

NARRATIVE

July 8, 2010

Derrick Willis Tronox LLC-Henderson 560 West Lake Mead Henderson, NV 89015

SDG/EMS# 137822

Project: 2027.001, Tronox LLC Henderson, 560 West Lake Mead Drive, Henderson, NV

Client COC ID: 02027.01.2127

REFERENCE:

DAS Case No. 0769F

Task No. 0361

Tronox Project# 10203.01.02

AUI Task# 6

TDD No.: 07-10-0012

P. O. No.: 0063941

NGE Tracking# 03

EMS REPORT NO.: 137822

The elutriator that is used in this task was constructed at EMS Laboratories and has a nominal 4 inch diameter stainless steel tube for the body of the elutriator. The drawing of the elutriator in the document EPA/540/R97/028 assumes an inner diameter of 4 inches for the calculation of the desired flow rate in the elutriator but the EMS elutriator has in inner diameter of about one eighth inch less than that. The EMS elutriator uses a basic flow rate of 1460 ml per minute instead of the 1560 ml per minute to adjust for the difference in diameter.

Two serious interferences were observed when the Tronox soil samples were subjected to the elutriation and in the subsequent preparation of the grids used for transmission electron microscope (TEM) viewing. The first interference manifested itself as a very low rate of dust collection of material on the filter that was to be used for TEM examination. The second problem was that it was very difficult to prepare good quality grids because of breakage in the carbon film.

The top of the elutriator contains two filters that connect to the pump that pulls the air through the vertical elutriator. Both filters are nominally 25 millimeters. One takes the major flow of the air and dust through the tube and the other is used to prepare a filter for examination in the TEM. This filter that is termed the IST filter is collected from a tube that extends down from the top openings to the level where the body of the elutriator has the nominal 4 inch diameter. The purpose of this tube is to collect a sample on a 25 mm diameter filter that represents the particle size distribution at the top of the uniform column before it is disturbed by the reduction of the cross sectional area that occurs at the top of the elutriator. The other takes the majority of the flow of air and collects the dust also on a 25 millimeter filter. There is a filters of each type so that one filter of each is always in place when the filters are changed.

The flow velocity in the IST tube has to be at least that in body of the elutriator to carry the particles upward. A flow rate higher than the minimum will not have a significant effect since the size of the particles going up the elutriator is already determined before the airstream reaches the IST tube. However, if some force other than gravity acts on the particles than there can be a problem. It is found in the EMS elutriator that the IST filters have a significant static charge after the sample is collected. It is also found that an air flow velocity in excess of the velocity in the body of the elutriator is necessary to get a deposit on the IST filter that weighs nearly what is expected. The additional force exerted by the static electricity on particles of the same charge would prevent them from reaching the surface of the filter. They cannot just build

up in the region near the surface but instead one would expect them to form aggregates and drop back down the tube.

The weight of the deposit on each filter should divide according to the total airflow through each, i.e., if 90% of the air goes through one filter and 10% through the other then in the same time period one would expect to have nine times the weight of the other. In actuality this is generally not the case. In the original draft of the method in 2003 it is noted that a significantly higher flow velocity is required in the IST tube to get the weight predicted by the formula relating the weight to each airflow.. There appear to be several reasons for this. One that was suggested in draft of the modified elutriator method is that leaks which are small compared to 1400 or 1500 ml per minute are not small in the IST tube that carries only 5% of the total flow. Accordingly, the original draft suggested using airflow somewhat higher than the air velocity in the body. The air leaks have been minimized and do not appear to be a major cause of the fact that the airflow must be significantly higher in the IST tube in order to get satisfactory deposits on the IST filter. The factors which appear to be important with respect to getting a good filter are the soil chemistry and also the static charge that builds up on the filters.

.The particles in the air stream move upward because the airflow creates an upward force that is balanced by gravity. If there is a force other than gravity such as a repulsive static electrical force as the particle approaches the filter, then the larger particles may not reach the surface of the filter. The particles that do not reach the filter must sooner or later go back down the tube or collect on the sides. The apparent fate is that they collect other particles and the aggregates fall down the tube undergoing additional aggregation as they fall. There are numerous observations that support this hypothesis.

The problem also appears to be enhanced by soil chemistry. EMS has experienced problems in the past when elutriating alkaline materials. Alkaline materials are particularly bad when collecting the sample on polycarbonate filters. Apparently alkalinity somehow interferes with the particles sticking to the surface. MCE filters under the same conditions are less affected as far as particle sticking is concerned as evidenced by experiments where dust was collected alternately on MCE and polycarbonate filters. The EMS chemistry department was given a few randomly chosen Tronox samples for determination of pH and found alkalinity in some as high as the 10 to 11 range.

Alkaline dust also is a problem at the stage in the process in which samples on the polycarbonate filters were transferred to a carbon film on a grid for examination in the TEM. The grids prepared from alkaline dust samples when viewed in the TEM often show lost of particles and cracking of the film when polycarbonate filers are used.

The alkaline dust problem is not new and EMS has in its elutriator SOP a suggestion for using MCE filters for dealing with this interference. Accordingly, EMS prepared a few of the NGEM samples on MCE filters to show that it corrected the problem. The tradeoff is that the

MCE filters do not have the good humidity stability that the polycarbonate has so precautions must be taken to get the correct weight of deposit. On June 11th EMS was informed that NGEM did not want to use MCE filters. These samples were already prepared and analyzed prior to this decision. Use of MCE filters for samples was terminated.

The only solution for the static problem that has been successful is using increased flow rates in the IST tube, up to 130 ml/min and occasionally 138 as contrasted with a theoretical flow rate in the mid-seventies. In the past EMS has found a flow rate of 90 ml/minute to be appropriate for soil samples.

When the samples are analyzed in the TEM the recorded data includes the dimensions of the respirable fibers of the regulated asbestos types, namely, chrysotile, Amosite (cummingtonite/grunerite), tremolite, actinolite, crocidolite, and anthophylite. The fibers of importance are those included in the protocol fiber classification. The width of the protocol fibers is <0.4 um and the length is divided into two groups, 5 to 10 um and long fibers >10 um. The 95% Poisson Confidence interval for the observed concentration of fibers is also calculated.

Other asbestos fibers and non-asbestos fibers with protocol dimensions are noted in the counting sheets.

EMS Laboratories Inc.

