

Steve Sisolak, Governor James R. Lawrence, Acting Director Greg Lovato, Administrator

October 18, 2022

Jay A. Steinberg Nevada Environmental Response Trust 35 East Wacker Drive, Suite 690 Chicago, IL 60601

Re: Tronox LLC (TRX) Facility Nevada Environmental Response Trust (Trust) Property NDEP Facility ID #H-000539 Nevada Division of Environmental Protection (NDEP) Response to: *GW-11 Pond Closure Pre-Closure Summary and Alternatives Analysis*

Dated: September 6, 2022

Dear Mr. Steinberg,

The NDEP has received and reviewed the Trust's above-identified Deliverable and provides comments in Attachment A. A revised Deliverable should be submitted by 12/18/2022 based on the comments found in Attachment A. The Trust should additionally provide an annotated response-to-comments letter as part of the revised Deliverable.

Please contact the undersigned with any questions at wdong@ndep.nv.gov or 702-668-3929.

Sincerely,

Dong Weiguan

Weiquan Dong, P.E. Bureau of Industrial Site Cleanup NDEP-Las Vegas City Office

WD:cp

EC:

Jeffrey Kinder, Deputy Administrator NDEP Frederick Perdomo, Deputy Administrator NDEP James Dotchin, NDEP BISC Las Vegas Carlton Parker, NDEP BISC Las Vegas Alan Pineda, NDEP BISC Las Vegas Andrew Barnes, Geosyntec Andrew Steinberg, Nevada Environmental Response Trust Anna Springsteen, Neptune & Company Inc. Betty Kuo Brinton, Metropolitan Water District of Southern California Brian Waggle, Hargis + Associates

Brian Loffman, Nevada Environmental Response Trust Brian Rakvica, Svngenta Carol Nagai, Metropolitan Water District of Southern California Chris Ritchie, Ramboll Christine Klimek, City of Henderson Chuck Elmendorf, Stauffer Management Company, LLC Dan Pastor, P.E. TetraTech Dan Petersen, Ramboll Dane Grimshaw, Olin Daniel Chan, SNWA Darren Croteau, Terraphase Engineering, Inc. Dave Share, Olin Dave Johnson, LVVWD Derek Amidon, TetraTech Ebrahim Juma, Clean Water Team Ed Modiano, de maximis, inc. Eric Fordham, GeoPentech Gary Carter, Endeavour Jay A. Steinberg, Nevada Environmental Response Trust Jeff Gibson, Endeavour Jill Teraoka, Metropolitan Water District of Southern California Joanne Otani, The Fehling Group Joe Kelly, Montrose Chemical Corporation of CA Joe Leedy, Clean Water Team John Edgcomb, Edgcomb Law Group John-Paul Rossi, Stauffer Management Company LLC John Solvie, Clark County Water Quality Karen Gastineau, Broadbent & Associates Kathrine Callaway, Cap-AZ Kelly McIntosh, GEI Consultants Kirk Stowers, Broadbent & Associates Kirsten Lockhart, Neptune & Company Inc. Kim Kuwabara, Ramboll Kurt Fehling, The Fehling Group Laura Dye, CRC Lee Farris, BRC Marcia Scully, Metropolitan Water District of Southern California Maria Lopez, Metropolitan Water District of Southern California Mark Duffy, U.S. Environmental Protection Agency, Region 9 Mark Paris, Landwell Mauricio Santos, Metropolitan Water District of Southern California Melanie Hanks, Olin Michael J. Bogle, Womble Carlyle Sandridge & Rice, LLP Michael Long, Hargis + Mickey Chaudhuri, Metropolitan Water District of Southern California Nicholas Pogoncheff, PES Environmental, Inc. Nicole Moutoux, U.S. Environmental Protection Agency, Region 9 Orestes Morfin. CA Paul Black, Neptune & Company Peter Jacobson, Syngenta Ranajit Sahu, BRC Rebecca Sugerman, U.S. Environmental Protection Agency, Region 9 Richard Pfarrer, TIMET Rick Kellogg, BRC R9LandSubmit@EPA.gov Roy Thun, GHD

Steve Clough, Nevada Environmental Response Trust Steven Anderson, LVVWD Steve Armann, U.S. Environmental Protection Agency, Region 9 Tanya O'Neill, Foley & Lardner L Todd Tietjen, SNWA William Frier, U.S. Environmental Protection Agency, Region 9

