Tronox LLC Facility, 2009 Phase B Investigation, Henderson Data Validation Reports LDC #21495

Wet Chemistry

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation,

Henderson, Nevada

Collection Date:

May 21, 2009

LDC Report Date:

September 21, 2009

Matrix:

Water

Parameters:

Dissolved Hexavalent Chromium

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0902886

Sample Identification

MC-3B-FILT

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 218.6 for Dissolved Hexavalent Chromium.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section X.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No hexavalent chromium was found in the initial, continuing and preparation blanks.

Sample MC-3B-FILT was identified as a filter blank. No hexavalent chromium was found in this blank.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0902886	All analytes reported below the PQL.	J (all detects)	Α

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Dissolved Hexavalent Chromium - Data Qualification Summary - SDG R0902886

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
R0902886	MC-3B-FILT	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (PQL) (sp)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Dissolved Hexavalent Chromium - Laboratory Blank Data Qualification Summary -SDG R0902886

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Dissolved Hexavalent Chromium - Field Blank Data Qualification Summary - SDG R0902886

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

L	DC	#:_	21	495	A6

Stage 2B

SDG #: R0902886 Laboratory: Columbia Analytical Services 2nd Reviewe

				Å	14	5

METHOD: (Analyte) Hexavalent Chromium (EPA Method 218.6)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 5/>1/09
lla.	Initial calibration	A [']	,
IIb.	Calibration verification	A	
111.	Blanks	A	
IV	Matrix Spike/Matrix Spike Duplicates	À	3 mg/ lay from sny Rogo300 b
٧	Duplicates	A	
VI.	Laboratory control samples	A	Leg
VII.	Sample result verification	N	
VIII.	Overall assessment of data	A	
IX.	Field duplicates	N	
x	Field blanks	IND	Tilter Blogk =

Note:

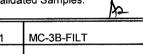
A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate


FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

			han	24	24	
1	MC-3B-FILT	11	Mr	21	31	
2		12		22	32	
3		13		23	33	
4		14	•	24	 34	
5		15		25	 35	
6		16		26	36	
7		17	٠,	27	37	
8		18		28	38	
9		19		29	39	
10		20		30	40	

Notes:		

LDC Report# 21495B6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation,

Henderson, Nevada

Collection Date:

May 27 through June 4, 2009

LDC Report Date:

October 20, 2009

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

Stage 4

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903006

Sample Identification

MC-3B

EB052709

M-127B

FB060409

MC-3BMS

MC-3BDUP

Introduction

This data review covers 6 water samples listed on the cover sheet. The analyses were per Standard Method 2320B for Alkalinity, EPA Method 350.1 for Ammonia as Nitrogen, EPA SW 846 Method 9056 for Bromide, Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, and Sulfate, EPA Method 353.2 for Nitrite as Nitrogen, EPA 300.1 for Chlorate, EPA Method 120.1 for Conductivity, EPA SW 846 Method 9012A for Cyanide, EPA Method 218.6 for Dissolved Hexavalent Chromium, EPA SW 846 Method 9040B for pH, Standard Method 5540C for Surfactants, EPA Method 314.0 for Perchlorate, EPA Method 365.1 for Total Phosphorus, Standard Method 2540C for Total Dissolved Solids, Standard Method 2540D for Total Suspended Solids, and EPA SW 846 Method 9060 for Total Organic Carbon.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section X.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

*I. Technical Holding Times

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
MC-3B EB052709	Bromide	42 days	28 days	J- (all detects) UJ (all non-detects)	A
MC-3B	Cyanide 15 days 1		14 days	J- (all detects) UJ (all non-detects)	А
MC-3B	Nitrite as N (353.2)	7 days	48 hours	J- (all detects) R (all non-detects)	Р
M-127B	Nitrite as N (353.2)	6 days	48 hours	J- (all detects) R (all non-detects)	Р
EB052709	рН	50 hours	48 hours	J (all detects) UJ (all non-detects)	Р
*FB060409	Nitrite as N (9056) Nitrate as N (9056)	5 days 5 days	48 hours 48 hours	J- (all detects) R (all non-detects) J- (all detects) R (all non-detects)	А

^{*}Corrected Total Time and Holding Time for FB030409

All samples were received in good condition with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
M-127B	Cyanide	Analysis was performed on unpreserved sample (pH was 11 units).	Analysis must be performed on an preserved aliquot at ≥12 pH units.	J- (all detects) R (all non-detects)	Р

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

Calibration verification frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
5/29/09	CCV (9:17)	Nitrite as N (9056)	112.3 (90-110)	MC-3B EB052709	J+ (all detects)	Р
5/29/09	CCV (13:01)	Nitrite as N (9056)	110.7 (90-110)	MC-3B EB052709	J+ (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Alkalinity, total Alkalinity, bicarbonate	1.9 mg/L 1.9 mg/L	All samples in SDG R0903006
ICB/CCB	Alkalinity, total	1.9 mg/L	All samples in SDG R0903006
МВ	Total phosphorus	0.01 mg/L	MC-3B EB052709 M-127B
ІСВ/ССВ	Total phosphorus	0.01 mg/L	MC-3B EB052709 M-127B
МВ	Chloride Nitrate as N	0.11 mg/L 0.090 mg/L	M-127B
ICB/CCB	Chloride	0.110 mg/L	M-127B
МВ	Total phosphorus Chloride	0.015 mg/L 0.06 mg/L	FB060409
ICB/CCB	Total phosphorus Chloride	0.015 mg/L 0.06 mg/L	FB060409

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
EB052709	Alkalinity, total	1.9 mg/L	2.0U mg/L
	Alkalinity, bicarbonate	1.9 mg/L	2.0U mg/L
	Total phosphorus	0.01 mg/L	0.05U mg/L
M-127B	Total phosphorus	0.042 mg/L	0.05U mg/L
FB060409	Alkalinity, total	1.9 mg/L	2.0U mg/L
	Alkalinity, bicarbonate	1.9 mg/L	2.0U mg/L
	Total phosphorus	0.020 mg/L	0.05U mg/L

Sample EB052709 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:

Equipment Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
EB052709	5/27/09	Alkalinity, total Alkalinity, bicarbonate Total organic carbon Conductivity pH Total phosphorus	1.9 mg/L 1.9 mg/L 0.3 mg/L 2.47 umhos/cm 5.99 units 0.01 mg/L	МС-ЗВ

Sample FB060409 was identified as a field blank. No contaminant concentrations were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
FB060409	6/4/09	Alkalinity, total Alkalinity, bicarbonate Ammonia as N Total organic carbon Conductivity pH Total phosphorus	1.9 mg/L 1.9 mg/L 0.102 mg/L 0.4 mg/L 1.81 umhos/cm 6.08 units 0.020 mg/L	MC-3B M-127B

Sample MC-3B-FILT (from SDG R0902886) was identified as a filter blank. No contaminant concentrations were found in this blank.

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
мс-зв	Ammonia as N	0.537 mg/L	0.537J+ mg/L
M-127B	Ammonia as N Total phosphorus	0.030 mg/L 0.042 mg/L	0.050U mg/L 0.050U mg/L

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Surrogates

Surrogates were added to all samples and blanks as required by method 300.1. All surrogate recoveries (%R) were within QC limits.

VIII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable.

The project quantitation limits were met with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
MC-3B EB052709 M-127B FB060409	Nitrite as N (9056)	Laboratory reporting limit reported at 0.012 mg/L.	PQL should be reported at 0.010 mg/L per the QAPP.	None	Р

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903006	All analytes reported below the PQL.	J (all detects)	A

IX. Overall Assessment

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

Sample	Compound	Flag	A or P
MC-3B M-127B	Nitrite as N (353.2)	х	A

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Data Qualification Summary - SDG R0903006

SDG	Sample	Analyte	Flag	A or P	Reason
R0903006	MC-3B EB052709	Bromide	J- (all detects) UJ (all non-detects)	А	Technical holding times (h)
R0903006	МС-ЗВ	Cyanide	J- (all detects) UJ (all non-detects)	А	Technical holding times (h)
R0903006	MC-3B M-127B	Nitrite as N (353.2)	J- (all detects) R (all non-detects)	Р	Technical holding times (h)
R0903006	EB052709	рН	J (all detects) UJ (all non-detects)	Р	Technical holding times (h)
R0903006	FB060409	Nitrite as N (9056) Nitrate as N (9056)	J- (all detects) R (all non-detects) J- (all detects) R (all non-detects)	А	Technical holding times (h)
R0903006	M-127B	Cyanide	J- (all detects) R (all non-detects)	Р	Sample condition (preservation) (pH)
R0903006	MC-3B EB052709	Nitrite as N (9056)	J+ (all detects)	Р	Calibration (CCV %R) (c)
R0903006	MC-3B EB052709 M-127B FB060409	Nitrite as N (9056)	None	Р	Sample result verification
R0903006	MC-3B EB052709 M-127B FB060409 MC-3BMS MC-3BDUP	All analytes reported below the PQL.	J (all detects)	А	Sample result verification (sp)
R0903006	MC-3B M-127B	Nitrite as N (353.2)	Х	А	Overall assessment of data (o)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG R0903006

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903006	EB052709	Alkalinity, total Alkalinity, bicarbonate Total phosphorus	2.0U mg/L 2.0U mg/L 0.05U mg/L	A	bl
R0903006	M-127B	Total phosphorus	0.05U mg/L	А	bl
R0903006	FB060409	Alkalinity, total Alkalinity, bicarbonate Total phosphorus	2.0U mg/L 2.0U mg/L 0.05U mg/L	А	bl

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Field Blank Data Qualification Summary - SDG R0903006

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903006	МС-3В	Ammonia as N	0.537J+ mg/L	Α	bf
R0903006	M-127B	Ammonia as N Total phosphorus	0.050U mg/L 0.050U mg/L	A	bf

	I TOHOX NO	orungate menuerso)	
LDC #: 21495B6	VALIDATION CON	IPLETENESS WOI	RKSHEET	Date: 9/26/04
SDG #: R0903006		Stage 4		Page: 1 of)
Laboratory: Columbia Analytic	al Services			Reviewer:
trig to the first			/35021	nd Reviewer:
METHOD: (Ameliate) Allerinite	(OMOOOD) A	/FDA 14 11 1050 41 5	19	1 1
METHOD: (Analyte) Alkalinity	(SM2320B), Ammonia-N	(EPA Method 350.1). B	romide. Chloride/Nitrate	e-N Nitrite-N Sulfate

(EPA SW846 Method 9056), Nitrite-N (EPA Method 353.2), Chlorate (EPA SW846 Method 9056M), Conductivity (EPA Method 120.1), Cyanide (EPA SW846 Method 9012A), Dissolved Hexavalent Chromium (EPA Method 218.6), pH (EPA SW846 Method 9040B), Surfactants (SM5540C), Perchlorate (EPA Method 314.0), Total Phosphorus (EPA Method 365.1), TDS (SM2540C), TSS (SM2540D), TOC (EPA SW846 Method 9060), Cation-Anion Balance Difference, Calculated TDS/EC Ratio, Measured TDS/EC Ratio, Conductivity Ratio, TDS Ratio (SM1030E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Technical holding times	SW	Sampling dates: 5/27/09 - 6/4/09
IIa.	Initial calibration	A	
IIb.	Calibration verification	Max	
111.	Blanks	5W	
iv	Surrogate	A	
V	Matrix Spike/Matrix Spike Duplicates	Δ	745/mmP
VI.	Duplicates	Ä	
VII.	Laboratory control samples	Ą	Ley
VIII.		SWAF	
IX.	Overall assessment of data	SNA	
X.	Field duplicates	, h	
XI	Field blanks	SW	Filter Blank=MC-3B-FILT (R0902886), EB=2, FB=4

Note:

A = Acceptable

N = Not provided/applicable

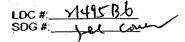
SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate


TB = Trip blank

EB = Equipment blank

Validated Samples:

	AQ						
1	мс-зв	11	mb	21		31	
2	EB052709	12	/	22		32	
3	M-127B	13		23		33	
4	FB060409	14		24		34	
5	MC-3BMS	15		25		35	
6	MC-3BDUP	16		26		36	
7		17		27	-	37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

Notes:	

VALIDATION FINDINGS CHECKLIST

Page 1 of 1
Reviewer: 444
2nd Reviewer: 4

Method:Inorganics (EPA Method) Coul				
Validation Area	Yes	No	NA	Findings/Comments
Creditical hother times			7	
All technical holding times were met.		/		
Coolor temperature criteria was met.	1/	1	L.	
Were all instruments calibrated daily, each set-up time?				
Were the proper number of standards used?	/			
Were all initial calibration correlation coefficients > 0.9957	1	<u> </u>		
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	X	MV		
Were titrant checks performed as required? (Level IV only)	1			
Were balance checks performed as required? (Level IV only)	1/			
Was a method blank associated with every sample in this SDG?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet,				
			3	
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSO or MS/DUP. Soil / Water.	WK.			clay elos on
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.				0
Were the MS/MSO or duplicate relative percent differences (RPO) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of ≤ CROL(≤ 2X CROL for soil) was used for samples that were ≤ 5X the CROL, including when only one of the stuplicate sample values were ≤ 5X the CROL.				
Nas an LCS anaytzed for this SDG?				
Was an LCS analyzed per extraction batch?	/			
Vere the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?	1			
Regard Stayles Strate and Story Cours				
Vere performance evaluation (PE) samples performed?	T	7	T	
Very the performance evaluation (PE) samples within the acceptance limits?				

LDC#:_	71495	36
SDG#	-yu	cov

VALIDATION FINDINGS CHECKLIST

Page: Yof Y Reviewer: MM 2nd Reviewer: J

Validation Area	Ye	s .	lo ·	NA	Findings/Comments
WE Sample Basile Memis and			Š	, es	The state of the s
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicab to level IV validation?	te /	1			
Were detection limits < RL?	7	1			
				7	
verall assessment of data was found to be acceptable.	17	T	Ī	366-2	
leld duplicate pairs were identified in this SDG.			7		
arget analytes were detected in the field duplicates.	7		1	7	
eld blanks were identified in this SDG.	V		T		and the second s
inget analytes were detected in the field blanks.	17		1	\neg	

Attachment 1

		S		T																													T	و
		*		\dashv		_																			\dashv	\dashv								
Pro S		N S	_	\dashv	\dashv																	_				\dashv							-	
		>	_		\dashv			\dashv																									+	╣
		S \	1	\dashv																												+	+	╢
		γ	_	\dashv				_	\dashv			_																	_				+	
			\dashv						-			-						<u> </u>							-								_	
22)		s /	\dashv	+			\dashv	\dashv	\dashv			\vdash			H																	\dashv	+	╢
00		≥	\dashv				-			_															_							+	+	
CI	AVS (AVS)	S		-	-		'	-	- 1	-			\vdash																	-			+	0
Н,		≥					'	-	_	- '																							+	0
or,	TOC (L/K 415.1)	S				'	- 1	'					_																				+	
arb		≥	-				-		_	1					_			_			_											\sqcup	+	레
I	% Moist. (CLP)	S		<u> </u>		1			_'												-								_			$\vdash \vdash$		4
ea		≯	'		- 1	1	<u>'</u>	-	- 1	_				_		_	<u> </u>	_	_															긔
Sediment, Pearl Harbor, HI, CTO 022)	pH (9040C)	S	'	_'	'	'		'		_								_															<u> </u>	
mer		≯	'	'	'	'	٠	'	'																							\square	- '	
edir	Dioxins (8290)	S	'	,	_ '	1	•	'	١	'																							- (
Ŝ	- G (8)	≥	'		·	1	ı	ı	٠	1																								네
HI / Pearl Harbor	SEM Metals (SW846)	S	,	'	٠	1	٠	•	٠	ı																							'	네
五	S Me (SV	≥	١		1	1	'	'	•	•																								네
earl	Metals & Hg (SW846)	s	,	'	'	1	ı	٠	٠	•																		<u> </u>					'	ᆀ
٩/	Me SW	≥	'	١.	,	ı	,		,	•																		<u> </u>						ᆀ
•	PCB Cong. (1668A)	S	٠	1	က	2		•		ı																								2
	g S €	3	1	1	-	0	٠	1	- 1	1																								ᅦ
ou	PCB Cong. (8082A)	လ	٠	'	١	1	•	1	•	1					<u></u>																			ᆀ
纤	2 3 g	≥	١	1	٠	•	٠	- 1	-	-																								
5	st 18)	S		٠		1	1	t	t	ı																							.	$\circ \parallel$
NEC.	Pest (8081B)	8	ı		,	1																												0
3(S			-	ı			-		 	H				\vdash		H		 			-				<u> </u>			<u> </u>	_	$ \cdot $	+	
191	PAHS (8270D -SIM)	M			1	,	$ \cdot $,							\vdash	\vdash		H									<u>.</u>	ļ <u>.</u>		<u> </u>			\dashv	
#5			9				60					-		-	\vdash	\vdash		_		-		_	\vdash	_				<u> </u>		_		H	+	\dashv
LDC #21013 (AECOM-Honolulu	(2) DATE DUE		06/19/09 07/06/09	06/19/09 07/06/09	06/19/09 07/06/09	60/90/20 60/61/90	06/19/09 07/06/09	90/90/20 60/61/90	06/19/09 07/06/09	06/19/09 07/06/09																								
	받았		60/6	60/6	60/6	60/6	60/6	60/6	60/6	60/6																						П	\top	
	DATE REC'D		06/1	06/1	06/1	06/1	06/1	06/1	06/1	06/1												_										Ш	\perp	
90/10		<u> </u>	2				_	١	<u>.</u>																									
EDD	\$DG#	Water/Soil	58595	58613	58624	58624	58653	58685	58685	58752																								T/SC
	CDC	Matrix:	၁	۵	ш	E	ш	g	g	I				<u> </u>						<u> </u>								<u> </u>	_		_		-	Total
		2					<u> </u>	لــَــا			<u> </u>	<u></u>		<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	L	L	<u> </u>	<u> </u>	<u> </u>				<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	ĭ

LDC #: 4495Bb SDG #: Ser

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page: of Reviewer: 2nd reviewer:

All circled dates have exceeded the technical holding time.

Were all samples preserved as applicable to each method?

N N/A

Were all cooler temperatures within validation criteria?

Method:		9056	9-12A	353.2	9.4.B		
Parameters:		BY	CN	NOZ-N	vH		
rechnical holding ti	me:	18 Ly	144	486	484	 	
Sample ID	Sampling date	Analysis date	Analysis date	Analysis date	Analysis date	Analysis date	O lie
1,2	5/109	7/8/09	(42 ty		44,0	uate	Qualifier J-/w//
			- 6	<i></i>			TUTA
·	5/27/20		6/1/09	(15 tay	-)		J-/47/A
			1	U	·		/ / /
	5/2/1.5	1. A		6/3/09	(1 top)		J-/R/0
<u> </u>	7/28/09			6/3/29	(6 Log)	V
2	5/1/19 1400				1.61.0		
	1400				5/29/09	co his	J/I/p
· · · · · · · · · · · · · · · · · · ·					-		/ /
		· ·					
		:					
			· ·				
					-		

Introduction

This data review covers 5 sediment and one water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 1668B for Polychlorinated Biphenyls as Congeners.

This review follows the Project Procedures Manual, U.S. Navy Environmental Restoration Program NAVFAC Pacific (DON 2007) and the U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 4.1 (April 2009).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Samples indicated by a double asterisk on the front cover underwent a Full review. A Standard review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Standard criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

>1495Bb "# DO" SDG #: METHOD: Inorganics, EPA Method_

VALIDATION FINDINGS WORKSHEET Calibration

Page: Reviewer:

2nd Reviewer:

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| Vol. N/A | Were all instruments calibrated daily, each set-up time, and were the proper number of standards used?

| X N N/A | Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110%?

Are all correlation coefficients >0.995 ?

EVEL IV/D ONLY:

Were recalculated results acceptable? See Level IV initial and Continuing Calibration Recaluculation Worksheet for recalulations. Was a balance check conducted prior to the TDS analysis.? Was the titrant normality checked? Y N N/A

Y)N N/A

	_					
*	4	Calibration ID	Analyte	%R	Associated Samples	Qualifications
	6 13165	777	V XOX	28.3	7	() ()
			15			
		,				
Å	2012	700		7 %		
		-				
~	12/8/19	(4.p) \co		۲۱2,۲	- 2	TT 1470 CC1
L_			(4970P)			
7	10/2013	(130)	/ /	10.7		
		1				
					<i>y</i>	
Com	Comments:					

Artist of Salatin and Salatin

LDC #: 21495B6 SDG #: See Cover

VALIDATION FINDINGS WORKSHEET Blanks

Page: Lof Reviewer: 2nd Reviewer:__

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Note all samples associated with a given method blank?

Note any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Conc. units: mg/L

Associated Samples: All

Analyte	Blank ID	Maximum	-					Spirit dame				
	MB	ICB/CCB	Action Limit	2	4				Huncanon			
Total Alk	1.9	1.9		1.9 / 2.0	1.9/2.0							
Bicar Alk	19			19/20	19/20							
Conc. units: mg/L	ts: mg/L			-	Associated Samples: T-P:1-3, Cl, NO3-N:3	Samples:	T-P:1-3, Cl, I	VO3-N:3				
Analyte	Blank ID	Maximum	Blank					Sample Identification	ntification			
	MB	ICE/CLB		2	3							
T-P	0.01	0.01		0.01 / 0.05	0.042 / 0.05							
Ö	0.11	0.110										
NO3-N	0.090		06.0									
Conc. units: mg/L	ts: mg/L				Associated Samples: 4	Samples:	4					
Analyte	Blank ID	Maximum	Blank					Sample Identification	ntification			
	MB	ICB/CCB	Action Limit	4								
T-P	0.015	0.015		0.020 / 0.05								
CI	0.06	0.06										
								T		,	_	

LDC #: 21495B6 SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Field Blanks

Page: Lof Reviewer. Cond Reviewer.

METHOD: Inorganics, Method See Cover Were field blanks identified in this SDG?

Were target analytes detected in the field blanks? | Were target analytes detected in the field blanks | Were target analytes detected in the field blank type: (circle one) Field Blank / Rinsate / Other. EB

Associated Samples: 1 (>RL)

Reason Code: be

Analyte	Blank ID			Sample Identification	ation		
	x t	Action Level					
Total Alkalinity	1.9						
Bicarbonate Alkalinity	1,9	·					
TOC (average)	0.3						
Conductivity (umhos/cm)	2.47	24.7					
pH (pH Units)	5.99						
Total Phosphorus	0.01						

LDC #: 21495B6 SDG #: See Cover

VALIDATION FINDINGS WORKSHEET Field Blanks

Page: 1 of '5

2nd Reviewer: Reviewer.

METHOD: Inorganics, Method See Cover

Were field blanks identified in this SDG? N N/A

Blank units: mg/L Associated sample units: mg/L Associated sample units: mg/L Sampling date: 6/4/09 Soil factor applied

Sampling date: 6/4/09 Soil factor applied Field blank type: (circle one) Field Blank / Rinsate / Other: FB

Associated Samples: 1,3

Reason Code: bf

Analyte	Blank ID				Sample Identification	ofice		
					THE PROPERTY.	מנוסו		
	4	Action Level	-	က				
Total Alkalinity	1.9							
Bicarbonate Alkalinity	0,1							
Ammonia as N	0.102	1.02	0.537 J+	0.030 / 0.050				
TOC (average)	0.4							
Conductivity (umhos/cm)	1.81							
pH (pH Units)	6.08							
Total Option	0000							
SELONG SELONG	0,020			0.042 / 0.050				

SDG #: >149586

METHOD: Inorganics, Method __

VALIDATION FINDINGS WORKSHEET Sample Result Verification

Qualifications z 0.010 4 Lab Reporting Limit (units) 130FL-4 Analyte Sample ID Comments:

100 #: ~ |495Bb

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: of Reviewer: WH

METHOD: Inorganics, Method

33

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

(Y) N N/A Was the overall quality and usability of the data acceptable?

*	Date	Sample ID	Finding	Associated Samples	Qualifications
		1, 3	102-11 by 358,2	いけられれてが	V/(0)
					(4-
	-				
-	-				
		>			
Coma	Comments:				

LDC # 1456 136

Initial and Continuing Calibration Calculation Verification Validatin Findings Worksheet

2nd Reviewer: Reviewer: Page:

Method: Inorganics, Method

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula: The correlation coefficient (r) for the calibration of $\mathbb{C}_{\theta} \mathcal{C}$ was recalculated.Calibration date: $\mathcal{V}(\mathcal{V}_{\theta})$

%R = Found X 100

Where,

Found = concentration of each analyte measured in the analysis of the ICV or CCV solution

True = concentration of each analyte in the ICV or CCV source

Time of a males					Recalculated	Reported	Acceptable
ype or analysis	Analyte	Standard	Conc. (ug/L)	Area	r or r²	r or r²	(X/X)
Initial calibration		s1	0	. 0			
	CI04	\$2	-	0.002	0.999654	0.999656	•
	: .	83	2	0.004			>
		84	2	0.01			•
		s5	10	0.023			
		se	25	0.058			
$\ell \omega /$ Calibration verification	75	0)	ē		- 2	4 /4	7
$\mathcal{C}_{\mathcal{C}\mathcal{A}}$ Calibration verification	tos	1.9	6326		9	¥ ×	
Calibration verification	467	င4'0	0,513		٤٠)	M	
					`		

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

100 #: 71495 Bb

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Reviewer: Page:

METHOD: Inorganics, Method _______

Percent recoveries (%A) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found × 100 Where. True

Found *

True m

concentration of each analyte <u>measured</u> in the analysis of the sample, For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result), concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = 18-D1 × 100 Where, (S+D)/2

⊘ Q

Original sample concentration Duplicate sample concentration

0					2 2	Recalculated	Reported		·
Luboratory corritol sample Natrix spike sample CEDY CEDY Love Cov (1) 16 45 11 11 11 11 11 11 11 11 11	Sample ID	Type of Analysis	Element	round / S (units)	True / D (unite)	%R / RPD	%R / RPD	Acceptable (Y/N)	
Metric spike sample (888-88) Duplicate sample (204 (388-88) Duplicate sample (204 (388-88) Duplicate sample (204 (388-88) Duplicate sample (204 (388-88) 10 10 10 10 10 10 10 10 10 10 10 10 10 1		Laboratory control sample							r
Natrix spike sample CROY 13 most 11 11 Duplicate sample CROY 2000 MI 11 Duplicate sample CROY 166 13	Sa.		<u>≯</u>	960	o °;	96	96	>	
Duplicate semple deauth 691 166 13	Ų	Matrix spike sample	1700	(S&R-&R)					T
Duplicate sample Cleart 671 166 13)		than.	22767		5		-	
(2) 166 (3)		Duplicate semple	7.01.					8	1
	Q			69	392	\$	2		

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

TOTCLC.6

SDG #	OD: Inorganics, Metho	Sample Calculation Vent	VALIDATION FINDINGS WORKSHEET Sample Calculation Verification Survey all guestions answered "N". Not applicable guestions a		
MN	N/A Have results N/A Are results w	been reported and calculated correctly? ithin the calibrated range of the instrumention limits below the CRQL?			44.
	ound (analyte) results f ulated and verified usir	or	геро	rted with a positiv	e detect were
Concen	tration =	Recalculation:			
` → c	l = = (0,02f2 U = (166x Area + 0.033898) x50 0.0292466 x 2/8/2/ t0.033	7- 898)X2000	=12840	ugh
,	Sample ID	Analyte	Reported Concentration (W)	Calculated Concentration	Acceptable (Y/N)
		72 AIV	839	838	V
		(An -x/	0.537	0.587	,
		BYY	1.4	1.4	
		Toc (Arc.)	25	7.	
		(l	12800	1200	
		conductivity (yMtps/a)	93100	33100	
		pH (mits)	7.48	1.48	
		Τ-ρ	9.32	9.3	
		TOS	25900	15900	
		504	4200	4200	
		Surfactorts	1-10	4/10	
		Chlority (VSL)	166	766	V.
					

Note:	By - Row. It	h- 609	K090324))	:
		9.			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation,

Henderson, Nevada

Collection Date:

June 1 through June 4, 2009

LDC Report Date:

September 28, 2009

Matrix:

Soil

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903051

Sample Identification

RSA12-0.5B

RSAI3-0.5B

RSAJ5-0.5B

RSAK5-0.5B

SA76-0.5B

SA76009-0.5B

RSAL3-0.5B

SA100-0.5B

RSAM3-0.5B

RSAM2-0.5B

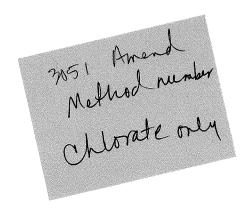
SA189-0.5B

SA88-0.5B

SA152-0.5B

SA152009-0.5B

RSAJ2-0.5B


RSAJ3-0.5B

SA202-0.5B

RSA12-0.5BMS

RSA12-0.5BMSD

RSA12-0.5BDUP

Introduction

This data review covers 20 soil samples listed on the cover sheet. The analyses were per Standard Method 2320B for Alkalinity, EPA Method 350.1 for Ammonia as Nitrogen, EPA SW 846 Method 9056 for Bromide, Chloride, Nitrate as Nitrogen, and Sulfate, EPA Method 353.2 for Nitrite as Nitrogen, EPA Method 300.1 for Chlorate, EPA SW 846 Method 9012A for Cyanide, EPA SW 846 Method 7199 for Hexavalent Chromium, EPA SW 846 Method 9045D for pH, Standard Method 5540C for Surfactants, EPA Method 314.0 for Perchlorate, EPA Method 365.1 for Total Phosphorus, and Lloyd/Kahn Method for Total Organic Carbon.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section X.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

Calibration verification frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/5/09	ccv	Total organic carbon	89.1 (90-110)	RSA12-0.5B RSAI3-0.5B RSAJ5-0.5B RSAK5-0.5B SA76-0.5B SA76009-0.5B RSAL3-0.5B SA100-0.5B RSAM3-0.5B	J- (all detects) UJ (all non-detects)	Р
6/9/09	CCV beginning	Surfactants	112 (90-110)	SA189-0.5B SA88-0.5B SA152-0.5B SA152009-0.5B RSAJ2-0.5B RSAJ3-0.5B SA202-0.5B	J+ (all detects)	Р
6/9/09	CCV beginning	Surfactants	115 (90-110)	SA189-0.5B SA88-0.5B SA152-0.5B SA152009-0.5B RSAJ2-0.5B RSAJ3-0.5B SA202-0.5B	J+ (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Total phosphorus	1.9 mg/Kg	RSA12-0.5B

Method Blank ID	Analyte	Concentration	Associated Samples
MB	Total phosphorus	2.3 mg/Kg	RSAI3-0.5B RSAJ5-0.5B RSAK5-0.5B SA76-0.5B SA76009-0.5B RSAL3-0.5B SA100-0.5B RSAM3-0.5B RSAM2-0.5B SA189-0.5B SA189-0.5B SA152-0.5B SA152-0.5B SA152-0.5B SA152-0.5B
ICB/CCB	Total phosphorus	0.0111 mg/L	RSA12-0.5B
ICB/CCB	Total phosphorus	0.0147 mg/L	RSAI3-0.5B RSAJ5-0.5B RSAK5-0.5B SA76-0.5B SA76009-0.5B RSAL3-0.5B SA100-0.5B RSAM3-0.5B RSAM2-0.5B SA189-0.5B SA189-0.5B SA152-0.5B SA152-0.5B SA152-0.5B SA152-0.5B RSAJ2-0.5B RSAJ2-0.5B
МВ	Alkalinity, total Alkalinity, bicarbonate Ammonia as N Chloride Nitrate as N Surfactants	10 mg/Kg 10 mg/Kg 0.05 mg/Kg 9 mg/Kg 4.5 mg/Kg 1.3 mg/Kg	RSA12-0.5B RSA13-0.5B RSAJ5-0.5B RSAK5-0.5B SA76-0.5B SA76009-0.5B RSAL3-0.5B SA100-0.5B RSAM3-0.5B
ICB/CCB	Alkalinity, total Chloride Nitrate as N	1.0 mg/L 0.098 mg/L 0.046 mg/L	RSA12-0.5B RSA13-0.5B RSAJ5-0.5B RSAK5-0.5B SA76-0.5B SA76009-0.5B RSAL3-0.5B SA100-0.5B RSAM3-0.5B

Method Blank ID	Analyte	Concentration	Associated Samples
ІСВ/ССВ	Ammonia as N	0.0074 mg/L	RSA12-0.5B RSAI3-0.5B RSAJ5-0.5B RSAK5-0.5B
МВ	Alkalinity, total Alkalinity, bicarbonate	11 mg/Kg 11 mg/Kg	SA189-0.5B SA88-0.5B SA152-0.5B SA152009-0.5B RSAJ2-0.5B RSAJ3-0.5B SA202-0.5B
МВ	Chloride	1.1 mg/Kg	SA152-0.5B SA152009-0.5B
МВ	Chloride	0.94 mg/Kg	SA189-0.5B SA88-0.5B RSAJ2-0.5B RSAJ3-0.5B SA202-0.5B
ICB/CCB	Alkalinity, total Ammonia as N	1.0 mg/L 0.0051 mg/L	SA189-0.5B SA88-0.5B SA152-0.5B SA152009-0.5B RSAJ2-0.5B RSAJ3-0.5B SA202-0.5B
ICB/CCB	Chloride	1.1 mg/L	SA152-0.5B SA152009-0.5B
ICB/CCB	Chloride	0.94 mg/L	SA189-0.5B SA88-0.5B RSAJ2-0.5B RSAJ3-0.5B SA202-0.5B

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
RSA12-0.5B	Ammonia as N Chloride Surfactants	0.52 mg/Kg 19 mg/Kg 0.9 mg/Kg	0.53U mg/Kg 21U mg/Kg 2.1U mg/Kg
RSAI3-0.5B	Surfactants	1.2 mg/Kg	2.1U mg/Kg

Sample	Analyte	Reported Concentration	Modified Final Concentration
RSAK5-0.5B	Ammonia as N	0.47 mg/Kg	0.54U mg/Kg
SA76-0.5B	Ammonia as N Surfactants	0.27 mg/Kg 1.4 mg/Kg	0.53U mg/Kg 2.1U mg/Kg
SA76009-0.5B	Ammonia as N Surfactants	0.49 mg/Kg 1.5 mg/Kg	0.54U mg/Kg 2.2U mg/Kg
RSAL3-0.5B	Ammonia as N Surfactants	0.17 mg/Kg 1.4 mg/Kg	0.52U mg/Kg 2.1U mg/Kg
SA100-0.5B	Ammonia as N	0.33 mg/Kg	0.51U mg/Kg
RSAM2-0.5B	Ammonia as N	0.37 mg/Kg	0.52U mg/Kg
SA152-0.5B	Ammonia as N	0.06 mg/Kg	0.52U mg/Kg
SA202-0.5B	Ammonia as N	0.16 mg/Kg	0.53U mg/Kg

Sample FB072109-SO (from SDG R0904016) was identified as a field blank. No contaminant concentrations were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
FB072109-SO	7/21/09	Ammonia as N Total organic carbon Chloride Nitrate as N pH Total phosphorus Sulfate Surfactants	0.191 mg/L 0.5 mg/L 9.7 mg/L 1.76 mg/L 3.36 mg/L 0.01 mg/L 5.5 mg/L 0.159 mg/L	All samples in SDG R0903051

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
RSA12-0.5B	Ammonia as N	0.52 mg/Kg	0.53U mg/Kg
	Chloride	19 mg/Kg	21U mg/Kg
	Nitrate as N	5.6 mg/Kg	5.6J+ mg/Kg
	Sulfate	17 mg/Kg	21U mg/Kg
	Surfactants	0.9 mg/Kg	2.1U mg/Kg

Sample	Analyte	Reported Concentration	Modified Final Concentration
RSAI3-0.5B	Ammonia as N	1.05 mg/Kg	1.05J+ mg/Kg
	Chloride	67 mg/Kg	67J+ mg/Kg
	Nitrate as N	8.3 mg/Kg	8.3J+ mg/Kg
	Sulfate	51 mg/Kg	51J+ mg/Kg
	Surfactants	1.2 mg/Kg	2.1U mg/Kg
RSAJ5-0.5B	Ammonia as N	0.59 mg/Kg	0.59J+ mg/Kg
	Chloride	55 mg/Kg	55J+ mg/Kg
	Nitrate as N	7.5 mg/Kg	7.5J+ mg/Kg
	Sulfate	236 mg/Kg	236J+ mg/Kg
RSAK5-0.5B	Ammonia as N	0.47 mg/Kg	0.54U mg/Kg
	Chloride	164 mg/Kg	164J+ mg/Kg
	Nitrate as N	11.1 mg/Kg	11.1J+ mg/Kg
	Sulfate	438 mg/Kg	438J+ mg/Kg
	Surfactants	2.2 mg/Kg	2.2J+ mg/Kg
SA76-0.5B	Ammonia as N	0.27 mg/Kg	0.53U mg/Kg
	Chloride	655 mg/Kg	655J+ mg/Kg
	Nitrate as N	41.8 mg/Kg	41.8J+ mg/Kg
	Surfactants	1.4 mg/Kg	2.1U mg/Kg
SA76009-0.5B	Ammonia as N	0.49 mg/Kg	0.54U mg/Kg
	Chloride	846 mg/Kg	846J+ mg/Kg
	Nitrate as N	52.2 mg/Kg	52.2J+ mg/Kg
	Surfactants	1.5 mg/Kg	2.2U mg/Kg
RSAL3-0.5B	Ammonia as N	0.17 mg/Kg	0.52U mg/Kg
	Chloride	24 mg/Kg	24J+ mg/Kg
	Nitrate as N	7.6 mg/Kg	7.6J+ mg/Kg
	Sulfate	66 mg/Kg	66J+ mg/Kg
	Surfactants	1.4 mg/Kg	2.1U mg/Kg
SA100-0.5B	Ammonia as N	0.33 mg/Kg	0.51U mg/Kg
	Chloride	30 mg/Kg	30J+ mg/Kg
	Nitrate as N	8.7 mg/Kg	8.7J+ mg/Kg
	Sulfate	46 mg/Kg	46J+ mg/Kg
	Surfactants	2.4 mg/Kg	2.4J+ mg/Kg
R\$AM3-0.5B	Ammonia as N	1.72 mg/Kg	1.72J+ mg/Kg
	Chloride	756 mg/Kg	756J+ mg/Kg
	Nitrate as N	6.3 mg/Kg	6.3J+ mg/Kg
	Sulfate	48 mg/Kg	48J+ mg/Kg
RSAM2-0.5B	Ammonia as N	0.37 mg/Kg	0.52U mg/Kg
	Nitrate as N	14.0 mg/Kg	14.0J+ mg/Kg
	Sulfate	298 mg/Kg	298J+ mg/Kg
SA189-0.5B	Chloride	879 mg/Kg	879J+ mg/Kg
	Nitrate as N	14.2 mg/Kg	14.2J+ mg/Kg
	Sulfate	67.0 mg/Kg	67.0J+ mg/Kg

Sample	Analyte	Reported Concentration	Modified Final Concentration
SA88-0.5B	Nitrate as N	29.2 mg/Kg	29.2J+ mg/Kg
	Surfactants	0.9 mg/Kg	2.1U mg/Kg
SA152-0.5B	Ammonia as N	0.06 mg/Kg	0.52U mg/Kg
	Chloride	5.8 mg/Kg	5.8J+ mg/Kg
	Nitrate as N	2.85 mg/Kg	2.85J+ mg/Kg
	Sulfate	26.9 mg/Kg	26.9J+ mg/Kg
SA152009-0.5B	Chloride	6.4 mg/Kg	6.4J+ mg/Kg
	Nitrate as N	3.18 mg/Kg	3.18J+ mg/Kg
	Sulfate	33.1 mg/Kg	33.1J+ mg/Kg
RSAJ2-0.5B	Ammonia as N	2.49 mg/Kg	2.49J+ mg/Kg
	Nitrate as N	26.6 mg/Kg	26.6J+ mg/Kg
RSAJ3-0.5B	Ammonia as N	4.22 mg/Kg	4.22J+ mg/Kg
	Nitrate as N	14.4 mg/Kg	14.4J+ mg/Kg
SA202-0.5B	Ammonia as N	0.16 mg/Kg	0.53U mg/Kg
	Nitrate as N	14.1 mg/Kg	14.1J+ mg/Kg
	Sulfate	396 mg/Kg	396J+ mg/Kg
	Surfactants	1.3 mg/Kg	2.1U mg/Kg

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Analyte	RPD (Limits)	Difference (Limits)	Flag	A or P
RSA12-0.5BDUP (All samples in SDG R0903051)	Chlorate	34 (≤20)	-	J (all detects) UJ (all non-detects)	А

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Surrogates

Surrogates were added to all samples and blanks as required by method 300.1. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Analyte	Flag	A or P
RSAJ3-0.5B	Dichloroacetate	72.4 (90-115)	Chlorate	J- (all detects) UJ (all non-detects)	Р

VIII. Sample Result Verification and Project Quantitation Limit

The project quantitation limits were met with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
RSA12-0.5B RSAI3-0.5B RSAJ5-0.5B RSAK5-0.5B SA76-0.5B SA76009-0.5B RSAL3-0.5B SA100-0.5B RSAM3-0.5B	Nitrite as N	Laboratory reporting limit reported at 1.2 mg/Kg.	PQL should be reported at 0.1 mg/Kg per the QAPP.	None	Р

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903051	All analytes reported below the PQL.	J (all detects)	А

Raw data were not reviewed for this SDG.