117 West Bellevue Drive, Pasadena, CA 91105 Phone: 626-568-4065 Fax: 626-796-5282 Email: akolk@emslabs.com

Attn: Derrick Wills

Tronox-LLC-Henderson

PO Box 55

Henderson, NV 89009

Phone: (947) 375-7004

Project: Tronox LLX Henderson, 560 W. Lake Mead Dr.,

Henderson, NV/2027.001

Date Sampled: 5/13/2010 10:35 **Customer ID: TRNX26**

Customer PO: 2027.001

Received: 5/19/2010 EMS LAB No: 137822

Date Prepared: 6/9/2010 **Analysis Date:** 6/10/2010 2:30PM 8:30AM

09:13AM

Report Date:

July 7, 2010

NIOSH 7402/ISO

DRAFT, MODIFIED ELUTRIATOR METHOD FOR	THE	DETERMINATION OF ASBESTOS IN SOILS	AND BULK N	MATERIAL	METHOD
EMS Laboratory Number: 137822		Mass of Respirable Dust on Fiber:	169		
Customer Sample Number: SSAR6-01-0.00BPC		Area of collection filter:	385	mm^2	
Minimum Level of Analysis (chrysotile): CD		Grid openings area:	0.0094	mm ²	
Minimum Level of Analysis (amphibole): ADX		Grid Openings Analyzed:	94		
Magnification used for fiber counting: 9,200	X	Min. Str. Length/Max Str. Diameter:	>5/<0.4	microns	
Aspect ratio for fiber definition: 3:1					
		Analyst(s): R	adha Singh		
Dust Generator - Total Dried Sample Weight		Soil	% Moisture	9.5	%
		Air Flow Rate Through ME Opening of Dust Ger	nerator:	1370	
Not Used		Air Flow Rate Through IST Opening of Dust Ger	nerator:	130	
Used in Tumbler		Estimate Total Air Flow Through Elutriator	r:	1500	

Analytical Sensitivity:

2.58E+06

Structure /g PM 10

Limit of Detection:

7.72E+06

Structure /g PM 10

Test For Uniformity (Chi-Square results)

(Note: Amended report per client request to reflect the EPA definition of greater than 10um and less than 0.4um)

		Cou	nts		Poi	sson 95% Confidenc	e Interval
		Primary	Total				
Structure Class	Min ID Level	Str.	Str.	Density	Conc.	Lower Limit	Upper Limit
	Required			St/mm ²	Str/g PM10	Str/g PM10	Str/g PM10
Asbestos Structures>5um, ≤10um	ADX/CD	0	0	0	0	0	7.72E+06
Asbestos Structures>5um, ≤10um (Chrys)	CD	0	0	0	0	0	7.72E+06
Asbestos Structures>5um, ≤10um (Amph)	ADX	0	0	0	0	0	7.72E+06
Asbestos Structure >10um (Long)	ADX/CD	0	0	0	0	0	7.72E+06
Asbestos Structure >10um (Chrys)	CD	0	0	0	0	0	7.72E+06
Asbestos Structure >10um (Amph)	ADX	0	0	0	0	0	7.72E+06
Total Protocol Asbestos Structures	ADX/CD	0	0	0	0	0	7.72E+06
Protocol Asbestos Structures (Chrys)	CD	0	0	0	0	0	7.72E+06
Protocol Asbestos Structures (Amph)	ADX	0	0	0	0	0	7.72E+06
Total Protocol Non Asbestos Structures	NAM	0	0	0	0	0	7.72E+06

117 W. Bellevue Drive Pasadena, CA 91105 626-568-4065

Client:	Derrick Willis, Tronox LLC-Henderson	Filter Type:	MCE 385 mm ²
Report number:	137822	Magnification:	9,200x
Sample number:	SSAR6-01-0.00BPC	Grid Opening Dimension:	0.0094 mm ²
Project:	2027.001/Tronox LLC Henderson, 560 W. Lake	Mead Dr., Grid Loading:	Moderate to Heavy

Preparation Date: Analysis Date:

6/9/2010 by

Joel Paruli Radha Singh

Grid Openings

94

6/10/2010 by Asbestos Structures>5um, ≤10um (Chrys)
Asbestos Structures>5um, ≤10um (Amph)
Asbestos Structure>10um (Chrys)
Asbestos Structure>10um (Amph)
Protocol Asbestos Structures (Chrys)
Protocol Asbestos Structures (Amph) 0 0 0 0 0

Grid ID	Grid	Structure Type	Structure	Number	Dimensio	ne (um)	Level of	Mineral Type	Imaga Number	Structure Comment
Glid ID	Opening	Structure Type	Primary	Total	Width	Length	ID ID	Witherat Type	Image Number	Structure Comments
1A	C23	None Detected		-						
1A	C26	None Detected								
1A	E23	None Detected								
1A	E26	None Detected								
1A	F23	None Detected								
1A	E31	None Detected								
1A	E34	None Detected								
1A	F31	None Detected								
1A	F34	None Detected								
1A	G31	None Detected								
1A	G34	None Detected								
1A	H31	None Detected								
1A	H34	None Detected								
1A	F41	None Detected								
1A	F44	None Detected								
1 A	G41	None Detected								
1A	E51	None Detected								
1A	E54	None Detected								
1 A	F51	None Detected								
1B	C33	None Detected								
1B	C36	None Detected								
1B	E33	None Detected								
1B	E36	None Detected								
1B	F31	None Detected								
1B	F34	None Detected								
1B	G31	None Detected								
1B	G34	None Detected								
1B	H31	None Detected								
1B	F23	None Detected								
1B	F26	None Detected								
1B	C41	None Detected								
1B	C44	None Detected								
1B	E41	None Detected								
1B	E44 F41	None Detected								
1B	G51	None Detected								
1B 1B	G54	None Detected								
1B	H51	None Detected None Detected								
1B	H54	None Detected								
1C	C23	None Detected								
1C	C26	None Detected								
1C	E23	None Detected								
1C	E26	None Detected								
1C	F23	None Detected								
1C	F26	None Detected								
10	120	Hone Detected								

117 W. Bellevue Drive Pasadena, CA 91105 626-568-4065

Report Number:	137822
Sample number:	SSAR6-01-0.00BPC

Analyzed by:	Radha Singh
Date of Analysis:	6/10/2010

Grid ID	Grid	Structure Type	Structure N	umber	Dimensions (µm)	Level of	Mineral Type	Image Number	Structure Comments
	Opening			Total	Width Length	ID		zinage i valileer	Su detare Comments
1C	G23	None Detected			=				
1C	F31	None Detected							
1C	F34	None Detected							
1C	G31	None Detected							
1C	G34	None Detected							
1C	C44	None Detected							
1C	E41	None Detected							
1C	E44	None Detected							
1C	F41	None Detected							
1C	F44	None Detected							
1C	G43	None Detected							
1C	G46	None Detected							
1C	H31	None Detected							
1C	H34	None Detected							
1D	C31	None Detected							
1D	C34	None Detected							
1D	E31	None Detected							
1D	E34	None Detected							
1D	F31	None Detected							
ID	F34	None Detected							
1D	C41	None Detected							
1D	C44	None Detected							
1D	E41	None Detected							
1D	E44	None Detected							
1D	F41	None Detected							
1D	F44	None Detected							
1D	G41	None Detected							
1D	H43	None Detected							
1D	F51	None Detected							
1D	F54	None Detected							
1D	G51	None Detected							
1D	G54	None Detected							
1D	H51	None Detected							
1E	C33	None Detected							
1E	C36	None Detected							
1E	E33	None Detected							
1E	E36	None Detected							
1E	F33	None Detected							
1E	C26	None Detected							
1E	E23	None Detected							
1E	E26	None Detected							
1E	F23	None Detected							
1E	F26	None Detected							
1E	G23	None Detected							
1E	G25	None Detected							
1E	G51	None Detected							
1E	G54	None Detected							
1E	H51	None Detected							
1E	H54	None Detected							
	1154	Mone Detected							

: Count (Page of) NIOSH 7402/ISO

Report number: 137822

Sample number: SSAPC-01-0.00 BPC

File name:

Northgate

Sample Description:

169 mg

Filter Type: MCE 385 mm2

Date Sample was Run: 6/9/10

Magnification: 9,200 X

start prep: 1200 pm Stop prep: 230 pm

Preparation date: Analysis date:

6 [10/10 By JAP 6 [10/10 By Rs

(A): ADX, ADQ

Grid opening dimension:0.0094 mm²

Level of Analysis: (C): CD, CDX

Grid loading noderale to key Condition of Grid

Grid	Grid Opening	Number of structures Primary	Number of structures Total	Class	Type of Structure	Width mm	Length mm	Comments
		,						
IA	(2-3					***		·
	C2-6							
	F23							
	F26 123							
	123							
	133-1 83-4							
	B3-4					:		
	F34					<u> </u>		
	F34							
	43-1							
	434							
	113-1							
	115-4 Pu-1						-	
	124-4	,						
	44-1.							
	E5-1:							X
	ETY							· ·
	ESI							
						-		
13	(3-3							
	C3-6							
	E3-3							
	F-36.							
	R31					2.5		
	K3-4							
	1.2-1							
	624							
	13-11							
	203		· ·			, ;		
TTT (10) (20	927							

TEM-10A (2002)

TEM Asbestos Structure Count (Page of)

Report num	ber: 378	22	SAMPL		SAPG-	01-0.00	PBPC	X 9,200
Grid	Grid	Number of structures	Number of structures	Class	Type of	Width	Length	Comments
	Opening	primary	Total		Structure	Mm	Mm	
18	C4-1	_						
	C44							
	Pu-i							
	Fury						<u> </u>	
	Full Wil							<u> </u>
	W-4						 	
	HJ-1							
	1+54							†
							ļ	
10	(2.3							
	C26							
	E23							
	1926							
	F73							
	1226					·		
	623 F31		<u> </u>			<u> </u>	 	
	P-2-V						<u> </u>	
	63-1							
	43-4							
	cu-u							
	EU-1							
	1244							
	544	1						
	154-4							
	-bu-3							
	446						ţ	
	1/2/							
	(K-Y							
-	(2-1							
-114	C2-1							
	¥2-1							
	624							
	元3-1							

TEM Asbestos Structure Count (Page of)

Grid	nber: 1378 Grid	Number of	Number of	LE NO: SS	Type of	Width	Length	Comments
		structures	structures			ļ ·		
	Opening	primary	Total		Structure	Mm	Mm	***
	1							1
P	23-4							
	Cyt							
	C4-4							
	E4-1							
	Eu-l							
	Eu-1							
	Elst							
	I hull							
	1443							
	K5-1							
	1954							
	Lost							
	U5-6							
	HJ							
2								
7	(3-3							
	3-6							
	125-3							
	1=3-6							
:	=33							
	C2-6		4					
	223							
	26							
	122							
	1-26							
	623							
	526							
	65-1							
	45							
	111-1				-			
	1+1-1		-					
	4-1-1		<u>-</u>					
	1 1			 				
-	- 17							
								
			-					

	٠				410		2	<	- C - C - C - C - C - C - C - C - C - C	SCF!				,												
						700	000	9 (2012	62.5	Time	en izanjesa	60	1	e	. 0	"	C	3 ^		T	Filter No.		ST Flow	Time air	Sample
					0.4	200	2 2 2	(1) (2)	007	2			250	005	0 t V		2 5	2 × 4 U	100	825	2	Start Time		IST Flowmeter (ml /min):	Time air flow started: 600	Sample ID: SSARG-01-0,00BDC
	1	1			-					+										137	(umzam)	Tested flow rate	150	is).	600	0-10-0
					24-434	4,51	24,32	12,40	29.497 24.444	3				5.03304	0.028480.02500 3.48	0.03083 0.02490	0.03122 0.02477	0,0319	0,03157002456	0.03430	(gm)	Fina			34	००४००
						7	72	7	2					000	800	3 0 a	20.0	0.0	700	0.0			Į n	<u>.</u>		
					24.280	<u> </u>	<u> </u>	1	<u> </u>	╄				0.02490	2500	2490			2450	0.02453	(mg)	¥ Wt	Jowneter		Tumbler rpm: 45	ple weight
					0.154	0.648	0,111	0169	840.0					8	34.6	5.93	6,4 5	イナン	7.07	9.77	(mg)	Dust Weight	ME Flowmeter (mL/min): 370		古	Sample weight (g): 78.3
				-		00	6/3	0/2	4		and the second s	A Commence of the Commence of		0	20	20	0	20	B	Sy.	(min)	Time Value	70			
					13	9	77	26	12/	Dep. Rate			1771	1/1/	2///	202	222	272	164	348	deposition (ug/min)	Avg. rate of				
			-	(23		74	36		Estiimate											(min)	Optimal time				
-		-				. – . – 1		Tora	·																	
							7	(e)																		
								0								•		:								

Elutriator Data

6-8-10 #SF1 1-1-00 BPC	100000		Marshine	consent	42
#SAIII-1-00 BPC RUSH dish bot 19.23 9 Samp bot 19.23 - 19.23 - 13.09 9 GIS-715 112.22 - 19.23 - 13.09 9 Monart. > 100 x 100.58 - 93.06 Final bot.) Monart. > 100 x 100.58 - 93.06 = 8.08 % May be 12.29 - 45h 05 - 0.33 BPC Rush But 121.30 - 31.48 9 But 121.30 - 31.48 = 90.82 (inital bot.) But 121.30 - 31.48 = 90.00 But 123.48 - 31.48 = 90.00 Final bot.) But 123.48 - 31.48 = 91.96 (Final bot.) Phonoist > 100 x 99.82 - 91.96 (Final bot.) Phonoist > 100 x 99.82 - 91.96 (Final bot.) Phonoist > 100 x 99.82 - 91.96 (Final bot.) Phonoist > 100 x 99.82 - 91.96 (Final bot.)	6-8-10				
dish bot 19.23 & 100.58 & (initial lati) Samp. bot 19.81-19.23 = 100.58 & (initial lati) 615-715 112.32-19.23 = 93.06 / (Final lat.) 8105-9:05 112.29-19.23 = 93.06 - 8.02 % 8108-9:05 12.29-19.23 = 93.06 - 8.02 % 93.06 % 93.06 - 8.02 % 93.06 % 93.06 - 8.02 % 93.06 % 93.06		NO BPC P	MSH L		
615-715 112.32-19.23 = 93.06 M (Final Lot.) 8105-9105 112.29-19.23 = 93.06 - 8.08 % 93.06 M (Final Lot.) 93.06 - 8.08 % 93.06 M (Final Lot.) 93.06 M	dish bot.	19.23		58 e (inital ut.)	
% maist > 100x 100.58 - 93.06 - 8.08 % 93.06 93.06 130.822 - #SA 05 - 0.33 BPC Rush 631.84 ut. 31.48 y 123.48 - 31.48 = 99.82 (inital lat.) 810.900 123.48 - 31.48 = 92.00 123.48 - 31.48 = 92.00 123.44 - 31.48 - 91.96 (Final lat.) 810.900 123.44 - 31.48 - 91.96 (Final lat.) 90 maist > 100 x 99.82 - 91.96 - 8.55% 90 maist > 100 x 99.82 - 91.96 - 8.55%	DOMAN .	12.32 - 19.	23- 930	099	
93.06 H 10 1822 - # SA 05 - 0. 33 BPC Rush G 12 31.48 9 12 3.48 - 31.48 = 92.00 12 3.44 - 31.48 = 92.00 12 3.44 - 31.48 = 91.96 (Final 15t.) 20 noist > 100 x 99.82 - 91.96 > 8.55% 90 noist > 100 x 99.82 - 91.96 13 96					
Greek wt. 31.48 g 131.30 - 31.48 = 99.82 (inited bot.) 123.48 - 31.48 = 92.00 123.44 - 31.48 = 92.00 123.44 - 31.48 = 91.96 (Final bot.) 123.44 - 31.48 = 91.96 (Final bot.) 123.44 - 31.48 = 92.00 123.48 - 31.48 = 92.00 123.48 - 31.48 = 92.00 123.48 - 31.48 = 92.00 123.48 - 31.48 - 31.48 = 92.00 123.48 - 31					
$\frac{123.48 - 31.48 = 92.00}{123.44 - 31.48 = 91.96} (Final 15t.)$ $90.00000000000000000000000000000000000$	Bangle wt.	31.48 9/		9 1	
$\frac{8103}{900} = \frac{9100}{123.44 - 31.44 - 91.46} - 91.96 - 91.96 - 91.96 - 91.96$ $\frac{9100}{900} = \frac{9100}{900} = \frac{91000}{900} = \frac{9100}{900} = \frac{9100}{900} = \frac{91000}{900} = \frac{91000}{900} = \frac{91000}{900} = \frac{9100}{900} = \frac{9100}{900} = \frac{9100}{900} = \frac{9100}{9$		122,48-	31.48 = 92	.00	
# 150 822 - # SSA R6 - 01-00 BPC Rush	8 08 6100				
	Pio Moist	(+> 100 x			
	c lated 822	- # SSA R	6-01-00	BPC Rush	
		131.20-3	1.45 > 6	19.83 (initial 4	A 3
132.65-31.45 = 91.20 (Final WI)	7.07	122.65 - 3			.)
100 x 99.83 - 91.16 + 4.51/0	//s_1/xons	1. > 100 x			
31.16					30

