
Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Data Validation Reports LDC# 21257

Metals

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Tronox LLC Facility, 2008 Phase B Investigation,

Henderson, Nevada

Collection Date:

June 16 through June 24, 2008

LDC Report Date:

August 17, 2009

Matrix:

Water

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): K0805394

Sample Identification

PB061608B

PC-40B

H-48B

MC-66B

MC-66BD

MC-65B

PC-37B

M-44B

M-94BX

MC-62B PC-72B

H-48BF

PB061608BMS

PB061608BDUP

PC-40BMS

PC-40BDUP

M-44BMS

M-44BDUP

Introduction

This data review covers 18 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Methods 6010B, 6020, and 7000 for Metals. The metals analyzed were Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Platinum, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Tungsten, Uranium, Vanadium, and Zinc.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section IV.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Thallium	0.127 ug/L	All samples in SDG K0805394
ICB/CCB	Antimony Thallium	0.014 ug/L 0.014 ug/L	All samples in SDG K0805394
PB (prep blank)	Copper Silver Zinc	0.9 ug/L 0.8 ug/L 0.9 ug/L	PB061 608B
ICB/CCB	Boron Barium Magnesium Molybdenum Silver	10.3 ug/L 1.0 ug/L 2.2 ug/L 0.9 ug/L 0.8 ug/L	PB061 608B
PB (prep blank)	Magnesium Zinc	2.3 ug/L 0.6 ug/L	H-48B H-48BF

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Arsenic Barium Beryllium Boron Cadmium Cobalt Iron Magnesium Strontium Zinc	1.1 ug/L 2.7 ug/L 0.1 ug/L 8.1 ug/L 0.2 ug/L 0.5 ug/L 5.5 ug/L 5.2 ug/L 0.4 ug/L 0.8 ug/L	PC-40B MC-66B MC-66BD MC-65B PC-37B M-44B M-94BX MC-62B PC-72B
ICB/CCB	Arsenic Magnesium Strontium	1.1 ug/L 5.2 ug/L 0.4 ug/L	H-48B
ICB/CCB	Arsenic Magnesium	1.1 ug/L 5.2 ug/L	H-48BF
ICB/CCB	Manganese	0.2 ug/L	PC-37B M-44B M-94BX PC-72B
ICB/CCB	Aluminum Barium Boron Strontium	8.3 ug/L 3.7 ug/L 9.3 ug/L 0.2 ug/L	H-48BF

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
PB061608B	Boron Barium Copper Molybdenum Zinc	39.6 ug/L 1.8 ug/L 1.0 ug/L 1.2 ug/L 6.1 ug/L	50.0U ug/L 5.0U ug/L 10.0U ug/L 10.0U ug/L 10.0U ug/L
PC-40B	Antimony Cadmium Cobalt Iron Zinc	0.348 ug/L 0.2 ug/L 1.9 ug/L 19.4 ug/L 1.9 ug/L	0.500U ug/L 5.0U ug/L 10.0U ug/L 20.0U ug/L 10.0U ug/L
H-48B	Antimony	0.438 ug/L	0.500U ug/L

Sample	Analyte	Reported Concentration	Modified Final Concentration
MC-66B	Antimony	0.254 ug/L	0.500U ug/L
	Cadmium	0.3 ug/L	5.0U ug/L
	Cobalt	1.5 ug/L	10.0U ug/L
	Zinc	2.0 ug/L	10.0U ug/L
MC-66BD	Antimony	0.291 ug/L	0.500U ug/L
	Beryllium	0.1 ug/L	0.3U ug/L
	Cadmium	0.3 ug/L	5.0U ug/L
	Cobalt	2.3 ug/L	10.0U ug/L
	Zinc	4.7 ug/L	10.0U ug/L
MC-65B	Antimony	0.199 ug/L	0.500U ug/L
	Beryllium	0.1 ug/L	0.3U ug/L
	Cadmium	0.2 ug/L	5.0U ug/L
	Cobalt	0.8 ug/L	10.0U ug/L
PC-37B	Antimony Thallium Cadmium Cobalt Zinc Manganese	0.237 ug/L 0.168 ug/L 0.2 ug/L 0.9 ug/L 3.3 ug/L 4.7 ug/L	0.500U ug/L 0.200U ug/L 5.0U ug/L 10.0U ug/L 10.0U ug/L 5.0U ug/L
M-44B	Antimony	0.238 ug/L	0.500U ug/L
	Cobalt	0.7 ug/L	10.0U ug/L
	Zinc	5.8 ug/L	10.0U ug/L
M-94BX	Antimony	0.220 ug/L	0.500U ug/L
	Beryllium	0.1 ug/L	0.3U ug/L
	Cadmium	0.3 ug/L	5.0U ug/L
	Cobalt	0.6 ug/L	10.0U ug/L
	Zinc	6.2 ug/L	10.0U ug/L
MC-62B	Cobalt	2.9 ug/L	10.0U ug/L
	Iron	9.6 ug/L	20.0U ug/L
	Zinc	2.8 ug/L	10.0U ug/L
PC-72B	Antimony Thallium Beryllium Cobalt Zinc Manganese	0.272 ug/L 0.169 ug/L 0.1 ug/L 0.9 ug/L 2.1 ug/L 4.9 ug/L	0.500U ug/L 0.200U ug/L 0.3U ug/L 10.0U ug/L 10.0U ug/L 5.0U ug/L
H-48BF	Antimony	0.435 ug/L	0.500U ug/L
	Thallium	0.163 ug/L	0.200U ug/L

Sample FB062408GWarea1 (from SDG K0805722) was identified as a field blank. No metal contaminants were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
FB062408GWarea1	6/24/08	Arsenic Boron Calcium Iron Magnesium Tungsten	1.6 ug/L 49 ug/L 12.0 ug/L 2.9 ug/L 1.2 ug/L 0.4 ug/L	PC-40B H-48B MC-66B MC-66BD MC-65B PC-37B M-44B M-94BX MC-62B PC-72B H-48BF

Sample PB061608B was identified as a pump blank. No metal contaminants were found in this blank with the following exceptions:

Pump Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
PB061608B	6/16/08	Aluminum Barium Boron Calcium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel Sodium Strontium Titanium Tungsten Zinc	37.6 ug/L 1.8 ug/L 39.6 ug/L 265 ug/L 0.4 ug/L 1.0 ug/L 57.4 ug/L 63.1 ug/L 55.6 ug/L 1.2 ug/L 0.6 ug/L 1.4 ug/L 2.8 ug/L 0.5 ug/L 6.1 ug/L	PC-40B H-48B MC-66B MC-66BD MC-65B PC-37B M-44B M-94BX MC-62B PC-72B H-48BF

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
PC-40B	Iron	19.4 ug/L	20.0U ug/L
PC-40B	Aluminum Cobalt Iron Lead Nickel Zinc	36.5 ug/L 1.9 ug/L 19.4 ug/L 1.610 ug/L 6.4 ug/L 1.9 ug/L	50.0U ug/L 10.0U ug/L 20.0U ug/L 1.610J+ ug/L 20.0U ug/L 10.0U ug/L
H-48B	Tungsten	0.6 ug/L	1.0U ug/L

Sample	Analyte	Reported Concentration	Modified Final Concentration
MC-66B	Cobalt	1.5 ug/L	10.0U ug/L
	Iron	189 ug/L	189J+ ug/L
	Lead	1.070 ug/L	1.070J+ ug/L
	Nickel	6.1 ug/L	20.0U ug/L
	Titanium	7.1 ug/L	10.0U ug/L
	Zinc	2.0 ug/L	10.0U ug/L
MC-66BD	Cobalt	2.3 ug/L	10.0U ug/L
	Lead	1.510 ug/L	1.510J+ ug/L
	Nickel	7.1 ug/L	20.0U ug/L
	Zinc	4.7 ug/L	10.0U ug/L
MC-65B	Cobalt	0.8 ug/L	10.0U ug/L
	Iron	32.1 ug/L	32.1J+ ug/L
	Lead	1.210 ug/L	1.210J+ ug/L
	Manganese	362 ug/L	362J+ ug/L
	Nickel	6.3 ug/L	20.0U ug/L
PC-37B	Aluminum Cobalt Iron Lead Manganese Nickel Zinc	45.0 ug/L 0.9 ug/L 33.2 ug/L 0.919 ug/L 4.7 ug/L 7.4 ug/L 3.3 ug/L	50.0U ug/L 10.0U ug/L 33.2J+ ug/L 0.919J+ ug/L 5.0U ug/L 20.0U ug/L 10.0U ug/L
M-44B	Aluminum Cobalt Iron Lead Manganese Nickel Zinc	47.6 ug/L 0.7 ug/L 22.9 ug/L 0.903 ug/L 10.6 ug/L 6.6 ug/L 5.8 ug/L	50.0U ug/L 10.0U ug/L 22.9J+ ug/L 0.903J+ ug/L 10.6J+ ug/L 20.0U ug/L 10.0U ug/L
M-94BX	Cobalt	0.6 ug/L	10.0U ug/L
	Iron	176 ug/L	176J+ ug/L
	Lead	1.160 ug/L	1.160J+ ug/L
	Manganese	40.5 ug/L	40.5J+ ug/L
	Nickel	7.8 ug/L	20.0U ug/L
	Titanium	6.3 ug/L	10.0U ug/L
	Zinc	6.2 ug/L	10.0U ug/L
MC-62B	Aluminum	11.2 ug/L	50.0U ug/L
	Cobalt	2.9 ug/L	10.0U ug/L
	Iron	9.6 ug/L	20.0U ug/L
	Lead	1.510 ug/L	1.510J+ ug/L
	Nickel	7.0 ug/L	20.0U ug/L
	Zinc	2.8 ug/L	10.0U ug/L
PC-72B	Cobalt	0.9 ug/L	10.0U ug/L
	Iron	24.3 ug/L	24.3J+ ug/L
	Lead	0.868 ug/L	0.868J+ ug/L
	Manganese	4.9 ug/L	5.0U ug/L
	Nickel	6.5 ug/L	20.0U ug/L
	Zinc	2.1 ug/L	10.0U ug/L

Sample	Analyte	Reported Concentration	Modified Final Concentration
H-48BF	Lead	3.260 ug/L	3.260J+ ug/L
	Tungsten	0.5 ug/L	1.0U ug/L

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

Raw data were not reviewed for this SDG.

X. Furnace Atomic Absorption QC

All graphite furnace atomic absorption QC were within validation criteria.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable.

The QAPP PQLs were met with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
All samples in SDG K0805394	Selenium	Laboratory reporting limit reported at 6.0 ug/L.	PQL should be reported at 5.0 ug/L per the QAPP.	None	Р

All analytes reported below the PQL were qualified as follows:

Sample			
Sample	Finding	Flag	A or P
All samples in SDG K0805394	All analytes reported below the PQL.	J (all detects)	Α

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples MC-66B and MC-66BD were identified as field duplicates. No metals were detected in any of the samples with the following exceptions:

	Concentra	ation (ug/L)				
Analyte	MC-66B	MC-66BD	RPD (Limits)	Difference (Limits)	Flags	A or P
Aluminum	220	838	-	618 (≤50)	J (all detects)	А
Antimony	0.254	0.291	-	0.037 (≤0.5)	-	-
Arsenic	140	146	4 (≤30)	-	-	-
Barium	25.2	44.8	56 (≤30)	-	J (all detects)	А
Beryllium	0.1U	0.1	-	0 (≤0.3)	-	-
Boron	7740	7910	2 (≤30)	-	-	-
Cadmium	0.3	0.3	-	0 (≤5.0)	•	-
Calcium	696000	699000	0 (≤30)	-	-	-
Chromium	582	632	8 (≤30)	-	-	-
Cobalt	1.5	2.3	-	0.8 (≤10.0)	-	-

	Concentra	ition (ug/L)		5		
Analyte	MC-66B	MC-66BD	RPD (Limits)	Difference (Limits)	Flags	A or P
Iron	189	614	106 (≤30)	-	J (all detects)	А
Lead	1.070	1.510	34 (≤30)	-	J (all detects)	A
Magnesium	328000	330000	1 (≤30)	-	-	-
Manganese	588	563	4 (≤30)	-	-	-
Molybdenum	45.3	45.3	0 (≤30)	-	-	-
Nickel	6.1	7.1	-	1 (≤20.0)	-	-
Platinum	0.2	0.2	-	0 (≤1.0)	-	-
Potassium	22500	23000	2 (≤30)	-	-	-
Selenium	8.0	11.3	-	3.3 (≤50.0)	-	-
Sodium	1500000	1490000	1 (≤30)	-	-	-
Strontium	16300	16300	0 (≤30)	-	-	-
Thallium	0.248	0.309	-	0.061 (≤0.200)	-	-
Titanium	7.1	34.6	•	27.5 (≤10.0)	J (all detects)	A
Tungsten	3.8	3.7	-	0.1 (≤1.0)	-	-
Uranium	50.9	50.5	1 (≤30)	-	**************************************	-
Vanadium	65.3	67.4	3 (≤30)	-	-	-
Zinc	2.0	4.7	-	2.7 (≤10.0)	-	-

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Metals - Data Qualification Summary - SDG K0805394

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
K0805394	PB061608B PC-40B H-48B MC-66B MC-66BD MC-65B PC-37B M-44B M-94BX MC-62B PC-72B H-48BF	Selenium	None	P	Sample result verification
K0805394	PB061608B PC-40B H-48B MC-66B MC-66BD MC-65B PC-37B M-44B M-94BX MC-62B PC-72B H-48BF	All analytes reported below the PQL.	J (all detects)	А	Sample result verification (PQL) (sp)
K0805394	MC-66B MC-66BD	Barium Iron Lead	J (all detects) J (all detects) J (all detects)	Α	Field duplicates (RPD) (fd)
K0805394	MC-66B MC-66BD	Aluminum Titanium	J (all detects) J (all detects)	А	Field duplicates (Difference) (fd)

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Metals - Laboratory Blank Data Qualification Summary - SDG K0805394

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
K0805394	PB061608B	Boron Barium Copper Molybdenum Zinc	50.0U ug/L 5.0U ug/L 10.0U ug/L 10.0U ug/L 10.0U ug/L	А	bl
K0805394	PC-40B	Antimony Cadmium Cobalt Iron Zinc	0.500U ug/L 5.0U ug/L 10.0U ug/L 20.0U ug/L 10.0U ug/L	A	bl

