
Tronox LLC Facility, 2009 Phase B Investigation, Henderson Data Validation Reports LDC #21495

Polychlorinated Biphenyls

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada

Collection Date: May 27 through June 4, 2009

LDC Report Date: September 29, 2009

Matrix: Water

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 4

Laboratory:

Columbia Analytical Services, Inc.

1

Sample Delivery Group (SDG): R0903006

Sample Identification

EB052709 M-127B FB060409

V:\LOGIN\TRONOXNG\21495B3B.TR4

Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8082 for Polychlorinated Biphenyls.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

III. Initial Calibration

Initial calibration of multicomponent compounds was performed for the primary (quantitation) column as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Retention time windows were evaluated and considered technically acceptable.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

Retention time windows were evaluated and considered technically acceptable.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated biphenyl contaminants were found in the method blanks.

Sample EB052709 was identified as an equipment blank. No polychlorinated biphenyl contaminants were found in this blank.

Sample FB060409 was identified as a field blank. No polychlorinated biphenyl contaminants were found in this blank.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

XI. Target Compound Identification

All target compound identifications were within validation criteria.

XII. Compound Quantitation and Reported CRQLs

All project quantitation limits were within validation criteria.

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R090306	All compounds reported below the PQL.	J (all detects)	A

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls - Data Qualification Summary - SDG R0903006

SDG	Sample	Compound	Flag	A or P	Reason
R0903006	EB052709 M-127B FB060409	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (PQL) (sp)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG R0903006

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG R0903006

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #: 21495B3b

SDG #: R0903006

Stage 4

	Date: <u> </u>
	Page:of
	Reviewer:
2nd	Reviewer:
	Ŷ

Laboratory: Columbia Analytical Services

METHOD: GC Polychlorinated Biphenyls (EPA SW 846 Method 8082)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

·	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 5/27-28/09 6/64/09
11.	GC/ECD Instrument Performance Check	Ň	
Ш.	Initial calibration	Å	esp
IV.	Continuing calibration/ICV	Ă	$CON / AN \leq 202$
V.	Blanks	A	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	4	client sker
VIII.	Laboratory control samples	A	Client Spec. US/D
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	A	
XII.	Compound quantitation and reported CRQLs	A	
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	N	
XV.	Field blanks	ND	FB = 1 $FB = 3$

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

WATEr

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

1-1	EB052709	11	88638 MB	21	31	
$\frac{1}{2}$	M-127B	12 1	892501	22	32	
37	FBOG0409	13		23	33	
4		14		24	34	
5		15		25	 35	
6		16		26	36	
7		17		27	37	
8		18		28	38	
9		19		29	39	
8 9 10		20		30	40	

Method: Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Validation Area	Yes	No	NĂ	Findings/Comments
1. Technical holding lines				
All technical holding times were met.				
Cooler temperature criteria was met.	-			
II. GC/ECD Instrument performance check				
Was the instrument performance found to be acceptable?		F		
III. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	_			
Was a linear fit used for evaluation? If yes, were all percent relative standard deviations $(\%RSD) \leq 20\%$?	~	-		
Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?		_	ſ.	
Did the initial calibration meet the curve fit acceptance criteria?			$\lfloor 1 \rfloor$	
Were the RT windows property established?	\checkmark			
Were the required standard concentrations analyzed in the initial calibration?				
IV. Continuing calibration				
What type of continuing calibration calculation was performed?%D or%R	\square			
Were Evaluation mix standards analyzed prior to the initial calibration and sample analysis?			_	
Were endrin and 4,4-DDT breakdowns \leq 15%.0 for individual breakdown in the Evaluation mix standards?				
Was a continuing calibration analyzed daily?	\leq			
Were all percent differences (%D) <719%.0 or percent recovieries 88-178%?	\angle			
Were all the retention times within the acceptance windows?				
V. Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?	\square			
Were extract cleanup blanks analyzed with every batch requiring clean-up?	\square	-		
Was there contamination in the method blanks or clean-up blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Surrogate spikes				
Were all surrogate %R within the QC limits?	\leq			
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?				/
Uf any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
VII. Matrix spike/Matrix spike duplicates				

Validation Area	Yes	No	NA	Findings/Comments
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		~	_	
Was a MS/MSD analyzed every 20 samples of each matrix?		/		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII. Laboratory control samples				
Was an LCS analyzed for this SDG?	/			
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		1		
IX Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		_		
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Target compound identification			r	
Were the retention times of reported detects within the RT windows?		r		
XI Compound quantitation/CRQLs	[]			
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation?	/			,
XII. System parformance				
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	1			
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.				
XV. Field blanks				
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				

LDC #: 71 445 \$26 SDG #: 54 64~

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

25 Ø Page: / of 2nd Reviewer:____ Reviewer:___

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations:

Average CF = sum of the CF/number of standards %RSD = 100 * (S/X) CF = AC

A = Area of compound C = Concentration of compound S = Standard deviation of calibration factors X = Mean of calibration factors Where:

					Reported Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	CF (<i>S</i> ໜ std)	CF (ک ^{ری} std) (ک ⁰ std)			%RSD	%RSD
-	1cAL	c 10 100	1260-1 (DB-1761)	2.757es	5.756 es	2.7 570 5 2.756 es 2.964 PS	2.96\$ et	9.8	9-6
			(u-89) (3.540 H	f otrs E	7 232 E	7 225	9.51	46.6
2									
3									
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
4									

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

INICLCrev.wpd

LDC #: 2/ 495 83b

# VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: of A Reviewer: TVZ 2nd Reviewer:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The continuing calibration percent difference (%D) values were recalculated for  $_$ 

Percent difference (%D) = 100 * (N - C)/N

Where: N = _____Initial Calibration Factor or _____Nominal Amount (ng) C = ____Calibration Factor from Continuing Calibration Standard or _____Calculated Amount (ng)

using the following calculation:

				Raportad	Receiculated	Reported	Recelculated
Standard ID	Calibration Date/Time	Compound	Average CF/ CCV Conc	CF/Conc CCV	CF/Conc CCV	<b>0%</b>	Cr%
* #084	6/11/0	(1021-9d) 1-0n21	296 376 23	29637683 314.710 83	314	6.2	6.2
	60/	V AB - 17)	378.264 83	tos. tog e>	408,4 4	0.2	8. o
AH 097	6/560	(1266-) (DB-1261)	296.376 63	306.62283	206.6 63	3.5	3.4
		L' (DB-17'	378.204 \$	403.393 J	403,4	6.7	6.3
							4

Comments: Refer to Continuing Calibration findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:_	21495	B36
	Sa Cr	

# VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

Page:	l_of
Reviewer:	SK
2nd reviewer:	V

#### METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample	١D·	圩	$\gamma$
Sample	10:	· · · ·	

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene	DB-1700	100	102.9	103	103	0
Decachlorobiphenyl			47.96	48	48	
Decachlorobiphenyl						

# Sample ID:_____

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

#### Sample ID:_____

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene		•				
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

#### Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Notes:_____

-----

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082) The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recover = 100* (SSC-SC)SA When: SSC = Splived sample concertation SC = Concentration SC = Concentration SC = Cancentration SC = Cancent	J 8081/8082)         erence (RPD) of the laboratory cation:         ation:         : SSC = Spiked sample concentration         SA = Spiked sample concentration         LCS = Laboratory control sample per LCS = Laboratory control sample         Concentration         P         (1/5)         S       LCSD         Reports	081/8082) Ince (RPD) of the laboratory control sample and laboratory control sample duplicate were r Difference (RPD) of the laboratory control sample duplicate were r SSC = Spike added SA = Spike added LCS = Laboratory control sample duplicate percent recovery LCS = Laboratory control sample duplic	sample and labor very LCSD = Labor scovery	boratory control sar SC = Concentration aboratory control sample Boratory control sample	trol sample duplicate v tion tion tion LCSD Percent Recovery	were recalculated	csb Recalc.
The percent recoveries (%R) and Relative Percent difference compounds identified below using the following calculation:       where Reconstructure contraction:         % Recovery = 100* (ssc-sc)/sA       where: ssc         % RPD = I LCS - LCSD I * 2/(LCS + LCSD)       LCS         LCS/LCSD samples:       §8/6 % LCS/D         Compound       (h ₁ /s/L)       LCS         gemma-BHC       LCS       LCSD         gemma-BHC       5, cD       7, dO         Arcclor 1260       5, cD       7, dS	CE (RPD) of the SC = Spiked sample A = Spike added CS = Laboratory con CS = Laboratory con A = Sample entration AC //)	laboratory control s concentration trol sample percent rec LCS Reported	sample and labor wery LCSD = Labor scovery Recalc.	atory control sar atory control sample to Reported	mple duplicate v duplicate percent re SD Recovery Recalc.	were recalcula ecovery Reported RP	csD Recalc.
LCSD) LCSD) Spike 35 LCS/D Added Co (43/L) CS LCSD LCS CO (483/L) CS CO CO (483/L) CS CO CO CO CO CO CO CO CO CO CO CO CO CO C	SC = Spiked sample A = Spike added CS = Laboratory con d Sample antration /(5 / /)	s concentration itrol sample percent rec LC	wery LCSD = Labor	<ul> <li>Concentration</li> <li>atory control sample</li> <li>LC</li> <li>LC</li> <li>Reported</li> </ul>	duplicate percent re SD Recovery Recalc.	<u> </u>	CSD Recalc.
LCS+LCSD) SRB 3 & LCS/D Splite Splite Added (MS/L) LCS LCS LCS LCS LCS LCS LCS (MS/Z) (145/L) (200 (4,83)	CS = Laboratory con d Sample antration AS //) LCSD	troi sample percent recont recont recont recont Reported	wery LCSD = Labor covery Recalc.	atory control sample LC Percent	duplicate percent re SD Recovery Recalc.	<u> </u>	CSD D Recalc.
pound $(1/5/L)$ HC $LCS$ $LCSD$ $LC$ BS $5, c0$ $4, 8$	d Sample antration 7(5 / 1) LCSD	LC4 Reported	s covery Recalc.	LC Percent Reported	SD Recovery Recalc.	R Reported	CSD Recalc.
pound $(1,5/L)$ HC LCS LCSD LC HC $5, c0$ $4, 6$	LCSD	Percent R. Reported	covery Recalc.	Percent Reported	Recovery Receic.	Reported	D Recalc.
HC LCS LCSD LCS HC 5, c0 4, 83		Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
HC کو کو کو کو کو							
860 5, M							
5, a 5, a							
	4, 17	97	97	83	63	2	21
	, ,	/					
		×					

V:\Validation Worksheets\Pesticides\LCSDCLC.wpd

# VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	of
Reviewer:	N.
2nd reviewer:	q

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Y N/N/A <u>Y N N/A</u>

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:
Sample I.D
Conc. = () ()
=

*	Sample ID	Compound	Reported Concentration ( )	Calculated Concentration ( )	Qualification

Note:

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada

Collection Date: June 23, 2009

LDC Report Date: September 22, 2009

Matrix: Water

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903404

# Sample Identification

M-125B M-125BMS M-125BMSD

#### Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8082 for Polychlorinated Biphenyls.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

# I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

# II. GC/ECD Instrument Performance Check

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

# III. Initial Calibration

Initial calibration of multicompound compounds were performed for the primary (quantitation) column as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

# IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

# V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated biphenyl contaminants were found in the method blanks.

Sample FB060409 (from SDG R090306) was identified as a field blank. No polychlorinated biphenyl contaminants were found in this blank.

# VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

# VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

# VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

# IX. Regional Quality Assurance and Quality Control

Not applicable.

# X. Pesticide Cleanup Checks

# a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

# b. GPC Calibration

GPC cleanup was not required and therefore not performed in this SDG.

# XI. Target Compound Identification

Raw data were not reviewed for this SDG.

# XII. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903404	All compounds reported below the PQL.	J (all detects)	А

Raw data were not reviewed for this SDG.

# XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

# XIV. Field Duplicates

No field duplicates were identified in this SDG.

# Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls - Data Qualification Summary - SDG R0903404

SDG	Sample	Compound	Flag	A or P	Reason
R0903404	M-125B	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG R0903404

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG R0903404

No Sample Data Qualified in this SDG

**Tronox Northgate Henderson** VALIDATION COMPLETENESS WORKSHEET

LDC #: 21495E3b SDG #: R0903404

#### Stage 2B

	Date:	9/17	109
	Page:_	<u>l</u> of_	
	Reviewer:	N	<u> </u>
2nd	Reviewer:	1-	
		V	

Laboratory: Columbia Analytical Services

# METHOD: GC Polychlorinated Biphenyls (EPA SW 846 Method 8082)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 6/23/69
١١.	GC/ECD Instrument Performance Check	<u>k</u>	
III.	Initial calibration	A	
IV.	Continuing calibration/ICV	A	Cav/1W = 203
V.	Blanks	A	
VI.	Surrogate spikes	<u>A</u>	
VII.	Matrix spike/Matrix spike duplicates	<u> </u>	
VIII.	Laboratory control samples	A	LCS /D
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	N	
XII.	Compound quantitation and reported CRQLs	N	
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	N	
XV.	Field blanks	ND	FB = FB060409 from R0903006

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

#### Validated Samples:

valiua	WWAC			
1	M-125B	11	21	31
2	M-125BMS	12	22	32
3	M-125BMSD	13	23	33
4	10220 MB	14	24	34
5		15	25	35
6		16	26	36
7		17	27	37
8		18	28	38
9		19	29	39
10		20	30	40

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada

Collection Date: June 10 through June 11, 2009

Soil

LDC Report Date: September 22, 2009

Matrix:

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 2B

Laboratory: Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903184

# Sample Identification

SA56-0.5B RSA03-0.5B SA166-0.5B

#### Introduction

This data review covers 3 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8082 for Polychlorinated Biphenyls.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

# I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

# **II. GC/ECD Instrument Performance Check**

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

# III. Initial Calibration

Initial calibration of multicompound compounds were performed for the primary (quantitation) column as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

# **IV.** Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

# V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated biphenyl contaminants were found in the method blanks.

No field blanks were identified in this SDG.

# VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Column	Surrogate	%R (Limits)	Compound	Flag	A or P	
RSA03-0.5B	Not specified	Decachlorobiphenyl	290 (40-140)	All TCL compounds	J+ (all detects)	Ρ	

# VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

# VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

# IX. Regional Quality Assurance and Quality Control

Not applicable.

# X. Pesticide Cleanup Checks

# a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

# **b. GPC Calibration**

GPC cleanup was not required and therefore not performed in this SDG.

# XI. Target Compound Identification

Raw data were not reviewed for this SDG.

# XII. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903184	All compounds reported below the PQL.	J (all detects)	A

Raw data were not reviewed for this SDG.

# XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

# **XIV. Field Duplicates**

No field duplicates were identified in this SDG.

# Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls - Data Qualification Summary - SDG R0903184

SDG	Sample	Compound	Flag	A or P	Reason			
R0903184	RSA03-0.5B	All TCL compounds	J+ (all detects)	Р	Surrogate recovery (%R) (s)			
R0903184	SA56-0.5B RSA03-0.5B SA166-0.5B	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)			

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG R0903184

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG R0903184

No Sample Data Qualified in this SDG

**Tronox Northgate Henderson** 

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: 21495F3b SDG #: R0903184

Laboratory: Columbia Analytical Services

Date: 9/7/09 Page: 1 of Reviewer: 3V 2nd Reviewer:

# METHOD: GC Polychlorinated Biphenyls (EPA SW 846 Method 8082)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Technical holding times	A	Sampling dates: 6 /10 - 11 /09
١١.	GC/ECD Instrument Performance Check	H	1
111.	Initial calibration	A	
IV.	Continuing calibration/ICV	₳	CCV/ICV = 20 2
V.	Blanks	A	
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	Ŋ	Client Sker
VIII.	Laboratory control samples	A	Client Sker VCS/p
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	N	
XII.	Compound quantitation and reported CRQLs	N	
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	N	
XV.	Field blanks	N	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

(mi)

ND = No compounds detected R = Rinsate FB = Field blank

TB = Trip blank EB = Equipment blank

Validated Samples:

1   SA56	i-0.5B 11	 21	31
2 I RSAC	D3-0.5B 12	22	32
3 SA16	6-0.5B 13	23	33
4	14	24	34
5	15	25	35
6	16	26	36
7	17	27	37
	18	28	38
8 9 10	19	29	39
10	20	30	40

#2 - RSA03 4 letter not #

D = Duplicate

LDC #: 21 495 F36 SDG #: <u>Src Curd</u>

# VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page: 1 of 1 Reviewer: 3VC 2nd Reviewer:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A". <u>V N/A</u> Were surrogates spiked into all samples, standards and blanks? <u>V(N)N/A</u> Did all surrogate percent recoveries (%R) meet the QC limits?

	Qualifications	(s) d/s																		Comments	
		JFACK																		(Water)	
	%R (Limits)	( 40-140 )		(	(		(	(	(	(	(	( )	(	(	( )	(	( )	( )	) (	Recovery QC Limits (Water)	
	%R (I	290																			
Surrogate	Compound	æ	-																	Recovery QC Limits (Soil)	
	Column	Nay spec	-																		
	Sample ID	~																		Surrogate Compound	Tetrachloro-m-xylene
	Date																			Letter Designation	A
	*																			٩ 	

SUR.3S

Decachlorobiphenyl

< m

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Tronox	LLC	Facility,	2009	Phase	В	Investigation,
	Henders	son, N	Vevada				-

Collection Date: June 19, 2009

LDC Report Date: September 22, 2009

Matrix:

Parameters: Polychlorinated Biphenyls

Soil

Validation Level: Stage 2B

Laboratory: Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903443

Sample Identification

SA129-0.5B

# Introduction

This data review covers one soil sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8082 for Polychlorinated Biphenyls.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

# I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

# **II. GC/ECD Instrument Performance Check**

Instrument performance was acceptable unless noted otherwise under initial calibration and continuing calibration sections.

# **III. Initial Calibration**

Initial calibration of multicompound compounds were performed for the primary (quantitation) column as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

# IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) of calibration factors in continuing standard mixtures were within the 20.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

# V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated biphenyl contaminants were found in the method blanks.

No field blanks were identified in this SDG.

# VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. Surrogate recoveries (%R) were not within QC limits. Since the samples were diluted out, no data were qualified.

# VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

# VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

# IX. Regional Quality Assurance and Quality Control

Not applicable.

# X. Pesticide Cleanup Checks

# a. Florisil Cartridge Check

Florisil cleanup was not required and therefore not performed in this SDG.

# **b. GPC Calibration**

GPC cleanup was not required and therefore not performed in this SDG.

# XI. Target Compound Identification

Raw data were not reviewed for this SDG.

# XII. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P		
All samples in SDG R0903443	All compounds reported below the PQL.	J (all detects)	A		

Raw data were not reviewed for this SDG.

# XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

# XIV. Field Duplicates

No field duplicates were identified in this SDG.

### Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls - Data Qualification Summary - SDG R0903443

SDG	Sample	Compound	Flag	A or P	Reason	
R0903443	SA129-0.5B	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)	

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG R0903443

### No Sample Data Qualified in this SDG

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG R0903443

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #: 21495G3b

SDG #: R0903443

### Stage 2B

Date: <u>4/16/69</u> Page: <u>1</u> of <u>)</u> Reviewer: <u>M</u> 2nd Reviewer: <u>_</u>

Laboratory: Columbia Analytical Services

METHOD: GC Polychlorinated Biphenyls (EPA SW 846 Method 8082)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Technical holding times	A	Sampling dates: 6/16 /09
II.	GC/ECD Instrument Performance Check	k	,
111.	Initial calibration	A_	
IV.	Continuing calibration/ICV	Å	Car/100 = 202
V.	Blanks	A	
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	Ň	Client spec LCS /p
VIII.	Laboratory control samples	A	us /p'
IX.	Regional quality assurance and quality control	N	
Xa.	Florisil cartridge check	N	
Xb.	GPC Calibration	N	
XI.	Target compound identification	N	
XII.	Compound quantitation and reported CRQLs	N	
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	N	
xv.	Field blanks	N	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

validated Samp	501'l			
1 SA129-0	).5B 11	21	31	
2 90	255 MB 12	22	32	
3	13	23	33	
4	14	24	34	
5	15	25	35	
6	16	26	36	
7	17	27	37	
8	18	28	38	
9	19	29	39	
10	20	30	40	

G3b	š
S	5
49	ž
a	
ŧ,	ŧ
Г О С	SDG

### VALIDATION FINDINGS WORKSHEET Surrogate Spikes

36 Page: 1 of Reviewer: 2nd Reviewer:

# METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A". <u>Y N N/A</u> Were surrogates spiked into all samples, standards and blanks? <u>Y N N/A</u> Did all surrogate percent recoveries (%R) meet the QC limits?

Qualifications	No mari																	er) Comments	
nits)	( #0-14 0)		( )	)	(	( )	( )	(	(	)	(	)	( )	( )	. ( )	)	( )	Recovery QC Limits (Water)	
%R (Limits)	0																		
Surrogate Compound	A B																	Recovery QC Limits (Soil)	
Column	Not Shec																		
Sample ID	1 ( ZIX ) 1	/																Surrogate Compound	Tetrachloro-m-xylene
Date	•																	Letter Designation	٨
#																		Let	

Decachlorobiphenyl

മ

### Tronox LLC Facility, 2009 Phase B Investigation, Henderson Data Validation Reports LDC #21495

Polychlorinated Biphenyls as Congeners



### Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada			
Collection Date:	May 27 through June 4, 2009			
LDC Report Date:	October 7, 2009			
Matrix:	Water			
Parameters:	Polychlorinated Biphenyls as Congeners			
Validation Level:	Stage 4			
Laboratory:	Columbia Analytical Services, Inc.			
Sample Delivery Group (SDG): R0903006				

### Sample Identification

EB052709 M-127B FB060409

### Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 1668A for Polychlorinated Biphenyls as Congeners.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

### **II. HRGC/HRMS Instrument Performance Check**

Instrument performance was checked at the required daily frequency and all criteria were met.

### III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all compounds were within validation criteria.

### IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 30.0% for unlabeled compounds and less than or equal to 50.0% for labeled compounds.

The ion abundance ratios for all compounds were within validation criteria.

### V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated biphenyls as congeners contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
EQ0900193-01	6/5/09	PCB-11	932 pg/L	EB052709
		PCB-18+30	74.6 pg/L	M-127B
		PCB-17	43.5 pg/L	
		PCB-16	53.5 pg/L	
		PCB-32	33.5 pg/L	
		PCB-31	90.1 pg/L	
		PCB-20+28	92.1 pg/L	
		PCB-21+33	60.9 pg/L	
		PCB-22	32.4 pg/L	
		PCB-52	115 pg/L	
		PCB-49+69 PCB-48	47.4 pg/L	
		PCB-44+47+65	57.1 pg/L	
		PCB-70+61+74+76	75.5 pg/L	
		PCB-66	142 pg/L 39.7 pg/L	
		PCB-56		
		PCB-95	17.0 pg/L 91.0 pg/L	
		PCB-88+91		
		PCB-84	45.5 pg/L 131 pg/L	1
		PCB-90+101+113	483 pg/L	
		PCB-83+99	233 pg/L	
		PCB-86+87+97+108+119+125	360 pg/L	
		PCB-117	54.5 pg/L	
		PCB-85+116	514 pg/L	
		PCB-110+115	115 pg/L	
		PCB-82	45.1 pg/L	
		PCB-109	11.7 pg/L	
		PCB-118	381 pg/L	
		PCB-105	140 pg/L	
		PCB-136	49.2 pg/L	
		PCB-135+151	89.9 pg/L	
		PCB-147+149	215 pg/L	
		PCB-132	118 pg/L	
		PCB-146	30.5 pg/L	
		PCB-153+168	234 pg/L	
		PCB-137	36.2 pg/L	
		PCB-129+138+163	455 pg/L	
		PCB-158	41.8 pg/L	
		PCB-128+166	122 pg/L	
		PCB-167	25.8 pg/L	
		PCB-156+157	166 pg/L	
		PCB-179	13.8 pg/L	
		PCB-187	49.0 pg/L	
		PCB-183	22.7 pg/L	
		PCB-174	45.8 pg/L	
		PCB-177	26.1 pg/L	
		PCB-171+173	27.4 pg/L	
		PCB-172	22.1 pg/L	
		PCB-180+193	254 pg/L	
		PCB-170	321 pg/L	
		PCB-190	41.5 pg/L	
		PCB-189 PCB-202	24.3 pg/L	
			16.1 pg/L	
		PCB-201 PCB-198+199	4.31 pg/L	
		PCB-198+199 PCB-196	77.9 pg/L	
		PCB-196 PCB-203	27.0 pg/L	
		PCB-203 PCB-195	50.0 pg/L	
		PCB-195 PCB-194	32.2 pg/L	
		PCB-194 PCB-205	214 pg/L	
		PCB-205 PCB-208	6.18 pg/L	
		PCB-208 PCB-207	29.8 pg/L	
		PCB-207	7.91 pg/L 168 pg/L	

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
EQ0900193-01	6/5/09	PCB-209 Total DiCB Total TriCB Total TetraCB Total PentaCB Total HexaCB Total HeptaCB Total OctaCB Total NonaCB	29.0 pg/L 932 pg/L 481 pg/L 494 pg/L 2600 pg/L 1580 pg/L 848 pg/L 427 pg/L 206 pg/L	EB052709 M-127B
EQ0900205-01	6/15/09	PCB-11 PCB-18+30 PCB-31 PCB-20+28 PCB-52 PCB-44+47+65 PCB-95 PCB-95 PCB-99 PCB-90+101+113 PCB-83+99 PCB-112 PCB-86+87+97+108+119+125 PCB-110+115 PCB-107+124 PCB-118 PCB-114 PCB-135+151 PCB-146 PCB-130 PCB-198+199 PCB-203 PCB-208 PCB-208 PCB-209 Total DiCB Total TriCB Total TetraCB Total PentaCB Total HexaCB Total NonaCB	1150 pg/L 82.5 pg/L 85.0 pg/L 83.7 pg/L 109 pg/L 86.0 pg/L 79.0 pg/L 82.9 pg/L 239 pg/L 48.4 pg/L 69.0 pg/L 202 pg/L 64.6 pg/L 78.0 pg/L 39.8 pg/L 145 pg/L 39.8 pg/L 145 pg/L 39.8 pg/L 167 pg/L 22.0 pg/L 12.0 pg/L 22.0 pg/L 12.0 pg/L 22.1 pg/L 34.0 pg/L 251 pg/L 251 pg/L 251 pg/L 274 pg/L 1020 pg/L 34.5 pg/L 34.1 pg/L	FB060409

