

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Northgate Environmental Management, Inc. 1100 Quail Street Ste. 102 Newport Beach, CA 92660 ATTN: Ms. Cindy Arnold January 28, 2010

SUBJECT: Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada, Data Validation

Dear Ms. Arnold,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on January 4, 2010. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 22335:

SDG # Fraction

R0904085 Volatiles, Semivolatiles, Chlorinated Pesticides, Metals, Wet Chemistry

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- Standard Operating Procedures (SOP) 40, Data Review/Validation, BRC 2009
- Quality Assurance Project Plan Tronox LLC Facility, Henderson Nevada, June 2009
- NDEP Guidance, May 2006
- USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June 2008
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

		S				1						1		107	n Marina Marina	1	s										24
		N				╡	1							0	teen s N		≥										0
	s D	S	0				T							0	· [s										0
	TSS (2540D)	3	9	1										9		ľ	3										0
		s	0									_		-			ω					ſ					0
	CLO4 (314.0)	v	9			-†						1		9		f	≥					1					0
		s	0		-+	1						Ť	1	0			s						1				0
	Phos- phorus (365.1)	W	9		╈	+								9		ľ	3										0
		s	0				\neg							0			S										0
	pH (9040 /9045)	Ν	9	-			┥	-†						6	\sim		3		╡				┢				0
2009)		s	0		-	+	+	┥						-	2009)		S		1		+					\square	0
B 20	Cr(VI) (218.6/ (7199)	3	6	+	+	-	_						+	9	B 2(≥				+-				┢		0
		- s	0		╉	+	\dashv		-					0	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		s	╶╀╌┧		+	+-	\uparrow				╎	0
าลร	Cond. (120.1)	3	6		+	+			-				\neg	9	Phase		≥			+		+		┢	┢		0
ā			0		+		\neg						_	0	Ē		5			-+-	+	┢	+		\square		0
Henderson NV / Tronox Phase	CN- (9012)	×	6 0	\square	+	-+	\dashv	-	_	_			-	9	Tronox		3			╉	╈	╈		┢	+-	╞╴┤	0
ē			0	$\left \right $	\dashv	-	-	_						0	ē		< د		-+	+	+	+	+	┢	+	┼┤	
1	NO ₃ -N (353.2)	s /		_	_								-	9	L / .							╋	╉─		┢		- 0
Ž		3	9		_										Ž		≥				+-	+	-	┝	+		- 0
L O	NO ₂ -N (9056)	S	0		_	-							_	_	LDC #22335 (Tronox LLC-Northgate, Henderson NV /		S					_	+	-			
ŝrs(∣≥	9			_							_	9	ers		≥					+	-		+	-	
pde	Br CI,SO4 (9056)	S	0				_	_					_	_	pu		S	_		_	_	-	-			+	0
He		∣≥	9										_	9	He		≥	_				-	_		+	+	0
e,	NH ₃ -N (350.1M)	S												0	te,		S				_	_		-	╞	-	0
ga	N (35	3	ဖ											9	Iga		≥					+-	+	╞	\vdash		•
Northgate,	Alk. (2320B)	S	0											0	モ		S			_	-	_		\vdash		-	0
Ž	A (23	∣≥	ဖ											9	Ž	0	≥			_	_	_		_	╞	-	0
Ċ	Metals (SW846)	S	0											0	U L	Chlorate (300.1)	S	0				_		-			0
Ĵ	Me (SV	3	∞											ω	X	Chi (30	≥	9			\perp		_				9
Ôu	Pest. (8081A)	S	0											0	no.	TOC (9060/ L/K)	ν	0									0
ē	Pe (805	≥	ဖ											9	l ro		≥	9									9
2	QC)	S	0											0	5 (MBAS (5540C)	S	0									•
33	SVOA (8270C)	3	9											و	233	MB (552	≥	9									٥
#22	ĕ 8	S	0											0	#22	sc)	S	0									0
LDC #22335 (Tronox LLC-	VOA (8260B)	3	15											15	Ŋ	TDS (2540C)	3	9									9
	(3) DATE DUE	: ^	01/25/10													(3) DATE DUE		01/25/10							1		
									$\left \right $		┢			$\left - \right $				/10 0			╉		+-	\uparrow	\uparrow		
	DATE REC'D		01/04/10													DATE REC'D	ala na Ana a	01/04/10							_		
Stage 2B/4	SDG#	Water/Soil	R0904085											T/LR	Stage 2B/4	SDG#	Water/Soil	R0904085									TALR
		Matrix.					-					 		Total			Matrix:				+	+	+	┼		-	Total

Shaded cells indicate Stage 4 validation (all other cells are Stage 2B validation). These sample counts do not include MS/MSD, and DUPs

22335ST.wpd

Tronox Northgate Henderson Worksheet

EDD Area	Yes	No	NA	Findings/Comments
I. Completeness		K.		
Is there an EDD for the associated Tronox validation report?	X			
II. EDD. Qualifier Population				
Were all qualifiers from the validation report populated into the EDD?	X	Sector 1		
III. EDD Lab Anomalies			ана 34. 1	
Were EDD anomalies identified?	х			
If yes, were they corrected or documented for the client?	x			See EDD_discrepancy_ form_LDC22335_012210.doc
IV. EDD Delivery				ille de la seconda
Was the final EDD sent to the client?	X			

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Data Validation Reports LDC #22335

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada
Collection Date:	July 22 through July 27, 2009
LDC Report Date:	January 19, 2010
Matrix:	Water
Parameters:	Volatiles
Validation Level:	Stage 2B
Laboratory:	Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0904085

Sample Identification

CLD-4RB CLD-4RBDL TB072209-GW1 TB072209-W1 MW-6RB TB072309-GW1 TB072309-W1 M-52B M-52BDL M-35B M-35BDL TB072409-GW1 M-11B M-11009B TB071709-GW1 CLD-4RBDLMS CLD-4RBDLMSD

Introduction

This data review covers 17 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination (r^2) were greater than or equal to 0.990.

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
8/3/09	2-Methyl-2-propanol	0.045 (≥0.05)	M-52BDL M-35BDL 164191-MB	J (all detects) UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
7/31/09	Acetone 2-Butanone	28.0 27.5	CLD-4RBDL MW-6RB TB072309-W1 M-52B M-35B TB072409-GW1 M-11B M-11009B TB071709-GW1 CLD-4RBDLMS CLD-4RBDLMS CLD-4RBDLMSD 163744-MB	J- (all detects) UJ (all non-detects) J- (all detects) UJ (all non-detects)	A

All of the continuing calibration RRF values were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
8/4/09	2-Methyl-2-propanol	0.044 (≥0.05)	M-52BDL M-35BDL 164191-MB	J (all detects) UJ (all non-detects)	A

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

Samples TB072209-GW1, TB072209-W1, TB072309-GW1, TB072309-W1, TB072409-GW1, and TB071709-GW1 were identified as trip blanks. No volatile contaminants were found in these blanks with the following exceptions:

Trip Blank ID	Sampling Date	Compound	Concentration	Associated Samples
TB072209-W1	7/22/09	Dichloromethane Toluene	0.62 ug/L 0.30 ug/L	CLD-4RB CLD-4RBDL
TB072309-GW1	7/23/09	Toluene	0.23 ug/L	MW-6RB
TB071709-GW1	7/27/09	Acetone	1.8 ug/L	M-11B M-11009B

Sample concentrations were compared to concentrations detected in the trip blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
CLD-4RB	Dichloromethane	0.41 ug/L	0.41U ug/L

Sample PB102309-A3 (from SDG R0906095) was identified as a pump blank. No volatile contaminants were found in this blank with the following exceptions:

Pump Blank ID	Sampling Date	Compound	Concentration	Associated Samples
PB102309-A3	10/23/09	Acetone Chloroform	5.1 ug/L 0.28 ug/L	CLD-4RB CLD-4RBDL MW-6RB M-52B M-52BDL M-35B M-35BDL M-11B M-11009B

Sample concentrations were compared to concentrations detected in the pump blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
M-52B	Acetone	1.9 ug/L	1.9U ug/L

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Although the MS percent recovery (%R) was not within QC limits for one compound, the MSD percent recovery (%R) was within QC limits and no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Although the LCS percent recoveries (%R) were not within QC limits for some compounds, the MS and MSD percent recoveries (%R) were within QC limits and no data were qualified.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Project Quantitation Limit

All project quantitation limits were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
CLD-4RB M-52B M-35B	Chloroform	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	A

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0904085	All compounds reported below the PQL.	J (all detects)	A

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

Sample	Compound	Flag	A or P
CLD-4RB M-52B M-35B	Chloroform	x	A
CLD-4RBDL M-52BDL M-35BDL	All TCL compounds except Chloroform	x	A

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples M-11B and M-11009B were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentrat	ion (ug/L)	000	Difference				
Compound	M-11B	M-11009B	RPD (Limits)	Difference (Limits)				
Chloroform	150	150	0 (≤30)	-	-	-		
Tetrachloroethene	0.43	0.43	-	0 (≤1.0)	-	-		

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Volatiles - Data Qualification Summary - SDG R0904085

SDG	Sample	Compound	Flag	A or P	Reason (Code)
R0904085	M-52BDL M-35BDL	2-Methyl-2-propanol	J (all detects) UJ (all non-detects)	A	Initial calibration (RRF) (c)
R0904085	CLD-4RBDL MW-6RB TB072309-W1 M-52B M-35B TB072409-GW1 M-11B M-11009B TB071709-GW1	Acetone 2-Butanone	J- (all detects) UJ (all non-detects) J- (all detects) UJ (all non-detects)	A	Continuing calibration (%D) (c)
R0904085	M-52BDL M-35BDL	2-Methyl-2-propanol	J (all detects) UJ (all non-detects)	A	Continuing calibration (RRF) (c)
R0904085	CLD-4RB M-52B M-35B	Chloroform	J (all detects)	A	Project Quantitation Limit (e)
R0904085	CLD-4RB CLD-4RBDL TB072209-GW1 TB072209-W1 MW-6RB TB072309-GW1 TB072309-W1 M-52B M-52BDL M-35B M-35BDL TB072409-GW1 M-11B M-11009B TB071709-GW1	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (PQL) (sp)
R0904085	CLD-4RB M-52B M-35B	Chloroform	x	A	Overall assessment of data (o)
R0904085	CLD-4RBDL M-52BDL M-35BDL	All TCL compounds except Chloroform	x	A	Overall assessment of data (o)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Volatiles - Laboratory Blank Data Qualification Summary - SDG R0904085

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Volatiles - Trip Blank Data Qualification Summary - SDG R0904085

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
R0904085	CLD-4RB	Dichloromethane	0.41U ug/L	A	bt

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Volatiles - Pump Blank Data Qualification Summary - SDG R0904085

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
R0904085	M-52B	Acetone	1.9U ug/L	A	bp

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #:____22335A1______ VALIDATIO

Stage 2B

SDG #: <u>R0904085</u> Laboratory: Columbia Analytical Services Date: //15/v Page: _1 of / Reviewer: _____ 2nd Reviewer: _____

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Technical holding times	A	Sampling dates: 7/22-27/69
II.	GC/MS Instrument performance check	A	, , , , , , , , , , , , , , , , , , , ,
III.	Initial calibration	ŚW	2 RSD rr
IV.	Continuing calibration/JOV	SW	CW = 252
V.	Blanks	A	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	SW	
VIII.	Laboratory control samples	SW	ИS —
IX.	Regional Quality Assurance and Quality Control	N	
Χ.	Internal standards	<u> </u>	
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	Shar	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	SW	
XVI.	Field duplicates	SW	D = 13, 14
XVII.	Field blanks	SW	TB = 3,4 G,7 12, 15 PB = PB 10 2 309, A3 (A)

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

vanua	Water			
1 1	CLD-4RB	11 ⁸ M-35BDL	21 163602	- MB 31
2 7	CLD-4RBDL	12 TB072409-GW1	22 2 163 744	F32
31	TB072209-GW1	13 ² M-11B D	23 3 164 191	33
4 1	TB072209-W1	14 M-11009B D	24	34
5 2	MW-6RB	15 TB071709-GW1	25	35
6 1	TB072309-GW1	16 > CLD - FRB DLMS	26	36
7 2	TB072309-W1	17 CLD - 4RBDLMSD	27	37
8 2 8	M-52B	18	28	38
₉ 3	M-52BDL	19	29	39
10 2	M-35B	20	30	40

.

