

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Northgate Environmental Management, Inc.

July 16, 2010

1100 Quail Street Ste. 102 Newport Beach, CA 92660 ATTN: Ms. Cindy Arnold

SUBJECT: Tronox LLC Facility, PCS, Henderson, Nevada,

Data Validation

Dear Ms. Arnold,

Enclosed is the final validation report for the fraction listed below. This SDG was received on June 29, 2010. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 23510:

SDG#

Fraction

G0E270651

Dioxins/Dibenzofurans

The data validation was performed under Stage 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Standard Operating Procedures (SOP) 40, Data Review/Validation, BRC 2009
- Quality Assurance Project Plan Tronox LLC Facility, Henderson Nevada, June 2009
- NDEP Guidance, May 2006
- USEPA, Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Diobenzofurans Data Review, September 2005

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

									_				 		 	_				 	 			 		T	
			S																								+
			≯																								0
\$0.00 \$0.0000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.0000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.0000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.000 \$0.0000 \$0.000			တ																								0
14.5 2.7 3.7			≥				T	╛																			0
			S		1	7	_	7																			0
			3	\dashv		+	\dagger	\dashv					 <u> </u>														0
	-		5	\dashv	_	+	+	\dashv	-				\vdash														0
			-	\dashv		+	+	\dashv	_				 _							 					\dashv	\dashv	0
	-		≥		_	_	+	\dashv	_			<u> </u>														-	$\vdash\vdash$
			S	_	4	_	_	\dashv					 _								 			 		\dashv	٥
	L		≥		4	\perp	\perp	\perp													 						
			S																	 			<u> </u>				٥
	$\sqrt[N]{}$		≥																	 							٥
c	ี่ ∡ ∣		S																								0
	ĕ∣		≥																								
	LDC #23510 (Tronox LLC-Northgate, Henderson NV / Tronox PCS)		S			1	\top	1																			0
	=		≥	\neg		\top	\top	1																			0
	⋛┆		S	1	\dagger	+	\dagger	_	-																		0
			3	1	+		+				_		\vdash														0
21	၀ွ			+	+	-	+	-				-	 				_								 \vdash		0
	gel		S	-	+	_	_	+					_												-		
	eu		≥	_	4	_	+	\dashv	_														_			\dashv	0
<u>ד</u> ב	I.		S		\perp	_	4	_	_				 														0
Attachment 1	ate		≥				4	_										 									0
ach .	ğ		တ																								0
¥∥₹	5		3																								0
	7		S																								0
-			3																								0
	⊒ ×		S		T	<u> </u>																					0
	2		≥	1	T						-																0
	임		S		\dagger		_	\dashv																			0
	5		≥	-	\dashv		+	+																			0
Ţ	2		S	-	+	-	+	\dashv	\dashv							-						<u> </u>					0
§	<u> </u>		-	\dashv	\dashv		+	\dashv					 								 				H		0
١	ا ڌ	· ·	≥		_	+	+	-		_	-		_					 							 \vdash		-
[Dioxins (8290)	S	800000		+	-	4					 		 						 			 _	\vdash	-	7
1.1			≷	0	_		1			L		_	<u> </u>								 		_		\sqcup		0
		(3) DATE DUE		06/29/10 07/21/10																							
		- 6 E		07/2		ļ																					
	M.V.	μÇ		/10																							
		DATE REC'D		6/58																							
	-			위	\dashv		+	\dashv					┢					 	-						 H	\neg	
				-																							
→ II · ·	3.4		_	99																							T/LR
29/1	2B/4	#	So	위	i	ı	- 1	Į	Į.		l																
. 06/29/1	age 2B/4	SDG#	ater/So	0E270																							
DL 06/29/10	Stage 2B/4	SDG#	Water/So	G0E270651									:														
DL 06/29/1	Stage 2B/4	FDC SDG#	Matrix: Water/Soil	A G0E270																							Total

Page: 1 of 1 Reviewer: <u>JE</u> 2nd Reviewer: BC

LDC #: 23510 SDG #: G0E270651

Tronox Northgate Henderson Worksheet

EDD Area	Yes	No	NA	Findings/Comments
I. Completeness	1	r	T	
Is there an EDD for the associated Tronox validation report?	X			
II. EDD Qualifier Population				
Were all qualifiers from the validation report populated into the EDD?	X			
III. EDD Lab Anomalies				
Were EDD anomalies identified?		X		
If yes, were they corrected or documented for the client?			X	See EDD_discrepancy_ form_LDC23510_071510.doc
IV. EDD Delivery				
Was the final EDD sent to the client?	X			