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
FRANKA AND			
EB052709	PCB-11	677 pg/L	677U pg/L
	PCB-18+30	50.4 pg/L	50.4U pg/L
	PCB-17	29.5 pg/L	29.5U pg/L
	PCB-16	36.1 pg/L	36.1U pg/L
	PCB-32	19.7 pg/L	19.7U pg/L
	PCB-31	63.3 pg/L	63.3U pg/L
	PCB-20+28	57.8 pg/L	57.8U pg/L
	PCB-21+33	40.2 pg/L	40.2U pg/L
	PCB-22	22.9 pg/L	22.9U pg/L
	PCB-52	68.2 pg/L	68.2U pg/L
	PCB-49+69	31.2 pg/L	31.2U pg/L
	PCB-44+47+65	50.8 pg/L	50.8U pg/L
	PCB-70+61+74+76	53.2 pg/L	53.2U pg/L
	PCB-66	23.9 pg/L	23.9U pg/L
	PCB-56	12.1 pg/L	12.1U pg/L
	PCB-95	65.8 pg/L	65.8U pg/L
	PCB-84	20.3 pg/L	20.3U pg/L
	PCB-90+101+113	72.4 pg/L	72.4U pg/L
	PCB-83+99	37.0 pg/L	37.0U pg/L
	PCB-86+87+97+108+119+125	53.6 pg/L	53.6U pg/L
	PCB-110+115	92.5 pg/L	92.5U pg/L
	PCB-118	57.6 pg/L	57.6U pg/L
	PCB-105	22.5 pg/L	22.5U pg/L
	PCB-136	9.21 pg/L	9.21U pg/L
	PCB-135+151	20.3 pg/L	20.3U pg/L
	PCB-147+149	46.5 pg/L	46.5U pg/L
	PCB-132	22.8 pg/L	22.8U pg/L
	PCB-146	5.32 pg/L	5.32U pg/L
	PCB-153+168	42.5 pg/L	42.5U pg/L
	PCB-129+138+163	59.6 pg/L	59.6U pg/L
	PCB-158	5.18 pg/L	5.18U pg/L
	PCB-128+166	7.01 pg/L	7.01U pg/L
	PCB-156+157	8.48 pg/L	8.48U pg/L
	PCB-179	6.25 pg/L	6.25U pg/L
	PCB-187	14.9 pg/L	14.9U pg/L
	PCB-180+193	17.3 pg/L	17.3U pg/L
	PCB-170	9.99 pg/L	9.99U pg/L
	PCB-202	7.65 pg/L	7.65U pg/L
	PCB-198+199	24.0 pg/L	24.0U pg/L
	PCB-203	14.6 pg/L	14.6U pg/L
	PCB-194	23.5 pg/L	23.5U pg/L
	PCB-208	13.0 pg/L	13.0U pg/L
	PCB-206	44.1 pg/L	44.1U pg/L
	PCB-209	16.6 pg/L	16.6U pg/L
	Total DiCB	677 pg/L	677U pg/L
	Total TriCB	320 pg/L	320U pg/L
	Total TetraCB	263 pg/L	263U pg/L
	Total PentaCB	432 pg/L	432U pg/L
	Total HexaCB	237 pg/L	237U pg/L
	Total HeptaCB	48.5 pg/L	48.5U pg/L
	Total OctaCB	69.7 pg/L	69.7U pg/L
	Total NonaCB	57.1 pg/L	57.1U pg/L

Sample	Compound	Reported Concentration	Modified Final Concentration
M-127B	PCB-11	1100 pg/L	1100U pg/L
	PCB-18+30	206 pg/L	206U pg/L
	PCB-17	48.8 pg/L	48.8U pg/L
	PCB-16	73.1 pg/L	73.1U pg/L
	PCB-32	33.8 pg/L	33.8U pg/L
	PCB-31	102 pg/L	102U pg/L
	PCB-20+28	264 pg/L	264U pg/L
	PCB-21+33	84.5 pg/L	84.5U pg/L
	PCB-22	34.3 pg/L	34.3U pg/L
	PCB-49+69	53.1 pg/L	53.1U pg/L
	PCB-44+47+65		
	PCB-70+61+74+76	262 pg/L	262U pg/L
		168 pg/L	168U pg/L
	PCB-66	29.3 pg/L	29.3U pg/L
	PCB-56	57.9 pg/L	57.9U pg/L
	PCB-95	78.7 pg/L.	78.7U pg/L
	PCB-84	23.2 pg/L	23.2U pg/L
	PCB-90+101+113	73.4 pg/L	73.4U pg/L
	PCB-83+99	33.3 pg/L	33.3U pg/L
	PCB-86+87+97+108+119+125	55.2 pg/L	55.2U pg/L
	PCB-110+115	84.1 pg/L	84.1U pg/L
	PCB-118	52.2 pg/L	52.2U pg/L
	PCB-105	19.7 pg/L	19.7U pg/L
	PCB-136	9.49 pg/L	9.49U pg/L
	PCB-135+151	21.2 pg/L	21.2U pg/L
	PCB-147+149	45.9 pg/L	45.9U pg/L
	PCB-132	20.8 pg/L	20.8U pg/L
	PCB-146	8.00 pg/L	8.00U pg/L
	PCB-153+168	41.0 pg/L	41.0U pg/L
	PCB-129+138+163	54.7 pg/L	54.7U pg/L
	PCB-158	5.70 pg/L	5.70U pg/L
	PCB-128+166	6.62 pg/L	6.62U pg/L
	PCB-156+157		
	PCB-179	4.84 pg/L	4.84U pg/L
	PCB-179 PCB-187	7.08 pg/L	7.08U pg/L
		19.0 pg/L	19.0U pg/L
	PCB-183	6.99 pg/L	6.99U pg/L
	PCB-174	7.08 pg/L	7.08U pg/L
	PCB-180+193	16.6 pg/L	16.6U pg/L
	PCB-202	11.6 pg/L	11.6U pg/L
	PCB-201	9.85 pg/L	9.85U pg/L
	PCB-198+199	31.4 pg/L	31.4U pg/L
	PCB-196	12.1 pg/L	12.1U pg/L
	PCB-203	14.0 pg/L	14.0U pg/L
	PCB-194	9.09 pg/L	9.09U pg/L
	PCB-205	4.17 pg/L	4.17U pg/L
	PCB-208	42.0 pg/L	42.0U pg/L
	PCB-206	58.5 pg/L	58.5U pg/L
	Total DiCB	1830 pg/L	1830U pg/L
	Total TriCB	1430 pg/L	1430U pg/L
	Total TetraCB	1610 pg/L	1610U pg/L
	Total PentaCB	431 pg/L	431U pg/L
	Total HexaCB		
	Total HeptaCB	228 pg/L	228U pg/L
	•	59.5 pg/L	59.5U pg/L
	Total OctaCB	113 pg/L	113U pg/L
	Total NonaCB	166 pg/L	166U pg/L

Sample	Compound	Reported Concentration	Modified Final Concentration
FB060409	PCB-11	1240 pg/L	1240U pg/L
	PCB-18+30	84.0 pg/L	84.0U pg/L
	PCB-31	92.5 pg/L	92.5U pg/L
	PCB-20+28	91.6 pg/L	91.6U pg/L
	PCB-52	105 pg/L	105U pg/L
	PCB-44+47+65	78.0 pg/L	78.0U pg/L
	PCB-70+61+74+76	71.5 pg/L	71.5U pg/L
	PCB-95	95.6 pg/L	95.6U pg/L
	PCB-90+101+113	84.3 pg/L	84.3U pg/L
	PCB-110+115	106 pg/L	106U pg/L
	PCB-118	51.7 pg/L	51.7U pg/L
	PCB-198+199	22.4 pg/L	22.4U pg/L
	PCB-203	13.1 pg/L	13.1U pg/L
	PCB-208	11.9 pg/L	11.9U pg/L
	PCB-206	26.3 pg/L	26.3U pg/L
	PCB-209	10.2 pg/L	10.2U pg/L
	Total DiCB	1240 pg/L	1240U pg/L
	Total TriCB	331 pg/L	331U pg/L
	Total TetraCB	255 pg/L	255U pg/L
	Total PentaCB	338 pg/L	338U pg/L
	Total HexaCB	105 pg/L	105U pg/L
	Total OctaCB	35.4 pg/L	35.4U pg/L
	Total NonaCB	38.2 pg/L	38.2U pg/L

Sample EB052709 was identified as an equipment blank. No polychlorinated dioxin/dibenzofuran contaminants were found in this blank with the following exceptions:

	Sampling			
Equipment Blank ID	Date	Compound	Concentration	Associated Samples
EB052709	5/27/09	PCB-1	21.5 pg/L	No associated samples in
		PCB-11	677 pg/L	this SDG
		PCB-18+30	50.4 pg/L	
		PCB-17	29.5 pg/L	
		PCB-16	36.1 pg/L	
		PCB-32	19.7 pg/L	
		PCB-31	63.3 pg/L	
		PCB-20+28	57.8 pg/L	
		PCB-21+33	40.2 pg/L	
		PCB-22	22.9 pg/L	
		PCB-52	68.2 pg/L	
		PCB-49+69	31.2 pg/L	
		PCB-44+47+65	50.8 pg/L	
		PCB-64	19.5 pg/L	
		PCB-70+61+74+76	53.2 pg/L	
		PCB-66	23.9 pg/L	
		PCB-56	12.1 pg/L	
		PCB-60 PCB-95	4.62 pg/L	
		PCB-95	65.8 pg/L	
		PCB-92	20.3 pg/L	
		PCB-92 PCB-90+101+113	9.93 pg/L	
		PCB-90+101+113 PCB-83+99	72.4 pg/L	
		PCB-86+87+97+108+119+125	37.0 pg/L 53.6 pg/L	
		PCB-110+115	92.5 pg/L	
		PCB-118	57.6 pg/L	
		PCB-105	22.5 pg/L	
		PCB-136	9.21 pg/L	
		PCB-135+151	20.3 pg/L	
		PCB-147+149	46.5 pg/L	
		PCB-132	22.8 pg/L	
		PCB-146	5.32 pg/L	
		PCB-153+168	42.5 pg/L	
		PCB-141	9.68 pg/L	
		PCB-129+138+163	59.6 pg/L	
		PCB-158	5.18 pg/L	
		PCB-128+166	7.01 pg/L	
		PCB-156+157	8.48 pg/L	
		PCB-179	6.25 pg/L	
		PCB-187	14.9 pg/L	
		PCB-180+193	17.3 pg/L	1
		PCB-170	9.99 pg/L	1
		PCB-202	7.65 pg/L	1
		PCB-198+199	24.0 pg/L	1
		PCB-203	14.6 pg/L	
		PCB-194	23.5 pg/L	1
		PCB-208	13.0 pg/L	
		PCB-206	44.1 pg/L	
		PCB-209	16.6 pg/L	1
		Total MonoCB	21.5 pg/L	
		Total DiCB	677 pg/L	1
		Total TriCB	320 pg/L	
		Total TetraCB	263 pg/L	
		Total PentaCB	432 pg/L	1
		Total HexaCB	237 pg/L	1
		Total HeptaCB	48.5 pg/L	
		Total OctaCB	69.7 pg/L	1
		Total NonaCB	57.1 pg/L	

Sample FB060409 was identified as a field blank. No polychlorinated dioxin/dibenzofuran contaminants were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Compound	Concentration	Associated Samples
FB060409	6/4/09	PCB-11 PCB-18+30 PCB-31 PCB-20+28 PCB-20+28 PCB-21+33 PCB-52 PCB-44+47+65 PCB-70+61+74+76 PCB-95 PCB-90+101+113 PCB-110+115 PCB-110+115 PCB-110+115 PCB-110+115 PCB-110+115 PCB-110+115 PCB-129+138+163 PCB-129+138+163 PCB-298+199 PCB-203 PCB-203 PCB-203 PCB-208 PCB-206 PCB-209 Total DiCB Total TriCB Total TriCB Total TetraCB Total PentaCB Total HexaCB Total OctaCB Total NonaCB	1240 pg/L 84.0 pg/L 92.5 pg/L 91.6 pg/L 63.2 pg/L 105 pg/L 78.0 pg/L 71.5 pg/L 95.6 pg/L 84.3 pg/L 106 pg/L 51.7 pg/L 36.7 pg/L 25.3 pg/L 25.3 pg/L 13.1 pg/L 13.1 pg/L 13.1 pg/L 13.1 pg/L 26.3 pg/L 10.2 pg/L 331 pg/L 255 pg/L 338 pg/L 355 pg/L 35.4 pg/L 38.2 pg/L	No associated samples in this SDG

### VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

### VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

### VIII. Regional Quality Assurance and Quality Control

Not applicable.

### **IX. Internal Standards**

All internal standard percent recoveries (%R) were within QC limits.

### X. Target Compound Identifications

All target compound identifications were within validation criteria.

### XI. Project Quantitation Limit

All project quantitation limits were within validation criteria.

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903006	All compounds reported below the PQL.	J (all detects)	A

All compounds reported as EMPC were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903006	All compounds reported as estimated maximum possible concentration (EMPC).	JK (all detects)	A

### XII. System Performance

The system performance was acceptable.

### XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

### **XIV. Field Duplicates**

No field duplicates were identified in this SDG.

### Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls as Congeners - Data Qualification Summary - SDG R0903006

SDG	Sample	Compound	Flag	A or P	Reason (Code)
R0903006	EB052709 M-127B FB060409	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)
R0903006	EB052709 M-127B FB060409	All compounds reported as EMPC	JK (all detects)	A	Project Quantitation Limit (k)

### Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls as Congeners - Laboratory Blank Data Qualification Summary - SDG R0903006

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
R0903006	EB052709	PCB-11	677U pg/L	A	bl
		PCB-18+30	50.4U pg/L		
		PCB-17	29.5U pg/L		
		PCB-16	36.1U pg/L		
		PCB-32	19.7U pg/L		
		PCB-31	63.3U pg/L		
		PCB-20+28	57.8U pg/L		
		PCB-21+33	40.2U pg/L		
		PCB-22	22.9U pg/L		
		PCB-52	68.2U pg/L		
		PCB-49+69	31.2U pg/L		
		PCB-44+47+65	50.8U pg/L		
		PCB-70+61+74+76	53.2U pg/L		
		PCB-66	23.9U pg/L		
		PCB-56	12.1U pg/L		
		PCB-95	65.8U pg/L		
		PCB-84	20.3U pg/L		
		PCB-90+101+113	72.4U pg/L		
		PCB-83+99	37.0U pg/L		
		PCB-86+87+97+108+119+125	53.6U pg/L		
		PCB-110+115	92.5U pg/L		
		PCB-118	57.6U pg/L		
		PCB-105	22.5U pg/L		
		PCB-136	9.21U pg/L		
		PCB-135+151	20.3U pg/L		
		PCB-147+149	46.5U pg/L		
		PCB-132	22.8U pg/L		
		PCB-146	5.32U pg/L		
		PCB-153+168	42.5U pg/L		
		PCB-129+138+163	59.6U pg/L		
		PCB-158	5.18U pg/L		
		PCB-128+166	7.01U pg/L		
		PCB-156+157	8.48U pg/L		
		PCB-179	6.25U pg/L		
		PCB-187	14.9U pg/L		
		PCB-180+193	17.3U pg/L		
		PCB-170	9.99U pg/L		
		PCB-202	7.65U pg/L		
		PCB-198+199	24.0U pg/L		
		PCB-203	14.6U pg/L		
		PCB-194	23.5U pg/L		
		PCB-208	13.0U pg/L		
		PCB-206	44.1U pg/L		
		PCB-209	16.6U pg/L		
		Total DiCB	677U pg/L		
		Total TriCB	320U pg/L		
		Total TetraCB	263U pg/L		
		Total PentaCB	432U pg/L		
		Total HexaCB	237U pg/L		
		Total HeptaCB	48.5U pg/L		
		Total OctaCB	69.7U pg/L		
		Total NonaCB	57.1U pg/L		