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	U. 1,1,2-Trichloroethane	00. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride**	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform*	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene Chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrytonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU: 1,1,1,2-Tetrachloroethane	000. 1,3,5-Trichlorobenzene	illi. Isobutyi akcohol
H. 1,1-Dichloroethene**	BB. 1,1,2,2-Tetrachloroethane*	VV. isopropylbenzene	PPP. trans-1,2-Dichioroethene	JJJJ. Methacrytonitrile
I. 1,1-Dichloroethane*	CC. Toluene**	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene*	XX. 1,2,3-Trichloropropane	RRR. m.p-Xylenes	LLLL. Ethyl ether
K. Chloroform**	EE. Ethylbenzene**	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN. 2-Methyl- 2-propanol
M. 2-Butanone	GG. Xytenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	dddd
0. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butytbenzene	WWW. Ethanoi	0000.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	EEE. sec-Butytbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyt alcohol	ттт.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-tsopropytoluene	AAAA. Ethyl text-butyl ether	uuuu.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	ww.

* = System performance check compounds (SPCC) for RRF ; ** = Calibration check compounds (CCC) for %RSD.

Lee Curr 1222 -1 SDG #: гос #:<u>-</u>

VALIDATION FINDINGS WURNSHEET **Initial Calibration**

rage: 1 oi 2nd Reviewer: Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Did the laboratory perform a 5 point calibration prior to sample analysis?

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation? <u>「 着 う</u> か う ら Did the initial calibration meet the acceptance criteria?

r				 	 	 	 	 		 	 		_			
		(२)														
	Qualifications	JMJA	`													
	ated Samples	9. 11, 16 \$ 191- MB														
	Associa	9.11,														
SD and ≥0.05 RRF ?	Finding RRF (Limit: <u>>0</u> .05)	0.045														
on criteria of ≤30 %R\$	Finding %RSD (Limit: <30.0%)															
RFs within the validati	Compound	NNNN														
Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF ?	Standard ID	ICAL														
	e	\$ 103/09	1 . 1													
	#															

SDG #: See Con LDC #: 22 335 A1

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

3 Page: / of__ Reviewer: 2nd Reviewer:_

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? N N/A Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ?

 >	WIND W	Were all %D and RRFs within the validation criteria of <25 %D and >0.05 RRF ?	within the validation cn	iteria of ≤25 %D anc	1 20.05 RKF ?		
				Finding %D	Finding RRF // imit: >0.05)	Associated Samples	Qualifications
#	Date	Standard ID	buno			0 1 2 1 2 1 2	+- Kit A (c)
Γ	7/31/09	X3IIX	(<u>·</u>) ≠	28.0		11-21 01 81 412	Y
			M (-)	27.5		16-2744-MB	
	V/04 /2	X SIXN	NNNN		0.044	gm-19121 11 9	J/NJ A V
						-	

<u>A</u> I	Cere
2335	z
LDC #: 2	SDG #:

VALIDATION FINDINGS WORKSHEET **Field Blanks**

λ		1
L of	ξ	7
Page:	Reviewer:	2nd Reviewer:

: GC/MS VOA (EPA SW 846 Method 8260B)	Were field blanks identified in this SDG?
METHOD: (A/N/N/A

	Ì
	τ
	Worn through componingle deterted in the field bly
<u>.</u> .	4
3	ţ
א פרפ זופון א טער איז א טער א א טער א א טער א א א א א א א א א א א א א א א א א א א	2
2	τ
Ξ	ţ
Ξ	0
5	t
1	7
Ξ	ť
Ð	5
2	Ş
ŝ	È
	Ş
E I	4
	Š
ē	2
	÷
ם בי	5
Š	2
>	2
∡	<
È	Ì
N/N/N	A NIVA

V N N/A Were target compounds detected in the field blanks? Blank units: wo /L Associated sample units: us /L Field blank type: (circle one) Field Blank / Rinsate / Trip Blank / Other:

(p t)λ____ Associated Samples:

Ē					 	_	 	 <u> </u>
	ntification							
	Sample Identification							
			0.41 M					
	Blank ID							
	Blank ID	40/ee/L	0.62	0.30				
	Compound	Samming Date 7/22/04	Ē	3				
	ŭ							

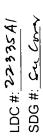
e units: سې ال	rists that the survey of the second black (Discosts (Find Black / Oth
Associated sample units: <u>*5</u>	Is sool Field Blook /
Blank units: ^{مه ال} ــــــــــــــــــــــــــــــــــــ	Pista black Americal

(A)							
Associated Samples:	Sample Identification						
Associated	, , , , , , , , , , , , , , , , , , ,						
) Blank / Other:							
/ Rinsate / Trig	Blank ID						
ociated samp a) Field Blank	Blank ID 6	7/22/64	0.23				
Blank units: <u>wo //</u> Associated sample units: <u>wo //</u> Field blank type: (circle one) Field Blank / Rinsate // Trip Blank / Other:	Compound	samning hate 1/2 > 161	CC				

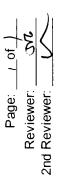
LDC #: 22 335 A			VALIDATION F <u>Fi</u>	VALIDATION FINDINGS WORKSHEET <u>Field Blanks</u>	(SHEET		Page: 2 of 2 Reviewer: 3V6 2nd Reviewer: 4)	
METHOD: GC/MS VOA (EPA SW 846 Method 8260B)Y N /N/AWere field blanks identified in this SDG?Y N N/AWere target compounds detected in the field blanks?Blank units:***Alank units:***Alank units:***	A (EPA SW 846 Method 826 ield blanks identified in this S arget compounds detected in Associated sample units:	MS VOA (EPA SW 846 Method 8260B) Were field blanks identified in this SDG? Were target compounds detected in the f Associated sample units: 45	field blanks?	ν Ο ccord	Accordated Samulas:	3 14		4
		Blank ID			Sample Identification			
Samnling Date	7/27/64							
II.	1.8							
Blank units: w5 /L Ass Field blank type: (circle one	Associated sample units: e one) Field Blank / Rinsate	ole units: <u>n9</u> / Rinsate / Trip		PB Associ	Associated Samples:	1,2,5,8-11	13, 14 (b)	\bigcirc
Compound PBIank ID Blank ID	PB 10 2 309 Blank ID	ー A う Blank ID			Sample Identification	ation		
Sampling Date	10 /22/01		8					
π	5.1		1.9/4					
×	0.28							
		(AM of	atter atter	VIN OT	(* 0 (* 0			

See Lover LDC #: 22 3 35 4/ SDG #:

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates


METHOD : GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>V N N/A</u> Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.


N N/A

Was a MS/MSD analyzed every 20 samples of each matrix? Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	DI DSW/SW	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		16/17		67 (76-130))	()	М	No que (mes in
			-	()	•	()		
				()	()	()		
				()	()	()		
					()	()		
				())			
				()				
						()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
)	()	()		
				()	()	()		
				()	()	()		
				()	() [()		
		Compound	punc		QC Limits (Soil)	RPD (Soil)	QC Limits (Water)	RPD (Water)
	.H	1,1-Dichloroethene		29-	59-172%	< 22%	61-145%	< 14%
	s.	Trichloroethene		62-	62-137%	< 24%	71-120%	< 14%
	۷.	Benzene		-99	66-142%	< 21%	76-127%	< 11%
	cc.	Toluene		59-	59-139%	< 21%	76-125%	< 13%
	DD.	Chlorobenzene		60-	60-133%	< 21%	75-130%	< 13%

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A YN NA

Was a LCS required? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

<u> </u>																								<u> </u>
Qualifications	No quel	(mower)																						
Associated Samples	2,5,78, b, 12. E	163749-MB																						
RPD (Limits)	()	()	()	()	()	()	()	()	()	()	()	()	(()	()	()	()	()	()	()	()	()	()	()
LCSD %R (Limits)	()	()	()	()	()	()	())	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
LCS %R (Limits)	(SC/- SL) 74	74 (1)	()	()	()	()	()		()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
Compound	W	#																						
LCS/LCSD ID	163744 -45																							
# Date																								

1 YSGE2	Cee Carry
*	ŧ
- DO	SDG

VALIDATION FINDINGS WORKSHEET **Compound Quantitation and CRQLs**

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>Y N N/A</u> Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Nere compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? Associated Samples Control of the constraint of	applicable to level 1V validation f	Qualifications	(Ce) (Ce)								
D	ilutions and dry weight factors	Associated Samples									
D	QLs adjusted to reflect all sample d	Finding	K > cal range	0	#						
D	re compound quantitation and CR(Sample ID			*						
		# Date									

Comments: See sample calculation verification worksheet for recalculations

145	Z
22 33	2 2
LDC #:	SDG #:

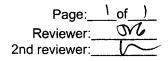
VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

- (-
	'n
	-
	Ω
	ŝ
	22
	0
	3
	Ψ
	ပ
	ပ
	ā
	••
	Ē
	ŝ
	\sim
	<u>_</u>
	Ψ
	C.,
	۔
	-
	Ļ
	>
	2
- 1	-
	-
	Ω
	ŝ
	22
	ŝ
	_
	_
	Ē
	=
	ω
	0
	3 2
;	ھ ≥⊒
2	
3	ality a
3	uality a
Ξ	auality a
3	quality a
2	I quality a
2	all quality a
3	all quality a
1	srall quality a
1	erall quality a
	verall quality a
	overall quality a
	overall quality a
	e overall quality a
	ie overali quality a
	ne overali quality a
	the overall quality a
	s the overall quality a
	is the overall quality a
	as the overall quality a
	vas the overall quality a
	was the overall quality a
	Was the overall quality and usability of the data acceptable?
	Was the overall quality a
	V N/A Was the overall quality a


7

ß	(0)	\								
Qualifications	X /A		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
Associated Samples										
Finding	k > cal range	0	All excent t di)							
Sample ID	1 8 10		2 9 1							
Date										
#										

Comments:

LDC#:<u>223</u>75A) SDG#:<u>SeeCorry</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

YN N/A XN N/A

Were field duplicate pairs identified in this SDG? Were target compounds detected in the field duplicate pairs?