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
K0805394	H-48B	Antimony	0.500U ug/L	А	bl
K0805394	MC-66B	Antimony Cadmium Cobalt Zinc	0.500U ug/L 5.0U ug/L 10.0U ug/L 10.0U ug/L	A	bl
K0805394	MC-66BD	Antimony Beryllium Cadmium Cobalt Zinc	0.500U ug/L 0.3U ug/L 5.0U ug/L 10.0U ug/L 10.0U ug/L	А	bí
K0805394	MC-65B	Antimony Beryllium Cadmium Cobalt	0.500U ug/L 0.3U ug/L 5.0U ug/L 10.0U ug/L	A	bl
K0805394	PC-37B	Antimony Thallium Cadmium Cobalt Zinc Manganese	0.500U ug/L 0.200U ug/L 5.0U ug/L 10.0U ug/L 10.0U ug/L 5.0U ug/L	А	ы
K0805394	M-44B	Antimony Cobalt Zinc	0.500U ug/L 10.0U ug/L 10.0U ug/L	A	bl
K0805394	M-94BX	Antimony Beryllium Cadmium Cobalt Zinc	0.500U ug/L 0.3U ug/L 5.0U ug/L 10.0U ug/L 10.0U ug/L	А	bl
K0805394	MC-62B	Cobalt Iron Zinc	10.0U ug/L 20.0U ug/L 10.0U ug/L	А	bl
K0805394	PC-72B	Antimony Thallium Beryllium Cobalt Zinc Manganese	0.500U ug/L 0.200U ug/L 0.3U ug/L 10.0U ug/L 10.0U ug/L 5.0U ug/L	А	bl
K0805394	H-48BF	Antimony Thallium	0.500U ug/L 0.200U ug/L	А	bl

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Metals - Field Blank Data Qualification Summary - SDG K0805394

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
K0805394	PC-40B	Aluminum Cobalt Lead Nickel Zinc	50.0U ug/L 10.0U ug/L 1.610J+ ug/L 20.0U ug/L 10.0U ug/L	А	рр
K0805394	PC-40B	iron	20.0U ug/L	А	bf,bp
K0805394	H-48B	Tungsten	1.0U ug/L	А	bf,bp
K0805394	MC-66B	Cobalt Iron Lead Nickel Titanium Zinc	10.0U ug/L 189J+ ug/L 1.070J+ ug/L 20.0U ug/L 10.0U ug/L 10.0U ug/L	А	bp
K0805394	MC-66BD	Cobalt Lead Nickel Zinc	10.0U ug/L 1.510J+ ug/L 20.0U ug/L 10.0U ug/L	A	bp
K0805394	MC-65B	Cobalt Iron Lead Manganese Nickel	10.0U ug/L 32.1J+ ug/L 1.210J+ ug/L 362J+ ug/L 20.0U ug/L	А	bp
K0805394	PC-37B	Aluminum Cobalt Iron Lead Manganese Nickel Zinc	50.0U ug/L 10.0U ug/L 33.2J+ ug/L 0.919J+ ug/L 5.0U ug/L 20.0U ug/L 10.0U ug/L	А	bp
K0805394	M-44B	Aluminum Cobalt Iron Lead Manganese Nickel Zinc	50.0U ug/L 10.0U ug/L 22.9J+ ug/L 0.903J+ ug/L 10.6J+ ug/L 20.0U ug/L 10.0U ug/L	А	bp

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
K0805394	M-94BX	Cobalt Iron Lead Manganese Nickel Titanium Zinc	10.0U ug/L 176J+ ug/L 1.160J+ ug/L 40.5J+ ug/L 20.0U ug/L 10.0U ug/L 10.0U ug/L	A	bp
K0805394	MC-62B	Aluminum Cobalt Lead Nickel Zinc	50.0U ug/L 10.0U ug/L 1.510J+ ug/L 20.0U ug/L 10.0U ug/L	А	bp
K0805394	MC-62B	Iron	20.0U ug/L	А	bf,bp
K0805394	PC-72B	Cobalt Iron Lead Manganese Nickel Zinc	10.0U ug/L 24.3J+ ug/L 0.868J+ ug/L 5.0U ug/L 20.0U ug/L 10.0U ug/L	А	bp
K0805394	H-48BF	Lead	3.260J+ ug/L	A	bp
K0805394	H-48BF	Tungsten	1.0U ug/L	А	bf,bp

Tronox Northgate Henderson

LDC SDG Labo		_				ΓEN e 2B	ESS WORKSHE	EET	Date: 8-12-09 Page: Lof \ Reviewer: L
The	HOD: Metals (EPA SW 8 samples listed below were ation findings worksheets	e revi			,	ing v	alidation areas. Vali	idation fi	2nd Reviewer:indings are noted in attached
	Validation	Area					16° C	ommen	ts
1.	Technical holding times			A	Sam	pling c	C 11-60 C	····	124/08
11.	ICP/MS Tune			1		<u> </u>			
111.	Calibration			A					
IV.	Blanks			5W					
V.	ICP Interference Check Sar	nple (l	CS) Analysis	SW					
VI.	Matrix Spike Analysis			APAS	K	15			
VII.	Duplicate Sample Analysis			IA.	D	Ω			
VIII	Laboratory Control Samples	(LCS)	A	L	<u>c's</u>	,		
IX.	Internal Standard (ICP-MS)			N	No	7 tC	eviewed		
Χ.	Furnace Atomic Absorption	QC		A					
XI.	ICP Serial Dilution			A					
XII.	Sample Result Verification		,	5W					
XIII.	Overall Assessment of Data	3		A					
XIV.	Field Duplicates			SW	(1,5			
ΧV	Field Blanks			SW	PT	3=1	, FB=FB067	2408GV	varea 1 (506%: 40805722)
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet)	R = Rin	o compounds sate eld blank	s dete	cted	D = Duplicate TB = Trip blank EB = Equipmen	Pi	B= pmp blank
/alida	ted Samples: Water								
1	PB061608B	11	PC-72B			21	PBW'	31	
2	PC-40B	12	H-48BF			22	PBWZ	32	
3	H-48B	13	PB061608BM	1S		23		33	
4	MC-66B	14	PB061608BD	UP		24		34	
5	MC-66BD	15	PC-40BMS			25		35	
6	MC-65B	16	PC-40BDUP			26		36	
7	PC-37B	17	M-44BMS			27		37	
8	M-44B	18	M-44BDUP			28		38	
9	M-94BX	19				29		39	·
10	MC-62B	20				30		40	
Votes	S:								

LDC #: 7/257WY SDG #: KO805394

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: of Reviewer: 2nd reviewer:

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1-12	water	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
QC:13,14		Al, Sa, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, M, Mg, Mo, Mn, Hg, Ni, M, K, Se, Ag, Na, Sr, N, Sn, Ti, N, X, V, ZD
QC:15,16		Al (Sb) As (Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe Pb)(Mg, Mo, Mn) Hg (Ni, Pt)(K, Se, Ag, Na, Si) Ti(Sn, Ti)(W, U, V, Zn)
0017.18		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn(Hg) Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
<i>y</i> •		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ra, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
Г	T	Analysis Method
ICP	water	A) Sb, As, (Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe) Pb, (Mg, Mo, Mn) Hg(Ni) Pt, (K, Se, Ag, Na, Sr) Ti, (Sn, Ti) W, U, (V, Zn
ICP-MS		Al (Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe (Pb) Mg, Mo, Mn, Hg, Ni (Pt) K, Se, Ag, Na, Sr (T) Sn, Ti (W, U) V, Zn
GFAA	<u> </u>	Al, Sb,(As), Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments:

Mercury by CVAA if performed

LDC #: 21257W4

SDG #: K0805394

METHOD: Trace metals (EPA SW 846 Method 6020/7000)

Maximum PB^a

Analyte

(1)

Sb

0.127

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Preparation factor applied: Sb, Tl @ 10x. As @10xdil.

Reason Code: bl Raise to RL unless otherwise noted.

7 6

Page: Reviewer: 2nd Reviewer._

0.435 0.163 12 0.169 0.272 Ξ 0.220 6 0.238 ∞ Sample Identification 0.168 0.237 0.199 9 ₹ 0.291 2 Associated Samples: 0.254 4 0.438 က 0.348 7 ng/L 0.500 0.200 牊 Sample Concentration units, unless otherwise noted: Action Limit Maximum ICB/CCB^a 0.014 0.014 (1/611)

Sample Con	centration ur	uits, unless o	Sample Concentration units, unless otherwise noted: ug/	-d: ua∕l	Associated Samples: 1	
					Sample Identification	
Analyte	Maximum PB* (mα/Kα)	Maximum PBª	Maximum ICB/CCB ^a	Action Limit	1	
В					39.6 / 50.0	
Ва			1.0		1.8 / 5.0	
Cu		6.0			1.0 / 10.0	
Mg			2.2			
Mo			6.0		1.2 / 10.0	
Ag		0.8	8.0			
Zn		6.0			6.1/10.0	

Sample Co	Sample Concentration units, unless otherwise noted:ua/l	nits. unless o	therwise not	ed: ua/l-	Associated	Samples:	2. 4-11 = AII	analvtes. 3 =	As. Ma (PB/CCB). Zn F Sample Identification	Associated Samples: 2. 4-11 = All analytes. 3 =As. Mg (PB/CCB). Zn PB. and Sr only. 12=As. Mg (PB/CCB). Zn PB only. Sample Identification	and Sr only	<u>. 12=As. Mı</u>	(PB/CCB). Z	n PB only
Analyte	Maximum PB³ (110/1)	Maximum ICB/CCB ^a	Action Limit	RL	2	4	5	9	7	80	6	10	11	
As														
Ba		2.7												
Be		0.1		0.3			0.1	0.1			0.1		0.1	
В		8.1												
PO		0.2		5.0	0.2	0.3	0.3	0.2	0.2		0.3			
၀၁		0.5		10.0	1.9	1.5	2.3	0.8	6.0	0.7	9.0	2.9	6.0	
Fe		5.5		20.0	19.4							9.6		
Mg	2.3	5.2												
Sr		0.4												
uZ	9:0	0.8		10.0	1.9	2.0	4.7		3.3	5.8	6.2	2.8	2.1	

LDC#: 212 SDG#: K08 METHOD: Sample Co	LDC #: <u>21257W4</u> SDG #: <u>K0805394</u> METHOD: Trace metals (EPA SW 846 Method 6020/6010/7000) Sample Concentration units, unless otherwise noted: ug/L	(EPA SW 84 nits. unless c	t6 Method 60 otherwise no)20/6010/700 ied: ug/L		VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES Preparation factor applied: Sb, TI @ 10x. Associated Samples:	I Reason Code: bl Raise to RL unless otherwise noted. Reviewer: C/C Reviewer: C/C Znd Reviewer: C/C
							Sample Ider
Analyte	Maximum PB ^a (uq/l)	Maximum ICB/CCB ^a (uq/l)	Action Limit	RL	7	11	
Mn		0.2		5.0	4.7	4.9	
Sample Col	Sample Concentration units, unless otherwise noted:	nits, unless c	otherwise no	ted: ua/l		Associated Samples:	12.
							Sample Identification
Analyte	Maximum PB ^a (119/1)	Maximum ICB/CCB ^a (uq/l)	Action Limit	R.	No Qualifiers		
ΙĄ		8.3					
Ва		3.7					
В		9.3					
. ડે		0.2					

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

LDC #: 21257W4

SDG #: K0805394

VALIDATION FINDINGS WORKSHEET

Field Blanks

Page: 1 of 1
Reviewer: CR
2nd Reviewer: _____

МЕТНОD: Trace Metals (EPA SW846 6010B/7000)

Y N N/A Were field blanks identified in this SDG?

Were target analytes detected in the field blanks?

Blank units: ug/L Associated sample units: ug/L

Sampling date: 6/16/08 Soil factor applied NA Field blank type: (circle one) Field Blank / Rinsate / Other: PB

Raise to RL unless otherwise noted with J+ Reason Code: be $\mathcal{D}_{\mathcal{A}}$

Associated Samples: All except 1

Analyte	Blank ID				And the state of t			Sample Identification	ntification					
		Action Level	RL	2	က	4	5	9	2	8	6	10	11	12
Ā	37.6		50.0	36.5					45.0	47.6		11.2		
Ba	1.8												- Company of the Comp	
В	39.6													
Ca	265	2650												
රි	0.4		10.0	1.9		1.5	2.3	0.8	6.0	0.7	9.0	2.9	6.0	
Cn	1.0													
Fe	57.4	574	20.0	19.4		189 J+		32.1 J+	33.2 J+	22.9 J+	176 J+	9.6	24.3 J+	
Pb	0.785	7.85		1.610 J+		1.070 J+	1.510 J+	1.210 J+	0.919 J+	0.903 J+	1.160 J+	1.510J+	0.868 J+	3.260 J+
Mg	63.1	631												
Mn	55.6	556	5.0					362 J+	4.7	10.6 J+	40.5 J+		4.9	
Mo	1.2													
ž	9.0		20.0	6.4		6.1	7.1	6.3	7.4	9.9	7.8	7.0	6.5	
Na	83.5													
Sr	1.4													
ΙΞ	2.8		10.0			7.1					6.3			
≥	0.5		1.0		9.0									0.5
Zn	6.1		10.0	1.9		2.0	4.7		3.3	5.8	6.2	2.8	2.1	

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with analyte concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U".

SDG #: K0805394 LDC #:21257W4

VALIDATION FINDINGS WORKSHEET

Field Blanks

Page: 1 of 1 Reviewer: CR 2nd Reviewer:

> METHOD: Trace Metals (EPA SW846 6010B/6020/7000) YN N/A

Were target analytes detected in the field blanks? Were field blanks identified in this SDG? N N/A

Associated sample units: ug/L

Ϋ́ Soil factor applied Sampling date: 6/24/08 Blank units: ug/L

Reason Code: bf

All except 1

Associated Samples:

Raise to RL unless otherwise noted with J+

Sample Identification 0.5 12 9.6 9 9.0 က Field blank type: (circle one) Field Blank / Rinsate / Other. 19.4 2 20.0 1.0 씸 Action Level FB062408GWarea1 (SDG#: K0805722) Blank ID 12.0 1.6 49 2.9 1.2 0.4 Analyte Mg $^{\circ}_{a}$ Б As ≥ Ω

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with analyte concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U".