EMS Laboratories Inc.

117 West Bellevue Drive, Pasadena, CA 91105 Phone: 626-568-4065 Fax: 626-796-5282

Email: akolk@emslabs.com

Attn: Derrick Wills

Tronox-LLC-Henderson

PO Box 55

Henderson, NV 89009

Phone: (947) 375-7004

Project: Tronox LLX Henderson, 560 W. Lake Mead Dr.,

Henderson, NV/2027.001

Date Sampled: 5/13/2010 10:20

Customer ID: TRNX26

Customer PO: 2027.001

Received: 5/19/2010

10:05AM

EMS LAB No: 137822

Date Prepared: 6/8/2010 **Analysis Date:** 6/9/2010

11:07AM 10AM

Report Date:

July 7, 2010

NIOSH 7402/ISO

DRAFT, MODIFIED ELUTRIATOR MET	HOD FO	R TH	E DETERMINATION OF ASBESTOS IN SO	ILS AND BULK N	MATERIAL	METHOD
EMS Laboratory Number: 137822			Mass of Respirable Dust on Fibe	er: 142		
Customer Sample Number: SA05-0.33BPC			Area of collection filte	er: 385	mm^2	
Minimum Level of Analysis (chrysotile):	CD		Grid openings are	a: 0.0094	mm^2	
Minimum Level of Analysis (amphibole):	ADX		Grid Openings Analyze	d: 104		
Magnification used for fiber counting:	9,200	x	Min. Str. Length/Max Str. Diamete	er: >5/<0.4	microns	
Aspect ratio for fiber definition:	3:1					
			Analyst(s):	Radha Singh		
Dust Generator - Total Dried Sample Weight			· •	Soil % Moisture	8.6	%
			Air Flow Rate Through ME Opening of Dust	t Generator:	1370	
Not Used			Air Flow Rate Through IST Opening of Dust	Generator:	130	
Used in Tumbler			Estimate Total Air Flow Through Elutr	riator:	1500	

Analytical Sensitivity:

2.77E+06 Structure /g PM 10

Limit of Detection:

8.31E+06 Structure /g PM 10

Test For Uniformity (Chi-Square results)

(Note: Amended report per client request to reflect the EPA definition of greater than 10um and less than 0.4um)

		Cou	nts	. "	Pois	son 95% Confidenc	e Interval
		Primary	Total				
Structure Class	Min ID Level	Str.	Str.	Density	Conc.	Lower Limit	Upper Limit
	Required			St/mm ²	Str/g PM10	Str/g PM10	Str/g PM10
Asbestos Structures>5um, ≤10um	ADX/CD	0	0	0	0	0	8.31E+06
Asbestos Structures>5um, ≤10um (Chrys)	CD	0	0	0	0	0	8.31E+06
Asbestos Structures>5um, ≤10um (Amph)	ADX	0	. 0	0	0	0	8.31E+06
Asbestos Structure >10um (Long)	ADX/CD	0	0	0	0	0	8.31E+06
Asbestos Structure >10um (Chrys)	CD	0	0	0	0	0	8.31E+06
Asbestos Structure >10um (Amph)	ADX	0	0	0	0	0	8.31E+06
Fotal Protocol Asbestos Structures	ADX/CD	0	0	0	0	0	8.31E+06
Protocol Asbestos Structures (Chrys)	CD	0	0	0	0	0	8.31E+06
Protocol Asbestos Structures (Amph)	ADX	0	0	0	0	0	8.31E+06
Total Protocol Non Asbestos Structures	NAM	1	1	1	2.80E+06	0.07E+06	15.4E+06

Approved by Technical Director

117 W. Bellevue Drive Pasadena, CA 91105 626-568-4065

Client:	Derrick Willis, Tronox LLC-Henderson	Filter Type:	MCE 385 mm ²
Report number:	137822	Magnification:	9200
Sample number:	SA05-0.33BPC	Grid Opening Dimension:	0.0094 mm ²
Project:	2027.001/Tronox LLC Henderson, 560 W. Lake Mead Dr.,	Grid Loading:	Moderate to Heavy

Preparation Date: Analysis Date:

6/8/2010 by

Joel Paruli Radha Singh

Grid Openings

104

6/9/2010 by Asbestos Structures>5um, ≤10um (Chrys) Asbestos Structures>5um, ≤10um (Amph) Asbestos Structure>10um (Chrys) 0 0 0 0 Asbestos Structure > 10um (Amph)
Protocol Asbestos Structures (Chrys)