	Concentrati	ion (Ug/L)	Parent
Compound	3	14	RPD my
k	150	150	0 (4302 RPD)
AA	0.43	0.93	0 (£ 1.0 D)
		1	

	Concentration ()	
Compound		RPD
	-	

	Concentration ()	=
Compound		RPD

	Concentration ()	
Compound		RPD

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Data Validation Reports LDC #22335

Semivolatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada
Collection Date:	July 22 through July 27, 2009
LDC Report Date:	January 19, 2010

Matrix: Water

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0904085

Sample Identification

CLD-4RB MW-6RB M-52B M-35B M-11B M-11009B

Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8270C for Semivolatiles.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination (r^2) were greater than or equal to 0.990.

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all semivolatile target compounds and system performance check compounds (SPCCs) were greater than or equal to 0.05 as required.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

The percent differences (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
8/3/09	Di-n-octylphthalate	25.2	MW-6RB M-35B M-11B M-11009B 92043-MB8/04 92391-MB	J- (all detects) UJ (all non-detects)	A

All of the continuing calibration RRF values were greater than or equal to 0.05 .

V. Blanks

Method blanks were reviewed for each matrix as applicable. No semivolatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
92043-MB8/03	8/3/09	Butylbenzylphthalate Di-n-butylphthalate	0.30 ug/L 2.0 ug/L	CLD-4RB MW-6RB M-52B M-35B
92043-MB8/04	8/4/09	Butylbenzylphthalate Di-n-butylphthalate Bis(2-ethylhexyl)phthalate Diethylphthalate	0.27 ug/L 1.6 ug/L 0.23 ug/L 0.20 ug/L	CLD-4RB MW-6RB M-52B M-35B

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound	Reported	Modified Final	
	TIC (RT in minutes)	Concentration	Concentration	
М-35В	Butylbenzylphthalate	0.11 ug/L	0.11U ug/L	

Sample PB102309-A3 (from SDG R0906095) was identified as a pump blank. No semivolatile contaminants were found in this blank with the following exceptions:

Pump Blank ID	Sampling Date	Compound	Concentration	Associated Samples
PB102309-A3	10/23/09	Bis(2-ethylhexyl)phthalate Butylbenzylphthalate	1.5 ug/L 0.11 ug/L	All samples in SDG R0904085

Sample concentrations were compared to concentrations detected in the pump blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Compound		Reported	Modified Final	
Sample TIC (RT in minutes)		Concentration	Concentration	
M-35B	Butylbenzylphthalate	0.11 ug/L	0.11U ug/L	

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Flag	A or P
92391-LCS/D (M-11B M-11009B 92391-MB)	Pyridine 1,4-Dioxane	40 (50-120) 42 (50-120)	37 (50-120) 41 (50-120)	-	J- (all detects) UJ (all non-detects) J- (all detects) UJ (all non-detects)	Ρ
92043-LCS/D (CLD-4RB MW-6RB M-52B M-35B 92043-MB8/03 92043-MB8/04)	Pyridine 1,4-Dioxane	26 (50-120) 44 (50-120)	28 (50-120) 46 (50-120)	-	J- (all detects) UJ (all non-detects) J- (all detects) UJ (all non-detects)	Ρ

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P	
All samples in SDG R0904085	All compounds reported below the PQL.	J (all detects)	A	

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples M-11B and M-11009B were identified as field duplicates. No semivolatiles were detected in any of the samples.

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Semivolatiles - Data Qualification Summary - SDG R0904085

SDG	Sample	Compound	Flag	A or P	Reason (Code)
R0904085	MW-6RB M-35B M-11B M-11009B	Di-n-octylphthalate	J- (all detects) UJ (all non-detects)	A	Continuing calibration (ICV %D) (c)
R0904085	CLD-4RB MW-6RB M-52B M-35B M-11B M-11009B	Pyridine 1,4-Dioxane	J- (all detects) UJ (all non-detects) J- (all detects) UJ (all non-detects)	Ρ	Laboratory controi samples (%R) (l)
R0904085	CLD-4RB MW-6RB M-52B M-35B M-11B M-11009B	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Semivolatiles - Laboratory Blank Data Qualification Summary - SDG R0904085

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P	Code
R0904085	M-35B	Butylbenzylphthalate	0.11U ug/L	A	bl

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Semivolatiles- Pump Blank Data Qualification Summary - SDG R0904085

SDG	Sample	Compound TIC (RT in minutes)	Modifled Final Concentration	A or P	Code
R0904085	M-35B	Butylbenzylphthalate	0.11U ug/L	А	bp

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

A. Phenol**	P. Bis(2-chloroethoxy)methane	EE. 2,6-Dinitrotoluene	TT. Pentachlorophenol**	III. Benzo(a)pyrene**
B. Bis (2-chloroethyl) ether	Q. 2,4-Dichlorophenol**	FF. 3-Nitroaniline	UU. Phenanthrene	JJJ. Indeno(1,2,3-cd)pyrene
C. 2-Chlorophenol	R. 1,2,4-Trichlorobenzene	GG. Acenaphthene⁺⁺	VV. Anthracene	KKK. Dibenz(a,h)anthracene
D. 1,3-Dichlorobenzene	S. Naphthalene	HH. 2,4-Dinitrophenol*	WW. Carbazole	LLL. Benzo(g,h,i)perylene
E. 1,4-Dichlorobenzene**	T. 4-Chloroaniline	II. 4-Nitrophenol⁺	XX. Di-n-butylphthalate	MMM. Bis(2-Chloroisopropyl)ether
F, 1,2-Dichlorobenzene	U. Hexachlorobutadiene⊷	JJ. Dibenzofuran	YY. Fluoranthene**	NNN. Aniline
G. 2-Methylphenol	V. 4-Chloro-3-methylphenoi⁺	KK. 2,4-Dinitrotoluene	ZZ. Pyrene	000. N-Nitrosodimethylamine
H. 2,2'-Oxybis(1-chloropropane)	W. 2-Methylnaphthalene	LL. Diethylphthalate	AAA. Butylbenzylphthalate	PPP, Benzoic Acid
I. 4-Methylphenol	X. Hexachlorocyclopentadiene*	MM. 4-Chlorophenyl-phenyl ether	BBB. 3,3'-Dichlorobenzidine	QQQ. Benzyl alcohol
J. N-Nitroso-di-n-propylamine*	Y. 2,4,6-Trichlorophenol	NN. Fluorene	CCC. Benzo(a)anthracene	RRR. Pyridine
K. Hexachloroethane	Z. 2,4,5-Trichlorophenol	00. 4-Nitroaniline	DDD. Chrysene	SSS. Benzidine
L. Nitrobenzene	AA. 2-Chloronaphthalene	PP. 4,6-Dinitro-2-methylphenol	EEE. Bis(2-ethylhexyl)phthalate	TTT. 1, 4- Di oxane
M. Isophorone	BB. 2-Nitroaniline	QQ. N-Nitrosodiphenylamine (1)**	FFF. Di-n-octylphthalate**	UUU OCTACKINO Styrene
N. 2-Nitrophenol**	CC. Dimethylphthalate	RR. 4-Bromophenyl-phenylether	GGG. Benzo(b)fluoranthene	ww.
0. 2,4-Dimethylphenol	DD. Acenaphthylene	SS. Hexachlorobenzene	HHH. Benzo(k)fluoranthene	www.

Notes: * = System performance check compound (SPCC) for RRF; ** = Calibration check compound (CCC) for %RSD.

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: <u>//8/1</u>0 Page: <u>1 of /</u> Reviewer: <u>5~4</u> 2nd Reviewer:

Laboratory: Columbia Analytical Services

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 7/22-27/09
11.	GC/MS Instrument performance check	A	
111.	Initial calibration	Á.	$7 \text{ ksp } r^2$ $C \omega / \omega \neq 25 \text{ b}$
IV.	Continuing calibration/ICV	SW	CW/1W = 25 B
V.	Blanks	Sh)	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	client spec
VIII.	Laboratory control samples	SW	client spec LCS/D
IX.	Regional Quality Assurance and Quality Control	N	
X .	Internal standards	A	
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	ND	D = 5,6
XVII.	Field blanks	SW	PB = PB102309-A3 (ROG66095)

Note:

A = Acceptable

ND = No compounds detected D = Duplicate

N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank TB = Trip blank EB = Equipment blank

watel

+ 1 \	CLD-4RB	11 F	92043-MB 8/03	21	31	
2	MW-6RB	12 1	92043-MB 8/04	22	32	
+ 3	M-52B	ī ₁₃)	92391-MB	23	33	
†	M-35B	14		24	34	
and the second s	M-11B	15		25	35	
- 6	M-11009B	16		26	36	
7		17		27	 37	
8		18		28	38	
9		19		29	 39	
10		20		30	40	

LDC #:	22335A2a
SDG #:	R0904085

Page: 1 of 1 Reviewer: 3/			Qualifications	J-MJA (2)														
		r each instrument? CC's and SPCC's ?	Associated Samples	2 4-6, 42043-MB 864	92341-MB													
VALIDATION FINDINGS WORKSHEET Continuing Calibration	identified as "N/A".	urs of sample analysis fo method criteria for all C RRF ?	Finding RRF (Limit: <u>></u> 0.05)															
ALIDATION FINDI Continuing	pplicable questions are	least once every 12 hou se factors (RRF) within a of ≤25 %D and ≥0.05	Finding %D (Limit: <25.0%)	25, 2														
2	d 8270C) ns answered "N". Not a	 standard analyzed at and relative respon the validation criteria 	Compound	FFF (-)														
A 2a	METHOD: GC/MS BNA (EPA SW 846 Method 8270C) Please see qualifications below for all questions answered "N" Not applicable questions are identified as "N/A"	Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument? Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF ?	Standard ID	AUGOS	(m)													
LDC# 22 335424 ShG# 510 Cm	IETHOD: GC/MS BN lease see qualification	V N/A Was V N/A Wer V N/A Wer	# Date	8 10 7/04	· /													

CONCAL.2S

VALIDATION FINDINGS WORKSHEET **Blanks**

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank analyzed for each matrix?

Was a method blank analyzed for each concentration preparation level? Was a method blank associated with every sample?