LDC #: 2 1257WY SDG #: 150505389

VALIDATION FINDINGS WORKSHEET ICP Interference Check Sample

2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

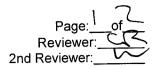
| N/A | Were ICP interference check samples performed as required?
| Y/A | N/A | Were the AB solution percent recoveries (%R) within the control limits of 80-120%?
| LEVEL IV ONLY:
| Y | N/A | Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

Oualfications	No Qual (Samples < 90% ICS A)	•													
Accordated Samples	2-12														
111	1 8				-										
Amelido	MQM	D													
action of the second	TC/43(13:38)														
	717/0%			-											Comments:

7

NO #: 71757WY

VALIDATION FINDINGS WORKSHEET Sample Result Verification


Page: Lof Reviewer: CA 2nd Reviewer

METHOD: Trace metals (EPA SW-846 6010/7000)

_	# Sample ID	Analyte	400 Limit	QUARP Limit		
	A	11 1	180 O'9 B	6 6,0 48/1 5.0 xx/	Finding	Qualifications
Ш				2371	•	None/P
				0		
<u></u>						
L						
L						
\perp						
1						
_						
\perp						
\perp						
\perp						
\perp						
\perp						
Som	Comments:					

LDC#: 21257W4 SDG#: See Cover

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

METHOD: Metals (EPA Method 6020/6010/7000)

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrat	ion (ug/L)	(≤30)	(ug/L)	(ug/L)	Qualifications
Compound	4	5	RPD	Difference	Limits	(Parent Only)
Aluminum	220	838		618	(≤50)	Jdet/A \ fd)
Antimony	0.254	0.291		0.037	(≤0.5)	-
Arsenic	140	146	4			
Barium	25.2	44.8	56			Jdet/A(fid)
Beryllium	0.1U	0.1		0	(≤0.3)	
Boron	7740	7910	2			
Cadmium	0.3	0.3		0	(≤5.0)	
Calcium	696000	699000	0			
Chromium	582	632	8			
Cobalt	1.5	2.3		0.8	(≤10.0)	
Iron	189	614	106			Jdet/A t (d)
Lead	1.070	1.510	34			Jdet/A(fd)
Magnesium	328000	330000	1			
Manganese	588	563	4			
Molybdenum	45.3	45.3	0			
Nickel	6.1	7.1		1	(≤20.0)	
Platinum	0.2	0.2		0	(≤1.0)	
Potassium	22500	23000	2			
Selenium	8.0	11.3		3.3	(≤50.0)	

LDC#: 21257W4 SDG#: See Cover

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: Zof Reviewer: 2nd Reviewer:

METHOD: Metals (EPA Method 6020/6010/7000)

Y N NA Y N NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrat	ion (ug/L)	(≤30)	(ug/L)	(ug/L)	Qualifications
Compound	4	5	RPD	Difference	Limits	(Parent Only)
Sodium	1500000	1490000	1			
Strontium	16300	16300	0			
Thallium	0.248	0.309		0.061	(≤0.200)	
Titanium	7.1	34.6		27.5	(≤10.0)	Jdet/Alfd)
Tungsten	3.8	3.7		0.1	(≤1.0)	
Uranium	50.9	50.5	1			
Vanadium	65.3	67.4	3			
Zinc	2.0	4.7		2.7	(≤10.0)	

V:\FIELD DUPLICATES\FD_inorganic\21257W4.wpd

LDC Report# 21257X4

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2008 Phase B Investigation,

Henderson, Nevada

Collection Date:

June 24 through June 27, 2008

LDC Report Date:

September 15, 2009

Matrix:

Water

Parameters:

Metals

Validation Level:

Stage 4

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): K0805722

Sample Identification

H-49AB

M-7BBDUP

FB062408GWarea1

M-23B

MC-53B

MC-97B

MC-45B

M-7BB

M-88BB

M-61B

MC-94B

MC-94BF

M-5AB

MW-16B

EB062608GW3

M-6AB

M-67B

M-68B

M-95B

M-57AB

M-7BBMS

Introduction

This data review covers 21 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Methods 6010B, 6020, and 7000 for Metals. The metals analyzed were Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Platinum, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Tungsten, Uranium, Vanadium, and Zinc.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section IV.

Field duplicates are summarized in Section XIV.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Arsenic Boron Thallium Tungsten	0.7 ug/L 21 ug/L 0.088 ug/L 0.5 ug/L	All samples in SDG K0805722
ICB/CCB	Antimony Barium Beryllium Boron Iron Lead Molybdenum Thallium Tungsten	0.014 ug/L 0.8 ug/L 0.1 ug/L 18.6 ug/L 4.3 ug/L 0.012 ug/L 5.9 ug/L 0.016 ug/L 0.1 ug/L	All samples in SDG K0805722
ICB/CCB	Arsenic	0.8 ug/L	H-49AB M-23B

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Arsenic	1.1 ug/L	MC-94BF M-5AB M-6AB M-67B M-68B M-95B
ICB/CCB	Arsenic	0.8 ug/L	FB062408GWarea1 MW-16B EB062608GW3

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
H-49AB	Antimony	0.250 ug/L	0.500U ug/L
FB062408GWarea1	Arsenic Boron Iron Tungsten	1.6 ug/L 49 ug/L 2.9 ug/L 0.4 ug/L	5.0U ug/L 50U ug/L 20.0U ug/L 1.0U ug/L
M-23B	Antimony Beryllium	0.227 ug/L 0.1 ug/L	0.500U ug/L 0.3U ug/L
MC-53B	Antimony	0.374 ug/L	0.500U ug/L
MC-97B	Antimony	0.280 ug/L	0.500U ug/L
MC-45B	Beryllium	0.1 ug/L	0.3U ug/L
M-7BB	Antimony Tungsten	0.169 ug/L 0.6 ug/L	0.500U ug/L 1.0U ug/L
M-88BB	Antimony	0.193 ug/L	0.500U ug/L
MC-94B	Antimony Beryllium	0.346 ug/L 0.1 ug/L	0.500U ug/L 0.3U ug/L
MC-94BF	Antimony	0.368 ug/L	0.500U ug/L
M-5AB	Antimony Thallium	0.161 ug/L 0.133 ug/L	0.500U ug/L 0.200U ug/L

Sample	Analyte	Reported Concentration	Modified Final Concentration
MW-16B	Antimony	0.137 ug/L	0.500U ug/L
	Arsenic	4.5 ug/L	5.0U ug/L
	Molybdenum	5.5 ug/L	10U ug/L
EB062608GW3	Arsenic	1.2 ug/L	5.0U ug/L
	Barium	0.7 ug/L	5.0U ug/L
	Boron	43 ug/L	50U ug/L
	Iron	3.9 ug/L	20.0U ug/L
	Thallium	0.187 ug/L	0.200U ug/L
	Tungsten	0.4 ug/L	1.0U ug/L
M-6AB	Antimony	0.141 ug/L	0.500U ug/L
	Tungsten	1.0 ug/L	1.0U ug/L
M-67B	Antimony	0.206 ug/L	0.500U ug/L
M-68B	Antimony	0.281 ug/L	0.500U ug/L
	Beryllium	0.1 ug/L	0.3U ug/L
M-95B	Antimony	0.196 ug/L	0.500U ug/L
M-57AB	Antimony	0.150 ug/L	0.500U ug/L

Sample EB062608GW3 was identified as an equipment blank. No metal contaminants were found in this blank with the following exceptions:

Equipment Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
EB062608GW3	6/26/08	Arsenic Barium Boron Calcium Iron Lead Magnesium Manganese Sodium Strontium Thallium Tungsten	1.2 ug/L 0.7 ug/L 43 ug/L 29.5 ug/L 3.9 ug/L 0.315 ug/L 7.5 ug/L 0.7 ug/L 47 ug/L 0.6 ug/L 0.4 ug/L 0.4 ug/L	M-5AB MW-16B

Sample FB062408GWarea1 was identified as a field blank. No metal contaminants were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
FB062408GWarea1	6/24/08	Arsenic Boron Calcium Iron Magnesium Tungsten	1.6 ug/L 49 ug/L 12.0 ug/L 2.9 ug/L 1.2 ug/L 0.4 ug/L	H-49AB M-23B MC-53B MC-53B MC-45B M-45B M-88BB M-61B M-94B MC-94BF M-5AB MW-16B M-6AB M-67B M-68B M-95B M-57AB

Sample PB061608B (from SDG K0805394) was identified as a pump blank. No metal contaminants were found in this blank with the following exceptions:

Pump Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
PB061608B	6/16/08	Aluminum Barium Boron Calcium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel Sodium Strontium Titanium Tungsten Zinc	37.6 ug/L 1.8 ug/L 39.6 ug/L 265 ug/L 0.4 ug/L 1.0 ug/L 57.4 ug/L 63.1 ug/L 55.6 ug/L 0.6 ug/L 83.5 ug/L 1.4 ug/L 2.8 ug/L 0.5 ug/L 6.1 ug/L	H-49AB M-23B MC-53B MC-97B MC-45B M-7BB M-88BB M-61B MC-94B MC-94BF M-5AB MW-16B M-6AB M-67B M-68B M-95B M-57AB

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
H-49AB	Iron	73.0 ug/L	73.0J+ ug/L
	Lead	1.200 ug/L	1.200J+ ug/L
	Manganese	101 ug/L	101J+ ug/L
	Zinc	2.9 ug/L	10.0U ug/L

Sample	Analyte	Reported Concentration	Modified Final Concentration	
M-23B	Cobalt	5.3 ug/L	10U ug/L	
	Iron	23.2 ug/L	23.2J+ ug/L	
	Lead	0.873 ug/L	0.873J+ ug/L	
	Manganese	31 ug/L	31J+ ug/L	
	Nickel	2.2 ug/L	20.0U ug/L	
MC-53B	Aluminum	30 ug/L	50U ug/L	
	Iron	41.9 ug/L	41.9J+ ug/L	
	Lead	1.350 ug/L	1.350J+ ug/L	
	Manganese	9.0 ug/L	9.0J+ ug/L	
	Nickel	3.3 ug/L	20.0U ug/L	
	Zinc	3.4 ug/L	10.0U ug/L	
MC-97B	Aluminum	41 ug/L	50U ug/L	
	Iron	44.4 ug/L	44.4J+ ug/L	
	Lead	1.350 ug/L	1.350J+ ug/L	
	Manganese	11 ug/L	11J+ ug/L	
	Zinc	2.2 ug/L	10.0U ug/L	
MC-45B	Cobalt	4.3 ug/L	10U ug/L	
	Iron	43.4 ug/L	43.4J+ ug/L	
	Lead	1.860 ug/L	1.860J+ ug/L	
	Zinc	5.1 ug/L	10.0U ug/L	
M-7BB	iron	64.0 ug/L	64.0J+ ug/L	
	Lead	1.280 ug/L	1.280J+ ug/L	
	Manganese	1.9 ug/L	5.0U ug/L	
	Titanium	4.1 ug/L	10.0U ug/L	
	Tungsten	0.6 ug/L	1.0U ug/L	
M-88BB	Iron	73.5 ug/L	73.5J+ ug/L	
	Lead	0.841 ug/L	0.841J+ ug/L	
	Manganese	19 ug/L	19J+ ug/L	
	Nickel	8.9 ug/L	20.0U ug/L	
	Zinc	2.4 ug/L	10.0U ug/L	
M-61B	Aluminum 31 ug/L Iron 50.7 ug/L Lead 0.610 ug/L Manganese 321 ug/L Zinc 9.4 ug/L		50U ug/L 50.7J+ ug/L 0.610J+ ug/L 321J+ ug/L 10.0U ug/L	
MC-94B	Iron	204 ug/L	204J+ ug/L	
	Lead	3.320 ug/L	3.320J+ ug/L	
	Manganese	31 ug/L	31J+ ug/L	
	Zinc	3.2 ug/L	10.0U ug/L	
MC-94BF	Iron	24.8 ug/L	24.8J+ ug/L	
	Lead	1.650 ug/L	1.650J+ ug/L	
	Manganese	1.2 ug/L	5.0U ug/L	
	Zinc	2.1 ug/L	10.0U ug/L	

Sample	Analyte	Reported Concentration	Modified Final Concentration	
M-5AB	Lead	1.740 ug/L	1.740J+ ug/L	
	Thallium	0.133 ug/L	0.200U ug/L	
	Zinc	3.8 ug/L	10.0U ug/L	
MW-16B	Arsenic	4.5 ug/L	5.0U ug/L	
	Cobalt	3.2 ug/L	10U ug/L	
	Iron	205 ug/L	205J+ ug/L	
	Lead	1.320 ug/L	1.320J+ ug/L	
	Molybdenum	5.5 ug/L	10U ug/L	
	Nickel	2.6 ug/L	20.0U ug/L	
	Titanium	9.0 ug/L	10.0U ug/L	
	Zinc	6.0 ug/L	10.0U ug/L	
M-6AB	iron	125 ug/L	125J+ ug/L	
	Lead	1.030 ug/L	1.030J+ ug/L	
	Manganese	15 ug/L	15J+ ug/L	
	Titanium	5.0 ug/L	10.0U ug/L	
	Tungsten	1.0 ug/L	1.0U ug/L	
M-67B	Iron	29.3 ug/L	29.3J+ ug/L	
	Lead	0.668 ug/L	0.668J+ ug/L	
	Manganese	21 ug/L	21J+ ug/L	
	Nickel	2.8 ug/L	20.0U ug/L	
	Zinc	4.4 ug/L	10.0U ug/L	
M-68B	Iron	23.2 ug/L	23.2J+ ug/L	
	Lead	0.591 ug/L	0.591J+ ug/L	
	Manganese	58 ug/L	58J+ ug/L	
	Zinc	3.2 ug/L	10.0U ug/L	
M-95B	Iron	87.4 ug/L	87.4J+ ug/L	
	Lead	0.701 ug/L	0.701J+ ug/L	
	Manganese	34 ug/L	34J+ ug/L	
	Titanium	4.2 ug/L	10.0U ug/L	
M-57AB	Iron	176 ug/L	176J+ ug/L	
	Lead	0.715 ug/L	0.715J+ ug/L	
	Manganese	3.8 ug/L	5.0U ug/L	
	Titanium	8.5 ug/L	10.0U ug/L	

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	%R (Limits)	Flag	A or P
M-7BBMS (All samples in SDG K0805722)	Boron	126.0 (75-125)	J+ (all detects)	Α

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

All internal standard percent recoveries (%R) were within QC limits.