IX. Overall Assessment

The overall assessment of data was acceptable with the following exceptions:

Sample	Analyte	
SA76-0.5B SA76009-0.5B SA100-0.5B SA189-0.5B SA88-0.5B	Cyanide analysis was not performed for these samples.	

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

Samples SA76-0.5B and SA76009-0.5B and samples SA152-0.5B and SA152009-0.5B were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concer	ntration				
Analyte	SA76-0.5B	SA76009-0.5B	RPD (Limits)	Difference (Limits)	Flag	A or P
Ammonia as N	0.27 mg/Kg	0.49 mg/Kg	-	0.22 (≤0.54)	-	-
Alkalinity, total	258 mg/Kg	323 mg/Kg	22 (≤50)	-	-	-
Alkalinity, Bicarbonate	253 mg/Kg	310 mg/Kg	20 (≤50)	-	-	-
Alkalinity, Carbonate	4 mg/Kg	13 mg/Kg	-	9 (≤22)	-	-
Chloride	655 mg/Kg	846 mg/Kg	25 (≤50)	-	-	-
Hexavalent chromium	0.46 mg/Kg	0.69 mg/Kg	-	0.23 (≤0.42)	-	-
Hexavalent chromium	0.49 mg/Kg	0.68 mg/Kg	<u>-</u>	0.19 (≤0.42)	-	-
Nitrate as N	41.8 mg/Kg	52.2 mg/Kg	22 (≤50)	-	-	-
Nitrite as N	1.3U mg/Kg	2.3 mg/Kg	-	1 (≤5.4)	-	-
рН	8.70 units	9.21 units	6 (≤50)	-	-	-
Sulfate	746 mg/Kg	815 mg/Kg	9 (≤50)	-	-	-
Surfactants	1.4 mg/Kg	1.5 mg/Kg	-	0.1 (≤2.2)	-	-
Total organic carbon	1870 mg/Kg	3580 mg/Kg	-	1710 (≤620)	J (all detects)	А
Total phosphorus	1110 mg/Kg	1140 mg/Kg	3 (≤50)	-	-	-
Chlorate	930000 ug/Kg	832000 ug/Kg 、	11 (≤50)	-	-	-
Perchlorate	329000 ug/Kg	305000 ug/Kg	8 (≤50)	-	-	-

	Conce	ntration				
Analyte	SA152-0.5B	SA152009-0.5B	RPD (Limits)	Difference (Limits)	Flag	A or P
Ammonia as N	0.06 mg/Kg	0.05U mg/Kg	-	0.01 (≤0.52)	-	-
Alkalinity, Total	466 mg/Kg	448 mg/Kg	4 (≤50)	-	-	-
Alkalinity, Bicarbonate	437 mg/Kg	419 mg/Kg	4 (≤50)	-	-	-
Alkalinity, Carbonate	29 mg/Kg	29 mg/Kg	-	0 (≤21)	-	-
Chloride	5.8 mg/Kg	6.4 mg/Kg	<u>.</u>	0.6 (≤2.1)	-	-
Nitrate as N	2.85 mg/Kg	3.18 mg/Kg	11 (≤50)	-	-	-
pH	9.85 units	9.91 units	1 (≤50)	-	-	-
Sulfate	26.9 mg/Kg	33.1 mg/Kg	21 (≤50)	-	-	-
Total organic carbon	1750 mg/Kg	3270 mg/Kg	-	1520 (≤640)	J (all detects)	Α
Total phosphorus	985 mg/Kg	854 mg/Kg	14 (≤50)	-	-	-
Chlorate	414 ug/Kg	366 ug/Kg	-	48 (≤210)	-	-
Perchlorate	352 ug/Kg	354 ug/Kg	1 (≤50)	-	-	-

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Data Qualification Summary - SDG R0903051

SDG	Sample	Analyte	Flag	A or P	Reason
R0903051	RSA12-0.5B RSAI3-0.5B RSAJ5-0.5B RSAK5-0.5B SA76-0.5B SA76009-0.5B RSAL3-0.5B SA100-0.5B RSAM3-0.5B	Total organic carbon			Calibration (CCV %R) (c)
R0903051	SA189-0.5B SA88-0.5B SA152-0.5B SA152009-0.5B RSAJ2-0.5B RSAJ3-0.5B SA202-0.5B	Surfactants	J+ (all detects)	Р	Calibration (CCV %R) (c)
R0903051	RSA12-0.5B RSAI3-0.5B RSAJ5-0.5B RSAK5-0.5B SA76-0.5B SA76009-0.5B RSAL3-0.5B SA100-0.5B RSAM2-0.5B SA189-0.5B SA189-0.5B SA152-0.5B SA152-0.5B SA152-0.5B SA152-0.5B SA152-0.5B SA152-0.5B	Chlorate	J (all detects) UJ (all non-detects)	A	Duplicate sample analysis (RPD) (Id)
R0903051	RSAJ3-0.5B	Chlorate	J- (all detects) UJ (all non-detects)	Р	Surrogate recovery (%R) (s)
R0903051	RSA12-0.5B RSAI3-0.5B RSAJ5-0.5B RSAK5-0.5B SA76-0.5B SA76009-0.5B RSAL3-0.5B SA100-0.5B RSAM3-0.5B RSAM2-0.5B	Nitrite as N	None	Р	Sample result verification

SDG	Sample	Analyte	Flag	A or P	Reason
R0903051	RSA12-0.5B RSA13-0.5B RSAJ5-0.5B RSAK5-0.5B SA76-0.5B SA76009-0.5B RSAL3-0.5B RSAM3-0.5B RSAM2-0.5B SA189-0.5B SA189-0.5B SA152-0.5B SA152-0.5B SA152-0.5B SA152-0.5B RSAJ2-0.5B RSAJ2-0.5B	All analytes reported below the PQL.	J (all detects)	А	Sample result verification (sp)
R0903051	SA76-0.5B SA76009-0.5B SA152-0.5B SA152009-0.5B	Total organic carbon	J (all detects) UJ (all non-detects)	A	Field duplicates (Difference) (fd)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG R0903051

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903051	RSA12-0.5B	Ammonia as N Chloride Surfactants	0.53U mg/Kg 21U mg/Kg 2.1U mg/Kg	А	bi
R0903051	RSAI3-0.5B	Surfactants	2.1U mg/Kg	А	bl
R0903051	RSAK5-0.5B	Ammonia as N	0.54U mg/Kg	Α	bl
R0903051	SA76-0.5B	Ammonia as N Surfactants	0.53U mg/Kg 2.1U mg/Kg	А	bl
R0903051	SA76009-0.5B	Ammonia as N Surfactants	0.54U mg/Kg 2.2U mg/Kg	А	bl
R0903051	RSAL3-0.5B	Ammonia as N Surfactants	0.52U mg/Kg 2.1U mg/Kg	А	bl
R0903051	SA100-0.5B	Ammonia as N	0.51U mg/Kg	Α	bl
R0903051	RSAM2-0.5B	Ammonia as N	0.52U mg/Kg	Α	bl

SDG	Sample	Analyte	Modified Final Concentration		Code
R0903051	SA152-0.5B	Ammonia as N	0.52U mg/Kg	А	bl
R0903051	SA202-0.5B	Ammonia as N	0.53U mg/Kg	Α	bl

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Field Blank Data Qualification Summary - SDG R0903051

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903051	RSA12-0.5B	Ammonia as N Chloride Nitrate as N Sulfate Surfactants	0.53U mg/Kg 21U mg/Kg 5.6J+ mg/Kg 21U mg/Kg 2.1U mg/Kg	А	bf
R0903051	RSAI3-0.5B	Ammonia as N Chloride Nitrate as N Sulfate Surfactants	1.05J+ mg/Kg 67J+ mg/Kg 8.3J+ mg/Kg 51J+ mg/Kg 2.1U mg/Kg	A	bf
R0903051	RSAJ5-0.5B	Ammonia as N Chloride Nitrate as N Sulfate	0.59J+ mg/Kg 55J+ mg/Kg 7.5J+ mg/Kg 236J+ mg/Kg	A	bf
R0903051	RSAK5-0.5B	Ammonia as N Chloride Nitrate as N Sulfate Surfactants	0.54U mg/Kg 164J+ mg/Kg 11.1J+ mg/Kg 438J+ mg/Kg 2.2J+ mg/Kg	A	bf
R0903051	SA76-0.5B	Ammonia as N Chloride Nitrate as N Surfactants	0.53U mg/Kg 655J+ mg/Kg 41.8J+ mg/Kg 2.1U mg/Kg	A	bf
R0903051	SA76009-0.5B	Ammonia as N Chloride Nitrate as N Surfactants	0.54U mg/Kg 846J+ mg/Kg 52.2J+ mg/Kg 2.2U mg/Kg	А	bf
R0903051	RSAL3-0.5B	Ammonia as N Chloride Nitrate as N Sulfate Surfactants	0.52U mg/Kg 24J+ mg/Kg 7.6J+ mg/Kg 66J+ mg/Kg 2.1U mg/Kg	A	bf

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903051	SA100-0.5B	Ammonia as N Chloride Nitrate as N Sulfate Surfactants	0.51U mg/Kg 30J+ mg/Kg 8.7J+ mg/Kg 46J+ mg/Kg 2.4J+ mg/Kg	А	bf
R0903051	RSAM3-0.5B	Ammonia as N Chloride Nitrate as N Sulfate	1.72J+ mg/Kg 756J+ mg/Kg 6.3J+ mg/Kg 48J+ mg/Kg	А	bf
R0903051	RSAM2-0.5B	Ammonia as N Nitrate as N Sulfate	0.52U mg/Kg 14.0J+ mg/Kg 298J+ mg/Kg	А	bf
R0903051	SA189-0.5B	Chloride Nitrate as N Sulfate	879J+ mg/Kg 14.2J+ mg/Kg 67.0J+ mg/Kg		bf
R0903051	SA88-0.5B	Nitrate as N Surfactants	29.2J+ mg/Kg 2.1U mg/Kg	А	bf
R0903051	SA152-0.5B	Ammonia as N Chloride Nitrate as N Sulfate	0.52U mg/Kg 5.8J+ mg/Kg 2.85J+ mg/Kg 26.9J+ mg/Kg	А	bf
R0903051	SA152009-0.5B	Chloride Nitrate as N Sulfate	6.4J+ mg/Kg 3.18J+ mg/Kg 33.1J+ mg/Kg	A	bf
R0903051	RSAJ2-0.5B	Ammonia as N Nitrate as N	2.49J+ mg/Kg 26.6J+ mg/Kg	А	bf
R0903051	RSAJ3-0.5B	Ammonia as N Nitrate as N	4.22J+ mg/Kg 14.4J+ mg/Kg	А	bf
R0903051	SA202-0.5B	Ammonia as N Nitrate as N Sulfate Surfactants	0.53U mg/Kg 14.1J+ mg/Kg 396J+ mg/Kg 2.1U mg/Kg	А	bf

			_		_							
. 50	" 0440700	.			_	Henderson			- al			
	#: <u>21495C6</u>	VA	ALIDATIO			ESS WOR	KSHEEI		Date: 7/2			
	6 #: <u>R0903051</u> pratory: Columbia Analytic	:al Se	rvices	ان ا	age 2B				Page:of_/ Reviewer: _ <			
	, <u> </u>	<u> </u>	111000	300-					2nd Reviewer:			
MET												
(EP/	METHOD: (Analyte) Alkalinity (SM2320B), Ammonia-N (EPA Method 350.1), Bromide, Chloride, Nitrate-N, Nitrite-N, Sulfat EPA SW846 Method 9056), Chlorate (EPA SW846 Method 9056M), Cyanide (EPA SW846 Method 9012A), Diss olve											
Hexe	avalent Chromium (EPA N	/letho	o d 218.6) , He	<u>exavalent Cl</u>	<u>hromium</u>	n (EPA SW84	6 Method	7199), pH (EPA SW846 Metho			
904∪ /Пои	/B/ 9045D), Surfactants (S <u>rd/Kahn /EPA SW846 Me</u>	3M55/	40C), Perch	Ilorate (EPA	Method	<u>1 314.0), Tota</u> ≥ M2540D) - ▶	al Phospho	orus	(EPA Method 365.1), TO			
The	samples listed below were	e revi	ewed for ea	ch of the foll	lowing v	alidation area	is. Validatio	on fin	dings are noted in attache			
	ation findings worksheets.											
				T								
	Validation	<u>Area</u>		<u> </u>			Comm	ents				
1.	Technical holding times	·····		7	Sampling d	lates: b/1/0	1 - 6/4	109				
ila.	. Initial calibration			13		,		/				
Ilb.	. Calibration verification			5~								
111.				5W	/			-				
IV		uplica	tes	ASW								
V	Duplicates			5W								
VI.	Laboratory control samples			A	LCS							
VII.	. Sample result verification			SON	/							
VIII	. Overall assessment of data			SW								
IX.	Field duplicates			SW	(5,	6) (13,1	14)					
х	Field blanks			SW .	FR =		109-50	(5	my 10.904016)			
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	;	R = Rins	o compounds de sate eld blank	letected	D = Dup TB = Trip EB = Eq		k				
/alida	ited Samples:						ر 					
1	RSA12-0.5B	11	SA189-0.5B		21	5A+89=0.5	BMS	31	RSAKE-O. + BMS			
2	RSAI3-0.5B	12	SA88-0.5B		22	V	púp	32	1 pup			
3	RSAJ5-0.5B	13	SA152-0.5B		23	RSAI3-0	JB MS	33	RSAM3-OSBMS			
4	RSAK5-0.5B	14	SA152009-0.5	5B	24		pup	84	1 pup			
5	SA76-0.5B	15	RSAJ2-0.5B		25	5A202-	O. J.BMS	35	Mrs			
6	SA76009-0.5B	16	RSAJ3-0.5B		26	d	yup	36				
7	RSAL3-0.5B	17	SA202-0.5B		27	RGAJ5-a	Sk Pup	37				
8	SA100-0.5B	18	RSA12-0.5BM	<u>ns</u>	28	SA76-0. X	B Dup	38				
9	RSAM3-0.5B	19	RSA12-0.5BM	/ISD	29	RSALZEO.	JB195	39	mn			

30

21495C6W.wpd

RSAM2-0.5B

20

RSA12-0.5BDUP

LDC #: 1495CL SDG #: Le www

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: __lof __ Reviewer: _____ 2nd reviewer: _____

All circled methods are applicable to each sample.

	4		
	Sample ID		Parameter Parameter
	1-17	(soi)	(Alk pH Br CI NO, NO, SO, NH, TOC) CIO (Cro+ T-P MBAS) TDS TSS Cond (CIO, CIO,
	_		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
	1-4,7,910,1	3-17 50:1	Alk pH Br Cl NO, NO, SO, NH, TOC CN Cro+ T-P MBAS TDS TSS Cond ClO, ClO4
			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		_	Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
N	18-20	50,0	Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond CIO3 CIO
	18,20	-	Alk pH (Br)C) NO, SO (NH3) TOC CN Cro T-PMBAS TDS TSS Cond CIO3 CIO4
	1/1/		Alk pH Br CI NO, NO, SO, NH, TOO CN Crs+ T-P MBAS TDS TSS Cond CIO, CIO,
	37. vf		Alk pH Br Cl NO3 NO2 SO4 NH3 (TOC) CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
4	75.Mo		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr5+) T-P MBAS TDS TSS Cond ClO3 ClO4
	ringr	128 B	Alk OH Br CI NO, NO, SO, NH, TOC CN Cret T-P MBAS TDS TSS Cond CIO, CIO,
-	29,30		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond CIO3 CIO4
H	31.32		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr64 (T-P)MBAS TDS TSS Cond ClO3 ClO4
\parallel	53,34		Alk pH (Br CI) NO, (NO) SO, NH, TOC CN Cr T-P MBAS TDS TSS Cond CIO, CIO,
╟			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
$\ \cdot\ $			Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
ŀ			Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
ŀ			Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
\parallel			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
\parallel			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
\parallel			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
\parallel			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
\parallel			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
\parallel			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
\parallel			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁵⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
$\ \cdot\ $			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
\parallel			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
L			

Comments:

Ke con 100 #: >14 fle ce SDG #:

VALIDATION FINDINGS WORKSHEET

Calibration

_ of _ Reviewer:__ Page: 2nd Reviewer:

METHOD: Inorganics, EPA Method_

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y ON N/A N/A N/A N/A

Were all instruments calibrated daily, each set-up time, and were the proper number of standards used?
Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110%?
Are all correlation coefficients ≥0.995?

LEVEL IV/D ONLY:

Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recaluculation Worksheet for recalulations. Was a balance check conducted prior to the TDS analysis.? Was the titrant normality checked?

Y N N/A Y N X

*	Date	Calibration ID	Analyte	%R	Associated Samples	Qualifications
_	6/2/09	CCV	Toc	89-1	* % 6-1	J-/47/p (c)
	•				,	1 /
λ	p. 6/9	\mathcal{w} \rightarrow	***			1
		(beginning	Surphits	17	11-17	7+1x/p(c)
		, D R . D	/ 1			
4		753	7	117	•	
		1 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /				
		(a				
Comments:	nents:					

LDC #: 21495C6

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

2nd Reviewer: an Reviewer:_

Reason Code: bl

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Were all samples associated with a given method blank? Were all samples associated with a given method blank? If yes, please see qualifications below.

Conc. units: mg/Kg

Associated Samples: T-P*1: 1, T-P*2:2-17 (>RL)

Analyte	Blank ID	Maximum	Blank					Sample Identification	ntification			
	MB	ICB/CCB (mg/L)	Action Limit									
T-P*1	1.9	0.0111										
T-P*2	2.3	0.0147										
Conc. units: mg/Kg	s: mg/Kg				Associated	Associated Samples: 1-10 except ICB/CCB: NH3-N: 1-4	1-10 except	ICB/CCB: NF	13-N: 1-4			
Analyte	Blank ID	Maximum ICB/CCB	Blank Action Limit					Sample Identification	ntification			
	MB	(mg/L)		-	2	4	5	9	7	8	10	
Total AIK	10	1.0										
Bicarb. AIK	10											
NH3-N	0.05	0.0074		0.52 / 0.53		0.47 / 0.54	0.27 / 0.53	0.49 / 0.54	0.17 / 0.52	0.33 / 0.51	0.37 / 0.52	
ō	6	0.098		19 / 21					-			
NO3-N	4.5	0.046										
Surfactants	1.3			0.9 / 2.1	1.2/2.1		1.4 / 2.1	1.5/2.2	1.4 / 2.1			

LDC #: 21495C6

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Page: Yof Reviewer: 2nd Reviewer:

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Note the see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Note all samples associated with a given method blank?

Note any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Conc. units: mg/Kg

Associated Samples: 11-17 except CI*1: ICB/CCB: 13,14, CI*2:11,12,15-17

Analyte	Blank ID	Maximum ICB/CCB	Maximum Blank ICB/CCB Action Limit				Sample Identification	ntification		
	MB	(mg/L)		13	17					
Total AIK	1	1.0								
Bicarb. AIK	11									
CI*1	1.1	0.112								
CI*2	0.94	0.098								
NH3-N		0.0051		0.06 / 0.52	0.06 / 0.52 0.16 / 0.53					

LDC #: 21495C6

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Field Blanks

Page: /of 2 2nd Reviewer: Reviewer:__

Were target analytes detected in the field blanks?

Reason Code: bf

METHOD: Inorganics, Method See Cover

Nore field blanks identified in this SDG?

Nore target analytes detected in the field blank:

Were target analytes detected in the field blank:

Were target analytes detected in the field blank:

Were target analytes detected in the field blank:

Sampling date: 7/21/09 Soil factor applied 10X

Field blank type: (circle one) Field Blank / Rinsate / Other: FB

Associated Samples: All Sof

Analyte	Biank ID					Sample	Sample Identification				
	FB072109-SO	Action Level	7	2	3	4	5	9	7	8	6
Ammonia as N	0.191	19.1	0.52 / 0.53	1.05 J+	0.59 7⊁	0.59 7+ 0.47 / 0.54	0.27 / 0.53	0.49 / 0.54	0.17 / 0.52	0.33 / 0.51	1.72 J+
TOC (average)	0.5										
ō	9.7	970	19/21	67 J+	55 J+	164 J+	655 J+	846 J+	24 J+	30 J+	756 J+
Nitrate as N	1.76	176	5.6 J+	8.3 J+	7.5 J+	11.1 J+	41.8 J+	52.2 J+	7.6 J+	8.7 J+	6.3 J+
pH (pH Units)	3.36										
Total Phosphorus	0.01										
Sulfate	5.5	550	17 / 21	51 J+	236 J+	438 J+			+f 99	46 J+	48 J+
Surfactants	0.159	15.9	0.9 / 2.1	1.2 / 2.1		2.2 J+	1.4 / 2.1	1.5 / 2.2	1.4 / 2.1	2.4 J+	

Ammonia as N 0.191 19.1 0.37 / 0.52 TOC (average) 0.5 9.7 970 879 Nitrate as N 1.76 176 14.0 J+ 14.2 Total Phosphorus 0.01 0.01 0.01	11	12		included and and and and and and and and and an				
0.191 19.1 0.37 / 0.52 0.5 9.7 970 1.76 176 14.0 J+ 3.36 0.01	7.52		13	14	15	16	17	
9.7 970 1.76 176 14.0 J+ 3.36 0.01			0.06 / 0.52		2.49 J+	4.22 J+	0.16 / 0.53	
9.7 970 1.76 176 14.0 J+ 3.36 0.01								
3.36 0.01	+f 678		5.8 J+	6.4 J+				
	J+ 14.2 J+	29.2 J+	2.85 J+	3.18 J+	26.6 J+	14.4 J+	14.1 J+	
								Ē
Sulfate 5.5 550 298 J+ 67.0	+f 67.0 J+		26.9 J+	33.1 J+			396 J+	
Surfactants 0.159 15.9		0.9 / 2.1					1.3 / 2.1	

LDC #: 2 455C6 SDG#:

VALIDATION FINDINDS WORKSHEET Surrogate Recovery

2nd Reviewer: 0 Page:__ Reviewer:

METHOD: Chlorate (EPA 300.1)

Are surrogates required by the method? Yes V or No

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were surrogates spiked into all samples and blanks? Y N N/A

Did all surrogate recoveries (%R) meet the QC limits?

Qualifications	(> / 4/4"/-}																						Comments	
Associated Samples																						COVERY OCT imite (Mater)	Coord & Linns (vale)	
%R (Limits)	12:4 (go -11]	()	()	()	()	()	()	()	()	()	()	()	()	()	(()	()	()	()	()	Recovery QC Limits (Soil)		
Surrogate Compound	A																					Recover		
Column	*																					punodwo		
Lab ID/Reference	(و																						Dict	
Date																						Letter Designation	Α	В
#	_																					-		

249506

VALIDATION FINDINGS WORKSHEET **Duplicate Analysis**

Reviewer: 2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y(N)N/A

Were all duplicate sample relative percent differences (RPD) ≤ 20% for water samples and ≤ 85% for soil samples? If no, see qualifications below. A control limit of ±R.L. (±2X R.L. for soil) was used for sample values that were <5X the R.L., including the case when only one of the duplicate sample values was <5X R.L.. If field blanks were used for laboratory duplicates, note in the Overall Assessment.

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for

*	Duplicate ID	Matrix	Analyte	RPD (Limits)	Difference (I imite)		
	2	(10)	Ceou	34 (620)		Associated Samples	<u>≅</u> ∥
						Ħ	JW7/A (44)
1	7.5	- -	4				
						2 - 11	ファー・ファ
1						/	() (
1		·					,
1	,						
\exists							
·							
L					,		
1							
1							
		,					
	-						
1							
				-			
			-				
L							
L							4
$\frac{1}{1}$							
1							
$\frac{1}{2}$							
	,						
Comments:	ents:						

LDC #: \\ \square \text{VL} \\ \square \text{SDG} #: \\ \square \text{VL} \\ \square \text{VL

METHOD: Inorganics, Method _

VALIDATION FINDINGS WORKSHEET Sample Result Verification

Page: of Reviewer: WM

,

Qualifications VAMP Lit Finding 12 GAL COMISS COLOR That o Lab Reporting Limit (units) 12 27 Noz-N 102.72 Analyte 1-10年 1-1 支 Sample ID J.

ABVCRDL.6

Comments:

SDG #: Cel Com

VALIDATION FINDINGS WORKSHEET

Overall Assessment of Data

Page: of Reviewer: WH

METHOD: Inorganics, Method

هو کور دست

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

(Y)N N/A Was the overall quality and usability of the data acceptable?

	Sample ID	Finding	Associated Samples	Qualifications
5	21/1/8/9/5	ch was not autype		That
			Tagen	

LDC#: <u>21495C6</u> SDG#: <u>See Cover</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_	Lof2
Reviewer:_	<u></u>
2nd Reviewer:	V
	T

Inorganics, Method See Cover

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrat	ion (mg/Kg)				
Analyte	5	6	RPD (≤50)	Difference	Limits	Qualification (Parent only)
Ammonia as N	0.27	0.49		0.22	(≤0.54)	
Total Alkalinity	258	323	22			
Bicarbonate Alkalinity	253	310	20			
Carbonate Alkalinity	4	13		9	(≤22)	
Chloride	655	846	25			
Hexavalent Chromium	0.46	0.69		0.23	(≤0.42)	
Hexavalent Chromium	0.49	0.68		0.19	(≤0.42)	
Nitrate as N	41.8	52.2	22			
Nitrite as N	1.3U	2.3		1	(≤5.4)	
pH (pH Units)	8.70	9.21	6			
Sulfate	746	815	9			
Surfactants	1.4	1.5		0.1	(≤2.2)	
тос	1870	3580		1710	(≤620)	J det / A (fd)
Total Phosphorus	1110	1140	3			
Chlorate (ug/Kg)	930000	832000	11			
Perchlorate (ug/Kg)	329000	305000	8			

	Concentration (mg/Kg)					Qualification	
Analyte	13	14	RPD (≤50)	Difference	Limits	Qualification (Parent only)	
Ammonia as N	0.06	0.05U		0.01	(≤0.52)		

LDC#: 21495C6 SDG#: See Cover

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_

2nd Reviewer:

Inorganics, Method See Cover

MN NA CYN NA

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentration (mg/Kg)					
Analyte	13	14	RPD (≤50)	Difference	Limits	Qualification (Parent only)
Total Alkalinity	466	448	4		·	
Bicarbonate Alkalinity	437	419	4	-		
Carbonate Alkalinity	29	29		0	(≤21)	
Chloride	5.8	6.4		0.6	(≤2.1)	
Nitrate as N	2.85	3.18	11			
pH (pH Units)	9.85	9.91	1			
Sulfate	26.9	33.1	21			
тос	1750	3270		1520	(≤640)	J det / A (fd)
Total Phosphorus	985	854	14			
Chlorate (ug/Kg)	414	366		48	(≤210)	
Perchlorate (ug/Kg)	352	354	1			

V:\FIELD DUPLICATES\FD_inorganic\21495C6.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation,

Henderson, Nevada

Collection Date:

June 9 through June 16, 2009

LDC Report Date:

September 29, 2009

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903243

Sample Identification

H-28AB

AW-BW-02B

M-142B

M-130B

M-29B

Introduction

This data review covers 5 water samples listed on the cover sheet. The analyses were per Standard Method 2320B for Alkalinity, EPA Method 350.1 for Ammonia as Nitrogen, EPA SW 846 Method 9056 for Bromide, Chloride, Nitrate as Nitrogen, and Sulfate, EPA Method 353.2 for Nitrite as Nitrogen, EPA 300.1 for Chlorate, EPA Method 120.1 for Conductivity, EPA SW 846 Method 9012A for Cyanide, EPA Method 218.6 for Dissolved Hexavalent Chromium, EPA SW 846 Method 9040B for pH, Standard Method 5540C for Surfactants, EPA Method 314.0 for Perchlorate, EPA Method 365.1 for Total Phosphorus, Standard Method 2540C for Total Dissolved Solids, Standard Method 2540D for Total suspended Solids, and EPA SW 846 Method 9060 for Total Organic Carbon.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section X.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

All samples were received in good condition with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
H-28AB	Cyanide	Analysis was performed on unpreserved sample (pH was 10 units).	Analysis must be performed on a preserved aliquot at ≥12 pH units.	J- (all detects) R (all non-detects)	Р

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

Calibration verification frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
7/2/09	CCV (22:09)	Bromide	174 (90-110)	M-29B	R (all detects)	Р
6/13/09	CCV beginning	Surfactants	114 (90-110)	M-142B	J+ (all detects)	Р
6/13/09	CCV closing	Surfactants	114 (90-110)	M-142B	J+ (all detects)	Р
6/17/09	CCV closing	Surfactants	89 (90-110)	M-29B	J- (all detects) UJ (all non-detects)	P

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Alkalinity, total Alkalinity, bicarbonate	1.0 mg/L 1.0 mg/L	All samples in SDG R0903243
ICB/CCB	Alkalinity, total	1.0 mg/L	All samples in SDG R0903243

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Bromide	0.08 mg/L	H-28AB
МВ	Bromide	0.06 mg/L	M-29B
МВ	Total phosphorus	0.011 mg/L	H-28AB AW-BW-02B M-142B M-130B
МВ	Total phosphorus	0.013 mg/L	M-29B
ICB/CCB	Total phosphorus	0.011 mg/L	H-28AB AW-BW-02B M-142B M-130B
ICB/CCB	Total phosphorus	0.013 mg/L	M-29B
МВ	Chloride	0.1 mg/L	M-142B M-130B
ICB/CCB	Chloride	0.097 mg/L	M-142B M-130B
МВ	Nitrate as N	0.066 mg/L	M-130B
МВ	Chloride	0.1 mg/L	M-29B

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
H-28AB	Bromide	0.9 mg/L	1.0U mg/L
M-29B	Bromide	1 mg/L	1.0U mg/L

Sample FB060409 (from SDG R0903006) was identified as a field blank. No contaminant concentrations were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
FB060409	6/4/09	Alkalinity, total Alkalinity, bicarbonate Ammonia as N Total organic carbon Conductivity pH Total phosphorus	1.9 mg/L 1.9 mg/L 0.102 mg/L 0.4 mg/L 1.81 umhos/cm 6.08 units 0.020 mg/L	H-28AB AW-BW-02B M-142B M-130B

Sample MC-3B-FILT (from SDG R0902886) was identified as a filter blank. No contaminant concentrations were found in this blank.

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
H-28AB	Ammonia as N	0.325 mg/L	0.325J+ mg/L
AW-BW-02B	Ammonia as N	0.015 mg/L	0.050U mg/L
M-142B	Ammonia as N	0.097 mg/L	0.097J+ mg/L
M-130B	Ammonia as N	0.709 mg/L	0.709J+ mg/L

IV. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) analyses specified for the samples in this SDG, and therefore matrix spike analyses were not performed for this SDG.

V. Duplicates

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Surrogates

Surrogates were added to all samples and blanks as required by method 300.1. All surrogate recoveries (%R) were within QC limits.

VIII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Sample Finding		A or P
All samples in SDG R0903243	All analytes reported below the PQL.	J (all detects)	А

Raw data were not reviewed for this SDG.

IX. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Data Qualification Summary - SDG R0903243

SDG	Sample	Analyte	Flag	A or P	Reason
R0903243	H-28AB	Cyanide	J- (all detects) R (all non-detects)	Р	Sample condition (preservation) (pH)
R0903243	M-29B	Bromide	R (all detects)	Р	Calibration (CCV %R) (c)
R0903243	M-142B	Surfactants	J+ (all detects)	Р	Calibration (CCV %R) (c)
R0903243	M-29B	Surfactants	J- (all detects) UJ (all non-detects)	Р	Calibration (CCV %R) (c)
R0903243	H-28AB AW-BW-02B M-142B M-130B M-29B	All analytes reported below the PQL.	J (all detects)	А	Sample result verification (sp)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG R0903243

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903243	H-28AB	Bromide	1.0U mg/L	Α	bl
R0903243	M-29B	Bromide	1.0U mg/L	А	bl

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Field Blank Data Qualification Summary - SDG R0903243

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903243	H-28AB	Ammonia as N	0.325J+ mg/L	А	bf
R0903243	AW-BW-02B	Ammonia as N	0.050U mg/L	А	bf
R0903243	M-142B	Ammonia as N	0.097J+ mg/L	A	bf
R0903243	M-130B	Ammonia as N	0.709J+ mg/L	А	bf

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

SDG #: R0903243

LDC #: 21495D6

Stage 2B

Date:_	1/2/6/3
Page:_	_of
Reviewer:	\sim
2nd Reviewer	

111.

