

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Northgate Environmental Management, Inc. 1100 Quail Street Ste. 102 Newport Beach, CA 92660 ATTN: Ms. Cindy Arnold May 20, 2010

SUBJECT: Tronox LLC Facility,2010 Parcels, Henderson, Nevada, Data Validation

Dear Ms. Arnold,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on May 5, 2010. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 23105:

SDG # Fraction

G0D140559 Polychlorinated Biphenyls, Dioxins/Dibenzofurans G0D140560 G0D280454

The data validation was performed under Stage 2B/4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Standard Operating Procedures (SOP) 40, Data Review/Validation, BRC 2009
- Quality Assurance Project Plan Tronox LLC Facility, Henderson Nevada, June 2009
- NDEP Guidance, May 2006
- USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June 2008
- USEPA, Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Diobenzofurans Data Review, September 2005

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

		S	T	Т													T	Τ		Т			Τ	Τ			Τ	Τ	Τ			T	Τ	9	
	F	3	-	+	+		-		-												\neg				+	1	\uparrow					1	\top	0	
		S																																0	
		≥																																0	
		s																																0	
	-	3			-†																												Τ	0	
		s S	+		-†																									_				0	
	ŀ	2			-	-					_														\neg									0	
		<u>_</u>	╉		+																												\neg	0	
	ŀ	2	╉	-	-+					_																								0	
		-	-	-		-	-			_																							-	0	
ls)		-					_																										\neg	0	
LCe		2	-	_	-		_											-						-							_		+		
Pai	ŀ	5	-+	_	-			<u> </u>											_		_	\neg	-					-					\rightarrow	0	
ŏ		>	-+		-+	-			-		-	-		\vdash				-+							-								-+	0	
U O	-	~	-+		-				┣	\vdash			 					-					-		-+	-+					_		+		
E.		5	-		-+						<u> </u>								_					-	\dashv	\dashv						┝─╋	-+		
2	-	S	\dashv										-		<u> </u>	<u> </u>																┢──╋	\neg		
L C		3										-											-									┝──┤	-+	_	
rso		S																													┝──┤	┝─╋	\rightarrow	-	
lde		3			_				ļ				<u> </u>											-	_							\vdash		-	
ler		S																														\vdash	\vdash	-	
e, l		3										<u> </u>																			\vdash	\vdash	\vdash	_	
gat		ν																														\square	┝─┥	_	
E		≥																								_								_	
₿ 2		S																														\square			
U U		≥				1																											\square		
		S																																-	
lou		≥																																0	
l 5		S																															┝──┥	<u> </u>	
2 (]		≥																																_	
310	cins 90)	S	0	1	1	-	•																											7	
#2;	Dio) (82!	≥	2	0	0		'																											5	
N N	ž) Bs	S	1	١	•	0	F																											-	
	PCI (805	≥	,	ı	,	+	0			Γ																								-	
	щщ		/10	/10	110	/10	10				Γ			Γ	Γ																				
	DAT DUI		5/26	15/26	5/26	5/26	15/26																												
	<u>ш</u> о		5	10 0	10 0	6	10	!	\vdash	\square	┢		┢	1		\uparrow	\square																		
			5/05/	5/05/	5/05/	5/05/	5/05/										l																		
			ŏ	ŏ	ŏ	1 di		-	┢	┼─	-	-	-	\vdash	-	┢		-	-	\vdash									-		┢	┝─┥	\vdash		
			ۍ	0	0	4	4										ŀ																		
2B/4	5	Soil	4055	4056	4056	8045	8045					1																		1				ΛLR	
age	SD	ater/.	00	j O	100	30D2	30D2																											F	
s I		>	U		0	0		Ί																											
1.1.2															1														1	1		1 3			

•

Tronox Northgate Henderson Worksheet

EDD Area	Yes	No	NA	Findings/Comments
I. Completeness	1		1	
Is there an EDD for the associated Tronox validation report?	x			
II. EDD Qualifier Population				
Were all qualifiers from the validation report populated into the EDD?	x			
III. EDD Lab Anomalies				
Were EDD anomalies identified?	x			
If yes, were they corrected or documented for the client?	x			See EDD_discrepancy_ form_LDC23105_051910.doc
IV. EDD Delivery		9		
Was the final EDD sent to the client?	x			

Tronox LLC Facility,2010 Parcels, Henderson, Nevada Data Validation Reports LDC #23105

Polychlorinated Biphenyls

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility, 2010 Parcels, Henderson, Nevada

Collection Date: April 27, 2010

LDC Report Date: May 17, 2010

Matrix: Soil/Water

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 2B & 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): G0D280454

Sample Identification

EB-0427200-PF Q3-PF-3-1-0.0** Q3-PF-3-1-0.0MS Q3-PF-3-1-0.0MSD

**Indicates sample underwent Stage 4 review

Introduction

This data review covers 3 soil samples and one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8082 for Polychlorinated Biphenyls.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of multicompound compounds were performed for the primary (quantitation) column as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Retention times (RT) of all compounds in the calibration standards were within QC limits.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

Retention times (RT) of all compounds in the calibration standards were within QC limits.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated biphenyl contaminants were found in the method blanks.

Sample EB-0427200-PF was identified as an equipment blank. No polychlorinated biphenyl contaminants were found in this blank.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Although the MS/MSD percent recoveries (%R) were not within QC limits for one compound, the LCS percent recovery (%R) was within QC limits and no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

XI. Target Compound Identification

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XII. Project Quantitation Limit

All project quantitation limits were within validation criteria for samples on which a Stage 4 review was performed.

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG G0D280454	All compounds reported below the PQL.	J (all detects)	A

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2010 Parcels, Henderson, Nevada Polychlorinated Biphenyls - Data Qualification Summary - SDG G0D280454

SDG	Sample	Compound	Flag	A or P	Reason (Code)
G0D280454	EB-0427200-PF Q3-PF-3-1-0.0**	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, 2010 Parcels, Henderson, Nevada Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG G0D280454

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2010 Parcels, Henderson, Nevada Polychlorinated Biphenyls - Equipment Blank Data Qualification Summary - SDG G0D280454

No Sample Data Qualified in this SDG

Tron	lox Northga	ate Henc	lerson
VALIDATION	I COMPLET	TENESS	WORKSHEET

_ VALIDATION COMPLETENE Stage 2B/4

SDG #: <u>G0D280454</u>

LDC #: 23105C3b

Laboratory: Test America

Date: <u>J'4/</u>14 Page: <u>/of /</u> Reviewer: <u>/</u> 2nd Reviewer: ____

METHOD: GC Polychlorinated Biphenyls (EPA SW 846 Method 8082)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	4	Sampling dates: 4/27/10
II.	GC/ECD Instrument Performance Check	-	
111.	Initial calibration	\mathbf{A}	
IV.	Continuing calibration/ICV	\mathbf{A}	cv acv = 2070
V.	Blanks	A	
VI.	Surrogate spikes	ϕ	
VII.	Matrix spike/Matrix spike duplicates	AN	
VIII.	Laboratory control samples	A	109
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	A	Not reviewed for Stage 2B validation.
XII.	Compound quantitation and reported CRQLs	A	Not reviewed for Stage 2B validation.
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	N	
XV.	Field blanks	NO	23=1

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: ** Indicates sample underwent State 4 validation

1	ЕВ-0427200-РҒ И	11	0118266MB	21		31	
2	Q3-PF-3-1-0.0** 5	12	0118268MB	22		32	
3	Q3-PF-3-1-0.0MS	13		23		33	
4	Q3-PF-3-1-0.0MSD	14		24		34	
5		15		25	· · · · · · · · · · · · · · · · · · ·	35	
6		16		26		36	
7		17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. atpha-BHC	l. Dieldrin	Q. Endrin ketone	Y. Aroclor-1242	GG. Chlordane
B. beta-BHC	J. 4,4-DDE	R. Endrin aldehyde	Z. Aroclor-1248	HH. Chlordane (Technical)
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Aroclor-1254	
D. gamma-BHC	L. Endosulfan II	T. gamma-Chlordane	BB. Aroclor-1260	JU.
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	CC. 2,4-DDD	ž
F. Aldrin	N. Endosulfan sulfate	V. Arocior-1016	DD. 2,4-DDE	
G. Heptachlor epoxide	O. 4,4'-DDT	W. Arocior-1221	EE. 2,4-DDT	MM.
H. Endosulfan I	P. Methoxychlor	X. Aroclor-1232	FF. Hexachlorobenzene	.NN