<u>× N N/A</u> Was the blank contaminated? If yes, please see qualification below. Blank extraction date: アネフル Blank analysis date: ちんう) 3 /04 /09 <u>Y N N/A</u> <u>Y N N/A</u> <u>Y N N/A</u>

(19) 4 ١

Conc. units:			Associated Samples:	+	
Compound	Blank ID			Sample Identification	
	92643-mB	92643-MB 92 043-MB	4		
	50A	100			
AAA	0.30 0.27	0.27	0. 11 /W		
XX	* 2,0	1.6			
EEF		0.23			
71		0.26			

Blank analysis date: Blank extraction date:

Conc. units:		Associat	Associated Samples:				
Compound	Blank ID			Sample Identification	ıtion		

5x Phthalates 2x all others

LDC #: 22 335 Ard SDG #: 54 CM-1		VALIDATI	LIDATION FINDINGS WORKSHEET <u>Field Blanks</u>	(SHEET	õ	Page: /of / Reviewer:
WETHOD: GC/MS BNA (EPA SW 846 Method 8270)Y N N/AWere field blanks identified in this SDG?Y N N/AWere target compounds detected in the fieldBlank units:Model 23 / 6 9Sampling date:10 / 23 / 6 9	AS BNA (EPA SW 846 Method 8270) Were field blanks identified in this SDG? Were target compounds detected in the $\frac{5}{10}$ /L Associated sample units: We	in this SDG? in this SDG? tected in the field blanks? units : <u>u5 /L</u>				(p)
				Sample Identification		
	6.0	A3 4				
EFE	۱. 5					
AAA	0,11	0.11/11				
		,				
CRQL						
	Associated sample units:	units:				
Sampling date: Field blank type: (circle one) Field Blank / Rinsate / Other:	e) Field Blank / F	Rinsate / Other:	Associated Samples:			
Compound	Blank ID		Sa	Sample Identification		
CRQL						

5x Phthalates 2x all others

Loc Crry LDC #: 22 335 A 24 SDG #:

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

25 lof H Page: _ Reviewer: _ 2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was a LCS required? Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

Y N N/A

				-			->																		
Qualifications	3-1454 (-						•																	
Associated Samples	5 6. 92311-MD					1-4, 920 43-MB863	9 2042~mb 8/04																		
RPD (Limits)	()	()	(()	()	())	()	()		()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
LCSD %R (Limits)	37 (50-120)	4) ()			()	28 ()	46 ()	()) ((()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
LCS %R (Limits)	40 (50-1 x 0)	() ()	()	()	()	() 9 2	44 ()	()			()	()	()	()) (()	()) (()	()	()	()	()	()	()
Compound	K K R	TTT				RRR	11																		
LCS/LCSD ID	95341-10226					9/537-66026																			
# Date																									

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Data Validation Reports LDC #22335

Chlorinated Pesticides

LDC Report# 22335A3a

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada
Collection Date:	July 22 through July 27, 2009
LDC Report Date:	January 19, 2010
Matrix:	Water
Parameters:	Chlorinated Pesticides
Validation Level:	Stage 2B
Laboratory:	Columbia Analytical Services, Inc.
Sample Delivery Group (SDG)	: R0904085

Sample Identification

CLD-4RB MW-6RB M-52B M-35B M-11B M-11009B

Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8081A for Chlorinated Pesticides.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of single compounds were performed for the primary (quantitation) column and confirmation column as required by this method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No chlorinated pesticide contaminants were found in the method blanks.

Sample PB102309-A3 (from SDG R0906095) was identified as a pump blank. No chlorinated pesticide contaminants were found in this blank.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Although the LCS/LCSD relative percent difference (RPD) was not within QC limits for one compound, the LCS/LCSD percent recoveries (%R) were within QC limits and no data were qualified.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

XI. Target Compound Identification

Raw data were not reviewed for this SDG.

XII. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0904085	All compounds reported below the PQL.	J (all detects)	A

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples M-11B and M-11009B were identified as field duplicates. No chlorinated pesticides were detected in any of the samples.

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Chlorinated Pesticides - Data Qualification Summary - SDG R0904085

SDG	Sample	Compound	Flag	A or P	Reason (Code)
R0904085	CLD-4RB MW-6RB M-52B M-35B M-11B M-11009B	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG R0904085

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Chlorinated Pesticides - Pump Blank Data Qualification Summary - SDG R0904085

No Sample Data Qualified in this SDG

Tronox Northgate Henderson

VALIDATION COMPLETENESS WORKSHEET Stage 2B

LDC #: 22335A3a SDG #: R0904085

Laboratory: Columbia Analytical Services

Date: <u>//15/10</u> Page: <u>1</u> of <u>/</u> Reviewer: <u>077</u> 2nd Reviewer: <u>1</u>

METHOD: GC Chlorinated Pesticides (EPA SW 846 Method 8081A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>l.</u>	Technical holding times	A	Sampling dates: 7/22 - 27/09
11.	GC/ECD Instrument Performance Check	A	
111.	Initial calibration	A	
IV.	Continuing calibration/ICV	A	Carlar = 203
V.	Blanks	A	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	Client Spec US/B
VIII.	Laboratory control samples	SW	us/b
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	N	
XII.	Compound quantitation and reported CRQLs	N	
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	ND	D = 5,6
XV.	Field blanks	ND	PB = PB102309-A3 (R0906095)

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

		Water						
1	CLD-4RB		11	92045-MB	21		31	
2	MW-6RB		- 12γ	92390-2	22		32	
• / 3	M-52B		13		23		33	
	M-35B		14		24		34	
52	M-11B	0	15		25		35	
6	M-11009B	b	16	· · · · · · · · · · · · · · · · · · ·	26		36	
7		<u></u>	17		27		37	
8			18		28		38	
9			19		29		39	
10			20	<u></u>	30	L	40	

VALIDATION FINDINGS WORKSHEET

0

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

	 Q. Endrin ketone	T. Arocior-1242	.00
B. beta-BHC J. 4,4'-DDE	R. Endrin sidehyde	Z. Arocior-1248	Ť.
C. detta-BHC K. Endrin	S. alpha Chlordane	AA. Aroolor-1284	H
D. gamma-BHC L. Endosulfan II	T. gamma-Chlordane	BB. Arocior-1260	,tt
E. Heptachlor M. 4,4'-DDD	U. Toxaphene	CC. DB 606	KK.
F. Aldrin N. Endosulfan sulfate	V. Arocior-1016	DD. DB 1701	F
G. Heptachlor epoxide O. 4,4'-DDT	W. Arocior-1221	EE.	MM.
H. Endosulfan ! P. Methoxychlor	X. Arocior-1232	FF.	NN.

Notes:

.

2 235 434	the Cart
LDC #: 2	SDG #: S

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples

Page: <u>1</u> of Z Reviewer:_ 2nd Reviewer:_

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>V N/N</u> <u>V N/N/A</u> Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? <u>V N/N/A</u> Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits? AN N/X

eve N	Y N/N/A VID	ly Was a LCS analyzed every 20 samples for each r	every 20 san	ples for each matrix	matrix or whenever a sample extraction was performed?	le extraction was per	formed?	
#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		92390-115/0	1	()	()	(06) 16	56.92390-MB	No que (La)
			-	()	()	()		•
				()	()	()		
				()	()	()		
Π				(
				()	()	()		
					()	()		
					()			
					()			
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	())		
				()		-		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
					()	()		

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Data Validation Reports LDC #22335

Metals

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada
Collection Date:	July 22 through July 27, 2009

LDC Report Date: January 19, 2010

Matrix: Water

Parameters: Metals

Validation Level: Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0904085

Sample Identification

CLD-4RB MW-6RB M-52B M-35B M-11B M-11B DISSOLVED M-11009B M-11009B DISSOLVED CLD-4RBMS CLD-4RBMS CLD-4RBDUP M-52BMS M-52BDUP

Introduction

This data review covers 12 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Methods 6010B, 6020, and 7000 for Metals. The metals analyzed were Aluminum, Antimony, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Platinum, Potassium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Tungsten, Uranium, Vanadium, and Zinc.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section IV.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Copper Magnesium Potassium	0.9 ug/L 3.0 ug/L 59 ug/L	All samples in SDG R0904085
ICB/CCB	Sodium Titanium Tungsten	82 ug/L 0.4 ug/L 0.05 ug/L	All samples in SDG R0904085
ICB/CCB	Boron Barium Potassium Antimony Thallium Uranium	8.4 ug/L 0.4 ug/L 78 ug/L 0.029 ug/L 0.004 ug/L 0.004 ug/L	CLD-4RB
ICB/CCB	Potassium Lead	84 ug/L 0.015 ug/L	MW-6RB M-52B M-35B M-11B M-11B DISSOLVED M-11009B M-11009B DISSOLVED

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Boron	19.3 ug/L	MW-6RB M-52B M-35B M-11B M-11B DISSOLVED
ICB/CCB	Boron	19.9 ug/L	M-11009B M-11009B DISSOLVED

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
CLD-4RB	Copper Thallium	2.0 ug/L 0.067 ug/L	10.0U ug/L 0.200U ug/L
MW-6RB	Copper Titanium	4.2 ug/L 5.3 ug/L	10.0U ug/L 10.0U ug/L
M-52B	Copper Titanium	7.9 ug/L 2.8 ug/L	10.0U ug/L 10.0U ug/L
M-35B	Copper	2.7 ug/L	10.0U ug/L
M-11B	Copper	0.9 ug/L	10.0U ug/L
M-11B DISSOLVED	Copper	0.8 ug/L	10.0U ug/L
M-11009B	Copper	1.1 ug/L	10.0U ug/L

Sample PB102309-A3 (from SDG R0906095) was identified as a pump blank. No metal contaminants were found in this blank with the following exceptions:

Pump Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
PB102309-A3	10/23/09	Boron Calcium Chromium Copper Magnesium Manganese Sodium Strontium Thallium Tungsten Uranium	7.0 ug/L 73 ug/L 0.6 ug/L 1.3 ug/L 4.8 ug/L 1.1 ug/L 103 ug/L 0.5 ug/L 0.005 ug/L 0.02 ug/L 0.038 ug/L	CLD-4RB MW-6RB M-52B M-35B M-11B M-11009B

Sample concentrations were compared to concentrations detected in the pump blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
CLD-4RB	Copper	2.0 ug/L	10.0U ug/L
	Thallium	0.067 ug/L	0.200U ug/L
MW-6RB	Copper	4.2 ug/L	10.0U ug/L
	Manganese	1.7 ug/L	5.0U ug/L
	Thallium	0.085 ug/L	0.200U ug/L
M-52B	Copper	7.9 ug/L	10.0U ug/L
	Thallium	0.146 ug/L	0.200U ug/L
M-35B	Copper	2.7 ug/L	10.0U ug/L
	Thallium	0.077 ug/L	0.200U ug/L
M-11B	Copper	0.9 ug/L	10.0U ug/L
	Thallium	0.075 ug/L	0.200U ug/L
M-11009B	Copper	1.1 ug/L	10.0U ug/L
	Thallium	0.070 ug/L	0.200U ug/L