Laboratory: Columbia Analytical Services

METHOD: (Analyte) Alkalinity (SM2320B), Ammonia-N (EPA Method 350.1), Bromide, Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056), Nitrite-N (EPA Method 353.2), Chlorate (EPA Method 300.1), Conductivity (EPA Method 120.1), Cyanide (EPA SW846 Method 9012A), Dissolved Hexavalent Chromium (EPA Method 218.6), pH (EPA SW846 Method 9040B), Surfactants (SM5540C), Perchlorate (EPA Method 314.0), Total Phosphorus (EPA Method 365.1), TDS (SM2540C), TSS (SM2540D), TOC (EPA SW846 Method 9060), Cation-Anion Balance Difference, Calculated TDS/EC Ratio, Measured TDS/EC Ratio, Conductivity Ratio, TDS Ratio (SM1030E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area	1	Comments
1.	Technical holding times	35/	Sampling dates: 6/9/09 -6/16/39
IIa.	Initial calibration	A	
IIb.	Calibration verification	500	
111.	Blanks	5W	
IV	Surrogate	A	
	Matrix Spike/Matrix Spike Duplicates	2	3 Client specifics
VI.	Duplicates	\mathcal{V}	
VII.	Laboratory control samples	A	Les
VIII.	Sample result verification	N	
IX.	Overall assessment of data	A	
X.	Field duplicates	N	
XI.	Field blanks	SV	Filter Blank=MC-3B-FILT (R0902886), FB=FB060409 (R0903006)

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

_	185				
1_	H-28AB	11	MB	21	31
2	AW-BW-02B	12		22	32
3	M-142B	13		23	33
4	M-130B	14		24	34
5	M-29B	15		25	35
6		16		26	36
7		17		27	37
8		18		28	38
9		19		29	39
10		20		30	40

Notes:		

LDC #: 14950 SDG #: Sel com

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page:	Lof_
Reviewer:_	
2nd reviewer:	

All circled methods are applicable to each sample.

T		
Sample ID	Matrix	Parameter
1-5	As	(Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN) CX+(T-P MBAS TDS TSS Cond CIO3 CIO4)
1-4		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN (Cr ⁶) T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		3 - 4
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
	,	CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		57.15 Calodiate 1257.EC Intersured 1257.EC Cond Ratio 125 Ratio

Comments:	

LDC #:_	1495.	16
SDG #:_	Su	

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:_	of
Reviewer:_	n
nd reviewer:	

All circled dates have exceeded the technical holding time.

| N | N/A | Were all samples preserved as applicable to each method?
| Y | N | N/A | Were all cooler temperatures within validation criteria?

Method:	i cooler tempera	9012A						ī
Parameters:		CN						
Technical holding ti	me:							
Sample ID	Sampling date	Analysis date	Analysis date	Analysis date	Analysis date	Analysis date	Qualifier	
		pl+=10	(2/2)				J-/k /p	7.1
							- / R / F	rn
		-						

			**					

LDC #: 21495 \$6 SDG #:

VALIDATION FINDINGS WORKSHEET

Calibration

<u>,</u>	Z	
Page:	Reviewer:	2nd Reviewer:

METHOD: Inorganics, EPA Method

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". (Y)N N/A Were all instruments calibrated daily, each set-up time, and were the proper number of standar

Were all instruments calibrated daily, each set-up time, and were the proper number of standards used? Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110%?

Y ⟨Ŋ N/A Were all initial and continuing calibration ⟨Y N N/A Are all correlation coefficients ≥0.995? LEVEL IX(D ONLY:

Z >

Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recaluculation Worksheet for recalulations. Was a balance check conducted prior to the TDS analysis.? Was the titrant normality checked?

X N N

*	Date	Calibration ID	Analyte	%R	Associated Samples	Qyalifications
E	112/29	(201 (22)			₩ }	ktt/p(c)
7	6/13/09	Suchart to	Surfectat	カロー・	3	ATA CO
		cer (being				
		,	\mathcal{A}			
~	(481/9	500 000	7	カロ	}	3
)				
				•		
7	6/11/00	CW 1 Clss	1 Sweet	58 + ² -	Ц	J-/47/p (C)
			1 6	1		
					ŷ.	
Comments:	ents:					

LDC #: 21495D6

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Page: of Reviewer:_

2nd Reviewer:_

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Reason Code: black N N/A Were all samples associated with a given method blank?

| N N/A Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Sample Identification Sample Identification Sample Identification Sample Identification Associated Samples: T-P*1:1-4, T-P*2:5 (ND or >RL) Associated Samples: Br*1:1, Br*2: 5 Associated Samples: 3,4 (>RL) Associated Samples: All (>RL) 1/10 S 0.9 / 1.0 Blank Action Limit Blank Action Limit Blank Action Limit Blank Action Limit Maximum ICB/CCB Maximum ICB/CCB Maximum ICB/CCB Maximum ICB/CCB 0.011 0 013 0.097 0. Blank ID Blank ID Blank ID Blank ID 0.011 0 013 900 Conc. units: mg/L 8 0.1 0.08 Conc. units: mg/L MB MB Conc. units: mg/L MB Conc. units: mg/L 0.1 Analyte Analyte Analyte Analyte Total Alk Bicar Alk T-P*1 T-P*2 ᄗ

LDC #: 21495D6

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET Blanks

Page: Reviewer._

2nd Reviewer:_

Reason Code: bl

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Were all samples associated with a given method blank?

Note: The work of the contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Conc. units: mg/L	s: mg/L			Associated Samples: 4 (>10X)
Analyte	Blank ID	Blank ID Maximum	Blank	Sample Identification
	MB	ICB/CCB	ICB/CCB Action Limit	
NO3-N	0.066		0.66	
Conc. units: mg/L	s: mg/L			Associated Samples: 5 (>RL)
Analyte	Analyte Blank ID Maximum	Maximum	Blank	Sample Identification
	MB	ICB/CCB	ICB/CCB Action Limit	
Ü	0.1			

LDC #: 21495D6

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Field Blanks

Page: Lof Reviewer:_ 2nd Reviewer:_

METHOD: Inorganics, Method See Cover Y N N/A Were field blanks identified in this SDG?

Were target analytes detected in the field blanks? | Were target analytes detected in the field blank:
| Blank units: mg/L | Associated sample units: mg/L |
| Sampling date: 6/4/09 | Soil factor applied |
| Field blank type: (circle one) Field Blank / Rinsate / Other. FB

Associated Samples: 1-4

Reason Code: bf

ation									
Sample Identification	4			0.709 J+					
	ю			0.097 J+					
	2			0.015 / 0.050					
	1			0.325 J+					
	Action Level			1.02					
Blank ID	FB060409	1.9	1.9	0.102	0.4	1.81	6.08	0.020	
Analyte		Total Alkalinity	Bicarbonate Alkalinity	Ammonia as N	TOC (average)	Conductivity (umhos/cm)	pH (pH Units)	Total Phosphorus	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation,

Henderson, Nevada

Collection Date:

June 17 through June 24, 2009

LDC Report Date:

September 28, 2009

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903404

Sample Identification

M-78B

M-128B

H-38B

M-19B

M-19BRE

M-34B

M-34BRE

M-125B

M-22AB

M-17AB

M-125BMS

M-125BDUP

M-125BTRP

Introduction

This data review covers 13 water samples listed on the cover sheet. The analyses were per Standard Method 2320B for Alkalinity, EPA Method 350.1 for Ammonia as Nitrogen, EPA SW 846 Method 9056 for Bromide, Chloride, Nitrate as Nitrogen, and Sulfate, EPA Method 353.2 for Nitrite as Nitrogen, EPA 300.1 for Chlorate, EPA Method 120.1 for Conductivity, EPA SW 846 Method 9012A for Cyanide, EPA Method 218.6 for Dissolved Hexavalent Chromium, EPA SW 846 Method 9040B for pH, Standard Method 5540C for Surfactants, EPA Method 314.0 for Perchlorate, EPA Method 365.1 for Total Phosphorus, Standard Method 2540C Total Dissolved Solids, Standard Method 2540D for Total Suspended Solids, and EPA SW 846 Method 9060 for Total Organic Carbon.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section X.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
M-19BRE	Nitrate as N	53 hours	48 hours	J- (all detects) UJ (all non-detects)	А
M-34BRE	Nitrate as N	48.75 hours	48 hours	J- (all detects) UJ (all non-detects)	А
H-38B	Hexavalent chromium	24.5 hours	24 hours	J- (all detects) UJ (all non-detects)	Р
M-19B	Hexavalent chromium	75.25 hours	24 hours	J- (all detects) R (all non-detects)	Р
M-34B	Hexavalent chromium	72.5 hours	24 hours	J- (all detects) R (all non-detects)	Р

All samples were received in good condition with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
M-125B	Cyanide	Analysis was performed on unpreserved sample (pH was 7 units).	Analysis must be performed on a preserved aliquot at ≥12 pH units.	J- (all detects) R (all non-detects)	Р

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

Calibration verification frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
7/2/09	CCV (22:09)	Bromide	174 (90-110)	M-19B	R (all detects)	Р
6/25/09	CCV beginning	Surfactants	112 (90-110)	M-22AB M-17AB	J+ (all detects)	Р

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/25/09	CCV closing	Surfactants	112 (90-110)	M-22AB M-17AB	J+ (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Alkalinity, total Alkalinity, bicarbonate	1.0 mg/L 1.0 mg/L	M-78B
ICB/CCB	Alkalinity, total	1.0 mg/L	M-78B M-128B H-38B M-19B M-34B M-125B M-22AB M-17AB
МВ	Total dissolved solids	7 mg/L	M-78B M-128B H-38B M-19B M-34B
МВ	Total phosphorus	0.013 mg/L	M-78B M-128B H-38B
МВ	Total phosphorus	0.008 mg/L	M-19B M-34B M-125B M-22AB M-17AB
ICB/CCB	Total phosphorus	0.013 mg/L	M-78B M-128B H-38B
ICB/CCB	Total phosphorus	0.008 mg/L	M-19B M-34B M-125B M-22AB M-17AB

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Chloride Nitrate as N	0.1 mg/L 0.063 mg/L	M-78B
МВ	Bromide	0.06 mg/L	M-19B
МВ	Chloride	0.1 mg/L	M-19B M-34B
ICB/CCB	Chloride	0.1 mg/L	M-19B M-34B
ICB/CCB	Nitrate as N	0.062 mg/L	M-19BRE M-34BRE
ICB/CCB	Chloride	0.095 mg/L	M-125B

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
M-78B	Total phosphorus	0.032 mg/L	0.050U mg/L
M-19B	Total phosphorus Bromide	0.022 mg/L 0.9 mg/L	0.050U mg/L 1.0U mg/L
M-34B	Total phosphorus	0.032 mg/L	0.050U mg/L
M-125B	Total phosphorus	0.032 mg/L	0.050U mg/L
M-22AB	Total phosphorus	0.044 mg/L	0.050U mg/L
M-17AB	Total phosphorus	0.037 mg/L	0.050U mg/L

Sample FB060409 (from SDG R0903006) was identified as a field blank. No contaminant concentrations were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
FB060409	6/4/09	Alkalinity, total Alkalinity, bicarbonate Ammonia as N Total organic carbon Conductivity pH Total phosphorus	1.9 mg/L 1.9 mg/L 0.102 mg/L 0.4 mg/L 1.81 umhos/cm 6.08 units 0.020 mg/L	M-78B M-128B H-38B M-125B

Sample MC-3B-FILT was identified as a filter blank. No contaminant concentrations were found in this blank.

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
M-78B	Total phosphorus	0.032 mg/L	0.050U mg/L
M-128B	Ammonia as N	0.047 mg/L	0.050U mg/L
H-38B	Ammonia as N	0.090 mg/L	0.090J+ mg/L
M-125B	Ammonia as N Total organic carbon Total phosphorus	0.008 mg/L 0.8 mg/L 0.032 mg/L	0.050U mg/L 1.0U mg/L 0.050U mg/L

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	%R (Limits)	Flag	A or P
M-125BMS (M-78B M-128B H-38B M-125B)	Total organic carbon	69 (75-125)	J- (all detects) UJ (all non-detects)	А
M-125BMS (M-78B M-128B H-38B M-125B)	Cyanide	0 (75-125)	J- (all detects) R (all non-detects)	А

V. Duplicates/Triplicates

Duplicate (DUP) and triplicate (TRP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Surrogates

Surrogates were added to all samples and blanks as required by method 300.1. All surrogate recoveries (%R) were within QC limits.

VIII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903404	All analytes reported below the PQL.	J (all detects)	Α

Raw data were not reviewed for this SDG.

IX. Overall Assessment

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

Sample	Compound	Flag	A or P
M-19BRE M-34BRE	Nitrate as N	х	А

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Data Qualification Summary - SDG R0903404

SDG	Sample	Analyte	Flag	A or P	Reason
R0903404	M-19BRE M-34BRE	Nitrate as N	J- (all detects) UJ (all non-detects)	А	Technical holding times (h)
R0903404	H-38B	Hexavalent chromium	J- (all detects) UJ (all non-detects)	Р	Technical holding times (h)
R0903404	M-19B M-34B	Hexavalent chromium	J- (all detects) R (all non-detects)	Р	Technical holding times (h)
R0903404	M-125B	Cyanide	J- (all detects) R (all non-detects)	Р	Sample condition (preservation) (ph)
R0903404	M-19B	Bromide	R (all detects)	Р	Calibration (CCV %R) (c)
R0903404	M-22AB M-17AB	Surfactants	J+ (all detects)	Р	Calibration (CCV %R) (c)
R0903404	M-78B M-128B H-38B M-125B	Total organic carbon	J- (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R) (m)
R0903404	M-78B M-128B H-38B M-125B	Cyanide	J- (all detects) R (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R) (m)
R0903404	M-78B M-128B H-38B M-19B M-19BRE M-34B M-34BRE M-125B M-22AB M-17AB	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (sp)
R0903404	M-19BRE M-34BRE	Nitrate as N	Х	А	Overall assessment of data (o)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG R0903404

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903404	M-78B	Total phosphorus	0.050U mg/L	А	bl
R0903404	M-19B	Total phosphorus Bromide	0.050U mg/L 1.0U mg/L	А	bl
R0903404	M-34B	Total phosphorus	0.050U mg/L	А	bl
R0903404	M-125B	Total phosphorus	0.050U mg/L	А	bl
R0903404	M-22AB	Total phosphorus	0.050U mg/L	А	bl
R0903404	M-17AB	Total phosphorus	0.050U mg/L	Α	bl

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Field Blank Data Qualification Summary - SDG R0903404

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903404	M-78B	Total phosphorus	0.050U mg/L	А	bf
R0903404	M-128B	Ammonia as N	0.050U mg/L	А	bf
R0903404	H-38B	Ammonia as N	0.090J+ mg/L	А	bf
R0903404	M-125B	Ammonia as N Total organic carbon Total phosphorus	0.050U mg/L 1.0U mg/L 0.050U mg/L	А	bf

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #: 21495E6 SDG #: R0903404

Stage 2B

Laboratory: Columbia Analytical Services

Page: __l of ___ Reviewer: ____ 2nd Reviewer: ____

METHOD: (Analyte) Alkalinity (SM2320B), Ammonia-N (EPA Method 350.1), Bromide, Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056), Nitrite-N (EPA Method 353.2), Chlorate (EPA Method 300.1), Conductivity (EPA Method 120.1), Cyanide (EPA SW846 Method 9012A), Dissolved Hexavalent Chromium (EPA Method 218.6), pH (EPA SW846 Method 9040B), Surfactants (SM5540C), Perchlorate (EPA Method 314.0), Total Phosphorus (EPA Method 365.1), TDS (SM2540C), TSS (SM2540D), TOC (EPA SW846 Method 9060), Cation-Anion Balance Difference, Calculated TDS/EC Ratio, Measured TDS/EC Ratio, Conductivity Ratio, TDS Ratio (SM1030E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Technical holding times	\ \ \	Sampling dates: 6/17/09 - 6/rth9
lla.	Initial calibration	A	
IIb.	Calibration verification	SW	
111.	Blanks	SW	
IV	Surrogate	A	
V	Matrix Spike/Matrix Spike Duplicates	ŚW	2M5/ Dup Tripleaner
VI.	Duplicates	A	Pap: T-P LOX pr. Liffern ZKy
VII.	Laboratory control samples	A	Lec
VIII.	Sample result verification	3-44 N	
IX.	Overall assessment of data	SW	
X.	Field duplicates	N	
XI.	Field blanks	SW	Filter Blank=MC-3B-FILT (R0902886), FB=FB060409 (R0903006)

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

	1 1	M-78B	11	M-125BMS	21	hrs	31
\forall	2 1	M-128B	12	M-125BDUP	22	• •	32
	₃ 🗸	H-38B	13	M-125BTRP	23		33
ᆌ	4	M-19B	14		24		34
	5	M-19BK RE	15		25		35
$\frac{1}{4}$	<u></u>	M-34B	16		26		36
	7	M-34BKLRE	17		27		37
	8 J	M-125B	18		28		38
	9	M-22AB	19		29		39
L	10	M-17AB	20		30		40

Notes:	

LDC#: 149586 SDG#: See com

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

All circled methods are applicable to each sample.

Sample ID Matrix Parameter Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond C Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond C	
Alk pH Br CI(NO ₃) NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond C	
Alk pH Br CI(NO ₃) NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond C	cio. i
Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond C	
Alk pH Br Ci NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond C	
Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond C	
Alk pH Br CI NO, NO, SO, NH, TOC CN Cre T-MBAS TDS TSS Cond C	
(Ally (pH) Br CI NO3 NO2 SO4 NH3 (TOC (CN Cr6+(T-H)MBAS TDS TSS CODE C	
Alk oH Br CI NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond CI	
Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond Cl	
Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond Cl	
Alk pH Br Ci NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond Ci	
Alk pH Br Ci NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond Cl	
Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond Cl	
Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond Cl	
Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond Cl	
The second city	O ₃ CIO ₄
CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio	
CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio	
CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio	
CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio	
CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio	
CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio	
CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio	
CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio	
CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio	
CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio	
CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio	

Comments:

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page: of Reviewer: 2nd reviewer:

All circled dates have exceeded the technical holding time.

Y (N) N/A

Were all samples preserved as applicable to each method?

Were all cooler temperatures within validation criteria?

Y) N/A Were al	i cooler tempera	atures within valid	dation criteria?					
Method:		9056		218-6				Ī
Parameters:		No3-N		CV6+				\parallel
Technical holding ti	me:	48h		rehit	(pit preserve	1	 	$\ $
Sample ID	Sampling date	Analysis date	Analysis date	Analysis date	Analysis date	Analysis date	0	
5	6/19/09	1408	053h			<u> </u>	Qualifier	7
			3,710	/			J-/NJ/A	
7	6/19/7	6/15/-9	(48,78	h)			1	0
3	6/18/09			6/19/29	[
				1306	(PH=8.76)	5hu)	J/43/p	(
4	6/1/09			6/2-)		- /	
				12 PT	-842 (75xTh)	J-/r/p	(
6	6/19/09			6/2/5 12/4 mg	(a		- í -	
				1214 pg	876 L/	7 (g)(w)		C
				· .				
				·				

LDC :	#: <u></u>	2149	T61
SDG	#:	See	an

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Reviewer 2nd reviewer:

All circled dates have exceeded the technical holding time.

Y N N/A

Were all samples preserved as applicable to each method?

Y N N/A

Were all cooler temperatures within validation criteria?

TIVIN IN/A Were a	l cooler tempera	itures within vali	idation criteria?				
Method;		T T T T T T T T T T T T T T T T T T T					
Parameters:		9012A CN					
Technical holding ti	me:						
Sample ID	Sampling date	Analysis date	Analysis date	Analysis date	Analysis date	Analysis date	Qualifier
8	6/23/09	PH=7(2	12)			date	
		<u> </u>					J-/p/p
·							
	·						

LDC #: >1497Eb SDG #:

VALIDATION FINDINGS WORKSHEET Calibration

Page: Reviewer: 2nd Reviewer:__

METHOD: Inorganics, EPA Method_

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110%?

N/A Are all correlation coefficients >0.395?

LEVEL IV/D ONLY:

Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recaluculation Worksheet for recalulations. Was a balance check conducted prior to the TDS analysis.? Was the titrant normality checked? X N M

Y N N/A

Qualifications	3-May 6	\			** (2) (2)	In 14/10 (C)				
Associated Samples	-		9.4		77	01.6	-	×		
%R	2,78	89.3	81,7	87.68	★61	112	ZW			
Analyte	74.50	\		-8	87) Som for TG				
Calibration ID	, TCV	CCV (1558)	CW (N43)	Cert (+144)	(pm) (2)	Cel (begins)	(den)			
Date	18/18	30/31/9	6/20/9		1/2/09	6/25/25				
*	법	1	<u></u>	12/1	14	١٩	5			

Comments:

LDC #: 21495E6

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

7 Page: Reviewer: 2nd Reviewer:

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(X) N/A Were all samples associated with a given method blank?

(X) N/A Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below. Reason Code: bl

<u>0.022 / 0.050 | 0.032 / 0.050 | 0.032 / 0.050 | 0.044 / 0.050 | 0.037 / 0.050 | </u> Sample Identification Sample Identification Sample Identification Sample Identification 9 Associated Samples: MB:1, ICB/CCB:1-4,6,8-10 (>RL) Associated Samples: T-P*1:1-3, T-P*2: 4,6,8-10 Associated Samples: 1-4,6 (>RL) ω Associated Samples: 1 (>RL) ဖ 0.032 / 0.050 Blank Action Limit Blank Action Limit Blank Action Limit Blank Action Limit Maximum ICB/CCB Maximum ICB/CCB Maximum ICB/CCB Maximum ICB/CCB 0.013 0.008 0. Blank ID Blank ID Blank ID Blank ID 0.013 0.008 1.0 Conc. units: mg/L MB MB 9 Conc. units: mg/L Conc. units: mg/L Conc. units: mg/L Æ 0.1 Analyte Analyte Analyte Analyte Total Alk Bicar Alk T-P*1

0.063

NO3-N

LDC #: 21495E6

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET Blanks

Page: Vof Reviewer:__

2nd Reviewer:

Reason Code: bl

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Note all samples associated with a given method blank?

Note any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Conc. units: mg/L	ts: mg/L			Associated Samples: 4	
Analyte	Blank ID	Maximum	Blank		Sample Identification
	MB	ICB/CCB	Action Limit	4	
Br	0.06			08/10	
Conc. units: mg/L	ts: mg/L			Associated Samples: Cl: 4,6, NO3-N:5,7 (>RL or 1X)	5,7 (>RL or 1X)
Analyte	Blank ID	Maximum		,	Sample Identification
	MB	ICB/CCB	Action Limit		
ō	0.1	0.1			
NO3-N		0.062	0.062		
Conc. units: mg/L	ts: mg/L			Associated Samples: 8 (>RL)	
Analyte	Blank ID	Maximum	Blank	,	Sample Identification
	MB	ICB/CCB	Action Limit		
5		0.095			

VALIDATION FINDINGS WORKSHEET

LDC #: 21495E6 SDG #: See Cover

Page: of /

2nd Reviewer: Reviewer:_

Field Blanks

METHOD: Inorganics, Method See Cover

Normal N/A Were field blanks identified in this SDG? N/A N/A

| Were target analytes detected in the field blanks? | Blank units: mg/L | Associated sample units: mg/L | Sampling date: | 6/4/09 | Soil factor applied | Field blank type: (circle one) Field Blank / Rinsate / Other: FB |

Reason Code: bf

Associated Samples: 1-3,8

Analyte	Blank ID					Sample Identification	ation		
	FB060409	Action	+	2	င	80			
Total Alkalinity	1.9								
Bicarbonate Alkalinity	1.9								
Ammonia as N	0.102	1.02		0.047 / 0.050	0:090 J+	0.008 / 0.050			
TOC (average)	9.0					0.8 / 1.0			
Conductivity (umbos/cm)	187								
oH (pH Units)	6.08								
Total Phosphoris	0.020		0.032 / 0.050			0.032 / 0.050			

125 25 LDC #: 2/49566 SDG #:

VALIDATION FINDINGS WORKSHEET **Matrix Spike Analysis**

Page: | of_ 2nd Reviewer: Reviewer:

METHOD: Inorganics, Method ___

Were matrix spike percent recoveries (%R) within the control limits of 75-125 (85-115% for Method 300.0)? If the sample concentration exceeded the spike Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A" (Y) N N/A Was a matrix spike analyzed for each matrix in this SDG?

Y N N/A Were matrix spike percent recoveries (%R) within the control limits of 75-125 (85-115% for Metho

concentration by a factor of 4 or more, no action was taken.

LEVEL IV ONLY:
Y N (VA) We

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	Matrix Spike ID	Matrix	Analyte	%R	Associated Samples	Qualifications
		A	705	59	8 '->'	13
_			CN	0	\	J-1/2/14 01/
<u>.</u>	Comments:					
5						

SDG #: 516 Com

VALIDATION FINDINGS WORKSHEET

Overall Assessment of Data

Page: of Reviewer: WH

METHOD: Inorganics, Method

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

(Y) N N/A Was the overall quality and usability of the data acceptable?

-	4.4	[] elames	Finding	Associated Samples	Qualifications
* -	Date	W C J	4 1.2 TIA		X(10)
1		+	Lyn I - I - I who	onelyper.	(A)
			_)	-
Comments:	ents:				

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation,

Henderson, Nevada

Collection Date:

June 5 through June 11, 2009

LDC Report Date:

September 28, 2009

Matrix:

Soil

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903184

Sample Identification

SA127-0.5B

RSAJ6-0.5B

RSAK6-0.5B

RSAK8-0.5B

RSAL7-0.5B

RSAL8-0.5B

SA35-0.5B

SA55-0.5B

SA56-0.5B

SA176-0.5B

RSAO3-0.5B

SA182-0.5B

SA201-0.5B

SA166-0.5B

RSAK4-0.5B

RSAK4009-0.5B

SA134-0.5B

SA127-0.5BMS

SA127-0.5BMSD

SA127-0.5BDUP

Introduction

This data review covers 20 soil samples listed on the cover sheet. The analyses were per Standard Method 2320B for Alkalinity, EPA Method 350.1 for Ammonia as Nitrogen, EPA SW 846 Method 9056 for Bromide, Chloride, Nitrate as Nitrogen, and Sulfate, EPA Method 353.2 for Nitrite as Nitrogen, EPA 300.1 for Chlorate, EPA SW 846 Method 9012A for Cyanide, EPA SW 846 Method 7199 for Hexavalent Chromium, EPA SW 846 Method 9045D for pH, Standard Method 5540C for Surfactants, EPA Method 314.0 for Perchlorate, EPA Method 365.1 for Total Phosphorus, and Lloyd/Kahn Method for Total Organic Carbon.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section X.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

Calibration verification frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/10/09	ccv	Total organic carbon	89.1 (90-110)	SA127-0.5B RSAJ6-0.5B RSAK6-0.5B RSAK8-0.5B RSAL7-0.5B RSAL8-0.5B SA127-0.5BMS SA127-0.5BDUP	J- (all detects) UJ (all non-detects)	Р
6/12/09	ccv	Total organic carbon	86.4 (90-110)	SA35-0.5B SA55-0.5B SA56-0.5B SA176-0.5B RSAO3-0.5B	J- (all detects) UJ (all non-detects)	Р
6/18/09	ccv	Total organic carbon	88.0 (90-110)	SA182-0.5B SA201-0.5B SA166-0.5B RSAK4-0.5B RSAK4009-0.5B SA134-0.5B	J- (all detects) UJ (all non-detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Alkalinity, total Alkalinity, bicarbonate Chloride Nitrate as N Total organic carbon	16 mg/Kg 16 mg/Kg 1.0 mg/Kg 0.47 mg/Kg 40 mg/Kg	SA127-0.5B RSAJ6-0.5B RSAK6-0.5B RSAK8-0.5B RSAL7-0.5B RSAL8-0.5B

Method Blank ID	Analyte	Concentration	Associated Samples
ICB/CCB	Alkalinity, total	1.0 mg/L	SA127-0.5B RSAJ6-0.5B RSAK6-0.5B RSAK8-0.5B RSAL7-0.5B RSAL8-0.5B
МВ	Alkalinity, total Alkalinity, bicarbonate Chloride Nitrate as N Sulfate	11 mg/Kg 11 mg/Kg 1 mg/Kg 0.47 mg/Kg 1.8 mg/Kg	SA35-0.5B SA55-0.5B SA56-0.5B SA176-0.5B RSAO3-0.5B SA182-0.5B SA201-0.5B SA166-0.5B RSAK4-0.5B RSAK4-0.5B SA134-0.5B
МВ	Total organic carbon	40 mg/Kg	SA35-0.5B SA55-0.5B SA56-0.5B SA176-0.5B RSAO3-0.5B
МВ	Total organic carbon	50 mg/Kg	SA182-0.5B SA201-0.5B SA166-0.5B RSAK4-0.5B RSAK4009-0.5B SA134-0.5B
ICB/CCB	Alkalinity, total	1.0 mg/L	SA35-0.5B SA55-0.5B SA56-0.5B SA176-0.5B RSAO3-0.5B SA182-0.5B SA201-0.5B SA166-0.5B RSAK4-0.5B RSAK4-0.5B SA134-0.5B
МВ	Total, phosphorus	2.3 mg/Kg	SA127-0.5B RSAJ6-0.5B RSAK6-0.5B RSAK8-0.5B
МВ	Total, phosphorus	2.2 mg/Kg	RSAL7-0.5B RSAL8-0.5B

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Total, phosphorus	1.7 mg/Kg	SA35-0.5B SA55-0.5B SA56-0.5B SA176-0.5B RSAO3-0.5B SA182-0.5B SA201-0.5B SA166-0.5B RSAK4-0.5B RSAK4-0.5B SA134-0.5B
ICB/CCB	Total, phosphorus	0.0147 mg/L	SA127-0.5B RSAJ6-0.5B RSAK6-0.5B RSAK8-0.5B
ICB/CCB	Total, phosphorus	0.0147 mg/L	RSAL7-0.5B RSAL8-0.5B
ICB/CCB	Total, phosphorus	0.0107 mg/L	SA35-0.5B SA55-0.5B SA56-0.5B SA176-0.5B RSAO3-0.5B SA182-0.5B SA201-0.5B SA166-0.5B RSAK4-0.5B RSAK4-0.5B SA134-0.5B
ICB/CCB	Chloride	0.122 mg/L	SA127-0.5B RSAK6-0.5B RSAK8-0.5B RSAL7-0.5B RSAL8-0.5B
ICB/CCB	Chloride	0.098 mg/L	RSAJ6-0.5B
ICB/CCB	Chloride	0.095 mg/L	SA35-0.5B SA55-0.5B RSAO3-0.5B
ICB/CCB	Chloride	0.104 mg/L	RSAK4-0.5B RSAK4009-0.5B
ICB/CCB	Chloride	0.100 mg/L	SA56-0.5B SA182-0.5B SA166-0.5B
ICB/CCB	Chloride	0.106 mg/L	SA134-0.5B

Method Blank ID	Analyte	Concentration	Associated Samples
ICB/CCB	Chloride	0.098 mg/L	SA176-0.5B

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
SA35-0.5B	Chloride	1.1 mg/Kg	2.1U mg/Kg
	Sulfate	2.0 mg/Kg	2.1U mg/Kg

Sample FB072109-SO (from SDG R0904016) was identified as a field blank. No contaminant concentrations were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
FB072109-SO	7/21/09	Ammonia as N Total organic carbon Chloride Nitrate as N pH Total phosphorus Sulfate Surfactants	0.191 mg/L 0.5 mg/L 9.7 mg/L 1.76 mg/L 3.36 mg/L 0.01 mg/L 5.5 mg/L 0.159 mg/L	All samples in SDG R0903184

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
SA127-0.5B	Chloride	62.6 mg/Kg	62.6J+ mg/Kg
	Nitrate as N	5.99 mg/Kg	5.99J+ mg/Kg
	Sulfate	102 mg/Kg	102J+ mg/Kg
RSAJ6-0.5B	Nitrate as N	34.7 mg/Kg	34.7J+ mg/Kg
	Surfactants	2.5 mg/Kg	2.5J+ mg/Kg
RSAK6-0.5B	Chloride	18.6 mg/Kg	18.6J+ mg/Kg
	Nitrate as N	5.27 mg/Kg	5.27J+ mg/Kg
	Sulfate	162 mg/Kg	162J+ mg/Kg
	Surfactants	0.8 mg/Kg	2.1U mg/Kg
RSAK8-0.5B	Chloride	37.2 mg/Kg	37.2J+ mg/Kg
	Nitrate as N	4.42 mg/Kg	4.42J+ mg/Kg

Sample	Analyte	Reported Concentration	Modified Final Concentration
RSAL7-0.5B	Chloride	5.0 mg/Kg	5.0J+ mg/Kg
	Nitrate as N	1.26 mg/Kg	1.26J+ mg/Kg
	Sulfate	22.8 mg/Kg	22.8J+ mg/Kg
	Surfactants	1.2 mg/Kg	2.1U mg/Kg
RSAL8-0.5B	Chloride	37.0 mg/Kg	37.0J+ mg/Kg
	Nitrate as N	3.44 mg/Kg	3.44J+ mg/Kg
	Surfactants	1.1 mg/Kg	2.1U mg/Kg
SA35-0.5B	Chloride	1.1 mg/Kg	2.1U mg/Kg
	Nitrate as N	0.81 mg/Kg	0.81J+ mg/Kg
	Sulfate	2.0 mg/Kg	2.1U mg/Kg
SA55-0.5B	Chloride	31.5 mg/Kg	31.5J+ mg/Kg
	Nitrate as N	3.96 mg/Kg	3.96J+ mg/Kg
	Sulfate	84.1 mg/Kg	84.1J+ mg/Kg
SA56-0.5B	Ammonia as N	0.09 mg/Kg	0.52U mg/Kg
	Chloride	406 mg/Kg	406J+ mg/Kg
	Nitrate as N	64.7 mg/Kg	64.7J+ mg/Kg
	Surfactants	2.5 mg/Kg	2.5J+ mg/Kg
SA176-0.5B	Nitrate as N	67.2 mg/Kg	67.2J+ mg/Kg
RSAO3-0.5B	Chloride	14.6 mg/Kg	14.6J+ mg/Kg
	Nitrate as N	2.89 mg/Kg	2.89J+ mg/Kg
	Sulfate	68.5 mg/Kg	68.5J+ mg/Kg
SA182-0.5B	Ammonia as N	0.19 mg/Kg	0.60U mg/Kg
	Nitrate as N	28.9 mg/Kg	28.9J+ mg/Kg
	Sulfate	189 mg/Kg	189J+ mg/Kg
SA201-0.5B	Chloride	439 mg/Kg	439J+ mg/Kg
	Nitrate as N	4.42 mg/Kg	4.42J+ mg/Kg
	Sulfate	200 mg/Kg	200J+ mg/Kg
SA166-0.5B	Chloride	267 mg/Kg	267J+ mg/Kg
	Nitrate as N	17.4 mg/Kg	17.4J+ mg/Kg
RSAK4-0.5B	Chloride	15.1 mg/Kg	15.1J+ mg/Kg
	Nitrate as N	2.38 mg/Kg	2.38J+ mg/Kg
	Sulfate	37.5 mg/Kg	37.5J+ mg/Kg
RSAK4009-0.5B	Chloride	14.0 mg/Kg	14.0J+ mg/Kg
	Nitrate as N	2.24 mg/Kg	2.24J+ mg/Kg
	Sulfate	36.9 mg/Kg	36.9J+ mg/Kg

Sample	Analyte	Reported Concentration	Modified Final Concentration
SA134-0.5B	Ammonia as N	0.09 mg/Kg	0.52U mg/Kg
	Chloride	762 mg/Kg	762J+ mg/Kg
	Nitrate as N	51.1 mg/Kg	51.1J+ mg/Kg
	Sulfate	499 mg/Kg	499J+ mg/Kg
	Surfactants	0.25 mg/Kg	0.25J+ mg/Kg

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
SA127-0.5BMS (All samples in SDG R0903184)	Surfactants	48 (75-125)	-	-	J- (all detects) UJ (all non-detects)	A

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
LCS	Bromide	111 (90-110)	RSAK6-0.5B RSAK8-0.5B RSAL7-0.5B RSAL8-0.5B	J+ (all detects)	Р

VII. Surrogates

Surrogates were added to all samples and blanks as required by method 300.1. All surrogate recoveries (%R) were within QC limits.

VIII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903184	All analytes reported below the PQL.	J (all detects)	Α

Raw data were not reviewed for this SDG.