Notes:

Method:GCHPLC				
Validation Area	Yes	No	NA	Findings/Comments
L Technical holding times				
All technical holding times were met.	17	Γ.		
Cooler temperature criteria was met	/	·		
Did the laboratory perform a 5 point calibration prior to sample analysis?	1			
Were all percent relative standard deviations (%RSD) < 20%?	/			
Was a curve fit used for evaluation?		/		
Did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
Were the RT windows properly established?		<u> </u>		
IV. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) < 15% Our percent recoveries 85-115%?	$\left \right $			
Were all the retention times within the acceptance windows?			L	
V Blanks	n an			
Was a method blank associated with every sample in this SDG?		ł		
Was a method blank analyzed for each matrix and concentration?			ļ	
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI Surrogate spikes				
Were all surrogate %R within the QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			/	
VII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?		-		
Were the MS/MSD percent recoveries (%R) and the relative percent differences				
VIII. Laboratory control samples.				
Was an LCS analyzed for this SDG?		-		
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		References	438407P	
IX Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?		L	<u> </u>	

LDC #: 20105C3b SDG #: 2010000

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
X. Target compound identification				
Were the retention times of reported detects within the RT windows?				
XI. Compound quantitation/CRQLs				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XII: System performance		<u>,</u>		
System performance was found to be acceptable.				
XIII. Overall assessment of data	ing de 19 - J		24. 19	
Overall assessment of data was found to be acceptable.				
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.		/		
Target compounds were detected in the field duplicates.			/	
XV. Field blanks			Sec	
Field blanks were identified in this SDG.	/	-		
Target compounds were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: / of / Reviewer: 2nd Reviewer:

METHOD: CC HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>N N/A</u> Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? <u>N N/A</u> Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

	Qualifications	16 Eugl	(M SDZ)																							
; limits?	Associated Samples	Ч																								
ences (RPD) within QC	RPD (Limits)		((()	(()	()		()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	
relative percent differe	MSD %R (Limits)	Fal-20 10E		(()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	
ent recoveries (%R) and	MS %R (Limits)	tal-22) 108	((()	()			()	()	()	()	()	()	()	()	()	(()	()	()	()	()	()	()	
MS/MSD perce	Compound																									
<u>AVA</u> Were the	DI DSW/SW	3/4																								
X N	#																									

MSDNew.wpd

SDG #: 401 COI LDC # 2/05

Continuing Calibration Results Verification VALIDATION FINDINGS WORKSHEET

2nd Reviewer: Page: Reviewer:

HPLC METHOD: GC_ The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF - CF)/ave. CF CF = A/C

ave. CF = initial calibration average CF CF = continuing calibration CF A = Area of compound C = Concentration of compound

Where:

 					Renorted	Recalculated	Renorted	Recalculated
**	Standard ID	Calibration Date	Compound	Average CF(Ical)/ CCV Conc.	CF/Conc. CCV	CF/Conc. CCV	Q%	۵%
	ee 1/	"/2/."	EIG	300	-97 -	297	~	/
	(64=1)1	a /0-/+						
	/							
8								
9								
4								

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. ł

SDG #: Ser Con LDC #:23/05036

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

ď Reviewer:__ 2nd Reviewer: Page:

HPLC METHOD: GC_

The calibration Factor (CF), average CF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

CF = A/C

average CF = sum of the CF/number of standards %RSD = 100 * (S/X)

- A = Area of compound, C = Concentration of compound, S = Standard deviation of the CF X = Mean of the CFs

Recalculated	%RSD	7.615		:					
Reported	%RSD	219.2							
Recalculated	Average CF (initial)	Jethe the							
Reported	Average CF (initial)	34/242							
Recalculated	CF (/ 07) std)	6116196							
Reported	CF (ノ <i>の</i> ア std)	6116196							
	Compound	290							
	Calibration Date	a1/4/t	-						
	Standard ID	142							
	#	-		~		6		4	I

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

INICLC.1SB

LDC #<u>\$66,000.67</u> SDG #\$66,000.01

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

2nd reviewer: Page: Reviewer:

METHOD: CGC HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Four SS = Surrogate Spik

B	ked	
	s Spil	
ogate	ogate	
DEINO	Surre	
1	11	
ה	ŝ	

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference	
				Reported	Recalculated		
TCB	08-1701	8258.51	10. 7800	S 2	28	0	
TEMX	Ĺ	1	6028.01	6	/&	Q	
				×			

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

Sample ID:

			<u> </u>	<u>r</u>	<u> </u>
Percent Difference		n a sea ann an Aonaichte ann Aonaichte ann			
Percent Recovery	Recalculated				
Percent Recovery	Reported				
Surrogate Found					
Surrogate Spiked					
Column/Detector					
Surrogate					

SDG # See coner LDC #:2/0502

Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

2nd Reviewer: L 44 ∕of ∕ Reviewer: Page:

METHOD: C. HPLC The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below SC = Sample concentration using the following calculation: %Recovery = 100 * (SSC - SC)/SA

Where

RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100

SSC = Spiked sample concentration SA = Spike added MS = Matrix spike

MSD = Matrix spike duplicate

	\$
۱	Ø
	samples:
	MS/MSD s

	Spi	(e	Sample	Spike S	ample	Matrix	spike	Matrix Spike	Duplicate	W/SM	SD
Compound	Por Contraction		Sone	Concep	tration	Percent R	ecovery	Percent R	ecovery	RPI	
	MS	MSD		WS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline (8015)											
Diesel (8015)											
Benzene (8021B)											
Methane (RSK-175)											
2,4-D (8151)											
Dinoseb (8151)											
Naphthalene (8310)											
Anthracene (8310)											
HMX (8330)											
2,4,6-Trinitrotoluene (8330)											
RB	66.3	65.9	$\mathbb{Q}_{\mathcal{N}}$	74.6	73, 2	113	-211	///	///	1.9	, 9
Comments: Refer to Matrix (Spike/Matri	x Spike D	uplicates find	lings workshe	et for list of g	ualifications a	and associated	I samples wh	ien reported	<u>results do no</u>	t agree withir

MSDCLCNew.wpd

10.0% of the recalculated results.

LDC #:23105C36	SDG # JOI CONPY

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

RPD = I SSCLCS - SSCLCSD I * 2/(SSCLCS + SSCLCSD)

Where: SSC = Spiked sample concentration SA = Spike added LCS = Laboratory control sample percent recovery

SC = Concentration

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: 0// 8-26

	5	oike	Spiked	Sample	ΓC	S	ΓĊ	sD	LCS/L	CSD
Compound	R R		Concer	Mation	Percent	Recovery	Percent F	Recovery	RP	٥
	LCS	LCSD	rcs	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recaic.
Gasoline (8015)										
Diesel (8015)										
Benzene (8021B)										
Methane (RSK-175)										
2,4-D (8151)										
Dinoseb (8151)										
Naphthalene (8310)										
Anthracene (8310)										
HMX (8330)										
2,4,6-Trinitrotoluene (8330)										
B B	66.7	XX	60.2	<i>N</i> ¥∕	66	30				
								and and a second and a second		

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

SDG # Ser ED Mer LDC #:3705C36

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

ď, 2nd Reviewer: Page: Reviewer:

METHOD:

Z

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10% of the reported results? **N/A** AN NA

