB01-35.0_01_BPC SB02-28.5_01_BPC** SB02-28.5_01_BPC_FD SB02-38.5_01_BPC SB03-28.5_01_BPC SB03-28.5_01_BPC	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (PQL) (sp)
280-7662-1	SB02-28.5_01_BPC** SB02-28.5_01_BPC_FD	Chloroform Trichloroethene	J (all detects) J (all detects)	A	Field duplicates (Differences) (fd)
280-7662-1	SB02-28.5_01_BPC** SB02-28.5_01_BPC_FD	Tetrachloroethene	J (all detects)	A	Field duplicates (RPD) (fd)

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-7662-1

SDG Sample		Compound TIC (RT in minutes)	Modified Final Concentration	A or P	Code
280-7662-1 SB01-25.0_01_BPC		Methylene chloride	1.3U ug/Kg	Α	ы

SDG	Sample	Compound Modified Final Sample TIC (RT in minutes) Concentration		A or P	Code
280-7662-1	SB01-35.0_01_BPC	Methylene chloride	2.5U ug/Kg	А	bi
280-7662-1	SB02-28.5_01_BPC**	Methylene chloride	1.3U ug/Kg	А	bl
280-7662-1	SB02-28.5_01_BPC_FD	Methylene chloride	1.9U ug/Kg	А	bl
280-7662-1	SB02-38.5_01_BPC	Methylene chloride	2.0U ug/Kg	Α	bl
280-7662-1	SB03-28.5_01_BPC	Methylene chloride	2.1U ug/Kg	Α	ы
280-7662-1	SB03-38.5_01_BPC	Methylene chloride	1.6U ug/Kg	Α .	bl

Tronox LLC Facility, PCS Additional Sampling, Henderson, Nevada Volatiles - Trip Blank Data Qualification Summary - SDG 280-7662-1

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #: 24450G1	VALIDATION COMPLETENE
SDG #: 280-7662-1	Stage 2B/4
Laboratory: Test America	

	Date:	1:	2/6	,	ħ
	Page:	1	of_	7	
	Reviewer:	<)Vt	,	
2nd	Reviewer:				
			/		

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	4	Sampling dates: 9 /2 2 /10
II.	GC/MS Instrument performance check	A	,
III.	Initial calibration	SW	7 RED r
IV.	Continuing calibration/ICV	SW	CW/1W & 25 }
<u>V.</u>	Blanks	SW	
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	Sn	
VIII.	Laboratory control samples	WSH A	LCS 15
IX.	Regional Quality Assurance and Quality Control	N	
<u>X.</u>	Internal standards	A	
XI.	Target compound identification	A	Not reviewed for Stage 2B validation.
XII.	Compound quantitation/CRQLs	A	Not reviewed for Stage 2B validation.
XIII.	Tentatively identified compounds (TICs)	N	Not reviewed for Stage 2B validation.
XIV.	System performance	A	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data	A	
XVI.	Field duplicates	ZM,	D = 4,5
XVII.	Field blanks	ND	7B= /

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

** Indicates sample underwent Stage 4 validation Validated Samples:

	<u>voorer 1</u>	7	<u> </u>			
- 3 1	TB-09222010_1 W	11 1	MB 280-33800 /-A	21	31	
2	SB01-25.0_01_BPC S	12 Y	MB 280-34090/1-A	14 11 2	32	
3	SB01-35.0_01_BPC	13 3	MB 280-34116/6	23	33	_
4	SB02-28.5_01_BPC** •	14		24	34	
5	SB02-28.5_01_BPC_Fb	15		25	35	
6	SB02-38.5_01_BPC	16		26	36	
7	SB03-28.5_01_BPC	17	·	27	37	
8	SB03-38.5_01_BPC	18		28	38	
9	SB01-25.0_01_BPCMS	19		29	39	
10	SB01-25.0_01_BPCMSD	20		30	40	