IX. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

Samples RSAK4-0.5B and RSAK4009-0.5B were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Conce	ntration				
Analyte	RSAK4-0.5B	RSAK4009-0.5B	RPD (Limits)	Difference (Limits)	Flag	A or P
Alkalinity, total	714 mg/Kg	725 mg/Kg	2 (≤50)	-	-	-
Alkalinity, bicarbonate	669 mg/Kg	690 mg/Kg	3 (≤50)	-	-	-
Alkalinity, carbonate	44 mg/Kg	35 mg/Kg	-	9 (≤21)	-	-
Chloride	15.1 mg/Kg	14.0 mg/Kg	8 (≤50)	-	-	-
Nitrate as N	2.38 mg/Kg	2.24 mg/Kg	-	0.14 (≤0.51)	-	-
pН	10.00 units	9.85 units	2 (≤50)	-	-	-
Sulfate	37.5 mg/Kg	36.9 mg/Kg	2 (≤50)	-	-	-
Total organic carbon	1660 mg/Kg	960 mg/Kg	•	700 (≤300)	J (all detects)	Α
Total phosphorus	910 mg/Kg	981 mg/Kg	8 (≤50)	-	-	-
Chlorate	270 ug/Kg	291 ug/Kg	-	21 (≤210)	-	•
Perchlorate	649 ug/Kg	663 ug/Kg	2 (≤50)	-	-	•

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Data Qualification Summary - SDG R0903184

SDG	Sample	Analyte	Flag	A or P	Reason
R0903184	SA127-0.5B RSAJ6-0.5B RSAK6-0.5B RSAK8-0.5B RSAL7-0.5B RSAL8-0.5B SA55-0.5B SA56-0.5B SA176-0.5B RSA03-0.5B SA182-0.5B SA182-0.5B SA182-0.5B SA182-0.5B SA184-0.5B RSAK4-0.5B RSAK4-0.5B	Total organic carbon	J- (all detects) UJ (all non-detects)	Р	Calibration (CCV %R) (c)
R0903184	SA127-0.5B RSAJ6-0.5B RSAK6-0.5B RSAK8-0.5B RSAL7-0.5B RSAL8-0.5B SA35-0.5B SA55-0.5B SA56-0.5B SA176-0.5B RSA03-0.5B SA182-0.5B SA182-0.5B SA201-0.5B SA166-0.5B RSAK4-0.5B RSAK4-0.5B RSAK4-0.5B	Surfactants	J- (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R) (m)
R0903184	RSAK6-0.5B RSAK8-0.5B RSAL7-0.5B RSAL8-0.5B	Bromide	J+ (all detects)	Р	Laboratory control samples (%R) (I)

SDG	Sample	Analyte	Flag	A or P	Reason
R0903184	SA127-0.5B RSAJ6-0.5B RSAK6-0.5B RSAK8-0.5B RSAL7-0.5B RSAL8-0.5B SA35-0.5B SA55-0.5B SA56-0.5B SA176-0.5B RSA03-0.5B SA182-0.5B SA182-0.5B SA201-0.5B SA166-0.5B RSAK4-0.5B RSAK4-0.5B	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (sp)
R0903184	RSAK4-0.5B RSAK4009-0.5B	Total organic carbon	J (all detects)	А	Field duplicates (Difference) (fd)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG R0903184

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903184	SA35-0.5B	Chloride Sulfate	2.1U mg/Kg 2.1U mg/Kg	A	bl

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Field Blank Data Qualification Summary - SDG R0903184

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903184	SA127-0.5B	Chloride Nitrate as N Sulfate	62.6J+ mg/Kg 5.99J+ mg/Kg 102J+ mg/Kg	A	bf
R0903184	RSAJ6-0.5B	Nitrate as N Surfactants	34.7J+ mg/Kg 2.5J+ mg/Kg	А	bf
R0903184	RSAK6-0.5B	Chloride Nitrate as N Sulfate Surfactants	18.6J+ mg/Kg 5.27J+ mg/Kg 162J+ mg/Kg 2.1U mg/Kg	A	bf
R0903184	RSAK8-0.5B	Chloride Nitrate as N	37.2J+ mg/Kg 4.42J+ mg/Kg	Α	bf

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903184	RSAL7-0.5B	Chloride Nitrate as N Sulfate Surfactants	5.0J+ mg/Kg 1.26J+ mg/Kg 22.8J+ mg/Kg 2.1U mg/Kg	A	bf
R0903184	RSAL8-0.5B	Chloride Nitrate as N Surfactants	37.0J+ mg/Kg 3.44J+ mg/Kg 2.1U mg/Kg	А	bf
R0903184	SA35-0.5B	Chloride Nitrate as N Sulfate	2.1U mg/Kg 0.81J+ mg/Kg 2.1U mg/Kg	A	bf
R0903184	SA55-0.5B	Chloride Nitrate as N Sulfate	31.5J+ mg/Kg 3.96J+ mg/Kg 84.1J+ mg/Kg	A	bf
R0903184	SA56-0.5B	Ammonia as N Chloride Nitrate as N Surfactants	0.52U mg/Kg 406J+ mg/Kg 64.7J+ mg/Kg 2.5J+ mg/Kg	A	bf
R0903184	SA176-0.5B	Nitrate as N	67.2J+ mg/Kg	А	bf
R0903184	RSAO3-0.5B	Chloride Nitrate as N Sulfate	14.6J+ mg/Kg 2.89J+ mg/Kg 68.5J+ mg/Kg	A	bf
R0903184	SA182-0.5B	Ammonia as N Nitrate as N Sulfate	0.60U mg/Kg 28.9J+ mg/Kg 189J+ mg/Kg	A	bf
R0903184	SA201-0.5B	Chloride Nitrate as N Sulfate	439J+ mg/Kg 4.42J+ mg/Kg 200J+ mg/Kg	A	bf
R0903184	SA166-0.5B	Chloride Nitrate as N	267J+ mg/Kg 17.4J+ mg/Kg	A	bf
R0903184	RSAK4-0.5B	Chloride Nitrate as N Sulfate	15.1J+ mg/Kg 2.38J+ mg/Kg 37.5J+ mg/Kg	A	bf
R0903184	RSAK4009-0.5B	Chloride Nitrate as N Sulfate	14.0J+ mg/Kg 2.24J+ mg/Kg 36.9J+ mg/Kg	A	bf

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903184	SA134-0.5B	Ammonia as N Chloride Nitrate as N Sulfate Surfactants	0.52U mg/Kg 762J+ mg/Kg 51.1J+ mg/Kg 499J+ mg/Kg 0.25J+ mg/Kg	A	bf

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #:	21495F6	
SDG#	R0903184	

Stage 2B

				-
Laborator	<i>I</i> : C	Columbia	Analytic	al Services

Page: __(of ____ Reviewer: _____ 2nd Reviewer: _____

METHOD: (Analyte) Alkalinity (SM2320B), Ammonia-N (EPA Method 350.1), Bromide, Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056), Nitrite-N (EPA Method 353.2), Chlorate (EPA Method 300.1), Cyanide (EPA SW846 Method 9012A), Hexavalent Chromium (EPA SW846 Method 7199), pH (EPA SW846 Method 9045D), Surfactants (SM5540C), Perchlorate (EPA Method 314.0), Total Phosphorus (EPA Method 365.1), TOC (Lloyd/Kahn)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 6/5/.9 - 6/11/09
IIa.	Initial calibration	H	
IIb.	Calibration verification	5v/	
101.	Blanks	5W	
IV	Matrix Spike/Matrix Spike Duplicates	SW	> ms/ms/pup
V	Duplicates	A	\$ / 8
VI.	Laboratory control samples	SW	LeS
VII.	Sample result verification	N	
VIII.	Overall assessment of data	A	
IX.	Field duplicates	5W	((5,16)
Lx	Field blanks	\ \\ \\	TB= FB072109-50 (SN4R0904016)

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank

Validated Samples:

50.

			T - A			
1	SA127-0.5B	11	RSA#3-0.5B	21 MB	31	
2	RSAJ6-0.5B	12	SA182-0.5B	22	32	
3	RSAK6-0.5B	13	SA201-0.5B	23	33	
4	RSAK8-0.5B	14	SA166-0.5B	24	34	
5	RSAL7-0.5B	15	RSAK4-0.5B	25	35	
6 -	RSAL8-0.5B	16	RSAK4009-0.5B	26	36	
7	SA35-0.5B	17	SA134-0.5B	27	37	
8	SA55-0.5B	18	SA127-0.5BMS	28	38	
9	SA56-0.5B	19	SA127-0.5BMSD	29	39	
16	SA176-0.5B	20	SA127-0.5BDUP	30	40	

Notes:	smogete		A	
		···		

LDC#: 1495 76 SDG#: Ler wur

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page:_	of
Reviewer:	_ ~_
2nd reviewer:	
•	

All circled methods are applicable to each sample.

*		
Sample ID	Matrix	Parameter Parameter
1-17	Soi)	(Alk pH Br Cl NO, NO, SO, NH, TOC) (Cr5+ T-P MBAS) TDS TSS Cond (ClO, ClO,
1		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
9-17	Son	Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC (CN)Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
20	(102	(AIR PH)(Br)(CI)(NO), (NO), SO, NH, TOC CN (P)(T-P)(MBAS) TDS TSS COND (CO), (CO)
18		(Ally pH (Br)(CI(NO) NO) SQ (NH) TOO CN CF (T-P)(MBAS) TDS TSS COND (CIO) CIO
1/19	V	Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond (ClO ₃ ClO ₄)
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
	÷	Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
ra -		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄

Comments:		
	· · · · · · · · · · · · · · · · · · ·	

LDC #: 21495/26 SDG #:

VALIDATION FINDINGS WORKSHEET

Calibration

Page:_ Reviewer: 2nd Reviewer:

METHOD: Inorganics, EPA Method_

Were all instruments calibrated daily, each set-up time, and were the proper number of standards used?
Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110%?
Are all correlation coefficients >0.895? Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N/A N/A

A)N N(Y

LEVEL IV/D ONLY:

Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recaluculation Worksheet for recalulations. Was a balance check conducted prior to the TDS analysis.? Was the titrant normality checked?

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				***	9,0	Accordated Samples	Onalifications
1369 ced Tr. 86.4 h-1) Thate (c. 1369 ced To. 88.0 h-1) Thate (c. 1409 ced To. 88.0 h-1) Thate (c.	#	6/10/04		10°		oc '81 '9-1	(a) d/2n/-I
1869 Ced Toc 88,0 12-19 II-19 (C. 1869) 605-24 R.J. (C. 17-19) II-19 (C. 187) 1005-24 R.J. (C. 17-19) II-19 (C. 187) 1005-24 R.J. (C. 17-19) II-19 (C. 17-19) I							
1869 CCV (1657) ROS-N 889 (15-19) Thaje (C			/100)	26.4	17-4	T-/42/0(C)
9809 CCV (1937) 120C 88, O 12-1) Thalp (C	1	┸	3				
9 (9 CCV (1/633) WAS-A/ RP) (15-17) (1		20/01/	,	F	0 80		7/2/1 (2)
9 (1) 10 2 1 m3/p (2) 10 10 10 10 10 10 10 10 10 10 10 10 10	1	/ 2101/4	3		2000		
	#	11.0 100	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•		1
Comments:			1	NITEN	9	<u></u>	
Comments:							
Comments:							
Comments:							
Comments:							
Comments:							
Comments:							
Comments:							
Comments:							
Comments:							
Comments:							
Comments:							
Comments:							
	Com	ments:					

SDG #: See Cover LDC #: 21495F6

VALIDATION FINDINGS WORKSHEET Blanks

2nd Reviewer: Reviewer: Page:

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Reason Code: blank NNA Were all samples associated with a given method blank?

| NNA Were all samples associated with a given method blank? Were all samples associated with a given method blanks? If yes, please see qualifications below.

Conc. units: mg/Kg	: mg/Kg		200		Associated Samples: 1-6 (>RL)	s: 1-6 (>RL)	Sample Ident	ification		
Analyte	Blank ID	Maximum	Blank				Sample Identification	псацоп		
	MB	(mg/L)	Action Limit							
Total AIK	16	1.0								
Bicarb. AIK	16									
ū	1.0									
N-SON	0.47									
T0C	40									
Conc. units: mg/Kg	: mg/Kg				Associated Samples: 7-17 except TOC*1: 7-11, TOC*2: 12-17	5: 7-17 except	TOC*1: 7-11, 1	FOC*2: 12-17		
Analyte	Blank ID	Maximum ICB/CCB	Blank Action				Sample Identification	tification		
	MB	(mg/L)	Limit	2						
Total AlK	-	1.0								
Bicarb. AIK	11									
CI	·			1.1 / 2.1						
NO3-N	0.47									
SO4	1.8			2.0 / 2.1						
TOC*1	40									
TOC*2	50									

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Page: Vof Y Reviewer:_ 2nd Reviewer.__

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Reason Code: blank N N/A Were all samples associated with a given method blank?

N/A Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Associated Samples: CI*1: 1,3-6, CI*2: 2, CI*3:7,8,11, CI*4:15,16, CI*5:9,12-14, CI*6:17, CI*7:10 Associated Samples: T-P*1: 1-4, T-P*2: 5,6, T-P*3: 7-17 (>RL) Sample Identification Sample Identification 1.1/2.1 Action Limit **Action Limit** Blank Blank Maximum ICB/CCB (mg/L) Maximum ICB/CCB 0.0147 0.0147 0.095 (mg/L) 0.0107 0.122 0.098 0.104 0.100 0.106 Blank D Blank ID Conc. units: mg/Kg Conc. units: mg/Kg B ₩ 2.3 2.2 Analyte Analyte T-P*1 T-P*2 T-P*3 Cj*6 C|*3 CI*4 Cl*5 흜 Cl*2

0.098

CI*7

LDC #: 21495F6 SDG #: See Cover

VALIDATION FINDINGS WORKSHEET Field Blanks

2nd Reviewer. Reviewer._

METHOD: Inorganics, Method See Cover (Y) N N/A Were field blanks identified in this SDG?

Were target analytes detected in the field blanks?

Reason Code: bf

Blank units: mg/L Associated sample units: mg/Kg Sampling date: 7/21/09 Soil factor applied 10X Field blank type: (circle one) Field Blank / Rinsate / Other: FB

Associated Samples: All

Analyte	Blank ID					Sample	Sample Identification				
	FB072109-SO Action	Action	-	2	ю	4	5	9	7	∞	თ
Ammonia as N	0.191	19.1									0.09 / 0.52
TOC (average)	0.5										
Ö	9.7	026	62.6 J+		18.6 J+	37.2 J+	5.0 J+	37.0 J+	1.1 / 2.1	31.5 J+	406 J+
Nitrate as N	1.76	176	5.99 J+	34.7 J+	5.27 J+	4.42 J+	1.26 J+	3.44 J+	0.81 J+	3.96 J+	64.7 J+
pH (pH Units)	3.36										
Total Phosphorus	0.01										
Sulfate	5.5	550	102 J+		162 J+		22.8 J+		2.0 / 2.1	84.1 J+	
Surfactants	0.159	15.9		2.5 J+	0.8/2.1		1.2/2.1	1.1/2.1			2.5 J+

Ammonia as N 0.191 19.1 10 11 12 13 14 Ammonia as N 0.191 19.1 0.197 0.60 19.1 0.197 0.60 10 TOC (average) 0.5 970 14.6 J+ 439 J+ 267 Nitrate as N 1.76 176 67.2 J+ 2.89 J+ 4.42 J+ 17.4 PH (pH Units) 3.36 1001 1001 1001 1001 1001 1001 1001 1001 1000 J+ 1000 J+ <t< th=""><th>Sample Identification</th><th></th><th></th></t<>	Sample Identification		
0.191 19.1 0.197 0.60 0.5 0.5 439 J+ 9.7 970 14.6 J+ 439 J+ 1.76 176 67.2 J+ 2.89 J+ 4.42 J+ 3.36 0.01 68.5 J+ 189 J+ 200 J+	11 12	16 17	
0.5 14.6 J+ 439 J+ 9.7 970 14.6 J+ 439 J+ 1.76 176 67.2 J+ 2.89 J+ 28.9 J+ 4.42 J+ 3.36 0.01 0.01 0.01 0.01 0.01 0.01 0.00	0.19 / 0.60	0.09 / 0.52	
9.7 970 14.6 J+ 439 J+ 1.76 176 67.2 J+ 2.89 J+ 28.9 J+ 4.42 J+ 3.36 0.01 68.5 J+ 189 J+ 200 J+			
1.76 176 67.2 J+ 2.89 J+ 28.9 J+ 4.42 J+ 3.36 0.01 68.5 J+ 189 J+ 200 J+		14.0 J+ 762 J+	
3.36 0.01 5.5 550 68.5 J+ 189 J+	2.89 J+ 28.9 J+	2.24 J+ 51.1 J+	
0.01 5.5 550 68.5 J+ 189 J+			
5.5 550 68.5 J+ 189 J+			
	189 J+	36.9 J+ 499 J+	
Surfactants 0.159 15.9		0.25 J+	

SDG #: See com LDC #: 2149576

VALIDATION FINDINGS WORKSHEET Matrix Spike Analysis

Page: | of | 2nd Reviewer: Reviewer:

METHOD: Inorganics, Method

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Was a matrix spike analyzed for each matrix in this SDG?

Y N N/A

Were matrix spike percent recoveries (%R) within the control limits of 75-125 (85-115% for Method 300.0)? If the sample concentration exceeded the spike

concentration by a factor of 4 or more, no action was taken.

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

LDC #: 2149576 SDG #:

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

2nd Reviewer: Page: Reviewer:

METHOD: Inorganics, Method_

Were recalculated results acceptable? See Level IV Recalculation Worksheet for récalculations. LEVEL IV ONLY:

Ousilifortions	7 1-1 (E														
	た														
ated Samules	3-6														
Associ											·				
8)	(11) (90-110)														
%R (Ilmits)) (1)							-							
Analyte	カト				,	-									
Matrix	اجهخ						·								
QI SOT	757													ents:	
#													1	Comments:	

LDC#: 21495F6 SDG#: See Cover

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_	Lof_
Reviewer:	` ` ` ` `
2nd Reviewer:	
·	T^{-}

Inorganics, Method_See Cover___

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrati	on (mg/Kg)				Qualification
Analyte	15	16	RPD (≤50)	Difference	Limits	(Parent only)
Total Alkalinity	714	725	2			
Bicarbonate Alkalinity	669	690	3			
Carbonate Alkalinity	44	35		9	(≤21)	
Chloride	15.1	14.0	8			
Nitrate as N	2.38	2.24		0.14	(≤0.51)	
pH (pH Units)	10.00	9.85	2			
Sulfate	37.5	36.9	2			
тос	1660	960		700	(≤300)	J det / A (fd)
Total Phosphorus	910	981	8			
Chlorate (ug/Kg)	270	291		21	(≤210)	
Perchlorate (ug/Kg)	649	663	2			

V:\FIELD DUPLICATES\FD_inorganic\21495F6.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation,

Henderson, Nevada

Collection Date:

June 19 through June 24, 2009

LDC Report Date:

September 29, 2009

Matrix:

Soil

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903443

Sample Identification

SA197-0.5B

SA150-0.5BMSD

SA198-0.5B

SA150-0.5BDUP

SA64-0.5B

RSAN5-0.5BMS RSAN5-0.5BDUP

SA104-0.5B

SA129-0.5B SA70-0.5B

SA70-0.5D

SA60-0.5B

SA150-0.5B RSAN5-0.5B

SA53-0.5B

SA201-10B

SA201-28B

SA201009-28B

SA43009-0.5B

SA40-0.5B

SA200-0.5B

RSAO6-0.5B

SA51-0.5B

SA43-0.5B

SA150-0.5BMS

Introduction

This data review covers 24 soil samples listed on the cover sheet. The analyses were per Standard Method 2320B for Alkalinity, EPA Method 350.1 for Ammonia as Nitrogen, EPA SW 846 Method 9056 for Bromide, Chloride, Nitrate as Nitrogen, and Sulfate, EPA Method 353.2 for Nitrite as Nitrogen, EPA 300.1 for Chlorate, EPA SW 846 Method 9012A for Cyanide, EPA SW 846 Method 7199 for Hexavalent Chromium, EPA SW 846 Method 9045D for pH, Standard Method 5540C for Surfactants, EPA Method 314.0 for Perchlorate, EPA Method 365.1 for Total Phosphorus, and Lloyd/Kahn Method for Total Organic Carbon.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section X.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

Calibration verification frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
6/30/09	ccv	Total organic carbon	89.3 (90-110)	SA201-10B SA201-28B SA201009-28B SA40-0.5B SA200-0.5B RSAO6-0.5B SA51-0.5B SA43-0.5B	J- (all detects) UJ (all non-detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Alkalinity, total Alkalinity, bicarbonate Ammonia as N Chloride Nitrate as N	20 mg/Kg 20 mg/Kg 0.18 mg/Kg 0.9 mg/Kg 0.45 mg/Kg	SA197-0.5B SA198-0.5B SA64-0.5B SA104-0.5B SA129-0.5B SA70-0.5B
ICB/CCB	Alkalinity, total	1.1 mg/L	SA197-0.5B SA198-0.5B SA64-0.5B SA104-0.5B SA129-0.5B SA70-0.5B
МВ	Alkalinity, total Alkalinity, bicarbonate Chloride Nitrate as N	10 mg/Kg 10 mg/Kg 0.9 mg/Kg 0.45 mg/Kg	SA60-0.5B SA150-0.5B RSAN5-0.5B SA53-0.5B

Method Blank ID	Analyte	Concentration	Associated Samples
ICB/CCB	Alkalinity, total	0.5 mg/L	SA60-0.5B SA150-0.5B RSAN5-0.5B SA53-0.5B
МВ	Alkalinity, total Alkalinity, bicarbonate Chloride	15 mg/L 15 mg/L 1 mg/L	SA201-10B SA201-28B SA201009-28B SA43009-0.5B SA40-0.5B SA200-0.5B RSAO6-0.5B SA51-0.5B SA43-0.5B
ICB/CCB	Ammonia as N	0.0094 mg/L	SA60-0.5B SA150-0.5B RSAN5-0.5B SA53-0.5B SA201-10B SA201-28B SA201009-28B SA43009-0.5B SA40-0.5B SA200-0.5B SA200-0.5B SA43-0.5B
ICB/CCB	Alkalinity, total	0.5 mg/L	SA201-10B SA201-28B SA201009-28B SA43009-0.5B SA40-0.5B SA200-0.5B
ICB/CCB	Alkalinity, total	1.0 mg/L	RSAO6-0.5B SA51-0.5B SA43-0.5B
МВ	Total phosphorus	1.3 mg/Kg	All samples in SDG R0903443
МВ	Total organic carbon	60 mg/Kg	SA197-0.5B SA198-0.5B SA64-0.5B SA104-0.5B SA129-0.5B SA70-0.5B SA60-0.5B SA150-0.5B SA150-0.5B SA53-0.5B

Method Blank ID	Analyte	Concentration	Associated Samples
MB	Total organic carbon	50 mg/Kg	SA201-10B SA201-28B SA201009-28B SA40-0.5B SA200-0.5B RSA06-0.5B SA51-0.5B SA43-0.5B
МВ	Total organic carbon	50 mg/Kg	SA43009-0.5B
ICB/CCB	Total organic carbon	45.0 mg/Kg	SA197-0.5B SA198-0.5B SA64-0.5B SA104-0.5B SA129-0.5B SA70-0.5B SA60-0.5B SA150-0.5B RSAN5-0.5B SA53-0.5B
ICB/CCB	Total organic carbon	58.1 mg/Kg	SA43009-0.5B
ICB/CCB	Chloride	0.153 mg/L	SA197-0.5B SA198-0.5B SA64-0.5B SA104-0.5B
ICB/CCB	Chloride	0.097 mg/L	SA129-0.5B SA70-0.5B
ICB/CCB	Chloride	0.099 mg/L	SA60-0.5B SA150-0.5B RSAN5-0.5B SA53-0.5B
ICB/CCB	Chloride	0.169 mg/L	SA201-10B SA43009-0.5B SA40-0.5B RSA06-0.5B SA43-0.5B
ICB/CCB	Chloride	0.109 mg/L	SA201-28B SA201009-28B SA200-0.5B SA51-0.5B
ICB/CCB	Bromide	0.052 mg/L	SA197-0.5B SA198-0.5B SA64-0.5B SA104-0.5B SA129-0.5B SA70-0.5B

Method Blank ID	Analyte	Concentration	Associated Samples
ICB/CCB	Bromide	0.045 mg/L	SA60-0.5B SA150-0.5B RSAN5-0.5B SA53-0.5B
ICB/CCB	Bromide	0.064 mg/L	SA201-10B SA201-28B SA201009-28B SA43009-0.5B SA40-0.5B SA200-0.5B RSAO6-0.5B

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
SA197-0.5B	Ammonia as N Chloride	0.13 mg/Kg 2.0 mg/Kg	0.54U mg/Kg 2.2U mg/Kg
SA64-0.5B	Ammonia as N	0.08 mg/Kg	0.53U mg/Kg
SA201-10B	Ammonia as N	0.11 mg/Kg	0.54U mg/Kg
SA201-28B	Total organic carbon	270 mg/Kg	290U mg/Kg
SA201009-28B	Total organic carbon	270 mg/Kg	290U mg/Kg
SA200-0.5B	Bromide	0.3 mg/Kg	1.1U mg/Kg

Sample FB072109-SO (from SDG R0904016) was identified as a field blank. No contaminant concentrations were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
FB072109-SO	7/21/09	Ammonia as N Total organic carbon Chloride Nitrate as N pH Total phosphorus Sulfate Surfactants	0.191 mg/L 0.5 mg/L 9.7 mg/L 1.76 mg/L 3.36 mg/L 0.01 mg/L 5.5 mg/L 0.159 mg/L	SA201-10B SA201-28B SA201009-28B

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
SA201-10B	Ammonia as N	0.11 mg/Kg	0.54U mg/Kg
	Chloride	62.2 mg/Kg	62.2J+ mg/Kg
	Nitrate as N	173 mg/Kg	173J+ mg/Kg
	Sulfate	103 mg/Kg	103J+ mg/Kg
	Surfactants	2.5 mg/Kg	2.5J+ mg/Kg
SA201-28B	Ammonia as N	0.91 mg/Kg	0.91J+ mg/Kg
	Total organic carbon	270 mg/Kg	290U mg/Kg
	Chloride	128 mg/Kg	128J+ mg/Kg
	Sulfate	465 mg/Kg	465J+ mg/Kg
	Surfactants	1.4 mg/Kg	2.5U mg/Kg
SA201009-28B	Ammonia as N	0.82 mg/Kg	0.82J+ mg/Kg
	Total organic carbon	270 mg/Kg	290U mg/Kg
	Chloride	123 mg/Kg	123J+ mg/Kg
	Sulfate	483 mg/Kg	483J+ mg/Kg

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Surrogates

Surrogates were added to all samples and blanks as required by method 300.1. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Analyte	Flag	A or P
SA70-0.5B	Dichloroacetate	76 (90-115)	Chlorate	J- (all detects) UJ (all non-detects)	А

VIII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903443	All analytes reported below the PQL.	J (all detects)	А

Raw data were not reviewed for this SDG.

IX. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

Samples SA201-28B and SA201009-28B and samples SA43009-0.5B and SA43-0.5B were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concentration					
Analyte	SA201-28B	SA201009-28B	RPD (Limits)	Difference (Limits)	Flag	A or P
Ammonia as N	0.91 mg/Kg	0.82 mg/Kg	-	0.09 (≤0.64)	-	-
Alkalinity, total	685 mg/Kg	739 mg/Kg	8 (≤50)	-	-	-
Alkalinity, bicarbonate	675 mg/Kg	725 mg/Kg	7 (≤50)	-	-	-
Alkalinity, carbonate	10 mg/Kg	13 mg/Kg	-	3 (≤25)	-	-
Chloride	128 mg/Kg	123 mg/Kg	4 (≤50)	-	-	-
Nitrate as N	213 mg/Kg	212 mg/Kg	0 (≤50)	-	-	-
Nitrite as N	1.56 mg/Kg	1.62 mg/Kg	4 (≤50)	-	-	-
pH	8.33 units	8.37 units	0 (≤50)	-	-	-
Sulfate	465 mg/Kg	483 mg/Kg	4 (≤50)	-	-	-
Surfactants	1.4 mg/Kg	0.7U mg/Kg	-	0.7 (≤2.5)	-	-

	Conce	ntration				
Analyte	1		RPD (Limits)	Difference (Limits)	Flag	A or P
Total organic carbon	270 mg/Kg	270 mg/Kg	-	0 (≤290)	+	-
Total phosphorus	606 mg/Kg	650 mg/Kg	7 (≤50)	-	-	-
Chlorate	2610 ug/Kg	2920 ug/Kg	11 (≤50)	-	-	~
Perchlorate	63500 ug/Kg	72800 ug/Kg	14 (≤50)	-	-	-

	Conce	ntration				
Analyte	SA43009-0.5B	SA43-0.5B	RPD (Limits)	Difference (Limits)	Flag	A or P
Alkalinity, total	1510 mg/Kg	434 mg/Kg	111 (≤50)	-	J (all detects)	A
Alkalinity, bicarbonate	1430 mg/Kg	427 mg/Kg	108 (≤50)	-	J (all detects)	А
Alkalinity, carbonate	82 mg/Kg	7 mg/Kg	-	75 (≤22)	J (all detects)	А
Chloride	37.8 mg/Kg	37.3 mg/Kg	1 (≤50)	-	-	-
Hexavalent chromium	0.34 mg/Kg	0.19U mg/Kg	_	0.15 (≤0.43)	-	-
Hexavalent chromium	0.31 mg/Kg	0.19U mg/Kg	-	0.12 (≤0.43)	-	-
Nitrate as N	7.49 mg/Kg	7.01 mg/Kg	7 (≤50)	-	-	-
pH	9.50 units	9.49 units	0 (≤50)	-	-	-
Sulfate	350 mg/Kg	329 mg/Kg	6 (≤50)	-	-	-
Surfactants	1.9 mg/Kg	2.4 mg/Kg	-	0.5 (≤2.2)	-	_
Total organic carbon	7600 mg/Kg	25300 mg/Kg	-	17700 (≤2100)	J (all detects)	А
Total phosphorus	413 mg/Kg	514 mg/Kg	22 (≤50)	22 (≤50)		-
Chlorate	2080 ug/Kg	2040 ug/Kg	2 (≤50)	-	-	-
Perchlorate	4410 ug/Kg	4230 ug/Kg	4 (≤50)	-	-	_

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Data Qualification Summary - SDG R0903443

SDG	Sample	Analyte	Flag	A or P	Reason
R0903443	SA201-10B SA201-28B SA201009-28B SA40-0.5B SA200-0.5B RSAO6-0.5B SA51-0.5B SA43-0.5B		J- (all detects) UJ (all non-detects)	Р	Calibration (CCV %R) (c)
R0903443	SA70-0.5B	Chiorate	J- (all detects) UJ (all non-detects)	A	Surrogate recovery (%R) (s)
R0903443	SA197-0.5B SA198-0.5B SA64-0.5B SA104-0.5B SA129-0.5B SA70-0.5B SA60-0.5B SA53-0.5B SA201-10B SA201-28B SA201009-28B SA43009-0.5B SA40-0.5B SA40-0.5B SA40-0.5B SA51-0.5B SA51-0.5B	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (sp)
R0903443	SA43009-0.5B SA43-0.5B	Alkalinity, total Alkalinity, bicarbonate	J (all detects) J (all detects)	А	Field duplicates (RPD) (fd)
R0903443	SA43009-0.5B SA43-0.5B	Alkalinity, carbonate Total organic carbon	J (all detects) J (all detects)	А	Field duplicates (Difference) (fd)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG R0903443

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R093443	SA197-0.5B	Ammonia as N Chloride	0.54U mg/Kg 2.2U mg/Kg	А	bl
R093443	SA64-0.5B	Ammonia as N	0.53U mg/Kg	А	bl

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R093443	SA201-10B	Ammonia as N	0.54U mg/Kg	Α	bl
R093443	SA201-28B	Total organic carbon	290U mg/Kg	Α	bl
R093443	SA201009-28B	Total organic carbon	290U mg/Kg	Α	bl
R093443	SA200-0.5B	Bromide	1.1U mg/Kg	Α	bl

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Field Blank Data Qualification Summary - SDG R0903443

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903443	SA201-10B	Ammonia as N Chloride Nitrate as N Sulfate Surfactants	0.54U mg/Kg 62.2J+ mg/Kg 173J+ mg/Kg 103J+ mg/Kg 2.5J+ mg/Kg	A	bf
R0903443	SA201-28B	Ammonia as N Total organic carbon Chloride Sulfate Surfactants	0.91J+ mg/Kg 290U mg/Kg 128J+ mg/Kg 465J+ mg/Kg 2.5U mg/Kg	A	bf
R0903443	SA201009-28B	Ammonia as N Total organic carbon Chloride Sulfate	0.82J+ mg/Kg 290U mg/Kg 123J+ mg/Kg 483J+ mg/Kg	А	bf

LDC	#: 21495G6	V			_		Henderson ESS WORKSHEE	т	Date: 9/59	
	6 #: R0903443	_ •,	ALIDATIO:		Stage 2			1	Page:fof	
Laboratory: Columbia Analytical Services Rev										
	,		A. L. C.						2nd Reviewer:	
SW8	346 Method 9056), Nitrite-	N (EF	PA Method 3	53.2), Chlo	orate (E	EP/	A Method 300.1), Cyan	ide (El	/ de, Nitrate-N, Sulfate (EP/ PA SW846 Method 9012A	
<u>Hexa</u>	avalent Chromium (EPA S	SW84	16 Method 71	199), pH (E	EPA SW	۷8 <u>-</u>	46 Method 9045D), Sui	factar	nts (SM5540C), Perchlorat	
<u>(EP</u>	A Method 314.0), Total Ph	iosph	orus (EPA M	lethod 36t	<u>5.1), TC</u>	<u>)C</u>	(Lloyd/Kahn)			
The valid	samples listed below wer ation findings worksheets	e revi	iewed for ead	ch of the fo	ollowing	g v	alidation areas. Validat	ion fin	idings are noted in attache	
	Validation	. Are:	a				Com	ments		
1.	Technical holding times			A	Samplin	חם כ	1/201 0	6/~		
lla.		****		R	100	19 -	14105.	-/		
lib.			-	4W						
111.		W		SW						
IV				50						
V) Dup <u>lica</u>	ites	A	<u></u>	m	s/mes/mp			
VI.				A			//			
VII.	. Laboratory control samples	<u> </u>		A	رما	۶				
VIII	. Sample result verification			N						
IX.	Overall assessment of data	1		A						
<u>X.</u>	Field duplicates			5~	(12	, J	13) (14, 19)			
_XL	Field blanks			5w/	LEB=EBO	<u>)72</u>	109-SO (SDG: R0904016)			
Note: Valida	A = Acceptable N = Not provided/applicable SW = See worksheet ated Samples:	9	R = Rins	o compounds sate eld blank	s detected	d	D = Duplicate TB = Trip blank EB = Equipment bla	nk		
1	SA197-0.5B	11	SA201-10B		21		SA150-0.5BMSD	31	MB	
2	SA198-0.5B	12	SA201-28B		22	2	SA150-0.5BDUP	32		
3	SA64-0.5B	13	SA201009-28E	В	23	3	RSAN5-0.5BMS	33		
4	SA104-0.5B	14	SA43009-0.5B	3	24	ļ	RSAN5-0.5BDUP	34		
5	SA129-0.5B	15	SA40-0.5B		25	;		35		
6	SA70-0.5B	16	SA200-0.5B		26	;		36		
7	SA60-0.5B 17 RSAO6-0.5B 27 37									
8	SA150-0.5B	18	SA51-0.5B		28	ş		38		
9	RSAN5-0.5B	19	SA43-0.5B		29	,		39		
10	SA53-0.5B	20	SA150-0.5BMS	s	30	,		40		

Notes:		

LDC #: 149596 SDG #: Lu wu

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page:_	1 of 1
Reviewer:_	<u> </u>
2nd reviewer:	9
_	

All circled methods are applicable to each sample.

Sample ID	Matrix	<u>Parameter</u>
1-19	(oi)	(Alk pH Br CI NO, NO, SO, NH, TOC) CA (Cro+ T-P MBAS) TDS TSS Cond (CIO, CIO,
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
1-13, 15	50,	Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond CIO3 CIO4
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond CHO ₂ CIO ₄
W170-72	So;)	Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond CIO3 (CTO4)
2		(Ally pH) Br (CI) NO, SO, NH, TOD (CN Cr6+ (T-P) (MBAS) TDS TSS COND CIO, CIO,
74		Alk pH Br Cl NO, NO, SO, NH, TOC CN (Cr) T-P MBAS TDS TSS Cond ClO, ClO,
20	J	Alk pH Br CI NO, NO, SO NH, TOC CN CF THE MBAS TOS TSS COND CIO, CIO,
Y }	<u> </u>	Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN (Cr ⁶) T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
-		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
	l	

Comments:	

45 HAR # 201 SDG #:

VALIDATION FINDINGS WORKSHEET

Calibration

Page: 2nd Reviewer: Reviewer:_

METHOD: Inorganics, EPA Method_

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y)N N/A

Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110% ? Were all instruments calibrated daily, each set-up time, and were the proper number of standards used?

