Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Data Validation Reports LDC# 21257

Dioxins/Dibenzofurans

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2008 Phase B Investigation,

Henderson, Nevada

Collection Date:

June 30, 2008

LDC Report Date:

August 21, 2009

Matrix:

Soil

Parameters:

Dioxins/Dibenzofurans

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): E0800626

Sample Identification

SA207-0.5B SA207-0.5BDL

Introduction

This data review covers 2 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8290 for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
EQ0800286-01	7/3/08	1,2,3,4,6,7,8-HpCDD OCDD 1,2,3,4,6,7,8-HpCDF Total HpCDD Total HpCDF	0.135 ng/Kg 0.487 ng/Kg 0.0867 ng/Kg 0.351 ng/Kg 0.0867 ng/Kg	All samples in SDG E0800626

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Flag	A or P
EQ0800286-02LCS/D (All samples in SDG E0800626)	2,3,7,8-TCDD	137 (87-135)	136 (87-135)	•	J+ (all detects)	Р

VIII. Regional Quality Assurance and Quality Control

Not applicable.

IX. Internal Standards

All internal standard recoveries were within QC limits.

X. Target Compound Identifications

Raw data were not reviewed for this SDG.

XI. Project Quantitation Limit

All project quantitation limits were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
SA207-0.5B	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	А
SA207-0.5BDL	2,3,7,8-TCDF 1,2,3,4,6,7,8-HpCDF OCDF	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects) J (all detects) J (all detects)	A

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG E0800626	All compounds reported below the PQL.	J (all detects)	А

All compounds reported as EMPC were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG E0800626	All compounds reported as estimated maximum possible concentration (EMPC).	JK (all detects)	A

Raw data were not reviewed for this SDG.

XII. System Performance

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

Sample	Compound	Flag	A or P
SA207-0.5B	All TCL compounds	×	А
SA207-0.5BDL	2,3,7,8-TCDF from DB-5	×	А

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Data Qualification Summary - SDG E0800626

SDG	Sample	Compound	Flag	A or P	Reason (Code)
E0800626	SA207-0.5B SA207-0.5BDL	2,3,7,8-TCDD	J+ (all detects)	Р	Laboratory control samples (%R) (I)
E0800626	SA207-0.5B	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	J (all detects)	A	Project Quantitation Limit (e)
E0800626	SA207-0.5BDL	2,3,7,8-TCDF 1,2,3,4,6,7,8-HpCDF OCDF	J (all detects) J (all detects) J (all detects)	А	Project Quantitation Limit (e)
E0800626	SA207-0.5B SA207-0.5BDL	All compounds reported below the PQL.	J (all detects)	Α	Project Quantitation Limit (sp)
E0800626	SA207-0.5B SA207-0.5BDL	All compounds reported as EMPC	JK (all detects)	A	Project Quantitation Limit (k)
E0800626	SA207-0.5B	All TCL compounds	Х	А	Overall assessment of data (o)
E0800626	SA207-0.5BDL	2,3,7,8-TCDF from DB-5	X	A	Overall assessment of data (o)

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG E0800626

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG E0800626

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

SDG #: <u>E0800626</u>
Laboratory: <u>Columbia Analytical Services</u>

LDC #: 21257N21

Stage 2B

Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 6/30/0 8
II.	HRGC/HRMS Instrument performance check	A	
111.	Initial calibration	4	
IV.	Routine calibration/19	8	
V.	Blanks /	RW	
VI.	Matrix spike/Matrix spike duplicates	N	
VII.	Laboratory control samples	M	105 3
VIII.	Regional quality assurance and quality control	N	į į
IX.	Internal standards	A	
X.	Target compound identifications	N	
XI.	Compound quantitation and CRQLs	ŹN	
XII.	System performance	N	
XIII.	Overall assessment of data	M	
XIV.	Field duplicates	N	
XV.	Field blanks	\mathbb{N}	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

1	SA207-0.5B	11	ER1800286-01	21	U216TAT	31	
2	1 DL S	12		22 /	1 768	32	
3		13		23		33	
4		14		24		34	
5		15		25		35	
6		16		26		36	
7		17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

Notes:		 	

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	1. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:

Ta VIII	Sound
LDC #: 2	SDG #: //SK

VALIDATION FINDINGS WORKSHEET

2nd Reviewer:

$\overline{}$
0
Ō
Ñ
\sim
w
77
\approx
\simeq
-
ā
~
2
_
⋖
n`
-
W.
$\overline{}$
Ś
ئے
~
furar
=
Ö
Ξ
-2
~
Ψ
ш
$\overline{}$
О
īñ
~
.=
×
O
-=
$\boldsymbol{\cap}$
ப
HRMS
HRMS
HRMS:
HRMS
HRGC/HRMS
HRMS
HRGC/HRMS

METHOD: HRGC/HRMS Dioxins/Dibenzoturans (エアA เทเยแบน oをもい)
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".
| Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". | Were all samples associated with a method blank? | Were all samples associated with a method blank. | Were all samples associated with a method blank. | Were all samples associated with a method blank. | Were all samples associated with a method blank. | Were all samples associated with a method blank. | Were all samples associated with a method blank. | Were all samples with a well-all samples wi

N N/A

 $|\nabla\rangle$ N/A Was the blank contaminated? If yes, please see qualification below. Blank extraction date: 2/2/2 Blank analysis date: 2/12/2

メルノ Sample Identification Associated Samples: 1867 0.0867 09800 10.487 128 Blank ID 0.35 Conc. units: N5/k5Compound t / 2

Associated Samples: Blank analysis date: _ Blank extraction date: Conc. units:

Sample Identification Blank ID Compound

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #:2/25/N/2 SDG #: Les Con

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

2nd Reviewer:

Page: Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required? N N/A

(N/N/A

Was a LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

N N

				$\overline{}$	\			-																		
Qualifications	(1) 4/4/4/	١ ١		(100 NOCAL																						
Associated Samples	W+44	r																								
RPD (Limits)	())))	()	())	()	()	()	()	()	()	()))	()	()	()	()	()))	()
LCSD %R (Limits)	136 187-135	171 (93-162)	()	()	()	()	()	()	()	()	()	()	()	()	()	.()	·	()	()	()	()	()	()	()	()	()
LCS %R (Limits)	137(87435)	(,) ,	181-161951	()	()	()	()	()	()	()	()	()	()	()	()	(,)	()	()	()	()	()	()	()	()	()	()
Compound		4	0																							
Lab ID/Reference	20-980008083	195/2				-																				
Date																										
*																										

LDC #: 8/35/1/

Compound Quantitation and Reported CRQLs VALIDATION FINDINGS WORKSHEET

Reviewer:

2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

Qualifications	1. S. t. (a. 1. b.)	7	1,4,4,0)	NI.	47					
Associated Samples	1 05				pul.					
Finding	Wer 9320 X 8-4		7.0.8		ZAP = LESULTS					
Sample ID	/		2		w/					
Date										
*										

Comments: See sample calculation verification worksheet for recalculations

LDC # 2125[1]=

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: 1 of / Reviewer: 0c-

Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

(Y/N N/A Was the overall quality and usability of the data acceptable?

