ENSR 1220 Avenida Acaso, Camarillo, California 93012-8738 T 805.388.3775 F 805.388.3577 www.ensr.aecom.com

Memorandum

Date:	October 2006
To:	Nevada Department of Environmental Protection
From:	Tronox LLC
Subject:	APPENDIX I – Evaluation of Micro-Purge Data Compared with Historical Sampling Methods

Historical Groundwater Sampling

The evaluation of historical sampling methods vs. low-flow sampling methods was done to evaluate which method yielded the most representative samples from the site. As part of the Upgradient Investigation, groundwater samples were collected on March 13, 14, and 20, 2006 from a subset of five wells (TR-7, TR-8, TR-9, TR-10, and M-103) using groundwater sampling methods that have been used during previous groundwater sampling events at the Tronox facility. Specifically, the wells were not purged prior to sample collection, and the sample bottles were collected using a PVC bailer that was lowered to the screened interval of each well. Following collection of the bailer samples, the wells were redundantly sampled using micro-purge sampling techniques.

As the first step in collecting water samples using the historical methods, the depth-to-water was measured from the top of the casing reference point to the nearest 0.01-foot using an electric waterlevel meter. The casing reference point is marked by a small notch in the top of the PVC casing. The groundwater elevation at each monitoring well was calculated by subtracting the measured depth-to-water from the surveyed elevation of the top of the well casing.

Once the groundwater elevation was measured, a decontaminated PVC bailer, attached to nylon rope, was lowered to the bottom of each well. The bailer was retrieved from the well and groundwater was slowly poured from the bailer into laboratory-supplied sample bottles. Samples collected with the bailer without prior well purging were assigned a sample identification number with an "A" designator. Hence, samples TR-7A, TR-8A, TR-9A, TR-10A, and M-103A were all collected using the bailer/no purge sampling technique.

Low Flow Purge and Sampling

Following collection of the bailer samples, dedicated micro-purge bladder pump systems (pump and tubing) were installed into the five monitoring wells (TR-7, TR-8, TR-9, TR-10, and M-103) selected to be part of this comparison evaluation. Micro-purge groundwater samples were collected March 20 – 24, 2006.

To collect groundwater samples from the wells using the micro-purge techniques, the following procedures were used.

The depth-to-water in each well was first measured using an electric water-level meter. The micropurge bladder pump was then placed approximately midway along the screened interval in the well. The pumps were lowered slowly into the each well to minimize disturbance or aeration of the groundwater and the water level in each well was allowed to equilibrate prior to purging and sampling. Groundwater was purged at flow rates ranging between 100- to 500-ml per minute. During pumping, the water level was continually monitored using the water level meter to ensure that the water level was relatively stable (i.e., drawdown did not vary more than 0.3 feet).

ENSR 1220 Avenida Acaso, Camarillo, California 93012-8738 T 805.388.3775 F 805.388.3577 www.ensr.aecom.com

During purging, water quality parameters were monitored using a Horiba U-22 water quality meter fitted with a flow-through cell. Parameters such as temperature, pH, electrical conductivity, turbidity, and dissolved oxygen were periodically measured until the parameters stabilized, at which time sample bottles could be filled. Stabilization of water quality parameters was indicated when the following criteria were met in the final three consecutive readings: the pH did not vary more than 0.1 unit, temperature ranged less than one degree Celsius, electrical conductivity did not vary more than 3 percent and the range of dissolved oxygen and turbidity did not vary more than 5 percent. If field parameters did not stabilize within 30 minutes, the deviation was noted on the field sampling field sheet and a sample was collected. The field data were recorded onto data sheets that are included in Appendix D.

No Purge Bailer Sampling Versus Low-Flow (Micro-Purge) Sampling Results

Precision of the bailer method versus the micro-purge method was measured through the calculation of relative percent difference (RPD).