X. Furnace Atomic Absorption QC

All graphite furnace atomic absorption QC were within validation criteria with the following exceptions:

Analytical Spike	Analyte	%R (Limits)	Associated Sample	Flag	A or P
M-5AB	Arsenic	84 (85-115)	M-5AB	J (all detects) UJ (all non-detects)	Α
MC-53B	Arsenic	116 (85-115)	MC-53B	J (all detects) UJ (all non-detects)	A

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable.

The QAPP PQLs were met with the following exceptions:

Sample	ole Analyte Finding Criteria		Criteria	Flag	A or P
All samples in SDG K0805722	Selenium	Laboratory reporting limit reported at 6.0 ug/L.	PQL should be reported at 5.0 ug/L per the QAPP.	None	Р

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG K0805722	All analytes reported below the PQL.	J (all detects)	А

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Metals - Data Qualification Summary - SDG K0805722

		I	II .	T T	
SDG	Sample	Analyte	Flag	A or P	Reason (Code)
K0805722	H-49AB FB062408GWarea1 M-23B MC-53B MC-53B MC-97B MC-45B M-7BB M-88BB M-61B MC-94B MC-94BF M-5AB MW-16B EB062608GW3 M-6AB M-67B M-68B M-95B M-57AB	Boron	J+ (all detects)	A	Matrix spike analysis (%R) (m)
K0805722	MC-53B M-5AB	Arsenic	J (all detects) UJ (all non-detects)	А	Furnace atomic absorption QC (%R) (q)
K0805722	H-49AB FB062408GWarea1 M-23B MC-53B MC-97B MC-45B M-7BB M-88BB M-61B MC-94B MC-94BF M-5AB MW-16B EB062608GW3 M-6AB M-67B M-68B M-95B M-57AB	Selenium	None	P	Sample result verification

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
K0805722	H-49AB FB062408GWarea1 M-23B MC-53B MC-97B MC-45B M-45B M-88BB M-61B M-61B MC-94B MC-94BF M-5AB MW-16B EB062608GW3 M-6AB M-67B M-68B M-95B M-57AB	All analytes reported below the PQL.	J (all detects)	A	Sample result verification (PQL) (sp)

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Metals - Laboratory Blank Data Qualification Summary - SDG K0805722

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
K0805722	H-49AB	Antimony	0.500U ug/L	А	bl
K0805722	FB062408GWarea1	Arsenic Boron Iron Tungsten	5.0U ug/L 50U ug/L 20.0U ug/L 1.0U ug/L	A	ld
K0805722	M-23B	Antimony Beryllium	0.500U ug/L 0.3U ug/L	А	bl
K0805722	MC-53B	Antimony	0.500U ug/L	А	bl
K0805722	MC-97B	Antimony	0.500U ug/L	А	bl
K0805722	MC-45B	Beryllium	0.3U ug/L	Α	bl
K0805722	M-7BB	Antimony Tungsten	0.500U ug/L 1.0U ug/L	А	bl
K0805722	M-88BB	Antimony	0.500U ug/L	А	bl
K0805722	MC-94B	Antimony Beryllium	0.500U ug/L 0.3U ug/L	А	bl

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
K0805722	MC-94BF	Antimony	0.500U ug/L	А	bl
K0805722	M-5AB	Antimony Thallium	0.500U ug/L 0.200U ug/L	А	bl
K0805722	MW-16B	Antimony Arsenic Molybdenum	0.500U ug/L 5.0U ug/L 10U ug/L	А	bl
K0805722	EB062608GW3	Arsenic Barium Boron Iron Thallium Tungsten	5.0U ug/L 5.0U ug/L 50U ug/L 20.0U ug/L 0.200U ug/L 1.0U ug/L	А	bl
K0805722	M-6AB	Antimony Tungsten	0.500U ug/L 1.0U ug/L	А	bl
K0805722	M-67B	Antimony	0.500U ug/L	А	bl
K0805722	M-68B	Antimony Beryllium	0.500U ug/L 0.3U ug/L	А	bl
K0805722	M-95B	Antimony	0.500U ug/L	А	bl
K0805722	M-57AB	Antimony	0.500U ug/L	А	bl

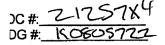
*Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Metals - Field Blank Data Qualification Summary - SDG K0805722

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
K0805722	H-49AB	Iron Lead Manganese Zinc	73.0J+ ug/L 1.200J+ ug/L 101J+ ug/L 10.0U ug/L	A	bp
K0805722	M-23B	Cobalt Iron Lead Manganese Nickel	10U ug/L 23.2J+ ug/L 0.873J+ ug/L 31J+ ug/L 20.0U ug/L	A	bp

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
K0805722	MC-53B	Aluminum Iron Lead Manganese Nickel Zinc	50U ug/L 41.9J+ ug/L 1.350J+ ug/L 9.0J+ ug/L 20.0U ug/L 10.0U ug/L	А	bþ
K0805722	MC-97B	Aluminum Iron Lead Manganese Zinc	50U ug/L 44.4J+ ug/L 1.350J+ ug/L 11J+ ug/L 10.0U ug/L	A	bp
K0805722	MC-45B	Cobalt Iron Lead Zinc	10U ug/L 43.4J+ ug/L 1.860J+ ug/L 10.0U ug/L	A	bp
K0805722	M-7BB	Iron		A	bp
K0805722	M-7BB	Tungsten	1.0U ug/L	А	bf,bp
K0805722	M-88BB	Iron Lead Manganese Nickel Zinc	73.5J+ ug/L 0.841J+ ug/L 19J+ ug/L 20.0U ug/L 10.0U ug/L	А	bp
K0805722	M-61B	Aluminum Iron Lead Manganese Zinc	50U ug/L 50.7J+ ug/L 0.610J+ ug/L 321J+ ug/L 10.0U ug/L	A	bp
K0805722	MC-94B	Iron Lead Manganese Zinc	204J+ ug/L 3.320J+ ug/L 31J+ ug/L 10.0U ug/L	А	bp
K0805722	MC-94BF	Iron Lead Manganese Zinc	24.8J+ ug/L 1.650J+ ug/L 5.0U ug/L 10.0U ug/L	А	bр
K0805722	M-5AB	Lead	1.740J+ ug/L	А	be,bp
*K0805722	M-5AB	Thallium	0.200U ug/L	А	be

SDG	Sample	Modified Final Analyte Concentration		A or P	Code
K0805722	M-5AB	Zinc	10.0U ug/L	А	bp
K0805722	MW-16B	Cobalt Iron Molybdenum Nickel Titanium Zinc	10U ug/L 205J+ ug/L 10U ug/L 20.0U ug/L 10.0U ug/L 10.0U ug/L	. A	bp
K0805722	MW-16B	Arsenic	5.0U ug/L	А	be,bf
K0805722	MW-16B	Lead	1.320J+ ug/L	Α .	be,bp
K0805722	M-6AB	Iron Lead Manganese Titanium	125J+ ug/L 1.030J+ ug/L 15J+ ug/L 10.0U ug/L	. А	bp
K0805722	M-6AB	Tungsten	1.0U ug/L	А	bf,bp
K0805722	M-67B	Iron Lead Manganese Nickel Zinc	29.3J+ ug/L 0.668J+ ug/L 21J+ ug/L 20.0U ug/L 10.0U ug/L	A	bp
K0805722	M-68B	Iron Lead Manganese Zinc	23.2J+ ug/L 0.591J+ ug/L 58J+ ug/L 10.0U ug/L	А	bp
K0805722	M-95B	Iron Lead Manganese Titanium	87.4J+ ug/L 0.701J+ ug/L 34J+ ug/L 10.0U ug/L	A	bp
K0805722	M-57AB	Iron Lead Manganese Titanium	176J+ ug/L 0.715J+ ug/L 5.0U ug/L 10.0U ug/L	A	bp

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
K0805722	M-5AB	Zinc	10.0U ug/L	A	bp
K0805722	MW-16B	Cobalt Iron Molybdenum Nickel Titanium Zinc	10U ug/L 205J+ ug/L 10U ug/L 20.0U ug/L 10.0U ug/L 10.0U ug/L	A	bp
K0805722	MW-16B	Arsenic	5.0U ug/L	A	be,bf
K0805722	MW-16B	Lead	1.320J+ ug/L	A	be,bp
K0805722	M-6AB	Iron Lead Manganese Titanium	125J+ ug/L 1.030J+ ug/L 15J+ ug/L 10.0U ug/L	A	bp
K0805722	M-6AB	Tungsten	1.0U ug/L	A	bf,bp
K0805722	M-67B	Iron Lead Manganese Nickel Zinc	29.3J+ ug/L 0.668J+ ug/L 21J+ ug/L 20.0U ug/L 10.0U ug/L	A	bp
K0805722	M-68B	Iron Lead Manganese Zinc	23.2J+ ug/L 0.591J+ ug/L 58J+ ug/L 10.0U ug/L	А	bp
K0805722	M-95B	Iron Lead Manganese Titanium	87.4J+ ug/L 0.701J+ ug/L 34J+ ug/L 10.0U ug/L	A .	bp
K0805722	M-57AB	iron Lead Manganese Titanium	176J+ ug/L 0.715J+ ug/L 5.0U ug/L 10.0U ug/L	А	bp


Tronox Northgate Henderson

	#: K0805722 ratory: Columbia Analytic	al Se	ervices		Stage		SS WORKS	HEET		Date: 8-[] Page: _L of) Reviewer: _C2 2nd Reviewer: _L
The s	HOD: Metals (EPA SW 8 samples listed below were ation findings worksheets	e revi				g va	lidation areas. \	/alidatio	n fin	dings are noted in attache
	Validation	Area			<u>l</u>			Comm	ents	
i.	Technical holding times			A	Samplir	ng da	tes: 6/24/	08	<u> </u>	127/08
11.	ICP/MS Tune			A						
111.	Calibration			A						
IV.	Blanks			Sw						
V.	ICP Interference Check Sar	nple (i	CS) Analysis	A	ļ					
VI.	Matrix Spike Analysis			SW	W	<u>S</u>				
VII.	Duplicate Sample Analysis			A	10u	Q_				
VIII.	Laboratory Control Samples	s (LCS)	A	1C	<u>S</u>		+		
IX.	Internal Standard (ICP-MS)			A	<u> </u>	····				
Χ.	Furnace Atomic Absorption	QC		SW	ļ					
XI.	ICP Serial Dilution			A						
XII.	Sample Result Verification			SXXXW						
XIII.	Overall Assessment of Data	3	····	A	<u> </u>					
XIV.	Field Duplicates			\mathcal{N}				<u>,</u>		
χv	Field Blanks			ISW	FR	>=	a EB=1	<u>4,P</u>	<u>B=</u>	PBU61608B(\$2865
lote: /alida	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:	•	R = Rir	lo compound isate ield blank	s detecte	d	D = Duplicat TB = Trip bla EB = Equipm	ınk nent blank	int.	
_	water	44	MC 04BE],,	Π.	4 7DDDIID		31	7BW1
1	H-49AB	11	MC-94BF M-5AB		22		1-7BBDUP		32	1 1 1
2	FB062408GWarea1	12	MW-16B		23				32 33	
3	M-23B	14	EB062608G\	۸/3	24		,		34	
4	MC-53B	15		140	25				35	
5	MC-97B	16	M-6AB M-67B		26				36	
6	MC-45B M-7BB	17	M-68B		27	一十			37	
7 8	M-88BB	18	M-95B	· · · · · · · · · · · · · · · · · · ·	28	_			37 38	
9	M-61B	19	M-57AB		29		Andrew Control of the		39	
	MC-94B		M-7BBMS		30				40	
lotes			,		100					

DC#: 21257X4 DG#: 180805722 Page: 1 of 7 Reviewer: CR 2nd Reviewer: ____

Method: Metals (EPA SW 846 Method 6010/7000/6020)

Wetnod: Metals (EPA SVV 846 Method 6010/7000/6020)	T.			
Validation Area	Yes	No	NA	Findings/Comments
I Technical holdidorumes				
All technical holding times were met.	+-			
Cooler temperature criteria was met.				
HE Calibration				
Were all isotopes in the tuning solution mass resolution within 0.1 amu?	 			
Were %RSD of isotopes in the tuning solution < 5%?	\vdash	 .		
Were all instruments calibrated daily, each set-up time?	 			
Were the proper number of standards used?	_			
Were all initial and continuing calibration verification %Rs within the 90-110% (80-120% for mercury and 85-115% for cyanide) QC limits?		· 		
Were all initial calibration correlation coefficients ≥ 0.995?				
III, Blanks				
Was a method blank associated with every sample in this SDG?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		_		
WHGP interestages Sample				
Were ICP interference check samples performed daily?				
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?				
IV Matrix spike/Matrix spike-duplicates*				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.		~	1	
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.	/			
V. Laboratory control samples are 1887, is the 1887 of		•		
Was an LCS anayized for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?				