*	Date	Sample ID	Finding	Associated Samples	Qualifications
			A11 (DR-C 21) DR-22E)		\ \ \ \ \ \
		~	T G GBIA	7	
					A
Comments:	ents:				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2008 Phase B Investigation,

Henderson, Nevada

Collection Date:

July 2, 2008

LDC Report Date:

August 24, 2009

Matrix:

Soil

Parameters:

Dioxins/Dibenzofurans

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): E0800632

Sample Identification

SA181-0.5B

Introduction

This data review covers one soil sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8290 for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
EQ0800286-01	7/34/08	1,2,3,4,6,7,8-HpCDD OCDD 1,2,3,4,6,7,8-HpCDF Total HpCDD Total HpCDF	0.135 ng/Kg 0.487 ng/Kg 0.0867 ng/Kg 0.351 ng/Kg 0.0867 ng/Kg	All samples in SDG E0800632

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
SA181-0.5B	1,2,3,4,6,7,8-HpCDD	0.387 ng/Kg	0.387U ng/Kg
	OCDD	2.28 ng/Kg	2.28U ng/Kg
	Total HpCDD	0.799 ng/Kg	0.799U ng/Kg

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Flag	A or P
EQ0800286-02LCS/D (All samples in SDG E0800632)	2,3,7,8-TCDD	137 (87-135)	136 (87-135)	-	J+ (all detects)	Р

VIII. Regional Quality Assurance and Quality Control

Not applicable.

IX. Internal Standards

All internal standard recoveries were within QC limits.

X. Target Compound Identifications

Raw data were not reviewed for this SDG.

XI. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG E0800632	All compounds reported below the PQL.	J (all detects)	А

All compounds reported as EMPC were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG E0800632	All compounds reported as estimated maximum possible concentration (EMPC).	JK (all detects)	А

Raw data were not reviewed for this SDG.

XII. System Performance

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

Sample	Compound	Flag	A or P
SA181-0.5B	2,3,7,8-TCDF from DB-5	х	А

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Data Qualification Summary - SDG E0800632

SDG	Sample	Compound	Flag	A or P	Reason (Code)
E0800632	SA181-0.5B	2,3,7,8-TCDD	J+ (all detects)	Р	Laboratory control samples (%R) (I)
E0800632	SA181-0.5B	All compounds reported below the PQL.	J (all detects)	А	Project Quantitation Limit (sp)
E0800632	SA181-0.5B	All compounds reported as EMPC	JK (all detects)	A	Project Quantitation Limit (k)
E0800632	SA181-0.5B	2,3,7,8-TCDF from DB-5	x	А	Overall assessment of data (o)

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG E0800632

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
E0800632	SA181-0.5B	1,2,3,4,6,7,8-HpCDD OCDD Total HpCDD	0,387U ng/Kg 2,28U ng/Kg 0,799U ng/Kg	A	bl

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG E0800632

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

LDC #: 21257021 VALIDATION COMPLETENE
SDG #: E0800632 Stage 2B
Laboratory: Columbia Analytical Services

	Date;	8/14/09
	Page:_	
	Reviewer:	0
2nd	Reviewer:	<i>I</i> —

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: $-/2/08$
II.	HRGC/HRMS Instrument performance check	A	,
III.	Initial calibration	A	
IV.	Routine calibration/I	A	
V.	Blanks	w	
VI.	Matrix spike/Matrix spike duplicates	N	dient Perfied.
VII.	Laboratory control samples	w	2CS D
VIII.	Regional quality assurance and quality control	N	\
IX.	Internal standards	A	
X.	Target compound identifications	N	
XI.	Compound quantitation and CRQLs	ŹN →	All ZMPC Ments - JK
XII.	System performance	N	1
XIII.	Overall assessment of data	an	
XIV.	Field duplicates	N	
XV.	Field blanks		

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

1	SA181-0.5B	11	ZR0800-86-01	21	U216T9T	31	
2		12		22	U21679T	32	
3		13		23		33	
4		14		24		34	
5		15		25		35	
6		16		26		36	
7		17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

Notes:	 	
	 · · · · · · · · · · · · · · · · · · ·	

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	g. ocpp	L. 1,2,3,6,7,8-HxCDF	a.ocdf	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:

LDC #:2555709/ SDG #:266.00.UQV

VALIDATION FINDINGS WORKSHEET Blanks

Page: Reviewer:_ 2nd Reviewer:_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank? Was a method blank analyzed for each matrix? M N/A

Was the blank contaminated? If yes, please see qualification below. Y N N/A

Blank extraction date: 75/08 Blank analysis date: 7/13

Sample Identification Associated Samples: 387 601 18660 90 328 1280 19800 135 0.487 Blank ID Conc. units: MS/ES Compound

Blank analysis date: Blank extraction date: Conc. units:

Associated Samples:

	ion				
	Sample Identification				
	S				
Associated dailipies.					
Associa					
	Blank ID				
COIIC. UIIIIS.	Compound				
5					

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

SDG #: Sel COUL 150725518:# 201

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS) 2nd Reviewer:

Page: Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

M N W Y

Was a LCS required? Was a LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

				~						_																
Qualifications	1 7 1 1	1	Nother	4	(1000 N 2000)																					
Associated Samples	741119																									
RPD (Limits)										())	()	()	()	()	()	()	()	()	()	()	()	()))	(
LCSD %R (Limits)	135 8745		(~	\(\hat{\chi}\)	()		())	(()	())	^)	()))	<u> </u>	^ ·	()	()	()	()	()	^)	~ •
LCS %R (Limits)	137(87-126)		136 19/21		()	()	()	()	()	()	()	()	()	()	()	()	()	()	<u> </u>	()	()	()	()	()	<u> </u>	<u> </u>
Compound	+	4	Q												_											
Lab ID/Reference	Z808003802	105/0	/			•																				
Date																										
*		ı							-									T			T	T	T			

LDC #:2125[02] SDG #: 2ec COULT

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: Lof

Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

(YAN N/A Was the overall quality and usability of the data acceptable?

<u>L</u>					
	# Date	Sample ID	Finding	Associated Samples	Qualifications
			H on OB-5		(0) X
Com	Comments:				T

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2008 Phase B Investigation,

Henderson, Nevada

Collection Date:

July 7 through July 8, 2008

LDC Report Date:

August 26, 2009

Matrix:

Soil

Parameters:

Dioxins/Dibenzofurans

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): E0800639

Sample Identification

SA47-0.5B SA183-0.5B

All samples in this SDG were analyzed for screening purposes only.

Introduction

This data review covers 2 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8290 for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance check data were not reviewed for this SDG.

III. Initial Calibration

Initial calibration data were not reviewed for this SDG.

IV. Routine Calibration (Continuing)

Routine calibration data were not reviewed for this SDG.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
EQ0800301-01	7/17/08	1,2,3,4,6,7,8-HpCDD OCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	0.354 ng/Kg 1.47 ng/Kg 0.364 ng/Kg 0.202 ng/Kg 0.825 ng/Kg 0.354 ng/Kg 2.42 ng/Kg	All samples in SDG E0800639

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Flag	A or P
EQ0800301-02LCS/D (All samples in SDG E0800639)	2,3,7,8-TCDD	137 (87-135)	137 (87-135)	-	J+ (all detects)	Р

VIII. Regional Quality Assurance and Quality Control

Not applicable.