Concentration= (A)(Fv)(Df)	Example:	
(KF)(VS or WS)(%5/100)	Sample ID. Compound Na	ame ND
A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor		
RF= Average response factor of the compound In the initial calibration	Concentration =	
Vs= Initial volume of the sample Ws= Initial weight of the sample		
%S= Percent Solid		

*	Sample ID	Compound	Reported Concentrations	Recalculated Results Concentrations (Qualifications

SAMPCALew.wpd

Comments:

Tronox LLC Facility,2010 Parcels, Henderson, Nevada Data Validation Reports LDC #23105

Dioxins/Dibenzofurans

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2010 Parcels, Henderson, Nevada

Collection Date: April 13, 2010

LDC Report Date: May 17, 2010

Matrix: Water

Parameters: Dioxins/Dibenzofurans

Validation Level: Stage 2B

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): G0D140559

Sample Identification

EB-PARCELC_033110 FB-PARCELC_033110

Introduction

This data review covers 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8290 for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Affected Compound	Flag	A or P
4/22/10	¹³ C-1,2,3,4,6,7,8-HpCDD	30.1	All samples in SDG G0D140559	1,2,3,4,6,7,8-HpCDD	J+ (all detects)	Ρ

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
0113332MB	4/20/10	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	0.49 pg/L 0.64 pg/L 0.75 pg/L 1.3 pg/L 6.0 pg/L 1.5 pg/L 0.63 pg/L 1.1 pg/L 0.48 pg/L 0.46 pg/L 0.56 pg/L 1.2 pg/L 0.96 pg/L 2.8 pg/L	All samples in SDG G0D140559

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
EB-PARCELC_033110	1,2,3,4,7,8-HxCDD	1.9 pg/L	1.9U pg/L
	2,3,7,8-TCDF	2.6 pg/L	2.6U pg/L
	1,2,3,7,8-PeCDF	1.2 pg/L	1.2U pg/L
	2,3,4,7,8-PeCDF	1.0 pg/L	1.0U pg/L
	1,2,3,4,7,8-HxCDF	2.4 pg/L	2.4U pg/L
	2,3,4,6,7,8-HxCDF	1.7 pg/L	1.7U pg/L
	1,2,3,7,8,9-HxCDF	1.4 pg/L	1.4U pg/L
	1,2,3,4,7,8,9-HpCDF	2.2 pg/L	2.2U pg/L
FB-PARCELC_033110	1,2,3,4,7,8-HxCDD	1.1 pg/L	1.1U pg/L
	2,3,7,8-TCDF	2.2 pg/L	2.2U pg/L
	1,2,3,7,8-PeCDF	0.67 pg/L	0.67U pg/L
	2,3,4,7,8-PeCDF	0.73 pg/L	0.73U pg/L
	1,2,3,4,7,8-HxCDF	1.6 pg/L	1.6U pg/L
	1,2,3,6,7,8-HxCDF	1.7 pg/L	1.7U pg/L
	2,3,4,6,7,8-HxCDF	0.99 pg/L	0.99U pg/L
	1,2,3,4,7,8,9-HpCDF	0.71 pg/L	0.71U pg/L

Sample EB-PARCELC_033110 was identified as an equipment blank. No polychlorinated dioxin/dibenzofuran contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Sampling Date	Compound	Concentration	Associated Samples
EB-PARCELC_033110	4/13/10	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8-PeCDD 0CDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	0.68 pg/L 2.2 pg/L 1.9 pg/L 7.7 pg/L 4.5 pg/L 100 pg/L 360 pg/L 2.6 pg/L 1.2 pg/L 1.0 pg/L 2.4 pg/L 2.6 pg/L 1.7 pg/L 1.4 pg/L 2.4 pg/L 2.2 pg/L 2.3 pg/L	No associated samples in this SDG

Sample FB-PARCELC_033110 was identified as a field blank. No polychlorinated dioxin/dibenzofuran contaminants were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Compound	Concentration	Associated Samples
FB-PARCELC_033110	4/13/10	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	0.34 pg/L 1.3 pg/L 1.1 pg/L 5.9 pg/L 4.0 pg/L 91 pg/L 350 pg/L 2.2 pg/L 0.67 pg/L 0.67 pg/L 1.6 pg/L 1.7 pg/L 0.99 pg/L 20 pg/L 0.71 pg/L 18 pg/L	No associated samples in this SDG

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Although the LCS percent recovery (%R) was not within QC limits for one compound, the LCSD percent recovery (%R) was within QC limits and no data were qualified.

VIII. Regional Quality Assurance and Quality Control

Not applicable.

IX. Internal Standards

All internal standard recoveries were within QC limits.

X. Target Compound Identifications

Raw data were not reviewed for this SDG.

XI. Project Quantitation Limit

All compound quantitation and CRQLs were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
All samples in SDG G0D140559	2,3,7,8-TCDF	2nd column confirmation was not performed for this compound.	This compound must be confirmed on the 2nd column per the method.	None	Ρ

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG G0D140559	All compounds reported below the PQL.	J (all detects)	A

All compounds reported as EMPC were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG G0D140559	All compounds reported as estimated maximum possible concentration (EMPC).	JK (all detects)	A

Raw data were not reviewed for this SDG.

XII. System Performance

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2010 Parcels, Henderson, Nevada Dioxins/Dibenzofurans - Data Qualification Summary - SDG G0D140559

SDG	Sample	Compound	Flag	A or P	Reason (Code)
G0D140559	EB-PARCELC_033110 FB-PARCELC_033110	1,2,3,4,6,7,8-HpCDD	J+ (all detects)	Р	Routine calibration (%D) (c)
G0D140559	EB-PARCELC_033110 FB-PARCELC_033110	2,3,7,8-TCDF	None	Р	Compound quantitation and CRQLs (o)
G0D140559	EB-PARCELC_033110 FB-PARCELC_033110	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)
G0D140559	EB-PARCELC_033110 FB-PARCELC_033110	All compounds reported as EMPC	JK (all detects)	A	Project Quantitation Limit (k)

Tronox LLC Facility, 2010 Parcels, Henderson, Nevada

Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG G0D140559

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
G0D140559	EB-PARCELC_033110	1,2,3,4,7,8-HxCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8,9-HpCDF	1.9U pg/L 2.6U pg/L 1.2U pg/L 1.0U pg/L 2.4U pg/L 1.7U pg/L 1.4U pg/L 2.2U pg/L	A	bl
G0D140559	FB-PARCELC_033110	1,2,3,4,7,8-HxCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF	1.1U pg/L 2.2U pg/L 0.67U pg/L 0.73U pg/L 1.6U pg/L 1.7U pg/L 0.99U pg/L 0.71U pg/L	A	ld

Tronox LLC Facility, 2010 Parcels, Henderson, Nevada

Dioxins/Dibenzofurans - Equipment Blank Data Qualification Summary - SDG G0D140559

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2010 Parcels, Henderson, Nevada Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG G0D140559

No Sample Data Qualified in this SDG

Tron	ox Northgate H	enderson
VALIDATION	COMPLETENE	SS WORKSHEET

Stage 2B

SDG #: <u>G0D140559</u> Laboratory: <u>Test America</u>

LDC #: 23105A21

Date: <u>6/4/10</u> Page: <u>of</u> Reviewer: <u>9</u> 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	A	Sampling dates: 4/13/10
.	HRGC/HRMS Instrument performance check	-	
.	Initial calibration		
IV.	Routine calibration/I	In	
V.	Blanks	tw	,
VI.	Matrix spike/Matrix spike duplicates	N	cient Dertied
VII.	Laboratory control samples	AW	Leslo
VIII.	Regional quality assurance and quality control	N	
IX.	Internal standards	A	
Χ.	Target compound identifications	N	
XI.	Compound quantitation and CRQLs	SW	
XII.	System performance	N	
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	N/	
XV.	Field blanks	W	$2B_{a}$, $7B_{z}$.