Precision is a measure of the degree to which two or more measurements are in agreement. The objectives for field precision RPDs for this study are 30% or less for aqueous samples. An RPD greater than 30 represents a statistically significant difference in duplicate water samples. The RPD value was calculated using the following formula:

$$RPD = \frac{(Amount in Sample 1 - Amount in Sample 2)}{0.5 (Amount in Sample 1 + Amount in Sample 2)} x100$$

Below is a comparison of the analytical laboratory results and RPDs between the groundwater samples collected with the bailer versus the micro-purge methods. A summary of the data is presented in **Table I-1**.

- Five of the nine groundwater wells (TR-7A, TR-8A, TR-9A, TR-10A, and M-103A) were used for the comparison study. In addition, a duplicate sample (TR-8D) was also used for comparison purposes within a single well. Perchlorate was detected in four of the wells where RPD could be calculated. These samples met the precision objective of 30 RPD or lower (**Table I-1**).
- TPH was not detected above the laboratory quantitation limits for the groundwater samples collected from the 5 wells included in the comparison study (**Table I-1**); therefore, RPD could not be calculated and a comparison of TPH values for the two sampling techniques was not conducted.
- Fuel alcohols (methanol, ethanol, and ethylene glycol) were not detected above the laboratory quantitation limits for any of the groundwater samples collected from the 5 wells included in the comparison study (**Table I-1**); therefore, RPD was not calculated and a comparison of the fuel alcohol values for the two sampling techniques was not conducted.
- VOCs were not detected in the groundwater samples during this sampling event (**Table I-1**), therefore, RPD was not calculated and a comparison of the VOC concentrations for the two sampling techniques was not conducted.
- Of the metals analyzed, 19 were detected in two or more samples where RPD could be calculated. Of the 19 metals where RPD was calculated, 14 exhibited a RPD greater than 30. These data are presented in **Table I-1 and Table I-2**.
- RPD was calculated for hexavalent chromium for four of the five wells included in this comparison study. These data met the precision objective of 30 RPD or lower (**Table I-1 and Table I-2**).
- Of the radionuclides analyzed, 10 were detected in two or more samples where RPD could be calculated. Of the 10 radionuclides where RPD was calculated, five met the RPD precision objective of 30 and five exhibited a RPD greater than 30 (**Table I-1**).

ENSR 1220 Avenida Acaso, Camarillo, California 93012-8738 T 805.388.3775 F 805.388.3577 www.ensr.aecom.com

• Of the wet chemistry parameters analyzed, nine were detected in two or more samples where RPD could be calculated. Of the of the nine wet chemistry parameters where RPD was calculated, eight met the precision objective of 30 RPD or lower and one exhibited a RPD greater than 30 (**Table I-1**).

In Well Cluster 1 (TR-7 and TR-8), higher analytical values were generally observed in the wells sampled using the micro-purge method. The opposite was observed in the analytical values for wells in Well Cluster 2 (TR-9A and TR-10A) and M-103A, with higher analytical values detected in the wells sampled using the bailer method. The greatest difference between the two methods was observed in M-103A and M-103 where the most significant number of values with a RPD of greater than 150 percent was calculated.

Conclusion

Perchlorate, hexavalent chromium, boron, molybdenum, potassium, sodium, 5 radionuclides, and 8 wet chemistry parameters demonstrated acceptable precision through meeting a RPD of 30 or lower. Based on the comparison study it appears that the bailer vs. micro-purge sampling method does not affect the analytical results for these parameters.

Aluminum, arsenic, barium, calcium, total chromium, copper, iron, lead, magnesium, mangansese, titanium, uranium, vanadium, zinc, 5 radionuclides, and one wet chemistry parameter did not meet acceptable precision objective of RPD 30 or lower.

Based on the comparison study it appears that either the bailer vs. micro-purge sampling method affects the analytical results for these parameters or there is another variable that was not identified. In general, the less soluble constituents appear to be affected more than the highly soluble constituents. The following conclusions were drawn regarding the two compared sampling methods:

• Based on the data, it appears that the bailer vs. micro-purge sampling method **does not** affect the analytical results for perchlorate, hexavalent chromium, boron, molybdenum, potassium, sodium, five radionuclides, and eight wet chemistry parameters.

Based on the data, it appears that the bailer vs. micro-purge sampling method **does** affect the analytical results for aluminum, arsenic, barium, calcium, total chromium, copper, iron, lead, magnesium, manganese, titanium, uranium, vanadium, zinc, five radionuclides, and one wet chemistry parameter.