IX. Internal Standards

Internal standards data were not reviewed for this SDG.

X. Target Compound Identifications

Raw data were not reviewed for this SDG.

XI. Project Quantitation Limit

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG E0800639	All compounds reported below the PQL.	J (all detects)	A

Raw data were not reviewed for this SDG.

XII. System Performance

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

Samples SA47-0.5B and SA183-0.5B were analyzed for screening purposes only.

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Data Qualification Summary - SDG E0800639

SDG	Sample	Compound	Flag	A or P	Reason (Code)
E0800639	SA47-0.5B SA183-0.5B	2,3,7,8-TCDD	J+ (all detects)	Р	Laboratory control samples (%R) (I)
E0800639	SA47-0.5B SA183-0.5B	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG E0800639

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG E0800639

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

SDG #: E0800639

LDC #: 21257P21

Stage 2B

Laboratory: Columbia Analytical Services

Reviewer: 2nd Reviewer

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 7/7 - 8/0 8
11.	HRGC/HRMS Instrument performance check	N	
111.	Initial calibration	N	
IV.	Routine calibration/ICV	N	
V.	Blanks	w	
VI.	Matrix spike/Matrix spike duplicates	N	
VII.	Laboratory control samples	M	LCS D
VIII.	Regional quality assurance and quality control	N,	\
IX.	Internal standards	N	
X.	Target compound identifications	N	
XI.	Compound quantitation and CRQLs	1/W	
XII.	System performance	N	
XIII.	Overall assessment of data	A	
XIV.	Field duplicates	N	
XV.	Field blanks	7	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

1	SA47-0.5B	オ	5	11	200800301-01	21	31	
2	SA183-0.5B	*	V	12		22	32	
3			······································	13		23	33	
4				14		24	34	
5				15		25	35	
6				16		26	36	
7				17		27	37	
8				18		28	38	
9				19		29	39	
10				20		30	40	

Notes:	*	Samples	Whe	analyzed	for	Screening	2 only
		7		73	J	0	/
							<i>J</i>

LDC #: 225/75/ SDG #: 200 COUNTY

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: of

Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Mas the overall quality and usability of the data acceptable?

*	Date	Sample ID	Finding	Associated Samples	Qualifications
		M	Saubles Will seaming	M	1,9
			anallized chy screenie		,
			ouly. daya was not		
			to taledated.		
Comments:	ents:				

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	g. ocpp	L. 1,2,3,6,7,8-HxCDF	a.ocdf	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	1. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:

LDC#: 3/257/22/ SDG#: 5ec 60 MM

VALIDATION FINDINGS WORKSHEET

Blanks

Reviewer:__ Page: 2nd Reviewer:_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

Was a method blank analyzed for each matrix?

Associated Samples: |V|N N/A Was the blank contaminated? If yes, please see qualification below. Blank extraction date: |V|/|V| Blank analysis date: |V|/|V|Conc. units: MS/

Compound Blank ID	10-10508182	1.354	(7,47)	1.364	0.202	1.835	10.35d	2.42	Blank extraction date: Blank analysis date:
Sample Identification									
				,					

Conc. units:

Associated Samples:

ition						
Sample Identification						
S						
Blank ID	805.4	4364	0.469	/		
Compound						
	TZ.	\times	\swarrow		{	

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

SDG #: 284 CON HOLSEK :# DOI

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: Reviewer:___ 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

N N/A N N/A

CTA N/A

Was a LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed? Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was a LCS required?

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

			_													·										
Qualifications	1+1+ (DID)	6. 1000	3																							
Associated Samples	WITEST																									
RPD (Limits)	()))	()	())))	()	()	()	()))	()	()	()	()	()	()	()))	())
LCSD %R (Limits)	137 187-120	170 (93-164	()	()	()	()	()	()	·)	()	()	· ·	^)	((()	()	()	· ·	()	()	()	()	()	<u> </u>	<u> </u>
	137187730		()	()	()	()	()	()	()	()	()	()	()	()	()	(')	()	()	()	()	()	()	(,)	()	())
Compound	7	4	/																							
Lab ID/Reference	2808030102	105/2				-																				
Date								·																		
*	I																			\parallel	1	1				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2008 Phase B Investigation,

Henderson, Nevada

Collection Date:

July 7 through July 8, 2008

LDC Report Date:

August 21, 2009

Matrix:

Soil

Parameters:

Dioxins/Dibenzofurans

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): E0800640

Sample Identification

SA67-0.5B RSAN2-0.5B

Introduction

This data review covers 2 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8290 for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
EQ0800312-01	7/23/08	OCDD	0.850 ng/Kg	SA67-0.5B

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
EQ0800301-01	7/17/08	1,2,3,4,6,7,8-HpCDD OCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF Total HpCDD Total HxCDF Total HpCDF	0.354 ng/Kg 1.47 ng/Kg 0.364 ng/Kg 0.202 ng/Kg 0.825 ng/Kg 0.354 ng/Kg 2.42 ng/Kg 0.503 ng/Kg 0.364 ng/Kg 0.469 ng/Kg	RSAN2-0.5B

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Flag	A or P
EQ0800301-02LCS/D (RSAN2-0.5B EQ0800301-01)	2,3,7,8-TCDD	137 (87-135)	137 (87-135)	-	J+ (all detects)	Р
EQ0800312-02LCS/D (SA67-0.5B EQ0800312-01)	2,3,7,8-TCDD	136 (87-135)	139 (87-135)	-	J+ (all detects)	Р

VIII. Regional Quality Assurance and Quality Control

Not applicable.

IX. Internal Standards

All internal standard recoveries were within QC limits with the following exceptions:

Sample	Internal Standards	%R (Limits)	Compound	Flag	A or P
RSAN2-0.5B	¹³ C-OCDD ¹³ C-1,2,3,4,6,7,8-HpCDF	36 (40-135) 39 (40-135)	OCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF Total HpCDF	J (all detects) UJ (all non-detects)	P
EQ0800312-01	¹³ C-OCDD	25 (40-135)	OCDF	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р

X. Target Compound Identifications

Raw data were not reviewed for this SDG.

XI. Project Quantitation Limit

All project quantitation limits were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
RSAN2-0.5B	1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	Р

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG E0800640	All compounds reported below the PQL.	J (all detects)	А

All compounds reported as EMPC were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG E0800640	All compounds reported as estimated maximum possible concentration (EMPC).	JK (all detects)	А

Raw data were not reviewed for this SDG.