VALIDATION FINDINGS CHECKLIST

Page: Zof Z Reviewer: ______ 2nd Reviewer: ______

Validation Area	Yes	No	NA	Findings/Comments
Vi-(Euriace:Atomic-Absorption-QC)	163	110		, memisoroominens
If MSA was performed, was the correlation coefficients > 0.995?	\			
Do all applicable analysies have duplicate injections? (Level IV only)	V			
For sample concentrations > RL, are applicable duplicate injection RSD values < 20%? (Level IV only)	/		,	
Were analytical spike recoveries within the 85-115% QC limits?		<u> </u>		
VIL ICE Sepal Dilution 1 Access to 1995 For the Separate Control of the Separa				
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the IDL?	./			
Were all percent differences (%Ds) < 10%?				
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.	~ M. Mari P.	V		
Will Internal Standards (EPASW 846 Melhiod 5020) A Line Commission				
Were all the percent recoveries (%R) within the 30-120% of the intensity o		- ·		
If the %Rs were outside the criteria, was a reanalysis performed?				
IX: Regional Chality: Assurance and Chality Control:				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?	\$20 <u>\$</u> 30			
X Sample Resultaverification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		\		
X) Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XII/Eijelöttäjölicates				
Field duplicate pairs were identified in this SDG.				·
Target analytes were detected in the field duplicates.				
XIIL PEGG planks (18)				
Field blanks were identified in this SDG.				
Target analytes were detected in the field blanks.	V			

LDC#: 2V257X7 SDG#: KO8O5722

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page:___of__\
Reviewer:_____
2nd reviewer:_____

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1-19	water	(Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
Q:20,71		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Ti, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Ai, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al Sh As Ba Be B Cd Ca Cr Co Cu Fe Ph Mg Mo Mn Hg Ni Pt K Se Ag Na Sr Tl Sn Ti W U V Zn
		Analysis Method
ICP	water	A) Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe Pb, (Mg, Mo, Mn) Hg(N), Pt, (K, Se, Ag, Na, Sr), TI, (Sn, Ti), W, U, (V, Zn)
ICP-MS		Al, St, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe(Pb) Mg, Mo, Mn, Hg, Ni, (Pt) K, Se, Ag, Na, Sr(Ti)Sn, Ti, (W, U) V, Zn
GFAA	\bigvee	Al, Sb, (As) Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

LDC #: 21257X4

Analyte

As Ва Be

Sb

METHOD: Trace metals (EPA SW 846 Method 6020/6010/7000) SDG #: K0805722

PB/ICB/CCB QUALIFIED SAMPLES

Preparation factor applied: Sb, Pb, TI, W @ 10x. As @10xdil. VALIDATION FINDINGS WORKSHEET

Page: 1 of

2nd Reviewer:

Reviewer: CR

₹ Associated Samples:

0.169 / 0.500U 0.193 / 0.500U 0.346 / 0.500U 0.368 / 0.500U - 0.1 / 0.3U 9 ω 0.1 / 0.3U Sample Identification ဖ 0.227 / 0.500U 0.374 / 0.500U 0.280 / 0.500U 2 4 0.1 / 0.3U 2.9 / 20.0U 1.6 / 5.0U 49 / 50U Sample Concentration units, unless otherwise noted: ug/L 0.250 / 0.500U Action Limit Maximum ICB/CCB^a 0.014 0.012 0.016 (1)011) 18.6 5.9 4.3 0.8 0.1 0.1 Maximum PB^a (|| | 0.088 0.5 0.7 7

0.6 / 1.0U

0.4 / 1.0U

ŝ

Ω

≥

							Sample Ide	Samble Identification			
Analyte	Maximum PB ^a (ud/l.)	Maximum ICB/CCB ^a	Action Limit	12	13	14	15	16	17	18	19
Sb		1 1		0.161 / 0.500U	0.137 / 0.500U		0.141 / 0.500U	0.206 / 0.500U	0.281 / 0.500U	0.196 / 0.500U	0.150 / 0.500U
As	0.7				4.5 / 5.0U	1.2 / 5.0U					
Ва		0.8				0.7 / 5.0U					
Be		0.1							0.1 / 0.3U		
В	21	18.6				43 / 50U		·.			
Fe		4.3				3.9 / 20.00					
Pb		0.012									
Mo		5.9			5.5 / 10U						
ī	0.088	0.016		0.133 / 0.200U		0.187 / 0.200U					
×	0.5	0.1				0.4 / 1.0U	1.0 / 1.0U				

a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element. Note:

LDC #: 21257X4 SDG #: K0805722 METHOD: Trace n	57X4 305722 Trace metals	(EPA SW 84	57X4 0 <u>5722</u> race metals (EPA SW 846 Method 6020/6010/7000))20/6010/700		ALIDATION I	VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES Preparation factor applied: Sb, Pb, Tl, W @ 10x	Reason Code: bl	Page: Cof Calendary CR 2nd Reviewer: CR 2nd Reviewer:
Sample Co	Sample Concentration units, unless otherwise noted:	nits, unless c	otherwise not	ted: ua/L		@10x	Associated Samples: 1.3	.3	
							S	Sample Identification	
Analyte	Maximum PB ^a (ma/Ka)	Maximum PB ⁴ (undl)	Maximum ICB/CCB ^a (ua/L)	Action Limit	No Qualifiers				
As			0.8						
Sample Co	Sample Concentration units, unless otherwise noted:	nits. unless o	otherwise no	led: ua/l		@10x	Associated Samples: 11, 12, 15, 16-19	1. 12. 15. 16-19	
							S	Sample Identification	
Analyte	Maximum PB³ (mg/Kg)	Maximum PB ^a (ug/l)	Maximum ICB/CCB* (ug/l.)	Action Limit	No Qualifiers				
As			1.1						
Sample Co	Sample Concentration units, unless otherwise noted:	nits, unless o	otherwise not	ted: ua/L			Associated Samples: 2, 13, 14	13.14	
							S	Sample Identification	
Analyte	Maximum PB³ (mg/Kg)	Maximum PB* (ug/l)	Maximum ICB/CCB* (ug/l.)	Action Limit	7	13	14		
As			0.8		See PB	See PB	See PB		

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

LDC #: 21257X4

SDG #: K0805722

VALIDATION FINDINGS WORKSHEET Field Blanks

Page: 1 of Reviewer:_ 2nd Reviewer:

METHOD: Trace Metals (EPA SW846 6010B/7000)

Were field blanks identified in this SDG? ∀N Z ≻

Were target analytes detected in the field blanks? Y NA

Associated Samples: Blank units: ug/L Associated sample units: ug/L Sampling date: 6/26/09 object Soil factor applied Field blank / Rinsate / Other:

Reason Code: be

														 	 _			_
ion																		
Sample Identification																		
San																		
	13	4.5 / 5.0U					1.320 J+											
	12						1.740 J+					0.133 / 0.200U						
	Action Level						3.15											
Blank ID	14	1.2	0.7	43	29.5	3.9	0.315	7.5	0.7	47	9.0	0.187	0.4				THE PROPERTY OF THE PROPERTY O	
Analyte		As	Ba	В	Ça	Fe	P ₀	Mg	Mn	Na	Sr	F	×					

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with analyte concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U".

LDC #: 21257X4

SDG #: K0805722

VALIDATION FINDINGS WORKSHEET

Field Blanks

2nd Reviewer: 1 Reviewer: CR

Page: 1_of 1

METHOD: Trace Metals (EPA SW846 6010B/7000)

Were target analytes detected in the field blanks? Were field blanks identified in this SDG? N N N N

Associated sample units: ug/L Blank units: ug/L

Sampling date: 6/24/08

Sampling date: 6/24/08 Soil factor applied NA Field blank Rinsate / Other.

Reason Code: bf

All except 2 & 14

Associated Samples:_

Sample Identification 1.0 / 1.0U 5 4.5 / 5.0U 5 0.6 / 1.0U ~ Action Level Blank ID 12.0 1.6 2.9 1.2 0.4 49 N Analyte As င္မ æ β ≥ മ

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with analyte concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U".

SDG #: K0805722 LDC #: 21257X4

VALIDATION FINDINGS WORKSHEET

Field Blanks

Page: 1 of 7 Reviewer: CR 2nd Reviewer:_

WETHOD: Trace Metals (EPA SW846 6010B/7000)

Were field blanks identified in this SDG?

Were target analytes detected in the field blanks? Associated sample units:_ Blank units: ug/L

Sampling date: 6/16/08 Soil factor applied
Field blank type: (circle one) Field Blank / Rinsate / Other. Sampling date: 6/16/08

Associated Samples:

Reason Code: be

Field bla	Field blank type: (circle one) Field Blank / Rinsate / Other.	cle on	e) Field Blan	k / Rinsate /	Other: (PB)		Associat	ed Samples.	Associated Samples: All except 2 & 14	ot 2 & 14			
Analyte	Blank ID						San	Sample Identification	tion				
	PB061608B (SDG#: K0805394)	Action Level	-	м	4	ις	9	2	8	თ	10	1	12
₹	37.6				30 / 50U	41 / 50U				31 / 50U			
Ва	1.8												
В	39.6												
Ca	265	2650											
රි	0.4			5.3 / 10U			4.3 / 10U						
ö	1.0												
Fe	57.4	574	73.0 J+	23.2 J+	41.9 J+	44.4 J+	43.4 J+	64.0 J+	73.5 J+	50.7 J+	204 J+	24.8.1+	
g.	0.785	7.85	1.200 J+	0.873 J+	1.350 J+	1.350 J+	1.860 J+	1.280 J+	0.841 J+	0.610.J+	3 320 .14	1 650 1+	1 740 14
Mg	63.1	631										200	.001
Mn	55.6	556	101 J+	31 J+	9.0 J+	11 5+		1.9 / 5.0U	19.J+	321.1+	34 +	12/501	
ό	1.2											200	
Ż	9.0			2.2 / 20.0∪	3.3 / 20.0U				8.9 / 20.01				
Na	83.5												
Sr	1.4												
F	2.8							4.1 / 10.0U					
3	0.5							0.6 / 1.0U					
Zu	6.1		2.9 / 10.0U		3.4 / 10.0U	2.2 / 10.0U	5.1 / 10.0U		2.4 / 10.0U	9.4 / 10.01	32/10011	21/10011	3 9 / 40 011

SDG #: K0805722 LDC #: 21257X4

VALIDATION FINDINGS WORKSHEET

Field Blanks

Page: Zef Reviewer: CR 2nd Reviewer:_

METHOD: Trace Metals (EPA SW846 6010B/7000)

Were field blanks identified in this SDG?

Were target analytes detected in the field blanks?

Associated sample units:__ Sampling date: 6/16/08 Blank units: ug/L

Sampling date: 6/16/08 Soil factor applied Field blank type: (circle one) Field Blank / Rinsate / Other:

Reason Code: be CK- by

All except 2 & 14 Associated Samples:_

...Continued from page 1

tion																		
Sample Identification	19							176 J+	0.715 J+		3.8 / 5.0U					8.5 / 10.0U		
San	18							87.4 J+	0.701 J+		34 J+					4.2 / 10.0U		
	17							23.2 J+	0.591 J+		58 J÷							
	16							29.3 J+	0.668 J+		212+ 213+R		2.8 / 20.00					
	15							125 J+	1.030 J+		15 J+					5.0 / 10.0U	1.0 / 1.0U	
	13					3.2 / 10U		205 J+	1.320 J+			5.5 / 10U	2.6 / 20.0U			9.0 / 10.0U		. 10 07 7 0 0
	Action Level				2650			574	7.85	631	556							
Blank ID	PB061608B (SDG#: K0805394)	37.6	1.8	39.6	265	0.4	1.0	57.4	0.785	63.1	55.6	1.2	0.6	83.5	1.4	2.8	0.5	4
Analyte		₹	Ba	В	రి	රි	3	Fe	g Q	Mg	Mn	Mo	Z	Ra	Š	F	≩	,

VALIDATION FINDINGS WORKSHEET Matrix Spike Analysis

Page: Reviewer: 2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Was a matrix spike analyzed for each matrix in this SDG?

Y N N/A Were matrix spike percent recoveries (%R) within the control limits to the con

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

Was a post digestion spike analyzed for ICP elements that did not meet the required criteria for matrix spike recovery? N N/A

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. HEVEL IV ONLY:

*	Matrix Spike ID	Matrix	Analyte	88	Associated Samples	Qualifications
	92	Water	ડિ	126.0	三七	J+08+14 (m)
	,			-		
	•					
士						

Comments:

LDC #: 18 31 357XY SDG #: 15080572

VALIDATION FINDINGS WORKSHEET

Page: Reviewer: 2nd Reviewer:

Furnace Atomic Absorption QC

METHOD: Trace metals (EPA SW 846 Method 6010/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

LEVEL IV ONLY:

Do all applicable analyses have duplicate injections?

For sample concentrations > CRDL, are applicable duplicate injection RSD values <20%?

Are analytical spike recoveries with in the control limits of 85-115%?

Do all applicable analyses have duplicate injections? For sample concentrations > CRDL, are applicable duplicate injection RSD values <20% ? Are analytical spike recoveries with in the control limits of 85-115% ?