	Response to Comment	NDEP Comment on Response
General Comment 1: In Section 2.1 recommend adding sentence that provides the general dimensions (H x W x L) of the Pond embankment inclusive of the below ground component along with an additional figure showing both the map view and cross section. Doing so would be a helpful reference when reviewing each alternative.	The text in Section 2.1 has been modified to include the general dimensions of the GW-11 Pond (Pond) embankment, with reference to Section 3.3 which includes additional embankment dimension details. In addition, Figure 7 provides a map view and multiple cross sections of the Pond embankment with dimensions.	No further response required
Fatal Flaw 1: Cost Sections 4.3.1.3, 4.3.2.3, 4.3.3.3, 4.3.4.3, 4.4.3 various pages. The NDEP acknowledges this is a screening level alternatives analysis, however it is still important to provide sufficient cost detail for each alternative in order to support justification of a recommended remedy. For instance, in Section 3.3.3 Semi-volatile Organic Compounds (SVOCs) page 19 the HCB concentrations are relatively high in multiple borings. Per Section 3.3.10 additional investigation was to be completed in January 2022 with laboratory results expected in February 2022. The February 2022 results are not presented in this report, and therefore it is unclear what the cost impact could be if there were a larger quantity of embankment material failing TCLP. Therefore, the NDEP requests NERT provide an assumptions table for each alternative that includes all items that are	As indicated in the GW-11 Pond Closure Pre-Closure Summary and Alternatives Analysis (Report), the cost estimates provided are pre-design cost estimates and, as such, include a range of -30 % to +50%. The primary purpose for inclusion of costs at this phase was to provide NDEP an order of magnitude basis to evaluate the recommended option presented in the Report. After approval of the Report by the NDEP, and as noted in NERT's 2022 Annual Budget, it is the intent of the Trust to develop a detailed cost estimate and basis for closure of the GW-11 Pond, which will represent the most cost-effective approach to successfully achieve the selected closure option with current unit and contractor pricing immediately before implementation. Acknowledging the above, a basis for the cost estimates presented in the Report has been included as Appendix H of the revised document. The January 2022 sampling was not designed to further the understanding of whether additional embankment materials might fail TCLP, rather it was designed to determine if additional embankment materials might be able to be managed on site as clean fill. Accordingly, and due to the fact that the purpose of the additional data was to reduce disposal	It does not appear that the volume reduction from dewatering is included in the cost estimates. Please explain the cost estimate of \$1.6 million for disposal. The responses with respect to the estimates provided not accounting for the reduction in volume if they achieve the percent solids that are stated In Section 3.2. It states that there is approximate 50,075 to 52,975 cyds of solids. Assuming 53,000 cyds, and considering the other properties provided for this material (e.g., total solids of 2.78 % and specific gravity of 1.009) there is an

(cumulatively or individually) on the overall cost. The assumptions tables can show either an estimated quantity or quantity range for each item. The assumptions table should also include references to the cost estimate basis (e.g., contractor knowledge, vendor quote, model, etc.).	receipt and analysis of the additional data. Acknowledging the above, the text in Section 3.3 of the revised Report has been updated to include the results of the January 2022 sampling. Tetra Tech acknowledges that additional soil testing will be required during project implementation to finalize soil management planning and associated costs. However, based upon current data, there is no current basis for assuming any of the embankment material is hazardous. See the response to Essential Correction 11 below regarding the additional investigation of the embankment materials.	cubic yards) of dry solids in the material. If the material is dewatered to 25% solids in the geotubes, it would result in about 5,400 cyds of sludge for disposal. For the centrifuge option, it is indicated that the solids content could be in the 41% to 48 % range, which would produce about 2,600 to 3,100 cyds of dewatered sludge, respectively. NDEP requires an explanation why the calculation appears to be disposing of the entire 53,000 cyds and not considering the reduction in volume due to dewatering.
Fatal Flaw 2: Section 4.0 Development and Screening of Alternatives Page 25. The United States Environmental Protection Agency (USEPA) recognizes remedy effectiveness can be evaluated in terms of protectiveness and ability to achieve removal objectives. The protectiveness of the alternatives can be assessed in terms of how well they protect public health and the community, protect workers during implementation, protect the environment	Worker safety is a primary concern for implementation of all work completed at the NERT site. A thorough health and safety review will be completed as part of the GW- 11 Pond closure detailed planning and design. Additionally, job hazard analyses will be prepared at the task level for all work associated with GW-11 Pond closure. The text has been modified to include an evaluation of worker safety for each alternative. Additionally, Section 4.4.2 of the revised Report has been modified to include worker safety.	No further response required

and comply with ARARs. The alternatives analysis exhibits little consideration for worker safety beyond H ₂ S exposure. Given the nature of the work required to close GW-11 Pond, including potentially hazardous materials, working around water, and high volume of construction traffic, worker safety should be a priority consideration outlined for each alternative. Worker safety should also be captured in Section 4.4.1 Effectiveness Page 36.		
Essential Correction 1: Section 3.2.2 Analytical Testing Results Page 8 Section 3.2.2 states that the sludge sample contains 2.78 percent total solids and 1.71 percent suspended solids. Please provide more clarity regarding how the volume of sludge is defined. Is the 1.71 percent suspended solids included in the total solids, or are they two distinct layers?	The 1.71% suspended solids is included in the 2.78% total solids. Additional text has been added to Section 3.2.2 of the revised Report for clarity.	No further response required
Essential Correction 2: Section 3.2.2 Analytical Testing Results Page 8 High sulfate concentrations are present in the Pond which is said to be under anaerobic conditions. The Pond is currently utilized to receive off-spec GWETS effluent and to receive and store extracted groundwater during GWETS maintenance events therefore it does not seem that there is a constant, ongoing source of sulfate. If the Pond is under anaerobic conditions, sulfate levels should be lower. Please clarify if the anaerobic conditions have been verified. If	Anaerobic conditions have not been verified. Therefore, Section 3.2.2 of the revised Report has been modified to reflect that anaerobic conditions are assumed to be present within the pond based on microbial species testing (presented in Appendix E) and elevated detections of hydrogen sulfide, which is usually a result of sulfate reduction under anaerobic conditions. It should be noted that the concentrations of sulfate in groundwater across the NERT Remedial Investigation Study Area generally averages 2,000 milligrams per liter, which is similar to sulfate concentrations detected in water samples periodically collected from the Pond.	No further response required