Tronox LLC Facility, PCS, Henderson, Nevada Data Validation Reports LDC #23510

Dioxins/Dibenzofurans

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date:

May 25, 2010

LDC Report Date:

July 13, 2010

Matrix:

Soil

Parameters:

Dioxins/Dibenzofurans

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): G0E270651

Sample Identification

SSAR3-01-1BPC SSAR3-01-1BPCMS SSAR3-01-1BPCMSD

Introduction

This data review covers 3 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8290 for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The exact mass of 380.9760 of PFK was verified. The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio for each target compound was greater than or equal to 2.5 and greater than or equal to 10 for each recovery and internal standard compound.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
0154348MB	6/3/10	1,2,3,4,6,7,8-HpCDD OCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	0.14 pg/g 0.25 pg/g 0.31 pg/g 0.19 pg/g 0.16 pg/g 0.11 pg/g 0.45 pg/g 0.15 pg/g 0.67 pg/g	All samples in SDG G0E270651

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration		
SSAR3-01-1BPC	2,3,4,6,7,8-HxCDF	0.70 pg/g	0.70U pg/g		

Sample FB04062010-RZB (from SDG G0D120488) was identified as a field blank. No polychlorinated dioxin/dibenzofuran contaminants were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Compound	Concentration	Associated Samples
FB04062010-RZB	4/6/10	1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	0.68 pg/L 2.5 pg/L 6.2 pg/L 2.7 pg/L 1.4 pg/L 0.82 pg/L 0.94 pg/L 1.8 pg/L 1.2 pg/L 4.4 pg/L	All samples in SDG G0E270651

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Regional Quality Assurance and Quality Control

Not applicable.

IX. Internal Standards

All internal standard recoveries were within QC limits with the following exceptions:

Sample	Internal Standards	%R (Limits)	Compound	Flag	A or P
SSAR3-01-1BPC	13C-OCDD	34 (40-135)	OCDD	J (all detects) UJ (all non-detects)	Р
			OCDF	J (all detects) UJ (all non-detects)	

X. Target Compound Identifications

All target compound identifications were within validation criteria.

XI. Project Quantitation Limit

All compound quantitation and CRQLs were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
SSAR3-01-1BPC	2,3,7,8-TCDF	2nd column confirmation was not performed for this compound.	This compound must be confirmed on the 2nd column per the method.	None	Р

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG G0E270651	All compounds reported below the PQL.	J (all detects)	A

All compounds reported as EMPC were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG G0E270651	All compounds reported as estimated maximum possible concentration (EMPC).	JK (all detects)	Α

XII. System Performance

The system performance was acceptable.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Dioxins/Dibenzofurans - Data Qualification Summary - SDG G0E270651

SDG	Sample	Compound	Flag	A or P	Reason (Code)
G0E270651	SSAR3-01-1BPC	OCDD	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р	Internal standards (%R) (i)
G0E270651	SSAR3-01-1BPC	2,3,7,8-TCDF	None	P	Project Quantitation Limit (o)
G0E270651	SSAR3-01-1BPC	All compounds reported below the PQL.	J (all detects)	Α	Project Quantitation Limit (sp)
G0E270651	SSAR3-01-1BPC	All compounds reported as EMPC	JK (all detects)	А	Project Quantitation Limit (k)

Tronox LLC Facility, PCS, Henderson, Nevada Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG G0E270651

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
G0E270651	SSAR3-01-1BPC	2,3,4,6,7,8-HxCDF	0.70U pg/g	Α	bi

Tronox LLC Facility, PCS, Henderson, Nevada Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG G0E270651

No Sample Data Qualified in this SDG

Tronox Northgate Henderson

LDC #: 23510A21	VALIDATION COMPLETENESS WORKSHEE									
SDG #: G0E270651	_ Stage 4									
Laboratory: Test America										
METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)										

Reviewer: 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 5/25/10
11,	HRGC/HRMS Instrument performance check	4	, ,
III.	Initial calibration	A	
IV.	Routine calibration/loc	A	
V.	Blanks	M	
VI.	Matrix spike/Matrix spike duplicates	4	
VII.	Laboratory control samples	\triangleleft	109
VIII.	Regional quality assurance and quality control	N	
IX.	Internal standards	aw	
X.	Target compound identifications	\triangleleft	
XI.	Compound quantitation and CRQLs	<i>>\bar{V}</i>	
XII.	System performance	A	
XIII.	Overall assessment of data	\triangleleft	
XIV.	Field duplicates	N	
XV.	Field blanks	W	FB04062010-RZB(GOD120488)

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

Validated Samples:

1	SSAR3-01-1BPC	≨ 11	0154348MB	21	 31	
2	SSAR3-01-1BPCMS	12		22	32	
3	SSAR3-01-1BPCMSD	13		23	33	
4		14		24	34	
5		15		25	35	
6		16		26	36	
7		17	·	27	37	
8		18		28	38	
9		19		29	39	
10		20		30	40	

Notes:			

LDC	#:
SDG	# .