Upgradient Investigation Report, Tronox Facility - Henderson, Nevada

Analyte				We	II Cluster	1						Well	Cluster 2					
	TR-7A	TR-7	RPD	TR-8A	TR-8	RPD	TR-8	TR-8D	RPD	TR-9A	TR-9	RPD	TR-10A	TR-10	RPD	M-103A	M-103	RPD
Sample Depth:	27	0 ft				75	ft			23	88 ft			90 ft	•	75	i ft	
Metals	ug/L	ug/L		ug/L	ug/L		ug/L	ug/L		ug/L	ug/L		ug/L	ug/L		ug/L	ug/L	
Aluminum	630	640	-1.6	1800	2800	-43.5	2800	1500	60.5	13000	185	194.4	2000	115	178.3	15000	1600	161.4
Antimony	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Arsenic	44	50	-12.8	73	75	-2.7	75	74	1.3	65	39	50.0	63	63	0.0	125	115	8.3
Barium	51	38	29.2	75	85	-12.5	85	58	37.8	195	29	148.2	75	53	34.4	265	50	136.5
Beryllium	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Boron	470	470	0.0	1200	1200	0.0	1200	1200	0.0	560	540	3.6	1400	1400	0.0	1200	1200	0.0
Cadmium	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Calcium	61000	59000	3.3	92000	99000	-7.3	99000	89000	10.6	120000	59000	68.2	140000	140000	0.0	140000	120000	15.4
Chromium (total)	11	31	-95.2	16	17	-6.1	17	15	12.5	44	11	120.0	51	41	21.7	29	16	57.8
Chromium (hexavalent)	8.8			14.6	14.8	-1.4	14.8	14.9	-0.7	13	12.7	2.3	57			15.2	16.9	-10.6
Cobalt	nd	nd		nd	nd		nd	nd		7.0	nd		nd	nd		4.6	nd	
Copper	7.4	2.1	111.6	9.8	4.3	78.0	4.3	2.5	52.9	37	nd		4.9	2.0	84.1	50	7.0	150.9
Iron	780	1200	-42.4	1900	3000	-44.9	3000	1200	85.7	14000	180	194.9	2800	140	181.0	12000	1600	152.9
Lead	3.3	1.2	93.3	2.4	2.3	4.3	2.3	1.2	62.9	39	0.67	193.2	2300	nd		22	2.1	165.1
Magnesium	26000	26000	0.0	47000	51000	-8.2	51000	46000	10.3	59000	23000	87.8	54000	53000	1.9	82000	69000	17.2
Manganese	145	25	141.2	56	53	5.5	53	26	68.4	530	10	192.6	61	4.6	172.0	470	56	157.4
Mercury	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Molybdenum	5.3	5.2	1.9	13	13	0.0	13	13	0.0	4.4	5.2	-16.7	19	21	-10.0	42	49	-15.4
Nickel	nd	nd		nd	5.1		5.1	nd		35	nd		6.1	nd		14	nd	
Platinum	nd	nd		nd	nd		nd	nd		nd	nd			nd		nd	nd	
Potassium	9500	9200	3.2	11000	11000	0.0	11000	10000	9.5	12000	9000	28.6	15000	15000	0.0	14000	11000	24.0
Selenium	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Silicon																		
Silver	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Sodium	160000	160000	0.0	230000	230000	0.0	230000	220000	4.4	170000	170000	0.0	300000	310000	-3.3	320000	330000	-3.1
Strontium																		
Tin																		
Titanium	39	26	40.0	110	160	-37.0	160	64	85.7	550	nd		170	nd		390	74	136.2
Thallium	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Tungsten	nd	nd		nd	nd		nd	nd		nd	nd			nd		nd	nd	
Uranium	2.4	2.4	0.0	4.7	4.8	-2.1	4.8	4.7	2.1	8.8	2.1	122.9	4.8	4	18.2	7.3	3	83.5
Vanadium	28	28	0.0	33	33	0.0	33	30	9.5	70	25	94.7	35	27	25.8	38	26	37.5
Zinc	58	43	29.7	58	75	-25.6	75	41	58.6	4000	52	194.9	39	5.0	154.5	77	11	150.0
Methyl mecury																		
Wet Chemistry	ug/L	ug/L		ug/L	ug/L		ug/L	ug/L		ug/L	ug/L		ug/L	ug/L		ug/L	ug/L	
Alkalinity (total,CO ₃ ,HCO ₃ ⁻)	85000	82000	3.6	73000	78000	-6.6	78000	83000	-6.2	86000	70000	20.5	77000	65000	16.9	69000	82000	-17.2