Page: 1 of 2 Reviewer: JW 2nd Reviewer: 4

Method: Volatiles (EPA SW 846 Method 8260B)

Metilod. Volatiles (EFA GVV 646 Metilod 6200B)	!	Ī	<u> </u>	,
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times		T	,	
All technical holding times were met.				
Cooler temperature criteria was met.		1		
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
III. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	-			
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Was a curve fit used for evaluation?				
Did the initial calibration meet the curve fit acceptance criteria of > 0.990?				
Were all percent relative standard deviations (%RSD) < 30% and relative response factors (RRF) > 0.05?		/		
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	سسند	-		
Were all percent differences (%D) < 25% and relative response factors (RRF) > 0.05?			_	
V Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	/			
VI. Surrogate spikės				
Were all surrogate %R within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VII. Matrix:spike/Matrix:spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII: Laboratory control samples				
Was an LCS analyzed for this SDG?				

LDC#: 24450 G1

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: 776
2nd Reviewer: ________

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		/	<u> </u>	
IX. Regional Quality Assurance and Quality Control		ı		
Were performance evaluation (PE) samples performed?		_	_	
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?	/			
Were retention times within ± 30 seconds of the associated calibration standard?				
汉I. Target compound identification	,,	· · · ·		
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XII. Compound quantitation/CRQLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		•		
XIII. Tentatively identified compounds (FICs)				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				
Were relative intensities of the major ions within <u>+</u> 20% between the sample and the reference spectra?			u	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?		_	/	
XIV System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
XVI. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.		/		· · · · · · · · · · · · · · · · · · ·
XVII, Field:blanks	7			
Field blanks were identified in this SDG.	\angle			
Target compounds were detected in the field blanks.				

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl charide**	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform*	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFF. Acrolein
E. Methylene chloride	Y, 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA, Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene**	BB. 1,1,2,2-Tetrachloroethane*	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane*	CC. Toluene**	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene*	XX. 1,2,3-Trichloropropane	RRR. m.p-Xylenes	LLLL. Ethyl ether
K. Chloroform**	EE. Ethylbenzene**	YY. n-Propylbenzene	SSS, o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN.
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	. dddd
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	9999.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY, tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ, tert-Butyl alcohol	TITT
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	ບນບບ.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB, tert-Amyl methyl ether	vvvv.

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

LDC# >9450 G1

VALIDATION FINDINGS WORKSHEET Initial Calibration

Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". X)N N/A

Did the laboratory perform a 5 point calibration prior to sample analysis?

Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF? Did the initial calibration meet the acceptance criteria? N/A N/A N/A AN (Z

<u></u>		}			1	1	_	1	Т-	T	_	_	-	_	3	1	T	1	Ī	.	11 -	Τ-	T		T	_
	⊍	ı																				-				
ons	J/15/4	-	_	_	4		•		•																	
Qualifications	77																									
ğ	║,				\ .																					
	4- YOU?	<u></u>		_	3/911/6																					L
BS	+ MB 280- 33800A.				6 -08																					
Associated Samples	P. D. Y.				100 280-																					
sociate					A11 M +				:																	
¥	AIIS				ΨIJ																		•			
Finding RRF (Limit: >0.05)	0,0243			,	0053																			Í		
FInd	0 ' 0		-		0.00				į																	
								_								_	-				_		——			-
%RSD 30.0%)	\$:					:															
Finding %RSD (Limit: <30.0%)																										
			_											-											-	
pur	7				222																					
Compound	222				7																					
	25				MS R2																					
Standard ID	1CAL - MSJ																									
Star	1cal				1CAL-																	ľ				
			1	-	1		_		_								-			_		-	-		-	
Date	8/31 10				0/2/6																					
7±	8	+	\dashv	_	4		_			\dashv			-									\dashv				-
<u></u>																				1					_	السيد

LDC#: 24450 6/

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:___ Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

N N/A

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ?

Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF?

