

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

ERM

January 22, 2008

2525 Natomas Park Drive, Suite 350 Sacramento, CA 95833

ATTN: Ms. Maria Barajas-Albalawi

SUBJECT: BRC Tronox Parcel C/D/F/G, Data Validation

Dear Ms. Barajas-Albalawi

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on January 4, 2008. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 18054:

SDG#

Fraction

F7K270268, F7K280229, F7K290114, F7K290369

Volatiles

The data validation was performed under EPA Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

	lr	T	T	_	T	1	Т	Т	1	_	_			T		T	T	T	_	1	1	r —		_			_	_	_	_			_	
			S	+	_	<u> </u>		╄	<u> </u>	$oxed{igspace}$		<u> </u>		_	L.	_	_	_			_	<u> </u>	_			<u> </u>	ļ	ļ	<u> </u>	ļ		\perp	_	24
			≥																		l													
			S																														\sqcap	
					T		1	t	<u> </u>	m				\vdash		Г	T	\vdash											一		-		\dashv	ᆒ
			1	 	-	\vdash	╁	╁	┢	┢		_	_		-		 					├	-	<u> </u>	-	├		┢					\dashv	
			S	╁	<u> </u>	-	╀	 	┞	_		<u> </u>	ļ			<u> </u>			<u> </u>		ļ		_		<u> </u>	<u> </u>		ļ	_			_	_	의
			≥	L																														0
			S																															0
			≥																															0
			S	 					Т														\vdash									Ħ	+	
				╁		┢	┢										┢┈			<u> </u>	<u> </u>	<u> </u>	\vdash									┪	\dashv	
			_	_		-	┝	╂								_	\vdash	-	_			H	<u> </u>						_	H			\dashv	
			S	┢	_	-	_	ļ									_	_	L		L							<u> </u>				_	4	의
	<u>~</u>		≥	L				<u> </u>																										
	<u>-</u> /€		S																															
	<u> </u>		≥																															0
	3		S																														1	0
	cel		3		<u> </u>	T												\vdash											<u> </u>			1	7	
	ar		S	 	\vdash			<u> </u>									 											\vdash	\vdash			1	+	
	×		⊢	-			H	-	_	Н													_						_			\dashv	\dashv	
	100		≥	_	_	L	\vdash	┞—									_															\dashv	_	의
	2		s					_																					L				\perp	의
	5		≥																															0
-	38		လ																															0
ient	T		≥																															
Attachment 1	Sacramento / BRC Tronox Parcel C/D/F/G)		S																														寸	ᆒ
۸tta	le l		≥																													\neg	\dashv	
	la la		S		<u> </u>			-						-																	\dashv		\dashv	0
	ac		_		_	\vdash	_					\dashv		_											_	-				-	-	\dashv	\dashv	
	S		≥		H					\dashv		\dashv												_	\dashv							4		의
	Σ		Ś					<u> </u>																	_						\dashv		_	의
	LDC #18054 (ERM		≥																															
	4		s																														1	0
	305		3																														T	0
	#18		S																												一	寸	\top	0
	၁		8																	\neg					\exists							1	┰	0
	LD	. ₹	S	0	0	0	0				_									\dashv				-		\dashv					\dashv	+	-	
		VOA (TO-14A)					200000000	Н		\dashv	\dashv	_		-		_		_	\dashv	\dashv	_	_	-	4	_		_	_			4	\dashv	-	
			⋖	8 4	8 7	8	8				\dashv		_	_		\Box		_	_	4	_				_							_		74
		(3) DATE DUE		25/0	25/0	25/0	25/0																											
				01/04/0801/25/08	01/04/0801/25/08	01/04/0801/25/08	01/04/0801/25/08			\perp												\Box			\perp	_								╝
		DATE REC'D		34/08	94/08	34/08	94/08							١																		ı		
		2 8		D1 /C	D1 /C	01/ C	þ1/ 0																											
Ы			Ξ	8	စ္က	4	65												ĺ	ı														
es-(SDG#	S/JS	702	802	901	9036										ı														ĺ			۲
943 Pages-CD	္က	S	Vate	F7K270268	F7K280229	F7K290114	F7K290369																											T/LR
943	80/20		Air/Water/Soil	"	"	"	۲																											
			×			_					\perp																							
		S P	Matrix:	∢	В	ပ											T	T	T				T	T	T	T	T	T	T	T				Total
			_			_							_																					الط

BRC Tronox Parcel C/D/F/G Data Validation Reports LDC# 18054

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel C/D/F/G

Collection Date:

November 21, 2007

LDC Report Date:

January 15, 2008

Matrix:

Air

Parameters:

Volatiles

Validation Level:

EPA Level III

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F7K270268

Sample Identification

TSB-CR-07

TSB-CR-06

TSB-DR-06

TSB-CJ-08

Introduction

This data review covers 4 air samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method TO-14A for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%RSD	Associated Samples	Flag	A or P
11/27/07	4-Ethyltoluene	32.177	All samples in SDG F7K270268	J (all detects) UJ (all non-detects)	Р

Average relative response factors (RRF) for all volatile target compounds and system monitoring compounds were within validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
12/03/07	4-Ethyltoluene 1,2,4-Trimethylbenzene	32.4 34.0	All samples in SDG F7K270268	J+ (all detects) J+ (all detects)	P

All of the continuing calibration RRF values were within validation criteria.

V. Blanks

Method blank analyses were performed at the required frequency. No volatile contaminants were found in the method blanks.

No field blanks were identified in this SDG.

VI. Surrogate Spikes

Surrogates were not required by the method.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Although laboratory control samples were not required by the method, laboratory control samples were reported by the laboratory. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

BRC Tronox Parcel C/D/F/G Volatiles - Data Qualification Summary - SDG F7K270268

SDG	Sample	Compound	Flag	A or P	Reason
F7K270268	TSB-CR-07 TSB-CR-06 TSB-DR-06 TSB-CJ-08	4-Ethyltoluene	J (all detects) UJ (all non-detects)	Р	Initial calibration (%RSD)
F7K270268	TSB-CR-07 TSB-CR-06 TSB-DR-06 TSB-CJ-08	4-Ethyltoluene 1,2,4-Trimethylbenzene	J+ (all detects) J+ (all detects)	Р	Continuing calibration (%D)

BRC Tronox Parcel C/D/F/G Volatiles - Laboratory Blank Data Qualification Summary - SDG F7K270268

No Sample Data Qualified in this SDG

BRC Tronox Parcel C/D/F/G Volatiles - Field Blank Data Qualification Summary - SDG F7K270268

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 18054A48 Level III SDG #: F7K270268 Laboratory: Test America

Page: I of Reviewer: 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA Method TO-14A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	Å	Sampling dates: 1/21/07
11.	GC/MS Instrument performance check	Α	
111.	Initial calibration	SM	
IV.	Continuing calibration/ICV	SN)	
V.	Blanks	A	
VI.	Surrogate spikes	N	
VII.	Matrix spike/Matrix spike duplicates	N	
VIII.	Laboratory control samples	A	us /p
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	N	
XVII.	Field blanks	N	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

A ...