Are all correlation coefficients >0.995 ?

EVEL IV/D ONLY: Y (D) N/A

Were recalculated results acceptable? See Level IV initial and Continuing Calibration Recaluculation Worksheet for recalulations. Was a balance check conducted prior to the TDS analysis.?

Was the titrant normality checked?

	Caro		- Calling III			
	6130109	CcV	7	89,3	11-13,15-19	J-/nd/P(c)
			,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		V ************************************
	1	(ms) 200	N-2-N	X	100 1/20) Jew
	-					
3	6.94 9	X X X X X X X X X X X X X X X X X X X	*	RR		5
+						
\vdash						
_						
+						
+						
\dagger						
+						
-						
\vdash						
\parallel						
+						
+						
+						
-						
-						
+						

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Page: 1_of 3 Reviewer:_

2nd Reviewer:

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Reason Code: blank Nore all samples associated with a given method blank?

| N/A | Were all samples associated with a given method blank? | Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Conc. units: mg/Kg	ts: mg/Kg			7	Associated	Associated Samples: 1-6	1-6				
Analyte	Blank ID	Maximum	Blank					Sample Identification	ntification		
	ICB/CCB MB (mg/L)	ICB/CCB (mg/L)	Action Limit	1	3						
Total AIK	20	1.1	200								
Bicarb. AIK	20		200								
NH3-N	0.18			0.13 / 0.54 0.08 / 0.53	0.08 / 0.53						
ū	6.0			2.0/2.2							
NO3-N	0.45										

Conc. units: mg/Kg	mg/Kg			Associated Samples: 7-10 (>RL)
Analyte	Blank ID	Maximum ICB/CCB	Blank Action	
	MB	(mg/L)	Limit	
Total AIK	10	0.5		
Bicarb. AIK	10			
ō	6.0			
NO3-N	0.45			

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET Blanks

Page: 2013 Reviewer:_

2nd Reviewer.

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| N | N/A | Were all samples associated with a given method blank?
| N | N/A | Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Conc. units: mg/Kg	mg/Kg			Associated Samples: 11-19 except Total Alk*1: 11-16, Total Alk*2: 17-19, NH3-N: 7-17,19
Analyte	Blank ID	Z	Blank Action Limit	
	MB	(mg/L)		11
Total AIK*1	15	0.5		
Total AIK*2		1.0		
Bicarb. AIK	15			
ō	-			
NH3-N		0.0094		0.11/0.54
Conc. units: mg/Kg	mg/Kg			Associated Samples: T-P: All, TOC*1: 1-10, TOC*2:11-13, 15-19, TOC*3:14
Analyte	Blank	Maximum	Blank	

Analyte	Blank M ID IC	Maximum ICB/CCB	Maximum Blank ICB/CCB Action Limit				Sample Identification	ntification		
	MB	(mg/L)		12	13					
Т-Р	1.3									
TOC*1	9	45.0 mg/Kg								
TOC*2	20			270 / 290	270 / 290					
T0C*3	50	58.1 mg/Kg								

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Page: Reviewer.

2nd Reviewer:__

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Reason Code: bloom N/A Were all samples associated with a given method blank?

| N/A Were all samples associated with a given method blank? If yes, please see qualifications below.

Associated Samples: CI*1:1-4,CI*2: 5,6,CI*3:7-10, CI*4:11,14,15,17,19, CI*5:12,13,16,18 Associated Samples: Br*1:1-6, Br*2:7-10,Br*3:11-17 Sample Identification Sample Identification 2.0/2.2 16 Blank Action Limit **Action Limit** Blank Maximum ICB/CCB (mg/L) Maximum ICB/CCB (mg/L) 0.169 0.109 0.153 0.099 0.097 Blank ID Blank ID Conc. units: mg/Kg Conc. units: mg/Kg MB ΒB Analyte Analyte C1*3 Ċ;4 <u>C</u> CI*2

0.3 / 1.1

0.064

0.052 0.045

Br*1 Br*2 Br*3

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Field Blanks

2nd Reviewer:

Reviewer:

Page: of

METHOD: Inorganics, Method See Cover (Y N N/A Were field blanks identified in this SDG?

Were target analytes detected in the field blanks? Blank units: mg/L Associated sample units: mg/Kg Sampling date: 7/21/09 Soil factor applied 10X Field blank type: (circle one) Field Blank / Rinsate / Other: FB

Reason Code: bf

Associated Samples: 11-13

Sample Identification 270 / 290 0.82 J+ 123 J+ 483 J+ 5 270 / 290 1.4 / 2.5 128 J+ 465 J+ 0.91 J+ 7 0.11/0.54 62.2 J+ 103 J+ 173 J+ 2.5 J+ ~ Action Level 19.1 176 15.9 970 550 FB072109-SO Blank ID 0.159 0.191 3.36 1.76 0.5 0.01 5.5 9.7 Total Phosphorus Ammonia as N TOC (average) pH (pH Units) Nitrate as N Surfactants Analyte Sulfate ਹ

SDG # 149546

VALIDATION FINDINDS WORKSHEET

Surrogate Recovery

Reviewer: Huy Page: ___of___

2nd Reviewer:

METHOD: Chlorate (EPA 300.1)

Are surrogates required by the method? Yes V or No Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Were surrogates spiked into all samples and blanks?

YNA Were surrogate recoveries (%R) meet the QC limits?

Qualifications	J/m2/A (S)	(nem)																				Comments	
Associated Samples																						Recovery QC Limits (Water)	
%R (Limits)	96 A			()	()	()	()	()	()	()	()	()	()	())	()	()	()	()	()	()	ary QC Limits (Soil)	
Surrogate Column Compound		-																		W-10-1-1		Surrogate Compound Recc	
Date Lab ID/Reference)																				Letter Designation Surrog	Dict
#		•																				Let	

LDC#:_21495G6 SDG#:_See Cover

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: of Pag

Inorganics, Method See Cover

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrati	on (mg/Kg)				Qualification
Analyte	12	13	RPD (≤50)	Difference	Limits	(Parent only)
Ammonia as N	0.91	0.82		0.09	(≤0.64)	
Total Alkalinity	685	739	8			
Bicarbonate Alkalinity	675	725	7			
Carbonate Alkalinity	10	13		3	(≤25)	
Chloride	128	123	4			
Nitrate as N	213	212	0			
Nitrite as N	1.56	1.62	4			
pH (pH Units)	8.33	8.37	0			
Sulfate	465	483	4			
Surfactants	1.4	0.7U		0.7	(≤2.5)	
тос	270	270		0	(≤290)	
Total Phosphorus	606	650	7			
Chlorate (ug/Kg)	2610	2920	11			
Perchlorate (ug/Kg)	63500	72800	14			

	Concentrat	ion (mg/Kg)				Qualification
Analyte	14	19	RPD (≤50)	Difference	Limits	(Parent only)
Total Alkalinity	1510	434	111			J det / A (fd)
Bicarbonate Alkalinity	1430	427	108			J det / A (fd)
Carbonate Alkalinity	82	7		75	(≤22)	J det / A (fd)

LDC#: 21495G6 SDG#: See Cover

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: Reviewer: 2nd Reviewer:

Inorganics, Method See Cover

<u>Y N NA</u>

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs? Y N NA

	Concentration (mg/Kg)					Qualification
Analyte	14	19	RPD (≤50)	Difference	Limits	(Parent only)
Chloride	37.8	37.3	1			
Hexavalent Chromium	0.34	0.19U		0.15	(≤0.43)	
Hexavalent Chromium	0.31	0.19U		0.12	(≤0.43)	
Nitrate as N	7.49	7.01	7			
pH (pH Units)	9.50	9.49	0			
Sulfate	350	329	6			
Surfactants	1.9	2.4		0.5	(≤2.2)	
тос	7600	25300		17700	(≤2100)	J det / A (fd)
Total Phosphorus	413	514	22			
Chlorate (ug/Kg)	2080	2040	2			
Perchlorate (ug/Kg)	4410	4230	4 FIELD DUPI ICAT			

V:\FIELD DUPLICATES\FD_inorganic\21495G6.wpd

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation,

Henderson, Nevada

Collection Date:

June 29 through June 30, 2009

LDC Report Date:

October 5, 2009

Matrix:

Soil

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903615

Sample Identification

SA45-0.5B

SA106-0.5BREDUP

SA452009-0.5B

SA187-0.5B

SA153-0.5B

SA186-0.5B

SA185-0.5B

RSAO5-0.5B

SA152-10B

SA152-20B

SA152-34B

SA50-0.5B

SA54-0.5B

SA106-0.5B

SA106-0.5BRE

SA102-0.5B

SA109-0.5B

SA106-0.5BMS

SA106-0.5BMSD

SA106-0.5BDUP

SA106-0.5BREMS

Introduction

This data review covers 21 soil samples listed on the cover sheet. The analyses were per Standard Method 2320B for Alkalinity, EPA Method 350.1 for Ammonia as Nitrogen, EPA SW 846 Method 9056 for Bromide, Chloride, Nitrate as Nitrogen, and Sulfate, EPA Method 353.2 for Nitrite as Nitrogen, EPA 300.1 for Chlorate, EPA SW 846 Method 9012A for Cyanide, EPA SW 846 Method 7199 for Hexavalent Chromium, EPA SW 846 Method 9045D for pH, Standard Method 5540C for Surfactants, EPA Method 314.0 for Perchlorate, EPA Method 365.1 for Total Phosphorus, and Lloyd/Kahn Method for Total Organic Carbon.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section X.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

Calibration verification frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
7/9/09	ccv	Total organic carbon	85.6 (90-110)	SA152-34B SA50-0.5B SA54-0.5B SA106-0.5B SA102-0.5B SA109-0.5B SA106-0.5BMS SA106-0.5BDUP	J- (all detects) UJ (all non-detects)	Р
7/7/09	ccv	Surfactants	114 (90-110)	SA45-0.5B SA452009-0.5B SA187-0.5B SA153-0.5B SA186-0.5B SA185-0.5B RSAO5-0.5B SA152-10B SA152-20B SA152-34B	J+ (all detects)	Р
7/7/09	CCV	Surfactants	112 (90-110)	SA45-0.5B SA452009-0.5B SA187-0.5B SA153-0.5B SA186-0.5B SA185-0.5B RSA05-0.5B SA152-10B SA152-20B SA152-34B	J+ (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Alkalinity, total Alkalinity, bicarbonate Chloride	12 mg/Kg 12 mg/Kg 0.9 mg/Kg	SA45-0.5B SA452009-0.5B SA187-0.5B SA153-0.5B SA186-0.5B SA185-0.5B RSA05-0.5B SA152-10B SA152-20B SA152-34B
ICB/CCB	Alkalinity, total	1.0 mg/L	SA45-0.5B SA452009-0.5B SA187-0.5B SA153-0.5B SA186-0.5B SA185-0.5B RSA05-0.5B SA152-10B SA152-20B SA152-34B SA50-0.5B SA54-0.5B
МВ	Total phosphorus	1.3 mg/Kg	SA45-0.5B SA452009-0.5B
MB	Total phosphorus	1.6 mg/Kg	SA187-0.5B SA153-0.5B SA186-0.5B SA185-0.5B RSA05-0.5B SA152-10B SA152-20B SA152-34B SA50-0.5B SA54-0.5B SA106-0.5B SA102-0.5B SA102-0.5B
МВ	Total organic carbon	120 mg/Kg	SA45-0.5B SA452009-0.5B SA187-0.5B SA153-0.5B SA186-0.5B SA185-0.5B RSAO5-0.5B SA152-10B SA152-20B
МВ	Total organic carbon	130 mg/Kg	SA152-34B SA50-0.5B SA54-0.5B SA106-0.5B SA102-0.5B SA109-0.5B

Method Blank ID	Analyte	Concentration	Associated Samples
ІСВ/ССВ	Total organic carbon	76.3 mg/Kg	SA45-0.5B SA452009-0.5B SA187-0.5B SA153-0.5B SA186-0.5B SA185-0.5B RSAO5-0.5B SA152-10B SA152-20B
ICB/CCB	Total organic carbon	143 mg/Kg	SA152-34B SA50-0.5B SA54-0.5B SA106-0.5B SA102-0.5B SA109-0.5B
МВ	Alkalinity, total Alkalinity, bicarbonate Chloride Nitrate as N	15 mg/Kg 15 mg/Kg 1.1 mg/Kg 0.45 mg/Kg	SA50-0.5B SA54-0.5B SA106-0.5B SA102-0.5B SA109-0.5B
ICB/CCB	Alkalinity, total	0.9 mg/L	SA106-0.5B SA102-0.5B SA109-0.5B
ICB/CCB	Chloride	0.098 mg/L	SA185-0.5B
ICB/CCB	Chloride	0.106 mg/L	SA54-0.5B SA109-0.5B
ICB/CCB	Chloride	0.130 mg/L	SA45-0.5B SA452009-0.5B SA187-0.5B SA186-0.5B
ICB/CCB	Chloride	0.137 mg/L	RSAO5-0.5B SA152-10B SA152-34B SA50-0.5B SA106-0.5B
ICB/CCB	Chloride	0.131 mg/L	SA153-0.5B SA152-20B
ICB/CCB	Chloride	0.139 mg/L	SA102-0.5B

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

Sample FB072109-SO (from SDG R0904016) was identified as a field blank. No contaminant concentrations were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
FB072109-SO	7/21/09	Ammonia as N Total organic carbon Chloride Nitrate as N pH Total phosphorus Sulfate Surfactants	0.191 mg/L 0.5 mg/L 9.7 mg/L 1.76 mg/L 3.36 mg/L 0.01 mg/L 5.5 mg/L 0.159 mg/L	SA152-10B SA152-20B SA152-34B

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
SA152-10B	Chloride	257 mg/Kg	257J+ mg/Kg
	Nitrate as N	5.13 mg/Kg	5.13J+ mg/Kg
	Sulfate	110 mg/Kg	110J+ mg/Kg
	Surfactants	1.5 mg/Kg	2.2U mg/Kg
SA152-20B	Chloride	395 mg/Kg	395J+ mg/Kg
	Nitrate as N	1.12 mg/Kg	1.12J+ mg/Kg
	Sulfate	121 mg/Kg	121J+ mg/Kg
	Surfactants	1.4 mg/Kg	2.1U mg/Kg
SA152-34B	Nitrate as N	1.47 mg/Kg	1.47J+ mg/Kg
	Surfactants	1.8 mg/Kg	3.0U mg/Kg

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
SA106-0.5BMS (SA45-0.5B SA452009-0.5B SA187-0.5B SA153-0.5B SA186-0.5B SA185-0.5B RSA05-0.5B SA50-0.5B SA50-0.5B SA106-0.5B SA106-0.5B SA109-0.5B	Cyanide	0 (75-125)	-	-	J- (all detects) R (all non-detects)	А
SA106-0.5BMS (SA45-0.5B SA452009-0.5B SA187-0.5B SA153-0.5B SA186-0.5B SA185-0.5B RSAO5-0.5B SA50-0.5B SA50-0.5B SA54-0.5B SA106-0.5B SA106-0.5B SA109-0.5B)	Total phosphorus	72 (75-125)	-	-	J- (all detects) UJ (all non-detects)	Α
SA106-0.5BMS (SA106-0.5B)	Hexavalent chromium (7/16/09 12:04) Hexavalent chromium (7/16/09 11:54)	132 (75-125) 136 (75-125)	-	-	J+ (all detects) J+ (all detects)	А

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Analyte	RPD (Limits)	Difference (Limits)	Flag	A or P
SA106-0.5BDUP (SA106-0.5B)	Hexavalent chromium (7/16/09 10:10)	33 (≤20)	-	J (all detects) UJ (all non-detects)	А
ŕ	Hexavalent chromium (7/16/09 10:20)	34 (≤20)	٠	J (all detects) UJ (all non-detects)	·

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
LCS2	Bromide	111 (90-110)	SA50-0.5B SA54-0.5B SA106-0.5B SA102-0.5B SA109-0.5B	J+ (all detects)	Р

VII. Surrogates

Surrogates were added to all samples and blanks as required by method 300.1. All surrogate recoveries (%R) were within QC limits.

VIII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903615	All analytes reported below the PQL.	J (all detects)	Α

Raw data were not reviewed for this SDG.

IX. Overall Assessment

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

Sample	Compound	Flag	A or P
SA106-0.5B	Hexavalent chromium	х	А

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

Samples SA45-0.5B and SA452009-0.5B were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concentration					
Analyte	SA45-0.5B	SA452009-0.5B	RPD (Limits)	Difference (Limits)	Flag	A or P
Ammonia as N	2.53 mg/Kg	2.42 mg/Kg	-	0.11 (≤0.53)	-	-
Alkalinity, total	147 mg/Kg	134 mg/Kg	9 (≤50)	-	-	-
Alkalinity, bicarbonate	147 mg/Kg	134 mg/Kg	9 (≤50)	-	-	-
Chloride	2960 mg/Kg	2860 mg/Kg	3 (≤50)	-	-	-
Hexavalent chromium	0.78 mg/Kg	2.93 mg/Kg	-	2.15 (≤0.42)	J (all detects)	А
Hexavalent chromium	0.82 mg/Kg	3.34 mg/Kg	-	2.52 (≤0.42)	J (all detects)	А
Nitrate as N	40.6 mg/Kg	41.1 mg/Kg	1 (≤50)	-	-	-
Nitrite as N	0.14 mg/Kg	0.15 mg/Kg	-	0.01 (≤0.11)	-	-
рН	8.17 units	8.11 units	1 (≤50)	-	-	-
Sulfate	6190 mg/Kg	6250 mg/Kg	1 (≤50)	-	-	-
Surfactants	8.5 mg/Kg	6.0 mg/Kg	34 (≤50)	-	-	-
Total cyanide	0.42U mg/Kg	0.7 mg/Kg	-	0.28 (≤1.0)	-	-
Total organic carbon	5400 mg/Kg	4800 mg/Kg	-	600 (≤1700)	-	-
Total phosphorus	856 mg/Kg	956 mg/Kg	11 (≤50)	-	-	-
Chlorate	8720000 ug/Kg	8010000 ug/Kg	8 (≤50)	-	-	-
Perchlorate	481000 ug/Kg	450000 ug/Kg	7 (≤50)	_	-	-

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Data Qualification Summary - SDG R0903615

SDG	Sample	Analyte	Flag	A or P	Reason
R0903615	SA152-34B SA50-0.5B SA54-0.5B SA106-0.5B SA102-0.5B SA109-0.5B	Total organic carbon	J- (all detects) UJ (all non-detects)	P	Calibration (CCV %R) (c)
R0903615	SA45-0.5B SA452009-0.5B SA187-0.5B SA153-0.5B SA186-0.5B SA185-0.5B RSAO5-0.5B SA152-10B SA152-20B SA152-34B	Surfactants	J+ (all detects)	P	Calibration (CCV %R) (c)
R0903615	SA45-0.5B SA452009-0.5B SA187-0.5B SA153-0.5B SA186-0.5B SA185-0.5B RSAO5-0.5B SA50-0.5B SA50-0.5B SA106-0.5B SA106-0.5B SA109-0.5B	Cyanide	J- (all detects) R (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R) (m)
R0903615	SA45-0.5B SA452009-0.5B SA187-0.5B SA153-0.5B SA186-0.5B SA185-0.5B RSAO5-0.5B SA50-0.5B SA50-0.5B SA106-0.5B SA106-0.5B SA109-0.5B	Total phosphorus	J- (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R) (m)
R0903615	SA106-0.5B	Hexavalent chromium (7/16/09 12:04) Hexavalent chromium (7/16/09 11:54)	J+ (all detects) J+ (all detects)	A	Matrix spike/Matrix spike duplicates (%R) (m)
R0903615	SA106-0.5B	Hexavalent chromium (7/16/09 10:10) Hexavalent chromium (7/16/09 10:20)	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Α	Duplicate sample analysis (RPD) (ld)

SDG	Sample	Analyte	Flag	A or P	Reason
R0903615	SA50-0.5B SA54-0.5B SA106-0.5B SA102-0.5B SA109-0.5B	Bromide	J+ (all detects)	Р	Laboratory control samples (%R) (I)
R0903615	SA45-0.5B SA452009-0.5B SA187-0.5B SA153-0.5B SA186-0.5B SA185-0.5B SA152-10B SA152-10B SA152-20B SA152-34B SA50-0.5B SA50-0.5B SA106-0.5B SA106-0.5B SA106-0.5B SA106-0.5B SA106-0.5B	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (sp)
R0903615	SA106-0.5B	Hexavalent chromium	Х	A	Overall assessment of data (o)
R0903615	SA45-0.5B SA452009-0.5B	Hexavalent chromium	J (all detects)	Α	Field duplicates (Difference) (fd)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG R0903615

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Field Blank Data Qualification Summary - SDG R0903615

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903615	SA152-10B	Chloride Nitrate as N Sulfate Surfactants	257J+ mg/Kg 5.13J+ mg/Kg 110J+ mg/Kg 2.2U mg/Kg	A	bf
R0903615	SA152-20B	Chloride Nitrate as N Sulfate Surfactants	395J+ mg/Kg 1.12J+ mg/Kg 121J+ mg/Kg 2.1U mg/Kg	A	bf

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903615	SA152-34B	Nitrate as N Surfactants	1.47J+ mg/Kg 3.0U mg/Kg	А	bf

	Tr	onox Nor	thgate Henderson /	
LDC #			PLETENESS WORKSHEET Date: 1/23	l
SDG#	: R0903615	S	stage 2B Page: tof_	Ī
Labora	tory: Columbia Analytical Services		Reviewer:	_
			2nd Reviewer:(\(\sum_{\chi} \)	_
	OD 44 14 1 AN AN 11 11 (OMOGOOD)			
WEIH	OD: (Analyte) Alkalinity (SM2320B), A	Ammonia-N	(EPA Method 350.1), Bromide, Chloride, Nitrate-N, Sulfate (EP. prate (EPA Method 300.1), Cyanide (EPA SW846 Method 9012A	_
			<u> EPA SW846 Method 9045D), Surfactants (SM5540C), Perchlorat</u>	
	Method 314.0), Total Phosphorus (EPA			_
			ollowing validation areas. Validation findings are noted in attache	c
validat	on findings worksheets		· ·	
·				=
	Validation Area		Comments	
1.	Technical holding times	A	Sampling dates: 6 / 3/ 09 6/30/ 6	
lla.	Initial calibration	A	, , , , ,	
IIb.	Calibration verification			
111.	Blanks	SW		
IV	Matrix Spike/Matrix Spike Duplicates	5W	> m/s/ fr/s /y~~	
V	Duplicates	SNIGH	3 / / •	
VI.	Laboratory control samples	SW	Les	
VII.	Sample result verification	N V		
VIII.	Overall assessment of data	SWASO		
IX.	Field duplicates	SW	(1,2)	
L _X	Field blanks	gw/	FB=FB072109-SO (SDG: R0904016)	
Note:	N = Not provided/applicable R = F	No compounds Rinsate Field blank	s detected D = Duplicate TB = Trip blank EB = Equipment blank	

Validated Samples:

	501						
1	SA45-0.5B	11	SA50-0.5B	21	SA 106-05BRERP	31	MV
2	SA452009-0.5B	12	SA54-0.5B	22	SALOB-OSBREMS	32	
3	SA187-0.5 🖒	13	SA106-0.5B	23	1 lup	33	
4	SA153-0.5B	14	SA106-0.5BRE	24	!	34	
5	SA186-0.5B	15	SA102-0.5B	25		35	
6	SA185-0.5B	16	SA109-0.5B	26		36	
7	RSAO5-0.5B	17	SA106-0.5BMS	27		37	
8	SA152-10B	18	SA106-0.5BMSD	28		38	
9	SA152-20B	19	SA106-0.5BDUP	29		39	
10	SA152-34B	20	- KEMS	30		40	

Notes:_	Sumos	大	٢	A	
	, ,			77	

LDC#: 1495 176 SDG#: Ler www.

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: of factorial Page: 2nd reviewer: 4

All circled methods are applicable to each sample.

Sample ID	Matrix	
		Parameter
1-13, 15,16	(oi)	(Alk pH Br Cl NO, NO, SO, NH, TOC CN Cr6+ T-P MBAS) TDS TSS Cond (ClO, ClO,
14	<u> </u>	Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN(Cr ⁶⁺) T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
~17-19	(0.1	Alk pH Br Cl NO, NO, SO, NH, TOC CN Cr5+ T-P MBAS TDS TSS Cond CO, CIO,
1000		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN ST T-P MBAS TDS TSS Cond CIO3 CIO4
19		Alk pH B C NO NO SO NH TO CH CP T-MBAS TDS TSS COND CIO CIO CIO
y 17	١, ٧	(Alk pH B) CI(NO) (NO) (SO) (NH) TOC (N) (F) (T-P) MBAS TDS TSS COND CIO, CIO,
my	<i>Y</i>	Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN CF+)T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
/		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr5+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄

Comments:	

LDC #: >1495H/6 SDG #:

VALIDATION FINDINGS WORKSHEET Calibration

Page: Reviewer: 2nd Reviewer:_

> Je com METHOD: Inorganics, EPA Method_

Were all instruments calibrated daily, each set-up time, and were the proper number of standards used? Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110%? Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Are all correlation coefficients >0.995 ? N N/A N N/A N/A

EVEL IV/D ONLY:

Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recaluculation Worksheet for recalulations. Was a balance check conducted prior to the TDS analysis.? Was the titrant normality checked? V/N/N ≻

Y N NA

3	, ctro	Ol notherapping	Anslyfe	%B	Associated Samples	Qualifications
!	1/9/09	CCV	T50	8t. 6	10-13, 15, 16, 19, 19	J-145/p (c)
r	\$ 141 4		C. 1/2, 7. 1	110	0-1	HUT/2 (C.)
	10111	1 30 30 30 30	المعلمة	*	2	\-
C			>	7		>
1	X	*				
Comments:	nents:					

LDC #: 21495H6

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET Blanks

2nd Reviewer: Reviewer:_ Page:__

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Reason Code: bl

(Y)N N/A Were all samples associated with a given method blank?

| N N/A Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below

Associated Samples: T-P*1:1,2|T-P*2:3-13,15,16,|TOC*1:1-9, |TOC*2: 10-13,15,16 (>RL), Sample Identification Sample Identification Associated Samples: MB: 1-10, ICB/CCB: 1-12 (>RL) Blank Action Limit Blank Action Limit Maximum ICB/CCB (mg/L) Maximum ICB/CCB 76.3 mg/Kg 143 mg/Kg (mg/L) 0. Blank ID Blank ID Conc. units: mg/Kg Conc. units: mg/Kg 6.0 MB ₩ 1.3 1.6 120 130 7 12 Bicarb. AIK Analyte Analyte Total AIK TOC*1 TOC*2 T-P*1 T-P*2 ರ

Conc. units: mg/Kg	mg/Kg			Associated Samples: MB:11-13,15,16, ICB/CCB: 13, 15,16 (>RL)
Analyte	Blank ID	Maximum ICB/CCB	Blank Action	Sample Identification
	MB	(mg/L)		
Total AIK	15	6.0		
Bicarb. AIK	15			
ō	1.1			
NO3-N	0.45			

LDC #: 21495H6

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET Blanks

Page: 2nd Reviewer. Reviewer:_

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Reason Code: bl

N N/A Were all samples associated with a given method blank?

Nore any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Conc. units: mg/Kg	: mg/Kg			Associated Samples: Cl*1.6. Cl*2.12 , 16. Cl*3:1,2,3,5. Cl*4:7,8,10,11,13 Cl*5:4,9. Cl*6:15 (>RL)
Analyte	Blank ID	Maximum ICB/CCB	Maximum Blank ICB/CCB Action Limit	
	MB	(mg/L)		
Cl*1		0.098		
Cl*2		0.106		
CI*3		0.130		
CI*4		0.137		
CI*5		0.131		
CI*6		0.139		

LDC #: 21495H6

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Field Blanks

Page: of 2nd Reviewer: 🔏 Reviewer:__

METHOD: Inorganics, Method See Cover YN N/A Were field blanks identified in this SDG?

Were target analytes detected in the field blanks? ON N/A

Sampling date: 7/21/09 Soil factor applied 10X
Field blank type: (circle one) Field Blank / Rinsate / Other: FB

Reason Code: bf

Associated Samples: 8-10

Sample Identification 1.8/3.0 1.47 J+ 9 1.4 / 2.1 395 J+ 1.12 J+ 121 J+ o 1.5 / 2.2 257 J+ 5.13 J+ 110 J+ ∞ Action Level 15.9 19.1 970 176 550 FB072109-SO Blank ID 0.159 0.191 1.76 3.36 0.01 0.5 5.5 9.7 Total Phosphorus Ammonia as N TOC (average) pH (pH Units) Nitrate as N Surfactants Analyte Sulfate ರ

LDC #: >1495176 SDG #:

VALIDATION FINDINGS WORKSHEET **Matrix Spike Analysis**

2nd Reviewer: Page: | of_

METHOD: Inorganics, Method

Phase see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125 (85-115% for Method 300.0)? If the sample concentration exceeded the spike LEVEL IV ONLY:

Y N (N/A)

Were renal mits SDG?

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

*	Matrix Spike ID	Matrix	Analyte	%R	Associated Samples	Qualifications
_	& C	(15)	λ	0	MY TO LUITE	(z/16 [J/
<u> </u>						77
			CV14	137 44(2/19/1	1 (2 t) J (3 t	T+ 1+/4 &
			<u> </u>	136 * 19/16/94		
Com	Comments: & Valent 55	S. S. S.	Alex 2 Sony	1/2 Versen	tus with contra	my
	1		1			4
)			

LDC #:

METHOD: Inorganics, Method

VALIDATION FINDINGS WORKSHEET **Duplicate Analysis**

Page: Reviewer: 2nd Reviewer;

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A",

Was a duplicate sample analyzed for each matrix in this SDG?

YCA) N/A

Were all duplicate sample relative percent differences (RPD) ≤ 20% for water and ≤ 35% for soil samples (≤ 10% for Method 300.0)? If no, see qualification below. A control limit of ±CRDL (±2X CRDL for soil) was used for samples that were ≤5X the CRDL, including when only one of the duplicate sample values were <5X the CRDL. If field blanks were used for laboratory duplicates, see overall assessment. Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. LEVEL IV ONLY:

Olleweight 2	Matrix	Analyte	RPD (Limits) Associated Samples	The state of the s
	7:1	(26.7	3 > (7/16/09/10/10) 13/2	
			62 3	(p) 4/2/7
	-			
,	+			
Comments: Much 15	No.	James J	Town with prints	
	1			
***************************************		•		

LDC #: YK95H 6 SDG #:

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Reviewer: MH Page: 2nd Reviewer:

METHOD: Inorganics, Method_

YN N/A Was YN N/A Wer LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

N K

1000	G LT/2 (D)																
Associated Samples	11-13 15 16																
%R (limits)	(cl1-0b) 1)																
Analyte	By					ľ		-									
Matrix	4.0%	,															
TCS ID	トペンソ										-					ents:	
*		1	1	1	1		1		1							Comments:	

SDG #: 1495 46

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: of Reviewer: MH 2nd Reviewer:

METHOD: Inorganics, Method

الحد العدا

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N N/A Was the overall quality and usability of the data acceptable?

*	Date	Sample ID	Finding	Associated Samples	Qualifications
		~	Cy67 (M5/19W	puy for led	X(0)
			2	17 my 12/12/12/12	`
				(true front +>)	
			,		
Comments:	ants:				

LDC#: <u>21495H6</u> SDG#: <u>See Cover</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:	_(of
Reviewer:_	~
2nd Reviewer:_	0.
	7

Inorganics, Method See Cover

(Y)N NA (A)N NA Were field duplicate pairs identified in this SDG?
Were target analytes detected in the field duplicate pairs?

