

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Northgate Environmental Management, Inc.

July 12, 2010

1100 Quail Street Ste. 102 Newport Beach, CA 92660 ATTN: Ms. Cindy Arnold

SUBJECT: Tronox LLC Facility, PCS, Henderson, Nevada,

Data Validation

Dear Ms. Arnold,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on June 25, 2010. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 23481:

SDG#

Fraction

280-2836-2, 280-2879-2, 280-3624-4 280-3624-6, 280-3679-4, 280-3955-5

280-2216-11, 280-2400-8, 280-2448-16 Semivolatiles, Chlorinated Pesticides, Metals, Perchlorate

The data validation was performed under Stage 2B/4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Standard Operating Procedures (SOP) 40, Data Review/Validation, BRC 2009
- Quality Assurance Project Plan Tronox LLC Facility, Henderson Nevada, June 2009
- NDEP Guidance, May 2006
- USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June 2008
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

Please feel free to contact us if you have any questions.

Sincerely.

Frlinda T. Rauto

Operations Manager/Senior Chemist

23481ST.wpd

SDG# REC'D DATE Water/Soil 280-2216-11 06/29/10 07/21/10 280-2400-8 06/29/10 07/21/10 280-2836-2 06/29/10 07/21/10 280-2879-2 06/29/10 07/21/10 280-3624-4 06/29/10 07/21/10 280-3624-6 06/29/10 07/21/10 280-3654-6 06/29/10 07/21/10 280-3655-5 06/29/10 07/21/10		SVOA (8270C) W S	- Pe				_							ŀ		L	F		F		L	l				
11-16-16-16-16-16-16-16-16-16-16-16-16-1	C54000) ()	Pest. (8081A)	As (6020)	Co (6020)		Pb (6020)	Mn (6020)	CLO ₄ (314.0)	- F							-		-			ŀ			
	Council	Į.	չ Տ	S	S N	3	S W	S	s M	M M	8	S	3	<u>></u> د	8	≥	S	S M	<u></u> ≥	S	≥	S	3	<u>γ</u>	S	3
	Circles		'	-	-	·	'	'	0	,	-			+	\dashv	ight]		+	+	-					-	
	CSARKAS	-	0	-	'		-	_	'		-				+	\prod	_	\dashv	-					+	4	
	SARKA	•	1		'	'	'	-	-	,	_				_	\prod		\dashv	_	_			1	+	_	
	Carescare	1	-	0	1	-	0	0	0	-	0				-	\bot				_			1	1	-	1
	CHANKA	-	0	0	•	•	1	•	1	1						\int		\dashv		_				\dashv	\downarrow	
	77	0	-	١	'	_	-	•	-	ı								\dashv	_	-			1	-	-	
	-		'	'	1	,	-	•	-	. 0	.							-	-	_			1	-	_	
	07/21/10	0	-	,	-	•	-	•	1	-	_							\dashv	\dashv						-	
	07/21/10	1		-	1	•	•	·	0 4	1	1			\dashv	_			-	-	_						
															-									+		
		-	-																							
			-								Ī	<u>.</u>														
											_			_				_								
			-								<u> </u>	_														
			-		\vdash				_		_	-														
			-		\perp							<u>. </u>						 								
				-							-															
			_			1	\vdash				_					_										
				Ī																_						
			-			L						-							_					_		
			_	_																						
																_										
			-			L																				
			-													<u> </u>										
															-											
																									_	
																								\dashv		
																				\dashv	_					
T/LR		-	2 2	-	1	-	0	0	1	-	1 0	0 0	0	0	0	0	0	0	0	0	0	٥	0	0	0 0	0

Attachment 1

DL 06/29/10

EDD CHECKLIST

Page: 1_of 1 Reviewer: JE 2nd Reviewer: BC

LDC #: 23481

SDG #: <u>280-2216-11</u>, <u>280-2400-8</u>, <u>280-2448-16</u> <u>280-2836-2</u>, <u>280-2879-2</u>, <u>280-3624-4</u> <u>280-3624-6</u>, <u>280-3679-4</u>, <u>280-3955-5</u>

Tronox Northgate Henderson Worksheet

EDD Area	Yes	No	NA	Findings/Comments
I. Completeness	T		1	
Is there an EDD for the associated Tronox validation report?	X			
II. EDD Qualifier Population	_			
Were all qualifiers from the validation report populated into the EDD?	X			
III. EDD Lab Anomalies				
Were EDD anomalies identified?		X		
If yes, were they corrected or documented for the client?			X	See EDD_discrepancy_ form_LDC23481_071210.doc
IV. EDD Delivery				
Was the final EDD sent to the client?	X			

Tronox LLC Facility, PCS, Henderson, Nevada Data Validation Reports LDC #23481

Semivolatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date:

April 26, 2010

LDC Report Date:

July 9, 2010

Matrix:

Soil

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2879-2

Sample Identification

EB-04262010-1-RZD

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for Semivolatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within method and validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs) and 25.0% for all other compounds.

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks.

Sample EB-04262010-1-RZD was identified as an equipment blank. No semivolatile contaminants were found in this blank.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-2879-2	All compounds reported below the PQL.	J (all detects)	А

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Data Qualification Summary - SDG 280-2879-2

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-2879-2	EB-04262010-1-RZD	All compounds reported below the PQL.	J (all detects)	Α	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 280-2879-2

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Equipment Blank Data Qualification Summary - SDG 280-2879-2

No Sample Data Qualified in this SDG

Tronox Northgate Henderson

_DC #:	23481E2a	VALIDATION COMPLETENESS WORKSHEET
SDG #:	280-2879-2	Stage 2B
_aborato	ry: Test America	

Date: 7/08/10 Page: _of_/ Reviewer: 316 2nd Reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 4/26/10
II.	GC/MS Instrument performance check	A	
	Initial calibration	A	2 RSD r
IV.	Continuing calibration/ICV	A	2 RSD 17 COV/10/ 625 }
V.	Blanks	A	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	crient gree
VIII	Laboratory control samples	A	crient sper
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	<i>\</i> \	
XVII.	Field blanks	ND	Eb = 1

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

hat-

	water				
1	EB-04262010-1-RZD	11	21	31	
2	MB 280-13/31 /-A	12	22	32	
3	/	13	23	33	
4		14	24	34	
5		15	25	35	
6		16	26	36	
7		17	27	37	
8		18	28	38	
9		19	29	39	
10		20	30	40	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date:

May 17, 2010

LDC Report Date:

July 12, 2010

Matrix:

Soil

Parameters:

Semivolatiles

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-3624-4

Sample Identification

SSAN5-02-4BPC

Introduction

This data review covers one soil sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for Semivolatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within method and validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs) and 25.0% for all other compounds.

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks.

Sample FB-04072010-RZC (from SDG 280-2280-2) was identified as a field blank. No semivolatile contaminants were found in this blank.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Compound	Flag	A or P
SSAN5-02-4BPC	Nitrobenzene-d5 2-Fluorobiphenyl	48 (50-120) 48 (50-120)	All TCL compounds	J- (all detects) UJ (all non-detects)	А

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria..

XII. Project Quantitation Limit

All compound quantitation and CRQLs were within validation criteria.

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-3624-4	All compounds reported below the PQL.	J (all detects)	Α

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Data Qualification Summary - SDG 280-3624-4

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-3624-4	SSAN5-02-4BPC	All TCL compounds	J- (all detects) UJ (all non-detects)	А	Surrogate spikes (%R) (s)
280-3624-4	SSAN5-02-4BPC	All compounds reported below the PQL.	J (all detects)	А	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 280-3624-4

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Field Blank Data Qualification Summary - SDG 280-3624-4

No Sample Data Qualified in this SDG

Tronox Northgate Henderson ΞT

LDC #:	23481F2a	_ VALIDATION COMPLETENESS WORKSHEE
SDG #:_	280-3624-4	Stage 4
Laborato	ry: Test America	_
METUOI	O: CC/MS Semivolati	les (EPA SW 846 Method 8270C)

Page: lof_ Reviewer:_ 2nd Reviewer

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

			0
	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 5 /7 /vo
11.	GC/MS Instrument performance check	A	
111.	Initial calibration	<u> </u>	2 RSD Y
IV.	Continuing calibration/ICV	A	ca/10/ = 253
V.	Blanks	<u> </u>	
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	N	Client spec
VIII.	Laboratory control samples	A	LCS
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	
XI.	Target compound identification	_	
XII.	Compound quantitation/CRQLs		
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	A	
XV.	Overall assessment of data	K	
XVI.	Field duplicates	N	
XVII.	Field blanks	ND	FB = FB-04672010-RZC (280-2280-2)

Note: A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

Validated Samples:

(11

	201				
+	SSAN5-02-4BPC	11	21	31	
2	SSAN5-02-4BPC MB 280-16859/5-A	12	22	32	
3	,	13	23	33	
4		14	24	34	
5		15	25	35	
6		16	26	36	
7		17	27	37	
8		18	28	38	
9		19	29	39	
10		20	30	40	

LDC #:	23481	Fza
SDG #:_	See Cover	

VALIDATION FINDINGS CHECKLIST

Page: _\ of _2
Reviewer: _\(\frac{1}{2}\)
2nd Reviewer: _\(\frac{1}{2}\)

Method: Semivolatiles (EPA SW 846 Method 8270C)

(El 77 010 Mictilia 02/00)	-			
Validation Area I Technical holding times	Yes	No	NA	Findings/Comments
All technical holding times were met.				
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?				
III. Initial calibration	T			
Did the laboratory perform a 5 point calibration prior to sample analysis?	<			
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Was a curve fit used for evaluation?	/			
Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?				
Were all percent relative standard deviations (%RSD) \leq 30% and relative response factors (RRF) \geq 0.05?				
IV. Continuing calibration				A Section 1997 And Administration of the Control of
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?				
V. Blanks	2			
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		\downarrow	-	
VI. Surrogate spikes				The Transfer of the second of
Were all surrogate %R within QC limits?		4		
f 2 or more base neutral or acid surrogates were outside QC limits, was a eanalysis performed to confirm %R?)	
f any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
/II. Matrix spike/Matrix spike duplicates	•			
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each natrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.			-	
Vas a MS/MSD analyzed every 20 samples of each matrix?		1		
Vere the MS/MSD percent recoveries (%R) and the relative percent differences RPD) within the QC limits?		1		/
III. Laboratory control samples			,/1	
/as an LCS analyzed for this SDG?	X			