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
R0903006	M-127B	PCB-11	110011 mm/l	A	bl
R0903000	WI-127D	PCB-18+30	1100U pg/L		
			206U pg/L		
		PCB-17	48.8U pg/L		
		PCB-16	73.1U pg/L		
		PCB-32	33.8U pg/L		
		PCB-31	102U pg/L		
		PCB-20+28	264U pg/L		
		PCB-21+33	84.5U pg/L		
		PCB-22	34.3U pg/L		
		PCB-49+69	53.1U pg/L		
		PCB-44+47+65	262U pg/L		
		PCB-70+61+74+76	168U pg/L	1	
		PCB-66	29.3U pg/L		
		PCB-56	57.9U pg/L		
		PCB-95	78.7U pg/L		
		PCB-84	23.2U pg/L		
		PCB-90+101+113	73.4U pg/L		
		PCB-83+99	33.3U pg/L		
		PCB-86+87+97+108+119+125	55.2U pg/L		
		PCB-110+115			
		PCB-118	84.1U pg/L		
			52.2U pg/L		
		PCB-105	19.7U pg/L		
		PCB-136	9.49U pg/L		
		PCB-135+151	21.2U pg/L		
		PCB-147+149	45.9U pg/L		
		PCB-132	20.8U pg/L		
		PCB-146	8.00U pg/L		
		PCB-153+168	41.0U pg/L		
		PCB-129+138+163	54.7U pg/L		
		PCB-158	5.70U pg/L		
		PCB-128+166	6.62U pg/L		
		PCB-156+157	4.84U pg/L		
		PCB-179	7.08U pg/L		
		PCB-187	19.0U pg/L		
		PCB-183	6.99U pg/L		
		PCB-174	7.08U pg/L		
		PCB-180+193	16.6U pg/L		
		PCB-202			
		PCB-202 PCB-201	11.6U pg/L 9.85U pg/L		
		PCB-198+199	31.4U pg/L		
		PCB-196	12.1U pg/L		
		PCB-203	14.0U pg/L		
		PCB-194	9.09U pg/L		
		PCB-205	4.17U pg/L		
		PCB-208	42.0U pg/L		
		PCB-206	58.5U pg/L		
		Total DiCB	1830U pg/L		
		Total TriCB	1430U pg/L		
		Total TetraCB	1610U pg/L		
		Total PentaCB	431U pg/L		
		Total HexaCB	228U pg/L		
		Total HeptaCB	59.5U pg/L		
		Total OctaCB	113U pg/L	1	
		Total NonaCB			
		I UTAL NUTIACO	166U pg/L		

SDG	Sample	Compound	Modified Final Concentration	A or P	Codə
R0903006	FB060409	PCB-11 PCB-18+30 PCB-31 PCB-20+28 PCB-52 PCB-44+47+65 PCB-70+61+74+76 PCB-95 PCB-90+101+113 PCB-110+115 PCB-110+115 PCB-118 PCB-198+199 PCB-203 PCB-203 PCB-208 PCB-208 PCB-209 Total DiCB Total TriCB Total TriCB Total TetraCB Total TetraCB Total PentaCB Total HexaCB Total HexaCB Total OctaCB Total NonaCB	1240U pg/L 84.0U pg/L 92.5U pg/L 91.6U pg/L 78.0U pg/L 71.5U pg/L 95.6U pg/L 84.3U pg/L 106U pg/L 51.7U pg/L 22.4U pg/L 13.1U pg/L 13.1U pg/L 10.2U pg/L 331U pg/L 331U pg/L 338U pg/L 338U pg/L 35.4U pg/L 38.2U pg/L	A	Ы

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls as Congeners - Field Blank Data Qualification Summary -SDG R0903006

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #: 21495B3c

### SDG #: E0903006

Laboratory: Columbia Analytical Services

Stage 4

Date Page: Reviewer 2nd Reviewer

### METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Technical holding times	$\mathbf{A}$	Sampling dates: 5/27-6/4/09
11.	GC/MS Instrument performance check	A	,
111.	Initial calibration	Ă	20/3570
IV.	Routine calibration/IC	$\mathbf{A}$	30/507.
V.	Blanks	an	
VI.	Matrix spike/Matrix spike duplicates	N	dieud Dirtied
VII.	Laboratory control samples	Ä	1050
VIII.	Regional quality assurance and quality control	N	
IX.	Internal standards	ANT	
Х.	Target compound identifications	A	
XI.	Compound quantitation and CRQLs	5W	
XII.	System performance	A	
XIII.	Overall assessment of data		
XIV.	Field duplicates	N	
XV.	Field blanks	TN	EB=1FB=3

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

### Validated Samples:

1	EB052709 <b>%</b> 79	11	20090025-01 200900193-01	21 /	1219482	31	
2	M-127B	د 12	ERO900193-01	ی 22	121943>	32	
3	FB060409	13	~ / /	23		33	
4		14		24		34	
5		15		25		35	
6		16		26		36	
7		17		27		37	
8		18		28		38	
7 8 9 10		19		29		39	
10		20		30		40	

LDC #: <u>21495830</u> SDG #: <u>See Come</u>

ł

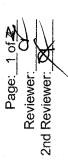
Series V

### Method: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668)

Validation Area	Yes	No	NA	Findings/Comments
I. Technicel holding times				
All technical holding times were met.	(		Τ	
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check				
Was PFK exact mass 380.9760 verified?	$\left \right $			
Were the retention time windows established for all homologues?	/			
Is the static resolving power at least 10,000 (10% valley definition)?				
Was the mass resolution adequately check with PFK?				
III. Initial calibration				
Was the initial calibration performed at 5 concentration levels?	$\langle$			
Were all percent relative standard deviations (%RSD) $\leq$ 25% for unlabeled standards and $\leq$ 30% for labeled standards?				
Did all calibration standards meet the Ion Abundance Ratio criteria?				
Was the signal to noise ratio for each target compound $\geq$ 2.5 and for each recovery and internal standard $\geq$ 10?	/			
IV. Continuing calibration				
Was a routine calibration performed at the beginning of each 12 hour period?		•		
Were all percent differences (%D) $\leq 40\%$ for unlabeled and labeled standards?	1			
Did all routine calibration standards meet the Ion Abundance Ratio criteria?				
V. Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank performed for each matrix and concentration?	K			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		/		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			7	
VII Laboratory control samples				
Was an LCS analyzed for this SDG?	$\square$		Ι	
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

### VALIDATION FINDINGS CHECKLIST

LDC #	:24	9=B	30
SDG #	- 50	ie W	ww


.

	Page:_	<u>-&gt;of-</u>
	<b>Reviewer:</b>	9
2nd	Reviewer:	V

Validation Area	Yes	No	NA	Findings/Comments
VIII Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		$\langle$		
Were the performance evaluation (PE) samples within the acceptance limits?				
IX. Internal standards				
Were internal standard recoveries within the 25-150% criteria?	$\square$			
Was the minimum S/N ratio of all internal standard peaks <u>&gt; 10?</u>				
X. Target compound identification	<b>I</b>			
For polychlorinated biphenyl congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?	/	-		
For polychlorinated biphenyl congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?				
For other polychlorinated biphenyl congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?				
Did compound spectra contain all characteristic ions listed in the table attached?	$\langle \rangle$			
Was the Ion Abundance Ratio for the two quantitation ions within criteria?				
Was the signal to noise ratio for each target compound and labeled standard <u>&gt;</u> 2.5?	<			
Does the maximum intensity of each specified characteristic ion coincide within $\pm$ 2 seconds (includes labeled standards)?				
Was an acceptable lock mass recorded and monitored?				
XI. Compound quantitation/CRQLs		· · · · · ·		
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/		•	
XII. System performance				
System performance was found to be acceptable.	$\frown$			
XIII. Overall assessment of date				
Overall assessment of data was found to be acceptable.				
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.			-	
Target compounds were detected in the field duplicates.			/	
XV. Field blanks		·		
Field blanks were identified in this SDG.		_		
Target compounds were detected in the field blanks.	1			

SDG #: See Cover LDC #: 21495B3c

## VALIDATION FINDINGS WORKSHEET Blanks



METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668)

Ptease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

Was a method blank performed for each matrix and whenever a sample extraction was performed?

Was the method blank contaminated? If yes, please see qualification below. Y N N/A Y N N/A N N/A

Blank analysis date: 6/15/09 Blank extraction date: 6/5/09

Conc. units: pg/L				Associated samples: 1 - 2	e
Compound	Blank ID			Sample Identification	
	E00900193-01	1	2		
PCB 11	932	677/U	1100/U		
PCBs 18+30	74.6	50.4/U	206/U		
PCB 17	43.5	29.5/U	48.8/U		
PCB 16	53.5	36.1/U	73.1/U		
PCB 32	33.5	19.7/U	33.8/U		
PCB 31	90.1	63.3/U	102/U		
PCBs 20+28	92.1	57.8/U	264/U		
PCBs 21+33	60.9	40.2/U	84.5/U		
PCB 22	32.4	22.9/U	34.3/U		
PCB 52	115	68.2/U	ı		
PCBs 49+69	47.4	31.2/U	53.1/U		
PCB 48	57.1				
PCBs 44+47+65	75.5	50.8/U	262/U		
PCBs 70+61+74+76	142	53.2/U	168/U		
PCB 66	39.7	23.9/U	29.3/U		
PCB 56	17.0	12.1/U	57.9/U		
PCB 95	91.0	65.8/U	78.7/U		
PCBs 88+91	45.5				
PCB 84	131	20.3/U	23.2/U		
PCBs 90+101+113	483	72.4/U	73.4/U		- And a first and the first and a first second s
PCBs 83+99	233	37.0/U	33.3/U		
		an de la desta de la compañía de la desta de la de	a fan fan de se an		W

V:\Pei\Tronox\21495BMB2.wpd

						••	<b>N</b>
PCBs 86+87+97+108+119+125	360	53.6/U	55.2/U				
PCB 117	54.5						
PCBs 85+116	514						
PCBs 110+115	115	92.5/U	84.1/U				
PCB 82	45.1						
PCB 109	11.7						
PCB 118	381	57.6/U	52.2/U				
PCB 105	140	22.5/U	19.7/U				
PCB 136	49.2	9.21/U	9.49/U				
PCBs 135+151	89.9	20.3/U	21.2/U				
PCBs 147+149	215	46.5/U	45.9/U				
PCB 132	118	22.8/U	20.8/U				
PCB 146	30.5	5.32/U	8.00/U				
PCBs 153+168	234	42.5/U	41.0/U		-		
PCB 137	36.2						
PCBs 129+138+163	455	59.6/U	54.7/U				
PCB 158	41.8	5.18/U	5.70/U				
PCBs 128+166	122	7.01/U	6.62/U				
PCB 167	25.8						
PCBs 156+157	166	8.48/U	4.84/U				
PCB 179	13.8	6.25/U	7.08/U				
PCB 187	49.0	14.9/U	19.0/U				
PCB 183	22.7		6.99/U				
PCB 174	45.8		7.08/U				
PCB 177	26.1						
PCBs 171+173	27.4						
PCB 172	22.1	₹ Y taama baka ku tin A a ta Bigina Kita baka ku ti Jamaa wa		n 10 Bru - An Januara da 10 Bran da Andre Vijska bil Januara da Vijska da Sabara da Sabara da Sabara da Sabara			
PCBs 180+193	254	17.3/U	16.6/U	r ternenda terrete terrete terrete terrete de terrete de terrete de terrete terrete terrete terrete terrete ter			
PCB 170	321	0.99/U					
PCB 190	41.5						
PCB 189	24.3						

**8**1

V:\Pei\Tronox\21495BMB2.wpd

ŝ

					-		
PCB 202	16.1	7.65/U	11.6/U				
PCB 201	4.31		9.85/U				
PCBs 198+199	77.9	24.0/U	31.4/U				
PCB 196	27.0		12.1/U				
PCB 203	50.0	14.6/U	14.0/U				
PCB 195	32.2						
PCB 194	214	23.5/U	9.09/U				
PCB 205	6.18		4.17/U				
PCB 208	29.8	13.0/U	42.0/U				
PCB 207	7.91		8				
PCB 206	168	44.1/U	58.5/U				
PCB 209	29.0	16.6/U					
Total DiCB	932	677/U	1830/U				
Total TriCB	481	320/U	1430/U				
Total TetraCB	494	263/U	1610/U				
Total PentaCB	2600	432/U	431/U				
Total HexaCB	1580	237/U	228/U				
Total HeptaCB	848	48.5/U	59.5/U				
Total OctaCB	427	69.7/U	113/U				
Total NonaCB	206	57 1/11	166/1				

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

V:\Pei\Tronox\21495BMB2.wpd

SDG #: See Cover LDC #: 21495B3c

## VALIDATION FINDINGS WORKSHEET Blanks

Page: 1 of 4 2nd Reviewer: Reviewer:

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A

Were all samples associated with a method blank?

Was a method blank performed for each matrix and whenever a sample extraction was performed?