XII. System Performance

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

Sample	Compound	Flag	A or P
SA67-0.5B RSAN2-0.5B	2,3,7,8-TCDF from DB-5	х	А

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Data Qualification Summary - SDG E0800640

SDG	Sample	Compound	Flag	A or P	Reason (Code)
E0800640	SA67-0.5B RSAN2-0.5B	2,3,7,8-TCDD	J+ (all detects)	Р	Laboratory control samples (%R) (I)
E0800640	RSAN2-0.5B	OCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF Total HpCDF	J (all detects)	A	Internal standards (area) (i)
E0800640	RSAN2-0.5B	1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF	J (all detects)	Р	Project Quantitation Limit (e)
E0800640	SA67-0.5B RSAN2-0.5B	All compounds reported below the PQL.	J (all detects)	А	Project Quantitation Limit (sp)
E0800640	SA67-0.5B RSAN2-0.5B	All compounds reported as EMPC	JK (all detects)	А	Project Quantitation Limit (k)
E0800640	SA67-0.5B RSAN2-0.5B	2,3,7,8-TCDF from DB-5	Х	А	Overall assessment of data (o)

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG E0800640

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG E0800640

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

SDG #: <u>E0800640</u>
Laboratory: <u>Columbia Analytical Services</u>

LDC #: 21257Q21

Stage 2B

Reviewer:_ 2nd Reviewer:_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 7/7 - 8/08
11.	HRGC/HRMS Instrument performance check	\	
111.	Initial calibration	4	
IV.	Routine calibration/IXV	A	
V.	/ · Blanks	W	
VI.	Matrix spike/Matrix spike duplicates	<u> </u>	fient Divised
VII.	Laboratory control samples	w	200
VIII.	Regional quality assurance and quality control	N,	
IX.	Internal standards	W	
X.	Target compound identifications	N	
XI.	Compound quantitation and CRQLs	SW	
XII.	System performance	N	
XIII.	Overall assessment of data	and	
XIV.	Field duplicates	N	
XV.	Field blanks		

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

1 SA67-).5B <i>\$</i>	112	Z00800301-0/ Z00800312-01	21	P100148	31	
2 RSAN	2-0.5B	12	2808003/2-01	22	C15238#2,	32	
3		13		23	M216901	33	
4		14		242	C15225#2	34	
5		15		25 1	P180128	35	
6		16		26		36	
7		17		27		37	
8		18		28	A Paragraphic Control of the Control	38	
9		19		29		39	
10		20		30		40	

Notes:	And the second s	

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:

LDC #: 21.257.637 SDG #:521.50v.J

VALIDATION FINDINGS WORKSHEET

2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $\frac{1}{N}$ N/A Were all samples associated with a method blank?

Was a method blank analyzed for each matrix?

Was the blank contaminated? If yes, please see qualification below. Blank extraction date: アンチル Blank analysis date: アンチル ろconc. units: ルギニン

Associated Samples:

Sample Identification Associated Samples: Blank analysis date:_ 200312-0 88 Blank ID Blank extraction date: Compound Conc. units:

Sample Identification Blank ID Compound

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

SDG # See COUNT LDC #2|25/82

VALIDATION FINDINGS WORKSHEET

Page:

2nd Reviewer:_ Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 8290)

Phease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

Was a method blank analyzed for each matrix?

þ Associated Samples: N/N N/A Was the blank contaminated? If yes, please see qualification below. Blank extraction date: 7/76/3 Blank analysis date: 7/24/3 Secondary Conc. units: 105 & Accordance Conc.

とし

	Sample Identification								
Associated Samples.	Sample Id								
Associal	Blank ID	10-10	458.	7.47	0364	0,202	25.0	0,354	242
SKY		2000	*0	4./	80	<i>v. o</i>	8.0	0.3	, a
Conc. units: 加名的沙	Compound		+	4	X	1	0	D	R

Conc. units: Associal	Compound Blank ID	ED0	48.0	87.6		
Associated Samples:	Sar					
	Sample Identification					
1	I	1	ŀ			

Blank analysis date:_

Blank extraction date:

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

(5)/3=/2 :# DOI SDG #: 200

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

2nd Reviewer:_ Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Plaqse see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N NA N/A N/A

Was a LCS required? Was a LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? Y (N/N/A

			_	`				_	. 7	1																		
in cini	-dailleations	There is	No Mil. O. not	4%				TARRAPLA	No guallie																			
Associated Samples		3. 20080030fol					1 20 88 m2.	12-CHCMCMX=.																				
RPD (Limits)		<u> </u>	_)	()		(Ŋ	1811/18	^ -	()))			()			())	()	()	())	()			
LCSD %R (Limits)	7707121	110	170 (95/62			()	139 B7 130	1		(()	()	()	()	())	 ,	(()	()	()	()	·				()
LCS %R (Limits)	157 10712M	12/10/0	((()	()	136 B730	ı			-	()	()	()	()	· ·			()	()	()	()	()	()	()	^ ·)	^ ·
Compound	P		Ø	,			#	×																				
Lab ID/Reference	20105008002	- A IN CONTRACTOR	P(2)	\			Z8080812-02	Q/507																				
Date																												
*															I	T			T	T			T	\Box				

VALIDATION FINDINGS WORKSHEET Internal Standards

LDC #: 2635 78. SDG #: 200 CD)

Reviewer: 92

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please, see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Are all internal standard recoveries were within the 40-135% criteria? Was the S/N ratio all internal standard peaks > 10?

#	Date	Lab ID/Reference	Internal Standard		% Recovery (Limit: 40-135%)	0-135%)	Qualifications
		1	4	38	5	40-135	(1) AMY
			A	39)	(//	
)		
)	(gual (4.0-P.R.X)
)	(0
)	(
		10-615008082	Z	5E		(40-135)	1 Gr P(1) (4.8)
)	(
)	(
)	(
)	•	
)	(
)	(
)	(
)		
)		
		Internal Standards	Check Standard Used		Inter	Internal Standards	Check Standard Used
Ä	¹³ C-2,3,7,8-TCDF	CDF		1.	ಚಿ-ಂಂದಾ		
B.	13C-2,3,7,8-TCDD	cop		ᅶ	13C-1,2,3,4-TCDD		
ن	¹³ C-1,2,3,7,8-PeCDF	-PeCDF		L.	¹³ C-1,2,3,7,8,9-HxCDD	00	
Ġ	¹³ C-1,2,3,7,8-PeCDD	-PeCDD		Σ			
ய்	¹³ C-1,2,3,4,7,8-HxCDF	, s-HxCDF		z			
Ŧ.	¹³ C-1,2,3,6,7,8-HxCDD	,8-HxCDD		Ö			
G.	¹³ C-1,2,3,4,6	¹³ C-1,2,3,4,6,7,8-HpCDF		œ.			7
Ξ̈́	<u> </u>	¹³ C-1,2,3,4,6,7,8-HpCDD					

Compound Quantitation and Reported CRQLs VALIDATION FINDINGS WORKSHEET

Reviewer: Page: __

2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/N/A √N/N ×

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

Qualifications	Mets (pre)	\ \frac{1}{7}							
Associated Samples	D	717							
epts > calib hange	F. 4. H. K.O	2) 15- 16-11/A	ENTRY WELLY						
Sample ID	Á	117							
# Date									

See sample calculation verification worksheet for recalculations Comments:

LDC #: 2125/R2/ SDG #: SEC EL MA

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: /of/ Reviewer:

neviewer: ______

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data,

Was the overall quality and usability of the data acceptable?