VALIDATION FINDINGS CHECKLIST

Page:of
Reviewer:
2nd Reviewer:

Method: Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Michiga: Dioxino/Diberizorarano (El 77 e 10 metrea e 200				
Validation Area	Yes	No	NA	Findings/Comments '
I. Technical holding times	1	r	ı — — —	
All technical holding times were met.				
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check				
Was PFK exact mass 380.9760 verified?				
Were the retention time windows established for all homologues?				
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers \leq 25% ?		•		A 7-71-1-1
Is the static resolving power at least 10,000 (10% valley definition)?				
Was the mass resolution adequately check with PFK?		/		
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?				
III. Initial calibration	т-а	. 1	 1	
Was the initial calibration performed at 5 concentration levels?				
Were all percent relative standard deviations (%RSD) \leq 20% for unlabeled standards and \leq 30% for labeled standards?		,		
Did all calibration standards meet the Ion Abundance Ratio criteria?				
Was the signal to noise ratio for each target compound ≥ 2.5 and for each recovery and internal standard ≥ 10?				
IV. Continuing calibration	,	· · ·	• • • •	
Was a routine calibration performed at the beginning and end of each 12 hour period?				
Were all percent differences (%D) \leq 20% for unlabeled standards and \leq 30% for labeled standards?				
Did all routine calibration standards meet the Ion Abundance Ratio criteria?				
V. Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank performed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet?				
VI. Matrix spike∕Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VII. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

LDC #:	
SDG #	

VALIDATION FINDINGS CHECKLIST

Page:_	of
Reviewer:	
2nd Reviewer	

VIII. Regional Quality Assurance and Quality Control			<u>,</u>	
Were performance evaluation (PE) samples performed?		/	\mathbb{L}	
Were the performance evaluation (PE) samples within the acceptance limits?	<u> </u>			
IX. Internal standards			·	
Were internal standard recoveries within the 40-135% criteria?	ļ.,			
Was the minimum S/N ratio of all internal standard peaks ≥ 10?				
X. Target compound identification	·	r		1
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?	/	<u>-</u>		
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?	/			
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?	/			
Did compound spectra contain all characteristic ions listed in the table attached?	/			
Was the Ion Abundance Ratio for the two quantitation ions within criteria?	/			
Was the signal to noise ratio for each target compound and labeled standard ≥ 2.5?	/		ļ	
Does the maximum intensity of each specified characteristic ion coincide within ± 2 seconds (includes labeled standards)?				
For PCDF identification, was any signal (S/N \geq 2.5, at \pm seconds RT) detected in the corresponding PCDPE channel?				
Was an acceptable lock mass recorded and monitored?	(
XI. Compound quantitation/CRQLs		· ÚS.	51 51	
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?		•		
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XII. System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.		-		
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.				
KV: Field blanks		~		
ield blanks were identified in this SDG.		U		
Farget compounds were detected in the field blanks.			0	

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A. 2,3,7,8-TCDD F. 1,2,3	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	g. ocpp	L. 1,2,3,6,7,8-HxCDF	a. ocdf	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	1. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HXCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:

SDG #: See Cover LDC #: 23510A21

VALIDATION FINDINGS WORKSHEET

Page: 1 of 1 Reviewer:_ 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins (EPA Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A

Were all samples associated with a method blank?

Y/N N/A N N/A

Was a method blank performed for each matrix and whenever a sample extraction was performed? Was the method blank contaminated? If yes, please see qualification below.