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

1	EB-PARCELC_033110	W	11	0113332MB	21	31	
2	FB-PARCELC_033110	V	12		22	32	
3			13		23	33	
4			14		24	 34	
5			15		25	 35	
6			16		26	36	
7			17		27	 37	
8			18		28	38	
9			19		29	39	
10			20		30	 40	

Notes:

VALIDATION FINDINGS WORKSHEET

۰ ۱ •

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

...

A. 2.3,7,8-TCDD F. 1,2,3,	,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-H×CDF	P. 1,2.3.4.7.8.9-HoCDF	1. Total Hornin	
		L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF	
U. 1,2,3,4,7,8-HXCDU H. 2,3,7,	.8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD		
U. 1,2,3,6,7,8-HxCDD 1. 1,2,3,7	7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD		
E. 1,2,3,7,8,9-HxCDD J. 2,3,4,	7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD		

Notes:

..

LDC #: 220542

VALIDATION FINDINGS WORKSHEET **Routine Calibration**

Reviewer:_______2nd Reviewer:______ Page:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Plaqse see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a routine calibration was performed at the beginning and end of each 12 hour period? Y N NIA Y N NIA

Were all percent differences (%D) of RRFs \leq 20% for unlabeled compounds and \leq 30% for labeled?

				T	1	1					-		_	- F	71	- 17		r			_	-	-
	Qualifications ()	VTJORSACE)														Ion Abundance Hatto	0.65-0.89	1.32-1.78	1.05-1.43	0.43-0.59	0.37-0.51	0.88-1.20	0 76-1 02
	Associated Samples	VH B4<														Selected Ions (m/z)	M/M+2	M+2/M+4	M+2/M+4	M/M+2	M/M+2	M+2/M+4	M+2/M+4
Finding Ion	Abundance Ratio	W														rours	Tetra-	Penta-	Hexa-	Hexa- ¹³ C-HxCDF (IS) only	Hepta- ¹³ C-HpCDF (IS) only	Hepta-	Octa-
	()															Ţ							
	(Limit: <u><</u> 30.0°	30.1													A bundance David		0.65-0.89	1.32-1.78	1.05-1.43	0.43-0.59	0.37-0.51	0.88-1.20	0.76-1.02
קבו הוס	-																						
	Compound	130-7													(-) - (-)	(7/III) SIINI NAISA	M/M+2	M+2/M+4	M+2/M+4	M/M+2	M/M+2	M+2/M+4	M+2/M+4
כויידידין שווימימים	Standard ID	21AProB405F	/																	DF (IS) only	CDF (IS) only		
,	╢	0							-									4		¹³ C-HxC	-13C-Hpi	÷	
	Date	KAP	-														Tetra-	Pente	Неха-	Неха-	Hepte	Hepte	Octa-

LDC #: 23105A21 SDG #: See Cover

VALIDATION FINDINGS WORKSHEET Blanks

Page: 1 of 1 Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins (EPA Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank? Y N N/A

Was a method blank performed for each matrix and whenever a sample extraction was performed?

Was the method blank contaminated? If yes, please see qualification below. **In date:** <u>4/20/10</u> Blank analysis date: <u>4/22/10</u> <u>Y N N/A</u> Y N N/A

Blank extraction date: 4/20/10

lank extraction date: _4/. onc. units: pg/L	20/10 8	lank analysi	s date: 4/	22/10 Ass	sociated sar	nples:	AII	(bl)		
Compound	Blank ID					Sample I	dentification			
	0113332MB	5X	-	_ ر						
	0.49	2.45	1.9/U	1.1/U						
	0.64	3.2	-	•						
	0.75	3.75	I	ı						
	1.3	6.5	•	·						
(1)	6.0	30	1	-						
-	1.5	7.5	2.6/U	2.2/U						
	0.91	4.55	1.2/U	0.67/U						
	0.63	3.15	1.0/U	0.73/U						
	1.1	5.5	2.4/U	1.6/U						
	0.48	2.4	•	1.7/U						
V	0.46	2.3	1.7/U	0.99/U						
	0.56	2.8	1.4/U							
	1.2	9	ſ	I						
	0.96	4.8	2.2/U	0.71/U						
0	2.8	14	T	I						

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

V:\Pei\Tronox\23105A21MB.wpd

LDC #: <u>23105A21</u> SDG #:<u>See Cover</u>

VALIDATION FINDINGS WORKSHEET

of Q Reviewer: 2nd Reviewer: Page:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

<u>(√ N N/A</u> Were field blanks identified in this SDG? Blank units: <u>pg/L</u> Associated sample units: Sampling date: <u>4/13/10</u>

Field blank type: (circle one	e) Field Blank / Rinsate	/ Other: (C	Associated Samples:	NOUX	
Compound	Blank ID			Sample Identification	
-		5X			
	0.68	0.0034			
B	2.2	0.011			
O	1.9	0.0095			
Ω	7.7	0.0385			
ш	4.5	0.0225			
Ľ	100	0.5			
U	360	1.8			
Ţ	2.6	0.013			
	1.2	0.006			
	1.0	0.005			
×	2.4	0.012			
	2.6	0.013			
×	1.7	0.0085			
z	1.4	0.007			
0	24	0.12			
_a	2.2	0.011			
Ø	23	0.115			
CRQL					

Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

14.20

SDG #:See Cover LDC #: 23105A21

VALIDATION FINDINGS WORKSHEET **Field Blanks**

đ Page: Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

<u>V N N/A</u> Were field blanks identified in this SDG? Blank units: <u>pg/L</u> Associated sample units

Associated sample units:

Sampling date: 4/13/10 ΪŤ

Compound Bank () Sample floating floating Compound Bank () Sample floating repearant $\sqrt{xxxxxxx}$ xx xx xx xx repearant $\sqrt{xxxxxxx}$ xx xx xx xx repearant $\sqrt{xxxxxxxx}$ xx xx xx xx repearant $\sqrt{xxxxxxx}$ xx xx xx xx repearant $\sqrt{xxxxxxx}$ xx xx xx xx repearant $\sqrt{xxxxxxx}$ xx xx xx xx repearant \sqrt{xxxxxx} xx xx xx xx repearant \sqrt{xxxxx} xx xx xx xx repearant \sqrt{xxxx} xx xx xx xx repearant \sqrt{xxxx} xx xx xx xx repearant \sqrt{xxx} xx xx xx xx repearant \sqrt{xxx} xx xx xx xx repearax xx xx	iid blank type: (circle on	e)∕Eield Blank /)Rinsate	/ Other:	Associated Samples:	Noux	_
Enbact x	Compound	Blank ID		ŝ	umple Identification	
0.34 0.007 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.025 0.025 0.025 0.025 0.025 0.01		ER-PARCEL 033110	5X			
13 0.0065 1 0 1 1 1 11 0.0055 0 1 0 1 1 1 13 0.0055 0 0055 1 1 1 1 1 14 0.0055 0.0055 0 1 <td></td> <td>0.34</td> <td>0.0017</td> <td></td> <td></td> <td></td>		0.34	0.0017			
11 0.005 11 0.005 11 0.005 11		1.3	0.0065			
59 0.026 0.026 0.026 0.026 0.02 0.0		1.1	0.0055			
40 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01		5.9	0.0295			
91 0.455 0.455 0.456 0.456 0.456 0.456 0.611 0.61 <		4.0	0.02			
360 1.75 0.01 1.6 1.76 0.01 1.76 0.01 1.76 0.01 1.76 0.01 1.76 0.01 1.76 0.01 1.76 0.01 1.76 0.01 1.76 0.01 1.7 0.01 1.7 0.01 1.7 0.01 1.7 0.01 1.7 0.01 1.7 0.01 1.7 0.01 1.7 0.000 1.7 0.000 1.7 0.000 1.7 0.000 1.7 0.000 1.7 0.000 1.7 0.000 1.7 1.7 0.000 1.7 </td <td></td> <td>91</td> <td>0.455</td> <td></td> <td></td> <td></td>		91	0.455			
22 001 22 001 0.035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.006		350	1.75			
0.67 0.0036		2.2	0.011			
0.73 0.0365 0 0 0 0 0 1.6 0.008 0.008 0 0 0 0 0 1.7 0.0085 0 0 0 0 0 0 0 0 0.99 0.00495 0 </td <td></td> <td>0.67</td> <td>0.00335</td> <td></td> <td></td> <td></td>		0.67	0.00335			
16 0.008 0.0085 $0.$		0.73	0.00365			
1.7 0.0085 0<		1.6	0.008			
0.99 0.00495 0.00495 0.00495 20 0.1 20 0.1 20 0.1 0.1 10 1 10 0.71 0.00355 1 1 1 11 0.09 0.09 1 1 1 1		1.7	0.0085			
20 0.1 0 1 0.71 0.0355 0 1 1 18 0.09 1 1 1 1 18 0.09 1 1 1 1 1		66.0	0.00495			
0.71 0.00355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		20	0.1			
		0.71	0.00355			
		18	0.09			
G						
	SQL				· .	

Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

ŧ

SDG # 200 BOND LDC #: 03/05/2

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Ъ'с / 2nd Reviewer: Page: / Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". AN N/A

Was a LCS required? Was a LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

																										_	
	Qualifications	Norenal	(LCSD M																								
nits?	Associated Samples	WTBE																									
D) within the QC lir	RPD (Limits)	()	()	()	()	()	()	(()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	
rcent difference (RF	LCSD %R (Limits)	()	()	()	()	()	()	()	()	(()	()	()	()	()	()	(.)	()	()	()	()	()	()	()	()	()	
%R) and relative pe	LCS %R (Limits)	78 (80/37)	(/)	()		()	()	((· · ·	(()	(((()	()	()	()	()	()	()	· ·	()	()	()	`
t recoveries (Compound	\mathcal{N}																									
Were the LCS percen	Lab ID/Reference	011332223	Ø/																								
N/A	Date																										
K	#											<u> </u>															

V:\Validation Worksheets\Dioxin90\LCS90.21

/cH22/EG :# 201

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

٣, 2nd Reviewer: Page: Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N NA

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

	Ŵ	k	Τ	ſ		T			l	Ī			
Qualifications	JYT FYALA			(o) / Onwy	4								
Associated Samples	M			AUX									
Finding	AllENPC (& +/ag)	usulto		No confirmation	W 2,3.7,8-TODE								ksheet for recalculations
Sample ID	A11			aut									sample calculation verification wor
Date								0					nts: <u>See s</u>
*													comme

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility, 2010 Parcels, Henderson, Nevada

Collection Date: April 13, 2010

LDC Report Date: May 17, 2010

Matrix:

Parameters: Dioxins/Dibenzofurans

Soil

Validation Level: Stage 2B & 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): G0D140560

Sample Identification

I6-PC-1-0.0** I6-PC-1-0.0FD I6-PC-1-0.0MS I6-PC-1-0.0MSD

**Indicates sample underwent Stage 4 review

Introduction

This data review covers 4 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8290 for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Samples indicated by a double asterisk on the front cover underwent a Stage 4 review. A Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The exact mass of 380.9760 of PFK was verified. The static resolving power was at least 10,000 (10% valley definition) for samples on which Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio for each target compound was greater than or equal to 2.5 and greater than or equal to 10 for each recovery and internal standard compound for samples on which Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
0106187MB	4/16/10	2,3,7,8-TCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF OCDF	0.036 pg/g 0.14 pg/g 0.45 pg/g 0.088 pg/g 0.054 pg/g 0.076 pg/g 0.15 pg/g	All samples in SDG G0D140560

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
l6-PC-1-0.0**	1,2,3,4,6,7,8-HpCDD 2,3,7,8-TCDF	0.40 pg/g 0.12 pg/g	0.40U pg/g 0.12U pg/g
16-PC-1-0.0FD	2,3,7,8-TCDF	0.14 pg/g	0.14U pg/g

Sample EB-PARCELC_033110 (from SDG G0D140559) was identified as an equipment blank. No polychlorinated dioxin/dibenzofuran contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Sampling Date	Compound	Concentration	Associated Samples
EB-PARCELC_033110	4/13/10	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	0.68 pg/L 2.2 pg/L 1.9 pg/L 7.7 pg/L 4.5 pg/L 100 pg/L 360 pg/L 2.6 pg/L 1.2 pg/L 1.0 pg/L 2.4 pg/L 2.6 pg/L 1.7 pg/L 1.4 pg/L 2.4 pg/L 2.2 pg/L 2.3 pg/L	All samples in SDG G0D140560

Sample concentrations were compared to concentrations detected in the equipment blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
I6-PC-1-0.0**	1,2,3,4,6,7,8-HpCDD	0.40 pg/g	0.40U pg/g

Sample FB-PARCELC_033110 (from SDG G0D140559) was identified as a field blank. No polychlorinated dioxin/dibenzofuran contaminants were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Compound	Concentration	Associated Samples
FB-PARCELC_033110	4/13/10	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	0.34 pg/L 1.3 pg/L 1.1 pg/L 5.9 pg/L 4.0 pg/L 91 pg/L 350 pg/L 2.2 pg/L 0.67 pg/L 1.6 pg/L 1.7 pg/L 0.99 pg/L 20 pg/L 0.71 pg/L 18 pg/L	All samples in SDG G0D140560

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration	
l6-PC-1-0.0**	1,2,3,4,6,7,8-HpCDD	0.40 pg/g	0.40U pg/g	

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Although the MSD percent recovery (%R) was not within QC limits for one compound, the MS percent recovery (%R) was within QC limits and no data were gualified.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Regional Quality Assurance and Quality Control

Not applicable.

IX. Internal Standards

All internal standard recoveries were within QC limits.

X. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XI. Project Quantitation Limit

All compound quantitation and CRQLs were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
All samples in SDG G0D140560	2,3,7,8-TCDF	2nd column confirmation was not performed for this compound.	This compound must be confirmed on the 2nd column per the method.	None	Р

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG G0D140560	All compounds reported below the PQL.	J (all detects)	А

All compounds reported as EMPC were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG G0D140560	All compounds reported as estimated maximum possible concentration (EMPC).	JK (all detects)	A

Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XII. System Performance

The system performance was acceptable for samples on which a Stage 4 review was performed. Raw data were not evaluated for the samples reviewed by Stage 2B criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples I6-PC-1-0.0** and I6-PC-1-0.0FD were identified as field duplicates. No polychlorinated dioxins/dibenzofurans were detected in any of the samples with the following exceptions:

2

	Concentration (pg/g)			Difference		
Compound	l6-PC-1-0.0**	l6-PC-1-0.0FD	(Limits)	(Limits)	Flags	A or P
1,2,3,4,6,7,8-HpCDD	0.40	0.91	-	0.51 (≤5.2)	-	-
OCDD	2.6	13	-	10.4 (≤10)	J (all detects)	A
2,3,7,8-TCDF	0.12	0.14	-	0.02 (≤1.0)	-	-

Tronox LLC Facility, 2010 Parcels, Henderson, Nevada Dioxins/Dibenzofurans - Data Qualification Summary - SDG G0D140560

SDG	Sample	Compound	Flag	A or P	Reason (Code)
G0D140560	l6-PC-1-0.0** l6-PC-1-0.0FD	2,3,7,8-TCDF	None	Р	Compound quantitation and CRQLs (o)
G0D140560	l6-PC-1-0.0** l6-PC-1-0.0FD	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)
G0D140560	l6-PC-1-0.0** l6-PC-1-0.0FD	All compounds reported as EMPC	JK (all detects)	A	Project Quantitation Limit (k)
G0D140560	16-PC-1-0.0** 16-PC-1-0.0FD	OCDD	J (all detects)	A	Field duplicates (Difference) (fd)

Tronox LLC Facility, 2010 Parcels, Henderson, Nevada Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG G0D140560