LDC #: 23 48 | F 29 SDG #: See Cover

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: NL
2nd Reviewer: ______

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
IX. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				and NACCO provided Equilibrity of the Control of th
X. Internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?				
Were retention times within ± 30 seconds from the associated calibration standard?				2071
XI. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				NECTOR STATE
XII. Compound quantitation/CRQLs				Market Steen Strategy and the State State Strategy and the Strategy and the State Strategy and the State Strategy and the
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		/		
XIII. Tentatively identified compounds (TICs)	į, is			
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?			/	
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?			/	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?				
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XVI. Field duplicates				The second of th
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.			-	
XVII. Field blanks				
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

III. Benzo(a)pyrene**	JJJ. Indeno(1,2,3-cd)pyrene	KKK. Dibenz(a,h)anthracene	LLL. Benzo(g,h,i)perylene	MMM. Bis(2-Chloroisopropyl)ether	NNN. Aniline	OOO. N-Nitrosodimethylamine	PPP. Benzoic Acid	QQQ. Benzyl alcohol	RRR. Pyridine	SSS. Benzidine	.e	nnn	WW.	WWW.
TT. Pentachlorophenol**	UU. Phenanthrene	VV. Anthracene	WW. Carbazole	XX. Di-n-butylphthalate	YY. Fluoranthene**	ZZ. Pyrene	AAA. Butylbenzylphthalate	BBB. 3,3'-Dichlorobenzidine	CCC. Benzo(a)anthracene	DDD. Chrysene	EEE. Bis(2-ethylhexyl)phthalate	FFF. Di-n-octylphthalate**	GGG. Benzo(b)fluoranthene	HHH. Benzo(k)fluoranthene
EE. 2,6-Dinitrotoluene	FF. 3-Nitroaniline	GG. Acenaphthene**	HH. 2,4-Dinitrophenol*	II. 4-Nitropheno!*	JJ. Dibenzofuran	KK. 2,4-Dinitrotoluene	LL. Diethylphthalate	MM. 4-Chlorophenyl-phenyl ether	NN. Fluorene	OO. 4-Nitroaniline	PP. 4,6-Dinitro-2-methylphenol	QQ. N-Nitrosodiphenylamine (1)**	RR. 4-Bromophenyl-phenylether	SS. Hexachiorobenzene
P. Bis(2-chloroethoxy)methane	Q. 2,4-Dichlorophenol**	R. 1,2,4-Trichlorobenzene	S. Naphthalene	T. 4-Chloroaniline	U. Hexachlorobutadiene**	V. 4-Chloro-3-methylphenol**	W. 2-Methylnaphthalene	X. Hexachlorocyclopentadiene*	Y. 2,4,6-Trichlorophenol**	Z. 2,4,5-Trichlorophenol	AA. 2-Chloronaphthalene	BB. 2-Nitroaniline	CC. Dimethylphthalate	DD. Acenaphthylene
A. Phenol**	B. Bis (2-chloroethyl) ether	C. 2-Chlorophenol	D. 1,3-Dichlorobenzene	E. 1,4-Dichlorobenzene**	F. 1,2-Dichlorobenzene	G. 2-Methylphenol	H. 2,2'-Oxybis(1-chloropropane)	l. 4-Methylphenol	J. N-Nitroso-di-n-propylamine*	K. Hexachloroethane	L. Nitrobenzene	M. Isophorone	N. 2-Nitrophenol**	O. 2,4-Dimethylphenol

Notes:* = System performance check compound (SPCC) for RRF; ** = Calibration check compound (CCC) for %RSD.

73 48 1 tox ととれ LDC#: SDG#:

VALIDATION FINDINGS WORKSHEET

Surrogate Recovery

36

2nd Reviewer: Reviewer

Page: 1 of 1

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A". METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Were percent recoveries (%R) for surrogates within QC limits?

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

X N N/A

# Date	Sample ID	Surrogate	%R (Limits)	(s)	Qualifications
		NBZ	48	(021-05)	J-/45/A (ay ta) (s)
		FBP	84	()	
				(
				()	
				()	
]()	
) (
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
			:	()	
				()	
				()	
				()	
				()	
				()	
* QC limits are advisory S1 (NBZ) = Nitrobenzene-d5 S2 (FBP) = 2-Fluorobipheny S3 (TPH) = Terpheny-d14 S4 (PHL) = Phenol-d5	QC Limits (Soil) QC Limits (Water) 23-120 35-114 1 30-115 43-116 18-137 33-141 10-94		S5 (2FP)= 2-Fluorophenol S6 (TBP) = 2,4,6-Tribromophenol S7 (2CP) = 2-Chlorophenol-d4 S8 (DCB) = 1,2-Dichlorobenzene-d4	QC Limits (Soil) 25-121 19-122 20-130* 20-130*	QC Limits (Water) 21-100 10-123 33-110*

LDC# >3481+2 SDG#:

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

oţ Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

average RRF = sum of the RRFs/number of standards $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

 $C_x = Concentration of compound,$ $A_x = Area of Compound$

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard X = Mean of the RRFs

%RSD = 100 * (S/X)

S= Standard deviation of the RRFs,

Recalculated %RSD 3.06 3.31 3.62 3.62 7.15 Reported %RSD 3.6 5.3 3.6 3.1 3.3 7.1 Average RRF Recalculated 0.5263 1.0463 1.3164 0.2374 1.0389 1.0967 (Initial) Average RRF Reported 1.0463 1.0388 0.5263 1.3164 0.2374 1.0967 (Initial) Recalculated 50 std) 1.0468 1.0993 1.3121 0.2331 1.0301 0.5027 RRF Reported (50 std) 1.0468 0.2331 1.0993 0.5027 1.3121 RRF (S3) (181) (184) (185) (186) Compound (Internal Standard) Hexachlorobenzene Benzo(a)pyrene Naphthalene 1,4-Dioxane Chrysene Fluorene 5/26/2010 Calibration Date Standard ID

MSS K 정

#

Area IS	266078	1022206	609236	1011668	1057674	887232	
Area cpd	167190	1337516	92266	294751	1361944	1219171	
nc IS/Cpd	40/20	40/20	40/20	40/20	40/20	40/50	

Conc 1,4						
	1.4-Dioxane	Naphthalene	Fluorene	Hexachlorob	Chrysene	Benzo(a)py
4 00	0.5549	1.0427	1.2674		1.0923	0.9816
10 00	0.5146	1.0144	1.2648	0.2205	1.0307	1.0205
20.00	0.5157	0.9915	1.2629	0.2208	1.0261	1.0189
20.00	0.5027	1.0468	1.3121	0.2331	1.0301	1.0993
8 8	0.5345	1.1001	1.3820	0.2491	1.0906	1.1725
120.00	0.5242	1.0841	1.3704	0.2478	1.0442	1.1631
160 00	0.5263	1.0499	1.3364	0.2478	1.0176	1.1562
200.00	0.5373	1.0411	1.3352	0.2426	0.9792	1.1613
<u> </u>						
 	0.5263	1.0463	1.3164	0.2374	1.0389	1.0967
 	0.0161	0.0346	0.0477	0.0126	0.0376	0.0784

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC # 23 481 F79 SDG # See Cover

VALIDATION FINDINGS WORSHEET Continuing Calibration Results Verification

Reviewer: OU

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

ave. RRF = initial calibration average RRF % Difference = 100 * (ave. RRF - RRF)/ave. RRF

RRF = (Ax)(Cis)/(Ais)(Cx)

RRF = continuing calibration RRF
Ax = Area of compound
Ax = Area of associated internal standard

Ax = Area of compound Ais = Area of associated internal standard Cx = Concentration of compound Ais = Concentration of internal standard

		Calibration		Average RRF	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Date	Compound (Reference IS)	(Initial RRF)		(CC RRF)	Q%	Q%
1	K4259	06/01/10	1,4-Dioxane (IS1)	1) 0.5263	0.5448	0.5448	3.5	3.5
			Naphthalene (IS2)	1.0463	1.0762	1.0762	2.9	2.9
			Fluorene (IS3)	1.3164	1.3814	1.3814	4.9	6.4
			Hexachlorobenzene (IS4)	4) 0.2374	0.2465	0.2465	3.9	3.8
			Chrysene (IS5)	5) 1.0388	1.0705	1.0705	3.0	3.1
			Benzo(a)pyrene (IS6)	6) 1.0967	1.1616	1.1616	5.9	5.9
2								

		CCV1		CCV2		
Compound (Reference IS)	IS)	Concentration	Area Cpd	Area IS	Area Cpd	Area IS
		(IS/Cpd)				
1,4-Dioxane	(IS1)	40/80	270169	247945		
Naphthalene	(182)	40/80	2040112	947848		
Fluorene	(IS3)	40/80	1537267	556423		
Hexachlorobenzene	(184)	40/80	444880	902273		
Chrysene	(185)	40/80	2079022	971045		
Benzo(a)pyrene	(9SI)	40/80	1995187	858787		

LDC#:_	23'	f8 1	FZA
SDG #:_			

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:	<u>lof 1</u>
Reviewer:	NG
2nd reviewer:	a a
	\mathcal{T}

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:__#

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	100	47.8	48	48	9
2-Fluorobiphenyl	1	₹7. 2	48	48	
Terphenyl-d14		77. 7	77	77	
Phenol-d5			7		
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl			·		
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol			·		
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl	·				
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenoi-d4					
1,2-Dichlorobenzene-d4					

LDC#: 23481 Fra SDG #: See Cover

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

Page: lof l Reviewer: No

2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = ILCSC - LCSDC I* 2/(LCSC + LCSDC)

LCS/LCSD samples:

VCS 760 - 16 859 16- A

	as:	ike	S	ike)	SO	3	CSD	I CS/I CSD	CSD
Compound	Added (MA)	ded Tr	Concentration	ntration	Percent	Percent Recovery	Percent Recovery	\ecovery	RPD	סי
	30.	0	93	J Les	Donorto	Rocalc	Reported	Recalc	Reported	Recalculated
	c l	TIEST								
Phenoi										
N-Nitroso-di-n-propylamine										
4-Chloro-3-methylphenol										
Acenanhthene	2630	*X	(8	NA	83	و د				7
Dentachioranhanol										
Pyrene	76 24)	\	18 50		7.7	22				
							\			

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 2348 1 F29 SDG #: Sre Cover

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	lof1_
Reviewer:	SK
2nd reviewer:	
-	

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

P	N	N/A
\bigcirc	Ŋ	N/A

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $(A_s)(I_s)(V_s)(DF)(2.0)$ $(A_{is})(RRF)(V_o)(V_i)(%S)$

Area of the characteristic ion (EICP) for the compound

Area of the characteristic ion (EICP) for the specific internal standard

Amount of internal standard added in nanograms (ng)

Volume or weight of sample extract in milliliters (ml) or grams (g).