the anaerobic conditions have been verified then please explain the		
presence of high sulfate concentrations.		
Essential Correction 3: Section 3.2.3 Solids Settling Test Page 9 The report on the settling tests is not included in Appendix C.	The settling test described in the Report is typical of tests performed during the Alternative Analysis/Feasibility Study phase of a project. The objective of this test was to provide a broad understanding of settling characteristics of the	Suggest including the report describing the September 2020 testing by Tetra Tech as an Appendix
Was this testing performed at a different time?	sediment/water mix and polymers that would enhance the settling rate. The 2020 solids settling tests were successful in:	
Is this why the data from the settling tests	 Providing a general understanding of solid content and the time for solids to settle without any polymer addition. 	
were not used to determine the polymer/coagulant doses performed in the Geotube and Centrifuge tests?	• The effect on the rate of solids settling after addition of a specific polymer.	
	 The effect on the rate of solids settling after varying the concentrations of a specific polymer and varying the total solids concentration of the solid/water mixture. 	
	 Providing data that informed subsequent tests, including the additional Alternative Analysis/Feasibility Study phase testing conducted for the geotube effectiveness test (Geotube Dewatering Technology [GDT] Test) and the centrifuge effectiveness test as detailed in Section 3.2.4. 	
	 The effectiveness of sodium permanganate to oxidize volatile hydrogen sulfide. 	
	The solids settling test is straightforward and it is common for this test to be conducted in-house. The summary of the test procedure, observations, results, and recommendations are provided in Section 3.2.3. A separate report of the test was thus not included with the appendices.	
	The solids settling tests were conducted in September 2020 by Tetra Tech, prior to the geotube and centrifuge testing detailed in Appendices C and D, respectively. The results and data from	

	the solids settling tests were utilized in determining the reagent doses for all subsequent tests performed by Tetra Tech or its subcontractors during the alternatives analysis phase of the work. The solids settling tests will inform additional tests that are anticipated during the detailed design and planning phase of the work. The text in Section 3.2.3 has been updated to clarify the tests were used to determine subsequent reagent doses in the geotube and centrifuge tests, and that the tests were not intended to be exhaustive at this stage and additional testing will be performed as necessary during detailed planning and design	
Essential Correction 4: Section 3.2.3 Solids Settling Test Page 9 Solids settling tests were not performed with coagulant alone option. It is standard practice in jar testing to test each reagent separately. Please explain the rationale for this choice.	and design. As noted in response to Essential Correction #3, the intent of the solids settling test conducted in 2020 was to provide information to support the development of various alternatives for GW-11 Pond Closure. Tests typically conducted during the Alternative Analysis/Feasibility Study phase are not expected to be exhaustive. It is anticipated that additional tests will be conducted during the detailed planning and design phase to develop the optimum dosage and combination of various reagents, including evaluating the effectiveness of coagulant as a stand-alone settling agent.	No further response required
Essential Correction 5: Section 3.2.3 Solids Settling Test Page 9 Provide the rationale for not testing permanganate on undiluted samples. Permanganate should have been included in all tests as permanganate addition is planned and the production of manganese dioxide from the reaction of the permanganate will affect settling parameters and any unreacted permanganate will affect the quality of the supernatant.	As noted in response to Essential Correction #3, the intent of the solids settling test conducted in 2020 was to provide information to support the development and evaluation of various alternatives for GW-11 Pond Closure. This included alternatives to address hydrogen sulfide. The 2020 solids settling test included tests with permanganate to evaluate the oxidative effectiveness on the site-specific hydrogen sulfide in GW-11 Pond materials. Also, as noted in Sections 3.2.4.1, the geotube effectiveness tests included dosage of permanganate on undiluted samples prior to polymer addition. No impacts from production of manganese dioxide were noted in these tests. Furthermore, as noted in Section 3.2.5, additional	No further response required