	Air			
†	TSB-CR-07	11	21	31
2	TSB-CR-06	12	22	32
3	TSB-DR-06	13	23	33
4	TSB-CJ-08	14	24	34
5 6	7338609 MB	15	25	35
6		16	26	36
7 8 9		17	27	37
8		18	28	38
9		19	29	39
10		20	30	40

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA Method TO-14/TO-14A)

A. Chloromethane*	S. Trichloroethene	KK. Trichlorofluoromethane	CCC. tert-Butylbenzene	UUU. Benzyl chloride
3. Bromomethane	T. Dibromochloromethane	LL Methyl-tert-butyl ether	DDD, 1,2,4-Trimethylbenzene	VVV. 4-Ethyltoluene
C. Vinyl choride**	U. 1,1,2-Trichloroethane	MM. 1,2-Dibromo-3-chloropropane	EEE, sec-Butylbenzene	WWW. Ethanol
D. Chloroethane	V. Benzene	NN. Diethyl ether	FFF. 1,3-Dichlorobenzene	XXX. Ethyl ether
E. Methylene chloride	W. trans-1,3-Dichloropropene	00. 2,2-Dichloropropane	GGG. p-Isopropyttoluene	YYY. tert-Butanol
F. Acetone	X. Bromoform⁴	PP. Bromochloromethane	HHH. 1,4-Dichlorobenzene	ZZZ. tert-Butyl alcohol
G. Carbon disuffide	Y. 4-Methyl-2-pentanone	QQ. 1,1-Dichloropropene	III. n-Butylbenzene	AAAA. Ethyl tert-butyl ether
H. 1,1-Dichloroethene**	Z. 2-Hexanone	RR. Dibromomethane	JJJ, 1,2-Dichlorobenzene	BBBB. tert-Amyl methyl ether
l. 1,1-Dichloroethane*	AA. Tetrachloroethene	SS. 1,3-Dichloropropane	KKK. 1,2,4-Trichlorobenzene	CCCC.1-Chlorohexane
J. 1,2-Dichloroethene, total	BB. 1,1,2,2-Tetrachloroethane*	П. 1,2-Dibromoethane	LLL. Hexachlorobutadiene	DDDD. Isopropyl alcohol
K. Chloroform**	CC. Toluene**	UU. 1,1,1,2-Tetrachloroethane	MMM. Naphthalene	EEEE. Acetonitrile
L. 1,2-Dichloroethane	DD. Chlorobenzene*	W. Isopropylbenzene	NNN. 1,2,3-Trichlorobenzene	FFFF. Acrolein
M. 2-Butanone	EE. Ethylbenzene**	WW. Bromobenzene	OOO. 1,3,5-Trichlorobenzene	GGGG. Acrylonitrile
N. 1,1,1-Trichloroethane	FF. Styrene	XX. 1,2,3-Trichloropropane	PPP. trans-1,2-Dichloroethene	HHHH. 1,4-Dioxane
O. Carbon tetrachloride	GG. Xylenes, total	YY. n-Propylbenzene	QQQ. cis-1,2-Dichloroethene	IIII. Isobutyl alcohol
P. Bromodichloromethane	HH. Vinyl acetate	ZZ. 2-Chlorotohuene	RRR. m.p-Xylenes	JJJJ. Methacrylonitrile
Q. 1,2-Dichloropropane**	II. 2-Chloroethylvinyl ether	AAA. 1,3,5-Trimethylbenzene	SSS. o-Xylene	KKKK. Propionitrile
R. cis-1,3-Dichloropropene	JJ. Dichlorodifluoromethane	BBB. 4-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	ш

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

1 A 48		
	1 A 48	Const

VALIDATION FINDINGS WORKSHEET **Initial Calibration**

3/2 Page: Lof / Reviewer: 2nd Reviewer:_

METHOD: GC/MS VOA (EPA TO-14/TO-14A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A

Note all percent relative standard deviations (%RSD) \leq 30% and relative response factors (RRF) \geq 0.05?

Date	Standard ID	Compound	Finding %RSD (Limit: <30.0%)	Finding RRF (Limit: >0.05)	Associated Samples	Qualifications
11/27/07 1CAL		^ ^^	32.177		411 + B1K	1 /N2 /P
					The state of the s	
	-			_		

LDC #: 18054 A48 SDG #: See Cone

VALIDATION FINDINGS WORKSHEET

Reviewer: 312 2nd Reviewer:

Page: 1 of 1

Continuing Calibration

METHOD: GC/MS VOA (EPA TO-14/TO-14A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". NANA

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were all percent differences (%D) < 30% and relative response factors (RRF) > 0.05?

					·											
Qualifications	J+ 4cts / D															
Associated Samples	A11 + B1K	->														
Finding RRF (Limit: <u>></u> 0.05)																
Finding %D (Limit: <30.0%)	32,4	34.0														
Compound	(A) (A)	DDD A)			,	*	1									
Standard ID	CC 12033		,													
Date	20/20/21															
#																

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel C/D/F/G

Collection Date:

November 27, 2007

LDC Report Date:

January 15, 2008

Matrix:

Air

Parameters:

Volatiles

Validation Level:

EPA Level III

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F7K280229

Sample Identification

TSB-CR-02

TSB-CR-03

TSB-DR-02

TSB-DJ-01

TSB-DR-04

TSB-DR-03

TSB-DR-05

Introduction

This data review covers 7 air samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method TO-14A for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

Average relative response factors (RRF) for all volatile target compounds and system monitoring compounds were within validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

All of the continuing calibration RRF values were within validation criteria.

V. Blanks

Method blank analyses were performed at the required frequency. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
7351601-MB	12/14/07	Methylene chloride	1.6 ppb(v/v)	All samples in SDG F7K280229

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
TSB-CR-02	Methylene chloride	7.4 ppb(v/v)	7.4U ppb(v/v)
TSB-DR-02	Methylene chloride	2.6 ppb(v/v)	2.6U ppb(v/v)
TSB-DJ-01	Methylene chloride	3.6 ppb(v/v)	3.6U ppb(v/v)
TSB-DR-04	Methylene chloride	2.1 ppb(v/v)	2.1U ppb(v/v)
TSB-DR-03	Methylene chloride	1.6 ppb(v/v)	2.0U ppb(v/v)
TSB-DR-05	Methylene chloride	2.6 ppb(v/v)	2.6U ppb(v/v)

No field blanks were identified in this SDG.