Volume of extract injected in microliters (ul) V,

Volume of the concentrated extract in microliters (ul) V,

Dilution Factor. Df

%S Percent solids, applicable to soil and solid matrices only. Example:

Conc. = 72801)(40)(1ml)(1ml)(1ml)()

(887109)(0.2374)(30.98)(0.717)()

= 487.6 2 490 ng/lg

2.0	= Factor of 2 to accoun	nt for GPC cleanup			
#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Qualification
				· · · ·	
		·			
\parallel					
		·			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date:

May 18, 2010

LDC Report Date:

July 9, 2010

Matrix:

Soil

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-3679-4

Sample Identification

SSAM6-04-2BPC SSAM6-04-2BPCMS SSAM6-04-2BPCMSD

Introduction

This data review covers 3 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for Semivolatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination.

 This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within method and validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs) and 25.0% for all other compounds.

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks.

Sample FB-04072010-RZC (from SDG 280-2280-2) was identified as a field blank. No semivolatile contaminants were found in this blank.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-3679-4	All compounds reported below the PQL.	J (all detects)	A

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Data Qualification Summary - SDG 280-3679-4

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-3679-4	SSAM6-04-2BPC	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 280-3679-4

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Semivolatiles - Field Blank Data Qualification Summary - SDG 280-3679-4

No Sample Data Qualified in this SDG

Tronox Northgate Henderson ON COMPLETENESS WORKSHEET

Stage 2B

LDC #:	23481H2a	_VALIDATION CO
SDG #:	280-3679-484	
Laborato	ry: Test America	_

Page: lof / Reviewer: NG 2nd Reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 5/8 /10
11,	GC/MS Instrument performance check	A	
111.	Initial calibration	A	2 KSD ~~ COV/101 = 25 }
IV.	Continuing calibration/ICV	A	Car/w = 25 }
V.	Blanks	<u> </u>	
VI.	Surrogate spikes	<u> </u>	
VII.	Matrix spike/Matrix spike duplicates	A	
VIII.	Laboratory control samples	<u> </u>	LCS
IX.	Regional Quality Assurance and Quality Control	N	
Χ.	Internal standards	<u> </u>	
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	N	
XVII.	Field blanks	MD	FB = FB-04072010- RZC (280_2280-2)

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank


EB = Equipment blank

Validated Samples:

	501				
الد 1	SSAM6-04-2BPC	11	21	31	
2	SSAM6-04-2BPCMS	12	22	32	
3	SSAM6-04-2BPCMSD	13	23	33	
4	MB 280-16859/5-A	14	24	34	
5	,	15	25	35	
6		16	26	36	
7		17	27	37	
8		18	28	38	
9		19	29	39	
10		20	30	40	

Tronox LLC Facility, PCS, Henderson, Nevada Data Validation Reports LDC #23481

Chlorinated Pesticides

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date:

April 13, 2010

LDC Report Date:

July 9, 2010

Matrix:

Soil

Parameters:

Chlorinated Pesticides

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2400-8

Sample Identification

SSAM3-01-2BPC

^{**}Indicates sample underwent Stage 4 review

Introduction

This data review covers one soil sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8081A for Chlorinated Pesticides.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of single compounds were performed for the primary (quantitation) column and confirmation column as required by this method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

Retention time windows were evaluated and considered technically acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples on which a Stage 2B review was performed.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

Retention times (RT) of all compounds in the calibration standards were within QC limits for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples on which a Stage 2B review was performed.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No chlorinated pesticide contaminants were found in the method blanks.

Sample FB-04132010-RIG2-RZE (from SDG 280-2400-2) was identified as a field blank. No chlorinated pesticide contaminants were found in this blank.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. Surrogate recoveries (%R) were not within QC limits for sample SSAM3-01-2BPC. Since the sample was diluted out, no data were qualified.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

XI. Target Compound Identification

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XII. Project Quantitation Limit

All compound quantitation and CRQLs were within validation criteria for samples on which an Stage 4 review was performed.

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
SSAM3-01-2BPC	Methoxychlor	182.7	J (all detects)	А

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-2400-8	All compounds reported below the PQL.	J (all detects)	А

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Chlorinated Pesticides - Data Qualification Summary - SDG 280-2400-8

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-2400-8	SSAM3-01-2BPC	Methoxychlor	J (all detects)	A	Project Quantitation Limit (RPD) (dc)
280-2400-8	SSAM3-01-2BPC	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 280-2400-8

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG 280-2400-8

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET ige 4

LDC #: 23481B3a	VALIDATION COMPLE
SDG #: 280-2400-8	Sta
Laboratory: Test America	

Date: 7/09/10 Page: 1of 1 Reviewer:_ 2nd Reviewer:

METHOD: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	Α	Sampling dates: 4 /13 /10
11.	GC/ECD Instrument Performance Check	Д	
111.	Initial calibration	A	6 RSD r COV /10 4 20 2
IV.	Continuing calibration/ICV	A	COV/100 6202
V.	Blanks	A	
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	N	Client spec
VIII.	Laboratory control samples	A	Ws \$
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	X	
XII.	Compound quantitation and reported CRQLs	SM	
XIII.	Overall assessment of data	A	
XIV	Field duplicates	N	
XV.	Field blanks	ND	FB = FB-04132010-RIG2-RZF (280-2400-2)

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

(~)

	5071			,	
1	SSAM3-01-2BPC	11	21		31
2	MB 280-12618/21-A	12	22		32
3		13	23		33
4		14	24		34
5		15	25		35
6		16	26		36
7		17	27		37
8		18	28		38
9		19	29		39
10		20	30		40

23 481 B79 LDC#: See Cores

VALIDATION FINDINGS CHECKLIST

Page: _lof_Z Reviewer: _JVC 2nd Reviewer: __L

Method: Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.	\			
II. GC/ECD Instrument performance check				
Was the instrument performance found to be acceptable?	/			
III. Initial calibration			,	
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) < 20%?	/			
Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?				
Did the initial calibration meet the curve fit acceptance criteria?				
Were the RT windows properly established?				
Were the required standard concentrations analyzed in the initial calibration?				
IV. Continuing calibration		1	1	T
What type of continuing calibration calculation was performed?%D or%R			ļ	
Were Evaluation mix standards analyzed prior to the initial calibration and sample analysis?	/			
Were endrin and 4,4'-DDT breakdowns \leq 15% for individual breakdown in the Evaluation mix standards?	/			
Was a continuing calibration analyzed daily?	/		<u> </u>	
Were all percent differences (%D) ≤ 20% or percent recovieries 80-120%?	/		<u> </u>	
Were all the retention times within the acceptance windows?		1		
V Blanks	·	1	,	T
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?			_	
Were extract cleanup blanks analyzed with every batch requiring clean-up?	_		<u> </u>	
Was there contamination in the method blanks or clean-up blanks? If yes, please see the Blanks validation completeness worksheet.		_		
VI: Surrogate spikes	,		,	1
Were all surrogate %R within the QC limits?		/	1_	
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?	/			
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
VII, Matrix spike/Matrix spike duplicates				

LDC #: 2344 | B74 SDG #: <u>Cle Cover</u>

VALIDATION FINDINGS CHECKLIST

Page: → of 2 Reviewer: 1177 2nd Reviewer: 4

Validation Area	Yes	No	NA	Findings/Comments
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		/		
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	
VIII. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
IX. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?			,	
X. Target compound identification				
Were the retention times of reported detects within the RT windows?	/			
XI. Compound quantitation/CRQLs				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation?				
XII. System performance				
System performance was found to be acceptable.	7			
XIII: Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.				
XV: Field blanks				
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	I. Dieldrin	Q. Endrin ketone	Y. Aroclor-1242	GG. Chlordane
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Aroclor-1248	HH. Chlordane (Technical)
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Aroclor-1254	H.
D. gamma-BHC	L. Endosulfan II	T. gamma-Chlordane	BB. Aroclor-1260	JJ.
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	cc. 2,4'-DDD	KK.
F. Aldrin	N. Endosulfan sulfate	V. Aroclor-1016	DD. 2,4'-DDE	LL.
G. Heptachlor epoxide	O. 4,4'-DDT	W. Aroclor-1221	EE. 2,4'-DDT	MM.
H. Endosulfan i	P. Methoxychlor	X. Aroclor-1232	FF. Hexachlorobenzene	NN.

Notes:_

LDC# 72481 434 SDG #: C

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page: 1 of 1 Reviewer:__ 2nd Reviewer.__

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A

Did all surrogate percent recoveries (%R) meet the QC limits?