	permanganate dosage tests were conducted on undiluted	
	samples to study the oxidative effectiveness and collect	
	additional parameters. Finally, as noted in the response to	
	Essential Correction #6 below, testing was performed to	
	evaluate dewatering filtrate compatibility with the Biological	
	Treatment Plant (Section 3.2.7). These tests included addition	
	of permanganate (100 ppm and 500 ppm) and polymer to	
	undiluted Pond samples, processing of the material through a	
	geotube pillow, and collecting filtrate samples for laboratory	
	analysis of parameters specific to Biological Treatment Plant	
	operation. No impacts to filtrate water quality were noted	
	that would prevent treatment in the Biological Treatment	
	Plant.	
	While the above referenced testing did not show any adverse	
	effects on settling parameters or quality of the filtrate,	
	additional testing is anticipated to be conducted during the	
	detailed planning and design phase to optimize the	
	permanganate dosage volume and rate, and further evaluate	
	the potential impact from unreacted permanganate on filtrate	
	quality.	
Essential Correction 6: Section 3.2.3 Solids	As noted in response to Essential Correction #3, the intent of	No further response required
Settling Test Page 9 In addition to	the solids settling test conducted in 2020 was to provide	
photographs showing the settled solids and	information to support the development and evaluation of	
the clarity of the supernatant, quantitative	various alternatives for GW-11 Pond Closure. Tetra Tech	
measurements of the turbidity or TSS of the	concurs that quantitative measurements of turbidity and/or	
supernatant and the percent solids content	TSS of supernatant/filtrate and the percent solids content of	
of the settled solids would be helpful to	the settled solids is useful in assessing the efficacy of the	
assess the efficacy of the polymer/coagulant	polymer/coagulant doses. For this reason, additional testing	
doses. Please explain why this was not done.	was performed to evaluate dewatering filtrate compatibility	
	with the Biological Treatment Plant (Section 3.2.7) since the	
	filtrate from dewatered GW-11 Pond solids will ultimately be	
	treated via the Biological Treatment Plant. These tests included	
	addition of permanganate (100 ppm and 500 ppm) and	

	polymer to undiluted Pond samples, processing of the material through a geotube pillow, and collecting filtrate samples for laboratory analysis of parameters specific to Biological Treatment Plant operation. The resulting filtrate was analyzed for quantitative measurement of TSS and other parameters specific to Biological Treatment Plant operation. While the above referenced testing showed that the permanganate and polymer dosing was effective and the resulting filtrate was suitable for treatment through the Biological Treatment Plant, additional testing was not required to perform this analysis but will be conducted during detailed planning and design to optimize the polymer/coagulant doses.	
Essential Correction 7: Appendix D How do the doses of polymer used in the geotube tests relate to the doses of polymer used in the settling test? Was the settling test data used to inform the polymer/coagulant choice of the geotube tests?	As is standard practice, the geotube effectiveness tests included polymer doses informed by the results of the 2020 solids settling tests and guidance by TenCate Geosynthetics, the geotube vendor. TenCate is a leading global supplier of geosynthetics for sediment dewatering projects and has supported tests on similar Tetra Tech and industry-wide environmental sediment dewatering projects. The 2020 solids settling test, as summarized in Section 3.2.3, used a range of 1 to 2.5 ppm polymer concentration. As summarized in Section 3.2.4.1, polymer concentrations of up to 3 ppm in the geotube effectiveness tests showed some solids passing through the geotube fabric, while polymer concentrations of 4 to 5 ppm showed clear filtrate with no observable solids passing through the geotube fabric. The polymer type was consistent between the two tests. A statement was added to Section 3.2.4.1 to explain that the data gathered from the solids settling test provided preliminary guidance for polymer dosing during the geotube test. It is anticipated that additional tests will be conducted during the detailed planning and design phase to develop the optimum dosage and combination of the various reagents.	No further response required

Essential Correction 8: Section 3.2.4.2 Centrifuge Page 11 How do the doses of polymer used in the centrifuge tests relate to the doses of polymer used in the settling test? Was the settling test data used to inform the polymer/coagulant choice of the centrifuge tests?	A statement was added to Section 3.2.4.2 of the revised Report to explain that the data gathered from the solids settling test provided preliminary guidance for polymer dose volume during the centrifuge tests, although the laboratory also conducted its own independent polymer evaluation as well (see Andritz Separation Technologies, Inc. laboratory report included in Appendix C).	No further response required
Essential Correction 9: Section 3.2.4.3 Filter Press Page 12 Polymer and/or coagulant are often added to assist with dewatering using a filter press. Because it is likely this test would have yielded different results if the polymer and/or coagulant were used, please explain why this was not done.	 Tetra Tech concurs that evaluation of dewatering by mechanical separation methods may include chemical condition of slurry using polymers to assess potential enhanced efficacy. Primarily for this reason, the centrifuge effectiveness test and filter press effectiveness test were initially planned to include GW-11 Pond slurry feeds that were (1) untreated, and (2) chemically conditioned with the addition of polymers. Laboratory testing was performed by Andritz Separation Technologies, a leader in material separation testing technology and products. As described in Appendix C, the centrifuge effectiveness test was conducted with both untreated and conditioned slurry feeds. As part of the filter press effectiveness test, Andritz Separation Technologies recommended not performing a R- Meter test with polymer flocculated sludge because it is easy for an overdose of polymer to foul the filter cloth. Tetra Tech concurred with this recommendation based on: 	NDEP recommends that any future testing involving a filter press also include polymer/ coagulant testing.
	 The results of the filter press effectiveness test on GW-11 Pond materials without chemical conditioning which yielded low effectiveness results. Use of higher levels of polymer concentrations necessary to improve dewatering results would negate the use of a specialized process like filter press and make the other alternatives more favorable (i.e., use of geotubes). Maintenance and frequent shut-downs are one of the 	

permanganate is shipped as a 40 percent that procedures	part of initial pre-closure activities were te the feasibility of different closure Tech is aware of the considerations of using acknowledges the importance of evaluating ale implementation. Due to these risks, will continue to, work with the olier, Carus, to identify safe and effective ganate delivery, storage, and handling. revised Report includes language stating I be developed in detail and reviewed by s as part of detailed planning and design.
	January 2022 data, please see our The concern with the HCB is