Blank analysis date: 6/14/10 Blank extraction date: 6/3/10

Conc. units: pg/k __ Pc/ (<

Associated samples:

Compound	Blank ID				Sample Is	Sample Identification		
	0154348MB	5X	,					
L	0.14	0.7	ı					
9	0.25	1.25	•					
×	0.31	1.55	1					
	0.19	0.95	•					
Σ	0.16	8.0	0.70/U					
Z	0.11	0.55	ŧ					
0	0.45	2.25	•					
a .	0.15	0.75	t					
Ø	0.67	3.35	1					
				2				

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

SDG #: See Cover LDC #: 23510A21

VALIDATION FINDINGS WORKSHEET Field Blanks

2nd Reviewer:_ Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Y N/A Were field blanks identified in this SDG?

b/bd Associated sample units:

Brank units: pg/L Sampling date: 4/6/10

Field blank type: (circle one) Field Blank / Rinsate / Other:

Associated Samples:

All (>5X)

Sample Identification 0.0125 0.0135 0.0034 0.0041 0.0047 0.009 0.031 0.007 0.006 0.022 ž FB04062010-RZB Blank ID 0.68 2.5 0.82 0.94 6. 6.2 4. 1.2 4.4 2.7 Compound 0 0 ш I

Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

V:\Pei\Tronox\FQC\FB_DIOXINS_RZB.wpd

SDG #: 28 CON LDC #: 2357087

VALIDATION FINDINGS WORKSHEET Internal Standards

Page: Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A
Are all internal standard recoveries were within the 40-135% criteria?

YN N/A
Was the S/N ratio all internal standard peaks ≥ 10?

#	Date	Lab ID/Reference	Internal Standard		% Recovery (Limit:	40-135%)	Qualifications ()
		/	# #		34 (40-1	(40-135)	-IMAP(G. X)
						()	
		S(MS)	H	1/	77C	(/	No Gral
		3(MSD)	Н	w.			<i>-</i>
)		
)	(
						()	
						()	
						(
						()	
						(
						(
					_	()	
						()	
						(
						()	
		Internal Standards	Check Standard Used		lní	Internal Standards	Check Standard Used
∢	13C-2,3,7,8-TCDF	CDF			13C-OCDD		
В.	13C-2,3,7,8-TCDD	CDD		Ϋ́	¹³ C-1,2,3,4-TCDD		
ن	¹³ C-1,2,3,7,8-PeCDF	-PeCDF		زر	¹³ C-1,2,3,7,8,9-HxCDD	ממכ	
Ö.	13C-1,2,3,7,8-PeCDD	-PeCDD		Σ			
ய்	¹³ C-1,2,3,4,7,8-HxCDF	,8-HxCDF		z			
ıĽ	¹³ C-1,2,3,6,7,8-HxCDD	,8-HxCDD		Ö			
Ö	¹³ C-1,2,3,4,6	¹³ C-1,2,3,4,6,7,8-HpCDF		œ.			
ij		¹³ C-1,2,3,4,6,7,8-HpCDD					

LDC #: 23510 SDG #: 461C

Compound Quantitation and Reported CRQLs VALIDATION FINDINGS WORKSHEET

Page:

2nd Reviewer: Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

A A

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

Qualifications	No ue	/		7+(4)						
Associated Samples	mation			W.						
Finding	NO 2.3.7.8-TOOF confirman	/ /	0	ZMPC MSWORS						
Sample ID	/			(M)						
Date							0			
*										

See sample calculation verification worksheet for recalculations Comments:

SDG #: 2257082

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

/ot /	6	Z
Page:	Reviewer:	d Reviewer:
		Ĕ

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF = $(A_{\nu})(C_{\nu})/(A_{\nu})(C_{\nu})$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 $A_x = Area of compound,$ $A_x = Area of compound,$ $C_x = Concentration of compound,$ $C_x = Concentration of the RRFs, <math>X = Me$

 $A_{iz} = Area of associated internal standard id, <math>C_{iz} = Concentration of internal standard RFs, <math>X = Mean of the RRFs$

L				Potronog	Less line less d				
				Dellocan	Necalculated	неропес	Recalculated	Reported	Recalculated
*	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Average RRF	RRF	RRF	000	
Ŀ	1401	1	2.3.7.8-TCDF (40.2.3.7.8-TCDF)	1001	7001	(222)	(my Co	Ushs.	%RSD
		1/8/1		1.00-	1.00.	1	1:00	4.6	た人大
	(405)	0//0//6	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.04 %	1.049	1.06	1.06	4/2	8
		\ \	1,2,3,6,7,8-HxCDD (19C-1,2,3,6,7,8-HxCDD)	1.183	162	05./	05/	100	4/4
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	1073	1.073			7.77	4 J V
			(30,000)	1622				000	1.80
			(OCOUD)	(*/・	1.222	1.58	1.58	X.42	NA ON
2			2,3,7,8-TCDF (13C-2,3,7,8-TCDF)						
			2,3,7,8-TCDD (13C-2,3,7,8-TCDD)						
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)						
			OCDF (10-OCDD)						
е			2,3,7,8-TCDF (13C-2,3,7,8-TCDF)						
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)						
		-	1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)						
			OCDF (13C-OCDD)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results,

LDC #: 22510A2/

VALIDATION FINDINGS WORKSHEET Routine Calibration Results Verification

Page: /of / Reviewer: A

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (A,)(C_b)/(A_b)(C,)

ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A. = Area of compound.