	Concentrati	on (mg/Kg)				Qualification
Analyte	1	2	RPD (≤50)	Difference	Limits	(Parent only)
Ammonia as N	2.53	2.42		0.11	(≤0.53)	
Total Alkalinity	147	134	9			
Bicarbonate Alkalinity	147	134	9			
Chloride	2960	2860	3			
Hexavalent Chromium	0.78	2.93		2.15	(≤0.42)	J det / A (fd)
Hexavalent Chromium	0.82	3.34		2.52	(≤0.42)	J det / A (fd)
Nitrate as N	40.6	41.1	1			
Nitrite as N	0.14	0.15		0.01	(≤0.11)	
pH (pH Units)	8.17	8.11	1			
Sulfate	6190	6250	1			
Surfactants	8.5	6.0	34			
Total Cyanide	0.42U	0.7		0.28	(≤1.0)	
тос	5400	4800		600	(≤1700)	
Total Phosphorus	856	956	11			
Chlorate (ug/Kg)	8720000	8010000	8			
Perchlorate (ug/Kg)	481000	450000	7			

V:\FIELD DUPLICATES\FD_inorganic\21495H6.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation,

Henderson, Nevada

Collection Date:

July 1 through July 2, 2009

LDC Report Date:

September 28, 2009

Matrix:

Soil/Water

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903678

Sample Identification

EB070109-SO1 SA114-0.5B SA114009-0.5B SA82-0.5BMS SA82-0.5BMSD SA82-0.5BDUP

RSAN6-0.5B

RSAL3-30BMS RSAL3-30BDUP

SA82-0.5B

RSAK3-31BMSD

SA82-10B SA82-29B

RSAK3-31BMSD RSAK3-31BDUP

RSAL3-10B

RSAL3-30B

SA134-10B

SA134-20B

SA134-31B

SA134009-31B

SA88-10B

SA88-20B

SA88-32B

RSAK3-0.5B

RSAK3-10B

RSAK3-20B RSAK3-31B

Introduction

This data review covers 27 soil samples and one water sample listed on the cover sheet. The analyses were per Standard Method 2320B for Alkalinity, EPA Method 350.1 for Ammonia as Nitrogen, EPA SW 846 Method 9056 for Bromide, Chloride, Nitrate as Nitrogen, and Sulfate, EPA Method 353.2 for Nitrite as Nitrogen, EPA 300.1 for Chlorate, EPA SW 846 Method 9012A for Cyanide, EPA SW 846 Method 7199 for Hexavalent Chromium, EPA SW 846 Methods 9040B and 9045D for pH, Standard Method 5540C for Surfactants, EPA Method 314.0 for Perchlorate, EPA Method 365.1 for Total Phosphorus, and Lloyd/Kahn Method for Total Organic Carbon.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section X.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

Calibration verification frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
7/9/09	ccv	Total organic carbon	85.6 (90-110)	SA114-0.5B SA114009-0.5B RSAN6-0.5B SA82-0.5B SA82-10B SA82-29B RSAL3-10B RSAL3-10B RSAL3-30B SA134-10B SA134-10B SA134-20B SA134-31B SA82-0.5BMS SA82-0.5BDUP	J- (all detects) UJ (all non-detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Alkalinity, total Alkalinity, bicarbonate Chloride Total phosphorus	1.0 mg/L 1.0 mg/L 0.13 mg/L 0.005 mg/L	EB070109-SO1
ICB/CCB	Alkalinity, total Total phosphorus Ammonia as N	1.0 mg/L 0.0052 mg/L 0.0107 mg/L	EB070109-SO1
МВ	Alkalinity, total Alkalinity, bicarbonate Chloride Nitrate as N	15 mg/Kg 15 mg/Kg 1.1 mg/Kg 0.45 mg/Kg	SA114-0.5B SA114009-0.5B RSAN6-0.5B SA82-10B SA82-29B

Method Blank ID	Analyte	Concentration	Associated Samples
ICB/CCB	Alkalinity, total Ammonia as N	0.9 mg/L 0.0077 mg/L	SA114-0.5B SA114009-0.5B RSAN6-0.5B SA82-10B SA82-29B
МВ	Alkalinity, total Alkalinity, bicarbonate Chloride	10 mg/Kg 10 mg/Kg 1.3 mg/Kg	SA82-0.5B RSAL3-10B RSAL3-30B SA134-10B SA134-20B SA134-31B SA134009-31B SA88-10B SA88-20B SA88-32B
ICB/CCB	Alkalinity, total	1.0 mg/L	SA82-0.5B RSAL3-10B RSAL3-30B SA134-10B SA134-20B SA134-31B SA134009-31B SA88-10B SA88-20B SA88-32B
МВ	Alkalinity, total Alkalinity, bicarbonate Chloride Surfactants	11 mg/Kg 11 mg/Kg 1.3 mg/Kg 1.2 mg/Kg	RSAK3-0.5B RSAK3-10B RSAK3-20B RSAK3-31B
ICB/CCB	Alkalinity, total	1.0 mg/L	RSAK3-0.5B RSAK3-10B RSAK3-20B RSAK3-31B
МВ	Total organic carbon Total phosphorus	130 mg/Kg 1.6 mg/Kg	All samples in SDG R0903678
ICB/CCB	Total phosphorus	0.0066 mg/L	All samples in SDG R0903678
ICB/CCB	Total organic carbon	143 mg/Kg	SA114-0.5B SA114009-0.5B RSAN6-0.5B SA82-0.5B SA82-10B SA82-29B RSAL3-10B RSAL3-30B SA134-10B SA134-20B SA134-31B

Method Blank ID	Analyte	Concentration	Associated Samples
ICB/CCB	Total organic carbon	127 mg/Kg	SA134009-31B SA88-10B SA88-20B SA88-32B RSAK3-0.5B RSAK3-10B RSAK3-20B
ICB/CCB	Total organic carbon	85.1 mg/Kg	RSAK3-31B
ICB/CCB	Chloride	0.106 mg/L	SA114-0.5B SA114009-0.5B RSAN6-0.5B SA82-10B
ICB/CCB	Chloride	0.135 mg/L	SA82-0.5B SA134-10B
ICB/CCB	Chloride	0.137 mg/L	SA82-29B RSAL3-10B
ICB/CCB	Chloride	0.136 mg/L	RSAL3-30B SA134-20B SA134-31B SA134009-31B SA88-10B SA88-20B SA88-32B RSAK3-0.5B RSAK3-10B RSAK3-20B RSAK3-31B

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
EB070109-SO1	Chloride Total phosphorus Ammonia as N	1.7 mg/L 0.014 mg/L 0.034 mg/L	2.0U mg/L 0.050U mg/L 0.050U mg/L
SA114-0.5B	Ammonia as N	0.48 mg/Kg	0.54U mg/Kg
SA82-10B	Ammonia as N	0.15 mg/Kg	0.35U mg/Kg
RSAK3-0.5B	Surfactants	1.1 mg/Kg	2.2U mg/Kg

Sample	Analyte	Reported Concentration	Modified Final Concentration
RSAK3-10B	Surfactants	1.3 mg/Kg	2.2U mg/Kg
RSAK3-20B	Surfactants	1.7 mg/Kg	2.7U mg/Kg
RSAK3-31B	Surfactants	3.1 mg/Kg	3.5U mg/Kg

Sample EB070109-SO1 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:

Equipment Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
EB070109-SO1	7/1/09	Ammonia as N Total organic carbon Chloride Nitrate as N pH Total phosphorus	0.034 mg/L 0.6 mg/L 1.7 mg/L 0.88 mg/L 4.25 mg/L 0.014 mg/L	No associated samples in this SDG

Sample FB072109-SO (from SDG R0904016) was identified as a field blank. No contaminant concentrations were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
FB072109-SO	7/21/09	Ammonia as N Total organic carbon Chloride Nitrate as N pH Total phosphorus Sulfate Surfactants	0.191 mg/L 0.5 mg/L 9.7 mg/L 1.76 mg/L 3.36 mg/L 0.01 mg/L 5.5 mg/L 0.159 mg/L	SA82-0.5B SA82-10B SA82-29B RSAL3-10B RSAL3-30B SA134-10B SA134-20B SA134-31B SA134009-31B SA88-10B SA88-20B SA88-32B RSAK3-0.5B RSAK3-10B RSAK3-10B RSAK3-20B RSAK3-20B

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
SA82-0.5B	Ammonia as N Chloride Nitrate as N Sulfate	0.22 mg/Kg 37.3 mg/Kg 2.82 mg/Kg 175 mg/Kg	0.51U mg/Kg 37.3J+ mg/Kg 2.82J+ mg/Kg 175J+ mg/Kg
	Surfactants	1.2 mg/Kg	2.1U mg/Kg
SA82-10B	Ammonia as N	0.15 mg/Kg	0.53U mg/Kg
	Chloride	64.1 mg/Kg	64.1J+ mg/Kg
	Nitrate as N	2.43 mg/Kg	2.43J+ mg/Kg
	Surfactants	1.4 mg/Kg	2.1U mg/Kg
SA82-29B	Nitrate as N	2.60 mg/Kg	2.60J+ mg/Kg
	Surfactants	3.7 mg/Kg	3.7J+ mg/Kg
RSAL3-10B	Chloride	138 mg/Kg	138J+ mg/Kg
	Nitrate as N	3.09 mg/Kg	3.09J+ mg/Kg
	Surfactants	1.4 mg/Kg	2.2U mg/Kg
RSAL3-30B	Nitrate as N	3.32 mg/Kg	3.32J+ mg/Kg
	Surfactants	1.9 mg/Kg	3.2U mg/Kg
SA134-10B	Chloride Nitrate as N Sulfate Surfactants	71.9 mg/Kg 3.65 mg/Kg 203 mg/Kg 1.1 mg/Kg	71.9J+ mg/Kg 3.65J+ mg/Kg 203J+ mg/Kg 2.2U mg/Kg
SA134-20B	Chloride	138 mg/Kg	138J+ mg/Kg
	Nitrate as N	2.20 mg/Kg	2.20J+ mg/Kg
	Surfactants	3.4 mg/Kg	3.4J+ mg/Kg
SA134-31B	Nitrate as N	7.52 mg/Kg	7.52J+ mg/Kg
	Surfactants	2.7 mg/Kg	3.0U mg/Kg
SA134009-31B	Nitrate as N	7.73 mg/Kg	7.73J+ mg/Kg
	Surfactants	1.8 mg/Kg	3.1U mg/Kg
SA88-10B	Ammonia as N	0.33 mg/Kg	0.55U mg/Kg
	Nitrate as N	6.78 mg/Kg	6.78J+ mg/Kg
	Sulfate	89.2 mg/Kg	89.2J+ mg/Kg
	Surfactants	0.9 mg/Kg	2.2U mg/Kg
SA88-20B	Nitrate as N	5.72 mg/Kg	5.72J+ mg/Kg
	Surfactants	1.7 mg/Kg	2.9U mg/Kg
SA88-32B	Ammonia as N	0.27 mg/Kg	0.85U mg/Kg
	Nitrate as N	2.44 mg/Kg	2.44J+ mg/Kg
	Surfactants	3.9 mg/Kg	3.9J+ mg/Kg

Sample	Analyte	Reported Concentration	Modified Final Concentration
RSAK3-0.5B	Chloride	939 mg/Kg	939J+ mg/Kg
	Nitrate as N	10.8 mg/Kg	10.8J+ mg/Kg
	Sulfate	442 mg/Kg	442J+ mg/Kg
	Surfactants	1.1 mg/Kg	2.2U mg/Kg
RSAK3-10B	Ammonia as N	0.37 mg/Kg	0.55U mg/Kg
	Chloride	189 mg/Kg	189J+ mg/Kg
	Nitrate as N	3.19 mg/Kg	3.19J+ mg/Kg
	Sulfate	26.2 mg/Kg	26.2J+ mg/Kg
	Surfactants	1.3 mg/Kg	2.2U mg/Kg
RSAK3-20B	Chloride	517 mg/Kg	517J+ mg/Kg
	Nitrate as N	7.55 mg/Kg	7.55J+ mg/Kg
	Surfactants	1.7 mg/Kg	2.7U mg/Kg
RSAK3-31B	Nitrate as N	2.78 mg/Kg	2.78J+ mg/Kg
	Surfactants	3.1 mg/Kg	3.5U mg/Kg

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
SA82-0.5BMS/MSD (SA82-0.5B)	Chlorate	-	128 (75-125)	-	J+ (all detects)	А
SA82-0.5BMS (SA82-0.5B)	Surfactants	64 (75-125)	-	-	J- (all detects) UJ (all non-detects)	Α

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
LCS	Bromide	111 (90-110)	SA114-0.5B SA114009-0.5B RSAN6-0.5B SA82-10B SA82-29B	J+ (all detects)	P

VII. Surrogates

Surrogates were added to all samples and blanks as required by method 300.1. All surrogate recoveries (%R) were within QC limits.

VIII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903678	All analytes reported below the PQL.	J (all detects)	Α

Raw data were not reviewed for this SDG.

IX. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

Samples SA114-0.5B and SA114009-0.5B and samples SA134-31B and SA134009-31B were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Concentration					
Analyte	SA114-0.5B	SA114009-0.5B	RPD (Limits)	Difference (Limits)	Flag	A or P
Ammonia as N	0.48 mg/Kg	4.64 mg/Kg	_	4.16 (≤0.55)	J (all detects)	А
Alkalinity, total	4750 mg/Kg	4610 mg/Kg	3 (≤50)	-	-	_
Alkalinity, bicarbonate	4340 mg/Kg	4260 mg/Kg	2 (≤50)	-	-	-
Alkalinity, carbonate	412 mg/Kg	346 mg/Kg	17 (≤50)	-	-	_

	Conce	ntration				
Analyte	SA114-0.5B	SA114009-0.5B	RPD (Limits)	Difference (Limits)	Flag	A or P
Chloride	205 mg/Kg	203 mg/Kg	1 (≤50)	-	-	-
Hexavalent chromium	0.19U mg/Kg	18.9 mg/Kg	-	18.71 (≤0.43)	J (all detects) UJ (all non-detects)	Α
Hexavalent chromium	0.19U mg/Kg	19.1 mg/Kg	-	18.91 (≤0.43)	J (all detects) UJ (all non-detects)	А
Nitrate as N	12.4 mg/Kg	12.3 mg/Kg	1 (≤50)	-	-	-
Nitrite as N	0.72 mg/Kg	0.67 mg/Kg	7 (≤50)	-	-	-
рН	9.66 units	9.43 units	2 (≤50)	-	-	-
Sulfate	299 mg/Kg	350 mg/Kg	16 (≤50)	-	-	-
Surfactants	6.7 mg/Kg	6.8 mg/Kg	1 (≤50)	-	-	-
Total organic carbon	71800 mg/Kg	71900 mg/Kg	0 (≤50)	-	-	- -
Total phosphorus	451 mg/Kg	402 mg/Kg	11 (≤50)	-	-	-
Chlorate	416000 ug/Kg	411000 ug/Kg	1 (≤50)	-	-	-
Perchlorate	34100 ug/Kg	34900 ug/Kg	2 (≤50)	-	-	-

	Concentration					
Analyte	SA134-31B	SA134009-31B	RPD (Limits)	Difference (Limits)	Flag	A or P
Alkalinity, total	368 mg/Kg	370 mg/Kg	1 (≤50)	-	-	-
Alkalinity, bicarbonate	368 mg/Kg	370 mg/Kg	1 (≤50)	-	-	-
Bromide	2.0 mg/Kg	2.2 mg/Kg	-	0.2 (≤1.5)	-	_
Chloride	1780 mg/Kg	1880 mg/Kg	5 (≤50)	-	-	-
Nitrate as N	7.52 mg/Kg	7.73 mg/Kg	3 (≤50)	-	-	-
рН	7.94 units	7.89 units	1 (≤50)	-	-	-

	Concentration					
Analyte	SA134-31B	SA134009-31B	RPD (Limits)	Difference (Limits)	Flag	A or P
Sulfate	2510 mg/Kg	2630 mg/Kg	5 (≤50)	-	-	-
Surfactants	2.7 mg/Kg	1.8 mg/Kg	•	0.9 (≤3.1)	-	-
Total organic carbon	950 mg/Kg	1010 mg/Kg	-	60 (≤880)	-	
Total Phosphorus	435 mg/Kg	473 mg/Kg	8 (≤50)	-	-	-
Chlorate	1870 ug/Kg	1870 ug/Kg	0 (≤50)	-	-	-
Perchlorate	31300 ug/Kg	34200 ug/Kg	9 (≤50)	-	-	-

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Data Qualification Summary - SDG R0903678

SDG	Sample	Analyte	Flag	A or P	Reason
R0903678	SA114-0.5B SA114009-0.5B RSAN6-0.5B SA82-0.5B SA82-10B SA82-29B RSAL3-10B RSAL3-30B SA134-10B SA134-20B SA134-31B	Total organic carbon	J- (all detects) UJ (all non-detects)	Р	Calibration (CCV %R) (c)
R0903678	SA82-0.5B	Chlorate	J+ (all detects)	А	Matrix spike/Matrix spike duplicates (%R) (m)
R0903678	SA82-0.5B	Surfactants	J- (all detects) UJ (all non-detects)	А	Matrix spike/Matrix spike duplicates (%R) (m)
R0903678	SA114-0.5B SA114009-0.5B RSAN6-0.5B SA82-10B SA82-29B	Bromide	J+ (all detects)	Р	Laboratory control samples (%R) (I)
R0903678	EB070109-SO1 SA114-0.5B SA114-0.5B SA114009-0.5B RSAN6-0.5B SA82-0.5B SA82-10B SA82-29B RSAL3-10B RSAL3-30B SA134-10B SA134-20B SA134-31B SA134-09B SA134-31B SA88-10B SA88-20B SA88-32B RSAK3-0.5B RSAK3-10B RSAK3-20B RSAK3-20B RSAK3-20B	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (sp)
R0903678	SA114-0.5B SA114009-0.5B	Ammonia as N	J (all detects)	A	Field duplicates (Difference) (fd)
R0903678	SA114-0.5B SA114009-0.5B	Hexavalent chromium	J (all detects) UJ (all non-detects)	А	Field duplicates (Difference) (fd)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG R0903678

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903678	EB070109-SO1	Chloride Total phosphorus Ammonia as N	2.0U mg/L 0.050U mg/L 0.050U mg/L	A	bl
R0903678	SA114-0.5B	Ammonia as N	0.54U mg/Kg	Α	bl
R0903678	SA82-10B	Ammonia as N	0.35U mg/Kg	Α	bl
R0903678	RSAK3-0.5B	Surfactants	2.2U mg/Kg	Α	bl
R0903678	RSAK3-10B	Surfactants	2.2U mg/Kg	Α	bl
R0903678	RSAK3-20B	Surfactants	2.7U mg/Kg	А	bl
R0903678	RSAK3-31B	Surfactants	3.5U mg/Kg	Α	bl

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Field Blank Data Qualification Summary - SDG R0903678

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903678	SA82-0.5B	Ammonia as N Chloride Nitrate as N Sulfate Surfactants	0.51U mg/Kg 37.3J+ mg/Kg 2.82J+ mg/Kg 175J+ mg/Kg 2.1U mg/Kg	A	bf
R0903678	SA82-10B	Ammonia as N Chloride Nitrate as N Surfactants	0.53U mg/Kg 64.1J+ mg/Kg 2.43J+ mg/Kg 2.1U mg/Kg	Α	bf
R0903678	SA82-29B	Nitrate as N Surfactants	2.60J+ mg/Kg 3.7J+ mg/Kg	A	bf
R0903678	RSAL3-10B	Chloride Nitrate as N Surfactants	138J+ mg/Kg 3.09J+ mg/Kg 2.2U mg/Kg	A	bf
R0903678	RSAL3-30B	Nitrate as N Surfactants	3.32J+ mg/Kg 3.2U mg/Kg	A	bf

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903678	SA134-10B	Chloride Nitrate as N Sulfate Surfactants	71.9J+ mg/Kg 3.65J+ mg/Kg 203J+ mg/Kg 2.2U mg/Kg	А	bf
R0903678	SA134-20B	Chloride Nitrate as N Surfactants	138J+ mg/Kg 2.20J+ mg/Kg 3.4J+ mg/Kg	А	bf
R0903678	SA134-31B	Nitrate as N Surfactants	7.52J+ mg/Kg 3.0U mg/Kg	А	bf
R0903678	SA134009-31B	Nitrate as N Surfactants	7.73J+ mg/Kg 3.1U mg/Kg	A	bf
R0903678	SA88-10B	Ammonia as N Nitrate as N Sulfate Surfactants	0.55U mg/Kg 6.78J+ mg/Kg 89.2J+ mg/Kg 2.2U mg/Kg	А	bf
R0903678	SA88-20B	Nitrate as N Surfactants	5.72J+ mg/Kg 2.9U mg/Kg	А	bf
R0903678	SA88-32B	Ammonia as N Nitrate as N Surfactants	0.85U mg/Kg 2.44J+ mg/Kg 3.9J+ mg/Kg	A	bf
R0903678	RSAK3-0.5B	Chloride Nitrate as N Sulfate Surfactants	939J+ mg/Kg 10.8J+ mg/Kg 442J+ mg/Kg 2.2U mg/Kg	А	bf
R0903678	RSAK3-10B	Ammonia as N Chloride Nitrate as N Sulfate Surfactants	0.55U mg/Kg 189J+ mg/Kg 3.19J+ mg/Kg 26.2J+ mg/Kg 2.2U mg/Kg	А	bf
R0903678	RSAK3-20B	Chloride Nitrate as N Surfactants	517J+ mg/Kg 7.55J+ mg/Kg 2.7U mg/Kg	A	bf
R0903678	RSAK3-31B	Nitrate as N Surfactants	2.78J+ mg/Kg 3.5U mg/Kg	A	bf

			T	NI	41	4 - 1	(
· DC +	# 04.40 <i>E</i> IG	W			_		Henderson ESS WORKSHE	ET	Date: 91 4
	#: <u>21495I6</u> #: R0903678	V A	LIDAHO	-	Stage			EI	
	#: <u>R0903678</u> atory: <u>Columbia Analytica</u>	al Se	rvices	J	layu	3 20			Page: _ t of _ t Reviewer: b
	, , , , , , , , , , , , , , , , , , ,	<u> </u>	<u> </u>						2nd Reviewer:
**CTL	100- (Analyta) Alkalinih	· /QN/	#O220R\ Am	-mania_N	/ED&	\ Maf	thad 250 1) Bromide	- Chloric	de Nitrote N. Sulfate (EP/
									de, Nitrate-N, Sulfate (EPA PA SW846 Method 9012A)
Hexav	valent Chromium (EPA S	SW84	46 Method 7	7199), pH	l (EP.	PA SV	W846 Method 9040E	B/9045D)), Surfactants (SM5540C)
									PA SW846 Method 9060) dings are noted in attached
	ampies listed below were ition findings worksheets.		SWEU IOI CC.	Al Orano .c	الربي	iliy .	diluation areas. v	lation	alliys are noted in access.
	Validation	Area					Co	mments	
l.	Technical holding times			*	Sami	pling d	dates: 07 01 09	. 07/.	.2/09
lla.	Initial calibration			A.					
llb.	Calibration verification			SW					
111.	Blanks			SW					
IV	Surrogate			A					
V	Matrix Spike/Matrix Spike Du	uplica'	tes	SW	$\Gamma_{\Sigma'}$	ms/1	ms / 1 2		
VI.	Duplicates			A					
VII.	Laboratory control samples			5W	L	cz_			
VIII.	Sample result verification			N					
IX.	Overall assessment of data			A					
X.	Field duplicates			5~	(213	3)(12,13)		
xı_	Field blanks			Lyv	EB=F	-B072	109-SO (SDG: R0904016	3) , ZB-	=
Note: Validate	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:		R = Rins FB = Fie	eld blank	; detec	cted	D = Duplicate TB = Trip blank EB = Equipment l	blank	
1	A1\ 401\ 4		SA134-20B	As		21	SA82-0.5BMS	31	LAV
	SA114-0.5B	12	SA134-20B SA134-31B		\neg		SA82-0.5BMSD	31	MB
	SA114-0.5B SA114009-0.5B		SA134-31B SA134009-31E		\dashv		SA82-0.5BMSD SA82-0.5BDUP	33	<u>.</u>
	RSAN6-0.5B		SA88-10B				RSAL3-30BMS	34	
	SA82-0.5B	b.	SA88-20B				RSAL3-30BDUP	35	
	SA82-10B		SA88-32B				RSAK3-31BMS	36	
	SA82-29B	17	RSAK3-0.5B				RSAK3-31BMSD	37	
	RSAL3-10B		RSAK3-10B				RSAK3-31BDUP	38	
	RSAL3-30B		RSAK3-20B			29		39	3

Notes:	ν	

30

20

RSAK3-31B

40

SA134-10B

LDC #: 1495 7/ SDG #: Les were

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: ___of___ Reviewer: _____ 2nd reviewer: _____

All circled methods are applicable to each sample.

	Sample ID	Matrix	Parameter
	1-70	Soi VA	
	1	/ AD-	•
	12 000	61/	Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
,	13,500	- S1/n	Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC (CN) Cr ⁵⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
/	1.2 1.00		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
0/	1/23,16-28	<i>چه</i> ز)	Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond CIO CIO ₄
	M		(All pH Br CI NO NO SO NH TOO CN CF T-P MBAS TDS TSS Cond CIO3 CIO4
	V/o		(All pH B) (CI NO) NO, SO, (NH.) TOO (CN C)+ T- MBAS TDS TSS Cond CIO, CIO,
	V3		(Alk (pH) Br) CI(NO) (NO) SO) NH) TOO CN (FT T-PMBAS) TDS TSS COND CIO, CIO,
	24,45		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC (CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
A	28	1	Alk (pH) Br/CI)NO3 NO3 SO4 NH TOC (CN) CFTT-P(MBAS)TDS TSS Cond CIO3 CIO4
1			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
ľ			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
H			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
			Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
L			

Comments:	

Z LDC #: 2/49526 3 SDG #:_

VALIDATION FINDINGS WORKSHEET Calibration

Page: Reviewer:_ 2nd Reviewer:_

METHOD: Inorganics, EPA Method

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all instruments calibrated daily, each set-up time, and were the proper number of standards used? Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110%?

Are all correlation coefficients >0.995 ?

Mere N/A Were all N/A Are all LEVEL IV/D ONLY:

Z >

Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recaluculation Worksheet for recalulations. Was a balance check conducted prior to the TDS analysis.? Was the titrant normality checked?

Y N N/A

	_	-				
-	1	On Heating	Ansivte	%R	Associated Samples	Qualifications
*	Date	Campiation to	1	7 40	~~ ~ ~ ~ ~	100 a/47/-C
_	19/67	>3) _e	Q-20		
-						
1						
Comi	Comments:					

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

2nd Reviewer._ Page:__ Reviewer:_

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(Y) N N/A Were all samples associated with a given method blank?

| N N/A Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Reason Code: bl

Conc. units: mg/l	s: mg/L			Associated Samples: 1	
Analyte	Analyte Blank ID Maximum	Maximum	Blank	Sample Identification	
ii.	MB	ICB/CCB (mg/L)	Action Limit		
Total AIK	1.0	1.0			
Bicarb. AIK	1.0				
Ö	0.13			1.77.2.0	
T-P	0.005	0.0052		0.014 / 0.050	
NH3-N		0.0107		0.034 / 0.050	

Conc. units: mg/Kg	: mg/Kg				Associated	Associated Samples: 2-4, 6,7			
Analyte	Blank ID	Maximum	Blank				Sample Identification		
	MB	MB (mg/L)	Action Limit	2	9				
Total AIK	15	6.0							
Bicarb. AIK	15		· · · · · · · · · · · · · · · · · · · 						
ō	1.1								
NO3-N	0.45								
NH3-N		0.0077		0.48 / 0.54 0.15	0.15 / 0.35				

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Page: Vof 2nd Reviewer:__ Z Reviewer:

Reason Code: bl

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Were all samples associated with a given method blank?
N/A Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

| Associated Samples: 5, 8-16 (>RL) Conc. units: mg/Kg

WB WB	こっつうこ	Blank	Sample Identification
	(mg/L)	Limit	
Total AlK 10	1.0		
Bicarb. AlK 10			
CI 1.3			

Conc. units: ma/Ka

Conc. units: Ing/rd	S: IIIQ/NU				Associated Samples: 17-20	Samples:	17-70			
Analyte	Blank ID	Maximum						Sample Identification	ation	
	MB (mg/L)	(mg/L)	Action Limit	17	18	19	20			
Total AIK	11	1.0								
Bicarb. AIK	11									
Ö	1.3									
Surfactants	12			11/22	13/22	17/27 31/35	31/35			

Associated Samples: All except TOC*1: 2-12, TOC*2:13-19, TOC*3:20 (>RL) Conc. units: mg/Kg

Analyte	Blank ID	Maximum	Blank	Sample Identification
	MB	MB (mg/L)	Action Limit	
T0C	130			
T-P	1.6	0.0066		
TOC*1		143 mg/Kg		
T0C*2		127 mg/Kg		
TOC*3		85.1 mg/Kg		

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

2nd Reviewer. Reviewer:_

Page:___

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Reason Code: blease see qualifications below.

Note: A N/A Were all samples associated with a given method blank?

Note: A N/A Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below. Associated Samples: CI*1:2-4,6,CI*2: 5,10,CI*3:7,8 CI*4:9,11-20 (>RL) Conc. units: mg/Kg

Analyte	Blank	Maximum ICB/CCB	Maximum Blank ICB/CCB Action Limit	Sample Identification
	MB	(mg/L)		
C!*1		0.106		
Cl*2		0.135		
Cl*3		0.137		
CI*4		0.136		

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Page: of

2nd Reviewer: Reviewer:

Field Blanks

WETHOD: Inorganics, Method See Cover

Were field blanks identified in this SDG? V N N/A

Were target analytes detected in the field blanks? Y)N N/A

Blank units: mg/L Associated sample units: mg/Kg Sampling date: 7/01/09 Soil factor applied 10X Field blank type: (circle one) Field Blank / Rinsate / Other: EB

Reason Code: be

Associated Samples: None (EB is not from area 1)

Sample Identification Action Level 88 Blank ID 0.034 0.88 4.25 0 0 14 9.0 Total Phosphorus Ammonia as N TOC (average) pH (pH Units) Nitrate as N Analyte ರ

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET Field Blanks

Page: /_of_ Reviewer: 2nd Reviewer:__

METHOD: Inorganics, Method See Cover A N/A Were field blanks identified in this SDG?

Were target analytes detected in the field blanks? N N/A

Blank units: mg/L Associated sample units: mg/Kg Sampling date: 7/21/09 Soil factor applied 10X Field blank type: (circle one) Field Blank / Rinsate / Other: FB

Reason Code: bf

Associated Samples: 5-20

1.8/3.1 7.73 J+ 5 2.7/3.0 7.52 J+ 2 2.20 J+ 138 J+ 3.4)+ Ξ 1.1/2.2 203 J+ 71.9 J+ 3.65 J+ 9 Sample Identification 1.9/3.2 3.32 J+ თ 1.4 / 2.2 3.09 J+ 138 J+ ∞ 2.60 J+ 3.7 J+ 0.15 / 0.53 64.1 J+ 2.43 J+ 1.4/2.1 ဖ 0.22 / 0.51 1.2 / 2.1 37.3 J+ 2.82 J+ 175 J+ Ω. Action Level 15.9 19.1 970 176 550 FB072109-SO Blank ID 0.159 0.191 1.76 3.36 0.01 0.5 5.5 9.7 Total Phosphorus Ammonia as N TOC (average) pH (pH Units) Nitrate as N Surfactants Analyte Sulfate

Analyte	Blank ID					Sample	Sample Identification			
	FB072109-SO	Action Level	14	15	16	17	18	19	20	
Ammonia as N	0.191	19.1	0.33 / 0.55		0.27 / 0.85		0.37 / 0.55			
TOC (average)	0.5									
IJ	2.6	026				939 J+	189 J+	517 J+		
Nitrate as N	1.76	176	6.78 J+	5.72 J+	2.44 J+	10.8 J+	3.19 J+	7.55 J+	2.78 J+	
pH (pH Units)	3.36									
Total Phosphorus	0.01									
Sulfate	5.5	550	89.2 J+			442 J+	26.2 J+			
Surfactants	0.159	15.9	0.9 / 2.2	1.7 / 2.9	3.9 J+	1.1/2.2	1.3/2.2	1.7 / 2.7	3.1/3.5	

्रक त्या LDC #: 2149576

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: Reviewer:_ 2nd Reviewer:_

METHOD: Inorganics, EPA Method

3 3 Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(Y) N/A Was a matrix spike analyzed for each matrix in this SDG?

Y(N) N/A Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample conc

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor

of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD) < 20% for water samples and <35% for soil samples?

ON N/A WEI

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. γ N

*	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	ソニンソ	Sor	chineti		821		V	417 A (m)
上								(shirt or cated)
口								
1	-7	\(\frac{1}{2}\)	# 4 /	779			Į.	7-147/A (m.)
1			MATERIA SE	<i></i>				(4 x 12 control
1								
								·
1								
1								
上								
工								
ا ا	Comments:							
; }								

LDC #: >149576 SDG #: METHOD: Inorganics, Method_

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: Reviewer: 2nd Reviewer:

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Was a laboratory control sample (LCS) analyzed for each matrix in this SDG?

YN N/A Were all LCS percent recoveries (%R) within the control limits of 80-120% (85-115% for Method 300.0)?

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. X N K

	1			Ī	T	T	T	T	T	T	I	T	T	Ī			T	T	T	T		
T. IN. IV		1+ 57 /p. (1)																				
Associated Semulae	7 7-1	1, 10 1																				
%R (limits)	(1) (90-110)																					
Analyte	٣																					
Matrix												,										
CS ID	Les	·																			ents:	
*				1												1					Comments:_	

LDC#: <u>21495l6</u> SDG#: <u>See Cover</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: ___of __ Reviewer: _____ 2nd Reviewer: ____

Inorganics, Method See Cover

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrati	on (mg/Kg)				Qualification
Analyte	2	3	RPD (≤50)	Difference	Limits	(Parent only)
Ammonia as N	0.48	4.64		4.16	(≤0.55)	J det / A (fd)
Total Alkalinity	4750	4610	3			
Bicarbonate Alkalinity	4340	4260	2			
Carbonate Alkalinity	412	346	17			
Chloride	205	203	1			
Hexavalent Chromium	0.19U	18.9		18.71	(≤0.43)	J / UJ / A (fd)
Hexavalent Chromium	0.19U	19.1		18.91	(≤0.43)	J / UJ / A (fd)
Nitrate as N	12.4	12.3	1			
Nitrite as N	0.72	0.67	7			
pH (pH Units)	9.66	9.43	2			
Sulfate	299	350	16			
Surfactants	6.7	6.8	1			
тос	71800	71900	0			
Total Phosphorus	451	402	11			
Chlorate (ug/Kg)	416000	411000	1			
Perchlorate (ug/Kg)	34100	34900	2			

	Concentrati	on (mg/Kg)				O selification
Analyte	12	13	RPD (≤50)	Difference	Limits	Qualification (Parent only)
Total Alkalinity	368	370	1			

LDC#:_2149516 SDG#:_See Cover_

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: _____of___ Reviewer: _____ 2nd Reviewer: _____

Inorganics, Method See Cover

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrati	on (mg/Kg)				
Analyte	12	13	RPD (≤50)	Difference	Limits	Qualification (Parent only)
Bicarbonate Alkalinity	368	370	1			
Bromide	2.0	2.2		0.2	(≤1.5)	
Chloride	1780	1880	5			
Nitrate as N	7.52	7.73	3			
pH (pH Units)	7.94	7.89	1			
Sulfate	2510	2630	5			
Surfactants	2.7	1.8		0.9	(≤3.1)	
тос	950	1010		60	(≤880)	
Total Phosphorus	435	473	8			
Chlorate (ug/Kg)	1870	1870	0			
Perchlorate (ug/Kg)	31300	34200	9			

V:\FIELD DUPLICATES\FD_inorganic\21495l6.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation,

Henderson, Nevada

Collection Date:

June 25 through July 1, 2009

LDC Report Date:

September 29, 2009

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903561

Sample Identification

M-75B

M-13AB

M-13009AB

M-64B

M-111AB

EB062909-GW1

M-25B

M-12AB

M-110B

I-ARB

M-111ABMS

M-111ABMSD

M-111ABDUP

Introduction

This data review covers 13 water samples listed on the cover sheet. The analyses were per Standard Method 2320B for Alkalinity, EPA Method 350.1 for Ammonia as Nitrogen, EPA SW 846 Method 9056 for Bromide, Chloride, Nitrate as Nitrogen, and Sulfate, EPA Method 353.2 for Nitrite as Nitrogen, EPA 300.1 for Chlorate, EPA Method 120.1 for Conductivity, EPA SW 846 Method 9012A for Cyanide, EPA Method 218.6 for Dissolved Hexavalent Chromium, EPA SW 846 Method 9040B for pH, Standard Method 5540C for Surfactants, EPA Method 314.0 for Perchlorate, EPA Method 365.1 for Total Phosphorus, Standard Method 2540C for Total Dissolved Solids, Standard Method 2540D for Total Suspended Solids, and EPA SW 846 Method 9060 for Total Organic Carbon.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section X.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
M-75B	Perchlorate	34	28 days	J- (all detects) UJ (all non-detects)	Р
M-13AB M-13009AB M-64B	Perchlorate	33	28 days	J- (all detects) UJ (all non-detects)	Р
M-111AB M-111ABMS M-111ABMSD M-111ABDUP	Perchlorate	30	28 days	J- (all detects) UJ (all non-detects)	Р
EB062909-GW1 M-25B	Perchlorate	29	28 days	J- (all detects) UJ (all non-detects)	Р

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

Calibration verification frequency and analysis criteria were met for each method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Alkalinity, total Alkalinity, bicarbonate	1.0 mg/L 1.0 mg/L	All samples in SDG R0903561
ICB/CCB	Alkalinity, total	1.0 mg/L	All samples in SDG R0903561
мв	Total organic carbon	0.2 mg/L	M-75B M-13AB M-13009AB M-64B

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Total phosphorus	0.008 mg/L	M-75B M-13AB M-13009AB M-64B
МВ	Total phosphorus	0.005 mg/L	M-111AB EB062909-GW1 M-25B M-12AB M-110B I-ARB
ICB/CCB	Total phosphorus	0.008 mg/L	M-75B M-13AB M-13009AB M-64B
ICB/CCB	Total phosphorus	0.005 mg/L	M-111AB EB062909-GW1 M-25B M-12AB M-110B I-ARB
МВ	Chloride	0.13 mg/L	EB062909-GW1
ICB/CCB	Chloride	0.13 mg/L	EB062909-GW1
МВ	Chloride	0.13 mg/L	M-25B M-12AB M-110B
ICB/CCB	Chloride	0.14 mg/L	M-25B M-12AB
МВ	Chloride	0.16 mg/L	M-64B M-111AB I-ARB
ICB/CCB	Chloride	0.14 mg/L	M-64B M-111AB I-ARB

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
M-75B	Total phosphorus	0.026 mg/L	0.050U mg/L

Sample	Analyte	Reported Concentration	Modified Final Concentration
M-13AB	Total phosphorus	0.021 mg/L	0.050U mg/L
M-13009AB	Total phosphorus	0.019 mg/L	0.050U mg/L
M-64B	Total phosphorus	0.035 mg/L	0.050U mg/L
M-111AB	Total phosphorus	0.029 mg/L	0.050U mg/L
EB062909-GW1	Total phosphorus Chloride	0.015 mg/L 1.9 mg/L	0.050U mg/L 2.0U mg/L
M-25B	Total phosphorus	0.029 mg/L	0.050U mg/L
M-110B	Total phosphorus	0.021 mg/L	0.050U mg/L
I-ARB	Total phosphorus	0.021 mg/L	0.050U mg/L

Sample EB062909-GW1 was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:

Equipment Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
EB062909-GW1	6/29/09	Ammonia as N Total organic carbon Chloride Conductivity Nitrate as N pH Total phosphorus	0.012 mg/L 0.2 mg/L 1.9 mg/L 3.06 umhos/cm 0.84 mg/L 5.16 units 0.015 mg/L	No associated samples in this SDG

Sample MC-3B-FILT (from SDG R0902886) was identified as a filter blank. No contaminant concentrations were found in this blank.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Surrogates

Surrogates were added to all samples and blanks as required by method 300.1. All surrogate recoveries (%R) were within QC limits.

VIII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903561	All analytes reported below the PQL.	J (all detects)	A

Raw data were not reviewed for this SDG.