The HCB concentrations are relatively high in multiple borings. This could have significant project implications if material fails TCLP during implementation. Per Section 3.3.10 additional investigation was to be completed in January 2022 with laboratory results expected in February 2022. These results should be included in the closure analysis.	 Appendices E and F have been updated to include the results of the January 2022 sampling. The embankment sampling data indicate that embankment materials are unlikely to be characteristically hazardous. Tetra Tech acknowledges that additional soil testing will be required during project implementation for waste profiling, but there is no current basis for assuming any of the embankment material is hazardous. As indicated in the table documenting the alternative cost assumptions presented in Appendix H of the revised alternatives analysis, the basis for the embankment material disposal costs included an assumption that 15% of the estimated embankment volume could be repurposed for use on site based on the preliminary sampling. The results of the January 2022 investigation indicate that the volume of soil with constituent concentrations less than the SMP soil screening levels may be limited to a smaller area in the vicinity of GW-11-10 than originally assumed. Based on the January 2022 sampling results, the basis for the embankment material disposal costs was updated using a revised assumption that 5% of the estimated embankment volume could be repurposed for use on site. The volumes and costs in Section 4.1.2, Section 5.0, and Appendix H have been updated accordingly. 	in some of the samples and the limited amount of TCLP data. NDEP recommends that during subsequent phases of the project, additional sampling be conducted for TCLP HCB analysis to confirm the embankment material is nonhazardous throughout prior to disposing of the material offsite.
Essential Correction 12: Section 3.4.3.1 Embankment Fill page 22 1st paragraph stated that "Standard penetration resistance values in the fill ranged from 22 to greater than 50 blows per foot". A review of the boring log does not appear to have any SPT values greater than 50 blows. Please correct or update as necessary. 4th paragraph stated "cohesion values of 430 and 180 pounds per square foot. Please discuss how these two	Boring logs for GW-11-1 and GW-11-2 each present SPT values greater than 50 blows per foot (e.g., "50/0.4ft" indicating 50 blows to drive 0.4 ft, which is considered refusal and is indicative that more than 50 blows would have been required to drive the standard sample distance of 0.5 ft). Therefore, no corrections to the text are believed to be required. Historical information indicates that the GW-11 Pond embankments were constructed of borrow material placed from the Pond excavation in a cut and fill operation. This is consistent with field observations and laboratory results that classified both the materials identified with the names	No further response required

numbers are used to produce the value in	"embankment fill" and "native sand" as silty sand and silty sand	
Table 7.	with gravel. Cohesion values presented in Table 7 of the Report	
	were derived by averaging the cohesion values for the four	
	samples from the same soil type (338 psf), then applying a	
	conservative reduction given the driven, or disturbed, sampling	
	method (modified California sampler). A footnote has been	
	added to Table 7 of the revised Report to clarify how the values	
<u> </u>	were derived.	
Essential Correction 13: Section 3.4.3.2	Historical information indicates that the GW-11 Pond	No further response required
Natural Sand page 22 2nd paragraph stated	embankments were constructed of borrow material placed	
"cohesion values of 350 and 390 psf. Please	from the Pond excavation in a cut and fill operation. This is	
discuss how these 2 numbers are used to	consistent with field observations and laboratory results that	
produce the value in Table 7.	classified both the materials identified with the names	
	"embankment fill" and "native sand" as silty sand and silty sand	
	with gravel. Cohesion values presented in Table 7 of the Report	
	were derived by averaging the cohesion values for the four	
	samples from the same soil type (338 psf), then applying a	
	conservative reduction given the driven, or disturbed, sampling	
	method (modified California sampler). A footnote has been	
	added to Table 7 of the revised Report to clarify how the values	
	were derived.	
Essential Correction 14: Section 3.4.4 Slope	The most conservative model is that in which the GW-11 Pond	No further response required
Stability Analysis page 23 2nd paragraph,	is empty and the WC- West Pond is filled to the maximum	
item 6 stated that "the WC-West Pond	height due to the lateral loading from the weight of the water,	
remains fully lined, nearly empty. The	which is the scenario presented in the Report. A model was	
evaluation presented is a long-term stability	also run with the WC-West Pond empty and resulted in the	
scenario based on the WC-West Pond filled	same minimum factors of safety as the scenario that was	
to the maximum height. Recommend adding	presented in the Report. Table 8 was updated to include an	
the factor of safety for short-term stability	additional row presenting the minimum factors of safety in a	
scenario where the WC-West Pond is nearly	scenario where the WC- West Pond is empty. Additionally,	
empty, which is stated to be the normal	results from the SLIDE analyses of this scenario have been	
condition, and the water in the GW- 11 Pond	added to Appendix G.	
is rapidly drawn down.	Rapid drawdown of water levels can affect the stability of	
	unlined earthen dams. Because both the GW-11 Pond and the	