Where:

 A_{κ} = Area of compound, A_{κ} = Area of associated internal standard C_{κ} = Concentration of compound, C_{κ} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
*	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	0%	0%
-	5 appaly 187	1 1/1	2,3,7,8-TCDF (*C-2,3,7,8-TCDF)	tras!	101	1.01	/:/	
[6/4/19	2,3,7,8-TCDD (^a C-2,3,7,8-TCDD)	1.049	1.01	1.0 /	3.0	100
			1,2,3,6,7,8-HxCDD (°C-1,2,3,6,7,8-HxCDD)	1.163	5/./	1.15	4	
			1,2,3,4,6,7,8-HpCDD (1°C-1,2,4,6,7,8,-HpCDD)	1.073	1.0%	1:08	10	10
			ocpr (*c-ocpp)	1.523	1.53	1.53	2.0	40
8			2,3,7,8-TCDF (*0-2,3,7,8-TCDF)				,	
			2,3,7,8-TCDD (°C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)					
			OCDF (*c-OCDD)					
ဗ			2,3,7,8-TCDF (*3C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD (1°C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (1°C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)					
			OCDF (*c-OCDD)					

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. 135 To 134 TO 185 T

Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

Reviewer: 2nd Reviewer:__ Page:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below

using the following calculation:

% Recovery = 100 * (SSR - SR)/SA

SSR = Spiked sample result, SR = Sample result SA = Spike added Where:

MSR = Matrix spike percent recovery MSDR = Matrix spike duplicate percent recovery

MS/MSD samples:

RPD = 1 MSR - MSDR 1 * 2/(MSR + MSDR)

	S	ike	Sample	Spiked Sample	ample	Matrix Spika		Matrix Spike Duplicate	Duplicate	Reported	Recalculated
Compound	A C	Added (2)	Concentration (75/9)	Concentration (PSA)	tration (9)	Percent Recovery		Percent Recovery	lecovery	RPD	RPD
	MS	MSD	<u> </u>) SW	MSD	Reported	Recalc	Reported	Recalc	11 00	9
2,3,7,8-TCDD	4.12	6.10		0.00	1./6	83	93	36	The	50	5.4
1,2,3,7,8-PeCDD	107	601		801	18	101	101	501	105	6	<i>S</i> .
1,2,3,4,7,8-HxCDD			050	501	918	98	88	80	B	8/	1/8
1,2,3,4,7,8,9-HpCDF	1	*	3.5	1/6	50	106	501	108	109	4.5-	2:0
000F	2/4	20	20	690	890	116	9/1	8//	/(3	0.39	0.37

Comments: Refer to Matrix Spike/Matrix Spike Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: <u>8-3570.4</u>34 SDG #: <u>824, COW</u>

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = ILCS - LCSD I * 2/(LCS + LCSD)

LCS ID:

LCS = Laboraotry control sample percent recovery

ary LCSD = Laboratory control sample duplicate percent recovery

	S	ke	Spiked	amole	I CS	S	1 CSD	ď	TCS/I CSD	csn
Compound	Add.	Added F5/3)	Concentration (PD)	tration	Percent Recovery	есочегу	Percent Recovery	scovery	RPD	Q
	, , 831	I CSD	SJI /	ICSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
2,3,7,8-TCDD	30.6	NA	881	NA	76	76				
1,2,3,7,8-PeCDD	(00)		501	,	105	501				
1,2,3,4,7,8-HxCDD	/		1:56		56	95				
1,2,3,4,7,8,9-HpCDF	1		THE		776	44				
OCDF	000	Ý	188	<i>\</i>	76	44				