		Find	Findings			
Sample ID	As	Pb	eS.	F		O
7.1	84				85-115	VO DITI
7	911					
)
					*	
G						
Comments:						

LDC #: 7(757) Y SDG #: SEC (COLO)

MÉTHOD: Trace metals (EPA SW-846.6010/7000)

VALIDATION FINDINGS WORKSHEET Sample Result Verification

Page: Lof
Reviewer: C.R.
2nd Reviewer

SDG #: 7/257/4 SDG #: 1/0805772

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

Page: l of l Reviewer: G2 2nd Reviewer: L

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found × 100 True

Where, Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
#155H	ICP (initial calibration)	y	215	500	701	201	5
TCV	GFAA (Initial calibration)	.AS	25,CJ	0.85	hol	70	
TCV	CVAA (Initial calibration)	1+8	5.11	5.00	101	201	
2000	ICP (Continuing calibration)	Me	02952	S2000	103	103	
ccv1432	(こう3) GFAA (Continuing calibration)	AS	7,62	J.O.	26	9	
CV 2.	CVAA (Continuing calibration)	HR	Lbih	5.00	86	66	
ICV	ICP/I/IS (Initial calibration)	Gd	0.52	0'52	(00)	100	
CCV44 10	ICP/MS (Continuing calibation)	Sb	5'92	25,0	105	501)

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC# 2/2578 SDG# ROPOS 77

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

Reviewer: 2nd Reviewer: Page:

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

Where, Found = Concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

%R = Found × 100 True

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

S = Original sample concentration D = Duplicate sample concentration . Where, RPD = <u>IS-DL</u> x 100 (S+D)/2

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

%D = I-SDR x 100

Where, i=initial Sample Result (mg/L) (Instrument Reading x 5) SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

					Recelculated	Reported	
Sample ID	Type of Analysis	Element	Found 1871	True / D / SDR (units)	%R/RPD/%D	%R!RPD!%D	Acceptable (Y/N)
ICS.AB	ICP interference check	.'∧	9.05P	000]	95.1	95.I	5
53	Laboratory control sample	B	1620	0001	0201	107,0	
07	Matrix spike	3	(85R-SR)	250	h'2b	42.4	
12	Duplicate	ගු	69900	617000	E-04,3	2.013	
7	ICP serial dilution	Š	h1.2781	1891.25	0.)	1.0	>

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: Z125789 SDG #:150805727

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	ι		_
Reviewer:		0	
2nd reviewer:_		<u> </u>	_

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

MEIH	JD: ITac	CO MERIS (ELY CAA 040 MIGH	100 00 10//	,,,,,	
Please Y N Y N	N/A N/A	Have results been reported	and calcul ated range	of the instruments and within the linear range	
	ed analy	rte results for	20	were recalculate	ed and verified using the
Concent	ration =	(RD)(FV)(Dil) (In. Vol.)(%S)	Raw	Recalculation: Rata: 0.0029 M8/L (1000)	=2.9 me/L
RD	==	Raw data concentration	Ott 1	100100	
FV	=	Final volume (ml)			
In. Vol.	22	Initial volume (ml) or weight (G)			
Dil	==	Dilution factor			
0/0	_	Desimal percent solids			

Sample ID	Analyte	Reported Concentration (W/L)	Calculated Concentration (MQ/L)	Acceptable (Y/N)
\	Al	90	96)
	Sb	0,250	6.250	
	145	190	190	
	Ba	23,2	23.2	
	B	6630	6630	
	Ca	717000	717000	
	Fe	73.0	73.0	
	Pb	1.700	1.200	
	Mg	414000	414000	
	M	101	10)	
	mo	73	73	
	h	36200	36200	
	· Se	24.9	24.9	
	Na	2110000	2110000	
	Sc	15400	15400	
	T1	0.312	0.312	
	W	4.8	4.8	
	U	29.8	29.4	
	V	163	163	
	20	2.9	7.9	I W

	2125784
LDC #:_	2(2.
SDG #:	180805727L

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	2012
Reviewer:	Ce
2nd reviewer:	"\"

	see qua N/A	Have results been reported	stions answered "N". Not applica d and calculated correctly? rated range of the instruments a	able questions are identified as "N/A". and within the linear range of the ICP?
	ed analy ng equal	te results for	Ba	were recalculated and verified using the
Concent	ration =	(RD)(FV)(Dii) (In. Vol.)(%S)	Recalculation:	,
RD FV In. Vol. Dil %S	= = = =	Raw data concentration Final volume (ml) Initial volume (ml) or weight (G) Dilution factor Decimal percent solids	Raw Dan	a: 6.6323 mg/L (1000)=32.7

Sample ID	Analyte	Reported Concentration (UQ _)	Calculated Concentration (Mg/C)	Acceptable (Y/N)
7	A-1	71	71	Y
•	Sb	6,169	0.169	
	As	77.4	77,4	
	Ba	32.3	323	
	B	3980	3980	
	Ca	609000	609000	
	Fe	64.0	64.0	
	8b	1.280	1.280	
	ma	439,000	439000	
	MA	1,9	1-9	
	mo	21	21	
	19	23900	23900	
	Se	6.9	6.9	
	Na	1410000	141000	
	5(18700	18700	
	TI	6,254	0.254	
	11	4.1	4.1	
	W	0.6	0.6	·
	U	47.3	47.3	
	· · · · · ·	15,3	15,0	
				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2008 Phase B Investigation,

Henderson, Nevada

Collection Date:

June 25 through June 26, 2008

LDC Report Date:

August 24, 2009

Matrix:

Soil

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): K0805780

Sample Identification

SA87-0.5B

SA87-10B

SA87-20B

SA87-30B

SA87-25B

SA180-0.5B

SA180-10B

SA180-20B

SA180-30B

SA57-0.5B

SA57-10B

SA57-20B

SA57-30B

SA87-10BMS

SA87-10BDUP

SA180-10BMS

SA180-10BDUP

Introduction

This data review covers 17 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Methods 6010B, 6020, and 7000 for Metals. The metals analyzed were Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Platinum, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Tungsten, Uranium, Vanadium, and Zinc.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section IV.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5% .

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Aluminum Copper Magnesium Manganese Nickel Tin	1.0 mg/Kg 0.2 mg/Kg 0.7 mg/Kg 0.04 mg/Kg 0.04 mg/Kg 3.4 mg/Kg	All samples in SDG K0805780
ICB/CCB	Boron	6.0 ug/L	All samples in SDG K0805780
ICB/CCB	Barium Calcium Manganese	3.0 ug/L 10.0 ug/L 0.20 ug/L	SA180-20B SA180-30B SA57-0.5B SA57-10B SA57-20B SA57-30B
ICB/CCB	Barium Calcium	5.0 ug/L 5.0 ug/L	SA87-0.5B SA87-20B SA87-30B SA87-25B SA180-0.5B SA180-10B

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Magnesium	4.0 ug/L	SA87-0.5B SA87-10B SA87-20B SA87-30B SA87-25B SA180-0.5B SA180-10B
ICB/CCB	Calcium Barium	6.0 ug/L 6.0 ug/L	SA87-10B
ICB/CCB	Beryllium	0.012 ug/L	SA87-0.5B SA87-10B SA87-20B SA87-30B SA87-25B SA180-0.5B SA180-10B SA180-20B SA180-30B SA57-0.5B SA57-10B
ICB/CCB	Beryllium	0.015 ug/L	SA57-20B SA57-30B
ICB/CCB	Tungsten	0.138 ug/L	SA87-0.5B SA87-10B SA87-20B SA87-30B SA87-25B SA180-0.5B
ICB/CCB	Tungsten	0.102 ug/L	SA180-10B SA180-20B SA180-30B SA57-0.5B SA57-10B SA57-20B SA57-30B

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
SA87-0.5B	Tin	2.7 mg/Kg	9.4U mg/Kg
SA87-10B	Tin	2.6 mg/Kg	9,5U mg/Kg

Sample	Analyte	Reported Concentration	Modified Final Concentration
SA87-20B	Tin	3.4 mg/Kg	10.7U mg/Kg
SA87-30B	Tin	4.1 mg/Kg	13.0U mg/Kg
SA87-25B	Tin	4.1 mg/Kg	12.3U mg/Kg
SA180-0.5B	Tin	3.3 mg/Kg	9.6U mg/Kg
SA180-10B	Tin	2.8 mg/Kg	9.7U mg/Kg
SA180-20B	Tin	4.8 mg/Kg	13.1U mg/Kg
SA180-30B	Tin	4.3 mg/Kg	12.9U mg/Kg
SA57-0.5B	Tin	3.8 mg/Kg	10.6U mg/Kg
SA57-10B	Tin	3.9 mg/Kg	11.8U mg/Kg
SA57-20B	Tin	4.4 mg/Kg	13.3U mg/Kg
SA57-30B	Tin Tungsten	3.5 mg/Kg 0.20 mg/Kg	11.4U mg/Kg 0.23U mg/Kg

No field blanks were identified in this SDG.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	%R (Limits)	Flag	A or P
SA87-10BMS (All samples in SDG K0805780)	Antimony	34.4 (75-125)	J- (all detects) UJ (all non-detects)	А
	Tungsten	63.6 (75-125)	J- (all detects) UJ (all non-detects)	

Spike ID (Associated Samples)	Analyte	%R (Limits)	Flag	A or P
SA87-10BMS (SA87-10B)	Titanium	58.9 (75-125)	J- (all detects) UJ (all non-detects)	А
SA180-10BMS (All samples in SDG K0805780)	Antimony Tungsten	38.6 (75-125) 59.9 (75-125)	J- (all detects) UJ (all non-detects) J- (all detects) UJ (all non-detects)	А
SA180-10BMS (SA180-10B)	Manganese	189.2 (75-125)	J+ (all detects)	А

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Analyte	RPD (Limits)	Difference (Limits)	Flag	A or P
SA87-10BDUP (SA87-10B)	Sodium Strontium	22.6 (≤20) 21.4 (≤20)	- -	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А
SA180-10BDUP (SA180-10B)	Barium Manganese	23.5 (≤20) 21.0 (≤20)	-	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

Raw data were not reviewed for this SDG.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met with the following exceptions:

Diluted Sample	Analyte	%D (Limits)	Associated Samples	Flag	A or P
SA87-10BL	Cobalt	16.9 (≤10)	All samples in SDG K0805780	J (all detects) UJ (all non-detects)	А
	Zinc	17.1 (≤10)		J (all detects) UJ (all non-detects)	

XII. Sample Result Verification and Project Quantitation Limit

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG K0805780	All samples in SDG K0805780 All analytes reported below the PQL.		А

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Metals - Data Qualification Summary - SDG K0805780

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
K0805780	SA87-0.5B SA87-10B SA87-20B SA87-20B SA87-25B SA180-0.5B SA180-10B SA180-20B SA180-30B SA57-0.5B SA57-10B SA57-10B SA57-30B	Antimony Tungsten	J- (all detects) UJ (all non-detects) J- (all detects) UJ (all non-detects)	A	Matrix spike analysis (%R) (m)
K0805780	SA87-10B	Titanium	J- (all detects) UJ (all non-detects)	А	Matrix spike analysis (%R) (m)
K0805780	SA180-10B	Manganese	J+ (all detects)	А	Matrix spike analysis (%R) (m)
K0805780	SA87-10B	Sodium Strontium	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А	Duplicate sample analysis (RPD) (ld)
K0805780	SA180-10B	Barium Manganese	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А	Duplicate sample analysis (RPD) (Id)
K0805780	SA87-0.5B SA87-10B SA87-20B SA87-30B SA87-25B SA180-0.5B SA180-20B SA180-20B SA180-30B SA57-0.5B SA57-10B SA57-10B SA57-20B SA57-30B	Cobalt Zinc	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А	ICP serial dilution (%D) (sd)

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
K0805780	SA87-0.5B SA87-10B SA87-20B SA87-30B SA87-25B SA180-0.5B SA180-10B SA180-20B SA180-30B SA57-0.5B SA57-10B SA57-20B SA57-30B	All analytes reported below the PQL.	J (all detects)	Α	Sample result verification (PQL) (sp)

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Metals - Laboratory Blank Data Qualification Summary - SDG K0805780

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
K0805780	SA87-0.5B	Tin	9.4U mg/Kg	А	ld
K0805780	SA87-10B	Tin	9.5U mg/Kg	А	bl
K0805780	SA87-20B	Tin	10.7U mg/Kg	А	bl
K0805780	SA87-30B	Tin	13.0U mg/Kg	А	bl
K0805780	SA87-25B	Tin	12.3U mg/Kg	Α	bl
K0805780	SA180-0.5B	Tin	9.6U mg/Kg	А	bl
K0805780	SA180-10B	Tin	9.7U mg/Kg	Α	bl
K0805780	SA180-20B	Tin	13.1U mg/Kg	А	bl
K0805780	SA180-30B	Tin	12.9U mg/Kg	А	bl
K0805780	SA57-0.5B	Tin	10.6U mg/Kg	А	bl
K0805780	SA57-10B	Tin	11.8U mg/Kg	Α	bl
K0805780	SA57-20B	Tin	13.3U mg/Kg	А	bl

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
K0805780	SA57-30B	Tin Tungsten	11.4U mg/Kg 0.23U mg/Kg	А	bl

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Metals - Field Blank Data Qualification Summary - SDG K0805780

No Sample Data Qualified in this SDG

_DC #: SDG # _abora			LIDATIO	N COMP		lenderson ESS WORKSH		Date: 6-12-0 Page: _ \of \ Reviewer: _ \chickson 2nd Reviewer: _ \chickson
The sa	OD: Metals (EPA SW imples listed below wi ion findings workshee	ere revi				alidation areas. V	•	s are noted in attached
	Validatio	on Area					Comments	
I.	Technical holding times			A	Sampling d	ates: 6/26/0	08,6/	25/08
11.	ICP/MS Tune			A			<u> </u>	
III.	Calibration			A				
IV.	Blanks			5W				
V.	ICP Interference Check S	Sample (I	CS) Analysis	A				
VI.	Matrix Spike Analysis			5W	ms			
VII.	Duplicate Sample Analys	sis		Sw	DUR			
· VIII.	Laboratory Control Samp	oles (LCS))	A	LCS			
IX.	Internal Standard (ICP-M	MS)		\wedge	Not	reviewed		
Χ.	Furnace Atomic Absorpti	ion QC		\sim		tilized		
XI.	ICP Serial Dilution			SW				
XII.	Sample Result Verification	on		N				
XIII.	Overall Assessment of D	Data		A				
XIV.	Field Duplicates			\sim				
XV	Field Blanks			\sim				
Note:	A = Acceptable N = Not provided/applica SW = See worksheet	able	R = Rir	o compound sate eld blank	s detected	D = Duplicate TB = Trip bla EB = Equipm	nk	
	\$0.15	 				00.01		
1 5	SA87-0.5B	11	SA57-10B		21	PBSI	31	
2	SA87-10B	12	SA57-20B		22		32	
3	SA87-20B	13	SA57-30B		23		33	
4	SA87-30B	14_	SA87-10BM	3	24		34	
5	SA87-25B	15	SA87-10BDL	JP	25		35	
6 :	SA180-0.5B	16	SA180-10BM	is .	26		36	
7	SA180-10B	17	SA180-10BE	UP	27		37	
8 ;	SA180-20B	18			28		38	
9 :	SA180-30B	19			29		39	
	SA57-0.5B	20			30		40	

LDC#: 2025744 SDG#: 180805780

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: _____of ___ Reviewer: _____2nd reviewer: _____

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1-13	50,1	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zp
QC:1417	4	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, ZD
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
-		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sh, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Ph, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
	· · · · · · · · · · · · · · · · · · ·	Analysis Method
ICP	50:1	Al)Sb, As (Ba) Be (B) Cd (Ca) Cr. (Co, Cu, Fe) Pb, (Mg, Mo, (Mn) Hg, Ni, Pt, (K)Se, Ag, (Na, Sr), Tl, (Sn, Ti)W, U, (V, Zn)
ICP-MS	1	AI(Sb, As, Ba, Be) B, Cd, Ca(Cr) Co, Cu, Fe, Pb, Mg, (Md), Mn, Hg, (Ni, Pt, K, Se, Ag) Na, Sr, (Ti, Sn, Ti, W, U) V, Zn
GFAA		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

LDC #: 21257Y4 SDG #: K0805780

METHOD: Trace metals (EPA SW 846 Method 6010B/6020/7000)

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Soil preparation factor applied: 100x x 2xdil.