Upgradient Investigation Report, Tronox Facility - Henderson, Nevada

Analyte				We	II Cluster	1						Well	Cluster 2					, /
	TR-7A	TR-7	RPD	TR-8A	TR-8	RPD	TR-8	TR-8D	RPD	TR-9A	TR-9	RPD	TR-10A	TR-10	RPD	M-103A	M-103	RPD
Ammonia																		
Chloride	199000	198000	0.5	153000	150000	2.0	150000	150000	0.0	189000	190000	-0.5	120000	122000	-1.7	126000	127000	-0.8
Chlorate	nd	nd		2910	2310	23.0	2310	2100	9.5	nd	nd		9200	8950	2.8	1130	808	33.2
Cyanide (total)	nd	nd		nd	7		7	nd		nd	nd		nd	nd		nd	nd	
Conductivity (umho/cm)	1290	1310	-1.5	1680	1680	0.0	1680	1690	-0.6	1330	1300	2.3	2240	2210	1.3	2340	2320	0.9
Fluoride																		
Nitrate	930	1100	-16.7	2200	2200	0.0	2200	2300	-4.4	1270	1200	5.7	730	770	-5.3	2800	2500	11.3
Nitrite	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Phosphate (ortho)																		
Phosphate (total)																		
Perchlorate	nd	nd		65	64	1.6	64	65	-1.6	nd	nd		860	970	-12.0	310	230	29.6
Sulfate	255000	255000	0.0	573000	594000	-3.6	594000	587000	1.2	266000	269000	-1.1	pend	971000		1019000	1027000	-0.8
Sulfide																		
TDS	802000	760000	5.4	1186000	1210000	-2.0	1210000	1174000	3.0	772000	750000	2.9	1630000	1380000	16.6	1740000	1560000	10.9
TSS																		
Surfactants (MBAS)																		
рН	8.0	7.9	1.3	8.0	8.0	0.0	8.0	7.9	1.3	8.0	8.0	0.0	8.3	7.9	4.9	7.9	6.7	16.4
Bromide																		
Chlorine (residual)																		
Total Organic Carbon																		
Flashpoint																		
Sulfite																		
Asbestos																		
TPH and fuel alcohols	mg/L	mg/L		mg/L	mg/L		mg/L	mg/L		mg/L	mg/L		mg/L	mg/L		mg/L	ug/L	
GRO(C6-C10)	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
DRO(C10-C28)	nd	nd		0.00016J	nd		nd	nd		nd	nd		nd	nd		nd	nd	
ORO (C28-C38)	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Methanol	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Ethanol	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Ethylene glycol	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Radionuclides	pCi/L	pCi/L		pCi/L	pCi/L		pCi/L	pCi/L		pCi/L	pCi/L		pCi/L	pCi/L		pCi/L	pCi/L	
Actinium 228																		
Bismuth 212																		
Gross alpha (adjusted) ⁽³⁾																		
Lead 210	nd	nd		4.97	nd		nd	nd		nd	nd		11.4	1.04	166.6	1.07	nd	
Lead 212	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Polonium 210																		
Proactinium 231																		
Radium 226	nd	nd		nd	nd		nd	nd		nd	nd		nd	0.848		0.969	nd	