VI. Surrogate Spikes

Surrogates were not required by the method.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Although laboratory control samples were not required by the method, laboratory control samples were reported by the laboratory. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

BRC Tronox Parcel C/D/F/G Volatiles - Data Qualification Summary - SDG F7K280229

No Sample Data Qualified in this SDG

BRC Tronox Parcel C/D/F/G Volatiles - Laboratory Blank Data Qualification Summary - SDG F7K280229

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P
F7K280229	TSB-CR-02	Methylene chloride	7.4U ppb(v/v)	А
F7K280229	TSB-DR-02	Methylene chloride	2.6U ppb(v/v)	A
F7K280229	TSB-DJ-01	Methylene chloride	3.6U ppb(v/v)	Α
F7K280229	TSB-DR-04	Methylene chloride	2.1U ppb(v/v)	А
F7K280229	TSB-DR-03	Methylene chloride	2.0U ppb(v/v)	Α
F7K280229	TSB-DR-05	Methylene chloride	2.6U ppb(v/v)	Α

BRC Tronox Parcel C/D/F/G Volatiles - Field Blank Data Qualification Summary - SDG F7K280229

No Sample Data Qualified in this SDG

LDC #: 18054B48	VALIDATION COMPLETENESS WORKSHEET	Date: 1/
SDG #: <u>F7K280229</u>	Level III	Page: 1
Laboratory: Test America		Reviewer:
		2nd Reviewer:
METHOD COMMONAL CO. /	-DA NA (L. LTO 44A)	

Date: 1/4 /08
Page: <u>/</u> of <u>/</u>
Reviewer: 377
2nd Reviewer:

METHOD: GC/MS Volatiles (EPA Method TO-14A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: II /27 /07
11.	GC/MS Instrument performance check	À	
III.	Initial calibration	A	
IV.	Continuing calibration/ICV	À	
V.	Blanks	SW)	
VI.	Surrogate spikes	N	
VII.	Matrix spike/Matrix spike duplicates	N	
VIII.	Laboratory control samples	A	LCS /D
IX.	Regional Quality Assurance and Quality Control	N	
Χ.	Internal standards	A	
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	Α	
XVI.	Field duplicates	N	
XVII.	Field blanks	N	

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank '

EB = Equipment blank

Validated Samples:

Air 11 1 735 1601 TSB-CR-02 MB 21 31 2 TSB-CR-03 (K) 7351608 MB 12 22 32 33 JSB-DR-02 23 13 **1** TSB-DJ-01 14 24 34 TSB-DR-04 15 25 35 36 TSB-DR-03 16 26 7 1 TSB-DR-05 17 27 37 18 28 38 8 39 9 19 29 10 20 30 40

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA Method TO-14/TO-14A)

B. Bromomethane T. Dibrom				
	T. Dibromochloromethane	LL. Methyl-tert-butyl ether	DDD. 1,2,4-Trimethylbenzene	VVV. 4-Ethyltoluene
C. Vinyl choride** U. 1,1,2-T	U. 1,1,2-Trichloroethane	MM. 1,2-Dibromo-3-chloropropane	EEE. sec-Butylbenzene	WWW. Ethanol
D. Chloroethane		NN. Diethyl ether	FFF. 1,3-Dichlorobenzene	XXX. Ethyl ether
E. Methylene chloride W. trans-1	W. trans-1,3-Dichloropropene	00. 2,2-Dichloropropane	GGG. p-Isopropyttoluene	YYY. tert-Butanol
F. Acetone X. Bromoform*		PP. Bromochloromethane	HHH. 1,4-Dichlorobenzene	ZZZ. tert-Butyl alcohol
G. Carbon disulfide Y. 4-Meth	Y. 4-Methyl-2-pentanone	QQ. 1,1-Dichloropropene	III. n-Butylbenzene	AAAA. Ethyl tent-butyl ether
H. 1,1-Dichloroethene**		RR. Dibromomethane	JJJ. 1,2-Dichlorobenzene	BBBB. tert-Amyl methyl ether
I. 1,1-Dichloroethane* AA. Tetra	AA. Tetrachioroethene	SS. 1,3-Dichloropropane	KKK. 1,2,4-Trichlorobenzene	CCCC.1-Chlorohexane
J. 1,2-Dichloroethene, total BB. 1,1,2	BB. 1,1,2,2-Tetrachloroethane*	TT. 1,2-Dibromoethane	LL. Hexachlorobutadiene	DDDD. Isopropyi alcohol
K. Chloroform** CC. Toluene**	uene**	UU. 1,1,1,2-Tetrachloroethane	MMM. Naphthalene	EEEE. Acetonitrile
L 1,2-Dichloroethane DD. Chlo	DD. Chlorobenzene*	VV. Isopropylbenzene	NNN. 1,2,3-Trichlorobenzene	FFFF. Acrolein
M. 2-Butanone EE. Ethyl	EE. Ethylbenzene**	WW. Bromobenzene	OOO. 1,3,5-Trichlorobenzene	GGGG. Acrylonitrile
N. 1,1,1-Trichloroethane FF. Styrene	rene	XX. 1,2,3-Trichloropropane	PPP. trans-1,2-Dichloroethene	HHHH. 1,4-Dioxane
O. Carbon tetrachloride GG. Xyle	GG. Xylenes, total	YY. n-Propylbenzene	QQQ, cis-1,2-Dichloroethene	IIII. Isobutyl alcohol
P. Bromodichloromethane HH. Viny	HH. Vinyl acetate	ZZ. 2-Chlorotoluene	RRR. m,p-Xylenes	JJJJ. Methacrylonitrile
Q. 1,2-Dichloropropane**	II. 2-Chloroethylvinyl ether	AAA. 1,3,5-Trimethylbenzene	SSS. o-Xylene	KKKK. Propionitrile
R. cis. 1,3-Dichloropropene	JJ. Dichlorodiffuoromethane	BBB, 4-Chlorototuene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	un.