Page: 1 of **2**_

CR

Reviewer:

2nd Reviewer:

Reason Code: bl ₹ Associated Samples:

3.5 / 11.4 5 4.4 / 13.3 7 3.9 / 11.8 7 3.8 / 10.6 9 4.3 / 12.9 တ 4.8 / 13.1 ω 2.8/9.7 Sample Identification 3.3/9.6 9 4.1 / 12.3 2 4.1 / 13.0 4 3.4 / 10.7 ო Sample Concentration units, unless otherwise noted: __mg/Kg_ 2.6 / 9.5 7 2.7/9.4 Action Limit Maximum ICB/CCB^a (ug/L) 0.9 Maximum PB^a (mg/Kg) 40.0 3.4 1.0 0.2 0.7 Analyte Mg Ξ ਹ ź ₹ B

Sample Co	Analyte	Ba	Ca	Mn
<u>ncentratio</u>	Maximum PB ^a (mg/Kg)			
Sample Concentration units, unless otherwise noted: ma/Ka	Analyte Maximum Maximum Action No PB* ICB/CCB* Limit Qualifiers (mg/Kg) (ug/L)	3.0	10.0	0.20
less othe	Action Limit			
erwise note	No Qualifiers			
ed: ma				
/Kα				
Sa				
Associated Sample Sample Identification				
Associated Samples:				
es:				
8-13				
1				

		<u> </u>			
1.3-7					-7
					1-7
es:					Q
Associated Samples:	Sample Identification				Associated Samples
ated 5	ntifica				S pate
ssoci	abl aic				jegori
A	Samr				
0					▋ ,
ma/K					X/5@
jg.					ļ ;
e note		No	1		
Jerwis.		Öű			
Sample Concentration units, unless otherwise noted: ma/Ka		Analyte Maximum Maximum Action No PBª ICB/CCBª Limit Qualifiers (mg/Kg) (ug/L)			Commiss Consontantion unite united attornies noted. malka
un s		Maximum CB/CCB ^a (ug/L)	5.0	5.0]
ian ac		Maxi ICB/ (uç	2	5	
ntratic		Maximum N PB ^a 16 (mg/Kg)			
Conce		Max (mç			
mple (nalyte	, m	æ	100
Sa			<u></u>	O a	ئ لل

				Sample Concentration units, unless otterwise noted.	d.		Samp	Sample Identification	ople Identification				
llyte	Maximum PB ^a (mg/Kg)	Maximum ICB/CCB ^a (ug/L)	Action	Analyte Maximum Maximum Action No PB* ICB/CCB* Limit Qualifiers (mg/Kg) (ug/L)						 		.1.20	
							A. C.						

LDC #: 21257Y4 SDG #: <u>K0805780</u> **METHOD:** Trace metals (EPA SW 846 Method 6010B/6020/7000)

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES Soil preparation factor applied: 100x x 2xdii.

Reason Code: bl

Sample C	Soncentratio	on units, unk	ess othe	Sample Concentration units, unless otherwise noted:	t: ma/Ka Associated Samples: 2	
					S	
Analyte	Maximum PB³ (mg/Kg)	Maximum ICB/CCB ^a (ug/L)	Action Limit	No Qualifiers		
Ca		6.0				
Sample (Concentration	on units. unit	ess othe	Sample Concentration units, unless otherwise noted:	1: ma/Ka Associated Samples: 1-11	
					San	
Analyte	Maximum PB ^a (mg/Kg)	Maximum ICB/CCB ^a (ug/L)	Action Limit	No Qualifiers		
Be		0.012				
Sample (Concentration	on units. un	ess oth	Sample Concentration units, unless otherwise noted:	d: ma/Ka Associated Samples: 12.13	
Analyte	Maximum PB ^a (mg/Kg)	Maximum ICB/CCB ^a (ug/L)	Action Limit	No Qualifiers		
Be		0.015				
Sample	Sample Concentration units.	ion units, un	less oth	unless otherwise noted:	d: ma/Ka Associated Samples: 1-6 Sample Identification	
Analyte	Maximum PB ^a (mg/Kg)	Maximum ICB/CCB ^a (ug/L)	Action Limit	No Qualifiers		
M		0.138				100 Mary 1
Sample	Concentrati	ion units. un	less oth	Sample Concentration units. unless otherwise noted.	d: ma/Ka Associated Samples: 7-13	
					Sample Identification	
Analyte	Maximum PB³ (mg/Kg)	Maximum ICB/CCB ^a (ug/L)	Action Limit	13		
M		0.102		0.20 / 0.23		

a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element. Note:

3

VALIDATION FINDINGS WORKSHEET Matrix Spike Analysis

Reviewer: 2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| Y N N/A | Was a matrix spike analyzed for each matrix in this SDG?
| Y N N/A | Were matrix spike percent recoveries (%R) within the control limits of 75-1257) If the cample control limits of 75-1257

of 4 or more, no action was taken.

Was a post digestion spike analyzed for ICP elements that did not meet the required criteria for matrix spike recovery?

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. LEVEL IV ONLY:

Y N (WA) Wer

*	Matrix Spike ID	Matrix	Analyte	%R	Associated Samples	Qualifications
	エ	1,08	S	34.4	H11	J-/US/A Cm)
			11	58.9	おれ	
			3	63.6	11E	Θ
		= 0	Į.	o c		
	ها ×	Ś	ရင်	58.6	116	(か) 1ヹ/to/で)
			۲۶	189, 2	7	J+de+/A
			3	59.5	1 W	→ ヤ/トゥ/-ト
<u></u>						
8	. of a Con					
3	Colleges.					

CDC #: 72

VALIDATION FINDINGS WORKSHEET **Duplicate Analysis**

Reviewer:__ Page: 2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

No. N/A

Was a duplicate sample analyzed for each matrix in this SDG?

YON N/A

Were all duplicate sample relative percent differences (PDN)

Were all duplicate sample relative percent differences (RPD) < 20% for water samples and < 35% for soil samples? If no, see qualifications below. A control limit of ±R.L. (±2X R.L for soil) was used for sample values that were <5X the R.L., including the case when only one of the duplicate sample values was <5X R.L.. If field blanks were used for laboratory duplicates, note in the Overall Assessment.

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

# Duplicate ID	Matrix	Analyte	RPD (Limits)	Offerance (I imite)		
<u>~</u>	2.65.	1/6	700		Associated Samples	Qualifications
	-	3/1	3,11		みん	マーサート0/ト
7		77	アンプ		۲	5
	- 8	হিত	23.5		7	
		30	77.0			されている。
						7
		<i>ii</i>				
Comments:						

LDC #: 7125

VALIDATION FINDINGS WORKSHEET ICP Serial Dilution

Page: 1 of 1 Reviewer: 2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A

If analyte concentrations were > 50X the IDL, was an ICR serial dilution percent differences (%D) < 10%?

Y N N/A

Were ICP serial dilution percent differences (%D) < 10%?

Y N N/A

Is there evidence of negative interference? If yes, professional judgement will be used to qualify the data.

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. Y N N/A

*	Diluted Sample ID	Matrix	Analyte	Q%	Associated Samples	Qualifications
	2	11.08	ී	6.91	116	17/21/A (47CR(Sd)
			GB -	か れ)
			7	17.1)	
上						
1						
					,	
	i chi					
3	Collination.					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2008 Phase B Investigation,

Henderson, Nevada

Collection Date:

June 29 through June 30, 2008

LDC Report Date:

August 24, 2009

Matrix:

Water

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): K0805919

Sample Identification

M-79B

M-84B

M-126B

M-14ABF

M-14ADBF

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Methods 6010B, 6020, and 7000 for Metals. The metals analyzed were Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Platinum, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Tungsten, Uranium, Vanadium, and Zinc.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section IV.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Boron Copper Lead Magnesium Molybdenum Sodium Thallium Zinc	4.4 ug/L 1.8 ug/L 0.089 ug/L 6.9 ug/L 1.3 ug/L 128 ug/L 0.186 ug/L 0.7 ug/L	All samples in SDG K0805919
ICB/CCB	Aluminum Antimony Boron Barium Cobalt Copper Magnesium Strontium Sodium Thallium Tungsten	4.0 ug/L 0.014 ug/L 10.7 ug/L 2.0 ug/L 0.4 ug/L 2.1 ug/L 4.3 ug/L 0.4 ug/L 200 ug/L 0.009 ug/L 0.1 ug/L	All samples in SDG K0805919

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
M-79B	Aluminum	27.8 ug/L	50.0U ug/L
	Cobalt	0.7 ug/L	10.0U ug/L
	Zinc	1.4 ug/L	10.0U ug/L
M-84B	Aluminum	14.9 ug/L	50.0U ug/L
	Cobalt	0.3 ug/L	10.0U ug/L
	Lead	0.139 ug/L	0.200U ug/L
	Molybdenum	8.6 ug/L	10.0U ug/L
	Thallium	0.194 ug/L	0.200U ug/L
	Zinc	2.5 ug/L	10.0U ug/L
M-126B	Cobalt	1.0 ug/L	10.0U ug/L
	Copper	3.0 ug/L	10.0U ug/L
	Molybdenum	7.2 ug/L	10.0U ug/L
	Zinc	2.1 ug/L	10.0U ug/L
M-14ABF	Cobalt	0.5 ug/L	10.0U ug/L
	Zinc	1.3 ug/L	10.0U ug/L
M-14ADBF	Copper	1.1 ug/L	10.0U ug/L
	Zinc	0.8 ug/L	10.0U ug/L

Sample FB062408GWarea1 (from SDG K0805722) was identified as a field blank. No metal contaminants were found in this blank with the following exceptions:

Field Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
FB062408GWarea1	6/24/08	Arsenic Boron Calcium Iron Magnesium Tungsten	1.6 ug/L 49 ug/L 12.0 ug/L 2.9 ug/L 1.2 ug/L 0.4 ug/L	All samples in SDG K0805919

Sample PB061608B (from SDG K0805394) was identified as a pump blank. No metal contaminants were found in this blank with the following exceptions:

Pump Blank ID	Sampling Date	Analyte	Concentration	Associated Samples
PB061608B	6/16/08	Aluminum Barium Boron Calcium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel Sodium Strontium Titanium Tungsten Zinc	37.6 ug/L 1.8 ug/L 39.6 ug/L 265 ug/L 0.4 ug/L 1.0 ug/L 57.4 ug/L 0.785 ug/L 63.1 ug/L 55.6 ug/L 1.2 ug/L 0.6 ug/L 83.5 ug/L 1.4 ug/L 2.8 ug/L 0.5 ug/L	All samples in SDG K0805919

Sample concentrations were compared to concentrations detected in the field blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
M-79B	Aluminum Cobalt Iron Lead Manganese Titanium Zinc	27.8 ug/L 0.7 ug/L 18.0 ug/L 0.498 ug/L 2.3 ug/L 1.9 ug/L 1.4 ug/L	50.0U ug/L 10.0U ug/L 20.0U ug/L 0.498J+ ug/L 5.0U ug/L 10.0U ug/L 10.0U ug/L
M-84B	Aluminum Cobalt Iron Lead Manganese Molybdenum Titanium Zinc	14.9 ug/L 0.3 ug/L 14.5 ug/L 0.139 ug/L 5.3 ug/L 8.6 ug/L 0.4 ug/L 2.5 ug/L	50.0U ug/L 10.0U ug/L 20.0U ug/L 0.200U ug/L 5.3J+ ug/L 10.0U ug/L 10.0U ug/L 10.0U ug/L
M-126B	Cobalt Copper Iron Lead Molybdenum Titanium Zinc	1.0 ug/L 3.0 ug/L 67.9 ug/L 1.530 ug/L 7.2 ug/L 3.8 ug/L 2.1 ug/L	10.0U ug/L 10.0U ug/L 67.9J+ ug/L 1.530J+ ug/L 10.0U ug/L 10.0U ug/L 10.0U ug/L
M-14ABF	Cobalt Iron Lead Manganese Zinc	0.5 ug/L 7.1 ug/L 0.561 ug/L 2.5 ug/L 1.3 ug/L	10.0U ug/L 20.0U ug/L 0.561J+ ug/L 5.0U ug/L 10.0U ug/L

Sample	Analyte	Reported Concentration	Modified Final Concentration
M-14ADBF	Copper	1.1 ug/L	10.0U ug/L
	Iron	11.2 ug/L	20.0U ug/L
	Lead	0.480 ug/L	0.480J+ ug/L
	Manganese	3.5 ug/L	5.0U ug/L
	Zinc	0.8 ug/L	10.0U ug/L

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards

Raw data were not reviewed for this SDG

X. Furnace Atomic Absorption QC

All graphite furnace atomic absorption QC were within validation criteria.

XI. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

XII. Sample Result Verification and Project Quantitation Limit

All sample result verifications were acceptable.