Upgradient Investigation Report, Tronox Facility - Henderson, Nevada

Analyte				We	II Cluster	1						Well	Cluster 2					
	TR-7A	TR-7	RPD	TR-8A	TR-8	RPD	TR-8	TR-8D	RPD	TR-9A	TR-9	RPD	TR-10A	TR-10	RPD	M-103A	M-103	RPD
Radium 228	nd	0.276		nd	nd		nd	nd		nd	nd		nd	1.03		1.62	nd	
Radon 222																		
Thorium 228	0.139	nd		0.502	0.181	94.0	0.181	0.232	-24.7	nd	nd		nd	nd		2.39	nd	
Thorium 230	nd	nd		0.299	0.192	43.6	0.192	0.109	55.1	nd	nd		nd	nd		2.30	nd	
Thorium 232	nd	nd		0.299	nd		nd	0.0814		0.224	nd		nd	nd		2.27	nd	
Uranium 234	1.28	1.46	-13.1	3.09	3.06	1.0	3.06	3.93	-24.9	1.14	1.07	6.3	3.75	2.94	24.2	3.36	1.44	80.0
Uranium 235	nd	nd		nd	0.132		0.132	0.524	-119.5	nd	nd		0.218	nd		0.309	nd	
Uranium 238	0.745	0.725	2.7	1.35	1.58	-15.7	1.58	1.83	-14.7	1.14	1.13	0.9	1.54	1.77	-13.9	2.44	0.680	112.8
Uranium (total)	2.72	2.65	2.6	7.03	5.29	28.2	5.29	5.25	0.8	2.54	2.35	7.8	4.39	4.26	3.0	12.70	3.41	115.3
Volatile Organic Compounds	ug/L	ug/L		ug/L	ug/L		ug/L	ug/L		ug/L	ug/L		ug/L	ug/L		ug/L	ug/L	
1,1,1,2-Tetrachloroethane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1,1,1-Trichloroethane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1,1,2,2-Tetrachloroethane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1,1,2-Trichloroethane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1,1-Dichloroethane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1,1-Dichloroethene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1,1-Dichloropropene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1,2,3-Trichlorobenzene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1,2,3-Trichloropropane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1,2,4-Trichlorobenzene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1,2,4-Trimethylbenzene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1,2-Dibromo-3-chloropropane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1,2-Dibromoethane	nd	nd		nd	nd		nd	nd	-	nd	nd		nd	nd		nd	nd	
1,2-Dichlorobenzene	nd	nd		nd	nd		nd	nd	-	nd	nd		nd	nd		nd	nd	
1,2-Dichloroethane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1,2-Dichloropropane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1,3,5-Trimethylbenzene	nd	nd		nd	nd		nd	nd	-	nd	nd		nd	nd		nd	nd	
1,3-Dichlorobenzene	nd	nd		nd	nd		nd	nd	-	nd	nd		nd	nd		nd	nd	
1,3-Dichloropropane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1,4-Dichlorobenzene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
1-Chlorohexane	nd	nd		nd	nd		nd	nd	-	nd	nd		nd	nd		nd	nd	
2,2-Dichloropropane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
2-Butanone	nd	nd		nd	nd		nd	nd	-	nd	nd		nd	nd		nd	nd	
2-Chlorotoluene	nd	nd		nd	nd		nd	nd	-	nd	nd		nd	nd		nd	nd	
2-Hexanone	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
4-Chlorotoluene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
4-Methyl-2-pentanone	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Acetone	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Benzene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Bromobenzene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	