Was the method blank contaminated? If yes, please see qualification below. **n date:** <u>6/15/09</u> **Blank analysis date:** <u>6/22/09</u> X N N/A

**Blank ext** 

Blank analysis date: 6/2		
DIALIN EXITACTION GALE: 0/13/09 B	<u>Conc. units: pg/L</u>	

Conc. units: pg/L			Associated samples: 3
Compound	Blank ID		Sample Identification
	E00900205-01	3	
PCB 11	1150	1240/U	
PCBs 18+30	82.5	84.0/U	
PCB 31	85.0	92.5/U	
PCBs 20+28	83.7	91.6/U	
PCB 52	109	105/U	
PCBs 44+47+65	86.0	78.0/U	
PCBs 70+61+74+76	79.0	71.5/U	
PCB 95	82.9	95.6/U	
PCB 89	239		
PCBs 90+101+113	48.4	84.3/U	
PCBs 83+99	69.0		
PCB 112	202		
PCBs 86+87+97+108+119+125	64.6		
PCBs 110+115	78.0	106/U	
PCBs 107+124	145		
PCB 118	39.8	51.7/U	
PCB 114	52.8		
PCBs 135+151	116		
PCB 146	94.3		
PCB 130	167		
PCBs 193+109	22.0	22.4/U	

V:\Pei\Tronox\21495BMB1.wpd

<b>,</b>	11.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.		r shar ki ta sa ka sa man sa baran di ba anna sa ma at ta Anna shaka wa ta sa sa maka na sa sa ta sa sa sa sa s			
PCB 203	12.6	13.1/U				
PCB 208	12.0	11.9/U				
PCB 206	22.1	26.3/U				
PCB 209	34.0	10.2/U				
Total DiCB	1150	1240/U				
Total TriCB	251	331/U				
Total TetraCB	274	255/U				
Total PentaCB	1020	338/U				
Total HexaCB	377	105/U				
Total OctaCB	34.5	35.4/U				
Total NonaCB	34.1	38.2/U				

•

••

ч. •

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

SDG #: See Cover LDC #: 21495B3c

## VALIDATION FINDINGS WORKSHEET

Field Blanks

Page: /of Z 2nd Reviewer:

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Blank units: pg/L Associated sample units:

Field blank type: (circle one) Field Blank / Rinsate / Other:	) Field Blank /	Rinsate / Other: ZP Associated Samples: None
Compound	Blank ID	San
(60/2=/5)		
PCB 1	21.5	
PCB 11	677	
PCBs 18+30	50.4	
PCB 17	29.5	
PCB 16	36.1	
PCB 32	19.7	
PCB 31	63.3	
PCBs 20+28	57.8	
PCBs 21+33	40.2	
PCB 22	22.9	
PCB 52	68.2	
PCBs 49+69	31.2	
PCBs 44+47+65	50.8	
PCB 64	19.5	
PCBs 70+61+74+76	53.2	
PCB 66	23.9	
PCB 56	12.1	
PCB 60	4.62	
PCB 95	65.8	
PCB 84	20.3	
PCB 92	9.93	
PCBs 90+101+113	72.4	
PCBs 83+99	37.0	

2

D/DC 06407-100-1405	0 0 0	
PCBs 110+115	92.5	
PCB 118	57.6	
PCB 105	22.5	
PCB 136	9.21	
PCBs 135+151	20.3	
PCBs 147+149	46.5	
PCB 132	22.8	
PCB 146	5.32	
PCBs 153+168	42.5	
PCB 141	9.68	
PCBs 129+138+163	59.6	
PCB 158	5.18	
PCBs 128+166	7.01	
PCBs 156+157	8.48	
PCB 179	6.25	
PCB 187	14.9	
PCBs 180+193	17.3	
PCB 170	9.99	
PCB 202	7.65	
PCBs 198+199	24.0	
PCB 203	14.6	
PCB 194	23.5	
PCB 208	13.0	
PCB 206	44.1	
PCB 209	16.6	
Total MonoCB	21.5	
Total DiCB	677	
Total TriCB	320	
Total TetraCB	263	

₹.

•

	<u><u>u</u></u>		 	 	And the second	0
Total PentaCB	432			 		
Total HexaCB	237					
Total HeptaCB	48.5					
Total OctaCB	69.7					
Total NonaCB	57 1					

...*

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

V:\Pei\Tronox\21495B3C_EB.wpd

C #: 21495B3c	G #: See Cover
LDC #	SDG #

## VALIDATION FINDINGS WORKSHEET



METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668)

Α".	0	-,
N, s	-10	Niceo
eda	4	-
entifi		
e id	afe	Associated Camples:
ns ai	S	
stipi	4	77
aue :	5	
able	ψ,	<u> </u>
pildq		
lot a	1	
2.7	L	
ed "	nits:	i
swer	le ur	Č
s ans	dwe	040
tions	s p	2
sent	ciate	1 100
alle	SSO	
w for	Z	Ц Ц
belo		1000
ons		
icatio	l/bd	. (c)
ualif	Slank units: pg/L Associated sample units: Sarplands and : 6/4/0 )	<b>iald blank tuna</b> : (circle and) Eiold Blank / Dincato / Athor
ee q	nits:	+ 24
se s(	k ur	243
lea	slan	Cloi:

Field blank type: (circle one) Field Blank / Rinsate / Other:	<u>e) Field Blank</u>	/ Rinsate / Other: Associated Samples: None /	
Compound	Blank ID		
	EB060409		
PCB 11	1240		
PCBs 18+30	84.0		
PCB 31	92.5		
PCBs 20+28	91.6		
PCBs 21+33	63.2		
PCB 52	105		
PCBs 44+47+65	78.0		
PCBs 70+61+74+76	71.5		
PCB 95	95.6		
PCBs 90+101+113	84.3		
PCBs 110+115	106		
PCB 118	51.7		
PCBs 147+149	36.7		
PCBs 153+168	25.3		
PCBs 129+138+163	43.3		
PCBs 198+199	22.4		
PCB 203	13.1		
PCB 208	11.9		
PCB 206	26.3		
PCB 209	10.2		
Total DiCB	1240		
Total TriCB	331		
Total TetraCB	255		

		•		-			
Total PentaCB	338				NAME AND AND THE OTHER ADDRESS OF		
Total HexaCB	105				an fa		
Total OctaCB	35.4						
Total NonaCR	38.2						

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

V:\Pei\Tronox\21495B3C_FB.wpd

	~
	$\sim$
(	
- C [	<b>.</b>
v	L2 ו
M	
- 12	2
-AA-	1 1/1
- (Λ	1 VI
- N	1
	- 01
	M N
4	· 01
~	
- N -	NN.
U	1.2
	#
#	110
	15
. 0	ä
ΞŌ.	$\cap$
	S
. <del></del>	0)

## **Compound Quantitation and Reported CRQLs** VALIDATION FINDINGS WORKSHEET

of 2nd Reviewer: Page: Reviewer:

METHOD: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary). Y N N/A /N N/A

L

#	Date	Sample ID	Finding	Associated Samples	Qualifications
		41	Uparter ZNAC	MAN N	(TA (K)
		, ,			
	-				
Comme	ents: See s	Comments: <u>See sample calculation verification worksheet for recalculations</u>	sheet for recalculations		

COMQUA.166

LDC #:214932 SDG #: Tec

## Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

4 of Page:__ Reviewer:__ 2nd Reviewer:

METHOD: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF = (A_J)(C_k)/(A_k)(C_J) average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 $C_x = Concentration of compound, S = Standard deviation of the RRFs,$  $A_x = Area of compound,$ 

 $A_{u}^{*} = Area \text{ of associated internal standard} \\ C_{u}^{*} = Concentration of internal standard \\ X = Mean of the RRFs$ 

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
$ \frac{ \mathcal{LL}}{ \mathcal{L} } = \frac{1}{\sqrt{ \mathcal{L} }} \frac{\text{PGBTT}}{ \mathcal{L} } \frac{ \mathcal{L}\mathcal{L} }{ \mathcal{L} } \frac{ \mathcal{L} }{ }  $	*	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Average RRF (initial)	RRF ( ∽SSstd)	RRF ( ~~ Stal)	%RSD	%RSD
$ \frac{1}{100} 1$	-	1040	11.0	PCB-77 ( ¹³ C-PCB-77)	1.04	1.04	<u>v</u>	21.1	5.2	5.18
$\left  \begin{array}{c c c c c c c c c c c c c c c c c c c $			00/1	PCB-105 ( ¹³ C-PCB-105)	1.06	1.06	1.08	1.08	2.09	2,07
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				PCB-156 ( ¹³ C-PCB-156)	50.1	1.05	90.1	9 0.1	5,36	040
				PCB-186 (13C-PCB-186)	06.0	050	60.1	1.00)	650	6.67
									/	
	2			PCB-77 (1 ³ C-PCB-77)						
				PCB-105 ( ¹³ C-PCB-105)						
				PCB-156 ( ¹³ C-PCB-156)						
				PCB-180 ( ¹³ C-PCB-180)						
PCB-105       (*0-FDB-105)         PCB-105       (*0-FDB-105)         PCB-156       (*0-FDB-150)         PCB-130       (*0-FDB-180)         PCB-140       (*0-FDB-180)	0			PCB-77 ( ¹³ C-PCB-77)						
PCB-156     ( ¹³ C-PCB-156)       PCB-156     ( ¹³ C-PCB-150)       PCB-180     ( ¹³ C-PCB-180)				PCB-105 ( ¹³ C-PCB-105)						
PCB-180 ( ¹ °C-PCB-180)				PCB-156 ( ¹³ C-PCB-156)						
				PCB-180 ( ¹³ C-PCB-180)						

Comments: Refer to Initial Calibration findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

Vinos sos A5 830 LDC #:21 SDG #:

## **Routine Calibration Results Verification** VALIDATION FINDINGS WORKSHEET

ot Page: Reviewers 2nd Reviewer:

METHOD: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF =  $(A_{n})(C_{n})/(A_{n})(C_{n})$ 

ave. RRF = initial calibration average RRF RRF = continuing calibration RRF  $A_x = Area of compound, C_x = Concentration of compound,$ Where:

 $A_{ik}$  = Area of associated internal standard  $C_{ik}$  = Concentration of internal standard

Recalculated ۵% Reported 0% (cc) Recalculated h γ R 0 0 0 M 54 R S g 96. JD 40 Ś RAFCONC (CC) 95.3 D Reported 49.3 C 1 5 500 3 96. 3 ß M Average RRF (initial) C V 4 90: 90 I 0.0 0.4 ġ ò Compound (Reference Internal Standard) PCB-105 (¹³C-PCB-105) PCB-156 (13C-PCB-156) PCB-180 (13C-PCB-180 PCB-105 ("C-PCB-105) PCB-156 (¹³C-PCB-156) PCB-156 (¹³C-PCB-156) PCB-180 (13C-PCB-180) PCB-180 (13C-PCB-180) PCB-105 (¹³C-PCB-105) (¹³C-PCB-77) PCB-77 (¹³C-PCB-77) (¹³C-PCB-77) PCB-77 PCB-77 100/24 12/091 Calibratio n Date -87612N Standard ID 1121943 # 2 ---**0** 

C:\WPDOCS\WRK\PCB\CONCLC.166

recalculated results.

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the

95332 SDG #: See CONM 

# Laboratory Control Sample Results Verification VALIDATION FINDINGS WORKSHEET

б Page: Reviewer:

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were 2nd Reviewer: recalculated for the compounds identified below using the following calculation: METHOD: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668)

SSC = Spiked sample concentration SA = Spike added Where: % Recovery = 100 * SSC/SA

RPD = 1 LCS - LCSD + 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

d/	
A	ļ
93-0	
4	ļ
s S	l
5	l
1	l
8	
60	
8	
X	-
200	
ä	
LCS	

	Sr	like	Spiked S	ample	LCS LCS	s	rcsd	۵ ۵	TCS/FCSD	CSD
Compound	₩.	Added	Concentration	tration	Percent Recovery	ecovery	Percent Recovery	ecovery	RPD	Q
	rcs	LCSD		LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
PCR.77	1000	0201	0211	1160	4	N	116.	116	4	4
PCB-81			1090	1130	109	109	(13	3	4	4
PCB-105			0201	1070	01	102	107	107	5	Ŋ
PCB-114			a.801	140	108	108	114	4	(v)	Ś
PCB-118			1060	0211	901	106	112	2	Ø	U
PCB-123			1030	1080	103	103	108-	108	5	6
PCB-126			000	1020	001	(ca)	(02	201	Ц	N
PCB-156 /157	2020	0000	1950	iggo	97	97	99	99	N	Ц
PCB-157-										
PCB-167	oas	Q a 8 1	970	0101	97	97	101	101	4	4
PCB-169	~	1	994	1040	99	99	104	40	5	4
PCB-179				-		_				
Be8-180										0
PCB-189	000	000	2501	2801	105	501	108	108	M	Ŋ
			-					-	10 00 mithin across the desired between across the second se	oc within 10.0%

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:	95834
SDG #:	z coner

Df

%S

## VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page:	
Reviewer:	9
2nd reviewer:	<u> </u>

METHOD:	HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668)
IY N N/A	Were all reported results recalculated and verified for all level IV samples?
Y N N/A Y N N/A	Were all recalculated results for detected target compounds agree within 10.0% of the reported results?
$\sim$	

Conce	entration	$= (A_{+})((.)(DF) (A_{+})(RRF)(V_{+})(%S)$
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
A _k	=	Area of the characteristic ion (EICP) for the specific internal standard
Ļ	<b></b>	Amount of internal standard added in nanograms (ng)
RRF	=	Relative response factor of the calibration standard.
V,	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).

Dilution factor.

Example: Sample I.D. <u>+081</u>, ____:

Conc. = (3.435304p2)(2000)() (2.84194p4)(1.11)(1010)() = 21.57 P5/2Percent solids, applicable to soils and solid

*5		matrices only.		1			
#		Sample ID	Compound		Reported Concentration ( )	Calculated Concentration ( )	Qualification
					- - 		
							- 
					•		
				1			
				-		·	
			·				
		<u></u>					
				<u> </u>			
	ł				1		1

**Revision 1** 

## LDC Report# 21495E3c

## Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Tronox LLC Facility, Henderson, Nevada	2009	Phase	В	Investigation,
Collection Date:	June 23, 2009				

LDC Report Date: November 3, 2009

Matrix: Water

Parameters: Polychlorinated Biphenyls as Congeners

Validation Level: Stage 2B

Laboratory: Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903404

## Sample Identification

M-125B M-125BMS M-125BMSD

## Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 1668A for Polychlorinated Biphenyls as Congeners.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Samples indicated by a double asterisk on the front cover underwent Stage 4 review. Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data. The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

## I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

## II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency and all criteria were met.

## III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all compounds were within validation criteria.

## IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 30.0% for unlabeled compounds and less than or equal to 50.0% for labeled compounds.

The ion abundance ratios for all compounds were within validation criteria.