*	Date	Sample ID	Finding Finding	Associated Samples	Qualifications X (O)
Comments:					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2008 Phase B Investigation,

Henderson, Nevada

Collection Date:

July 10 through July 11, 2008

LDC Report Date:

September 10, 2009

Matrix:

Soil

Parameters:

Dioxins/Dibenzofurans

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): E0800661

Sample Identification

RSAJ8-0.5B RSAJ7-0.5B RSAJ8-0.5BDL

RSAI7-0.5BDL

Introduction

This data review covers 4 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8290 for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030E.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Affected Compound	Flag	A or P
7/23/08	¹³ C-1,2,3,7,8-PeCDD ¹³ C-OCDD ¹³ C-1,2,3,7,8-PeCDF	43.69 49.67 39.28	EQ0800299-01	1,2,3,7,8-PeCDD OCDD 1,2,3,7,8-PeCDF	J- (all detects) UJ (all non-detects)	Р

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
EQ0800294-01	7/14/08	1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF OCDF Total PeCDD Total HpCDD Total TCDF Total PeCDF Total PeCDF Total HxCDF Total HxCDF Total HxCDF Total HyCDF	0.265 ng/Kg 1.10 ng/Kg 0.581 ng/Kg 0.276 ng/Kg 0.340 ng/Kg 0.229 ng/Kg 0.405 ng/Kg 0.177 ng/Kg 0.796 ng/Kg 0.0845 ng/Kg 0.547 ng/Kg 2.13 ng/Kg 1.67 ng/Kg 1.14 ng/Kg 0.603 ng/Kg	RSAI7-0.5B RSAI7-0.5BDL
EQ0800299-01	7/16/08	1,2,3,4,6,7,8-HpCDD OCDD 1,2,3,4,6,7,8-HpCDF OCDF Total HpCDD Total HpCDF	1.1004 ng/Kg 6.9141 ng/Kg 1.750 ng/Kg 4.050 ng/Kg 1.349 ng/Kg 1.750 ng/Kg	RSAJ8-0.5B

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
EQ0800299-03LCS	2,3,7,8-TCDD 1,2,3,4,6,7,8-HpCDF	, ,	RSAJ8-0.5B EQ0800299-01	J+ (all detects) J+ (all detects)	Р

VIII. Regional Quality Assurance and Quality Control

Not applicable.

IX. Internal Standards

All internal standard recoveries were within QC limits with the following exceptions:

Sample	Internal Standards	%R (Limits)	Compound	Flag	A or P
RSAJ8-0.5B	13C-OCDD	38 (40-135)	OCDF	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р
RSAI7-0.5B	¹³ C-2,3,7,8-TCDF ¹³ C-1,2,3,4,7,8-HxCDF ¹³ C-1,2,3,6,7,8-HxCDD ¹³ C-1,2,3,4,6,7,8-HpCDF ¹³ C-1,2,3,4,6,7,8-HpCDD ¹³ C-OCDD	12 (40-135) 25 (40-135) 27 (40-135) 15 (40-135) 20 (40-135) 12 (40-135)	2,3,7,8-TCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF Total HxCDD Total HxCDD Total TCDF Total HxCDF Total HxCDF Total HxCDF	J (all detects) UJ (all non-detects)	Р
RSAI7-0.5BDL	¹³ C-2,3,7,8-TCDF ¹³ C-1,2,3,4,7,8-HxCDF ¹³ C-1,2,3,6,7,8-HxCDD ¹³ C-1,2,3,4,6,7,8-HpCDF ¹³ C-1,2,3,4,6,7,8-HpCDD ¹³ C-OCDD	16 (40-135) 24 (40-135) 30 (40-135) 17 (40-135) 23 (40-135) 11 (40-135)	2,3,7,8-TCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpC	J (all detects) UJ (all non-detects)	Р
EQ0800299-01	¹³ C-2,3,7,8-TCDF ¹³ C-2,3,7,8-TCDD ¹³ C-1,2,3,7,8-PeCDF ¹³ C-1,2,3,7,8-PeCDD ¹³ C-1,2,3,4,7,8-HxCDF ¹³ C-1,2,3,6,7,8-HxCDD ¹³ C-1,2,3,4,6,7,8-HpCDF ¹³ C-1,2,3,4,6,7,8-HpCDD	10.61 (40-135) 11.53 (40-135) 12.27 (40-135) 12.28 (40-135) 10.12 (40-135) 11.00 (40-135) 10.20 (40-135) 11.23 (40-135) 9.32 (40-135)	All TCL compounds	J (all detects) UJ (all non-detects)	Р

X. Target Compound Identifications

Raw data were not reviewed for this SDG.

XI. Project Quantitation Limit

All project quantitation limits were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
RSAJ8-0.5B	2,3,7,8-TCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF OCDF	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects) J (all detects) J (all detects) J (all detects)	A
RSAI7-0.5B	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	Α
RSAI7-0.5BDL	2,3,7,8-TCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	A

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG E0800661	All compounds reported below the PQL.	J (all detects)	Α

All compounds reported as EMPC were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG E0800661	All compounds reported as estimated maximum possible concentration (EMPC).	JK (all detects)	А

Raw data were not reviewed for this SDG.

XII. System Performance

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

Sample	Compound	Flag	A or P
RSAJ8-0.5B	2,3,7,8-TCDF from both DB-5 and DB-225	x	А
RSAI7-0.5B	All TCL compounds	x	А
RSAI7-0.5BDL	2,3,7,8-TCDF from DB-5	X	А

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Data Qualification Summary - SDG E0800661

SDG	Sample	Compound	Flag	A or P	Reason (Code)
E0800661	RSAJ8-0.5B	2,3,7,8-TCDD 1,2,3,4,6,7,8-HpCDF	J+ (all detects) J+ (all detects)	Р	Laboratory control samples (%R) (I)
E0800661	RSAJ8-0.5B	OCDF	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р	Internal standards (%R) (i)
E0800661	RSAI7-0.5B RSAI7-0.5BDL	2,3,7,8-TCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8,9-HxCDF 1,2,3,4,7,8,9-HpCDF OCDF Total HxCDD Total HpCDD Total TCDF Total HxCDF Total HxCDF Total HxCDF	J (all detects) UJ (all non-detects)	Р	Internal standards (%R) (i)
E0800661	RSAJ8-0.5B	2,3,7,8-TCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF OCDF	J (all detects) J (all detects) J (all detects) J (all detects)	A	Project Quantitation Limit (e)
E0800661	RSAI7-0.5B	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	J (all detects)	A	Project Quantitation Limit (e)

SDG	Sample	Compound	Flag	A or P	Reason (Code)
E0800661	RSAI7-0.5BDL	2,3,7,8-TCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	J (all detects)	А	Project Quantitation Limit (e)
E0800661	RSAJ8-0.5B RSAI7-0.5B RSAJ8-0.5BDL RSAI7-0.5BDL	All compounds reported below the PQL.	J (all detects)	A	Project Quantitation Limit (sp)
E0800661	RSAJ8-0.5B RSAJ7-0.5B RSAJ8-0.5BDL RSAJ7-0.5BDL	All compounds reported as EMPC	JK (all detects)	A	Project Quantitation Limit (k)
E0800661	RSAJ8-0.5B	2,3,7,8-TCDF from both DB-5 and DB-225	×	А	Overall assessment of data (o)
E0800661	RSAI7-0.5B	Alt TCL compounds	x	А	Overall assessment of data (o)
E0800661	RSAI7-0.5BDL	2,3,7,8-TCDF from DB-5	х	А	Overall assessment of data (o)

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG E0800661

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG E0800661

No Sample Data Qualified in this SDG

Tronox Northgate Henderson

LDC#:_	21257U21	VALIDATION COMPLETENESS WORKSHEET
SDG#:_	E0800661	Stage 2B
Laborato	ry: Columbia Analytica	Services

Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	A	Sampling dates: 7/10-11/08
II.	HRGC/HRMS Instrument performance check	4	, , , , , , , , , , , , , , , , , , , ,
111.	Initial calibration	₽	
IV.	Routine calibration/I	Am	/
V.	Blanks	W	
VI.	Matrix spike/Matrix spike duplicates	N	
VII.	Laboratory control samples	W	205
VIII.	Regional quality assurance and quality control	N,	
IX.	Internal standards	m	
X.	Target compound identifications	N	
XI.	Compound quantitation and CRQLs	SN	
XII.	System performance	N	
XIII.	Overall assessment of data	W	
XIV.	Field duplicates	N	
XV.	Field blanks	LN	

A	1.	ste	٦.	