Qualifications	No grad,																		
nits)	(511-93)	(63-124)	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	((
%R (Limits)	369	, 0																	
Surrogate Compound	4	В																	
Column	441																		
Sample ID	(100x)																		
Date																			
#																			

Comments		
Recovery QC Limits (Water)		
Recovery QC Limits (Soil)		
Surrogate Compound	Tetrachoro-m-xylene	Decachlorobiphenyl
Letter Designation	A	В

22.34	Š
23481	Sala
#	#
မ	SDG

Compound Quantitation and Reported CRQLs VALIDATION FINDINGS WORKSHEET

Page: 2nd Reviewer. Reviewer:

METHOD: __GC__ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

evel IV/D Only N N/A

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the percent difference of detected compounds between two columns./detectors < 40%?

-				 		 		 		 	
		(46)									
	Qualifications	J dots /A									
	//RPD///D Between Two Columns/Detectors Limit (< 40%)	182.7									
s bellow.	Sample ID										
If no, please see findings bellow.	Compound Name	4									
\	#	1			T		Π	Π	Π		

Comments: See sample calculation verification worksheet for recalculations

LDC # 23 481 Bac *SDG

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Page: 1 of 4 Reviewer: ₩ Reviewer: 50

> GC EPA SW 846 Method 8081A METHOD:

4,4'-DDT Parameter:

X^2		SACOTO SA	A A A A A A A A A A A A A A A A A A A		and the second s			
>-	Conc	4.00	10.00	25.00	50.00	75.00	100.00	
×	Area	22286.00	54850.00	139559.00	294636.00	443277.00	597478.00	
	Compound	4,4'-DDT						
	Column	CLP1		GCS P2	I			
	Date	04/26/2010						

Regression Output:			Reported	
Constant		0.00000	# 0	0.00000
Std Err of Y Est		4961.04943		
R Squared		0.99953	-23	0.998900
No. of Observations		000000		
Degrees of Freedom		5.00000		
			m1 =	5850
X Coefficient(s)	5928.760416	0.444903		
Std Err of Coef.	36.118827	0.11		

5485.00	5582.36	5892.72	5910.36	5974.78	

5736.12

Ave RF

5571.50

23481 B3a 75 27 #DCT *SDC

Initial Calibration Calculation Verification **VALIDATION FINDINGS WORKSHEET**

Page: 7 of 4

GC EPA SW 846 Method 8081A METHOD:

Parameter:

4,4'-DDT

10000.00	100.00	705006.00			
5625.00	75.00	525805.00			
2500.00	50.00	355511.00			
625.00	25.00	171312.00		GCS_P2	
100.00	10.00	68045.00			
16.00	4.00	26707.00	4,4'-DDT	CLP2	04/26/2010
	Conc	Area	Compound	Column	Date
X^2	>	×			

Regression Output:		Reported	
Constant	-2800.24293	" 0	NR
Std Err of Y Est	3336.78918		
R Squared	0.99991	12=	0.999900
No. of Observations	6.00000		
Degrees of Freedom	3.00000	The state of the s	

a n Q

-0.256471

7098.583493 159.475846

X Coefficient(s) Std Err of Coef.

6852.48 7010.73 7110.22 7050.06

6676.75 6804.50

6917.46 Ave RF

LDC # 22481 B 18 SDG# 50 (20)

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Reviewer: W

Page: 3 of 4

METHOD: GC EPA SW 846 Method 8081A

Parameter: Hexachlorobenzene

	100.00	661653.00		
	100.00	861853.00		
	75.00	653554.00	,	
	50.00	438324.00	•	
	25.00	218583.00		GCS_P2
	10.00	92016.00		
	4.00	39031.00	Hexachlorobenzene	CLP1
	Conc	Area	Compound	Column
X^2	>	×		

Regression Output:			Reported	
Constant		0.00000	II 3	0.0000
Std Err of Y Est		4707.31355		
R Squared		0.99979	12=	0.99900
No. of Observations		0000009		
Degrees of Freedom		5.00000		***************************************
			m1 =	8633
X Coefficient(s)	8674.807007	0.444903		
Std Err of Coef.	34.271508	0.11		

9757.75 9201.60 8743.32 8766.48 8714.05 8618.53 Ave RF 8966.96

LDC # 23 481 B34 Se Core SDG#

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

4 of 4

2nd Reviewer: Reviewer: Page:

> GC EPA SW 846 Method 8081A METHOD:

Hexachlorobenzene Parameter:

Date	Column	Compound	× Area	Y	X^2
04/26/2010	CLP2	Hexachlorobenzene	58418.00	4.00	16.00
			134526.00	10.00	100.00
	GCS_P2		312150.00	25.00	625.00
			605013.00	50.00	2500.00
			879444.00	75.00	5625.00
			1132166.00	100.00	10000.00

Regression Output:			Reported	
Constant		8023.22168	= 0	NR
Std Err of Y Est		2267.04743		
R Squared		0.99998	12=	1.000000
No. of Observations		000000		
Degrees of Freedom		3.00000		
			ii 60	NR
X Coefficient(s)	12623.434031	-13.727283	= q	NR
Std Err of Coef.	108.349460	1.04		

Ave RF

13452.60 14604.50

12486.00

12100.26

11725.92

11321.66

12615.16

LDC # 234 81 B34 SDG# St. Cr

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: lof the Reviewer: log the American Review

METHOD: GC___HPLC____

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration percent difference (%D) values were recalculated for the compounds identified below using the following calculation:

Percent difference (%D) = 100 * (N - C)/N

Where:

N = Initial Calibration Factor or Nominal Amount

C = Calibration Factor from Continuing Calibration Standard or Calculated Amount

					Reported	Recalculated	Reported	Recalculated
		Calibration		CCV Conc	Conc	Conc	Q %	Q%
#	Standard ID	Date	Compound					
_	005F0501	6/3/2010	Hexachlorobenzene CLP1	50	51.10	51.67	2.3	3.3
			4,4'-DDT CLP1	50	48.80	48.57	2.3	2.9
			Hexachlorobenzene CLP2	20	50.00	49.99	0.0	0.0
-			4,4'-DDT CLP2	20	90.09	49.99	0.0	0.0
2								

				CCV1	CCV2
Compound	Ø	q	υ	Area	Area
HCB CLP1		8633.00		446078	
4,4'-DDT CLP1		5850.00		284109	
HCB CLP2	-13.727283	12623.43	8023.22	604834	
4,4'-DDT CLP2	-0.256471	7098.58	-2800.24293	351341	

LDC#:_	77481	B39
	snl	

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	l_of/
Reviewer:	M
2nd reviewer:	0
	I

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculated for the compounds identified below using the following calculated for the compounds identified below using the following calculated for the compounds identified below using the following calculated for the compounds identified below using the following calculated for the compounds identified below using the following calculated for the compounds identified below using the following calculated for the compounds identified below using the following calculated for the compounds identified below using the following calculated for the compounds identified below using the following calculated for the compounds identified below using the following calculated for the compounds identified below using the following calculated for the compounds identified below using the following calculated for the compounds identified below using the following calculated for the compounds identified below using the following calculated for the compound identified below using the calculated for the ca
--

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

Sample ID: # /

SS = Surrogate Spiked

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene	cupi	0.20	0.73821	369	369	7
Decachlorobiphenyl		1	NĎ	Ó	0	0
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Notes:		
		·

SDG #:

Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification VALIDATION FINDINGS WORKSHEET

Page: fof /

2nd Reviewer:___ Reviewer:__

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

SSC = Spiked sample concentration SA = Spike added Where:

SC = Concentration

RPD = ILCS - LCSD I * 2/(LCS + LCSD)

LCS/LCSD samples:

K-14/81921-082 571

		Recalc.							
CS/CSD	RPD								_
о л		Reported	١						
SD	Recovery	Recalc.							
USOT	Percent Recovery	Reported			\				
SOT	Recovery	Recalc.	\$8	48					
T	Percent Recovery	Reported	SS	8~					
Sample	itration	LCSD	Ž	\					
Spiked	Concentration ($45 \text{ Å}_{<}$)	SOT	13.7	13.4					
pike	Added (15/E_)	CLCSD	7.7						
ds		SOT	16.4						
	Compound		gamma-BHC	4,4:-DDT	Aroclor 1260				

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 23481 B34 SDG #: Sa Come

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of <i></i>
Reviewer:_	SVG
2nd reviewer:	a
_	T

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

(Y	N	N/A
Y	N	N/A

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

#	Sample ID	Compound		Reported Concentration ()	Calculated Concentration ()	Qualification
			-			
			2			

			9			

Note:		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date:

April 23, 2010

LDC Report Date:

July 9, 2010

Matrix:

Water

Parameters:

Chlorinated Pesticides

Validation Level:

Stage 2B

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2836-2

Sample Identification

EB-04232010-RZE

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8081A for Chlorinated Pesticides.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination.

 This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of single compounds were performed for the primary (quantitation) column and confirmation column as required by this method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No chlorinated pesticide contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
MB 280-13254/1-A	4/29/10	Hexachiorobenzene	0.0162 ug/L	All samples in SDG 280-2836-2

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

Sample EB-04232010-RZE was identified as an equipment blank. No chlorinated pesticide contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Sampling Date	Compound	Concentration	Associated Samples
EB-04232010-RZE	4/23/10	4,4'-DDE 4,4'-DDT Dieldrin Hexachlorobenzene	0.17 ug/L 0.11 ug/L 0.015 ug/L 0.086 ug/L	No associated samples in this SDG

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Flag	A or P
LCS/D 280-13254/6-A (All samples in SDG 280-2836-2)	Toxaphene	127 (63-118)	129 (63-118)	•	J+ (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

XI. Target Compound Identification

Raw data were not reviewed for this SDG.