Sample FiltB092509-A2 (from SDG R0905462) was identified as a filter blank. No metal contaminants were found in this blank with the following exceptions:

Filter Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
FiltB092509-A2	9/25/09	Boron Calcium Lead Magnesium Manganese Sodium Strontium Tungsten Zinc	11.0 ug/L 34 ug/L 0.006 ug/L 3.8 ug/L 0.6 ug/L 398 ug/L 0.2 ug/L 0.02 ug/L 3.6 ug/L	M-11B DISSOLVED M-11009B DISSOLVED

Sample concentrations were compared to concentrations detected in the filter blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
M-11B DISSOLVED	Zinc	0.7 ug/L	10.0U ug/L

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

Raw data were not reviewed for this SDG.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met with the following exceptions:

Diluted Sample	Analyte	%D (Limits)	Associated Samples	Flag	A or P
CLD-4RBL	Sodium	115.7 (≤10)	All samples in SDG R0904085	J (all detects) UJ (all non-detects)	A

XII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0904085	All analytes reported below the PQL.	J (all detects)	A

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples M-11B and M-11009B and samples M-11B DISSOLVED and M-11009B DISSOLVED were identified as field duplicates. No metals were detected in any of the samples with the following exceptions:

	Concentrat	tion (ug/L)	222	Diff		
Compound	M-11B	M-11009B	RPD (Limits)	Difference (Limits)	Flags	A or P
Aluminum	10.3	6.2	-	4.1 (≤50.0)	-	-
Barium	13.8	12.2	-	1.6 (≤5.0)	-	-
Boron	13600	12900	5 (≤30)	-	-	-
Calcium	53500	52300	2 (≤30)	-	-	-
Chromium	3670	3650	1 (≤30)	-	-	-

	Concentral	tion (ug/L)				
Compound	M-11B	M-11009B	RPD (Limits)	Difference (Limits)	Flags	A or P
Cobalt	0.9	0.6	-	0.3 (≤10.0)	-	-
Copper	0.9	1.1	-	0.2 (≤10.0)	-	-
Iron	1560	1700	9 (≤30)	-	-	-
Magnesium	46900	45100	2 (≤30)	-	-	-
Manganese	20.2	23.3	-	3.1 (≤5.0)	-	-
Mercury	0.06	0.04	-	0.02 (≤0.20)	-	-
Molybdenum	19.6	19.4	1 (≤30)	-	-	-
Nickel	1	0.7U	-	0.3 (≤2.0)	•	-
Platinum	0.08	0.08	-	0 (≤1.00)	-	-
Potassium	22300	21900	2 (≤30)	·	-	-
Silver	0.8	0.8		0 (≤2.0)	-	-
Sodium	832000	862000	4 (≤30)	· ·	-	-
Strontium	1430	1410	1 (≤30)		-	-
Thallium	0.075	0.07	-	0.005 (≤0.200)	-	-
Tungsten	4.56	4.43	-	0.13 (≤1.00)	-	-
Uranium	14.9	15.2	2 (≤30)	-	-	-
Vanadium	127	125	2 (≤30)	-	-	-
Zinc	3	3	-	0 (≤10.0)	-	-

	Concent	tration (ug/L)				
Compound	M-11B DISSOLVED	M-11009B DISSOLVED	RPD (Limits)	Difference (Limits)	Flags	A or P
Aluminum	2.0U	2.5	-	0.5 (≤50.0)	-	-
Barium	11.5	11.1	-	0.4 (≤5.0)	-	•
Boron	13400	13400	0 (≤30)	-	-	-
Calcium	52800	52700	0 (≤30)		-	
Chromium	3300	3310	0 (≤30)	-	-	-
Cobalt	1	0.5	-	0.5 (≤10.0)	-	-
Copper	0.8	0.8U	-	0 (≤10.0)	-	-
Iron	19	9.7	-	9.3 (≤20.0)	-	-
Magnesium	46500	46100	1 (≤30)	-	-	-
Manganese	5.5	9.4	-	3.9 (≤5.0)	-	-
Mercury	0.06	0.06	-	0 (≤0.20)	<u> </u>	-
Molybdenum	19.4	19.9	3 (≤30)	-	-	-
Platinum	0.07U	0.08	-	0.01 (≤1.00)	-	-
Potassium	22100	22200	0 (≤30)	· ·		-
Silver	0.8	0.7U	-	0.1 (≤2.0)	-	-
Sodium	839000	843000	0 (≤30)	-	-	-
Strontium	1420	1420	0 (≤30)	-	-	-
Thallium	0.07	0.073	-	0.003 (≤0.200)	-	-
Tungsten	4.53	4.39	-	0.14 (≤1.00)	-	-
Uranium	14.5	14.8	2 (≤30)	-	-	-

	Concent	tration (ug/L)		D:#		
Compound	M-11B DISSOLVED	M-11009B DISSOLVED	RPD (Limits)	Difference (Limits)	Flags	A or P
Vanadium	108	108	0 (≤30)	-	-	-
Zinc	0.7	0.7U	-	0 (≤10.0)	-	-

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Metals - Data Qualification Summary - SDG R0904085

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
R0904085	CLD-4RB MW-6RB M-52B M-35B M-11B M-11B DISSOLVED M-11009B M-11009B DISSOLVED	Sodium	J (all detects) UJ (all non-detects)	A	ICP serial dilution (%D) (sd)
R0904085	CLD-4RB MW-6RB M-52B M-35B M-11B M-11B DISSOLVED M-11009B M-11009B DISSOLVED	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (PQL) (sp)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Metals - Laboratory Blank Data Qualification Summary - SDG R0904085

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0904085	CLD-4RB	Copper Thallium	10.0U ug/L 0.200U ug/L	A	Ы
R0904085	MW-6RB	Copper Titanium	10.0U ug/L 10.0U ug/L	A	bl
R0904085	M-52B	Copper Titanium	10.0U ug/L 10.0U ug/L	A	Ы
R0904085	M-35B	Copper	10.0U ug/L	A	ы
R0904085	M-11B	Copper	10.0U ug/L	A	bl
R0904085	M-11B DISSOLVED	Copper	10.0U ug/L	A	bl
R0904085	M-11009B	Copper	10.0U ug/L	A	ы

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Metals - Pump Blank Data Qualification Summary - SDG R0904085

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0904085	CLD-4RB	Copper Thallium	10.0U ug/L 0.200U ug/L	A	bp
R0904085	MW-6RB	Copper Manganese Thallium	10.0U ug/L 5.0U ug/L 0.200U ug/L	A	bp
R0904085	M-52B	Copper Thallium	10.0U ug/L 0.200U ug/L	A	bp
R0904085	M-35B	Copper Thallium	10.0U ug/L 0.200U ug/L	A	bp
R0904085	M-11B	Copper Thallium	10.0U ug/L 0.200U ug/L	A	bp
R0904085	M-11009B	Copper Thallium	10.0U ug/L 0.200U ug/L	A	bp

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Metals - Filter Blank Data Qualification Summary - SDG R0904085

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0904085	M-11B DISSOLVED	Zinc	10.0U ug/L	A	br

Tronox Northgate Henderson

VALIDATION COMPLETENESS WORKSHEET

R0904085 SDG #:____

22335A4

LDC #:

C inter

Laboratory: Columbia Analytical Services

METHOD: Metals (EPA SW 846 Method 6010B/6020/7000)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation	Area					Comr	nents	
Ι.	Technical holding times			A	Sampling	g di	ates: 7/22/00	- 1	7127109
11.	ICP/MS Tune			A					
₩.	Calibration			A					
IV.	Blanks			SW					
V .	ICP Interference Check San	nple (I	CS) Analysis	A					
VI.	Matrix Spike Analysis			A	ms				
VII.	Duplicate Sample Analysis	_		A	0.0	,			
VIII.	Laboratory Control Samples	(LCS))	A	LĈ	2			
IX.	Internal Standard (ICP-MS)			\mathcal{N}	No	T	eviewed Utilized		
X .	Furnace Atomic Absorption	QC		N	No	+	Utilized		
XI.	ICP Serial Dilution			SW					
XII.	Sample Result Verification			N			<u></u>		
XIII.	Overall Assessment of Data			A					
XIV.	Field Duplicates			SW	(5)	, 7	(6,8)		
xv	Field Blanks			SW	Pumpi	R	ank = $PB102309$ -	43;	FilterBlank=FileB09250 (190905462)
Note: Validat	A = Acceptable N = Not provided/applicable SW = See worksheet ted Samples:		R = Rin	o compound sate eld blank	ls detected	t	(ROQOGOG) D = Duplicate TB = Trip blank EB = Equipment bla		(120905462)
					21	T	QB41	31	
1 2	CLD-4RB	11	M-52BMS M-52BDUP		21		304	32	
	MW-6RB	13	NI-52BDUP	·· · · ·	22			33	
3	M-52B	14			24			34	
4 5	M-35B	14		<u> </u>	24		· · · · · · · · · · · · · · · · · · ·	35	
5 6	M-11B M-11B DISSOLVED	16			25			36	
6 7	M-11009B	17		····	20			37	
8	M-11009B DISSOLVED	18			28			38	
0		<u> '^</u>	<u> </u>			<u>'</u>		-1-20-	

29

30

39

40

Notes:

9

10

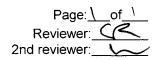
22335A4W.wpd

CLD-4RBMS

CLD-4RBDUP

19

20


C R 2nd Reviewer:

Date	-11-1	Ć
Page:_	L of	
Reviewer		

7

Stage 2B

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
	Warel	Al, Sb) As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
6:9.10		(Al, Sb, X, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mr, Hg (Ni, Pt, K) Se, Ag, Na, Sr, Tl, Sn, Ti, W. U. V. Zn
1112		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn (Hg) Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
[Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn_
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		AL Sb. As. Ba. Be. B. Cd. Ca. Cr. Co. Cu. Fe. Pb. Mg. Mo. Mn. Hg. Ni. Pt. K. Se. Ag. Na. Sr. Tl. Sn. Ti. W. U. V. Zn.
		Analysis Method
ICP	W	AI, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe Pb Mg, Mo, Mn, Hg, Ni) Pt, K, Se, Ag, Na, Sr, TI, Sn, Ti W, U/V, Zn
ICP-MS	W	Al, Sb) As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, A, Sn, Ti, W, U, V, Zn
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
Comments:	Merc	cury by CVAA if performed