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
G0D140560	l6-PC-1-0.0**	1,2,3,4,6,7,8-HpCDD 2,3,7,8-TCDF	0.40U pg/g 0.12U pg/g	A	Ы
G0D140560	16-PC-1-0.0FD	2,3,7,8-TCDF	0.14U pg/g	A	bl

Tronox LLC Facility, 2010 Parcels, Henderson, Nevada

Dioxins/Dibenzofurans - Equipment Blank Data Qualification Summary - SDG G0D140560

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
G0D140560	l6-PC-1-0.0**	1,2,3,4,6,7,8-HpCDD	0.40U pg/g	A	be

Tronox LLC Facility, 2010 Parcels, Henderson, Nevada Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG G0D140560

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
G0D140560	l6-PC-1-0.0**	1,2,3,4,6,7,8-HpCDD	0.40U pg/g	A	bf

Tronox Northgate H	lenderson
VALIDATION COMPLETENI	ESS WORKSHEET

LDC #: 23105B21 SDG #: G0D140560

Stage 2B/4

Date Page: Reviewer: 2nd Reviewer:

Laboratory: Test America

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Technical holding times	A	Sampling dates: 4/13/10
B.	HRGC/HRMS Instrument performance check	\mathbf{A}	
(1).	Initial calibration	\mathbf{A}	
IV.	Routine calibration/	4	
V.	Blanks	m	
VI.	Matrix spike/Matrix spike duplicates	5N	dieud spitted
VII.	Laboratory control samples	$ \neq$	109
VIII.	Regional quality assurance and quality control	N	
IX.	Internal standards	1	
Х.	Target compound identifications		Not reviewed for Stage 2B validation.
XI.	Compound quantitation and CRQLs	W	Not reviewed for Stage 2B validation.
XII.	System performance	$ \downarrow$	Not reviewed for Stage 2B validation.
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	m	D=1+2
XV.	Field blanks	au	ZB-PARCZLC_033110, FB-PARCZLC_03311
XV.	A = Acceptable ND = N	lo compound	$ Z - PAKCE_2C_0 - S - S - PAKCE_2C_0 - S - PAKCE_2C_0$

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: ** Indicates sample underwent State 4 validation

1	16-PC-1-0.0 ** 5	11	0/06187143	21	31	
2	16-PC-1-0.0FD	12		22	 32	
3	16-PC-1.0.0MS	13		23	33	
4	V NSD	14		24	34	
5		15		25	 35	
6		16		26	36	
7		17		27	 37	
8		18		28	 38	
9		19		29	 39	
10		20		30	40	

Notes:

٢.

Method: Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	1			
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check				
Was PFK exact mass 380.9760 verified?	/			
Were the retention time windows established for all homologues?				
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers \leq 25% ?				
Is the static resolving power at least 10,000 (10% valley definition)?	/			
Was the mass resolution adequately check with PFK?				
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?		ŕ		
III, Initial calibration				
Was the initial calibration performed at 5 concentration levels?				
Were all percent relative standard deviations (%RSD) \leq 20% for unlabeled standards and \leq 30% for labeled standards?	1			
Did all calibration standards meet the Ion Abundance Ratio criteria?	$\left \right $			
Was the signal to noise ratio for each target compound \geq 2.5 and for each recovery and internal standard \geq 10?	\square			
IV. Continuing calibration				
Was a routine calibration performed at the beginning and end of each 12 hour period?	\square			
Were all percent differences (%D) \leq 20% for unlabeled standards and \leq 30% for labeled standards?	\square			
Did all routine calibration standards meet the Ion Abundance Ratio criteria?				
V. Blanks				
Was a method blank associated with every sample in this SDG?	\square	T	T	
Was a method blank performed for each matrix and concentration?	\square			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet?				
A. Matrix spike/Matrix spike duplicates				
Nere a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each natrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		7	-	
Nere the MS/MSD percent recoveries (%R) and the relative percent differences RPD) within the QC limits?			イ	
/II. Leboratory control samples				
Vas an LCS analyzed for this SDG?				

LDC #: 23/05B SDG #: 20100

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?	\square			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
VIII. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		<		
Were the performance evaluation (PE) samples within the acceptance limits?				
IX. Internal standards				
Were internal standard recoveries within the 40-135% criteria?	\square			
Was the minimum S/N ratio of all internal standard peaks \geq 10?				
X Target compound identification				
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?	<	-		
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?		-		
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?				
Did compound spectra contain all characteristic ions listed in the table attached?				
Was the Ion Abundance Ratio for the two quantitation ions within criteria?				
Was the signal to noise ratio for each target compound and labeled standard \geq 2.5?	/			
Does the maximum intensity of each specified characteristic ion coincide within \pm 2 seconds (includes labeled standards)?	/			
For PCDF identification, was any signal (S/N \geq 2.5, at <u>+</u> seconds RT) detected in the corresponding PCDPE channel?			/	-
Was an acceptable lock mass recorded and monitored?				
XI. Compound quantitation/CRQLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XII. System performance				
System performance was found to be acceptable.		Ì		
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	<u>′</u>			
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.				

DXN-SW90.IV version 1.0

LDC #: <u>3105 B2</u> SDG #: <u>Ger Cou</u>

Validation Area	Yes	No	NA	Findings/Comments
Target compounds were detected in the field duplicates.				
XV. Field blanks				
Field blanks were identified in this SDG.		Ĺ		
Target compounds were detected in the field blanks.	1			

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	6. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	1. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:

SDG #: See Cover LDC #: 23105B21

VALIDATION FINDINGS WORKSHEET Blanks

Page: 1 of 1 4 Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins (EPA Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "NA".

Were all samples associated with a method blank?

Was a method blank performed for each matrix and whenever a sample extraction was performed? Y N N/A

Was the method blank contaminated? If yes, please see qualification below. in date: 4/16/10 Blank analysis date: 4/21/10 Blank extraction date: 4/16/10

Conc. units: pg/g

 (λl) ٩II Associated samples:

Compound	Blank ID				Sample	dentification			
	0106187MB	5X	۲	0					
A	0.036	0.18							
L	0.14	0.7	0.40/U	1					
U	0.45	2.25	1	1					
Т	0.088	0.44	0.12/U	0.14/U					
×	0.054	0.27							
0	0.076	0.38							
o	0.15	0.75							
							-		
							-		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

V:\Pei\Tronox\23105B21MB.wpd

SDG #:See Cover LDC #: 23105B21

VALIDATION FINDINGS WORKSHEET **Field Blanks**

l of [Page: 2nd Reviewer: Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Associated sample units: V N N/A Were field blanks identified in this SDG? Blank units: pg/L

pg/g

ö

e) rield blant EBLPARCEL 0.6 1.2 2.2 1.1 1.1 1.1 1.1 2.6 1.1 2.6 1.1 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	Blank ID Sample Identification	0.68 0.0034 0.0034	2.2 0.011	1.9 0.0095	7.7 0.0385	4.5 0.0225	100 0.5 0.40/U - 0.40/U	360 1.8	2.6 0.013 0.013	1.2 0.006	1.0 0.005	2.4 0.012	2.6 0.013	1.7 0.0085	1.4 0.007	24 0.12	2.2 0.011	23 0.115	
Blant ER-PARCE1 15 15 15 16 16 17 17 16 16 17 17 17 16 16 17 17 17 16 17 18 17 17 </th <td>Blank ID</td> <td>0.0034</td> <td>2.2 0.011</td> <td>1.9 0.005</td> <td>7.7 0.0385</td> <td>4.5 0.0225</td> <td>100 0.5</td> <td>360 1.8</td> <td>2.6 0.013</td> <td>1.2 0.006</td> <td>1.0 0.005</td> <td>2.4 0.012</td> <td>2.6 0.013</td> <td>1.7 0.0085</td> <td>1.4 0.007</td> <td>24 0.12</td> <td>2.2 0.011</td> <td>23 0.115</td> <td></td>	Blank ID	0.0034	2.2 0.011	1.9 0.005	7.7 0.0385	4.5 0.0225	100 0.5	360 1.8	2.6 0.013	1.2 0.006	1.0 0.005	2.4 0.012	2.6 0.013	1.7 0.0085	1.4 0.007	24 0.12	2.2 0.011	23 0.115	

Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

LDC #: 23105B21 SDG #:See Cover

VALIDATION FINDINGS WORKSHEET **Field Blanks**

ζ ٦ Page: 2nd Reviewer: Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

pg/g Associated sample units: VN N/A Were field blanks identified in this SDG?