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

Validated Samples:

1	RSAJ8-0.5B	115	ZA0800294-01	21	U129088	31	U129072
23	RSAI7-0.5B	12	<u>ZR0800294-01</u> ZR0800299-01	22	C15311#12	32	
3 **	PSA18-0.5BDL	13		23 ~	C15322#2	33	
44		14		24-3	N= 841	34	
5		15		25	U217360 U216848	35	
6		16		265	U216848	36	
7		17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

Notes:			
_			

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A, 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V, Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	1. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:

LDC #: 2 = 5 TUZ SDG #: 5ex 20UN

VALIDATION FINDINGS WORKSHEET Routine Calibration

Page:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Regse see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". KN NA

Were all percent differences (%D) of RRFs < 20% for unlabeled compounds and < 30% for labeled? Was a routine calibration was performed at the beginning and end of each 12 hour period?

Y N N/A

Did all routine calibration standards meet the Ion Abundance Ratio criteria?

							 	_	 			 	 		 					
Qualifications	1 2 1 (2) 17/21										-				Ion Abundance Betio	00 0 33 0	20.0-00.0	1.32-1.78	1.05-1.43	0.43-0.59
Associated Samples	200800299-61	12/1/2008													Selected lons (m/z)	MMA+2	PTWCTM	P-W/CTW	1017410174	M/M+2
Finding Ion Abundance Ratio															PCDFs	Tetra-	Penta-	Hexa-	Hexa. 13C. HYONE (IS) only	וומעת ביוועבון ווים כיווא
Finding %D (Limit: <30.0%)	43.69	49.67	34.28												Ion Abundance Ratio	0.65-0.89	1.32-1.78	1.05-1.43	0.43-0.59	
Compound	136-18	136-4	130-1												Selected ions (m/z) Ion	M/M+2	M+2/M+4	M+2/M+4	M/M+2	
Standard ID	4129086	,												-	PCDDs Sel				JF (IS) only	
# Date	8 9/6-6/2	, ,			***										ă	Tetra-	Penta-	Неха-	Hexa- ¹³ C-HxCDF (IS) only	
							 			L	1							ļ ļ		1

0.43-0.59

0.88-1.20

M+2/M+4 M+2/M+4

M/M+2 M/M+2

Hepta-13C-HpCDF (IS) only

Hepta-Octa-

0.76-1.02

M+2/M+4

M/M+2 M+2/M+4

Hepta-13C-HpCDF (IS) only

Hepta-

Octa-

0.37-0.51

LDC #: <u>2/25/42/</u> SDG #: *Sec Cloud*

VALIDATION FINDINGS WORKSHEET Blanks

Page: 2nd Reviewer. Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank? N N/A X/N N/A

Was a method blank analyzed for each matrix?

Was the blank contaminated? If yes, please see qualification below. In date: 7/(4/6) Blank analysis date: 7/(8/6)| NA N/A Was the blank extraction date: 72

Sample Identification η Associated Samples: 12/2/ 0.340 0.239 -x0803/40 2040 220 Blank ID 00 Conc. units: かろんち Compound H 4

Blank analysis date:_ Blank extraction date:_

Conc. units:

Conc. units:		Associated Samples:
Compound	Biank ID	Sample Identification
A	6.177	
K	0.796	
(7)	0.0845	
\mathcal{M}	6247	
\	82,13	
\mathcal{M}	1.67	
×	1.14	

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: 2/2/1/21

VALIDATION FINDINGS WORKSHEET Blanks

Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

Was a method blank analyzed for each matrix?

| Was the blank contaminated? If yes, please see qualification below. Blank extraction date: 7/6/9 Blank analysis date: 7/22/9 8

Sample Identification 人とのメン Associated Samples: 1349 100% 1416.9 25% 020 2008ab 299-01 Blank ID 750 Conc. units: M8/45 Compound 0

Associated Samples: Blank analysis date:___ Blank extraction date:__ Conc. units:

	ition				
	Sample Identification				
	S				
	Blank ID				
The second secon	9				
	Compound				

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: 2|25 (12) SDG #: 200 COLUM

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

2nd Reviewer:

Page:_____Reviewer:___

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Was a LCS analyzed e

Y (N/N/A

Was a LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

HA (8/135)	1	Date	Lab ID/Reference	Compound	L %R (CS Limits)	LCSD %R (Limits)		RPD (Limits)	Associated Samples	Qualifications
	- 1		2800009903		五	81-135)	-	(1 20,000,000	
		Ī	600		44 6	91-130	•	-		3	ď.
	I	Ī)	(_	-)		
)	^	•	-	()		
)	^)	`	()		
			^		`	•)	_	()		
					_	()	-	(
					-	()	 -)		
	-				~	`)	-	(
)	()	_	(
)))	_	()		
					`	()	-	(
	j				-	()	-	()		
		1			~	()	-	()		
					`	()	_	()		
	l)	~)	<u> </u>	()		
)	()	-	()		
					•	()	_	()		
)	^)	_	()		
)	^)	_	()		
)	•)	_	· ·		
	İ)	^)	-	()		
)	^	J	-	()		
)	^)	-	<u> </u>		
)	•)	-	()		
					~	(•	-)		

100 # 22/1/-

VALIDATION FINDINGS WORKSHEET Internal Standards

2nd Reviewer: 9 Page:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Are all internal standard recoveries were within the 40-135% criteria? Was the S/N ratio all internal standard peaks > 10?

Losson cale (1) CP (11. C-4. K-8 Check Standard Used Qualifications Internal Standards かっか % Recovery (Limit: 40-135%) ¹³C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4-TCDD 13C-OCDD 4 N 5 20 Y 4 418 2 ĸ. Check Standard Used Internal Standard I H Lab ID/Reference Internal Standards N 13C-1,2,3,7,8-PeCDF 13C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF Date A N N N Ċ œ Ö

13C-1,2,3,4,6,7,8-HpCDF ¹³C-1,2,3,4,6,7,8-HpCDD

တ် I

13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF ¹³C-1,2,3,7,8-PeCDD

ìĽ.

۵ ш Ö

o.

Σ ż

LDC #. 2125/47 SDG #: 26c @ve

VALIDATION FINDINGS WORKSHEET Internal Standards

Page: Jof 2 Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Are all internal standard recoveries were within the 40-135% criteria? YA N/A Was the S/N ratio all internal standard peaks ≥ 10 ?