Upgradient Investigation Report, Tronox Facility - Henderson, Nevada

Analyte				We	II Cluster	1						Well	Cluster 2					
	TR-7A	TR-7	RPD	TR-8A	TR-8	RPD	TR-8	TR-8D	RPD	TR-9A	TR-9	RPD	TR-10A	TR-10	RPD	M-103A	M-103	RPD
Bromochloromethane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Bromodichloromethane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Bromoform	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Bromomethane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Carbon Tetrachloride	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Chlorobenzene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Chloroethane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Chloroform	nd	nd		9.4	14	-39.3	14	13	7.4	nd	nd		nd	1.6J		nd	nd	
Chloromethane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
cis-1,2-Dichloroethene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
cis-1,3-Dichloropropene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Dibromochloromethane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Dibromomethane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Dichlorodifluoromethane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Diisopropyl ether (DIPE)	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Ethylbenzene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Ethyl-tert-butyl ether (ETBE)	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Hexachlorobutadiene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Isopropyl Benzene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Xylenes (total)	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Methylene Chloride	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Methyl-tert-butyl ether (MTBE)	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Naphthalene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
n-Butylbenzene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
n-Propylbenzene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
p-Isopropyltoluene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
sec-Butylbenzene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Styrene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
tert-Amyl-methyl ether (TAME)	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
tert-Butyl alcohol (TBA)	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
tert-Butylbenzene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Tetrachloroethene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Toluene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
trans-1,2-Dichloroethene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
trans-1,3-Dichloropropene	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Trichloroethene	nd	nd		nd	1.3J		1.3J	1.1J		nd	nd		nd	nd		nd	nd	
Trichlorofluoromethane	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	
Vinyl Chloride	nd	nd		nd	nd		nd	nd		nd	nd		nd	nd		nd	nd	

Notes:

Upgradient Investigation Report, Tronox Facility - Henderson, Nevada

Analyte		Well Cluster 1										Well	Cluster 2					
	TR-7A	TR-7	RPD	TR-8A	TR-8	RPD	TR-8	TR-8D	RPD	TR-9A	TR-9	RPD	TR-10A	TR-10	RPD	M-103A	M-103	RPD
TR-7A - Wells designated with an "A" were not purged prior to sampling with a bailer.																		
TR-7 - Well purged and sampled with a dedi	cated micro	o-purge bla	adder pump.															
RPD - Relative percent difference																		
ug/L - micrograms per liter																		

mg/L - milligrams per liter

pCi/L - pico Curries per liter

nd - Not detected above the laboratory quantitation limit.

J - Estimated value; concentration was less than the quantitation limit

Bold - value exceeded established data quality level (EPA Region IX, 2004 PRGs and MCLs)

Table I-2 Summary of Relative Percent Difference for Bailer vrs. Micropurge Analytical Results for Metals Tronox Facility - Henderson, Nevada

Constituent	7-7A	8-8A	8-8D	9-9A	10-10A	103-103A
Aluminum	-1.6	-43.5	60.5	194.4	178.3	161.4
Antimony						
Arsenic	-12.8	-2.7	1.3	50.0	0.0	8.3
Barium	29.2	-12.5	37.8	148.2	34.4	136.5
Beryllium						
Boron	0.0	0.0	0.0	3.6	0.0	0.0
Cadmium						
Calcium	3.3	-7.3	10.6	68.2	0.0	15.4
Chromium (total)	-95.2	-6.1	12.5	120.0	21.7	57.8
Chromium (hexavalent)		-1.4	-0.7	2.3		-10.6
Cobalt						
Copper	111.6	78.0	52.9		84.1	150.9
Iron	-42.4	-44.9	85.7	194.9	181.0	152.9
Lead	93.3	4.3	62.9	193.2		165.1
Magnesium	0.0	-8.2	10.3	87.8	1.9	17.2
Manganese	141.2	5.5	68.4	192.6	172.0	157.4
Mercury						
Molybdenum	1.9	0.0	0.0	-16.7	-10.0	-15.4
Nickel						
Platinum						
Potassium	3.2	0.0	9.5	28.6	0.0	24.0
Selenium						
Silver						
Sodium	0.0	0.0	4.4	0.0	-3.3	-3.1
Titanium	40.0	-37.0	85.7			136.2
Thallium						
Tungsten						
Uranium	0.0	-2.1	2.1	122.9	18.2	83.5
Vanadium	0.0	0.0	9.5	94.7	25.8	37.5
Zinc	29.7	-25.6	58.6	194.9	154.5	150.0

RPD = Relative Percent Difference

Yellow highlight means RPD is greater than 30

Blue highlight is for duplicate groundwater comparison

Of the 30 metals analyzed, 19 were detected in two or more samples where RPD could be calculated.

Of the 19 metals where RPD was calculated 14 exhibited a RPD greater than 30.

An RPD greater than 30 represents a statistically significant difference in water samples.

- There were not two values therefore an RPD was not calculated.