## *V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated biphenyls as congeners contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
EQ0900269-01	7/20/09	PCB-11	810 pg/L	All samples in SDG
		PCB-18+30	84.0 pg/L	R0903404
		PCB-31	80.7 pg/L	
		PCB-20+28	71.4 pg/L	
		PCB-21+33	44.5 pg/L	
		PCB-52	95.7 pg/L	
		PCB-49+69	28.6 pg/L	
		PCB-44+47+65	68.2 pg/L	
		PCB-64	19.6 pg/L	
		PCB-70+61+74+76	95.2 pg/L	
		PCB-66	30.0 pg/L	
		PCB-95		
		PCB-95 PCB-88+91	166 pg/L	
			22.9 pg/L	
		PCB-84	55.1 pg/L	
		PCB-92	34.8 pg/L	
		PCB-90+101+113	198 pg/L	
		PCB-83+99	91.6 pg/L	
		PCB-86+87+97+108+119+125	152 pg/L	
		PCB-85+116	24.8 pg/L	
		PCB-110+115	266 pg/L	
		PCB-118	154 pg/L	
		PCB-105	68.8 pg/L	
		PCB-136	19.3 pg/L	
		PCB-135+151	45.7 pg/L	
		PCB-147+149	119 pg/L	
		PCB-132	73.5 pg/L	
		PCB-146	20.9 pg/L	
		PCB-153+168	129 pg/L	
		PCB-141	32.3 pg/L	
		PCB-137	17.4 pg/L	
		PCB-164	11.1 pg/L	
		PCB-129+138+163	247 pg/L	
		PCB-158	24.7 pg/L	
		PCB-128+166	41.8 pg/L	
		PCB-120+100 PCB-167		
			9.04 pg/L	
		PCB-156+157	38.2 pg/L	
		PCB-179	6.33 pg/L	
		PCB-187	20.1 pg/L	
		PCB-174	17.5 pg/L	
		PCB-180+193	36.2 pg/L	
		PCB-170	24.5 pg/L	1
		PCB-202	5.23 pg/L	
		PCB-198+199	24.4 pg/L	
	1	PCB-203	11.3 pg/L	
		PCB-194	11.2 pg/L	1
	1	PCB-208	14.2 pg/L	
		PCB-207	4.80 pg/L	1
		PCB-206	37.2 pg/L	1
		PCB-209	14.7 pg/L	1
	1	Total DiCB	810 pg/L	
	1	Total TriCB	281 pg/L	
	1	Total TetraCB	337 pg/L	
		Total PentaCB	1230 pg/L	
		Total HexaCB	830 pg/L	
	1	Total HeptaCB	105 pg/L	
	1	Total OctaCB Total NonaCB	52.1 pg/L	
	1	L LOTAL NODACH	56.1 pg/L	1

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
*M-125B	PCB-11	747 pg/L	747U pg/L
	PCB-31	43.0 pg/L	43.0U pg/L
	PCB-20+28	42.6 pg/L	42.6U pg/L
	PCB-52	48.0 pg/L	48.0U pg/L
	PCB-44+47+65	49.3 pg/L	49.3U pg/L
	PCB-70+61+74+76	49.1 pg/L	49.1U pg/L
	PCB-95	136 pg/L	136U pg/L
	PCB-84	46.2 pg/L	46.2U pg/L
	PCB-92	24.0 pg/L	24.0U pg/L
	PCB-90+101+113	167 pg/L	167U pg/L
	PCB-83+99	73.6 pg/L	73.6U pg/L
	PCB-86+87+97+108+119+125	122 pg/L	122U pg/L
	PCB-85+116	22.0 pg/L	22.0U pg/L
	PCB-110+115	223 pg/L	223U pg/L
	PCB-118	138 pg/L	138U pg/L
	PCB-105	66.6 pg/L	66.6U pg/L
	PCB-136	20.0 pg/L	20.0U pg/L
	PCB-135+151	39.3 pg/L	39.3U pg/L
	PCB-147+149	108 pg/L	108U pg/L
	PCB-132	59.9 pg/L	59.9U pg/L
	PCB-153+168	115 pg/L	115U pg/L
	PCB-141	28.5 pg/L	28.5U pg/L
	PCB-129+138+163	209 pg/L	209U pg/L
	PCB-158	20.8 pg/L	20.8U pg/L
	PCB-128+166	40.3 pg/L	40.3U pg/L
	PCB-167	13.7 pg/L	13.7U pg/L
	PCB-156+157	58.5 pg/L	58.5U pg/L
	PCB-187	20.2 pg/L	20.2U pg/L
	PCB-180+193	49.7 pg/L	49.7U pg/L
	PCB-198+199	21.1 pg/L	21.1U pg/L
	PCB-203	14.5 pg/L	14.5U pg/L
	PCB-194	13.0 pg/L	13.0U pg/L
	PCB-208	12.7 pg/L	12.7U pg/L
	PCB-207	11.4 pg/L	11.4U pg/L
	PCB-206	37.8 pg/L	37.8U pg/L
	PCB-209	71.2 pg/L	71.2U pg/L
	Total DiCB	747 pg/L	747U pg/L
	Total TriCB	138 pg/L	138U pg/L
	Total TetraCB	146 pg/L	146U pg/L
	Total PentaCB	1040 pg/L	1040U pg/L
	Total HexaCB	756 pg/L	756U pg/L
	Total HeptaCB	141 pg/L	141U pg/L
	Total OctaCB	48.6 pg/L	48.6U pg/L
	Total NonaCB	61.9 pg/L	61.9U pg/L
	PCB-170	17.0 pg/L	17.0U pg/L

*Added PCB-170 to sample M-125B

Sample FB060409 (from SDG R0903006) was identified as a field blank. No polychlorinated dioxin/dibenzofuran contaminants were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Compound	Concentration	Associated Samples
FB060409	6/4/09	PCB-11 PCB-18+30 PCB-31 PCB-20+28 PCB-21+33 PCB-52 PCB-44+47+65 PCB-70+61+74+76 PCB-95 PCB-90+101+113 PCB-110+115 PCB-110+115 PCB-118 PCB-147+149 PCB-153+168 PCB-129+138+163 PCB-129+138+163 PCB-129+138+163 PCB-208 PCB-208 PCB-208 PCB-208 PCB-206 PCB-209 Total DiCB Total TriCB Total TetraCB Total PentaCB Total PentaCB Total Action CB	1240 pg/L 84.0 pg/L 92.5 pg/L 91.6 pg/L 63.2 pg/L 105 pg/L 78.0 pg/L 71.5 pg/L 95.6 pg/L 84.3 pg/L 106 pg/L 51.7 pg/L 36.7 pg/L 25.3 pg/L 25.3 pg/L 13.1 pg/L 13.1 pg/L 13.1 pg/L 12.4 pg/L 13.2 pg/L 1240 pg/L 331 pg/L 255 pg/L 338 pg/L 35.4 pg/L 38.2 pg/L	M-125B

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
M-125B	PCB-11	747 pg/L	747U pg/L
	PCB-31	43.0 pg/L	43.0U pg/L
	PCB-20+28	42.6 pg/L	42.6U pg/L
	PCB-52	48.0 pg/L	48.0U pg/L
	PCB-44+47+65	49.3 pg/L	49.3U pg/L
	PCB-70+61+74+76	49.1 pg/L	49.1U pg/L
	PCB-95	136 pg/L	136U pg/L
	PCB-90+101+113	167 pg/L	167U pg/L
	PCB-110+115	233 pg/L	233U pg/L
	PCB-118	138 pg/L	138U pg/L
	PCB-147+149	108 pg/L	108U pg/L
	PCB-153+168	115 pg/L	115U pg/L
	PCB-129+138+163	209 pg/L	209U pg/L
	PCB-198+199	21.1 pg/L	21.1U pg/L
	PCB-203	14.5 pg/L	14.5U pg/L
	PCB-208	12.7 pg/L	12.7U pg/L
	PCB-206	37.8 pg/L	37.8U pg/L
	Total DiCB	747 pg/L	747U pg/L
	Total TriCB	138 pg/L	138U pg/L
	Total TetraCB	146 pg/L	146U pg/L
	Total PentaCB	1040 pg/L	1040U pg/L
	Total OctaCB	48.6 pg/L	48.6U pg/L
	Total NonaCB	61.9 pg/L	61.9U pg/L

## VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

## VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

## VIII. Regional Quality Assurance and Quality Control

Not applicable.

## IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits with the following exceptions:

Sample	Internal Standards	%R (Limits)	Compound	Flag	A or P
M-125B	<ul> <li>¹³C-PCB-1</li> <li>¹³C-PCB-3</li> <li>¹³C-PCB-4</li> <li>¹³C-PCB-15</li> <li>¹³C-PCB-19</li> <li>¹³C-PCB-37</li> <li>¹³C-PCB-54</li> <li>¹³C-PCB-104</li> </ul>	10 (25-150) 10 (25-150) 13 (25-150) 14 (25-150) 13 (25-150) 22 (25-150) 15 (25-150) 23 (25-150)	PCB-1 thru 39 PCB-40 thru 76 PCB-78 thru 80 PCB-82 thru 104 PCB106 thru 113 PCB-115 thru 117 PCB-119 thru 122 PCB-124+125 PCB-127	J (all detects) UJ (all non-detects)	Ρ
EQ0900269-01	¹³ C-PCB-1 ¹³ C-PCB-3 ¹³ C-PCB-19	22 (25-150) 22 (25-150) 22 (25-150)	PCB-1 thru 3 PCB-16 thru 18 PCB-20 thru 36 PCB-38 thru 39	J (all detects) UJ (all non-detects)	Ρ

## X. Target Compound Identifications

Raw data were not reviewed for this SDG.

## XI. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903404	All compounds reported below the PQL.	J (all detects)	A

All compounds reported as EMPC were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903404	All compounds reported as estimated maximum possible concentration (EMPC).	JK (all detects)	A

Raw data were not reviewed for this SDG.

## XII. System Performance

Raw data were not reviewed for this SDG.

## XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

## XIV. Field Duplicates

No field duplicates were identified in this SDG.

## Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls as Congeners - Data Qualification Summary - SDG R0903404

SDG	Sample	Compound	Flag	A or P	Reason (Code)
R0903404	M-125B	PCB-1 thru 39 PCB-40 thru 76 PCB-78 thru 80 PCB-82 thru 104 PCB106 thru 113 PCB-115 thru 117 PCB-119 thru 122 PCB-124+125 PCB-127	J (all detects) UJ (all non-detects)	Ρ	Internal standards (%R) (i)
R0903404	M-125B	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)
R0903404	M-125B	All compounds reported as EMPC	JK (all detects)	A	Project Quantitation Limit (k)

1.5

1.11

## *Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls as Congeners - Laboratory Blank Data Qualification Summary - SDG R0903404

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
*R0903404	M-125B	PCB-11	747U pg/L	A	bl
		PCB-31	43.0U pg/L		
		PCB-20+28	42.6U pg/L		
		PCB-52	48.0U pg/L		
		PCB-44+47+65	49.3U pg/L		
		PCB-70+61+74+76	49.1U pg/L		
		PCB-95	136U pg/L		
		PCB-84	46.2U pg/L		
		PCB-92	24.0U pg/L		
		PCB-90+101+113	167U pg/L		
		PCB-83+99	73.6U pg/L		
		PCB-86+87+97+108+119+125	122U pg/L		
		PCB-85+116	22.0U pg/L		
		PCB-110+115	223U pg/L	1	
		PCB-118	138U pg/L		
		PCB-105	66.6U pg/L		
		PCB-136	20.0U pg/L		
		PCB-135+151	39.3U pg/L		
		PCB-147+149	108U pg/L		
		PCB-132	59.9U pg/L		
		PCB-153+168	115U pg/L		
		PCB-141	28.5U pg/L		
		PCB-129+138+163	209U pg/L		
		PCB-158	20.8U pg/L	1	
		PCB-128+166	40.3U pg/L		
		PCB-167	13.7U pg/L		
		PCB-156+157	58.5U pg/L		
		PCB-187	20.2U pg/L		
		PCB-180+193	49.7U pg/L		
		PCB-198+199	21.1U pg/L 14.5U pg/L		
		PCB-203			
	-	PCB-194	13.0U pg/L		
		PCB-208	12.7U pg/L 11.4U pg/L		
		PCB-207	1		
		PCB-206	37.8U pg/L		
		PCB-209	71.2U pg/L 747U pg/L		
		Total DiCB Total TriCB	138U pg/L	1	
		Total TriCB	1380 pg/L 146U pg/L	1	
		Total PentaCB	1460 pg/L 1040U pg/L		
		Total PentaCB	756U pg/L		
			141U pg/L		
		Total HeptaCB		1	
		Total OctaCB	48.6U pg/L 61.9U pg/L		
		Total NonaCB	17.0U pg/L		
11		PCB-170	17.00 pg/L		
		l	l	1	

## Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls as Congeners - Field Blank Data Qualification Summary -SDG R0903404

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
R0903404	M-125B	PCB-11 PCB-31 PCB-20+28 PCB-52 PCB-44+47+65 PCB-70+61+74+76 PCB-95 PCB-90+101+113 PCB-110+115 PCB-118 PCB-147+149 PCB-153+168 PCB-129+138+163 PCB-129+138+163 PCB-129+138+163 PCB-208 PCB-208 PCB-206 Total DiCB Total TriCB Total TetraCB Total TetraCB Total PentaCB Total OctaCB Total NonaCB	747U pg/L 43.0U pg/L 42.6U pg/L 48.0U pg/L 49.3U pg/L 136U pg/L 136U pg/L 138U pg/L 138U pg/L 138U pg/L 115U pg/L 209U pg/L 21.1U pg/L 14.5U pg/L 37.8U pg/L 37.8U pg/L 138U pg/L 146U pg/L 146U pg/L 1040U pg/L 48.6U pg/L 61.9U pg/L	A	bf

## Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #: <u>21495E3c</u> SDG #: E0903404

Stage 2B

Date: 9/7/09
Page: /of /
Reviewer:
2nd Reviewer:

16

Laboratory: Columbia Analytical Services

## METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Technical holding times	$\mathbf{A}$	Sampling dates: 6/23/09
H.	GC/MS Instrument performance check	A	· · · /
111.	Initial calibration	A	20/35/0
IV.	Routine calibration/1	Å	30/5070
V.	Blanks	-tiv	
VI.	Matrix spike/Matrix spike duplicates	$\triangleleft$	
VII.	Laboratory control samples	A	100
VIII.	Regional quality assurance and quality control	N	
IX.	Internal standards	M	
Х.	Target compound identifications	N	
XI.	Compound quantitation and CRQLs	Św	-
XII.	System performance	N	
XIII.	Overall assessment of data		
XIV.	Field duplicates	N	
XV.	Field blanks	Tw	1B060409 (20903006), 13072109-50(100

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

1	M-125B W	11	200900269-0 1	21	U219	31	
2	M-125BMS	12	,	22	. Marineau	32	
3	M-125BMSD	13		23		33	
4		14		24		34	
5		15		25	······································	35	
6		16		26		36	
7		17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

SDG #: See Cover LDC #: 21495E3c

## VALIDATION FINDINGS WORKSHEET Blanks

9 Page: 1 of 2 Reviewer:_____2nd Reviewer:_____

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668)

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

Was a method blank performed for each matrix and whenever a sample extraction was performed? Was the method blank contaminated? If yes, please see qualification below. In date: 7/20/09 Blank analysis date: 7/26/09

YNN/AWere all samplesYNN/AWas a method blaYNN/AWas the method blaBlank extraction date:7/20/09

Conc. units: pg/L	1	biank analysis uale:	te: //z009 Associated samples: All
Compound	Blank ID		Sample Identification
	E00900269-01	1	
PCB 11	810	747/U	
PCBs 18+30	84.0		
PCB 31	80.7	43.0/U	
PCBs 20+28	71.4	42.6/U	
PCBs 21+33	44.5		
PCB 52	95.7	48.0/U	
PCBs 49+69	28.6		
PCBs 44+47+65	68.2	49.3/U	
PCB 64	19.6		
PCBs 70+61+74+76	95.2	49.1/U	
PCB 66	30.0	-	
PCB 95	166	136/U	
PCBs 88491	22.9		
PCB 84	55.1	46.2/U	
PCB 92	34.8	24.0/U	
PCBs 90-101+113	198	167/U	
PCBs 83+99	31.6	73.6/U	
PCtis 86+87+97+108+119+125	152	122/U	
PCBs 85+116	24.8	22.0/U	
PCRs 110+115	266	223/U	
PC 23	154	138/U	

V:\Pe\Tronox\21495EMB1.wpd

PCB 105	68.8	66.6/U			
PCB 136	19.3	20.0/U			
PCBs 135+151	45.7	39.3/U			
PCBs 147+149	119	108/U			
PCB 132	73.5	59.9/U			
PCB 146	20.9			•	
PCBs 153+168	129	115/U			
PCB 141	32.3	28.5/U			
PCB 137	17.4				
PCB 164	11.1				
PCBs 129+138+163	247	209/U			
PCB 158	24.7	20.8/U			
PCBs 128+166	41.8	40.3/U			
PCB 167	9.04	13.7/U			
PCBs 156+157	38.2	58.5/U			
PCB 179	6.33				
PCB 187	20.1	20.2/U			
PCB 174	17.5				
PCBs 180+193	36.2	49.7/U			
PCB 170	24.5	17.0/U			
PCB 202	5.23				
PCBs 198+199	24.4	21.1/U			
PCB 203	11.3	14.5/U	 		
PCB 194	11.2	13.0/U			
PCB 208	14.2	12.7/U			
PCB 207	4.80	11.4/U			
PCB 206	37.2	37.8/U			
PCB 209	14.7	71.2/U			
Total DiCB	810	747/U			
Total TriCB	281	138/U			
Total TetraCB	337	146/U		 	

V:\Pei\Tronox\21495EMB.wpd

		· · · · · · · · · · · · · · · · · · ·	-	
Total PentaCB	1230	1040/U		
Total HexaCB	830	756/U		
Total HeptaCB	105	141/U		
Total OctaCB	52.1	48.6/U		
Total NonaCR	56.1	61 9/11		

•

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

V:\Pei\Tronox\21495EMB1.wpd

•

ţ

:

LDC #: <u>21495C3c</u> SDG #: <u>See Cover</u>

## VALIDATION FINDINGS WORKSHEET Field Blanks

Page: Lot Z Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Blank units: pg/L Associated sample units Field blank type: (circle one) Field Blank) Rinsate / Other	Associat Field Blank	Associated sample units: eld Blank / Rinsate / Other:_	s: pg/L r: Associated Samples:	ssociated	Samples:	ALI		-	
Compound	Blank ID				Sa	Sample Identification	tion		
	EB060409	1							
PCB 11	1240	747/U	F	otlus ci	Spa	x x x x	5 &		
PCBs 18+30	84.0								
PCB 31	92.5	43.0/U							
PCBs 20+28	91.6	42.6/U							
PCBs 21+33	63.2								
PCB 52	105	48.0/U							
PCBs 44+47+65	78.0	49.3/U							
PCBs 70+61+74+76	71.5	49.1/U							
PCB 95	95.6	136/U							
PCBs 90+101+113	84.3	167/U							
PCBs 110+115	106	233/U							
PCB 118	51.7	138/U							
PCBs 147+149	36.7	108/U							
PCBs 153+168	25.3	115/U							
PCBs 129+138+163	43.3	209/U							
PCBs 198+199	22.4	21.1/U							
PCB 203	13.1	14.5/U							
PCB 208	11.9	12.7/U				a de la servición de desta de la servición de l		and the second	
PCB 206	26.3	37.8/U			444 - 144 - 144 - <b>1</b> 40 - 144 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141	و در این اور ای			
PCB 209	10.2				والمحافظة والمحافظة المحافظة والمحافظة والمحافظ	والابتدانية المارعة المارية والمعالمة والمحاصرة المحافظ والمحافظ			
Total DiCB	1240	747/U				an a			
Total TriCB	331	138/U							
Total TetraCB	255	146/U	<b>10</b> - 11 - 11 - 11 - 11 - 11 - 11 - 11 -						

1999 - L.

2 2 2

•

<i>,</i> .														
A.c.														
· · ·					. •									
					ENT:									
					OWING STATEM									
-					ed by the foll, , "u".									
					D WERE QUALIFI ed as not detected									
	n/c		3/U		TS NOT CIRCLEI ation were qualifie									
	1040/U	' 	48.6/U	61 9/1	LL RESUL k concentr									
	338	105	35.4	38.2	QUALIFIED. A the method blar									
	Total PentaCB	Total HexaCB	Total OctaCB	Total NonaCB	CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".	V:\Pei\Tronox\21495E3C_FB.wpd								
5. 1						-								

1

· • • •

11	2	
<b>AX</b> 1	31	
	2	
AII.	$\mathcal{O}$	
	141	
-{A	11	
Nº1	V	
51	<u>م</u>	
-41	10	
~1	181	
- Ăl	N.M.	
	54	
#	# Úi	
$\mathbf{O}$	C	
X	ñ	
LDC #:249523	SDG	

## VALIDATION FINDINGS WORKSHEET Internal Standards

5t Reviewer: Page: 2nd Reviewer:_

METHOD: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>Y (N N/A</u> Are all internal standard recoveries were within the 25-150% criteria?

× >)	Y N N/A W	Was the S/N ratio all internal standard peaks	standard peaks <u>&gt;</u> 10?			
#	Date	Lab ID/Reference	Compound	% Recovery (Limit: 25-150%)	-150%)	Cede = 7 Qualifications
			13c.peb	10 (30	35-150)	141/F (PB 1-39
			M	) ()		(PCB40-\$76.
			7	U L	(	78-80.82-104
			5	4	(	106-113.115-11
			6.	13		21-4-122.124-135
			19	) /2		f2=1
			45	15	(	
			40)	e E C	( /	
				)	(	
				)	(	
		10-69006082	130-2013-1	22	(	NAW AP CREBI-3.
			۲ -	) 22	(	PCB16-18.20-36
			6- 1	) 22		( 68-36)
				)	^	~
				)	<b>`</b>	
		>(NS)	IS wit the some	nel ~ (	^ {	No le 2
		3 ( ASM) E	4 7	)		1
				· ·	^	
				· ·	^	
				)	<u> </u>	
	-	internal Standards	sp		Recovery Standards	Indards
Ä	¹³ C-PCB-77			×		
с.	¹³ C-PCB-105					
ပံ				M.		
ġ				Z		
ш	_			Ö		
ц	¹³ C-PCB-157			Å		
G	¹³ C-PCB-169			ö		
Ţ	¹³ C-PCB-180			Ŀ.		
-				7		

INTST.16A

497

÷

LDC #: 249523

## VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

ď Page: _ Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".



Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

Qualifications	14- F)								
Associated Samples	aul			-					
Finding	readed zyp -								
Sample ID	\$L				-				
Date		 	 						
*									

COMQUA.166

Comments: _See sample calculation verification worksheet for recalculations

## Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Tronox LLC Facility,	2009	Phase	В	Investigation,
-	Henderson, Nevada				

Collection Date: June 10, 2009

LDC Report Date: October 7, 2009

Matrix: Soil

Parameters: Polychlorinated Biphenyls as Congeners

Validation Level: Stage 2B

Laboratory: Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): R0903184

## Sample Identification

SA56-0.5B SA166-0.5B

V:\LOGIN\TRONOXNG\21495F3C.TR3

## Introduction

This data review covers 2 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 1668A for Polychlorinated Biphenyls as Congeners.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Samples indicated by a double asterisk on the front cover underwent Stage 4 review. Stage 2B review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Stage 2B criteria since this review is based on QC data. The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

## I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

## **II. HRGC/HRMS Instrument Performance Check**

Instrument performance was checked at the required daily frequency and all criteria were met.

## **III.** Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all compounds were within validation criteria.

## IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 30.0% for unlabeled compounds and less than or equal to 50.0% for labeled compounds.

The ion abundance ratios for all compounds were within validation criteria.

## V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated biphenyls as congeners contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
EQ0900219-01	6/18/09	PCB-8 PCB-11 PCB-18+30 PCB-17 PCB-24 PCB-31 PCB-20+28 PCB-21+33 PCB-52 PCB-49 + 69 PCB-44+47+65 PCB-44 PCB-70+61+74+76 PCB-64 PCB-66 PCB-56 PCB-95 PCB-88+91 PCB-84 PCB-92 PCB-90+101+113 PCB-83+99 PCB-86+87+97+108+119+125 PCB-85+116 PCB-110+115 PCB-110+115 PCB-118 PCB-105 PCB-110+115 PCB-132 PCB-132+168 PCB-129+138+163 PCB-129+138+163 PCB-129+138+163 PCB-129+138+163 PCB-129+138+163 PCB-202 PCB-198+199 PCB-203 PCB-204 PCB-205 PCB-207 PCB-206 PCB-207 PCB-206 PCB-209 Total DiCB Total TriCB Total TetraCB Total TetraCB Total HeptaCB Total OctaCB Total OctaCB Total OctaCB Total NonaCB	8.70 ng/Kg 131 ng/Kg 9.69 ng/Kg 4.45 ng/Kg 9.64 ng/Kg 9.75 ng/Kg 6.14 ng/Kg 12.5 ng/Kg 12.5 ng/Kg 13.37 ng/Kg 13.37 ng/Kg 13.37 ng/Kg 10.3 ng/Kg 2.26 ng/Kg 11.2 ng/Kg 1.80 ng/Kg 3.35 ng/Kg 1.23 ng/Kg 1.23 ng/Kg 1.23 ng/Kg 1.23 ng/Kg 1.23 ng/Kg 1.23 ng/Kg 1.23 ng/Kg 2.26 ng/Kg 2.26 ng/Kg 2.23 ng/Kg 1.23 ng/Kg 2.23 ng/Kg 2.23 ng/Kg 2.23 ng/Kg 2.23 ng/Kg 2.23 ng/Kg 1.50 ng/Kg 2.23 ng/Kg 1.50 ng/Kg 2.23 ng/Kg 1.50 ng/Kg 2.23 ng/Kg 1.50 ng/Kg 1.50 ng/Kg 1.62 ng/Kg 1.62 ng/Kg 1.62 ng/Kg 1.62 ng/Kg 1.62 ng/Kg 1.62 ng/Kg 1.63 ng/Kg	All samples in SDG R0903184

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
SA56-0.5B	PCB-11	283 ng/Kg	283U ng/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
SA166-0.5B	PCB-8	9.26 ng/Kg	9.26U ng/Kg
	PCB-11	176 ng/Kg	176U ng/Kg
	PCB-18+30	14.7 ng/Kg	14.7U ng/Kg
	PCB-17	5.95 ng/Kg	5.95U ng/Kg
	PCB-31	18.0 ng/Kg	18.0U ng/Kg
	PCB-20+28	25.8 ng/Kg	25.8U ng/Kg
	PCB-21+33	9.16 ng/Kg	9.16U ng/Kg
	PCB-49 + 69	24.2 ng/Kg	24.2U ng/Kg
	Total DiCB	331 ng/Kg	331U ng/Kg
	Total TriCB	163 ng/Kg	163U ng/Kg

Sample FB072109-SO (from SDG R0904016) was identified as a field blank. No polychlorinated dioxin/dibenzofuran contaminants were found in this blank with the following exceptions:

FB072109-S0         7/21/09         PCB-1 PCB-1 PCB-3 PCB-8 PCB-8 PCB-11         24.6 pg/L 22.7 pg/L 101 pg/L 90B-32 PCB-11         All samples in SDG R0903184           PCB-11         909 pg/L PCB-11         909 pg/L 90B-32         909 pg/L PCB-17         41.8 pg/L PCB-17         909 pg/L PCB-17         91.9 pg/L PCB-17         91.9 pg/L PCB-17         91.9 pg/L PCB-21         93.8 pg/L PCB-21         93.8 pg/L PCB-21         91.9 pg/L PCB-21         92.9 pg/L PCB-21         92.9 pg/L PCB-21         92.9 pg/L PCB-21         92.9 pg/L PCB-21         92.9 pg/L PCB-21         92.9 pg/L PCB-21         92.	Field Blank ID	Sampling Date	Compound	Concentration	Associated Samples
	FB072109-SO	7/21/09	PCB-3PCB-8PCB-11PCB-18+30PCB-17PCB-16PCB-32PCB-26+29PCB-31PCB-20+28PCB-21+33PCB-22PCB-37PCB-50+53PCB-45+51PCB-52PCB-44+47+65PCB-44PCB-44+47+65PCB-42PCB-41+71+40PCB-64PCB-70+61+74+76PCB-66PCB-70PCB-77PCB-86PCB-88+91PCB-84PCB-92PCB-83+99PCB-85+116PCB-110+115	22.7 pg/L 101 pg/L 909 pg/L 102 pg/L 41.8 pg/L 61.8 pg/L 26.3 pg/L 29.3 pg/L 139 pg/L 137 pg/L 82.9 pg/L 59.0 pg/L 50.4 pg/L 16.8 pg/L 29.4 pg/L 187 pg/L 84.0 pg/L 33.7 pg/L 183 pg/L 50.3 pg/L 123 pg/L 354 pg/L 228 pg/L 122 pg/L 122 pg/L 122 pg/L 125 pg/L 22.8 pg/L 126 pg/L 22.2 pg/L 115 pg/L 67.6 pg/L 119 pg/L 6.25 pg/L 32.8 pg/L 126 pg/L 119 pg/L 6.25 pg/L 32.8 pg/L 127 pg/L 115 pg/L 128 pg/L 129 pg/L 129 pg/L 115 pg/L 129 pg/L 120 pg/L 120 pg/L 121 pg/L 122 pg/L 122 pg/L 123 pg/L 125 pg/L 126 pg/L 127 pg/L 127 pg/L 128 pg/L 128 pg/L 128 pg/L 129 pg	

Field Blank ID	Sampling Date	Compound	Concentration	Associated Samples
FB072109-SO	7/21/09	PCB-107+124 PCB-109 PCB-118 PCB-105 PCB-136 PCB-135+151 PCB-135+151 PCB-147+149 PCB-132 PCB-146 PCB-153+168 PCB-153+168 PCB-153+166 PCB-158+166 PCB-128+166 PCB-156+157 PCB-187 PCB-183 PCB-174 PCB-177 PCB-183 PCB-174 PCB-177 PCB-180+193 PCB-170 PCB-202 PCB-198+199 PCB-203 PCB-194 PCB-208 PCB-209 Total MonoCB Total TiCB Total TetraCB Total TetraCB Total HeptaCB Total HeptaCB Total OctaCB Total NonaCB	6.87 pg/L 5.73 pg/L 102 pg/L 77.4 pg/L 23.8 pg/L 44.5 pg/L 22.4 pg/L 5.35 pg/L 47.1 pg/L 10.1 pg/L 7.04 pg/L 13.1 pg/L 7.04 pg/L 13.1 pg/L 7.04 pg/L 14.4 pg/L 3.93 pg/L 10.6 pg/L 5.31 pg/L 10.6 pg/L 5.32 pg/L 4.73 pg/L 1010 pg/L 584 pg/L 265 pg/L 69.2 pg/L 40.9 pg/L 38.4 pg/L 38.4 pg/L	All samples in SDG R0903184

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified.

## VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

## VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

## VIII. Regional Quality Assurance and Quality Control

Not applicable.

## IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

## X. Target Compound Identifications

Raw data were not reviewed for this SDG.

## XI. Project Quantitation Limit

All project quantitation limits were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
SA56-0.5B	PCB-95 PCB-110+115 PCB-147+149 PCB-153+168 PCB-129+138+163 PCB-180+193 PCB-209	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects) J (all detects)	Ρ

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903184	All compounds reported below the PQL.	J (all detects)	A

All compounds reported as EMPC were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG R0903184	All compounds reported as estimated maximum possible concentration (EMPC).	JK (all detects)	A

Raw data were not reviewed for this SDG.

## XII. System Performance

Raw data were not reviewed for this SDG.

## XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

## XIV. Field Duplicates

No field duplicates were identified in this SDG.

## Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls as Congeners - Data Qualification Summary - SDG R0903184

SDG	Sample	Compound	Flag	A or P	Reason (Code)
R0903184	SA56-0.5B	PCB-95 PCB-110+115 PCB-147+149 PCB-153+168 PCB-129+138+163 PCB-180+193 PCB-209	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	Ρ	Project Quantitation Limit (e)
R0903184	SA56-0.5B SA166-0.5B	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)
R0903184	SA56-0.5B SA166-0.5B	All compounds reported as EMPC	JK (all detects)	A	Project Quantitation Limit (k)

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls as Congeners - Laboratory Blank Data Qualification Summary - SDG R0903184

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
R0903184	SA56-0,5B	PCB-11	283U ng/Kg	A	bl
R0903184	SA166-0.5B	PCB-8 PCB-11 PCB-18+30 PCB-17 PCB-31 PCB-20+28 PCB-21+33 PCB-49 + 69 Total DiCB Total TriCB	9.26U ng/Kg 176U ng/Kg 14.7U ng/Kg 5.95U ng/Kg 18.0U ng/Kg 25.8U ng/Kg 9.16U ng/Kg 24.2U ng/Kg 331U ng/Kg 163U ng/Kg	A	Ы

Tronox LLC Facility, 2009 Phase B Investigation, Henderson, Nevada Polychlorinated Biphenyls as Congeners - Field Blank Data Qualification Summary -SDG R0903184

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: 21495F3c

### SDG #: E0903184

Laboratory: Columbia Analytical Services

Date: <u>9//6/9</u> Page: __of __ Reviewer: ____ 2nd Reviewer: _____

## METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area	L	Comments
I.	Technical holding times	A	Sampling dates: 6/10/09
11.	GC/MS Instrument performance check	Å	
Ш.	Initial calibration	$\mathbf{A}$	20/25/0
IV.	Routine calibration/Ì	$\mathbf{A}$	30/5070
V.	Blanks	IN	
VI.	Matrix spike/Matrix spike duplicates	N	client stified
VII.	Laboratory control samples	$\mathbf{A}$	2050
VIII.	Regional quality assurance and quality control	N	Ĩ
IX.	Internal standards	A	
Х.	Target compound identifications	N	
XI.	Compound quantitation and CRQLs	-XN	
XII.	System performance	N	
XIII.	Overall assessment of data	$\mathbf{A}$	
XIV.	Field duplicates	N	
XV.	Field blanks	SN	FB07-109-50 (20904016)

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

1	SA56-0.5B	Ś	11	280900219-01	21	U-19558	31	
2	SA166-0.5B	$\checkmark$	12		22		32	
3	-		13		23		33	
4			14		24	· · · · · · · · · · · · · · · · · · ·	34	
5			15		25	······································	35	
6			16		26		36	
7			17		27		37	
8			18		28		38	
9			19		29		39	
10			20		30		40	

SDG #: See Cover LDC #: 21495F3c

## VALIDATION FINDINGS WORKSHEET Blanks

4 2nd Reviewer: Page: 1 of 2 Reviewer:

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y) N N/A

Were all samples associated with a method blank?

Was a method blank performed for each matrix and whenever a sample extraction was performed? N N/A

Was the method blank contaminated? If yes, please see qualification below. **n date:** <u>6/18/09</u> **Blank analysis date:** <u>6/28/09</u> Y/N N/A

Blank extraction date: 6/18/09

Conc. units: ng/Kg				Associated samples: All	
Compound	Blank ID			Sample Identification	tion
	E00900219-01		2		
PCB 8	8.70		9.26/U		
PCB 11	131	283/U	176/U		
PCBs 18+30	69.6		14.7/U		
PCB 17	4.45		5.95/U		
PCB 24	3.13				
PCB 31	9.64		18.0/U		
PCBs 20+28	9.75		25.8/U		
PCBs 21+33	6.14		9.16/U		
PCB 52	12.5				
PCBs 49 + 69	5.37		24.2/U		
PCBs 44+47+65	11.3				
PCB 42	2.32				
PCB 64	3.87				
PCBs 70+61+74+76	10.3				
PCB 66	4.96				
PCB 56	2.26				
PCB 95	11.2				
PCBs 88+91	1.80				
PCB 84	3.35				
PCB 92	1.31				
PCBs 90+101+113	9.76				

V:\Pei\Tronox\21495FMB1.wpd

•

	And a submaried density submaries and submaries and submaries	and it a mane from an average on the second second second second				 		<u>]</u>
PCBs 83+99	3.91							
PCBs 86+87+97+108+119+125	7.06							
PCBs 85+116	1.23							
PCBs 110+115	11.1							
PCB 118	5.99							
PCB 105	2.83							
PCBs 147+149	5.74							
PCB 132	2.67							
PCBs 153+168	4.44							
PCBs 129+138+163	6.30							
PCBs 180+193	2.23							
PCB 202	1.50							
PCBs 198+199	4.97							
PCB 203	2.83							
PCB 194	1.43							
PCB 208	4.50							
PCB 207	1.62							
PCB 206	12.1							
PCB 209	6.90							
Total DiCB	140		331/U					
Total TriCB	42.8		163/U					
Total TetraCB	52.9							
Total PentaCB	59.5							
Total HexaCB	19.1							
Total HeptaCB	2.23				7			
Total OctaCB	10.7			ang sa ang s	ar de constantement a la servició en esta de cale de de constantemente de constantemente de constantemente de c	ana ana aona ao ao amin' any amin' ao am		
Total NonaCB	18.2				and instantion of the Designation of the Science of	والمحافظة		
no me a come ver contrato me professioner professioner contrato contrato a management and an entrato contrato e	بالرجمية الدركة بركار مكان مكام مالهما بالجماعة والمراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع	n an far a far						

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

0#13495F3C	G #: See Cover
LDC #	SDG 3

## VALIDATION FINDINGS WORKSHEET Field Blanks

Page: <u>of</u> <u>C</u> Reviewer: <u>C</u> 2nd Reviewer: <u>C</u>

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Field blank type: (circle onex Field Blank) Rinsate / Other:           Compound         Blank ID           Compound         Blank ID           Compound         Blank ID           Compound         Blank ID           PCB 1         24.6         0.123           PCB 1         29.0         0.135           PCB 14         909         4.545           PCB 17         101         0.505           PCB 14         909         0.1315           PCB 17         41.8         0.209           PCB 17         41.8         0.309           PCB 16         61.8         0.309           PCB 22         26.3         0.1315           PCB 24         137         0.1315           PCB 21         39.3         0.1315           PCB 21         39.3         0.1315           PCB 25         59.0         0.1315           PCB 37         0.355         0.147     <	Blank ID       Blank ID       Blank ID       Blank ID       24.6       24.6       24.6       24.6       24.6       24.6       24.6       24.6       24.6       24.6       24.6       24.6       24.6       24.6       24.6       22.7       101       101       102       103       909       909       909       909       909       909       909       909       909       909       909       909       909       909       909       909       909       909       909       909       909       909       909       909       909       9137       137       137       137       138       16.8       16.8       173       187       84.0	0.123 0.123 0.1135 0.1135 0.505 4.545 0.505 0.515 0.1315 0.1315 0.1315 0.1315 0.1315 0.1315 0.209 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205	Sample Identification	
PCB 48 PCBs 44+47+65	33.7	0.1685		
PCB 42 PCBs 41+71+40	50.3 123	0.2515		
PCB 64	88.9	0.4445		

2* •

PCBs 70+61+74+76	354	1.77	
PCB 66	228	1.14	
PCB 56	122	0.61	
PCB 60	70.5	0.3525	
PCB 77	22.8	0.114	
PCB 95	126	0.63	
PCBs 88+91	22.2	0.111	
PCB 84	61.2	0.306	
PCB 92	19.7	0.0985	
PCBs 90+101+113	115	0.575	
PCBs 83+99	67.6	0.338	
PCBs 86+87+97+108+119+125	119	0.595	
PCB 117	6.25	0.03125	-
PCBs 85+116	32.8	0.164	
PCBs 110+115	181	0.905	
PCB 82	42.0	0.21	
PCBs 107+124	6.87	0.03435	
PCB 109	5.73	0.02865	
PCB 118	102	0.51	
PCB 105	77.4	0.387	
PCB 136	10.4	0.052	
PCBs 135+151	23.8	0.119	
PCBs 147+149	44.5	0.2225	
PCB 132	22.4	0.112	
PCB 146	5.35	0.02675	
PCBs 153+168	47.1	0.2355	
PCB 141	10.1	0.0505	
PCBs 129+138+163	73.8	0.369	
PCB 158	7.04	0.0352	
PCBs 128+166	13.1	0.0655	

		<u>.</u>		
PCBs 156+157	7.61	0.03805		
PCB 179	4.74	0.0237		
PCB 187	14.4	0.072		
PCB 183	3.93	0.01965		
PCB 174	10.6	0.053		
PCB 177	4.84	0.0242		
PCBs 180+193	20.0	0.1		
PCB 170	10.6	0.053		
PCB 202	5.31	0.02655		
PCBs 198+199	17.1	0.0855		
PCB 203	9.54	0.0477		
PCB 194	8.93	0.04465		
PCB 208	10.6	0.053		
PCB 206	27.8	0.139		
PCB 209	9.93	0.04965		
Total MonoCB	47.3	0.2365		
Total DiCB	1010	5.05		
Total TriCB	730	3.65		
Total TetraCB	1590	7.95		
Total PentaCB	984	4.92		
Total HexaCB	265	1.325		
Total HeptaCB	69.2	0.346		
Total OctaCB	40.9	0.2045		ana an
Lotal MonaCB	38.4	0 192		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

V:\Pei\Tronox\FB_SO.wpd

LDC #:21495730	SDG #: Section
	- <b>*</b> .

# VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

2nd Reviewer: ____ Page: Reviewer:

METHOD: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".



Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

			appe > calib Lange		
*	Date	Sample ID		Associated Samples	Qualifications
		/	PCB AS. 110+115,		() () () () () () () () () () () () () (
			HTT+149. 153+168,		1
			129+138+163,180+193		
			209		
		wl	ato usults	ju/	LA (E)
Com	ments: See	Comments: See sample calculation verification worksheet for	ksheet for recalculations		

COMQUA.166