Samoling date:

Compound Blank ID Sample Identification Compound Explore F $\frac{1}{10000000000000000000000000000000000$	eld blank type: (circle of	e) Field Blank / Rinsate	/ Other:	A	ssociated Samples:	All (b_{1})	
Tenderer (x_{111}) xy y	Compound	Blank ID				Sample Identification	
$\begin{array}{ $		FB-PARCELF 033110	5X	4	,		
		0.34	0.0017				
11 0.005 1 0.0295 1 <		1.3	0.0065				
63 0.026 0.02 0.01 0.2 0.01 0.2 0.01 0.2 0.01 0.2 0.01 0.1 0.01 0.1 0.01 0.1 0.01		1.1	0.0055				
40 0.02 0.02 0.02 0.02 0.02 0.02 0.01		5.9	0.0295				
91 0.455 0.400 ·		4.0	0.02				
350 175 - · <td></td> <td>91</td> <td>0.455</td> <td>0.40/U</td> <td>I</td> <td></td> <td></td>		91	0.455	0.40/U	I		
1 22 001 -		350	1.75		3		
0.67 0.0035 0		2.2	0.011		-		
0.73 0.0365 0		0.67	0.00335				
1.6 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.000 0		0.73	0.00365				
1.7 0.0065 0.0065 0.0065 0.00450 0.99 0.00450 0.00450 0 0 0 0 20 0.1 0 0 0 0 0 0 0 0 20 0.1 0 0 0 0 0 0 0 0 0 0 10 0.0355 0.0355 0 <		1.6	0.008				
0.99 0.00495 0.00495 0.00495 20 0.1 20 0.1 21 0.1 0.1 0.1 11 0.00355 0.00 0.0 12 0.00 0.0 0.0 13 0.00 0.0 0.0 14 0.00 0.0 0.0 0.0 13 0.00 0.0 0.0 0.0 14 0.00 0.0 0.0 0.0 15 0.00 0.0 0.0 0.0 0.0		1.7	0.0085				
20 0.1 20 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0355 18 0.09 18 0.09 18 0.09 18 0.09 18 0.09 18 0.09 18 0.09 19 19		0.99	0.00495				
0.71 0.0355 0.00 18 0.09 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19		20	0.1	-			
		0.71	0.00355				
	~	18	0.09				
Ra							
	RQL						

Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

SDG #: SCE CENE LDC #: 23/05/23

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

2nd Reviewer: 1 Page: Reviewer:

METHOD: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668)

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". A/N N/Y

Was a MS/MSD analyzed every 20 samples of each matrix?

ANNA IN N/A

Were the MS/MSD concentrations and the relative percent differences (RPD) within the QC limits stated below?

			T	T				Π																		
Qualifications	No beral	(MS M)	\mathbf{X}																							
Associated Samples	1																									
RPD (Limits)	^ ()	()	()	. ()	()	()	()		ана () (()	()	· ()	()	()	()	• ()	()	()	()))	()		(()	
MSD %R (Limits)	157-68) 91			()	((((((()	(<u>;</u>)	()	(:)	((()	()	()	()	् रणप्रदेश रुप्रेल्स
MS %R (LImits)	()	()	()	(-		()	()	()	()	((· · ·	())	()	(()	()	()	()	()	()	()	()	und order
Compound	N N																									
di dsw/sw	2/4																									ŝA
Date										-																MSD.16
#																										

į,

LDC #: 23105.821 SDG #: 2er Coney

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

5 2nd Reviewer: Page: Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

*	Date	Sample ID	Finding	Associated Samples	Qualifications
		Ø//	EMPC USULAS	au	$\forall k(F)$
			(& Flag)		
		<i>A</i> //	No confirmation for	NUT	NOUL SIS
			0.3.7/8-TeoF		Ą
	0				
	ients: See	sample calculation verification wor	rksheet for recalculations		

26.1

LDC#:<u>23105B21</u> SDG#:<u>See Cover</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: _of Reviewer: 0 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

.

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrat	ion (pg/g)	(≤50)	(pg/g)	(pg/g)	Qualifications
Compound	1	2	RPD	Difference	Limits	(Parent Only)
F	0.40	0.91		0.51	(<u><</u> 5.2)	
G	2.6	13		10.4	(<u><</u> 10)	dets/A
Н	0.12	0.14		0.02	(<u><</u> 1.0)	

V:\FIELD DUPLICATES\23105B21.wpd

(fd)

SDG #: _____

Initial Calibration Calculation Verification

ot / 9 2nd Reviewer: Page: Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\label{eq:RFF} RFF = (A_{\omega})(C_{\omega})/(A_{\omega})(C_{\omega})$ everage RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 $A_x = Area of compound, <math>C_x = Concentration of compound, S = Standard deviation of the RRFs,$

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
*	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (Initial)	Average RRF (initial)	RRF (ごろうstd)	RRF (< S 3std)	QSR%	%RSD
-	10/2		2.3,7,8-TCDF (*C-2,3,7,8-TCDF)	0.98315	0.98315	1.0182	1.01872	26926	4659
		3/4/10	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.05705	1.05705	1.11.325	1.1/325	743940	7.440
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)	1.08449	677280.1	1.09101	1.09101	563094	5631
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	\$ 9080.1	1.03068	1.08562	1.08562	4.49467	4495
			OCDF (*C-OCDD)	142582	1.4 2582	1.57900	1.57902	8,938,81	8.939
~	1chr		2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	0.945	0.945	0.78	0, 9, 8	4.44	633
		4/13/10	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1-021	1.021	1.04	1:04	3.03	0.97
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)	1.114	1.114	61.1	1.19	5.33	22
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	1-07	1.07	///	/ / /	360	3 75
╢				1.445	2745	1.51	1.5.1	5.85	583
9			2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)						
			2,3,7,8-TCDD (1°C-2,3,7,8-TCDD)						
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (¹ C-1,2,4,6,7,8,-HpCDD)						
			OCDF (1°C-OCDD)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

+ SDG #: See could LDC #: 23/05/82

Routine Calibration Results Verification VALIDATION FINDINGS WORKSHEET

þ Page: 2nd Reviewer: Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (A_)(C_)/(A_)(C_)

ave. RRF = initial calibration average RRF RRF = continuing calibration RRF $A_x = Area of compound, C_x = Concentration of compound,$ Where:

 $A_{\mu} = Area$ of associated internal standard $C_{a} = Concentration of internal standard$

					Reported	Recalculated	Reported	Recalculated
*	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	Q%	Q*
<u>-</u>]	SUCULARE	1.1241	2.3.7,8-TCDF (13C-2,3,7,8-TCDF)	21826.0	0.88010	0.88010	10 5-	19 2
	- 36	1/2/14	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.05705	1.07014	1.07014	× · /) & /
			1,2,3,6,7,8-HxCDD (¹ C-1,2,3,6,7,8-HxCDD)	1.0 82149	1.11017	1-11017	9.4	7 ~
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	1.03068	918001	102319	6.0	
			OCDF (*c-OCDD)	142582	1.4241	624221	1.0	6.
~	21XDodo5	``	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	0.945	1.04	1.04	10	1
		a1/12/4	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.021	1.02	KO.	2,7	
	,		1.2.3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)	1.114	1.26	1.26	13.5-	12.41
			1.2.3.4.6.7.8-HpCDD (*C-1.2.4.6.7.8HpCDD)	1.67	1.09	1.09	0	r. 1
			OCDF ("C-OCDD)	1.445	1.50	1.50	, b b c	10
စ			2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)					
			1.2.3.6.7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)					
Τ			1.2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)					
			OCDF (*C-OCDD)					
moC	ments: <u>Refer to</u>	Routine Cali	bration findings worksheet for list of quali	fications and asso	ciated samples	when reported res	ults do not agree w	l vithin 10.0% of the

C:\WPDOCS\WRK\DIOXIN90\CONCLC90.21

recalculated results.