1 2 3 4 5 2.0/10.0 4.2/10.0 7.9/10.0 2.7/10.0 0.9/10.0 2.0/10.0 4.2/10.0 2.8/10.0 2.7/10.0 0.9/10.0 Associated Samples: 1 1 1 1 1 1 1 0.067 / 0.200 0.067 / 0.200 0.067 / 0.200 2.8 Associated Samples: 2.8	LDC # <u>22335A4</u> SDG # <u>See Cover</u> METHOD : Trace n Sample Concentra	<u>35A4</u> <u>s Cover</u> Trace metals ncentration u	LDC #: <u>22335A4</u> SDG #: <u>See Cover</u> METHOD : Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: ug/L	34 Method 60 therwise not	010B/6020/70 110B/6020/70		VALIDATION FINDII PB/ICB/CCB QUAI Soil preparation facto Associated Samples:	NGS IFIE r app	WORKSHEE D SAMPLES blied: NA All	F	Reason Code: bl	tode: bl	Page: <u>Co</u> Reviewer: <u>C</u> 2nd Reviewer: <u>U</u>	563
Tetion 1 2 3 4 5 Limit 20/10.0 4.2/10.0 7.9/10.0 2.7/10.0 0.9/10.0 2.0/10.0 4.2/10.0 7.9/10.0 2.7/10.0 0.9/10.0 0.9/10.0 2.0/10.0 4.2/10.0 2.8/10.0 2.8/10.0 2.8/10.0 0.9/10.0 uo/I Associated Samples: 1 1 1 1 Limit 0.067/0.200 1 1 1 1 Limit 0.067/0.200 0.067/0.200 0.067/0.200 1 1 Metion 0.067/0.200 0.067/0.200 2.8 1 1 1 Metion 0.067/0.200 0.067/0.200 0.067/0.200 2.8 1 1 1 Metion Metion Metion 1 1 1 1 1 1 1	-		and the second											\square
2.0/10.0 $4.2/10.0$ $7.9/10.0$ $2.7/10.0$ $0.9/10.0$ 1	Analyte	Maximum PB ^a (mo/Kq)	Maximum PB ^a (10/1)	Maximum ICB/CCB ^a (100/L)	Action Limit	~	2	ю	4	ى	9	7		
uo/l Associated Samples: ````````````````````````````````````	Cu		6.0			2.0 / 10.0	4.2/ 10.0	7.9 / 10.0	2.7 / 10.0	0.9 / 10.0	0.8 / 10.0	1.1 / 10.0		Ī
uo/l 5.3 / 10.0 2.8 / 10.0 uo/l Associated Samples: 1 Action 1 1 Limit 1 1 Limit 0.067 / 0.200 0.067 / 0.200 uo/l Associated Samples: Action 1 Uo/l Associated Samples:	Mg		3.0											
uo/l 5.3 / 10.0 2.8 / 10.0 uo/l Associated Samples: `` Action 1 I Limit 1 I Limit 0.067 / 0.200 0.067 / 0.200 uo/l Associated Samples: `` Action 0.067 / 0.200 I uo/l Associated Samples: ``	×		59											
uo/l 5.3 / 10.0 2.8 / 10.0 uo/l Associated Samples: `` Action 1 1 Limit 1 1 Limit 0.067 / 0.200 0.067 / 0.200 uo/l Associated Samples: `` Vaction 0.067 / 0.200 1 Limit Ouelfiers ``	Na			82										
Induction Associated Samples: Action 1 Action 1 Induction 1 Induction 1 Induction 1 Induction 1 Induction 0.067 / 0.200 Induction 0.067 / 0.200 Induction Associated Samples: Induction No Limit Qualifiers	Ti			0.4			5.3 / 10.0	2.8 / 10.0						
uo/Lamples: Associated Samples: Action 1 Associated Samples: Limit 0.067 / 0.200 0.067 / 0.200 action 0.067 Action 0.066 Action 0.06	W			0.05										
Action 1 Limit 0.067 / 0.200 0.067 / 0.200 0.067 / 0.200 Action Action Constrained Samples:	Sample Cor	ncentration u	nits. unless c	otherwise not		As	sociated Sa	mples: 1						
Action Action 1 Limit 0.067 / 0.200 0.067 / 0.200 0.067 / 0.200 0.067 / 0.200 0.067 / 0.200 0.067 / 0.200 0.000 0.	- 199												1	
uo/L Associated Samples:	Analyte	Maximum PBª (mc/Ko)			Action Limit	-								
ud/l Associated Samples:	В			8.4										
uo/l Associated Samples: Limit Qualifiers	Ba			0.4										
uo/L Associated Samples:	¥			78										
ua/l Associated Samples: Action No Llimit Qualifiers	Sb			0.029										
ug/L Associated Samples: Action No Limit Qualifiers	TI			0.004		0.067 / 0.20	0(-
uo/L Associated Samples: Action No Limit Qualifiers	n			0.004										
Action Action No Limit Qualifiers	Sample Col	ncentration u	nits. unless c	otherwise no:		As	sociated Sa		φ					
Analyte Maximum Maximum Action PB [*] CB/CCB [*] Limit (mg/L) (ug/L) 84 84														
	Analyte	Maximum PB ^a (mg/Kg)			Action Limit	No Qualifiers								
	_¥	-		84										
Pb 0.015 0.015	Pb			0.015										

DC #: 22335A4 DG #: <u>See Cover</u> ETHOD: Trace metals (EPA SW 864 Method 6 ample Concentration units. unless otherwise no	010B/6020/7000) ted: ua/L	
_wz∞r	LDC #: 22335A4 SDG #: <u>See Cover</u> METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units. unless otherwise noted: uo/L	

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES Soil preparation factor applied: <u>NA</u> Associated Samples: 2-6

Reason Code: bl

Analyte	Maximum PB³ (mo/Ka)	Maximum Maximum Maximum PB ³ PB ³ ICB/CCB ³ (undl) (undl)	Maximum ICB/CCB ^a	Action Limit	No Qualifiers						
			19.3								
ole Con	ample Concentration units, unless otherwise noted:	nits, unless c	otherwise not	ed: ua/L	Asso	sociated Samples.	aples: 7	8			Í
									н -	 67.B.	
Analyte	Maximum PBª (mq/Kq)	Maximum Maximum PB ^a ICB/CCB ^a	Maximum ICB/CCB ^a (ug/L)	Action Limit	No Qualifiers						
			19.9								

a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element. Note :

LDC #: 22335A4 SDG #: See Cover

VALIDATION FINDINGS WORKSHEET <u>Field Blanks</u>

Page: of Bage: of Bage: Color Color

7																 		
		a er									0.073 / 0.200							
G -1 ≢		7				1.1 / 10.0					0.070 / 0.200							
Reason Code: bp Associated Samples:	ation	ر مالحا				-0.8 / 10.0					<u>0.070 / 0.200</u>							
Reason Code: bp Associated Samp	Sample Identification	5				0.9 / 10.0					0.075 / 0.200							
	S	4				2.7 / 10.0					0.077 / 0.200							
llanks? a/L Pump Blank		З				7.9 / 10.0					0.146 / 0.200							
- 위 모 뛰		2				4.2/ 10.0		1.7/5.0			0.085 / 0.200							
PA SW846 6010B/6020/700 blanks identified in this SDG it analytes detected in the fie Associated sample units: Soil factor app Ee) Field Blank / Rinsate / Ot		ţ.				2.0 / 10.0					0.067 / 0.200							
A SW840 anks ide analytes ssociate		Action Level		730									0.38					
Trace Metals (E Were field Were targ∈ s: ug/L date: 10/23/09 k type: (circle or	Blank ID	PB102309-A3 (SDG#: R0906095)	7.0	73	0.6	1.3	4.8	1.1	103	0.5	0.005	0.02	0.038					
METHOD: Trace <u>V</u> <u>NNA</u> V <u>V</u> <u>NNA</u> V Blank units: <u>ug/l</u> Sampling date: <u>Field blank type</u> :	Analyte		В	Ca	ບັ	Си	Mg	Mn	Na	Sr	Η	3	D					

LDC #: 22335A4	SDG #: See Cover
----------------	------------------

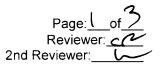
VALIDATION FINDINGS WORKSHEET Field Blanks

Л													 	 	 	 	 	
						+												
p.	les: 6, 8	ation																
	Associated Samples: 6, 8	Sample Identification																
	Assoc	Š												1				
ks?	Filter Blank																	
0) \ SDG? the field blan.																		
6 6010B/700 ntified in this detected in t	Associated sample units: ug/L 9/25/09 Soil factor applied N. (circle one) Field Blank / Rinsate / Ott		9									0.7 / 10.0						
A SW84 anks ide analytes	iated sa Soil 1) Field Bl		Action Level						3980									
METHOD: Trace Metals (EPA SW846 6010B/7000)Y N N/AWere field blanks identified in this SDG?Y N N/AWere target analytes detected in the field blanks?	Alank units: ug/L Associated sample units: ug/L Sampling date: 9/25/09 Soil factor applied NA Field blank type: (circle one) Field Blank / Rinsate / Other)	Blank ID	FiltB092509-A2 (SDG#: R0905462)	11.0	34	0.006	3.8	0.6	398	0.2	0.02	3.6						
METHOD: Y N N/A	ălank units: <u>ug/L</u> Sampling date: ⁻ield blank type:	Analyte		В	Ca	Pb	Mg	ЧN	Na	s	3	Zn						

LDC #: LJJJSAY SDG #: Seecould

VALIDATION FINDINGS WORKSHEET **ICP Serial Dilution**

ð Page: Reviewer: 2nd Reviewer:


METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

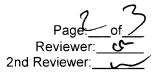
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>N N/A</u> If analyte concentrations were > 50X the IDL, was an ICP serial dilution analyzed? <u>Y M N/A</u> Were ICP serial dilution percent differences (%D) ≤10%? <u>N N/A</u> Is there evidence of negative interference? If yes, professional judgement will be used to qualify the data. LEVEL IV ONLY: <u>Y N N/A</u> Were recalculated results acceptable? See Level IV Recalculation Workshoot for recalculation

*	Diluted Sample ID	Matrix	Analyte	a *	Associated Samples	Qualifications
	1	Cuater	Ner	115.7	HII HII	1107/A (sol)
L						
م ا	Commente.					

LDC_<u>22335A4</u> SDG#:<u>See Cover</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: Metals (EPA Method 6020/6010/7000)


<u>YN NA</u>

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

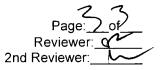
	Concentrat	ion (ug/L)	(≤30)	Difference	Limits	Qualifications
Compound	5	7	RPD	Difference		(Parent Only)
Aluminum	10.3	6.2		4.1	(≤50.0)	
Barium	13.8	12.2		1.6	(<5.0)	
Boron	13600	12900	5			
Calcium	53500	52300	2			
Chromium	3670	3650	1			
Cobalt	0.9	0.6		0.3	(≤10.0)	
Copper	0.9	1.1		0.2	(<10.0)	
Iron	1560	1700	9			
Magnesium	16900- 46900	45100	er 2			Jdet/A (fd)
Manganese	20.2	23.3		3.1	(≤5.0)	
Mercury	0.06	0.04		0.02	(≤0.20)	
Molybdenum	19.6	19.4	1			
Nickel	1.0	0.7U		0.3	(≤2.0)	
Platinum	0.08	0.08		0	(≤1.00)	
Potassium	22300	21900	2			
Silver	0.8	0.8		0	(≤2.0)	
Sodium	832000	862000	4			
Strontium	1430	1410	1			
Thallium	0.075	0.070		0.005	(≤0.200)	

LDC#: <u>22335A4</u> SDG#: <u>See Cover</u>

METHOD: Metals (EPA Method 6020/6010/7000)

YN NA YN NA

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?