XII. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-2836-2	All compounds reported below the PQL.	J (all detects)	A

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Chlorinated Pesticides - Data Qualification Summary - SDG 280-2836-2

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-2836-2	EB-04232010-RZE	Toxaphene	J+ (all detects)	Р	Laboratory control samples (%R) (I)
280-2836-2	EB-04232010-RZE	All compounds reported below the PQL.	J (all detects)	А	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 280-2836-2

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Chlorinated Pesticides - Equipment Blank Data Qualification Summary - SDG 280-2836-2

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET 2B

ILIDAI	CO	IAIL.			-
		S	taq	e	2

Date:_	7/08/10
Page:_	of_/
Reviewer:_	N
2nd Reviewer:_	9
	/

METHOD: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 4 /23/10
II.	GC/ECD Instrument Performance Check	A	
III.	Initial calibration	A	2 RSD IV
IV.	Continuing calibration/ICV	A	COM / 10 2
V.	Blanks	SW	
VI.	Surrogate spikes	Α	
VII.	Matrix spike/Matrix spike duplicates	N	
VIII.	Laboratory control samples	SM	us b
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	Ν	
XII.	Compound quantitation and reported CRQLs	N	
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	N	
XV.	Field blanks	SW	tb = 1

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

LDC #: 23481D3a

SDG #: 280-2836-2 Laboratory: Test America

14/6 40-

	water			
1 E	B-04232010-RZE	11	21	31
2		12	22	32
3		13	23	33
4		14	24	34
5		15	25	35
6		16	26	36
7		17	27	37
8		18	28	38
9		19	29	39
10		20	30	40

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	1. Dieldrin	Q. Endrin ketone	Y. Aroclor-1242	GG. Chlordane
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Aroclor-1248	HH. Chlordane (Technical)
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Aroclor-1254	H.
D. gamma-BHC	t. Endosulfan II	T. gamma-Chlordane	BB. Aroclor-1260	JJ.
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	CC. 2,4'-DDD	KK.
F. Aldrin	N. Endosulfan sulfate	V. Aroclor-1016	DD. 2,4'-DDE	LL.
G. Heptachlor epoxide	O. 4,4'-DDT	W. Aroclor-1221	EE. 2,4'-DDT	MM.
H. Endosulfan I	P. Methoxychlor	X. Aroclor-1232	FF. Hexachlorobenzene	NN.

Notes:	

SDG #: 52 Cm

VALIDATION FINDINGS WORKSHEET Blanks

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

	MK 34.	
Sample Identification	Blank ID	Compound
		7 M : mille:
ank extraction date: 154/6 Blank analysis date: 5/6/10 Associated samples:	llank analysis date:	ank extraction date: 4/24/lo E
n the method blanks? If ves. please see the qualifications below	contamination in	N N/A Was there
was performed, were extract clean-up hlanks analyzed at the proper frequencies?	lean-up was perf	
Was a method blank performed for each matrix and whenever a sample extraction was performed?	hod blank perfor	
Were all samples associated with a method blank?	amples associate	N N/A Were all Sa
ease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A"	elow for all quest	ease see qualifications b

0.0167

A 037

Blank extraction date:E Conc. units:	Blank analysis date:	©	Associated samples:_	mples:				
Compound	Blank ID			San	Sample Identification	on		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: 23481 D34 SDG #:

VALIDATION FINDINGS WORKSHEET

Page: Reviewer:

2nd Reviewer:

Field Blanks

MEXHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081) Field blanks were identified in this SDG. Y N N/A

Sampling date: 4 Blank units:

Field blank type: (circle one) Field Blank / Rinsate / Other:

Associated Samples:

hose

•								
	tion							
milhica.	Sample Identification							
, recording campical,	S							
	Blank ID	_	0.17	0.1	510.0	280.0		
	Compound		J	٥	1	<u></u>		
,	Com							CRaL.

Sampling date: Field blank type: (circle one) Field Blank / Rinsate / Other: Associated sample units: Blank units:

Associated Samples:

						-	
Compound	Blank ID		Sa	Sample Identification	ion		
CRQL.							

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U".

LDC#: 23481 Dan SDG #: 50 Cm

VALIDATION FINDINGS WORKSHEET **Laboratory Control Samples**

Page: 1 of Reviewer: 2nd Reviewer:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Pease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSU) analyzed for each N/A N/A Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

Level IVID Only

Nas a LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

^						- 1	1	7	- T			- 1	T					Т	- 1	_	T			-		_	
Qualifications	57 dets/p (,																										
Associated Samples	All																										
RPD (Limits)	()	()	()	()		()	()	()	()	()	()	()	()	()		()	()	()	()		()	()	()	()	()	()	
LCSD %R (Limits)	129 (2018)		()	()	(()	()	()	()	()	()	()	()	()	()	())	()	()	()	()	()	()	()	()		17:40
LCS %R (Limits)	127 (63-118))	()	()	()	()	()				(()	()		()	()	()	()	()	()	()	()	()	()	()	FT 1 2.4
Compound																											4
LCS/LCSD ID Compound %R (Limits) %R (Limits) As	125/6281 -084 0/501																										
Date	┞																										

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date:

April 26, 2010

LDC Report Date:

July 9, 2010

Matrix:

Water

Parameters:

Chlorinated Pesticides

Validation Level:

Stage 2B

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2879-2

Sample Identification

EB-04262010-1-RZD

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8081A for Chlorinated Pesticides.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of single compounds were performed for the primary (quantitation) column and confirmation column as required by this method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for selected compounds.

A curve fit, based on the initial calibration, was established for quantitation for selected compounds. The coefficient of determination (r^2) was greater than or equal to 0.990.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No chlorinated pesticide contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
MB 280-13254/1-A	4/29/10	Hexachlorobenzene	0.0162 ug/L	All samples in SDG 280-2879-2

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

Sample EB-04262010-1-RZD was identified as an equipment blank. No chlorinated pesticide contaminants were found in this blank.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Flag	A or P
LCS/D 280-13254/6-A (All samples in SDG 280-2879-2)	Toxaphene	127 (63-118)	129 (63-118)	-	J+ (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

XI. Target Compound Identification

Raw data were not reviewed for this SDG.

XII. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-2879-2	All compounds reported below the PQL.	J (all detects)	А

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Chlorinated Pesticides - Data Qualification Summary - SDG 280-2879-2

SDG	Sample	Compound	Flag	A or P	Reason (Code)
280-2879-2	EB-04262010-1-RZD	Toxaphene	J+ (all detects)	Р	Laboratory control samples (%R) (I)
280-2879-2	EB-04262010-1-RZD	All compounds reported below the PQL.	J (all detects)	А	Project Quantitation Limit (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 280-2879-2

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Chlorinated Pesticides - Equipment Blank Data Qualification Summary - SDG 280-2879-2

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET 2B

 ı	U	~	1	1	U	11	4	J	V	IAI	11	_	_	1	_
											S	ta	a	е	2

	Date:	7/08/10
	Page:	1 of 1
	Reviewer:	5VG
2nd	Reviewer:	J
		1

METHOD: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	A	Sampling dates: 4 /26 /10
II.	GC/ECD Instrument Performance Check	A	,
III.	Initial calibration	A	2 RCD 12 CW/W 420 b
IV.	Continuing calibration/ICV	4	Car/a 620 }
V.	Blanks	SW	
VI.	Surrogate spikes	<i>f</i> \	
VII.	Matrix spike/Matrix spike duplicates	N	crient spec
VIII.	Laboratory control samples	SW	crient spec
IX.	Regional quality assurance and quality control	N	
Xa	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	N	
XII.	Compound quantitation and reported CRQLs	N	
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	N	
XV.	Field blanks	Np	Eb = 1

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

LDC #: 23481E3a

SDG #: 280-2879-2 Laboratory: Test America

WATER				
EB-04262010-1-RZD	11	21	31	
2	12	22	32	
3	13	23	33	
4	14	24	34	
5	15	25	35	
6	16	26	36	
7	17	27	37	
8	18	28	38	
9	19	29	39	
10	20	30	40	

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	I. Dieldrin	Q. Endrin ketone	Y. Aroclor-1242	GG. Chlordane
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Aroclor-1248	HH. Chlordane (Technical)
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Aroclor-1254	11
D. gamma-BHC	L. Endosulfan II	T. gamma-Chlordane	BB. Aroclor-1260	JJ.
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	CC. 2,4'-DDD	KK.
F. Aldrin	N. Endosulfan sulfate	V. Aroclor-1016	DD. 2,4'-DDE	LL.
G. Heptachlor epoxide	O. 4,4'-DDT	W. Aroclor-1221	EE. 2,4'-DDT	MM.
H. Endosulfan I	P. Methoxychlor	X. Aroclor-1232	FF. Hexachlorobenzene	NN.

Notes:_

LDC#: >3 481 E34 SDG#: 12 Cray

VALIDATION FINDINGS WORKSHEET Blanks

Page: lofReviewer: Nl2nd Reviewer: lof

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Phease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

le Identification									le Identification							
Samp								:səld	Samp							
								Associated sam								
								,								
	A															
Blank ID								nk analysis date:	Blank ID							
puno	Type	年							puno							
Comp								Blank extraction	Comp			#				
	Compound Blank ID Sample Identification	Blank ID Blank ID	Blank ID Blank ID	Blank ID 1/18 280 - 12254 / 1-A = F 0.0167	Blank ID	Blank ID	Blank ID	Blank ID	Blank ID	Blank ID	Blank ID	Blank ID	Blank ID Associated samples: Associa	Blank ID Blank I	Blank ID	Blank ID

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT. All contaminants within five times the method blank concentration were qualified as not detected, "U"

23 48 1 年34 LDC#:

VALIDATION FINDINGS WORKSHEET

Page: \of 1

Reviewer: M

2nd Reviewer:

Laboratory Control Samples

SDG #: 2 (2-7)
METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

Level IV/D Only

Y N/N/A) Was a LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

#	Date	TCS/FCSD ID	Compound	LCS %R (Limits)	.CS Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		+ 1/25ce1-032 4/871	n	127	(831-63)	129 (63-118)		All	J+dots/p (l)
		/			()		()		
					()	()	()		
					()	()	()		
					()				
					()	()	()		
					Ŷ	()	()		
					()	()	()		
					()	()	()		
					(()	-	
<u>L</u>					()	()	()		
					()	()	()		
					()	()	()		
					()	()	()		
					()	()	(
					()	()	()		
<u> </u>					()	()	()		
					()	()	()		
<u></u>					()	()			
)	()	()		
<u></u>		- Lands of the second of the s			()	()	()		
					(-)	()	()		
					()	()	()		
					()	()	()		
					(()	()		
					())		
]				(FF	med Sp	spikal)			

Tronox LLC Facility, PCS, Henderson, Nevada Data Validation Reports LDC #23481

Metals

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date:

April 7, 2010

LDC Report Date:

July 8, 2010

Matrix:

Soil

Parameters:

Manganese

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2216-11

Sample Identification

SA137-10BPC

Introduction

This data review covers one soil sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6020 for Manganese.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section IV.