IX. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

Samples M-13AB and M-13009AB were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Conce	ntration				
Analyte	M-13AB	M-13009AB	RPD (Limits)	Difference (Limits)	Flag	A or P
Ammonia as N	0.035 mg/L	0.155 mg/L	-	0.12 (≤0.05)	J (all detects)	А
Alkalinity, total	118 mg/L	116 mg/L	2 (≤30)	-	-	-
Alkalinity, bicarbonate	118 mg/L	116 mg/L	2 (≤30)	-	-	-
Bromide	0.8 mg/L	0.9 mg/L	-	0.1 (≤1.0)	-	-
Chloride	236 mg/L	286 mg/L	19 (≤30)	-	-	-
Conductivity	4000 umhos/cm	3990 umhos/cm	0 (≤30)	-	-	-

	Conce	ntration				
Analyte	M-13AB	M-13009AB	RPD (Limits)	Difference (Limits)	Flag	A or P
Cyanide	0.041 mg/L	0.060 mg/L	-	0.019 (≤0.050)	-	-
Hexavalent Chromium	0.714 mg/L	0.720 mg/L	1 (≤30)	-	-	-
Nitrate as N	3.53 mg/L	4.88 mg/L	32 (≤30)	-	J (all detects)	А
рН	7.49 units	7.50 units	0 (≤30)	-	-	_
Sulfate	1440 mg/L	1480 mg/L	3 (≤30)	-	-	-
Surfactants	0.052 mg/L	0.052 mg/L	-	0 (≤0.020)	-	-
Total dissolved solids	3100 mg/L	3120 mg/L	1 (≤30)		-	-
Total organic carbon	1.4 mg/L	1.3 mg/L		0.1 (≤1.0)	-	-
Total phosphorus	0.021 mg/L	0.019 mg/L	-	0.002 (≤0.05)	-	-
Chlorate	284000 ug/L	284000 ug/L	0 (≤30)	-	-	-
Perchlorate	18500 ug/L	19500 ug/L	5 (≤30)	-	-	

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Data Qualification Summary - SDG R0903561

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
R0903561	M-75B M-13AB M-13009AB M-64B M-111AB EB062909-GW1 M-25B	Perchlorate	J- (all detects) UJ (all non-detects)	Р	Technical holding times (h)
R0903561	M-75B M-13AB M-13009AB M-64B M-111AB EB062909-GW1 M-25B M-12AB M-110B I-ARB	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (sp)
R0903561	M-13AB M-13009AB	Ammonia as N	J (all detects)	А	Field duplicates (Difference) (fd)
R0903561	M-13AB M-13009AB	Nitrate as N	J (all detects)	A	Field duplicates (RPD) (fd)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG R0903561

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903561	M-75B	Total phosphorus	0.050U mg/L	A	bl
R0903561	M-13AB	Total phosphorus	0.050U mg/L	А	bl
R0903561	M-13009AB	Total phosphorus	0.050U mg/L	А	bl
R0903561	M-64B	Total phosphorus	0.050U mg/L	А	bl
R0903561	M-111AB	Total phosphorus	0.050U mg/L	А	bl
R0903561	EB062909-GW1	Total phosphorus Chloride	0.050U mg/L 2.0U mg/L	A	bl
R0903561	M-25B	Total phosphorus	0.050U mg/L	А	bl

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903561	M-110B	Total phosphorus	0.050U mg/L	А	bl
R0903561	I-ARB	Total phosphorus	0.050U mg/L	А	bl

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Field Blank Data Qualification Summary - SDG R0903561

No Sample Data Qualified in this SDG

Trongy Northgate Henderson

	Tronox northgate frendereen
LDC #: 21495J6	VALIDATION COMPLETENESS WORKSHEET
SDG #: R0903561	Stage 2B
Laboratory: Columbia Analytical	Sanvicas

Date:_/	1/2/65
Page:_	_of_ <i>/</i>
Reviewer:_	
2nd Reviewer:_	<u> </u>
	,

oratory: <u>Columbia Analyticai Services</u>

METHOD: (Analyte) Alkalinity (SM2320B), Ammonia-N (EPA Method 350.1), Bromide, Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056), Nitrite-N (EPA Method 353.2), Chlorate (EPA Method 300.1), Conductivity (EPA Method 120.1), Cyanide (EPA SW846 Method 9012A), Dissolved Hexavalent Chromium (EPA Method 218.6), pH (EPA SW846 Method 9040B), Surfactants (SM5540C), Perchlorate (EPA Method 314.0), Total Phosphorus (EPA Method 365.1), TDS (SM2540C), TSS (SM2540D), TOC (EPA SW846 Method 9060), Cation-Anion Balance Difference, Calculated TDS/EC Ratio, Measured TDS/EC Ratio, Conductivity Ratio, TDS Ratio (SM1030E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	5W	Sampling dates: 6/x5/09 - 7/1/09
IIa.	Initial calibration	A	. , ,
IIb.	Calibration verification	1500 A	
III.	Blanks	5W	
IV	Surrogate	A	
V	Matrix Spike/Matrix Spike Duplicates	A	7 m 5 / m 50 /oup
VI.	Duplicates	A	<i>)</i>
VII.	Laboratory control samples	À	Listing
VIII.	Sample result verification	N N	'
IX.	Overall assessment of data	A	
X.	Field duplicates	5W	(2,3)
XI.	Field blanks	SW	Filter Blank=MC-3B-FILT (R0902886), EB=6

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

1	M-75B	11	M-111ABMS	21	MY)	31
2	M-13AB	12	M-111ABMSD	22		32
3	M-13009AB	13	M-111ABDUP	23		33
4	M-64B	14		24		34
5	M-111AB	15		25		35
6	EB062909-GW1	16		26		36
7	M-25B	17		27		37
8	M-12AB	18		28		38
9	M-110B	19		29		39
10	I-ARB	20		30		40

Notes:			

LDC #: 1495 Jb SDG #: see com

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: __l_of__ Reviewer: ____0 2nd reviewer: ____0

All circled methods are applicable to each sample.

Sample ID	Matrix	Parameter Parameter
I-10	As	Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
M1-13	M	Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁵⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
	***	Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr5+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
		CAB Calculate TDS/EC Measured TDS/EC Cond Ratio TDS Ratio
L		

Comments:

LDC #:_	71495Jb
SDG #:_	sum

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Reviewer:__ 2nd reviewer:

All circled dates have exceeded the technical holding time.

Y N N/A

Were all samples preserved as applicable to each method?

Y N N/A

Were all cooler temperatures within validation criteria? Y N N/A Y) N N/A

Y) N N/A Were all	cooler tempers	tures within vali	dation criteria?_				
Method:		3140					
Parameters:		loy.					
Technical holding tin	ne:	18 fgr					
Sample ID	Sampling date	Analysis date	Analysis date	Analysis date	Analysis date	Analysis date	Qualifier
	6/18/5	1/29/-1	(34 Lgr				Just/p
2,3		1/28/-9	(33 for	7			3/11/6
4	61669	7/29/09	(>> 10	~)	·		
5-11-13	6129/09	7/29/.9	(30 tax	·)			
6		7/28/09	(29 ty)			
<u> </u>	61301.9	1/29/39	(29 tay	~)			1
		,					
				·			

LDC #: 21495J6

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Page: Reviewer:_ 2nd Reviewer:

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Note: black of the integration of the integration

Conc. units: mg/l	ts: mg/L				Associate	d Samples:	Associated Samples: All (ND or > RL)	· RL)					
Analyte	Blank ID	Maximum	Blank					Sample Identification	entification				
	MB	ICB/CCB	Action Limit										
Total Alk	1.0	1.0											
Bicar Alk	1.0												
Conc. units: mg/L	ts: mg/L				Associate	Associated Samples: 1-4 (>RL)	1-4 (>RL)						
Analyte	Blank ID	Maximum	Blank					Sample Identification	ntification				
	MB	ICB/CCB	Action Limit										
TOC	0.2												
Conc. units: mg/L	ts: mg/L				Associate	d Samples:	Associated Samples: T-P*1:1-4, T-P*2:5-10	P*2:5-10					
Analyte	Blank ID	Maximum	Blank					Sample Identification	ntification				
	MB	ICB/CCB	Action Limit	-	2	3	4	S	9		6	10	
T-P*1	0.008	0.008		0.026 / 0.050 0.021	ı ~ı	0.050 0.019 / 0.050 0.035 / 0.050	0:035 / 0.050						
T-P*2	0.005	0.005						0.029 / 0.050	0.015 / 0.050	0.029 / 0.050	0.029 / 0.050 0.015 / 0.050 0.029 / 0.050 0.021 / 0.050 0.021 / 0.050	0.021 / 0.050	
Conc. units: mg/l	:s: mg/L				Associate	Associated Samples: 6							
Analyte	Blank ID	Maximum	Blank					Sample Identification	ntification				
	MB	ICB/CCB	Action Limit	9									

1.9 / 2.0

LDC #: 21495J6

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Blanks

Page: of 2nd Reviewer: Reviewer.

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a given method blank?

| N/A | N/A | Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below. Reason Code: bl

Sample Identification Associated Samples: MB: 7-9, ICB/CCB: 7,8 (>RL) Blank Action Limit Maximum ICB/CCB Blank ID Conc. units: mg/L MB Analyte

	1	1	7
ation			
Sample Identification			
Sar			
Blank	Action Limit		
	ICB/CCB	0.14	
Blank ID	MB	0.16	
nalyte			

Associated Samples: 4,5,10 (>RL)

Conc. units: mg/L

LDC #: 21495J6

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Field Blanks

2nd Reviewer: Page: Lof / Reviewer:_

METHOD: Inorganics, Method See Cover Vere field blanks identified in this SDG?

Were target analytes detected in the field blanks? Y N N/A

Blank units: mg/L Associated sample units: mg/L Sampling date: 6/29/09 Soil factor applied Field blank type: (circle one) Field Blank / Rinsate / Other: EB

Associated Samples: \$ Nove

Reason Code: be

cation								
Sample Identification							-	
	þ							
	Action Level					8.4		
Blank ID	9	0.012	0.2	1.9	3.06	0.84	5.16	1,000
Analyte		NH3-N	TOC (average)	Ö	Conductivity (umhos/cm)	NO3-N	pH (pH Units)	

LDC#:_21495J6 SDG#:_See Cover__

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: _ of _
Reviewer: ____
2nd Reviewer: ____

Inorganics, Method See Cover

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentra	tion (mg/L)				
Analyte	2	3	RPD (≤30)	Difference	Limits	Qualification (Parent only)
Ammonia as N	0.035	0.155		0.12	(≤0.05)	J det / A (fd)
Total Alkalinity	118	116	2			
Bicarbonate Alkalinity	118	116	2			
Bromide	0.8	0.9		0.1	(≤1.0)	
Chloride	236	286	19			
Conductivity (umhos/cm)	4000	3990	0			
Cyanide	0.041	0.060		0.019	(≤0.050)	
Hexavalent Chromium	0.714	0.720	1			
Nitrate as N	3.53	4.88	32			J det / A (fd)
pH (pH Units)	7.49	7.50	0			
Sulfate	1440	1480	3			
Surfactants	0.052	0.052		0	(≤0.020)	
TDS	3100	3120	1			
TOC, Average	1.4	1.3		0.1	(≤1.0)	
Total Phosphorus	0.021	0.019	**************************************	0.002	(≤0.05)	
Chlorate (ug/L)	284000	284000	0		.,,,	
Perchlorate (ug/L)	18500	19500	5			

V:\FIELD DUPLICATES\FD_inorganic\21495J6.wpd

LDC Report# 21495K6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation,

Henderson, Nevada

Collection Date:

June 25 through June 26, 2009

LDC Report Date:

November 2, 2009

Matrix:

Soil/Water

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903584

Sample Identification

SA202-10B

SA202-10BMSD

SA202-28B

SA202-10BDUP

RSAI3-10B

RSAI3-20B

10/10-200

RSAI3-32B

SA188-0.5B

SA172-0.5B

SA41-0.5B

SA44-0.5B

SA42-0.5B

RSAI2-10B

RSAI2009-10B

RSAI2-20B

RSAI2-31B

RSAJ2-10B

RSAJ2-20B

RSAJ2-33B

RSAJ2009-33B

EB062609-SO

SA202-10BMS

Introduction

This data review covers 21 soil samples and one water sample listed on the cover sheet. The analyses were per Standard Method 2320B for Alkalinity, EPA Method 350.1 for Ammonia as Nitrogen, EPA SW 846 Method 9056 for Bromide, Chloride, Nitrate as Nitrogen, and Sulfate, EPA Method 353.2 for Nitrite as Nitrogen, EPA 300.1 for Chlorate, EPA SW 846 Method 9012A for Cyanide, EPA SW 846 Method 7199 for Hexavalent Chromium, EPA SW 846 Method 9040B for pH, Standard Method 5540C for Surfactants, EPA Method 314.0 for Perchlorate, EPA Method 365.1 for Total Phosphorus, Standard Method 2540C for Total Dissolved Solids, Standard Method 2540D for Total suspended Solids, and EPA SW 846 Method 9060 and LLoyd Kahn Method for Total Organic Carbon.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section X.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met with the following exceptions:

Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
Perchlorate	33 days	28 days	J- (all detects)	Р
Hexavalent chromium	27 hours	24 hours	J- (all detects) UJ (all non-detects)	
	Perchlorate	Analyte Sample Collection Until Analysis Perchlorate 33 days	Analyte Sample Collection Until Analysis From Sample Collection Until Analysis Perchlorate 33 days 28 days	Analyte Sample Collection Until Analysis From Sample Collection Until Analysis Flag Perchlorate 33 days 28 days J- (all detects) Hexavalent chromium 27 hours 24 hours J- (all detects)

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

Calibration verification frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
7/2/09	CCV (22:09)	Bromide	174 (90-110)	EB062609-SO	R (all detects)	Р

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Concentration	Associated Samples
•	inity, total inity, bicarbonate ride	19 mg/Kg 19 mg/Kg 1 mg/Kg	SA202-10B SA202-28B RSAI3-10B RSAI3-20B RSAI3-32B SA18-0.5B SA172-0.5B SA41-0.5B SA44-0.5B SA42-0.5B

Method Blank ID	Analyte	Concentration	Associated Samples
ICB/CCB	Alkalinity, total Ammonia as N	1.0 mg/L 0.0056 mg/L	SA202-10B SA202-28B RSAI3-10B RSAI3-20B RSAI3-32B SA188-0.5B SA172-0.5B SA41-0.5B SA44-0.5B SA42-0.5B
МВ	Alkalinity, total Alkalinity, bicarbonate Chloride Nitrate as N	10 mg/Kg 10 mg/Kg 1.0 mg/Kg 0.46 mg/Kg	RSAI2-10B RSAI2009-10B RSAI2-20B RSAI2-31B RSAJ2-10B RSAJ2-20B RSAJ2-33B RSAJ2009-33B
ICB/CCB	Alkalinity, total	1.0 mg/L	RSAI2-10B RSAI2009-10B RSAI2-20B RSAI2-31B RSAJ2-10B RSAJ2-20B RSAJ2-33B RSAJ2009-33B
МВ	Total organic carbon	50 mg/Kg	SA202-10B SA202-28B RSAI3-10B RSAI3-20B RSAI3-32B SA188-0.5B SA172-0.5B SA41-0.5B SA44-0.5B SA42-0.5B RSAI2-10B RSAI2-10B RSAI2-20B RSAI2-20B
MB	Total organic carbon	70 mg/Kg	RSAI2-31B RSAJ2-20B RSAJ2-33B RSAJ2009-33B

Method Blank ID	Analyte	Concentration	Associated Samples
ICB/CCB	Total organic carbon	58 mg/Kg	SA202-10B SA202-28B RSAI3-10B RSAI3-20B RSAI3-32B SA188-0.5B SA172-0.5B SA41-0.5B SA44-0.5B SA42-0.5B RSAI2-10B RSAI2-10B RSAI2-20B RSAI2-10B
ICB/CCB	Total organic carbon	71 mg/Kg	RSAI2-31B RSAJ2-20B RSAJ2-33B RSAJ2009-33B
ICB/CCB	Chloride	0.103 mg/L	SA202-10B SA41-0.5B SA44-0.5B SA42-0.5B
ICB/CCB	Chloride	0.094 mg/L	RSAI2-10B RSAI2009-10B RSAI2-20B
ICB/CCB	Chloride	0.106 mg/L	SA202-28B RSAI3-10B RSAI3-20B RSAI3-32B SA188-0.5B
ICB/CCB	Chloride	0.111 mg/L	SA172-0.5B RSAI2-31B RSAJ2-10B RSAJ2-20B RSAJ2-33B RSAJ2009-33B
МВ	Total phosphorus	1.3 mg/Kg	All samples in SDG R0903584
ICB/CCB	Total phosphorus	0.0073 mg/L	All samples in SDG R0903584
МВ	Alkalinity, total Alkalinity, bicarbonate Bromide Chloride Total phosphorus	1.0 mg/L 1.0 mg/L 0.06 mg/L 0.1 mg/L 0.005 mg/L	EB062609-SO

Method Blank ID	Analyte	Concentration	Associated Samples
ICB/CCB	Alkalinity, total Bromide Chloride Total phosphorus	1.0 mg/L 0.078 mg/L 0.099 mg/L 0.0052 mg/L	EB062609-SO

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
SA202-10B	Ammonia as N	0.39 mg/Kg	0.55U mg/Kg
RSAI3-10B	Ammonia as N 0.43 mg/Kg		0.55U mg/Kg
RSAI3-20B	Ammonia as N 0.21 mg/Kg		0.65U mg/Kg
SA44-0.5B	Ammonia as N	0.11 mg/Kg	0.52U mg/Kg
SA42-0.5B	Ammonia as N	0.13 mg/Kg	0.51U mg/Kg
RSAI2-20B	Chloride	1.6 mg/Kg	2.2U mg/Kg
RSAI3-32B	Total organic carbon	270 mg/Kg 290U mg/Kg	
EB062609-SO	Chloride Total phosphorus	1.0 mg/L 0.01 mg/L	2.0U mg/L 0.05U mg/L

Sample EB062609-SO was identified as an equipment blank. No contaminant concentrations were found in this blank with the following exceptions:

Equipment Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
EB062609-SO	6/26/09	Ammonia as N Chloride Nitrate as N pH Total phosphorus Sulfate Surfactants Chlorate	0.087 mg/L 1.0 mg/L 0.62 mg/L 6.27 units 0.01 mg/L 1.5 mg/L 0.016 mg/L 3 ug/L	RSAI2-10B RSAI2009-10B RSAI2-20B RSAI2-31B RSAJ2-10B RSAJ2-20B RSAJ2-33B RSAJ2009-33B
EB062609-SO	6/26/09	Total dissolved solids	6 mg/L	No associated samples in this SDG

Sample FB072109-SO (from SDG R0904016) was identified as a field blank. No contaminant concentrations were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
FB072109-SO	7/21/09	Ammonia as N Total organic carbon Chloride Nitrate as N pH Total phosphorus Sulfate Surfactants	0.191 mg/L 0.5 mg/L 9.7 mg/L 1.76 mg/L 3.36 mg/L 0.01 mg/L 5.5 mg/L 0.159 mg/L	SA202-10B SA202-28B RSAI3-10B RSAI3-20B RSAI2-30B RSAI2-10B RSAI2-09-10B RSAI2-20B RSAI2-31B RSAJ2-10B RSAJ2-10B RSAJ2-33B RSAJ2-33B RSAJ2-33B

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
SA202-10B	Ammonia as N	0.39 mg/Kg	0.55U mg/Kg
	Nitrate as N	6.18 mg/Kg	6.18J+ mg/Kg
	Sulfate	321 mg/Kg	321J+ mg/Kg
	Surfactants	2.4 mg/Kg	2.4J+ mg/Kg
SA202-28B	Chloride	864 mg/Kg	864J+ mg/Kg
	Nitrate as N	2.65 mg/Kg	2.65J+ mg/Kg
	Surfactants	1.3 mg/Kg	3.2U mg/Kg
RSAl3-10B	Ammonia as N	0.43 mg/Kg	0.55U mg/Kg
	Chloride	177 mg/Kg	177J+ mg/Kg
	Nitrate as N	1.41 mg/Kg	1.41J+ mg/Kg
	Sulfate	170 mg/Kg	170J+ mg/Kg
	Surfactants	2.5 mg/Kg	2.5J+ mg/Kg
RSAI3-20B	Ammonia as N	0.21 mg/Kg	0.65U mg/Kg
	Chloride	934 mg/Kg	934J+ mg/Kg
	Nitrate as N	2.29 mg/Kg	2.29J+ mg/Kg
	Surfactants	3.0 mg/Kg	3.0J+ mg/Kg
RSAl3-32B	Nitrate as N	2.05 mg/Kg	2.05J+ mg/Kg
	Surfactants	3.6 mg/Kg	3.6J+ mg/Kg
RSAI2-10B	Ammonia as N	0.08 mg/Kg	0.54U mg/Kg
	Chloride	4.5 mg/Kg	4.5J+ mg/Kg
	Nitrate as N	1.08 mg/Kg	1.08J+ mg/Kg
	Sulfate	12.2 mg/Kg	12.2J+ mg/Kg
	Surfactants	1.3 mg/Kg	2.2U mg/Kg

Sample	Analyte	Reported Concentration	Modified Final Concentration
RSAI2009-10B	Ammonia as N	0.11 mg/Kg	0.54U mg/Kg
	Chloride	6.8 mg/Kg	6.8J+ mg/Kg
	Nitrate as N	0.98 mg/Kg	0.98J+ mg/Kg
	Sulfate	15.0 mg/Kg	15.0J+ mg/Kg
	Chlorate	198 ug/Kg	220U ug/Kg
RSAI2-20B	Chloride	1.6 mg/Kg	2.2U mg/Kg
	Nitrate as N	0.71 mg/Kg	0.71J+ mg/Kg
	Surfactants	1.3 mg/Kg	2.2U mg/Kg
	Chlorate	62 ug/Kg	220U Ug/Kg
RSAI2-31B	Nitrate as N	0.93 mg/Kg	0.93J+ mg/Kg
	Surfactants	2.0 mg/Kg	3.2U mg/Kg
	Chlorate	69 Ug/Kg	320U Ug/Kg
RSAJ2-10B	Ammonia as N	0.09 mg/Kg	0.54U mg/Kg
	Nitrate as N	2.15 mg/Kg	2.15J+ mg/Kg
	Sulfate	146 mg/Kg	146J+ mg/Kg
	Surfactants	1.3 mg/Kg	2.2U mg/Kg
RSAJ2-20B	Ammonia as N	0.18 mg/Kg	0.53U mg/Kg
	Chloride	828 mg/Kg	828J+ mg/Kg
	Nitrate as N	1.20 mg/Kg	1.20J+ mg/Kg
	Surfactants	1.2 mg/Kg	2.1U mg/Kg
RSAJ2-33B	Nitrate as N	0.90 mg/Kg	0.90J+ mg/Kg
	Surfactants	1.9 mg/Kg	3.4U mg/Kg
RSAJ2009-33B	Ammonia as N	0.18 mg/Kg	0.88U mg/Kg
	Nitrate as N	0.96 mg/Kg	0.96J+ mg/Kg
	Surfactants	2.5 mg/Kg	3.5U mg/Kg
	Chlorate	71 ug/Kg	360U Ug/Kg

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Analyte	RPD (Limits)	Difference (Limits)	Flag	A or P
SA202-10BDUP (SA202-10B SA202-28B RSAI3-10B RSAI3-20B RSAI3-32B RSAI2-10B RSAI2-09-10B RSAI2-20B RSAI2-31B RSAJ2-10B RSAJ2-10B RSAJ2-33B RSAJ2-33B RSAJ2-33B	Perchiorate	21 (≤20)	-	J (all detects) UJ (all non-detects)	A

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
LCS	Hexavalent chromium	91 (92-110)	All water samples in SDG R0903584	J- (all detects) UJ (all non-detects)	Р

VII. Surrogates

Surrogates were added to all samples and blanks as required by method 300.1. All surrogate recoveries (%R) were within QC limits.

VIII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903584	All analytes reported below the PQL.	J (all detects)	Α

Raw data were not reviewed for this SDG.

IX. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

Samples RSAI2-10B and RSAI2009-10B and samples RSAJ2-33B and RSAJ2009-33B were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Conce	ntration				
Analyte	RSAI2-10B	RSAI2009-10B	RPD (Limits)	Difference (Limits)	Flag	A or P
Ammonia as N	0.08 mg/Kg	0.11 mg/Kg	-	0.03 (≤0.54)	-	-
Alkalinity, total	1700 mg/Kg	1730 mg/Kg	2 (≤50)	-	-	-
Alkalinity, bicarbonate	1560 mg/Kg	1620 mg/Kg	4 (≤50)	-	-	-
Alkalinity, carbonate	139 mg/Kg	113 mg/Kg	21 (≤50)	-	-	-
Chloride	4.5 mg/Kg	6.8 mg/Kg	-	2.3 (≤2.2)	J (all detects)	Α
Nitrate as N	1.08 mg/Kg	0.98 mg/Kg	-	0.1 (≤0.54)	-	4
рН	9.89 units	9.8 units	1 (≤50)	-	-	-
Sulfate	12.2 mg/Kg	15 mg/Kg	21 (≤50)	-	-	•
Surfactants	1.3 mg/Kg	0.6U mg/Kg	-	0.7 (≤2.2)	_	-
Total organic carbon	530 mg/Kg	610 mg/Kg	-	80 (≤360)	-	-
Total phosphorus	891 mg/Kg	846 mg/Kg	5 (≤50)	-	-	-
Chlorate	335 ug/Kg	198 ug/Kg	-	137 (≤2204)	-	-
Perchlorate	375 ug/Kg	470 ug/Kg	22 (≤50)	-	-	-

	Concentration					
Analyte	RSAJ2-33B	RSAJ2009-33B	RPD (Limits)	Difference (Limits)	Flag	A or P
Ammonia as N	0.08U mg/Kg	0.18 mg/Kg	-	0.1(≤0.88)	-	-
Alkalinity, total	366 mg/Kg	416 mg/Kg	13 (≤50)	-	-	-

Revision 1

	Conce	ntration				
Analyte	RSAJ2-33B	RSAJ2009-33B	RPD (Limits)	Difference (Limits)	Flag	A or P
Alkalinity, bicarbonate	366 mg/Kg	416 mg/Kg	13 (≤50)	-	-	-
Bromide	26.2 mg/Kg	30.8 mg/Kg	16 (≤50)	•	-	
Chloride	2450 mg/Kg	2660 mg/Kg	8 (≤50)	-	<u>-</u>	-
Nitrate as N	0.90 mg/Kg	0.96 mg/Kg	-	0.06 (≤0.88)	-	-
pH	8.80 units	8.14 units	8 (≤50)		-	•
Sulfate	890 mg/Kg	1030 mg/Kg	15 (≤50)		-	-
Surfactants	1.9 mg/Kg	2.5 mg/Kg	-	0.6 (≤3.5)	-	-
Total organic carbon	540 mg/Kg	520 mg/Kg	-	20 (≤300)	-	-
Total phosphorus	711 mg/Kg	755 mg/Kg	6 (≤50)	-	-	-
Chlorate	69U ug/Kg	71 ug/Kg	-	2 (≤360)	-	-

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Data Qualification Summary - SDG R0903584

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
R0903584	EB062609-SO	Perchlorate Hexavalent chromium	J- (all detects) UJ (all non-detects) J- (all detects) UJ (all non-detects)	Р	Technical holding times (h)
R0903584	EB062609-SO	Bromide	R (all detects)	Р	Calibration (CCV %R) (c)
R0903584	SA202-10B SA202-28B RSAI3-10B RSAI3-20B RSAI2-32B RSAI2-10B RSAI2-20B RSAI2-31B RSAI2-31B RSAJ2-10B RSAJ2-33B RSAJ2-33B RSAJ2-33B	Perchlorate	J (all detects) UJ (all non-detects)	A	Duplicate sample analysis (RPD) (Id)
R0903584	EB062609-SO	Hexavalent chromium	J- (all detects) UJ (all non-detects)	Р	Laboratory control samples (%R) (I)
R0903584	SA202-10B SA202-28B RSAI3-10B RSAI3-20B RSAI3-32B SA188-0.5B SA172-0.5B SA41-0.5B SA42-0.5B RSAI2-10B RSAI2-10B RSAI2-20B RSAI2-31B RSAI2-31B RSAI2-31B RSAI2-31B RSAI2-33B RSAI2-33B RSAI2-33B RSAI2-33B RSAI2-33B	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (sp)
R0903584	RSAI2-10B RSAI2009-10B	Chloride	J (all detects)	A	Field duplicates (Difference) (fd)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG R0903584

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903584	SA202-10B	Ammonia as N	0.55U mg/Kg	A	bl
R0903584	RSAl3-10B	Ammonia as N	0.55U mg/Kg	А	bl
R0903584	RSAI3-20B	Ammonia as N	0.65U mg/Kg	Α	bl
R0903584	SA44-0.5B	Ammonia as N	0.52U mg/Kg	Α	bl
R0903584	SA42-0.5B	Ammonia as N	0.51U mg/Kg	Α	bl
R0903584	RSAI2-20B	Chloride	2.2U mg/Kg	А	bl
R0903584	RSAI3-32B	Total organic carbon	290U mg/Kg	Α	bl
R0903584	EB062609-SO	Chloride Total phosphorus	2.0U mg/L 0.05U mg/L	A	bl

*Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Field Blank Data Qualification Summary - SDG R0903584

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
*R0903584	SA202-10B	Ammonia as N Nitrate as N Sulfate Surfactants	0.55U mg/Kg 6.18J+ mg/Kg 321J+ mg/Kg 2.4J+ mg/Kg	A	bf
*R0903584	SA202-28B	Chloride Nitrate as N Surfactants	864J+ mg/Kg 2.65J+ mg/Kg 3.2U mg/Kg	А	bf
*R0903584	RSAI3-10B	Ammonia as N Chloride Nitrate as N Sulfate Surfactants	0.55U mg/Kg 177J+ mg/Kg 1.41J+ mg/Kg 170J+ mg/Kg 2.5J+ mg/Kg	A	bf
*R0903584	RSAI3-20B	Ammonia as N Chloride Nitrate as N Surfactants	0.65U mg/Kg 934J+ mg/Kg 2.29J+ mg/Kg 3.0J+ mg/Kg	A	bf

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
*R0903584	RSAI3-32B	Nitrate as N Surfactants	2.05J+ mg/Kg 3.6J+ mg/Kg	A	bf
R0903584	RSAI2-10B	Ammonia as N Nitrate as N Surfactants	0.54U mg/Kg 1.08J+ mg/Kg 2.2U mg/Kg	A	be,bf
R0903584	RSAI2-10B	Chloride Sulfate	4.5J+ mg/Kg 12.2J+ mg/Kg	А	bf
*R0903584	RSAI2009-10B	Ammonia as N Nitrate as N	0.54U mg/Kg 0.98J+ mg/Kg	А	be,bf
*R0903584	RSAI2009-10B	Sulfate Chloride	15.0J+ mg/Kg 6.8J+ mg/Kg	А	bf
R0903584	RSAI2009-10B	Chlorate	220U ug/Kg	A	be
*R0903584	RSAI2-20B	Chloride Nitrate as N Surfactants	2.2U mg/Kg 0.71J+ mg/Kg 2.2U mg/Kg	A	be,bf
*R0903584	RSAI2-20B	Chlorate	220U Ug/Kg	А	be
R0903584	RSAI2-31B	Nitrate as N Surfactants	0.93J+ mg/Kg 3.2U mg/Kg	A	be,bf
R0903584	RSAI2-31B	Chlorate	320U Ug/Kg	А	be
R0903584	RSAJ2-10B	Ammonia as N Nitrate as N Surfactants	0.54U mg/Kg 2.15J+ mg/Kg 2.2U mg/Kg	A	be,bf
R0903584	RSAJ2-10B	Sulfate	146J+ mg/Kg	А	bf
R0903584	RSAJ2-20B	Ammonia as N Nitrate as N Surfactants	0.53U mg/Kg 1.20J+ mg/Kg 2.1U mg/Kg	A	be,bf
R0903584	RSAJ2-20B	Chloride	828J+ mg/Kg	А	bf
R0903584	RSAJ2-33B	Nitrate as N Surfactants	0.90J+ mg/Kg 3.4U mg/Kg	A	bf

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903584	RSAJ2009-33B	Ammonia as N Nitrate as N Surfactants	0.88U mg/Kg 0.96J+ mg/Kg 3.5U mg/Kg	А	be,bf
R0903584	RSAJ2009-33B	Chlorate	360U Ug/Kg	Α	be

^{*}Changed codes for samples noted above

ET

	Tronox Northgate Henderson
LDC #: 21495K6 V	ALIDATION COMPLETENESS WORKSHE
SDG #: R0903584	Stage 2B
Laboratory: Columbia Analytical S	

Reviewer 2nd Reviewer

METHOD: (Analyte) Alkalinity (SM2320B), Ammonia-N (EPA Method 350.1), Bromide, Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056), Nitrite-N (EPA Method 353.2), Chlorate (EPA Method 300.1), Cyanide (EPA SW846 Method 9012A), Hexavalent Chromium (EPA SW846 Method 7199), pH (EPA SW846 Method 9040B/9045D), Surfactants (SM5540C), Perchlorate (EPA Method 314.0), Total Phosphorus (EPA Method 365.1), TOC (Lloyd/Kahn / EPA SW846 Method 9060), TDS (SM2540C), TSS (SM2540D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	SW	Sampling dates: 6/20109 6/26/09
IIa.	Initial calibration	A	
IIb.	Calibration verification	(W	
111.	Blanks	SW	
IV	Surrogate	A	
V	Matrix Spike/Matrix Spike Duplicates	Á-	7 ms/mm/140
VI.	Duplicates	SW	
VII.	Laboratory control samples	SW	Lcs
VIII.	Sample result verification	N	
IX.	Overall assessment of data	A	
X.	Field duplicates	SW	(11,12), (17,18)
_XI	Field blanks	SW	FB=FB072109-SO (SDG: R0904016), EB=19

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank

Validated Samples:

1	SA202-10B	11	RSAI2-10B	21	SA202-10BMSD	31	MR
2	SA202-28B	12	RSAI2009-10B	22	SA202-10BDUP	32	
3	RSAI3-10B	13	RSAI2-20B	23		33	
4	RSAI3-20B	14	RSAI2-31B	24		34	
5	RSAI3-32B	15	RSAJ2-10B	25		35	,
6	SA188-0.5B	16	RSAJ2-20B	26		36	
7	SA172-0.5B	17	RSAJ2-33B	27		37	
8	SA41-0.5B	18	RSAJ2009-33B	28		38	
9	SA44-0.5B	19	EB062609-SO	29		39	_
10	SA42-0.5B	20	SA202-10BMS	30		40	

Notes:	

LDC #: 1495 Kg SDG #: www

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

All circled methods are applicable to each sample.

Sample ID	<u>Matrix</u>	Parameter
-18	(oi)	(Alk pH Br Cl NO, NO, SO, NH, TOC CN Crs+ T-P MBAS) TDS TSS Cond (CIO, CIO,
19	A2	Alk pH Br Cl NO, NO, SO, NH, TOC CN Cr T-P MBAS TDS TS Cond (CIO, CIO,
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
20-22	50.	Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
	-	Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁵⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁵⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
-		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr5+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr8+ T-P MBAS TDS TSS Cond CIO3 CIO4
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁵⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁵⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁵⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
	L	

Comments:	

LDC #:_	Y	495 K6
SDG #:		ce com

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:_	l of l
Reviewer:_	n-
2nd reviewer:_	<u></u>
-	

All excled dates have exceeded the technical holding time.

Y(N)N/A

Were all samples preserved as applicable to Were all cooler temperatures within validation. Were all samples preserved as applicable to each method?
Were all cooler temperatures within validation criteria?

Method:		314,0		1199			
Parameters:		cloy		Crot			
Technical holding t	ime:	28 42		7fhr(meresen	117	
Sample ID	Sampling date	Analysis date	Analysis date	Analysis date	Analysis date	Analysis date	Qualifier
19	6/26/09	7/29/09	(33 ta	L)			J-/ut/p
		,	ð	1			/ "/P
FF (m			M. 1		·		
19	6/16/05			6/24/29	(27h		J-/42/p
· · · · · · · · · · · · · · · · · · ·				10-7, 1012	1 ~	/	- //
				·			

LDC # MYREG

VALIDATION FINDINGS WORKSHEET Calibration

Page: Reviewer: 2nd Reviewer:

METHOD: Inorganics, EPA Method_

EVEL JAKD ONLY:

Y N KVA

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| N | N/A | Were all instruments calibrated daily, each set-up time, and were the proper number of standards used?
| N | N/A | Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110%?

Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recaluculation Worksheet for recalulations. Was a balance check conducted prior to the TDS analysis.? Was the titrant normality checked? Y N WA

	ır-	Ť	T	T	1	7	1	7	-	1	7	_	-	_	<u> </u>	_		-	_		
Qualifications	RITE (C)	7																			
Associated Samples																					
%R ::	(74																				
Analyte	By																				
Calibration ID	Ced (2209)		i i																		
Date	0 2 6																:				
#																	Ī	Ī	1		

Comments:

LDC #: <u>21495K6</u> SDG #: <u>See Cover</u>

VALIDATION FINDINGS WORKSHEET Blanks

Reviewer.

Reason Code: bl

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". (Y) N N/A. Were all samples associated with a given method blank? N N/A

NNA Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Sample Identification Sample Identification Sample Identification Associated Samples: TOC*1; 1-13,15, TOC*2:14,16-18 0.13/0.51 9 Associated Samples: 1-10 (>RL) 0.11/0.52 တ 11-18 0.21 / 0.65 Associated Samples: 4 0.43 / 0.55 က 0.39 / 0.55 1.6 / 2.2 270 / 290 5 2 Blank Action Limit Blank Action Limit Blank Action Limit Maximum ICB/CCB Maximum ICB/CCB (mg/Kg) Maximum ICB/CCB 0.0056 (mg/L) (mg/L) 1.0 0. 28 Blank ID Blank ID Blank 1D Conc. units: mg/Kg 0.46 Conc. units: mg/Kg æ 0. Conc. units: mg/Kg 9 9 MB 5 8 <u>0</u> 20 Analyte Bicarb. AIK Analyte Bicarb, AIK Analyte **Fotal AIK** otal AIK NH3-N NO3-N TOC*1

SDG #; See Cover LDC #: 21495K6

VALIDATION FINDINGS WORKSHEET

Page: 2 of Reviewer.