	()	<u> </u>			٧		7		 	 	 	 	,			 		
Qualifications	5/45/A		J-/45/A	J/MJ/X	,	5+ Not 14												
], [34116 /5											,				
Associated Samples	V-190866-036 9W + S		+ MB 280- 3															
Associate	411 S+		A11 W+															
Finding RRF (Limit: >0.05)	0,0193			0.00%														
Finding %D (Limit: <25.0%)			32.9			32.3 M												
Compound	222		222 (-)	ママン(例		+ 222												
Standard ID	7[280		RR10163			78 106 24	(3)											
Date	01/04/6		10 Kr 1/10			9/2/19												
#						Ĭ												

(4)
2
294
LDC #:

VALIDATION FINDINGS WORKSHEET Blanks

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N

Was a method blank associated with every sample in this SDG?

N/A Y/N N/A

Was a method blank analyzed at least once every 12 hours for each matrix and concentration? Was there contamination in the method blanks? If yes, please see the qualifications below.

S 4 Associated Samples: Blank analysis date: 19/20/10

Sample Identification ر. 0 r, <u>_</u> 286- 23800 Blank ID 1.7<u>8</u> <u>.</u>... 4 Compound Methylene chloride Conc. units: Acetone CRO

> \$. Y λę

Conc. units:		Associated pamples:
Composind	Blank ID	Sample Identification
2000		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Wenyiene chionae		
Acelone		
COC		

Blank analysis date:

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were also qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC # 24 450 6/

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page: 2nd Reviewer:_ Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

Ottalifications	J-MJ/p (5)	(grad K, AA ory)													
"Recovery (Limits)	(64.45)	:		()	()	()	()	()	()	()	()	()			
Surrogate	Tol														
	3 (101)													•	
Date															
#															

QC Limits (Soil)	85-115	85-120	60-120	75-125	
	SMC1 (TOL) = Toluene-d8	SMC2 (BFB) = Bromofluorobenzene	SMC3 (DCE) = 1,2-Dichloroethane-d4	SMC4 (DFM) = Dibromofluoromethane	

QC Limits (Water)	85-120	75-120	70-120	85-115
(lic				

19 07 # 24 # 10 6/

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated

MS/MSD. Soil / Water.

Was a MS/MSD analyzed every 20 samples of each matrix? Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

,	4	7	MS WS		MSD (2)	PDD (Limite)		Associated Samples	Oualifications	
#	MS/MSD ID	Compound	╢	$\frac{1}{2}$		(cilling)	$\ $	Cardina Banacact		
	al/b	N. 35 E.	of comparate	de la	ontside	11 mits (1		No grant	
		7,7	``	()	_		(citter MS	MSD.
				-)	^		9571 571 11	. 4
-)	_)	^			\
			<u> </u>	-	<u> </u>)	<u> </u>			
<u> </u>			,	-))				
				_)) (<u> </u>			
			J	^)) ()			
-				_	J) ()			
			,	_	-) ((
				^) ()			
				_)) (Î			
)	^)) ()			
				^)) ((
			_	^	<u> </u>) () (;
	:			_	J) (,			
)	^	_) ((
			<u></u>	<u> </u>)) (
		Compound			QC Limits (Soil)	RPE	RPD (Soil)	QC Limits (Water)	Vater) RPD (Water)	Vater)
	H. 1,1-Dich	1,1-Dichloroethene			59-172%	٧١	< 22%	61-145%		%!
S.	<u> </u>	oethene		-	62-137%	VI	< 24%	71-120%	° < 14%	%1
		a.			66-142%	٧١	< 21%	76-127%	° × 11%	%
Ŏ			į		59-139%	٧١	< 21%	76-125%		3%
		enzene			60-133%	VI	< 21%	75-130%	6 < 13%	3%

LDC#:24450G1

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: lof seviewer: Wo

METHOD: GC MS Volatiles (EPA SW 846 Method 8260B)