Protocol Asbes			ŏ						
Grid ID	Grid Opening	Structure Type	Structure Number Primary Total	Dimensions ((μm) Length	Level of ID	Mineral Type	Image Number	Structure Comments
1A	E23	F	Timay Tous		7.61				Non Asbestos
1A	E26	None Detected		1,00	7.01				
1A	F23	None Detected							
1A	F26	None Detected							
1A	E31	None Detected							
1A	E34	None Detected							
1A	F31	None Detected							
1A	F34	None Detected							
1A	G31	None Detected							
1A	G34	None Detected							
1A	H31	None Detected							
1A	E41	None Detected							
1A	E44	None Detected							
1A	F41	None Detected							
1A	F44	None Detected							
1A	C51	None Detected							
1A	C54	None Detected							
1A	E51	None Detected							
1A	E54	None Detected							
1A	G51	None Detected							
1A	G56	None Detected							
1A	H53	None Detected							
1B	C33	None Detected							
1B	C36	None Detected							
1B	E33	None Detected							
1B	E36	None Detected							
1B	C41	None Detected							
1B	C44	None Detected							
1B	E41	None Detected							
1B	F43	None Detected							
1B	F46	None Detected							
1B	G43	None Detected							
1B	G46	None Detected							
1B	F51	None Detected							
1B	F54	None Detected							
1B	G51	F		0.11	8.91				Non Asbestos
1B	G56	None Detected							
1B	E53	None Detected							
1B	E56	None Detected							
1B	F53	None Detected							
1B	F56	None Detected							
1 B	F61	None Detected							
1B	F64	None Detected							

117 W. Bellevue Drive Pasadena, CA 91105 626-568-4065

Report Number:	137822
Sample number:	SA05-0.33BPC

_		
1	Analyzed by:	Radha Singh
ı	Date of Analysis:	6/9/2010

Grid ID	Grid	Structure Type	Structure Number		Level of	Mineral Type	Image Number	Structure Comments
L	Opening		Primary Total	Width Length	ID		l	
1C	E26	None Detected						
1C	F23	None Detected						
1C	F26	None Detected						
1C	G23	None Detected						
1C	G26	None Detected						
1C	H23	None Detected						
1C	C34	None Detected						
1C	E31	None Detected						
1C	E34	None Detected						
1C	F31	None Detected						
1C	G33	None Detected						
1C	G36	None Detected						
1C	C41	None Detected						
1C	C44	None Detected						
1C	E41	None Detected						
1C	C51	None Detected						
1C	C54	None Detected						
IC	E51	None Detected						
1C	E54	None Detected						
1C	F51	None Detected						
1C	F54	None Detected						
1D	C26	None Detected						
1D	E23	None Detected						
1D	E26	None Detected						
1D	F23	None Detected						
1D	F26	None Detected						
1D	G23	None Detected						
1D	G26	None Detected						
1D	F31	None Detected						
1D	F34	None Detected						
ID	G31	None Detected						
ID ID	G34	None Detected						
1D	E33	None Detected						
ID	E36	None Detected						
ID	F33	None Detected						
1D	F36	None Detected						
ID	G41	None Detected						
1D	G44	None Detected						
ID ID	H41	None Detected						
1D	H44 G51	None Detected						
1D 1E	E23	None Detected None Detected						
1E	E26	None Detected						
1E	F23	None Detected						
1E	F26	None Detected						
1E	G23	None Detected						
1E	E31	None Detected						
1E	E34	None Detected						
1E	F31	None Detected						
1E	F34	None Detected						
1E	C41	None Detected						
12	C41	Hone Detected						

NIOSH 7402/ISO

117 W. Bellevue Drive Pasadena, CA 91105 626-568-4065

Report Number:	137822
Sample number:	SA05-0.33BPC

Analyzed by:	Radha Singh
Date of Analysis:	6/9/2010

Grid ID	Grid Opening	Structure Type	Structure Primary	Number Total	Dimensio Width	ns (µm) Length	Level of ID	· Mineral Type	Image Number	Structure Comments
1E	C44	None Detected	r ranker j		177001	Dengar				
1E	E41	None Detected								
1E	E44	None Detected								
1E	C54	None Detected								
1E	E51	None Detected								
1E	E54	None Detected								
1E	F51	None Detected								
1E	F54	None Detected								
1E	G53	None Detected								
1E	G56	None Detected								

104 CM.0

: Count (Page of) NIOSH 7402/ISO

Report number: 137822 Sample number: SAOS - 0,33 BPC

File name:

Northgate

Sample Description:

142 mg

Filter Type: MCE 385 mm2

Date Sample was Run: 6 - 8 - 10

Magnification: 9,200 X

Preparation date: Analysis date:

6 8/10 By JAP 6/9/0 By PS 10AM

Grid opening dimension:0.0094 mm²

Level of Analysis: (C): CD, CDX

Grid loading

Moderatz

(A): ADX, ADQ Condition of Grid

Grid	Grid Opening	Number of structures Primary	Number of structures Total	Class	Type of Structure	Width mm	Length mm	Comments
14	₿2-3				1=	<i>(</i> ()	70	Nonash
	E26							
	F23							
	F2.6							
	1-3-1		·					
	E3-4							
	F3-1			<u> </u>				
	134					5		
	613-1							
	U13-4							
	13-1							
	15u-1							
	EU-Y							·
	FU-1							
	15 4-4							
	5-1							
	C5-4							·
	EJ-							
	125-41 W3							
	47.3							
N	57-5							· · · · · · · · · · · · · · · · · · ·
0	世3							
						· · · · · · -		
	- A							
18	2-2		····		·		<u> </u>	
	C3-f					, , , , , , , , , , , ,	· · · ·	
	23							
	F236				·			
	01-1							
	CU-Y							
	E413							

TEM-10A (2002)

TEM Asbestos Structure Count (Page of)

Grid	nber: 1372 Grid	Number of structures	Number of structures	Class	Type of	Width	Length	Comments
	Opening	primary	Total		Structure	Mm	Mm	***
5	F46							
	hu3							
	6146							
	F5-1 P5-4							<u> </u>
	454						100	Nonasb
	0=6					1.	82	IA fin can to
	Es 3						 	
	Er-6						<u> </u>	
	1=53.							
	1956					· <u>·</u>		
	F-6-1							
0	F6-4							
10	F 2:3			***************************************				
	123							
	1 35							
	6123							
	526		<u> </u>					
	C3-11							
	C 5-11							
	F2							
	15 36							
	63-3							
	436							
	C4-1							
	C4-4							
	Eu-							
	Cirl							
	CITY					[
	CJ J							
7	FSU							
-	- 17 4							
D	62-6							
''	E23							

TEM Asbestos Structure Count (Page of)

Grid	Grid	Number of structures	Number of structures	Class	Type of	Width	Length	Comments
		j .			·	*** 1		
	Opening	primary	Total		Structure	Mm	Mm	İ
Ď	1226						<u> </u>	
	1223							
	RZZ						-	
	423			 				
	62-6							
	621							
	T-3-U							
	1634							
	63-4							
	To got							
·	E 3-E							
	53-7							
	1556							
	1514-1							
	MIA-M.							
	1-14-							
}	1+4-4							
1	45-1							
	1 - 3							
E	F2-3							
	F2-6			·				
	152.6							
	423							
	123-4 43-4					<u> </u>		
	F3+							<u> </u>
	1F34							
	C1-1:							
	Cù-u							
	Fil							<u> </u>
	Eu-1 F4-4							
	tru		- -					
	$ E \subset I $				-			
	EFI							
	PER!							
	656							
	1053							