	WC-West Pond are lined, there is not expected to be an effect on the amount of water within the shared embankment during a rapid drawdown scenario that would affect stability, which is represented by the model results.	
Essential Correction 15: Table 7 page 24 Unit Weight Values: Please provide a statement indicating whether these values are average values from the 4 test samples or from one specific sample.	The unit weight values are average values from the four test samples. A clarification statement has been included as a footnote to Table 7.	No further response required
Essential Correction 16: Section 3.4.4 Slope Stability Analysis Last paragraph, item 4 page 24 "If necessary, new fill" Would the requirement for new fill be determined in the design phase considering that the type of material specified as "new fill" may impact the requirement for erosion protection?	Correct. The requirement for new fill will be determined in the design phase.	No further response required
Essential Correction 17: Section 3.4.4 Slope Stability Analysis Last paragraph, item 5 page 24. "If necessary, provide rip rap" Would erosion protection be determined in the design phase considering that when the liner is removed from the GW-11 Pond as part of the closure requirement, the slope will be exposed and susceptible to erosion.	Correct. Erosion protection will be determined in the design phase.	No further response required
Essential Correction 18: Section 4.2 GW-11 Pond Contents Removal and Treatment/Disposal Alternatives page 27 Alternative A is the only alternative where water is pumped off prior to solids removal. Please explain whether water is being retained in the other two options to create a	The other two options (Alternatives B and C) involve pumping a slurry to a dewatering area and returning filtrate to the GW-11 Pond prior to treatment of the water through the Biological Treatment Plant. This process (Alternatives B and C) results in water being retained in the pond prior to treatment through the Biological Treatment Plant. Hydrogen sulfide mitigation will be performed prior to removal of pond solids; therefore, it is	With alternatives B and C, consider removing as much water as practical prior to starting the remediation project so that this water does not have to be managed.

water blanket to prevent the emission of	not the intent of the other two options to create a water	
H ₂ S?	blanket to prevent the emission of hydrogen sulfide.	
Essential Correction 19: Section 4.2	Bullet 3a: Tetra Tech previously evaluated partitioning of the	No further response required
GW-11 Pond Contents Removal and	pond as part of a pond replacement planning evaluation,	
Treatment/Disposal Alternatives	which was presented to the NDEP during a November 30,	
(various subsection bullets) page 27	2017 status meeting. Based on that evaluation, partitioning of	
Bullet 3a. The NDEP recommends	the GW-11 Pond for closure was not deemed cost effective	
considering constructing the geotube	given that the Pond construction and its configuration created	
containment area within the GW-11	logistical challenges that would not be encountered during	
Pond footprint. After pumping water	construction of a separate geotube containment area. In	
down within the Pond area to the extent	addition, construction of a separate geotube area will facilitate	
practicable, an area for the geotubes	removal of all sludge from within the basin footprint, allowing	
could be partitioned off with a	a more streamlined and cost-effective process for liner	
temporary dam. The sludge within the	removal and additional pond closure activities to proceed	
containment area could be pumped and	while material in the geotubes dewater. Accordingly, we do	
consolidated within the remaining Pond	not believe the Report should be revised to consider this	
area.	option.	
Bullet 4a. At this point. consider not	Bullet 4a: Although results of the plate and frame press testing	
eliminating plate and frame press and	were unfavorable as described in Section 3.2.4.3, Section 4.2	
provide it as an option with centrifuge,	has been updated to retain both plate and frame press as	
referring to them both as mechanical	mechanical options while indicating that only centrifuge was	
dewatering.	evaluated and screened in detail based on better performance	
	in the laboratory testing.	
Essential Correction 20: Section 4.3.2	Bullet 2a: There is not sufficient space within the existing	No further response
Alternative A Removal of GW-11 Pond	GWETS treatment plant footprint to add additional solids	required
Liquids in Advance of Solids (various	removal equipment. A separate containment area with	
subsection bullets) page 29	filtration equipment would need to be constructed. The same	
Bullet 2a. Is there an option to add more	volume of solids from the GW-11 Pond would need to be	
solids removal equipment ahead of the	removed whether by additional filtration equipment added to	
GWETS to allow more processing of the	the GWETS or the other methods discussed and evaluated. As	
water with the system?	noted in Section 3.2.7, the influent flow rate to the Biological	
Bullet 3a. It is stated that mechanical	Treatment Plant for dewatering of the GW-11 Pond solids will	
removal would be the most effective	be dependent on Trust treatment priorities and the resulting	
means to remove the solids. Before	hydraulic capacity of the Biological Treatment Plant.	

discounting it due to potential damage to the liner, the NDEP recommends further evaluation of methods to protect the liner such as using small rubber tire equipment with specialty buckets and extensive monitoring and contingency plans during removal. A protective layer could also be used for an isolated area in the Pond to perform any aggressive mixing and/or loading. Consider as part of this step to allow the material to dry out to the extent practicable and mix with the embankment soil to meet the paint filter test. Bullet 3b. The NDEP recommends further discussion of the disposition of the material in the vacuum trucks. How many trucks would have to be removed accounting for the excess water that would be generated using this approach? What would be the cost implications for subsequent solidification prior to disposal?