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

B 48	3
2008	9
FDC #	SDG #

VALIDATION FINDINGS WORKSHEET

Page: \of

2nd Reviewer:_ Reviewer:

Blanks

METHOD: GC/MS VOA (EPA TO-14/TO-14A)

Phease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was a method blank associated with every sample in this SDG? Y N N/A Y/N N/A

Was a method blank analyzed at least once every 12 hours for each matrix and concentration? V N/A Was there contamination in the method blanks? If yes, please see the qualifications below. Blank analysis date: 12.64/67

Y N N/A

Conc. units: Prb (V /V

2 Sample Identification 1.6/2.04 Z או Associated Samples: 7 2 3.6 3 W 2.6 3 7351601 MB Blank ID 夘 Compound CRO

Blank analysis date:

Conc. units:

Associated Samples:

Compound	Blank ID		Sai	Sample Identification	tion		
	·						
			·				
·							
спац							

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were also qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel C/D/F/G

Collection Date:

November 26, 2007

LDC Report Date:

January 15, 2008

Matrix:

Air

Parameters:

Volatiles

Validation Level:

EPA Level III

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F7K290114

Sample Identification

TSB-CJ-04

TSB-CJ-07

TSB-CJ-03

TSB-CJ-05

TSB-CJ-02

TSB-CJ-01

TSB-CJ-01(FD)

TSB-CR-01

Introduction

This data review covers 8 air samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method TO-14A for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%RSD	Associated Samples	Flag	A or P
11/27/07	4-Ethyltoluene	32.177	All samples in SDG F7K290114	J (all detects) UJ (all non-detects)	P

Average relative response factors (RRF) for all volatile target compounds and system monitoring compounds were within validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

All of the continuing calibration RRF values were within validation criteria.

V. Blanks

Method blank analyses were performed at the required frequency. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
7339519-MB	12/4/07	Methylene chloride	1.2 ppb(v/v)	All samples in SDG F7K290114

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
TSB-CJ-04	Methylene chloride	1.5 ppb(v/v)	2.0U ppb(v/v)
TSB-CJ-07	Methylene chloride	1.6 ppb(v/v)	2.0U ppb(v/v)
TSB-CJ-03	Methylene chloride	2.5 ppb(v/v)	2.5U ppb(v/v)
TSB-CJ-05	Methylene chloride	2.5 ppb(v/v)	2.5U ppb(v/v)
TSB-CJ-02	Methylene chloride	8.2 ppb(v/v)	8.2U ppb(v/v)
TSB-CJ-01	Methylene chloride	7.7 ppb(v/v)	7.7U ppb(v/v)
TSB-CJ-01 (FD)	Methylene chloride	7.8 ppb(v/v)	7.8U ppb(v/v)
TSB-CR-01	Methylene chloride	10 ppb(v/v)	10U ppb(v/v)

No field blanks were identified in this SDG.

VI. Surrogate Spikes

Surrogates were not required by the method.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Although laboratory control samples were not required by the method, laboratory control samples were reported by the laboratory. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples TSB-CJ-01 and TSB-CJ-01(FD) were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentrati	on (ppb(v/v))	DDD	D:#=====		
Compound	TSB-CJ-01	TSB-CJ-01(FD)	RPD (Limits)	Difference (Limits)	Flag	A or P
Chloromethane	1.4	1.6	-	0.2 (≤4.0)	-	-
Vinyl chloride	4.0	4.4	-	0.4 (≤3.0)	-	-
Chloroethane	35	39	11 (≤50)	-	•	-
Acetone	32	41	-	9 (≤10.0)	-	-
Methylene chloride	7.7	7.8	-	0.1 (≤2.0)	•	-
1,1-Dichloroethane	56	64	13 (≤50)	-	-	•
Benzene	1.7	2.1	•	0.4 (≤3.0)	-	_

	Concentrati	ion (ppb(v/v))				
Compound	TSB-CJ-01	TSB-CJ-01(FD)	RPD (Limits)	Difference (Llmits)	Flag	A or P
1,2-Dichloroethane	11	13	17 (≤50)	-	-	-
Trichloroethene	3.2	4.0	-	0.8 (≤2.0)	-	-
Bromodichloromethane	5.2	6.4	-	1.2 (≤2.0)	-	-
Toluene	1.7	2.0	•	0.3 (≤2.0)	-	-
1,1,2-Trichloroethane	3.4	3.9	-	0.5 (≤2.0)	-	-
Tetrachloroethene	210	230	9 (≤50)	-	-	_
Chlorobenzene	2.0U	1.2	-	0.8 (≤2.0)	-	-
1,3-Dichlorobenzene	1.4	1.6	-	0.2 (≤2.0)	-	-
Chloroform	3100	3700	18 (≤50)	-	-	•

BRC Tronox Parcel C/D/F/G Volatiles - Data Qualification Summary - SDG F7K290114

SDG	Sample	Compound	Flag	A or P	Reason
F7K290114	TSB-CJ-04 TSB-CJ-07 TSB-CJ-03 TSB-CJ-05 TSB-CJ-02 TSB-CJ-01 TSB-CJ-01 (FD) TSB-CR-01	4-Ethyltoluene	J (all detects) UJ (all non-detects)	Р	Initial calibration (%RSD)

BRC Tronox Parcel C/D/F/G Volatiles - Laboratory Blank Data Qualification Summary - SDG F7K290114

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P
F7K290114	TSB-CJ-04	Methylene chloride	2.0U ppb(v/v)	А
F7K290114	TSB-CJ-07	Methylene chloride	2.0U ppb(v/v)	Α
F7K290114	TSB-CJ-03	Methylene chloride	2.5U ppb(v/v)	Α
F7K290114	TSB-CJ-05	Methylene chloride	2.5U ppb(v/v)	А
F7K290114	TSB-CJ-02	Methylene chloride	8.2U ppb(v/v)	Α
F7K290114	TSB-CJ-01	Methylene chloride	7.7U ppb(v/v)	Α
F7K290114	TSB-CJ-01 (FD)	Methylene chloride	7.8U ppb(v/v)	А
F7K290114	TSB-CR-01	Methylene chloride	10U ppb(v/v)	Α

BRC Tronox Parcel C/D/F/G Volatiles - Field Blank Data Qualification Summary - SDG F7K290114

No Sample Data Qualified in this SDG

LDC #: 18054C48 VALIDATION COMPLETENESS WORKSHEET SDG #: F7K290114 Level III Laboratory: Test America

Date: 1/1+/68
Page: <u> </u> of
Reviewer: <u>JVZ</u>
2nd Reviewer:

METHOD: GC/MS Volatiles (EPA Method TO-14A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	A	Sampling dates: 11 / 2 6 / 0 7
II.	GC/MS Instrument performance check	A	
III.	Initial calibration	SW	
IV.	Continuing calibration/ICV	A	
V.	Blanks	SW	
VI.	Surrogate spikes	N	
VII.	Matrix spike/Matrix spike duplicates	N	
VIII.	Laboratory control samples	A	LCS /b
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	SW	D = 6,7
XVII.	Field blanks	1)	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

Air

	AIr			
1 1 2 1 4	TSB-CJ-04	+ 11 1 733 9519 MB	21	31
2 1	TSB-CJ-07	12 7 73404 11 MB	22	32
3 1	TSB-CJ-03	13	23	33
↓ 4 1	TSB-CJ-05	14	24	34
5 1/2	TSB-CJ-02	15	25	35
+ 1/ ₆	TSB-CJ-01	16	26	36
7 1/3	TSB-CJ-01(FD)	17	27	37
4 17 8	TSB-CR-01	18	28	38
9		19	29	39
10		20	30	40