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

ions monitored for HKGC/HRMS Analysis of PCDDs/PCDFs

	Γ											Ī						==				1		-					_	-		
Analyte	200			(S) HOOLE	HOOD	I		(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	(s) 000dH	ה אחם היה אחם	<u> </u>	3000 B000	200		0000	0000 (8)	(8)	DCDPE	PFK													
Elemental Composition	C L ³⁶ C! 37C!O		12 15	012:1 01:0: 130. H*0.137010	O.H.301.37010.	C. H ³⁶ Cl. 37Cl. O	12: 0:5 0:202 13: H ³⁵ C: 37:CIO	130 130 370 0		C.F. Cl. Cl. C.	<u></u>	O: 3001-37010	C12 C17 C1C	C12 C16 C12 C1.35C1.37C1C1		13C, 36CJ, 37CJO,	500 500 500 500 500 500 500 500 500 500	C, 25, 30, 0	֓֞֞֜֞֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	2												
OJ uol	OTM	7 + W		\ ₩	¥ +2	A+M	. v+ ₩	1 T	<u> </u>	YOO'	, ; ;	0 + W	+ 1 4	¥ + ×	Α + 4	M+2	. ₩ +	M+4	LOCK													
Accurate Mass ^(a)	407 7818	409.7788	417 8250	419,8220	423.7767	425,7737	435.8169	437 8140	479 7165	[430,9728]		441.7428	443.7399	457.7377	459.7348	469.7780	471.7750	513.6775	[422.9278]				-									
Descriptor	4											s.																				
Analyte	TCDF	TCDF	TCDF (S)	TCDF (S)	TCDD	TCDD	TCDD (S)	TCDD (S)	HXCDPE	PFK		PeCDF	PecDF	PeCDF (S)	PeCDF (S)	PeCDD	PecDD	Pecdo (S)	PeCDD (S)	HPCDPE	PT X		HXCDF	HXCDF	HXCDF (S)	HXCDF (S)	HXCDD	HXCDD	HXCDD (S)		HXCDD (S)	HXCDD (S)
Elemental Composition	O,D*,H,30	C;H,*Ci,*7C10	0,15*,1,50,1	13C12H, 36C137CIO	C;H,**Ci,O,	C; H, *Ci, *7C10,	13C, H, #CI,O,	13C, H, 3Cl, 37ClO,	C.H.**C **C O	, L.		C ₁₂ H ₃ *C1,3*C1O	C,H,*Cl,*7Cl,O	13C12H33C147C10	1,3C1,H,3C1,3O	C ₁₂ H ₃ *C ₁ *7ClO ₂	C,2H,3*Cl,2O,	13C12H32C137C1O2	13C12H38C131C12O2	OIO, IO, IO, IO	ار ت		C;4, *Ci, *CiO	O,12 H, 201, 301, 0	0,0,7,4,2,0,0	13C12H2**CI_3**CIO	C ₁₂ H ₂ **Cl ₅ *7ClO ₂	C ₁₂ H ₂ **C ₁ **C ₁₂ O ₂	13C1,H,#CI,37CIO,		13C12H23C1,00,0	13C12H2 act 13C12O2 C13H3 act 13C12O
Ion ID	Σ	M+2	Σ	M+2	₹	M+2	Σ	M+2	M+2	LOCK		M+2	M+4	M+2	M+4	M+2	M+4	α + Σ	M+4	M+2	Lock		M+2	A+:	Σ				M+2			
Accurate mass ^(a)	303.9016	305.8987	315.9419	317,9389	319.8965	321.8936	331.9368	333.9338	375.8364	[354.9792]		339.8597	341.8567	351.9000	353.8970	355.8546	357.8516	367,8949	369.8919	409.7974	[354.9792]		373.8208	375.8178	383.8639	385.8610	389,8156	391.8127	401.8559	-	403,8529	403.8529 445.7555
Descriptor	-											2										1	n		-	-			7			

The following nuclidic masses were used:

€

H = 1.007825 C = 12.000000 ¹³C = 13.003355 F = 18.9984

O = 15.994915 $^{36}CI = 34.968853$ $^{37}CI = 36.965903$

S = internal/recovery standard

LDC #: 3570A>/ SDG #: Sec Cone/

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:	
Reviewer:	α
2nd reviewer:	J~

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A) N N/A	Were all reported results recalculated and verified for all level IV samples?
(A) N N/A V N N/A	Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concer	ntration	$= \frac{(A_{\bullet})(I_{\bullet})(DF)}{(A_{\bullet})(RRF)(V_{\circ})(\%S)}$	Example:
A_{\star}	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D.
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	13
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = (/3/124) (2000) ((34928/10) (1.073) (10.43) (0
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	
RRF	=	Relative Response Factor (average) from the initial calibration	= 0.734 pg/g
Df	=	Dilution Factor.	,
%S	=	Percent solids, applicable to soil and solid matrices only.	

#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Qualification