Elutriator Data

Lab#: 187822

Sample ID: SAOS -0.33 PSC Time air flow started: 750

IST Flowmeter (mL/min): しる

Date: 6-8-10

Client: North as a fee

Sample weight (g): 68 /

Tumbler rpm: 45

ME Flowmeter (mL/min): 1370

	. <u></u>	1	_ 	1	/		Mir !		_						,				
		2	7		38	# 1120	3 1107	1045	1 1027	Time	Se Se	7/	e	\s	7	ω	2	_	Filter No.
					1140, 25	1122, 30	1109,15	[0s2	031			-•	1130	00	7040	1020	000	086	Start Time
▼	_										<							140	Tested flow rate (mL/min)
-		-	,		42.42	24.568	24.515	24,660	24.890					0.0422	0.048	0.0432	0.0415	0.046BG	Tested flow rate Final Filter Wt (mL/mln) (mg)
					0 24.370	24. 390	24.373	024,434	24.520					0.042240.02449	0.041880.0243	0.043230.02451	81 420,012110.0	0.04699 0.02424	t Initial Filter Wt (mg)
				,	170	178	192	326	370					17.75	17.45	18,72	7.33	22,75	Dust Weight (mg)
					ئة 20	2.30	S G	CO.	Ą					8	20	20	E	30	Time Value (min)
				,	5	7/	29	756	93	Dep. Rate My.				592-7	872	C36	867		Avg. rate of deposition (ug/min)
						71		77		Estiimate									Optimal time (min)
							6-8-10						•						

* WHAT DOWN @ IFF

	Moistone content	42
138029	THE STANCE CASCALLANT OF THE STANCE OF THE S	
6-870		
	Push	
dish bot. 19.23 g	23 = 100.58 e (initial ust.)	
	23 = 93099	
0.05-9:05 112.29-19	9.23 = 93.06 / (Final lot.)	
% moist. > 100x 100	0.58 - 93.06 - 8.08 %	
	93.06	
#139822 - #SADS	5-0-33BPC Rush	i
1 31.48 q		
Samo Let. 131.30 -	31.48 = 99.82 (1 mtal lot.)	
8 9 9 05 123,48-	31.48 = 92.00 -31.48 = 91.96 (Final wt.)	
	31998	
% maist > 100 x	99.82 - 91.96 - 8.95%	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	913 96	
	RG-01-00 BPC Rush	
# 120822 - # SSA	K6 FUI OG BI G MIST	
1 31,45°		
131.28-	31.45 = 99.830 (mital wt.)	
19265-	31.45 = 91.200 hmal wh.)	
132.6S- 05122.61-	31.45 = 91.16 (have wh.)	
monst. > 100 x	99.82-91.16 - 9519	
	91.16	
	37	
	<u> </u>	

Spot Size Measurements

Scope:

#60B

Date:

May 2010

Name:

Conditions of Measurements

High Voltage:

100K

Beam Current:

10 mA

Magnification:

19,200

Condenser Aperture Size: #L

Measurements from a photo

Shortest diameter:

8-(-

HIH

Longest diameter:

HUHL

Average:

8-75

mm

Spot Size Calculation

Spot size in μ m = (average spot size in mm) x 1000 μ m x 0.4125 / \sqrt{g} Magnification

Note: 1.65/4 = 0.4125 (see the Hitachi Fax)

TEM CAMERA CONSTANT DETERMINATION

TEM	F600B

Measured and Calculated by_____

Date May 2010

Camera Constant (mm A) = D (mm) X 1/2 X d(A)

where D (mm) is the diameter of a gold ring and

d (A) is the d-spacing in Angstroms for a particular reflection

$$CC(1^*) = (24)$$

mm) X
$$1/2$$
 x $2.355 = 2 (-3)$

$$CC(2^*) = (27/8)$$

mm)
$$X \frac{1}{2} \times 2.039 = 2 \times 34$$

$$CC(3^*) = (39.3)$$

mm)
$$X \frac{1}{2} \times 1.442 = 28.39$$

$$CC(4^*) = (45^- - 9)$$

Average Camera Constant = 283

* 1 is the first largest diameter ring. 2 the second, etc.

Average Camera Constant = (CC<1> == CC<n>) X 1/n

For gold:

08/07/01 csl

DATE:	May 2010	
WEEKLY (CALIBRATION	
MONTHLY	CALIBRATION 3mch	
AFTER SE	RVICE CALIBRATION_	

A-600/B-600/C-600

BY:	 Z;	 e e

Measurement	Number of Spacing Flourescent Screen	Distance	Number of Spacing Film
	Magnification	(mm)	Magnification
- 52. Osts		12 0000	
1 53/00/	- F1260	51/11	T1x0
2	- 19260		270
3 >3/6	- 19°0×0	=1.5-112 - 9	270
4 -16	- 16' 11 80	5/1/2 - 9,	180
5 53.4/6	- 19'260	5/112 - 9	110
6 ′	A begularior to a program from the first resource of the first res	51 1/2 - 9,	180
7 av	4 19,200		
8		on 1 92	rav
9			
10			
AV	ERAGE:		

JPERATING VOLTAGE /₪ KV

54, 864 lines/inch or 2,160 lines/mm or $0.463\mu m/line$

28, 800 lines/inch or 1,134 lines/mm or 0.882 \u03c4m/line

15, 240 lines/inch or 600 lines/mm or 1.67μm/line

16.94 μm for one bar and one opening for Ni screen on

EM CALIBRATION 2 992)

/ [ln/i(Si)]	18.74
K= [Cn/C(Si)]	C(Si)=

(\	7464	Ž	1.8251									
	RUN 6	I(Si)=	<u>=</u>	395	1983	2576	7464	584	2852	928	22	2351	3333
		16203	조	1.5587	1.3885	0.9906	.	0.7018	1.4289	1.4895	60.523	1.8383	3.6783 9433 4.0174
	RUN 5	=(iS)	므	1004	4714	5708	16203	1195	4998	1753	7	4473	9433
		16554	조	1.4112	1.3641	1.0028	•	0.6428	1.3973	1.4289	4.2645	1.73	3.6783
	RUN 4	(Si)=	드	1133	4902	5761	16554	299 1333	5222	1867	29	4856	10526
		15953	존	1.5	4.	1.0		0.6	-	4.	9.9	4.6	5.2
	RUN 3	I(Si)=	드	986	4447	5455	15953	1311	5845	1821	12	4934	7051
		12101	ᅕ	1.0674	1.3077	1.0171	~	0.7574	1.566	1.6668	4.1092	2.0923	3.6059
1	RUN 2	=(iS)I	드	1095	3738	4152	12101	827	3406	1170	22	2935	7849
		2860	χ	1.3034	1.3207	1.027	•	0.8144	1.5336	1.6483	17.078	1.9669	
	RUN 1	I(Si)= 2	ln	1694	6992	7768	22860	0.97 1453	6570	2235	10	5898	
			ပ်	1.81	7.57	6.54	18.74	0.97	8.26	3.02	0.14	9.51	43.83
			. c	Na	Mg	₹	:S	×	Ċ	F	M	Fe	0