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Note all samples associated with a given method blank?

Note all samples associated with a given method blank?

Note any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Conc. units: mg/Kg	: mg/Kg	-			Associated San	Associated Samples: C *1.1 8.10 C *2.11.12 C *2.0 6 C *1.17.10 C *2.11.10 C *	*2.44 42 CI*2.2 6	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9	
Analyte	Blank ID	Maximum ICB/CCB	Blank Action Limit			Sample	Sample Identification	C-4:7,14-1	20	
	MB	(mg/L)		13						
Ci-1		0.103								
CI*2		0.094		1.6 / 2.2						
C * 3		0.106								
CI*4		0.111								
Conc. units: mg/Kg	mg/Kg				Associated Samples: All Soil (>RL)	Soil (>RL)				
Analyte	Blank ID	Maximum ICB/CCB	Blank				Sample Identification			
	MB	(mg/L)		-						
I.P	13	0.0073								
Conc. units: mg/L	mg/L			Associa	iated Samples: 19					
Analyte	Blank ID	Maximum	Blank			clames	- in in			
	MB	ICB/CCB (mg/L)	Action	19		Taidings				
Total AIK	1.0	1.0								
Bicarb, AIK	1.0									
ä	0.06	0.078								
Č										-
3	0.1	0.099		1.0 / 2.0						

SDG #: See Cover LDC #: 21495K6

VALIDATION FINDINGS WORKSHEET

Page: 2 of 2

2nd Reviewer:_ Reviewer:

Field Blanks

Were field blanks identified in this SDG? METHOD: Inorganics, Method See Cover

Were target analytes detected in the field blanks?

Blank units: mg/L Associated sample units: mg/Kg N N/A

Sampling date: 6/26/09 Soil factor applied 10X Field blank type: (circle one) Field Blank / Rinsate / Other: EB

Reason Code: be

Associated Samples: 11-18 except TDS:None

Analyte	Blank ID					Samule	Sample Identification				
	19	Action	11	12	13	14	15	16	17	18	
Ammonia as N	0.087	8.7	0.08 / 0.54 0.11 / 0.54	0.11/0.54			0.09 / 0.54	0.18 / 0.53		0.18 / 0.88	
Ö	1.0				1.6 / 2.2						
Nitrate as N	0.62	62	1.08 J+	0.98 J+	0.71 J+	0.93 J+	2.15 J+	1.20.J+	+1.06.0	+1 96 0	
pH (pH Units)	6.27										
Total Phosphorus	0.01										
Sulfate	1.5										
Surfactants	0.016		1.3 / 2.2		1.3 / 2.2	2.0/3.2	13/22	12/21	19/34	25/35	
TDS	9									2.5.75.2	

Associated sample units: ug/Kg Blank units: ug/L

	7	T
Sample Identification		
Sample Ic	18	71 / 360
	41	69 / 320
	13	62 / 220
	12	198 / 220
	Action Level	
Blank ID	19	3
Analyte		Chlorate

LDC #: 21495K6 SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Field Blanks

2nd Reviewer:

Reviewer:__ Page:

Were field blanks identified in this SDG?

Were target analytes detected in the field b Blank units: mg/L Associated sample units: mg/Kg Sampling date: 7/21/09 Soil factor applied 10x METHOD: Inorganics, Method <u>See Cover</u> の N/A Were field blanks identified in this SDG?

Were target analytes detected in the field blanks?

Sampling date: 7/21/09 Soil factor applied 10X Field blank type: (circle one) Field Blank / Rinsate / Other: FB

Reason Code: bf

Associated Samples: 1-5, 11-18

2.0/3.2 0.93 J+ 4 1.3/2.2 1.6 / 2.2 0.71 J+ 5 0.11/0.54 0.98 J+ 15,0 J+ 6.8 J+ 걸 0.08 / 0.54 1.3 / 2.2 12.2 J+ 4.5 J+ 1.08 J+ - Sample Identification 3.6 J+ 2.05 J+ S 0.21 / 0.65 2.29 J+ 934 J+ 3.0 J+ 0.43 / 0.55 177 J+ 1.41 J+ 170 J+ 2.5 J+ 1.3/3.2 2.65 J+ 864 J+ 2 0.39 / 0.55 6.18 J+ 321 J+ 2.4 J+ Action Level 19.1 15.9 970 550 176 FB072109-SO Blank ID 0.159 0.191 1.76 3.36 0.01 0.5 9.7 Total Phosphorus TOC (average) Ammonia as N pH (pH Units) Nitrate as N Surfactants Sulfate Analyte ਹ

FB072109-SO Action 15 16 17 Level Level 19.1 0.097 0.54 0.18 / 0.53 0.18 0.191 19.1 0.097 0.54 0.18 / 0.53 0.18 0.1	Sample Identification	Iration
0.191 19.1 0.09 / 0.54 0.18 / 0.53 0.5 828 J+ 828 J+ 1.76 176 2.15 J+ 1.20 J+ 0.90 J+ 3.36 0.01 146 J+ 0.46 J+	16 17	
9.7 970 828 J+ 1.76 176 2.15 J+ 1.20 J+ 0.90 J+ 3.36 146 J+	0.18 / 0.53	
9.7 970 828 J+ 1.76 176 2.15 J+ 1.20 J+ 0.90 J+ 3.36 0.01 6.01		
1.76 176 2.15 J+ 1.20 J+ 0.90 J+ 3.36 0.01 5.5 550 146 J+	828 J+	
3.36 0.01 5.5 550 146.J+	1.20 3+ 0.90 3+	
5.5 550 146 J+		
5.5 550 146 J+		
1	46 J+	
Sunactants 0.159 15.9 1.372.2 1.272.1 1.973.4 2.573.5	1.2/2.1	

のからかん LDC #: SDG #:

VALIDATION FINDINGS WORKSHEET Duplicate Analysis

Page: Reviewer: 2nd Reviewer:

METHOD: Inorganics, Method_

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a duplicate sample analyzed for each matrix in this SDG? N N/A

Were all duplicate sample relative percent differences (RPD) ≤ 20% for water and ≤ 35% for soil samples (≤ 10% for Method 300.0)? If no, see qualification below, A control limit of ±CRDL (±2X CRDL for soil) was used for samples that were ≤5X the CRDL, including when only one of the duplicate sample values were ≤5X the CRDL If field blanks were used for laboratory duplicates, see overall assessment.

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. × N KD

							Ī
*	Duplicate ID	Matrix	Analyte	RPD (Limite)	Associated Samples	Qualifications	
_	2	55	top	7	81-11-5-1	Jhz/A (24)	
			,				
			-				
							-
							$\overline{}$
Com	Comments:						1
							1
		AND DESCRIPTION OF THE PROPERTY OF THE PERSON OF THE PERSO	The state of the s				ļ

DUP.6

LDC #: 2149X

METHOD: Inorganics, Method_

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:

2nd Reviewer:

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| N | N/A | Was a laboratory control sample (LCS) analyzed for each matrix in this SDG?
| N | N/A | Were all LCS percent recoveries (%R) within the control limits of 80-120% (85-115% for Method 300.0)?
| LEVEL IV ONLY:
| N | N/A | Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

# CS ID	Matrix				
		Analyte	%R (Ilmits)	Associated Samples	
1/2	8	5	1 10 10		Qualifications
			1	臣臣	70) Q/21/-C
			·		
				٠	
comments:					

LDC#:_	<u>21495K6</u>	
SDG#:	See Cover	

VALIDATION FINDINGS WORKSHEET Field Duplicates

	Page:_	of	<u>ン</u>
	Reviewer:	1	
2nd	Reviewer:		
200	· · · · ·		7

Inorganics, Method See Cover

YN NA ON NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentra	tion (mg/Kg)				
Analyte	11	12	RPD (≤50)	Difference	Limits	Qualification (Parent only)
Ammonia as N	0.08	0.11	ì	0.03	(≤0.54)	
Total Alkalinity	1700	1730	2			·
Bicarbonate Alkalinity	1560	1620	4			
Carbonate Alkalinity	139	113	21			
Chloride	4.5	6.8	·	2.3	(≤2.2)	J det / A (fd)
Nitrate as N	1.08	0.98		0.1	(≤0.54)	
pH (pH Units)	9.89	9.80	1			
Sulfate	12.2	15.0	21			
Surfactants	1.3	0.6U		0.7	(≤2.2)	
тос	530	610		80	(≤360)	
Total Phosphorus	891	846	5			•
Chlorate (ug/Kg)	335	198		137	(≤220)	
Perchlorate (ug/Kg)	375	470	22			

	Concentra	tion (mg/Kg)				0
Analyte	17	18	RPD (≤50)	Difference	Limits	Qualification (Parent only)
Ammonia as N	0.08U	0.18		0.1	(≤0,88)	
Total Alkalinity	366	416	13		-1.4	
Bicarbonate Alkalinity	366	416	13			
Bromide	26.2	30.8	16			

LDC#:	21495K6
_	See Cover

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_∑of_	2
Reviewer:	
2nd Reviewer:	
	I ⁻ -

Inorganics, Method See Cover

YN NA WN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrat	Concentration (mg/Kg)				
Analyte	17	18	RPD (≤50)	Difference	Limits	Qualification (Parent only)
Chloride	2450	2660	8			
Nitrate as N	0.90	0.96		0.06	(≤0.88)	
pH (pH Units)	8.80	8.14	8			
Sulfate	890	1030	15	140/	(N)	
Surfactants	1.9	2.5		0.6	(≤3.5)	
тос	540	520		20	(≤300)	
Total Phosphorus	711	755	6			
Chlorate (ug/Kg)	69U	71		2	(≤360)	

V:\FIELD DUPLICATES\FD_inorganic\21495K6.wpd

LDC Report# 21495L6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation,

Henderson, Nevada

Collection Date:

July 6 through July 7, 2009

LDC Report Date:

November 3, 2009

Matrix:

Soil

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903729

Sample Identification

SA206-0.5B

SA206-10B

SA206-25B

SA206-30B

RSAK4-10B

RSAK4-20B

RSAK4-31B

RSAL4-0.5B

RSAL4009-0.5B

RSAL4-10B

RSAL4-28B

SA100-10B

SA100-30B

SA69-0.5B

SA69-10B

SA69-29B

SA206-30BMS

SA206-30BMSD

SA206-30BDUP

Introduction

This data review covers 19 soil samples listed on the cover sheet. The analyses were per Standard Method 2320B for Alkalinity, EPA Method 350.1 for Ammonia as Nitrogen, EPA SW 846 Method 9056 for Bromide, Chloride, Nitrate as Nitrogen, and Sulfate, EPA Method 353.2 for Nitrite as Nitrogen, EPA 300.1 for Chlorate, EPA SW 846 Method 9012A for Cyanide, EPA SW 846 Method 7199 for Hexavalent Chromium, EPA SW 846 Method 9045D for pH, Standard Method 5540C for Surfactants, EPA Method 314.0 for Perchlorate, EPA Method 365.1 for Total Phosphorus, and Lloyd/Kahn Method for Total Organic Carbon.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section X.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

Calibration verification frequency and analysis criteria were met for each method when applicable.

*III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Alkalinity, total Alkalinity, bicarbonate Chloride Surfactants	11 mg/Kg 11 mg/Kg 1.3 mg/Kg 1.2 mg/Kg	SA206-0.5B SA206-10B SA206-25B
ICB/CCB	Alkalinity, total	1.0 mg/L	SA206-0.5B SA206-10B SA206-25B
МВ	Alkalinity, total Alkalinity, bicarbonate Chloride	12 mg/Kg 12 mg/Kg 1.3 mg/Kg	SA206-30B RSAK4-10B RSAK4-20B RSAK4-31B RSAL4-0.5B RSAL409-0.5B RSAL4-10B RSAL4-28B SA100-10B SA100-30B
ІСВ/ССВ	Alkalinity, total	1.0 mg/L	SA206-30B RSAK4-10B RSAK4-20B RSAK4-31B RSAL4-0.5B RSAL4-0.5B RSAL4-10B RSAL4-10B RSAL4-28B SA100-10B SA100-30B

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Alkalinity, total Alkalinity, bicarbonate Chloride	10 mg/Kg 10 mg/Kg 1.3 mg/Kg	SA69-0.5B SA69-10B SA69-29B
ICB/CCB	Alkalinity, total	0.5 mg/L	SA69-0.5B SA69-10B SA69-29B
ICB/CCB	Chloride	0.131 mg/L	SA69-0.5B SA69-10B
МВ	Total organic carbon	70 mg/Kg	SA206-0.5B SA206-10B SA206-25B SA206-30B RSAK4-10B RSAK4-20B RSAK4-21B RSAL4-0.5B RSAL4-0.5B RSAL4-10B RSAL4-10B RSAL4-28B SA100-10B
МВ	Total organic carbon	50 mg/Kg	SA100-30B SA69-0.5B SA69-10B SA69-29B
ICB/CCB	Total organic carbon	65.9 mg/Kg	SA206-0.5B SA206-10B SA206-25B SA206-30B RSAK4-10B RSAK4-20B RSAK4-31B RSAL4-0.5B RSAL4-0.5B RSAL4-10B RSAL4-10B RSAL4-10B RSAL4-28B SA100-10B
ICB/CCB	Total organic carbon	76.2 mg/Kg	SA100-30B SA69-0.5B SA69-10B SA69-29B
MB	Total phosphorus	1.6 mg/Kg	SA206-0.5B

Method Blank ID	Analyte	Concentration	Associated Samples
МВ	Total phosphorus	1.4 mg/Kg	SA206-10B SA206-25B SA206-30B RSAK4-10B RSAK4-20B RSAK4-31B RSAL4-0.5B RSAL4-0.5B RSAL4-10B RSAL4-10B RSAL4-10B SA100-10B SA100-30B SA69-0.5B SA69-10B SA69-29B
ICB/CCB	Total phosphorus	0.0066 mg/L	SA206-0.5B SA206-10B SA206-25B SA206-30B RSAK4-20B
ICB/CCB	Total phosphorus	0.0094 mg/L	RSAK4-10B RSAK4-31B RSAL4-0.5B RSAL4-009-0.5B RSAL4-10B RSAL4-28B SA100-10B SA100-30B SA69-0.5B SA69-10B SA69-29B
ICB/CCB	Chloride	0.148 mg/L	RSAK4-31B RSAL4-0.5B RSAL4009-0.5B RSAL4-10B RSAL4-28B SA69-29B
ICB/CCB	Chloride	0.139 mg/L	SA206-10B
*ICB/CCB	Sulfate	0.18 mg/L	SA69-0.5B SA69-10B

^{*}Changed analyte for ICB/CCB noted in table above

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
SA206-0.5B	Surfactants	1.9 mg/Kg	2.1U mg/Kg
SA206-10B	Surfactants	1.6 mg/Kg	2.2U mg/Kg
SA206-25B	Surfactants	2.0 mg/Kg	3.9U mg/Kg
SA69-10B	Chloride	1.9 mg/Kg	2.2U mg/Kg
SA206-30B	Total organic carbon	250 mg/Kg	290U mg/Kg
RSAL4-28B	Total organic carbon	290 mg/Kg	300U mg/Kg

Sample FB072109-SO (from SDG R0904016) was identified as a field blank. No contaminant concentrations were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
FB072109-SO	7/21/09	Ammonia as N Total organic carbon Chloride Nitrate as N pH Total phosphorus Sulfate Surfactants	0.191 mg/L 0.5 mg/L 9.7 mg/L 1.76 mg/L 3.36 mg/L 0.01 mg/L 5.5 mg/L 0.159 mg/L	All samples in SDG R0903729

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
SA206-0.5B	Chloride	409 mg/Kg	409J+ mg/Kg
	Nitrate as N	7.77 mg/Kg	7.77J+ mg/Kg
	Sulfate	475 mg/Kg	475J+ mg/Kg
	Surfactants	1.9 mg/Kg	2.1U mg/Kg
SA206-10B	Chloride	880 mg/Kg	880J+ mg/Kg
	Nitrate as N	2.71 mg/Kg	2.71J+ mg/Kg
	Surfactants	1.6 mg/Kg	2.2U mg/Kg
SA206-25B	Nitrate as N	2.04 mg/Kg	2.04J+ mg/Kg
	Surfactants	2.0 mg/Kg	3.9U mg/Kg

Sample	Analyte	Reported Concentration	Modified Final Concentration 290U mg/Kg 1.68J+ mg/Kg 3.3U mg/Kg	
SA206-30B	Total organic carbon Nitrate as N Surfactants	250 mg/Kg 1.68 mg/Kg 2.3 mg/Kg		
RSAK4-10B	Nitrate as N	14.8 mg/Kg	14.8J+ mg/Kg	
	Surfactants	0.9 mg/Kg	2.2U mg/Kg	
RSAK4-20B	Chloride	336 mg/Kg	336J+ mg/Kg	
	Nitrate as N	2.52 mg/Kg	2.52J+ mg/Kg	
	Surfactants	1.1 mg/Kg	2.2U mg/Kg	
RSAK4-31B	Chloride	284 mg/Kg	284J+ mg/Kg	
	Nitrate as N	4.20 mg/Kg	4.20J+ mg/Kg	
RSAL4-0.5B	Chloride Nitrate as N Sulfate Surfactants	195 mg/Kg 9.93 mg/Kg 276 mg/Kg 1.3 mg/Kg	195J+ mg/Kg 9.93J+ mg/Kg 276J+ mg/Kg 2.1U mg/Kg	
RSAL4009-0.5B	Chloride Nitrate as N Sulfate Surfactants	197 mg/Kg 9.91 mg/Kg 268 mg/Kg 1.2 mg/Kg	197J+ mg/Kg 9.91J+ mg/Kg 268J+ mg/Kg 2.1U mg/Kg	
RSAL4-10B	Chloride	409 mg/Kg	409J+ mg/Kg	
	Nitrate as N	7.30 mg/Kg	7.30J+ mg/Kg	
	Sulfate	163 mg/Kg	163J+ mg/Kg	
	Surfactants	1.5 mg/Kg	2.2U mg/Kg	
RSAL4-28B	Total organic carbon	290 mg/Kg	300U mg/Kg	
	Chloride	553 mg/Kg	553J+ mg/Kg	
	Nitrate as N	5.27 mg/Kg	5.27J+ mg/Kg	
	Surfactants	1.5 mg/Kg	3.7Umg/Kg	
SA100-10B	Nitrate as N	2.01 mg/Kg	2.01J+ mg/Kg	
	Surfactants	1.3 mg/Kg	2.2U mg/Kg	
SA100-30B	Nitrate as N	2.85 mg/Kg	2.85J+ mg/Kg	
	Surfactants	1.2 mg/Kg	3.1U mg/Kg	
SA69-0.5B	Chloride Nitrate as N Sulfate Surfactants	4.3 mg/Kg 1.42 mg/Kg 175 mg/Kg 1.2 mg/Kg	4.3J+ mg/Kg 1.42J+ mg/Kg 175J+ mg/Kg 2.2U mg/Kg	
SA69-10B	Chloride Nitrate as N Sulfate Surfactants	1.9 mg/Kg 1.15 mg/Kg 102 mg/Kg 1.3 mg/Kg	2.2J+ mg/Kg 1.15J+ mg/Kg 102J+ mg/Kg 2.2Umg/Kg	

Sample	Analyte	Reported Concentration	Modified Final Concentration
SA69-29B	Chloride	278 mg/Kg	278J+ mg/Kg
	Nitrate as N	7.36 mg/Kg	7.36J+ mg/Kg
	Surfactants	1.5 mg/Kg	3.0U mg/Kg

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
SA206-30BMS (All samples in SDG R0903729)	Surfactants	63 (75-125)	-	-	J- (all detects) UJ (all non-detects)	A

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Surrogates

Surrogates were added to all samples and blanks as required by method 300.1. All surrogate recoveries (%R) were within QC limits.

VIII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903729	All analytes reported below the PQL.	J (all detects)	А

Raw data were not reviewed for this SDG.

IX. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

X. Field Duplicates

Samples RSAL4-0.5B and RSAL4009-0.5B were identified as field duplicates. No contaminant concentrations were detected in any of the samples with the following exceptions:

	Conce	ntration				
Analyte	RSAL4-0.5B	RSAL4009-0.5B	RPD (Limits)	Difference (Limits)	Flag	A or P
Alkalinity, total	252 mg/Kg	263 mg/Kg	4 (≤50)	- -	-	-
Alkalinity, bicarbonate	245 mg/Kg	256 mg/Kg	4 (≤50)	-	-	_
Alkalinity, carbonate	6 mg/Kg	7 mg/Kg	-	1 (≤21)	-	-
Chloride	195 mg/Kg	197 mg/Kg	1 (≤50)	-	-	-
Nitrate as N	9.93 mg/Kg	9.91 mg/Kg	0 (≤50)	-	-	-
pН	8.73 units	8.75 units	0 (≤50)	-	-	-
Sulfate	276 mg/Kg	268 mg/Kg	3 (≤50)	-	-	-
Surfactants	1.3 mg/Kg	1.2 mg/Kg	-	0.1 (≤2.1)	-	-
Total organic carbon	980 mg/Kg	860 mg/Kg	-	120 (≤310)	-	-
Total phosphorus	855 mg/Kg	928 mg/Kg	8 (≤50)	-	-	_
Chlorate	2070 ug/Kg	2340 ug/Kg	12 (≤50)	-	-	-
Perchlorate	91600 ug/Kg	82400 ug/Kg	11 (≤50)	-	-	-

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Data Qualification Summary - SDG R0903729

SDG	Sample	Analyte	Flag	A or P	Reason
R0903729	SA206-0.5B SA206-10B SA206-25B SA206-30B RSAK4-10B RSAK4-20B RSAK4-31B RSAL4-0.5B RSAL4-0.5B RSAL4-10B RSAL4-10B RSAL4-10B SA100-10B SA100-30B SA69-0.5B SA69-10B SA69-29B	Surfactants	J- (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R) (m)
R0903729	SA206-0.5B SA206-10B SA206-25B SA206-30B RSAK4-10B RSAK4-20B RSAK4-31B RSAL4-0.5B RSAL4-0.5B RSAL4-10B RSAL4-10B RSAL4-28B SA100-10B SA100-30B SA69-0.5B SA69-10B SA69-29B	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (sp)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG R0903729

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903729	SA206-0.5B	Surfactants	2.1U mg/Kg	А	bl
R0903729	SA206-10B	Surfactants	2.2U mg/Kg	Α	bl
R0903729	SA206-25B	Surfactants	3.9U mg/Kg	Α	bl
R0903729	SA69-10B	Chloride	2.2U mg/Kg	А	bl

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903729	SA206-30B	Total organic carbon	290U mg/Kg	А	bl
R0903729	RSAL4-28B	Total organic carbon	300U mg/Kg	Α	bl

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Wet Chemistry - Field Blank Data Qualification Summary - SDG R0903729

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903729	SA206-0.5B	Chloride Nitrate as N Sulfate Surfactants	409J+ mg/Kg 7.77J+ mg/Kg 475J+ mg/Kg 2.1U mg/Kg	A	bf
R0903729	SA206-10B	Chloride Nitrate as N Surfactants	880J+ mg/Kg 2.71J+ mg/Kg 2.2U mg/Kg	А	bf
R0903729	SA206-25B	Nitrate as N Surfactants	2.04J+ mg/Kg 3.9U mg/Kg	Α	bf
R0903729	SA206-30B	Total organic carbon Nitrate as N Surfactants	290U mg/Kg 1.68J+ mg/Kg 3.3U mg/Kg	А	bf
R0903729	RSAK4-10B	Nitrate as N Surfactants	14.8J+ mg/Kg 2.2U mg/Kg	А	bf
R0903729	RSAK4-20B	Chloride Nitrate as N Surfactants	336J+ mg/Kg 2.52J+ mg/Kg 2.2U mg/Kg	A	bf
R0903729	RSAK4-31B	Chloride Nitrate as N	284J+ mg/Kg 4.20J+ mg/Kg	A	bf
R0903729	RSAL4-0.5B	Chloride Nitrate as N Sulfate Surfactants	195J+ mg/Kg 9.93J+ mg/Kg 276J+ mg/Kg 2.1U mg/Kg	А	bf
R0903729	RSAL4009-0.5B	Chloride Nitrate as N Sulfate Surfactants	197J+ mg/Kg 9.91J+ mg/Kg 268J+ mg/Kg 2.1U mg/Kg	А	bf

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
R0903729	RSAL4-10B	Chloride Nitrate as N Sulfate Surfactants	409J+ mg/Kg 7.30J+ mg/Kg 163J+ mg/Kg 2.2U mg/Kg	A	bf
R0903729	RSAL4-28B	Total organic carbon Chloride Nitrate as N Surfactants	300U mg/Kg 553J+ mg/Kg 5.27J+ mg/Kg 3.7Umg/Kg	А	bf
R0903729	SA100-10B	Nitrate as N Surfactants	2.01J+ mg/Kg 2.2U mg/Kg	А	bf
R0903729	SA100-30B	Nitrate as N Surfactants	2.85J+ mg/Kg 3.1U mg/Kg	А	bf
R0903729	SA69-0.5B	Chloride Nitrate as N Sulfate Surfactants	4.3J+ mg/Kg 1.42J+ mg/Kg 175J+ mg/Kg 2.2U mg/Kg	A	bf
R0903729	SA69-10B	Chloride Nitrate as N Sulfate Surfactants	2.2J+ mg/Kg 1.15J+ mg/Kg 102J+ mg/Kg 2.2Umg/Kg	A	bf
R0903729	SA69-29B	Chloride Nitrate as N Surfactants	278J+ mg/Kg 7.36J+ mg/Kg 3.0U mg/Kg	А	bf

	:21495L6	VA	Troi LIDATIOI	N COMP	LETENE	enderson ESS WORKSHI	EET	Date: 9/31/ Page: 1 of 1
SDG # Labora	t: R0903729 atory: <u>Columbia Analytica</u>	al Ser	<u>vices</u>	3	tage 2B			Reviewer: 2nd Reviewer:
SW84 Hexa\ (EPA The s	IOD: (Analyte) Alkalinity 6 Method 9056), Nitrite-f ralent Chromium (EPA S Method 314.0), Total Pho amples listed below were tion findings worksheets.	N (EP) W846 ospho e revie	A Method 3 Method 71	53.2), Chlo 99), pH (E lethod 365	orate (EPA PA SW84 5 1) TOC	<u>، Method 300.1), C</u> <u>6 Method 9045D),</u> (Llovd/Kahn)	Surfactants (S	SM5540C), Perchlorate
	Validation	Area				С	omments	
1.	Technical holding times			A	Sampling d	ates: 7/06/9	7/07/09	
lla.	Initial calibration			A,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 / / /	
ilb.	Calibration verification			ASW				
111.	Blanks			SW				
IV	Surrogate			LA.				
V	Matrix Spike/Matrix Spike D	uplicat	es	5W	344	huss July		
VI.	Duplicates			A		or Iffren	CRL.	
VII.	Laboratory control samples			A	Les			
VIII.	Sample result verification			N				
IX.	Overall assessment of data	·		<u> </u>				
X.	Field duplicates			SW/	(8,9)			
XI.	Field blanks			1 5W	FB=FB072	109-SO (SDG: R09040)16)	
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:	e	R = Rin	lo compound: sate eld blank	s detected	D = Duplicate TB = Trip blan EB = Equipme		
1	SA206-0.5B	11	RSAL4-28B		21	MB	31	
2	SA206-10B	12	SA100-10B		22		32	
3	SA206-25B	13	SA100-30B		23		33	
4	SA206-30B	14	SA69-0.5B		24		34	
5	RSAK4-10B	15	SA69-10B	•	25		35	
6	RSAK4-20B	16	SA69-29B		26		36	
7	RSAK4-31B	17	SA206-30BN	1S	27		37	
8	RSAL4-0.5B	18	SA206-30BN	ISD	28		38	
9	RSAL4009-0.5B	19	SA206-30BE	UP	29		39	
10	RSAL4-10B	20			30		40	
L								

LDC#: 149516 SDG#: Luw

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: of Pag

All circled methods are applicable to each sample.

Sample ID	<u> Matrix</u>	Parameter
1-76	(oi)	(Alk pH Br Cl NO, NO, SO, NH, TOC CN Cr5+ T-P MBAS) TDS TSS Cond (CIO, CIO,
'	<u> </u>	Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
217-19	Soil	Alk pH Br CI NO3 NO, SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond (CIO) (CIO4)
(15)	<u> </u>	(AII) PH (BI)(C) NO (NO) (SO) NH TOC CN (C) T-PMBA'S TDS TSS COND CIO3 CIO4
19	1	(AIR) (H) (B) (CI) (NO), (NO), (SO) (NH), (TO) (CN) (C)+ (T-P) MBAS) TDS TSS Cond CIO, CIO,
		Alk pH Br Ci NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond CIO3 CIO4
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond CIO3 CIO4
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr5+ T-P MBAS TDS TSS Cond CIO3 CIO4
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr5+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond CIO3 CIO4
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁵⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄
		Alk pH Br Cl NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond ClO3 ClO4
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond CIO3 CIO4
		Alk pH Br CI NO3 NO2 SO4 NH3 TOC CN Cr6+ T-P MBAS TDS TSS Cond CIO3 CIO4
		Alk pH Br Cl NO ₃ NO ₂ SO ₄ NH ₃ TOC CN Cr ⁶⁺ T-P MBAS TDS TSS Cond ClO ₃ ClO ₄

Comments:_	

SDG #: See Cover LDC #: 21495L6

VALIDATION FINDINGS WORKSHEET

2nd Reviewer: Reviewer:_

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Reason Code: black N/A Were all samples associated with a given method blank?

| N/A | N/A | Were all samples associated with a given method blank? If yes, please see qualifications below. Sample Identification Associated Samples: 1-3 2.0 / 3.9 က 1.6 / 2.2 1.9 / 2.1 Blank Action Limit Maximum ICB/CCB (mg/L) 0. Blank ID Conc. units: mg/Kg <u>რ</u> Surfactants Bicarb. AIK Analyte Total AIK

ರ

Analyte Blank in Blank in CB/CCB Action (mg/L) Limit Action (mg/L) Action (mg/	Conc. units: mg/Kg	3/Kg			Associated Samples: 4-13
(mg/L) 12 1.0		<u> </u>	Maximum ICB/CCB	Blank Action	Sample Identification
12 12 5			(mg/L)	Cimit	
	Total AIK	12	1.0		
	Bicarb. AIK	12			
	ū	1.3			

SDG #: See Cover LDC #: 21495L6

VALIDATION FINDINGS WORKSHEET Blanks

Page: You

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Reason Code: blank N/A. Were all samples associated with a given method blank?

| N/A | N/A | Were any inorganic contaminants detected above the reporting limit in the method blanks? If yes, please see qualifications below.

Conc. units: mg/Kg	ma/Ka				Associated	Samples:	14-16 excep	Associated Samples: 14-16 except ICB/CCB: CI:14,15	:14,15				
Analyte	Blank ID	Maximum ICB/CCB	Blank Action Limit					Sample Identification	entification				
	MB	(mg/L)		15									
Total AIK	10	0.5											
Bicarb. AIK	10												
Ö	1.3	0.131		1.9 / 2.2									
Conc. units: mg/Kg	mg/Kg				Associated	Samples:	TOC*1: 1-1;	Associated Samples: TOC*1: 1-12, TOC*2:13-16	91				
Analyte	Blank ID	Maximum ICB/CCB	Blank Action Limit					Sample Ide	Sample Identification		-		
	MB	(mg/Kg)		4	11								
TOC*1	70	65.9		250 / 290	290 / 300								
TOC*2	50	76.2											
Conc. units: mg/Kg	: mg/Kg				Associated	l Samples:	MB: T-P*1:1	Associated Samples: MB: T-P*1:1, T-P*2: 2-16, ICB/CCB: T-P*1: 1-4.6, T-P*2: 5, 7-16 (>RL)	ICB/CCB: T-F	>*1: 1-4,6, T-	>*2: 5, 7-16 (>	×RL)	
Analyte	Blank ID	Maximum ICB/CCB	Blank Action Limit					Sample ld	Sample Identification				
	MB	(mg/L)											
T-P*1	1.6	0.0066											
T-P*2	1.4	0.0094											

LDC #: 21495L6

VALIDATION FINDINGS WORKSHEET Blanks

Page: 3 of 3 Reviewer:

> METHOD: Inorganics, Method See Cover SDG #: See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| N/A | Were all samples associated with a given method blank? | Were all samples see qualifications below.

Conc. units: mg/Kg	ng/Ka			Associated Samples: Clr1: /-11,16, Clr2: 2, SO4: 14, 15
Analyte	Blank ID	Maximum ICB/CCB	Blank Maximum Blank ID ICB/CCB Action Limit	Sample Identification
	MB	(mg/L)		
<u>*</u>		0.148		
CF2		0.139		
SO4		0.18		

LDC #: 2149516

SDG #: See Cover

VALIDATION FINDINGS WORKSHEET

Page: 1of /

Reviewer: ____

Field Blanks

METHOD: Inorganics, Method See Cover

Y N N/A Were field blanks identified in this SDG?

Were target analytes detected in the field blanks?

Blank units: mg/L Associated sample units: mg/Kg

Sampling date: 7/21/09 Soil factor applied 10X

Field blank type: (circle one) Field Blank / Rinsate / Other: FB

Reason Code: bf

Associated Samples: All

Analyte	Blank ID					Sample	Sample Identification				
	FB072109-SO Action	Action Level	1	7	3	4	5	9	7	8	თ
Ammonia as N	0.191	19.1									
TOC (average)	0.5					250 / 290					
Ö	9.7	970	409 J+	880 J+				336 J+	284 J+	195 J+	197 J+
Nitrate as N	1.76	176	+C 77.7	2.71 J+	2.04 J+	1.68 J+	14.8 J+	2.52 J+	4.20 J+	9.93 J+	9.91 j+
pH (pH Units)	3.36										
Total Phosphorus	0.01										
Sulfate	5.5	550	475 J+							276 J+	268 j+
Surfactants	0.159	15.9	1.9 / 2.1	1.6 / 2.2	2.0 / 3.9	2.3 / 3.3	0.9 / 2.2	1.1 / 2.2		1.3 / 2.1	1.2 / 2.1

Analyte	Blank ID					Sample	Sample Identification			
	FB072109-SO Action Level	Action Level	10	17	12	13	4-	15	16	
Ammonia as N	0.191	19.1								
TOC (average)	0.5			290 / 300						
Ö	9.7	970	409 J+	553 J+			4.3 J+	1.9 / 2.2	278 J+	
Nitrate as N	1.76	176	7.30 J+	5.27 J+	2.01 J+	2.85 J+	1.42 J+	1.15 J+	7.36 J+	
pH (pH Units)	3.36									
Total Phosphorus	0.01									
Sulfate	5.5	550	163 J+				175 J+	102 J+		
Surfactants	0.159	15.9	1.5/2.2	1.5/3.7	1.5/3.7 1.3/2.2	1.2 / 3.1	1.2 / 2.2	1.3 / 2.2	1.5/3.0	

LDC #: 2149IL6 SDG #:

VALIDATION FINDINGS WORKSHEET Matrix Spike Analysis

Page: of Reviewer: 2nd Reviewer:

METHOD: Inorganics, Method

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

NA Was a matrix spike analyzed for each matrix in this SDG?

Y N N/A Were matrix spike percent recoveries (%R) within the control limits of 75-125 (85-115% for Method 300.0)? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. X N NO

L						
*	Matrix Spike ID	Matrix	Analyte	%R	Associated Samples	Qualifications
		75.	Sutatata	62	, (A)	J-/nd/b-(m)
<u> </u>						
<u></u>						
<u> </u>						
5	Colline its:					

LDC#: <u>21495L6</u> SDG#: <u>See Cover</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: of Reviewer: 2nd Reviewer:

Inorganics, Method See Cover

VN NA VN NA

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrati	ion (mg/Kg)				Qualification
Analyte	8	9	RPD (≤50)	Difference	Limits	(Parent only)
Total Alkalinity	252	263	4			
Bicarbonate Alkalinity	245	256	4			
Carbonate Alkalinity	6	7		1	(≤21)	
Chloride	195	197	1			
Nitrate as N	9.93	9.91	0			
pH (pH Units)	8.73	8.75	0			
Sulfate	276	268	3			
Surfactants	1.3	1.2		0.1	(≤2.1)	
тос	980	860		120	(≤310)	
Total Phosphorus	855	928	8			
Chlorate (ug/Kg)	2070	2340	12			
Perchlorate (ug/Kg)	91600	82400	11			

V:\FIELD DUPLICATES\FD_inorganic\21495L6.wpd