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA Method TO-14/TO-14A)

A. Chloromethane*	S. Trichloroethene	KK. Trichlorofluoromethane	CCC. tert-Butylbenzene	UUU. Benzyl chloride
3. Bromomethane	T. Dibromochioromethane	LL Methyl-tert-butyl ether	DDD. 1,2,4-Trimethylbenzene	VVV. 4-Ethyttoluene
C. Vinyl choride**	U. 1,1,2-Trichloroethane	MM. 1,2-Dibromo-3-chloropropane	EEE. sec-Butylbenzene	WWW. Ethanol
D. Chloroethane	V. Benzene	NN. Diethyl ether	FFF. 1,3-Dichlorobenzene	XXX. Ethyl ether
E. Methylene chloride	W. trans-1,3-Dichloropropene	00. 2,2-Dichloropropane	GGG, p-lsopropyftoluene	YYY. tert-Butanol
F. Acetone	X. Bromoform*	PP. Bromochloromethane	HHH. 1,4-Dichlorobenzene	ZZZ. tert-Butyl alcohol
G. Carbon disuffide	Y. 4-Methyl-2-pentanone	QQ. 1,1-Dichloropropene	III. n-Butylbenzene	AAAA. Ethyi ten-butyi ether
H. 1,1-Dichloroethene**	Z. 2-Hexanone	RR. Dibromomethane	JJJ, 1,2-Dichlorobenzene	BBBB. tert-Amyl methyl ether
l. 1,1-Dichloroethane*	AA. Tetrachloroethene	SS. 1,3-Dichloropropane	KKK. 1,2,4-Trichlorobenzene	CCCC.1-Chlorohexane
J. 1,2-Dichloroethene, total	BB. 1,1,2,2-Tetrachloroethane*	TT. 1,2-Dibromoethane	LLL Hexachlorobutadiene	DDDD. Isopropyl alcohol
K. Chloroform**	CC. Toluene**	UU. 1,1,1,2-Tetrachloroethane	MMM. Naphthalene	EEEE. Acetonitrile
L 1,2-Dichloroethane	DD. Chlorobenzene*	W. Isopropylbenzene	NNN. 1,2,3-Trichlorobenzene	FFFF. Acrolein
M. 2-Butanone	EE. Ethylbenzene**	WW. Bromobenzene	000. 1,3,5-Trichlorobenzene	GGGG. Acrylonitrile
N. 1,1,1-Trichloroethane	FF. Styrene	XX. 1,2,3-Trichloropropane	PPP. trans-1,2-Dichloroethene	HHHH. 1,4-Dloxane
O. Carbon tetrachloride	GG. Xylenes, total	YY. n-Propylbenzene	QQQ, cis-1,2-Dichloroethene	IIII. Isobutyl alcohol
P. Bromodichloromethane	HH. Vinyl acetate	ZZ. 2-Chlorotoluene	RRR. m,p-Xylenes	JJJJ. Methacrylonitrile
Q. 1,2-Dichloropropane**	II. 2-Chloroethylvinyl ether	AAA. 1,3,5-Trimethylbenzene	SSS. o-Xylene	KKKK Propionitrile
R. cis-1,3-Dichloropropene	JJ. Dichlorodifluoromethane	BBB. 4-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	uu.

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

VALIDATION FINDINGS WORKSHEET Initial Calibration

X Page: 1of 1 Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA TO-14/TO-14A)

LDC #: 18054 C 48 SDG #: Sre Cond

The see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Output

Outpu

	_	_	_	_	 	 	 	 	_	 _	 	 	 		 	
Qualifications	J/45/P															
Associated Samples	All + BIK															
Finding RRF (Limit: ≥0.05)																
Finding %RSD (Limit: <30.0%)	32.17															
Compound	٨٨٨															
Standard ID	ICAL															
	11/27/07	,												• • •		
#																

	`
C48	7
8054	Š
#	*
ဥ	SDG

VALIDATION FINDINGS WORKSHEET

Page: of

<u>Blanks</u>

METHOD: GC/MS VOA (EPA TO-14/TO-14A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank analyzed at least once every 12 hours for each matrix and concentration? Was a method blank associated with every sample in this SDG?

 $\frac{V}{N}$ N N/A Was there contamination in the method blanks? If yes, please see the qualifications below.

A/N N/A

Conc. units: ppb (V/V)

Associated Samples: All

			ć	Associated dalliples.	ilpies.	1,1		,		
Compound	Blank ID				8	Sample Identification	ation			
	7239519NB	8	7	w	4	ч	e	7	æ	
711	1.2	1.2 1.5 /2.04 1.6/2.c	1.6/2.04	2.5/W	2.5/4 2.5/4 8.2/4 7.7/4 78 W	8.2/W	7.7/W	n/ 82	0	
сяа										

Blank analysis date:

Conc. units:

Associated Samples:

Compound	Blank iD		Š	Sample Identification	ıtion		
CROL							

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were also qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC#:	18054C48
SDG#:	See Cover

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:	of
Reviewer:_	
2nd Reviewer:_	

METHOD: GCMS VOA (EPA TO-14A)

YN NA YN NA

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

Compound	Concentrati	on (ppb(v/v))	(≤50) RPD	Difference	Piff Limits	Qualifications (Parent Only)
Chloromethane	1.4	1.6		0.2	(± 4.0)	
Vinyl Chloride	4.0	4.4		0.4	(≤ 3.0)	,
Chloroethane	35	39	11			
Acetone	32	41		9	(£10.0)	
Methylene chloride	7.7	7.8		0.1	(=2.0)	
1,1-Dichoroethane	56	64	13			
Benzene	1.7	2.1		0.4	(€3.0)	
1,2-Dichloroetane	11	13	17			
Trichloroethene	3.2	4.0	92	0.8	(± 2.0)	
Bromodichloromethane	5.2	6.4		1.2		
Toluene	1.7	2.0		0.3		
1,1,2-Trichoroethane	3.4	3.9		0.5		
Tetrachloroethene	210	230	9			
Chlorobenzene	2.0U	1.2		0.8	(£ 2.0)	
1,3-Dchlorobenzene	1.4	1.6		0.2		
(a/u Chalfoform	3100	3700	18			

V:\FIELD DUPLICATES\18054C48.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

BRC Tronox Parcel C/D/F/G

Collection Date:

November 28, 2007

LDC Report Date:

January 21, 2008

Matrix:

Air

Parameters:

Volatiles

Validation Level:

EPA Level IV

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): F7K290369

Sample Identification

TSB-CR-04

TSB-CR-05

TSB-CJ-06

TSB-DR-01

TSB-DR-01(FD)

Introduction

This data review covers 5 air samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method TO-14A for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

The following are definitions of the data qualifiers:

- J+ Data are qualified as estimated, with a high bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J- Data are qualified as estimated, with a low bias likely to occur. False positives or false negatives are unlikely to have been reported.
- J Data are qualified as estimated; it is not possible to assess the direction of the potential bias. False positives or false negatives are unlikely to have been reported.
- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- R Data are qualified as rejected. There is a significant potential for the reporting of false negatives or false positives.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%RSD	Associated Samples	Flag	A or P
11/27/07	4-Ethyltoluene	32.177	All samples in SDG F7K290369	J (all detects) UJ (all non-detects)	Р

Average relative response factors (RRF) for all volatile target compounds and system monitoring compounds were within validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
12/5/07	1,2,4-Trichlorobenzene	39.7	TSB-DR-01 (FD) 7340411MB	J- (all detects) UJ (all non-detects)	Р

All of the continuing calibration RRF values were within validation criteria.