** NVLAP REQUIREMENTS **
1.0 < K(Na) wrt Si < 4.0
1.0 < K(Mg) & K(Fe) wrt Si < 2.0
1.0 < K(Al) & K(Ca) wrt Si < 1.75

K(Mg)/K(Fe) < 1.5

stdev <10% for Mg, Ai, Si, Fe stdev <20% for Na wrt mean value of k-factor wrt Si

	,												
	(4628	Ž		1.5412	1.038	•	0.6599	1.163	1.4624	5.7624	1.5689	5 293
	RUN 13	(Si)=			1213	1556	4628	363	1754	510	9	1497	2045
		25374	조	1.5893	1.3705	0.9563		0.5666	1.1375	1.2794		1.4494	4.4571
	RUN 12	I(Si)=	드	1542	7479	9260	25374	2318	9832	3196		8884	13315
		25368	호	1.5879	1.37	0.9561	. -	0.5672	1.1394	1.2823	7.5806	1.4563	1,6662
	RUN 11	(Si)=	드	1543	7480	9260	25368	2315	9813	3188	25	8840	35609
		14684	ž	1.4442	1.3715	1.0162	•	0.6414	1.4064	1.3895		1.7048	3.6262
	RUN 10	I(Si)= 1	드	982	4325	5043	14684	1185	4602	1703		4371	9471
		15830	Ϋ́	1.6094		0.9663	•	0.5444	1.1151	1.2794	16.894	1.3618	6.2225
1	RUN 9	I(Si)= 1	'n	950	4331	5717	15830	1505	6257	1994	_	5899	5950
		4491	Kn		1.362	0.9989	χ	0.5601	1.0888	1.2855	2.5808	1.6027	5.5458
	RUN 8	l(Si)=	ln L		1332	1569	4491	415	1818	563	13	1422	1894
		12627	Kn	1.4365	1.4478	0.9885	<u> </u>	0.5947	1.2224	1.3749	23.583	1.6477	4.8398
	RUN 7	(Si)=	┖	849	3523	4458	12627	1099	4553	1480	4	3889	6102

137822 -----

	Laboratory Subm	ittal Fori	n		- Annual	Page 1 of 1		
Date:	Time:		Relinquish	ned by:				
Client:	Northgate		Date of SI	nipment:				
Address:	1100 Quail Street, Suite 102	,	Shipped f	rom:	Carrier			
	Newport Beach, CA 92660		Client P.C). No:	2027.01			
Telephone:	949-260-9293		Client Project ID: COC# 02027.01.2127					
Contact:	Demck Willis		1701	NOX LLC.	Henderson	1		
Results via:	□ Fax No:				mck-willis		/ Verbal	
(Complete written repo	rts will follow all analyses, in addition to any	prior verbal, fax, or e	email results)					
Turnaround Time			Sample P	reservatives:				
Number of Samp			Sampler's	Name:				
Date & Time of S		-10	Holding T	imes:	Signa	ture:		
Туре:	□ Water □ Waste Water	□ Soil	□ Filter	□ Impinger	☐ Sorbent 1	Γube □	Other	
EMS Only	E Client Sample No.	TELEPHONE	ripioi/ /5 6	loit	されて、Analysis	V	ldme/Weight	
1	SSAL5-02.0.00BPC				Elutriato	or		
2	SSAL5-02.0.33BPC							
3	SA19-0.33BPC							
4	SA19-0.33BPC_FD							
s	SSAL5-01-0.00BPC							
6	SSAL5-01.033BPC							
7	SSAR6-01-0.00BPC	SEE A	TTACHM	ENT				
8	SSAR6-01-0.33BPC							
-	SA05-0.33BPC							
10			·					
	EDD: email	Frank	LHaa	MY DUM	cM COM			
11	OVV. OVVIVOR	- 1000	7, 13,6	1. 621.4	<u> </u>			
13								
14								
15								
16					\wedge			
For EMS Only		2 –	····	- A				
Laboratory Number:			Received by	$r \sim 1$	12:	Time:	10:05	
Date of Package Del	livery: 5/19/2010		Shipping Bil			yes		
Condition of Package	e on Receipt:	OK		Custody Seal:	<i>,</i> 	NONE		
Number of Samples:				stody Signature:				
Disposition of Sampl	es: EMS LABS		Misc. Info:		SF 7/06	-	7	

EMS Laboratories 117 West Bellevue Drive / Pasadena CA 91105-2503 / 626-568-4065

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate. CHAIN-OF-CUSTODY / Analytical Request Document

Page: Cooler#

및 및

Newport Bezch, CA 92660 (949) 260-9293 Lab PM email akolk@emslabs.com Lab PM: Lab Name: EMS Laboratories, Inc. Address: ITEM# pplicable Lab Quote #: Additional Comments/Special Instructions: one/Fax: SSAR6-01-0.00BPC SSAL5-01-0.33BPC SSAL5-01-0.00BPC SA19-3.33BPC_FD SSAL5-02-0.33BPC SSAL5-02-0.00BPC SA19-0.33BPC SA05-0.33BPC SSAR6-01-0.33BPC 117 W Bellvue Dr 626-568-4065 Pasadena, CA 91105 SAMPLE ID
Samples IDs MUST BE UNIQUE Site PM Name Phone/Fax: (9 Ş Required Project Information:

Site ID #: TRONOX L Site PM Email: derrick.wills@ngem.com Site Address Project# Henderson SAMPLE LOCATION SSAL5-01 SSAR6-01 SSAL5-02 SSAR6-01 SSAL5-01 SSAL5-02 560 W Lake Mead Drive TRONOX LLC. HENDERSON (949)375-7004 SA05 SA19 SA19 2027.01 Derrick Wills State, Zip NV, 89015 8 MATRIX CODE S 8 ဗ 8 8 8 SO ဗ HIPPING INFO ი G=GRAB C=COMP 0 0 С 0 O 0 0 n Tracking #: Company: FD z SAMPLE TYPE z z z z z z z Send EDD to Frank.Hagar@ngem.com
CC Hardcopy report to PDF Electronic Version Only - FTP Upload Required Invoice Information: Send Invoice to: City/State CC Hardcopy report to Address: PO # 05/13/2010 05/13/2010 05/13/2010 05/13/2010 05/13/2010 05/13/2010 05/13/2010 05/13/2010 05/13/2010 SAMPLE DATE PO Box 55 Henderson, NV 89009 05/12/10 13:35 11:30 10:20 10:35 10:35 11:30 11:55 11:55 12:30 12:30 29:57 MG SAMPLE TIME DATE TIME GOCEPTED BY / AFFILIATION Francisco Barron #OF CONTAINERS ω ယ ω Phone #: (949) 260-9293 Comments/Lab Sample I.D. COC# 02027.01.2127 Total # of Samples: 9 × × × UNPRES \$100 100 B z Tame: 13: 35 Temp in 0C Sample Receipt Conditions Rush Š Samples on Ice? ≺/z YX Event Complete? (S) Y/2 Sample Y/N Y/N intact? Mark One Y/N **∀**/N Trip Blank

environmental management, inc. 1100 Quall Street, Suite 102 northgate

Newport Beach, CA 92660 (949) 260-9293

CHAIN-OF-CUSTODY / Analytical Request Document

The Chair-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.