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentra	tion (ug/Kg)	(≤50)	(mg/Kg)	(mg/Kg)	Qualifications
Compound	4	5	RPD	Difference	Limits	(Parent Only)
1,2,4-Trichlorobenzene	0.78	0.97		0.19	(≤5.7)	
1,2-Dichlorobenzene	1.4	2.3		0.90	(≤5.7)	
Chloroform	37	100		63.00	(≤11)	Jdets/A (fd)
Hexachlorobutadiene	3.7	5.8		2.10	(≤5.7)	
Methylene chloride	1.3	1.9		0.60	(≤5.7)	
Tetrachloroethene	63	130	69			Jdets/A (fd)
Trichloroethene	8.2	21		12.80	(≤5.7)	Jdets/A (fd)

V:\FIELD DUPLICATES\24450G1.wpd

LDC# 24450 61

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 1 of 7
Reviewer: JVG
2nd Reviewer: 2

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 $A_x = Area of Compound$

C_x = Concentration of compound
S= Standard deviation of the RRFs

 $A_{is} = \mbox{Area of associated internal standard} \\ C_{is} = \mbox{Concentration of internal standard} \\$

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (IS)	nd (IS)	(RRF 50 std)	(RRF 50 std)	(Initial)	(Initial)		
τ-	ICAL	8/31/2010	Chlorofo	(IS1)	0.5431	0.5431	0.5241	0.5242	4.8	4.83
2	GC MSV J		Chlorobenzene	(IS2)	2.8714	2.8714	2.8329	2.8329	4.0	4.00
3			1,1,2,2-TCA	(1S3)	1.0214	1.0214	1.0017	1.0017	3.3	3.34
4		1								
5										
9										

Area IS	2512331	626482	1063598		
Area cpd	1364402	17988671	7989352		
Conc IS/Cpd	50/50	50/50	50/50		

Chloroform	Chlorobenzene	1,1,2,2-TCA
0.5351	3.0150	1.0270
0.5618	2.8949	1.0063
0.5050	2.7978	0.9683
0.4869	2.8109	0.9462
3.5431	2.8714	1.0214
5267	2.7961	1.0029
0.5105	2.6444	1.0401
0.5242	2.8329	1.0017
0.0253	0.1133	0.0335

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

Continuing Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Reviewer: JVG Page: 1 of 1 2nd Reviewer:__

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

RRF = (Ax)(Cis)/(Ais)(Cx)

ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF Ax = Area of compound

Ais = Area of associated internal standard Cx = Concentration of compound,

Cis = Concentration of internal standard

# Standard ID Date Compound (IS) (Initial) 1 J1380 9/30/2010 Chloroform (IS1) 0.524 GC MSV J Chlorobenzene (IS2) 2.833 1,1,2,2-TCA (IS3) 1.002							Reported	Recalculated	Reported	Decolorioted
Standard ID Date Compound (IS) (Initial)	•		Calibration			Average RRF	RRF	RRF	2 %	Necalculated %D
GC MSV J Chlorobenzene (IS2) 0.524 GC MSV J Chlorobenzene (IS2) 2.833 1,1,2,2-TCA (IS3) 1.002	#	Standard ID	Date	Compound	(IS)	(Initial)	(CCV)	(ccv)	<u> </u>	<u>}</u>
GC MSV J Chlorobenzene (IS2) 1,1,2,2-TCA (IS3)	-	J1380	9/30/2010	Chloroform	(IS1)	0.524	0.492	0.492	6.1	6.1
1,1,2,2-TCA (IS3)		GC MSV J		Chlorobenzene	(IS2)	2.833	2.734	2.734	3.5	3.5
3				1,1,2,2-TCA	(183)	1.002	0.878	0.878	12.4	12.4
3										
m	2									
E .										
8										
	3									
								٠		

		CCV1		CCV2		CCV3	
punoduo	Cis/Cx	Ax	Ais	Ax	Ais	Ax	Ais
Chloroform	50/50	1192741	2423281				
hlorobenzene	50/50	1757530	642808				
1,1,2,2-TCA	50/50	967845	1102364				