	Concentrat	ion (ug/L)	(≤30)	Difforonco	Limite	Qualifications
Compound	5	7	RPD	Difference Limits		(Parent Only)
Tungsten	4.56	4.43		0.13	(≤1.00)	
Uranium	14.9	15.2	2			
Vanadium	127	125	2			
Zinc	3.0	3.0		0	(<10.0)	

V:\FIELD DUPLICATES\FD_inorganic\22335A4.wpd

	Concentrat	ion (ug/L)	(≤30)	Difference	Limits	Qualifications
Compound	66	8	RPD	Difference		(Parent Only)
Aluminum	2.0U	2.5		0.5	(<50.0)	
Barium	11.5	11.1		0.4	(<5.0)	
Boron	13400	13400	0			
Calcium	52800	52700	0	· · · · · · · · · · · · · · · · · · ·		
Chromium	3300	3310	0			
Cobalt	1.0	0.5		0.5	(≤10.0)	
Copper	0.8	0.8U		0	(≤10.0)	
Iron	19.0	9.7		9.3	(<20.0)	
Magnesium	46500	46100	1			
Manganese	5.5	9.4		3.9	(≤5.0)	
Mercury	0.06	0.06		0	(<0.20)	
Molybdenum	19.4	19.9	3			

LDC#: <u>22335A4</u> SDG#: <u>See Cover</u>

METHOD: Metals (EPA Method 6020/6010/7000)

<u>YNNA</u>

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrat	ion (ug/L)	(≤30)	Difference	Limits	Qualifications
Compound	6	8	RPD	Difference	Limits	(Parent Only)
Platinum	0.07U	0.08		0.01	(≤1.00)	
Potassium	22100	22200	0			
Silver	0.8	0.7U	44 814 88 7 8 00 81 9 11	0.1	(≤2.0)	
Sodium	839000	843000	0			
Strontium	1420	1420	0			
Thallium	0.070	0.073		0.003	(≲0.200)	
Tungsten	4.53	4.39	2	0.14	(≤1.00)	
Uranium	14.5	14.8	2			
Vanadium	108	108	0			
Zinc	0.7	0.7U		0	(<10.0)	

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Data Validation Reports LDC #22335

Wet Chemistry

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada
Collection Date:	July 22 through July 27, 2009
LDC Report Date:	January 19, 2010
Matrix:	Water
Parameters:	Wet Chemistry
Validation Level:	Stage 2B
Laboratory:	Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0904085

Sample Identification

CLD-4RB MW-6RB M-52B M-35B M-11B M-11009B

Introduction

This data review covers 6 water samples listed on the cover sheet. The analyses were per Standard Method 2320B for Alkalinity, EPA Method 350.1 for Ammonia as Nitrogen, EPA SW 846 Method 9056 for Bromide, Chloride, Nitrate as Nitrogen, and Sulfate, EPA Method 300.1 for Chlorate, EPA Method 120.1 for Conductivity, EPA SW 846 Method 9012A for Cyanide, EPA Method 218.6 for Dissolved Hexavalent Chromium, EPA Method 353.2 for Nitrite as Nitrogen, EPA SW 846 Method 9040B for pH, Standard Method 5540C for Surfactants, EPA Method 314.0 for Perchlorate, EPA Method 365.1 for Total Phosphorus, EPA SW 846 Method 9060 for Total Organic Carbon, Standard Method 2540C for Total Dissolved Solids, and Standard Method 2540D for Total Suspended Solids.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section X.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

Sample	Anaiyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
CLD-4RB	Hexavalent chromium	13 days	24 hours	J- (all detects) R (all non-detects)	Ρ
MW-6RB	Hexavalent chromium	12 days	24 hours	J- (all detects) R (all non-detects)	Р
M-52B M-35B	Hexavalent chromium	11 days	24 hours	J- (all detects) R (all non-detects)	Р
M-11B M-11009B	Hexavalent chromium	8 days	24 hours	J- (all detects) R (all non-detects)	Р

All technical holding time requirements were met with the following exceptions:

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration of each method were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Concentration	Associated Samples
PB (prep blank)	Alkalinity, total Alkalinity, bicarbonate	0.9 mg/L 0.9 mg/L	CLD-4RB MW-6RB
ICB/CCB	Alkalinity, total Alkalinity, bicarbonate Bromide	1.0 mg/L 1.0 mg/L 0.063 mg/L	CLD-4RB MW-6RB

Method Blank ID	Analyte	Concentration	Associated Samples
PB (prep blank)	Sulfate	0.12 mg/L	CLD-4RB
ICB/CCB	Sulfate Total organic carbon	0.117 mg/L 0.126 mg/L	CLD-4RB
PB (prep blank)	Chloride	0.1 mg/L	M-52B M-35B
ICB/CCB	Sulfate	0.118 mg/L	M-52B M-35B
PB (prep blank)	Chloride Sulfate	0.11 mg/L 0.18 mg/L	M-11B M-11009B
ICB/CCB	Chloride Sulfate	0.108 mg/L 0.178 mg/L	M-11B M-11009B
ICB/CCB	Alkalinity, total Alkalinity, bicarbonate	0.9 mg/L 0.9 mg/L	M-52B M-35B M-11B M-11009B
ICB/CCB	Ammonia as N	0.0264 mg/L	M-35B M-11B M-11009B
ICB/CCB	Chloride	0.095 mg/L	CLD-4RB MW-6RB M-52B M-35B

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
MW-6RB	Bromide	0.7 mg/L	1.0U mg/L
M-11009B	Ammonia as N	0.017 mg/L	0.050U mg/L

Sample PB102309-A3 (from SDG R0906095) was identified as a pump blank. No contaminant concentrations were found in this blank with the following exceptions:

Pump Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
PB102309-A3	10/23/09	Alkalinity, total Alkalinity, bicarbonate Ammonia as N Total organic carbon Chloride Conductivity Nitrate as N pH Total dissolved solids Sulfate Chlorate	1.1 mg/L 1.1 mg/L 2.60 mg/L 0.2 mg/L 3.83 umhos/cm 0.69 mg/L 5.79 units 9 mg/L 1.5 mg/L 23 ug/L	All samples in SDG R0904085

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
CLD-4RB	Ammonia as N	0.596 mg/L	0.596J+ mg/L
MW-6RB	Nitrate as N	3.95 mg/L	3.95J+ mg/L
M-52B	Ammonia as N	0.049 mg/L	0.050U mg/L
M-35B	Ammonia as N Nitrate as N	0.092 mg/L 5.49 mg/L	0.092J+ mg/L 5.49J+ mg/L
M-11B	Ammonia as N Nitrate as N	0.136 mg/L 3.69 mg/L	0.136J+ mg/L 3.69J+ mg/L
M-11009B	Ammonia as N Nitrate as N	0.017 mg/L 3.75 mg/L	0.050U mg/L 3.75J+ mg/L

Sample MC-3B-FILT (from SDG R0902886) was identified as a filter blank. No contaminant concentrations were found in this blank.

IV. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) analyses specified for the samples in this SDG, and therefore matrix spike analyses were not performed for this SDG.

V. Duplicates

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Surrogate Spikes

Surrogates were added to all samples and blanks as required by method 300.1. All surrogate recoveries (%R) were within QC limits.

VIII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0904085	All analytes reported below the PQL.	J (all detects)	A

Raw data were not reviewed for this SDG.

IX. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

Samples M-11B and M-11009B were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concer	Concentration		D:#		
Analyte	M-11B	M-11009B	RPD (Limits)	Difference (Limits)	Flags	A or P
Ammonia as N	0.136 mg/L	0.017 mg/L	-	0.119 (≤0.050)	J (all detects)	A
Alkalinity, total	188 mg/L	190 mg/L	1 (≤30)	-	-	-
Alkalinity, bicarbonate	188 mg/L	190 mg/L	1 (≤30)	-	-	-
Bromide	0.7 mg/L	0.7 mg/L	-	0 (≤1.0)	-	-
Chloride	291 mg/L	293 mg/L	1 (≤30)	-	-	-
Conductivity	4160 umhos/cm	4290 umhos/cm	3 (≤30)	-	-	-

	Concer	itration	RPD	Difference		
Analyte	M-11B M-11009B		(Limits)	Difference (Limits)	Flags	A or P
Diss. hexavalent chromium	3.21 mg/L	3.23 mg/L	1 (≤30)	-	-	-
Nitrate as N	3.69 mg/L	3.75 mg/L	2 (≤30)	-	-	-
Nitrite as N	0.032 mg/L	0.031	-	0.001 (≤0.010)	-	-
рН	7.99 units	8.00 units	0 (≤30)	-	-	-
Sulfate	1350 mg/L	1330 mg/L	1 (≤30)	-	<u>-</u>	-
Surfactants	0.081 mg/L	0.070 mg/L	-	0.011 (≤0.020)	-	-
Total dissolved solids	3290 mg/L	3270 mg/L	1 (≤30)	-	-	-
Total organic carbon	1.5 mg/L	1.4 mg/L	-	0.1 (≤1.0)	-	-
Total phosphorus	0.025 mg/L	0.023 mg/L	-	0.002 (≤0.050)	-	-
Total suspended solids	1.7 mg/L	1.5 mg/L	-	0.2 (≤1.0)	-	-
Chiorate	563000 ug/L	492000 ug/L	13 (≤30)	-	-	-
Perchlorate	42300 ug/L	55600 ug/L	27 (≤30)	-	-	-

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Data Qualification Summary - SDG R0904085

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
R0904085	CLD-4RB MW-6RB M-52B M-35B M-11B M-11009B	Hexavalent chromium	J- (all detects) R (all non-detects)	Ρ	Technical holding times (h)
R0904085	CLD-4RB MW-6RB M-52B M-35B M-11B M-11009B	Ali analytes reported below the PQL.	J (all detects)	A	Sample result verification (sp)
R0904085	M-11B M-11009B	Ammonia as N	J (all detects)	A	Field duplicates (Difference) (fd)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG R0904085

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0904085	MW-6RB	Bromide	1.0U mg/L	А	ы
R0904085	M-11009B	Ammonia as N	0.050U mg/L	A	bl

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Pump Blank Data Qualification Summary - SDG R0904085

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0904085	CLD-4RB	Ammonia as N	0.596J+ mg/L	A	bp
R0904085	MW-6RB	Nitrate as N	3.95J+ mg/L	A	bp
R0904085	M-52B	Ammonia as N	0.050U mg/L	A	bp
R0904085	M-35B	Ammonia as N Nitrate as N	0.092J+ mg/L 5.49J+ mg/L	A	bp

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0904085	M-11B	Ammonia as N Nitrate as N	0.136J+ mg/L 3.69J+ mg/L	A	р
R0904085	M-11009B	Ammonia as N Nitrate as N	0.050U mg/L 3.75J+ mg/L	A	bp

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Filter Blank Data Qualification Summary - SDG R0904085

No Sample Data Qualified in this SDG

N	otes	

latior	n findir	ngs w	orkshe	eets.