V. Blanks

Method blank analyses were performed at the required frequency. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
7339521-MB	12/4/07	Methylene chloride	1.2 ppb(v/v)	TSB-CR-04 TSB-CR-05 TSB-CJ-06 TSB-DR-01
7340411-MB	12/5/07	Methylene chloride	2.7 ppb(v/v)	TSB-DR-01 (FD)

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
TSB-CR-04	Methylene chloride	3.2 ppb(v/v)	3.2U ppb(v/v)
TSB-CR-05	Methylene chloride	2.8 ppb(v/v)	2.8U ppb(v/v)
TSB-CJ-06	Methylene chloride	5.2 ppb(v/v)	5.2U ppb(v/v)
TSB-DR-01	Methylene chloride	8.9 ppb(v/v)	8.9U ppb(v/v)
TSB-DR-01 (FD)	Methylene chloride	11 ppb(v/v)	11U ppb(v/v)

No field blanks were identified in this SDG.

VI. Surrogate Spikes

Surrogates were not required by the method.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VIII. Laboratory Control Samples (LCS)

Although laboratory control samples were not required by the method, laboratory control samples were reported by the laboratory. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples TSB-DR-01 and TSB-DR-01(FD) were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentrati	Concentration (ppb(v/v))		Concentration (ppb(v/v))		D:44		
Compound	TSB-DR-01	TSB-DR-01(FD)	RPD (Limits)	Difference (Limits)	Flag	A or P		
Chloromethane	4.0U	1.6	-	2.4 (≤4.0)	-	-		
Bromomethane	4.0U	2.5	-	1.5 (≤4.0)	-	-		
Chloroethane	20	27	30 (≤50)	-	-	-		
Acetone	34	36	-	2 (≤10.0)	-	-		
Methylene chloride	8.9	11	-	2.1 (≤2.0)	J (all detects)	А		

	Concentrati	on (ppb(v/v))	555			
Compound	TSB-DR-01	TSB-DR-01(FD)	RPD (Limits)	Difference (Limits)	Flag	A or P
1,1-Dichloroethane	1.6	1.9	-	0.3 (≤2.0)	-	•
Chloroform	33	40	19 (≤50)	-	-	-
Benzene	3.0U	1.6	-	1.4 (≤3.0)	-	-
Trichloroethene	1.1	1.3	-	0.2 (≤2.0)	-	-
Toluene	1	2.0U	-	1 (≤2.0)	-	-
Tetrachloroethene	13	15	14 (≤50)	-	-	•

BRC Tronox Parcel C/D/F/G Volatiles - Data Qualification Summary - SDG F7K290369

SDG	Sample	Compound	Flag	Flag A or P Rea	
F7K290369	TSB-CR-04 TSB-CR-05 TSB-CJ-06 TSB-DR-01 TSB-DR-01 (FD)	4-Ethyltoluene	J (all detects) UJ (all non-detects)	Р	Initial calibration (%RSD)
F7K290369	TSB-DR-01 (FD)	1,2,4-Trichlorobenzene	J- (all detects) UJ (all non-detects)	Р	Continuing calibration (%D)
F7K290369	TSB-DR-01 TSB-DR-01 (FD)	Methylene chloride	J (all detects)	A	Field duplicates (Difference)

BRC Tronox Parcel C/D/F/G Volatiles - Laboratory Blank Data Qualification Summary - SDG F7K290369

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P
F7K290369	TSB-CR-04	Methylene chloride	3.2U ppb(v/v)	Α
F7K290369	TSB-CR-05	Methylene chloride	2.8U ppb(v/v)	Α
F7K290369	TSB-CJ-06	Methylene chloride	5.2U ppb(v/v)	Α
F7K290369	TSB-DR-01	Methylene chloride	8.9U ppb(v/v)	А
F7K290369	TSB-DR-01 (FD)	Methylene chloride	11U ppb(v/v)	А

BRC Tronox Parcel C/D/F/G Volatiles - Field Blank Data Qualification Summary - SDG F7K290369

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 18054D48 Level IV SDG #: F7K290369 Laboratory: Test America Reviewer: 2nd Reviewer: METHOD: GC/MS Volatiles (EPA Method TO-14A) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in

attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	A	Sampling dates: 11 /28 /67
II.	GC/MS Instrument performance check	A	
III.	Initial calibration	SW	
IV.	Continuing calibration/ICV	SW	
V.	Blanks	SW)	
VI.	Surrogate spikes	N	
VII.	Matrix spike/Matrix spike duplicates	N	
VIII.	Laboratory control samples	A	Ks /p
IX.	Regional Quality Assurance and Quality Control	N	
Х.	Internal standards	<u> </u>	
XI.	Target compound identification	A	
XII.	Compound quantitation/CRQLs	Д	ŕ
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	Ą	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	_CM	D = 4,5
XVII.	Field blanks	N	

Note:

A = Acceptable

N = Not provided/applicable

ND = No compounds detected

D = Duplicate

SW = See worksheet

R = Rinsate FB = Field blank

TB = Trip blank EB = Equipment blank

Validated Samples:

x:_

	AIT			
1 ,	TSB-CR-04	11) 733 9521 MB	21	31
2	TSB-CR-05	12 7 7340411 MB	22	32
3	TSB-CJ-06	13	23	33
4 1	TSB-DR-01	14	24	34
5 7	TSB-DR-01(FD)	15	25	35
6		16	26	36
7		17	27	37
8		18	28	38
9		19	29	39
10		20	30	40

VALIDATION FINDINGS CHECKLIST

IDC #: 18054 D48 SDG #: See Cone

Page: 1 of γ Reviewer: \sqrt{N} 2nd Reviewer:

Method: Volatiles (EPA Method 10-14/10-14/)	. 1		NA	Findings/Comments
Validation Area	Yes	No	NA	, mang-,
Technical holding times	ار			
All technical holding times were met.				
Canister pressure criteria was met.]			
II: GC/MS Instrument performance check			l .	
Were the BFB performance results reviewed and found to be within the specified criteria?			-	
Were all samples analyzed within the 12 hour clock criteria?				
III Initial calibration			T	I
Did the laboratory perform a 5 point calibration prior to sample analysis?	_		-	
Were all percent relative standard deviations (%RSD) \leq 30% and relative response factors (RRF) \geq 0.05?		/	<u> </u>	
IV. Continuing calibration		I	Т	I
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/		<u> </u>	
Were all percent differences (%D) \leq 30% and relative response factors (RRF) \geq 0.05?			1_	
V. Bianks		J		T
Was a method blank associated with every sample in this SDG?			┼	
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?			_	
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	/	<u> </u>		
VI. Surrogate spikes	l –	T	Τ-	T
Were all surrogate %R within QC limits?		+-	1	
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				<u> </u>
VII. Matrix spike/Matrix spike duplicates	T	1	Τ-	T
Was a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for this SDG?		1		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
ÿili. Laboratory control samples	Τ-	Τ-	- 1 -	
Was an LCS analyzed for this SDG?	1		-	
Was an LCS analyzed per analytical batch?	/		+	
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/	1_		

DC #: 1805+ 15+8 SDG #: See Coner

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
X. Regional Guality Assurance and Quality Control Were performance evaluation (PE) samples performed?				
Were performance evaluation (PE) samples within the acceptance limits?				· ·
X. Internal standards Were internal standard area counts within +/-40% from the associated calibration standard?				
standard: Were retention times within +/- 30.0 seconds from the associated calibration standard?	/			
XI. Target compound identification	Г <i>-</i>			
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?	-		-	
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	-			
Were chromatogram peaks verified and accounted for?				
XII. Compound quantitation/CRGLs		Γ	T	T .
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII, Tentatively identified compounds (TICs)	· · · ·		Τ	1
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?		/		
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?				
YN/ System performance:				
System performance was found to be acceptable.		1		
XV: Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XVI. Field duplicates				
Field duplicate pairs were identified in this SDG.	/			
Target compounds were detected in the field duplicates.				
XVII. Field blanks				
Field blanks were identified in this SDG.		/	1	
Target compounds were detected in the field blanks.				1
Targer compounds			•	

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA Method TO-14/TO-14A)

				IIII Benzyl chloride
A. Chloromethane*	S. Trichloroethene	KK. Trichloroffuoromethane	CCC. terr-butylbenzene	
R Bromomethane	T. Dibromochloromethane	LL. Methyl-tert-butyl ether	DDD. 1,2,4-Trimethylbenzene	VVV. 4-Ethyltoluene
	1 4 4 0 Trichlovathene	MM 1.2-Dibromo-3-chloropropane	EEE. sec-Butylbenzene	WWW. Ethanol
C. Vinyl chonde""	O. 1,1,2-111011000000000		ner 4 a Dichlorobenzene	XXX. Ethyl ether
D. Chloroethane	V. Benzene	NN. Diethyl ether		
F Methylene chloride	W. trans-1,3-Dichloropropene	OO. 2,2-Dichloropropane	GGG. p-Isopropyftoluene	YYY. tert-Butanol
E Acabana	X Bromoform*	PP. Bromochloromethane	HHH. 1,4-Dichlorobenzene	ZZZ. tert-Butyl alcohol
T. Acetolie			III n-But/lbenzene	AAAA. Ethyl tert-butyl ether
G. Carbon disuffide	Y. 4-Methyl-2-pentanone	dd. 1,1-Danoproperie		Section Line A section
H. 1.1-Dichloroethene**	Z. 2-Hexanone	RR. Dibromomethane	JJJ. 1,2-Dichlorobenzene	BBBB. tert-Amyl metryl eurer
1 4 1 Dichloroethane*	AA. Tetrachloroethene	SS. 1,3-Dichloropropane	KKK. 1,2,4-Trichlorobenzene	CCCC.1-Chlorohexane
1. 1.1-Distinction		and the contract of the contra	111 Hexachlorobutadiene	DDDD. Isopropyi alcohol
J. 1,2-Dichloroethene, total	BB. 1,1,2,2-Tetrachloroethane*	II. 1,2-Dipromoeurane		CECE A A A A A A A A A A A A A A A A A A
K. Chloroform**	CC. Toluene**	UU. 1,1,1,2-Tetrachioroethane	MMM. Naphthalene	
Children	DD Chlorobenzene*	VV. Isopropylbenzene	NNN. 1,2,3-Trichlorobenzene	FFFF. Acrolein
L 1,z-Dichiologularia		doesnot on the state of the sta	OOO, 1,3,5-Trichlorobenzene	GGGG. Acrylonitrile
M. 2-Butanone	EE. Ethylbenzene**	WW. Diomobalicana		
N 111-Trichloroethane	FF. Styrene	XX. 1,2,3-Trichloropropane	PPP. trans-1,2-Dichloroethene	TITION 1,4-DIOXALIA
	GG Xvlenes total	YY. n-Propylbenzene	QQQ. cis-1,2-Dichloroethene	IIII. Isobutyl alcohol
O. Carbon tetracinoride		The Other Continues	RRR. m.p-Xylenes	JJJJ. Methacrylonitrile
P. Bromodichloromethane	HH. Vinyl acetate	ZZ. Z-Chlorotuerie		VXXX Pronionitile
O 12-Dichloropropane**	II. 2-Chloroethylvinyl ether	AAA. 1,3,5-Trimethylbenzene	SSS. o-Xylene	
	11 Dichlorodifluoromethane	BBB. 4-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	lutt.
R. cis-1,3-Dichloropropene	S. Democramical and the second			

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

D48	2
4508	ع ع
#:	#:
LDC #	SDG #

VALIDATION FINDINGS WORKSHEET **Initial Calibration**

Reviewer: 376 2nd Reviewer:_

Page: 1 of 1

METHOD: GC/MS VOA (EPA TO-14/TO-14A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

VARIATION N/A

Were all percent relative standard deviations (%RSD) \leq 30% and relative response factors (RRF) \geq 0.05?

	Qualifications	J/N3 /P		and the self-berry or or or or					The state of the s	The second secon						
Finding %RSD Compound Limit: <30.0%) V V 32., 177	Associated Samples	A11 + B1ks														
	Finding RRF (Limit: >0.05)															
	Finding %RSD (Limit: <30.0%)	32.177														
AV	Compound	۸۸۸														
	Standard ID	ICAL														
# Date 19/27 /67	11	H														

D 48	Care
18054	ن الح
LDC #:	SDG #:

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: Lof L Reviewer: NE 2nd Reviewer:

METHOD: GC/MS VOA (EPA TO-14/TO-14A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N/A/N/N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Were all percent differences $(\%D) \le 30\%$ and relative response factors $(RRF) \ge 0.05$?