COC# 02027.01.2127

Total # of Samples: 9

의 의

Lab Name: EMS Laboratories, Inc. Lab PM: Address: ITEM# pplicable Lab Quote #: ab PM email none/Fax: Additional Comments/Special Instructions: SA19-0.33BPC_FD SSAL5-02-0.33BPC SSAL5-02-0.00BPC SA05-0.33BPC SSAR6-01-0.00BPC SSAL5-01-0.33BPC SSAL5-01-0.00BPC SA19-0.33BPC SSAR6-01-0.33BPC Tony Kolk 117 W Bellvue Dr 626-568-4065 Pasadena, CA 91105 SAMPLE ID
Samples IDs MUST BE UNIQUE Site PM Name Phone/Fax: (9 Required Project Information:

Site (D #: TRONOX L Ç Site Address 560 W Lake Mead Drive Site PM Email: Project # Henderson SAMPLE LOCATION SSAL5-02 SSAL5-02 SSAR6-01 SSAR6-01 SSAL5-01 SSAL5-01 (949)375-7004 TRONOX LLC. HENDERSON SA19 SA05 SA19 derrick.willis@ngem.com 2027.01 Derrick Willis State, Zip | NV, 89015 RELINQUISHED BY / AFFILIATION HIPPING INFO. SO ဗ 8 8 ဗ S SO S ဗ MATRIX CODE C C C 0 0 0 G=GRAB C=COMP O റ C Tracking #: Company: Ð SAMPLE TYPE z z z z z Send EDD to Frank.Hagar@ngem.com
CC Hardcopy report to PDF Electronic Version Only -- FTP Upload Required invoice information: Send invoice to: CC Hardcopy report to City/State. Address: 05/13/2010 P O ** 05/13/2010 05/13/2010 05/13/2010 05/13/2010 05/13/2010 05/13/2010 05/13/2010 05/13/2010 SAMPLE DATE PO Box 55 Henderson, NV 89009 05/13/10 13:35 11:30 11:30 11:55 12:30 20 10:20 11:55 12:30 10:35 10:35 SAMPLE TIME DATE TIME ω ω ω ω **#OF CONTAINERS** ω ω ယ ω w Phone #: (949) 260-9293 Comments/Lab Sample I.D. Filterad PhB-Asbestos UNPRES Regular z 13:31 Temp in 0C Sample Receipt Conditions Rush Samples Y/N YZ (Z on Ice? Event Complete? ž ₹ Z Y/N Sample intact? Mark One Y/N ž Trip Blank

SAMPLE LOG-IN SHEET

Lab Name	10 1000	····	Pa	age(of	
Provinced Province	NS LABS		Log is Ned.			
Received By (Print	V-10101116	Λ	Log in Date	519-	10	
Received By (Signat	ture)					
	Sampl	e Delivery Gr	oup No.			
		EPA	Correspon		4	arks
		SAMPLE #	Sample Tog#	Assigned Tag#	Condition of Sa et	ample, Shipment
Remarks		177822	SSALS-UZ.	137822-02	60	OD
		12700	SSAL5-02.	137822-02		
1. Custody Seal(s)	Present Absent Intact/Broken	17/04	0.33BPC SA19-0.33	0.33 137822-		
	\sim	10/800	BRC	0.33		
2. Custody Seal Nos	580187/580193 580196/580195	127000	SAM-0.33	137822-]	
3. Chain of Cutody		17/862	BPC_FD	0.33 FD		
Records 4. Traffic Reports or	Present/ Absent	137822	0.00 BPC	137822-		·.
List	Present Absent	12-	SSALTO-OT.	137822-		
5. Air Bill	A <u>ir Bill</u> Sticker	12/802	0.033BR	01.0.33		
6 Air Dill No 743	Present Absent 3550634180/4135	137m	SCAPG-OI.	137822-		
1		177000	SSAPG-OL	137822-		
7. Sample Tags Sample Tag Numbers	Present/ Absent Listed/Not Listed	137822	0.33BPC	01.0.33		
8. Sample Condition	Intack/Broken/Leaking Chain of Custody	137822	SAU5-0.33 BPC	137822- D.33	V	
9. Does information o	n custody					
records, traffic repo						
sample tags agree?	yes/no					
10. Date Received by	10:08					
II. IIme Received	<u>IV</u>					
)	Transfer					
Fraction	Fraction					
Area	Area			.		·
Ву	Ву					
0n	On O					
Contract Client and At	tach Records of Resolution	חפ			······································	
Received By		ogbook No.				
Date	5-19-10 I	ogbook Page N	0.			

From: Origin ID: LASA (949) 514-9982 Sonny Nguyen(NGEM)c/o Susan Crowley Tronox 560 W. Lake Mead Parkway

Henderson, NV 89015

......

SHIP TO: (626) 568-4065

BILL SENDER

Tony Kolk EMS Laboratories, Inc. 117 W BELLEVUE DR

PASADENA, CA 91105

Ship Date: 18MAY10 ActWgt: 45.0 LB CAD: 100845654/INET3010

Dims: 24 X 14 X 16 IN

Delivery Address Bar Code

Ref # 10203.01.02 Invoice # PO # Dept #

MPS# 7935 5063 4180

WED - 19 MAY A2

PRIORITY OVERNIGHT

Mstr# 7935 5063 3919 0201

91105

CA-US

QZ WHPA

BUR

505G1 @180/SFI

Please fold this document in half and place it in the waybill pouch affixed to your shipment so that the barcode portion of the label can be read and scanned.

***WARNING: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

1. Fold the printed page along the horizontal line.

2. Place label in shipping label pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$500, e.g. jewelry, precious metals, negotiable instruments and other items listed in our Service Guide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

service Guide. Written claims must be filled within strict time limits, see current FedEx Service Guide.

LEGAL TERMS AND CONDITIONS OF FEDEX SHIPPING DEFINITIONS. On this Air Waybill, "we", "out", "us", and "FedEx" refer to Federal Express Corporation, its subsidiaries and branches and their respective employees, agents, and independent contractors. The terms "you" and "your" refer to the shipper, its employees, principals and agents. If your shipment originates outside the United States, your contract of carriage is with the federal subsidiary, branch or independent contract or was originally adopted by ship utilizing our automated systems, meters, manifests or washills. The term "shipment" means all packages which are tendered to and accepted by us on a single Air Waybill. AIR CARRIAGE NOTICE for any international shipments by air, the Warsaw Convention, as amended, may be applicable. The Warsaw Convention, as amended, will then govern and in most cases into the U.S. liability is limited to \$9.07 per pound (205 per kilogram), unless a higher value for carriage is declared as described below and you pay any applicable supplementarry charges. The interpretation and operation of the Warsaw Convention, is all the minist sedEx's flaibility. For example in the U.S. liability is limited to \$9.07 per pound (205 per kilogram), unless a higher value for carriage is declared as described below and you pay any applicable supplementarry charges. The interpretation and operation of the Warsaw Convention, sa amended, many years for the contract of cooks by Road (the "CMR") are subject to the terms and conditions of his lability limits many vary in each country. There are no specific supplementary charges. The interpretation and operation of the Warsaw Convention is lability limits many vary in each country. There are no specific supplementary of the contract of cooks by Road (the "CMR") are subject to the terms and conditions of the CMR and this Air Waybill to the contract of the CMR and this Air Waybill to the contract of