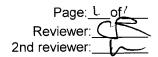
	Validation 4	rea					Com	ments	
Ι.	Technical holding times			BSW	Sampling of	dates: 7	12/00	-7	12109
lla.	Initial calibration			Â					• • • • • • • • • • • • • • • • • • •
lib.	Calibration verification			A					
- 111.	Blanks			SW					
١٧	Surrogate Spikes			A					
v	Matrix Spike/Matrix Spike Du	plicates	\$	N	Clie	NES	Ecified	<u>)</u>	
VI.	Duplicates			N		V			
<u>VII.</u>	Laboratory control samples			A	LCS				
VIII	Sample result verification			N					
IX.	Overall assessment of data			A					
X .	Field duplicates			GW,	(5)	6)			
LxL	Field blanks			15w	Filter	Skink =M	NC-3B-FIL	<u>F, Purn</u>	28642-293102309-43 (R0906095)
Note: Valida	A = Acceptable N = Not provided/applicable SW = See worksheet ted Samples:		R = Rin	o compound sate eld blank	s detected	D TI	Equipart Sectors Secto	/	,
1	CLD-4RB	11			21			31	RBW
2	MW-6RB	12			22			32	
3	M-52B	13			23			33	
4	M-35B	14			24			34	
5	M-11B	15			25			35	
6	M-11009B	16			26			36	
7		17			27			37	
8		18			28			38	
9		19			29			39	
10		20			30			40	

METHOD: (Analyte) Alkalinity (SM2320B), Ammonia-N (EPA Method 350.1), Bromide, Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056), Chlorate (EPA Method 300.1), Conductivity (EPA Method 120.1), Cyanide (EPA SW846 Method 9012A), Dissolved Hexavalent Chromium (EPA Method 218.6), Nitrite-N (EPA Method 353.2), pH (EPA SW846 Method 9040B/9045D), Surfactants (SM5540C), Perchlorate (EPA Method 314.0), Total Phosphorus (EPA Method 365.1), TOC (Lloyd/Kahn+ EPA SW846 Method 9060), TDS (SM2540C), TSS (SM2540D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached valid

LDC #: 22335A6	VALIDATION COMPLETENE
SDG #: R0904085	Stage 2B

SDG #: R09 Laboratory: Columbia Analytical Services

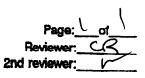

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

Page: ____of__(

Reviewer: CC 2nd Reviewer:___

Date: 1-12-10

٦


All circled methods are applicable to each sample.

Sample ID	Matrix	Parameter
1-6	<u></u>	Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond CIO3 CIO
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond CIO3 CIO4
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr^{6+} T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr^{6+} T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
******		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr^{6+} T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond CIO3 CIO4
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr^{6+} T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr^{6+} T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr^{6+} T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr^{6+} T-P MBAS TDS TSS Cond CIO ₃ CIO ₄
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr^{6+} T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr^{6+} T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr^{6+} T-P MBAS TDS TSS Cond CIO ₃ CIO ₄
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr^{6+} T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr^{6+} T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond CIO3 CIO4
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond CIO3 CIO4

Comments:_____

LDC #: 22335A6 SDG #: R0904085

VALIDATION FINDINGS WORKSHEET Technical Holding Times

All circled dates have exceeded the technical holding time. <u>V(N) N/A</u> Were all samples preserved as applicable to each method? (Y)N N/A Were all cooler temperatures within validation criteria?

<u>YON NA</u> were as Method:	Cooler tempera	218,6					1
Parameters:		Cc6+					
Technical holding ti	me:	ZYhrs (R	t preserv	ed)			
Sample ID	Sampling date	Analysis date	Analysis date	Analysis date	Analysis date	Analysis date	Qualifier
١	7122109	8/4/09 12:44	(Bday)	6			J-/R/P
2	7123109	13:16	(12 days	5			
3	7124109 108:10	13:26	Clidaus	5.			
4	1110	13:36					
5	7127109	13:47	(8days	b			
6	109:19	13:57	V	Í			
	L						
		ļ			ļ		
				<u> </u>			
·····				·			
		ļ					
	<u> </u>	[
		ļ	ļ				I
	-		 				
							<u> </u>
						 	+
				<u> </u>			+
······			<u> </u>	L			+
			1	1	L	1	

SDG #: See Cover LDC #: 22335A6

VALIDATION FINDINGS WORKSHEET <u>Blanks</u>

Page: 1 of Reviewer: 22

METHOD: Inorganics, Method See Cover

2nd Reviewer: Reason Code: bl

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>Y</u>N <u>N/A</u> Were all samples associated with a given method blank?

Y/N N/A Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Conc. units: mg/L	: mg/L			Associated Samples: 1, 2
Analyte	Blank ID	Maximum	Blank ID Maximum Blank	Sample Identification
et i	PB (mo/l)	ICB/CCB (mg/L)	Action Limit	
Alk Totat	6.0	1.0		
Alk., Bicarb.	6.0	1.0		
Br		0.063		0.7/1.0

[
	Sample Identification			
1	Sample Ide			
amples:				
Associated Samples:				
Ase				
		No Qualifiers		
	Blank	ICB/CCB Action Limit (mg/L)		
	Analyte Blank ID Maximum	ICB/CCB (mg/L)	0.117	0.126
»: mg/L	Blank ID	PB (mg/L)	0.12	
Conc. units: mg/L	Analyte	×	S04	TOC

Conc. units: mg/L

3.4 Associated Samples:

Analyte	Blank ID	Analyte Blank ID Maximum	Blank	Sample Identification
	PB (ma/L)	ICB/CCB (mg/L)	ICB/CCB Action Limit (mg/L)	mit No Qualifiers
Ū	0.1			
S04		0.118		

SDG #: See Cover LDC #: 22335A6

VALIDATION FINDINGS WORKSHEET <u>Blanks</u>

Reason Code: bl

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>X N N/A</u> Were all samples associated with a given method blank? <u>Y N N/A</u> Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

ų			
Identificatio		: : :	
Sample			
	ers		
	No Qualifi		
Blank	Action Limit		
Maximum	ICB/CCB (mg/L)	0.108	0.178
Blank ID	PB (mg/L)	0.11	0.18
Analyte	an t	Ū	SO4
	Blank ID	Blank ID Maximum Blank ICB/CCB Action Limit No Qualifiers (mg/L)	Blank ID Maximum Blank RB ICB/CCB Action Limit PB (mg/L) No Qualifiers (mg/L) 0.11 0.108

Conc. units: mg/L	s: mg/L			Associated Samples: 3-6
Analyte	Blank ID	Analyte Blank ID Maximum	Blank	Sample Identification
	PB (mg/L)	ICB/CCB (mg/L)	ICB/CCB Action Limit (mg/L)	mit No Qualifiers
Alk., Total		6.0		
Alk., Bicarb.		6.0		

c. units:	Conc. units: mg/L				Associated Samples:	Samples:	4-6			
Inalyte	Blank ID	Analyte Blank ID Maximum Blank	Blank				Sample Identification	ntification		
	PB (mg/L)	ICB/CCB (mg/L)	ICB/CCB Action Limit (mg/L)	е	9					
NH3-N		0.0264		0.049 / 0.050 0.017 / 0.	0.017 / 0.050					

Conc. units: mg/

Associated Samples:

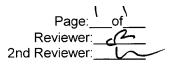
4

Blank ID Maximum Blank Sample Identification PB ICB/CCB Action Limit Sample Identification (mg/L) (mg/L) No Qualifiers I 0.095 0.095 I I				
ction Limit	2	faximum	Blank	Sample
		ICB/CCB	Action Limit	
		(mg/L)		No Qualifiers
0.095	_			
	—	0.095		

22335A6	See Cover
LDC #	SDG #:

VALIDATION FINDINGS WORKSHEET <u>Field Blanks</u>

Page. /_of Reviewer: C 2nd Reviewer:__


METHOD: Inorganics, MethodSee CoverYN/AWere field blanks identified in this SDG?YN/AWere target analytes detected in the field blanks?Blank units:mg/LAssociated sample units:Blank units:10/23/09Soil factor appliedSampling date:10/23/09Soil factor appliedField blank type:(circle one) Field Blank / Rinsate / Other: Pump Blank

Reason Code: bp

Associated Samples: All

Analyte	Blank ID					Sample Identification	cation		
	PB102309-A3 (SDG#R0906095)	Action Level	-	2	ю	4	5	9	
Total Alkalinity	1.1		-						
Bicarbonate Alkalinity	1.1								
Ammonia as N	2.60	26.0	0.596 J+		0.049 / 0.050	0.092 J+	0.136 J+	0.017 / 0.050	
TOC (average)	0.2								
Chloride	0.9								
Conductivity (umhos/cm)	3.83	38.3							
Nitrate as Nitrogen	0.69	6.9		3.95 J+		5.49 J+	3.69 J+	3.75 J+	
pH (pH Units)	5.79								
TDS	6								
S04	1.5								
Chlorate (ug/L)	23	230							

VALIDATION FINDINGS WORKSHEET Field Duplicates

Inorganics, Method_See Cover____

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentral	ion (mg/L)				
Analyte	5	6	RPD (≤30)	Difference	Limits	Qualification (Parent only)
Ammonia as N	0.136	0.017		0.119	(≤0.050)	Jdet/A (fd)
Total Alkalinity	188	190	1			
Bicarbonate Alkalinity	188	190	1			
Bromide	0.7	0.7		0	(≤1.0)	
Chloride	291	293	1			
Conductivity (umhos/cm)	4160	4290	3			
Dissolved Hexavalent Chromium	3.21	3.23	1			
Nitrate as N	3.69	3.75	2			
Nitrite as N	0.032	0.031		0.001	(≤0.010)	
pH (pH Units)	7.99	8.00	0			
Sulfate	1350	1330	1			
Surfactants	0.081	0.070		0.011	(≤0.020)	
TDS	3290	3270	1			
TOC, Average	1.5	1.4		0.1	(≤1.0)	
Total Phosphorus	0.025	0.023		0.002	(≲0.050)	
TSS	1.7	1.5		0.2	(≤1.0)	
Chlorate (ug/L)	563000	492000	13			
Perchlorate (ug/L)	42300	55600	27			

V:\FIELD DUPLICATES\FD_inorganic\22335A6.wpd