Field duplicates are summarized in Section XIV.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No manganese was found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Manganese	0.0791 mg/Kg	All samples in SDG 280-2216-11

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

Sample FB-04072010-RZC (from SDG 280-2280-2) was identified as a field blank. No manganese was found in this blank.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

The laboratory has indicated that there were no matrix spike (MS) analyses specified for the samples in this SDG, and therefore matrix spike analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-2216-11	All analytes reported below the PQL.	J (all detects)	А

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Data Qualification Summary - SDG 280-2216-11

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-2216-11	SA137-10BPC	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Laboratory Blank Data Qualification Summary - SDG 280-2216-11

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Field Blank Data Qualification Summary - SDG 280-2216-11

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET Stage 4

Date: 7-8-10
Page: _of\
Reviewer: CA
2nd Reviewer:

METHOD: Mn (EPA SW 846 Method 6020)

23481A4

Laboratory: Test America

280-2216-11

LDC #:

SDG #:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 4710
11.	ICP/MS Tune	A	
111.	Calibration	7	
IV.	Blanks	SW	
V.	ICP Interference Check Sample (ICS) Analysis	A	
VI.	Matrix Spike Analysis	\sim	Client specified
VII.	Duplicate Sample Analysis	N	
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	A	
X.	Furnace Atomic Absorption QC	\sim	Motublized
XI.	ICP Serial Dilution	A	
XII.	Sample Result Verification	A	
XIII.	Overall Assessment of Data	A	
XIV.	Field Duplicates	$ \wedge $	
XV	Field Blanks	NO	FB=FB-04072010-RZC (280-2280-2)

A = Acceptable

SW = See worksheet

N = Not provided/applicable

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples: 50\

	3011		The same of the sa				
1	SA137-10BPC	11	805	21		31	
2		12		22	·	32	
3		13		23		33	
4		14		24		34	
5		15		25		35	
5 6 7 8		16		26		36	
7		17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

Notes:			
		.,	

LDC#: 23481A4 SDG#: Secover

VALIDATION FINDINGS CHECKLIST

Page: of Z Reviewer: 02 2nd Reviewer: ____

Method: Metals (EPA SW 846 Method 6010B/7000/6020)

(-			
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.		_		
II. ICP/MS Tune				
Were all isotopes in the tuning solution mass resolution within 0.1 amu?				
Were %RSD of isotopes in the tuning solution ≤5%?	/			
III. Calibration				
Were all instruments calibrated daily, each set-up time?				
Were the proper number of standards used?			, i	
Were all initial and continuing calibration verification %Rs within the 90-110% (80-120% for mercury) QC limits?				
Were all initial calibration correlation coefficients > 0.995?				
IV. Blanks		_		
Was a method blank associated with every sample in this SDG?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
V. ICP Interference Check Sample				
Were ICP interference check samples performed daily?	\			
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?				
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			1	
Nere the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for vaters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.			1	
VII. Laboratory control samples				
Vas an LCS anaylzed for this SDG?				
Vas an LCS analyzed per extraction batch?		_		
Vere the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC imits for soils?				

LDC#: 23481 PH SDG#: Sec cover

VALIDATION FINDINGS CHECKLIST

Page: __of __ Reviewer: __
2nd Reviewer: __<

Validation Anna	Yes	No	NA	Findings/Comments
Validation Area	, 00			r munigs/comments
VIII. Furnace Atomic Absorption QC				
If MSA was performed, was the correlation coefficients > 0.995?			-	2
Do all applicable analysies have duplicate injections? (Level IV only)			_	
For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)			_	7
Were analytical spike recoveries within the 85-115% QC limits?				
IX. ICP Serial Dilution				
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?	/			
Were all percent differences (%Ds) < 10%?	/		_	
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.				
X. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)				
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?	/			
If the %Rs were outside the criteria, was a reanalysis performed?			<u> </u>	
XI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?			_	
Were the performance evaluation (PE) samples within the acceptance limits?				
XII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	\			
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
XIV. Field duplicates			r	-
Field duplicate pairs were identified in this SDG.				
Target analytes were detected in the field duplicates.				
XV. Field blanks				
Field blanks were identified in this SDG.				
Target analytes were detected in the field blanks.				

LDC #: <u>23481A4</u> SDG #: <u>See Cover</u> **METHOD**: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: mg/Kg

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

2nd Reviewer:

Associated Samples: All

Soil preparation factor applied: 100x x 5xdil

	ļ	
	\vdash	
		
	\vdash	
	81	
	ajije S	
	No Qualifie	
	'	
845 (C)		
	ا ہے ا	
	Action	
	ਦੁ ਦੁ	
	•	
giller State	<u> </u>	
	8 %	
	52.5	
	lg % ij	
	플러기	
	= -	
	=	
	Maximum Maximum PB* ICB/CCB* (ug/L)	
	<u> </u>	
	<u>x</u> = <u>a</u>	
	≥	
		=
	Maximum PB ^a (mg/Kg)	
	aximul PB ⁴ ng/Kg	0.0791
	ng Pax	0.0
	ΣΞ	-
	ا ب	
	Analyte	
	na l	
150 E	▼	Ā

a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element. Note:

SDG#: 2316/147

Initial and Continuing Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Page: Reviewer: 2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found × 100 True

Where, Found ≈ concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution True ≈ concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable
	ICP (Initial calibration)						
	GFAA (Initial calibration)						
	CVAA (Initial calibration)						
	ICP (Continuing calibration)						
	GFAA (Continuing calibration)						
	CVAA (Continuing calibration)						
ICV	ICP/MS (Initial calibration)	7	8.8	O, 우	107	201)~
CC \	ICP/MS (Continuing calibation)	7	H'19	20.0	(03	103	

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

5348/AY

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

2nd Reviewer: Reviewer:_ Page:

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found × 100

Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

Where,

RPD = <u>IS-DL</u> x 100 (S+D)/2

S = Original sample concentration D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

%D = II-SDR × 100

Where, I = Initial Sample Result (mg/L) SDR = Serial Dilution Besult (mg/l) (Instrument Reading x 5)

					Recalculated	Reported		-
Sample ID	Type of Analysis	Element	Found (S/1 (MA)	True / D / SDR (units)	%R / RPD / %D	%R / RPD / %D	Acceptable (Y/N)	
ICS (A)S	ICP interference check	Mn	DINAL	100 rg/L	101	רס ו)-	
77	Laboratory control sample		20.3	20.02	701	20	7	_
	Matrix spike		(SSR-SR)					
	Duplicate							
	ICP serial dilution	E	37990	1,7 Jgs. S. S. B. 1,7	1,7	1.7	J	

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 2340 PM SDG #: <u>Secore</u>

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	L	_of_ ^{_)}	
Reviewer:_	\mathcal{C}	2	
2nd reviewer:_			$\overline{\perp}$

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

		•		
Please Y N Y N Y N	e see qu N/A N/A N/A	topolied is	ted range of the instruments and wil	
Detect followi	ted analy	yte results fortion:	Mu	were recalculated and verified using the
Concen	tration =	(RD)(FV)(Dil) (In. Vol.)(%S)	Recalculation:	
RD FV In. Vol. Dil %S	= = = =	Raw data concentration Final volume (ml) Initial volume (ml) or weight (G) Dilution factor Decimal percent solids	(100my)(5)(1 0.899(1	3.799 mg/L) = 1638 mg/kg
		· · · · · · · · · · · · · · · · · · ·		

Sample ID	Analyte	Reported Concontration (MS RS)	Calculated Concentration (mg /kg)	Acceptable (Y/N)
	m	1600	1600	7
	,			
				· · · · · · · · · · · · · · · · · · ·

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date:

April 14, 2010

LDC Report Date:

July 8, 2010

Matrix:

Soil

Parameters:

Manganese

Validation Level:

Stage 2B

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2448-16

Sample Identification

SA43-4BPC

Introduction

This data review covers one soil sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6020 for Manganese.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section IV.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No manganese was found in the initial, continuing and preparation blanks.

Samples EB-04142010-RIG1-RZC and EB-04142010-RIG2-RZC (both from SDG 280-2448-2) were identified as equipment blanks. No manganese was found in these blanks with the following exceptions:

Equipment Blank ID	Sampling Date	Analyte Concentration		Associated Samples			
EB-04142010-RIG1-RZC	4/14/10	Manganese	1.6 ug/L	All samples in SDG 280-2448-16			
EB-04142010-RIG2-RZC	4/14/10	Manganese	18 ug/L	All samples in SDG 280-2448-16			

Sample concentrations were compared to concentrations detected in the equipment blanks as required by the QAPP. No sample data was qualified.