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

MSR = Matrix spike percent recovery MSDR = Matrix spike duplicate percent recovery

SSR = Spiked sample result, SR = Sample result SA = Spike added

Where:

% Recovery = 100 * (SSR - SR)/SA

RPD = I MSR - MSDR I * 2/(MSR + MSDR)

MS/MSD samples: 3/4

Ø Recalculated Ø ſ) RPD Ŋ Ŵ Reported 300 U A RPD C M 80 0 96 B Ø Matrix Spike Duplicate Ì Recalc Percent Recovery b 00 800 50 93 Reported 00 D Ī 926 Percent Recovery Recalc Ø 0 0 Matrix Spike 101 Reported ω O Ø 0 Q Ó j 98.8 178.0 9:26 847 5.10 MSD Spiked Sample Concentration (**b**/64) h Ø Ą ¢þ 87.8 ŝ 102. Ś g. 251 Sample Concentration (PS/G <u>S</u> 8 8 Г **d**SM 200 g 60 Ø Added Spike 19361 135.61 96.87 MS 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD Compound 1,2,3,7,8-PeCDD 2,3,7,8-TCDD OCDF

Comments: Refer to Matrix Spike/Matrix Spike Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

2nd Reviewer: Page: Reviewer:

METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added

RPD = 1 LCS - LCSD 1 * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

137	•
2010	
LCS ID:	

	as	ike	Spiked S	amole	Ŭ I		SUL		1 CS/I	CSD
Compound	Ů. Ř	ded 79)	Concent (AS)	tration	Percent R	ecovery	Percent R	BCOVERY	Я	Q
		1 CSD	/ / / /		Reported	Racalc	Reported	Recalc	Reported	Recalculated
2,3,7,8-TCDD	20.0	γ¥	20.2	Ŵ	101	101				
1,2,3,7,8-PeCDD	adl		103		201	103				
1,2,3,4,7,8-HxCDD	/		96.0		96	36				
1,2,3,4,7,8,9-HpCDF	/		110		011	110				
OCDF	200	1	400	\bigwedge	100	102				
						-				

Comments: Refer to Laboratory Control Sample findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

וס אואוא פוווער/הטרה וטו אשונ
פואעעולאפעע וחו חפוי
INI NAIN

Analyte	HPCDF HPCDF HPCDF (S) HPCDD HPCDD HPCDD HPCDD (S) S) PFK PFK	осрғ осрғ оссрб оссрб оссрб (\$) рссрғ ргк	
Elemental Composition	C ₁₄ H ⁴⁸ Cl ₃ 7ClO C ₁₂ H ⁴⁸ Cl ₃ 7ClO C ₁₂ H ⁴⁸ Cl ₃ 7Cl ₀ 1 ³ C ₁₂ H ⁴⁸ Cl ₃ 7Cl ₀ 1 ³ C ₁₂ H ⁴⁸ Cl ₃ 7Cl ₀ C ₁₂ H ⁴⁸ Cl ₃ 7Cl ₀ O 1 ³ C ₁₂ H ⁴⁸ Cl ₃ 7Cl ₂ O 1 ³ C ₁₂ H ⁴⁸ Cl ₃ 7Cl ₂ O C ₁₄ H ⁴⁸ Cl ₃ 7Cl ₂ O C ₁₆ H ⁴⁸ Cl ₃ 7Cl ₂ O C ₁₆ H ⁴⁸ Cl ₃ 7Cl ₂ O	Cr_acr_arcio Cr_acr_arcio Cr_acr_arcio Cr_acr_arcio_ Cr_acr_arcio_ racr_acr_arcio_ racr_acr_arcio_ cr_acr_arcio_ Cr_acr_arcio Cr_o f_1,	
lon ID	M M M M M M M M M M M M M M M M M M M	M + + 2 M + + 4 M + + 4 M + + 4 CC K + 4 K + 4 K - 2 K - 4 K	
Accurate Mass ^(a)	407.7818 409.7788 417.8250 419.8220 423.7767 423.7767 425.7737 425.7737 425.7737 435.8169 437.8140 437.8140 437.9728]	441.7428 443.7399 457.7377 459.7348 459.7348 469.7780 469.7780 513.6775 [422.9278]	
Descriptor	4	υ	
Analyte	тсрғ тсрғ тсрғ (s) тсрр тсрр тсрр нхсрр (s) рғк	PeCDF PeCDF (S) PeCDF (S) PeCDD (S) PeCDD (S) PeCDD (S) PeCDD (S) PFK	HXCDF HXCDF HXCDF (S) HXCDD (S) HXCDD (S) HXCDD (S) OCDPE PFK PFK
Elemental Composition	C,H,acl,O C,H,acl,O 13C,H,acl,o 13C,H,acl,o 13C,H,acl,o C,H,acl,o C,H,acl,o C,H,acl,o 13C,H,acl,o 13C,H,acl,o 13C,H,acl,o 13C,H,acl,o 13C,C 12,H,acl,o 13C,0	Cr_H_accl_arcio Cr_H_accl_arcio Cr_H_accl_arcio 1°Cr_H_accl_arcio Cr_H_accl_arcio Cr_H_accl_arcio Cr_H_accl_arcio Cr_H_accl_arcio Cr_H_accl_arcio Cr_H_accl_arcio Cr_H_accl_arcio C_F_13	C ₁ ,H ₂ *Cl ₄ *7ClO C ₁ ,H ₂ *Cl ₄ *7ClO C ₁ ,H ₂ *Cl ₄ O C ₁ ,F ₁
lon ID	C X X X X X X X X X X X X X X X X X X X	M+2 M+4 M+42 M+42 M+42 M+42 CCK2 CCK2 CCK2 M+42 M+42 CCK2 M+42 M+42 M+42 M+42 M+42 M+42 M+42 M+22 M+2	M+2 M+4 M+42 M+42 M+42 M+42 M+4
Accurate mass ^(s)	303.9016 305.8987 315.9419 315.9419 319.8965 321.8936 321.8936 321.9368 331.9368 331.9368 331.9368 331.9368 331.9368 375.8364 [354.9792]	339.8597 341.8567 351.9000 353.8970 355.8546 357.8516 357.8516 367.8949 369.8919 409.7974 [354.9792]	373.8208 375.8178 383.8639 385.8610 385.8610 389.8156 391.8127 401.8559 403.8529 445.7555 [430.9728]
Descriptor	-	N	en M

The following nuclidic masses were used: ۲

H = 1.007825C = 12.000000 $^{13}C = 13.003355$ F = 18.9984

O = 15.994915 ³⁶Cl = 34.968853 ³⁷Cl = 36.965903

S = internal/recovery standard

C:\WPDOCS\WRK\DIOXIN90\TCI90.21

LDC #:03/05F SDG #:<u>/200 60</u>

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification Page: /of / Reviewer: 9-2nd reviewer: //

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

YN N/A

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concer	ntration	$h = \frac{(A_{\cdot})(I_{\cdot})(DF)}{(A_{\cdot})(RRF)(V_{\circ})(\%S)}$
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
l <u>.</u>	=	Amount of internal standard added in nanograms (ng)
V.	=	Volume or weight of sample extract in milliliters (ml) or grams (g).
RRF	=	Relative Response Factor (average) from the initial calibration
Df	=	Dilution Factor.
%S	×	Percent solids, applicable to soil and solid matrices

S = Percent solids, applicable to soil and solid matrices only.

Example: Sample I.D. _____

2360.08 11454 1244 Conc. = (1.0308) 10.06) (0.98) 1454 p.14 (1.0308) 10.06) (0.98)

#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Qualification
				······································	
	<u> </u>				