		- T		 	 1		 _	 	,	 		 	,		<u> </u>	 _	
Qualifications	J- /N5/P																
Associated Samples	5, 7340411 MB	-	il de la														
Finding RRF (Limit: >0.05)														The second secon			
Finding %D (Limit: <30.0%)	39.7	,															
Compound	KKK (-)																
Standard ID	CC 2053												-				
	1450/21	,															
#																	

18054 DAR	20 Cor
!. *	#
Ö	SDG

VALIDATION FINDINGS WORKSHEET

Page: of

Reviewer: _ 2nd Reviewer: _

Blanks

METHOD: GC/MS VOA (EPA TO-14/TO-14A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N'A

Was a method blank analyzed at least once every 12 hours for each matrix and concentration? Was a method blank associated with every sample in this SDG?

Was there contamination in the method blanks? If yes, please see the qualifications below. Blank analysis date: 12/04 /67 N N/A

Y/N N/A

Conc. units: ppb (V/V)

Associated Samples:

Compound	Blank ID				Ö	Sample Identification	tion		
	7339521-NB	8	۲	3	4				
E	1.2	3.2/W	2,8/ U	5.2/4	8.9/14				
				1					
CRQL									
Blank analysis date: $\frac{12/6c}{c}$ Conc. units: $\frac{pp}{c}$ ($\sqrt{\lambda}$)	7		As	Associated Samples:	λ) .				
Compound	Blank (D				S	Sample Identification	ıtlon		
	7340411-M	Z							
m	2.7	11 / W							
				-					
							-		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were also qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

	$\sqrt{2}$	
LDC#:	18054¢48_	
_	See Cover	

VALIDATION FINDINGS WORKSHEET _Field Duplicates

Page:	of <i>_</i>
Reviewer:_	W.
2nd Reviewer:	9
_	

METHOD: GCMS VOA (EPA TO-14A)

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentration	on (ppb(v/v))	(≤50)		Diff	Qualifications
Compound	4	5	RPD	Difference	Limits	(Parent Only)
Chloromethane	4.0U	1.6		2.4	£4.0	
Bromomethane	4.0U	2.5		1.5		
Chloroethane	20	27	30			
Acetone	. 34	36		2	€ 10.0	
Methylene chloride	8.9	11		2.1	∠ 2.0	J dets/A
1,1-Dichoroethane	1.6	1.9		0.3		
Chloroform	33	40	19			
Benzene	3.0U	1.6		1.4	≤ 3.0	
Trichloroethene	1.1	1.3		0.2	€ 2.0	
Toluene	1.0	2.0U		1	l	
Tetrachloroethene	13	15	14			

V:\FIELD DUPLICATES\18054D48.wpd

SDG #: 18 054 D48

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 1 of A Reviewer: NC 2nd Reviewer: 2

METHOD: GC/MS VOA (EPA TO-14/TO-14A)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_u)(C_u)/(A_k)(C_u)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

rea of compound, $A_{\bf k} = \text{Area of associated internal standard oncentration of internal standard}$ oncentration of compound, $C_{\bf k} = \text{Concentration of internal standard}$

A_x = Area of compound, C_x = Concentration of compound, S = Standard deviation of the RRFs X = Mean of the RRFs

						2	Potal page	Denorted	Receipted
				Reported	Recalculated	Неропеа	Decalculated	noviode);	
*	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (Sh std)	RRF (So std)	Average RRF (Initial)	Average RRF (Initial)	%RSD	%RSD
1		7"	Methylene chloride (1st internal standard)	0.4468	0. 4468	40744.0	20Cpp '0	16.589	16.687
-[٦ ٢	101 (77 10)	Trichlorethene (2nd internal standard)	6 44 22	0.45×29	o. 49 org	0. 490rg	13.011	13.01
			Telyene (3rd internal standard)	1. 4885b	1. 488x0	٧٢٢ كلا ١	1. 75272	10, 137	10. 137
2			Methylenechloride (1st internal standard)	·					
			Trichlorethene (2nd internal standard)						
			Toluene (3rd internal standard)						
			Methylene chloride (1st internal standard)						
,			Trichlorethene (2nd internal standard)						
			Toluene (3rd internal standard)						
			Methylene chloride (1st internal standard)						
4			Trichlorethene (2nd internal standard)						
<u> </u>			Toluene (3rd internal standard)						

Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. Comments:

SDG #: 18054 D48

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: of Dariewer: NC 2nd Reviewer:

METHOD: GC/MS VOA (EPA TO-14/T014A)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave, RRF - RRF)/ave, RRF RRF = $(A_{\lambda})(C_{\kappa})/(A_{\kappa})(C_{\lambda})$

Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF

 $A_x = Area of compound,$ $<math>C_x = Concentration of compound,$

 $A_{\rm k}=$ Area of associated internal standard $C_{\rm k}=$ Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
		Calibration	Compound (Reference Internal	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	0%
*	Standard ID	Date	(Simple)	المرزية	c 403 E4	9 49259	10, 7	8
	12041	12/04/07	Methylene chloride (1st internal standalu)	44024	F 735 0	0.48657	٥, ٥	8.8
			Trichlerethene (2nd internal standard)	1.35277	1.48933	1. 48933	10, 1	79)
			C (C Lleide (10t internal standard)	79797	0. 454tg	0. 45 459	1.7	1,7
2	cc 120 52	12/5/21	Trichlorethane (2nd internal standard)	0, 49629	0.46351	6.44351	2,5	ケント
			Tal. of God internal chanderd)	1. 3527~	1. 43247	1. 43247	5-7	5.7
			10terne (old litternal standard)				_	
က			Methylene chloride (1st internal standard)			٠		
<u> </u>		1	Trichlorethene (2nd internal standard)					
		,	Toluene (3rd internal standard)					
			Methylene chloride (1st internal standard)					
4			Trichlorethene (2nd internal standard)					
			Toluene (3rd internal standard)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:	18054	D48
SDG #:	Sec	Tover

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	<u> </u>
Reviewer	JVZ
2nd reviewer:	

METHOD: GC/MS VOA (EPA Method TO-15)

Y N N/A Y N N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = Example: $(A_x)(I_s)(DF)$ $(A_{is})(RRF)(V_o)(\%S)$ Area of the characteristic ion (EICP) for the A_x compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Conc. = (50.990)(50)(23.90)(500)Amount of internal standard added in nanograms **RRF** Relative response factor of the calibration standard. = 2.6786 Volume or weight of sample pruged in milliliters (ml) or grams (g). Df Dilution factor. 2.7 Ppb (V/V) %S Percent solids, applicable to soils and solid matrices

#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Qualification
	and the state of t				
				•	
<u> </u>					
	. ,				