LDC #: 24 950 G/

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	lof
Reviewer:	JVG
2nd reviewer:	
	P

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the follow

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: # 4

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8	50	52.6	105	105	a
Bromofluorobenzene		57.4	103	10 3	
1,2-Dichloroethane-d4		44.7	89	89	1 (·
Dibromofluoromethane		537	11)	111	

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					<u> </u>
1,2-Dichloroethane-d4					ļ
Dibromofluoromethane					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					<u>]</u>

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8				,	
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane		-		<u> </u>	

LDC#: 74450 6/ SDG #:

Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

Page: Reviewer: 2nd Reviewer:_

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

SSC = Spiked sample concentration SA = Spike added Where:

SC = Sample concentration

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD sample:

2

	8	pike	Sample	Spiked Sample	ample	Matrix Spike	Spike	Matrix Spike Duplicate	Duplicate	/SW	MS/MSD
Compound	₹	Added (49 /논)	Concentration (MS /k)	Concentration (VS/S1)	ration 2.)	Percent Recovery	ecovery	Percent Recovery	scovery	. &	RPD
	MS	Ø MSD	0	MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculate
1,1-Dichloroethene	53.6	53,C	0	44, 2	43.7	×8	82	18	(3	-	•
Trichloroethene			1.4	74	45.3	84	84	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	67	4	٤
Benzene			, 0	47.1	46.1	8.8	8 _y S	28	9,8	>	λ
Toluene			-	4.7	45,6	67	87	8	8 7	λ	مر
Chlorobenzene	7		_	45,9	45,7	28	28	88	EZ	۵	

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10,0% of the recalculated results.

LDC#: 24450 6/

VALIDATION FINDINGS WORKSHEET <u>Laboratory Control Sample Results Verification</u>

Page: 1 of 1
Reviewer: 5/16
2nd Reviewer: 6

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = ILCSC - LCSDC I* 2/(LCSC + LCSDC)

LCSC = Laboraotry control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS ID: US/2 260-33800/2,3-A

	is .	oike	Spiked	Sample	SDI	Ş	2	CSD	ISO	LCS/LCSD
Compound	PA C ^M)	Added (MS/A)	Concer	Concentration	Percent Recovery	ecovery	Percent Recovery	есолегу	R	RPD
	1.68	J csp	108	U I CSD	Reported	Recalc.	Reported	Recalc	Reported	Receivilated
1,1-Dichloroethene	, 'C	50.02	21.6	57.4	40)	4ه/	६७	40)	О	~
Trichloroethene	-	-	Sp, 5	51.0	101	101	10)	187		\
Benzene			so. 7	51.9	[0]	101	p 0 }	104	λ	٨
Toluene			82'8	21.8	10 ×	102	₽01	401	٦	٨
Chlorobenzene		_	46,2	5.0.3	86	26	(b)	امر	λ	7
· -	·									
								,		

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 24450 G/

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Y N N/A Y N N/A Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $\frac{(A_{a})(I_{a})(DF)}{(A_{b})(RRF)(V_{a})(\%S)}$

A_x = Area of the characteristic ion (EICP) for the compound to be measured

A_b = Area of the characteristic ion (EICP) for the specific internal standard

I_s = Amount of internal standard added in nanograms (ng)

RRF = Relative response factor of the calibration standard.

Volume or weight of sample pruged in milliliters (ml) or grams (g).

Df = Dilution factor.

%S = Percent solids, applicable to soils and solid matrices

Example:

Sample I.D. + 4 , K

Conc. = $\frac{(1014735)(50)(5m)}{(2263727)(0,524)(6,45)(6.889)}$

= 37 us /leg

	only.				
#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Qualification
			<u> </u>		
	,				
				-	
····					
			·		
				-	
<u></u>					
}					
			·		
 					
		·			-
				<u>L</u>	