	The second secon					The second secon		
4	á		F		9/ Boomer (1 junity 40 4959/)	40 4268/3	i i i i i i i i i i i i i i i i i i i	Out of passing
	Cate	Lab loineieile	ווופווומן אמונסות		A Necovery (Ellin)		K	California
		280 80029901	*		10.01	(40-135)	1000 P	/
			B		11.53	()	,	
				/	75.61	(
			2	7	85.61	()		
			7	/	210	()	-	
			Ŧ	/	00-1)		
Γ			A	/	020			
			I	1)	527	(,	
П				0	.33	()	Ą	
						()		
						(
						(
						(
						()		
						()		
T						(
						()		
		Internal Standards	Check Standard Used		ir.	Internal Standards	Chec	Check Standard Used
Æ	¹³ C-2,3,7,8-TCDF	CDF			13C-OCDD			
ai ai	¹³ C-2,3,7,8-TCDD	сор		ᅶ	13C-1,2,3,4-TCDD			
ပ	¹³ C-1,2,3,7,8-PeCDF	-PecdF		زر	¹³ C-1,2,3,7,8,9-HxCDD	CDD		
ä	¹³ C-1,2,3,7,8-PeCDD	-PecDD		Σ				
ші	_	,8-HxCDF		z				
ı.	13C-1,2,3,6,7,8-HxCDD	,,8-HxCDD		Ö				
Ö	¹³ C-1,2,3,4,6	¹³ C-1,2,3,4,6,7,8-HpCDF		ď			7	
ï		3,7,8-HpCDD						
	H							

SDG #: Les alues |-n|| #:3|=2|| M-|

Compound Quantitation and Reported CRQLs VALIDATION FINDINGS WORKSHEET

Page:

Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N Y

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

		T							
Qualifications	(a) Nagar			, ,	4				
Associated Samples		d	4) 19					
As > calibrage	4. K. O. &	A-8	H. K. 0-8	- 110 - 11 - 12 - 12 - 12 - 12 - 12 - 12					
Sample ID		7	4						
Date									
*			ŀ						

Comments: See sample calculation verification worksheet for recalculations

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:

Reviewer: 2nd Reviewer: _

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Was the overall quality and usability of the data acceptable?

*	Date	Sample ID	Finding	Associated Samples	Qualifications
		1	H on DB-5 and		X (0)
			DB - 22 S		
		7	A	4	
		4	H on 2B-5	4	A
Comments:	ents:				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Tronox LLC Facility, 2008 Phase B Investigation,

Henderson, Nevada

Collection Date:

July 10, 2008

LDC Report Date:

August 26, 2009

Matrix:

Soil

Parameters:

Dioxins/Dibenzofurans

Validation Level:

Stage 2B

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): E0800662

Sample Identification

RSAL2-0.5B

RSAK2-0.5B* RSAL2-0.5BDL

RSAL2-0.5BMS

RSAL2-0.5BMSD

^{*}Indicates sample was analyzed for screening purposes only.

Introduction

This data review covers 5 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8290 for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Standard Operating Procedures (SOP) 40, Data Review/Validation (BRC 2009), the Quality Assurance Project Plan Tronox LLC Facility, Henderson, Nevada (June 2009), NDEP guidance (May 2006), and USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B The analytical result may be a false positive totally attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JB The analytical result may be biased high and partially attributable to blank contamination. This qualifier is applicable to radiochemistry analysis only.
- JK The analytical result is an estimated maximum possible concentration (EMPC).
- X The analytical result is not used for reporting because a more accurate and precise result is reported in its place.
- J-TDS The analytical result is estimated based on failure of the Total Dissolved Solids (TDS) correctness check performed in accordance with the Standard Method 1030E.
- J-CAB The analytical result is estimated based on failure of the cation-anion balance correctness check performed in accordance with Standard Method 1030E.
- J-TDS & CAB The analytical result is unreliable based on the failure of the cation-anion balance and TDS correctness check performed in accordance with standard Method 1030F.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
EQ0800294-01	7/14/08	1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 0CDF Total PeCDD Total HpCDD Total TCDF Total PeCDF Total PeCDF Total HxCDF Total HxCDF Total HxCDF	0.265 ng/Kg 1.10 ng/Kg 0.581 ng/Kg 0.276 ng/Kg 0.340 ng/Kg 0.229 ng/Kg 0.405 ng/Kg 0.177 ng/Kg 0.796 ng/Kg 0.0845 ng/Kg 0.547 ng/Kg 2.13 ng/Kg 1.67 ng/Kg 1.14 ng/Kg 0.603 ng/Kg	RSAL2-0.5B RSAL2-0.5BDL

Sample concentrations were compared to concentrations detected in the method blanks as required by the QAPP. No sample data was qualified.

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Although the MS/MSD percent recoveries (%R) and relative percent differences (RPD) were not within QC limits for all compounds, the LCS percent recoveries (%R) were within QC limits and no data were qualified.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits.

VIII. Regional Quality Assurance and Quality Control

Not applicable.

IX. Internal Standards

All internal standard recoveries were within QC limits with the following exceptions:

Sample	Internal Standards	%R (Limits)	Compound	Flag	A or P
RSAL2-0.5B	¹³ C-1,2,3,4,7,8-HxCDF ¹³ C-1,2,3,6,7,8-HxCDD ¹³ C-1,2,3,4,6,7,8-HpCDF ¹³ C-1,2,3,4,6,7,8-HpCDD ¹³ C-OCDD	22 (40-135) 24 (40-135) 16 (40-135) 14 (40-135) 8 (40-135)	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF Total HxCDD Total HpCDD Total HyCDF Total HyCDF	J (all detects) UJ (all non-detects)	Р
RSAL2-0.5BDL	¹³ C-1,2,3,4,7,8-HxCDF ¹³ C-1,2,3,6,7,8-HxCDD ¹³ C-1,2,3,4,6,7,8-HpCDF ¹³ C-1,2,3,4,6,7,8-HpCDD ¹³ C-OCDD	24 (40-135) 29 (40-135) 21 (40-135) 17 (40-135) 7 (40-135)	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF Total HxCDD Total HyCDD Total HyCDF Total HyCDF	J (all detects) UJ (all non-detects)	Р

X. Target Compound Identifications

Raw data were not reviewed for this SDG.

XI. Project Quantitation Limit

All project quantitation limits were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
RSAL2-0.5B	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	Α
RSAL2-0.5BDL	OCDF	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	А

All compounds reported below the PQL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG E0800662	All compounds reported below the PQL.	J (all detects)	А

All compounds reported as EMPC were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG E0800662	All compounds reported as estimated maximum possible concentration (EMPC).	JK (all detects)	Α

Raw data were not reviewed for this SDG.

XII. System Performance

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

Sample	Compound	Flag	A or P
RSAL2-0.5B	All TCL compounds	×	А
RSAL2-0.5BDL	2,3,7,8-TCDF from DB-5	×	А

Sample RSAK2-0.5B was analyzed for screening purposes only.