Sample FB-04072010-RZC (from SDG 280-2280-2) was identified as a field blank. No manganese was found in this blank.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

The laboratory has indicated that there were no matrix spike (MS) analyses specified for the samples in this SDG, and therefore matrix spike analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	A or P	
All samples in SDG 280-2448-16	All analytes reported below the PQL.	J (all detects)	Α

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Data Qualification Summary - SDG 280-2448-16

SDG	Sample	Sample Analyte Flag		A or P	Reason (Code)	
280-2448-16	SA43-4BPC	All analytes reported below the PQL.	J (all detects)	А	Sample result verification (PQL) (sp)	

Tronox LLC Facility, PCS, Henderson, Nevada

Manganese - Laboratory Blank Data Qualification Summary - SDG 280-2448-16

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Equipment Blank Data Qualification Summary - SDG 280-2448-16

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Field Blank Data Qualification Summary - SDG 280-2448-16

No Sample Data Qualified in this SDG

Tronox Northgate Henderson COMPLETENESS WORKSHEET Stage 2B

LDC #:	23481C4	VALIDATION	(
SDG #:	280-2448-16		
Laboratory:	Test America		

Page: ___of__ Reviewer: ___2 2nd Reviewer:

METHOD: Mn (EPA SW 846 Method 6020)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 4/14/1
11.	ICP/MS Tune	A	
111.	Calibration	A	
IV.	Blanks	A	
V.	ICP Interference Check Sample (ICS) Analysis	A	
VI.	Matrix Spike Analysis	\mathcal{N}	Client specified
VII.	Duplicate Sample Analysis	\mathcal{N}	
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	internal Standard (ICP-MS)	()	
Χ.	Furnace Atomic Absorption QC	\sim	Notuti 1780
XI.	ICP Serial Dilution	\sim	Notutilized Not preformed
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	A	
XIV.	Field Duplicates	$\overline{\mathcal{N}}$	
ΧV	Field Blanks	ŚW	FB=FB-0407200-RZC, EB=EB-04142010-RIGI-R

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank (250-2250-Z) D = Duplicate

TB = Trip blank EB = Equipment blank = EB-04142010- RIGZ- RZC

(280-2448-2)

Validated Samples: Soil

GBS SA43-4BPC

Notes:	

LDC #: 23481C4

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Page. of

2nd Reviewer:_ Reviewer:

Field Blanks

Were target analytes detected in the field blanks? Were field blanks identified in this SDG?

METHOD: Trace Metals (EPA SW846 6010B/7000)

Y N N/A

Blank units: ug/L Associated sample units: mg/Kg Sampling date: 4/14/10 Soil factor applied 100x Field blank type: (circle one) Field Blank / Rinsate / Other.

(EG) Associated Samples.

Reason: be

₹

Sample Identification											
Sample Ic											
							, , ,				
	No Qualifiers										
	Action Level	18									
Blank ID	EB-04142010-RIG2-RZC (SDG#: 280-2448-2)										
Blank ID	EB-04142010-RIG1-RZC (SDG#: 280-2448-2)										
Analyte		Mn									

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date:

April 23, 2010

LDC Report Date:

July 8, 2010

Matrix:

Water

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2836-2

Sample Identification

EB-04232010-RZE

EB-04232010-RZEMS

EB-04232010-RZEMSD

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6020 for Metals. The metals analyzed were Arsenic, Cobalt, Lead, and Manganese.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section IV.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No metal contaminants were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples		
ICB/CCB	Cobalt	0.0198 ug/L	All samples in SDG 280-2836-2		

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration	
EB-04232010-RZE	Cobalt	0.026 ug/L	1.0U ug/L	

Sample EB-04232010-RZE was identified as an equipment blank. No metal contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
EB-04232010-RZE	4/23/10	Cobalt Manganese	0.026 ug/L 1.2 ug/L	No associated samples in this SDG

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-2836-2	All analytes reported below the PQL.	J (all detects)	Α

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Metals - Data Qualification Summary - SDG 280-2836-2

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-2836-2	EB-04232010-RZE	All analytes reported below the PQL.	J (all detects)	А	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Metals - Laboratory Blank Data Qualification Summary - SDG 280-2836-2

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
280-2836-2	EB-04232010-RZE	Cobalt	1.0U ug/L	А	bl

Tronox LLC Facility, PCS, Henderson, Nevada Metals - Equipment Blank Data Qualification Summary - SDG 280-2836-2

No Sample Data Qualified in this SDG

Tronox Northqate Henderson EET

LDC #:	23481D4	_ VALIDATION COMPLETENESS WORKSH
SDG #:	280-2836-2	Stage 2B
Laborator	y: Test America	

Page:___of_\ Reviewer: 2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	A	Sampling dates: 4/23/10
11.	ICP/MS Tune	A	·
111.	Calibration	A	
IV.	Blanks	SW	
V.	ICP Interference Check Sample (ICS) Analysis	A	
VI.	Matrix Spike Analysis	7	ms/D
VII.	Duplicate Sample Analysis	N	
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	A	
X.	Furnace Atomic Absorption QC	Ν	Noturized
XI.	ICP Serial Dilution	A	
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	A	
XIV.	Field Duplicates	\sim	
XV	Field Blanks	SW	EB=1 (no associated Samples)

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

	water					
1	EB-04232010-RZE	11	802W	21	31	
2	EB-04232010-RZEMS	12		22	32	
3	EB-04232010-RZEMSD	13		23	33	
4		14		24	34	
5		15		25	35	
6		16		26	36	
7		17		27	37	
8		18		28	38	
9		19		29	39	
10		20		30	40	

Notes:			

LDC #: 2348104 SDG #: 560 car 07

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of Reviewer: 2nd reviewer:

All circled elements are applicable to each sample.

r T	1	
Sample ID	Matrix	Target Analyte List (TAL)
		Al, Sb(As, Ba, Be, Cd, Ca, Cr, Co) Cu, Fe (Pb) Mg, Mn) Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
GC:23		Al, Sb,(As,)Ba, Be, Cd, Ca, Cr, O Cu, Fe,(Pb) Mg,(Mn) Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN`
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al. Sb. As. Ba. Be. Cd. Ca. Cr. Co. Cu. Fe. Pb. Mg. Mn. Hg. Ni. K. Se. Ag. Na. Ti. V. Zn. Mo. B. Si. CN
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al. Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
ICP Trace		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
ICP-MS		Al, Sb, (As, Ba, Be, Cd, Ca, Cr, Co) Cu, Fe(Ps), Mg, (An) Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN ⁻ ,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,

Comments:	Mercury by	CVAA if performed	ed		
		······································	· · · · · · · · · · · · · · · · · · ·	 	

tals (EPA SW 864 Method 6010B/6020/7000) Son units, unless otherwise noted: ug/L A- um Maximum Maximum Action 1 (c) (unit) (un	LDC #: <u>23481D4</u> SDG #: See Cover	VALII PB/I	VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES		Page:
Maximum Maximum Maximum PB ^a ICB/CCB ^a ICB/CCB ^a ICB/CCB ^a	netals (EPA SW 864 Method 6010B/6020/ tion units, unless otherwise noted:ug/L_	ΩŒ	Soil preparation factor applied: NA Associated Samples: All	Reason Code: bl	2nd Reviewer:
Maximum Maximum Maximum PB ^a ICB/CCB ^a					
(m8/L)		▼			

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

0.026 / 1.0

0.0198

ပိ

LDC #: 23481D4

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Page:∖_ Reviewer:∑

2nd Reviewer:

Field Blanks

Were field blanks identified in this SDG?

METHOD: Trace Metals (EPA SW846 6010B/7000)

Y N N/A

Reason Code: be

Were target analytes detected in the field blanks?

Blank units: ug/L Associated sample units: mg/Kg Sampling date: 4/16/14 1/23/10 Soil factor applied 16 Field blank type: (circle one) Field Blank / Rinsate / Other:

EB

Associated Samples: (Sample Identification Action Level 1.2 Blank ID 0.026 1.2 Analyte Ĕ රි

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date:

May 26, 2010

LDC Report Date:

July 8, 2010

Matrix:

Soil

Parameters:

Manganese

Validation Level:

Stage 2B

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-3955-5

Sample Identification

SA44-3BPC

SA44-4BPC

SA180-3BPC

SA180-4BPC

Introduction

This data review covers 4 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6020 for Manganese.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section IV.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No manganese was found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Manganese	0.280 mg/Kg	All samples in SDG 280-3955-5
ICB/CCB	Manganese	1.37 ug/L	All samples in SDG 280-3955-5

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

Sample FB-04072010-RZC (from SDG 280-2280-2) was identified as a field blank. No manganese was found in this blank.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-3955-5	All analytes reported below the PQL.	J (all detects)	Α .

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Data Qualification Summary - SDG 280-3955-5

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-3955-5	SA44-3BPC SA44-4BPC SA180-3BPC SA180-4BPC	All analytes reported below the PQL.	J (all detects)	А	Sample result verification (PQL) (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Laboratory Blank Data Qualification Summary - SDG 280-3955-5

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Manganese - Field Blank Data Qualification Summary - SDG 280-3955-5

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #: 23481I4 Stage 2B SDG #: 280-3955-5 Laboratory: Test America

	Date:	/-b-	10
	Page:	_of_	
	Reviewer:_	a	
2nd	Reviewer:_	\bot	_

METHOD: Mn (EPA SW 846 Method 6020)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 5/26/10
II.	ICP/MS Tune	A	
111.	Calibration	A	
IV.	Blanks	SW	
V.	ICP Interference Check Sample (ICS) Analysis	A	
VI.	Matrix Spike Analysis	A	MS/D (SD64 280-2216-10)
VII.	Duplicate Sample Analysis	N	
VIII.	Laboratory Control Samples (LCS)	A	LCS
IX.	Internal Standard (ICP-MS)	A	
X.	Furnace Atomic Absorption QC	N	NO+ ULITZED
XI.	ICP Serial Dilution	A	NO+ULITED (SN6) 280-2216-10)
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	A	
XIV.	Field Duplicates	N	
XV	Field Blanks	NO	FB= FB-04072010-RZC (280-2280-2)

Note:

A = Acceptable

N = Not provided/applicable

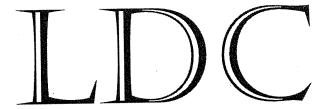
SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank

Validated Samples: 11 21 31 SA44-3BPC 22 32 SA44-4BPC 12 23 SA180-3BPC 13 33 SA180-4BPC 14 24 34 15 25 35 5 26 36 6 16 17 27 37 8 18 28 38 9 19 29 39 30 10 20