The QAPP PQLs were met with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
All samples in SDG K0805919	Selenium	Laboratory reporting limit reported at 6.0 ug/L.	PQL should be reported at 5.0 ug/L per the QAPP.	None	Р

All analytes reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG K0805919	All analytes reported below the PQL.	J (all detects)	А

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples M-14ABF and M-14ADBF were identified as field duplicates. No metals were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/L)				
Analyte	M-14ABF	M-14ADBF	RPD (Limits)	Difference (Limits)	Flags	A or P
Antimony	0.136	0.126	<u>-</u>	0.01 (≤0.5)	-	-
Arsenic	121	112	8 (≤30)	-	-	-
Barium	14.9	14.5	-	0.4 (≤5.0)	-	-
Boron	2540	2570	1 (≤30)	-	<u>-</u>	•
Calcium	255000	258000	1 (≤30)	-	-	•
Chromium	39.7	38.0	4 (≤30)	-	-	-
Cobalt	0.5	0.3U	_	0.2 (≤10.0)	-	-
Copper	0.8U	1.1	•	0.3 (≤10.0)	-	-
Iron	7.1	11.2	-	4.1 (≤20.0)	-	-
Lead	0.561	0.480	-	0.081 (≤0.200)	-	-

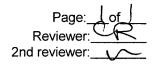
	Concentra	tion (ug/L)				
Analyte	M-14ABF	M-14ADBF	RPD (Limits)	Difference (Limits)	Flags	A or P
Magnesium	123000	123000	0 (≤30)	-	-	-
Manganese	2.5	3.5	-	1 (≤5.0)	-	_
Molybdenum	21.6	22.1	-	0.5 (≤10.0)	-	-
Potassium	8920	8630	3 (≤30)	-	-	-
Selenium	6.0U	6.5	-	0.5 (≤50.0)	-	-
Silver	0.7U	0.7	•	0 (≤10.0)	-	-
Sodium	566000	564000	0 (≤30)	-	-	-
Strontium	6690	6650	1 (≤30)	-	-	-
Thallium	0.208	0.219	-	0.011 (≤0.200)	-	-
Tungsten	1.5	1.4	-	0.1 (≤1.0)	-	-
Uranium	32.0	32.0	0 (≤30)	-	-	-
Vanadium	35.8	34.9	3 (≤30)	-	•	-
Zinc	1.3	0.8	-	0.5 (≤10.0)	-	-

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Metals - Data Qualification Summary - SDG K0805919

SDG	Sample	Analyte	Flag	A or P	Reason (Code)
K0805919	M-79B M-84B M-126B M-14ABF M-14ADBF	Selenium	None	P	Sample result verification
K0805919	M-79B M-84B M-126B M-14ABF M-14ADBF	All analytes reported below the PQL.	J (all detects)	А	Sample result verification (PQL) (sp)

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Metals - Laboratory Blank Data Qualification Summary - SDG K0805919

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
K0805919	M-79B	Aluminum Cobalt Zinc	50.0U ug/L 10.0U ug/L 10.0U ug/L	А	bl
K0805919	M-84B	Aluminum Cobalt Lead Molybdenum Thallium Zinc	50.0U ug/L 10.0U ug/L 0.200U ug/L 10.0U ug/L 0.200U ug/L 10.0U ug/L	A	bl
K0805919	M-126B	Cobalt Copper Molybdenum Zinc	10.0U ug/L 10.0U ug/L 10.0U ug/L 10.0U ug/L	A	bl
K0805919	M-14ABF	Cobalt Zinc	10.0U ug/L 10.0U ug/L	А	bl
K0805919	M-14ADBF	Copper Zinc	10.0U ug/L 10.0U ug/L	А	bl


Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Metals - Field Blank Data Qualification Summary - SDG K0805919

SDG	Sample	Analyte	Modified Final Concentration	A or P	Code
K0805919	M-79B	Aluminum Cobalt Lead Manganese Titanium Zinc	50.0U ug/L 10.0U ug/L 0.498J+ ug/L 5.0U ug/L 10.0U ug/L 10.0U ug/L	А	bp
K0805919	M-79B	Iron	20.0U ug/L	А	bf,bp
K0805919	M-84B	Aluminum Cobalt Lead Manganese Molybdenum Titanium Zinc	50.0U ug/L 10.0U ug/L 0.200U ug/L 5.3J+ ug/L 10.0U ug/L 10.0U ug/L 10.0U ug/L	A	bp
K0805919	M-84B	Iron	20.0U ug/L	А	bf,bp
K0805919	M-126B	Cobalt Copper Iron Lead Molybdenum Titanium Zinc	10.0U ug/L 10.0U ug/L 67.9J+ ug/L 1.530J+ ug/L 10.0U ug/L 10.0U ug/L 10.0U ug/L	А	bp
K0805919	M-14ABF	Cobalt Lead Manganese Zinc	10.0U ug/L 0.561J+ ug/L 5.0U ug/L 10.0U ug/L	A	рр
K0805919	M-14ABF	Iron	20.0U ug/L	А	bf,bp
K0805919	M-14ADBF	Copper Lead Manganese Zinc	10.0U ug/L 0.480J+ ug/L 5.0U ug/L 10.0U ug/L	А	bp
K0805919	M-14ADBF	iron	20.0U ug/L	Α	bf,bp

LDC SDG Labo			LIDATIO	N COMF	_	EN	lenderson ESS WORKSHEI	ĒΤ	Date: 8-12-69 Page: U of N Reviewer: C
METI	HOD: Metals (EPA SW 8	46 M	ethod 6010	3/6020/70	00)				2nd Reviewer:
	samples listed below were ation findings worksheets		ewed for ea	ch of the f	ollow	ing va	alidation areas. Valid	ation find	dings are noted in attached
	Validation	Area					Cor	nments	
l.	Technical holding times			A	Sam	oling d	ates: 6/29/0	<u> </u>	6/30/08
11.	ICP/MS Tune			A					
111.	Calibration			A	<u> </u>				
IV.	Blanks			SW					
V.	ICP Interference Check Sar	nple (l	CS) Analysis	รฟ					
VI.	Matrix Spike Analysis			A	M	<u>S(ʻ</u>	5DGA:408653	594 N	40806119)
VII.	Duplicate Sample Analysis			A	Du	p	V		
VIII.	Laboratory Control Samples	(LCS)	A	LC	5			
IX.	Internal Standard (ICP-MS)			\mathcal{N}	N	27 (reviewed		
X.	Furnace Atomic Absorption	QC		A					
XI.	ICP Serial Dilution			A	SC)GX	K0806119)		
XII.	Sample Result Verification			SW					
XIII.	Overall Assessment of Data	1		A					
XIV.	Field Duplicates			SW	(4,5	3)		
XV	Field Blanks		·	SW	FB=	FB	062408GWarea_I	PB=P	B061608B (50GA K08053
Note: /alidat	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:		R = Rin	o compound sate eld blank		15	06 %: KOを057でと) D = Duplicate TB = Trip blank EB = Equipment I ヤB=のアルト	olank	
1	M-79B	11	PBW)			21		31	
2	M-84B	12				22		32	
3	M-126B	13				23		33	
4	M-14ABF	14				24		34	
5	M-14ADBF	15				25		35	
6		16				26		36	
7		17				27		37	
8		18				28		38	
9		19				29	***************************************	39	
10		20				30		40	
lotos									

LDC#: 2125724 SDG#: KO805919

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All circled elements are applicable to each sample.

	<u> </u>	
Sample ID	Matrix	Target Analyte List (TAL)
1-5	nater	Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Al, Sh, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Ph, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn
		Analysis Method
ICP	waren	A), Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe) Pb, Mg, Mo, Mn, Hg(Ni) Pt, (K, Se, Ag, Na, Sr, Tl, Sn, Ti) W, U, (V, Zn)
ICP-MS	$\perp \perp \parallel$	AI,(Sb) As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe(Pb), Mg, Mo, Mn, Hg, Ni,(Pt), K, Se, Ag, Na, Sr,(T), Sn, Ti, W, U, V, Zn
GFAA		Al, Sb (As) Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mo, Mn, Hg, Ni, Pt, K, Se, Ag, Na, Sr, Tl, Sn, Ti, W, U, V, Zn

Comments: Mercury by CVAA if performed

LDC #: 21257Z4 SDG #: K0805919 METHOD: Trace me Sample Concentrati	LDC #: 21257Z4 SDG #: K0805919 METHOD: Trace metals (EPA SW 846 Method 6010E Sample Concentration units, unless otherwise noted:	(EPA SW 84	16 Method 60	3/6020/7(ALIDATION P PB/ICB/CCB reparation fac	CB/CCB QUALIFIED SAMPLES ration factor applied: Sb, Tl, W @ Associated Samples: All	VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES Preparation factor applied: Sb, Tl, W @10x Associated Samples: All	x0.	Raise to RL. Reason Code: bl	de: bl	Page: 1 of 1 Reviewer: CR 2nd Reviewer:
									Sample Identification	ntification		
Analyte	Maximum PB ^a (uq/l)	Maximum ICB/CCB ^a (uq/L)	Action Limit	RL	-	2	ო	4	5			
Ι		4.0		50.0	27.8	14.9						THE PROPERTY OF THE PROPERTY O
Sb		0.014										
В	4.4	10.7										
Ba		2.0										
ပိ		0.4		10.0	0.7	0.3	1.0	0.5				
Cu	1.8	2.1		10.0			3.0		1.1			
Pb	0.089			0.200		0.139						
Mg	6.9	4.3										
Mo	1.3			10.0		8.6	7.2					
Sr		0.4										
Na	128	200										

a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element. Note:

1.3

2.5

10.0

0.194

0.200

0.009

0.186

0.1

0.7

LDC #: 21257Z4

SDG #: K0805919

VALIDATION FINDINGS WORKSHEET

Page: 1 of 1

2nd Reviewer: Reviewer:__

Field Blanks

Were field blanks identified in this SDG? Y)N N/A

METHOD: Trace Metals (EPA SW846 6010B/7000)

Were target analytes detected in the field blanks?

AN NA

Associated sample units: ug/L Blank units: ug/L

Sampling date: 6/24/08

Sampling date: 6/24/08 So<u>il factor applied N</u> Field blank type: (circle one)/Field Blank / Rinsate / Other:

Reason Code: bf Raise to RL

₹

Associated Samples:

										·					
·									<u>- v</u>						
ntification															
Sample Identification	5				11.2										
	4				7.1										
	2				14.5										
	←				18.0										
	RL				20.0										
	Action Level														
Blank ID	FB0(1.6	49	12.0	2.9	1.2	6.4								
Analyte		As	В	Ca	Fe	Mg	Μ								

LDC #: 21257Z4

SDG #: K0805919

VALIDATION FINDINGS WORKSHEET

Field Blanks

Page: 1 of 1 2nd Reviewer: 7 Reviewer: CR

METHOD: Trace Metals (EPA SW846 6010B/6020/7000)

Were field blanks identified in this SDG? Y N N/A ∀N Z X

Were target analytes detected in the field blanks?

ng/L Associated sample units:_ Blank units: ug/L

Sampling date: 6/16/08

Raise to RL unless otherwise noted with J+. Reason Code: be col

₹ Associated Samples:

	,																	
tion																		
Sample Identification																		
Sal	5						1.1	11.2	0.480 J+		3.5							0.8
	4					0.5		7.1	0.561 J+		2.5							1.3
	3					1.0	3.0	67.9 J+	1.530 J+			7.2				3.8		2.1
	2	14.9		-		0.3		14.5	0.139		5.3 J+	8.6				0.4		2.5
	~	27.8				0.7		18.0	0.498 J+		2.3					1.9		1.4
	RL	50.0				10.0	10.0	20.0	0.200		5.0	10.0				10.0		10.0
	Action Level				2650			574	7.85	631	556							
Blank ID	PB061608B (SDG#: K0805394)	37.6	1.8	39.6	265	0.4	1.0	57.4	0.785	63.1	55.6	1.2	9.0	83.5	1.4	2.8	0.5	6.1
Analyte		A	Ba	В	Ca	ပိ	Cu	Fe	Pb	Mg	Mn	Mo	ž	N a	Sr	F	>	Zn

P272724 spa #: X0805010

VALIDATION FINDINGS WORKSHEET ICP Interference Check Sample

Page: 2nd Reviewer: Reviewer: 6

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| N/A | N/A | Were ICP interference check samples performed as required?
| YAN | N/A | Were the AB solution percent recoveries (%R) within the control limits of 80-120% |
| LEVEL IV ONLY: | Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

*	Date	ICS Identification	Analyte	Finding	Associated Samples	Qualifications
	7115/09	K	Max	81	AII	No Quals (semples <90% ISBA)
		$\overline{}$	o			
L						
		-				
			-			
5	Comments					
	-					

SDG #: 2175724

METHOD: Trace metals (EPA SW-846 6010/7000)

VALIDATION FINDINGS WORKSHEET Sample Result Verification

Page: Lot Reviewer: CR 2nd Reviewer

_	PP Limit Non D	$\dagger \dagger$											
	FIL Lablinit>QUAPPLinit												
Lab Limite QUAPP Lin	180 0.81 5.0 sogle												
Analyte	11									+			
# Sample ID	8									-:-		Comments:	

LDC#: 21257**2**74 SDG#: See Cover

VALIDATION FINDINGS WORKSHEET Field <u>Duplicates</u>

Page: of ______ of ____ Reviewer: _____ 2nd Reviewer: ______

METHOD: Metals (EPA Method 6020/6010/7000)

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrat	ion (ug/L)	(≤30)	(ug/L)	(ug/L)	Qualifications
Compound	4	5	RPD	Difference	Limits	(Parent Only)
Antimony	0.136	0.126		0.01	(≤0.5)	
Arsenic	121	112	8			
Barium	14.9	14.5		0.4	(≤5.0)	
Boron	2540	2570	1			
Calcium	alcium 255000		1			
Chromium	39.7	38.0	4			
Cobalt	0.5	0.3U		0.2	(≤10.0)	
Copper	0.8U	1.1		0.3	(≤10.0)	
Iron	7.1	11.2		4.1	(≤20.0)	
Lead	0.561	0.480		0.081	(≤0.200)	
Magnesium	123000	123000	0			
Manganese	2.5	3.5		1	(≤5.0)	
Molybdenum	21.6	22.1		0.5	(≤10.0)	
Potassium	8920	8630	3			
Selenium	6.0U	6.5		0.5	(≤50.0)	
Silver	0.7U	0.7		0	(≤10.0)	
Sodium	566000	564000	0			
Strontium	6690	6650	1			
Thallium	0.208	0.219		0.011	(≤0.200)	

LDC#: 21257\$Z4

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: 2	(of_	<u>_</u>
Reviewer:	_	<u>~₹</u>	
2nd Reviewer:_		<u>را</u>	_

METHOD: Metals (EPA Method 6020/6010/7000)

Y N NA Y N NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentra	ition (ug/L)	(≤30)	(ug/L)	(ug/L)	Qualifications		
Compound	4	5	RPD	Difference	Limits	(Parent Only)		
Tungsten	1.5	1.4		0.1	(≤1.0)			
Uranium	32.0	32.0	0					
Vanadium	35.8	34.9	3					
Zinc	1.3	0.8		0.5	(≤10.0)			

V:\FIELD DUPLICATES\FD_inorganic\212577Z4.wpd