Additionally, Section 4.3.2.2 explains that the feed rate of filtrate to the Biological Treatment Plant is expected to be small relative to influent flow from the well fields given current operating conditions (e.g., 100 gpm dewatering filtrate combined with 1,000 gpm well field flow). Assuming a 100 gpm feed rate and an approximate total volume of 35 million gallons in the GW-11 Pond, the filtration would require an estimated 243 days of operation and result in an average solids removal rate of 218 cubic yards per day. Accordingly, and while acknowledging the estimated 243 days of operation, we do not believe additional solids equipment ahead of the GWETS to allow additional processing would be a cost-effective option.

Bullet 3a: As a point of clarification, Section 4.3.2 states that mechanical removal with heavy equipment would be the most effective removal method if the solids were sufficiently dry. Section 4.3.2.1 further discusses the likeliness of heavy equipment damaging the liner and creating a conduit for release to the subsurface of residual water in the GW-11 Pond. Methods to protect the liner were considered when evaluating this option. Section 4.3.2.2 states that additional measures required to minimize damaging the liner and creating a potential pathway for a release are technically feasible, but will add to the complexity and time required to complete the solids removal. However, the risk of damaging the liner could not sufficiently be reduced or eliminated with these methods.

Bullet 3b: Based on an estimated 52,975 cubic yards of solids in the GW-11 Pond and an average vacuum truck size of 2,500 gallons, a minimum of 4,280 vacuum truck loads would need to be removed. This does not account for inefficiencies with water intake or as overall pond levels decrease. These inefficiencies may add 25% or more to the

Essential Correction 21: Section 4.3.2.2 Implementability page 30 The term "technically feasible" is used to describe additional measures that could minimize damage to the liner. Given the significance damaging the liner presents, and the apparent influence this concern has to the rating of Alternative A, the NDEP recommends expanding this section to include some examples of methods and equipment that would make removal of solids using heavy equipment technically feasible. The addition of a figure(s) showing tools, equipment and techniques would be helpful.	number of vacuum trucks loads required. Assuming 10 vacuum truck round trips per day operating six days per week, it would take more than 20 months to complete solids removal with this option. Subsequent solidification or stabilization at the landfill would be required for low solids concentration slurry and result in additional costs when compared to other mechanical removal methods and other alternatives. Accordingly, we do not believe additional discussion involving disposition of material by vacuum trucks is necessary to include in the revised Report. Heavy equipment could technically be used to remove solids on top of the liner. The use of equipment on top of geosynthetic membranes requires restrictions on the ground pressure of the equipment (typically less than 6 psi), limitations on the type of movement (e.g., limited turning, no sudden starts/stops, etc.), and barriers over liner subjected to repeated vehicle traffic. Therefore, while technically feasible, the use of heavy equipment would add to the complexity and time required to remove the solids as noted in Section 4.3.2.2. Given the potential for liner damage and potential releases to the subsurface from this option, this option was not recommended. Section 4.3.2.2 has been updated to include additional discussion regarding the removal of solids using heavy equipment.	No further response required
Essential Correction 22: Section 4.3.3 Alternative B – Solids Dewatering Utilizing Geotubes page 31 If H ₂ S mitigation is being done prior to solids or water removal, why wouldn't the water be removed before removing and dewatering the solids? The solids would be easier to manage if the water was pumped	In Alternative B, the water in the GW-11 Pond is necessary to slurry and transport the pond solids to the geotube dewatering area. All of the water in the pond will ultimately be treated via the Biological Treatment Plant. Treating a portion of the water before removing and dewatering the solids will not improve efficiency. A water blanket is not necessary to manage the H ₂ S after permanganate treatment.	With 2.8% solids, additional water should not be necessary to pump the material. Refer to NDEP response to response to Essential Correction 18