Notes:_	

LDC #: 2348114	18114				>	VALIDATION FINDINGS WORKSHEET	WORKSHEE	-			Page	Page: of
SDG #: See Cover	ee Cover				1	PB/ICB/CCB QUALIFIED SAMPLES	D SAMPLES				Reviewe	الح
METHOD:	METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000)	(EPA SW 86	34 Method 60)10B/6020/7(Soil preparation factor applied: 200x x 5xdil	lied: 200x x	2xdil	Reason Code: bl	- q	2nd Reviewer:	
Sample Cc	Sample Concentration units, unless otherwise noted: mg/Kg	nits, unless c	otherwise not	ed: mg/Kg		Associated Samples: All						
and the second second												
Analyte	Analyte Maximum Maximum	Maximum	Maximum	Action	Ŷ					····		
	PBª	PBª	ICB/CCB ^a	Limit	Qualifiers							
	(mg/Kg)	(ng/L)	(ng/L)									
Ψ	0.280		1.37	2.8								

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

Tronox LLC Facility, PCS, Henderson, Nevada Data Validation Reports LDC #23481

Perchlorate

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date:

April 23, 2010

LDC Report Date:

July 8, 2010

Matrix:

Water

Parameters:

Perchlorate

Validation Level:

Stage 2B

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-2836-2

Sample Identification

EB-04232010-RZE

Introduction

This data review covers one water sample listed on the cover sheet. The analyses were per EPA Method 314.0 for Perchlorate.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

Sample EB-04232010-RZE was identified as an equipment blank. No perchlorate was found in this blank.

IV. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) analyses specified for the samples in this SDG, and therefore matrix spike analyses were not performed for this SDG.

V. Duplicates

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-2836-2	All analytes reported below the PQL.	J (all detects)	Α

Raw data were not reviewed for this SDG.

VIII. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Perchlorate - Data Qualification Summary - SDG 280-2836-2

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-2836-2	EB-04232010-RZE	All analytes reported below the PQL.	J (all detects)	А	Sample result verification (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Perchlorate - Laboratory Blank Data Qualification Summary - SDG 280-2836-2

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Perchlorate - Equipment Blank Data Qualification Summary - SDG 280-2836-2

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET Stage 2B

LDC #:_	2348106	
SDG #:_	280-2836-2	
Laborate	ory: Test America	

Page: Lof 1 Reviewer: _ CZ_ 2nd Reviewer: _____

METHOD: (Analyte)_	Perchlorate (EPA Method 314.0)	

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
	Technical holding times	TA	Sampling dates: 4/23/10
lla.	Initial calibration	A	
IIb.	Calibration verification	A	
111.	Blanks	10	
IV	Matrix Spike/Matrix Spike Duplicates	N	client specified
V	Duplicates	N	
VI.	Laboratory control samples	A	LCS/D
VII.	Sample result verification	N	
VIII.	Overall assessment of data	A	
IX.	Field duplicates	N	
	Field blanks	N()	EB=1 (10 cosociated samples)

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

wares

	000.0					
1	EB-04232010-RZE	11	BBW	21	31	
2		12		22	32	
3		13		23	33	
4		14		24	34	
5		15		25	35	
6		16		26	36	
7		17		27	37	
8		18		28	38	
9		19		29	39	
10		20		30	40	

Notes:	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, PCS, Henderson, Nevada

Collection Date:

May 17, 2010

LDC Report Date:

July 8, 2010

Matrix:

Soil

Parameters:

Perchlorate

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-3624-6

Sample Identification

SSAM6-03-9BPC

Introduction

This data review covers one soil sample listed on the cover sheet. The analyses were per EPA Method 314.0 for Perchlorate.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the initial, continuing and preparation blanks.

Sample FB-04072010-RZC (from SDG 280-2280-2) was identified as a field blank. No perchlorate was found in this blank.

IV. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) analyses specified for the samples in this SDG, and therefore matrix spike analyses were not performed for this SDG.

V. Duplicates

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable.

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 280-3624-6	All analytes reported below the PQL.	J (all detects)	A

VIII. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, PCS, Henderson, Nevada Perchlorate - Data Qualification Summary - SDG 280-3624-6

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
280-3624-6	SSAM6-03-9BPC	All analytes reported below the PQL.	J (all detects)	А	Sample result verification (sp)

Tronox LLC Facility, PCS, Henderson, Nevada Perchlorate - Laboratory Blank Data Qualification Summary - SDG 280-3624-6

No Sample Data Qualified in this SDG

Tronox LLC Facility, PCS, Henderson, Nevada Perchlorate - Field Blank Data Qualification Summary - SDG 280-3624-6

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET Stage 4

LUC #	2340 IGO	
SDG #:	280-3624-6	
Laborate	ory: Test America	

2nd Reviewer:_

METHOD: (Analyte) Perchlorate (EPA Method 314.0)		
--	--	--

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 5/17/10
lla.	Initial calibration	A	
IIb.	Calibration verification	A	
111.	Blanks	A	
IV	Matrix Spike/Matrix Spike Duplicates	N,	Client specified
V	Duplicates	<i>₩</i>	<u> </u>
VI.	Laboratory control samples	A	LCS/D
VII.	Sample result verification	A	·
VIII.	Overall assessment of data	A	
IX.	Field duplicates	N	
V	Field blanks	NO	FB=FB-04072010-RZC (280-2280-2)

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

Validated Samples:

< 00'1

	50.1				
1	SSAM6-03-9BPC	11	pros	21	31
2		12		22	32
3		13		23	33
4		14		24	34
5		15		25	35
6		16		26	36
7		17		27	37
8		18		28	38
9		19		29	39
10		20		30	40

Notes:	

LDC#: 2748166 SDG#: SEE COVER

VALIDATION FINDINGS CHECKLIST

Page: of Reviewer: 2nd Reviewer:

Method: Inorganics (EPA Method See Cover)

Method:Inorganics (EPA Method See CORL)				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times		···		
All technical holding times were met.		, 		
Cooler temperature criteria was met.				
II. Calibration				
Were all instruments calibrated daily, each set-up time?				
Were the proper number of standards used?				
Were all initial calibration correlation coefficients > 0.995?				
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?				
Were titrant checks performed as required? (Level IV only)				
Were balance checks performed as required? (Level IV only)			_	
III. Blanks				
Was a method blank associated with every sample in this SDG?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
IV. Matrix spike/Matrix spike duplicates and Duplicates		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			/	
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL.			/	
V. Laboratory control samples		<u> </u>	,	
Was an LCS anayized for this SDG?			<u> </u>	
Was an LCS analyzed per extraction batch?	_		<u> </u>	
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?				
VI. Regional Quality Assurance and Quality Control			-	
Were performance evaluation (PE) samples performed?		/	<u> </u>	
Were the performance evaluation (PE) samples within the acceptance limits?			/	

LDC#: <u>U348166</u> SDG#: <u>See carel</u>

VALIDATION FINDINGS CHECKLIST

Page: of A Reviewer: 2 2nd Reviewer: _____

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/	ſ		
Were detection limits < RL?	\bot			
VIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target analytes were detected in the field duplicates.				
X. Field blanks				
Field blanks were identified in this SDG.				
Target analytes were detected in the field blanks.		/	<u> </u>	

SDG#: 224/8166

Initial and Continuing Calibration Calculation Verification Validatin Findings Worksheet

Method: Inorganics, Method

340

The correlation coefficient (r) for the calibration of $\overline{CUV_{+-}}$ was recalculated.Calibration date: $\overline{-}$

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

Where, %R = Found X 100

Found = concentration of each analyte measured in the analysis of the ICV or CCV solution

True = concentration of each analyte in the ICV or CCV source

					Recalculated	Reported	Acceptable
Type of analysis	Analyte	Standard	Conc. (ug/l)	Area	r or r²	r or r²	(V/N)
Initial calibration		s1	-	0.00284			
		s2	2.5	0.0077	0.999314	0.999358	
	-	83	5	0.0154			>
	5 0	s4	10	0.03108			
		s5	20	0.06039			
		9s	40	0.13055			
		±CV	70	19.00	95	(
Calibration verification)			The state of the s	
Calibration verification	>	CCV	R	720.S47	701		\rightarrow
	13	44				l	
Calibration verification	•	ð					

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results._

23/2/166 SDG#: LDC#:

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Reviewer: 2nd Reviewer:

METHOD: Inorganics, Method <u>Selectorel</u>

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

Where, %R = Found x 100

Found =

True ==

concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = $\frac{1.8 - D_1}{(S + D)/2}$ x 100 Where,

Original sample concentration Duplicate sample concentration

။ ။ တ **ဝ**

Sample ID Type of Analysis Element Found / S True / D Recelculated RP / RPD Acceptable LAboratory control eample C O 4 C , O 4								
Type of Analysis Element round, 10 (emits) mylls (emits) (emits) mylls (emits) (emits) mylls (emits) (emits) (emits) mylls (emits) (emits) mylls (emits) (emits) (emits) mylls (emits) (emits) mylls (emits)			•			Recalculated	Reported	
Laboratory control sample C 1 O 4	Sample ID	Type of Analysis		(antes) my KS	ابتاه / D (unite)سهرالاح	%R / RPD	%R / RPD	Acceptable (Y/N)
C 104		Laboratory control sample		·				
	5		C104	Shbo'o	0) ba 10	96	95)—
Duplicate sample		Matrix spike sample		(SSR-SR)				
Duplicate sample	>	-						
Duplicate semple							٠	
	>	Duplicate sample						

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated

. 23481G6

SDG #: See COVER	Sample Calculation Verification

Have results been reported and calculated correctly? Are results within the calibrated range of the instruments? Are all detection limits below the CRQL? Compound (analyte) results for					rted with a positive determinant $\frac{2004}{9}$ $\frac{100mL}{100}$	
#	Sample ID	Analyte	Reported Concentration (MS/C)	Calculated Concentration (MS/SS)	Acce	
	\	. C04	860	850	,	
-						
	·					
					l	