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Data Qualification Summary - SDG E0800662

E0800662	RSAL2-0.5B RSAL2-0.5BDL	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HxCDD Total HxCDD Total HxCDD Total HxCDF Total HxCDF Total HxCDF	J (all detects) UJ (all non-detects)	P P	Internal standards (%R) (i)
E0800662	RSAL2-0.5B	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	J (all detects)	A	Project Quantitation Limit (e)
E0800662	RSAL2-0,5BDL	OCDF	J (all detects)	А	Project Quantitation Limit (e)
E0800662	RSAL2-0.5B RSAL2-0.5BDL	All compounds reported below the PQL.	J (all detects)	А	Project Quantitation Limit (sp)
E0800662	RSAL2-0.5B RSAL2-0.5BDL	All compounds reported as EMPC	JK (all detects)	А	Project Quantitation Limit (k)
E0800662	RSAL2-0.5B	All TCL compounds	х	А	Overall assessment of data (o)
E0800662	RSAL2-0.5BDL	2,3,7,8-TCDF from DB-5	х	А	Overall assessment of data (o)

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG E0800662

No Sample Data Qualified in this SDG

Tronox LLC Facility, 2008 Phase B Investigation, Henderson, Nevada Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG E0800662

No Sample Data Qualified in this SDG

Tronox Northgate Henderson VALIDATION COMPLETENESS WORKSHEET

SDG #:_	E0800662		
		Analytical Compless	

Stage 2l	В
----------	---

Reviewer: 2nd Reviewer:

Laboratory: Columbia Analytical Services

LDC #: 21257V21

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 7/10/0 8
<u>II.</u>	HRGC/HRMS Instrument performance check	4	,
111.	Initial calibration	4	
IV.	Routine calibration/lov	A	
V.	Blanks	M	
VI.	Matrix spike/Matrix spike duplicates	W	
VII.	Laboratory control samples	300 A	205
VIII.	Regional quality assurance and quality control	N	
IX.	Internal standards	an	
X.	Target compound identifications	N	·
XI.	Compound quantitation and CRQLs	≾\N_	
XII.	System performance	N	
XIII.	Overall assessment of data	ay	
XIV.	Field duplicates	N	
XV.	Field blanks	N	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

1	RSAL2-0.5B	11	ZR0800294-01	21)	1216841	31	
2	RSAL2-0.5B RSAK2-0.5B	42B	-D Screening only	22	U217360	32	
3 2		13	0]	23	11216848	33	
4	15AL2-0.5BDC 15AL2-0.5BMG	14		24		34	
5	V Msy	15		25		35	
6		16		26		36	
7		17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

Notes:	#	2	6	DJF-Screen	
					L ASSE

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	g. ocpp	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V, Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:

LDC #: 22/25/10 | SDG #222 COMU

VALIDATION FINDINGS WORKSHEET

Blanks

Reviewer: 2nd Reviewer:

Page:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

Was a method blank analyzed for each matrix?

Was the blank contaminated? If yes, please see qualification below. In date: $\frac{7}{7}$ Blank extraction date: 7

Sample Identification W) Associated Samples: 9229 0340 276 Z80842940, 200 Blank ID K 855 Conc. units: ルタ/年ラ Compound # H

Blank analysis date: Blank extraction date:

Conc. units:		Associated Samples:
Compound	Blank ID	Sample Identification
8	0.177	
×	0.796	
N	0.0845	
N	1/25.0	
/	B. C. B.	
\mathcal{M}	1.67	
×	1.14	
>	509.0	

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

1DC #: 2| 25/1/2| SDG #: 22 (2011)

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

2nd Reviewer: Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. YN N/A

Was a MS/MSD analyzed every 20 samples of each matrix? Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

ø	Ser																						
Qualifications	No Gr																						
Associated Samples																							
Associate																							
	マソ	^	_	_	_	_	^	î	<u> </u>	-	_	-	_	_	_	^	<u> </u>	_	_	_	_	-	
RPD (Limits)	Ron	-																					
RPD	TA &)	~	-	~	-)	~	-	-	<u> </u>)	-	-	_	~	<u> </u>	-	-	_	-	
	, M	_	((^	_	^	î	_	_	^	^	<u> </u>	^	_	^	_	^	_	_	^	_	
MSD %R (Limits)	K	≺																					
, 88	ack	s th))	<u> </u>	-	_	_	-	_	_))	~)	_	~	_)	_)	-	
	RAP QUI	くなっ) ()	^	<u> </u>	^	n n	_	^	(()	^	^	^	(((((^	
		,																					
%R	10 Product	4XSX)	`)	-))	_)))))	`)	`))))	_	
punc	10																						
Compound	*	Λ																					
0																							•
MS/MSD ID	M																						
W	4																						
Date																							
*	+			+							_	\dashv			-								

LDC #2/25

VALIDATION FINDINGS WORKSHEET

Reviewer:_

2nd Reviewer:_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

AN N/A* Are all internal standard recoveries were within the 40-135% criteria?

Was the S/N ratio all internal standard peaks > 10?

Feasur coile Qualifications % Recovery (Limit: 40-135%) 3 24 D.A. 2 90 ال g 7 η Internal Standard N H Lab ID/Reference M Date Y N N/A

	Internal Standards	Check Standard Used		Internal Standards	Check Standard Used
Ą	13 C-2,3,7,8-TCDF		<u> </u>	13C-OCDD	
m.	13C-2,3,7,8-TCDD		Α.	¹³ C-1,2,3,4-TCDD	
ن	C. 13C-1,2,3,7,8-PeCDF		نـ	¹³ C-1,2,3,7,8,9-HxCDD	
o.	¹³ C-1,2,3,7,8-PeCDD		Σ		
ш	¹³ C-1,2,3,4,7,8-HxCDF		ż		
l iii	¹³ C-1,2,3,6,7,8-HxCDD		О.		
ڻ	¹³ C-1,2,3,4,6,7,8-HpCDF		ď		
Ī	¹³ C-1,2,3,4,6,7,8-HpCDD				

SDG #: Second

VALIDATION FINDINGS WORKSHEET Internal Standards

Reviewer:_

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Are all internal standard recoveries were within the 40-135% criteria?

Y N N/A Was the S/N ratio all internal standard peaks > 10?

Qualifications % Recovery (Limit: 40-135%) 0 Internal Standard 444 Lab ID/Reference Date

	Internal Standards	Check Standard Used		Internal Standards	Check Standard Used
₹	¹³ C-2.3,7,8-TCDF			13C-OCDD	
B.	<u> </u>		Ϋ́	¹³ C-1,2,3,4-TCDD	
ن	ł		ز	¹³ C-1,2,3,7,8,9-HxCDD	
ا ا			Σ		
ш			ż		
ш			o.		
Ö	J		٩.		
ī	1				

SDG #:(/

Compound Quantitation and Reported CRQLs VALIDATION FINDINGS WORKSHEET

Page: Reviewer:

2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

Qualifications	Nots/A		(4) 47						
Associated Samples	/	W			a parameter and the second sec				
apds > calib lange	4 -> &	«	zupe usults						
Sample ID		M	an						
# Date									

Comments: See sample calculation verification worksheet for recalculations

SDG #: 212571/2/

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: Zof

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

(Y/N/A) Was the overall quality and usability of the data acceptable?

*	Date	Sample ID	Finding	Associated Samples	Qualifications
T			A11 (08-5 and 082X)	/ (3	(0) X
T					
T		3	4 m 08-5	W)
T					
		8	Somming later milling	>	7: 8
\neg					
<u>o</u>	Comments:				