		1
off and it would be more efficient to empty		
the Pond during the dewatering step without		
additional water removal and treatment. Is		
there a concern that a water blanket is		
necessary to manage the H ₂ S even after the		
permanganate treatment?		
Essential Correction 23: Section 4.3.3	We concur. "Hydraulic methods" has been changed to	No further response required
Alternative B – Solids Dewatering Utilizing	"hydraulic dredging" throughout the GW-11 Pond Closure, Pre-	
Geotubes page 31	Closure Summary and Alternatives Analysis.	
<i>3b notes "hydraulic methods" while cost</i>		
table 11 states "Hydraulic Dredging". If		
hydraulic dredging is the only hydraulic		
method being employed then recommend		
changing 3b and entirety of Section 4.3.3 to		
"hydraulic dredging" as it is more succinct.		
Essential Correction 24: Section 4.3.3.2, 3e,	As noted in Section 3.2.7, the influent flow rate to the	Please refer to NDEP
Page 31	Biological Treatment Plant for dewatering of the GW-11 Pond	response to response to
Sending the water from the geotube	solids will be dependent on Trust treatment priorities and the	Essential Correction 18
dewatering to the GWETS and not back to	resulting hydraulic capacity of the Biological Treatment Plant.	
the Pond would minimize managing the	Section 4.3.2.2 explains that the feed rate of filtrate to the	
water multiple times. Please consider	Biological Treatment Plant is expected to be small relative to	
making this change or provide an	influent flow from the well fields given current operating	
explanation of why this is not	conditions (e.g., 100 gpm dewatering filtrate combined with	
possible/advisable.	1,000 gpm well field flow). The dewatering rate of the	
	geotubes is initially expected to be much higher than the	
	allowable influent flow rate to the Biological Treatment Plant,	
	and the dewatering rate cannot be scaled back to match a	
	lower Biological Treatment Plant feed rate. Filtrate from the	
	geotube dewatering can be pumped or gravity drained to the	
	GW-11 Pond at rates that match the dewatering rate of the	
	geotubes, while water can be pumped from the pond to the	
	Biological Treatment Plant at a rate that matches the hydraulic	
	capacity of the Biological Treatment Plant, thus affording the	
	Trust maximum flexibility while implementing pond closure.	

	No further response
	required
supplier of geosynthetics for environmental sediment	
dewatering applications, was consulted regarding the geotube	
specifications for use in the geotube dewatering test given the	
GW-11 Pond material properties, including percent fines. A	
TenCate representative was also present during geotube	
dewatering tests to evaluate the results of the field tests and	
confirmed the success of the field test and GW-11 Pond	
material suitability for geotube dewatering. Dredge operations	
typically include real-time flow rate and density monitoring of	
the slurry to allow adjustment of polymer dosing. Additional	
discussion has been added to the revised Report to present the	
abovementioned detail.	
A design of the geotube dewatering system will be prepared	No further response required
during detailed planning and design. In addition to the geotube	
dewatering system, details regarding the hydraulic removal	
method and tools to be used during solids removal will be	
prepared at that time. For purposes of this Report, Figures 9	
through 12 have been added to show typical dredging	
components and geotube dewatering operations.	
Please see our response to Essential Correction 23.	No further response required
_	 specifications for use in the geotube dewatering test given the GW-11 Pond material properties, including percent fines. A TenCate representative was also present during geotube dewatering tests to evaluate the results of the field tests and confirmed the success of the field test and GW-11 Pond material suitability for geotube dewatering. Dredge operations typically include real-time flow rate and density monitoring of the slurry to allow adjustment of polymer dosing. Additional discussion has been added to the revised Report to present the abovementioned detail. A design of the geotube dewatering system will be prepared during detailed planning and design. In addition to the geotube dewatering system, details regarding the hydraulic removal method and tools to be used during solids removal will be prepared at that time. For purposes of this Report, Figures 9 through 12 have been added to show typical dredging components and geotube dewatering operations.

		1
changing 3b and entirety of Section 4.3.4 to		
"hydraulic dredging" as it is more succinct.		
Essential Correction 28: Section 5.0	The text in Section 5 of the revised Report has been modified	No further response required
Recommendations page 39	to more clearly state that NERT is recommending Alternative B	
State clearly that NERT is recommending	and to explain the range of probable costs.	
Alternative B. Please also provide a textual		
explanation for the range of costs presented		
in Table 14. It appears that the range of		
estimated costs is between \$14.8 M and		
\$31.7 M, with the most probable cost being		
\$21.1 M. Clearly state that these estimates		
together represent the range of probable		
costs and explain.		
Minor Correction 1: Appendix E Boring Log,	A legend has been provided in Appendix E of the revised Report	No further response required
please provide legends for the symbols and	for the symbols and abbreviations used in the boring logs.	
abbreviations used in the log.		
Minor Correction 2: Section 3.2.6 Pond Solids	Specific types of equipment for solids removal, including	No further response required
Removal page 14 The text should clarify the	hydraulic dredge type, will be specified as part of detailed	
discussion of the dredge type. The term	planning and design.	
hydraulic dredge typically includes any		
dredge that moves the material hydraulically		
(including a typical cutter-head dredge).		
Minor Correction 3: Section 3.4.3.1	Direct shear testing is a standardized test method for	No further response required
Embankment Fill page 22 4th paragraph	evaluating shear strength of soil. The results of the direct shear	
stated "Direct shear testing was performed".	testing conducted for this Report fall within the published	
It should be noted that the mode of failure in	range of shear values for similar soil types and based on Tetra	
a direct shear test sample may overestimate	Tech's experience, other shear test methods would likely result	
shear strength values and result in a less	in values within the same range. Therefore, it is not believed	
conservative FOS.	that other shear test methods would result in significantly	
	different values than the static and seismic factors of safety	
	modeled and reported in the Report.	